Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
 
 
  18
  19#include <linux/cpuset.h>
  20
  21/*
  22 * Default limits for DL period; on the top end we guard against small util
  23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
  24 * guard against timer DoS.
  25 */
  26static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
  27static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
  28#ifdef CONFIG_SYSCTL
  29static struct ctl_table sched_dl_sysctls[] = {
  30	{
  31		.procname       = "sched_deadline_period_max_us",
  32		.data           = &sysctl_sched_dl_period_max,
  33		.maxlen         = sizeof(unsigned int),
  34		.mode           = 0644,
  35		.proc_handler   = proc_douintvec_minmax,
  36		.extra1         = (void *)&sysctl_sched_dl_period_min,
  37	},
  38	{
  39		.procname       = "sched_deadline_period_min_us",
  40		.data           = &sysctl_sched_dl_period_min,
  41		.maxlen         = sizeof(unsigned int),
  42		.mode           = 0644,
  43		.proc_handler   = proc_douintvec_minmax,
  44		.extra2         = (void *)&sysctl_sched_dl_period_max,
  45	},
  46	{}
  47};
  48
  49static int __init sched_dl_sysctl_init(void)
  50{
  51	register_sysctl_init("kernel", sched_dl_sysctls);
  52	return 0;
  53}
  54late_initcall(sched_dl_sysctl_init);
  55#endif
  56
  57static bool dl_server(struct sched_dl_entity *dl_se)
  58{
  59	return dl_se->dl_server;
  60}
  61
  62static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  63{
  64	BUG_ON(dl_server(dl_se));
  65	return container_of(dl_se, struct task_struct, dl);
  66}
  67
  68static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  69{
  70	return container_of(dl_rq, struct rq, dl);
  71}
  72
  73static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
  74{
  75	struct rq *rq = dl_se->rq;
  76
  77	if (!dl_server(dl_se))
  78		rq = task_rq(dl_task_of(dl_se));
  79
  80	return rq;
  81}
  82
  83static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  84{
  85	return &rq_of_dl_se(dl_se)->dl;
 
 
 
  86}
  87
  88static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  89{
  90	return !RB_EMPTY_NODE(&dl_se->rb_node);
  91}
  92
  93#ifdef CONFIG_RT_MUTEXES
  94static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
  95{
  96	return dl_se->pi_se;
  97}
  98
  99static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
 100{
 101	return pi_of(dl_se) != dl_se;
 102}
 103#else
 104static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
 105{
 106	return dl_se;
 107}
 108
 109static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
 110{
 111	return false;
 112}
 113#endif
 114
 115#ifdef CONFIG_SMP
 116static inline struct dl_bw *dl_bw_of(int i)
 117{
 118	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 119			 "sched RCU must be held");
 120	return &cpu_rq(i)->rd->dl_bw;
 121}
 122
 123static inline int dl_bw_cpus(int i)
 124{
 125	struct root_domain *rd = cpu_rq(i)->rd;
 126	int cpus;
 127
 128	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 129			 "sched RCU must be held");
 130
 131	if (cpumask_subset(rd->span, cpu_active_mask))
 132		return cpumask_weight(rd->span);
 133
 134	cpus = 0;
 135
 136	for_each_cpu_and(i, rd->span, cpu_active_mask)
 137		cpus++;
 138
 139	return cpus;
 140}
 141
 142static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
 143{
 144	unsigned long cap = 0;
 145	int i;
 146
 147	for_each_cpu_and(i, mask, cpu_active_mask)
 148		cap += arch_scale_cpu_capacity(i);
 149
 150	return cap;
 151}
 152
 153/*
 154 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
 155 * of the CPU the task is running on rather rd's \Sum CPU capacity.
 156 */
 157static inline unsigned long dl_bw_capacity(int i)
 158{
 159	if (!sched_asym_cpucap_active() &&
 160	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
 161		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
 162	} else {
 163		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 164				 "sched RCU must be held");
 165
 166		return __dl_bw_capacity(cpu_rq(i)->rd->span);
 167	}
 168}
 169
 170static inline bool dl_bw_visited(int cpu, u64 gen)
 171{
 172	struct root_domain *rd = cpu_rq(cpu)->rd;
 173
 174	if (rd->visit_gen == gen)
 175		return true;
 176
 177	rd->visit_gen = gen;
 178	return false;
 179}
 180
 181static inline
 182void __dl_update(struct dl_bw *dl_b, s64 bw)
 183{
 184	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
 185	int i;
 186
 187	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 188			 "sched RCU must be held");
 189	for_each_cpu_and(i, rd->span, cpu_active_mask) {
 190		struct rq *rq = cpu_rq(i);
 191
 192		rq->dl.extra_bw += bw;
 193	}
 194}
 195#else
 196static inline struct dl_bw *dl_bw_of(int i)
 197{
 198	return &cpu_rq(i)->dl.dl_bw;
 199}
 200
 201static inline int dl_bw_cpus(int i)
 202{
 203	return 1;
 204}
 205
 206static inline unsigned long dl_bw_capacity(int i)
 207{
 208	return SCHED_CAPACITY_SCALE;
 209}
 210
 211static inline bool dl_bw_visited(int cpu, u64 gen)
 212{
 213	return false;
 214}
 215
 216static inline
 217void __dl_update(struct dl_bw *dl_b, s64 bw)
 218{
 219	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
 220
 221	dl->extra_bw += bw;
 222}
 223#endif
 224
 225static inline
 226void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 227{
 228	dl_b->total_bw -= tsk_bw;
 229	__dl_update(dl_b, (s32)tsk_bw / cpus);
 230}
 231
 232static inline
 233void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 234{
 235	dl_b->total_bw += tsk_bw;
 236	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 237}
 238
 239static inline bool
 240__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
 241{
 242	return dl_b->bw != -1 &&
 243	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 244}
 245
 246static inline
 247void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 248{
 249	u64 old = dl_rq->running_bw;
 250
 251	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 252	dl_rq->running_bw += dl_bw;
 253	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
 254	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 255	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 256	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 257}
 258
 259static inline
 260void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 261{
 262	u64 old = dl_rq->running_bw;
 263
 264	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 265	dl_rq->running_bw -= dl_bw;
 266	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
 267	if (dl_rq->running_bw > old)
 268		dl_rq->running_bw = 0;
 269	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 270	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 271}
 272
 273static inline
 274void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 275{
 276	u64 old = dl_rq->this_bw;
 277
 278	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 279	dl_rq->this_bw += dl_bw;
 280	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 281}
 282
 283static inline
 284void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 285{
 286	u64 old = dl_rq->this_bw;
 287
 288	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 289	dl_rq->this_bw -= dl_bw;
 290	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 291	if (dl_rq->this_bw > old)
 292		dl_rq->this_bw = 0;
 293	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 294}
 295
 296static inline
 297void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 298{
 299	if (!dl_entity_is_special(dl_se))
 300		__add_rq_bw(dl_se->dl_bw, dl_rq);
 301}
 302
 303static inline
 304void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 305{
 306	if (!dl_entity_is_special(dl_se))
 307		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 308}
 309
 310static inline
 311void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 312{
 313	if (!dl_entity_is_special(dl_se))
 314		__add_running_bw(dl_se->dl_bw, dl_rq);
 315}
 316
 317static inline
 318void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 319{
 320	if (!dl_entity_is_special(dl_se))
 321		__sub_running_bw(dl_se->dl_bw, dl_rq);
 322}
 323
 324static void dl_change_utilization(struct task_struct *p, u64 new_bw)
 325{
 326	struct rq *rq;
 327
 328	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
 329
 330	if (task_on_rq_queued(p))
 331		return;
 332
 333	rq = task_rq(p);
 334	if (p->dl.dl_non_contending) {
 335		sub_running_bw(&p->dl, &rq->dl);
 336		p->dl.dl_non_contending = 0;
 337		/*
 338		 * If the timer handler is currently running and the
 339		 * timer cannot be canceled, inactive_task_timer()
 340		 * will see that dl_not_contending is not set, and
 341		 * will not touch the rq's active utilization,
 342		 * so we are still safe.
 343		 */
 344		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 345			put_task_struct(p);
 346	}
 347	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
 348	__add_rq_bw(new_bw, &rq->dl);
 349}
 350
 351static void __dl_clear_params(struct sched_dl_entity *dl_se);
 352
 353/*
 354 * The utilization of a task cannot be immediately removed from
 355 * the rq active utilization (running_bw) when the task blocks.
 356 * Instead, we have to wait for the so called "0-lag time".
 357 *
 358 * If a task blocks before the "0-lag time", a timer (the inactive
 359 * timer) is armed, and running_bw is decreased when the timer
 360 * fires.
 361 *
 362 * If the task wakes up again before the inactive timer fires,
 363 * the timer is canceled, whereas if the task wakes up after the
 364 * inactive timer fired (and running_bw has been decreased) the
 365 * task's utilization has to be added to running_bw again.
 366 * A flag in the deadline scheduling entity (dl_non_contending)
 367 * is used to avoid race conditions between the inactive timer handler
 368 * and task wakeups.
 369 *
 370 * The following diagram shows how running_bw is updated. A task is
 371 * "ACTIVE" when its utilization contributes to running_bw; an
 372 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 373 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 374 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 375 * time already passed, which does not contribute to running_bw anymore.
 376 *                              +------------------+
 377 *             wakeup           |    ACTIVE        |
 378 *          +------------------>+   contending     |
 379 *          | add_running_bw    |                  |
 380 *          |                   +----+------+------+
 381 *          |                        |      ^
 382 *          |                dequeue |      |
 383 * +--------+-------+                |      |
 384 * |                |   t >= 0-lag   |      | wakeup
 385 * |    INACTIVE    |<---------------+      |
 386 * |                | sub_running_bw |      |
 387 * +--------+-------+                |      |
 388 *          ^                        |      |
 389 *          |              t < 0-lag |      |
 390 *          |                        |      |
 391 *          |                        V      |
 392 *          |                   +----+------+------+
 393 *          | sub_running_bw    |    ACTIVE        |
 394 *          +-------------------+                  |
 395 *            inactive timer    |  non contending  |
 396 *            fired             +------------------+
 397 *
 398 * The task_non_contending() function is invoked when a task
 399 * blocks, and checks if the 0-lag time already passed or
 400 * not (in the first case, it directly updates running_bw;
 401 * in the second case, it arms the inactive timer).
 402 *
 403 * The task_contending() function is invoked when a task wakes
 404 * up, and checks if the task is still in the "ACTIVE non contending"
 405 * state or not (in the second case, it updates running_bw).
 406 */
 407static void task_non_contending(struct sched_dl_entity *dl_se)
 408{
 
 409	struct hrtimer *timer = &dl_se->inactive_timer;
 410	struct rq *rq = rq_of_dl_se(dl_se);
 411	struct dl_rq *dl_rq = &rq->dl;
 412	s64 zerolag_time;
 413
 414	/*
 415	 * If this is a non-deadline task that has been boosted,
 416	 * do nothing
 417	 */
 418	if (dl_se->dl_runtime == 0)
 419		return;
 420
 421	if (dl_entity_is_special(dl_se))
 422		return;
 423
 424	WARN_ON(dl_se->dl_non_contending);
 425
 426	zerolag_time = dl_se->deadline -
 427		 div64_long((dl_se->runtime * dl_se->dl_period),
 428			dl_se->dl_runtime);
 429
 430	/*
 431	 * Using relative times instead of the absolute "0-lag time"
 432	 * allows to simplify the code
 433	 */
 434	zerolag_time -= rq_clock(rq);
 435
 436	/*
 437	 * If the "0-lag time" already passed, decrease the active
 438	 * utilization now, instead of starting a timer
 439	 */
 440	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 441		if (dl_server(dl_se)) {
 442			sub_running_bw(dl_se, dl_rq);
 443		} else {
 444			struct task_struct *p = dl_task_of(dl_se);
 445
 446			if (dl_task(p))
 447				sub_running_bw(dl_se, dl_rq);
 448
 449			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
 450				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 451
 452				if (READ_ONCE(p->__state) == TASK_DEAD)
 453					sub_rq_bw(dl_se, &rq->dl);
 454				raw_spin_lock(&dl_b->lock);
 455				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
 456				raw_spin_unlock(&dl_b->lock);
 457				__dl_clear_params(dl_se);
 458			}
 459		}
 460
 461		return;
 462	}
 463
 464	dl_se->dl_non_contending = 1;
 465	if (!dl_server(dl_se))
 466		get_task_struct(dl_task_of(dl_se));
 467
 468	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 469}
 470
 471static void task_contending(struct sched_dl_entity *dl_se, int flags)
 472{
 473	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 474
 475	/*
 476	 * If this is a non-deadline task that has been boosted,
 477	 * do nothing
 478	 */
 479	if (dl_se->dl_runtime == 0)
 480		return;
 481
 482	if (flags & ENQUEUE_MIGRATED)
 483		add_rq_bw(dl_se, dl_rq);
 484
 485	if (dl_se->dl_non_contending) {
 486		dl_se->dl_non_contending = 0;
 487		/*
 488		 * If the timer handler is currently running and the
 489		 * timer cannot be canceled, inactive_task_timer()
 490		 * will see that dl_not_contending is not set, and
 491		 * will not touch the rq's active utilization,
 492		 * so we are still safe.
 493		 */
 494		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
 495			if (!dl_server(dl_se))
 496				put_task_struct(dl_task_of(dl_se));
 497		}
 498	} else {
 499		/*
 500		 * Since "dl_non_contending" is not set, the
 501		 * task's utilization has already been removed from
 502		 * active utilization (either when the task blocked,
 503		 * when the "inactive timer" fired).
 504		 * So, add it back.
 505		 */
 506		add_running_bw(dl_se, dl_rq);
 507	}
 508}
 509
 510static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 511{
 512	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
 
 
 513}
 514
 515static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 
 
 
 
 
 516
 517void init_dl_bw(struct dl_bw *dl_b)
 518{
 519	raw_spin_lock_init(&dl_b->lock);
 
 520	if (global_rt_runtime() == RUNTIME_INF)
 521		dl_b->bw = -1;
 522	else
 523		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 
 524	dl_b->total_bw = 0;
 525}
 526
 527void init_dl_rq(struct dl_rq *dl_rq)
 528{
 529	dl_rq->root = RB_ROOT_CACHED;
 530
 531#ifdef CONFIG_SMP
 532	/* zero means no -deadline tasks */
 533	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 534
 
 535	dl_rq->overloaded = 0;
 536	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 537#else
 538	init_dl_bw(&dl_rq->dl_bw);
 539#endif
 540
 541	dl_rq->running_bw = 0;
 542	dl_rq->this_bw = 0;
 543	init_dl_rq_bw_ratio(dl_rq);
 544}
 545
 546#ifdef CONFIG_SMP
 547
 548static inline int dl_overloaded(struct rq *rq)
 549{
 550	return atomic_read(&rq->rd->dlo_count);
 551}
 552
 553static inline void dl_set_overload(struct rq *rq)
 554{
 555	if (!rq->online)
 556		return;
 557
 558	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 559	/*
 560	 * Must be visible before the overload count is
 561	 * set (as in sched_rt.c).
 562	 *
 563	 * Matched by the barrier in pull_dl_task().
 564	 */
 565	smp_wmb();
 566	atomic_inc(&rq->rd->dlo_count);
 567}
 568
 569static inline void dl_clear_overload(struct rq *rq)
 570{
 571	if (!rq->online)
 572		return;
 573
 574	atomic_dec(&rq->rd->dlo_count);
 575	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 576}
 577
 578#define __node_2_pdl(node) \
 579	rb_entry((node), struct task_struct, pushable_dl_tasks)
 
 
 
 
 
 
 
 
 
 
 580
 581static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
 582{
 583	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
 
 
 
 
 
 584}
 585
 586static inline int has_pushable_dl_tasks(struct rq *rq)
 587{
 588	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 
 
 
 
 
 589}
 590
 591/*
 592 * The list of pushable -deadline task is not a plist, like in
 593 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 594 */
 595static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 596{
 597	struct rb_node *leftmost;
 598
 599	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601	leftmost = rb_add_cached(&p->pushable_dl_tasks,
 602				 &rq->dl.pushable_dl_tasks_root,
 603				 __pushable_less);
 604	if (leftmost)
 605		rq->dl.earliest_dl.next = p->dl.deadline;
 606
 607	if (!rq->dl.overloaded) {
 608		dl_set_overload(rq);
 609		rq->dl.overloaded = 1;
 610	}
 611}
 612
 613static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 614{
 615	struct dl_rq *dl_rq = &rq->dl;
 616	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
 617	struct rb_node *leftmost;
 618
 619	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 620		return;
 621
 622	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
 623	if (leftmost)
 624		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
 
 
 
 
 
 
 625
 
 626	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 
 627
 628	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
 629		dl_clear_overload(rq);
 630		rq->dl.overloaded = 0;
 631	}
 632}
 633
 634static int push_dl_task(struct rq *rq);
 635
 636static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 637{
 638	return rq->online && dl_task(prev);
 639}
 640
 641static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
 642static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
 643
 644static void push_dl_tasks(struct rq *);
 645static void pull_dl_task(struct rq *);
 646
 647static inline void deadline_queue_push_tasks(struct rq *rq)
 648{
 649	if (!has_pushable_dl_tasks(rq))
 650		return;
 651
 652	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 653}
 654
 655static inline void deadline_queue_pull_task(struct rq *rq)
 656{
 657	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 658}
 659
 660static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 661
 662static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 663{
 664	struct rq *later_rq = NULL;
 665	struct dl_bw *dl_b;
 666
 667	later_rq = find_lock_later_rq(p, rq);
 668	if (!later_rq) {
 669		int cpu;
 670
 671		/*
 672		 * If we cannot preempt any rq, fall back to pick any
 673		 * online CPU:
 674		 */
 675		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 676		if (cpu >= nr_cpu_ids) {
 677			/*
 678			 * Failed to find any suitable CPU.
 679			 * The task will never come back!
 680			 */
 681			WARN_ON_ONCE(dl_bandwidth_enabled());
 682
 683			/*
 684			 * If admission control is disabled we
 685			 * try a little harder to let the task
 686			 * run.
 687			 */
 688			cpu = cpumask_any(cpu_active_mask);
 689		}
 690		later_rq = cpu_rq(cpu);
 691		double_lock_balance(rq, later_rq);
 692	}
 693
 694	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 695		/*
 696		 * Inactive timer is armed (or callback is running, but
 697		 * waiting for us to release rq locks). In any case, when it
 698		 * will fire (or continue), it will see running_bw of this
 699		 * task migrated to later_rq (and correctly handle it).
 700		 */
 701		sub_running_bw(&p->dl, &rq->dl);
 702		sub_rq_bw(&p->dl, &rq->dl);
 703
 704		add_rq_bw(&p->dl, &later_rq->dl);
 705		add_running_bw(&p->dl, &later_rq->dl);
 706	} else {
 707		sub_rq_bw(&p->dl, &rq->dl);
 708		add_rq_bw(&p->dl, &later_rq->dl);
 709	}
 710
 711	/*
 712	 * And we finally need to fixup root_domain(s) bandwidth accounting,
 713	 * since p is still hanging out in the old (now moved to default) root
 714	 * domain.
 715	 */
 716	dl_b = &rq->rd->dl_bw;
 717	raw_spin_lock(&dl_b->lock);
 718	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 719	raw_spin_unlock(&dl_b->lock);
 720
 721	dl_b = &later_rq->rd->dl_bw;
 722	raw_spin_lock(&dl_b->lock);
 723	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 724	raw_spin_unlock(&dl_b->lock);
 725
 726	set_task_cpu(p, later_rq->cpu);
 727	double_unlock_balance(later_rq, rq);
 728
 729	return later_rq;
 730}
 731
 732#else
 733
 734static inline
 735void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 736{
 737}
 738
 739static inline
 740void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 741{
 742}
 743
 744static inline
 745void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 746{
 747}
 748
 749static inline
 750void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 751{
 752}
 753
 
 
 
 
 
 
 
 
 
 754static inline void deadline_queue_push_tasks(struct rq *rq)
 755{
 756}
 757
 758static inline void deadline_queue_pull_task(struct rq *rq)
 759{
 760}
 761#endif /* CONFIG_SMP */
 762
 763static void
 764enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
 765static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 766static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
 767static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
 768
 769static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
 770					    struct rq *rq)
 771{
 772	/* for non-boosted task, pi_of(dl_se) == dl_se */
 773	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 774	dl_se->runtime = pi_of(dl_se)->dl_runtime;
 775}
 776
 777/*
 778 * We are being explicitly informed that a new instance is starting,
 779 * and this means that:
 780 *  - the absolute deadline of the entity has to be placed at
 781 *    current time + relative deadline;
 782 *  - the runtime of the entity has to be set to the maximum value.
 783 *
 784 * The capability of specifying such event is useful whenever a -deadline
 785 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 786 * one, and to (try to!) reconcile itself with its own scheduling
 787 * parameters.
 788 */
 789static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 790{
 791	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 792	struct rq *rq = rq_of_dl_rq(dl_rq);
 793
 794	WARN_ON(is_dl_boosted(dl_se));
 795	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 796
 797	/*
 798	 * We are racing with the deadline timer. So, do nothing because
 799	 * the deadline timer handler will take care of properly recharging
 800	 * the runtime and postponing the deadline
 801	 */
 802	if (dl_se->dl_throttled)
 803		return;
 804
 805	/*
 806	 * We use the regular wall clock time to set deadlines in the
 807	 * future; in fact, we must consider execution overheads (time
 808	 * spent on hardirq context, etc.).
 809	 */
 810	replenish_dl_new_period(dl_se, rq);
 
 811}
 812
 813/*
 814 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 815 * possibility of a entity lasting more than what it declared, and thus
 816 * exhausting its runtime.
 817 *
 818 * Here we are interested in making runtime overrun possible, but we do
 819 * not want a entity which is misbehaving to affect the scheduling of all
 820 * other entities.
 821 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 822 * is used, in order to confine each entity within its own bandwidth.
 823 *
 824 * This function deals exactly with that, and ensures that when the runtime
 825 * of a entity is replenished, its deadline is also postponed. That ensures
 826 * the overrunning entity can't interfere with other entity in the system and
 827 * can't make them miss their deadlines. Reasons why this kind of overruns
 828 * could happen are, typically, a entity voluntarily trying to overcome its
 829 * runtime, or it just underestimated it during sched_setattr().
 830 */
 831static void replenish_dl_entity(struct sched_dl_entity *dl_se)
 
