Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19#include <linux/cpuset.h>
20
21/*
22 * Default limits for DL period; on the top end we guard against small util
23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
24 * guard against timer DoS.
25 */
26static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
28#ifdef CONFIG_SYSCTL
29static struct ctl_table sched_dl_sysctls[] = {
30 {
31 .procname = "sched_deadline_period_max_us",
32 .data = &sysctl_sched_dl_period_max,
33 .maxlen = sizeof(unsigned int),
34 .mode = 0644,
35 .proc_handler = proc_douintvec_minmax,
36 .extra1 = (void *)&sysctl_sched_dl_period_min,
37 },
38 {
39 .procname = "sched_deadline_period_min_us",
40 .data = &sysctl_sched_dl_period_min,
41 .maxlen = sizeof(unsigned int),
42 .mode = 0644,
43 .proc_handler = proc_douintvec_minmax,
44 .extra2 = (void *)&sysctl_sched_dl_period_max,
45 },
46 {}
47};
48
49static int __init sched_dl_sysctl_init(void)
50{
51 register_sysctl_init("kernel", sched_dl_sysctls);
52 return 0;
53}
54late_initcall(sched_dl_sysctl_init);
55#endif
56
57static bool dl_server(struct sched_dl_entity *dl_se)
58{
59 return dl_se->dl_server;
60}
61
62static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
63{
64 BUG_ON(dl_server(dl_se));
65 return container_of(dl_se, struct task_struct, dl);
66}
67
68static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
69{
70 return container_of(dl_rq, struct rq, dl);
71}
72
73static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
74{
75 struct rq *rq = dl_se->rq;
76
77 if (!dl_server(dl_se))
78 rq = task_rq(dl_task_of(dl_se));
79
80 return rq;
81}
82
83static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
84{
85 return &rq_of_dl_se(dl_se)->dl;
86}
87
88static inline int on_dl_rq(struct sched_dl_entity *dl_se)
89{
90 return !RB_EMPTY_NODE(&dl_se->rb_node);
91}
92
93#ifdef CONFIG_RT_MUTEXES
94static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
95{
96 return dl_se->pi_se;
97}
98
99static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
100{
101 return pi_of(dl_se) != dl_se;
102}
103#else
104static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
105{
106 return dl_se;
107}
108
109static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
110{
111 return false;
112}
113#endif
114
115#ifdef CONFIG_SMP
116static inline struct dl_bw *dl_bw_of(int i)
117{
118 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
119 "sched RCU must be held");
120 return &cpu_rq(i)->rd->dl_bw;
121}
122
123static inline int dl_bw_cpus(int i)
124{
125 struct root_domain *rd = cpu_rq(i)->rd;
126 int cpus;
127
128 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
129 "sched RCU must be held");
130
131 if (cpumask_subset(rd->span, cpu_active_mask))
132 return cpumask_weight(rd->span);
133
134 cpus = 0;
135
136 for_each_cpu_and(i, rd->span, cpu_active_mask)
137 cpus++;
138
139 return cpus;
140}
141
142static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
143{
144 unsigned long cap = 0;
145 int i;
146
147 for_each_cpu_and(i, mask, cpu_active_mask)
148 cap += arch_scale_cpu_capacity(i);
149
150 return cap;
151}
152
153/*
154 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
155 * of the CPU the task is running on rather rd's \Sum CPU capacity.
156 */
157static inline unsigned long dl_bw_capacity(int i)
158{
159 if (!sched_asym_cpucap_active() &&
160 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
161 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
162 } else {
163 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
164 "sched RCU must be held");
165
166 return __dl_bw_capacity(cpu_rq(i)->rd->span);
167 }
168}
169
170static inline bool dl_bw_visited(int cpu, u64 gen)
171{
172 struct root_domain *rd = cpu_rq(cpu)->rd;
173
174 if (rd->visit_gen == gen)
175 return true;
176
177 rd->visit_gen = gen;
178 return false;
179}
180
181static inline
182void __dl_update(struct dl_bw *dl_b, s64 bw)
183{
184 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
185 int i;
186
187 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
188 "sched RCU must be held");
189 for_each_cpu_and(i, rd->span, cpu_active_mask) {
190 struct rq *rq = cpu_rq(i);
191
192 rq->dl.extra_bw += bw;
193 }
194}
195#else
196static inline struct dl_bw *dl_bw_of(int i)
197{
198 return &cpu_rq(i)->dl.dl_bw;
199}
200
201static inline int dl_bw_cpus(int i)
202{
203 return 1;
204}
205
206static inline unsigned long dl_bw_capacity(int i)
207{
208 return SCHED_CAPACITY_SCALE;
209}
210
211static inline bool dl_bw_visited(int cpu, u64 gen)
212{
213 return false;
214}
215
216static inline
217void __dl_update(struct dl_bw *dl_b, s64 bw)
218{
219 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
220
221 dl->extra_bw += bw;
222}
223#endif
224
225static inline
226void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
227{
228 dl_b->total_bw -= tsk_bw;
229 __dl_update(dl_b, (s32)tsk_bw / cpus);
230}
231
232static inline
233void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
234{
235 dl_b->total_bw += tsk_bw;
236 __dl_update(dl_b, -((s32)tsk_bw / cpus));
237}
238
239static inline bool
240__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
241{
242 return dl_b->bw != -1 &&
243 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
244}
245
246static inline
247void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
248{
249 u64 old = dl_rq->running_bw;
250
251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 dl_rq->running_bw += dl_bw;
253 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
254 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
255 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
256 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
257}
258
259static inline
260void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
261{
262 u64 old = dl_rq->running_bw;
263
264 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
265 dl_rq->running_bw -= dl_bw;
266 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
267 if (dl_rq->running_bw > old)
268 dl_rq->running_bw = 0;
269 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
270 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
271}
272
273static inline
274void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
275{
276 u64 old = dl_rq->this_bw;
277
278 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
279 dl_rq->this_bw += dl_bw;
280 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
281}
282
283static inline
284void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
285{
286 u64 old = dl_rq->this_bw;
287
288 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
289 dl_rq->this_bw -= dl_bw;
290 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
291 if (dl_rq->this_bw > old)
292 dl_rq->this_bw = 0;
293 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
294}
295
296static inline
297void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
298{
299 if (!dl_entity_is_special(dl_se))
300 __add_rq_bw(dl_se->dl_bw, dl_rq);
301}
302
303static inline
304void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
305{
306 if (!dl_entity_is_special(dl_se))
307 __sub_rq_bw(dl_se->dl_bw, dl_rq);
308}
309
310static inline
311void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
312{
313 if (!dl_entity_is_special(dl_se))
314 __add_running_bw(dl_se->dl_bw, dl_rq);
315}
316
317static inline
318void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
319{
320 if (!dl_entity_is_special(dl_se))
321 __sub_running_bw(dl_se->dl_bw, dl_rq);
322}
323
324static void dl_change_utilization(struct task_struct *p, u64 new_bw)
325{
326 struct rq *rq;
327
328 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
329
330 if (task_on_rq_queued(p))
331 return;
332
333 rq = task_rq(p);
334 if (p->dl.dl_non_contending) {
335 sub_running_bw(&p->dl, &rq->dl);
336 p->dl.dl_non_contending = 0;
337 /*
338 * If the timer handler is currently running and the
339 * timer cannot be canceled, inactive_task_timer()
340 * will see that dl_not_contending is not set, and
341 * will not touch the rq's active utilization,
342 * so we are still safe.
343 */
344 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
345 put_task_struct(p);
346 }
347 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
348 __add_rq_bw(new_bw, &rq->dl);
349}
350
351static void __dl_clear_params(struct sched_dl_entity *dl_se);
352
353/*
354 * The utilization of a task cannot be immediately removed from
355 * the rq active utilization (running_bw) when the task blocks.
356 * Instead, we have to wait for the so called "0-lag time".
357 *
358 * If a task blocks before the "0-lag time", a timer (the inactive
359 * timer) is armed, and running_bw is decreased when the timer
360 * fires.
361 *
362 * If the task wakes up again before the inactive timer fires,
363 * the timer is canceled, whereas if the task wakes up after the
364 * inactive timer fired (and running_bw has been decreased) the
365 * task's utilization has to be added to running_bw again.
366 * A flag in the deadline scheduling entity (dl_non_contending)
367 * is used to avoid race conditions between the inactive timer handler
368 * and task wakeups.
369 *
370 * The following diagram shows how running_bw is updated. A task is
371 * "ACTIVE" when its utilization contributes to running_bw; an
372 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
373 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
374 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
375 * time already passed, which does not contribute to running_bw anymore.
376 * +------------------+
377 * wakeup | ACTIVE |
378 * +------------------>+ contending |
379 * | add_running_bw | |
380 * | +----+------+------+
381 * | | ^
382 * | dequeue | |
383 * +--------+-------+ | |
384 * | | t >= 0-lag | | wakeup
385 * | INACTIVE |<---------------+ |
386 * | | sub_running_bw | |
387 * +--------+-------+ | |
388 * ^ | |
389 * | t < 0-lag | |
390 * | | |
391 * | V |
392 * | +----+------+------+
393 * | sub_running_bw | ACTIVE |
394 * +-------------------+ |
395 * inactive timer | non contending |
396 * fired +------------------+
397 *
398 * The task_non_contending() function is invoked when a task
399 * blocks, and checks if the 0-lag time already passed or
400 * not (in the first case, it directly updates running_bw;
401 * in the second case, it arms the inactive timer).
402 *
403 * The task_contending() function is invoked when a task wakes
404 * up, and checks if the task is still in the "ACTIVE non contending"
405 * state or not (in the second case, it updates running_bw).
406 */
407static void task_non_contending(struct sched_dl_entity *dl_se)
408{
409 struct hrtimer *timer = &dl_se->inactive_timer;
410 struct rq *rq = rq_of_dl_se(dl_se);
411 struct dl_rq *dl_rq = &rq->dl;
412 s64 zerolag_time;
413
414 /*
415 * If this is a non-deadline task that has been boosted,
416 * do nothing
417 */
418 if (dl_se->dl_runtime == 0)
419 return;
420
421 if (dl_entity_is_special(dl_se))
422 return;
423
424 WARN_ON(dl_se->dl_non_contending);
425
426 zerolag_time = dl_se->deadline -
427 div64_long((dl_se->runtime * dl_se->dl_period),
428 dl_se->dl_runtime);
429
430 /*
431 * Using relative times instead of the absolute "0-lag time"
432 * allows to simplify the code
433 */
434 zerolag_time -= rq_clock(rq);
435
436 /*
437 * If the "0-lag time" already passed, decrease the active
438 * utilization now, instead of starting a timer
439 */
440 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
441 if (dl_server(dl_se)) {
442 sub_running_bw(dl_se, dl_rq);
443 } else {
444 struct task_struct *p = dl_task_of(dl_se);
445
446 if (dl_task(p))
447 sub_running_bw(dl_se, dl_rq);
448
449 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
450 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
451
452 if (READ_ONCE(p->__state) == TASK_DEAD)
453 sub_rq_bw(dl_se, &rq->dl);
454 raw_spin_lock(&dl_b->lock);
455 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
456 raw_spin_unlock(&dl_b->lock);
457 __dl_clear_params(dl_se);
458 }
459 }
460
461 return;
462 }
463
464 dl_se->dl_non_contending = 1;
465 if (!dl_server(dl_se))
466 get_task_struct(dl_task_of(dl_se));
467
468 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
469}
470
471static void task_contending(struct sched_dl_entity *dl_se, int flags)
472{
473 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
474
475 /*
476 * If this is a non-deadline task that has been boosted,
477 * do nothing
478 */
479 if (dl_se->dl_runtime == 0)
480 return;
481
482 if (flags & ENQUEUE_MIGRATED)
483 add_rq_bw(dl_se, dl_rq);
484
485 if (dl_se->dl_non_contending) {
486 dl_se->dl_non_contending = 0;
487 /*
488 * If the timer handler is currently running and the
489 * timer cannot be canceled, inactive_task_timer()
490 * will see that dl_not_contending is not set, and
491 * will not touch the rq's active utilization,
492 * so we are still safe.
493 */
494 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
495 if (!dl_server(dl_se))
496 put_task_struct(dl_task_of(dl_se));
497 }
498 } else {
499 /*
500 * Since "dl_non_contending" is not set, the
501 * task's utilization has already been removed from
502 * active utilization (either when the task blocked,
503 * when the "inactive timer" fired).
504 * So, add it back.
505 */
506 add_running_bw(dl_se, dl_rq);
507 }
508}
509
510static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
511{
512 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
513}
514
515static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
516
517void init_dl_bw(struct dl_bw *dl_b)
518{
519 raw_spin_lock_init(&dl_b->lock);
520 if (global_rt_runtime() == RUNTIME_INF)
521 dl_b->bw = -1;
522 else
523 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
524 dl_b->total_bw = 0;
525}
526
527void init_dl_rq(struct dl_rq *dl_rq)
528{
529 dl_rq->root = RB_ROOT_CACHED;
530
531#ifdef CONFIG_SMP
532 /* zero means no -deadline tasks */
533 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
534
535 dl_rq->overloaded = 0;
536 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
537#else
538 init_dl_bw(&dl_rq->dl_bw);
539#endif
540
541 dl_rq->running_bw = 0;
542 dl_rq->this_bw = 0;
543 init_dl_rq_bw_ratio(dl_rq);
544}
545
546#ifdef CONFIG_SMP
547
548static inline int dl_overloaded(struct rq *rq)
549{
550 return atomic_read(&rq->rd->dlo_count);
551}
552
553static inline void dl_set_overload(struct rq *rq)
554{
555 if (!rq->online)
556 return;
557
558 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
559 /*
560 * Must be visible before the overload count is
561 * set (as in sched_rt.c).
562 *
563 * Matched by the barrier in pull_dl_task().
564 */
565 smp_wmb();
566 atomic_inc(&rq->rd->dlo_count);
567}
568
569static inline void dl_clear_overload(struct rq *rq)
570{
571 if (!rq->online)
572 return;
573
574 atomic_dec(&rq->rd->dlo_count);
575 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
576}
577
578#define __node_2_pdl(node) \
579 rb_entry((node), struct task_struct, pushable_dl_tasks)
580
581static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
582{
583 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
584}
585
586static inline int has_pushable_dl_tasks(struct rq *rq)
587{
588 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
589}
590
591/*
592 * The list of pushable -deadline task is not a plist, like in
593 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
594 */
595static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
596{
597 struct rb_node *leftmost;
598
599 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
600
601 leftmost = rb_add_cached(&p->pushable_dl_tasks,
602 &rq->dl.pushable_dl_tasks_root,
603 __pushable_less);
604 if (leftmost)
605 rq->dl.earliest_dl.next = p->dl.deadline;
606
607 if (!rq->dl.overloaded) {
608 dl_set_overload(rq);
609 rq->dl.overloaded = 1;
610 }
611}
612
613static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
614{
615 struct dl_rq *dl_rq = &rq->dl;
616 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
617 struct rb_node *leftmost;
618
619 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
620 return;
621
622 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
623 if (leftmost)
624 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
625
626 RB_CLEAR_NODE(&p->pushable_dl_tasks);
627
628 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
629 dl_clear_overload(rq);
630 rq->dl.overloaded = 0;
631 }
632}
633
634static int push_dl_task(struct rq *rq);
635
636static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
637{
638 return rq->online && dl_task(prev);
639}
640
641static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
642static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
643
644static void push_dl_tasks(struct rq *);
645static void pull_dl_task(struct rq *);
646
647static inline void deadline_queue_push_tasks(struct rq *rq)
648{
649 if (!has_pushable_dl_tasks(rq))
650 return;
651
652 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
653}
654
655static inline void deadline_queue_pull_task(struct rq *rq)
656{
657 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
658}
659
660static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
661
662static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
663{
664 struct rq *later_rq = NULL;
665 struct dl_bw *dl_b;
666
667 later_rq = find_lock_later_rq(p, rq);
668 if (!later_rq) {
669 int cpu;
670
671 /*
672 * If we cannot preempt any rq, fall back to pick any
673 * online CPU:
674 */
675 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
676 if (cpu >= nr_cpu_ids) {
677 /*
678 * Failed to find any suitable CPU.
679 * The task will never come back!
680 */
681 WARN_ON_ONCE(dl_bandwidth_enabled());
682
683 /*
684 * If admission control is disabled we
685 * try a little harder to let the task
686 * run.
687 */
688 cpu = cpumask_any(cpu_active_mask);
689 }
690 later_rq = cpu_rq(cpu);
691 double_lock_balance(rq, later_rq);
692 }
693
694 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
695 /*
696 * Inactive timer is armed (or callback is running, but
697 * waiting for us to release rq locks). In any case, when it
698 * will fire (or continue), it will see running_bw of this
699 * task migrated to later_rq (and correctly handle it).
700 */
701 sub_running_bw(&p->dl, &rq->dl);
702 sub_rq_bw(&p->dl, &rq->dl);
703
704 add_rq_bw(&p->dl, &later_rq->dl);
705 add_running_bw(&p->dl, &later_rq->dl);
706 } else {
707 sub_rq_bw(&p->dl, &rq->dl);
708 add_rq_bw(&p->dl, &later_rq->dl);
709 }
710
711 /*
712 * And we finally need to fixup root_domain(s) bandwidth accounting,
713 * since p is still hanging out in the old (now moved to default) root
714 * domain.
715 */
716 dl_b = &rq->rd->dl_bw;
717 raw_spin_lock(&dl_b->lock);
718 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
719 raw_spin_unlock(&dl_b->lock);
720
721 dl_b = &later_rq->rd->dl_bw;
722 raw_spin_lock(&dl_b->lock);
723 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
724 raw_spin_unlock(&dl_b->lock);
725
726 set_task_cpu(p, later_rq->cpu);
727 double_unlock_balance(later_rq, rq);
728
729 return later_rq;
730}
731
732#else
733
734static inline
735void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
736{
737}
738
739static inline
740void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
741{
742}
743
744static inline
745void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
746{
747}
748
749static inline
750void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
751{
752}
753
754static inline void deadline_queue_push_tasks(struct rq *rq)
755{
756}
757
758static inline void deadline_queue_pull_task(struct rq *rq)
759{
760}
761#endif /* CONFIG_SMP */
762
763static void
764enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
765static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
766static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
767static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
768
769static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
770 struct rq *rq)
771{
772 /* for non-boosted task, pi_of(dl_se) == dl_se */
773 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
774 dl_se->runtime = pi_of(dl_se)->dl_runtime;
775}
776
777/*
778 * We are being explicitly informed that a new instance is starting,
779 * and this means that:
780 * - the absolute deadline of the entity has to be placed at
781 * current time + relative deadline;
782 * - the runtime of the entity has to be set to the maximum value.
783 *
784 * The capability of specifying such event is useful whenever a -deadline
785 * entity wants to (try to!) synchronize its behaviour with the scheduler's
786 * one, and to (try to!) reconcile itself with its own scheduling
787 * parameters.
788 */
789static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
790{
791 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
792 struct rq *rq = rq_of_dl_rq(dl_rq);
793
794 WARN_ON(is_dl_boosted(dl_se));
795 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
796
797 /*
798 * We are racing with the deadline timer. So, do nothing because
799 * the deadline timer handler will take care of properly recharging
800 * the runtime and postponing the deadline
801 */
802 if (dl_se->dl_throttled)
803 return;
804
805 /*
806 * We use the regular wall clock time to set deadlines in the
807 * future; in fact, we must consider execution overheads (time
808 * spent on hardirq context, etc.).
809 */
810 replenish_dl_new_period(dl_se, rq);
811}
812
813/*
814 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
815 * possibility of a entity lasting more than what it declared, and thus
816 * exhausting its runtime.
817 *
818 * Here we are interested in making runtime overrun possible, but we do
819 * not want a entity which is misbehaving to affect the scheduling of all
820 * other entities.
821 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
822 * is used, in order to confine each entity within its own bandwidth.
823 *
824 * This function deals exactly with that, and ensures that when the runtime
825 * of a entity is replenished, its deadline is also postponed. That ensures
826 * the overrunning entity can't interfere with other entity in the system and
827 * can't make them miss their deadlines. Reasons why this kind of overruns
828 * could happen are, typically, a entity voluntarily trying to overcome its
829 * runtime, or it just underestimated it during sched_setattr().
830 */
831static void replenish_dl_entity(struct sched_dl_entity *dl_se)
832{
833 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
834 struct rq *rq = rq_of_dl_rq(dl_rq);
835
836 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
837
838 /*
839 * This could be the case for a !-dl task that is boosted.
840 * Just go with full inherited parameters.
841 */
842 if (dl_se->dl_deadline == 0)
843 replenish_dl_new_period(dl_se, rq);
844
845 if (dl_se->dl_yielded && dl_se->runtime > 0)
846 dl_se->runtime = 0;
847
848 /*
849 * We keep moving the deadline away until we get some
850 * available runtime for the entity. This ensures correct
851 * handling of situations where the runtime overrun is
852 * arbitrary large.
853 */
854 while (dl_se->runtime <= 0) {
855 dl_se->deadline += pi_of(dl_se)->dl_period;
856 dl_se->runtime += pi_of(dl_se)->dl_runtime;
857 }
858
859 /*
860 * At this point, the deadline really should be "in
861 * the future" with respect to rq->clock. If it's
862 * not, we are, for some reason, lagging too much!
863 * Anyway, after having warn userspace abut that,
864 * we still try to keep the things running by
865 * resetting the deadline and the budget of the
866 * entity.
