Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/kmsan.h>
  41#include <linux/binfmts.h>
  42#include <linux/mman.h>
  43#include <linux/mmu_notifier.h>
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/mm_inline.h>
  47#include <linux/nsproxy.h>
  48#include <linux/capability.h>
  49#include <linux/cpu.h>
  50#include <linux/cgroup.h>
  51#include <linux/security.h>
  52#include <linux/hugetlb.h>
  53#include <linux/seccomp.h>
  54#include <linux/swap.h>
  55#include <linux/syscalls.h>
  56#include <linux/syscall_user_dispatch.h>
  57#include <linux/jiffies.h>
  58#include <linux/futex.h>
  59#include <linux/compat.h>
  60#include <linux/kthread.h>
  61#include <linux/task_io_accounting_ops.h>
  62#include <linux/rcupdate.h>
  63#include <linux/ptrace.h>
  64#include <linux/mount.h>
  65#include <linux/audit.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/proc_fs.h>
  69#include <linux/profile.h>
  70#include <linux/rmap.h>
  71#include <linux/ksm.h>
  72#include <linux/acct.h>
  73#include <linux/userfaultfd_k.h>
  74#include <linux/tsacct_kern.h>
  75#include <linux/cn_proc.h>
  76#include <linux/freezer.h>
  77#include <linux/delayacct.h>
  78#include <linux/taskstats_kern.h>
 
  79#include <linux/tty.h>
 
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98#include <linux/io_uring.h>
  99#include <linux/bpf.h>
 100#include <linux/stackprotector.h>
 101#include <linux/user_events.h>
 102#include <linux/iommu.h>
 103#include <linux/rseq.h>
 104
 105#include <asm/pgalloc.h>
 106#include <linux/uaccess.h>
 107#include <asm/mmu_context.h>
 108#include <asm/cacheflush.h>
 109#include <asm/tlbflush.h>
 110
 111#include <trace/events/sched.h>
 112
 113#define CREATE_TRACE_POINTS
 114#include <trace/events/task.h>
 115
 116/*
 117 * Minimum number of threads to boot the kernel
 118 */
 119#define MIN_THREADS 20
 120
 121/*
 122 * Maximum number of threads
 123 */
 124#define MAX_THREADS FUTEX_TID_MASK
 125
 126/*
 127 * Protected counters by write_lock_irq(&tasklist_lock)
 128 */
 129unsigned long total_forks;	/* Handle normal Linux uptimes. */
 130int nr_threads;			/* The idle threads do not count.. */
 131
 132static int max_threads;		/* tunable limit on nr_threads */
 133
 134#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 135
 136static const char * const resident_page_types[] = {
 137	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 138	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 139	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 140	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 141};
 142
 143DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 144
 145__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 146
 147#ifdef CONFIG_PROVE_RCU
 148int lockdep_tasklist_lock_is_held(void)
 149{
 150	return lockdep_is_held(&tasklist_lock);
 151}
 152EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 153#endif /* #ifdef CONFIG_PROVE_RCU */
 154
 155int nr_processes(void)
 156{
 157	int cpu;
 158	int total = 0;
 159
 160	for_each_possible_cpu(cpu)
 161		total += per_cpu(process_counts, cpu);
 162
 163	return total;
 164}
 165
 166void __weak arch_release_task_struct(struct task_struct *tsk)
 167{
 168}
 169
 
 170static struct kmem_cache *task_struct_cachep;
 171
 172static inline struct task_struct *alloc_task_struct_node(int node)
 173{
 174	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 175}
 176
 177static inline void free_task_struct(struct task_struct *tsk)
 178{
 179	kmem_cache_free(task_struct_cachep, tsk);
 180}
 
 
 
 181
 182/*
 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 184 * kmemcache based allocator.
 185 */
 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 187
 188#  ifdef CONFIG_VMAP_STACK
 189/*
 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 191 * flush.  Try to minimize the number of calls by caching stacks.
 192 */
 193#define NR_CACHED_STACKS 2
 194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 195
 196struct vm_stack {
 197	struct rcu_head rcu;
 198	struct vm_struct *stack_vm_area;
 199};
 200
 201static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < NR_CACHED_STACKS; i++) {
 206		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
 207			continue;
 208		return true;
 209	}
 210	return false;
 211}
 212
 213static void thread_stack_free_rcu(struct rcu_head *rh)
 214{
 215	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
 216
 217	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
 218		return;
 219
 220	vfree(vm_stack);
 221}
 222
 223static void thread_stack_delayed_free(struct task_struct *tsk)
 224{
 225	struct vm_stack *vm_stack = tsk->stack;
 226
 227	vm_stack->stack_vm_area = tsk->stack_vm_area;
 228	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
 229}
 230
 231static int free_vm_stack_cache(unsigned int cpu)
 232{
 233	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 234	int i;
 235
 236	for (i = 0; i < NR_CACHED_STACKS; i++) {
 237		struct vm_struct *vm_stack = cached_vm_stacks[i];
 238
 239		if (!vm_stack)
 240			continue;
 241
 242		vfree(vm_stack->addr);
 243		cached_vm_stacks[i] = NULL;
 244	}
 245
 246	return 0;
 247}
 
 248
 249static int memcg_charge_kernel_stack(struct vm_struct *vm)
 250{
 251	int i;
 252	int ret;
 253	int nr_charged = 0;
 254
 255	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 256
 257	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 258		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
 259		if (ret)
 260			goto err;
 261		nr_charged++;
 262	}
 263	return 0;
 264err:
 265	for (i = 0; i < nr_charged; i++)
 266		memcg_kmem_uncharge_page(vm->pages[i], 0);
 267	return ret;
 268}
 269
 270static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 271{
 272	struct vm_struct *vm;
 273	void *stack;
 274	int i;
 275
 276	for (i = 0; i < NR_CACHED_STACKS; i++) {
 277		struct vm_struct *s;
 278
 279		s = this_cpu_xchg(cached_stacks[i], NULL);
 280
 281		if (!s)
 282			continue;
 283
 284		/* Reset stack metadata. */
 285		kasan_unpoison_range(s->addr, THREAD_SIZE);
 286
 287		stack = kasan_reset_tag(s->addr);
 288
 289		/* Clear stale pointers from reused stack. */
 290		memset(stack, 0, THREAD_SIZE);
 291
 292		if (memcg_charge_kernel_stack(s)) {
 293			vfree(s->addr);
 294			return -ENOMEM;
 295		}
 296
 297		tsk->stack_vm_area = s;
 298		tsk->stack = stack;
 299		return 0;
 300	}
 301
 302	/*
 303	 * Allocated stacks are cached and later reused by new threads,
 304	 * so memcg accounting is performed manually on assigning/releasing
 305	 * stacks to tasks. Drop __GFP_ACCOUNT.
 306	 */
 307	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 308				     VMALLOC_START, VMALLOC_END,
 309				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 310				     PAGE_KERNEL,
 311				     0, node, __builtin_return_address(0));
 312	if (!stack)
 313		return -ENOMEM;
 314
 315	vm = find_vm_area(stack);
 316	if (memcg_charge_kernel_stack(vm)) {
 317		vfree(stack);
 318		return -ENOMEM;
 319	}
 320	/*
 321	 * We can't call find_vm_area() in interrupt context, and
 322	 * free_thread_stack() can be called in interrupt context,
 323	 * so cache the vm_struct.
 324	 */
 325	tsk->stack_vm_area = vm;
 326	stack = kasan_reset_tag(stack);
 327	tsk->stack = stack;
 328	return 0;
 329}
 330
 331static void free_thread_stack(struct task_struct *tsk)
 332{
 333	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
 334		thread_stack_delayed_free(tsk);
 335
 336	tsk->stack = NULL;
 337	tsk->stack_vm_area = NULL;
 338}
 339
 340#  else /* !CONFIG_VMAP_STACK */
 341
 342static void thread_stack_free_rcu(struct rcu_head *rh)
 343{
 344	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
 345}
 346
 347static void thread_stack_delayed_free(struct task_struct *tsk)
 348{
 349	struct rcu_head *rh = tsk->stack;
 350
 351	call_rcu(rh, thread_stack_free_rcu);
 352}
 353
 354static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 355{
 356	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 357					     THREAD_SIZE_ORDER);
 358
 359	if (likely(page)) {
 360		tsk->stack = kasan_reset_tag(page_address(page));
 361		return 0;
 362	}
 363	return -ENOMEM;
 
 364}
 365
 366static void free_thread_stack(struct task_struct *tsk)
 367{
 368	thread_stack_delayed_free(tsk);
 369	tsk->stack = NULL;
 370}
 371
 372#  endif /* CONFIG_VMAP_STACK */
 373# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
 374
 375static struct kmem_cache *thread_stack_cache;
 
 376
 377static void thread_stack_free_rcu(struct rcu_head *rh)
 378{
 379	kmem_cache_free(thread_stack_cache, rh);
 380}
 381
 382static void thread_stack_delayed_free(struct task_struct *tsk)
 383{
 384	struct rcu_head *rh = tsk->stack;
 385
 386	call_rcu(rh, thread_stack_free_rcu);
 
 
 
 
 
 387}
 
 
 388
 389static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 
 390{
 391	unsigned long *stack;
 392	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 393	stack = kasan_reset_tag(stack);
 394	tsk->stack = stack;
 395	return stack ? 0 : -ENOMEM;
 396}
 397
 398static void free_thread_stack(struct task_struct *tsk)
 399{
 400	thread_stack_delayed_free(tsk);
 401	tsk->stack = NULL;
 402}
 403
 404void thread_stack_cache_init(void)
 405{
 406	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 407					THREAD_SIZE, THREAD_SIZE, 0, 0,
 408					THREAD_SIZE, NULL);
 409	BUG_ON(thread_stack_cache == NULL);
 410}
 411
 412# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
 413
 414/* SLAB cache for signal_struct structures (tsk->signal) */
 415static struct kmem_cache *signal_cachep;
 416
 417/* SLAB cache for sighand_struct structures (tsk->sighand) */
 418struct kmem_cache *sighand_cachep;
 419
 420/* SLAB cache for files_struct structures (tsk->files) */
 421struct kmem_cache *files_cachep;
 422
 423/* SLAB cache for fs_struct structures (tsk->fs) */
 424struct kmem_cache *fs_cachep;
 425
 426/* SLAB cache for vm_area_struct structures */
 427static struct kmem_cache *vm_area_cachep;
 428
 429/* SLAB cache for mm_struct structures (tsk->mm) */
 430static struct kmem_cache *mm_cachep;
 431
 432#ifdef CONFIG_PER_VMA_LOCK
 433
 434/* SLAB cache for vm_area_struct.lock */
 435static struct kmem_cache *vma_lock_cachep;
 436
 437static bool vma_lock_alloc(struct vm_area_struct *vma)
 438{
 439	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
 440	if (!vma->vm_lock)
 441		return false;
 442
 443	init_rwsem(&vma->vm_lock->lock);
 444	vma->vm_lock_seq = -1;
 445
 446	return true;
 447}
 448
 449static inline void vma_lock_free(struct vm_area_struct *vma)
 450{
 451	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
 452}
 453
 454#else /* CONFIG_PER_VMA_LOCK */
 455
 456static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
 457static inline void vma_lock_free(struct vm_area_struct *vma) {}
 458
 459#endif /* CONFIG_PER_VMA_LOCK */
 460
 461struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 462{
 463	struct vm_area_struct *vma;
 464
 465	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 466	if (!vma)
 467		return NULL;
 468
 469	vma_init(vma, mm);
 470	if (!vma_lock_alloc(vma)) {
 471		kmem_cache_free(vm_area_cachep, vma);
 472		return NULL;
 473	}
 474
 475	return vma;
 476}
 477
 478struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 479{
 480	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 481
 482	if (!new)
 483		return NULL;
 484
 485	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 486	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 487	/*
 488	 * orig->shared.rb may be modified concurrently, but the clone
 489	 * will be reinitialized.
 490	 */
 491	data_race(memcpy(new, orig, sizeof(*new)));
 492	if (!vma_lock_alloc(new)) {
 493		kmem_cache_free(vm_area_cachep, new);
 494		return NULL;
 495	}
 496	INIT_LIST_HEAD(&new->anon_vma_chain);
 497	vma_numab_state_init(new);
 498	dup_anon_vma_name(orig, new);
 499
 500	return new;
 501}
 502
 503void __vm_area_free(struct vm_area_struct *vma)
 504{
 505	vma_numab_state_free(vma);
 506	free_anon_vma_name(vma);
 507	vma_lock_free(vma);
 508	kmem_cache_free(vm_area_cachep, vma);
 509}
 510
 511#ifdef CONFIG_PER_VMA_LOCK
 512static void vm_area_free_rcu_cb(struct rcu_head *head)
 513{
 514	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
 515						  vm_rcu);
 516
 517	/* The vma should not be locked while being destroyed. */
 518	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
 519	__vm_area_free(vma);
 520}
 521#endif
 522
 523void vm_area_free(struct vm_area_struct *vma)
 524{
 525#ifdef CONFIG_PER_VMA_LOCK
 526	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
 527#else
 528	__vm_area_free(vma);
 529#endif
 530}
 531
 532static void account_kernel_stack(struct task_struct *tsk, int account)
 533{
 534	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 535		struct vm_struct *vm = task_stack_vm_area(tsk);
 
 
 536		int i;
 537
 538		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 539			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 540					      account * (PAGE_SIZE / 1024));
 541	} else {
 542		void *stack = task_stack_page(tsk);
 543
 544		/* All stack pages are in the same node. */
 545		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 546				      account * (THREAD_SIZE / 1024));
 547	}
 548}
 549
 550void exit_task_stack_account(struct task_struct *tsk)
 551{
 552	account_kernel_stack(tsk, -1);
 
 
 
 
 553
 554	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 555		struct vm_struct *vm;
 556		int i;
 557
 558		vm = task_stack_vm_area(tsk);
 559		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 560			memcg_kmem_uncharge_page(vm->pages[i], 0);
 
 
 
 
 
 
 
 
 
 
 
 561	}
 
 
 562}
 563
 564static void release_task_stack(struct task_struct *tsk)
 565{
 566	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 567		return;  /* Better to leak the stack than to free prematurely */
 568
 
 569	free_thread_stack(tsk);
 
 
 
 
 570}
 571
 572#ifdef CONFIG_THREAD_INFO_IN_TASK
 573void put_task_stack(struct task_struct *tsk)
 574{
 575	if (refcount_dec_and_test(&tsk->stack_refcount))
 576		release_task_stack(tsk);
 577}
 578#endif
 579
 580void free_task(struct task_struct *tsk)
 581{
 582#ifdef CONFIG_SECCOMP
 583	WARN_ON_ONCE(tsk->seccomp.filter);
 584#endif
 585	release_user_cpus_ptr(tsk);
 586	scs_release(tsk);
 587
 588#ifndef CONFIG_THREAD_INFO_IN_TASK
 589	/*
 590	 * The task is finally done with both the stack and thread_info,
 591	 * so free both.
 592	 */
 593	release_task_stack(tsk);
 594#else
 595	/*
 596	 * If the task had a separate stack allocation, it should be gone
 597	 * by now.
 598	 */
 599	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 600#endif
 601	rt_mutex_debug_task_free(tsk);
 602	ftrace_graph_exit_task(tsk);
 603	arch_release_task_struct(tsk);
 604	if (tsk->flags & PF_KTHREAD)
 605		free_kthread_struct(tsk);
 606	bpf_task_storage_free(tsk);
 607	free_task_struct(tsk);
 608}
 609EXPORT_SYMBOL(free_task);
 610
 611static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
 612{
 613	struct file *exe_file;
 614
 615	exe_file = get_mm_exe_file(oldmm);
 616	RCU_INIT_POINTER(mm->exe_file, exe_file);
 617	/*
 618	 * We depend on the oldmm having properly denied write access to the
 619	 * exe_file already.
 620	 */
 621	if (exe_file && deny_write_access(exe_file))
 622		pr_warn_once("deny_write_access() failed in %s\n", __func__);
 623}
 624
 625#ifdef CONFIG_MMU
 626static __latent_entropy int dup_mmap(struct mm_struct *mm,
 627					struct mm_struct *oldmm)
 628{
 629	struct vm_area_struct *mpnt, *tmp;
 
 630	int retval;
 631	unsigned long charge = 0;
 632	LIST_HEAD(uf);
 633	VMA_ITERATOR(vmi, mm, 0);
 634
 635	uprobe_start_dup_mmap();
 636	if (mmap_write_lock_killable(oldmm)) {
 637		retval = -EINTR;
 638		goto fail_uprobe_end;
 639	}
 640	flush_cache_dup_mm(oldmm);
 641	uprobe_dup_mmap(oldmm, mm);
 642	/*
 643	 * Not linked in yet - no deadlock potential:
 644	 */
 645	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 646
 647	/* No ordering required: file already has been exposed. */
 648	dup_mm_exe_file(mm, oldmm);
 649
 650	mm->total_vm = oldmm->total_vm;
 651	mm->data_vm = oldmm->data_vm;
 652	mm->exec_vm = oldmm->exec_vm;
 653	mm->stack_vm = oldmm->stack_vm;
 654
 
 
 
 655	retval = ksm_fork(mm, oldmm);
 656	if (retval)
 657		goto out;
 658	khugepaged_fork(mm, oldmm);
 659
 660	/* Use __mt_dup() to efficiently build an identical maple tree. */
 661	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
 662	if (unlikely(retval))
 663		goto out;
 664
 665	mt_clear_in_rcu(vmi.mas.tree);
 666	for_each_vma(vmi, mpnt) {
 667		struct file *file;
 668
 669		vma_start_write(mpnt);
 670		if (mpnt->vm_flags & VM_DONTCOPY) {
 671			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
 672						    mpnt->vm_end, GFP_KERNEL);
 673			if (retval)
 674				goto loop_out;
 675
 676			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 677			continue;
 678		}
 679		charge = 0;
 680		/*
 681		 * Don't duplicate many vmas if we've been oom-killed (for
 682		 * example)
 683		 */
 684		if (fatal_signal_pending(current)) {
 685			retval = -EINTR;
 686			goto loop_out;
 687		}
 688		if (mpnt->vm_flags & VM_ACCOUNT) {
 689			unsigned long len = vma_pages(mpnt);
 690
 691			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 692				goto fail_nomem;
 693			charge = len;
 694		}
 695		tmp = vm_area_dup(mpnt);
 696		if (!tmp)
 697			goto fail_nomem;
 698		retval = vma_dup_policy(mpnt, tmp);
 699		if (retval)
 700			goto fail_nomem_policy;
 701		tmp->vm_mm = mm;
 702		retval = dup_userfaultfd(tmp, &uf);
 703		if (retval)
 704			goto fail_nomem_anon_vma_fork;
 705		if (tmp->vm_flags & VM_WIPEONFORK) {
 706			/*
 707			 * VM_WIPEONFORK gets a clean slate in the child.
 708			 * Don't prepare anon_vma until fault since we don't
 709			 * copy page for current vma.
 710			 */
 711			tmp->anon_vma = NULL;
 712		} else if (anon_vma_fork(tmp, mpnt))
 713			goto fail_nomem_anon_vma_fork;
 714		vm_flags_clear(tmp, VM_LOCKED_MASK);
 715		file = tmp->vm_file;
 716		if (file) {
 
 717			struct address_space *mapping = file->f_mapping;
 718
 719			get_file(file);
 
 
 720			i_mmap_lock_write(mapping);
 721			if (vma_is_shared_maywrite(tmp))
 722				mapping_allow_writable(mapping);
 723			flush_dcache_mmap_lock(mapping);
 724			/* insert tmp into the share list, just after mpnt */
 725			vma_interval_tree_insert_after(tmp, mpnt,
 726					&mapping->i_mmap);
 727			flush_dcache_mmap_unlock(mapping);
 728			i_mmap_unlock_write(mapping);
 729		}
 730
 731		/*
 732		 * Copy/update hugetlb private vma information.
 
 
 733		 */
 734		if (is_vm_hugetlb_page(tmp))
 735			hugetlb_dup_vma_private(tmp);
 736
 737		/*
 738		 * Link the vma into the MT. After using __mt_dup(), memory
 739		 * allocation is not necessary here, so it cannot fail.
 740		 */
 741		vma_iter_bulk_store(&vmi, tmp);
 
 
 
 
 
 
 
 742
 743		mm->map_count++;
 744		if (!(tmp->vm_flags & VM_WIPEONFORK))
 745			retval = copy_page_range(tmp, mpnt);
 746
 747		if (tmp->vm_ops && tmp->vm_ops->open)
 748			tmp->vm_ops->open(tmp);
 749
 750		if (retval) {
 751			mpnt = vma_next(&vmi);
 752			goto loop_out;
 753		}
 754	}
 755	/* a new mm has just been created */
 756	retval = arch_dup_mmap(oldmm, mm);
 757loop_out:
 758	vma_iter_free(&vmi);
 759	if (!retval) {
 760		mt_set_in_rcu(vmi.mas.tree);
 761	} else if (mpnt) {
 762		/*
 763		 * The entire maple tree has already been duplicated. If the
 764		 * mmap duplication fails, mark the failure point with
 765		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
 766		 * stop releasing VMAs that have not been duplicated after this
 767		 * point.
 768		 */
 769		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
 770		mas_store(&vmi.mas, XA_ZERO_ENTRY);
 771	}
 772out:
 773	mmap_write_unlock(mm);
 774	flush_tlb_mm(oldmm);
 775	mmap_write_unlock(oldmm);
 776	dup_userfaultfd_complete(&uf);
 777fail_uprobe_end:
 778	uprobe_end_dup_mmap();
 779	return retval;
 780
 781fail_nomem_anon_vma_fork:
 782	mpol_put(vma_policy(tmp));
 783fail_nomem_policy:
 784	vm_area_free(tmp);
 785fail_nomem:
 786	retval = -ENOMEM;
 787	vm_unacct_memory(charge);
 788	goto loop_out;
 789}
 790
 791static inline int mm_alloc_pgd(struct mm_struct *mm)
 792{
 793	mm->pgd = pgd_alloc(mm);
 794	if (unlikely(!mm->pgd))
 795		return -ENOMEM;
 796	return 0;
 797}
 798
 799static inline void mm_free_pgd(struct mm_struct *mm)
 800{
 801	pgd_free(mm, mm->pgd);
 802}
 803#else
 804static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 805{
 806	mmap_write_lock(oldmm);
 807	dup_mm_exe_file(mm, oldmm);
 808	mmap_write_unlock(oldmm);
 809	return 0;
 810}
 811#define mm_alloc_pgd(mm)	(0)
 812#define mm_free_pgd(mm)
 813#endif /* CONFIG_MMU */
 814
 815static void check_mm(struct mm_struct *mm)
 816{
 817	int i;
 818
 819	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 820			 "Please make sure 'struct resident_page_types[]' is updated as well");
 821
 822	for (i = 0; i < NR_MM_COUNTERS; i++) {
 823		long x = percpu_counter_sum(&mm->rss_stat[i]);
 824
 825		if (unlikely(x))
 826			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 827				 mm, resident_page_types[i], x);
 828	}
 829
 830	if (mm_pgtables_bytes(mm))
 831		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 832				mm_pgtables_bytes(mm));
 833
 834#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 835	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 836#endif
 837}
 838
 839#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 840#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 841
 842static void do_check_lazy_tlb(void *arg)
 843{
 844	struct mm_struct *mm = arg;
 845
 846	WARN_ON_ONCE(current->active_mm == mm);
 847}
 848
 849static void do_shoot_lazy_tlb(void *arg)
 850{
 851	struct mm_struct *mm = arg;
 852
 853	if (current->active_mm == mm) {
 854		WARN_ON_ONCE(current->mm);
 855		current->active_mm = &init_mm;
 856		switch_mm(mm, &init_mm, current);
 857	}
 858}
 859
 860static void cleanup_lazy_tlbs(struct mm_struct *mm)
 861{
 862	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
 863		/*
 864		 * In this case, lazy tlb mms are refounted and would not reach
 865		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
 866		 */
 867		return;
 868	}
 869
 870	/*
 871	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
 872	 * requires lazy mm users to switch to another mm when the refcount
 873	 * drops to zero, before the mm is freed. This requires IPIs here to
 874	 * switch kernel threads to init_mm.
 875	 *
 876	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
 877	 * switch with the final userspace teardown TLB flush which leaves the
 878	 * mm lazy on this CPU but no others, reducing the need for additional
 879	 * IPIs here. There are cases where a final IPI is still required here,
 880	 * such as the final mmdrop being performed on a different CPU than the
 881	 * one exiting, or kernel threads using the mm when userspace exits.
 882	 *
 883	 * IPI overheads have not found to be expensive, but they could be
 884	 * reduced in a number of possible ways, for example (roughly
 885	 * increasing order of complexity):
 886	 * - The last lazy reference created by exit_mm() could instead switch
 887	 *   to init_mm, however it's probable this will run on the same CPU
 888	 *   immediately afterwards, so this may not reduce IPIs much.
 889	 * - A batch of mms requiring IPIs could be gathered and freed at once.
 890	 * - CPUs store active_mm where it can be remotely checked without a
 891	 *   lock, to filter out false-positives in the cpumask.
 892	 * - After mm_users or mm_count reaches zero, switching away from the
 893	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
 894	 *   with some batching or delaying of the final IPIs.
 895	 * - A delayed freeing and RCU-like quiescing sequence based on mm
 896	 *   switching to avoid IPIs completely.
 897	 */
 898	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
 899	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
 900		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
 901}
 902
 903/*
 904 * Called when the last reference to the mm
 905 * is dropped: either by a lazy thread or by
 906 * mmput. Free the page directory and the mm.
 907 */
 908void __mmdrop(struct mm_struct *mm)
 909{
 910	BUG_ON(mm == &init_mm);
 911	WARN_ON_ONCE(mm == current->mm);
 912
 913	/* Ensure no CPUs are using this as their lazy tlb mm */
 914	cleanup_lazy_tlbs(mm);
 915
 916	WARN_ON_ONCE(mm == current->active_mm);
 917	mm_free_pgd(mm);
 918	destroy_context(mm);
 919	mmu_notifier_subscriptions_destroy(mm);
 920	check_mm(mm);
 921	put_user_ns(mm->user_ns);
 922	mm_pasid_drop(mm);
 923	mm_destroy_cid(mm);
 924	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
 925
 926	free_mm(mm);
 927}
 928EXPORT_SYMBOL_GPL(__mmdrop);
 929
 930static void mmdrop_async_fn(struct work_struct *work)
 931{
 932	struct mm_struct *mm;
 933
 934	mm = container_of(work, struct mm_struct, async_put_work);
 935	__mmdrop(mm);
 936}
 937
 938static void mmdrop_async(struct mm_struct *mm)
 939{
 940	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 941		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 942		schedule_work(&mm->async_put_work);
 943	}
 944}
 945
 946static inline void free_signal_struct(struct signal_struct *sig)
 947{
 948	taskstats_tgid_free(sig);
 949	sched_autogroup_exit(sig);
 950	/*
 951	 * __mmdrop is not safe to call from softirq context on x86 due to
 952	 * pgd_dtor so postpone it to the async context
 953	 */
 954	if (sig->oom_mm)
 955		mmdrop_async(sig->oom_mm);
 956	kmem_cache_free(signal_cachep, sig);
 957}
 958
 959static inline void put_signal_struct(struct signal_struct *sig)
 960{
 961	if (refcount_dec_and_test(&sig->sigcnt))
 962		free_signal_struct(sig);
 963}
 964
 965void __put_task_struct(struct task_struct *tsk)
 966{
 967	WARN_ON(!tsk->exit_state);
 968	WARN_ON(refcount_read(&tsk->usage));
 969	WARN_ON(tsk == current);
 970
 971	io_uring_free(tsk);
 972	cgroup_free(tsk);
 973	task_numa_free(tsk, true);
 974	security_task_free(tsk);
 
