Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/kmsan.h>
  41#include <linux/binfmts.h>
  42#include <linux/mman.h>
  43#include <linux/mmu_notifier.h>
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/mm_inline.h>
  47#include <linux/nsproxy.h>
  48#include <linux/capability.h>
  49#include <linux/cpu.h>
  50#include <linux/cgroup.h>
  51#include <linux/security.h>
  52#include <linux/hugetlb.h>
  53#include <linux/seccomp.h>
  54#include <linux/swap.h>
  55#include <linux/syscalls.h>
  56#include <linux/syscall_user_dispatch.h>
  57#include <linux/jiffies.h>
  58#include <linux/futex.h>
  59#include <linux/compat.h>
  60#include <linux/kthread.h>
  61#include <linux/task_io_accounting_ops.h>
  62#include <linux/rcupdate.h>
  63#include <linux/ptrace.h>
  64#include <linux/mount.h>
  65#include <linux/audit.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/proc_fs.h>
  69#include <linux/profile.h>
  70#include <linux/rmap.h>
  71#include <linux/ksm.h>
  72#include <linux/acct.h>
  73#include <linux/userfaultfd_k.h>
  74#include <linux/tsacct_kern.h>
  75#include <linux/cn_proc.h>
  76#include <linux/freezer.h>
  77#include <linux/delayacct.h>
  78#include <linux/taskstats_kern.h>
 
  79#include <linux/tty.h>
 
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98#include <linux/io_uring.h>
  99#include <linux/bpf.h>
 100#include <linux/stackprotector.h>
 101#include <linux/user_events.h>
 102#include <linux/iommu.h>
 103#include <linux/rseq.h>
 104
 
 105#include <asm/pgalloc.h>
 106#include <linux/uaccess.h>
 107#include <asm/mmu_context.h>
 108#include <asm/cacheflush.h>
 109#include <asm/tlbflush.h>
 110
 111#include <trace/events/sched.h>
 112
 113#define CREATE_TRACE_POINTS
 114#include <trace/events/task.h>
 115
 116/*
 117 * Minimum number of threads to boot the kernel
 118 */
 119#define MIN_THREADS 20
 120
 121/*
 122 * Maximum number of threads
 123 */
 124#define MAX_THREADS FUTEX_TID_MASK
 125
 126/*
 127 * Protected counters by write_lock_irq(&tasklist_lock)
 128 */
 129unsigned long total_forks;	/* Handle normal Linux uptimes. */
 130int nr_threads;			/* The idle threads do not count.. */
 131
 132static int max_threads;		/* tunable limit on nr_threads */
 133
 134#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 135
 136static const char * const resident_page_types[] = {
 137	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 138	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 139	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 140	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 141};
 142
 143DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 144
 145__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 146
 147#ifdef CONFIG_PROVE_RCU
 148int lockdep_tasklist_lock_is_held(void)
 149{
 150	return lockdep_is_held(&tasklist_lock);
 151}
 152EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 153#endif /* #ifdef CONFIG_PROVE_RCU */
 154
 155int nr_processes(void)
 156{
 157	int cpu;
 158	int total = 0;
 159
 160	for_each_possible_cpu(cpu)
 161		total += per_cpu(process_counts, cpu);
 162
 163	return total;
 164}
 165
 166void __weak arch_release_task_struct(struct task_struct *tsk)
 167{
 168}
 169
 
 170static struct kmem_cache *task_struct_cachep;
 