867 */
868 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
869 printk_deferred_once("sched: DL replenish lagged too much\n");
870 replenish_dl_new_period(dl_se, rq);
871 }
872
873 if (dl_se->dl_yielded)
874 dl_se->dl_yielded = 0;
875 if (dl_se->dl_throttled)
876 dl_se->dl_throttled = 0;
877}
878
879/*
880 * Here we check if --at time t-- an entity (which is probably being
881 * [re]activated or, in general, enqueued) can use its remaining runtime
882 * and its current deadline _without_ exceeding the bandwidth it is
883 * assigned (function returns true if it can't). We are in fact applying
884 * one of the CBS rules: when a task wakes up, if the residual runtime
885 * over residual deadline fits within the allocated bandwidth, then we
886 * can keep the current (absolute) deadline and residual budget without
887 * disrupting the schedulability of the system. Otherwise, we should
888 * refill the runtime and set the deadline a period in the future,
889 * because keeping the current (absolute) deadline of the task would
890 * result in breaking guarantees promised to other tasks (refer to
891 * Documentation/scheduler/sched-deadline.rst for more information).
892 *
893 * This function returns true if:
894 *
895 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
896 *
897 * IOW we can't recycle current parameters.
898 *
899 * Notice that the bandwidth check is done against the deadline. For
900 * task with deadline equal to period this is the same of using
901 * dl_period instead of dl_deadline in the equation above.
902 */
903static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
904{
905 u64 left, right;
906
907 /*
908 * left and right are the two sides of the equation above,
909 * after a bit of shuffling to use multiplications instead
910 * of divisions.
911 *
912 * Note that none of the time values involved in the two
913 * multiplications are absolute: dl_deadline and dl_runtime
914 * are the relative deadline and the maximum runtime of each
915 * instance, runtime is the runtime left for the last instance
916 * and (deadline - t), since t is rq->clock, is the time left
917 * to the (absolute) deadline. Even if overflowing the u64 type
918 * is very unlikely to occur in both cases, here we scale down
919 * as we want to avoid that risk at all. Scaling down by 10
920 * means that we reduce granularity to 1us. We are fine with it,
921 * since this is only a true/false check and, anyway, thinking
922 * of anything below microseconds resolution is actually fiction
923 * (but still we want to give the user that illusion >;).
924 */
925 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
926 right = ((dl_se->deadline - t) >> DL_SCALE) *
927 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
928
929 return dl_time_before(right, left);
930}
931
932/*
933 * Revised wakeup rule [1]: For self-suspending tasks, rather then
934 * re-initializing task's runtime and deadline, the revised wakeup
935 * rule adjusts the task's runtime to avoid the task to overrun its
936 * density.
937 *
938 * Reasoning: a task may overrun the density if:
939 * runtime / (deadline - t) > dl_runtime / dl_deadline
940 *
941 * Therefore, runtime can be adjusted to:
942 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
943 *
944 * In such way that runtime will be equal to the maximum density
945 * the task can use without breaking any rule.
946 *
947 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
948 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
949 */
950static void
951update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
952{
953 u64 laxity = dl_se->deadline - rq_clock(rq);
954
955 /*
956 * If the task has deadline < period, and the deadline is in the past,
957 * it should already be throttled before this check.
958 *
959 * See update_dl_entity() comments for further details.
960 */
961 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
962
963 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
964}
965
966/*
967 * Regarding the deadline, a task with implicit deadline has a relative
968 * deadline == relative period. A task with constrained deadline has a
969 * relative deadline <= relative period.
970 *
971 * We support constrained deadline tasks. However, there are some restrictions
972 * applied only for tasks which do not have an implicit deadline. See
973 * update_dl_entity() to know more about such restrictions.
974 *
975 * The dl_is_implicit() returns true if the task has an implicit deadline.
976 */
977static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
978{
979 return dl_se->dl_deadline == dl_se->dl_period;
980}
981
982/*
983 * When a deadline entity is placed in the runqueue, its runtime and deadline
984 * might need to be updated. This is done by a CBS wake up rule. There are two
985 * different rules: 1) the original CBS; and 2) the Revisited CBS.
986 *
987 * When the task is starting a new period, the Original CBS is used. In this
988 * case, the runtime is replenished and a new absolute deadline is set.
989 *
990 * When a task is queued before the begin of the next period, using the
991 * remaining runtime and deadline could make the entity to overflow, see
992 * dl_entity_overflow() to find more about runtime overflow. When such case
993 * is detected, the runtime and deadline need to be updated.
994 *
995 * If the task has an implicit deadline, i.e., deadline == period, the Original
996 * CBS is applied. the runtime is replenished and a new absolute deadline is
997 * set, as in the previous cases.
998 *
999 * However, the Original CBS does not work properly for tasks with
1000 * deadline < period, which are said to have a constrained deadline. By
1001 * applying the Original CBS, a constrained deadline task would be able to run
1002 * runtime/deadline in a period. With deadline < period, the task would
1003 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1004 *
1005 * In order to prevent this misbehave, the Revisited CBS is used for
1006 * constrained deadline tasks when a runtime overflow is detected. In the
1007 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1008 * the remaining runtime of the task is reduced to avoid runtime overflow.
1009 * Please refer to the comments update_dl_revised_wakeup() function to find
1010 * more about the Revised CBS rule.
1011 */
1012static void update_dl_entity(struct sched_dl_entity *dl_se)
1013{
1014 struct rq *rq = rq_of_dl_se(dl_se);
1015
1016 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1017 dl_entity_overflow(dl_se, rq_clock(rq))) {
1018
1019 if (unlikely(!dl_is_implicit(dl_se) &&
1020 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1021 !is_dl_boosted(dl_se))) {
1022 update_dl_revised_wakeup(dl_se, rq);
1023 return;
1024 }
1025
1026 replenish_dl_new_period(dl_se, rq);
1027 }
1028}
1029
1030static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1031{
1032 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1033}
1034
1035/*
1036 * If the entity depleted all its runtime, and if we want it to sleep
1037 * while waiting for some new execution time to become available, we
1038 * set the bandwidth replenishment timer to the replenishment instant
1039 * and try to activate it.
1040 *
1041 * Notice that it is important for the caller to know if the timer
1042 * actually started or not (i.e., the replenishment instant is in
1043 * the future or in the past).
1044 */
1045static int start_dl_timer(struct sched_dl_entity *dl_se)
1046{
1047 struct hrtimer *timer = &dl_se->dl_timer;
1048 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1049 struct rq *rq = rq_of_dl_rq(dl_rq);
1050 ktime_t now, act;
1051 s64 delta;
1052
1053 lockdep_assert_rq_held(rq);
1054
1055 /*
1056 * We want the timer to fire at the deadline, but considering
1057 * that it is actually coming from rq->clock and not from
1058 * hrtimer's time base reading.
1059 */
1060 act = ns_to_ktime(dl_next_period(dl_se));
1061 now = hrtimer_cb_get_time(timer);
1062 delta = ktime_to_ns(now) - rq_clock(rq);
1063 act = ktime_add_ns(act, delta);
1064
1065 /*
1066 * If the expiry time already passed, e.g., because the value
1067 * chosen as the deadline is too small, don't even try to
1068 * start the timer in the past!
1069 */
1070 if (ktime_us_delta(act, now) < 0)
1071 return 0;
1072
1073 /*
1074 * !enqueued will guarantee another callback; even if one is already in
1075 * progress. This ensures a balanced {get,put}_task_struct().
1076 *
1077 * The race against __run_timer() clearing the enqueued state is
1078 * harmless because we're holding task_rq()->lock, therefore the timer
1079 * expiring after we've done the check will wait on its task_rq_lock()
1080 * and observe our state.
1081 */
1082 if (!hrtimer_is_queued(timer)) {
1083 if (!dl_server(dl_se))
1084 get_task_struct(dl_task_of(dl_se));
1085 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1086 }
1087
1088 return 1;
1089}
1090
1091static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1092{
1093#ifdef CONFIG_SMP
1094 /*
1095 * Queueing this task back might have overloaded rq, check if we need
1096 * to kick someone away.
1097 */
1098 if (has_pushable_dl_tasks(rq)) {
1099 /*
1100 * Nothing relies on rq->lock after this, so its safe to drop
1101 * rq->lock.
1102 */
1103 rq_unpin_lock(rq, rf);
1104 push_dl_task(rq);
1105 rq_repin_lock(rq, rf);
1106 }
1107#endif
1108}
1109
1110/*
1111 * This is the bandwidth enforcement timer callback. If here, we know
1112 * a task is not on its dl_rq, since the fact that the timer was running
1113 * means the task is throttled and needs a runtime replenishment.
1114 *
1115 * However, what we actually do depends on the fact the task is active,
1116 * (it is on its rq) or has been removed from there by a call to
1117 * dequeue_task_dl(). In the former case we must issue the runtime
1118 * replenishment and add the task back to the dl_rq; in the latter, we just
1119 * do nothing but clearing dl_throttled, so that runtime and deadline
1120 * updating (and the queueing back to dl_rq) will be done by the
1121 * next call to enqueue_task_dl().
1122 */
1123static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1124{
1125 struct sched_dl_entity *dl_se = container_of(timer,
1126 struct sched_dl_entity,
1127 dl_timer);
1128 struct task_struct *p;
1129 struct rq_flags rf;
1130 struct rq *rq;
1131
1132 if (dl_server(dl_se)) {
1133 struct rq *rq = rq_of_dl_se(dl_se);
1134 struct rq_flags rf;
1135
1136 rq_lock(rq, &rf);
1137 if (dl_se->dl_throttled) {
1138 sched_clock_tick();
1139 update_rq_clock(rq);
1140
1141 if (dl_se->server_has_tasks(dl_se)) {
1142 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1143 resched_curr(rq);
1144 __push_dl_task(rq, &rf);
1145 } else {
1146 replenish_dl_entity(dl_se);
1147 }
1148
1149 }
1150 rq_unlock(rq, &rf);
1151
1152 return HRTIMER_NORESTART;
1153 }
1154
1155 p = dl_task_of(dl_se);
1156 rq = task_rq_lock(p, &rf);
1157
1158 /*
1159 * The task might have changed its scheduling policy to something
1160 * different than SCHED_DEADLINE (through switched_from_dl()).
1161 */
1162 if (!dl_task(p))
1163 goto unlock;
1164
1165 /*
1166 * The task might have been boosted by someone else and might be in the
1167 * boosting/deboosting path, its not throttled.
1168 */
1169 if (is_dl_boosted(dl_se))
1170 goto unlock;
1171
1172 /*
1173 * Spurious timer due to start_dl_timer() race; or we already received
1174 * a replenishment from rt_mutex_setprio().
1175 */
1176 if (!dl_se->dl_throttled)
1177 goto unlock;
1178
1179 sched_clock_tick();
1180 update_rq_clock(rq);
1181
1182 /*
1183 * If the throttle happened during sched-out; like:
1184 *
1185 * schedule()
1186 * deactivate_task()
1187 * dequeue_task_dl()
1188 * update_curr_dl()
1189 * start_dl_timer()
1190 * __dequeue_task_dl()
1191 * prev->on_rq = 0;
1192 *
1193 * We can be both throttled and !queued. Replenish the counter
1194 * but do not enqueue -- wait for our wakeup to do that.
1195 */
1196 if (!task_on_rq_queued(p)) {
1197 replenish_dl_entity(dl_se);
1198 goto unlock;
1199 }
1200
1201#ifdef CONFIG_SMP
1202 if (unlikely(!rq->online)) {
1203 /*
1204 * If the runqueue is no longer available, migrate the
1205 * task elsewhere. This necessarily changes rq.
1206 */
1207 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1208 rq = dl_task_offline_migration(rq, p);
1209 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1210 update_rq_clock(rq);
1211
1212 /*
1213 * Now that the task has been migrated to the new RQ and we
1214 * have that locked, proceed as normal and enqueue the task
1215 * there.
1216 */
1217 }
1218#endif
1219
1220 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1221 if (dl_task(rq->curr))
1222 wakeup_preempt_dl(rq, p, 0);
1223 else
1224 resched_curr(rq);
1225
1226 __push_dl_task(rq, &rf);
1227
1228unlock:
1229 task_rq_unlock(rq, p, &rf);
1230
1231 /*
1232 * This can free the task_struct, including this hrtimer, do not touch
1233 * anything related to that after this.
1234 */
1235 put_task_struct(p);
1236
1237 return HRTIMER_NORESTART;
1238}
1239
1240static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1241{
1242 struct hrtimer *timer = &dl_se->dl_timer;
1243
1244 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1245 timer->function = dl_task_timer;
1246}
1247
1248/*
1249 * During the activation, CBS checks if it can reuse the current task's
1250 * runtime and period. If the deadline of the task is in the past, CBS
1251 * cannot use the runtime, and so it replenishes the task. This rule
1252 * works fine for implicit deadline tasks (deadline == period), and the
1253 * CBS was designed for implicit deadline tasks. However, a task with
1254 * constrained deadline (deadline < period) might be awakened after the
1255 * deadline, but before the next period. In this case, replenishing the
1256 * task would allow it to run for runtime / deadline. As in this case
1257 * deadline < period, CBS enables a task to run for more than the
1258 * runtime / period. In a very loaded system, this can cause a domino
1259 * effect, making other tasks miss their deadlines.
1260 *
1261 * To avoid this problem, in the activation of a constrained deadline
1262 * task after the deadline but before the next period, throttle the
1263 * task and set the replenishing timer to the begin of the next period,
1264 * unless it is boosted.
1265 */
1266static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1267{
1268 struct rq *rq = rq_of_dl_se(dl_se);
1269
1270 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1271 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1272 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1273 return;
1274 dl_se->dl_throttled = 1;
1275 if (dl_se->runtime > 0)
1276 dl_se->runtime = 0;
1277 }
1278}
1279
1280static
1281int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1282{
1283 return (dl_se->runtime <= 0);
1284}
1285
1286/*
1287 * This function implements the GRUB accounting rule. According to the
1288 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1289 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1290 * where u is the utilization of the task, Umax is the maximum reclaimable
1291 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1292 * as the difference between the "total runqueue utilization" and the
1293 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1294 * reclaimable utilization.
1295 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1296 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1297 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1298 * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1299 * Since delta is a 64 bit variable, to have an overflow its value should be
1300 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1301 * not an issue here.
1302 */
1303static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1304{
1305 u64 u_act;
1306 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1307
1308 /*
1309 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1310 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1311 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1312 * negative leading to wrong results.
1313 */
1314 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1315 u_act = dl_se->dl_bw;
1316 else
1317 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1318
1319 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1320 return (delta * u_act) >> BW_SHIFT;
1321}
1322
1323static inline void
1324update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1325 int flags);
1326static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1327{
1328 s64 scaled_delta_exec;
1329
1330 if (unlikely(delta_exec <= 0)) {
1331 if (unlikely(dl_se->dl_yielded))
1332 goto throttle;
1333 return;
1334 }
1335
1336 if (dl_entity_is_special(dl_se))
1337 return;
1338
1339 /*
1340 * For tasks that participate in GRUB, we implement GRUB-PA: the
1341 * spare reclaimed bandwidth is used to clock down frequency.
1342 *
1343 * For the others, we still need to scale reservation parameters
1344 * according to current frequency and CPU maximum capacity.
1345 */
1346 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1347 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1348 } else {
1349 int cpu = cpu_of(rq);
1350 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1351 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1352
1353 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1354 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1355 }
1356
1357 dl_se->runtime -= scaled_delta_exec;
1358
1359throttle:
1360 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1361 dl_se->dl_throttled = 1;
1362
1363 /* If requested, inform the user about runtime overruns. */
1364 if (dl_runtime_exceeded(dl_se) &&
1365 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1366 dl_se->dl_overrun = 1;
1367
1368 dequeue_dl_entity(dl_se, 0);
1369 if (!dl_server(dl_se)) {
1370 update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1371 dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1372 }
1373
1374 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1375 if (dl_server(dl_se))
1376 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1377 else
1378 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1379 }
1380
1381 if (!is_leftmost(dl_se, &rq->dl))
1382 resched_curr(rq);
1383 }
1384
1385 /*
1386 * Because -- for now -- we share the rt bandwidth, we need to
1387 * account our runtime there too, otherwise actual rt tasks
1388 * would be able to exceed the shared quota.
1389 *
1390 * Account to the root rt group for now.
1391 *
1392 * The solution we're working towards is having the RT groups scheduled
1393 * using deadline servers -- however there's a few nasties to figure
1394 * out before that can happen.
1395 */
1396 if (rt_bandwidth_enabled()) {
1397 struct rt_rq *rt_rq = &rq->rt;
1398
1399 raw_spin_lock(&rt_rq->rt_runtime_lock);
1400 /*
1401 * We'll let actual RT tasks worry about the overflow here, we
1402 * have our own CBS to keep us inline; only account when RT
1403 * bandwidth is relevant.
1404 */
1405 if (sched_rt_bandwidth_account(rt_rq))
1406 rt_rq->rt_time += delta_exec;
1407 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1408 }
1409}
1410
1411void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1412{
1413 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1414}
1415
1416void dl_server_start(struct sched_dl_entity *dl_se)
1417{
1418 if (!dl_server(dl_se)) {
1419 dl_se->dl_server = 1;
1420 setup_new_dl_entity(dl_se);
1421 }
1422 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1423}
1424
1425void dl_server_stop(struct sched_dl_entity *dl_se)
1426{
1427 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1428}
1429
1430void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1431 dl_server_has_tasks_f has_tasks,
1432 dl_server_pick_f pick)
1433{
1434 dl_se->rq = rq;
1435 dl_se->server_has_tasks = has_tasks;
1436 dl_se->server_pick = pick;
1437}
1438
1439/*
1440 * Update the current task's runtime statistics (provided it is still
1441 * a -deadline task and has not been removed from the dl_rq).
1442 */
1443static void update_curr_dl(struct rq *rq)
1444{
1445 struct task_struct *curr = rq->curr;
1446 struct sched_dl_entity *dl_se = &curr->dl;
1447 s64 delta_exec;
1448
1449 if (!dl_task(curr) || !on_dl_rq(dl_se))
1450 return;
1451
1452 /*
1453 * Consumed budget is computed considering the time as
1454 * observed by schedulable tasks (excluding time spent
1455 * in hardirq context, etc.). Deadlines are instead
1456 * computed using hard walltime. This seems to be the more
1457 * natural solution, but the full ramifications of this
1458 * approach need further study.
1459 */
1460 delta_exec = update_curr_common(rq);
1461 update_curr_dl_se(rq, dl_se, delta_exec);
1462}
1463
1464static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1465{
1466 struct sched_dl_entity *dl_se = container_of(timer,
1467 struct sched_dl_entity,
1468 inactive_timer);
1469 struct task_struct *p = NULL;
1470 struct rq_flags rf;
1471 struct rq *rq;
1472
1473 if (!dl_server(dl_se)) {
1474 p = dl_task_of(dl_se);
1475 rq = task_rq_lock(p, &rf);
1476 } else {
1477 rq = dl_se->rq;
1478 rq_lock(rq, &rf);
1479 }
1480
1481 sched_clock_tick();
1482 update_rq_clock(rq);
1483
1484 if (dl_server(dl_se))
1485 goto no_task;
1486
1487 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1488 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1489
1490 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1491 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1492 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1493 dl_se->dl_non_contending = 0;
1494 }
1495
1496 raw_spin_lock(&dl_b->lock);
1497 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1498 raw_spin_unlock(&dl_b->lock);
1499 __dl_clear_params(dl_se);
1500
1501 goto unlock;
1502 }
1503
1504no_task:
1505 if (dl_se->dl_non_contending == 0)
1506 goto unlock;
1507
1508 sub_running_bw(dl_se, &rq->dl);
1509 dl_se->dl_non_contending = 0;
1510unlock:
1511
1512 if (!dl_server(dl_se)) {
1513 task_rq_unlock(rq, p, &rf);
1514 put_task_struct(p);
1515 } else {
1516 rq_unlock(rq, &rf);
1517 }
1518
1519 return HRTIMER_NORESTART;
1520}
1521
1522static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1523{
1524 struct hrtimer *timer = &dl_se->inactive_timer;
1525
1526 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1527 timer->function = inactive_task_timer;
1528}
1529
1530#define __node_2_dle(node) \
1531 rb_entry((node), struct sched_dl_entity, rb_node)
1532
1533#ifdef CONFIG_SMP
1534
1535static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1536{
1537 struct rq *rq = rq_of_dl_rq(dl_rq);
1538
1539 if (dl_rq->earliest_dl.curr == 0 ||
1540 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1541 if (dl_rq->earliest_dl.curr == 0)
1542 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1543 dl_rq->earliest_dl.curr = deadline;
1544 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1545 }
1546}
1547
1548static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1549{
1550 struct rq *rq = rq_of_dl_rq(dl_rq);
1551
1552 /*
1553 * Since we may have removed our earliest (and/or next earliest)
1554 * task we must recompute them.