 975	exit_creds(tsk);
 976	delayacct_tsk_free(tsk);
 977	put_signal_struct(tsk->signal);
 978	sched_core_free(tsk);
 979	free_task(tsk);
 980}
 981EXPORT_SYMBOL_GPL(__put_task_struct);
 982
 983void __put_task_struct_rcu_cb(struct rcu_head *rhp)
 984{
 985	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
 986
 987	__put_task_struct(task);
 988}
 989EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
 990
 991void __init __weak arch_task_cache_init(void) { }
 992
 993/*
 994 * set_max_threads
 995 */
 996static void set_max_threads(unsigned int max_threads_suggested)
 997{
 998	u64 threads;
 999	unsigned long nr_pages = totalram_pages();
1000
1001	/*
1002	 * The number of threads shall be limited such that the thread
1003	 * structures may only consume a small part of the available memory.
1004	 */
1005	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1006		threads = MAX_THREADS;
1007	else
1008		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1009				    (u64) THREAD_SIZE * 8UL);
1010
1011	if (threads > max_threads_suggested)
1012		threads = max_threads_suggested;
1013
1014	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1015}
1016
1017#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1018/* Initialized by the architecture: */
1019int arch_task_struct_size __read_mostly;
1020#endif
1021
 
1022static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1023{
1024	/* Fetch thread_struct whitelist for the architecture. */
1025	arch_thread_struct_whitelist(offset, size);
1026
1027	/*
1028	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1029	 * adjust offset to position of thread_struct in task_struct.
1030	 */
1031	if (unlikely(*size == 0))
1032		*offset = 0;
1033	else
1034		*offset += offsetof(struct task_struct, thread);
1035}
 
1036
1037void __init fork_init(void)
1038{
1039	int i;
 
1040#ifndef ARCH_MIN_TASKALIGN
1041#define ARCH_MIN_TASKALIGN	0
1042#endif
1043	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1044	unsigned long useroffset, usersize;
1045
1046	/* create a slab on which task_structs can be allocated */
1047	task_struct_whitelist(&useroffset, &usersize);
1048	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1049			arch_task_struct_size, align,
1050			SLAB_PANIC|SLAB_ACCOUNT,
1051			useroffset, usersize, NULL);
 
1052
1053	/* do the arch specific task caches init */
1054	arch_task_cache_init();
1055
1056	set_max_threads(MAX_THREADS);
1057
1058	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1059	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1060	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1061		init_task.signal->rlim[RLIMIT_NPROC];
1062
1063	for (i = 0; i < UCOUNT_COUNTS; i++)
1064		init_user_ns.ucount_max[i] = max_threads/2;
1065
1066	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1067	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1068	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1069	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1070
1071#ifdef CONFIG_VMAP_STACK
1072	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1073			  NULL, free_vm_stack_cache);
1074#endif
1075
1076	scs_init();
1077
1078	lockdep_init_task(&init_task);
1079	uprobes_init();
1080}
1081
1082int __weak arch_dup_task_struct(struct task_struct *dst,
1083					       struct task_struct *src)
1084{
1085	*dst = *src;
1086	return 0;
1087}
1088
1089void set_task_stack_end_magic(struct task_struct *tsk)
1090{
1091	unsigned long *stackend;
1092
1093	stackend = end_of_stack(tsk);
1094	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1095}
1096
1097static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1098{
1099	struct task_struct *tsk;
 
 
1100	int err;
1101
1102	if (node == NUMA_NO_NODE)
1103		node = tsk_fork_get_node(orig);
1104	tsk = alloc_task_struct_node(node);
1105	if (!tsk)
1106		return NULL;
1107
1108	err = arch_dup_task_struct(tsk, orig);
1109	if (err)
1110		goto free_tsk;
1111
1112	err = alloc_thread_stack_node(tsk, node);
1113	if (err)
1114		goto free_tsk;
 
1115
 
 
 
 
 
 
 
 
 
 
 
1116#ifdef CONFIG_THREAD_INFO_IN_TASK
1117	refcount_set(&tsk->stack_refcount, 1);
1118#endif
1119	account_kernel_stack(tsk, 1);
 
 
1120
1121	err = scs_prepare(tsk, node);
1122	if (err)
1123		goto free_stack;
1124
1125#ifdef CONFIG_SECCOMP
1126	/*
1127	 * We must handle setting up seccomp filters once we're under
1128	 * the sighand lock in case orig has changed between now and
1129	 * then. Until then, filter must be NULL to avoid messing up
1130	 * the usage counts on the error path calling free_task.
1131	 */
1132	tsk->seccomp.filter = NULL;
1133#endif
1134
1135	setup_thread_stack(tsk, orig);
1136	clear_user_return_notifier(tsk);
1137	clear_tsk_need_resched(tsk);
1138	set_task_stack_end_magic(tsk);
1139	clear_syscall_work_syscall_user_dispatch(tsk);
1140
1141#ifdef CONFIG_STACKPROTECTOR
1142	tsk->stack_canary = get_random_canary();
1143#endif
1144	if (orig->cpus_ptr == &orig->cpus_mask)
1145		tsk->cpus_ptr = &tsk->cpus_mask;
1146	dup_user_cpus_ptr(tsk, orig, node);
1147
1148	/*
1149	 * One for the user space visible state that goes away when reaped.
1150	 * One for the scheduler.
1151	 */
1152	refcount_set(&tsk->rcu_users, 2);
1153	/* One for the rcu users */
1154	refcount_set(&tsk->usage, 1);
1155#ifdef CONFIG_BLK_DEV_IO_TRACE
1156	tsk->btrace_seq = 0;
1157#endif
1158	tsk->splice_pipe = NULL;
1159	tsk->task_frag.page = NULL;
1160	tsk->wake_q.next = NULL;
1161	tsk->worker_private = NULL;
 
 
1162
1163	kcov_task_init(tsk);
1164	kmsan_task_create(tsk);
1165	kmap_local_fork(tsk);
1166
1167#ifdef CONFIG_FAULT_INJECTION
1168	tsk->fail_nth = 0;
1169#endif
1170
1171#ifdef CONFIG_BLK_CGROUP
1172	tsk->throttle_disk = NULL;
1173	tsk->use_memdelay = 0;
1174#endif
1175
1176#ifdef CONFIG_ARCH_HAS_CPU_PASID
1177	tsk->pasid_activated = 0;
1178#endif
1179
1180#ifdef CONFIG_MEMCG
1181	tsk->active_memcg = NULL;
1182#endif
1183
1184#ifdef CONFIG_CPU_SUP_INTEL
1185	tsk->reported_split_lock = 0;
1186#endif
1187
1188#ifdef CONFIG_SCHED_MM_CID
1189	tsk->mm_cid = -1;
1190	tsk->last_mm_cid = -1;
1191	tsk->mm_cid_active = 0;
1192	tsk->migrate_from_cpu = -1;
1193#endif
1194	return tsk;
1195
1196free_stack:
1197	exit_task_stack_account(tsk);
1198	free_thread_stack(tsk);
1199free_tsk:
1200	free_task_struct(tsk);
1201	return NULL;
1202}
1203
1204__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1205
1206static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1207
1208static int __init coredump_filter_setup(char *s)
1209{
1210	default_dump_filter =
1211		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1212		MMF_DUMP_FILTER_MASK;
1213	return 1;
1214}
1215
1216__setup("coredump_filter=", coredump_filter_setup);
1217
1218#include <linux/init_task.h>
1219
1220static void mm_init_aio(struct mm_struct *mm)
1221{
1222#ifdef CONFIG_AIO
1223	spin_lock_init(&mm->ioctx_lock);
1224	mm->ioctx_table = NULL;
1225#endif
1226}
1227
1228static __always_inline void mm_clear_owner(struct mm_struct *mm,
1229					   struct task_struct *p)
1230{
1231#ifdef CONFIG_MEMCG
1232	if (mm->owner == p)
1233		WRITE_ONCE(mm->owner, NULL);
1234#endif
1235}
1236
1237static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1238{
1239#ifdef CONFIG_MEMCG
1240	mm->owner = p;
1241#endif
1242}
1243
 
 
 
 
 
 
 
1244static void mm_init_uprobes_state(struct mm_struct *mm)
1245{
1246#ifdef CONFIG_UPROBES
1247	mm->uprobes_state.xol_area = NULL;
1248#endif
1249}
1250
1251static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1252	struct user_namespace *user_ns)
1253{
1254	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1255	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
 
1256	atomic_set(&mm->mm_users, 1);
1257	atomic_set(&mm->mm_count, 1);
1258	seqcount_init(&mm->write_protect_seq);
1259	mmap_init_lock(mm);
1260	INIT_LIST_HEAD(&mm->mmlist);
1261#ifdef CONFIG_PER_VMA_LOCK
1262	mm->mm_lock_seq = 0;
1263#endif
1264	mm_pgtables_bytes_init(mm);
1265	mm->map_count = 0;
1266	mm->locked_vm = 0;
1267	atomic64_set(&mm->pinned_vm, 0);
1268	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1269	spin_lock_init(&mm->page_table_lock);
1270	spin_lock_init(&mm->arg_lock);
1271	mm_init_cpumask(mm);
1272	mm_init_aio(mm);
1273	mm_init_owner(mm, p);
1274	mm_pasid_init(mm);
1275	RCU_INIT_POINTER(mm->exe_file, NULL);
1276	mmu_notifier_subscriptions_init(mm);
1277	init_tlb_flush_pending(mm);
1278#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1279	mm->pmd_huge_pte = NULL;
1280#endif
1281	mm_init_uprobes_state(mm);
1282	hugetlb_count_init(mm);
1283
1284	if (current->mm) {
1285		mm->flags = mmf_init_flags(current->mm->flags);
1286		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1287	} else {
1288		mm->flags = default_dump_filter;
1289		mm->def_flags = 0;
1290	}
1291
1292	if (mm_alloc_pgd(mm))
1293		goto fail_nopgd;
1294
1295	if (init_new_context(p, mm))
1296		goto fail_nocontext;
1297
1298	if (mm_alloc_cid(mm))
1299		goto fail_cid;
1300
1301	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1302				     NR_MM_COUNTERS))
1303		goto fail_pcpu;
1304
1305	mm->user_ns = get_user_ns(user_ns);
1306	lru_gen_init_mm(mm);
1307	return mm;
1308
1309fail_pcpu:
1310	mm_destroy_cid(mm);
1311fail_cid:
1312	destroy_context(mm);
1313fail_nocontext:
1314	mm_free_pgd(mm);
1315fail_nopgd:
1316	free_mm(mm);
1317	return NULL;
1318}
1319
1320/*
1321 * Allocate and initialize an mm_struct.
1322 */
1323struct mm_struct *mm_alloc(void)
1324{
1325	struct mm_struct *mm;
1326
1327	mm = allocate_mm();
1328	if (!mm)
1329		return NULL;
1330
1331	memset(mm, 0, sizeof(*mm));
1332	return mm_init(mm, current, current_user_ns());
1333}
1334
1335static inline void __mmput(struct mm_struct *mm)
1336{
1337	VM_BUG_ON(atomic_read(&mm->mm_users));
1338
1339	uprobe_clear_state(mm);
1340	exit_aio(mm);
1341	ksm_exit(mm);
1342	khugepaged_exit(mm); /* must run before exit_mmap */
1343	exit_mmap(mm);
1344	mm_put_huge_zero_page(mm);
1345	set_mm_exe_file(mm, NULL);
1346	if (!list_empty(&mm->mmlist)) {
1347		spin_lock(&mmlist_lock);
1348		list_del(&mm->mmlist);
1349		spin_unlock(&mmlist_lock);
1350	}
1351	if (mm->binfmt)
1352		module_put(mm->binfmt->module);
1353	lru_gen_del_mm(mm);
1354	mmdrop(mm);
1355}
1356
1357/*
1358 * Decrement the use count and release all resources for an mm.
1359 */
1360void mmput(struct mm_struct *mm)
1361{
1362	might_sleep();
1363
1364	if (atomic_dec_and_test(&mm->mm_users))
1365		__mmput(mm);
1366}
1367EXPORT_SYMBOL_GPL(mmput);
1368
1369#ifdef CONFIG_MMU
1370static void mmput_async_fn(struct work_struct *work)
1371{
1372	struct mm_struct *mm = container_of(work, struct mm_struct,
1373					    async_put_work);
1374
1375	__mmput(mm);
1376}
1377
1378void mmput_async(struct mm_struct *mm)
1379{
1380	if (atomic_dec_and_test(&mm->mm_users)) {
1381		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1382		schedule_work(&mm->async_put_work);
1383	}
1384}
1385EXPORT_SYMBOL_GPL(mmput_async);
1386#endif
1387
1388/**
1389 * set_mm_exe_file - change a reference to the mm's executable file
1390 * @mm: The mm to change.
1391 * @new_exe_file: The new file to use.
1392 *
1393 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1394 *
1395 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1396 * invocations: in mmput() nobody alive left, in execve it happens before
1397 * the new mm is made visible to anyone.
1398 *
1399 * Can only fail if new_exe_file != NULL.
1400 */
1401int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1402{
1403	struct file *old_exe_file;
1404
1405	/*
1406	 * It is safe to dereference the exe_file without RCU as
1407	 * this function is only called if nobody else can access
1408	 * this mm -- see comment above for justification.
1409	 */
1410	old_exe_file = rcu_dereference_raw(mm->exe_file);
1411
1412	if (new_exe_file) {
1413		/*
1414		 * We expect the caller (i.e., sys_execve) to already denied
1415		 * write access, so this is unlikely to fail.
1416		 */
1417		if (unlikely(deny_write_access(new_exe_file)))
1418			return -EACCES;
1419		get_file(new_exe_file);
1420	}
1421	rcu_assign_pointer(mm->exe_file, new_exe_file);
1422	if (old_exe_file) {
1423		allow_write_access(old_exe_file);
1424		fput(old_exe_file);
1425	}
1426	return 0;
1427}
1428
1429/**
1430 * replace_mm_exe_file - replace a reference to the mm's executable file
1431 * @mm: The mm to change.
1432 * @new_exe_file: The new file to use.
1433 *
1434 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1435 *
1436 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1437 */
1438int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1439{
1440	struct vm_area_struct *vma;
1441	struct file *old_exe_file;
1442	int ret = 0;
1443
1444	/* Forbid mm->exe_file change if old file still mapped. */
1445	old_exe_file = get_mm_exe_file(mm);
1446	if (old_exe_file) {
1447		VMA_ITERATOR(vmi, mm, 0);
1448		mmap_read_lock(mm);
1449		for_each_vma(vmi, vma) {
1450			if (!vma->vm_file)
1451				continue;
1452			if (path_equal(&vma->vm_file->f_path,
1453				       &old_exe_file->f_path)) {
1454				ret = -EBUSY;
1455				break;
1456			}
1457		}
1458		mmap_read_unlock(mm);
1459		fput(old_exe_file);
1460		if (ret)
1461			return ret;
1462	}
1463
1464	ret = deny_write_access(new_exe_file);
1465	if (ret)
1466		return -EACCES;
1467	get_file(new_exe_file);
1468
1469	/* set the new file */
1470	mmap_write_lock(mm);
1471	old_exe_file = rcu_dereference_raw(mm->exe_file);
1472	rcu_assign_pointer(mm->exe_file, new_exe_file);
1473	mmap_write_unlock(mm);
1474
1475	if (old_exe_file) {
1476		allow_write_access(old_exe_file);
1477		fput(old_exe_file);
1478	}
1479	return 0;
1480}
1481
1482/**
1483 * get_mm_exe_file - acquire a reference to the mm's executable file
1484 * @mm: The mm of interest.
1485 *
1486 * Returns %NULL if mm has no associated executable file.
1487 * User must release file via fput().
1488 */
1489struct file *get_mm_exe_file(struct mm_struct *mm)
1490{
1491	struct file *exe_file;
1492
1493	rcu_read_lock();
1494	exe_file = get_file_rcu(&mm->exe_file);
 
 
1495	rcu_read_unlock();
1496	return exe_file;
1497}
 
1498
1499/**
1500 * get_task_exe_file - acquire a reference to the task's executable file
1501 * @task: The task.
1502 *
1503 * Returns %NULL if task's mm (if any) has no associated executable file or
1504 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1505 * User must release file via fput().
1506 */
1507struct file *get_task_exe_file(struct task_struct *task)
1508{
1509	struct file *exe_file = NULL;
1510	struct mm_struct *mm;
1511
1512	task_lock(task);
1513	mm = task->mm;
1514	if (mm) {
1515		if (!(task->flags & PF_KTHREAD))
1516			exe_file = get_mm_exe_file(mm);
1517	}
1518	task_unlock(task);
1519	return exe_file;
1520}
 
1521
1522/**
1523 * get_task_mm - acquire a reference to the task's mm
1524 * @task: The task.
1525 *
1526 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1527 * this kernel workthread has transiently adopted a user mm with use_mm,
1528 * to do its AIO) is not set and if so returns a reference to it, after
1529 * bumping up the use count.  User must release the mm via mmput()
1530 * after use.  Typically used by /proc and ptrace.
1531 */
1532struct mm_struct *get_task_mm(struct task_struct *task)
1533{
1534	struct mm_struct *mm;
1535
1536	task_lock(task);
1537	mm = task->mm;
1538	if (mm) {
1539		if (task->flags & PF_KTHREAD)
1540			mm = NULL;
1541		else
1542			mmget(mm);
1543	}
1544	task_unlock(task);
1545	return mm;
1546}
1547EXPORT_SYMBOL_GPL(get_task_mm);
1548
1549struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1550{
1551	struct mm_struct *mm;
1552	int err;
1553
1554	err =  down_read_killable(&task->signal->exec_update_lock);
1555	if (err)
1556		return ERR_PTR(err);
1557
1558	mm = get_task_mm(task);
1559	if (mm && mm != current->mm &&
1560			!ptrace_may_access(task, mode)) {
1561		mmput(mm);
1562		mm = ERR_PTR(-EACCES);
1563	}
1564	up_read(&task->signal->exec_update_lock);
1565
1566	return mm;
1567}
1568
1569static void complete_vfork_done(struct task_struct *tsk)
1570{
1571	struct completion *vfork;
1572
1573	task_lock(tsk);
1574	vfork = tsk->vfork_done;
1575	if (likely(vfork)) {
1576		tsk->vfork_done = NULL;
1577		complete(vfork);
1578	}
1579	task_unlock(tsk);
1580}
1581
1582static int wait_for_vfork_done(struct task_struct *child,
1583				struct completion *vfork)
1584{
1585	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1586	int killed;
1587
 
1588	cgroup_enter_frozen();
1589	killed = wait_for_completion_state(vfork, state);
1590	cgroup_leave_frozen(false);
 
1591
1592	if (killed) {
1593		task_lock(child);
1594		child->vfork_done = NULL;
1595		task_unlock(child);
1596	}
1597
1598	put_task_struct(child);
1599	return killed;
1600}
1601
1602/* Please note the differences between mmput and mm_release.
1603 * mmput is called whenever we stop holding onto a mm_struct,
1604 * error success whatever.
1605 *
1606 * mm_release is called after a mm_struct has been removed
1607 * from the current process.
1608 *
1609 * This difference is important for error handling, when we
1610 * only half set up a mm_struct for a new process and need to restore
1611 * the old one.  Because we mmput the new mm_struct before
1612 * restoring the old one. . .
1613 * Eric Biederman 10 January 1998
1614 */
1615static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1616{
1617	uprobe_free_utask(tsk);
1618
1619	/* Get rid of any cached register state */
1620	deactivate_mm(tsk, mm);
1621
1622	/*
1623	 * Signal userspace if we're not exiting with a core dump
1624	 * because we want to leave the value intact for debugging
1625	 * purposes.
1626	 */
1627	if (tsk->clear_child_tid) {
1628		if (atomic_read(&mm->mm_users) > 1) {
 
1629			/*
1630			 * We don't check the error code - if userspace has
1631			 * not set up a proper pointer then tough luck.
1632			 */
1633			put_user(0, tsk->clear_child_tid);
1634			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1635					1, NULL, NULL, 0, 0);
1636		}
1637		tsk->clear_child_tid = NULL;
1638	}
1639
1640	/*
1641	 * All done, finally we can wake up parent and return this mm to him.
1642	 * Also kthread_stop() uses this completion for synchronization.
1643	 */
1644	if (tsk->vfork_done)
1645		complete_vfork_done(tsk);
1646}
1647
1648void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1649{
1650	futex_exit_release(tsk);
1651	mm_release(tsk, mm);
1652}
1653
1654void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655{
1656	futex_exec_release(tsk);
1657	mm_release(tsk, mm);
1658}
1659
1660/**
1661 * dup_mm() - duplicates an existing mm structure
1662 * @tsk: the task_struct with which the new mm will be associated.
1663 * @oldmm: the mm to duplicate.
1664 *
1665 * Allocates a new mm structure and duplicates the provided @oldmm structure
1666 * content into it.
1667 *
1668 * Return: the duplicated mm or NULL on failure.
1669 */
1670static struct mm_struct *dup_mm(struct task_struct *tsk,
1671				struct mm_struct *oldmm)
1672{
1673	struct mm_struct *mm;
1674	int err;
1675
1676	mm = allocate_mm();
1677	if (!mm)
1678		goto fail_nomem;
1679
1680	memcpy(mm, oldmm, sizeof(*mm));
1681
1682	if (!mm_init(mm, tsk, mm->user_ns))
1683		goto fail_nomem;
1684
1685	err = dup_mmap(mm, oldmm);
1686	if (err)
1687		goto free_pt;
1688
1689	mm->hiwater_rss = get_mm_rss(mm);
1690	mm->hiwater_vm = mm->total_vm;
1691
1692	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1693		goto free_pt;
1694
1695	return mm;
1696
1697free_pt:
1698	/* don't put binfmt in mmput, we haven't got module yet */
1699	mm->binfmt = NULL;
1700	mm_init_owner(mm, NULL);
1701	mmput(mm);
1702
1703fail_nomem:
1704	return NULL;
1705}
1706
1707static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1708{
1709	struct mm_struct *mm, *oldmm;
1710
1711	tsk->min_flt = tsk->maj_flt = 0;
1712	tsk->nvcsw = tsk->nivcsw = 0;
1713#ifdef CONFIG_DETECT_HUNG_TASK
1714	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1715	tsk->last_switch_time = 0;
1716#endif
1717
1718	tsk->mm = NULL;
1719	tsk->active_mm = NULL;
1720
1721	/*
1722	 * Are we cloning a kernel thread?
1723	 *
1724	 * We need to steal a active VM for that..
1725	 */
1726	oldmm = current->mm;
1727	if (!oldmm)
1728		return 0;
1729
 