 171
 172static inline struct task_struct *alloc_task_struct_node(int node)
 173{
 174	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 175}
 176
 177static inline void free_task_struct(struct task_struct *tsk)
 178{
 179	kmem_cache_free(task_struct_cachep, tsk);
 180}
 181
 182/*
 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 184 * kmemcache based allocator.
 185 */
 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 187
 188#  ifdef CONFIG_VMAP_STACK
 189/*
 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 191 * flush.  Try to minimize the number of calls by caching stacks.
 192 */
 193#define NR_CACHED_STACKS 2
 194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 195
 196struct vm_stack {
 197	struct rcu_head rcu;
 198	struct vm_struct *stack_vm_area;
 199};
 200
 201static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < NR_CACHED_STACKS; i++) {
 206		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
 207			continue;
 208		return true;
 209	}
 210	return false;
 211}
 212
 213static void thread_stack_free_rcu(struct rcu_head *rh)
 214{
 215	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
 216
 217	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
 218		return;
 219
 220	vfree(vm_stack);
 221}
 222
 223static void thread_stack_delayed_free(struct task_struct *tsk)
 224{
 225	struct vm_stack *vm_stack = tsk->stack;
 226
 227	vm_stack->stack_vm_area = tsk->stack_vm_area;
 228	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
 229}
 230
 231static int free_vm_stack_cache(unsigned int cpu)
 232{
 233	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 234	int i;
 235
 236	for (i = 0; i < NR_CACHED_STACKS; i++) {
 237		struct vm_struct *vm_stack = cached_vm_stacks[i];
 238
 239		if (!vm_stack)
 240			continue;
 241
 242		vfree(vm_stack->addr);
 243		cached_vm_stacks[i] = NULL;
 244	}
 245
 246	return 0;
 247}
 248
 249static int memcg_charge_kernel_stack(struct vm_struct *vm)
 250{
 251	int i;
 252	int ret;
 253	int nr_charged = 0;
 254
 255	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 256
 257	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 258		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
 259		if (ret)
 260			goto err;
 261		nr_charged++;
 262	}
 263	return 0;
 264err:
 265	for (i = 0; i < nr_charged; i++)
 266		memcg_kmem_uncharge_page(vm->pages[i], 0);
 267	return ret;
 268}
 269
 270static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 271{
 272	struct vm_struct *vm;
 273	void *stack;
 274	int i;
 275
 276	for (i = 0; i < NR_CACHED_STACKS; i++) {
 277		struct vm_struct *s;
 278
 279		s = this_cpu_xchg(cached_stacks[i], NULL);
 280
 281		if (!s)
 282			continue;
 283
 284		/* Reset stack metadata. */
 285		kasan_unpoison_range(s->addr, THREAD_SIZE);
 286
 287		stack = kasan_reset_tag(s->addr);
 288
 289		/* Clear stale pointers from reused stack. */
 290		memset(stack, 0, THREAD_SIZE);
 291
 292		if (memcg_charge_kernel_stack(s)) {
 293			vfree(s->addr);
 294			return -ENOMEM;
 295		}
 296
 297		tsk->stack_vm_area = s;
 298		tsk->stack = stack;
 299		return 0;
 300	}
 301
 302	/*
 303	 * Allocated stacks are cached and later reused by new threads,
 304	 * so memcg accounting is performed manually on assigning/releasing
 305	 * stacks to tasks. Drop __GFP_ACCOUNT.
 306	 */
 307	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 308				     VMALLOC_START, VMALLOC_END,
 309				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 310				     PAGE_KERNEL,
 311				     0, node, __builtin_return_address(0));
 312	if (!stack)
 313		return -ENOMEM;
 314
 315	vm = find_vm_area(stack);
 316	if (memcg_charge_kernel_stack(vm)) {