1555 */
1556 if (!dl_rq->dl_nr_running) {
1557 dl_rq->earliest_dl.curr = 0;
1558 dl_rq->earliest_dl.next = 0;
1559 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1560 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1561 } else {
1562 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1563 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1564
1565 dl_rq->earliest_dl.curr = entry->deadline;
1566 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1567 }
1568}
1569
1570#else
1571
1572static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1573static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1574
1575#endif /* CONFIG_SMP */
1576
1577static inline
1578void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1579{
1580 u64 deadline = dl_se->deadline;
1581
1582 dl_rq->dl_nr_running++;
1583 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1584
1585 inc_dl_deadline(dl_rq, deadline);
1586}
1587
1588static inline
1589void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1590{
1591 WARN_ON(!dl_rq->dl_nr_running);
1592 dl_rq->dl_nr_running--;
1593 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1594
1595 dec_dl_deadline(dl_rq, dl_se->deadline);
1596}
1597
1598static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1599{
1600 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1601}
1602
1603static inline struct sched_statistics *
1604__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1605{
1606 return &dl_task_of(dl_se)->stats;
1607}
1608
1609static inline void
1610update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1611{
1612 struct sched_statistics *stats;
1613
1614 if (!schedstat_enabled())
1615 return;
1616
1617 stats = __schedstats_from_dl_se(dl_se);
1618 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1619}
1620
1621static inline void
1622update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1623{
1624 struct sched_statistics *stats;
1625
1626 if (!schedstat_enabled())
1627 return;
1628
1629 stats = __schedstats_from_dl_se(dl_se);
1630 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1631}
1632
1633static inline void
1634update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1635{
1636 struct sched_statistics *stats;
1637
1638 if (!schedstat_enabled())
1639 return;
1640
1641 stats = __schedstats_from_dl_se(dl_se);
1642 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1643}
1644
1645static inline void
1646update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1647 int flags)
1648{
1649 if (!schedstat_enabled())
1650 return;
1651
1652 if (flags & ENQUEUE_WAKEUP)
1653 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1654}
1655
1656static inline void
1657update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1658 int flags)
1659{
1660 struct task_struct *p = dl_task_of(dl_se);
1661
1662 if (!schedstat_enabled())
1663 return;
1664
1665 if ((flags & DEQUEUE_SLEEP)) {
1666 unsigned int state;
1667
1668 state = READ_ONCE(p->__state);
1669 if (state & TASK_INTERRUPTIBLE)
1670 __schedstat_set(p->stats.sleep_start,
1671 rq_clock(rq_of_dl_rq(dl_rq)));
1672
1673 if (state & TASK_UNINTERRUPTIBLE)
1674 __schedstat_set(p->stats.block_start,
1675 rq_clock(rq_of_dl_rq(dl_rq)));
1676 }
1677}
1678
1679static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1680{
1681 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1682
1683 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1684
1685 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1686
1687 inc_dl_tasks(dl_se, dl_rq);
1688}
1689
1690static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1691{
1692 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1693
1694 if (RB_EMPTY_NODE(&dl_se->rb_node))
1695 return;
1696
1697 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1698
1699 RB_CLEAR_NODE(&dl_se->rb_node);
1700
1701 dec_dl_tasks(dl_se, dl_rq);
1702}
1703
1704static void
1705enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1706{
1707 WARN_ON_ONCE(on_dl_rq(dl_se));
1708
1709 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1710
1711 /*
1712 * Check if a constrained deadline task was activated
1713 * after the deadline but before the next period.
1714 * If that is the case, the task will be throttled and
1715 * the replenishment timer will be set to the next period.
1716 */
1717 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1718 dl_check_constrained_dl(dl_se);
1719
1720 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1721 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1722
1723 add_rq_bw(dl_se, dl_rq);
1724 add_running_bw(dl_se, dl_rq);
1725 }
1726
1727 /*
1728 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1729 * its budget it needs a replenishment and, since it now is on
1730 * its rq, the bandwidth timer callback (which clearly has not
1731 * run yet) will take care of this.
1732 * However, the active utilization does not depend on the fact
1733 * that the task is on the runqueue or not (but depends on the
1734 * task's state - in GRUB parlance, "inactive" vs "active contending").
1735 * In other words, even if a task is throttled its utilization must
1736 * be counted in the active utilization; hence, we need to call
1737 * add_running_bw().
1738 */
1739 if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1740 if (flags & ENQUEUE_WAKEUP)
1741 task_contending(dl_se, flags);
1742
1743 return;
1744 }
1745
1746 /*
1747 * If this is a wakeup or a new instance, the scheduling
1748 * parameters of the task might need updating. Otherwise,
1749 * we want a replenishment of its runtime.
1750 */
1751 if (flags & ENQUEUE_WAKEUP) {
1752 task_contending(dl_se, flags);
1753 update_dl_entity(dl_se);
1754 } else if (flags & ENQUEUE_REPLENISH) {
1755 replenish_dl_entity(dl_se);
1756 } else if ((flags & ENQUEUE_RESTORE) &&
1757 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
1758 setup_new_dl_entity(dl_se);
1759 }
1760
1761 __enqueue_dl_entity(dl_se);
1762}
1763
1764static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1765{
1766 __dequeue_dl_entity(dl_se);
1767
1768 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
1769 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1770
1771 sub_running_bw(dl_se, dl_rq);
1772 sub_rq_bw(dl_se, dl_rq);
1773 }
1774
1775 /*
1776 * This check allows to start the inactive timer (or to immediately
1777 * decrease the active utilization, if needed) in two cases:
1778 * when the task blocks and when it is terminating
1779 * (p->state == TASK_DEAD). We can handle the two cases in the same
1780 * way, because from GRUB's point of view the same thing is happening
1781 * (the task moves from "active contending" to "active non contending"
1782 * or "inactive")
1783 */
1784 if (flags & DEQUEUE_SLEEP)
1785 task_non_contending(dl_se);
1786}
1787
1788static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1789{
1790 if (is_dl_boosted(&p->dl)) {
1791 /*
1792 * Because of delays in the detection of the overrun of a
1793 * thread's runtime, it might be the case that a thread
1794 * goes to sleep in a rt mutex with negative runtime. As
1795 * a consequence, the thread will be throttled.
1796 *
1797 * While waiting for the mutex, this thread can also be
1798 * boosted via PI, resulting in a thread that is throttled
1799 * and boosted at the same time.
1800 *
1801 * In this case, the boost overrides the throttle.
1802 */
1803 if (p->dl.dl_throttled) {
1804 /*
1805 * The replenish timer needs to be canceled. No
1806 * problem if it fires concurrently: boosted threads
1807 * are ignored in dl_task_timer().
1808 */
1809 hrtimer_try_to_cancel(&p->dl.dl_timer);
1810 p->dl.dl_throttled = 0;
1811 }
1812 } else if (!dl_prio(p->normal_prio)) {
1813 /*
1814 * Special case in which we have a !SCHED_DEADLINE task that is going
1815 * to be deboosted, but exceeds its runtime while doing so. No point in
1816 * replenishing it, as it's going to return back to its original
1817 * scheduling class after this. If it has been throttled, we need to
1818 * clear the flag, otherwise the task may wake up as throttled after
1819 * being boosted again with no means to replenish the runtime and clear
1820 * the throttle.
1821 */
1822 p->dl.dl_throttled = 0;
1823 if (!(flags & ENQUEUE_REPLENISH))
1824 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1825 task_pid_nr(p));
1826
1827 return;
1828 }
1829
1830 check_schedstat_required();
1831 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1832
1833 if (p->on_rq == TASK_ON_RQ_MIGRATING)
1834 flags |= ENQUEUE_MIGRATING;
1835
1836 enqueue_dl_entity(&p->dl, flags);
1837
1838 if (dl_server(&p->dl))
1839 return;
1840
1841 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
1842 enqueue_pushable_dl_task(rq, p);
1843}
1844
1845static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1846{
1847 update_curr_dl(rq);
1848
1849 if (p->on_rq == TASK_ON_RQ_MIGRATING)
1850 flags |= DEQUEUE_MIGRATING;
1851
1852 dequeue_dl_entity(&p->dl, flags);
1853 if (!p->dl.dl_throttled && !dl_server(&p->dl))
1854 dequeue_pushable_dl_task(rq, p);
1855}
1856
1857/*
1858 * Yield task semantic for -deadline tasks is:
1859 *
1860 * get off from the CPU until our next instance, with
1861 * a new runtime. This is of little use now, since we
1862 * don't have a bandwidth reclaiming mechanism. Anyway,
1863 * bandwidth reclaiming is planned for the future, and
1864 * yield_task_dl will indicate that some spare budget
1865 * is available for other task instances to use it.
1866 */
1867static void yield_task_dl(struct rq *rq)
1868{
1869 /*
1870 * We make the task go to sleep until its current deadline by
1871 * forcing its runtime to zero. This way, update_curr_dl() stops
1872 * it and the bandwidth timer will wake it up and will give it
1873 * new scheduling parameters (thanks to dl_yielded=1).
1874 */
1875 rq->curr->dl.dl_yielded = 1;
1876
1877 update_rq_clock(rq);
1878 update_curr_dl(rq);
1879 /*
1880 * Tell update_rq_clock() that we've just updated,
1881 * so we don't do microscopic update in schedule()
1882 * and double the fastpath cost.
1883 */
1884 rq_clock_skip_update(rq);
1885}
1886
1887#ifdef CONFIG_SMP
1888
1889static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1890 struct rq *rq)
1891{
1892 return (!rq->dl.dl_nr_running ||
1893 dl_time_before(p->dl.deadline,
1894 rq->dl.earliest_dl.curr));
1895}
1896
1897static int find_later_rq(struct task_struct *task);
1898
1899static int
1900select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1901{
1902 struct task_struct *curr;
1903 bool select_rq;
1904 struct rq *rq;
1905
1906 if (!(flags & WF_TTWU))
1907 goto out;
1908
1909 rq = cpu_rq(cpu);
1910
1911 rcu_read_lock();
1912 curr = READ_ONCE(rq->curr); /* unlocked access */
1913
1914 /*
1915 * If we are dealing with a -deadline task, we must
1916 * decide where to wake it up.
1917 * If it has a later deadline and the current task
1918 * on this rq can't move (provided the waking task
1919 * can!) we prefer to send it somewhere else. On the
1920 * other hand, if it has a shorter deadline, we
1921 * try to make it stay here, it might be important.
1922 */
1923 select_rq = unlikely(dl_task(curr)) &&
1924 (curr->nr_cpus_allowed < 2 ||
1925 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1926 p->nr_cpus_allowed > 1;
1927
1928 /*
1929 * Take the capacity of the CPU into account to
1930 * ensure it fits the requirement of the task.
1931 */
1932 if (sched_asym_cpucap_active())
1933 select_rq |= !dl_task_fits_capacity(p, cpu);
1934
1935 if (select_rq) {
1936 int target = find_later_rq(p);
1937
1938 if (target != -1 &&
1939 dl_task_is_earliest_deadline(p, cpu_rq(target)))
1940 cpu = target;
1941 }
1942 rcu_read_unlock();
1943
1944out:
1945 return cpu;
1946}
1947
1948static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1949{
1950 struct rq_flags rf;
1951 struct rq *rq;
1952
1953 if (READ_ONCE(p->__state) != TASK_WAKING)
1954 return;
1955
1956 rq = task_rq(p);
1957 /*
1958 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1959 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1960 * rq->lock is not... So, lock it
1961 */
1962 rq_lock(rq, &rf);
1963 if (p->dl.dl_non_contending) {
1964 update_rq_clock(rq);
1965 sub_running_bw(&p->dl, &rq->dl);
1966 p->dl.dl_non_contending = 0;
1967 /*
1968 * If the timer handler is currently running and the
1969 * timer cannot be canceled, inactive_task_timer()
1970 * will see that dl_not_contending is not set, and
1971 * will not touch the rq's active utilization,
1972 * so we are still safe.
1973 */
1974 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1975 put_task_struct(p);
1976 }
1977 sub_rq_bw(&p->dl, &rq->dl);
1978 rq_unlock(rq, &rf);
1979}
1980
1981static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1982{
1983 /*
1984 * Current can't be migrated, useless to reschedule,
1985 * let's hope p can move out.
1986 */
1987 if (rq->curr->nr_cpus_allowed == 1 ||
1988 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1989 return;
1990
1991 /*
1992 * p is migratable, so let's not schedule it and
1993 * see if it is pushed or pulled somewhere else.
1994 */
1995 if (p->nr_cpus_allowed != 1 &&
1996 cpudl_find(&rq->rd->cpudl, p, NULL))
1997 return;
1998
1999 resched_curr(rq);
2000}
2001
2002static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2003{
2004 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2005 /*
2006 * This is OK, because current is on_cpu, which avoids it being
2007 * picked for load-balance and preemption/IRQs are still
2008 * disabled avoiding further scheduler activity on it and we've
2009 * not yet started the picking loop.
2010 */
2011 rq_unpin_lock(rq, rf);
2012 pull_dl_task(rq);
2013 rq_repin_lock(rq, rf);
2014 }
2015
2016 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2017}
2018#endif /* CONFIG_SMP */
2019
2020/*
2021 * Only called when both the current and waking task are -deadline
2022 * tasks.
2023 */
2024static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2025 int flags)
2026{
2027 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
2028 resched_curr(rq);
2029 return;
2030 }
2031
2032#ifdef CONFIG_SMP
2033 /*
2034 * In the unlikely case current and p have the same deadline
2035 * let us try to decide what's the best thing to do...
2036 */
2037 if ((p->dl.deadline == rq->curr->dl.deadline) &&
2038 !test_tsk_need_resched(rq->curr))
2039 check_preempt_equal_dl(rq, p);
2040#endif /* CONFIG_SMP */
2041}
2042
2043#ifdef CONFIG_SCHED_HRTICK
2044static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2045{
2046 hrtick_start(rq, dl_se->runtime);
2047}
2048#else /* !CONFIG_SCHED_HRTICK */
2049static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2050{
2051}
2052#endif
2053
2054static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2055{
2056 struct sched_dl_entity *dl_se = &p->dl;
2057 struct dl_rq *dl_rq = &rq->dl;
2058
2059 p->se.exec_start = rq_clock_task(rq);
2060 if (on_dl_rq(&p->dl))
2061 update_stats_wait_end_dl(dl_rq, dl_se);
2062
2063 /* You can't push away the running task */
2064 dequeue_pushable_dl_task(rq, p);
2065
2066 if (!first)
2067 return;
2068
2069 if (rq->curr->sched_class != &dl_sched_class)
2070 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2071
2072 deadline_queue_push_tasks(rq);
2073}
2074
2075static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2076{
2077 struct rb_node *left = rb_first_cached(&dl_rq->root);
2078
2079 if (!left)
2080 return NULL;
2081
2082 return __node_2_dle(left);
2083}
2084
2085static struct task_struct *pick_task_dl(struct rq *rq)
2086{
2087 struct sched_dl_entity *dl_se;
2088 struct dl_rq *dl_rq = &rq->dl;
2089 struct task_struct *p;
2090
2091again:
2092 if (!sched_dl_runnable(rq))
2093 return NULL;
2094
2095 dl_se = pick_next_dl_entity(dl_rq);
2096 WARN_ON_ONCE(!dl_se);
2097
2098 if (dl_server(dl_se)) {
2099 p = dl_se->server_pick(dl_se);
2100 if (!p) {
2101 WARN_ON_ONCE(1);
2102 dl_se->dl_yielded = 1;
2103 update_curr_dl_se(rq, dl_se, 0);
2104 goto again;
2105 }
2106 p->dl_server = dl_se;
2107 } else {
2108 p = dl_task_of(dl_se);
2109 }
2110
2111 return p;
2112}
2113
2114static struct task_struct *pick_next_task_dl(struct rq *rq)
2115{
2116 struct task_struct *p;
2117
2118 p = pick_task_dl(rq);
2119 if (!p)
2120 return p;
2121
2122 if (!p->dl_server)
2123 set_next_task_dl(rq, p, true);
2124
2125 if (hrtick_enabled(rq))
2126 start_hrtick_dl(rq, &p->dl);
2127
2128 return p;
2129}
2130
2131static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2132{
2133 struct sched_dl_entity *dl_se = &p->dl;
2134 struct dl_rq *dl_rq = &rq->dl;
2135
2136 if (on_dl_rq(&p->dl))
2137 update_stats_wait_start_dl(dl_rq, dl_se);
2138
2139 update_curr_dl(rq);
2140
2141 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2142 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2143 enqueue_pushable_dl_task(rq, p);
2144}
2145
2146/*
2147 * scheduler tick hitting a task of our scheduling class.
2148 *
2149 * NOTE: This function can be called remotely by the tick offload that
2150 * goes along full dynticks. Therefore no local assumption can be made
2151 * and everything must be accessed through the @rq and @curr passed in
2152 * parameters.
2153 */
2154static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2155{
2156 update_curr_dl(rq);
2157
2158 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2159 /*
2160 * Even when we have runtime, update_curr_dl() might have resulted in us
2161 * not being the leftmost task anymore. In that case NEED_RESCHED will
2162 * be set and schedule() will start a new hrtick for the next task.
2163 */
2164 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2165 is_leftmost(&p->dl, &rq->dl))
2166 start_hrtick_dl(rq, &p->dl);
2167}
2168
2169static void task_fork_dl(struct task_struct *p)
2170{
2171 /*
2172 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2173 * sched_fork()
2174 */
2175}
2176
2177#ifdef CONFIG_SMP
2178
2179/* Only try algorithms three times */
2180#define DL_MAX_TRIES 3
2181
2182static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2183{
2184 if (!task_on_cpu(rq, p) &&
2185 cpumask_test_cpu(cpu, &p->cpus_mask))
2186 return 1;
2187 return 0;
2188}
2189
2190/*
2191 * Return the earliest pushable rq's task, which is suitable to be executed
2192 * on the CPU, NULL otherwise:
2193 */
2194static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2195{
2196 struct task_struct *p = NULL;
2197 struct rb_node *next_node;
2198
2199 if (!has_pushable_dl_tasks(rq))
2200 return NULL;
2201
2202 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2203
2204next_node:
2205 if (next_node) {
2206 p = __node_2_pdl(next_node);
2207
2208 if (pick_dl_task(rq, p, cpu))
2209 return p;
2210
2211 next_node = rb_next(next_node);
2212 goto next_node;
2213 }
2214
2215 return NULL;
2216}
2217
2218static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2219
2220static int find_later_rq(struct task_struct *task)
2221{
2222 struct sched_domain *sd;
2223 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2224 int this_cpu = smp_processor_id();
2225 int cpu = task_cpu(task);
2226
2227 /* Make sure the mask is initialized first */
2228 if (unlikely(!later_mask))
2229 return -1;
2230
2231 if (task->nr_cpus_allowed == 1)
2232 return -1;
2233
2234 /*
2235 * We have to consider system topology and task affinity
2236 * first, then we can look for a suitable CPU.
2237 */
2238 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2239 return -1;
2240
2241 /*
2242 * If we are here, some targets have been found, including
2243 * the most suitable which is, among the runqueues where the
2244 * current tasks have later deadlines than the task's one, the
2245 * rq with the latest possible one.
2246 *
2247 * Now we check how well this matches with task's
2248 * affinity and system topology.
2249 *
2250 * The last CPU where the task run is our first
2251 * guess, since it is most likely cache-hot there.
2252 */
2253 if (cpumask_test_cpu(cpu, later_mask))
2254 return cpu;
2255 /*
2256 * Check if this_cpu is to be skipped (i.e., it is
2257 * not in the mask) or not.
2258 */
2259 if (!cpumask_test_cpu(this_cpu, later_mask))
2260 this_cpu = -1;
2261
2262 rcu_read_lock();
2263 for_each_domain(cpu, sd) {
2264 if (sd->flags & SD_WAKE_AFFINE) {
2265 int best_cpu;
2266
2267 /*
2268 * If possible, preempting this_cpu is
2269 * cheaper than migrating.
2270 */
2271 if (this_cpu != -1 &&
2272 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2273 rcu_read_unlock();
2274 return this_cpu;
2275 }
2276
2277 best_cpu = cpumask_any_and_distribute(later_mask,
2278 sched_domain_span(sd));
2279 /*
2280 * Last chance: if a CPU being in both later_mask
2281 * and current sd span is valid, that becomes our
2282 * choice. Of course, the latest possible CPU is
2283 * already under consideration through later_mask.
2284 */
2285 if (best_cpu < nr_cpu_ids) {
2286 rcu_read_unlock();
2287 return best_cpu;
2288 }
2289 }
2290 }
2291 rcu_read_unlock();
2292
2293 /*
2294 * At this point, all our guesses failed, we just return
2295 * 'something', and let the caller sort the things out.
2296 */
2297 if (this_cpu != -1)
2298 return this_cpu;
2299
2300 cpu = cpumask_any_distribute(later_mask);
2301 if (cpu < nr_cpu_ids)
2302 return cpu;
2303
2304 return -1;
2305}
2306
2307/* Locks the rq it finds */
2308static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2309{
2310 struct rq *later_rq = NULL;
2311 int tries;
2312 int cpu;
2313
2314 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2315 cpu = find_later_rq(task);
2316
2317 if ((cpu == -1) || (cpu == rq->cpu))
2318 break;
2319
2320 later_rq = cpu_rq(cpu);
2321
2322 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2323 /*
2324 * Target rq has tasks of equal or earlier deadline,
2325 * retrying does not release any lock and is unlikely
2326 * to yield a different result.
2327 */
2328 later_rq = NULL;
2329 break;
2330 }
2331
2332 /* Retry if something changed. */
2333 if (double_lock_balance(rq, later_rq)) {
2334 if (unlikely(task_rq(task) != rq ||
2335 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2336 task_on_cpu(rq, task) ||
2337 !dl_task(task) ||
2338 is_migration_disabled(task) ||
2339 !task_on_rq_queued(task))) {
2340 double_unlock_balance(rq, later_rq);
2341 later_rq = NULL;
2342 break;
2343 }
2344 }
2345
2346 /*
2347 * If the rq we found has no -deadline task, or
2348 * its earliest one has a later deadline than our
2349 * task, the rq is a good one.
2350 */
2351 if (dl_task_is_earliest_deadline(task, later_rq))
2352 break;
2353
2354 /* Otherwise we try again. */
2355 double_unlock_balance(rq, later_rq);
2356 later_rq = NULL;
2357 }
2358
2359 return later_rq;
2360}
2361
2362static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2363{
2364 struct task_struct *p;
2365
2366 if (!has_pushable_dl_tasks(rq))
2367 return NULL;
2368
2369 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2370
2371 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2372 WARN_ON_ONCE(task_current(rq, p));
2373 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2374
2375 WARN_ON_ONCE(!task_on_rq_queued(p));
2376 WARN_ON_ONCE(!dl_task(p));
2377
2378 return p;
2379}
2380
2381/*
2382 * See if the non running -deadline tasks on this rq
2383 * can be sent to some other CPU where they can preempt
2384 * and start executing.