 
 
1730	if (clone_flags & CLONE_VM) {
1731		mmget(oldmm);
1732		mm = oldmm;
1733	} else {
1734		mm = dup_mm(tsk, current->mm);
1735		if (!mm)
1736			return -ENOMEM;
1737	}
1738
1739	tsk->mm = mm;
1740	tsk->active_mm = mm;
1741	sched_mm_cid_fork(tsk);
1742	return 0;
1743}
1744
1745static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1746{
1747	struct fs_struct *fs = current->fs;
1748	if (clone_flags & CLONE_FS) {
1749		/* tsk->fs is already what we want */
1750		spin_lock(&fs->lock);
1751		/* "users" and "in_exec" locked for check_unsafe_exec() */
1752		if (fs->in_exec) {
1753			spin_unlock(&fs->lock);
1754			return -EAGAIN;
1755		}
1756		fs->users++;
1757		spin_unlock(&fs->lock);
1758		return 0;
1759	}
1760	tsk->fs = copy_fs_struct(fs);
1761	if (!tsk->fs)
1762		return -ENOMEM;
1763	return 0;
1764}
1765
1766static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1767		      int no_files)
1768{
1769	struct files_struct *oldf, *newf;
1770	int error = 0;
1771
1772	/*
1773	 * A background process may not have any files ...
1774	 */
1775	oldf = current->files;
1776	if (!oldf)
1777		goto out;
1778
1779	if (no_files) {
1780		tsk->files = NULL;
1781		goto out;
1782	}
1783
1784	if (clone_flags & CLONE_FILES) {
1785		atomic_inc(&oldf->count);
1786		goto out;
1787	}
1788
1789	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1790	if (!newf)
1791		goto out;
1792
1793	tsk->files = newf;
1794	error = 0;
1795out:
1796	return error;
1797}
1798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1800{
1801	struct sighand_struct *sig;
1802
1803	if (clone_flags & CLONE_SIGHAND) {
1804		refcount_inc(&current->sighand->count);
1805		return 0;
1806	}
1807	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1808	RCU_INIT_POINTER(tsk->sighand, sig);
1809	if (!sig)
1810		return -ENOMEM;
1811
1812	refcount_set(&sig->count, 1);
1813	spin_lock_irq(&current->sighand->siglock);
1814	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1815	spin_unlock_irq(&current->sighand->siglock);
1816
1817	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1818	if (clone_flags & CLONE_CLEAR_SIGHAND)
1819		flush_signal_handlers(tsk, 0);
1820
1821	return 0;
1822}
1823
1824void __cleanup_sighand(struct sighand_struct *sighand)
1825{
1826	if (refcount_dec_and_test(&sighand->count)) {
1827		signalfd_cleanup(sighand);
1828		/*
1829		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1830		 * without an RCU grace period, see __lock_task_sighand().
1831		 */
1832		kmem_cache_free(sighand_cachep, sighand);
1833	}
1834}
1835
1836/*
1837 * Initialize POSIX timer handling for a thread group.
1838 */
1839static void posix_cpu_timers_init_group(struct signal_struct *sig)
1840{
1841	struct posix_cputimers *pct = &sig->posix_cputimers;
1842	unsigned long cpu_limit;
1843
1844	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1845	posix_cputimers_group_init(pct, cpu_limit);
1846}
1847
1848static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1849{
1850	struct signal_struct *sig;
1851
1852	if (clone_flags & CLONE_THREAD)
1853		return 0;
1854
1855	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1856	tsk->signal = sig;
1857	if (!sig)
1858		return -ENOMEM;
1859
1860	sig->nr_threads = 1;
1861	sig->quick_threads = 1;
1862	atomic_set(&sig->live, 1);
1863	refcount_set(&sig->sigcnt, 1);
1864
1865	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1866	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1867	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1868
1869	init_waitqueue_head(&sig->wait_chldexit);
1870	sig->curr_target = tsk;
1871	init_sigpending(&sig->shared_pending);
1872	INIT_HLIST_HEAD(&sig->multiprocess);
1873	seqlock_init(&sig->stats_lock);
1874	prev_cputime_init(&sig->prev_cputime);
1875
1876#ifdef CONFIG_POSIX_TIMERS
1877	INIT_LIST_HEAD(&sig->posix_timers);
1878	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1879	sig->real_timer.function = it_real_fn;
1880#endif
1881
1882	task_lock(current->group_leader);
1883	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1884	task_unlock(current->group_leader);
1885
1886	posix_cpu_timers_init_group(sig);
1887
1888	tty_audit_fork(sig);
1889	sched_autogroup_fork(sig);
1890
1891	sig->oom_score_adj = current->signal->oom_score_adj;
1892	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1893
1894	mutex_init(&sig->cred_guard_mutex);
1895	init_rwsem(&sig->exec_update_lock);
1896
1897	return 0;
1898}
1899
1900static void copy_seccomp(struct task_struct *p)
1901{
1902#ifdef CONFIG_SECCOMP
1903	/*
1904	 * Must be called with sighand->lock held, which is common to
1905	 * all threads in the group. Holding cred_guard_mutex is not
1906	 * needed because this new task is not yet running and cannot
1907	 * be racing exec.
1908	 */
1909	assert_spin_locked(&current->sighand->siglock);
1910
1911	/* Ref-count the new filter user, and assign it. */
1912	get_seccomp_filter(current);
1913	p->seccomp = current->seccomp;
1914
1915	/*
1916	 * Explicitly enable no_new_privs here in case it got set
1917	 * between the task_struct being duplicated and holding the
1918	 * sighand lock. The seccomp state and nnp must be in sync.
1919	 */
1920	if (task_no_new_privs(current))
1921		task_set_no_new_privs(p);
1922
1923	/*
1924	 * If the parent gained a seccomp mode after copying thread
1925	 * flags and between before we held the sighand lock, we have
1926	 * to manually enable the seccomp thread flag here.
1927	 */
1928	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1929		set_task_syscall_work(p, SECCOMP);
1930#endif
1931}
1932
1933SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1934{
1935	current->clear_child_tid = tidptr;
1936
1937	return task_pid_vnr(current);
1938}
1939
1940static void rt_mutex_init_task(struct task_struct *p)
1941{
1942	raw_spin_lock_init(&p->pi_lock);
1943#ifdef CONFIG_RT_MUTEXES
1944	p->pi_waiters = RB_ROOT_CACHED;
1945	p->pi_top_task = NULL;
1946	p->pi_blocked_on = NULL;
1947#endif
1948}
1949
1950static inline void init_task_pid_links(struct task_struct *task)
1951{
1952	enum pid_type type;
1953
1954	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1955		INIT_HLIST_NODE(&task->pid_links[type]);
1956}
1957
1958static inline void
1959init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1960{
1961	if (type == PIDTYPE_PID)
1962		task->thread_pid = pid;
1963	else
1964		task->signal->pids[type] = pid;
1965}
1966
1967static inline void rcu_copy_process(struct task_struct *p)
1968{
1969#ifdef CONFIG_PREEMPT_RCU
1970	p->rcu_read_lock_nesting = 0;
1971	p->rcu_read_unlock_special.s = 0;
1972	p->rcu_blocked_node = NULL;
1973	INIT_LIST_HEAD(&p->rcu_node_entry);
1974#endif /* #ifdef CONFIG_PREEMPT_RCU */
1975#ifdef CONFIG_TASKS_RCU
1976	p->rcu_tasks_holdout = false;
1977	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1978	p->rcu_tasks_idle_cpu = -1;
1979#endif /* #ifdef CONFIG_TASKS_RCU */
1980#ifdef CONFIG_TASKS_TRACE_RCU
1981	p->trc_reader_nesting = 0;
1982	p->trc_reader_special.s = 0;
1983	INIT_LIST_HEAD(&p->trc_holdout_list);
1984	INIT_LIST_HEAD(&p->trc_blkd_node);
1985#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1986}
1987
1988struct pid *pidfd_pid(const struct file *file)
1989{
1990	if (file->f_op == &pidfd_fops)
1991		return file->private_data;
1992
1993	return ERR_PTR(-EBADF);
1994}
1995
1996static int pidfd_release(struct inode *inode, struct file *file)
1997{
1998	struct pid *pid = file->private_data;
1999
2000	file->private_data = NULL;
2001	put_pid(pid);
2002	return 0;
2003}
2004
2005#ifdef CONFIG_PROC_FS
2006/**
2007 * pidfd_show_fdinfo - print information about a pidfd
2008 * @m: proc fdinfo file
2009 * @f: file referencing a pidfd
2010 *
2011 * Pid:
2012 * This function will print the pid that a given pidfd refers to in the
2013 * pid namespace of the procfs instance.
2014 * If the pid namespace of the process is not a descendant of the pid
2015 * namespace of the procfs instance 0 will be shown as its pid. This is
2016 * similar to calling getppid() on a process whose parent is outside of
2017 * its pid namespace.
2018 *
2019 * NSpid:
2020 * If pid namespaces are supported then this function will also print
2021 * the pid of a given pidfd refers to for all descendant pid namespaces
2022 * starting from the current pid namespace of the instance, i.e. the
2023 * Pid field and the first entry in the NSpid field will be identical.
2024 * If the pid namespace of the process is not a descendant of the pid
2025 * namespace of the procfs instance 0 will be shown as its first NSpid
2026 * entry and no others will be shown.
2027 * Note that this differs from the Pid and NSpid fields in
2028 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2029 * the  pid namespace of the procfs instance. The difference becomes
2030 * obvious when sending around a pidfd between pid namespaces from a
2031 * different branch of the tree, i.e. where no ancestral relation is
2032 * present between the pid namespaces:
2033 * - create two new pid namespaces ns1 and ns2 in the initial pid
2034 *   namespace (also take care to create new mount namespaces in the
2035 *   new pid namespace and mount procfs)
2036 * - create a process with a pidfd in ns1
2037 * - send pidfd from ns1 to ns2
2038 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2039 *   have exactly one entry, which is 0
2040 */
2041static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2042{
2043	struct pid *pid = f->private_data;
2044	struct pid_namespace *ns;
2045	pid_t nr = -1;
2046
2047	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2048		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2049		nr = pid_nr_ns(pid, ns);
2050	}
2051
2052	seq_put_decimal_ll(m, "Pid:\t", nr);
2053
2054#ifdef CONFIG_PID_NS
2055	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2056	if (nr > 0) {
2057		int i;
2058
2059		/* If nr is non-zero it means that 'pid' is valid and that
2060		 * ns, i.e. the pid namespace associated with the procfs
2061		 * instance, is in the pid namespace hierarchy of pid.
2062		 * Start at one below the already printed level.
2063		 */
2064		for (i = ns->level + 1; i <= pid->level; i++)
2065			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2066	}
2067#endif
2068	seq_putc(m, '\n');
2069}
2070#endif
2071
2072/*
2073 * Poll support for process exit notification.
2074 */
2075static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2076{
2077	struct pid *pid = file->private_data;
2078	__poll_t poll_flags = 0;
2079
2080	poll_wait(file, &pid->wait_pidfd, pts);
2081
2082	/*
2083	 * Inform pollers only when the whole thread group exits.
2084	 * If the thread group leader exits before all other threads in the
2085	 * group, then poll(2) should block, similar to the wait(2) family.
2086	 */
2087	if (thread_group_exited(pid))
2088		poll_flags = EPOLLIN | EPOLLRDNORM;
2089
2090	return poll_flags;
2091}
2092
2093const struct file_operations pidfd_fops = {
2094	.release = pidfd_release,
2095	.poll = pidfd_poll,
2096#ifdef CONFIG_PROC_FS
2097	.show_fdinfo = pidfd_show_fdinfo,
2098#endif
2099};
2100
2101/**
2102 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2103 * @pid:   the struct pid for which to create a pidfd
2104 * @flags: flags of the new @pidfd
2105 * @ret: Where to return the file for the pidfd.
2106 *
2107 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2108 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2109 *
2110 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2111 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2112 * pidfd file are prepared.
2113 *
2114 * If this function returns successfully the caller is responsible to either
2115 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2116 * order to install the pidfd into its file descriptor table or they must use
2117 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2118 * respectively.
2119 *
2120 * This function is useful when a pidfd must already be reserved but there
2121 * might still be points of failure afterwards and the caller wants to ensure
2122 * that no pidfd is leaked into its file descriptor table.
2123 *
2124 * Return: On success, a reserved pidfd is returned from the function and a new
2125 *         pidfd file is returned in the last argument to the function. On
2126 *         error, a negative error code is returned from the function and the
2127 *         last argument remains unchanged.
2128 */
2129static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2130{
2131	int pidfd;
2132	struct file *pidfd_file;
2133
2134	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2135		return -EINVAL;
2136
2137	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2138	if (pidfd < 0)
2139		return pidfd;
2140
2141	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2142					flags | O_RDWR | O_CLOEXEC);
2143	if (IS_ERR(pidfd_file)) {
2144		put_unused_fd(pidfd);
2145		return PTR_ERR(pidfd_file);
2146	}
2147	get_pid(pid); /* held by pidfd_file now */
2148	*ret = pidfd_file;
2149	return pidfd;
2150}
2151
2152/**
2153 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2154 * @pid:   the struct pid for which to create a pidfd
2155 * @flags: flags of the new @pidfd
2156 * @ret: Where to return the pidfd.
2157 *
2158 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2159 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2160 *
2161 * The helper verifies that @pid is used as a thread group leader.
2162 *
2163 * If this function returns successfully the caller is responsible to either
2164 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2165 * order to install the pidfd into its file descriptor table or they must use
2166 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2167 * respectively.
2168 *
2169 * This function is useful when a pidfd must already be reserved but there
2170 * might still be points of failure afterwards and the caller wants to ensure
2171 * that no pidfd is leaked into its file descriptor table.
2172 *
2173 * Return: On success, a reserved pidfd is returned from the function and a new
2174 *         pidfd file is returned in the last argument to the function. On
2175 *         error, a negative error code is returned from the function and the
2176 *         last argument remains unchanged.
2177 */
2178int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2179{
2180	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2181		return -EINVAL;
2182
2183	return __pidfd_prepare(pid, flags, ret);
2184}
2185
2186static void __delayed_free_task(struct rcu_head *rhp)
2187{
2188	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2189
2190	free_task(tsk);
2191}
2192
2193static __always_inline void delayed_free_task(struct task_struct *tsk)
2194{
2195	if (IS_ENABLED(CONFIG_MEMCG))
2196		call_rcu(&tsk->rcu, __delayed_free_task);
2197	else
2198		free_task(tsk);
2199}
2200
2201static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2202{
2203	/* Skip if kernel thread */
2204	if (!tsk->mm)
2205		return;
2206
2207	/* Skip if spawning a thread or using vfork */
2208	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2209		return;
2210
2211	/* We need to synchronize with __set_oom_adj */
2212	mutex_lock(&oom_adj_mutex);
2213	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2214	/* Update the values in case they were changed after copy_signal */
2215	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2216	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2217	mutex_unlock(&oom_adj_mutex);
2218}
2219
2220#ifdef CONFIG_RV
2221static void rv_task_fork(struct task_struct *p)
2222{
2223	int i;
2224
2225	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2226		p->rv[i].da_mon.monitoring = false;
2227}
2228#else
2229#define rv_task_fork(p) do {} while (0)
2230#endif
2231
2232/*
2233 * This creates a new process as a copy of the old one,
2234 * but does not actually start it yet.
2235 *
2236 * It copies the registers, and all the appropriate
2237 * parts of the process environment (as per the clone
2238 * flags). The actual kick-off is left to the caller.
2239 */
2240__latent_entropy struct task_struct *copy_process(
2241					struct pid *pid,
2242					int trace,
2243					int node,
2244					struct kernel_clone_args *args)
2245{
2246	int pidfd = -1, retval;
2247	struct task_struct *p;
2248	struct multiprocess_signals delayed;
2249	struct file *pidfile = NULL;
2250	const u64 clone_flags = args->flags;
2251	struct nsproxy *nsp = current->nsproxy;
2252
2253	/*
2254	 * Don't allow sharing the root directory with processes in a different
2255	 * namespace
2256	 */
2257	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2258		return ERR_PTR(-EINVAL);
2259
2260	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2261		return ERR_PTR(-EINVAL);
2262
2263	/*
2264	 * Thread groups must share signals as well, and detached threads
2265	 * can only be started up within the thread group.
2266	 */
2267	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2268		return ERR_PTR(-EINVAL);
2269
2270	/*
2271	 * Shared signal handlers imply shared VM. By way of the above,
2272	 * thread groups also imply shared VM. Blocking this case allows
2273	 * for various simplifications in other code.
2274	 */
2275	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2276		return ERR_PTR(-EINVAL);
2277
2278	/*
2279	 * Siblings of global init remain as zombies on exit since they are
2280	 * not reaped by their parent (swapper). To solve this and to avoid
2281	 * multi-rooted process trees, prevent global and container-inits
2282	 * from creating siblings.
2283	 */
2284	if ((clone_flags & CLONE_PARENT) &&
2285				current->signal->flags & SIGNAL_UNKILLABLE)
2286		return ERR_PTR(-EINVAL);
2287
2288	/*
2289	 * If the new process will be in a different pid or user namespace
2290	 * do not allow it to share a thread group with the forking task.
2291	 */
2292	if (clone_flags & CLONE_THREAD) {
2293		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2294		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2295			return ERR_PTR(-EINVAL);
2296	}
2297
 
 
 
 
 
 
 
 
 
2298	if (clone_flags & CLONE_PIDFD) {
2299		/*
2300		 * - CLONE_DETACHED is blocked so that we can potentially
2301		 *   reuse it later for CLONE_PIDFD.
2302		 * - CLONE_THREAD is blocked until someone really needs it.
2303		 */
2304		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2305			return ERR_PTR(-EINVAL);
2306	}
2307
2308	/*
2309	 * Force any signals received before this point to be delivered
2310	 * before the fork happens.  Collect up signals sent to multiple
2311	 * processes that happen during the fork and delay them so that
2312	 * they appear to happen after the fork.
2313	 */
2314	sigemptyset(&delayed.signal);
2315	INIT_HLIST_NODE(&delayed.node);
2316
2317	spin_lock_irq(&current->sighand->siglock);
2318	if (!(clone_flags & CLONE_THREAD))
2319		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2320	recalc_sigpending();
2321	spin_unlock_irq(&current->sighand->siglock);
2322	retval = -ERESTARTNOINTR;
2323	if (task_sigpending(current))
2324		goto fork_out;
2325
2326	retval = -ENOMEM;
2327	p = dup_task_struct(current, node);
2328	if (!p)
2329		goto fork_out;
2330	p->flags &= ~PF_KTHREAD;
2331	if (args->kthread)
2332		p->flags |= PF_KTHREAD;
2333	if (args->user_worker) {
2334		/*
2335		 * Mark us a user worker, and block any signal that isn't
2336		 * fatal or STOP
2337		 */
2338		p->flags |= PF_USER_WORKER;
2339		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2340	}
2341	if (args->io_thread)
2342		p->flags |= PF_IO_WORKER;
2343
2344	if (args->name)
2345		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2346
 
 
 
 
 
 
2347	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2348	/*
2349	 * Clear TID on mm_release()?
2350	 */
2351	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2352
2353	ftrace_graph_init_task(p);
2354
2355	rt_mutex_init_task(p);
2356
2357	lockdep_assert_irqs_enabled();
2358#ifdef CONFIG_PROVE_LOCKING
2359	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2360#endif
2361	retval = copy_creds(p, clone_flags);
2362	if (retval < 0)
2363		goto bad_fork_free;
2364
2365	retval = -EAGAIN;
2366	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2367		if (p->real_cred->user != INIT_USER &&
2368		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2369			goto bad_fork_cleanup_count;
2370	}
2371	current->flags &= ~PF_NPROC_EXCEEDED;
2372
 
 
 
 
2373	/*
2374	 * If multiple threads are within copy_process(), then this check
2375	 * triggers too late. This doesn't hurt, the check is only there
2376	 * to stop root fork bombs.
2377	 */
2378	retval = -EAGAIN;
2379	if (data_race(nr_threads >= max_threads))
2380		goto bad_fork_cleanup_count;
2381
2382	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2383	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2384	p->flags |= PF_FORKNOEXEC;
2385	INIT_LIST_HEAD(&p->children);
2386	INIT_LIST_HEAD(&p->sibling);
2387	rcu_copy_process(p);
2388	p->vfork_done = NULL;
2389	spin_lock_init(&p->alloc_lock);
2390
2391	init_sigpending(&p->pending);
2392
2393	p->utime = p->stime = p->gtime = 0;
2394#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2395	p->utimescaled = p->stimescaled = 0;
2396#endif
2397	prev_cputime_init(&p->prev_cputime);
2398
2399#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2400	seqcount_init(&p->vtime.seqcount);
2401	p->vtime.starttime = 0;
2402	p->vtime.state = VTIME_INACTIVE;
2403#endif
2404
2405#ifdef CONFIG_IO_URING
2406	p->io_uring = NULL;
2407#endif
2408
 
 
 
 
2409	p->default_timer_slack_ns = current->timer_slack_ns;
2410
2411#ifdef CONFIG_PSI
2412	p->psi_flags = 0;
2413#endif
2414
2415	task_io_accounting_init(&p->ioac);
2416	acct_clear_integrals(p);
2417
2418	posix_cputimers_init(&p->posix_cputimers);
2419
2420	p->io_context = NULL;
2421	audit_set_context(p, NULL);
2422	cgroup_fork(p);
2423	if (args->kthread) {
2424		if (!set_kthread_struct(p))
2425			goto bad_fork_cleanup_delayacct;
2426	}
2427#ifdef CONFIG_NUMA
2428	p->mempolicy = mpol_dup(p->mempolicy);
2429	if (IS_ERR(p->mempolicy)) {
2430		retval = PTR_ERR(p->mempolicy);
2431		p->mempolicy = NULL;
2432		goto bad_fork_cleanup_delayacct;
2433	}
2434#endif
2435#ifdef CONFIG_CPUSETS
2436	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2437	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2438	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2439#endif
2440#ifdef CONFIG_TRACE_IRQFLAGS
2441	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2442	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2443	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2444	p->softirqs_enabled		= 1;
2445	p->softirq_context		= 0;
2446#endif
2447
2448	p->pagefault_disabled = 0;
2449
2450#ifdef CONFIG_LOCKDEP
2451	lockdep_init_task(p);
2452#endif
2453
2454#ifdef CONFIG_DEBUG_MUTEXES
2455	p->blocked_on = NULL; /* not blocked yet */
2456#endif
2457#ifdef CONFIG_BCACHE
2458	p->sequential_io	= 0;
2459	p->sequential_io_avg	= 0;
2460#endif
2461#ifdef CONFIG_BPF_SYSCALL
2462	RCU_INIT_POINTER(p->bpf_storage, NULL);
2463	p->bpf_ctx = NULL;
2464#endif
2465
2466	/* Perform scheduler related setup. Assign this task to a CPU. */
2467	retval = sched_fork(clone_flags, p);
2468	if (retval)
2469		goto bad_fork_cleanup_policy;
2470
2471	retval = perf_event_init_task(p, clone_flags);
2472	if (retval)
2473		goto bad_fork_cleanup_policy;
2474	retval = audit_alloc(p);
2475	if (retval)
2476		goto bad_fork_cleanup_perf;
2477	/* copy all the process information */
2478	shm_init_task(p);
2479	retval = security_task_alloc(p, clone_flags);
2480	if (retval)
2481		goto bad_fork_cleanup_audit;
2482	retval = copy_semundo(clone_flags, p);
2483	if (retval)
2484		goto bad_fork_cleanup_security;
2485	retval = copy_files(clone_flags, p, args->no_files);
2486	if (retval)
2487		goto bad_fork_cleanup_semundo;
2488	retval = copy_fs(clone_flags, p);
2489	if (retval)
2490		goto bad_fork_cleanup_files;
2491	retval = copy_sighand(clone_flags, p);
2492	if (retval)
2493		goto bad_fork_cleanup_fs;
2494	retval = copy_signal(clone_flags, p);
2495	if (retval)
2496		goto bad_fork_cleanup_sighand;
2497	retval = copy_mm(clone_flags, p);
2498	if (retval)
2499		goto bad_fork_cleanup_signal;
2500	retval = copy_namespaces(clone_flags, p);
2501	if (retval)
2502		goto bad_fork_cleanup_mm;
2503	retval = copy_io(clone_flags, p);
2504	if (retval)
2505		goto bad_fork_cleanup_namespaces;
2506	retval = copy_thread(p, args);
2507	if (retval)
2508		goto bad_fork_cleanup_io;
2509
2510	stackleak_task_init(p);
2511
2512	if (pid != &init_struct_pid) {
2513		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2514				args->set_tid_size);
2515		if (IS_ERR(pid)) {
2516			retval = PTR_ERR(pid);
2517			goto bad_fork_cleanup_thread;
2518		}
2519	}
2520
2521	/*
2522	 * This has to happen after we've potentially unshared the file
2523	 * descriptor table (so that the pidfd doesn't leak into the child
2524	 * if the fd table isn't shared).
2525	 */
2526	if (clone_flags & CLONE_PIDFD) {
2527		/* Note that no task has been attached to @pid yet. */
2528		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2529		if (retval < 0)
2530			goto bad_fork_free_pid;
 