 317		vfree(stack);
 318		return -ENOMEM;
 319	}
 320	/*
 321	 * We can't call find_vm_area() in interrupt context, and
 322	 * free_thread_stack() can be called in interrupt context,
 323	 * so cache the vm_struct.
 324	 */
 325	tsk->stack_vm_area = vm;
 326	stack = kasan_reset_tag(stack);
 327	tsk->stack = stack;
 328	return 0;
 329}
 330
 331static void free_thread_stack(struct task_struct *tsk)
 332{
 333	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
 334		thread_stack_delayed_free(tsk);
 335
 336	tsk->stack = NULL;
 337	tsk->stack_vm_area = NULL;
 338}
 339
 340#  else /* !CONFIG_VMAP_STACK */
 341
 342static void thread_stack_free_rcu(struct rcu_head *rh)
 343{
 344	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
 345}
 346
 347static void thread_stack_delayed_free(struct task_struct *tsk)
 348{
 349	struct rcu_head *rh = tsk->stack;
 350
 351	call_rcu(rh, thread_stack_free_rcu);
 352}
 353
 354static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 355{
 356	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 357					     THREAD_SIZE_ORDER);
 358
 359	if (likely(page)) {
 360		tsk->stack = kasan_reset_tag(page_address(page));
 361		return 0;
 362	}
 363	return -ENOMEM;
 364}
 365
 366static void free_thread_stack(struct task_struct *tsk)
 367{
 368	thread_stack_delayed_free(tsk);
 369	tsk->stack = NULL;
 370}
 371
 372#  endif /* CONFIG_VMAP_STACK */
 373# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
 374
 375static struct kmem_cache *thread_stack_cache;
 376
 377static void thread_stack_free_rcu(struct rcu_head *rh)
 378{
 379	kmem_cache_free(thread_stack_cache, rh);
 380}
 381
 382static void thread_stack_delayed_free(struct task_struct *tsk)
 383{
 384	struct rcu_head *rh = tsk->stack;
 385
 386	call_rcu(rh, thread_stack_free_rcu);
 387}
 388
 389static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 390{
 391	unsigned long *stack;
 392	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 393	stack = kasan_reset_tag(stack);
 394	tsk->stack = stack;
 395	return stack ? 0 : -ENOMEM;
 396}
 397
 398static void free_thread_stack(struct task_struct *tsk)
 399{
 400	thread_stack_delayed_free(tsk);
 401	tsk->stack = NULL;
 402}
 403
 404void thread_stack_cache_init(void)
 405{
 406	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 407					THREAD_SIZE, THREAD_SIZE, 0, 0,
 408					THREAD_SIZE, NULL);
 409	BUG_ON(thread_stack_cache == NULL);
 410}
 411
 412# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
 413
 414/* SLAB cache for signal_struct structures (tsk->signal) */
 415static struct kmem_cache *signal_cachep;
 416
 417/* SLAB cache for sighand_struct structures (tsk->sighand) */
 418struct kmem_cache *sighand_cachep;
 419
 420/* SLAB cache for files_struct structures (tsk->files) */
 421struct kmem_cache *files_cachep;
 422
 423/* SLAB cache for fs_struct structures (tsk->fs) */
 424struct kmem_cache *fs_cachep;
 425
 426/* SLAB cache for vm_area_struct structures */
 427static struct kmem_cache *vm_area_cachep;
 428
 429/* SLAB cache for mm_struct structures (tsk->mm) */
 430static struct kmem_cache *mm_cachep;
 431
 432#ifdef CONFIG_PER_VMA_LOCK
 433
 434/* SLAB cache for vm_area_struct.lock */
 435static struct kmem_cache *vma_lock_cachep;
 436
 437static bool vma_lock_alloc(struct vm_area_struct *vma)
 438{
 439	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
 440	if (!vma->vm_lock)
 441		return false;
 442
 443	init_rwsem(&vma->vm_lock->lock);
 444	vma->vm_lock_seq = -1;
 445
 446	return true;
 447}
 448
 449static inline void vma_lock_free(struct vm_area_struct *vma)
 450{
 451	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
 