2385 */
2386static int push_dl_task(struct rq *rq)
2387{
2388 struct task_struct *next_task;
2389 struct rq *later_rq;
2390 int ret = 0;
2391
2392 next_task = pick_next_pushable_dl_task(rq);
2393 if (!next_task)
2394 return 0;
2395
2396retry:
2397 /*
2398 * If next_task preempts rq->curr, and rq->curr
2399 * can move away, it makes sense to just reschedule
2400 * without going further in pushing next_task.
2401 */
2402 if (dl_task(rq->curr) &&
2403 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2404 rq->curr->nr_cpus_allowed > 1) {
2405 resched_curr(rq);
2406 return 0;
2407 }
2408
2409 if (is_migration_disabled(next_task))
2410 return 0;
2411
2412 if (WARN_ON(next_task == rq->curr))
2413 return 0;
2414
2415 /* We might release rq lock */
2416 get_task_struct(next_task);
2417
2418 /* Will lock the rq it'll find */
2419 later_rq = find_lock_later_rq(next_task, rq);
2420 if (!later_rq) {
2421 struct task_struct *task;
2422
2423 /*
2424 * We must check all this again, since
2425 * find_lock_later_rq releases rq->lock and it is
2426 * then possible that next_task has migrated.
2427 */
2428 task = pick_next_pushable_dl_task(rq);
2429 if (task == next_task) {
2430 /*
2431 * The task is still there. We don't try
2432 * again, some other CPU will pull it when ready.
2433 */
2434 goto out;
2435 }
2436
2437 if (!task)
2438 /* No more tasks */
2439 goto out;
2440
2441 put_task_struct(next_task);
2442 next_task = task;
2443 goto retry;
2444 }
2445
2446 deactivate_task(rq, next_task, 0);
2447 set_task_cpu(next_task, later_rq->cpu);
2448 activate_task(later_rq, next_task, 0);
2449 ret = 1;
2450
2451 resched_curr(later_rq);
2452
2453 double_unlock_balance(rq, later_rq);
2454
2455out:
2456 put_task_struct(next_task);
2457
2458 return ret;
2459}
2460
2461static void push_dl_tasks(struct rq *rq)
2462{
2463 /* push_dl_task() will return true if it moved a -deadline task */
2464 while (push_dl_task(rq))
2465 ;
2466}
2467
2468static void pull_dl_task(struct rq *this_rq)
2469{
2470 int this_cpu = this_rq->cpu, cpu;
2471 struct task_struct *p, *push_task;
2472 bool resched = false;
2473 struct rq *src_rq;
2474 u64 dmin = LONG_MAX;
2475
2476 if (likely(!dl_overloaded(this_rq)))
2477 return;
2478
2479 /*
2480 * Match the barrier from dl_set_overloaded; this guarantees that if we
2481 * see overloaded we must also see the dlo_mask bit.
2482 */
2483 smp_rmb();
2484
2485 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2486 if (this_cpu == cpu)
2487 continue;
2488
2489 src_rq = cpu_rq(cpu);
2490
2491 /*
2492 * It looks racy, abd it is! However, as in sched_rt.c,
2493 * we are fine with this.
2494 */
2495 if (this_rq->dl.dl_nr_running &&
2496 dl_time_before(this_rq->dl.earliest_dl.curr,
2497 src_rq->dl.earliest_dl.next))
2498 continue;
2499
2500 /* Might drop this_rq->lock */
2501 push_task = NULL;
2502 double_lock_balance(this_rq, src_rq);
2503
2504 /*
2505 * If there are no more pullable tasks on the
2506 * rq, we're done with it.
2507 */
2508 if (src_rq->dl.dl_nr_running <= 1)
2509 goto skip;
2510
2511 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2512
2513 /*
2514 * We found a task to be pulled if:
2515 * - it preempts our current (if there's one),
2516 * - it will preempt the last one we pulled (if any).
2517 */
2518 if (p && dl_time_before(p->dl.deadline, dmin) &&
2519 dl_task_is_earliest_deadline(p, this_rq)) {
2520 WARN_ON(p == src_rq->curr);
2521 WARN_ON(!task_on_rq_queued(p));
2522
2523 /*
2524 * Then we pull iff p has actually an earlier
2525 * deadline than the current task of its runqueue.
2526 */
2527 if (dl_time_before(p->dl.deadline,
2528 src_rq->curr->dl.deadline))
2529 goto skip;
2530
2531 if (is_migration_disabled(p)) {
2532 push_task = get_push_task(src_rq);
2533 } else {
2534 deactivate_task(src_rq, p, 0);
2535 set_task_cpu(p, this_cpu);
2536 activate_task(this_rq, p, 0);
2537 dmin = p->dl.deadline;
2538 resched = true;
2539 }
2540
2541 /* Is there any other task even earlier? */
2542 }
2543skip:
2544 double_unlock_balance(this_rq, src_rq);
2545
2546 if (push_task) {
2547 preempt_disable();
2548 raw_spin_rq_unlock(this_rq);
2549 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2550 push_task, &src_rq->push_work);
2551 preempt_enable();
2552 raw_spin_rq_lock(this_rq);
2553 }
2554 }
2555
2556 if (resched)
2557 resched_curr(this_rq);
2558}
2559
2560/*
2561 * Since the task is not running and a reschedule is not going to happen
2562 * anytime soon on its runqueue, we try pushing it away now.
2563 */
2564static void task_woken_dl(struct rq *rq, struct task_struct *p)
2565{
2566 if (!task_on_cpu(rq, p) &&
2567 !test_tsk_need_resched(rq->curr) &&
2568 p->nr_cpus_allowed > 1 &&
2569 dl_task(rq->curr) &&
2570 (rq->curr->nr_cpus_allowed < 2 ||
2571 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2572 push_dl_tasks(rq);
2573 }
2574}
2575
2576static void set_cpus_allowed_dl(struct task_struct *p,
2577 struct affinity_context *ctx)
2578{
2579 struct root_domain *src_rd;
2580 struct rq *rq;
2581
2582 WARN_ON_ONCE(!dl_task(p));
2583
2584 rq = task_rq(p);
2585 src_rd = rq->rd;
2586 /*
2587 * Migrating a SCHED_DEADLINE task between exclusive
2588 * cpusets (different root_domains) entails a bandwidth
2589 * update. We already made space for us in the destination
2590 * domain (see cpuset_can_attach()).
2591 */
2592 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2593 struct dl_bw *src_dl_b;
2594
2595 src_dl_b = dl_bw_of(cpu_of(rq));
2596 /*
2597 * We now free resources of the root_domain we are migrating
2598 * off. In the worst case, sched_setattr() may temporary fail
2599 * until we complete the update.
2600 */
2601 raw_spin_lock(&src_dl_b->lock);
2602 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2603 raw_spin_unlock(&src_dl_b->lock);
2604 }
2605
2606 set_cpus_allowed_common(p, ctx);
2607}
2608
2609/* Assumes rq->lock is held */
2610static void rq_online_dl(struct rq *rq)
2611{
2612 if (rq->dl.overloaded)
2613 dl_set_overload(rq);
2614
2615 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2616 if (rq->dl.dl_nr_running > 0)
2617 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2618}
2619
2620/* Assumes rq->lock is held */
2621static void rq_offline_dl(struct rq *rq)
2622{
2623 if (rq->dl.overloaded)
2624 dl_clear_overload(rq);
2625
2626 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2627 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2628}
2629
2630void __init init_sched_dl_class(void)
2631{
2632 unsigned int i;
2633
2634 for_each_possible_cpu(i)
2635 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2636 GFP_KERNEL, cpu_to_node(i));
2637}
2638
2639void dl_add_task_root_domain(struct task_struct *p)
2640{
2641 struct rq_flags rf;
2642 struct rq *rq;
2643 struct dl_bw *dl_b;
2644
2645 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2646 if (!dl_task(p)) {
2647 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2648 return;
2649 }
2650
2651 rq = __task_rq_lock(p, &rf);
2652
2653 dl_b = &rq->rd->dl_bw;
2654 raw_spin_lock(&dl_b->lock);
2655
2656 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2657
2658 raw_spin_unlock(&dl_b->lock);
2659
2660 task_rq_unlock(rq, p, &rf);
2661}
2662
2663void dl_clear_root_domain(struct root_domain *rd)
2664{
2665 unsigned long flags;
2666
2667 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2668 rd->dl_bw.total_bw = 0;
2669 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2670}
2671
2672#endif /* CONFIG_SMP */
2673
2674static void switched_from_dl(struct rq *rq, struct task_struct *p)
2675{
2676 /*
2677 * task_non_contending() can start the "inactive timer" (if the 0-lag
2678 * time is in the future). If the task switches back to dl before
2679 * the "inactive timer" fires, it can continue to consume its current
2680 * runtime using its current deadline. If it stays outside of
2681 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2682 * will reset the task parameters.
2683 */
2684 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2685 task_non_contending(&p->dl);
2686
2687 /*
2688 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2689 * keep track of that on its cpuset (for correct bandwidth tracking).
2690 */
2691 dec_dl_tasks_cs(p);
2692
2693 if (!task_on_rq_queued(p)) {
2694 /*
2695 * Inactive timer is armed. However, p is leaving DEADLINE and
2696 * might migrate away from this rq while continuing to run on
2697 * some other class. We need to remove its contribution from
2698 * this rq running_bw now, or sub_rq_bw (below) will complain.
2699 */
2700 if (p->dl.dl_non_contending)
2701 sub_running_bw(&p->dl, &rq->dl);
2702 sub_rq_bw(&p->dl, &rq->dl);
2703 }
2704
2705 /*
2706 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2707 * at the 0-lag time, because the task could have been migrated
2708 * while SCHED_OTHER in the meanwhile.
2709 */
2710 if (p->dl.dl_non_contending)
2711 p->dl.dl_non_contending = 0;
2712
2713 /*
2714 * Since this might be the only -deadline task on the rq,
2715 * this is the right place to try to pull some other one
2716 * from an overloaded CPU, if any.
2717 */
2718 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2719 return;
2720
2721 deadline_queue_pull_task(rq);
2722}
2723
2724/*
2725 * When switching to -deadline, we may overload the rq, then
2726 * we try to push someone off, if possible.
2727 */
2728static void switched_to_dl(struct rq *rq, struct task_struct *p)
2729{
2730 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2731 put_task_struct(p);
2732
2733 /*
2734 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2735 * track of that on its cpuset (for correct bandwidth tracking).
2736 */
2737 inc_dl_tasks_cs(p);
2738
2739 /* If p is not queued we will update its parameters at next wakeup. */
2740 if (!task_on_rq_queued(p)) {
2741 add_rq_bw(&p->dl, &rq->dl);
2742
2743 return;
2744 }
2745
2746 if (rq->curr != p) {
2747#ifdef CONFIG_SMP
2748 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2749 deadline_queue_push_tasks(rq);
2750#endif
2751 if (dl_task(rq->curr))
2752 wakeup_preempt_dl(rq, p, 0);
2753 else
2754 resched_curr(rq);
2755 } else {
2756 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2757 }
2758}
2759
2760/*
2761 * If the scheduling parameters of a -deadline task changed,
2762 * a push or pull operation might be needed.
2763 */
2764static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2765 int oldprio)
2766{
2767 if (!task_on_rq_queued(p))
2768 return;
2769
2770#ifdef CONFIG_SMP
2771 /*
2772 * This might be too much, but unfortunately
2773 * we don't have the old deadline value, and
2774 * we can't argue if the task is increasing
2775 * or lowering its prio, so...
2776 */
2777 if (!rq->dl.overloaded)
2778 deadline_queue_pull_task(rq);
2779
2780 if (task_current(rq, p)) {
2781 /*
2782 * If we now have a earlier deadline task than p,
2783 * then reschedule, provided p is still on this
2784 * runqueue.
2785 */
2786 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2787 resched_curr(rq);
2788 } else {
2789 /*
2790 * Current may not be deadline in case p was throttled but we
2791 * have just replenished it (e.g. rt_mutex_setprio()).
2792 *
2793 * Otherwise, if p was given an earlier deadline, reschedule.
2794 */
2795 if (!dl_task(rq->curr) ||
2796 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2797 resched_curr(rq);
2798 }
2799#else
2800 /*
2801 * We don't know if p has a earlier or later deadline, so let's blindly
2802 * set a (maybe not needed) rescheduling point.
2803 */
2804 resched_curr(rq);
2805#endif
2806}
2807
2808#ifdef CONFIG_SCHED_CORE
2809static int task_is_throttled_dl(struct task_struct *p, int cpu)
2810{
2811 return p->dl.dl_throttled;
2812}
2813#endif
2814
2815DEFINE_SCHED_CLASS(dl) = {
2816
2817 .enqueue_task = enqueue_task_dl,
2818 .dequeue_task = dequeue_task_dl,
2819 .yield_task = yield_task_dl,
2820
2821 .wakeup_preempt = wakeup_preempt_dl,
2822
2823 .pick_next_task = pick_next_task_dl,
2824 .put_prev_task = put_prev_task_dl,
2825 .set_next_task = set_next_task_dl,
2826
2827#ifdef CONFIG_SMP
2828 .balance = balance_dl,
2829 .pick_task = pick_task_dl,
2830 .select_task_rq = select_task_rq_dl,
2831 .migrate_task_rq = migrate_task_rq_dl,
2832 .set_cpus_allowed = set_cpus_allowed_dl,
2833 .rq_online = rq_online_dl,
2834 .rq_offline = rq_offline_dl,
2835 .task_woken = task_woken_dl,
2836 .find_lock_rq = find_lock_later_rq,
2837#endif
2838
2839 .task_tick = task_tick_dl,
2840 .task_fork = task_fork_dl,
2841
2842 .prio_changed = prio_changed_dl,
2843 .switched_from = switched_from_dl,
2844 .switched_to = switched_to_dl,
2845
2846 .update_curr = update_curr_dl,
2847#ifdef CONFIG_SCHED_CORE
2848 .task_is_throttled = task_is_throttled_dl,
2849#endif
2850};
2851
2852/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2853static u64 dl_generation;
2854
2855int sched_dl_global_validate(void)
2856{
2857 u64 runtime = global_rt_runtime();
2858 u64 period = global_rt_period();
2859 u64 new_bw = to_ratio(period, runtime);
2860 u64 gen = ++dl_generation;
2861 struct dl_bw *dl_b;
2862 int cpu, cpus, ret = 0;
2863 unsigned long flags;
2864
2865 /*
2866 * Here we want to check the bandwidth not being set to some
2867 * value smaller than the currently allocated bandwidth in
2868 * any of the root_domains.
2869 */
2870 for_each_possible_cpu(cpu) {
2871 rcu_read_lock_sched();
2872
2873 if (dl_bw_visited(cpu, gen))
2874 goto next;
2875
2876 dl_b = dl_bw_of(cpu);
2877 cpus = dl_bw_cpus(cpu);
2878
2879 raw_spin_lock_irqsave(&dl_b->lock, flags);
2880 if (new_bw * cpus < dl_b->total_bw)
2881 ret = -EBUSY;
2882 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2883
2884next:
2885 rcu_read_unlock_sched();
2886
2887 if (ret)
2888 break;
2889 }
2890
2891 return ret;
2892}
2893
2894static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2895{
2896 if (global_rt_runtime() == RUNTIME_INF) {
2897 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2898 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2899 } else {
2900 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2901 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2902 dl_rq->max_bw = dl_rq->extra_bw =
2903 to_ratio(global_rt_period(), global_rt_runtime());
2904 }
2905}
2906
2907void sched_dl_do_global(void)
2908{
2909 u64 new_bw = -1;
2910 u64 gen = ++dl_generation;
2911 struct dl_bw *dl_b;
2912 int cpu;
2913 unsigned long flags;
2914
2915 if (global_rt_runtime() != RUNTIME_INF)
2916 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2917
2918 for_each_possible_cpu(cpu) {
2919 rcu_read_lock_sched();
2920
2921 if (dl_bw_visited(cpu, gen)) {
2922 rcu_read_unlock_sched();
2923 continue;
2924 }
2925
2926 dl_b = dl_bw_of(cpu);
2927
2928 raw_spin_lock_irqsave(&dl_b->lock, flags);
2929 dl_b->bw = new_bw;
2930 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2931
2932 rcu_read_unlock_sched();
2933 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2934 }
2935}
2936
2937/*
2938 * We must be sure that accepting a new task (or allowing changing the
2939 * parameters of an existing one) is consistent with the bandwidth
2940 * constraints. If yes, this function also accordingly updates the currently
2941 * allocated bandwidth to reflect the new situation.
2942 *
2943 * This function is called while holding p's rq->lock.
2944 */
2945int sched_dl_overflow(struct task_struct *p, int policy,
2946 const struct sched_attr *attr)
2947{
2948 u64 period = attr->sched_period ?: attr->sched_deadline;
2949 u64 runtime = attr->sched_runtime;
2950 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2951 int cpus, err = -1, cpu = task_cpu(p);
2952 struct dl_bw *dl_b = dl_bw_of(cpu);
2953 unsigned long cap;
2954
2955 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2956 return 0;
2957
2958 /* !deadline task may carry old deadline bandwidth */
2959 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2960 return 0;
2961
2962 /*
2963 * Either if a task, enters, leave, or stays -deadline but changes
2964 * its parameters, we may need to update accordingly the total
2965 * allocated bandwidth of the container.
2966 */
2967 raw_spin_lock(&dl_b->lock);
2968 cpus = dl_bw_cpus(cpu);
2969 cap = dl_bw_capacity(cpu);
2970
2971 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2972 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2973 if (hrtimer_active(&p->dl.inactive_timer))
2974 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2975 __dl_add(dl_b, new_bw, cpus);
2976 err = 0;
2977 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2978 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2979 /*
2980 * XXX this is slightly incorrect: when the task
2981 * utilization decreases, we should delay the total
2982 * utilization change until the task's 0-lag point.
2983 * But this would require to set the task's "inactive
2984 * timer" when the task is not inactive.
2985 */
2986 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2987 __dl_add(dl_b, new_bw, cpus);
2988 dl_change_utilization(p, new_bw);
2989 err = 0;
2990 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2991 /*
2992 * Do not decrease the total deadline utilization here,
2993 * switched_from_dl() will take care to do it at the correct
2994 * (0-lag) time.
2995 */
2996 err = 0;
2997 }
2998 raw_spin_unlock(&dl_b->lock);
2999
3000 return err;
3001}
3002
3003/*
3004 * This function initializes the sched_dl_entity of a newly becoming
3005 * SCHED_DEADLINE task.
3006 *
3007 * Only the static values are considered here, the actual runtime and the
3008 * absolute deadline will be properly calculated when the task is enqueued
3009 * for the first time with its new policy.
3010 */
3011void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3012{
3013 struct sched_dl_entity *dl_se = &p->dl;
3014
3015 dl_se->dl_runtime = attr->sched_runtime;
3016 dl_se->dl_deadline = attr->sched_deadline;
3017 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3018 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3019 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3020 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3021}
3022
3023void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3024{
3025 struct sched_dl_entity *dl_se = &p->dl;
3026
3027 attr->sched_priority = p->rt_priority;
3028 attr->sched_runtime = dl_se->dl_runtime;
3029 attr->sched_deadline = dl_se->dl_deadline;
3030 attr->sched_period = dl_se->dl_period;
3031 attr->sched_flags &= ~SCHED_DL_FLAGS;
3032 attr->sched_flags |= dl_se->flags;
3033}
3034
3035/*
3036 * This function validates the new parameters of a -deadline task.
3037 * We ask for the deadline not being zero, and greater or equal
3038 * than the runtime, as well as the period of being zero or
3039 * greater than deadline. Furthermore, we have to be sure that
3040 * user parameters are above the internal resolution of 1us (we
3041 * check sched_runtime only since it is always the smaller one) and
3042 * below 2^63 ns (we have to check both sched_deadline and
3043 * sched_period, as the latter can be zero).
3044 */
3045bool __checkparam_dl(const struct sched_attr *attr)
3046{
3047 u64 period, max, min;
3048
3049 /* special dl tasks don't actually use any parameter */
3050 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3051 return true;
3052
3053 /* deadline != 0 */
3054 if (attr->sched_deadline == 0)
3055 return false;
3056
3057 /*
3058 * Since we truncate DL_SCALE bits, make sure we're at least
3059 * that big.
3060 */
3061 if (attr->sched_runtime < (1ULL << DL_SCALE))
3062 return false;
3063
3064 /*
3065 * Since we use the MSB for wrap-around and sign issues, make
3066 * sure it's not set (mind that period can be equal to zero).
3067 */
3068 if (attr->sched_deadline & (1ULL << 63) ||
3069 attr->sched_period & (1ULL << 63))
3070 return false;
3071
3072 period = attr->sched_period;
3073 if (!period)
3074 period = attr->sched_deadline;
3075
3076 /* runtime <= deadline <= period (if period != 0) */
3077 if (period < attr->sched_deadline ||
3078 attr->sched_deadline < attr->sched_runtime)
3079 return false;
3080
3081 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3082 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3083
3084 if (period < min || period > max)
3085 return false;
3086
3087 return true;
3088}
3089
3090/*
3091 * This function clears the sched_dl_entity static params.