 832{
 833	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 834	struct rq *rq = rq_of_dl_rq(dl_rq);
 835
 836	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
 837
 838	/*
 839	 * This could be the case for a !-dl task that is boosted.
 840	 * Just go with full inherited parameters.
 841	 */
 842	if (dl_se->dl_deadline == 0)
 843		replenish_dl_new_period(dl_se, rq);
 
 
 844
 845	if (dl_se->dl_yielded && dl_se->runtime > 0)
 846		dl_se->runtime = 0;
 847
 848	/*
 849	 * We keep moving the deadline away until we get some
 850	 * available runtime for the entity. This ensures correct
 851	 * handling of situations where the runtime overrun is
 852	 * arbitrary large.
 853	 */
 854	while (dl_se->runtime <= 0) {
 855		dl_se->deadline += pi_of(dl_se)->dl_period;
 856		dl_se->runtime += pi_of(dl_se)->dl_runtime;
 857	}
 858
 859	/*
 860	 * At this point, the deadline really should be "in
 861	 * the future" with respect to rq->clock. If it's
 862	 * not, we are, for some reason, lagging too much!
 863	 * Anyway, after having warn userspace abut that,
 864	 * we still try to keep the things running by
 865	 * resetting the deadline and the budget of the
 866	 * entity.
 867	 */
 868	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 869		printk_deferred_once("sched: DL replenish lagged too much\n");
 870		replenish_dl_new_period(dl_se, rq);
 
 871	}
 872
 873	if (dl_se->dl_yielded)
 874		dl_se->dl_yielded = 0;
 875	if (dl_se->dl_throttled)
 876		dl_se->dl_throttled = 0;
 877}
 878
 879/*
 880 * Here we check if --at time t-- an entity (which is probably being
 881 * [re]activated or, in general, enqueued) can use its remaining runtime
 882 * and its current deadline _without_ exceeding the bandwidth it is
 883 * assigned (function returns true if it can't). We are in fact applying
 884 * one of the CBS rules: when a task wakes up, if the residual runtime
 885 * over residual deadline fits within the allocated bandwidth, then we
 886 * can keep the current (absolute) deadline and residual budget without
 887 * disrupting the schedulability of the system. Otherwise, we should
 888 * refill the runtime and set the deadline a period in the future,
 889 * because keeping the current (absolute) deadline of the task would
 890 * result in breaking guarantees promised to other tasks (refer to
 891 * Documentation/scheduler/sched-deadline.rst for more information).
 892 *
 893 * This function returns true if:
 894 *
 895 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 896 *
 897 * IOW we can't recycle current parameters.
 898 *
 899 * Notice that the bandwidth check is done against the deadline. For
 900 * task with deadline equal to period this is the same of using
 901 * dl_period instead of dl_deadline in the equation above.
 902 */
 903static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
 
 904{
 905	u64 left, right;
 906
 907	/*
 908	 * left and right are the two sides of the equation above,
 909	 * after a bit of shuffling to use multiplications instead
 910	 * of divisions.
 911	 *
 912	 * Note that none of the time values involved in the two
 913	 * multiplications are absolute: dl_deadline and dl_runtime
 914	 * are the relative deadline and the maximum runtime of each
 915	 * instance, runtime is the runtime left for the last instance
 916	 * and (deadline - t), since t is rq->clock, is the time left
 917	 * to the (absolute) deadline. Even if overflowing the u64 type
 918	 * is very unlikely to occur in both cases, here we scale down
 919	 * as we want to avoid that risk at all. Scaling down by 10
 920	 * means that we reduce granularity to 1us. We are fine with it,
 921	 * since this is only a true/false check and, anyway, thinking
 922	 * of anything below microseconds resolution is actually fiction
 923	 * (but still we want to give the user that illusion >;).
 924	 */
 925	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 926	right = ((dl_se->deadline - t) >> DL_SCALE) *
 927		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
 928
 929	return dl_time_before(right, left);
 930}
 931
 932/*
 933 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 934 * re-initializing task's runtime and deadline, the revised wakeup
 935 * rule adjusts the task's runtime to avoid the task to overrun its
 936 * density.
 937 *
 938 * Reasoning: a task may overrun the density if:
 939 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 940 *
 941 * Therefore, runtime can be adjusted to:
 942 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 943 *
 944 * In such way that runtime will be equal to the maximum density
 945 * the task can use without breaking any rule.
 946 *
 947 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 948 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 949 */
 950static void
 951update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 952{
 953	u64 laxity = dl_se->deadline - rq_clock(rq);
 954
 955	/*
 956	 * If the task has deadline < period, and the deadline is in the past,
 957	 * it should already be throttled before this check.
 958	 *
 959	 * See update_dl_entity() comments for further details.
 960	 */
 961	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 962
 963	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 964}
 965
 966/*
 967 * Regarding the deadline, a task with implicit deadline has a relative
 968 * deadline == relative period. A task with constrained deadline has a
 969 * relative deadline <= relative period.
 970 *
 971 * We support constrained deadline tasks. However, there are some restrictions
 972 * applied only for tasks which do not have an implicit deadline. See
 973 * update_dl_entity() to know more about such restrictions.
 974 *
 975 * The dl_is_implicit() returns true if the task has an implicit deadline.
 976 */
 977static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 978{
 979	return dl_se->dl_deadline == dl_se->dl_period;
 980}
 981
 982/*
 983 * When a deadline entity is placed in the runqueue, its runtime and deadline
 984 * might need to be updated. This is done by a CBS wake up rule. There are two
 985 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 986 *
 987 * When the task is starting a new period, the Original CBS is used. In this
 988 * case, the runtime is replenished and a new absolute deadline is set.
 989 *
 990 * When a task is queued before the begin of the next period, using the
 991 * remaining runtime and deadline could make the entity to overflow, see
 992 * dl_entity_overflow() to find more about runtime overflow. When such case
 993 * is detected, the runtime and deadline need to be updated.
 994 *
 995 * If the task has an implicit deadline, i.e., deadline == period, the Original
 996 * CBS is applied. the runtime is replenished and a new absolute deadline is
 997 * set, as in the previous cases.
 998 *
 999 * However, the Original CBS does not work properly for tasks with
1000 * deadline < period, which are said to have a constrained deadline. By
1001 * applying the Original CBS, a constrained deadline task would be able to run
1002 * runtime/deadline in a period. With deadline < period, the task would
1003 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1004 *
1005 * In order to prevent this misbehave, the Revisited CBS is used for
1006 * constrained deadline tasks when a runtime overflow is detected. In the
1007 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1008 * the remaining runtime of the task is reduced to avoid runtime overflow.
1009 * Please refer to the comments update_dl_revised_wakeup() function to find
1010 * more about the Revised CBS rule.
1011 */
1012static void update_dl_entity(struct sched_dl_entity *dl_se)
 
1013{
1014	struct rq *rq = rq_of_dl_se(dl_se);
 
1015
1016	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1017	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1018
1019		if (unlikely(!dl_is_implicit(dl_se) &&
1020			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1021			     !is_dl_boosted(dl_se))) {
1022			update_dl_revised_wakeup(dl_se, rq);
1023			return;
1024		}
1025
1026		replenish_dl_new_period(dl_se, rq);
 
1027	}
1028}
1029
1030static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1031{
1032	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1033}
1034
1035/*
1036 * If the entity depleted all its runtime, and if we want it to sleep
1037 * while waiting for some new execution time to become available, we
1038 * set the bandwidth replenishment timer to the replenishment instant
1039 * and try to activate it.
1040 *
1041 * Notice that it is important for the caller to know if the timer
1042 * actually started or not (i.e., the replenishment instant is in
1043 * the future or in the past).
1044 */
1045static int start_dl_timer(struct sched_dl_entity *dl_se)
1046{
 
1047	struct hrtimer *timer = &dl_se->dl_timer;
1048	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1049	struct rq *rq = rq_of_dl_rq(dl_rq);
1050	ktime_t now, act;
1051	s64 delta;
1052
1053	lockdep_assert_rq_held(rq);
1054
1055	/*
1056	 * We want the timer to fire at the deadline, but considering
1057	 * that it is actually coming from rq->clock and not from
1058	 * hrtimer's time base reading.
1059	 */
1060	act = ns_to_ktime(dl_next_period(dl_se));
1061	now = hrtimer_cb_get_time(timer);
1062	delta = ktime_to_ns(now) - rq_clock(rq);
1063	act = ktime_add_ns(act, delta);
1064
1065	/*
1066	 * If the expiry time already passed, e.g., because the value
1067	 * chosen as the deadline is too small, don't even try to
1068	 * start the timer in the past!
1069	 */
1070	if (ktime_us_delta(act, now) < 0)
1071		return 0;
1072
1073	/*
1074	 * !enqueued will guarantee another callback; even if one is already in
1075	 * progress. This ensures a balanced {get,put}_task_struct().
1076	 *
1077	 * The race against __run_timer() clearing the enqueued state is
1078	 * harmless because we're holding task_rq()->lock, therefore the timer
1079	 * expiring after we've done the check will wait on its task_rq_lock()
1080	 * and observe our state.
1081	 */
1082	if (!hrtimer_is_queued(timer)) {
1083		if (!dl_server(dl_se))
1084			get_task_struct(dl_task_of(dl_se));
1085		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1086	}
1087
1088	return 1;
1089}
1090
1091static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1092{
1093#ifdef CONFIG_SMP
1094	/*
1095	 * Queueing this task back might have overloaded rq, check if we need
1096	 * to kick someone away.
1097	 */
1098	if (has_pushable_dl_tasks(rq)) {
1099		/*
1100		 * Nothing relies on rq->lock after this, so its safe to drop
1101		 * rq->lock.
1102		 */
1103		rq_unpin_lock(rq, rf);
1104		push_dl_task(rq);
1105		rq_repin_lock(rq, rf);
1106	}
1107#endif
1108}
1109
1110/*
1111 * This is the bandwidth enforcement timer callback. If here, we know
1112 * a task is not on its dl_rq, since the fact that the timer was running
1113 * means the task is throttled and needs a runtime replenishment.
1114 *
1115 * However, what we actually do depends on the fact the task is active,
1116 * (it is on its rq) or has been removed from there by a call to
1117 * dequeue_task_dl(). In the former case we must issue the runtime
1118 * replenishment and add the task back to the dl_rq; in the latter, we just
1119 * do nothing but clearing dl_throttled, so that runtime and deadline
1120 * updating (and the queueing back to dl_rq) will be done by the
1121 * next call to enqueue_task_dl().
1122 */
1123static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1124{
1125	struct sched_dl_entity *dl_se = container_of(timer,
1126						     struct sched_dl_entity,
1127						     dl_timer);
1128	struct task_struct *p;
1129	struct rq_flags rf;
1130	struct rq *rq;
1131
1132	if (dl_server(dl_se)) {
1133		struct rq *rq = rq_of_dl_se(dl_se);
1134		struct rq_flags rf;
1135
1136		rq_lock(rq, &rf);
1137		if (dl_se->dl_throttled) {
1138			sched_clock_tick();
1139			update_rq_clock(rq);
1140
1141			if (dl_se->server_has_tasks(dl_se)) {
1142				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1143				resched_curr(rq);
1144				__push_dl_task(rq, &rf);
1145			} else {
1146				replenish_dl_entity(dl_se);
1147			}
1148
1149		}
1150		rq_unlock(rq, &rf);
1151
1152		return HRTIMER_NORESTART;
1153	}
1154
1155	p = dl_task_of(dl_se);
1156	rq = task_rq_lock(p, &rf);
1157
1158	/*
1159	 * The task might have changed its scheduling policy to something
1160	 * different than SCHED_DEADLINE (through switched_from_dl()).
1161	 */
1162	if (!dl_task(p))
1163		goto unlock;
1164
1165	/*
1166	 * The task might have been boosted by someone else and might be in the
1167	 * boosting/deboosting path, its not throttled.
1168	 */
1169	if (is_dl_boosted(dl_se))
1170		goto unlock;
1171
1172	/*
1173	 * Spurious timer due to start_dl_timer() race; or we already received
1174	 * a replenishment from rt_mutex_setprio().
1175	 */
1176	if (!dl_se->dl_throttled)
1177		goto unlock;
1178
1179	sched_clock_tick();
1180	update_rq_clock(rq);
1181
1182	/*
1183	 * If the throttle happened during sched-out; like:
1184	 *
1185	 *   schedule()
1186	 *     deactivate_task()
1187	 *       dequeue_task_dl()
1188	 *         update_curr_dl()
1189	 *           start_dl_timer()
1190	 *         __dequeue_task_dl()
1191	 *     prev->on_rq = 0;
1192	 *
1193	 * We can be both throttled and !queued. Replenish the counter
1194	 * but do not enqueue -- wait for our wakeup to do that.
1195	 */
1196	if (!task_on_rq_queued(p)) {
1197		replenish_dl_entity(dl_se);
1198		goto unlock;
1199	}
1200
1201#ifdef CONFIG_SMP
1202	if (unlikely(!rq->online)) {
1203		/*
1204		 * If the runqueue is no longer available, migrate the
1205		 * task elsewhere. This necessarily changes rq.
1206		 */
1207		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1208		rq = dl_task_offline_migration(rq, p);
1209		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1210		update_rq_clock(rq);
1211
1212		/*
1213		 * Now that the task has been migrated to the new RQ and we
1214		 * have that locked, proceed as normal and enqueue the task
1215		 * there.
1216		 */
1217	}
1218#endif
1219
1220	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1221	if (dl_task(rq->curr))
1222		wakeup_preempt_dl(rq, p, 0);
1223	else
1224		resched_curr(rq);
1225
1226	__push_dl_task(rq, &rf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227
1228unlock:
1229	task_rq_unlock(rq, p, &rf);
1230
1231	/*
1232	 * This can free the task_struct, including this hrtimer, do not touch
1233	 * anything related to that after this.
1234	 */
1235	put_task_struct(p);
1236
1237	return HRTIMER_NORESTART;
1238}
1239
1240static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1241{
1242	struct hrtimer *timer = &dl_se->dl_timer;
1243
1244	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1245	timer->function = dl_task_timer;
1246}
1247
1248/*
1249 * During the activation, CBS checks if it can reuse the current task's
1250 * runtime and period. If the deadline of the task is in the past, CBS
1251 * cannot use the runtime, and so it replenishes the task. This rule
1252 * works fine for implicit deadline tasks (deadline == period), and the
1253 * CBS was designed for implicit deadline tasks. However, a task with
1254 * constrained deadline (deadline < period) might be awakened after the
1255 * deadline, but before the next period. In this case, replenishing the
1256 * task would allow it to run for runtime / deadline. As in this case
1257 * deadline < period, CBS enables a task to run for more than the
1258 * runtime / period. In a very loaded system, this can cause a domino
1259 * effect, making other tasks miss their deadlines.
1260 *
1261 * To avoid this problem, in the activation of a constrained deadline
1262 * task after the deadline but before the next period, throttle the
1263 * task and set the replenishing timer to the begin of the next period,
1264 * unless it is boosted.
1265 */
1266static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1267{
1268	struct rq *rq = rq_of_dl_se(dl_se);
 
1269
1270	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1271	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1272		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1273			return;
1274		dl_se->dl_throttled = 1;
1275		if (dl_se->runtime > 0)
1276			dl_se->runtime = 0;
1277	}
1278}
1279
1280static
1281int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1282{
1283	return (dl_se->runtime <= 0);
1284}
1285
 
 
1286/*
1287 * This function implements the GRUB accounting rule. According to the
1288 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1289 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
 
1290 * where u is the utilization of the task, Umax is the maximum reclaimable
1291 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1292 * as the difference between the "total runqueue utilization" and the
1293 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1294 * reclaimable utilization.
1295 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1296 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1297 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1298 * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1299 * Since delta is a 64 bit variable, to have an overflow its value should be
1300 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1301 * not an issue here.
 
1302 */
1303static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1304{
1305	u64 u_act;
1306	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
 
 
1307
1308	/*
1309	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1310	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1311	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1312	 * negative leading to wrong results.
 
 
1313	 */
1314	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1315		u_act = dl_se->dl_bw;
1316	else
1317		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1318
1319	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1320	return (delta * u_act) >> BW_SHIFT;
1321}
1322
1323static inline void
1324update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1325                        int flags);
1326static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
 
1327{
1328	s64 scaled_delta_exec;
 
 
 
 
1329
1330	if (unlikely(delta_exec <= 0)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1331		if (unlikely(dl_se->dl_yielded))
1332			goto throttle;
1333		return;
1334	}
1335
 
 
 
 
 
 
 
 
 
1336	if (dl_entity_is_special(dl_se))
1337		return;
1338
1339	/*
1340	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1341	 * spare reclaimed bandwidth is used to clock down frequency.
1342	 *
1343	 * For the others, we still need to scale reservation parameters
1344	 * according to current frequency and CPU maximum capacity.
1345	 */
1346	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1347		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
 
 
1348	} else {
1349		int cpu = cpu_of(rq);
1350		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1351		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1352
1353		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1354		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1355	}
1356
1357	dl_se->runtime -= scaled_delta_exec;
1358
1359throttle:
1360	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1361		dl_se->dl_throttled = 1;
1362
1363		/* If requested, inform the user about runtime overruns. */
1364		if (dl_runtime_exceeded(dl_se) &&
1365		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1366			dl_se->dl_overrun = 1;
1367
1368		dequeue_dl_entity(dl_se, 0);
1369		if (!dl_server(dl_se)) {
1370			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1371			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1372		}
1373
1374		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1375			if (dl_server(dl_se))
1376				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1377			else
1378				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1379		}
1380
1381		if (!is_leftmost(dl_se, &rq->dl))
1382			resched_curr(rq);
1383	}
1384
1385	/*
1386	 * Because -- for now -- we share the rt bandwidth, we need to
1387	 * account our runtime there too, otherwise actual rt tasks
1388	 * would be able to exceed the shared quota.
1389	 *
1390	 * Account to the root rt group for now.
1391	 *
1392	 * The solution we're working towards is having the RT groups scheduled
1393	 * using deadline servers -- however there's a few nasties to figure
1394	 * out before that can happen.
1395	 */
1396	if (rt_bandwidth_enabled()) {
1397		struct rt_rq *rt_rq = &rq->rt;
1398
1399		raw_spin_lock(&rt_rq->rt_runtime_lock);
1400		/*
1401		 * We'll let actual RT tasks worry about the overflow here, we
1402		 * have our own CBS to keep us inline; only account when RT
1403		 * bandwidth is relevant.
1404		 */
1405		if (sched_rt_bandwidth_account(rt_rq))
1406			rt_rq->rt_time += delta_exec;
1407		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1408	}
1409}
1410
1411void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1412{
1413	update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1414}
1415
1416void dl_server_start(struct sched_dl_entity *dl_se)
1417{
1418	if (!dl_server(dl_se)) {
1419		dl_se->dl_server = 1;
1420		setup_new_dl_entity(dl_se);
1421	}
1422	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1423}
1424
1425void dl_server_stop(struct sched_dl_entity *dl_se)
1426{
1427	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1428}
1429
1430void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1431		    dl_server_has_tasks_f has_tasks,
1432		    dl_server_pick_f pick)
1433{
1434	dl_se->rq = rq;
1435	dl_se->server_has_tasks = has_tasks;
1436	dl_se->server_pick = pick;
1437}
1438
1439/*
1440 * Update the current task's runtime statistics (provided it is still
1441 * a -deadline task and has not been removed from the dl_rq).
1442 */
1443static void update_curr_dl(struct rq *rq)
1444{
1445	struct task_struct *curr = rq->curr;
1446	struct sched_dl_entity *dl_se = &curr->dl;
1447	s64 delta_exec;
1448
1449	if (!dl_task(curr) || !on_dl_rq(dl_se))
1450		return;
1451
1452	/*
1453	 * Consumed budget is computed considering the time as
1454	 * observed by schedulable tasks (excluding time spent
1455	 * in hardirq context, etc.). Deadlines are instead
1456	 * computed using hard walltime. This seems to be the more
1457	 * natural solution, but the full ramifications of this
1458	 * approach need further study.
1459	 */
1460	delta_exec = update_curr_common(rq);
1461	update_curr_dl_se(rq, dl_se, delta_exec);
1462}
1463
1464static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1465{
1466	struct sched_dl_entity *dl_se = container_of(timer,
1467						     struct sched_dl_entity,
1468						     inactive_timer);
1469	struct task_struct *p = NULL;
1470	struct rq_flags rf;
1471	struct rq *rq;
1472
1473	if (!dl_server(dl_se)) {
1474		p = dl_task_of(dl_se);
1475		rq = task_rq_lock(p, &rf);
1476	} else {
1477		rq = dl_se->rq;
1478		rq_lock(rq, &rf);
1479	}
1480
1481	sched_clock_tick();
1482	update_rq_clock(rq);
1483
1484	if (dl_server(dl_se))
1485		goto no_task;
1486
1487	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1488		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1489
1490		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1491			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1492			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1493			dl_se->dl_non_contending = 0;
1494		}
1495
1496		raw_spin_lock(&dl_b->lock);
1497		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1498		raw_spin_unlock(&dl_b->lock);
1499		__dl_clear_params(dl_se);
1500
1501		goto unlock;
1502	}
1503
1504no_task:
1505	if (dl_se->dl_non_contending == 0)
1506		goto unlock;
1507
1508	sub_running_bw(dl_se, &rq->dl);
1509	dl_se->dl_non_contending = 0;
1510unlock:
1511
1512	if (!dl_server(dl_se)) {
1513		task_rq_unlock(rq, p, &rf);
1514		put_task_struct(p);
1515	} else {
1516		rq_unlock(rq, &rf);
1517	}
1518
1519	return HRTIMER_NORESTART;
1520}
1521
1522static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1523{
1524	struct hrtimer *timer = &dl_se->inactive_timer;
1525
1526	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1527	timer->function = inactive_task_timer;
1528}
1529
1530#define __node_2_dle(node) \
1531	rb_entry((node), struct sched_dl_entity, rb_node)
1532
1533#ifdef CONFIG_SMP
1534
1535static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1536{
1537	struct rq *rq = rq_of_dl_rq(dl_rq);
1538
1539	if (dl_rq->earliest_dl.curr == 0 ||
1540	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1541		if (dl_rq->earliest_dl.curr == 0)
1542			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1543		dl_rq->earliest_dl.curr = deadline;
1544		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1545	}
1546}
1547
1548static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1549{
1550	struct rq *rq = rq_of_dl_rq(dl_rq);
1551
1552	/*
1553	 * Since we may have removed our earliest (and/or next earliest)
1554	 * task we must recompute them.
1555	 */
1556	if (!dl_rq->dl_nr_running) {
1557		dl_rq->earliest_dl.curr = 0;
1558		dl_rq->earliest_dl.next = 0;
1559		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1560		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1561	} else {
1562		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1563		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1564
 