 
 
 
 
 452}
 
 453
 454#else /* CONFIG_PER_VMA_LOCK */
 455
 456static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
 457static inline void vma_lock_free(struct vm_area_struct *vma) {}
 458
 459#endif /* CONFIG_PER_VMA_LOCK */
 460
 461struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 462{
 463	struct vm_area_struct *vma;
 
 
 464
 465	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 466	if (!vma)
 467		return NULL;
 
 
 468
 469	vma_init(vma, mm);
 470	if (!vma_lock_alloc(vma)) {
 471		kmem_cache_free(vm_area_cachep, vma);
 472		return NULL;
 473	}
 474
 475	return vma;
 
 476}
 
 477
 478struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 
 
 
 
 
 
 
 
 479{
 480	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 
 
 
 
 
 
 
 
 481
 482	if (!new)
 483		return NULL;
 484
 485	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 486	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 487	/*
 488	 * orig->shared.rb may be modified concurrently, but the clone
 489	 * will be reinitialized.
 
 490	 */
 491	data_race(memcpy(new, orig, sizeof(*new)));
 492	if (!vma_lock_alloc(new)) {
 493		kmem_cache_free(vm_area_cachep, new);
 494		return NULL;
 495	}
 496	INIT_LIST_HEAD(&new->anon_vma_chain);
 497	vma_numab_state_init(new);
 498	dup_anon_vma_name(orig, new);
 499
 500	return new;
 501}
 
 
 
 502
 503void __vm_area_free(struct vm_area_struct *vma)
 504{
 505	vma_numab_state_free(vma);
 506	free_anon_vma_name(vma);
 507	vma_lock_free(vma);
 508	kmem_cache_free(vm_area_cachep, vma);
 509}
 510
 511#ifdef CONFIG_PER_VMA_LOCK
 512static void vm_area_free_rcu_cb(struct rcu_head *head)
 513{
 514	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
 515						  vm_rcu);
 516
 517	/* The vma should not be locked while being destroyed. */
 518	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
 519	__vm_area_free(vma);
 520}
 521#endif
 522
 523void vm_area_free(struct vm_area_struct *vma)
 524{
 525#ifdef CONFIG_PER_VMA_LOCK
 526	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
 527#else
 528	__vm_area_free(vma);
 529#endif
 530}
 531
 532static void account_kernel_stack(struct task_struct *tsk, int account)
 533{
 534	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 535		struct vm_struct *vm = task_stack_vm_area(tsk);
 536		int i;
 537
 538		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 539			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 540					      account * (PAGE_SIZE / 1024));
 541	} else {
 542		void *stack = task_stack_page(tsk);
 543
 544		/* All stack pages are in the same node. */
 545		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 546				      account * (THREAD_SIZE / 1024));
 
 547	}
 548}
 549
 550void exit_task_stack_account(struct task_struct *tsk)
 551{
 552	account_kernel_stack(tsk, -1);
 553
 554	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 555		struct vm_struct *vm;
 556		int i;
 557
 558		vm = task_stack_vm_area(tsk);
 559		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 560			memcg_kmem_uncharge_page(vm->pages[i], 0);
 561	}
 562}
 563
 564static void release_task_stack(struct task_struct *tsk)
 565{
 566	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 567		return;  /* Better to leak the stack than to free prematurely */
 568
 569	free_thread_stack(tsk);
 570}
 
 571
 572#ifdef CONFIG_THREAD_INFO_IN_TASK
 573void put_task_stack(struct task_struct *tsk)
 574{
 575	if (refcount_dec_and_test(&tsk->stack_refcount))
 576		release_task_stack(tsk);
 577}
 578#endif
 579
 580void free_task(struct task_struct *tsk)
 581{
 582#ifdef CONFIG_SECCOMP
 583	WARN_ON_ONCE(tsk->seccomp.filter);
 584#endif
 585	release_user_cpus_ptr(tsk);
 586	scs_release(tsk);
 587
 588#ifndef CONFIG_THREAD_INFO_IN_TASK
 589	/*
 590	 * The task is finally done with both the stack and thread_info,
 591	 * so free both.
 592	 */
 593	release_task_stack(tsk);
 594#else
 595	/*
 596	 * If the task had a separate stack allocation, it should be gone
 597	 * by now.
 598	 */
 599	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 
 
 600#endif
 601	rt_mutex_debug_task_free(tsk);
 602	ftrace_graph_exit_task(tsk);
 603	arch_release_task_struct(tsk);
 604	if (tsk->flags & PF_KTHREAD)
 605		free_kthread_struct(tsk);
 606	bpf_task_storage_free(tsk);
 607	free_task_struct(tsk);
 608}
 609EXPORT_SYMBOL(free_task);
 610
 611static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
 612{
 613	struct file *exe_file;
 614
 615	exe_file = get_mm_exe_file(oldmm);
 616	RCU_INIT_POINTER(mm->exe_file, exe_file);
 617	/*
 618	 * We depend on the oldmm having properly denied write access to the
 619	 * exe_file already.
 620	 */
 621	if (exe_file && deny_write_access(exe_file))
 622		pr_warn_once("deny_write_access() failed in %s\n", __func__);
 623}
 624
 625#ifdef CONFIG_MMU
 626static __latent_entropy int dup_mmap(struct mm_struct *mm,
 627					struct mm_struct *oldmm)
 628{
 629	struct vm_area_struct *mpnt, *tmp;
 