3092 */
3093static void __dl_clear_params(struct sched_dl_entity *dl_se)
3094{
3095 dl_se->dl_runtime = 0;
3096 dl_se->dl_deadline = 0;
3097 dl_se->dl_period = 0;
3098 dl_se->flags = 0;
3099 dl_se->dl_bw = 0;
3100 dl_se->dl_density = 0;
3101
3102 dl_se->dl_throttled = 0;
3103 dl_se->dl_yielded = 0;
3104 dl_se->dl_non_contending = 0;
3105 dl_se->dl_overrun = 0;
3106 dl_se->dl_server = 0;
3107
3108#ifdef CONFIG_RT_MUTEXES
3109 dl_se->pi_se = dl_se;
3110#endif
3111}
3112
3113void init_dl_entity(struct sched_dl_entity *dl_se)
3114{
3115 RB_CLEAR_NODE(&dl_se->rb_node);
3116 init_dl_task_timer(dl_se);
3117 init_dl_inactive_task_timer(dl_se);
3118 __dl_clear_params(dl_se);
3119}
3120
3121bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3122{
3123 struct sched_dl_entity *dl_se = &p->dl;
3124
3125 if (dl_se->dl_runtime != attr->sched_runtime ||
3126 dl_se->dl_deadline != attr->sched_deadline ||
3127 dl_se->dl_period != attr->sched_period ||
3128 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3129 return true;
3130
3131 return false;
3132}
3133
3134#ifdef CONFIG_SMP
3135int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3136 const struct cpumask *trial)
3137{
3138 unsigned long flags, cap;
3139 struct dl_bw *cur_dl_b;
3140 int ret = 1;
3141
3142 rcu_read_lock_sched();
3143 cur_dl_b = dl_bw_of(cpumask_any(cur));
3144 cap = __dl_bw_capacity(trial);
3145 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3146 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3147 ret = 0;
3148 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3149 rcu_read_unlock_sched();
3150
3151 return ret;
3152}
3153
3154enum dl_bw_request {
3155 dl_bw_req_check_overflow = 0,
3156 dl_bw_req_alloc,
3157 dl_bw_req_free
3158};
3159
3160static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3161{
3162 unsigned long flags;
3163 struct dl_bw *dl_b;
3164 bool overflow = 0;
3165
3166 rcu_read_lock_sched();
3167 dl_b = dl_bw_of(cpu);
3168 raw_spin_lock_irqsave(&dl_b->lock, flags);
3169
3170 if (req == dl_bw_req_free) {
3171 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3172 } else {
3173 unsigned long cap = dl_bw_capacity(cpu);
3174
3175 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3176
3177 if (req == dl_bw_req_alloc && !overflow) {
3178 /*
3179 * We reserve space in the destination
3180 * root_domain, as we can't fail after this point.
3181 * We will free resources in the source root_domain
3182 * later on (see set_cpus_allowed_dl()).
3183 */
3184 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3185 }
3186 }
3187
3188 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3189 rcu_read_unlock_sched();
3190
3191 return overflow ? -EBUSY : 0;
3192}
3193
3194int dl_bw_check_overflow(int cpu)
3195{
3196 return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3197}
3198
3199int dl_bw_alloc(int cpu, u64 dl_bw)
3200{
3201 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3202}
3203
3204void dl_bw_free(int cpu, u64 dl_bw)
3205{
3206 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3207}
3208#endif
3209
3210#ifdef CONFIG_SCHED_DEBUG
3211void print_dl_stats(struct seq_file *m, int cpu)
3212{
3213 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3214}
3215#endif /* CONFIG_SCHED_DEBUG */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18#include "sched.h"
19#include "pelt.h"
20
21struct dl_bandwidth def_dl_bandwidth;
22
23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24{
25 return container_of(dl_se, struct task_struct, dl);
26}
27
28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29{
30 return container_of(dl_rq, struct rq, dl);
31}
32
33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34{
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39}
40
41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42{
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44}
45
46#ifdef CONFIG_RT_MUTEXES
47static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
48{
49 return dl_se->pi_se;
50}
51
52static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
53{
54 return pi_of(dl_se) != dl_se;
55}
56#else
57static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
58{
59 return dl_se;
60}
61
62static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
63{
64 return false;
65}
66#endif
67
68#ifdef CONFIG_SMP
69static inline struct dl_bw *dl_bw_of(int i)
70{
71 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
72 "sched RCU must be held");
73 return &cpu_rq(i)->rd->dl_bw;
74}
75
76static inline int dl_bw_cpus(int i)
77{
78 struct root_domain *rd = cpu_rq(i)->rd;
79 int cpus;
80
81 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
82 "sched RCU must be held");
83
84 if (cpumask_subset(rd->span, cpu_active_mask))
85 return cpumask_weight(rd->span);
86
87 cpus = 0;
88
89 for_each_cpu_and(i, rd->span, cpu_active_mask)
90 cpus++;
91
92 return cpus;
93}
94
95static inline unsigned long __dl_bw_capacity(int i)
96{
97 struct root_domain *rd = cpu_rq(i)->rd;
98 unsigned long cap = 0;
99
100 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
101 "sched RCU must be held");
102
103 for_each_cpu_and(i, rd->span, cpu_active_mask)
104 cap += capacity_orig_of(i);
105
106 return cap;
107}
108
109/*
110 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
111 * of the CPU the task is running on rather rd's \Sum CPU capacity.
112 */
113static inline unsigned long dl_bw_capacity(int i)
114{
115 if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
116 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
117 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
118 } else {
119 return __dl_bw_capacity(i);
120 }
121}
122
123static inline bool dl_bw_visited(int cpu, u64 gen)
124{
125 struct root_domain *rd = cpu_rq(cpu)->rd;
126
127 if (rd->visit_gen == gen)
128 return true;
129
130 rd->visit_gen = gen;
131 return false;
132}
133#else
134static inline struct dl_bw *dl_bw_of(int i)
135{
136 return &cpu_rq(i)->dl.dl_bw;
137}
138
139static inline int dl_bw_cpus(int i)
140{
141 return 1;
142}
143
144static inline unsigned long dl_bw_capacity(int i)
145{
146 return SCHED_CAPACITY_SCALE;
147}
148
149static inline bool dl_bw_visited(int cpu, u64 gen)
150{
151 return false;
152}
153#endif
154
155static inline
156void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
157{
158 u64 old = dl_rq->running_bw;
159
160 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
161 dl_rq->running_bw += dl_bw;
162 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
163 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
164 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
165 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
166}
167
168static inline
169void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
170{
171 u64 old = dl_rq->running_bw;
172
173 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
174 dl_rq->running_bw -= dl_bw;
175 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
176 if (dl_rq->running_bw > old)
177 dl_rq->running_bw = 0;
178 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
179 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
180}
181
182static inline
183void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
184{
185 u64 old = dl_rq->this_bw;
186
187 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
188 dl_rq->this_bw += dl_bw;
189 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
190}
191
192static inline
193void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
194{
195 u64 old = dl_rq->this_bw;
196
197 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
198 dl_rq->this_bw -= dl_bw;
199 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
200 if (dl_rq->this_bw > old)
201 dl_rq->this_bw = 0;
202 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
203}
204
205static inline
206void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
207{
208 if (!dl_entity_is_special(dl_se))
209 __add_rq_bw(dl_se->dl_bw, dl_rq);
210}
211
212static inline
213void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
214{
215 if (!dl_entity_is_special(dl_se))
216 __sub_rq_bw(dl_se->dl_bw, dl_rq);
217}
218
219static inline
220void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
221{
222 if (!dl_entity_is_special(dl_se))
223 __add_running_bw(dl_se->dl_bw, dl_rq);
224}
225
226static inline
227void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
228{
229 if (!dl_entity_is_special(dl_se))
230 __sub_running_bw(dl_se->dl_bw, dl_rq);
231}
232
233static void dl_change_utilization(struct task_struct *p, u64 new_bw)
234{
235 struct rq *rq;
236
237 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
238
239 if (task_on_rq_queued(p))
240 return;
241
242 rq = task_rq(p);
243 if (p->dl.dl_non_contending) {
244 sub_running_bw(&p->dl, &rq->dl);
245 p->dl.dl_non_contending = 0;
246 /*
247 * If the timer handler is currently running and the
248 * timer cannot be canceled, inactive_task_timer()
249 * will see that dl_not_contending is not set, and
250 * will not touch the rq's active utilization,
251 * so we are still safe.
252 */
253 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
254 put_task_struct(p);
255 }
256 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
257 __add_rq_bw(new_bw, &rq->dl);
258}
259
260/*
261 * The utilization of a task cannot be immediately removed from
262 * the rq active utilization (running_bw) when the task blocks.
263 * Instead, we have to wait for the so called "0-lag time".
264 *
265 * If a task blocks before the "0-lag time", a timer (the inactive
266 * timer) is armed, and running_bw is decreased when the timer
267 * fires.
268 *
269 * If the task wakes up again before the inactive timer fires,
270 * the timer is canceled, whereas if the task wakes up after the
271 * inactive timer fired (and running_bw has been decreased) the
272 * task's utilization has to be added to running_bw again.
273 * A flag in the deadline scheduling entity (dl_non_contending)
274 * is used to avoid race conditions between the inactive timer handler
275 * and task wakeups.
276 *
277 * The following diagram shows how running_bw is updated. A task is
278 * "ACTIVE" when its utilization contributes to running_bw; an
279 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
280 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
281 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
282 * time already passed, which does not contribute to running_bw anymore.
283 * +------------------+
284 * wakeup | ACTIVE |
285 * +------------------>+ contending |
286 * | add_running_bw | |
287 * | +----+------+------+
288 * | | ^
289 * | dequeue | |
290 * +--------+-------+ | |
291 * | | t >= 0-lag | | wakeup
292 * | INACTIVE |<---------------+ |
293 * | | sub_running_bw | |
294 * +--------+-------+ | |
295 * ^ | |
296 * | t < 0-lag | |
297 * | | |
298 * | V |
299 * | +----+------+------+
300 * | sub_running_bw | ACTIVE |
301 * +-------------------+ |
302 * inactive timer | non contending |
303 * fired +------------------+
304 *
305 * The task_non_contending() function is invoked when a task
306 * blocks, and checks if the 0-lag time already passed or
307 * not (in the first case, it directly updates running_bw;
308 * in the second case, it arms the inactive timer).
309 *
310 * The task_contending() function is invoked when a task wakes
311 * up, and checks if the task is still in the "ACTIVE non contending"
312 * state or not (in the second case, it updates running_bw).
313 */
314static void task_non_contending(struct task_struct *p)
315{
316 struct sched_dl_entity *dl_se = &p->dl;
317 struct hrtimer *timer = &dl_se->inactive_timer;
318 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
319 struct rq *rq = rq_of_dl_rq(dl_rq);
320 s64 zerolag_time;
321
322 /*
323 * If this is a non-deadline task that has been boosted,
324 * do nothing
325 */
326 if (dl_se->dl_runtime == 0)
327 return;
328
329 if (dl_entity_is_special(dl_se))
330 return;
331
332 WARN_ON(dl_se->dl_non_contending);
333
334 zerolag_time = dl_se->deadline -
335 div64_long((dl_se->runtime * dl_se->dl_period),
336 dl_se->dl_runtime);
337
338 /*
339 * Using relative times instead of the absolute "0-lag time"
340 * allows to simplify the code
341 */
342 zerolag_time -= rq_clock(rq);
343
344 /*
345 * If the "0-lag time" already passed, decrease the active
346 * utilization now, instead of starting a timer
347 */
348 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
349 if (dl_task(p))
350 sub_running_bw(dl_se, dl_rq);
351 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
352 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
353
354 if (READ_ONCE(p->__state) == TASK_DEAD)
355 sub_rq_bw(&p->dl, &rq->dl);
356 raw_spin_lock(&dl_b->lock);
357 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
358 __dl_clear_params(p);
359 raw_spin_unlock(&dl_b->lock);
360 }
361
362 return;
363 }
364
365 dl_se->dl_non_contending = 1;
366 get_task_struct(p);
367 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
368}
369
370static void task_contending(struct sched_dl_entity *dl_se, int flags)
371{
372 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
373
374 /*
375 * If this is a non-deadline task that has been boosted,
376 * do nothing
377 */
378 if (dl_se->dl_runtime == 0)
379 return;
380
381 if (flags & ENQUEUE_MIGRATED)
382 add_rq_bw(dl_se, dl_rq);
383
384 if (dl_se->dl_non_contending) {
385 dl_se->dl_non_contending = 0;
386 /*
387 * If the timer handler is currently running and the
388 * timer cannot be canceled, inactive_task_timer()
389 * will see that dl_not_contending is not set, and
390 * will not touch the rq's active utilization,
391 * so we are still safe.
392 */
393 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
394 put_task_struct(dl_task_of(dl_se));
395 } else {
396 /*
397 * Since "dl_non_contending" is not set, the
398 * task's utilization has already been removed from
399 * active utilization (either when the task blocked,
400 * when the "inactive timer" fired).
401 * So, add it back.
402 */
403 add_running_bw(dl_se, dl_rq);
404 }
405}
406
407static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
408{
409 struct sched_dl_entity *dl_se = &p->dl;
410
411 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
412}
413
414static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
415
416void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
417{
418 raw_spin_lock_init(&dl_b->dl_runtime_lock);
419 dl_b->dl_period = period;
420 dl_b->dl_runtime = runtime;
421}
422
423void init_dl_bw(struct dl_bw *dl_b)
424{
425 raw_spin_lock_init(&dl_b->lock);
426 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
427 if (global_rt_runtime() == RUNTIME_INF)
428 dl_b->bw = -1;
429 else
430 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
431 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
432 dl_b->total_bw = 0;
433}
434
435void init_dl_rq(struct dl_rq *dl_rq)
436{
437 dl_rq->root = RB_ROOT_CACHED;
438
439#ifdef CONFIG_SMP
440 /* zero means no -deadline tasks */
441 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
442
443 dl_rq->dl_nr_migratory = 0;
444 dl_rq->overloaded = 0;
445 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
446#else
447 init_dl_bw(&dl_rq->dl_bw);
448#endif
449
450 dl_rq->running_bw = 0;
451 dl_rq->this_bw = 0;
452 init_dl_rq_bw_ratio(dl_rq);
453}
454
455#ifdef CONFIG_SMP
456
457static inline int dl_overloaded(struct rq *rq)
458{
459 return atomic_read(&rq->rd->dlo_count);
460}
461
462static inline void dl_set_overload(struct rq *rq)
463{
464 if (!rq->online)
465 return;
466
467 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
468 /*
469 * Must be visible before the overload count is
470 * set (as in sched_rt.c).
471 *
472 * Matched by the barrier in pull_dl_task().
473 */
474 smp_wmb();
475 atomic_inc(&rq->rd->dlo_count);
476}
477
478static inline void dl_clear_overload(struct rq *rq)
479{
480 if (!rq->online)
481 return;
482
483 atomic_dec(&rq->rd->dlo_count);
484 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
485}
486
487static void update_dl_migration(struct dl_rq *dl_rq)
488{
489 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
490 if (!dl_rq->overloaded) {
491 dl_set_overload(rq_of_dl_rq(dl_rq));
492 dl_rq->overloaded = 1;
493 }
494 } else if (dl_rq->overloaded) {
495 dl_clear_overload(rq_of_dl_rq(dl_rq));
496 dl_rq->overloaded = 0;
497 }
498}
499
500static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
501{
502 struct task_struct *p = dl_task_of(dl_se);
503
504 if (p->nr_cpus_allowed > 1)
505 dl_rq->dl_nr_migratory++;
506
507 update_dl_migration(dl_rq);
508}
509
510static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
511{
512 struct task_struct *p = dl_task_of(dl_se);
513
514 if (p->nr_cpus_allowed > 1)
515 dl_rq->dl_nr_migratory--;
516
517 update_dl_migration(dl_rq);
518}
519
520#define __node_2_pdl(node) \
521 rb_entry((node), struct task_struct, pushable_dl_tasks)
522
523static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
524{
525 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
526}
527
528/*
529 * The list of pushable -deadline task is not a plist, like in
530 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
531 */
532static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
533{
534 struct rb_node *leftmost;
535
536 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
537
538 leftmost = rb_add_cached(&p->pushable_dl_tasks,
539 &rq->dl.pushable_dl_tasks_root,
540 __pushable_less);
541 if (leftmost)
542 rq->dl.earliest_dl.next = p->dl.deadline;
543}
544
545static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
546{
547 struct dl_rq *dl_rq = &rq->dl;
548 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
549 struct rb_node *leftmost;
550
551 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
552 return;
553
554 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
555 if (leftmost)
556 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
557
558 RB_CLEAR_NODE(&p->pushable_dl_tasks);
559}
560
561static inline int has_pushable_dl_tasks(struct rq *rq)
562{
563 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
564}
565
566static int push_dl_task(struct rq *rq);
567
568static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
569{
570 return rq->online && dl_task(prev);
571}
572
573static DEFINE_PER_CPU(struct callback_head, dl_push_head);
574static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
575
576static void push_dl_tasks(struct rq *);
577static void pull_dl_task(struct rq *);
578
579static inline void deadline_queue_push_tasks(struct rq *rq)
580{
581 if (!has_pushable_dl_tasks(rq))
582 return;
583
584 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
585}
586
587static inline void deadline_queue_pull_task(struct rq *rq)
588{
589 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
590}
591
592static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
593
594static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
595{
596 struct rq *later_rq = NULL;
597 struct dl_bw *dl_b;
598
599 later_rq = find_lock_later_rq(p, rq);
600 if (!later_rq) {
601 int cpu;
602
603 /*
604 * If we cannot preempt any rq, fall back to pick any
605 * online CPU:
606 */
607 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
608 if (cpu >= nr_cpu_ids) {
609 /*
610 * Failed to find any suitable CPU.
611 * The task will never come back!
612 */
613 BUG_ON(dl_bandwidth_enabled());
614
615 /*
616 * If admission control is disabled we
617 * try a little harder to let the task
618 * run.
619 */
620 cpu = cpumask_any(cpu_active_mask);
621 }
622 later_rq = cpu_rq(cpu);
623 double_lock_balance(rq, later_rq);
624 }
625
626 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
627 /*
628 * Inactive timer is armed (or callback is running, but
629 * waiting for us to release rq locks). In any case, when it
630 * will fire (or continue), it will see running_bw of this
631 * task migrated to later_rq (and correctly handle it).
632 */
633 sub_running_bw(&p->dl, &rq->dl);
634 sub_rq_bw(&p->dl, &rq->dl);
635
636 add_rq_bw(&p->dl, &later_rq->dl);
637 add_running_bw(&p->dl, &later_rq->dl);
638 } else {
639 sub_rq_bw(&p->dl, &rq->dl);
640 add_rq_bw(&p->dl, &later_rq->dl);
641 }
642
643 /*
644 * And we finally need to fixup root_domain(s) bandwidth accounting,
645 * since p is still hanging out in the old (now moved to default) root
646 * domain.
647 */
648 dl_b = &rq->rd->dl_bw;
649 raw_spin_lock(&dl_b->lock);
650 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
651 raw_spin_unlock(&dl_b->lock);
652
653 dl_b = &later_rq->rd->dl_bw;
654 raw_spin_lock(&dl_b->lock);
655 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
656 raw_spin_unlock(&dl_b->lock);
657
658 set_task_cpu(p, later_rq->cpu);
659 double_unlock_balance(later_rq, rq);
660
661 return later_rq;
662}
663
664#else
665
666static inline
667void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
668{
669}
670
671static inline
672void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
673{
674}
675
676static inline
677void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
678{
679}
680
681static inline
682void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
683{
684}
685
686static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
687{
688 return false;
689}
690
691static inline void pull_dl_task(struct rq *rq)
692{
693}
694
695static inline void deadline_queue_push_tasks(struct rq *rq)
696{
697}
698
699static inline void deadline_queue_pull_task(struct rq *rq)
700{
701}
702#endif /* CONFIG_SMP */
703
704static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
705static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
706static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
707
708/*
709 * We are being explicitly informed that a new instance is starting,
710 * and this means that:
711 * - the absolute deadline of the entity has to be placed at
712 * current time + relative deadline;
713 * - the runtime of the entity has to be set to the maximum value.
714 *
715 * The capability of specifying such event is useful whenever a -deadline
716 * entity wants to (try to!) synchronize its behaviour with the scheduler's
717 * one, and to (try to!) reconcile itself with its own scheduling
718 * parameters.
719 */
720static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
721{
722 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
723 struct rq *rq = rq_of_dl_rq(dl_rq);
724
725 WARN_ON(is_dl_boosted(dl_se));
726 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
727
728 /*
729 * We are racing with the deadline timer. So, do nothing because
730 * the deadline timer handler will take care of properly recharging
731 * the runtime and postponing the deadline
732 */
733 if (dl_se->dl_throttled)
734 return;
735
736 /*
737 * We use the regular wall clock time to set deadlines in the
738 * future; in fact, we must consider execution overheads (time
739 * spent on hardirq context, etc.).
740 */
741 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
742 dl_se->runtime = dl_se->dl_runtime;
743}
744
745/*
746 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
747 * possibility of a entity lasting more than what it declared, and thus
748 * exhausting its runtime.
749 *
750 * Here we are interested in making runtime overrun possible, but we do
751 * not want a entity which is misbehaving to affect the scheduling of all
752 * other entities.
753 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
754 * is used, in order to confine each entity within its own bandwidth.
755 *
756 * This function deals exactly with that, and ensures that when the runtime
757 * of a entity is replenished, its deadline is also postponed. That ensures
758 * the overrunning entity can't interfere with other entity in the system and
759 * can't make them miss their deadlines. Reasons why this kind of overruns
760 * could happen are, typically, a entity voluntarily trying to overcome its
761 * runtime, or it just underestimated it during sched_setattr().
762 */
763static void replenish_dl_entity(struct sched_dl_entity *dl_se)
764{
765 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
766 struct rq *rq = rq_of_dl_rq(dl_rq);
767
768 BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
769
770 /*
771 * This could be the case for a !-dl task that is boosted.
772 * Just go with full inherited parameters.