2531		pidfd = retval;
2532
 
 
 
 
 
 
 
 
 
2533		retval = put_user(pidfd, args->pidfd);
2534		if (retval)
2535			goto bad_fork_put_pidfd;
2536	}
2537
2538#ifdef CONFIG_BLOCK
2539	p->plug = NULL;
2540#endif
2541	futex_init_task(p);
2542
2543	/*
2544	 * sigaltstack should be cleared when sharing the same VM
2545	 */
2546	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2547		sas_ss_reset(p);
2548
2549	/*
2550	 * Syscall tracing and stepping should be turned off in the
2551	 * child regardless of CLONE_PTRACE.
2552	 */
2553	user_disable_single_step(p);
2554	clear_task_syscall_work(p, SYSCALL_TRACE);
2555#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2556	clear_task_syscall_work(p, SYSCALL_EMU);
2557#endif
2558	clear_tsk_latency_tracing(p);
2559
2560	/* ok, now we should be set up.. */
2561	p->pid = pid_nr(pid);
2562	if (clone_flags & CLONE_THREAD) {
2563		p->group_leader = current->group_leader;
2564		p->tgid = current->tgid;
2565	} else {
2566		p->group_leader = p;
2567		p->tgid = p->pid;
2568	}
2569
2570	p->nr_dirtied = 0;
2571	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2572	p->dirty_paused_when = 0;
2573
2574	p->pdeath_signal = 0;
 
2575	p->task_works = NULL;
2576	clear_posix_cputimers_work(p);
2577
2578#ifdef CONFIG_KRETPROBES
2579	p->kretprobe_instances.first = NULL;
2580#endif
2581#ifdef CONFIG_RETHOOK
2582	p->rethooks.first = NULL;
2583#endif
2584
2585	/*
2586	 * Ensure that the cgroup subsystem policies allow the new process to be
2587	 * forked. It should be noted that the new process's css_set can be changed
2588	 * between here and cgroup_post_fork() if an organisation operation is in
2589	 * progress.
2590	 */
2591	retval = cgroup_can_fork(p, args);
2592	if (retval)
2593		goto bad_fork_put_pidfd;
2594
2595	/*
2596	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2597	 * the new task on the correct runqueue. All this *before* the task
2598	 * becomes visible.
2599	 *
2600	 * This isn't part of ->can_fork() because while the re-cloning is
2601	 * cgroup specific, it unconditionally needs to place the task on a
2602	 * runqueue.
2603	 */
2604	sched_cgroup_fork(p, args);
2605
2606	/*
2607	 * From this point on we must avoid any synchronous user-space
2608	 * communication until we take the tasklist-lock. In particular, we do
2609	 * not want user-space to be able to predict the process start-time by
2610	 * stalling fork(2) after we recorded the start_time but before it is
2611	 * visible to the system.
2612	 */
2613
2614	p->start_time = ktime_get_ns();
2615	p->start_boottime = ktime_get_boottime_ns();
2616
2617	/*
2618	 * Make it visible to the rest of the system, but dont wake it up yet.
2619	 * Need tasklist lock for parent etc handling!
2620	 */
2621	write_lock_irq(&tasklist_lock);
2622
2623	/* CLONE_PARENT re-uses the old parent */
2624	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2625		p->real_parent = current->real_parent;
2626		p->parent_exec_id = current->parent_exec_id;
2627		if (clone_flags & CLONE_THREAD)
2628			p->exit_signal = -1;
2629		else
2630			p->exit_signal = current->group_leader->exit_signal;
2631	} else {
2632		p->real_parent = current;
2633		p->parent_exec_id = current->self_exec_id;
2634		p->exit_signal = args->exit_signal;
2635	}
2636
2637	klp_copy_process(p);
2638
2639	sched_core_fork(p);
2640
2641	spin_lock(&current->sighand->siglock);
2642
2643	rv_task_fork(p);
 
 
 
 
2644
2645	rseq_fork(p, clone_flags);
2646
2647	/* Don't start children in a dying pid namespace */
2648	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2649		retval = -ENOMEM;
2650		goto bad_fork_cancel_cgroup;
2651	}
2652
2653	/* Let kill terminate clone/fork in the middle */
2654	if (fatal_signal_pending(current)) {
2655		retval = -EINTR;
2656		goto bad_fork_cancel_cgroup;
2657	}
2658
2659	/* No more failure paths after this point. */
2660
2661	/*
2662	 * Copy seccomp details explicitly here, in case they were changed
2663	 * before holding sighand lock.
2664	 */
2665	copy_seccomp(p);
2666
2667	init_task_pid_links(p);
2668	if (likely(p->pid)) {
2669		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2670
2671		init_task_pid(p, PIDTYPE_PID, pid);
2672		if (thread_group_leader(p)) {
2673			init_task_pid(p, PIDTYPE_TGID, pid);
2674			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2675			init_task_pid(p, PIDTYPE_SID, task_session(current));
2676
2677			if (is_child_reaper(pid)) {
2678				ns_of_pid(pid)->child_reaper = p;
2679				p->signal->flags |= SIGNAL_UNKILLABLE;
2680			}
2681			p->signal->shared_pending.signal = delayed.signal;
2682			p->signal->tty = tty_kref_get(current->signal->tty);
2683			/*
2684			 * Inherit has_child_subreaper flag under the same
2685			 * tasklist_lock with adding child to the process tree
2686			 * for propagate_has_child_subreaper optimization.
2687			 */
2688			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2689							 p->real_parent->signal->is_child_subreaper;
2690			list_add_tail(&p->sibling, &p->real_parent->children);
2691			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2692			attach_pid(p, PIDTYPE_TGID);
2693			attach_pid(p, PIDTYPE_PGID);
2694			attach_pid(p, PIDTYPE_SID);
2695			__this_cpu_inc(process_counts);
2696		} else {
2697			current->signal->nr_threads++;
2698			current->signal->quick_threads++;
2699			atomic_inc(&current->signal->live);
2700			refcount_inc(&current->signal->sigcnt);
2701			task_join_group_stop(p);
 
 
2702			list_add_tail_rcu(&p->thread_node,
2703					  &p->signal->thread_head);
2704		}
2705		attach_pid(p, PIDTYPE_PID);
2706		nr_threads++;
2707	}
2708	total_forks++;
2709	hlist_del_init(&delayed.node);
2710	spin_unlock(&current->sighand->siglock);
2711	syscall_tracepoint_update(p);
2712	write_unlock_irq(&tasklist_lock);
2713
2714	if (pidfile)
2715		fd_install(pidfd, pidfile);
2716
2717	proc_fork_connector(p);
2718	sched_post_fork(p);
2719	cgroup_post_fork(p, args);
2720	perf_event_fork(p);
2721
2722	trace_task_newtask(p, clone_flags);
2723	uprobe_copy_process(p, clone_flags);
2724	user_events_fork(p, clone_flags);
2725
2726	copy_oom_score_adj(clone_flags, p);
2727
2728	return p;
2729
2730bad_fork_cancel_cgroup:
2731	sched_core_free(p);
2732	spin_unlock(&current->sighand->siglock);
2733	write_unlock_irq(&tasklist_lock);
2734	cgroup_cancel_fork(p, args);
2735bad_fork_put_pidfd:
2736	if (clone_flags & CLONE_PIDFD) {
2737		fput(pidfile);
2738		put_unused_fd(pidfd);
2739	}
2740bad_fork_free_pid:
2741	if (pid != &init_struct_pid)
2742		free_pid(pid);
2743bad_fork_cleanup_thread:
2744	exit_thread(p);
2745bad_fork_cleanup_io:
2746	if (p->io_context)
2747		exit_io_context(p);
2748bad_fork_cleanup_namespaces:
2749	exit_task_namespaces(p);
2750bad_fork_cleanup_mm:
2751	if (p->mm) {
2752		mm_clear_owner(p->mm, p);
2753		mmput(p->mm);
2754	}
2755bad_fork_cleanup_signal:
2756	if (!(clone_flags & CLONE_THREAD))
2757		free_signal_struct(p->signal);
2758bad_fork_cleanup_sighand:
2759	__cleanup_sighand(p->sighand);
2760bad_fork_cleanup_fs:
2761	exit_fs(p); /* blocking */
2762bad_fork_cleanup_files:
2763	exit_files(p); /* blocking */
2764bad_fork_cleanup_semundo:
2765	exit_sem(p);
2766bad_fork_cleanup_security:
2767	security_task_free(p);
2768bad_fork_cleanup_audit:
2769	audit_free(p);
2770bad_fork_cleanup_perf:
2771	perf_event_free_task(p);
2772bad_fork_cleanup_policy:
2773	lockdep_free_task(p);
2774#ifdef CONFIG_NUMA
2775	mpol_put(p->mempolicy);
 
2776#endif
2777bad_fork_cleanup_delayacct:
2778	delayacct_tsk_free(p);
2779bad_fork_cleanup_count:
2780	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2781	exit_creds(p);
2782bad_fork_free:
2783	WRITE_ONCE(p->__state, TASK_DEAD);
2784	exit_task_stack_account(p);
2785	put_task_stack(p);
2786	delayed_free_task(p);
2787fork_out:
2788	spin_lock_irq(&current->sighand->siglock);
2789	hlist_del_init(&delayed.node);
2790	spin_unlock_irq(&current->sighand->siglock);
2791	return ERR_PTR(retval);
2792}
2793
2794static inline void init_idle_pids(struct task_struct *idle)
2795{
2796	enum pid_type type;
2797
2798	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2799		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2800		init_task_pid(idle, type, &init_struct_pid);
2801	}
2802}
2803
2804static int idle_dummy(void *dummy)
2805{
2806	/* This function is never called */
2807	return 0;
2808}
2809
2810struct task_struct * __init fork_idle(int cpu)
2811{
2812	struct task_struct *task;
2813	struct kernel_clone_args args = {
2814		.flags		= CLONE_VM,
2815		.fn		= &idle_dummy,
2816		.fn_arg		= NULL,
2817		.kthread	= 1,
2818		.idle		= 1,
2819	};
2820
2821	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2822	if (!IS_ERR(task)) {
2823		init_idle_pids(task);
2824		init_idle(task, cpu);
2825	}
2826
2827	return task;
2828}
2829
 
 
 
 
 
2830/*
2831 * This is like kernel_clone(), but shaved down and tailored to just
2832 * creating io_uring workers. It returns a created task, or an error pointer.
2833 * The returned task is inactive, and the caller must fire it up through
2834 * wake_up_new_task(p). All signals are blocked in the created task.
2835 */
2836struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2837{
2838	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2839				CLONE_IO;
2840	struct kernel_clone_args args = {
2841		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2842				    CLONE_UNTRACED) & ~CSIGNAL),
2843		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2844		.fn		= fn,
2845		.fn_arg		= arg,
2846		.io_thread	= 1,
2847		.user_worker	= 1,
2848	};
2849
2850	return copy_process(NULL, 0, node, &args);
2851}
2852
2853/*
2854 *  Ok, this is the main fork-routine.
2855 *
2856 * It copies the process, and if successful kick-starts
2857 * it and waits for it to finish using the VM if required.
2858 *
2859 * args->exit_signal is expected to be checked for sanity by the caller.
2860 */
2861pid_t kernel_clone(struct kernel_clone_args *args)
2862{
2863	u64 clone_flags = args->flags;
2864	struct completion vfork;
2865	struct pid *pid;
2866	struct task_struct *p;
2867	int trace = 0;
2868	pid_t nr;
2869
2870	/*
2871	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2872	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2873	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2874	 * field in struct clone_args and it still doesn't make sense to have
2875	 * them both point at the same memory location. Performing this check
2876	 * here has the advantage that we don't need to have a separate helper
2877	 * to check for legacy clone().
2878	 */
2879	if ((args->flags & CLONE_PIDFD) &&
2880	    (args->flags & CLONE_PARENT_SETTID) &&
2881	    (args->pidfd == args->parent_tid))
2882		return -EINVAL;
2883
2884	/*
2885	 * Determine whether and which event to report to ptracer.  When
2886	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2887	 * requested, no event is reported; otherwise, report if the event
2888	 * for the type of forking is enabled.
2889	 */
2890	if (!(clone_flags & CLONE_UNTRACED)) {
2891		if (clone_flags & CLONE_VFORK)
2892			trace = PTRACE_EVENT_VFORK;
2893		else if (args->exit_signal != SIGCHLD)
2894			trace = PTRACE_EVENT_CLONE;
2895		else
2896			trace = PTRACE_EVENT_FORK;
2897
2898		if (likely(!ptrace_event_enabled(current, trace)))
2899			trace = 0;
2900	}
2901
2902	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2903	add_latent_entropy();
2904
2905	if (IS_ERR(p))
2906		return PTR_ERR(p);
2907
2908	/*
2909	 * Do this prior waking up the new thread - the thread pointer
2910	 * might get invalid after that point, if the thread exits quickly.
2911	 */
2912	trace_sched_process_fork(current, p);
2913
2914	pid = get_task_pid(p, PIDTYPE_PID);
2915	nr = pid_vnr(pid);
2916
2917	if (clone_flags & CLONE_PARENT_SETTID)
2918		put_user(nr, args->parent_tid);
2919
2920	if (clone_flags & CLONE_VFORK) {
2921		p->vfork_done = &vfork;
2922		init_completion(&vfork);
2923		get_task_struct(p);
2924	}
2925
2926	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2927		/* lock the task to synchronize with memcg migration */
2928		task_lock(p);
2929		lru_gen_add_mm(p->mm);
2930		task_unlock(p);
2931	}
2932
2933	wake_up_new_task(p);
2934
2935	/* forking complete and child started to run, tell ptracer */
2936	if (unlikely(trace))
2937		ptrace_event_pid(trace, pid);
2938
2939	if (clone_flags & CLONE_VFORK) {
2940		if (!wait_for_vfork_done(p, &vfork))
2941			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2942	}
2943
2944	put_pid(pid);
2945	return nr;
2946}
2947
2948/*
2949 * Create a kernel thread.
2950 */
2951pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2952		    unsigned long flags)
2953{
2954	struct kernel_clone_args args = {
2955		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2956				    CLONE_UNTRACED) & ~CSIGNAL),
2957		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2958		.fn		= fn,
2959		.fn_arg		= arg,
2960		.name		= name,
2961		.kthread	= 1,
2962	};
2963
2964	return kernel_clone(&args);
2965}
2966
2967/*
2968 * Create a user mode thread.
2969 */
2970pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2971{
2972	struct kernel_clone_args args = {
2973		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2974				    CLONE_UNTRACED) & ~CSIGNAL),
2975		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2976		.fn		= fn,
2977		.fn_arg		= arg,
2978	};
2979
2980	return kernel_clone(&args);
2981}
2982
2983#ifdef __ARCH_WANT_SYS_FORK
2984SYSCALL_DEFINE0(fork)
2985{
2986#ifdef CONFIG_MMU
2987	struct kernel_clone_args args = {
2988		.exit_signal = SIGCHLD,
2989	};
2990
2991	return kernel_clone(&args);
2992#else
2993	/* can not support in nommu mode */
2994	return -EINVAL;
2995#endif
2996}
2997#endif
2998
2999#ifdef __ARCH_WANT_SYS_VFORK
3000SYSCALL_DEFINE0(vfork)
3001{
3002	struct kernel_clone_args args = {
3003		.flags		= CLONE_VFORK | CLONE_VM,
3004		.exit_signal	= SIGCHLD,
3005	};
3006
3007	return kernel_clone(&args);
3008}
3009#endif
3010
3011#ifdef __ARCH_WANT_SYS_CLONE
3012#ifdef CONFIG_CLONE_BACKWARDS
3013SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3014		 int __user *, parent_tidptr,
3015		 unsigned long, tls,
3016		 int __user *, child_tidptr)
3017#elif defined(CONFIG_CLONE_BACKWARDS2)
3018SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3019		 int __user *, parent_tidptr,
3020		 int __user *, child_tidptr,
3021		 unsigned long, tls)
3022#elif defined(CONFIG_CLONE_BACKWARDS3)
3023SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3024		int, stack_size,
3025		int __user *, parent_tidptr,
3026		int __user *, child_tidptr,
3027		unsigned long, tls)
3028#else
3029SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3030		 int __user *, parent_tidptr,
3031		 int __user *, child_tidptr,
3032		 unsigned long, tls)
3033#endif
3034{
3035	struct kernel_clone_args args = {
3036		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3037		.pidfd		= parent_tidptr,
3038		.child_tid	= child_tidptr,
3039		.parent_tid	= parent_tidptr,
3040		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3041		.stack		= newsp,
3042		.tls		= tls,
3043	};
3044
3045	return kernel_clone(&args);
3046}
3047#endif
3048
3049#ifdef __ARCH_WANT_SYS_CLONE3
3050
3051noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3052					      struct clone_args __user *uargs,
3053					      size_t usize)
3054{
3055	int err;
3056	struct clone_args args;
3057	pid_t *kset_tid = kargs->set_tid;
3058
3059	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3060		     CLONE_ARGS_SIZE_VER0);
3061	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3062		     CLONE_ARGS_SIZE_VER1);
3063	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3064		     CLONE_ARGS_SIZE_VER2);
3065	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3066
3067	if (unlikely(usize > PAGE_SIZE))
3068		return -E2BIG;
3069	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3070		return -EINVAL;
3071
3072	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3073	if (err)
3074		return err;
3075
3076	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3077		return -EINVAL;
3078
3079	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3080		return -EINVAL;
3081
3082	if (unlikely(args.set_tid && args.set_tid_size == 0))
3083		return -EINVAL;
3084
3085	/*
3086	 * Verify that higher 32bits of exit_signal are unset and that
3087	 * it is a valid signal
3088	 */
3089	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3090		     !valid_signal(args.exit_signal)))
3091		return -EINVAL;
3092
3093	if ((args.flags & CLONE_INTO_CGROUP) &&
3094	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3095		return -EINVAL;
3096
3097	*kargs = (struct kernel_clone_args){
3098		.flags		= args.flags,
3099		.pidfd		= u64_to_user_ptr(args.pidfd),
3100		.child_tid	= u64_to_user_ptr(args.child_tid),
3101		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3102		.exit_signal	= args.exit_signal,
3103		.stack		= args.stack,
3104		.stack_size	= args.stack_size,
3105		.tls		= args.tls,
3106		.set_tid_size	= args.set_tid_size,
3107		.cgroup		= args.cgroup,
3108	};
3109
3110	if (args.set_tid &&
3111		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3112			(kargs->set_tid_size * sizeof(pid_t))))
3113		return -EFAULT;
3114
3115	kargs->set_tid = kset_tid;
3116
3117	return 0;
3118}
3119
3120/**
3121 * clone3_stack_valid - check and prepare stack
3122 * @kargs: kernel clone args
3123 *
3124 * Verify that the stack arguments userspace gave us are sane.
3125 * In addition, set the stack direction for userspace since it's easy for us to
3126 * determine.
3127 */
3128static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3129{
3130	if (kargs->stack == 0) {
3131		if (kargs->stack_size > 0)
3132			return false;
3133	} else {
3134		if (kargs->stack_size == 0)
3135			return false;
3136
3137		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3138			return false;
3139
3140#if !defined(CONFIG_STACK_GROWSUP)
3141		kargs->stack += kargs->stack_size;
3142#endif
3143	}
3144
3145	return true;
3146}
3147
3148static bool clone3_args_valid(struct kernel_clone_args *kargs)
3149{
3150	/* Verify that no unknown flags are passed along. */
3151	if (kargs->flags &
3152	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3153		return false;
3154
3155	/*
3156	 * - make the CLONE_DETACHED bit reusable for clone3
3157	 * - make the CSIGNAL bits reusable for clone3
3158	 */
3159	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3160		return false;
3161
3162	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3163	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3164		return false;
3165
3166	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3167	    kargs->exit_signal)
3168		return false;
3169
3170	if (!clone3_stack_valid(kargs))
3171		return false;
3172
3173	return true;
3174}
3175
3176/**
3177 * sys_clone3 - create a new process with specific properties
3178 * @uargs: argument structure
3179 * @size:  size of @uargs
3180 *
3181 * clone3() is the extensible successor to clone()/clone2().
3182 * It takes a struct as argument that is versioned by its size.
3183 *
3184 * Return: On success, a positive PID for the child process.
3185 *         On error, a negative errno number.
3186 */
3187SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3188{
3189	int err;
3190
3191	struct kernel_clone_args kargs;
3192	pid_t set_tid[MAX_PID_NS_LEVEL];
3193
3194	kargs.set_tid = set_tid;
3195
3196	err = copy_clone_args_from_user(&kargs, uargs, size);
3197	if (err)
3198		return err;
3199
3200	if (!clone3_args_valid(&kargs))
3201		return -EINVAL;
3202
3203	return kernel_clone(&kargs);
3204}
3205#endif
3206
3207void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3208{
3209	struct task_struct *leader, *parent, *child;
3210	int res;
3211
3212	read_lock(&tasklist_lock);
3213	leader = top = top->group_leader;
3214down:
3215	for_each_thread(leader, parent) {
3216		list_for_each_entry(child, &parent->children, sibling) {
3217			res = visitor(child, data);
3218			if (res) {
3219				if (res < 0)
3220					goto out;
3221				leader = child;
3222				goto down;
3223			}
3224up:
3225			;
3226		}
3227	}
3228
3229	if (leader != top) {
3230		child = leader;
3231		parent = child->real_parent;
3232		leader = parent->group_leader;
3233		goto up;
3234	}
3235out:
3236	read_unlock(&tasklist_lock);
3237}
3238
3239#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3240#define ARCH_MIN_MMSTRUCT_ALIGN 0
3241#endif
3242
3243static void sighand_ctor(void *data)
3244{
3245	struct sighand_struct *sighand = data;
3246
3247	spin_lock_init(&sighand->siglock);
3248	init_waitqueue_head(&sighand->signalfd_wqh);
3249}
3250
3251void __init mm_cache_init(void)
3252{
3253	unsigned int mm_size;
3254
3255	/*
3256	 * The mm_cpumask is located at the end of mm_struct, and is
3257	 * dynamically sized based on the maximum CPU number this system
3258	 * can have, taking hotplug into account (nr_cpu_ids).
3259	 */
3260	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3261
3262	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3263			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3264			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3265			offsetof(struct mm_struct, saved_auxv),
3266			sizeof_field(struct mm_struct, saved_auxv),
3267			NULL);
3268}
3269
3270void __init proc_caches_init(void)
3271{
3272	sighand_cachep = kmem_cache_create("sighand_cache",
3273			sizeof(struct sighand_struct), 0,
3274			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3275			SLAB_ACCOUNT, sighand_ctor);
3276	signal_cachep = kmem_cache_create("signal_cache",
3277			sizeof(struct signal_struct), 0,
3278			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3279			NULL);
3280	files_cachep = kmem_cache_create("files_cache",
3281			sizeof(struct files_struct), 0,
3282			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3283			NULL);
3284	fs_cachep = kmem_cache_create("fs_cache",
3285			sizeof(struct fs_struct), 0,
3286			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3287			NULL);
3288
 
 
 
 
 
 
 
 
 
 
 
 
 