 630	int retval;
 631	unsigned long charge = 0;
 632	LIST_HEAD(uf);
 633	VMA_ITERATOR(vmi, mm, 0);
 634
 635	uprobe_start_dup_mmap();
 636	if (mmap_write_lock_killable(oldmm)) {
 637		retval = -EINTR;
 638		goto fail_uprobe_end;
 639	}
 640	flush_cache_dup_mm(oldmm);
 641	uprobe_dup_mmap(oldmm, mm);
 642	/*
 643	 * Not linked in yet - no deadlock potential:
 644	 */
 645	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 646
 647	/* No ordering required: file already has been exposed. */
 648	dup_mm_exe_file(mm, oldmm);
 649
 650	mm->total_vm = oldmm->total_vm;
 651	mm->data_vm = oldmm->data_vm;
 652	mm->exec_vm = oldmm->exec_vm;
 653	mm->stack_vm = oldmm->stack_vm;
 654
 
 
 
 
 
 
 
 
 
 
 
 655	retval = ksm_fork(mm, oldmm);
 656	if (retval)
 657		goto out;
 658	khugepaged_fork(mm, oldmm);
 659
 660	/* Use __mt_dup() to efficiently build an identical maple tree. */
 661	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
 662	if (unlikely(retval))
 663		goto out;
 664
 665	mt_clear_in_rcu(vmi.mas.tree);
 666	for_each_vma(vmi, mpnt) {
 667		struct file *file;
 668
 669		vma_start_write(mpnt);
 670		if (mpnt->vm_flags & VM_DONTCOPY) {
 671			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
 672						    mpnt->vm_end, GFP_KERNEL);
 673			if (retval)
 674				goto loop_out;
 675
 676			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 677			continue;
 678		}
 679		charge = 0;
 680		/*
 681		 * Don't duplicate many vmas if we've been oom-killed (for
 682		 * example)
 683		 */
 684		if (fatal_signal_pending(current)) {
 685			retval = -EINTR;
 686			goto loop_out;
 687		}
 688		if (mpnt->vm_flags & VM_ACCOUNT) {
 689			unsigned long len = vma_pages(mpnt);
 690
 691			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 692				goto fail_nomem;
 693			charge = len;
 694		}
 695		tmp = vm_area_dup(mpnt);
 696		if (!tmp)
 697			goto fail_nomem;
 698		retval = vma_dup_policy(mpnt, tmp);
 699		if (retval)
 
 
 
 700			goto fail_nomem_policy;
 
 701		tmp->vm_mm = mm;
 702		retval = dup_userfaultfd(tmp, &uf);
 703		if (retval)
 704			goto fail_nomem_anon_vma_fork;
 705		if (tmp->vm_flags & VM_WIPEONFORK) {
 706			/*
 707			 * VM_WIPEONFORK gets a clean slate in the child.
 708			 * Don't prepare anon_vma until fault since we don't
 709			 * copy page for current vma.
 710			 */
 711			tmp->anon_vma = NULL;
 712		} else if (anon_vma_fork(tmp, mpnt))
 713			goto fail_nomem_anon_vma_fork;
 714		vm_flags_clear(tmp, VM_LOCKED_MASK);
 715		file = tmp->vm_file;
 716		if (file) {
 
 717			struct address_space *mapping = file->f_mapping;
 718
 719			get_file(file);
 720			i_mmap_lock_write(mapping);
 721			if (vma_is_shared_maywrite(tmp))
 722				mapping_allow_writable(mapping);
 
 
 723			flush_dcache_mmap_lock(mapping);
 724			/* insert tmp into the share list, just after mpnt */
 725			vma_interval_tree_insert_after(tmp, mpnt,
 726					&mapping->i_mmap);
 727			flush_dcache_mmap_unlock(mapping);
 728			i_mmap_unlock_write(mapping);
 729		}
 730
 731		/*
 732		 * Copy/update hugetlb private vma information.
 