773 */
774 if (dl_se->dl_deadline == 0) {
775 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
776 dl_se->runtime = pi_of(dl_se)->dl_runtime;
777 }
778
779 if (dl_se->dl_yielded && dl_se->runtime > 0)
780 dl_se->runtime = 0;
781
782 /*
783 * We keep moving the deadline away until we get some
784 * available runtime for the entity. This ensures correct
785 * handling of situations where the runtime overrun is
786 * arbitrary large.
787 */
788 while (dl_se->runtime <= 0) {
789 dl_se->deadline += pi_of(dl_se)->dl_period;
790 dl_se->runtime += pi_of(dl_se)->dl_runtime;
791 }
792
793 /*
794 * At this point, the deadline really should be "in
795 * the future" with respect to rq->clock. If it's
796 * not, we are, for some reason, lagging too much!
797 * Anyway, after having warn userspace abut that,
798 * we still try to keep the things running by
799 * resetting the deadline and the budget of the
800 * entity.
801 */
802 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
803 printk_deferred_once("sched: DL replenish lagged too much\n");
804 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
805 dl_se->runtime = pi_of(dl_se)->dl_runtime;
806 }
807
808 if (dl_se->dl_yielded)
809 dl_se->dl_yielded = 0;
810 if (dl_se->dl_throttled)
811 dl_se->dl_throttled = 0;
812}
813
814/*
815 * Here we check if --at time t-- an entity (which is probably being
816 * [re]activated or, in general, enqueued) can use its remaining runtime
817 * and its current deadline _without_ exceeding the bandwidth it is
818 * assigned (function returns true if it can't). We are in fact applying
819 * one of the CBS rules: when a task wakes up, if the residual runtime
820 * over residual deadline fits within the allocated bandwidth, then we
821 * can keep the current (absolute) deadline and residual budget without
822 * disrupting the schedulability of the system. Otherwise, we should
823 * refill the runtime and set the deadline a period in the future,
824 * because keeping the current (absolute) deadline of the task would
825 * result in breaking guarantees promised to other tasks (refer to
826 * Documentation/scheduler/sched-deadline.rst for more information).
827 *
828 * This function returns true if:
829 *
830 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
831 *
832 * IOW we can't recycle current parameters.
833 *
834 * Notice that the bandwidth check is done against the deadline. For
835 * task with deadline equal to period this is the same of using
836 * dl_period instead of dl_deadline in the equation above.
837 */
838static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
839{
840 u64 left, right;
841
842 /*
843 * left and right are the two sides of the equation above,
844 * after a bit of shuffling to use multiplications instead
845 * of divisions.
846 *
847 * Note that none of the time values involved in the two
848 * multiplications are absolute: dl_deadline and dl_runtime
849 * are the relative deadline and the maximum runtime of each
850 * instance, runtime is the runtime left for the last instance
851 * and (deadline - t), since t is rq->clock, is the time left
852 * to the (absolute) deadline. Even if overflowing the u64 type
853 * is very unlikely to occur in both cases, here we scale down
854 * as we want to avoid that risk at all. Scaling down by 10
855 * means that we reduce granularity to 1us. We are fine with it,
856 * since this is only a true/false check and, anyway, thinking
857 * of anything below microseconds resolution is actually fiction
858 * (but still we want to give the user that illusion >;).
859 */
860 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
861 right = ((dl_se->deadline - t) >> DL_SCALE) *
862 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
863
864 return dl_time_before(right, left);
865}
866
867/*
868 * Revised wakeup rule [1]: For self-suspending tasks, rather then
869 * re-initializing task's runtime and deadline, the revised wakeup
870 * rule adjusts the task's runtime to avoid the task to overrun its
871 * density.
872 *
873 * Reasoning: a task may overrun the density if:
874 * runtime / (deadline - t) > dl_runtime / dl_deadline
875 *
876 * Therefore, runtime can be adjusted to:
877 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
878 *
879 * In such way that runtime will be equal to the maximum density
880 * the task can use without breaking any rule.
881 *
882 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
883 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
884 */
885static void
886update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
887{
888 u64 laxity = dl_se->deadline - rq_clock(rq);
889
890 /*
891 * If the task has deadline < period, and the deadline is in the past,
892 * it should already be throttled before this check.
893 *
894 * See update_dl_entity() comments for further details.
895 */
896 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
897
898 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
899}
900
901/*
902 * Regarding the deadline, a task with implicit deadline has a relative
903 * deadline == relative period. A task with constrained deadline has a
904 * relative deadline <= relative period.
905 *
906 * We support constrained deadline tasks. However, there are some restrictions
907 * applied only for tasks which do not have an implicit deadline. See
908 * update_dl_entity() to know more about such restrictions.
909 *
910 * The dl_is_implicit() returns true if the task has an implicit deadline.
911 */
912static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
913{
914 return dl_se->dl_deadline == dl_se->dl_period;
915}
916
917/*
918 * When a deadline entity is placed in the runqueue, its runtime and deadline
919 * might need to be updated. This is done by a CBS wake up rule. There are two
920 * different rules: 1) the original CBS; and 2) the Revisited CBS.
921 *
922 * When the task is starting a new period, the Original CBS is used. In this
923 * case, the runtime is replenished and a new absolute deadline is set.
924 *
925 * When a task is queued before the begin of the next period, using the
926 * remaining runtime and deadline could make the entity to overflow, see
927 * dl_entity_overflow() to find more about runtime overflow. When such case
928 * is detected, the runtime and deadline need to be updated.
929 *
930 * If the task has an implicit deadline, i.e., deadline == period, the Original
931 * CBS is applied. the runtime is replenished and a new absolute deadline is
932 * set, as in the previous cases.
933 *
934 * However, the Original CBS does not work properly for tasks with
935 * deadline < period, which are said to have a constrained deadline. By
936 * applying the Original CBS, a constrained deadline task would be able to run
937 * runtime/deadline in a period. With deadline < period, the task would
938 * overrun the runtime/period allowed bandwidth, breaking the admission test.
939 *
940 * In order to prevent this misbehave, the Revisited CBS is used for
941 * constrained deadline tasks when a runtime overflow is detected. In the
942 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
943 * the remaining runtime of the task is reduced to avoid runtime overflow.
944 * Please refer to the comments update_dl_revised_wakeup() function to find
945 * more about the Revised CBS rule.
946 */
947static void update_dl_entity(struct sched_dl_entity *dl_se)
948{
949 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
950 struct rq *rq = rq_of_dl_rq(dl_rq);
951
952 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
953 dl_entity_overflow(dl_se, rq_clock(rq))) {
954
955 if (unlikely(!dl_is_implicit(dl_se) &&
956 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
957 !is_dl_boosted(dl_se))) {
958 update_dl_revised_wakeup(dl_se, rq);
959 return;
960 }
961
962 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
963 dl_se->runtime = pi_of(dl_se)->dl_runtime;
964 }
965}
966
967static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
968{
969 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
970}
971
972/*
973 * If the entity depleted all its runtime, and if we want it to sleep
974 * while waiting for some new execution time to become available, we
975 * set the bandwidth replenishment timer to the replenishment instant
976 * and try to activate it.
977 *
978 * Notice that it is important for the caller to know if the timer
979 * actually started or not (i.e., the replenishment instant is in
980 * the future or in the past).
981 */
982static int start_dl_timer(struct task_struct *p)
983{
984 struct sched_dl_entity *dl_se = &p->dl;
985 struct hrtimer *timer = &dl_se->dl_timer;
986 struct rq *rq = task_rq(p);
987 ktime_t now, act;
988 s64 delta;
989
990 lockdep_assert_rq_held(rq);
991
992 /*
993 * We want the timer to fire at the deadline, but considering
994 * that it is actually coming from rq->clock and not from
995 * hrtimer's time base reading.
996 */
997 act = ns_to_ktime(dl_next_period(dl_se));
998 now = hrtimer_cb_get_time(timer);
999 delta = ktime_to_ns(now) - rq_clock(rq);
1000 act = ktime_add_ns(act, delta);
1001
1002 /*
1003 * If the expiry time already passed, e.g., because the value
1004 * chosen as the deadline is too small, don't even try to
1005 * start the timer in the past!
1006 */
1007 if (ktime_us_delta(act, now) < 0)
1008 return 0;
1009
1010 /*
1011 * !enqueued will guarantee another callback; even if one is already in
1012 * progress. This ensures a balanced {get,put}_task_struct().
1013 *
1014 * The race against __run_timer() clearing the enqueued state is
1015 * harmless because we're holding task_rq()->lock, therefore the timer
1016 * expiring after we've done the check will wait on its task_rq_lock()
1017 * and observe our state.
1018 */
1019 if (!hrtimer_is_queued(timer)) {
1020 get_task_struct(p);
1021 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1022 }
1023
1024 return 1;
1025}
1026
1027/*
1028 * This is the bandwidth enforcement timer callback. If here, we know
1029 * a task is not on its dl_rq, since the fact that the timer was running
1030 * means the task is throttled and needs a runtime replenishment.
1031 *
1032 * However, what we actually do depends on the fact the task is active,
1033 * (it is on its rq) or has been removed from there by a call to
1034 * dequeue_task_dl(). In the former case we must issue the runtime
1035 * replenishment and add the task back to the dl_rq; in the latter, we just
1036 * do nothing but clearing dl_throttled, so that runtime and deadline
1037 * updating (and the queueing back to dl_rq) will be done by the
1038 * next call to enqueue_task_dl().
1039 */
1040static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1041{
1042 struct sched_dl_entity *dl_se = container_of(timer,
1043 struct sched_dl_entity,
1044 dl_timer);
1045 struct task_struct *p = dl_task_of(dl_se);
1046 struct rq_flags rf;
1047 struct rq *rq;
1048
1049 rq = task_rq_lock(p, &rf);
1050
1051 /*
1052 * The task might have changed its scheduling policy to something
1053 * different than SCHED_DEADLINE (through switched_from_dl()).
1054 */
1055 if (!dl_task(p))
1056 goto unlock;
1057
1058 /*
1059 * The task might have been boosted by someone else and might be in the
1060 * boosting/deboosting path, its not throttled.
1061 */
1062 if (is_dl_boosted(dl_se))
1063 goto unlock;
1064
1065 /*
1066 * Spurious timer due to start_dl_timer() race; or we already received
1067 * a replenishment from rt_mutex_setprio().
1068 */
1069 if (!dl_se->dl_throttled)
1070 goto unlock;
1071
1072 sched_clock_tick();
1073 update_rq_clock(rq);
1074
1075 /*
1076 * If the throttle happened during sched-out; like:
1077 *
1078 * schedule()
1079 * deactivate_task()
1080 * dequeue_task_dl()
1081 * update_curr_dl()
1082 * start_dl_timer()
1083 * __dequeue_task_dl()
1084 * prev->on_rq = 0;
1085 *
1086 * We can be both throttled and !queued. Replenish the counter
1087 * but do not enqueue -- wait for our wakeup to do that.
1088 */
1089 if (!task_on_rq_queued(p)) {
1090 replenish_dl_entity(dl_se);
1091 goto unlock;
1092 }
1093
1094#ifdef CONFIG_SMP
1095 if (unlikely(!rq->online)) {
1096 /*
1097 * If the runqueue is no longer available, migrate the
1098 * task elsewhere. This necessarily changes rq.
1099 */
1100 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1101 rq = dl_task_offline_migration(rq, p);
1102 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1103 update_rq_clock(rq);
1104
1105 /*
1106 * Now that the task has been migrated to the new RQ and we
1107 * have that locked, proceed as normal and enqueue the task
1108 * there.
1109 */
1110 }
1111#endif
1112
1113 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1114 if (dl_task(rq->curr))
1115 check_preempt_curr_dl(rq, p, 0);
1116 else
1117 resched_curr(rq);
1118
1119#ifdef CONFIG_SMP
1120 /*
1121 * Queueing this task back might have overloaded rq, check if we need
1122 * to kick someone away.
1123 */
1124 if (has_pushable_dl_tasks(rq)) {
1125 /*
1126 * Nothing relies on rq->lock after this, so its safe to drop
1127 * rq->lock.
1128 */
1129 rq_unpin_lock(rq, &rf);
1130 push_dl_task(rq);
1131 rq_repin_lock(rq, &rf);
1132 }
1133#endif
1134
1135unlock:
1136 task_rq_unlock(rq, p, &rf);
1137
1138 /*
1139 * This can free the task_struct, including this hrtimer, do not touch
1140 * anything related to that after this.
1141 */
1142 put_task_struct(p);
1143
1144 return HRTIMER_NORESTART;
1145}
1146
1147void init_dl_task_timer(struct sched_dl_entity *dl_se)
1148{
1149 struct hrtimer *timer = &dl_se->dl_timer;
1150
1151 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1152 timer->function = dl_task_timer;
1153}
1154
1155/*
1156 * During the activation, CBS checks if it can reuse the current task's
1157 * runtime and period. If the deadline of the task is in the past, CBS
1158 * cannot use the runtime, and so it replenishes the task. This rule
1159 * works fine for implicit deadline tasks (deadline == period), and the
1160 * CBS was designed for implicit deadline tasks. However, a task with
1161 * constrained deadline (deadline < period) might be awakened after the
1162 * deadline, but before the next period. In this case, replenishing the
1163 * task would allow it to run for runtime / deadline. As in this case
1164 * deadline < period, CBS enables a task to run for more than the
1165 * runtime / period. In a very loaded system, this can cause a domino
1166 * effect, making other tasks miss their deadlines.
1167 *
1168 * To avoid this problem, in the activation of a constrained deadline
1169 * task after the deadline but before the next period, throttle the
1170 * task and set the replenishing timer to the begin of the next period,
1171 * unless it is boosted.
1172 */
1173static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1174{
1175 struct task_struct *p = dl_task_of(dl_se);
1176 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1177
1178 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1179 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1180 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1181 return;
1182 dl_se->dl_throttled = 1;
1183 if (dl_se->runtime > 0)
1184 dl_se->runtime = 0;
1185 }
1186}
1187
1188static
1189int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1190{
1191 return (dl_se->runtime <= 0);
1192}
1193
1194extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1195
1196/*
1197 * This function implements the GRUB accounting rule:
1198 * according to the GRUB reclaiming algorithm, the runtime is
1199 * not decreased as "dq = -dt", but as
1200 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1201 * where u is the utilization of the task, Umax is the maximum reclaimable
1202 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1203 * as the difference between the "total runqueue utilization" and the
1204 * runqueue active utilization, and Uextra is the (per runqueue) extra
1205 * reclaimable utilization.
1206 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1207 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1208 * BW_SHIFT.
1209 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1210 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1211 * Since delta is a 64 bit variable, to have an overflow its value
1212 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1213 * So, overflow is not an issue here.
1214 */
1215static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1216{
1217 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1218 u64 u_act;
1219 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1220
1221 /*
1222 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1223 * we compare u_inact + rq->dl.extra_bw with
1224 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1225 * u_inact + rq->dl.extra_bw can be larger than
1226 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1227 * leading to wrong results)
1228 */
1229 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1230 u_act = u_act_min;
1231 else
1232 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1233
1234 return (delta * u_act) >> BW_SHIFT;
1235}
1236
1237/*
1238 * Update the current task's runtime statistics (provided it is still
1239 * a -deadline task and has not been removed from the dl_rq).
1240 */
1241static void update_curr_dl(struct rq *rq)
1242{
1243 struct task_struct *curr = rq->curr;
1244 struct sched_dl_entity *dl_se = &curr->dl;
1245 u64 delta_exec, scaled_delta_exec;
1246 int cpu = cpu_of(rq);
1247 u64 now;
1248
1249 if (!dl_task(curr) || !on_dl_rq(dl_se))
1250 return;
1251
1252 /*
1253 * Consumed budget is computed considering the time as
1254 * observed by schedulable tasks (excluding time spent
1255 * in hardirq context, etc.). Deadlines are instead
1256 * computed using hard walltime. This seems to be the more
1257 * natural solution, but the full ramifications of this
1258 * approach need further study.
1259 */
1260 now = rq_clock_task(rq);
1261 delta_exec = now - curr->se.exec_start;
1262 if (unlikely((s64)delta_exec <= 0)) {
1263 if (unlikely(dl_se->dl_yielded))
1264 goto throttle;
1265 return;
1266 }
1267
1268 schedstat_set(curr->se.statistics.exec_max,
1269 max(curr->se.statistics.exec_max, delta_exec));
1270
1271 curr->se.sum_exec_runtime += delta_exec;
1272 account_group_exec_runtime(curr, delta_exec);
1273
1274 curr->se.exec_start = now;
1275 cgroup_account_cputime(curr, delta_exec);
1276
1277 if (dl_entity_is_special(dl_se))
1278 return;
1279
1280 /*
1281 * For tasks that participate in GRUB, we implement GRUB-PA: the
1282 * spare reclaimed bandwidth is used to clock down frequency.
1283 *
1284 * For the others, we still need to scale reservation parameters
1285 * according to current frequency and CPU maximum capacity.
1286 */
1287 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1288 scaled_delta_exec = grub_reclaim(delta_exec,
1289 rq,
1290 &curr->dl);
1291 } else {
1292 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1293 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1294
1295 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1296 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1297 }
1298
1299 dl_se->runtime -= scaled_delta_exec;
1300
1301throttle:
1302 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1303 dl_se->dl_throttled = 1;
1304
1305 /* If requested, inform the user about runtime overruns. */
1306 if (dl_runtime_exceeded(dl_se) &&
1307 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1308 dl_se->dl_overrun = 1;
1309
1310 __dequeue_task_dl(rq, curr, 0);
1311 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1312 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1313
1314 if (!is_leftmost(curr, &rq->dl))
1315 resched_curr(rq);
1316 }
1317
1318 /*
1319 * Because -- for now -- we share the rt bandwidth, we need to
1320 * account our runtime there too, otherwise actual rt tasks
1321 * would be able to exceed the shared quota.
1322 *
1323 * Account to the root rt group for now.
1324 *
1325 * The solution we're working towards is having the RT groups scheduled
1326 * using deadline servers -- however there's a few nasties to figure
1327 * out before that can happen.
1328 */
1329 if (rt_bandwidth_enabled()) {
1330 struct rt_rq *rt_rq = &rq->rt;
1331
1332 raw_spin_lock(&rt_rq->rt_runtime_lock);
1333 /*
1334 * We'll let actual RT tasks worry about the overflow here, we
1335 * have our own CBS to keep us inline; only account when RT
1336 * bandwidth is relevant.
1337 */
1338 if (sched_rt_bandwidth_account(rt_rq))
1339 rt_rq->rt_time += delta_exec;
1340 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1341 }
1342}
1343
1344static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1345{
1346 struct sched_dl_entity *dl_se = container_of(timer,
1347 struct sched_dl_entity,
1348 inactive_timer);
1349 struct task_struct *p = dl_task_of(dl_se);
1350 struct rq_flags rf;
1351 struct rq *rq;
1352
1353 rq = task_rq_lock(p, &rf);
1354
1355 sched_clock_tick();
1356 update_rq_clock(rq);
1357
1358 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1359 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1360
1361 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1362 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1363 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1364 dl_se->dl_non_contending = 0;
1365 }
1366
1367 raw_spin_lock(&dl_b->lock);
1368 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1369 raw_spin_unlock(&dl_b->lock);
1370 __dl_clear_params(p);
1371
1372 goto unlock;
1373 }
1374 if (dl_se->dl_non_contending == 0)
1375 goto unlock;
1376
1377 sub_running_bw(dl_se, &rq->dl);
1378 dl_se->dl_non_contending = 0;
1379unlock:
1380 task_rq_unlock(rq, p, &rf);
1381 put_task_struct(p);
1382
1383 return HRTIMER_NORESTART;
1384}
1385
1386void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1387{
1388 struct hrtimer *timer = &dl_se->inactive_timer;
1389
1390 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1391 timer->function = inactive_task_timer;
1392}
1393
1394#ifdef CONFIG_SMP
1395
1396static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1397{
1398 struct rq *rq = rq_of_dl_rq(dl_rq);
1399
1400 if (dl_rq->earliest_dl.curr == 0 ||
1401 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1402 if (dl_rq->earliest_dl.curr == 0)
1403 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1404 dl_rq->earliest_dl.curr = deadline;
1405 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1406 }
1407}
1408
1409static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1410{
1411 struct rq *rq = rq_of_dl_rq(dl_rq);
1412
1413 /*
1414 * Since we may have removed our earliest (and/or next earliest)
1415 * task we must recompute them.
1416 */
1417 if (!dl_rq->dl_nr_running) {
1418 dl_rq->earliest_dl.curr = 0;
1419 dl_rq->earliest_dl.next = 0;
1420 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1421 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1422 } else {
1423 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1424 struct sched_dl_entity *entry;
1425
1426 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1427 dl_rq->earliest_dl.curr = entry->deadline;
1428 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1429 }
1430}
1431
1432#else
1433
1434static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1435static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1436
1437#endif /* CONFIG_SMP */
1438
1439static inline
1440void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1441{
1442 int prio = dl_task_of(dl_se)->prio;
1443 u64 deadline = dl_se->deadline;
1444
1445 WARN_ON(!dl_prio(prio));
1446 dl_rq->dl_nr_running++;
1447 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1448
1449 inc_dl_deadline(dl_rq, deadline);
1450 inc_dl_migration(dl_se, dl_rq);
1451}
1452
1453static inline
1454void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1455{
1456 int prio = dl_task_of(dl_se)->prio;
1457
1458 WARN_ON(!dl_prio(prio));
1459 WARN_ON(!dl_rq->dl_nr_running);
1460 dl_rq->dl_nr_running--;
1461 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1462
1463 dec_dl_deadline(dl_rq, dl_se->deadline);
1464 dec_dl_migration(dl_se, dl_rq);
1465}
1466
1467#define __node_2_dle(node) \
1468 rb_entry((node), struct sched_dl_entity, rb_node)
1469
1470static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1471{
1472 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1473}
1474
1475static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1476{
1477 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1478
1479 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1480
1481 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1482
1483 inc_dl_tasks(dl_se, dl_rq);
1484}
1485
1486static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1487{
1488 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1489
1490 if (RB_EMPTY_NODE(&dl_se->rb_node))
1491 return;
1492
1493 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1494
1495 RB_CLEAR_NODE(&dl_se->rb_node);
1496
1497 dec_dl_tasks(dl_se, dl_rq);
1498}
1499
1500static void
1501enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1502{
1503 BUG_ON(on_dl_rq(dl_se));
1504
1505 /*
1506 * If this is a wakeup or a new instance, the scheduling
1507 * parameters of the task might need updating. Otherwise,
1508 * we want a replenishment of its runtime.