1565		dl_rq->earliest_dl.curr = entry->deadline;
1566		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1567	}
1568}
1569
1570#else
1571
1572static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1573static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1574
1575#endif /* CONFIG_SMP */
1576
1577static inline
1578void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1579{
 
1580	u64 deadline = dl_se->deadline;
1581
 
1582	dl_rq->dl_nr_running++;
1583	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1584
1585	inc_dl_deadline(dl_rq, deadline);
 
1586}
1587
1588static inline
1589void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1590{
 
 
 
1591	WARN_ON(!dl_rq->dl_nr_running);
1592	dl_rq->dl_nr_running--;
1593	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1594
1595	dec_dl_deadline(dl_rq, dl_se->deadline);
1596}
1597
1598static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1599{
1600	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1601}
1602
1603static inline struct sched_statistics *
1604__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1605{
1606	return &dl_task_of(dl_se)->stats;
1607}
1608
1609static inline void
1610update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1611{
1612	struct sched_statistics *stats;
1613
1614	if (!schedstat_enabled())
1615		return;
1616
1617	stats = __schedstats_from_dl_se(dl_se);
1618	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1619}
1620
1621static inline void
1622update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1623{
1624	struct sched_statistics *stats;
1625
1626	if (!schedstat_enabled())
1627		return;
1628
1629	stats = __schedstats_from_dl_se(dl_se);
1630	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1631}
1632
1633static inline void
1634update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1635{
1636	struct sched_statistics *stats;
1637
1638	if (!schedstat_enabled())
1639		return;
1640
1641	stats = __schedstats_from_dl_se(dl_se);
1642	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1643}
1644
1645static inline void
1646update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1647			int flags)
1648{
1649	if (!schedstat_enabled())
1650		return;
1651
1652	if (flags & ENQUEUE_WAKEUP)
1653		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1654}
1655
1656static inline void
1657update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1658			int flags)
1659{
1660	struct task_struct *p = dl_task_of(dl_se);
1661
1662	if (!schedstat_enabled())
1663		return;
1664
1665	if ((flags & DEQUEUE_SLEEP)) {
1666		unsigned int state;
1667
1668		state = READ_ONCE(p->__state);
1669		if (state & TASK_INTERRUPTIBLE)
1670			__schedstat_set(p->stats.sleep_start,
1671					rq_clock(rq_of_dl_rq(dl_rq)));
1672
1673		if (state & TASK_UNINTERRUPTIBLE)
1674			__schedstat_set(p->stats.block_start,
1675					rq_clock(rq_of_dl_rq(dl_rq)));
1676	}
1677}
1678
1679static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1680{
1681	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682
1683	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1684
1685	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1686
1687	inc_dl_tasks(dl_se, dl_rq);
1688}
1689
1690static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1691{
1692	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1693
1694	if (RB_EMPTY_NODE(&dl_se->rb_node))
1695		return;
1696
1697	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1698
1699	RB_CLEAR_NODE(&dl_se->rb_node);
1700
1701	dec_dl_tasks(dl_se, dl_rq);
1702}
1703
1704static void
1705enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706{
1707	WARN_ON_ONCE(on_dl_rq(dl_se));
 
1708
1709	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710
1711	/*
1712	 * Check if a constrained deadline task was activated
1713	 * after the deadline but before the next period.
1714	 * If that is the case, the task will be throttled and
1715	 * the replenishment timer will be set to the next period.
1716	 */
1717	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1718		dl_check_constrained_dl(dl_se);
1719
1720	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1721		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1722
1723		add_rq_bw(dl_se, dl_rq);
1724		add_running_bw(dl_se, dl_rq);
1725	}
1726
1727	/*
1728	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1729	 * its budget it needs a replenishment and, since it now is on
1730	 * its rq, the bandwidth timer callback (which clearly has not
1731	 * run yet) will take care of this.
1732	 * However, the active utilization does not depend on the fact
1733	 * that the task is on the runqueue or not (but depends on the
1734	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1735	 * In other words, even if a task is throttled its utilization must
1736	 * be counted in the active utilization; hence, we need to call
1737	 * add_running_bw().
1738	 */
1739	if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1740		if (flags & ENQUEUE_WAKEUP)
1741			task_contending(dl_se, flags);
1742
1743		return;
1744	}
1745
1746	/*
1747	 * If this is a wakeup or a new instance, the scheduling
1748	 * parameters of the task might need updating. Otherwise,
1749	 * we want a replenishment of its runtime.
1750	 */
1751	if (flags & ENQUEUE_WAKEUP) {
1752		task_contending(dl_se, flags);
1753		update_dl_entity(dl_se);
1754	} else if (flags & ENQUEUE_REPLENISH) {
1755		replenish_dl_entity(dl_se);
1756	} else if ((flags & ENQUEUE_RESTORE) &&
1757		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
1758		setup_new_dl_entity(dl_se);
1759	}
1760
1761	__enqueue_dl_entity(dl_se);
 
1762}
1763
1764static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1765{
1766	__dequeue_dl_entity(dl_se);
 
 
1767
1768	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
1769		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 
 
1770
1771		sub_running_bw(dl_se, dl_rq);
1772		sub_rq_bw(dl_se, dl_rq);
 
1773	}
1774
1775	/*
1776	 * This check allows to start the inactive timer (or to immediately
1777	 * decrease the active utilization, if needed) in two cases:
1778	 * when the task blocks and when it is terminating
1779	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1780	 * way, because from GRUB's point of view the same thing is happening
1781	 * (the task moves from "active contending" to "active non contending"
1782	 * or "inactive")
1783	 */
1784	if (flags & DEQUEUE_SLEEP)
1785		task_non_contending(dl_se);
1786}
1787
1788static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1789{
1790	if (is_dl_boosted(&p->dl)) {
1791		/*
1792		 * Because of delays in the detection of the overrun of a
1793		 * thread's runtime, it might be the case that a thread
1794		 * goes to sleep in a rt mutex with negative runtime. As
1795		 * a consequence, the thread will be throttled.
1796		 *
1797		 * While waiting for the mutex, this thread can also be
1798		 * boosted via PI, resulting in a thread that is throttled
1799		 * and boosted at the same time.
1800		 *
1801		 * In this case, the boost overrides the throttle.
1802		 */
1803		if (p->dl.dl_throttled) {
1804			/*
1805			 * The replenish timer needs to be canceled. No
1806			 * problem if it fires concurrently: boosted threads
1807			 * are ignored in dl_task_timer().
1808			 */
1809			hrtimer_try_to_cancel(&p->dl.dl_timer);
1810			p->dl.dl_throttled = 0;
1811		}
1812	} else if (!dl_prio(p->normal_prio)) {
1813		/*
1814		 * Special case in which we have a !SCHED_DEADLINE task that is going
1815		 * to be deboosted, but exceeds its runtime while doing so. No point in
1816		 * replenishing it, as it's going to return back to its original
1817		 * scheduling class after this. If it has been throttled, we need to
1818		 * clear the flag, otherwise the task may wake up as throttled after
1819		 * being boosted again with no means to replenish the runtime and clear
1820		 * the throttle.
1821		 */
1822		p->dl.dl_throttled = 0;
1823		if (!(flags & ENQUEUE_REPLENISH))
1824			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1825					     task_pid_nr(p));
1826
1827		return;
1828	}
1829
1830	check_schedstat_required();
1831	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1832
1833	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1834		flags |= ENQUEUE_MIGRATING;
1835
1836	enqueue_dl_entity(&p->dl, flags);
1837
1838	if (dl_server(&p->dl))
1839		return;
1840
1841	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
1842		enqueue_pushable_dl_task(rq, p);
1843}
1844
1845static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1846{
1847	update_curr_dl(rq);
1848
1849	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1850		flags |= DEQUEUE_MIGRATING;
1851
1852	dequeue_dl_entity(&p->dl, flags);
1853	if (!p->dl.dl_throttled && !dl_server(&p->dl))
1854		dequeue_pushable_dl_task(rq, p);
1855}
1856
1857/*
1858 * Yield task semantic for -deadline tasks is:
1859 *
1860 *   get off from the CPU until our next instance, with
1861 *   a new runtime. This is of little use now, since we
1862 *   don't have a bandwidth reclaiming mechanism. Anyway,
1863 *   bandwidth reclaiming is planned for the future, and
1864 *   yield_task_dl will indicate that some spare budget
1865 *   is available for other task instances to use it.
1866 */
1867static void yield_task_dl(struct rq *rq)
1868{
1869	/*
1870	 * We make the task go to sleep until its current deadline by
1871	 * forcing its runtime to zero. This way, update_curr_dl() stops
1872	 * it and the bandwidth timer will wake it up and will give it
1873	 * new scheduling parameters (thanks to dl_yielded=1).
1874	 */
1875	rq->curr->dl.dl_yielded = 1;
1876
1877	update_rq_clock(rq);
1878	update_curr_dl(rq);
1879	/*
1880	 * Tell update_rq_clock() that we've just updated,
1881	 * so we don't do microscopic update in schedule()
1882	 * and double the fastpath cost.
1883	 */
1884	rq_clock_skip_update(rq);
1885}
1886
1887#ifdef CONFIG_SMP
1888
1889static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1890						 struct rq *rq)
1891{
1892	return (!rq->dl.dl_nr_running ||
1893		dl_time_before(p->dl.deadline,
1894			       rq->dl.earliest_dl.curr));
1895}
1896
1897static int find_later_rq(struct task_struct *task);
1898
1899static int
1900select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1901{
1902	struct task_struct *curr;
1903	bool select_rq;
1904	struct rq *rq;
1905
1906	if (!(flags & WF_TTWU))
1907		goto out;
1908
1909	rq = cpu_rq(cpu);
1910
1911	rcu_read_lock();
1912	curr = READ_ONCE(rq->curr); /* unlocked access */
1913
1914	/*
1915	 * If we are dealing with a -deadline task, we must
1916	 * decide where to wake it up.
1917	 * If it has a later deadline and the current task
1918	 * on this rq can't move (provided the waking task
1919	 * can!) we prefer to send it somewhere else. On the
1920	 * other hand, if it has a shorter deadline, we
1921	 * try to make it stay here, it might be important.
1922	 */
1923	select_rq = unlikely(dl_task(curr)) &&
1924		    (curr->nr_cpus_allowed < 2 ||
1925		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1926		    p->nr_cpus_allowed > 1;
1927
1928	/*
1929	 * Take the capacity of the CPU into account to
1930	 * ensure it fits the requirement of the task.
1931	 */
1932	if (sched_asym_cpucap_active())
1933		select_rq |= !dl_task_fits_capacity(p, cpu);
1934
1935	if (select_rq) {
1936		int target = find_later_rq(p);
1937
1938		if (target != -1 &&
1939		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
 
 
1940			cpu = target;
1941	}
1942	rcu_read_unlock();
1943
1944out:
1945	return cpu;
1946}
1947
1948static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1949{
1950	struct rq_flags rf;
1951	struct rq *rq;
1952
1953	if (READ_ONCE(p->__state) != TASK_WAKING)
1954		return;
1955
1956	rq = task_rq(p);
1957	/*
1958	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1959	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1960	 * rq->lock is not... So, lock it
1961	 */
1962	rq_lock(rq, &rf);
1963	if (p->dl.dl_non_contending) {
1964		update_rq_clock(rq);
1965		sub_running_bw(&p->dl, &rq->dl);
1966		p->dl.dl_non_contending = 0;
1967		/*
1968		 * If the timer handler is currently running and the
1969		 * timer cannot be canceled, inactive_task_timer()
1970		 * will see that dl_not_contending is not set, and
1971		 * will not touch the rq's active utilization,
1972		 * so we are still safe.
1973		 */
1974		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1975			put_task_struct(p);
1976	}
1977	sub_rq_bw(&p->dl, &rq->dl);
1978	rq_unlock(rq, &rf);
1979}
1980
1981static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1982{
1983	/*
1984	 * Current can't be migrated, useless to reschedule,
1985	 * let's hope p can move out.
1986	 */
1987	if (rq->curr->nr_cpus_allowed == 1 ||
1988	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1989		return;
1990
1991	/*
1992	 * p is migratable, so let's not schedule it and
1993	 * see if it is pushed or pulled somewhere else.
1994	 */
1995	if (p->nr_cpus_allowed != 1 &&
1996	    cpudl_find(&rq->rd->cpudl, p, NULL))
1997		return;
1998
1999	resched_curr(rq);
2000}
2001
2002static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2003{
2004	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2005		/*
2006		 * This is OK, because current is on_cpu, which avoids it being
2007		 * picked for load-balance and preemption/IRQs are still
2008		 * disabled avoiding further scheduler activity on it and we've
2009		 * not yet started the picking loop.
2010		 */
2011		rq_unpin_lock(rq, rf);
2012		pull_dl_task(rq);
2013		rq_repin_lock(rq, rf);
2014	}
2015
2016	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2017}
2018#endif /* CONFIG_SMP */
2019
2020/*
2021 * Only called when both the current and waking task are -deadline
2022 * tasks.
2023 */
2024static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2025				  int flags)
2026{
2027	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
2028		resched_curr(rq);
2029		return;
2030	}
2031
2032#ifdef CONFIG_SMP
2033	/*
2034	 * In the unlikely case current and p have the same deadline
2035	 * let us try to decide what's the best thing to do...
2036	 */
2037	if ((p->dl.deadline == rq->curr->dl.deadline) &&
2038	    !test_tsk_need_resched(rq->curr))
2039		check_preempt_equal_dl(rq, p);
2040#endif /* CONFIG_SMP */
2041}
2042
2043#ifdef CONFIG_SCHED_HRTICK
2044static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2045{
2046	hrtick_start(rq, dl_se->runtime);
2047}
2048#else /* !CONFIG_SCHED_HRTICK */
2049static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2050{
2051}
2052#endif
2053
2054static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2055{
2056	struct sched_dl_entity *dl_se = &p->dl;
2057	struct dl_rq *dl_rq = &rq->dl;
2058
2059	p->se.exec_start = rq_clock_task(rq);
2060	if (on_dl_rq(&p->dl))
2061		update_stats_wait_end_dl(dl_rq, dl_se);
2062
2063	/* You can't push away the running task */
2064	dequeue_pushable_dl_task(rq, p);
2065
2066	if (!first)
2067		return;
2068
2069	if (rq->curr->sched_class != &dl_sched_class)
2070		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2071
2072	deadline_queue_push_tasks(rq);
2073}
2074
2075static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
 
2076{
2077	struct rb_node *left = rb_first_cached(&dl_rq->root);
2078
2079	if (!left)
2080		return NULL;
2081
2082	return __node_2_dle(left);
2083}
2084
2085static struct task_struct *pick_task_dl(struct rq *rq)
 
2086{
2087	struct sched_dl_entity *dl_se;
2088	struct dl_rq *dl_rq = &rq->dl;
2089	struct task_struct *p;
2090
2091again:
 
2092	if (!sched_dl_runnable(rq))
2093		return NULL;
2094
2095	dl_se = pick_next_dl_entity(dl_rq);
2096	WARN_ON_ONCE(!dl_se);
2097
2098	if (dl_server(dl_se)) {
2099		p = dl_se->server_pick(dl_se);
2100		if (!p) {
2101			WARN_ON_ONCE(1);
2102			dl_se->dl_yielded = 1;
2103			update_curr_dl_se(rq, dl_se, 0);
2104			goto again;
2105		}
2106		p->dl_server = dl_se;
2107	} else {
2108		p = dl_task_of(dl_se);
2109	}
2110
2111	return p;
2112}
2113
2114static struct task_struct *pick_next_task_dl(struct rq *rq)
2115{
2116	struct task_struct *p;
2117
2118	p = pick_task_dl(rq);
2119	if (!p)
2120		return p;
2121
2122	if (!p->dl_server)
2123		set_next_task_dl(rq, p, true);
2124
2125	if (hrtick_enabled(rq))
2126		start_hrtick_dl(rq, &p->dl);
2127
2128	return p;
2129}
2130
2131static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2132{
2133	struct sched_dl_entity *dl_se = &p->dl;
2134	struct dl_rq *dl_rq = &rq->dl;
2135
2136	if (on_dl_rq(&p->dl))
2137		update_stats_wait_start_dl(dl_rq, dl_se);
2138
2139	update_curr_dl(rq);
2140
2141	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2142	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2143		enqueue_pushable_dl_task(rq, p);
2144}
2145
2146/*
2147 * scheduler tick hitting a task of our scheduling class.
2148 *
2149 * NOTE: This function can be called remotely by the tick offload that
2150 * goes along full dynticks. Therefore no local assumption can be made
2151 * and everything must be accessed through the @rq and @curr passed in
2152 * parameters.
2153 */
2154static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2155{
2156	update_curr_dl(rq);
2157
2158	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2159	/*
2160	 * Even when we have runtime, update_curr_dl() might have resulted in us
2161	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2162	 * be set and schedule() will start a new hrtick for the next task.
2163	 */
2164	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2165	    is_leftmost(&p->dl, &rq->dl))
2166		start_hrtick_dl(rq, &p->dl);
2167}
2168
2169static void task_fork_dl(struct task_struct *p)
2170{
2171	/*
2172	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2173	 * sched_fork()
2174	 */
2175}
2176
2177#ifdef CONFIG_SMP
2178
2179/* Only try algorithms three times */
2180#define DL_MAX_TRIES 3
2181
2182static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2183{
2184	if (!task_on_cpu(rq, p) &&
2185	    cpumask_test_cpu(cpu, &p->cpus_mask))
2186		return 1;
2187	return 0;
2188}
2189
2190/*
2191 * Return the earliest pushable rq's task, which is suitable to be executed
2192 * on the CPU, NULL otherwise:
2193 */
2194static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2195{
 
2196	struct task_struct *p = NULL;
2197	struct rb_node *next_node;
2198
2199	if (!has_pushable_dl_tasks(rq))
2200		return NULL;
2201
2202	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2203
2204next_node:
2205	if (next_node) {
2206		p = __node_2_pdl(next_node);
2207
2208		if (pick_dl_task(rq, p, cpu))
2209			return p;
2210
2211		next_node = rb_next(next_node);
2212		goto next_node;
2213	}
2214
2215	return NULL;
2216}
2217
2218static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2219
2220static int find_later_rq(struct task_struct *task)
2221{
2222	struct sched_domain *sd;
2223	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2224	int this_cpu = smp_processor_id();
2225	int cpu = task_cpu(task);
2226
2227	/* Make sure the mask is initialized first */
2228	if (unlikely(!later_mask))
2229		return -1;
2230
2231	if (task->nr_cpus_allowed == 1)
2232		return -1;
2233
2234	/*
2235	 * We have to consider system topology and task affinity
2236	 * first, then we can look for a suitable CPU.
2237	 */
2238	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2239		return -1;
2240
2241	/*
2242	 * If we are here, some targets have been found, including
2243	 * the most suitable which is, among the runqueues where the
2244	 * current tasks have later deadlines than the task's one, the
2245	 * rq with the latest possible one.
2246	 *
2247	 * Now we check how well this matches with task's
2248	 * affinity and system topology.
2249	 *
2250	 * The last CPU where the task run is our first
2251	 * guess, since it is most likely cache-hot there.
2252	 */
2253	if (cpumask_test_cpu(cpu, later_mask))
2254		return cpu;
2255	/*
2256	 * Check if this_cpu is to be skipped (i.e., it is
2257	 * not in the mask) or not.
2258	 */
2259	if (!cpumask_test_cpu(this_cpu, later_mask))
2260		this_cpu = -1;
2261
2262	rcu_read_lock();
2263	for_each_domain(cpu, sd) {
2264		if (sd->flags & SD_WAKE_AFFINE) {
2265			int best_cpu;
2266
2267			/*
2268			 * If possible, preempting this_cpu is
2269			 * cheaper than migrating.
2270			 */
2271			if (this_cpu != -1 &&
2272			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2273				rcu_read_unlock();
2274				return this_cpu;
2275			}
2276
2277			best_cpu = cpumask_any_and_distribute(later_mask,
2278							      sched_domain_span(sd));
2279			/*
2280			 * Last chance: if a CPU being in both later_mask
2281			 * and current sd span is valid, that becomes our
2282			 * choice. Of course, the latest possible CPU is
2283			 * already under consideration through later_mask.
2284			 */
2285			if (best_cpu < nr_cpu_ids) {
2286				rcu_read_unlock();
2287				return best_cpu;
2288			}
2289		}
2290	}
2291	rcu_read_unlock();
2292
2293	/*
2294	 * At this point, all our guesses failed, we just return
2295	 * 'something', and let the caller sort the things out.
2296	 */
2297	if (this_cpu != -1)
2298		return this_cpu;
2299
2300	cpu = cpumask_any_distribute(later_mask);
2301	if (cpu < nr_cpu_ids)
2302		return cpu;
2303
2304	return -1;
2305}
2306
2307/* Locks the rq it finds */
2308static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2309{
2310	struct rq *later_rq = NULL;
2311	int tries;
2312	int cpu;
2313
2314	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2315		cpu = find_later_rq(task);
2316
2317		if ((cpu == -1) || (cpu == rq->cpu))
2318			break;
2319
2320		later_rq = cpu_rq(cpu);
2321
2322		if (!dl_task_is_earliest_deadline(task, later_rq)) {
 