3289	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3290#ifdef CONFIG_PER_VMA_LOCK
3291	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3292#endif
3293	mmap_init();
3294	nsproxy_cache_init();
3295}
3296
3297/*
3298 * Check constraints on flags passed to the unshare system call.
3299 */
3300static int check_unshare_flags(unsigned long unshare_flags)
3301{
3302	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3303				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3304				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3305				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3306				CLONE_NEWTIME))
3307		return -EINVAL;
3308	/*
3309	 * Not implemented, but pretend it works if there is nothing
3310	 * to unshare.  Note that unsharing the address space or the
3311	 * signal handlers also need to unshare the signal queues (aka
3312	 * CLONE_THREAD).
3313	 */
3314	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3315		if (!thread_group_empty(current))
3316			return -EINVAL;
3317	}
3318	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3319		if (refcount_read(&current->sighand->count) > 1)
3320			return -EINVAL;
3321	}
3322	if (unshare_flags & CLONE_VM) {
3323		if (!current_is_single_threaded())
3324			return -EINVAL;
3325	}
3326
3327	return 0;
3328}
3329
3330/*
3331 * Unshare the filesystem structure if it is being shared
3332 */
3333static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3334{
3335	struct fs_struct *fs = current->fs;
3336
3337	if (!(unshare_flags & CLONE_FS) || !fs)
3338		return 0;
3339
3340	/* don't need lock here; in the worst case we'll do useless copy */
3341	if (fs->users == 1)
3342		return 0;
3343
3344	*new_fsp = copy_fs_struct(fs);
3345	if (!*new_fsp)
3346		return -ENOMEM;
3347
3348	return 0;
3349}
3350
3351/*
3352 * Unshare file descriptor table if it is being shared
3353 */
3354int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3355	       struct files_struct **new_fdp)
3356{
3357	struct files_struct *fd = current->files;
3358	int error = 0;
3359
3360	if ((unshare_flags & CLONE_FILES) &&
3361	    (fd && atomic_read(&fd->count) > 1)) {
3362		*new_fdp = dup_fd(fd, max_fds, &error);
3363		if (!*new_fdp)
3364			return error;
3365	}
3366
3367	return 0;
3368}
3369
3370/*
3371 * unshare allows a process to 'unshare' part of the process
3372 * context which was originally shared using clone.  copy_*
3373 * functions used by kernel_clone() cannot be used here directly
3374 * because they modify an inactive task_struct that is being
3375 * constructed. Here we are modifying the current, active,
3376 * task_struct.
3377 */
3378int ksys_unshare(unsigned long unshare_flags)
3379{
3380	struct fs_struct *fs, *new_fs = NULL;
3381	struct files_struct *new_fd = NULL;
3382	struct cred *new_cred = NULL;
3383	struct nsproxy *new_nsproxy = NULL;
3384	int do_sysvsem = 0;
3385	int err;
3386
3387	/*
3388	 * If unsharing a user namespace must also unshare the thread group
3389	 * and unshare the filesystem root and working directories.
3390	 */
3391	if (unshare_flags & CLONE_NEWUSER)
3392		unshare_flags |= CLONE_THREAD | CLONE_FS;
3393	/*
3394	 * If unsharing vm, must also unshare signal handlers.
3395	 */
3396	if (unshare_flags & CLONE_VM)
3397		unshare_flags |= CLONE_SIGHAND;
3398	/*
3399	 * If unsharing a signal handlers, must also unshare the signal queues.
3400	 */
3401	if (unshare_flags & CLONE_SIGHAND)
3402		unshare_flags |= CLONE_THREAD;
3403	/*
3404	 * If unsharing namespace, must also unshare filesystem information.
3405	 */
3406	if (unshare_flags & CLONE_NEWNS)
3407		unshare_flags |= CLONE_FS;
3408
3409	err = check_unshare_flags(unshare_flags);
3410	if (err)
3411		goto bad_unshare_out;
3412	/*
3413	 * CLONE_NEWIPC must also detach from the undolist: after switching
3414	 * to a new ipc namespace, the semaphore arrays from the old
3415	 * namespace are unreachable.
3416	 */
3417	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3418		do_sysvsem = 1;
3419	err = unshare_fs(unshare_flags, &new_fs);
3420	if (err)
3421		goto bad_unshare_out;
3422	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3423	if (err)
3424		goto bad_unshare_cleanup_fs;
3425	err = unshare_userns(unshare_flags, &new_cred);
3426	if (err)
3427		goto bad_unshare_cleanup_fd;
3428	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3429					 new_cred, new_fs);
3430	if (err)
3431		goto bad_unshare_cleanup_cred;
3432
3433	if (new_cred) {
3434		err = set_cred_ucounts(new_cred);
3435		if (err)
3436			goto bad_unshare_cleanup_cred;
3437	}
3438
3439	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3440		if (do_sysvsem) {
3441			/*
3442			 * CLONE_SYSVSEM is equivalent to sys_exit().
3443			 */
3444			exit_sem(current);
3445		}
3446		if (unshare_flags & CLONE_NEWIPC) {
3447			/* Orphan segments in old ns (see sem above). */
3448			exit_shm(current);
3449			shm_init_task(current);
3450		}
3451
3452		if (new_nsproxy)
3453			switch_task_namespaces(current, new_nsproxy);
3454
3455		task_lock(current);
3456
3457		if (new_fs) {
3458			fs = current->fs;
3459			spin_lock(&fs->lock);
3460			current->fs = new_fs;
3461			if (--fs->users)
3462				new_fs = NULL;
3463			else
3464				new_fs = fs;
3465			spin_unlock(&fs->lock);
3466		}
3467
3468		if (new_fd)
3469			swap(current->files, new_fd);
 
 
 
3470
3471		task_unlock(current);
3472
3473		if (new_cred) {
3474			/* Install the new user namespace */
3475			commit_creds(new_cred);
3476			new_cred = NULL;
3477		}
3478	}
3479
3480	perf_event_namespaces(current);
3481
3482bad_unshare_cleanup_cred:
3483	if (new_cred)
3484		put_cred(new_cred);
3485bad_unshare_cleanup_fd:
3486	if (new_fd)
3487		put_files_struct(new_fd);
3488
3489bad_unshare_cleanup_fs:
3490	if (new_fs)
3491		free_fs_struct(new_fs);
3492
3493bad_unshare_out:
3494	return err;
3495}
3496
3497SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3498{
3499	return ksys_unshare(unshare_flags);
3500}
3501
3502/*
3503 *	Helper to unshare the files of the current task.
3504 *	We don't want to expose copy_files internals to
3505 *	the exec layer of the kernel.
3506 */
3507
3508int unshare_files(void)
3509{
3510	struct task_struct *task = current;
3511	struct files_struct *old, *copy = NULL;
3512	int error;
3513
3514	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3515	if (error || !copy)
3516		return error;
3517
3518	old = task->files;
3519	task_lock(task);
3520	task->files = copy;
3521	task_unlock(task);
3522	put_files_struct(old);
3523	return 0;
3524}
3525
3526int sysctl_max_threads(struct ctl_table *table, int write,
3527		       void *buffer, size_t *lenp, loff_t *ppos)
3528{
3529	struct ctl_table t;
3530	int ret;
3531	int threads = max_threads;
3532	int min = 1;
3533	int max = MAX_THREADS;
3534
3535	t = *table;
3536	t.data = &threads;
3537	t.extra1 = &min;
3538	t.extra2 = &max;
3539
3540	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3541	if (ret || !write)
3542		return ret;
3543
3544	max_threads = threads;
3545
3546	return 0;
3547}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
 
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
 
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98#include <linux/io_uring.h>
  99#include <linux/bpf.h>
 
 
 
 
 100
 101#include <asm/pgalloc.h>
 102#include <linux/uaccess.h>
 103#include <asm/mmu_context.h>
 104#include <asm/cacheflush.h>
 105#include <asm/tlbflush.h>
 106
 107#include <trace/events/sched.h>
 108
 109#define CREATE_TRACE_POINTS
 110#include <trace/events/task.h>
 111
 112/*
 113 * Minimum number of threads to boot the kernel
 114 */
 115#define MIN_THREADS 20
 116
 117/*
 118 * Maximum number of threads
 119 */
 120#define MAX_THREADS FUTEX_TID_MASK
 121
 122/*
 123 * Protected counters by write_lock_irq(&tasklist_lock)
 124 */
 125unsigned long total_forks;	/* Handle normal Linux uptimes. */
 126int nr_threads;			/* The idle threads do not count.. */
 127
 128static int max_threads;		/* tunable limit on nr_threads */
 129
 130#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 131
 132static const char * const resident_page_types[] = {
 133	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 134	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 135	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 136	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 137};
 138
 139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 140
 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 142
 143#ifdef CONFIG_PROVE_RCU
 144int lockdep_tasklist_lock_is_held(void)
 145{
 146	return lockdep_is_held(&tasklist_lock);
 147}
 148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 149#endif /* #ifdef CONFIG_PROVE_RCU */
 150
 151int nr_processes(void)
 152{
 153	int cpu;
 154	int total = 0;
 155
 156	for_each_possible_cpu(cpu)
 157		total += per_cpu(process_counts, cpu);
 158
 159	return total;
 160}
 161
 162void __weak arch_release_task_struct(struct task_struct *tsk)
 163{
 164}
 165
 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 167static struct kmem_cache *task_struct_cachep;
 168
 169static inline struct task_struct *alloc_task_struct_node(int node)
 170{
 171	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 172}
 173
 174static inline void free_task_struct(struct task_struct *tsk)
 175{
 176	kmem_cache_free(task_struct_cachep, tsk);
 177}
 178#endif
 179
 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 181
 182/*
 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 184 * kmemcache based allocator.
 185 */
 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 187
 188#ifdef CONFIG_VMAP_STACK
 189/*
 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 191 * flush.  Try to minimize the number of calls by caching stacks.
 192 */
 193#define NR_CACHED_STACKS 2
 194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196static int free_vm_stack_cache(unsigned int cpu)
 197{
 198	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 199	int i;
 200
 201	for (i = 0; i < NR_CACHED_STACKS; i++) {
 202		struct vm_struct *vm_stack = cached_vm_stacks[i];
 203
 204		if (!vm_stack)
 205			continue;
 206
 207		vfree(vm_stack->addr);
 208		cached_vm_stacks[i] = NULL;
 209	}
 210
 211	return 0;
 212}
 213#endif
 214
 215static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216{
 217#ifdef CONFIG_VMAP_STACK
 218	void *stack;
 219	int i;
 220
 221	for (i = 0; i < NR_CACHED_STACKS; i++) {
 222		struct vm_struct *s;
 223
 224		s = this_cpu_xchg(cached_stacks[i], NULL);
 225
 226		if (!s)
 227			continue;
 228
 229		/* Mark stack accessible for KASAN. */
 230		kasan_unpoison_range(s->addr, THREAD_SIZE);
 231
 
 
 232		/* Clear stale pointers from reused stack. */
 233		memset(s->addr, 0, THREAD_SIZE);
 
 
 
 
 
 234
 235		tsk->stack_vm_area = s;
 236		tsk->stack = s->addr;
 237		return s->addr;
 238	}
 239
 240	/*
 241	 * Allocated stacks are cached and later reused by new threads,
 242	 * so memcg accounting is performed manually on assigning/releasing
 243	 * stacks to tasks. Drop __GFP_ACCOUNT.
 244	 */
 245	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 246				     VMALLOC_START, VMALLOC_END,
 247				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 248				     PAGE_KERNEL,
 249				     0, node, __builtin_return_address(0));
 
 
 250
 
 
 
 
 
 251	/*
 252	 * We can't call find_vm_area() in interrupt context, and
 253	 * free_thread_stack() can be called in interrupt context,
 254	 * so cache the vm_struct.
 255	 */
 256	if (stack) {
 257		tsk->stack_vm_area = find_vm_area(stack);
 258		tsk->stack = stack;
 259	}
 260	return stack;
 261#else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 263					     THREAD_SIZE_ORDER);
 264
 265	if (likely(page)) {
 266		tsk->stack = kasan_reset_tag(page_address(page));
 267		return tsk->stack;
 268	}
 269	return NULL;
 270#endif
 271}
 272
 273static inline void free_thread_stack(struct task_struct *tsk)
 274{
 275#ifdef CONFIG_VMAP_STACK
 276	struct vm_struct *vm = task_stack_vm_area(tsk);
 
 277
 278	if (vm) {
 279		int i;
 280
 281		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 282			memcg_kmem_uncharge_page(vm->pages[i], 0);
 283
 284		for (i = 0; i < NR_CACHED_STACKS; i++) {
 285			if (this_cpu_cmpxchg(cached_stacks[i],
 286					NULL, tsk->stack_vm_area) != NULL)
 287				continue;
 288
 289			return;
 290		}
 
 291
 292		vfree_atomic(tsk->stack);
 293		return;
 294	}
 295#endif
 296
 297	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 298}
 299# else
 300static struct kmem_cache *thread_stack_cache;
 301
 302static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 303						  int node)
 304{
 305	unsigned long *stack;
 306	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 307	stack = kasan_reset_tag(stack);
 308	tsk->stack = stack;
 309	return stack;
 310}
 311
 312static void free_thread_stack(struct task_struct *tsk)
 313{
 314	kmem_cache_free(thread_stack_cache, tsk->stack);
 
 315}
 316
 317void thread_stack_cache_init(void)
 318{
 319	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 320					THREAD_SIZE, THREAD_SIZE, 0, 0,
 321					THREAD_SIZE, NULL);
 322	BUG_ON(thread_stack_cache == NULL);
 323}
 324# endif
 325#endif
 326
 327/* SLAB cache for signal_struct structures (tsk->signal) */
 328static struct kmem_cache *signal_cachep;
 329
 330/* SLAB cache for sighand_struct structures (tsk->sighand) */
 331struct kmem_cache *sighand_cachep;
 332
 333/* SLAB cache for files_struct structures (tsk->files) */
 334struct kmem_cache *files_cachep;
 335
 336/* SLAB cache for fs_struct structures (tsk->fs) */
 337struct kmem_cache *fs_cachep;
 338
 339/* SLAB cache for vm_area_struct structures */
 340static struct kmem_cache *vm_area_cachep;
 341
 342/* SLAB cache for mm_struct structures (tsk->mm) */
 343static struct kmem_cache *mm_cachep;
 344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 346{
 347	struct vm_area_struct *vma;
 348
 349	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 350	if (vma)
 351		vma_init(vma, mm);
 
 
 
 
 
 
 
 352	return vma;
 353}
 354
 355struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 356{
 357	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 358
 359	if (new) {
 360		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 361		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 362		/*
 363		 * orig->shared.rb may be modified concurrently, but the clone
 364		 * will be reinitialized.
 365		 */
 366		*new = data_race(*orig);
 367		INIT_LIST_HEAD(&new->anon_vma_chain);
 368		new->vm_next = new->vm_prev = NULL;
 
 
 
 369	}
 
 
 
 
 370	return new;
 371}
 372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373void vm_area_free(struct vm_area_struct *vma)
 374{
 375	kmem_cache_free(vm_area_cachep, vma);
 
 
 
 
 376}
 377
 378static void account_kernel_stack(struct task_struct *tsk, int account)
 379{
 380	void *stack = task_stack_page(tsk);
 381	struct vm_struct *vm = task_stack_vm_area(tsk);
 382
 383	if (vm) {
 384		int i;
 385
 386		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 387			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 388					      account * (PAGE_SIZE / 1024));
 389	} else {
 
 
 390		/* All stack pages are in the same node. */
 391		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 392				      account * (THREAD_SIZE / 1024));
 393	}
 394}
 395
 396static int memcg_charge_kernel_stack(struct task_struct *tsk)
 397{
 398#ifdef CONFIG_VMAP_STACK
 399	struct vm_struct *vm = task_stack_vm_area(tsk);
 400	int ret;
 401
 402	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 403
 404	if (vm) {
 
 405		int i;
 406
 407		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 408
 409		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 410			/*
 411			 * If memcg_kmem_charge_page() fails, page's
 412			 * memory cgroup pointer is NULL, and
 413			 * memcg_kmem_uncharge_page() in free_thread_stack()
 414			 * will ignore this page.
 415			 */
 416			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
 417						     0);
 418			if (ret)
 419				return ret;
 420		}
 421	}
 422#endif
 423	return 0;
 424}
 425
 426static void release_task_stack(struct task_struct *tsk)
 427{
 428	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 429		return;  /* Better to leak the stack than to free prematurely */
 430
 431	account_kernel_stack(tsk, -1);
 432	free_thread_stack(tsk);
 433	tsk->stack = NULL;
 434#ifdef CONFIG_VMAP_STACK
 435	tsk->stack_vm_area = NULL;
 436#endif
 437}
 438
 439#ifdef CONFIG_THREAD_INFO_IN_TASK
 440void put_task_stack(struct task_struct *tsk)
 441{
 442	if (refcount_dec_and_test(&tsk->stack_refcount))
 443		release_task_stack(tsk);
 444}
 445#endif
 446
 447void free_task(struct task_struct *tsk)
 448{
 
 
 
 
 449	scs_release(tsk);
 450
 451#ifndef CONFIG_THREAD_INFO_IN_TASK
 452	/*
 453	 * The task is finally done with both the stack and thread_info,
 454	 * so free both.
 455	 */
 456	release_task_stack(tsk);
 457#else
 458	/*
 459	 * If the task had a separate stack allocation, it should be gone
 460	 * by now.
 461	 */
 462	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 463#endif
 464	rt_mutex_debug_task_free(tsk);
 465	ftrace_graph_exit_task(tsk);
 466	arch_release_task_struct(tsk);
 467	if (tsk->flags & PF_KTHREAD)
 468		free_kthread_struct(tsk);
 
 469	free_task_struct(tsk);
 470}
 471EXPORT_SYMBOL(free_task);
 472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473#ifdef CONFIG_MMU
 474static __latent_entropy int dup_mmap(struct mm_struct *mm,
 475					struct mm_struct *oldmm)
 476{
 477	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 478	struct rb_node **rb_link, *rb_parent;
 479	int retval;
 480	unsigned long charge;
 481	LIST_HEAD(uf);
 
 482
 483	uprobe_start_dup_mmap();
 484	if (mmap_write_lock_killable(oldmm)) {
 485		retval = -EINTR;
 486		goto fail_uprobe_end;
 487	}
 488	flush_cache_dup_mm(oldmm);
 489	uprobe_dup_mmap(oldmm, mm);
 490	/*
 491	 * Not linked in yet - no deadlock potential:
 492	 */
 493	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 494
 495	/* No ordering required: file already has been exposed. */
 496	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 497
 498	mm->total_vm = oldmm->total_vm;
 499	mm->data_vm = oldmm->data_vm;
 500	mm->exec_vm = oldmm->exec_vm;
 501	mm->stack_vm = oldmm->stack_vm;
 502
 503	rb_link = &mm->mm_rb.rb_node;
 504	rb_parent = NULL;
 505	pprev = &mm->mmap;
 506	retval = ksm_fork(mm, oldmm);
 507	if (retval)
 508		goto out;
 509	retval = khugepaged_fork(mm, oldmm);
 510	if (retval)
 
 
 
 511		goto out;
 512
 513	prev = NULL;
 514	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 515		struct file *file;
 516
 
 517		if (mpnt->vm_flags & VM_DONTCOPY) {
 
 
 
 
 
 518			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 519			continue;
 520		}
 521		charge = 0;
 522		/*
 523		 * Don't duplicate many vmas if we've been oom-killed (for
 524		 * example)
 525		 */
 526		if (fatal_signal_pending(current)) {
 527			retval = -EINTR;
 528			goto out;
 529		}
 530		if (mpnt->vm_flags & VM_ACCOUNT) {
 531			unsigned long len = vma_pages(mpnt);
 532
 533			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 534				goto fail_nomem;
 535			charge = len;
 536		}
 537		tmp = vm_area_dup(mpnt);
 538		if (!tmp)
 539			goto fail_nomem;
 540		retval = vma_dup_policy(mpnt, tmp);
 541		if (retval)
 542			goto fail_nomem_policy;
 543		tmp->vm_mm = mm;
 544		retval = dup_userfaultfd(tmp, &uf);
 545		if (retval)
 546			goto fail_nomem_anon_vma_fork;
 547		if (tmp->vm_flags & VM_WIPEONFORK) {
 548			/*
 549			 * VM_WIPEONFORK gets a clean slate in the child.
 550			 * Don't prepare anon_vma until fault since we don't
 551			 * copy page for current vma.
 552			 */
 553			tmp->anon_vma = NULL;
 554		} else if (anon_vma_fork(tmp, mpnt))
 555			goto fail_nomem_anon_vma_fork;
 556		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 557		file = tmp->vm_file;
 558		if (file) {
 559			struct inode *inode = file_inode(file);
 560			struct address_space *mapping = file->f_mapping;
 561
 562			get_file(file);
 563			if (tmp->vm_flags & VM_DENYWRITE)
 564				put_write_access(inode);
 565			i_mmap_lock_write(mapping);
 566			if (tmp->vm_flags & VM_SHARED)
 567				mapping_allow_writable(mapping);
 568			flush_dcache_mmap_lock(mapping);
 569			/* insert tmp into the share list, just after mpnt */
 570			vma_interval_tree_insert_after(tmp, mpnt,
 571					&mapping->i_mmap);
 572			flush_dcache_mmap_unlock(mapping);
 573			i_mmap_unlock_write(mapping);
 574		}
 575
 576		/*
 577		 * Clear hugetlb-related page reserves for children. This only
 578		 * affects MAP_PRIVATE mappings. Faults generated by the child
 579		 * are not guaranteed to succeed, even if read-only
 580		 */
 581		if (is_vm_hugetlb_page(tmp))
 582			reset_vma_resv_huge_pages(tmp);
 583
 584		/*
 585		 * Link in the new vma and copy the page table entries.
 