1509 */
1510 if (flags & ENQUEUE_WAKEUP) {
1511 task_contending(dl_se, flags);
1512 update_dl_entity(dl_se);
1513 } else if (flags & ENQUEUE_REPLENISH) {
1514 replenish_dl_entity(dl_se);
1515 } else if ((flags & ENQUEUE_RESTORE) &&
1516 dl_time_before(dl_se->deadline,
1517 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1518 setup_new_dl_entity(dl_se);
1519 }
1520
1521 __enqueue_dl_entity(dl_se);
1522}
1523
1524static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1525{
1526 __dequeue_dl_entity(dl_se);
1527}
1528
1529static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1530{
1531 if (is_dl_boosted(&p->dl)) {
1532 /*
1533 * Because of delays in the detection of the overrun of a
1534 * thread's runtime, it might be the case that a thread
1535 * goes to sleep in a rt mutex with negative runtime. As
1536 * a consequence, the thread will be throttled.
1537 *
1538 * While waiting for the mutex, this thread can also be
1539 * boosted via PI, resulting in a thread that is throttled
1540 * and boosted at the same time.
1541 *
1542 * In this case, the boost overrides the throttle.
1543 */
1544 if (p->dl.dl_throttled) {
1545 /*
1546 * The replenish timer needs to be canceled. No
1547 * problem if it fires concurrently: boosted threads
1548 * are ignored in dl_task_timer().
1549 */
1550 hrtimer_try_to_cancel(&p->dl.dl_timer);
1551 p->dl.dl_throttled = 0;
1552 }
1553 } else if (!dl_prio(p->normal_prio)) {
1554 /*
1555 * Special case in which we have a !SCHED_DEADLINE task that is going
1556 * to be deboosted, but exceeds its runtime while doing so. No point in
1557 * replenishing it, as it's going to return back to its original
1558 * scheduling class after this. If it has been throttled, we need to
1559 * clear the flag, otherwise the task may wake up as throttled after
1560 * being boosted again with no means to replenish the runtime and clear
1561 * the throttle.
1562 */
1563 p->dl.dl_throttled = 0;
1564 BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1565 return;
1566 }
1567
1568 /*
1569 * Check if a constrained deadline task was activated
1570 * after the deadline but before the next period.
1571 * If that is the case, the task will be throttled and
1572 * the replenishment timer will be set to the next period.
1573 */
1574 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1575 dl_check_constrained_dl(&p->dl);
1576
1577 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1578 add_rq_bw(&p->dl, &rq->dl);
1579 add_running_bw(&p->dl, &rq->dl);
1580 }
1581
1582 /*
1583 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1584 * its budget it needs a replenishment and, since it now is on
1585 * its rq, the bandwidth timer callback (which clearly has not
1586 * run yet) will take care of this.
1587 * However, the active utilization does not depend on the fact
1588 * that the task is on the runqueue or not (but depends on the
1589 * task's state - in GRUB parlance, "inactive" vs "active contending").
1590 * In other words, even if a task is throttled its utilization must
1591 * be counted in the active utilization; hence, we need to call
1592 * add_running_bw().
1593 */
1594 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1595 if (flags & ENQUEUE_WAKEUP)
1596 task_contending(&p->dl, flags);
1597
1598 return;
1599 }
1600
1601 enqueue_dl_entity(&p->dl, flags);
1602
1603 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1604 enqueue_pushable_dl_task(rq, p);
1605}
1606
1607static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1608{
1609 dequeue_dl_entity(&p->dl);
1610 dequeue_pushable_dl_task(rq, p);
1611}
1612
1613static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1614{
1615 update_curr_dl(rq);
1616 __dequeue_task_dl(rq, p, flags);
1617
1618 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1619 sub_running_bw(&p->dl, &rq->dl);
1620 sub_rq_bw(&p->dl, &rq->dl);
1621 }
1622
1623 /*
1624 * This check allows to start the inactive timer (or to immediately
1625 * decrease the active utilization, if needed) in two cases:
1626 * when the task blocks and when it is terminating
1627 * (p->state == TASK_DEAD). We can handle the two cases in the same
1628 * way, because from GRUB's point of view the same thing is happening
1629 * (the task moves from "active contending" to "active non contending"
1630 * or "inactive")
1631 */
1632 if (flags & DEQUEUE_SLEEP)
1633 task_non_contending(p);
1634}
1635
1636/*
1637 * Yield task semantic for -deadline tasks is:
1638 *
1639 * get off from the CPU until our next instance, with
1640 * a new runtime. This is of little use now, since we
1641 * don't have a bandwidth reclaiming mechanism. Anyway,
1642 * bandwidth reclaiming is planned for the future, and
1643 * yield_task_dl will indicate that some spare budget
1644 * is available for other task instances to use it.
1645 */
1646static void yield_task_dl(struct rq *rq)
1647{
1648 /*
1649 * We make the task go to sleep until its current deadline by
1650 * forcing its runtime to zero. This way, update_curr_dl() stops
1651 * it and the bandwidth timer will wake it up and will give it
1652 * new scheduling parameters (thanks to dl_yielded=1).
1653 */
1654 rq->curr->dl.dl_yielded = 1;
1655
1656 update_rq_clock(rq);
1657 update_curr_dl(rq);
1658 /*
1659 * Tell update_rq_clock() that we've just updated,
1660 * so we don't do microscopic update in schedule()
1661 * and double the fastpath cost.
1662 */
1663 rq_clock_skip_update(rq);
1664}
1665
1666#ifdef CONFIG_SMP
1667
1668static int find_later_rq(struct task_struct *task);
1669
1670static int
1671select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1672{
1673 struct task_struct *curr;
1674 bool select_rq;
1675 struct rq *rq;
1676
1677 if (!(flags & WF_TTWU))
1678 goto out;
1679
1680 rq = cpu_rq(cpu);
1681
1682 rcu_read_lock();
1683 curr = READ_ONCE(rq->curr); /* unlocked access */
1684
1685 /*
1686 * If we are dealing with a -deadline task, we must
1687 * decide where to wake it up.
1688 * If it has a later deadline and the current task
1689 * on this rq can't move (provided the waking task
1690 * can!) we prefer to send it somewhere else. On the
1691 * other hand, if it has a shorter deadline, we
1692 * try to make it stay here, it might be important.
1693 */
1694 select_rq = unlikely(dl_task(curr)) &&
1695 (curr->nr_cpus_allowed < 2 ||
1696 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1697 p->nr_cpus_allowed > 1;
1698
1699 /*
1700 * Take the capacity of the CPU into account to
1701 * ensure it fits the requirement of the task.
1702 */
1703 if (static_branch_unlikely(&sched_asym_cpucapacity))
1704 select_rq |= !dl_task_fits_capacity(p, cpu);
1705
1706 if (select_rq) {
1707 int target = find_later_rq(p);
1708
1709 if (target != -1 &&
1710 (dl_time_before(p->dl.deadline,
1711 cpu_rq(target)->dl.earliest_dl.curr) ||
1712 (cpu_rq(target)->dl.dl_nr_running == 0)))
1713 cpu = target;
1714 }
1715 rcu_read_unlock();
1716
1717out:
1718 return cpu;
1719}
1720
1721static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1722{
1723 struct rq *rq;
1724
1725 if (READ_ONCE(p->__state) != TASK_WAKING)
1726 return;
1727
1728 rq = task_rq(p);
1729 /*
1730 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1731 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1732 * rq->lock is not... So, lock it
1733 */
1734 raw_spin_rq_lock(rq);
1735 if (p->dl.dl_non_contending) {
1736 update_rq_clock(rq);
1737 sub_running_bw(&p->dl, &rq->dl);
1738 p->dl.dl_non_contending = 0;
1739 /*
1740 * If the timer handler is currently running and the
1741 * timer cannot be canceled, inactive_task_timer()
1742 * will see that dl_not_contending is not set, and
1743 * will not touch the rq's active utilization,
1744 * so we are still safe.
1745 */
1746 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1747 put_task_struct(p);
1748 }
1749 sub_rq_bw(&p->dl, &rq->dl);
1750 raw_spin_rq_unlock(rq);
1751}
1752
1753static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1754{
1755 /*
1756 * Current can't be migrated, useless to reschedule,
1757 * let's hope p can move out.
1758 */
1759 if (rq->curr->nr_cpus_allowed == 1 ||
1760 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1761 return;
1762
1763 /*
1764 * p is migratable, so let's not schedule it and
1765 * see if it is pushed or pulled somewhere else.
1766 */
1767 if (p->nr_cpus_allowed != 1 &&
1768 cpudl_find(&rq->rd->cpudl, p, NULL))
1769 return;
1770
1771 resched_curr(rq);
1772}
1773
1774static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1775{
1776 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1777 /*
1778 * This is OK, because current is on_cpu, which avoids it being
1779 * picked for load-balance and preemption/IRQs are still
1780 * disabled avoiding further scheduler activity on it and we've
1781 * not yet started the picking loop.
1782 */
1783 rq_unpin_lock(rq, rf);
1784 pull_dl_task(rq);
1785 rq_repin_lock(rq, rf);
1786 }
1787
1788 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1789}
1790#endif /* CONFIG_SMP */
1791
1792/*
1793 * Only called when both the current and waking task are -deadline
1794 * tasks.
1795 */
1796static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1797 int flags)
1798{
1799 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1800 resched_curr(rq);
1801 return;
1802 }
1803
1804#ifdef CONFIG_SMP
1805 /*
1806 * In the unlikely case current and p have the same deadline
1807 * let us try to decide what's the best thing to do...
1808 */
1809 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1810 !test_tsk_need_resched(rq->curr))
1811 check_preempt_equal_dl(rq, p);
1812#endif /* CONFIG_SMP */
1813}
1814
1815#ifdef CONFIG_SCHED_HRTICK
1816static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1817{
1818 hrtick_start(rq, p->dl.runtime);
1819}
1820#else /* !CONFIG_SCHED_HRTICK */
1821static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1822{
1823}
1824#endif
1825
1826static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1827{
1828 p->se.exec_start = rq_clock_task(rq);
1829
1830 /* You can't push away the running task */
1831 dequeue_pushable_dl_task(rq, p);
1832
1833 if (!first)
1834 return;
1835
1836 if (hrtick_enabled_dl(rq))
1837 start_hrtick_dl(rq, p);
1838
1839 if (rq->curr->sched_class != &dl_sched_class)
1840 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1841
1842 deadline_queue_push_tasks(rq);
1843}
1844
1845static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1846 struct dl_rq *dl_rq)
1847{
1848 struct rb_node *left = rb_first_cached(&dl_rq->root);
1849
1850 if (!left)
1851 return NULL;
1852
1853 return rb_entry(left, struct sched_dl_entity, rb_node);
1854}
1855
1856static struct task_struct *pick_task_dl(struct rq *rq)
1857{
1858 struct sched_dl_entity *dl_se;
1859 struct dl_rq *dl_rq = &rq->dl;
1860 struct task_struct *p;
1861
1862 if (!sched_dl_runnable(rq))
1863 return NULL;
1864
1865 dl_se = pick_next_dl_entity(rq, dl_rq);
1866 BUG_ON(!dl_se);
1867 p = dl_task_of(dl_se);
1868
1869 return p;
1870}
1871
1872static struct task_struct *pick_next_task_dl(struct rq *rq)
1873{
1874 struct task_struct *p;
1875
1876 p = pick_task_dl(rq);
1877 if (p)
1878 set_next_task_dl(rq, p, true);
1879
1880 return p;
1881}
1882
1883static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1884{
1885 update_curr_dl(rq);
1886
1887 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1888 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1889 enqueue_pushable_dl_task(rq, p);
1890}
1891
1892/*
1893 * scheduler tick hitting a task of our scheduling class.
1894 *
1895 * NOTE: This function can be called remotely by the tick offload that
1896 * goes along full dynticks. Therefore no local assumption can be made
1897 * and everything must be accessed through the @rq and @curr passed in
1898 * parameters.
1899 */
1900static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1901{
1902 update_curr_dl(rq);
1903
1904 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1905 /*
1906 * Even when we have runtime, update_curr_dl() might have resulted in us
1907 * not being the leftmost task anymore. In that case NEED_RESCHED will
1908 * be set and schedule() will start a new hrtick for the next task.
1909 */
1910 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
1911 is_leftmost(p, &rq->dl))
1912 start_hrtick_dl(rq, p);
1913}
1914
1915static void task_fork_dl(struct task_struct *p)
1916{
1917 /*
1918 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1919 * sched_fork()
1920 */
1921}
1922
1923#ifdef CONFIG_SMP
1924
1925/* Only try algorithms three times */
1926#define DL_MAX_TRIES 3
1927
1928static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1929{
1930 if (!task_running(rq, p) &&
1931 cpumask_test_cpu(cpu, &p->cpus_mask))
1932 return 1;
1933 return 0;
1934}
1935
1936/*
1937 * Return the earliest pushable rq's task, which is suitable to be executed
1938 * on the CPU, NULL otherwise:
1939 */
1940static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1941{
1942 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1943 struct task_struct *p = NULL;
1944
1945 if (!has_pushable_dl_tasks(rq))
1946 return NULL;
1947
1948next_node:
1949 if (next_node) {
1950 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1951
1952 if (pick_dl_task(rq, p, cpu))
1953 return p;
1954
1955 next_node = rb_next(next_node);
1956 goto next_node;
1957 }
1958
1959 return NULL;
1960}
1961
1962static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1963
1964static int find_later_rq(struct task_struct *task)
1965{
1966 struct sched_domain *sd;
1967 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1968 int this_cpu = smp_processor_id();
1969 int cpu = task_cpu(task);
1970
1971 /* Make sure the mask is initialized first */
1972 if (unlikely(!later_mask))
1973 return -1;
1974
1975 if (task->nr_cpus_allowed == 1)
1976 return -1;
1977
1978 /*
1979 * We have to consider system topology and task affinity
1980 * first, then we can look for a suitable CPU.
1981 */
1982 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1983 return -1;
1984
1985 /*
1986 * If we are here, some targets have been found, including
1987 * the most suitable which is, among the runqueues where the
1988 * current tasks have later deadlines than the task's one, the
1989 * rq with the latest possible one.
1990 *
1991 * Now we check how well this matches with task's
1992 * affinity and system topology.
1993 *
1994 * The last CPU where the task run is our first
1995 * guess, since it is most likely cache-hot there.
1996 */
1997 if (cpumask_test_cpu(cpu, later_mask))
1998 return cpu;
1999 /*
2000 * Check if this_cpu is to be skipped (i.e., it is
2001 * not in the mask) or not.
2002 */
2003 if (!cpumask_test_cpu(this_cpu, later_mask))
2004 this_cpu = -1;
2005
2006 rcu_read_lock();
2007 for_each_domain(cpu, sd) {
2008 if (sd->flags & SD_WAKE_AFFINE) {
2009 int best_cpu;
2010
2011 /*
2012 * If possible, preempting this_cpu is
2013 * cheaper than migrating.
2014 */
2015 if (this_cpu != -1 &&
2016 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2017 rcu_read_unlock();
2018 return this_cpu;
2019 }
2020
2021 best_cpu = cpumask_any_and_distribute(later_mask,
2022 sched_domain_span(sd));
2023 /*
2024 * Last chance: if a CPU being in both later_mask
2025 * and current sd span is valid, that becomes our
2026 * choice. Of course, the latest possible CPU is
2027 * already under consideration through later_mask.
2028 */
2029 if (best_cpu < nr_cpu_ids) {
2030 rcu_read_unlock();
2031 return best_cpu;
2032 }
2033 }
2034 }
2035 rcu_read_unlock();
2036
2037 /*
2038 * At this point, all our guesses failed, we just return
2039 * 'something', and let the caller sort the things out.
2040 */
2041 if (this_cpu != -1)
2042 return this_cpu;
2043
2044 cpu = cpumask_any_distribute(later_mask);
2045 if (cpu < nr_cpu_ids)
2046 return cpu;
2047
2048 return -1;
2049}
2050
2051/* Locks the rq it finds */
2052static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2053{
2054 struct rq *later_rq = NULL;
2055 int tries;
2056 int cpu;
2057
2058 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2059 cpu = find_later_rq(task);
2060
2061 if ((cpu == -1) || (cpu == rq->cpu))
2062 break;
2063
2064 later_rq = cpu_rq(cpu);
2065
2066 if (later_rq->dl.dl_nr_running &&
2067 !dl_time_before(task->dl.deadline,
2068 later_rq->dl.earliest_dl.curr)) {
2069 /*
2070 * Target rq has tasks of equal or earlier deadline,
2071 * retrying does not release any lock and is unlikely
2072 * to yield a different result.
2073 */
2074 later_rq = NULL;
2075 break;
2076 }
2077
2078 /* Retry if something changed. */
2079 if (double_lock_balance(rq, later_rq)) {
2080 if (unlikely(task_rq(task) != rq ||
2081 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2082 task_running(rq, task) ||
2083 !dl_task(task) ||
2084 !task_on_rq_queued(task))) {
2085 double_unlock_balance(rq, later_rq);
2086 later_rq = NULL;
2087 break;
2088 }
2089 }
2090
2091 /*
2092 * If the rq we found has no -deadline task, or
2093 * its earliest one has a later deadline than our
2094 * task, the rq is a good one.
2095 */
2096 if (!later_rq->dl.dl_nr_running ||
2097 dl_time_before(task->dl.deadline,
2098 later_rq->dl.earliest_dl.curr))
2099 break;
2100
2101 /* Otherwise we try again. */
2102 double_unlock_balance(rq, later_rq);
2103 later_rq = NULL;
2104 }
2105
2106 return later_rq;
2107}
2108
2109static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2110{
2111 struct task_struct *p;
2112
2113 if (!has_pushable_dl_tasks(rq))
2114 return NULL;
2115
2116 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2117 struct task_struct, pushable_dl_tasks);
2118
2119 BUG_ON(rq->cpu != task_cpu(p));
2120 BUG_ON(task_current(rq, p));
2121 BUG_ON(p->nr_cpus_allowed <= 1);
2122
2123 BUG_ON(!task_on_rq_queued(p));
2124 BUG_ON(!dl_task(p));
2125
2126 return p;
2127}
2128
2129/*
2130 * See if the non running -deadline tasks on this rq
2131 * can be sent to some other CPU where they can preempt
2132 * and start executing.
2133 */
2134static int push_dl_task(struct rq *rq)
2135{
2136 struct task_struct *next_task;
2137 struct rq *later_rq;
2138 int ret = 0;
2139
2140 if (!rq->dl.overloaded)
2141 return 0;
2142
2143 next_task = pick_next_pushable_dl_task(rq);
2144 if (!next_task)
2145 return 0;
2146
2147retry:
2148 if (is_migration_disabled(next_task))
2149 return 0;
2150
2151 if (WARN_ON(next_task == rq->curr))
2152 return 0;
2153
2154 /*
2155 * If next_task preempts rq->curr, and rq->curr
2156 * can move away, it makes sense to just reschedule
2157 * without going further in pushing next_task.
2158 */
2159 if (dl_task(rq->curr) &&
2160 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2161 rq->curr->nr_cpus_allowed > 1) {
2162 resched_curr(rq);
2163 return 0;
2164 }
2165
2166 /* We might release rq lock */
2167 get_task_struct(next_task);
2168
2169 /* Will lock the rq it'll find */
2170 later_rq = find_lock_later_rq(next_task, rq);
2171 if (!later_rq) {
2172 struct task_struct *task;
2173
2174 /*
2175 * We must check all this again, since
2176 * find_lock_later_rq releases rq->lock and it is
2177 * then possible that next_task has migrated.
2178 */
2179 task = pick_next_pushable_dl_task(rq);
2180 if (task == next_task) {
2181 /*
2182 * The task is still there. We don't try
2183 * again, some other CPU will pull it when ready.
2184 */
2185 goto out;
2186 }
2187
2188 if (!task)
2189 /* No more tasks */
2190 goto out;
2191
2192 put_task_struct(next_task);
2193 next_task = task;
2194 goto retry;
2195 }
2196
2197 deactivate_task(rq, next_task, 0);
2198 set_task_cpu(next_task, later_rq->cpu);
2199
2200 /*
2201 * Update the later_rq clock here, because the clock is used
2202 * by the cpufreq_update_util() inside __add_running_bw().
2203 */
2204 update_rq_clock(later_rq);
2205 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2206 ret = 1;
2207
2208 resched_curr(later_rq);
2209
2210 double_unlock_balance(rq, later_rq);
2211
2212out:
2213 put_task_struct(next_task);
2214
2215 return ret;
2216}
2217
2218static void push_dl_tasks(struct rq *rq)
2219{
2220 /* push_dl_task() will return true if it moved a -deadline task */
2221 while (push_dl_task(rq))
2222 ;
2223}
2224
2225static void pull_dl_task(struct rq *this_rq)
2226{
2227 int this_cpu = this_rq->cpu, cpu;
2228 struct task_struct *p, *push_task;
2229 bool resched = false;
2230 struct rq *src_rq;
2231 u64 dmin = LONG_MAX;
2232
2233 if (likely(!dl_overloaded(this_rq)))
2234 return;
2235
2236 /*
2237 * Match the barrier from dl_set_overloaded; this guarantees that if we
2238 * see overloaded we must also see the dlo_mask bit.