 
2323			/*
2324			 * Target rq has tasks of equal or earlier deadline,
2325			 * retrying does not release any lock and is unlikely
2326			 * to yield a different result.
2327			 */
2328			later_rq = NULL;
2329			break;
2330		}
2331
2332		/* Retry if something changed. */
2333		if (double_lock_balance(rq, later_rq)) {
2334			if (unlikely(task_rq(task) != rq ||
2335				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2336				     task_on_cpu(rq, task) ||
2337				     !dl_task(task) ||
2338				     is_migration_disabled(task) ||
2339				     !task_on_rq_queued(task))) {
2340				double_unlock_balance(rq, later_rq);
2341				later_rq = NULL;
2342				break;
2343			}
2344		}
2345
2346		/*
2347		 * If the rq we found has no -deadline task, or
2348		 * its earliest one has a later deadline than our
2349		 * task, the rq is a good one.
2350		 */
2351		if (dl_task_is_earliest_deadline(task, later_rq))
 
 
2352			break;
2353
2354		/* Otherwise we try again. */
2355		double_unlock_balance(rq, later_rq);
2356		later_rq = NULL;
2357	}
2358
2359	return later_rq;
2360}
2361
2362static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2363{
2364	struct task_struct *p;
2365
2366	if (!has_pushable_dl_tasks(rq))
2367		return NULL;
2368
2369	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
 
2370
2371	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2372	WARN_ON_ONCE(task_current(rq, p));
2373	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2374
2375	WARN_ON_ONCE(!task_on_rq_queued(p));
2376	WARN_ON_ONCE(!dl_task(p));
2377
2378	return p;
2379}
2380
2381/*
2382 * See if the non running -deadline tasks on this rq
2383 * can be sent to some other CPU where they can preempt
2384 * and start executing.
2385 */
2386static int push_dl_task(struct rq *rq)
2387{
2388	struct task_struct *next_task;
2389	struct rq *later_rq;
2390	int ret = 0;
2391
 
 
 
2392	next_task = pick_next_pushable_dl_task(rq);
2393	if (!next_task)
2394		return 0;
2395
2396retry:
 
 
 
2397	/*
2398	 * If next_task preempts rq->curr, and rq->curr
2399	 * can move away, it makes sense to just reschedule
2400	 * without going further in pushing next_task.
2401	 */
2402	if (dl_task(rq->curr) &&
2403	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2404	    rq->curr->nr_cpus_allowed > 1) {
2405		resched_curr(rq);
2406		return 0;
2407	}
2408
2409	if (is_migration_disabled(next_task))
2410		return 0;
2411
2412	if (WARN_ON(next_task == rq->curr))
2413		return 0;
2414
2415	/* We might release rq lock */
2416	get_task_struct(next_task);
2417
2418	/* Will lock the rq it'll find */
2419	later_rq = find_lock_later_rq(next_task, rq);
2420	if (!later_rq) {
2421		struct task_struct *task;
2422
2423		/*
2424		 * We must check all this again, since
2425		 * find_lock_later_rq releases rq->lock and it is
2426		 * then possible that next_task has migrated.
2427		 */
2428		task = pick_next_pushable_dl_task(rq);
2429		if (task == next_task) {
2430			/*
2431			 * The task is still there. We don't try
2432			 * again, some other CPU will pull it when ready.
2433			 */
2434			goto out;
2435		}
2436
2437		if (!task)
2438			/* No more tasks */
2439			goto out;
2440
2441		put_task_struct(next_task);
2442		next_task = task;
2443		goto retry;
2444	}
2445
2446	deactivate_task(rq, next_task, 0);
2447	set_task_cpu(next_task, later_rq->cpu);
2448	activate_task(later_rq, next_task, 0);
 
 
 
 
 
 
2449	ret = 1;
2450
2451	resched_curr(later_rq);
2452
2453	double_unlock_balance(rq, later_rq);
2454
2455out:
2456	put_task_struct(next_task);
2457
2458	return ret;
2459}
2460
2461static void push_dl_tasks(struct rq *rq)
2462{
2463	/* push_dl_task() will return true if it moved a -deadline task */
2464	while (push_dl_task(rq))
2465		;
2466}
2467
2468static void pull_dl_task(struct rq *this_rq)
2469{
2470	int this_cpu = this_rq->cpu, cpu;
2471	struct task_struct *p, *push_task;
2472	bool resched = false;
2473	struct rq *src_rq;
2474	u64 dmin = LONG_MAX;
2475
2476	if (likely(!dl_overloaded(this_rq)))
2477		return;
2478
2479	/*
2480	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2481	 * see overloaded we must also see the dlo_mask bit.
2482	 */
2483	smp_rmb();
2484
2485	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2486		if (this_cpu == cpu)
2487			continue;
2488
2489		src_rq = cpu_rq(cpu);
2490
2491		/*
2492		 * It looks racy, abd it is! However, as in sched_rt.c,
2493		 * we are fine with this.
2494		 */
2495		if (this_rq->dl.dl_nr_running &&
2496		    dl_time_before(this_rq->dl.earliest_dl.curr,
2497				   src_rq->dl.earliest_dl.next))
2498			continue;
2499
2500		/* Might drop this_rq->lock */
2501		push_task = NULL;
2502		double_lock_balance(this_rq, src_rq);
2503
2504		/*
2505		 * If there are no more pullable tasks on the
2506		 * rq, we're done with it.
2507		 */
2508		if (src_rq->dl.dl_nr_running <= 1)
2509			goto skip;
2510
2511		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2512
2513		/*
2514		 * We found a task to be pulled if:
2515		 *  - it preempts our current (if there's one),
2516		 *  - it will preempt the last one we pulled (if any).
2517		 */
2518		if (p && dl_time_before(p->dl.deadline, dmin) &&
2519		    dl_task_is_earliest_deadline(p, this_rq)) {
 
 
2520			WARN_ON(p == src_rq->curr);
2521			WARN_ON(!task_on_rq_queued(p));
2522
2523			/*
2524			 * Then we pull iff p has actually an earlier
2525			 * deadline than the current task of its runqueue.
2526			 */
2527			if (dl_time_before(p->dl.deadline,
2528					   src_rq->curr->dl.deadline))
2529				goto skip;
2530
2531			if (is_migration_disabled(p)) {
2532				push_task = get_push_task(src_rq);
2533			} else {
2534				deactivate_task(src_rq, p, 0);
2535				set_task_cpu(p, this_cpu);
2536				activate_task(this_rq, p, 0);
2537				dmin = p->dl.deadline;
2538				resched = true;
2539			}
2540
2541			/* Is there any other task even earlier? */
2542		}
2543skip:
2544		double_unlock_balance(this_rq, src_rq);
2545
2546		if (push_task) {
2547			preempt_disable();
2548			raw_spin_rq_unlock(this_rq);
2549			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2550					    push_task, &src_rq->push_work);
2551			preempt_enable();
2552			raw_spin_rq_lock(this_rq);
2553		}
2554	}
2555
2556	if (resched)
2557		resched_curr(this_rq);
2558}
2559
2560/*
2561 * Since the task is not running and a reschedule is not going to happen
2562 * anytime soon on its runqueue, we try pushing it away now.
2563 */
2564static void task_woken_dl(struct rq *rq, struct task_struct *p)
2565{
2566	if (!task_on_cpu(rq, p) &&
2567	    !test_tsk_need_resched(rq->curr) &&
2568	    p->nr_cpus_allowed > 1 &&
2569	    dl_task(rq->curr) &&
2570	    (rq->curr->nr_cpus_allowed < 2 ||
2571	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2572		push_dl_tasks(rq);
2573	}
2574}
2575
2576static void set_cpus_allowed_dl(struct task_struct *p,
2577				struct affinity_context *ctx)
2578{
2579	struct root_domain *src_rd;
2580	struct rq *rq;
2581
2582	WARN_ON_ONCE(!dl_task(p));
2583
2584	rq = task_rq(p);
2585	src_rd = rq->rd;
2586	/*
2587	 * Migrating a SCHED_DEADLINE task between exclusive
2588	 * cpusets (different root_domains) entails a bandwidth
2589	 * update. We already made space for us in the destination
2590	 * domain (see cpuset_can_attach()).
2591	 */
2592	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2593		struct dl_bw *src_dl_b;
2594
2595		src_dl_b = dl_bw_of(cpu_of(rq));
2596		/*
2597		 * We now free resources of the root_domain we are migrating
2598		 * off. In the worst case, sched_setattr() may temporary fail
2599		 * until we complete the update.
2600		 */
2601		raw_spin_lock(&src_dl_b->lock);
2602		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2603		raw_spin_unlock(&src_dl_b->lock);
2604	}
2605
2606	set_cpus_allowed_common(p, ctx);
2607}
2608
2609/* Assumes rq->lock is held */
2610static void rq_online_dl(struct rq *rq)
2611{
2612	if (rq->dl.overloaded)
2613		dl_set_overload(rq);
2614
2615	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2616	if (rq->dl.dl_nr_running > 0)
2617		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2618}
2619
2620/* Assumes rq->lock is held */
2621static void rq_offline_dl(struct rq *rq)
2622{
2623	if (rq->dl.overloaded)
2624		dl_clear_overload(rq);
2625
2626	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2627	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2628}
2629
2630void __init init_sched_dl_class(void)
2631{
2632	unsigned int i;
2633
2634	for_each_possible_cpu(i)
2635		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2636					GFP_KERNEL, cpu_to_node(i));
2637}
2638
2639void dl_add_task_root_domain(struct task_struct *p)
2640{
2641	struct rq_flags rf;
2642	struct rq *rq;
2643	struct dl_bw *dl_b;
2644
2645	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2646	if (!dl_task(p)) {
2647		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2648		return;
2649	}
2650
2651	rq = __task_rq_lock(p, &rf);
2652
2653	dl_b = &rq->rd->dl_bw;
2654	raw_spin_lock(&dl_b->lock);
2655
2656	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2657
2658	raw_spin_unlock(&dl_b->lock);
2659
 
2660	task_rq_unlock(rq, p, &rf);
2661}
2662
2663void dl_clear_root_domain(struct root_domain *rd)
2664{
2665	unsigned long flags;
2666
2667	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2668	rd->dl_bw.total_bw = 0;
2669	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2670}
2671
2672#endif /* CONFIG_SMP */
2673
2674static void switched_from_dl(struct rq *rq, struct task_struct *p)
2675{
2676	/*
2677	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2678	 * time is in the future). If the task switches back to dl before
2679	 * the "inactive timer" fires, it can continue to consume its current
2680	 * runtime using its current deadline. If it stays outside of
2681	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2682	 * will reset the task parameters.
2683	 */
2684	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2685		task_non_contending(&p->dl);
2686
2687	/*
2688	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2689	 * keep track of that on its cpuset (for correct bandwidth tracking).
2690	 */
2691	dec_dl_tasks_cs(p);
2692
2693	if (!task_on_rq_queued(p)) {
2694		/*
2695		 * Inactive timer is armed. However, p is leaving DEADLINE and
2696		 * might migrate away from this rq while continuing to run on
2697		 * some other class. We need to remove its contribution from
2698		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2699		 */
2700		if (p->dl.dl_non_contending)
2701			sub_running_bw(&p->dl, &rq->dl);
2702		sub_rq_bw(&p->dl, &rq->dl);
2703	}
2704
2705	/*
2706	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2707	 * at the 0-lag time, because the task could have been migrated
2708	 * while SCHED_OTHER in the meanwhile.
2709	 */
2710	if (p->dl.dl_non_contending)
2711		p->dl.dl_non_contending = 0;
2712
2713	/*
2714	 * Since this might be the only -deadline task on the rq,
2715	 * this is the right place to try to pull some other one
2716	 * from an overloaded CPU, if any.
2717	 */
2718	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2719		return;
2720
2721	deadline_queue_pull_task(rq);
2722}
2723
2724/*
2725 * When switching to -deadline, we may overload the rq, then
2726 * we try to push someone off, if possible.
2727 */
2728static void switched_to_dl(struct rq *rq, struct task_struct *p)
2729{
2730	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2731		put_task_struct(p);
2732
2733	/*
2734	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2735	 * track of that on its cpuset (for correct bandwidth tracking).
2736	 */
2737	inc_dl_tasks_cs(p);
2738
2739	/* If p is not queued we will update its parameters at next wakeup. */
2740	if (!task_on_rq_queued(p)) {
2741		add_rq_bw(&p->dl, &rq->dl);
2742
2743		return;
2744	}
2745
2746	if (rq->curr != p) {
2747#ifdef CONFIG_SMP
2748		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2749			deadline_queue_push_tasks(rq);
2750#endif
2751		if (dl_task(rq->curr))
2752			wakeup_preempt_dl(rq, p, 0);
2753		else
2754			resched_curr(rq);
2755	} else {
2756		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2757	}
2758}
2759
2760/*
2761 * If the scheduling parameters of a -deadline task changed,
2762 * a push or pull operation might be needed.
2763 */
2764static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2765			    int oldprio)
2766{
2767	if (!task_on_rq_queued(p))
2768		return;
2769
2770#ifdef CONFIG_SMP
2771	/*
2772	 * This might be too much, but unfortunately
2773	 * we don't have the old deadline value, and
2774	 * we can't argue if the task is increasing
2775	 * or lowering its prio, so...
2776	 */
2777	if (!rq->dl.overloaded)
2778		deadline_queue_pull_task(rq);
2779
2780	if (task_current(rq, p)) {
2781		/*
2782		 * If we now have a earlier deadline task than p,
2783		 * then reschedule, provided p is still on this
2784		 * runqueue.
2785		 */
2786		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2787			resched_curr(rq);
2788	} else {
2789		/*
2790		 * Current may not be deadline in case p was throttled but we
2791		 * have just replenished it (e.g. rt_mutex_setprio()).
2792		 *
2793		 * Otherwise, if p was given an earlier deadline, reschedule.
2794		 */
2795		if (!dl_task(rq->curr) ||
2796		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2797			resched_curr(rq);
2798	}
2799#else
2800	/*
2801	 * We don't know if p has a earlier or later deadline, so let's blindly
2802	 * set a (maybe not needed) rescheduling point.
2803	 */
2804	resched_curr(rq);
2805#endif
2806}
2807
2808#ifdef CONFIG_SCHED_CORE
2809static int task_is_throttled_dl(struct task_struct *p, int cpu)
2810{
2811	return p->dl.dl_throttled;
2812}
2813#endif
2814
2815DEFINE_SCHED_CLASS(dl) = {
2816
 
 
2817	.enqueue_task		= enqueue_task_dl,
2818	.dequeue_task		= dequeue_task_dl,
2819	.yield_task		= yield_task_dl,
2820
2821	.wakeup_preempt		= wakeup_preempt_dl,
2822
2823	.pick_next_task		= pick_next_task_dl,
2824	.put_prev_task		= put_prev_task_dl,
2825	.set_next_task		= set_next_task_dl,
2826
2827#ifdef CONFIG_SMP
2828	.balance		= balance_dl,
2829	.pick_task		= pick_task_dl,
2830	.select_task_rq		= select_task_rq_dl,
2831	.migrate_task_rq	= migrate_task_rq_dl,
2832	.set_cpus_allowed       = set_cpus_allowed_dl,
2833	.rq_online              = rq_online_dl,
2834	.rq_offline             = rq_offline_dl,
2835	.task_woken		= task_woken_dl,
2836	.find_lock_rq		= find_lock_later_rq,
2837#endif
2838
2839	.task_tick		= task_tick_dl,
2840	.task_fork              = task_fork_dl,
2841
2842	.prio_changed           = prio_changed_dl,
2843	.switched_from		= switched_from_dl,
2844	.switched_to		= switched_to_dl,
2845
2846	.update_curr		= update_curr_dl,
2847#ifdef CONFIG_SCHED_CORE
2848	.task_is_throttled	= task_is_throttled_dl,
2849#endif
2850};
2851
2852/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2853static u64 dl_generation;
2854
2855int sched_dl_global_validate(void)
2856{
2857	u64 runtime = global_rt_runtime();
2858	u64 period = global_rt_period();
2859	u64 new_bw = to_ratio(period, runtime);
2860	u64 gen = ++dl_generation;
2861	struct dl_bw *dl_b;
2862	int cpu, cpus, ret = 0;
2863	unsigned long flags;
2864
2865	/*
2866	 * Here we want to check the bandwidth not being set to some
2867	 * value smaller than the currently allocated bandwidth in
2868	 * any of the root_domains.
 
 
 
 
2869	 */
2870	for_each_possible_cpu(cpu) {
2871		rcu_read_lock_sched();
2872
2873		if (dl_bw_visited(cpu, gen))
2874			goto next;
2875
2876		dl_b = dl_bw_of(cpu);
2877		cpus = dl_bw_cpus(cpu);
2878
2879		raw_spin_lock_irqsave(&dl_b->lock, flags);
2880		if (new_bw * cpus < dl_b->total_bw)
2881			ret = -EBUSY;
2882		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2883
2884next:
2885		rcu_read_unlock_sched();
2886
2887		if (ret)
2888			break;
2889	}
2890
2891	return ret;
2892}
2893
2894static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2895{
2896	if (global_rt_runtime() == RUNTIME_INF) {
2897		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2898		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2899	} else {
2900		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2901			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2902		dl_rq->max_bw = dl_rq->extra_bw =
2903			to_ratio(global_rt_period(), global_rt_runtime());
2904	}
2905}
2906
2907void sched_dl_do_global(void)
2908{
2909	u64 new_bw = -1;
2910	u64 gen = ++dl_generation;
2911	struct dl_bw *dl_b;
2912	int cpu;
2913	unsigned long flags;
2914
 
 
 
2915	if (global_rt_runtime() != RUNTIME_INF)
2916		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2917
 
 
 
2918	for_each_possible_cpu(cpu) {
2919		rcu_read_lock_sched();
2920
2921		if (dl_bw_visited(cpu, gen)) {
2922			rcu_read_unlock_sched();
2923			continue;
2924		}
2925
2926		dl_b = dl_bw_of(cpu);
2927
2928		raw_spin_lock_irqsave(&dl_b->lock, flags);
2929		dl_b->bw = new_bw;
2930		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2931
2932		rcu_read_unlock_sched();
2933		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2934	}
2935}
2936
2937/*
2938 * We must be sure that accepting a new task (or allowing changing the
2939 * parameters of an existing one) is consistent with the bandwidth
2940 * constraints. If yes, this function also accordingly updates the currently
2941 * allocated bandwidth to reflect the new situation.
2942 *
2943 * This function is called while holding p's rq->lock.
2944 */
2945int sched_dl_overflow(struct task_struct *p, int policy,
2946		      const struct sched_attr *attr)
2947{
 
2948	u64 period = attr->sched_period ?: attr->sched_deadline;
2949	u64 runtime = attr->sched_runtime;
2950	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2951	int cpus, err = -1, cpu = task_cpu(p);
2952	struct dl_bw *dl_b = dl_bw_of(cpu);
2953	unsigned long cap;
2954
2955	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2956		return 0;
2957
2958	/* !deadline task may carry old deadline bandwidth */
2959	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2960		return 0;
2961
2962	/*
2963	 * Either if a task, enters, leave, or stays -deadline but changes
2964	 * its parameters, we may need to update accordingly the total
2965	 * allocated bandwidth of the container.
2966	 */
2967	raw_spin_lock(&dl_b->lock);
2968	cpus = dl_bw_cpus(cpu);
2969	cap = dl_bw_capacity(cpu);
2970
2971	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2972	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2973		if (hrtimer_active(&p->dl.inactive_timer))
2974			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2975		__dl_add(dl_b, new_bw, cpus);
2976		err = 0;
2977	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2978		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2979		/*
2980		 * XXX this is slightly incorrect: when the task
2981		 * utilization decreases, we should delay the total
2982		 * utilization change until the task's 0-lag point.
2983		 * But this would require to set the task's "inactive
2984		 * timer" when the task is not inactive.
2985		 */
2986		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2987		__dl_add(dl_b, new_bw, cpus);
2988		dl_change_utilization(p, new_bw);
2989		err = 0;
2990	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2991		/*
2992		 * Do not decrease the total deadline utilization here,
2993		 * switched_from_dl() will take care to do it at the correct
2994		 * (0-lag) time.
2995		 */
2996		err = 0;
2997	}
2998	raw_spin_unlock(&dl_b->lock);
2999
3000	return err;
3001}
3002
3003/*
3004 * This function initializes the sched_dl_entity of a newly becoming
3005 * SCHED_DEADLINE task.
3006 *
3007 * Only the static values are considered here, the actual runtime and the
3008 * absolute deadline will be properly calculated when the task is enqueued
3009 * for the first time with its new policy.
3010 */
3011void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3012{
3013	struct sched_dl_entity *dl_se = &p->dl;
3014
3015	dl_se->dl_runtime = attr->sched_runtime;
3016	dl_se->dl_deadline = attr->sched_deadline;
3017	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3018	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3019	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3020	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3021}
3022
3023void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3024{
3025	struct sched_dl_entity *dl_se = &p->dl;
3026
3027	attr->sched_priority = p->rt_priority;
3028	attr->sched_runtime = dl_se->dl_runtime;
3029	attr->sched_deadline = dl_se->dl_deadline;
3030	attr->sched_period = dl_se->dl_period;
3031	attr->sched_flags &= ~SCHED_DL_FLAGS;
3032	attr->sched_flags |= dl_se->flags;
3033}
3034
3035/*
3036 * This function validates the new parameters of a -deadline task.
3037 * We ask for the deadline not being zero, and greater or equal
3038 * than the runtime, as well as the period of being zero or
3039 * greater than deadline. Furthermore, we have to be sure that
3040 * user parameters are above the internal resolution of 1us (we
3041 * check sched_runtime only since it is always the smaller one) and
3042 * below 2^63 ns (we have to check both sched_deadline and
3043 * sched_period, as the latter can be zero).
3044 */
3045bool __checkparam_dl(const struct sched_attr *attr)
3046{
3047	u64 period, max, min;
3048
3049	/* special dl tasks don't actually use any parameter */
3050	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3051		return true;
3052
3053	/* deadline != 0 */
3054	if (attr->sched_deadline == 0)
3055		return false;
3056
3057	/*
3058	 * Since we truncate DL_SCALE bits, make sure we're at least
3059	 * that big.
3060	 */
3061	if (attr->sched_runtime < (1ULL << DL_SCALE))
3062		return false;
3063
3064	/*
3065	 * Since we use the MSB for wrap-around and sign issues, make
3066	 * sure it's not set (mind that period can be equal to zero).
3067	 */
3068	if (attr->sched_deadline & (1ULL << 63) ||
3069	    attr->sched_period & (1ULL << 63))
3070		return false;
3071
3072	period = attr->sched_period;
3073	if (!period)
3074		period = attr->sched_deadline;
3075
3076	/* runtime <= deadline <= period (if period != 0) */
3077	if (period < attr->sched_deadline ||
 