 586		 */
 587		*pprev = tmp;
 588		pprev = &tmp->vm_next;
 589		tmp->vm_prev = prev;
 590		prev = tmp;
 591
 592		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 593		rb_link = &tmp->vm_rb.rb_right;
 594		rb_parent = &tmp->vm_rb;
 595
 596		mm->map_count++;
 597		if (!(tmp->vm_flags & VM_WIPEONFORK))
 598			retval = copy_page_range(tmp, mpnt);
 599
 600		if (tmp->vm_ops && tmp->vm_ops->open)
 601			tmp->vm_ops->open(tmp);
 602
 603		if (retval)
 604			goto out;
 
 
 605	}
 606	/* a new mm has just been created */
 607	retval = arch_dup_mmap(oldmm, mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608out:
 609	mmap_write_unlock(mm);
 610	flush_tlb_mm(oldmm);
 611	mmap_write_unlock(oldmm);
 612	dup_userfaultfd_complete(&uf);
 613fail_uprobe_end:
 614	uprobe_end_dup_mmap();
 615	return retval;
 
 616fail_nomem_anon_vma_fork:
 617	mpol_put(vma_policy(tmp));
 618fail_nomem_policy:
 619	vm_area_free(tmp);
 620fail_nomem:
 621	retval = -ENOMEM;
 622	vm_unacct_memory(charge);
 623	goto out;
 624}
 625
 626static inline int mm_alloc_pgd(struct mm_struct *mm)
 627{
 628	mm->pgd = pgd_alloc(mm);
 629	if (unlikely(!mm->pgd))
 630		return -ENOMEM;
 631	return 0;
 632}
 633
 634static inline void mm_free_pgd(struct mm_struct *mm)
 635{
 636	pgd_free(mm, mm->pgd);
 637}
 638#else
 639static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 640{
 641	mmap_write_lock(oldmm);
 642	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 643	mmap_write_unlock(oldmm);
 644	return 0;
 645}
 646#define mm_alloc_pgd(mm)	(0)
 647#define mm_free_pgd(mm)
 648#endif /* CONFIG_MMU */
 649
 650static void check_mm(struct mm_struct *mm)
 651{
 652	int i;
 653
 654	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 655			 "Please make sure 'struct resident_page_types[]' is updated as well");
 656
 657	for (i = 0; i < NR_MM_COUNTERS; i++) {
 658		long x = atomic_long_read(&mm->rss_stat.count[i]);
 659
 660		if (unlikely(x))
 661			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 662				 mm, resident_page_types[i], x);
 663	}
 664
 665	if (mm_pgtables_bytes(mm))
 666		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 667				mm_pgtables_bytes(mm));
 668
 669#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 670	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 671#endif
 672}
 673
 674#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 675#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677/*
 678 * Called when the last reference to the mm
 679 * is dropped: either by a lazy thread or by
 680 * mmput. Free the page directory and the mm.
 681 */
 682void __mmdrop(struct mm_struct *mm)
 683{
 684	BUG_ON(mm == &init_mm);
 685	WARN_ON_ONCE(mm == current->mm);
 
 
 
 
 686	WARN_ON_ONCE(mm == current->active_mm);
 687	mm_free_pgd(mm);
 688	destroy_context(mm);
 689	mmu_notifier_subscriptions_destroy(mm);
 690	check_mm(mm);
 691	put_user_ns(mm->user_ns);
 
 
 
 
 692	free_mm(mm);
 693}
 694EXPORT_SYMBOL_GPL(__mmdrop);
 695
 696static void mmdrop_async_fn(struct work_struct *work)
 697{
 698	struct mm_struct *mm;
 699
 700	mm = container_of(work, struct mm_struct, async_put_work);
 701	__mmdrop(mm);
 702}
 703
 704static void mmdrop_async(struct mm_struct *mm)
 705{
 706	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 707		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 708		schedule_work(&mm->async_put_work);
 709	}
 710}
 711
 712static inline void free_signal_struct(struct signal_struct *sig)
 713{
 714	taskstats_tgid_free(sig);
 715	sched_autogroup_exit(sig);
 716	/*
 717	 * __mmdrop is not safe to call from softirq context on x86 due to
 718	 * pgd_dtor so postpone it to the async context
 719	 */
 720	if (sig->oom_mm)
 721		mmdrop_async(sig->oom_mm);
 722	kmem_cache_free(signal_cachep, sig);
 723}
 724
 725static inline void put_signal_struct(struct signal_struct *sig)
 726{
 727	if (refcount_dec_and_test(&sig->sigcnt))
 728		free_signal_struct(sig);
 729}
 730
 731void __put_task_struct(struct task_struct *tsk)
 732{
 733	WARN_ON(!tsk->exit_state);
 734	WARN_ON(refcount_read(&tsk->usage));
 735	WARN_ON(tsk == current);
 736
 737	io_uring_free(tsk);
 738	cgroup_free(tsk);
 739	task_numa_free(tsk, true);
 740	security_task_free(tsk);
 741	bpf_task_storage_free(tsk);
 742	exit_creds(tsk);
 743	delayacct_tsk_free(tsk);
 744	put_signal_struct(tsk->signal);
 745	sched_core_free(tsk);
 
 
 
 746
 747	if (!profile_handoff_task(tsk))
 748		free_task(tsk);
 
 
 
 749}
 750EXPORT_SYMBOL_GPL(__put_task_struct);
 751
 752void __init __weak arch_task_cache_init(void) { }
 753
 754/*
 755 * set_max_threads
 756 */
 757static void set_max_threads(unsigned int max_threads_suggested)
 758{
 759	u64 threads;
 760	unsigned long nr_pages = totalram_pages();
 761
 762	/*
 763	 * The number of threads shall be limited such that the thread
 764	 * structures may only consume a small part of the available memory.
 765	 */
 766	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 767		threads = MAX_THREADS;
 768	else
 769		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 770				    (u64) THREAD_SIZE * 8UL);
 771
 772	if (threads > max_threads_suggested)
 773		threads = max_threads_suggested;
 774
 775	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 776}
 777
 778#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 779/* Initialized by the architecture: */
 780int arch_task_struct_size __read_mostly;
 781#endif
 782
 783#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 784static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 785{
 786	/* Fetch thread_struct whitelist for the architecture. */
 787	arch_thread_struct_whitelist(offset, size);
 788
 789	/*
 790	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 791	 * adjust offset to position of thread_struct in task_struct.
 792	 */
 793	if (unlikely(*size == 0))
 794		*offset = 0;
 795	else
 796		*offset += offsetof(struct task_struct, thread);
 797}
 798#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 799
 800void __init fork_init(void)
 801{
 802	int i;
 803#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 804#ifndef ARCH_MIN_TASKALIGN
 805#define ARCH_MIN_TASKALIGN	0
 806#endif
 807	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 808	unsigned long useroffset, usersize;
 809
 810	/* create a slab on which task_structs can be allocated */
 811	task_struct_whitelist(&useroffset, &usersize);
 812	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 813			arch_task_struct_size, align,
 814			SLAB_PANIC|SLAB_ACCOUNT,
 815			useroffset, usersize, NULL);
 816#endif
 817
 818	/* do the arch specific task caches init */
 819	arch_task_cache_init();
 820
 821	set_max_threads(MAX_THREADS);
 822
 823	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 824	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 825	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 826		init_task.signal->rlim[RLIMIT_NPROC];
 827
 828	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
 829		init_user_ns.ucount_max[i] = max_threads/2;
 830
 831	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
 832	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
 833	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
 834	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
 835
 836#ifdef CONFIG_VMAP_STACK
 837	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 838			  NULL, free_vm_stack_cache);
 839#endif
 840
 841	scs_init();
 842
 843	lockdep_init_task(&init_task);
 844	uprobes_init();
 845}
 846
 847int __weak arch_dup_task_struct(struct task_struct *dst,
 848					       struct task_struct *src)
 849{
 850	*dst = *src;
 851	return 0;
 852}
 853
 854void set_task_stack_end_magic(struct task_struct *tsk)
 855{
 856	unsigned long *stackend;
 857
 858	stackend = end_of_stack(tsk);
 859	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 860}
 861
 862static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 863{
 864	struct task_struct *tsk;
 865	unsigned long *stack;
 866	struct vm_struct *stack_vm_area __maybe_unused;
 867	int err;
 868
 869	if (node == NUMA_NO_NODE)
 870		node = tsk_fork_get_node(orig);
 871	tsk = alloc_task_struct_node(node);
 872	if (!tsk)
 873		return NULL;
 874
 875	stack = alloc_thread_stack_node(tsk, node);
 876	if (!stack)
 877		goto free_tsk;
 878
 879	if (memcg_charge_kernel_stack(tsk))
 880		goto free_stack;
 881
 882	stack_vm_area = task_stack_vm_area(tsk);
 883
 884	err = arch_dup_task_struct(tsk, orig);
 885
 886	/*
 887	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 888	 * sure they're properly initialized before using any stack-related
 889	 * functions again.
 890	 */
 891	tsk->stack = stack;
 892#ifdef CONFIG_VMAP_STACK
 893	tsk->stack_vm_area = stack_vm_area;
 894#endif
 895#ifdef CONFIG_THREAD_INFO_IN_TASK
 896	refcount_set(&tsk->stack_refcount, 1);
 897#endif
 898
 899	if (err)
 900		goto free_stack;
 901
 902	err = scs_prepare(tsk, node);
 903	if (err)
 904		goto free_stack;
 905
 906#ifdef CONFIG_SECCOMP
 907	/*
 908	 * We must handle setting up seccomp filters once we're under
 909	 * the sighand lock in case orig has changed between now and
 910	 * then. Until then, filter must be NULL to avoid messing up
 911	 * the usage counts on the error path calling free_task.
 912	 */
 913	tsk->seccomp.filter = NULL;
 914#endif
 915
 916	setup_thread_stack(tsk, orig);
 917	clear_user_return_notifier(tsk);
 918	clear_tsk_need_resched(tsk);
 919	set_task_stack_end_magic(tsk);
 920	clear_syscall_work_syscall_user_dispatch(tsk);
 921
 922#ifdef CONFIG_STACKPROTECTOR
 923	tsk->stack_canary = get_random_canary();
 924#endif
 925	if (orig->cpus_ptr == &orig->cpus_mask)
 926		tsk->cpus_ptr = &tsk->cpus_mask;
 
 927
 928	/*
 929	 * One for the user space visible state that goes away when reaped.
 930	 * One for the scheduler.
 931	 */
 932	refcount_set(&tsk->rcu_users, 2);
 933	/* One for the rcu users */
 934	refcount_set(&tsk->usage, 1);
 935#ifdef CONFIG_BLK_DEV_IO_TRACE
 936	tsk->btrace_seq = 0;
 937#endif
 938	tsk->splice_pipe = NULL;
 939	tsk->task_frag.page = NULL;
 940	tsk->wake_q.next = NULL;
 941	tsk->pf_io_worker = NULL;
 942
 943	account_kernel_stack(tsk, 1);
 944
 945	kcov_task_init(tsk);
 
 946	kmap_local_fork(tsk);
 947
 948#ifdef CONFIG_FAULT_INJECTION
 949	tsk->fail_nth = 0;
 950#endif
 951
 952#ifdef CONFIG_BLK_CGROUP
 953	tsk->throttle_queue = NULL;
 954	tsk->use_memdelay = 0;
 955#endif
 956
 
 
 
 
 957#ifdef CONFIG_MEMCG
 958	tsk->active_memcg = NULL;
 959#endif
 
 
 
 
 
 
 
 
 
 
 
 960	return tsk;
 961
 962free_stack:
 
 963	free_thread_stack(tsk);
 964free_tsk:
 965	free_task_struct(tsk);
 966	return NULL;
 967}
 968
 969__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 970
 971static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 972
 973static int __init coredump_filter_setup(char *s)
 974{
 975	default_dump_filter =
 976		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 977		MMF_DUMP_FILTER_MASK;
 978	return 1;
 979}
 980
 981__setup("coredump_filter=", coredump_filter_setup);
 982
 983#include <linux/init_task.h>
 984
 985static void mm_init_aio(struct mm_struct *mm)
 986{
 987#ifdef CONFIG_AIO
 988	spin_lock_init(&mm->ioctx_lock);
 989	mm->ioctx_table = NULL;
 990#endif
 991}
 992
 993static __always_inline void mm_clear_owner(struct mm_struct *mm,
 994					   struct task_struct *p)
 995{
 996#ifdef CONFIG_MEMCG
 997	if (mm->owner == p)
 998		WRITE_ONCE(mm->owner, NULL);
 999#endif
1000}
1001
1002static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1003{
1004#ifdef CONFIG_MEMCG
1005	mm->owner = p;
1006#endif
1007}
1008
1009static void mm_init_pasid(struct mm_struct *mm)
1010{
1011#ifdef CONFIG_IOMMU_SUPPORT
1012	mm->pasid = INIT_PASID;
1013#endif
1014}
1015
1016static void mm_init_uprobes_state(struct mm_struct *mm)
1017{
1018#ifdef CONFIG_UPROBES
1019	mm->uprobes_state.xol_area = NULL;
1020#endif
1021}
1022
1023static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1024	struct user_namespace *user_ns)
1025{
1026	mm->mmap = NULL;
1027	mm->mm_rb = RB_ROOT;
1028	mm->vmacache_seqnum = 0;
1029	atomic_set(&mm->mm_users, 1);
1030	atomic_set(&mm->mm_count, 1);
1031	seqcount_init(&mm->write_protect_seq);
1032	mmap_init_lock(mm);
1033	INIT_LIST_HEAD(&mm->mmlist);
1034	mm->core_state = NULL;
 
 
1035	mm_pgtables_bytes_init(mm);
1036	mm->map_count = 0;
1037	mm->locked_vm = 0;
1038	atomic64_set(&mm->pinned_vm, 0);
1039	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1040	spin_lock_init(&mm->page_table_lock);
1041	spin_lock_init(&mm->arg_lock);
1042	mm_init_cpumask(mm);
1043	mm_init_aio(mm);
1044	mm_init_owner(mm, p);
1045	mm_init_pasid(mm);
1046	RCU_INIT_POINTER(mm->exe_file, NULL);
1047	mmu_notifier_subscriptions_init(mm);
1048	init_tlb_flush_pending(mm);
1049#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1050	mm->pmd_huge_pte = NULL;
1051#endif
1052	mm_init_uprobes_state(mm);
1053	hugetlb_count_init(mm);
1054
1055	if (current->mm) {
1056		mm->flags = current->mm->flags & MMF_INIT_MASK;
1057		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1058	} else {
1059		mm->flags = default_dump_filter;
1060		mm->def_flags = 0;
1061	}
1062
1063	if (mm_alloc_pgd(mm))
1064		goto fail_nopgd;
1065
1066	if (init_new_context(p, mm))
1067		goto fail_nocontext;
1068
 
 
 
 
 
 
 
1069	mm->user_ns = get_user_ns(user_ns);
 
1070	return mm;
1071
 
 
 
 
1072fail_nocontext:
1073	mm_free_pgd(mm);
1074fail_nopgd:
1075	free_mm(mm);
1076	return NULL;
1077}
1078
1079/*
1080 * Allocate and initialize an mm_struct.
1081 */
1082struct mm_struct *mm_alloc(void)
1083{
1084	struct mm_struct *mm;
1085
1086	mm = allocate_mm();
1087	if (!mm)
1088		return NULL;
1089
1090	memset(mm, 0, sizeof(*mm));
1091	return mm_init(mm, current, current_user_ns());
1092}
1093
1094static inline void __mmput(struct mm_struct *mm)
1095{
1096	VM_BUG_ON(atomic_read(&mm->mm_users));
1097
1098	uprobe_clear_state(mm);
1099	exit_aio(mm);
1100	ksm_exit(mm);
1101	khugepaged_exit(mm); /* must run before exit_mmap */
1102	exit_mmap(mm);
1103	mm_put_huge_zero_page(mm);
1104	set_mm_exe_file(mm, NULL);
1105	if (!list_empty(&mm->mmlist)) {
1106		spin_lock(&mmlist_lock);
1107		list_del(&mm->mmlist);
1108		spin_unlock(&mmlist_lock);
1109	}
1110	if (mm->binfmt)
1111		module_put(mm->binfmt->module);
 
1112	mmdrop(mm);
1113}
1114
1115/*
1116 * Decrement the use count and release all resources for an mm.
1117 */
1118void mmput(struct mm_struct *mm)
1119{
1120	might_sleep();
1121
1122	if (atomic_dec_and_test(&mm->mm_users))
1123		__mmput(mm);
1124}
1125EXPORT_SYMBOL_GPL(mmput);
1126
1127#ifdef CONFIG_MMU
1128static void mmput_async_fn(struct work_struct *work)
1129{
1130	struct mm_struct *mm = container_of(work, struct mm_struct,
1131					    async_put_work);
1132
1133	__mmput(mm);
1134}
1135
1136void mmput_async(struct mm_struct *mm)
1137{
1138	if (atomic_dec_and_test(&mm->mm_users)) {
1139		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1140		schedule_work(&mm->async_put_work);
1141	}
1142}
 
1143#endif
1144
1145/**
1146 * set_mm_exe_file - change a reference to the mm's executable file
 
 
1147 *
1148 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1149 *
1150 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1151 * invocations: in mmput() nobody alive left, in execve task is single
1152 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1153 * mm->exe_file, but does so without using set_mm_exe_file() in order
1154 * to avoid the need for any locks.
1155 */
1156void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1157{
1158	struct file *old_exe_file;
1159
1160	/*
1161	 * It is safe to dereference the exe_file without RCU as
1162	 * this function is only called if nobody else can access
1163	 * this mm -- see comment above for justification.
1164	 */
1165	old_exe_file = rcu_dereference_raw(mm->exe_file);
1166
1167	if (new_exe_file)
 
 
 
 
 
 
1168		get_file(new_exe_file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169	rcu_assign_pointer(mm->exe_file, new_exe_file);
1170	if (old_exe_file)
 
 
 
1171		fput(old_exe_file);
 
 
1172}
1173
1174/**
1175 * get_mm_exe_file - acquire a reference to the mm's executable file
 
1176 *
1177 * Returns %NULL if mm has no associated executable file.
1178 * User must release file via fput().
1179 */
1180struct file *get_mm_exe_file(struct mm_struct *mm)
1181{
1182	struct file *exe_file;
1183
1184	rcu_read_lock();
1185	exe_file = rcu_dereference(mm->exe_file);
1186	if (exe_file && !get_file_rcu(exe_file))
1187		exe_file = NULL;
1188	rcu_read_unlock();
1189	return exe_file;
1190}
1191EXPORT_SYMBOL(get_mm_exe_file);
1192
1193/**
1194 * get_task_exe_file - acquire a reference to the task's executable file
 
1195 *
1196 * Returns %NULL if task's mm (if any) has no associated executable file or
1197 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1198 * User must release file via fput().
1199 */
1200struct file *get_task_exe_file(struct task_struct *task)
1201{
1202	struct file *exe_file = NULL;
1203	struct mm_struct *mm;
1204
1205	task_lock(task);
1206	mm = task->mm;
1207	if (mm) {
1208		if (!(task->flags & PF_KTHREAD))
1209			exe_file = get_mm_exe_file(mm);
1210	}
1211	task_unlock(task);
1212	return exe_file;
1213}
1214EXPORT_SYMBOL(get_task_exe_file);
1215
1216/**
1217 * get_task_mm - acquire a reference to the task's mm
 
1218 *
1219 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1220 * this kernel workthread has transiently adopted a user mm with use_mm,
1221 * to do its AIO) is not set and if so returns a reference to it, after
1222 * bumping up the use count.  User must release the mm via mmput()
1223 * after use.  Typically used by /proc and ptrace.
1224 */
1225struct mm_struct *get_task_mm(struct task_struct *task)
1226{
1227	struct mm_struct *mm;
1228
1229	task_lock(task);
1230	mm = task->mm;
1231	if (mm) {
1232		if (task->flags & PF_KTHREAD)
1233			mm = NULL;
1234		else
1235			mmget(mm);
1236	}
1237	task_unlock(task);
1238	return mm;
1239}
1240EXPORT_SYMBOL_GPL(get_task_mm);
1241
1242struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1243{
1244	struct mm_struct *mm;
1245	int err;
1246
1247	err =  down_read_killable(&task->signal->exec_update_lock);
1248	if (err)
1249		return ERR_PTR(err);
1250
1251	mm = get_task_mm(task);
1252	if (mm && mm != current->mm &&
1253			!ptrace_may_access(task, mode)) {
1254		mmput(mm);
1255		mm = ERR_PTR(-EACCES);
1256	}
1257	up_read(&task->signal->exec_update_lock);
1258
1259	return mm;
1260}
1261
1262static void complete_vfork_done(struct task_struct *tsk)
1263{
1264	struct completion *vfork;
1265
1266	task_lock(tsk);
1267	vfork = tsk->vfork_done;
1268	if (likely(vfork)) {
1269		tsk->vfork_done = NULL;
1270		complete(vfork);
1271	}
1272	task_unlock(tsk);
1273}
1274
1275static int wait_for_vfork_done(struct task_struct *child,
1276				struct completion *vfork)
1277{
 
1278	int killed;
1279
1280	freezer_do_not_count();
1281	cgroup_enter_frozen();
1282	killed = wait_for_completion_killable(vfork);
1283	cgroup_leave_frozen(false);
1284	freezer_count();
1285
1286	if (killed) {
1287		task_lock(child);
1288		child->vfork_done = NULL;
1289		task_unlock(child);
1290	}
1291
1292	put_task_struct(child);
1293	return killed;
1294}
1295
1296/* Please note the differences between mmput and mm_release.
1297 * mmput is called whenever we stop holding onto a mm_struct,
1298 * error success whatever.
1299 *
1300 * mm_release is called after a mm_struct has been removed
1301 * from the current process.
1302 *
1303 * This difference is important for error handling, when we
1304 * only half set up a mm_struct for a new process and need to restore
1305 * the old one.  Because we mmput the new mm_struct before
1306 * restoring the old one. . .
1307 * Eric Biederman 10 January 1998
1308 */
1309static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1310{
1311	uprobe_free_utask(tsk);
1312
1313	/* Get rid of any cached register state */
1314	deactivate_mm(tsk, mm);
1315
1316	/*
1317	 * Signal userspace if we're not exiting with a core dump
1318	 * because we want to leave the value intact for debugging
1319	 * purposes.
1320	 */
1321	if (tsk->clear_child_tid) {
1322		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1323		    atomic_read(&mm->mm_users) > 1) {
1324			/*
1325			 * We don't check the error code - if userspace has
1326			 * not set up a proper pointer then tough luck.
1327			 */
1328			put_user(0, tsk->clear_child_tid);
1329			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1330					1, NULL, NULL, 0, 0);
1331		}
1332		tsk->clear_child_tid = NULL;
1333	}
1334
1335	/*
1336	 * All done, finally we can wake up parent and return this mm to him.
1337	 * Also kthread_stop() uses this completion for synchronization.
1338	 */
1339	if (tsk->vfork_done)
1340		complete_vfork_done(tsk);
1341}
1342
1343void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1344{
1345	futex_exit_release(tsk);
1346	mm_release(tsk, mm);
1347}
1348
1349void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1350{
1351	futex_exec_release(tsk);
1352	mm_release(tsk, mm);
1353}
1354
1355/**
1356 * dup_mm() - duplicates an existing mm structure
1357 * @tsk: the task_struct with which the new mm will be associated.
1358 * @oldmm: the mm to duplicate.
1359 *
1360 * Allocates a new mm structure and duplicates the provided @oldmm structure
1361 * content into it.
1362 *
1363 * Return: the duplicated mm or NULL on failure.
1364 */
1365static struct mm_struct *dup_mm(struct task_struct *tsk,
1366				struct mm_struct *oldmm)
1367{
1368	struct mm_struct *mm;
1369	int err;
1370
1371	mm = allocate_mm();
1372	if (!mm)
1373		goto fail_nomem;
1374
1375	memcpy(mm, oldmm, sizeof(*mm));
1376
1377	if (!mm_init(mm, tsk, mm->user_ns))
1378		goto fail_nomem;
1379
1380	err = dup_mmap(mm, oldmm);
1381	if (err)
1382		goto free_pt;
1383
1384	mm->hiwater_rss = get_mm_rss(mm);
1385	mm->hiwater_vm = mm->total_vm;
1386
1387	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1388		goto free_pt;
1389
1390	return mm;
1391
1392free_pt:
1393	/* don't put binfmt in mmput, we haven't got module yet */
1394	mm->binfmt = NULL;
1395	mm_init_owner(mm, NULL);
1396	mmput(mm);
1397
1398fail_nomem:
1399	return NULL;
1400}
1401
1402static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1403{
1404	struct mm_struct *mm, *oldmm;
1405
1406	tsk->min_flt = tsk->maj_flt = 0;
1407	tsk->nvcsw = tsk->nivcsw = 0;
1408#ifdef CONFIG_DETECT_HUNG_TASK
1409	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1410	tsk->last_switch_time = 0;
1411#endif
1412
1413	tsk->mm = NULL;
1414	tsk->active_mm = NULL;
1415
1416	/*
1417	 * Are we cloning a kernel thread?
1418	 *
1419	 * We need to steal a active VM for that..
1420	 */
1421	oldmm = current->mm;
1422	if (!oldmm)
1423		return 0;
1424
1425	/* initialize the new vmacache entries */
1426	vmacache_flush(tsk);
1427
1428	if (clone_flags & CLONE_VM) {
1429		mmget(oldmm);
1430		mm = oldmm;
1431	} else {
1432		mm = dup_mm(tsk, current->mm);
1433		if (!mm)
1434			return -ENOMEM;
1435	}
1436
1437	tsk->mm = mm;
1438	tsk->active_mm = mm;
 
1439	return 0;
1440}
1441
1442static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1443{
1444	struct fs_struct *fs = current->fs;
1445	if (clone_flags & CLONE_FS) {
1446		/* tsk->fs is already what we want */
1447		spin_lock(&fs->lock);
 
1448		if (fs->in_exec) {
1449			spin_unlock(&fs->lock);
1450			return -EAGAIN;
1451		}
1452		fs->users++;
1453		spin_unlock(&fs->lock);
1454		return 0;
1455	}
1456	tsk->fs = copy_fs_struct(fs);
1457	if (!tsk->fs)
1458		return -ENOMEM;
1459	return 0;
1460}
1461
1462static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
 
1463{
1464	struct files_struct *oldf, *newf;
1465	int error = 0;
1466
1467	/*
1468	 * A background process may not have any files ...
1469	 */
1470	oldf = current->files;
1471	if (!oldf)
1472		goto out;
1473
 
 
 
 
 
1474	if (clone_flags & CLONE_FILES) {
1475		atomic_inc(&oldf->count);
1476		goto out;
1477	}
1478
1479	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1480	if (!newf)
1481		goto out;
1482
1483	tsk->files = newf;
1484	error = 0;
1485out:
1486	return error;
1487}
1488
1489static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1490{
1491#ifdef CONFIG_BLOCK
1492	struct io_context *ioc = current->io_context;
1493	struct io_context *new_ioc;
1494
1495	if (!ioc)
1496		return 0;
1497	/*
1498	 * Share io context with parent, if CLONE_IO is set
1499	 */
1500	if (clone_flags & CLONE_IO) {
1501		ioc_task_link(ioc);
1502		tsk->io_context = ioc;
1503	} else if (ioprio_valid(ioc->ioprio)) {
1504		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1505		if (unlikely(!new_ioc))
1506			return -ENOMEM;
1507
1508		new_ioc->ioprio = ioc->ioprio;
1509		put_io_context(new_ioc);
1510	}
1511#endif
1512	return 0;
1513}
1514
1515static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1516{
1517	struct sighand_struct *sig;
1518
1519	if (clone_flags & CLONE_SIGHAND) {
1520		refcount_inc(&current->sighand->count);
1521		return 0;
1522	}
1523	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1524	RCU_INIT_POINTER(tsk->sighand, sig);
1525	if (!sig)
1526		return -ENOMEM;
1527
1528	refcount_set(&sig->count, 1);
1529	spin_lock_irq(&current->sighand->siglock);
1530	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1531	spin_unlock_irq(&current->sighand->siglock);
1532
1533	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1534	if (clone_flags & CLONE_CLEAR_SIGHAND)
1535		flush_signal_handlers(tsk, 0);
1536
1537	return 0;
1538}
1539
1540void __cleanup_sighand(struct sighand_struct *sighand)
1541{
1542	if (refcount_dec_and_test(&sighand->count)) {
1543		signalfd_cleanup(sighand);
1544		/*
1545		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1546		 * without an RCU grace period, see __lock_task_sighand().
1547		 */
1548		kmem_cache_free(sighand_cachep, sighand);
1549	}
1550}
1551
1552/*
1553 * Initialize POSIX timer handling for a thread group.
1554 */
1555static void posix_cpu_timers_init_group(struct signal_struct *sig)
1556{
1557	struct posix_cputimers *pct = &sig->posix_cputimers;
1558	unsigned long cpu_limit;
1559
1560	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1561	posix_cputimers_group_init(pct, cpu_limit);
1562}
1563
1564static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1565{
1566	struct signal_struct *sig;
1567
1568	if (clone_flags & CLONE_THREAD)
1569		return 0;
1570
1571	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1572	tsk->signal = sig;
1573	if (!sig)
1574		return -ENOMEM;
1575
1576	sig->nr_threads = 1;
 