 
 733		 */
 734		if (is_vm_hugetlb_page(tmp))
 735			hugetlb_dup_vma_private(tmp);
 736
 737		/*
 738		 * Link the vma into the MT. After using __mt_dup(), memory
 739		 * allocation is not necessary here, so it cannot fail.
 740		 */
 741		vma_iter_bulk_store(&vmi, tmp);
 
 
 
 
 
 
 
 742
 743		mm->map_count++;
 744		if (!(tmp->vm_flags & VM_WIPEONFORK))
 745			retval = copy_page_range(tmp, mpnt);
 746
 747		if (tmp->vm_ops && tmp->vm_ops->open)
 748			tmp->vm_ops->open(tmp);
 749
 750		if (retval) {
 751			mpnt = vma_next(&vmi);
 752			goto loop_out;
 753		}
 754	}
 755	/* a new mm has just been created */
 756	retval = arch_dup_mmap(oldmm, mm);
 757loop_out:
 758	vma_iter_free(&vmi);
 759	if (!retval) {
 760		mt_set_in_rcu(vmi.mas.tree);
 761	} else if (mpnt) {
 762		/*
 763		 * The entire maple tree has already been duplicated. If the
 764		 * mmap duplication fails, mark the failure point with
 765		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
 766		 * stop releasing VMAs that have not been duplicated after this
 767		 * point.
 768		 */
 769		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
 770		mas_store(&vmi.mas, XA_ZERO_ENTRY);
 771	}
 772out:
 773	mmap_write_unlock(mm);
 774	flush_tlb_mm(oldmm);
 775	mmap_write_unlock(oldmm);
 776	dup_userfaultfd_complete(&uf);
 777fail_uprobe_end:
 778	uprobe_end_dup_mmap();
 779	return retval;
 780
 781fail_nomem_anon_vma_fork:
 782	mpol_put(vma_policy(tmp));
 783fail_nomem_policy:
 784	vm_area_free(tmp);
 785fail_nomem:
 786	retval = -ENOMEM;
 787	vm_unacct_memory(charge);
 788	goto loop_out;
 789}
 790
 791static inline int mm_alloc_pgd(struct mm_struct *mm)
 792{
 793	mm->pgd = pgd_alloc(mm);
 794	if (unlikely(!mm->pgd))
 795		return -ENOMEM;
 796	return 0;
 797}
 798
 799static inline void mm_free_pgd(struct mm_struct *mm)
 800{
 801	pgd_free(mm, mm->pgd);
 802}
 803#else
 804static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 805{
 806	mmap_write_lock(oldmm);
 807	dup_mm_exe_file(mm, oldmm);
 808	mmap_write_unlock(oldmm);
 809	return 0;
 810}
 811#define mm_alloc_pgd(mm)	(0)
 812#define mm_free_pgd(mm)
 813#endif /* CONFIG_MMU */
 814
 815static void check_mm(struct mm_struct *mm)
 816{
 817	int i;
 818
 819	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 820			 "Please make sure 'struct resident_page_types[]' is updated as well");
 821
 822	for (i = 0; i < NR_MM_COUNTERS; i++) {
 823		long x = percpu_counter_sum(&mm->rss_stat[i]);
 824
 825		if (unlikely(x))
 826			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 827				 mm, resident_page_types[i], x);
 828	}
 829
 830	if (mm_pgtables_bytes(mm))
 831		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 832				mm_pgtables_bytes(mm));
 833
 834#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 835	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 836#endif
 837}
 838
 839#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 840#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 841
 842static void do_check_lazy_tlb(void *arg)
 843{
 844	struct mm_struct *mm = arg;
 845
 846	WARN_ON_ONCE(current->active_mm == mm);
 847}
 848
 849static void do_shoot_lazy_tlb(void *arg)
 850{
 851	struct mm_struct *mm = arg;
 852
 853	if (current->active_mm == mm) {
 854		WARN_ON_ONCE(current->mm);
 855		current->active_mm = &init_mm;
 856		switch_mm(mm, &init_mm, current);
 857	}
 858}
 859
 860static void cleanup_lazy_tlbs(struct mm_struct *mm)
 861{
 862	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
 863		/*
 864		 * In this case, lazy tlb mms are refounted and would not reach