3078	    attr->sched_deadline < attr->sched_runtime)
3079		return false;
3080
3081	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3082	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3083
3084	if (period < min || period > max)
3085		return false;
3086
3087	return true;
3088}
3089
3090/*
3091 * This function clears the sched_dl_entity static params.
3092 */
3093static void __dl_clear_params(struct sched_dl_entity *dl_se)
3094{
 
 
3095	dl_se->dl_runtime		= 0;
3096	dl_se->dl_deadline		= 0;
3097	dl_se->dl_period		= 0;
3098	dl_se->flags			= 0;
3099	dl_se->dl_bw			= 0;
3100	dl_se->dl_density		= 0;
3101
3102	dl_se->dl_throttled		= 0;
3103	dl_se->dl_yielded		= 0;
3104	dl_se->dl_non_contending	= 0;
3105	dl_se->dl_overrun		= 0;
3106	dl_se->dl_server		= 0;
3107
3108#ifdef CONFIG_RT_MUTEXES
3109	dl_se->pi_se			= dl_se;
3110#endif
3111}
3112
3113void init_dl_entity(struct sched_dl_entity *dl_se)
3114{
3115	RB_CLEAR_NODE(&dl_se->rb_node);
3116	init_dl_task_timer(dl_se);
3117	init_dl_inactive_task_timer(dl_se);
3118	__dl_clear_params(dl_se);
3119}
3120
3121bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3122{
3123	struct sched_dl_entity *dl_se = &p->dl;
3124
3125	if (dl_se->dl_runtime != attr->sched_runtime ||
3126	    dl_se->dl_deadline != attr->sched_deadline ||
3127	    dl_se->dl_period != attr->sched_period ||
3128	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3129		return true;
3130
3131	return false;
3132}
3133
3134#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3135int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3136				 const struct cpumask *trial)
3137{
3138	unsigned long flags, cap;
3139	struct dl_bw *cur_dl_b;
3140	int ret = 1;
3141
3142	rcu_read_lock_sched();
3143	cur_dl_b = dl_bw_of(cpumask_any(cur));
3144	cap = __dl_bw_capacity(trial);
 
3145	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3146	if (__dl_overflow(cur_dl_b, cap, 0, 0))
 
3147		ret = 0;
3148	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3149	rcu_read_unlock_sched();
3150
3151	return ret;
3152}
3153
3154enum dl_bw_request {
3155	dl_bw_req_check_overflow = 0,
3156	dl_bw_req_alloc,
3157	dl_bw_req_free
3158};
3159
3160static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3161{
3162	unsigned long flags;
3163	struct dl_bw *dl_b;
3164	bool overflow = 0;
 
3165
3166	rcu_read_lock_sched();
3167	dl_b = dl_bw_of(cpu);
3168	raw_spin_lock_irqsave(&dl_b->lock, flags);
3169
3170	if (req == dl_bw_req_free) {
3171		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3172	} else {
3173		unsigned long cap = dl_bw_capacity(cpu);
3174
3175		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3176
3177		if (req == dl_bw_req_alloc && !overflow) {
3178			/*
3179			 * We reserve space in the destination
3180			 * root_domain, as we can't fail after this point.
3181			 * We will free resources in the source root_domain
3182			 * later on (see set_cpus_allowed_dl()).
3183			 */
3184			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3185		}
3186	}
3187
3188	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3189	rcu_read_unlock_sched();
3190
3191	return overflow ? -EBUSY : 0;
3192}
3193
3194int dl_bw_check_overflow(int cpu)
3195{
3196	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3197}
3198
3199int dl_bw_alloc(int cpu, u64 dl_bw)
3200{
3201	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3202}
3203
3204void dl_bw_free(int cpu, u64 dl_bw)
3205{
3206	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3207}
3208#endif
3209
3210#ifdef CONFIG_SCHED_DEBUG
3211void print_dl_stats(struct seq_file *m, int cpu)
3212{
3213	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3214}
3215#endif /* CONFIG_SCHED_DEBUG */
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19#include "pelt.h"
  20
  21struct dl_bandwidth def_dl_bandwidth;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
 
  25	return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30	return container_of(dl_rq, struct rq, dl);
  31}
  32
 
 
 
 
 
 
 
 
 
 
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35	struct task_struct *p = dl_task_of(dl_se);
  36	struct rq *rq = task_rq(p);
  37
  38	return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43	return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46#ifdef CONFIG_SMP
  47static inline struct dl_bw *dl_bw_of(int i)
  48{
  49	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  50			 "sched RCU must be held");
  51	return &cpu_rq(i)->rd->dl_bw;
  52}
  53
  54static inline int dl_bw_cpus(int i)
  55{
  56	struct root_domain *rd = cpu_rq(i)->rd;
  57	int cpus = 0;
  58
  59	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  60			 "sched RCU must be held");
 
 
 
 
 
 
  61	for_each_cpu_and(i, rd->span, cpu_active_mask)
  62		cpus++;
  63
  64	return cpus;
  65}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66#else
  67static inline struct dl_bw *dl_bw_of(int i)
  68{
  69	return &cpu_rq(i)->dl.dl_bw;
  70}
  71
  72static inline int dl_bw_cpus(int i)
  73{
  74	return 1;
  75}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76#endif
  77
  78static inline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  80{
  81	u64 old = dl_rq->running_bw;
  82
  83	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  84	dl_rq->running_bw += dl_bw;
  85	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
  86	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
  87	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
  88	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
  89}
  90
  91static inline
  92void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  93{
  94	u64 old = dl_rq->running_bw;
  95
  96	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  97	dl_rq->running_bw -= dl_bw;
  98	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
  99	if (dl_rq->running_bw > old)
 100		dl_rq->running_bw = 0;
 101	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 102	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 103}
 104
 105static inline
 106void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 107{
 108	u64 old = dl_rq->this_bw;
 109
 110	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 111	dl_rq->this_bw += dl_bw;
 112	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 113}
 114
 115static inline
 116void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 117{
 118	u64 old = dl_rq->this_bw;
 119
 120	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 121	dl_rq->this_bw -= dl_bw;
 122	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 123	if (dl_rq->this_bw > old)
 124		dl_rq->this_bw = 0;
 125	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 126}
 127
 128static inline
 129void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 130{
 131	if (!dl_entity_is_special(dl_se))
 132		__add_rq_bw(dl_se->dl_bw, dl_rq);
 133}
 134
 135static inline
 136void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 137{
 138	if (!dl_entity_is_special(dl_se))
 139		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 140}
 141
 142static inline
 143void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145	if (!dl_entity_is_special(dl_se))
 146		__add_running_bw(dl_se->dl_bw, dl_rq);
 147}
 148
 149static inline
 150void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 151{
 152	if (!dl_entity_is_special(dl_se))
 153		__sub_running_bw(dl_se->dl_bw, dl_rq);
 154}
 155
 156void dl_change_utilization(struct task_struct *p, u64 new_bw)
 157{
 158	struct rq *rq;
 159
 160	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 161
 162	if (task_on_rq_queued(p))
 163		return;
 164
 165	rq = task_rq(p);
 166	if (p->dl.dl_non_contending) {
 167		sub_running_bw(&p->dl, &rq->dl);
 168		p->dl.dl_non_contending = 0;
 169		/*
 170		 * If the timer handler is currently running and the
 171		 * timer cannot be cancelled, inactive_task_timer()
 172		 * will see that dl_not_contending is not set, and
 173		 * will not touch the rq's active utilization,
 174		 * so we are still safe.
 175		 */
 176		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 177			put_task_struct(p);
 178	}
 179	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
 180	__add_rq_bw(new_bw, &rq->dl);
 181}
 182
 
 
 183/*
 184 * The utilization of a task cannot be immediately removed from
 185 * the rq active utilization (running_bw) when the task blocks.
 186 * Instead, we have to wait for the so called "0-lag time".
 187 *
 188 * If a task blocks before the "0-lag time", a timer (the inactive
 189 * timer) is armed, and running_bw is decreased when the timer
 190 * fires.
 191 *
 192 * If the task wakes up again before the inactive timer fires,
 193 * the timer is cancelled, whereas if the task wakes up after the
 194 * inactive timer fired (and running_bw has been decreased) the
 195 * task's utilization has to be added to running_bw again.
 196 * A flag in the deadline scheduling entity (dl_non_contending)
 197 * is used to avoid race conditions between the inactive timer handler
 198 * and task wakeups.
 199 *
 200 * The following diagram shows how running_bw is updated. A task is
 201 * "ACTIVE" when its utilization contributes to running_bw; an
 202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 205 * time already passed, which does not contribute to running_bw anymore.
 206 *                              +------------------+
 207 *             wakeup           |    ACTIVE        |
 208 *          +------------------>+   contending     |
 209 *          | add_running_bw    |                  |
 210 *          |                   +----+------+------+
 211 *          |                        |      ^
 212 *          |                dequeue |      |
 213 * +--------+-------+                |      |
 214 * |                |   t >= 0-lag   |      | wakeup
 215 * |    INACTIVE    |<---------------+      |
 216 * |                | sub_running_bw |      |
 217 * +--------+-------+                |      |
 218 *          ^                        |      |
 219 *          |              t < 0-lag |      |
 220 *          |                        |      |
 221 *          |                        V      |
 222 *          |                   +----+------+------+
 223 *          | sub_running_bw    |    ACTIVE        |
 224 *          +-------------------+                  |
 225 *            inactive timer    |  non contending  |
 226 *            fired             +------------------+
 227 *
 228 * The task_non_contending() function is invoked when a task
 229 * blocks, and checks if the 0-lag time already passed or
 230 * not (in the first case, it directly updates running_bw;
 231 * in the second case, it arms the inactive timer).
 232 *
 233 * The task_contending() function is invoked when a task wakes
 234 * up, and checks if the task is still in the "ACTIVE non contending"
 235 * state or not (in the second case, it updates running_bw).
 236 */
 237static void task_non_contending(struct task_struct *p)
 238{
 239	struct sched_dl_entity *dl_se = &p->dl;
 240	struct hrtimer *timer = &dl_se->inactive_timer;
 241	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 242	struct rq *rq = rq_of_dl_rq(dl_rq);
 243	s64 zerolag_time;
 244
 245	/*
 246	 * If this is a non-deadline task that has been boosted,
 247	 * do nothing
 248	 */
 249	if (dl_se->dl_runtime == 0)
 250		return;
 251
 252	if (dl_entity_is_special(dl_se))
 253		return;
 254
 255	WARN_ON(dl_se->dl_non_contending);
 256
 257	zerolag_time = dl_se->deadline -
 258		 div64_long((dl_se->runtime * dl_se->dl_period),
 259			dl_se->dl_runtime);
 260
 261	/*
 262	 * Using relative times instead of the absolute "0-lag time"
 263	 * allows to simplify the code
 264	 */
 265	zerolag_time -= rq_clock(rq);
 266
 267	/*
 268	 * If the "0-lag time" already passed, decrease the active
 269	 * utilization now, instead of starting a timer
 270	 */
 271	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 272		if (dl_task(p))
 273			sub_running_bw(dl_se, dl_rq);
 274		if (!dl_task(p) || p->state == TASK_DEAD) {
 275			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 276
 277			if (p->state == TASK_DEAD)
 278				sub_rq_bw(&p->dl, &rq->dl);
 279			raw_spin_lock(&dl_b->lock);
 280			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 281			__dl_clear_params(p);
 282			raw_spin_unlock(&dl_b->lock);
 
 
 
 
 
 
 
 283		}
 284
 285		return;
 286	}
 287
 288	dl_se->dl_non_contending = 1;
 289	get_task_struct(p);
 
 
 290	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 291}
 292
 293static void task_contending(struct sched_dl_entity *dl_se, int flags)
 294{
 295	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 296
 297	/*
 298	 * If this is a non-deadline task that has been boosted,
 299	 * do nothing
 300	 */
 301	if (dl_se->dl_runtime == 0)
 302		return;
 303
 304	if (flags & ENQUEUE_MIGRATED)
 305		add_rq_bw(dl_se, dl_rq);
 306
 307	if (dl_se->dl_non_contending) {
 308		dl_se->dl_non_contending = 0;
 309		/*
 310		 * If the timer handler is currently running and the
 311		 * timer cannot be cancelled, inactive_task_timer()
 312		 * will see that dl_not_contending is not set, and
 313		 * will not touch the rq's active utilization,
 314		 * so we are still safe.
 315		 */
 316		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 317			put_task_struct(dl_task_of(dl_se));
 
 
 318	} else {
 319		/*
 320		 * Since "dl_non_contending" is not set, the
 321		 * task's utilization has already been removed from
 322		 * active utilization (either when the task blocked,
 323		 * when the "inactive timer" fired).
 324		 * So, add it back.
 325		 */
 326		add_running_bw(dl_se, dl_rq);
 327	}
 328}
 329
 330static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 331{
 332	struct sched_dl_entity *dl_se = &p->dl;
 333
 334	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 335}
 336
 337void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 338{
 339	raw_spin_lock_init(&dl_b->dl_runtime_lock);
 340	dl_b->dl_period = period;
 341	dl_b->dl_runtime = runtime;
 342}
 343
 344void init_dl_bw(struct dl_bw *dl_b)
 345{
 346	raw_spin_lock_init(&dl_b->lock);
 347	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 348	if (global_rt_runtime() == RUNTIME_INF)
 349		dl_b->bw = -1;
 350	else
 351		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 352	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 353	dl_b->total_bw = 0;
 354}
 355
 356void init_dl_rq(struct dl_rq *dl_rq)
 357{
 358	dl_rq->root = RB_ROOT_CACHED;
 359
 360#ifdef CONFIG_SMP
 361	/* zero means no -deadline tasks */
 362	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 363
 364	dl_rq->dl_nr_migratory = 0;
 365	dl_rq->overloaded = 0;
 366	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 367#else
 368	init_dl_bw(&dl_rq->dl_bw);
 369#endif
 370
 371	dl_rq->running_bw = 0;
 372	dl_rq->this_bw = 0;
 373	init_dl_rq_bw_ratio(dl_rq);
 374}
 375
 376#ifdef CONFIG_SMP
 377
 378static inline int dl_overloaded(struct rq *rq)
 379{
 380	return atomic_read(&rq->rd->dlo_count);
 381}
 382
 383static inline void dl_set_overload(struct rq *rq)
 384{
 385	if (!rq->online)
 386		return;
 387
 388	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 389	/*
 390	 * Must be visible before the overload count is
 391	 * set (as in sched_rt.c).
 392	 *
 393	 * Matched by the barrier in pull_dl_task().
 394	 */
 395	smp_wmb();
 396	atomic_inc(&rq->rd->dlo_count);
 397}
 398
 399static inline void dl_clear_overload(struct rq *rq)
 400{
 401	if (!rq->online)
 402		return;
 403
 404	atomic_dec(&rq->rd->dlo_count);
 405	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 406}
 407
 408static void update_dl_migration(struct dl_rq *dl_rq)
 409{
 410	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 411		if (!dl_rq->overloaded) {
 412			dl_set_overload(rq_of_dl_rq(dl_rq));
 413			dl_rq->overloaded = 1;
 414		}
 415	} else if (dl_rq->overloaded) {
 416		dl_clear_overload(rq_of_dl_rq(dl_rq));
 417		dl_rq->overloaded = 0;
 418	}
 419}
 420
 421static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 422{
 423	struct task_struct *p = dl_task_of(dl_se);
 424
 425	if (p->nr_cpus_allowed > 1)
 426		dl_rq->dl_nr_migratory++;
 427
 428	update_dl_migration(dl_rq);
 429}
 430
 431static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 432{
 433	struct task_struct *p = dl_task_of(dl_se);
 434
 435	if (p->nr_cpus_allowed > 1)
 436		dl_rq->dl_nr_migratory--;
 437
 438	update_dl_migration(dl_rq);
 439}
 440
 441/*
 442 * The list of pushable -deadline task is not a plist, like in
 443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 444 */
 445static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 446{
 447	struct dl_rq *dl_rq = &rq->dl;
 448	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 449	struct rb_node *parent = NULL;
 450	struct task_struct *entry;
 451	bool leftmost = true;
 452
 453	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 454
 455	while (*link) {
 456		parent = *link;
 457		entry = rb_entry(parent, struct task_struct,
 458				 pushable_dl_tasks);
 459		if (dl_entity_preempt(&p->dl, &entry->dl))
 460			link = &parent->rb_left;
 461		else {
 462			link = &parent->rb_right;
 463			leftmost = false;
 464		}
 465	}
 466
 
 
 
 467	if (leftmost)
 468		dl_rq->earliest_dl.next = p->dl.deadline;
 469
 470	rb_link_node(&p->pushable_dl_tasks, parent, link);
 471	rb_insert_color_cached(&p->pushable_dl_tasks,
 472			       &dl_rq->pushable_dl_tasks_root, leftmost);
 
 473}
 474
 475static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 476{
 477	struct dl_rq *dl_rq = &rq->dl;
 
 
 478
 479	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 480		return;
 481
 482	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 483		struct rb_node *next_node;
 484
 485		next_node = rb_next(&p->pushable_dl_tasks);
 486		if (next_node) {
 487			dl_rq->earliest_dl.next = rb_entry(next_node,
 488				struct task_struct, pushable_dl_tasks)->dl.deadline;
 489		}
 490	}
 491
 492	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 493	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 494}
 495
 496static inline int has_pushable_dl_tasks(struct rq *rq)
 497{
 498	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 
 499}
 500
 501static int push_dl_task(struct rq *rq);
 502
 503static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 504{
 505	return dl_task(prev);
 506}
 507
 508static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 509static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 510
 511static void push_dl_tasks(struct rq *);
 512static void pull_dl_task(struct rq *);
 513
 514static inline void deadline_queue_push_tasks(struct rq *rq)
 515{
 516	if (!has_pushable_dl_tasks(rq))
 517		return;
 518
 519	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 520}
 521
 522static inline void deadline_queue_pull_task(struct rq *rq)
 523{
 524	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 525}
 526
 527static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 528
 529static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 530{
 531	struct rq *later_rq = NULL;
 532	struct dl_bw *dl_b;
 533
 534	later_rq = find_lock_later_rq(p, rq);
 535	if (!later_rq) {
 536		int cpu;
 537
 538		/*
 539		 * If we cannot preempt any rq, fall back to pick any
 540		 * online CPU:
 541		 */
 542		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 543		if (cpu >= nr_cpu_ids) {
 544			/*
 545			 * Failed to find any suitable CPU.
 546			 * The task will never come back!
 547			 */
 548			BUG_ON(dl_bandwidth_enabled());
 549
 550			/*
 551			 * If admission control is disabled we
 552			 * try a little harder to let the task
 553			 * run.
 554			 */
 555			cpu = cpumask_any(cpu_active_mask);
 556		}
 557		later_rq = cpu_rq(cpu);
 558		double_lock_balance(rq, later_rq);
 559	}
 560
 561	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 562		/*
 563		 * Inactive timer is armed (or callback is running, but
 564		 * waiting for us to release rq locks). In any case, when it
 565		 * will fire (or continue), it will see running_bw of this
 566		 * task migrated to later_rq (and correctly handle it).
 567		 */
 568		sub_running_bw(&p->dl, &rq->dl);
 569		sub_rq_bw(&p->dl, &rq->dl);
 570
 571		add_rq_bw(&p->dl, &later_rq->dl);
 572		add_running_bw(&p->dl, &later_rq->dl);
 573	} else {
 574		sub_rq_bw(&p->dl, &rq->dl);
 575		add_rq_bw(&p->dl, &later_rq->dl);
 576	}
 577
 578	/*
 579	 * And we finally need to fixup root_domain(s) bandwidth accounting,
 580	 * since p is still hanging out in the old (now moved to default) root
 581	 * domain.
 582	 */
 583	dl_b = &rq->rd->dl_bw;
 584	raw_spin_lock(&dl_b->lock);
 585	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 586	raw_spin_unlock(&dl_b->lock);
 587
 588	dl_b = &later_rq->rd->dl_bw;
 589	raw_spin_lock(&dl_b->lock);
 590	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 591	raw_spin_unlock(&dl_b->lock);
 592
 593	set_task_cpu(p, later_rq->cpu);
 594	double_unlock_balance(later_rq, rq);
 595
 596	return later_rq;
 597}
 598
 599#else
 600
 601static inline
 602void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 603{
 604}
 605
 606static inline
 607void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 608{
 609}
 610
 611static inline
 612void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 613{
 614}
 615
 616static inline
 617void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 618{
 619}
 620
 621static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 622{
 623	return false;
 624}
 625
 626static inline void pull_dl_task(struct rq *rq)
 627{
 628}
 629
 630static inline void deadline_queue_push_tasks(struct rq *rq)
 631{
 632}
 633
 634static inline void deadline_queue_pull_task(struct rq *rq)
 635{
 636}
 637#endif /* CONFIG_SMP */
 638
 
 
 639static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 640static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 641static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 
 
 
 
 
 
 
 