2239 */
2240 smp_rmb();
2241
2242 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2243 if (this_cpu == cpu)
2244 continue;
2245
2246 src_rq = cpu_rq(cpu);
2247
2248 /*
2249 * It looks racy, abd it is! However, as in sched_rt.c,
2250 * we are fine with this.
2251 */
2252 if (this_rq->dl.dl_nr_running &&
2253 dl_time_before(this_rq->dl.earliest_dl.curr,
2254 src_rq->dl.earliest_dl.next))
2255 continue;
2256
2257 /* Might drop this_rq->lock */
2258 push_task = NULL;
2259 double_lock_balance(this_rq, src_rq);
2260
2261 /*
2262 * If there are no more pullable tasks on the
2263 * rq, we're done with it.
2264 */
2265 if (src_rq->dl.dl_nr_running <= 1)
2266 goto skip;
2267
2268 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2269
2270 /*
2271 * We found a task to be pulled if:
2272 * - it preempts our current (if there's one),
2273 * - it will preempt the last one we pulled (if any).
2274 */
2275 if (p && dl_time_before(p->dl.deadline, dmin) &&
2276 (!this_rq->dl.dl_nr_running ||
2277 dl_time_before(p->dl.deadline,
2278 this_rq->dl.earliest_dl.curr))) {
2279 WARN_ON(p == src_rq->curr);
2280 WARN_ON(!task_on_rq_queued(p));
2281
2282 /*
2283 * Then we pull iff p has actually an earlier
2284 * deadline than the current task of its runqueue.
2285 */
2286 if (dl_time_before(p->dl.deadline,
2287 src_rq->curr->dl.deadline))
2288 goto skip;
2289
2290 if (is_migration_disabled(p)) {
2291 push_task = get_push_task(src_rq);
2292 } else {
2293 deactivate_task(src_rq, p, 0);
2294 set_task_cpu(p, this_cpu);
2295 activate_task(this_rq, p, 0);
2296 dmin = p->dl.deadline;
2297 resched = true;
2298 }
2299
2300 /* Is there any other task even earlier? */
2301 }
2302skip:
2303 double_unlock_balance(this_rq, src_rq);
2304
2305 if (push_task) {
2306 raw_spin_rq_unlock(this_rq);
2307 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2308 push_task, &src_rq->push_work);
2309 raw_spin_rq_lock(this_rq);
2310 }
2311 }
2312
2313 if (resched)
2314 resched_curr(this_rq);
2315}
2316
2317/*
2318 * Since the task is not running and a reschedule is not going to happen
2319 * anytime soon on its runqueue, we try pushing it away now.
2320 */
2321static void task_woken_dl(struct rq *rq, struct task_struct *p)
2322{
2323 if (!task_running(rq, p) &&
2324 !test_tsk_need_resched(rq->curr) &&
2325 p->nr_cpus_allowed > 1 &&
2326 dl_task(rq->curr) &&
2327 (rq->curr->nr_cpus_allowed < 2 ||
2328 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2329 push_dl_tasks(rq);
2330 }
2331}
2332
2333static void set_cpus_allowed_dl(struct task_struct *p,
2334 const struct cpumask *new_mask,
2335 u32 flags)
2336{
2337 struct root_domain *src_rd;
2338 struct rq *rq;
2339
2340 BUG_ON(!dl_task(p));
2341
2342 rq = task_rq(p);
2343 src_rd = rq->rd;
2344 /*
2345 * Migrating a SCHED_DEADLINE task between exclusive
2346 * cpusets (different root_domains) entails a bandwidth
2347 * update. We already made space for us in the destination
2348 * domain (see cpuset_can_attach()).
2349 */
2350 if (!cpumask_intersects(src_rd->span, new_mask)) {
2351 struct dl_bw *src_dl_b;
2352
2353 src_dl_b = dl_bw_of(cpu_of(rq));
2354 /*
2355 * We now free resources of the root_domain we are migrating
2356 * off. In the worst case, sched_setattr() may temporary fail
2357 * until we complete the update.
2358 */
2359 raw_spin_lock(&src_dl_b->lock);
2360 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2361 raw_spin_unlock(&src_dl_b->lock);
2362 }
2363
2364 set_cpus_allowed_common(p, new_mask, flags);
2365}
2366
2367/* Assumes rq->lock is held */
2368static void rq_online_dl(struct rq *rq)
2369{
2370 if (rq->dl.overloaded)
2371 dl_set_overload(rq);
2372
2373 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2374 if (rq->dl.dl_nr_running > 0)
2375 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2376}
2377
2378/* Assumes rq->lock is held */
2379static void rq_offline_dl(struct rq *rq)
2380{
2381 if (rq->dl.overloaded)
2382 dl_clear_overload(rq);
2383
2384 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2385 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2386}
2387
2388void __init init_sched_dl_class(void)
2389{
2390 unsigned int i;
2391
2392 for_each_possible_cpu(i)
2393 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2394 GFP_KERNEL, cpu_to_node(i));
2395}
2396
2397void dl_add_task_root_domain(struct task_struct *p)
2398{
2399 struct rq_flags rf;
2400 struct rq *rq;
2401 struct dl_bw *dl_b;
2402
2403 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2404 if (!dl_task(p)) {
2405 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2406 return;
2407 }
2408
2409 rq = __task_rq_lock(p, &rf);
2410
2411 dl_b = &rq->rd->dl_bw;
2412 raw_spin_lock(&dl_b->lock);
2413
2414 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2415
2416 raw_spin_unlock(&dl_b->lock);
2417
2418 task_rq_unlock(rq, p, &rf);
2419}
2420
2421void dl_clear_root_domain(struct root_domain *rd)
2422{
2423 unsigned long flags;
2424
2425 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2426 rd->dl_bw.total_bw = 0;
2427 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2428}
2429
2430#endif /* CONFIG_SMP */
2431
2432static void switched_from_dl(struct rq *rq, struct task_struct *p)
2433{
2434 /*
2435 * task_non_contending() can start the "inactive timer" (if the 0-lag
2436 * time is in the future). If the task switches back to dl before
2437 * the "inactive timer" fires, it can continue to consume its current
2438 * runtime using its current deadline. If it stays outside of
2439 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2440 * will reset the task parameters.
2441 */
2442 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2443 task_non_contending(p);
2444
2445 if (!task_on_rq_queued(p)) {
2446 /*
2447 * Inactive timer is armed. However, p is leaving DEADLINE and
2448 * might migrate away from this rq while continuing to run on
2449 * some other class. We need to remove its contribution from
2450 * this rq running_bw now, or sub_rq_bw (below) will complain.
2451 */
2452 if (p->dl.dl_non_contending)
2453 sub_running_bw(&p->dl, &rq->dl);
2454 sub_rq_bw(&p->dl, &rq->dl);
2455 }
2456
2457 /*
2458 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2459 * at the 0-lag time, because the task could have been migrated
2460 * while SCHED_OTHER in the meanwhile.
2461 */
2462 if (p->dl.dl_non_contending)
2463 p->dl.dl_non_contending = 0;
2464
2465 /*
2466 * Since this might be the only -deadline task on the rq,
2467 * this is the right place to try to pull some other one
2468 * from an overloaded CPU, if any.
2469 */
2470 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2471 return;
2472
2473 deadline_queue_pull_task(rq);
2474}
2475
2476/*
2477 * When switching to -deadline, we may overload the rq, then
2478 * we try to push someone off, if possible.
2479 */
2480static void switched_to_dl(struct rq *rq, struct task_struct *p)
2481{
2482 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2483 put_task_struct(p);
2484
2485 /* If p is not queued we will update its parameters at next wakeup. */
2486 if (!task_on_rq_queued(p)) {
2487 add_rq_bw(&p->dl, &rq->dl);
2488
2489 return;
2490 }
2491
2492 if (rq->curr != p) {
2493#ifdef CONFIG_SMP
2494 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2495 deadline_queue_push_tasks(rq);
2496#endif
2497 if (dl_task(rq->curr))
2498 check_preempt_curr_dl(rq, p, 0);
2499 else
2500 resched_curr(rq);
2501 } else {
2502 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2503 }
2504}
2505
2506/*
2507 * If the scheduling parameters of a -deadline task changed,
2508 * a push or pull operation might be needed.
2509 */
2510static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2511 int oldprio)
2512{
2513 if (task_on_rq_queued(p) || task_current(rq, p)) {
2514#ifdef CONFIG_SMP
2515 /*
2516 * This might be too much, but unfortunately
2517 * we don't have the old deadline value, and
2518 * we can't argue if the task is increasing
2519 * or lowering its prio, so...
2520 */
2521 if (!rq->dl.overloaded)
2522 deadline_queue_pull_task(rq);
2523
2524 /*
2525 * If we now have a earlier deadline task than p,
2526 * then reschedule, provided p is still on this
2527 * runqueue.
2528 */
2529 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2530 resched_curr(rq);
2531#else
2532 /*
2533 * Again, we don't know if p has a earlier
2534 * or later deadline, so let's blindly set a
2535 * (maybe not needed) rescheduling point.
2536 */
2537 resched_curr(rq);
2538#endif /* CONFIG_SMP */
2539 }
2540}
2541
2542DEFINE_SCHED_CLASS(dl) = {
2543
2544 .enqueue_task = enqueue_task_dl,
2545 .dequeue_task = dequeue_task_dl,
2546 .yield_task = yield_task_dl,
2547
2548 .check_preempt_curr = check_preempt_curr_dl,
2549
2550 .pick_next_task = pick_next_task_dl,
2551 .put_prev_task = put_prev_task_dl,
2552 .set_next_task = set_next_task_dl,
2553
2554#ifdef CONFIG_SMP
2555 .balance = balance_dl,
2556 .pick_task = pick_task_dl,
2557 .select_task_rq = select_task_rq_dl,
2558 .migrate_task_rq = migrate_task_rq_dl,
2559 .set_cpus_allowed = set_cpus_allowed_dl,
2560 .rq_online = rq_online_dl,
2561 .rq_offline = rq_offline_dl,
2562 .task_woken = task_woken_dl,
2563 .find_lock_rq = find_lock_later_rq,
2564#endif
2565
2566 .task_tick = task_tick_dl,
2567 .task_fork = task_fork_dl,
2568
2569 .prio_changed = prio_changed_dl,
2570 .switched_from = switched_from_dl,
2571 .switched_to = switched_to_dl,
2572
2573 .update_curr = update_curr_dl,
2574};
2575
2576/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2577static u64 dl_generation;
2578
2579int sched_dl_global_validate(void)
2580{
2581 u64 runtime = global_rt_runtime();
2582 u64 period = global_rt_period();
2583 u64 new_bw = to_ratio(period, runtime);
2584 u64 gen = ++dl_generation;
2585 struct dl_bw *dl_b;
2586 int cpu, cpus, ret = 0;
2587 unsigned long flags;
2588
2589 /*
2590 * Here we want to check the bandwidth not being set to some
2591 * value smaller than the currently allocated bandwidth in
2592 * any of the root_domains.
2593 */
2594 for_each_possible_cpu(cpu) {
2595 rcu_read_lock_sched();
2596
2597 if (dl_bw_visited(cpu, gen))
2598 goto next;
2599
2600 dl_b = dl_bw_of(cpu);
2601 cpus = dl_bw_cpus(cpu);
2602
2603 raw_spin_lock_irqsave(&dl_b->lock, flags);
2604 if (new_bw * cpus < dl_b->total_bw)
2605 ret = -EBUSY;
2606 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2607
2608next:
2609 rcu_read_unlock_sched();
2610
2611 if (ret)
2612 break;
2613 }
2614
2615 return ret;
2616}
2617
2618static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2619{
2620 if (global_rt_runtime() == RUNTIME_INF) {
2621 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2622 dl_rq->extra_bw = 1 << BW_SHIFT;
2623 } else {
2624 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2625 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2626 dl_rq->extra_bw = to_ratio(global_rt_period(),
2627 global_rt_runtime());
2628 }
2629}
2630
2631void sched_dl_do_global(void)
2632{
2633 u64 new_bw = -1;
2634 u64 gen = ++dl_generation;
2635 struct dl_bw *dl_b;
2636 int cpu;
2637 unsigned long flags;
2638
2639 def_dl_bandwidth.dl_period = global_rt_period();
2640 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2641
2642 if (global_rt_runtime() != RUNTIME_INF)
2643 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2644
2645 for_each_possible_cpu(cpu) {
2646 rcu_read_lock_sched();
2647
2648 if (dl_bw_visited(cpu, gen)) {
2649 rcu_read_unlock_sched();
2650 continue;
2651 }
2652
2653 dl_b = dl_bw_of(cpu);
2654
2655 raw_spin_lock_irqsave(&dl_b->lock, flags);
2656 dl_b->bw = new_bw;
2657 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2658
2659 rcu_read_unlock_sched();
2660 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2661 }
2662}
2663
2664/*
2665 * We must be sure that accepting a new task (or allowing changing the
2666 * parameters of an existing one) is consistent with the bandwidth
2667 * constraints. If yes, this function also accordingly updates the currently
2668 * allocated bandwidth to reflect the new situation.
2669 *
2670 * This function is called while holding p's rq->lock.
2671 */
2672int sched_dl_overflow(struct task_struct *p, int policy,
2673 const struct sched_attr *attr)
2674{
2675 u64 period = attr->sched_period ?: attr->sched_deadline;
2676 u64 runtime = attr->sched_runtime;
2677 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2678 int cpus, err = -1, cpu = task_cpu(p);
2679 struct dl_bw *dl_b = dl_bw_of(cpu);
2680 unsigned long cap;
2681
2682 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2683 return 0;
2684
2685 /* !deadline task may carry old deadline bandwidth */
2686 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2687 return 0;
2688
2689 /*
2690 * Either if a task, enters, leave, or stays -deadline but changes
2691 * its parameters, we may need to update accordingly the total
2692 * allocated bandwidth of the container.
2693 */
2694 raw_spin_lock(&dl_b->lock);
2695 cpus = dl_bw_cpus(cpu);
2696 cap = dl_bw_capacity(cpu);
2697
2698 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2699 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2700 if (hrtimer_active(&p->dl.inactive_timer))
2701 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2702 __dl_add(dl_b, new_bw, cpus);
2703 err = 0;
2704 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2705 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2706 /*
2707 * XXX this is slightly incorrect: when the task
2708 * utilization decreases, we should delay the total
2709 * utilization change until the task's 0-lag point.
2710 * But this would require to set the task's "inactive
2711 * timer" when the task is not inactive.
2712 */
2713 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2714 __dl_add(dl_b, new_bw, cpus);
2715 dl_change_utilization(p, new_bw);
2716 err = 0;
2717 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2718 /*
2719 * Do not decrease the total deadline utilization here,
2720 * switched_from_dl() will take care to do it at the correct
2721 * (0-lag) time.
2722 */
2723 err = 0;
2724 }
2725 raw_spin_unlock(&dl_b->lock);
2726
2727 return err;
2728}
2729
2730/*
2731 * This function initializes the sched_dl_entity of a newly becoming
2732 * SCHED_DEADLINE task.
2733 *
2734 * Only the static values are considered here, the actual runtime and the
2735 * absolute deadline will be properly calculated when the task is enqueued
2736 * for the first time with its new policy.
2737 */
2738void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2739{
2740 struct sched_dl_entity *dl_se = &p->dl;
2741
2742 dl_se->dl_runtime = attr->sched_runtime;
2743 dl_se->dl_deadline = attr->sched_deadline;
2744 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2745 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2746 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2747 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2748}
2749
2750void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2751{
2752 struct sched_dl_entity *dl_se = &p->dl;
2753
2754 attr->sched_priority = p->rt_priority;
2755 attr->sched_runtime = dl_se->dl_runtime;
2756 attr->sched_deadline = dl_se->dl_deadline;
2757 attr->sched_period = dl_se->dl_period;
2758 attr->sched_flags &= ~SCHED_DL_FLAGS;
2759 attr->sched_flags |= dl_se->flags;
2760}
2761
2762/*
2763 * Default limits for DL period; on the top end we guard against small util
2764 * tasks still getting ridiculously long effective runtimes, on the bottom end we
2765 * guard against timer DoS.
2766 */
2767unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2768unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
2769
2770/*
2771 * This function validates the new parameters of a -deadline task.
2772 * We ask for the deadline not being zero, and greater or equal
2773 * than the runtime, as well as the period of being zero or
2774 * greater than deadline. Furthermore, we have to be sure that
2775 * user parameters are above the internal resolution of 1us (we
2776 * check sched_runtime only since it is always the smaller one) and
2777 * below 2^63 ns (we have to check both sched_deadline and
2778 * sched_period, as the latter can be zero).
2779 */
2780bool __checkparam_dl(const struct sched_attr *attr)
2781{
2782 u64 period, max, min;
2783
2784 /* special dl tasks don't actually use any parameter */
2785 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2786 return true;
2787
2788 /* deadline != 0 */
2789 if (attr->sched_deadline == 0)
2790 return false;
2791
2792 /*
2793 * Since we truncate DL_SCALE bits, make sure we're at least
2794 * that big.
2795 */
2796 if (attr->sched_runtime < (1ULL << DL_SCALE))
2797 return false;
2798
2799 /*
2800 * Since we use the MSB for wrap-around and sign issues, make
2801 * sure it's not set (mind that period can be equal to zero).
2802 */
2803 if (attr->sched_deadline & (1ULL << 63) ||
2804 attr->sched_period & (1ULL << 63))
2805 return false;
2806
2807 period = attr->sched_period;
2808 if (!period)
2809 period = attr->sched_deadline;
2810
2811 /* runtime <= deadline <= period (if period != 0) */
2812 if (period < attr->sched_deadline ||
2813 attr->sched_deadline < attr->sched_runtime)
2814 return false;
2815
2816 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2817 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2818
2819 if (period < min || period > max)
2820 return false;
2821
2822 return true;
2823}
2824
2825/*
2826 * This function clears the sched_dl_entity static params.
2827 */
2828void __dl_clear_params(struct task_struct *p)
2829{
2830 struct sched_dl_entity *dl_se = &p->dl;
2831
2832 dl_se->dl_runtime = 0;
2833 dl_se->dl_deadline = 0;
2834 dl_se->dl_period = 0;
2835 dl_se->flags = 0;
2836 dl_se->dl_bw = 0;
2837 dl_se->dl_density = 0;
2838
2839 dl_se->dl_throttled = 0;
2840 dl_se->dl_yielded = 0;
2841 dl_se->dl_non_contending = 0;
2842 dl_se->dl_overrun = 0;
2843
2844#ifdef CONFIG_RT_MUTEXES
2845 dl_se->pi_se = dl_se;
2846#endif
2847}
2848
2849bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2850{
2851 struct sched_dl_entity *dl_se = &p->dl;
2852
2853 if (dl_se->dl_runtime != attr->sched_runtime ||
2854 dl_se->dl_deadline != attr->sched_deadline ||
2855 dl_se->dl_period != attr->sched_period ||
2856 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2857 return true;
2858
2859 return false;
2860}
2861
2862#ifdef CONFIG_SMP
2863int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2864{
2865 unsigned long flags, cap;
2866 unsigned int dest_cpu;
2867 struct dl_bw *dl_b;
2868 bool overflow;
2869 int ret;
2870
2871 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2872
2873 rcu_read_lock_sched();
2874 dl_b = dl_bw_of(dest_cpu);
2875 raw_spin_lock_irqsave(&dl_b->lock, flags);
2876 cap = dl_bw_capacity(dest_cpu);
2877 overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2878 if (overflow) {
2879 ret = -EBUSY;
2880 } else {
2881 /*
2882 * We reserve space for this task in the destination
2883 * root_domain, as we can't fail after this point.
2884 * We will free resources in the source root_domain
2885 * later on (see set_cpus_allowed_dl()).
2886 */
2887 int cpus = dl_bw_cpus(dest_cpu);
2888
2889 __dl_add(dl_b, p->dl.dl_bw, cpus);
2890 ret = 0;
2891 }
2892 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2893 rcu_read_unlock_sched();
2894
2895 return ret;
2896}
2897
2898int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2899 const struct cpumask *trial)
2900{
2901 int ret = 1, trial_cpus;
2902 struct dl_bw *cur_dl_b;
2903 unsigned long flags;
2904
2905 rcu_read_lock_sched();
2906 cur_dl_b = dl_bw_of(cpumask_any(cur));
2907 trial_cpus = cpumask_weight(trial);
2908
2909 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2910 if (cur_dl_b->bw != -1 &&
2911 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2912 ret = 0;
2913 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2914 rcu_read_unlock_sched();
2915
2916 return ret;
2917}
2918
2919bool dl_cpu_busy(unsigned int cpu)
2920{
2921 unsigned long flags, cap;
2922 struct dl_bw *dl_b;
2923 bool overflow;
2924
2925 rcu_read_lock_sched();
2926 dl_b = dl_bw_of(cpu);
2927 raw_spin_lock_irqsave(&dl_b->lock, flags);
2928 cap = dl_bw_capacity(cpu);
2929 overflow = __dl_overflow(dl_b, cap, 0, 0);
2930 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2931 rcu_read_unlock_sched();
2932
2933 return overflow;
2934}
2935#endif
2936
2937#ifdef CONFIG_SCHED_DEBUG
2938void print_dl_stats(struct seq_file *m, int cpu)
2939{
2940 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2941}
2942#endif /* CONFIG_SCHED_DEBUG */