1577	atomic_set(&sig->live, 1);
1578	refcount_set(&sig->sigcnt, 1);
1579
1580	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1581	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1582	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1583
1584	init_waitqueue_head(&sig->wait_chldexit);
1585	sig->curr_target = tsk;
1586	init_sigpending(&sig->shared_pending);
1587	INIT_HLIST_HEAD(&sig->multiprocess);
1588	seqlock_init(&sig->stats_lock);
1589	prev_cputime_init(&sig->prev_cputime);
1590
1591#ifdef CONFIG_POSIX_TIMERS
1592	INIT_LIST_HEAD(&sig->posix_timers);
1593	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1594	sig->real_timer.function = it_real_fn;
1595#endif
1596
1597	task_lock(current->group_leader);
1598	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1599	task_unlock(current->group_leader);
1600
1601	posix_cpu_timers_init_group(sig);
1602
1603	tty_audit_fork(sig);
1604	sched_autogroup_fork(sig);
1605
1606	sig->oom_score_adj = current->signal->oom_score_adj;
1607	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1608
1609	mutex_init(&sig->cred_guard_mutex);
1610	init_rwsem(&sig->exec_update_lock);
1611
1612	return 0;
1613}
1614
1615static void copy_seccomp(struct task_struct *p)
1616{
1617#ifdef CONFIG_SECCOMP
1618	/*
1619	 * Must be called with sighand->lock held, which is common to
1620	 * all threads in the group. Holding cred_guard_mutex is not
1621	 * needed because this new task is not yet running and cannot
1622	 * be racing exec.
1623	 */
1624	assert_spin_locked(&current->sighand->siglock);
1625
1626	/* Ref-count the new filter user, and assign it. */
1627	get_seccomp_filter(current);
1628	p->seccomp = current->seccomp;
1629
1630	/*
1631	 * Explicitly enable no_new_privs here in case it got set
1632	 * between the task_struct being duplicated and holding the
1633	 * sighand lock. The seccomp state and nnp must be in sync.
1634	 */
1635	if (task_no_new_privs(current))
1636		task_set_no_new_privs(p);
1637
1638	/*
1639	 * If the parent gained a seccomp mode after copying thread
1640	 * flags and between before we held the sighand lock, we have
1641	 * to manually enable the seccomp thread flag here.
1642	 */
1643	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1644		set_task_syscall_work(p, SECCOMP);
1645#endif
1646}
1647
1648SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1649{
1650	current->clear_child_tid = tidptr;
1651
1652	return task_pid_vnr(current);
1653}
1654
1655static void rt_mutex_init_task(struct task_struct *p)
1656{
1657	raw_spin_lock_init(&p->pi_lock);
1658#ifdef CONFIG_RT_MUTEXES
1659	p->pi_waiters = RB_ROOT_CACHED;
1660	p->pi_top_task = NULL;
1661	p->pi_blocked_on = NULL;
1662#endif
1663}
1664
1665static inline void init_task_pid_links(struct task_struct *task)
1666{
1667	enum pid_type type;
1668
1669	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1670		INIT_HLIST_NODE(&task->pid_links[type]);
1671}
1672
1673static inline void
1674init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1675{
1676	if (type == PIDTYPE_PID)
1677		task->thread_pid = pid;
1678	else
1679		task->signal->pids[type] = pid;
1680}
1681
1682static inline void rcu_copy_process(struct task_struct *p)
1683{
1684#ifdef CONFIG_PREEMPT_RCU
1685	p->rcu_read_lock_nesting = 0;
1686	p->rcu_read_unlock_special.s = 0;
1687	p->rcu_blocked_node = NULL;
1688	INIT_LIST_HEAD(&p->rcu_node_entry);
1689#endif /* #ifdef CONFIG_PREEMPT_RCU */
1690#ifdef CONFIG_TASKS_RCU
1691	p->rcu_tasks_holdout = false;
1692	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1693	p->rcu_tasks_idle_cpu = -1;
1694#endif /* #ifdef CONFIG_TASKS_RCU */
1695#ifdef CONFIG_TASKS_TRACE_RCU
1696	p->trc_reader_nesting = 0;
1697	p->trc_reader_special.s = 0;
1698	INIT_LIST_HEAD(&p->trc_holdout_list);
 
1699#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1700}
1701
1702struct pid *pidfd_pid(const struct file *file)
1703{
1704	if (file->f_op == &pidfd_fops)
1705		return file->private_data;
1706
1707	return ERR_PTR(-EBADF);
1708}
1709
1710static int pidfd_release(struct inode *inode, struct file *file)
1711{
1712	struct pid *pid = file->private_data;
1713
1714	file->private_data = NULL;
1715	put_pid(pid);
1716	return 0;
1717}
1718
1719#ifdef CONFIG_PROC_FS
1720/**
1721 * pidfd_show_fdinfo - print information about a pidfd
1722 * @m: proc fdinfo file
1723 * @f: file referencing a pidfd
1724 *
1725 * Pid:
1726 * This function will print the pid that a given pidfd refers to in the
1727 * pid namespace of the procfs instance.
1728 * If the pid namespace of the process is not a descendant of the pid
1729 * namespace of the procfs instance 0 will be shown as its pid. This is
1730 * similar to calling getppid() on a process whose parent is outside of
1731 * its pid namespace.
1732 *
1733 * NSpid:
1734 * If pid namespaces are supported then this function will also print
1735 * the pid of a given pidfd refers to for all descendant pid namespaces
1736 * starting from the current pid namespace of the instance, i.e. the
1737 * Pid field and the first entry in the NSpid field will be identical.
1738 * If the pid namespace of the process is not a descendant of the pid
1739 * namespace of the procfs instance 0 will be shown as its first NSpid
1740 * entry and no others will be shown.
1741 * Note that this differs from the Pid and NSpid fields in
1742 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1743 * the  pid namespace of the procfs instance. The difference becomes
1744 * obvious when sending around a pidfd between pid namespaces from a
1745 * different branch of the tree, i.e. where no ancestral relation is
1746 * present between the pid namespaces:
1747 * - create two new pid namespaces ns1 and ns2 in the initial pid
1748 *   namespace (also take care to create new mount namespaces in the
1749 *   new pid namespace and mount procfs)
1750 * - create a process with a pidfd in ns1
1751 * - send pidfd from ns1 to ns2
1752 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1753 *   have exactly one entry, which is 0
1754 */
1755static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1756{
1757	struct pid *pid = f->private_data;
1758	struct pid_namespace *ns;
1759	pid_t nr = -1;
1760
1761	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1762		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1763		nr = pid_nr_ns(pid, ns);
1764	}
1765
1766	seq_put_decimal_ll(m, "Pid:\t", nr);
1767
1768#ifdef CONFIG_PID_NS
1769	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1770	if (nr > 0) {
1771		int i;
1772
1773		/* If nr is non-zero it means that 'pid' is valid and that
1774		 * ns, i.e. the pid namespace associated with the procfs
1775		 * instance, is in the pid namespace hierarchy of pid.
1776		 * Start at one below the already printed level.
1777		 */
1778		for (i = ns->level + 1; i <= pid->level; i++)
1779			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1780	}
1781#endif
1782	seq_putc(m, '\n');
1783}
1784#endif
1785
1786/*
1787 * Poll support for process exit notification.
1788 */
1789static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1790{
1791	struct pid *pid = file->private_data;
1792	__poll_t poll_flags = 0;
1793
1794	poll_wait(file, &pid->wait_pidfd, pts);
1795
1796	/*
1797	 * Inform pollers only when the whole thread group exits.
1798	 * If the thread group leader exits before all other threads in the
1799	 * group, then poll(2) should block, similar to the wait(2) family.
1800	 */
1801	if (thread_group_exited(pid))
1802		poll_flags = EPOLLIN | EPOLLRDNORM;
1803
1804	return poll_flags;
1805}
1806
1807const struct file_operations pidfd_fops = {
1808	.release = pidfd_release,
1809	.poll = pidfd_poll,
1810#ifdef CONFIG_PROC_FS
1811	.show_fdinfo = pidfd_show_fdinfo,
1812#endif
1813};
1814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815static void __delayed_free_task(struct rcu_head *rhp)
1816{
1817	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1818
1819	free_task(tsk);
1820}
1821
1822static __always_inline void delayed_free_task(struct task_struct *tsk)
1823{
1824	if (IS_ENABLED(CONFIG_MEMCG))
1825		call_rcu(&tsk->rcu, __delayed_free_task);
1826	else
1827		free_task(tsk);
1828}
1829
1830static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1831{
1832	/* Skip if kernel thread */
1833	if (!tsk->mm)
1834		return;
1835
1836	/* Skip if spawning a thread or using vfork */
1837	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1838		return;
1839
1840	/* We need to synchronize with __set_oom_adj */
1841	mutex_lock(&oom_adj_mutex);
1842	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1843	/* Update the values in case they were changed after copy_signal */
1844	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1845	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1846	mutex_unlock(&oom_adj_mutex);
1847}
1848
 
 
 
 
 
 
 
 
 
 
 
 
1849/*
1850 * This creates a new process as a copy of the old one,
1851 * but does not actually start it yet.
1852 *
1853 * It copies the registers, and all the appropriate
1854 * parts of the process environment (as per the clone
1855 * flags). The actual kick-off is left to the caller.
1856 */
1857static __latent_entropy struct task_struct *copy_process(
1858					struct pid *pid,
1859					int trace,
1860					int node,
1861					struct kernel_clone_args *args)
1862{
1863	int pidfd = -1, retval;
1864	struct task_struct *p;
1865	struct multiprocess_signals delayed;
1866	struct file *pidfile = NULL;
1867	u64 clone_flags = args->flags;
1868	struct nsproxy *nsp = current->nsproxy;
1869
1870	/*
1871	 * Don't allow sharing the root directory with processes in a different
1872	 * namespace
1873	 */
1874	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1875		return ERR_PTR(-EINVAL);
1876
1877	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1878		return ERR_PTR(-EINVAL);
1879
1880	/*
1881	 * Thread groups must share signals as well, and detached threads
1882	 * can only be started up within the thread group.
1883	 */
1884	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1885		return ERR_PTR(-EINVAL);
1886
1887	/*
1888	 * Shared signal handlers imply shared VM. By way of the above,
1889	 * thread groups also imply shared VM. Blocking this case allows
1890	 * for various simplifications in other code.
1891	 */
1892	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1893		return ERR_PTR(-EINVAL);
1894
1895	/*
1896	 * Siblings of global init remain as zombies on exit since they are
1897	 * not reaped by their parent (swapper). To solve this and to avoid
1898	 * multi-rooted process trees, prevent global and container-inits
1899	 * from creating siblings.
1900	 */
1901	if ((clone_flags & CLONE_PARENT) &&
1902				current->signal->flags & SIGNAL_UNKILLABLE)
1903		return ERR_PTR(-EINVAL);
1904
1905	/*
1906	 * If the new process will be in a different pid or user namespace
1907	 * do not allow it to share a thread group with the forking task.
1908	 */
1909	if (clone_flags & CLONE_THREAD) {
1910		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1911		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1912			return ERR_PTR(-EINVAL);
1913	}
1914
1915	/*
1916	 * If the new process will be in a different time namespace
1917	 * do not allow it to share VM or a thread group with the forking task.
1918	 */
1919	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1920		if (nsp->time_ns != nsp->time_ns_for_children)
1921			return ERR_PTR(-EINVAL);
1922	}
1923
1924	if (clone_flags & CLONE_PIDFD) {
1925		/*
1926		 * - CLONE_DETACHED is blocked so that we can potentially
1927		 *   reuse it later for CLONE_PIDFD.
1928		 * - CLONE_THREAD is blocked until someone really needs it.
1929		 */
1930		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1931			return ERR_PTR(-EINVAL);
1932	}
1933
1934	/*
1935	 * Force any signals received before this point to be delivered
1936	 * before the fork happens.  Collect up signals sent to multiple
1937	 * processes that happen during the fork and delay them so that
1938	 * they appear to happen after the fork.
1939	 */
1940	sigemptyset(&delayed.signal);
1941	INIT_HLIST_NODE(&delayed.node);
1942
1943	spin_lock_irq(&current->sighand->siglock);
1944	if (!(clone_flags & CLONE_THREAD))
1945		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1946	recalc_sigpending();
1947	spin_unlock_irq(&current->sighand->siglock);
1948	retval = -ERESTARTNOINTR;
1949	if (task_sigpending(current))
1950		goto fork_out;
1951
1952	retval = -ENOMEM;
1953	p = dup_task_struct(current, node);
1954	if (!p)
1955		goto fork_out;
1956	if (args->io_thread) {
 
 
 
1957		/*
1958		 * Mark us an IO worker, and block any signal that isn't
1959		 * fatal or STOP
1960		 */
1961		p->flags |= PF_IO_WORKER;
1962		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1963	}
 
 
 
 
 
1964
1965	/*
1966	 * This _must_ happen before we call free_task(), i.e. before we jump
1967	 * to any of the bad_fork_* labels. This is to avoid freeing
1968	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1969	 * kernel threads (PF_KTHREAD).
1970	 */
1971	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1972	/*
1973	 * Clear TID on mm_release()?
1974	 */
1975	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1976
1977	ftrace_graph_init_task(p);
1978
1979	rt_mutex_init_task(p);
1980
1981	lockdep_assert_irqs_enabled();
1982#ifdef CONFIG_PROVE_LOCKING
1983	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1984#endif
 
 
 
 
1985	retval = -EAGAIN;
1986	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1987		if (p->real_cred->user != INIT_USER &&
1988		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1989			goto bad_fork_free;
1990	}
1991	current->flags &= ~PF_NPROC_EXCEEDED;
1992
1993	retval = copy_creds(p, clone_flags);
1994	if (retval < 0)
1995		goto bad_fork_free;
1996
1997	/*
1998	 * If multiple threads are within copy_process(), then this check
1999	 * triggers too late. This doesn't hurt, the check is only there
2000	 * to stop root fork bombs.
2001	 */
2002	retval = -EAGAIN;
2003	if (data_race(nr_threads >= max_threads))
2004		goto bad_fork_cleanup_count;
2005
2006	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2007	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2008	p->flags |= PF_FORKNOEXEC;
2009	INIT_LIST_HEAD(&p->children);
2010	INIT_LIST_HEAD(&p->sibling);
2011	rcu_copy_process(p);
2012	p->vfork_done = NULL;
2013	spin_lock_init(&p->alloc_lock);
2014
2015	init_sigpending(&p->pending);
2016
2017	p->utime = p->stime = p->gtime = 0;
2018#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2019	p->utimescaled = p->stimescaled = 0;
2020#endif
2021	prev_cputime_init(&p->prev_cputime);
2022
2023#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2024	seqcount_init(&p->vtime.seqcount);
2025	p->vtime.starttime = 0;
2026	p->vtime.state = VTIME_INACTIVE;
2027#endif
2028
2029#ifdef CONFIG_IO_URING
2030	p->io_uring = NULL;
2031#endif
2032
2033#if defined(SPLIT_RSS_COUNTING)
2034	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2035#endif
2036
2037	p->default_timer_slack_ns = current->timer_slack_ns;
2038
2039#ifdef CONFIG_PSI
2040	p->psi_flags = 0;
2041#endif
2042
2043	task_io_accounting_init(&p->ioac);
2044	acct_clear_integrals(p);
2045
2046	posix_cputimers_init(&p->posix_cputimers);
2047
2048	p->io_context = NULL;
2049	audit_set_context(p, NULL);
2050	cgroup_fork(p);
 
 
 
 
2051#ifdef CONFIG_NUMA
2052	p->mempolicy = mpol_dup(p->mempolicy);
2053	if (IS_ERR(p->mempolicy)) {
2054		retval = PTR_ERR(p->mempolicy);
2055		p->mempolicy = NULL;
2056		goto bad_fork_cleanup_threadgroup_lock;
2057	}
2058#endif
2059#ifdef CONFIG_CPUSETS
2060	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2061	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2062	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2063#endif
2064#ifdef CONFIG_TRACE_IRQFLAGS
2065	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2066	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2067	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2068	p->softirqs_enabled		= 1;
2069	p->softirq_context		= 0;
2070#endif
2071
2072	p->pagefault_disabled = 0;
2073
2074#ifdef CONFIG_LOCKDEP
2075	lockdep_init_task(p);
2076#endif
2077
2078#ifdef CONFIG_DEBUG_MUTEXES
2079	p->blocked_on = NULL; /* not blocked yet */
2080#endif
2081#ifdef CONFIG_BCACHE
2082	p->sequential_io	= 0;
2083	p->sequential_io_avg	= 0;
2084#endif
2085#ifdef CONFIG_BPF_SYSCALL
2086	RCU_INIT_POINTER(p->bpf_storage, NULL);
 
2087#endif
2088
2089	/* Perform scheduler related setup. Assign this task to a CPU. */
2090	retval = sched_fork(clone_flags, p);
2091	if (retval)
2092		goto bad_fork_cleanup_policy;
2093
2094	retval = perf_event_init_task(p, clone_flags);
2095	if (retval)
2096		goto bad_fork_cleanup_policy;
2097	retval = audit_alloc(p);
2098	if (retval)
2099		goto bad_fork_cleanup_perf;
2100	/* copy all the process information */
2101	shm_init_task(p);
2102	retval = security_task_alloc(p, clone_flags);
2103	if (retval)
2104		goto bad_fork_cleanup_audit;
2105	retval = copy_semundo(clone_flags, p);
2106	if (retval)
2107		goto bad_fork_cleanup_security;
2108	retval = copy_files(clone_flags, p);
2109	if (retval)
2110		goto bad_fork_cleanup_semundo;
2111	retval = copy_fs(clone_flags, p);
2112	if (retval)
2113		goto bad_fork_cleanup_files;
2114	retval = copy_sighand(clone_flags, p);
2115	if (retval)
2116		goto bad_fork_cleanup_fs;
2117	retval = copy_signal(clone_flags, p);
2118	if (retval)
2119		goto bad_fork_cleanup_sighand;
2120	retval = copy_mm(clone_flags, p);
2121	if (retval)
2122		goto bad_fork_cleanup_signal;
2123	retval = copy_namespaces(clone_flags, p);
2124	if (retval)
2125		goto bad_fork_cleanup_mm;
2126	retval = copy_io(clone_flags, p);
2127	if (retval)
2128		goto bad_fork_cleanup_namespaces;
2129	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2130	if (retval)
2131		goto bad_fork_cleanup_io;
2132
2133	stackleak_task_init(p);
2134
2135	if (pid != &init_struct_pid) {
2136		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2137				args->set_tid_size);
2138		if (IS_ERR(pid)) {
2139			retval = PTR_ERR(pid);
2140			goto bad_fork_cleanup_thread;
2141		}
2142	}
2143
2144	/*
2145	 * This has to happen after we've potentially unshared the file
2146	 * descriptor table (so that the pidfd doesn't leak into the child
2147	 * if the fd table isn't shared).
2148	 */
2149	if (clone_flags & CLONE_PIDFD) {
2150		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
 
2151		if (retval < 0)
2152			goto bad_fork_free_pid;
2153
2154		pidfd = retval;
2155
2156		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2157					      O_RDWR | O_CLOEXEC);
2158		if (IS_ERR(pidfile)) {
2159			put_unused_fd(pidfd);
2160			retval = PTR_ERR(pidfile);
2161			goto bad_fork_free_pid;
2162		}
2163		get_pid(pid);	/* held by pidfile now */
2164
2165		retval = put_user(pidfd, args->pidfd);
2166		if (retval)
2167			goto bad_fork_put_pidfd;
2168	}
2169
2170#ifdef CONFIG_BLOCK
2171	p->plug = NULL;
2172#endif
2173	futex_init_task(p);
2174
2175	/*
2176	 * sigaltstack should be cleared when sharing the same VM
2177	 */
2178	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2179		sas_ss_reset(p);
2180
2181	/*
2182	 * Syscall tracing and stepping should be turned off in the
2183	 * child regardless of CLONE_PTRACE.
2184	 */
2185	user_disable_single_step(p);
2186	clear_task_syscall_work(p, SYSCALL_TRACE);
2187#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2188	clear_task_syscall_work(p, SYSCALL_EMU);
2189#endif
2190	clear_tsk_latency_tracing(p);
2191
2192	/* ok, now we should be set up.. */
2193	p->pid = pid_nr(pid);
2194	if (clone_flags & CLONE_THREAD) {
2195		p->group_leader = current->group_leader;
2196		p->tgid = current->tgid;
2197	} else {
2198		p->group_leader = p;
2199		p->tgid = p->pid;
2200	}
2201
2202	p->nr_dirtied = 0;
2203	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2204	p->dirty_paused_when = 0;
2205
2206	p->pdeath_signal = 0;
2207	INIT_LIST_HEAD(&p->thread_group);
2208	p->task_works = NULL;
 
2209
2210#ifdef CONFIG_KRETPROBES
2211	p->kretprobe_instances.first = NULL;
2212#endif
 
 
 
2213
2214	/*
2215	 * Ensure that the cgroup subsystem policies allow the new process to be
2216	 * forked. It should be noted that the new process's css_set can be changed
2217	 * between here and cgroup_post_fork() if an organisation operation is in
2218	 * progress.
2219	 */
2220	retval = cgroup_can_fork(p, args);
2221	if (retval)
2222		goto bad_fork_put_pidfd;
2223
2224	/*
 
 
 
 
 
 
 
 
 
 
 
2225	 * From this point on we must avoid any synchronous user-space
2226	 * communication until we take the tasklist-lock. In particular, we do
2227	 * not want user-space to be able to predict the process start-time by
2228	 * stalling fork(2) after we recorded the start_time but before it is
2229	 * visible to the system.
2230	 */
2231
2232	p->start_time = ktime_get_ns();
2233	p->start_boottime = ktime_get_boottime_ns();
2234
2235	/*
2236	 * Make it visible to the rest of the system, but dont wake it up yet.
2237	 * Need tasklist lock for parent etc handling!
2238	 */
2239	write_lock_irq(&tasklist_lock);
2240
2241	/* CLONE_PARENT re-uses the old parent */
2242	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2243		p->real_parent = current->real_parent;
2244		p->parent_exec_id = current->parent_exec_id;
2245		if (clone_flags & CLONE_THREAD)
2246			p->exit_signal = -1;
2247		else
2248			p->exit_signal = current->group_leader->exit_signal;
2249	} else {
2250		p->real_parent = current;
2251		p->parent_exec_id = current->self_exec_id;
2252		p->exit_signal = args->exit_signal;
2253	}
2254
2255	klp_copy_process(p);
2256
2257	sched_core_fork(p);
2258
2259	spin_lock(&current->sighand->siglock);
2260
2261	/*
2262	 * Copy seccomp details explicitly here, in case they were changed
2263	 * before holding sighand lock.
2264	 */
2265	copy_seccomp(p);
2266
2267	rseq_fork(p, clone_flags);
2268
2269	/* Don't start children in a dying pid namespace */
2270	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2271		retval = -ENOMEM;
2272		goto bad_fork_cancel_cgroup;
2273	}
2274
2275	/* Let kill terminate clone/fork in the middle */
2276	if (fatal_signal_pending(current)) {
2277		retval = -EINTR;
2278		goto bad_fork_cancel_cgroup;
2279	}
2280
2281	/* past the last point of failure */
2282	if (pidfile)
2283		fd_install(pidfd, pidfile);
 
 
 