 642
 643/*
 644 * We are being explicitly informed that a new instance is starting,
 645 * and this means that:
 646 *  - the absolute deadline of the entity has to be placed at
 647 *    current time + relative deadline;
 648 *  - the runtime of the entity has to be set to the maximum value.
 649 *
 650 * The capability of specifying such event is useful whenever a -deadline
 651 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 652 * one, and to (try to!) reconcile itself with its own scheduling
 653 * parameters.
 654 */
 655static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 656{
 657	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 658	struct rq *rq = rq_of_dl_rq(dl_rq);
 659
 660	WARN_ON(dl_se->dl_boosted);
 661	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 662
 663	/*
 664	 * We are racing with the deadline timer. So, do nothing because
 665	 * the deadline timer handler will take care of properly recharging
 666	 * the runtime and postponing the deadline
 667	 */
 668	if (dl_se->dl_throttled)
 669		return;
 670
 671	/*
 672	 * We use the regular wall clock time to set deadlines in the
 673	 * future; in fact, we must consider execution overheads (time
 674	 * spent on hardirq context, etc.).
 675	 */
 676	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 677	dl_se->runtime = dl_se->dl_runtime;
 678}
 679
 680/*
 681 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 682 * possibility of a entity lasting more than what it declared, and thus
 683 * exhausting its runtime.
 684 *
 685 * Here we are interested in making runtime overrun possible, but we do
 686 * not want a entity which is misbehaving to affect the scheduling of all
 687 * other entities.
 688 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 689 * is used, in order to confine each entity within its own bandwidth.
 690 *
 691 * This function deals exactly with that, and ensures that when the runtime
 692 * of a entity is replenished, its deadline is also postponed. That ensures
 693 * the overrunning entity can't interfere with other entity in the system and
 694 * can't make them miss their deadlines. Reasons why this kind of overruns
 695 * could happen are, typically, a entity voluntarily trying to overcome its
 696 * runtime, or it just underestimated it during sched_setattr().
 697 */
 698static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 699				struct sched_dl_entity *pi_se)
 700{
 701	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 702	struct rq *rq = rq_of_dl_rq(dl_rq);
 703
 704	BUG_ON(pi_se->dl_runtime <= 0);
 705
 706	/*
 707	 * This could be the case for a !-dl task that is boosted.
 708	 * Just go with full inherited parameters.
 709	 */
 710	if (dl_se->dl_deadline == 0) {
 711		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 712		dl_se->runtime = pi_se->dl_runtime;
 713	}
 714
 715	if (dl_se->dl_yielded && dl_se->runtime > 0)
 716		dl_se->runtime = 0;
 717
 718	/*
 719	 * We keep moving the deadline away until we get some
 720	 * available runtime for the entity. This ensures correct
 721	 * handling of situations where the runtime overrun is
 722	 * arbitrary large.
 723	 */
 724	while (dl_se->runtime <= 0) {
 725		dl_se->deadline += pi_se->dl_period;
 726		dl_se->runtime += pi_se->dl_runtime;
 727	}
 728
 729	/*
 730	 * At this point, the deadline really should be "in
 731	 * the future" with respect to rq->clock. If it's
 732	 * not, we are, for some reason, lagging too much!
 733	 * Anyway, after having warn userspace abut that,
 734	 * we still try to keep the things running by
 735	 * resetting the deadline and the budget of the
 736	 * entity.
 737	 */
 738	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 739		printk_deferred_once("sched: DL replenish lagged too much\n");
 740		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 741		dl_se->runtime = pi_se->dl_runtime;
 742	}
 743
 744	if (dl_se->dl_yielded)
 745		dl_se->dl_yielded = 0;
 746	if (dl_se->dl_throttled)
 747		dl_se->dl_throttled = 0;
 748}
 749
 750/*
 751 * Here we check if --at time t-- an entity (which is probably being
 752 * [re]activated or, in general, enqueued) can use its remaining runtime
 753 * and its current deadline _without_ exceeding the bandwidth it is
 754 * assigned (function returns true if it can't). We are in fact applying
 755 * one of the CBS rules: when a task wakes up, if the residual runtime
 756 * over residual deadline fits within the allocated bandwidth, then we
 757 * can keep the current (absolute) deadline and residual budget without
 758 * disrupting the schedulability of the system. Otherwise, we should
 759 * refill the runtime and set the deadline a period in the future,
 760 * because keeping the current (absolute) deadline of the task would
 761 * result in breaking guarantees promised to other tasks (refer to
 762 * Documentation/scheduler/sched-deadline.rst for more information).
 763 *
 764 * This function returns true if:
 765 *
 766 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 767 *
 768 * IOW we can't recycle current parameters.
 769 *
 770 * Notice that the bandwidth check is done against the deadline. For
 771 * task with deadline equal to period this is the same of using
 772 * dl_period instead of dl_deadline in the equation above.
 773 */
 774static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 775			       struct sched_dl_entity *pi_se, u64 t)
 776{
 777	u64 left, right;
 778
 779	/*
 780	 * left and right are the two sides of the equation above,
 781	 * after a bit of shuffling to use multiplications instead
 782	 * of divisions.
 783	 *
 784	 * Note that none of the time values involved in the two
 785	 * multiplications are absolute: dl_deadline and dl_runtime
 786	 * are the relative deadline and the maximum runtime of each
 787	 * instance, runtime is the runtime left for the last instance
 788	 * and (deadline - t), since t is rq->clock, is the time left
 789	 * to the (absolute) deadline. Even if overflowing the u64 type
 790	 * is very unlikely to occur in both cases, here we scale down
 791	 * as we want to avoid that risk at all. Scaling down by 10
 792	 * means that we reduce granularity to 1us. We are fine with it,
 793	 * since this is only a true/false check and, anyway, thinking
 794	 * of anything below microseconds resolution is actually fiction
 795	 * (but still we want to give the user that illusion >;).
 796	 */
 797	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 798	right = ((dl_se->deadline - t) >> DL_SCALE) *
 799		(pi_se->dl_runtime >> DL_SCALE);
 800
 801	return dl_time_before(right, left);
 802}
 803
 804/*
 805 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 806 * re-initializing task's runtime and deadline, the revised wakeup
 807 * rule adjusts the task's runtime to avoid the task to overrun its
 808 * density.
 809 *
 810 * Reasoning: a task may overrun the density if:
 811 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 812 *
 813 * Therefore, runtime can be adjusted to:
 814 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 815 *
 816 * In such way that runtime will be equal to the maximum density
 817 * the task can use without breaking any rule.
 818 *
 819 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 820 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 821 */
 822static void
 823update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 824{
 825	u64 laxity = dl_se->deadline - rq_clock(rq);
 826
 827	/*
 828	 * If the task has deadline < period, and the deadline is in the past,
 829	 * it should already be throttled before this check.
 830	 *
 831	 * See update_dl_entity() comments for further details.
 832	 */
 833	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 834
 835	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 836}
 837
 838/*
 839 * Regarding the deadline, a task with implicit deadline has a relative
 840 * deadline == relative period. A task with constrained deadline has a
 841 * relative deadline <= relative period.
 842 *
 843 * We support constrained deadline tasks. However, there are some restrictions
 844 * applied only for tasks which do not have an implicit deadline. See
 845 * update_dl_entity() to know more about such restrictions.
 846 *
 847 * The dl_is_implicit() returns true if the task has an implicit deadline.
 848 */
 849static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 850{
 851	return dl_se->dl_deadline == dl_se->dl_period;
 852}
 853
 854/*
 855 * When a deadline entity is placed in the runqueue, its runtime and deadline
 856 * might need to be updated. This is done by a CBS wake up rule. There are two
 857 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 858 *
 859 * When the task is starting a new period, the Original CBS is used. In this
 860 * case, the runtime is replenished and a new absolute deadline is set.
 861 *
 862 * When a task is queued before the begin of the next period, using the
 863 * remaining runtime and deadline could make the entity to overflow, see
 864 * dl_entity_overflow() to find more about runtime overflow. When such case
 865 * is detected, the runtime and deadline need to be updated.
 866 *
 867 * If the task has an implicit deadline, i.e., deadline == period, the Original
 868 * CBS is applied. the runtime is replenished and a new absolute deadline is
 869 * set, as in the previous cases.
 870 *
 871 * However, the Original CBS does not work properly for tasks with
 872 * deadline < period, which are said to have a constrained deadline. By
 873 * applying the Original CBS, a constrained deadline task would be able to run
 874 * runtime/deadline in a period. With deadline < period, the task would
 875 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 876 *
 877 * In order to prevent this misbehave, the Revisited CBS is used for
 878 * constrained deadline tasks when a runtime overflow is detected. In the
 879 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 880 * the remaining runtime of the task is reduced to avoid runtime overflow.
 881 * Please refer to the comments update_dl_revised_wakeup() function to find
 882 * more about the Revised CBS rule.
 883 */
 884static void update_dl_entity(struct sched_dl_entity *dl_se,
 885			     struct sched_dl_entity *pi_se)
 886{
 887	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 888	struct rq *rq = rq_of_dl_rq(dl_rq);
 889
 890	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 891	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 892
 893		if (unlikely(!dl_is_implicit(dl_se) &&
 894			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 895			     !dl_se->dl_boosted)){
 896			update_dl_revised_wakeup(dl_se, rq);
 897			return;
 898		}
 899
 900		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 901		dl_se->runtime = pi_se->dl_runtime;
 902	}
 903}
 904
 905static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 906{
 907	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 908}
 909
 910/*
 911 * If the entity depleted all its runtime, and if we want it to sleep
 912 * while waiting for some new execution time to become available, we
 913 * set the bandwidth replenishment timer to the replenishment instant
 914 * and try to activate it.
 915 *
 916 * Notice that it is important for the caller to know if the timer
 917 * actually started or not (i.e., the replenishment instant is in
 918 * the future or in the past).
 919 */
 920static int start_dl_timer(struct task_struct *p)
 921{
 922	struct sched_dl_entity *dl_se = &p->dl;
 923	struct hrtimer *timer = &dl_se->dl_timer;
 924	struct rq *rq = task_rq(p);
 
 925	ktime_t now, act;
 926	s64 delta;
 927
 928	lockdep_assert_held(&rq->lock);
 929
 930	/*
 931	 * We want the timer to fire at the deadline, but considering
 932	 * that it is actually coming from rq->clock and not from
 933	 * hrtimer's time base reading.
 934	 */
 935	act = ns_to_ktime(dl_next_period(dl_se));
 936	now = hrtimer_cb_get_time(timer);
 937	delta = ktime_to_ns(now) - rq_clock(rq);
 938	act = ktime_add_ns(act, delta);
 939
 940	/*
 941	 * If the expiry time already passed, e.g., because the value
 942	 * chosen as the deadline is too small, don't even try to
 943	 * start the timer in the past!
 944	 */
 945	if (ktime_us_delta(act, now) < 0)
 946		return 0;
 947
 948	/*
 949	 * !enqueued will guarantee another callback; even if one is already in
 950	 * progress. This ensures a balanced {get,put}_task_struct().
 951	 *
 952	 * The race against __run_timer() clearing the enqueued state is
 953	 * harmless because we're holding task_rq()->lock, therefore the timer
 954	 * expiring after we've done the check will wait on its task_rq_lock()
 955	 * and observe our state.
 956	 */
 957	if (!hrtimer_is_queued(timer)) {
 958		get_task_struct(p);
 
 959		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
 960	}
 961
 962	return 1;
 963}
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965/*
 966 * This is the bandwidth enforcement timer callback. If here, we know
 967 * a task is not on its dl_rq, since the fact that the timer was running
 968 * means the task is throttled and needs a runtime replenishment.
 969 *
 970 * However, what we actually do depends on the fact the task is active,
 971 * (it is on its rq) or has been removed from there by a call to
 972 * dequeue_task_dl(). In the former case we must issue the runtime
 973 * replenishment and add the task back to the dl_rq; in the latter, we just
 974 * do nothing but clearing dl_throttled, so that runtime and deadline
 975 * updating (and the queueing back to dl_rq) will be done by the
 976 * next call to enqueue_task_dl().
 977 */
 978static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 979{
 980	struct sched_dl_entity *dl_se = container_of(timer,
 981						     struct sched_dl_entity,
 982						     dl_timer);
 983	struct task_struct *p = dl_task_of(dl_se);
 984	struct rq_flags rf;
 985	struct rq *rq;
 986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987	rq = task_rq_lock(p, &rf);
 988
 989	/*
 990	 * The task might have changed its scheduling policy to something
 991	 * different than SCHED_DEADLINE (through switched_from_dl()).
 992	 */
 993	if (!dl_task(p))
 994		goto unlock;
 995
 996	/*
 997	 * The task might have been boosted by someone else and might be in the
 998	 * boosting/deboosting path, its not throttled.
 999	 */
1000	if (dl_se->dl_boosted)
1001		goto unlock;
1002
1003	/*
1004	 * Spurious timer due to start_dl_timer() race; or we already received
1005	 * a replenishment from rt_mutex_setprio().
1006	 */
1007	if (!dl_se->dl_throttled)
1008		goto unlock;
1009
1010	sched_clock_tick();
1011	update_rq_clock(rq);
1012
1013	/*
1014	 * If the throttle happened during sched-out; like:
1015	 *
1016	 *   schedule()
1017	 *     deactivate_task()
1018	 *       dequeue_task_dl()
1019	 *         update_curr_dl()
1020	 *           start_dl_timer()
1021	 *         __dequeue_task_dl()
1022	 *     prev->on_rq = 0;
1023	 *
1024	 * We can be both throttled and !queued. Replenish the counter
1025	 * but do not enqueue -- wait for our wakeup to do that.
1026	 */
1027	if (!task_on_rq_queued(p)) {
1028		replenish_dl_entity(dl_se, dl_se);
1029		goto unlock;
1030	}
1031
1032#ifdef CONFIG_SMP
1033	if (unlikely(!rq->online)) {
1034		/*
1035		 * If the runqueue is no longer available, migrate the
1036		 * task elsewhere. This necessarily changes rq.
1037		 */
1038		lockdep_unpin_lock(&rq->lock, rf.cookie);
1039		rq = dl_task_offline_migration(rq, p);
1040		rf.cookie = lockdep_pin_lock(&rq->lock);
1041		update_rq_clock(rq);
1042
1043		/*
1044		 * Now that the task has been migrated to the new RQ and we
1045		 * have that locked, proceed as normal and enqueue the task
1046		 * there.
1047		 */
1048	}
1049#endif
1050
1051	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1052	if (dl_task(rq->curr))
1053		check_preempt_curr_dl(rq, p, 0);
1054	else
1055		resched_curr(rq);
1056
1057#ifdef CONFIG_SMP
1058	/*
1059	 * Queueing this task back might have overloaded rq, check if we need
1060	 * to kick someone away.
1061	 */
1062	if (has_pushable_dl_tasks(rq)) {
1063		/*
1064		 * Nothing relies on rq->lock after this, so its safe to drop
1065		 * rq->lock.
1066		 */
1067		rq_unpin_lock(rq, &rf);
1068		push_dl_task(rq);
1069		rq_repin_lock(rq, &rf);
1070	}
1071#endif
1072
1073unlock:
1074	task_rq_unlock(rq, p, &rf);
1075
1076	/*
1077	 * This can free the task_struct, including this hrtimer, do not touch
1078	 * anything related to that after this.
1079	 */
1080	put_task_struct(p);
1081
1082	return HRTIMER_NORESTART;
1083}
1084
1085void init_dl_task_timer(struct sched_dl_entity *dl_se)
1086{
1087	struct hrtimer *timer = &dl_se->dl_timer;
1088
1089	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1090	timer->function = dl_task_timer;
1091}
1092
1093/*
1094 * During the activation, CBS checks if it can reuse the current task's
1095 * runtime and period. If the deadline of the task is in the past, CBS
1096 * cannot use the runtime, and so it replenishes the task. This rule
1097 * works fine for implicit deadline tasks (deadline == period), and the
1098 * CBS was designed for implicit deadline tasks. However, a task with
1099 * constrained deadline (deadine < period) might be awakened after the
1100 * deadline, but before the next period. In this case, replenishing the
1101 * task would allow it to run for runtime / deadline. As in this case
1102 * deadline < period, CBS enables a task to run for more than the
1103 * runtime / period. In a very loaded system, this can cause a domino
1104 * effect, making other tasks miss their deadlines.
1105 *
1106 * To avoid this problem, in the activation of a constrained deadline
1107 * task after the deadline but before the next period, throttle the
1108 * task and set the replenishing timer to the begin of the next period,
1109 * unless it is boosted.
1110 */
1111static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1112{
1113	struct task_struct *p = dl_task_of(dl_se);
1114	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1115
1116	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1117	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1118		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1119			return;
1120		dl_se->dl_throttled = 1;
1121		if (dl_se->runtime > 0)
1122			dl_se->runtime = 0;
1123	}
1124}
1125
1126static
1127int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1128{
1129	return (dl_se->runtime <= 0);
1130}
1131
1132extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1133
1134/*
1135 * This function implements the GRUB accounting rule:
1136 * according to the GRUB reclaiming algorithm, the runtime is
1137 * not decreased as "dq = -dt", but as
1138 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1139 * where u is the utilization of the task, Umax is the maximum reclaimable
1140 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1141 * as the difference between the "total runqueue utilization" and the
1142 * runqueue active utilization, and Uextra is the (per runqueue) extra
1143 * reclaimable utilization.
1144 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1145 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1146 * BW_SHIFT.
1147 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1148 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1149 * Since delta is a 64 bit variable, to have an overflow its value
1150 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1151 * So, overflow is not an issue here.
1152 */
1153static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1154{
 
1155	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1156	u64 u_act;
1157	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1158
1159	/*
1160	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1161	 * we compare u_inact + rq->dl.extra_bw with
1162	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1163	 * u_inact + rq->dl.extra_bw can be larger than
1164	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1165	 * leading to wrong results)
1166	 */
1167	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1168		u_act = u_act_min;
1169	else
1170		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1171
 
1172	return (delta * u_act) >> BW_SHIFT;
1173}
1174
1175/*
1176 * Update the current task's runtime statistics (provided it is still
1177 * a -deadline task and has not been removed from the dl_rq).
1178 */
1179static void update_curr_dl(struct rq *rq)
1180{
1181	struct task_struct *curr = rq->curr;
1182	struct sched_dl_entity *dl_se = &curr->dl;
1183	u64 delta_exec, scaled_delta_exec;
1184	int cpu = cpu_of(rq);
1185	u64 now;
1186
1187	if (!dl_task(curr) || !on_dl_rq(dl_se))
1188		return;
1189
1190	/*
1191	 * Consumed budget is computed considering the time as
1192	 * observed by schedulable tasks (excluding time spent
1193	 * in hardirq context, etc.). Deadlines are instead
1194	 * computed using hard walltime. This seems to be the more
1195	 * natural solution, but the full ramifications of this
1196	 * approach need further study.
1197	 */
1198	now = rq_clock_task(rq);
1199	delta_exec = now - curr->se.exec_start;
1200	if (unlikely((s64)delta_exec <= 0)) {
1201		if (unlikely(dl_se->dl_yielded))
1202			goto throttle;
1203		return;
1204	}
1205
1206	schedstat_set(curr->se.statistics.exec_max,
1207		      max(curr->se.statistics.exec_max, delta_exec));
1208
1209	curr->se.sum_exec_runtime += delta_exec;
1210	account_group_exec_runtime(curr, delta_exec);
1211
1212	curr->se.exec_start = now;
1213	cgroup_account_cputime(curr, delta_exec);
1214
1215	if (dl_entity_is_special(dl_se))
1216		return;
1217
1218	/*
1219	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1220	 * spare reclaimed bandwidth is used to clock down frequency.
1221	 *
1222	 * For the others, we still need to scale reservation parameters
1223	 * according to current frequency and CPU maximum capacity.
1224	 */
1225	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1226		scaled_delta_exec = grub_reclaim(delta_exec,
1227						 rq,
1228						 &curr->dl);
1229	} else {
 
1230		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1231		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1232
1233		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1234		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1235	}
1236
1237	dl_se->runtime -= scaled_delta_exec;
1238
1239throttle:
1240	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1241		dl_se->dl_throttled = 1;
1242
1243		/* If requested, inform the user about runtime overruns. */
1244		if (dl_runtime_exceeded(dl_se) &&
1245		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1246			dl_se->dl_overrun = 1;
1247
1248		__dequeue_task_dl(rq, curr, 0);
1249		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1250			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
 
 
 
 
 
 
 
 
 
1251
1252		if (!is_leftmost(curr, &rq->dl))
1253			resched_curr(rq);
1254	}
1255
1256	/*
1257	 * Because -- for now -- we share the rt bandwidth, we need to
1258	 * account our runtime there too, otherwise actual rt tasks
1259	 * would be able to exceed the shared quota.
1260	 *
1261	 * Account to the root rt group for now.
1262	 *
1263	 * The solution we're working towards is having the RT groups scheduled
1264	 * using deadline servers -- however there's a few nasties to figure
1265	 * out before that can happen.
1266	 */
1267	if (rt_bandwidth_enabled()) {
1268		struct rt_rq *rt_rq = &rq->rt;
1269
1270		raw_spin_lock(&rt_rq->rt_runtime_lock);
1271		/*
1272		 * We'll let actual RT tasks worry about the overflow here, we
1273		 * have our own CBS to keep us inline; only account when RT
1274		 * bandwidth is relevant.
1275		 */
1276		if (sched_rt_bandwidth_account(rt_rq))
1277			rt_rq->rt_time += delta_exec;
1278		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1279	}
1280}
1281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1283{
1284	struct sched_dl_entity *dl_se = container_of(timer,
1285						     struct sched_dl_entity,
1286						     inactive_timer);
1287	struct task_struct *p = dl_task_of(dl_se);
1288	struct rq_flags rf;
1289	struct rq *rq;
1290
1291	rq = task_rq_lock(p, &rf);
 
 
 
 
 
 
1292
1293	sched_clock_tick();
1294	update_rq_clock(rq);
1295
1296	if (!dl_task(p) || p->state == TASK_DEAD) {
 
 
 
1297		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1298
1299		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1300			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1301			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1302			dl_se->dl_non_contending = 0;
1303		}
1304
1305		raw_spin_lock(&dl_b->lock);
1306		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1307		raw_spin_unlock(&dl_b->lock);
1308		__dl_clear_params(p);
1309
1310		goto unlock;
1311	}
 
 
1312	if (dl_se->dl_non_contending == 0)
1313		goto unlock;
1314
1315	sub_running_bw(dl_se, &rq->dl);
1316	dl_se->dl_non_contending = 0;
1317unlock:
1318	task_rq_unlock(rq, p, &rf);
1319	put_task_struct(p);
 
 
 
 
 
1320
1321	return HRTIMER_NORESTART;
1322}
1323
1324void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1325{
1326	struct hrtimer *timer = &dl_se->inactive_timer;
1327
1328	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1329	timer->function = inactive_task_timer;
1330}
1331
 
 
 
1332#ifdef CONFIG_SMP
1333
1334static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1335{
1336	struct rq *rq = rq_of_dl_rq(dl_rq);
1337
1338	if (dl_rq->earliest_dl.curr == 0 ||
1339	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 
 
1340		dl_rq->earliest_dl.curr = deadline;
1341		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1342	}
1343}
1344
1345static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1346{
1347	struct rq *rq = rq_of_dl_rq(dl_rq);
1348
1349	/*
1350	 * Since we may have removed our earliest (and/or next earliest)
1351	 * task we must recompute them.
1352	 */
1353	if (!dl_rq->dl_nr_running) {
1354		dl_rq->earliest_dl.curr = 0;
1355		dl_rq->earliest_dl.next = 0;
1356		cpudl_clear(&rq->rd->cpudl, rq->cpu);
 
1357	} else {
1358		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1359		struct sched_dl_entity *entry;
1360
1361		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1362		dl_rq->earliest_dl.curr = entry->deadline;
1363		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1364	}
1365}
1366
1367#else
1368
1369static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1370static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1371
1372#endif /* CONFIG_SMP */
1373
1374static inline
1375void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1376{
1377	int prio = dl_task_of(dl_se)->prio;
1378	u64 deadline = dl_se->deadline;
1379
1380	WARN_ON(!dl_prio(prio));
1381	dl_rq->dl_nr_running++;
1382	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1383
1384	inc_dl_deadline(dl_rq, deadline);
1385	inc_dl_migration(dl_se, dl_rq);
1386}
1387
1388static inline
1389void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1390{
1391	int prio = dl_task_of(dl_se)->prio;
1392
1393	WARN_ON(!dl_prio(prio));
1394	WARN_ON(!dl_rq->dl_nr_running);
1395	dl_rq->dl_nr_running--;
1396	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1397
1398	dec_dl_deadline(dl_rq, dl_se->deadline);
1399	dec_dl_migration(dl_se, dl_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400}
1401
1402static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1403{
1404	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1405	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1406	struct rb_node *parent = NULL;
1407	struct sched_dl_entity *entry;
1408	int leftmost = 1;
1409
1410	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1411
1412	while (*link) {
1413		parent = *link;
1414		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1415		if (dl_time_before(dl_se->deadline, entry->deadline))
1416			link = &parent->rb_left;
1417		else {
1418			link = &parent->rb_right;
1419			leftmost = 0;
1420		}
1421	}
1422
1423	rb_link_node(&dl_se->rb_node, parent, link);
1424	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
 
1425
1426	inc_dl_tasks(dl_se, dl_rq);
1427}
1428
1429static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1430{
1431	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1432
1433	if (RB_EMPTY_NODE(&dl_se->rb_node))
1434		return;
1435
1436	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
 
1437	RB_CLEAR_NODE(&dl_se->rb_node);
1438
1439	dec_dl_tasks(dl_se, dl_rq);
1440}
1441
1442static void
1443enqueue_dl_entity(struct sched_dl_entity *dl_se,
1444		  struct sched_dl_entity *pi_se, int flags)
1445{
1446	BUG_ON(on_dl_rq(dl_se));
1447
1448	/*
1449	 * If this is a wakeup or a new instance, the scheduling
1450	 * parameters of the task might need updating. Otherwise,
1451	 * we want a replenishment of its runtime.
1452	 */
1453	if (flags & ENQUEUE_WAKEUP) {
1454		task_contending(dl_se, flags);
1455		update_dl_entity(dl_se, pi_se);
1456	} else if (flags & ENQUEUE_REPLENISH) {
1457		replenish_dl_entity(dl_se, pi_se);
1458	} else if ((flags & ENQUEUE_RESTORE) &&
1459		  dl_time_before(dl_se->deadline,
1460				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1461		setup_new_dl_entity(dl_se);
1462	}
1463
1464	__enqueue_dl_entity(dl_se);
1465}
1466
1467static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1468{
1469	__dequeue_dl_entity(dl_se);
1470}
1471
1472static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1473{
1474	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1475	struct sched_dl_entity *pi_se = &p->dl;
1476
1477	/*
1478	 * Use the scheduling parameters of the top pi-waiter task if:
1479	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1480	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1481	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1482	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1483	 * Otherwise we keep our runtime and deadline.
1484	 */
1485	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1486		pi_se = &pi_task->dl;
1487	} else if (!dl_prio(p->normal_prio)) {
1488		/*
1489		 * Special case in which we have a !SCHED_DEADLINE task
1490		 * that is going to be deboosted, but exceeds its
1491		 * runtime while doing so. No point in replenishing
1492		 * it, as it's going to return back to its original
1493		 * scheduling class after this.
1494		 */
1495		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1496		return;
1497	}
1498
1499	/*
1500	 * Check if a constrained deadline task was activated
1501	 * after the deadline but before the next period.
1502	 * If that is the case, the task will be throttled and
1503	 * the replenishment timer will be set to the next period.
1504	 */
1505	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1506		dl_check_constrained_dl(&p->dl);
1507
1508	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1509		add_rq_bw(&p->dl, &rq->dl);
1510		add_running_bw(&p->dl, &rq->dl);
 
 
1511	}
1512
1513	/*
1514	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1515	 * its budget it needs a replenishment and, since it now is on
1516	 * its rq, the bandwidth timer callback (which clearly has not
1517	 * run yet) will take care of this.
1518	 * However, the active utilization does not depend on the fact
1519	 * that the task is on the runqueue or not (but depends on the
1520	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1521	 * In other words, even if a task is throttled its utilization must
1522	 * be counted in the active utilization; hence, we need to call
1523	 * add_running_bw().
1524	 */
1525	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1526		if (flags & ENQUEUE_WAKEUP)
1527			task_contending(&p->dl, flags);
1528
1529		return;
1530	}
1531
1532	enqueue_dl_entity(&p->dl, pi_se, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1533
1534	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1535		enqueue_pushable_dl_task(rq, p);
1536}
1537
1538static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1539{
1540	dequeue_dl_entity(&p->dl);
1541	dequeue_pushable_dl_task(rq, p);
1542}
1543
1544static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1545{
1546	update_curr_dl(rq);
1547	__dequeue_task_dl(rq, p, flags);
1548
1549	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1550		sub_running_bw(&p->dl, &rq->dl);
1551		sub_rq_bw(&p->dl, &rq->dl);
1552	}
1553
1554	/*
1555	 * This check allows to start the inactive timer (or to immediately
1556	 * decrease the active utilization, if needed) in two cases:
1557	 * when the task blocks and when it is terminating
1558	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1559	 * way, because from GRUB's point of view the same thing is happening
1560	 * (the task moves from "active contending" to "active non contending"
1561	 * or "inactive")
1562	 */
1563	if (flags & DEQUEUE_SLEEP)
1564		task_non_contending(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565}
1566
1567/*
1568 * Yield task semantic for -deadline tasks is:
1569 *
1570 *   get off from the CPU until our next instance, with
1571 *   a new runtime. This is of little use now, since we
1572 *   don't have a bandwidth reclaiming mechanism. Anyway,
1573 *   bandwidth reclaiming is planned for the future, and
1574 *   yield_task_dl will indicate that some spare budget
1575 *   is available for other task instances to use it.
1576 */
1577static void yield_task_dl(struct rq *rq)
1578{
1579	/*
1580	 * We make the task go to sleep until its current deadline by
1581	 * forcing its runtime to zero. This way, update_curr_dl() stops
1582	 * it and the bandwidth timer will wake it up and will give it
1583	 * new scheduling parameters (thanks to dl_yielded=1).
1584	 */
1585	rq->curr->dl.dl_yielded = 1;
1586
1587	update_rq_clock(rq);
1588	update_curr_dl(rq);
1589	/*
1590	 * Tell update_rq_clock() that we've just updated,
1591	 * so we don't do microscopic update in schedule()
1592	 * and double the fastpath cost.
1593	 */
1594	rq_clock_skip_update(rq);
1595}
1596
1597#ifdef CONFIG_SMP
1598
 
 
 
 
 
 
 
 
1599static int find_later_rq(struct task_struct *task);
1600
1601static int
1602select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1603{
1604	struct task_struct *curr;
 
1605	struct rq *rq;
1606
1607	if (sd_flag != SD_BALANCE_WAKE)
1608		goto out;
1609
1610	rq = cpu_rq(cpu);
1611
1612	rcu_read_lock();
1613	curr = READ_ONCE(rq->curr); /* unlocked access */
1614
1615	/*
1616	 * If we are dealing with a -deadline task, we must
1617	 * decide where to wake it up.
1618	 * If it has a later deadline and the current task
1619	 * on this rq can't move (provided the waking task
1620	 * can!) we prefer to send it somewhere else. On the
1621	 * other hand, if it has a shorter deadline, we
1622	 * try to make it stay here, it might be important.
1623	 */
1624	if (unlikely(dl_task(curr)) &&
1625	    (curr->nr_cpus_allowed < 2 ||
1626	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1627	    (p->nr_cpus_allowed > 1)) {
 
 
 
 
 
 
 
 
 
1628		int target = find_later_rq(p);
1629
1630		if (target != -1 &&
1631				(dl_time_before(p->dl.deadline,
1632					cpu_rq(target)->dl.earliest_dl.curr) ||
1633				(cpu_rq(target)->dl.dl_nr_running == 0)))
1634			cpu = target;
1635	}
1636	rcu_read_unlock();
1637
1638out:
1639	return cpu;
1640}
1641
1642static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1643{
 
1644	struct rq *rq;
1645
1646	if (p->state != TASK_WAKING)
1647		return;
1648
1649	rq = task_rq(p);
1650	/*
1651	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1652	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1653	 * rq->lock is not... So, lock it
1654	 */
1655	raw_spin_lock(&rq->lock);
1656	if (p->dl.dl_non_contending) {
 
1657		sub_running_bw(&p->dl, &rq->dl);
1658		p->dl.dl_non_contending = 0;
1659		/*
1660		 * If the timer handler is currently running and the
1661		 * timer cannot be cancelled, inactive_task_timer()
1662		 * will see that dl_not_contending is not set, and
1663		 * will not touch the rq's active utilization,
1664		 * so we are still safe.
1665		 */
1666		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1667			put_task_struct(p);
1668	}
1669	sub_rq_bw(&p->dl, &rq->dl);
1670	raw_spin_unlock(&rq->lock);
1671}
1672
1673static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1674{
1675	/*
1676	 * Current can't be migrated, useless to reschedule,
1677	 * let's hope p can move out.
1678	 */
1679	if (rq->curr->nr_cpus_allowed == 1 ||
1680	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1681		return;
1682
1683	/*
1684	 * p is migratable, so let's not schedule it and
1685	 * see if it is pushed or pulled somewhere else.
1686	 */
1687	if (p->nr_cpus_allowed != 1 &&
1688	    cpudl_find(&rq->rd->cpudl, p, NULL))
1689		return;
1690
1691	resched_curr(rq);
1692}
1693
1694static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1695{
1696	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1697		/*
1698		 * This is OK, because current is on_cpu, which avoids it being
1699		 * picked for load-balance and preemption/IRQs are still
1700		 * disabled avoiding further scheduler activity on it and we've
1701		 * not yet started the picking loop.
1702		 */
1703		rq_unpin_lock(rq, rf);
1704		pull_dl_task(rq);
1705		rq_repin_lock(rq, rf);
1706	}
1707
1708	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1709}
1710#endif /* CONFIG_SMP */
1711
1712/*
1713 * Only called when both the current and waking task are -deadline
1714 * tasks.
1715 */
1716static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1717				  int flags)
1718{
1719	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1720		resched_curr(rq);
1721		return;
1722	}
1723
1724#ifdef CONFIG_SMP
1725	/*
1726	 * In the unlikely case current and p have the same deadline
1727	 * let us try to decide what's the best thing to do...
1728	 */
1729	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1730	    !test_tsk_need_resched(rq->curr))
1731		check_preempt_equal_dl(rq, p);
1732#endif /* CONFIG_SMP */
1733}
1734
1735#ifdef CONFIG_SCHED_HRTICK
1736static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1737{
1738	hrtick_start(rq, p->dl.runtime);
1739}
1740#else /* !CONFIG_SCHED_HRTICK */
1741static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1742{
1743}
1744#endif
1745
1746static void set_next_task_dl(struct rq *rq, struct task_struct *p)
1747{
 
 
 
1748	p->se.exec_start = rq_clock_task(rq);
 
 
1749
1750	/* You can't push away the running task */
1751	dequeue_pushable_dl_task(rq, p);
1752
1753	if (hrtick_enabled(rq))
1754		start_hrtick_dl(rq, p);
1755
1756	if (rq->curr->sched_class != &dl_sched_class)
1757		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1758
1759	deadline_queue_push_tasks(rq);
1760}
1761
1762static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1763						   struct dl_rq *dl_rq)
1764{
1765	struct rb_node *left = rb_first_cached(&dl_rq->root);
1766
1767	if (!left)
1768		return NULL;
1769
1770	return rb_entry(left, struct sched_dl_entity, rb_node);
1771}
1772
1773static struct task_struct *
1774pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1775{
1776	struct sched_dl_entity *dl_se;
1777	struct dl_rq *dl_rq = &rq->dl;
1778	struct task_struct *p;
1779
1780	WARN_ON_ONCE(prev || rf);
1781
1782	if (!sched_dl_runnable(rq))
1783		return NULL;
1784
1785	dl_se = pick_next_dl_entity(rq, dl_rq);
1786	BUG_ON(!dl_se);
1787	p = dl_task_of(dl_se);
1788	set_next_task_dl(rq, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789	return p;
1790}
1791
1792static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1793{
 
 
 
 
 
 
1794	update_curr_dl(rq);
1795
1796	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1797	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1798		enqueue_pushable_dl_task(rq, p);
1799}
1800
1801/*
1802 * scheduler tick hitting a task of our scheduling class.
1803 *
1804 * NOTE: This function can be called remotely by the tick offload that
1805 * goes along full dynticks. Therefore no local assumption can be made
1806 * and everything must be accessed through the @rq and @curr passed in
1807 * parameters.
1808 */
1809static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1810{
1811	update_curr_dl(rq);
1812
1813	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1814	/*
1815	 * Even when we have runtime, update_curr_dl() might have resulted in us
1816	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1817	 * be set and schedule() will start a new hrtick for the next task.
1818	 */
1819	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1820	    is_leftmost(p, &rq->dl))
1821		start_hrtick_dl(rq, p);
1822}
1823
1824static void task_fork_dl(struct task_struct *p)
1825{
1826	/*
1827	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1828	 * sched_fork()
1829	 */
1830}
1831
1832#ifdef CONFIG_SMP
1833
1834/* Only try algorithms three times */
1835#define DL_MAX_TRIES 3
1836
1837static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1838{
1839	if (!task_running(rq, p) &&
1840	    cpumask_test_cpu(cpu, p->cpus_ptr))
1841		return 1;
1842	return 0;
1843}
1844
1845/*
1846 * Return the earliest pushable rq's task, which is suitable to be executed
1847 * on the CPU, NULL otherwise:
1848 */
1849static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1850{
1851	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1852	struct task_struct *p = NULL;
 
1853
1854	if (!has_pushable_dl_tasks(rq))
1855		return NULL;
1856
 
 
1857next_node:
1858	if (next_node) {
1859		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1860
1861		if (pick_dl_task(rq, p, cpu))
1862			return p;
1863
1864		next_node = rb_next(next_node);
1865		goto next_node;
1866	}
1867
1868	return NULL;
1869}
1870
1871static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1872
1873static int find_later_rq(struct task_struct *task)
1874{
1875	struct sched_domain *sd;
1876	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1877	int this_cpu = smp_processor_id();
1878	int cpu = task_cpu(task);
1879
1880	/* Make sure the mask is initialized first */
1881	if (unlikely(!later_mask))
1882		return -1;
1883
1884	if (task->nr_cpus_allowed == 1)
1885		return -1;
1886
1887	/*
1888	 * We have to consider system topology and task affinity
1889	 * first, then we can look for a suitable CPU.
1890	 */
1891	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1892		return -1;
1893
1894	/*
1895	 * If we are here, some targets have been found, including
1896	 * the most suitable which is, among the runqueues where the
1897	 * current tasks have later deadlines than the task's one, the
1898	 * rq with the latest possible one.
1899	 *
1900	 * Now we check how well this matches with task's
1901	 * affinity and system topology.
1902	 *
1903	 * The last CPU where the task run is our first
1904	 * guess, since it is most likely cache-hot there.
1905	 */
1906	if (cpumask_test_cpu(cpu, later_mask))
1907		return cpu;
1908	/*
1909	 * Check if this_cpu is to be skipped (i.e., it is
1910	 * not in the mask) or not.
1911	 */
1912	if (!cpumask_test_cpu(this_cpu, later_mask))
1913		this_cpu = -1;
1914
1915	rcu_read_lock();
1916	for_each_domain(cpu, sd) {
1917		if (sd->flags & SD_WAKE_AFFINE) {
1918			int best_cpu;
1919
1920			/*
1921			 * If possible, preempting this_cpu is
1922			 * cheaper than migrating.
1923			 */
1924			if (this_cpu != -1 &&
1925			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1926				rcu_read_unlock();
1927				return this_cpu;
1928			}
1929
1930			best_cpu = cpumask_first_and(later_mask,
1931							sched_domain_span(sd));
1932			/*
1933			 * Last chance: if a CPU being in both later_mask
1934			 * and current sd span is valid, that becomes our
1935			 * choice. Of course, the latest possible CPU is
1936			 * already under consideration through later_mask.
1937			 */
1938			if (best_cpu < nr_cpu_ids) {
1939				rcu_read_unlock();
1940				return best_cpu;
1941			}
1942		}
1943	}
1944	rcu_read_unlock();
1945
1946	/*
1947	 * At this point, all our guesses failed, we just return
1948	 * 'something', and let the caller sort the things out.
1949	 */
1950	if (this_cpu != -1)
1951		return this_cpu;
1952
1953	cpu = cpumask_any(later_mask);
1954	if (cpu < nr_cpu_ids)
1955		return cpu;
1956
1957	return -1;
1958}
1959
1960/* Locks the rq it finds */
1961static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1962{
1963	struct rq *later_rq = NULL;
1964	int tries;
1965	int cpu;
1966
1967	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1968		cpu = find_later_rq(task);
1969
1970		if ((cpu == -1) || (cpu == rq->cpu))
1971			break;
1972
1973		later_rq = cpu_rq(cpu);
1974
1975		if (later_rq->dl.dl_nr_running &&
1976		    !dl_time_before(task->dl.deadline,
1977					later_rq->dl.earliest_dl.curr)) {
1978			/*
1979			 * Target rq has tasks of equal or earlier deadline,
1980			 * retrying does not release any lock and is unlikely
1981			 * to yield a different result.
1982			 */
1983			later_rq = NULL;
1984			break;
1985		}
1986
1987		/* Retry if something changed. */
1988		if (double_lock_balance(rq, later_rq)) {
1989			if (unlikely(task_rq(task) != rq ||
1990				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
1991				     task_running(rq, task) ||
1992				     !dl_task(task) ||
 
1993				     !task_on_rq_queued(task))) {
1994				double_unlock_balance(rq, later_rq);
1995				later_rq = NULL;
1996				break;
1997			}
1998		}
1999
2000		/*
2001		 * If the rq we found has no -deadline task, or
2002		 * its earliest one has a later deadline than our
2003		 * task, the rq is a good one.
2004		 */
2005		if (!later_rq->dl.dl_nr_running ||
2006		    dl_time_before(task->dl.deadline,
2007				   later_rq->dl.earliest_dl.curr))
2008			break;
2009
2010		/* Otherwise we try again. */
2011		double_unlock_balance(rq, later_rq);
2012		later_rq = NULL;
2013	}
2014
2015	return later_rq;
2016}
2017
2018static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2019{
2020	struct task_struct *p;
2021
2022	if (!has_pushable_dl_tasks(rq))
2023		return NULL;
2024
2025	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2026		     struct task_struct, pushable_dl_tasks);
2027
2028	BUG_ON(rq->cpu != task_cpu(p));
2029	BUG_ON(task_current(rq, p));
2030	BUG_ON(p->nr_cpus_allowed <= 1);
2031
2032	BUG_ON(!task_on_rq_queued(p));
2033	BUG_ON(!dl_task(p));
2034
2035	return p;
2036}
2037
2038/*
2039 * See if the non running -deadline tasks on this rq
2040 * can be sent to some other CPU where they can preempt
2041 * and start executing.
2042 */
2043static int push_dl_task(struct rq *rq)
2044{
2045	struct task_struct *next_task;
2046	struct rq *later_rq;
2047	int ret = 0;
2048
2049	if (!rq->dl.overloaded)
2050		return 0;
2051
2052	next_task = pick_next_pushable_dl_task(rq);
2053	if (!next_task)
2054		return 0;
2055
2056retry:
2057	if (WARN_ON(next_task == rq->curr))
2058		return 0;
2059
2060	/*
2061	 * If next_task preempts rq->curr, and rq->curr
2062	 * can move away, it makes sense to just reschedule
2063	 * without going further in pushing next_task.
2064	 */
2065	if (dl_task(rq->curr) &&
2066	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2067	    rq->curr->nr_cpus_allowed > 1) {
2068		resched_curr(rq);
2069		return 0;
2070	}
2071
 
 
 
 
 