 
2284
2285	init_task_pid_links(p);
2286	if (likely(p->pid)) {
2287		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2288
2289		init_task_pid(p, PIDTYPE_PID, pid);
2290		if (thread_group_leader(p)) {
2291			init_task_pid(p, PIDTYPE_TGID, pid);
2292			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2293			init_task_pid(p, PIDTYPE_SID, task_session(current));
2294
2295			if (is_child_reaper(pid)) {
2296				ns_of_pid(pid)->child_reaper = p;
2297				p->signal->flags |= SIGNAL_UNKILLABLE;
2298			}
2299			p->signal->shared_pending.signal = delayed.signal;
2300			p->signal->tty = tty_kref_get(current->signal->tty);
2301			/*
2302			 * Inherit has_child_subreaper flag under the same
2303			 * tasklist_lock with adding child to the process tree
2304			 * for propagate_has_child_subreaper optimization.
2305			 */
2306			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2307							 p->real_parent->signal->is_child_subreaper;
2308			list_add_tail(&p->sibling, &p->real_parent->children);
2309			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2310			attach_pid(p, PIDTYPE_TGID);
2311			attach_pid(p, PIDTYPE_PGID);
2312			attach_pid(p, PIDTYPE_SID);
2313			__this_cpu_inc(process_counts);
2314		} else {
2315			current->signal->nr_threads++;
 
2316			atomic_inc(&current->signal->live);
2317			refcount_inc(&current->signal->sigcnt);
2318			task_join_group_stop(p);
2319			list_add_tail_rcu(&p->thread_group,
2320					  &p->group_leader->thread_group);
2321			list_add_tail_rcu(&p->thread_node,
2322					  &p->signal->thread_head);
2323		}
2324		attach_pid(p, PIDTYPE_PID);
2325		nr_threads++;
2326	}
2327	total_forks++;
2328	hlist_del_init(&delayed.node);
2329	spin_unlock(&current->sighand->siglock);
2330	syscall_tracepoint_update(p);
2331	write_unlock_irq(&tasklist_lock);
2332
 
 
 
2333	proc_fork_connector(p);
2334	sched_post_fork(p);
2335	cgroup_post_fork(p, args);
2336	perf_event_fork(p);
2337
2338	trace_task_newtask(p, clone_flags);
2339	uprobe_copy_process(p, clone_flags);
 
2340
2341	copy_oom_score_adj(clone_flags, p);
2342
2343	return p;
2344
2345bad_fork_cancel_cgroup:
2346	sched_core_free(p);
2347	spin_unlock(&current->sighand->siglock);
2348	write_unlock_irq(&tasklist_lock);
2349	cgroup_cancel_fork(p, args);
2350bad_fork_put_pidfd:
2351	if (clone_flags & CLONE_PIDFD) {
2352		fput(pidfile);
2353		put_unused_fd(pidfd);
2354	}
2355bad_fork_free_pid:
2356	if (pid != &init_struct_pid)
2357		free_pid(pid);
2358bad_fork_cleanup_thread:
2359	exit_thread(p);
2360bad_fork_cleanup_io:
2361	if (p->io_context)
2362		exit_io_context(p);
2363bad_fork_cleanup_namespaces:
2364	exit_task_namespaces(p);
2365bad_fork_cleanup_mm:
2366	if (p->mm) {
2367		mm_clear_owner(p->mm, p);
2368		mmput(p->mm);
2369	}
2370bad_fork_cleanup_signal:
2371	if (!(clone_flags & CLONE_THREAD))
2372		free_signal_struct(p->signal);
2373bad_fork_cleanup_sighand:
2374	__cleanup_sighand(p->sighand);
2375bad_fork_cleanup_fs:
2376	exit_fs(p); /* blocking */
2377bad_fork_cleanup_files:
2378	exit_files(p); /* blocking */
2379bad_fork_cleanup_semundo:
2380	exit_sem(p);
2381bad_fork_cleanup_security:
2382	security_task_free(p);
2383bad_fork_cleanup_audit:
2384	audit_free(p);
2385bad_fork_cleanup_perf:
2386	perf_event_free_task(p);
2387bad_fork_cleanup_policy:
2388	lockdep_free_task(p);
2389#ifdef CONFIG_NUMA
2390	mpol_put(p->mempolicy);
2391bad_fork_cleanup_threadgroup_lock:
2392#endif
 
2393	delayacct_tsk_free(p);
2394bad_fork_cleanup_count:
2395	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2396	exit_creds(p);
2397bad_fork_free:
2398	WRITE_ONCE(p->__state, TASK_DEAD);
 
2399	put_task_stack(p);
2400	delayed_free_task(p);
2401fork_out:
2402	spin_lock_irq(&current->sighand->siglock);
2403	hlist_del_init(&delayed.node);
2404	spin_unlock_irq(&current->sighand->siglock);
2405	return ERR_PTR(retval);
2406}
2407
2408static inline void init_idle_pids(struct task_struct *idle)
2409{
2410	enum pid_type type;
2411
2412	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2413		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2414		init_task_pid(idle, type, &init_struct_pid);
2415	}
2416}
2417
 
 
 
 
 
 
2418struct task_struct * __init fork_idle(int cpu)
2419{
2420	struct task_struct *task;
2421	struct kernel_clone_args args = {
2422		.flags = CLONE_VM,
 
 
 
 
2423	};
2424
2425	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2426	if (!IS_ERR(task)) {
2427		init_idle_pids(task);
2428		init_idle(task, cpu);
2429	}
2430
2431	return task;
2432}
2433
2434struct mm_struct *copy_init_mm(void)
2435{
2436	return dup_mm(NULL, &init_mm);
2437}
2438
2439/*
2440 * This is like kernel_clone(), but shaved down and tailored to just
2441 * creating io_uring workers. It returns a created task, or an error pointer.
2442 * The returned task is inactive, and the caller must fire it up through
2443 * wake_up_new_task(p). All signals are blocked in the created task.
2444 */
2445struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2446{
2447	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2448				CLONE_IO;
2449	struct kernel_clone_args args = {
2450		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2451				    CLONE_UNTRACED) & ~CSIGNAL),
2452		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2453		.stack		= (unsigned long)fn,
2454		.stack_size	= (unsigned long)arg,
2455		.io_thread	= 1,
 
2456	};
2457
2458	return copy_process(NULL, 0, node, &args);
2459}
2460
2461/*
2462 *  Ok, this is the main fork-routine.
2463 *
2464 * It copies the process, and if successful kick-starts
2465 * it and waits for it to finish using the VM if required.
2466 *
2467 * args->exit_signal is expected to be checked for sanity by the caller.
2468 */
2469pid_t kernel_clone(struct kernel_clone_args *args)
2470{
2471	u64 clone_flags = args->flags;
2472	struct completion vfork;
2473	struct pid *pid;
2474	struct task_struct *p;
2475	int trace = 0;
2476	pid_t nr;
2477
2478	/*
2479	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2480	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2481	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2482	 * field in struct clone_args and it still doesn't make sense to have
2483	 * them both point at the same memory location. Performing this check
2484	 * here has the advantage that we don't need to have a separate helper
2485	 * to check for legacy clone().
2486	 */
2487	if ((args->flags & CLONE_PIDFD) &&
2488	    (args->flags & CLONE_PARENT_SETTID) &&
2489	    (args->pidfd == args->parent_tid))
2490		return -EINVAL;
2491
2492	/*
2493	 * Determine whether and which event to report to ptracer.  When
2494	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2495	 * requested, no event is reported; otherwise, report if the event
2496	 * for the type of forking is enabled.
2497	 */
2498	if (!(clone_flags & CLONE_UNTRACED)) {
2499		if (clone_flags & CLONE_VFORK)
2500			trace = PTRACE_EVENT_VFORK;
2501		else if (args->exit_signal != SIGCHLD)
2502			trace = PTRACE_EVENT_CLONE;
2503		else
2504			trace = PTRACE_EVENT_FORK;
2505
2506		if (likely(!ptrace_event_enabled(current, trace)))
2507			trace = 0;
2508	}
2509
2510	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2511	add_latent_entropy();
2512
2513	if (IS_ERR(p))
2514		return PTR_ERR(p);
2515
2516	/*
2517	 * Do this prior waking up the new thread - the thread pointer
2518	 * might get invalid after that point, if the thread exits quickly.
2519	 */
2520	trace_sched_process_fork(current, p);
2521
2522	pid = get_task_pid(p, PIDTYPE_PID);
2523	nr = pid_vnr(pid);
2524
2525	if (clone_flags & CLONE_PARENT_SETTID)
2526		put_user(nr, args->parent_tid);
2527
2528	if (clone_flags & CLONE_VFORK) {
2529		p->vfork_done = &vfork;
2530		init_completion(&vfork);
2531		get_task_struct(p);
2532	}
2533
 
 
 
 
 
 
 
2534	wake_up_new_task(p);
2535
2536	/* forking complete and child started to run, tell ptracer */
2537	if (unlikely(trace))
2538		ptrace_event_pid(trace, pid);
2539
2540	if (clone_flags & CLONE_VFORK) {
2541		if (!wait_for_vfork_done(p, &vfork))
2542			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2543	}
2544
2545	put_pid(pid);
2546	return nr;
2547}
2548
2549/*
2550 * Create a kernel thread.
2551 */
2552pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553{
2554	struct kernel_clone_args args = {
2555		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2556				    CLONE_UNTRACED) & ~CSIGNAL),
2557		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2558		.stack		= (unsigned long)fn,
2559		.stack_size	= (unsigned long)arg,
2560	};
2561
2562	return kernel_clone(&args);
2563}
2564
2565#ifdef __ARCH_WANT_SYS_FORK
2566SYSCALL_DEFINE0(fork)
2567{
2568#ifdef CONFIG_MMU
2569	struct kernel_clone_args args = {
2570		.exit_signal = SIGCHLD,
2571	};
2572
2573	return kernel_clone(&args);
2574#else
2575	/* can not support in nommu mode */
2576	return -EINVAL;
2577#endif
2578}
2579#endif
2580
2581#ifdef __ARCH_WANT_SYS_VFORK
2582SYSCALL_DEFINE0(vfork)
2583{
2584	struct kernel_clone_args args = {
2585		.flags		= CLONE_VFORK | CLONE_VM,
2586		.exit_signal	= SIGCHLD,
2587	};
2588
2589	return kernel_clone(&args);
2590}
2591#endif
2592
2593#ifdef __ARCH_WANT_SYS_CLONE
2594#ifdef CONFIG_CLONE_BACKWARDS
2595SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2596		 int __user *, parent_tidptr,
2597		 unsigned long, tls,
2598		 int __user *, child_tidptr)
2599#elif defined(CONFIG_CLONE_BACKWARDS2)
2600SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2601		 int __user *, parent_tidptr,
2602		 int __user *, child_tidptr,
2603		 unsigned long, tls)
2604#elif defined(CONFIG_CLONE_BACKWARDS3)
2605SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2606		int, stack_size,
2607		int __user *, parent_tidptr,
2608		int __user *, child_tidptr,
2609		unsigned long, tls)
2610#else
2611SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2612		 int __user *, parent_tidptr,
2613		 int __user *, child_tidptr,
2614		 unsigned long, tls)
2615#endif
2616{
2617	struct kernel_clone_args args = {
2618		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2619		.pidfd		= parent_tidptr,
2620		.child_tid	= child_tidptr,
2621		.parent_tid	= parent_tidptr,
2622		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2623		.stack		= newsp,
2624		.tls		= tls,
2625	};
2626
2627	return kernel_clone(&args);
2628}
2629#endif
2630
2631#ifdef __ARCH_WANT_SYS_CLONE3
2632
2633noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2634					      struct clone_args __user *uargs,
2635					      size_t usize)
2636{
2637	int err;
2638	struct clone_args args;
2639	pid_t *kset_tid = kargs->set_tid;
2640
2641	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2642		     CLONE_ARGS_SIZE_VER0);
2643	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2644		     CLONE_ARGS_SIZE_VER1);
2645	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2646		     CLONE_ARGS_SIZE_VER2);
2647	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2648
2649	if (unlikely(usize > PAGE_SIZE))
2650		return -E2BIG;
2651	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2652		return -EINVAL;
2653
2654	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2655	if (err)
2656		return err;
2657
2658	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2659		return -EINVAL;
2660
2661	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2662		return -EINVAL;
2663
2664	if (unlikely(args.set_tid && args.set_tid_size == 0))
2665		return -EINVAL;
2666
2667	/*
2668	 * Verify that higher 32bits of exit_signal are unset and that
2669	 * it is a valid signal
2670	 */
2671	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2672		     !valid_signal(args.exit_signal)))
2673		return -EINVAL;
2674
2675	if ((args.flags & CLONE_INTO_CGROUP) &&
2676	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2677		return -EINVAL;
2678
2679	*kargs = (struct kernel_clone_args){
2680		.flags		= args.flags,
2681		.pidfd		= u64_to_user_ptr(args.pidfd),
2682		.child_tid	= u64_to_user_ptr(args.child_tid),
2683		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2684		.exit_signal	= args.exit_signal,
2685		.stack		= args.stack,
2686		.stack_size	= args.stack_size,
2687		.tls		= args.tls,
2688		.set_tid_size	= args.set_tid_size,
2689		.cgroup		= args.cgroup,
2690	};
2691
2692	if (args.set_tid &&
2693		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2694			(kargs->set_tid_size * sizeof(pid_t))))
2695		return -EFAULT;
2696
2697	kargs->set_tid = kset_tid;
2698
2699	return 0;
2700}
2701
2702/**
2703 * clone3_stack_valid - check and prepare stack
2704 * @kargs: kernel clone args
2705 *
2706 * Verify that the stack arguments userspace gave us are sane.
2707 * In addition, set the stack direction for userspace since it's easy for us to
2708 * determine.
2709 */
2710static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2711{
2712	if (kargs->stack == 0) {
2713		if (kargs->stack_size > 0)
2714			return false;
2715	} else {
2716		if (kargs->stack_size == 0)
2717			return false;
2718
2719		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2720			return false;
2721
2722#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2723		kargs->stack += kargs->stack_size;
2724#endif
2725	}
2726
2727	return true;
2728}
2729
2730static bool clone3_args_valid(struct kernel_clone_args *kargs)
2731{
2732	/* Verify that no unknown flags are passed along. */
2733	if (kargs->flags &
2734	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2735		return false;
2736
2737	/*
2738	 * - make the CLONE_DETACHED bit reusable for clone3
2739	 * - make the CSIGNAL bits reusable for clone3
2740	 */
2741	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2742		return false;
2743
2744	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2745	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2746		return false;
2747
2748	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2749	    kargs->exit_signal)
2750		return false;
2751
2752	if (!clone3_stack_valid(kargs))
2753		return false;
2754
2755	return true;
2756}
2757
2758/**
2759 * clone3 - create a new process with specific properties
2760 * @uargs: argument structure
2761 * @size:  size of @uargs
2762 *
2763 * clone3() is the extensible successor to clone()/clone2().
2764 * It takes a struct as argument that is versioned by its size.
2765 *
2766 * Return: On success, a positive PID for the child process.
2767 *         On error, a negative errno number.
2768 */
2769SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2770{
2771	int err;
2772
2773	struct kernel_clone_args kargs;
2774	pid_t set_tid[MAX_PID_NS_LEVEL];
2775
2776	kargs.set_tid = set_tid;
2777
2778	err = copy_clone_args_from_user(&kargs, uargs, size);
2779	if (err)
2780		return err;
2781
2782	if (!clone3_args_valid(&kargs))
2783		return -EINVAL;
2784
2785	return kernel_clone(&kargs);
2786}
2787#endif
2788
2789void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2790{
2791	struct task_struct *leader, *parent, *child;
2792	int res;
2793
2794	read_lock(&tasklist_lock);
2795	leader = top = top->group_leader;
2796down:
2797	for_each_thread(leader, parent) {
2798		list_for_each_entry(child, &parent->children, sibling) {
2799			res = visitor(child, data);
2800			if (res) {
2801				if (res < 0)
2802					goto out;
2803				leader = child;
2804				goto down;
2805			}
2806up:
2807			;
2808		}
2809	}
2810
2811	if (leader != top) {
2812		child = leader;
2813		parent = child->real_parent;
2814		leader = parent->group_leader;
2815		goto up;
2816	}
2817out:
2818	read_unlock(&tasklist_lock);
2819}
2820
2821#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2822#define ARCH_MIN_MMSTRUCT_ALIGN 0
2823#endif
2824
2825static void sighand_ctor(void *data)
2826{
2827	struct sighand_struct *sighand = data;
2828
2829	spin_lock_init(&sighand->siglock);
2830	init_waitqueue_head(&sighand->signalfd_wqh);
2831}
2832
2833void __init proc_caches_init(void)
2834{
2835	unsigned int mm_size;
2836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2837	sighand_cachep = kmem_cache_create("sighand_cache",
2838			sizeof(struct sighand_struct), 0,
2839			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2840			SLAB_ACCOUNT, sighand_ctor);
2841	signal_cachep = kmem_cache_create("signal_cache",
2842			sizeof(struct signal_struct), 0,
2843			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2844			NULL);
2845	files_cachep = kmem_cache_create("files_cache",
2846			sizeof(struct files_struct), 0,
2847			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2848			NULL);
2849	fs_cachep = kmem_cache_create("fs_cache",
2850			sizeof(struct fs_struct), 0,
2851			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2852			NULL);
2853
2854	/*
2855	 * The mm_cpumask is located at the end of mm_struct, and is
2856	 * dynamically sized based on the maximum CPU number this system
2857	 * can have, taking hotplug into account (nr_cpu_ids).
2858	 */
2859	mm_size = sizeof(struct mm_struct) + cpumask_size();
2860
2861	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2862			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2863			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2864			offsetof(struct mm_struct, saved_auxv),
2865			sizeof_field(struct mm_struct, saved_auxv),
2866			NULL);
2867	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
 
 
 
2868	mmap_init();
2869	nsproxy_cache_init();
2870}
2871
2872/*
2873 * Check constraints on flags passed to the unshare system call.
2874 */
2875static int check_unshare_flags(unsigned long unshare_flags)
2876{
2877	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2878				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2879				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2880				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2881				CLONE_NEWTIME))
2882		return -EINVAL;
2883	/*
2884	 * Not implemented, but pretend it works if there is nothing
2885	 * to unshare.  Note that unsharing the address space or the
2886	 * signal handlers also need to unshare the signal queues (aka
2887	 * CLONE_THREAD).
2888	 */
2889	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2890		if (!thread_group_empty(current))
2891			return -EINVAL;
2892	}
2893	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2894		if (refcount_read(&current->sighand->count) > 1)
2895			return -EINVAL;
2896	}
2897	if (unshare_flags & CLONE_VM) {
2898		if (!current_is_single_threaded())
2899			return -EINVAL;
2900	}
2901
2902	return 0;
2903}
2904
2905/*
2906 * Unshare the filesystem structure if it is being shared
2907 */
2908static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2909{
2910	struct fs_struct *fs = current->fs;
2911
2912	if (!(unshare_flags & CLONE_FS) || !fs)
2913		return 0;
2914
2915	/* don't need lock here; in the worst case we'll do useless copy */
2916	if (fs->users == 1)
2917		return 0;
2918
2919	*new_fsp = copy_fs_struct(fs);
2920	if (!*new_fsp)
2921		return -ENOMEM;
2922
2923	return 0;
2924}
2925
2926/*
2927 * Unshare file descriptor table if it is being shared
2928 */
2929int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2930	       struct files_struct **new_fdp)
2931{
2932	struct files_struct *fd = current->files;
2933	int error = 0;
2934
2935	if ((unshare_flags & CLONE_FILES) &&
2936	    (fd && atomic_read(&fd->count) > 1)) {
2937		*new_fdp = dup_fd(fd, max_fds, &error);
2938		if (!*new_fdp)
2939			return error;
2940	}
2941
2942	return 0;
2943}
2944
2945/*
2946 * unshare allows a process to 'unshare' part of the process
2947 * context which was originally shared using clone.  copy_*
2948 * functions used by kernel_clone() cannot be used here directly
2949 * because they modify an inactive task_struct that is being
2950 * constructed. Here we are modifying the current, active,
2951 * task_struct.
2952 */
2953int ksys_unshare(unsigned long unshare_flags)
2954{
2955	struct fs_struct *fs, *new_fs = NULL;
2956	struct files_struct *fd, *new_fd = NULL;
2957	struct cred *new_cred = NULL;
2958	struct nsproxy *new_nsproxy = NULL;
2959	int do_sysvsem = 0;
2960	int err;
2961
2962	/*
2963	 * If unsharing a user namespace must also unshare the thread group
2964	 * and unshare the filesystem root and working directories.
2965	 */
2966	if (unshare_flags & CLONE_NEWUSER)
2967		unshare_flags |= CLONE_THREAD | CLONE_FS;
2968	/*
2969	 * If unsharing vm, must also unshare signal handlers.
2970	 */
2971	if (unshare_flags & CLONE_VM)
2972		unshare_flags |= CLONE_SIGHAND;
2973	/*
2974	 * If unsharing a signal handlers, must also unshare the signal queues.
2975	 */
2976	if (unshare_flags & CLONE_SIGHAND)
2977		unshare_flags |= CLONE_THREAD;
2978	/*
2979	 * If unsharing namespace, must also unshare filesystem information.
2980	 */
2981	if (unshare_flags & CLONE_NEWNS)
2982		unshare_flags |= CLONE_FS;
2983
2984	err = check_unshare_flags(unshare_flags);
2985	if (err)
2986		goto bad_unshare_out;
2987	/*
2988	 * CLONE_NEWIPC must also detach from the undolist: after switching
2989	 * to a new ipc namespace, the semaphore arrays from the old
2990	 * namespace are unreachable.
2991	 */
2992	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2993		do_sysvsem = 1;
2994	err = unshare_fs(unshare_flags, &new_fs);
2995	if (err)
2996		goto bad_unshare_out;
2997	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2998	if (err)
2999		goto bad_unshare_cleanup_fs;
3000	err = unshare_userns(unshare_flags, &new_cred);
3001	if (err)
3002		goto bad_unshare_cleanup_fd;
3003	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3004					 new_cred, new_fs);
3005	if (err)
3006		goto bad_unshare_cleanup_cred;
3007
3008	if (new_cred) {
3009		err = set_cred_ucounts(new_cred);
3010		if (err)
3011			goto bad_unshare_cleanup_cred;
3012	}
3013
3014	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3015		if (do_sysvsem) {
3016			/*
3017			 * CLONE_SYSVSEM is equivalent to sys_exit().
3018			 */
3019			exit_sem(current);
3020		}
3021		if (unshare_flags & CLONE_NEWIPC) {
3022			/* Orphan segments in old ns (see sem above). */
3023			exit_shm(current);
3024			shm_init_task(current);
3025		}
3026
3027		if (new_nsproxy)
3028			switch_task_namespaces(current, new_nsproxy);
3029
3030		task_lock(current);
3031
3032		if (new_fs) {
3033			fs = current->fs;
3034			spin_lock(&fs->lock);
3035			current->fs = new_fs;
3036			if (--fs->users)
3037				new_fs = NULL;
3038			else
3039				new_fs = fs;
3040			spin_unlock(&fs->lock);
3041		}
3042
3043		if (new_fd) {
3044			fd = current->files;
3045			current->files = new_fd;
3046			new_fd = fd;
3047		}
3048
3049		task_unlock(current);
3050
3051		if (new_cred) {
3052			/* Install the new user namespace */
3053			commit_creds(new_cred);
3054			new_cred = NULL;
3055		}
3056	}
3057
3058	perf_event_namespaces(current);
3059
3060bad_unshare_cleanup_cred:
3061	if (new_cred)
3062		put_cred(new_cred);
3063bad_unshare_cleanup_fd:
3064	if (new_fd)
3065		put_files_struct(new_fd);
3066
3067bad_unshare_cleanup_fs:
3068	if (new_fs)
3069		free_fs_struct(new_fs);
3070
3071bad_unshare_out:
3072	return err;
3073}
3074
3075SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3076{
3077	return ksys_unshare(unshare_flags);
3078}
3079
3080/*
3081 *	Helper to unshare the files of the current task.
3082 *	We don't want to expose copy_files internals to
3083 *	the exec layer of the kernel.
3084 */
3085
3086int unshare_files(void)
3087{
3088	struct task_struct *task = current;
3089	struct files_struct *old, *copy = NULL;
3090	int error;
3091
3092	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3093	if (error || !copy)
3094		return error;
3095
3096	old = task->files;
3097	task_lock(task);
3098	task->files = copy;
3099	task_unlock(task);
3100	put_files_struct(old);
3101	return 0;
3102}
3103
3104int sysctl_max_threads(struct ctl_table *table, int write,
3105		       void *buffer, size_t *lenp, loff_t *ppos)
3106{
3107	struct ctl_table t;
3108	int ret;
3109	int threads = max_threads;
3110	int min = 1;
3111	int max = MAX_THREADS;
3112
3113	t = *table;
3114	t.data = &threads;
3115	t.extra1 = &min;
3116	t.extra2 = &max;
3117
3118	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3119	if (ret || !write)
3120		return ret;
3121
3122	max_threads = threads;
3123
3124	return 0;
3125}