 
2072	/* We might release rq lock */
2073	get_task_struct(next_task);
2074
2075	/* Will lock the rq it'll find */
2076	later_rq = find_lock_later_rq(next_task, rq);
2077	if (!later_rq) {
2078		struct task_struct *task;
2079
2080		/*
2081		 * We must check all this again, since
2082		 * find_lock_later_rq releases rq->lock and it is
2083		 * then possible that next_task has migrated.
2084		 */
2085		task = pick_next_pushable_dl_task(rq);
2086		if (task == next_task) {
2087			/*
2088			 * The task is still there. We don't try
2089			 * again, some other CPU will pull it when ready.
2090			 */
2091			goto out;
2092		}
2093
2094		if (!task)
2095			/* No more tasks */
2096			goto out;
2097
2098		put_task_struct(next_task);
2099		next_task = task;
2100		goto retry;
2101	}
2102
2103	deactivate_task(rq, next_task, 0);
2104	set_task_cpu(next_task, later_rq->cpu);
2105
2106	/*
2107	 * Update the later_rq clock here, because the clock is used
2108	 * by the cpufreq_update_util() inside __add_running_bw().
2109	 */
2110	update_rq_clock(later_rq);
2111	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2112	ret = 1;
2113
2114	resched_curr(later_rq);
2115
2116	double_unlock_balance(rq, later_rq);
2117
2118out:
2119	put_task_struct(next_task);
2120
2121	return ret;
2122}
2123
2124static void push_dl_tasks(struct rq *rq)
2125{
2126	/* push_dl_task() will return true if it moved a -deadline task */
2127	while (push_dl_task(rq))
2128		;
2129}
2130
2131static void pull_dl_task(struct rq *this_rq)
2132{
2133	int this_cpu = this_rq->cpu, cpu;
2134	struct task_struct *p;
2135	bool resched = false;
2136	struct rq *src_rq;
2137	u64 dmin = LONG_MAX;
2138
2139	if (likely(!dl_overloaded(this_rq)))
2140		return;
2141
2142	/*
2143	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2144	 * see overloaded we must also see the dlo_mask bit.
2145	 */
2146	smp_rmb();
2147
2148	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2149		if (this_cpu == cpu)
2150			continue;
2151
2152		src_rq = cpu_rq(cpu);
2153
2154		/*
2155		 * It looks racy, abd it is! However, as in sched_rt.c,
2156		 * we are fine with this.
2157		 */
2158		if (this_rq->dl.dl_nr_running &&
2159		    dl_time_before(this_rq->dl.earliest_dl.curr,
2160				   src_rq->dl.earliest_dl.next))
2161			continue;
2162
2163		/* Might drop this_rq->lock */
 
2164		double_lock_balance(this_rq, src_rq);
2165
2166		/*
2167		 * If there are no more pullable tasks on the
2168		 * rq, we're done with it.
2169		 */
2170		if (src_rq->dl.dl_nr_running <= 1)
2171			goto skip;
2172
2173		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2174
2175		/*
2176		 * We found a task to be pulled if:
2177		 *  - it preempts our current (if there's one),
2178		 *  - it will preempt the last one we pulled (if any).
2179		 */
2180		if (p && dl_time_before(p->dl.deadline, dmin) &&
2181		    (!this_rq->dl.dl_nr_running ||
2182		     dl_time_before(p->dl.deadline,
2183				    this_rq->dl.earliest_dl.curr))) {
2184			WARN_ON(p == src_rq->curr);
2185			WARN_ON(!task_on_rq_queued(p));
2186
2187			/*
2188			 * Then we pull iff p has actually an earlier
2189			 * deadline than the current task of its runqueue.
2190			 */
2191			if (dl_time_before(p->dl.deadline,
2192					   src_rq->curr->dl.deadline))
2193				goto skip;
2194
2195			resched = true;
2196
2197			deactivate_task(src_rq, p, 0);
2198			set_task_cpu(p, this_cpu);
2199			activate_task(this_rq, p, 0);
2200			dmin = p->dl.deadline;
 
 
 
2201
2202			/* Is there any other task even earlier? */
2203		}
2204skip:
2205		double_unlock_balance(this_rq, src_rq);
 
 
 
 
 
 
 
 
 
2206	}
2207
2208	if (resched)
2209		resched_curr(this_rq);
2210}
2211
2212/*
2213 * Since the task is not running and a reschedule is not going to happen
2214 * anytime soon on its runqueue, we try pushing it away now.
2215 */
2216static void task_woken_dl(struct rq *rq, struct task_struct *p)
2217{
2218	if (!task_running(rq, p) &&
2219	    !test_tsk_need_resched(rq->curr) &&
2220	    p->nr_cpus_allowed > 1 &&
2221	    dl_task(rq->curr) &&
2222	    (rq->curr->nr_cpus_allowed < 2 ||
2223	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2224		push_dl_tasks(rq);
2225	}
2226}
2227
2228static void set_cpus_allowed_dl(struct task_struct *p,
2229				const struct cpumask *new_mask)
2230{
2231	struct root_domain *src_rd;
2232	struct rq *rq;
2233
2234	BUG_ON(!dl_task(p));
2235
2236	rq = task_rq(p);
2237	src_rd = rq->rd;
2238	/*
2239	 * Migrating a SCHED_DEADLINE task between exclusive
2240	 * cpusets (different root_domains) entails a bandwidth
2241	 * update. We already made space for us in the destination
2242	 * domain (see cpuset_can_attach()).
2243	 */
2244	if (!cpumask_intersects(src_rd->span, new_mask)) {
2245		struct dl_bw *src_dl_b;
2246
2247		src_dl_b = dl_bw_of(cpu_of(rq));
2248		/*
2249		 * We now free resources of the root_domain we are migrating
2250		 * off. In the worst case, sched_setattr() may temporary fail
2251		 * until we complete the update.
2252		 */
2253		raw_spin_lock(&src_dl_b->lock);
2254		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2255		raw_spin_unlock(&src_dl_b->lock);
2256	}
2257
2258	set_cpus_allowed_common(p, new_mask);
2259}
2260
2261/* Assumes rq->lock is held */
2262static void rq_online_dl(struct rq *rq)
2263{
2264	if (rq->dl.overloaded)
2265		dl_set_overload(rq);
2266
2267	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2268	if (rq->dl.dl_nr_running > 0)
2269		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2270}
2271
2272/* Assumes rq->lock is held */
2273static void rq_offline_dl(struct rq *rq)
2274{
2275	if (rq->dl.overloaded)
2276		dl_clear_overload(rq);
2277
2278	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2279	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2280}
2281
2282void __init init_sched_dl_class(void)
2283{
2284	unsigned int i;
2285
2286	for_each_possible_cpu(i)
2287		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2288					GFP_KERNEL, cpu_to_node(i));
2289}
2290
2291void dl_add_task_root_domain(struct task_struct *p)
2292{
2293	struct rq_flags rf;
2294	struct rq *rq;
2295	struct dl_bw *dl_b;
2296
2297	rq = task_rq_lock(p, &rf);
2298	if (!dl_task(p))
2299		goto unlock;
 
 
 
 
2300
2301	dl_b = &rq->rd->dl_bw;
2302	raw_spin_lock(&dl_b->lock);
2303
2304	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2305
2306	raw_spin_unlock(&dl_b->lock);
2307
2308unlock:
2309	task_rq_unlock(rq, p, &rf);
2310}
2311
2312void dl_clear_root_domain(struct root_domain *rd)
2313{
2314	unsigned long flags;
2315
2316	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2317	rd->dl_bw.total_bw = 0;
2318	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2319}
2320
2321#endif /* CONFIG_SMP */
2322
2323static void switched_from_dl(struct rq *rq, struct task_struct *p)
2324{
2325	/*
2326	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2327	 * time is in the future). If the task switches back to dl before
2328	 * the "inactive timer" fires, it can continue to consume its current
2329	 * runtime using its current deadline. If it stays outside of
2330	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2331	 * will reset the task parameters.
2332	 */
2333	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2334		task_non_contending(p);
 
 
 
 
 
 
2335
2336	if (!task_on_rq_queued(p)) {
2337		/*
2338		 * Inactive timer is armed. However, p is leaving DEADLINE and
2339		 * might migrate away from this rq while continuing to run on
2340		 * some other class. We need to remove its contribution from
2341		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2342		 */
2343		if (p->dl.dl_non_contending)
2344			sub_running_bw(&p->dl, &rq->dl);
2345		sub_rq_bw(&p->dl, &rq->dl);
2346	}
2347
2348	/*
2349	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2350	 * at the 0-lag time, because the task could have been migrated
2351	 * while SCHED_OTHER in the meanwhile.
2352	 */
2353	if (p->dl.dl_non_contending)
2354		p->dl.dl_non_contending = 0;
2355
2356	/*
2357	 * Since this might be the only -deadline task on the rq,
2358	 * this is the right place to try to pull some other one
2359	 * from an overloaded CPU, if any.
2360	 */
2361	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2362		return;
2363
2364	deadline_queue_pull_task(rq);
2365}
2366
2367/*
2368 * When switching to -deadline, we may overload the rq, then
2369 * we try to push someone off, if possible.
2370 */
2371static void switched_to_dl(struct rq *rq, struct task_struct *p)
2372{
2373	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2374		put_task_struct(p);
2375
 
 
 
 
 
 
2376	/* If p is not queued we will update its parameters at next wakeup. */
2377	if (!task_on_rq_queued(p)) {
2378		add_rq_bw(&p->dl, &rq->dl);
2379
2380		return;
2381	}
2382
2383	if (rq->curr != p) {
2384#ifdef CONFIG_SMP
2385		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2386			deadline_queue_push_tasks(rq);
2387#endif
2388		if (dl_task(rq->curr))
2389			check_preempt_curr_dl(rq, p, 0);
2390		else
2391			resched_curr(rq);
 
 
2392	}
2393}
2394
2395/*
2396 * If the scheduling parameters of a -deadline task changed,
2397 * a push or pull operation might be needed.
2398 */
2399static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2400			    int oldprio)
2401{
2402	if (task_on_rq_queued(p) || rq->curr == p) {
 
 
2403#ifdef CONFIG_SMP
2404		/*
2405		 * This might be too much, but unfortunately
2406		 * we don't have the old deadline value, and
2407		 * we can't argue if the task is increasing
2408		 * or lowering its prio, so...
2409		 */
2410		if (!rq->dl.overloaded)
2411			deadline_queue_pull_task(rq);
2412
 
2413		/*
2414		 * If we now have a earlier deadline task than p,
2415		 * then reschedule, provided p is still on this
2416		 * runqueue.
2417		 */
2418		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2419			resched_curr(rq);
2420#else
2421		/*
2422		 * Again, we don't know if p has a earlier
2423		 * or later deadline, so let's blindly set a
2424		 * (maybe not needed) rescheduling point.
 
2425		 */
2426		resched_curr(rq);
2427#endif /* CONFIG_SMP */
 
2428	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2429}
 
 
 
2430
2431const struct sched_class dl_sched_class = {
2432	.next			= &rt_sched_class,
2433	.enqueue_task		= enqueue_task_dl,
2434	.dequeue_task		= dequeue_task_dl,
2435	.yield_task		= yield_task_dl,
2436
2437	.check_preempt_curr	= check_preempt_curr_dl,
2438
2439	.pick_next_task		= pick_next_task_dl,
2440	.put_prev_task		= put_prev_task_dl,
2441	.set_next_task		= set_next_task_dl,
2442
2443#ifdef CONFIG_SMP
2444	.balance		= balance_dl,
 
2445	.select_task_rq		= select_task_rq_dl,
2446	.migrate_task_rq	= migrate_task_rq_dl,
2447	.set_cpus_allowed       = set_cpus_allowed_dl,
2448	.rq_online              = rq_online_dl,
2449	.rq_offline             = rq_offline_dl,
2450	.task_woken		= task_woken_dl,
 
2451#endif
2452
2453	.task_tick		= task_tick_dl,
2454	.task_fork              = task_fork_dl,
2455
2456	.prio_changed           = prio_changed_dl,
2457	.switched_from		= switched_from_dl,
2458	.switched_to		= switched_to_dl,
2459
2460	.update_curr		= update_curr_dl,
 
 
 
2461};
2462
 
 
 
2463int sched_dl_global_validate(void)
2464{
2465	u64 runtime = global_rt_runtime();
2466	u64 period = global_rt_period();
2467	u64 new_bw = to_ratio(period, runtime);
 
2468	struct dl_bw *dl_b;
2469	int cpu, ret = 0;
2470	unsigned long flags;
2471
2472	/*
2473	 * Here we want to check the bandwidth not being set to some
2474	 * value smaller than the currently allocated bandwidth in
2475	 * any of the root_domains.
2476	 *
2477	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2478	 * cycling on root_domains... Discussion on different/better
2479	 * solutions is welcome!
2480	 */
2481	for_each_possible_cpu(cpu) {
2482		rcu_read_lock_sched();
 
 
 
 
2483		dl_b = dl_bw_of(cpu);
 
2484
2485		raw_spin_lock_irqsave(&dl_b->lock, flags);
2486		if (new_bw < dl_b->total_bw)
2487			ret = -EBUSY;
2488		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2489
 
2490		rcu_read_unlock_sched();
2491
2492		if (ret)
2493			break;
2494	}
2495
2496	return ret;
2497}
2498
2499void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2500{
2501	if (global_rt_runtime() == RUNTIME_INF) {
2502		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2503		dl_rq->extra_bw = 1 << BW_SHIFT;
2504	} else {
2505		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2506			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2507		dl_rq->extra_bw = to_ratio(global_rt_period(),
2508						    global_rt_runtime());
2509	}
2510}
2511
2512void sched_dl_do_global(void)
2513{
2514	u64 new_bw = -1;
 
2515	struct dl_bw *dl_b;
2516	int cpu;
2517	unsigned long flags;
2518
2519	def_dl_bandwidth.dl_period = global_rt_period();
2520	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2521
2522	if (global_rt_runtime() != RUNTIME_INF)
2523		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2524
2525	/*
2526	 * FIXME: As above...
2527	 */
2528	for_each_possible_cpu(cpu) {
2529		rcu_read_lock_sched();
 
 
 
 
 
 
2530		dl_b = dl_bw_of(cpu);
2531
2532		raw_spin_lock_irqsave(&dl_b->lock, flags);
2533		dl_b->bw = new_bw;
2534		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2535
2536		rcu_read_unlock_sched();
2537		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2538	}
2539}
2540
2541/*
2542 * We must be sure that accepting a new task (or allowing changing the
2543 * parameters of an existing one) is consistent with the bandwidth
2544 * constraints. If yes, this function also accordingly updates the currently
2545 * allocated bandwidth to reflect the new situation.
2546 *
2547 * This function is called while holding p's rq->lock.
2548 */
2549int sched_dl_overflow(struct task_struct *p, int policy,
2550		      const struct sched_attr *attr)
2551{
2552	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2553	u64 period = attr->sched_period ?: attr->sched_deadline;
2554	u64 runtime = attr->sched_runtime;
2555	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2556	int cpus, err = -1;
 
 
2557
2558	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2559		return 0;
2560
2561	/* !deadline task may carry old deadline bandwidth */
2562	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2563		return 0;
2564
2565	/*
2566	 * Either if a task, enters, leave, or stays -deadline but changes
2567	 * its parameters, we may need to update accordingly the total
2568	 * allocated bandwidth of the container.
2569	 */
2570	raw_spin_lock(&dl_b->lock);
2571	cpus = dl_bw_cpus(task_cpu(p));
 
 
2572	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2573	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2574		if (hrtimer_active(&p->dl.inactive_timer))
2575			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2576		__dl_add(dl_b, new_bw, cpus);
2577		err = 0;
2578	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2579		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2580		/*
2581		 * XXX this is slightly incorrect: when the task
2582		 * utilization decreases, we should delay the total
2583		 * utilization change until the task's 0-lag point.
2584		 * But this would require to set the task's "inactive
2585		 * timer" when the task is not inactive.
2586		 */
2587		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2588		__dl_add(dl_b, new_bw, cpus);
2589		dl_change_utilization(p, new_bw);
2590		err = 0;
2591	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2592		/*
2593		 * Do not decrease the total deadline utilization here,
2594		 * switched_from_dl() will take care to do it at the correct
2595		 * (0-lag) time.
2596		 */
2597		err = 0;
2598	}
2599	raw_spin_unlock(&dl_b->lock);
2600
2601	return err;
2602}
2603
2604/*
2605 * This function initializes the sched_dl_entity of a newly becoming
2606 * SCHED_DEADLINE task.
2607 *
2608 * Only the static values are considered here, the actual runtime and the
2609 * absolute deadline will be properly calculated when the task is enqueued
2610 * for the first time with its new policy.
2611 */
2612void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2613{
2614	struct sched_dl_entity *dl_se = &p->dl;
2615
2616	dl_se->dl_runtime = attr->sched_runtime;
2617	dl_se->dl_deadline = attr->sched_deadline;
2618	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2619	dl_se->flags = attr->sched_flags;
2620	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2621	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2622}
2623
2624void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2625{
2626	struct sched_dl_entity *dl_se = &p->dl;
2627
2628	attr->sched_priority = p->rt_priority;
2629	attr->sched_runtime = dl_se->dl_runtime;
2630	attr->sched_deadline = dl_se->dl_deadline;
2631	attr->sched_period = dl_se->dl_period;
2632	attr->sched_flags = dl_se->flags;
 
2633}
2634
2635/*
2636 * This function validates the new parameters of a -deadline task.
2637 * We ask for the deadline not being zero, and greater or equal
2638 * than the runtime, as well as the period of being zero or
2639 * greater than deadline. Furthermore, we have to be sure that
2640 * user parameters are above the internal resolution of 1us (we
2641 * check sched_runtime only since it is always the smaller one) and
2642 * below 2^63 ns (we have to check both sched_deadline and
2643 * sched_period, as the latter can be zero).
2644 */
2645bool __checkparam_dl(const struct sched_attr *attr)
2646{
 
 
2647	/* special dl tasks don't actually use any parameter */
2648	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2649		return true;
2650
2651	/* deadline != 0 */
2652	if (attr->sched_deadline == 0)
2653		return false;
2654
2655	/*
2656	 * Since we truncate DL_SCALE bits, make sure we're at least
2657	 * that big.
2658	 */
2659	if (attr->sched_runtime < (1ULL << DL_SCALE))
2660		return false;
2661
2662	/*
2663	 * Since we use the MSB for wrap-around and sign issues, make
2664	 * sure it's not set (mind that period can be equal to zero).
2665	 */
2666	if (attr->sched_deadline & (1ULL << 63) ||
2667	    attr->sched_period & (1ULL << 63))
2668		return false;
2669
 
 
 
 
2670	/* runtime <= deadline <= period (if period != 0) */
2671	if ((attr->sched_period != 0 &&
2672	     attr->sched_period < attr->sched_deadline) ||
2673	    attr->sched_deadline < attr->sched_runtime)
2674		return false;
2675
 
 
 
 
 
 
2676	return true;
2677}
2678
2679/*
2680 * This function clears the sched_dl_entity static params.
2681 */
2682void __dl_clear_params(struct task_struct *p)
2683{
2684	struct sched_dl_entity *dl_se = &p->dl;
2685
2686	dl_se->dl_runtime		= 0;
2687	dl_se->dl_deadline		= 0;
2688	dl_se->dl_period		= 0;
2689	dl_se->flags			= 0;
2690	dl_se->dl_bw			= 0;
2691	dl_se->dl_density		= 0;
2692
2693	dl_se->dl_throttled		= 0;
2694	dl_se->dl_yielded		= 0;
2695	dl_se->dl_non_contending	= 0;
2696	dl_se->dl_overrun		= 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2697}
2698
2699bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2700{
2701	struct sched_dl_entity *dl_se = &p->dl;
2702
2703	if (dl_se->dl_runtime != attr->sched_runtime ||
2704	    dl_se->dl_deadline != attr->sched_deadline ||
2705	    dl_se->dl_period != attr->sched_period ||
2706	    dl_se->flags != attr->sched_flags)
2707		return true;
2708
2709	return false;
2710}
2711
2712#ifdef CONFIG_SMP
2713int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2714{
2715	unsigned int dest_cpu;
2716	struct dl_bw *dl_b;
2717	bool overflow;
2718	int cpus, ret;
2719	unsigned long flags;
2720
2721	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2722
2723	rcu_read_lock_sched();
2724	dl_b = dl_bw_of(dest_cpu);
2725	raw_spin_lock_irqsave(&dl_b->lock, flags);
2726	cpus = dl_bw_cpus(dest_cpu);
2727	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2728	if (overflow) {
2729		ret = -EBUSY;
2730	} else {
2731		/*
2732		 * We reserve space for this task in the destination
2733		 * root_domain, as we can't fail after this point.
2734		 * We will free resources in the source root_domain
2735		 * later on (see set_cpus_allowed_dl()).
2736		 */
2737		__dl_add(dl_b, p->dl.dl_bw, cpus);
2738		ret = 0;
2739	}
2740	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2741	rcu_read_unlock_sched();
2742
2743	return ret;
2744}
2745
2746int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2747				 const struct cpumask *trial)
2748{
2749	int ret = 1, trial_cpus;
2750	struct dl_bw *cur_dl_b;
2751	unsigned long flags;
2752
2753	rcu_read_lock_sched();
2754	cur_dl_b = dl_bw_of(cpumask_any(cur));
2755	trial_cpus = cpumask_weight(trial);
2756
2757	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2758	if (cur_dl_b->bw != -1 &&
2759	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2760		ret = 0;
2761	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2762	rcu_read_unlock_sched();
2763
2764	return ret;
2765}
2766
2767bool dl_cpu_busy(unsigned int cpu)
 
 
 
 
 
 
2768{
2769	unsigned long flags;
2770	struct dl_bw *dl_b;
2771	bool overflow;
2772	int cpus;
2773
2774	rcu_read_lock_sched();
2775	dl_b = dl_bw_of(cpu);
2776	raw_spin_lock_irqsave(&dl_b->lock, flags);
2777	cpus = dl_bw_cpus(cpu);
2778	overflow = __dl_overflow(dl_b, cpus, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2780	rcu_read_unlock_sched();
2781
2782	return overflow;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2783}
2784#endif
2785
2786#ifdef CONFIG_SCHED_DEBUG
2787void print_dl_stats(struct seq_file *m, int cpu)
2788{
2789	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2790}
2791#endif /* CONFIG_SCHED_DEBUG */