 865		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
 866		 */
 867		return;
 868	}
 869
 870	/*
 871	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
 872	 * requires lazy mm users to switch to another mm when the refcount
 873	 * drops to zero, before the mm is freed. This requires IPIs here to
 874	 * switch kernel threads to init_mm.
 875	 *
 876	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
 877	 * switch with the final userspace teardown TLB flush which leaves the
 878	 * mm lazy on this CPU but no others, reducing the need for additional
 879	 * IPIs here. There are cases where a final IPI is still required here,
 880	 * such as the final mmdrop being performed on a different CPU than the
 881	 * one exiting, or kernel threads using the mm when userspace exits.
 882	 *
 883	 * IPI overheads have not found to be expensive, but they could be
 884	 * reduced in a number of possible ways, for example (roughly
 885	 * increasing order of complexity):
 886	 * - The last lazy reference created by exit_mm() could instead switch
 887	 *   to init_mm, however it's probable this will run on the same CPU
 888	 *   immediately afterwards, so this may not reduce IPIs much.
 889	 * - A batch of mms requiring IPIs could be gathered and freed at once.
 890	 * - CPUs store active_mm where it can be remotely checked without a
 891	 *   lock, to filter out false-positives in the cpumask.
 892	 * - After mm_users or mm_count reaches zero, switching away from the
 893	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
 894	 *   with some batching or delaying of the final IPIs.
 895	 * - A delayed freeing and RCU-like quiescing sequence based on mm
 896	 *   switching to avoid IPIs completely.
 897	 */
 898	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
 899	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
 900		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
 901}
 902
 903/*
 904 * Called when the last reference to the mm
 905 * is dropped: either by a lazy thread or by
 906 * mmput. Free the page directory and the mm.
 907 */
 908void __mmdrop(struct mm_struct *mm)
 909{
 910	BUG_ON(mm == &init_mm);
 911	WARN_ON_ONCE(mm == current->mm);
 912
 913	/* Ensure no CPUs are using this as their lazy tlb mm */
 914	cleanup_lazy_tlbs(mm);
 915
 916	WARN_ON_ONCE(mm == current->active_mm);
 917	mm_free_pgd(mm);
 918	destroy_context(mm);
 919	mmu_notifier_subscriptions_destroy(mm);
 920	check_mm(mm);
 921	put_user_ns(mm->user_ns);
 922	mm_pasid_drop(mm);
 923	mm_destroy_cid(mm);
 924	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
 925
 926	free_mm(mm);
 927}
 928EXPORT_SYMBOL_GPL(__mmdrop);
 929
 930static void mmdrop_async_fn(struct work_struct *work)
 931{
 932	struct mm_struct *mm;
 933
 934	mm = container_of(work, struct mm_struct, async_put_work);
 935	__mmdrop(mm);
 936}
 937
 938static void mmdrop_async(struct mm_struct *mm)
 939{
 940	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 941		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 942		schedule_work(&mm->async_put_work);
 943	}
 944}
 945
 946static inline void free_signal_struct(struct signal_struct *sig)
 947{
 948	taskstats_tgid_free(sig);
 949	sched_autogroup_exit(sig);
 950	/*
 951	 * __mmdrop is not safe to call from softirq context on x86 due to
 952	 * pgd_dtor so postpone it to the async context
 953	 */
 954	if (sig->oom_mm)
 955		mmdrop_async(sig->oom_mm);
 956	kmem_cache_free(signal_cachep, sig);
 957}
 958
 959static inline void put_signal_struct(struct signal_struct *sig)
 960{
 961	if (refcount_dec_and_test(&sig->sigcnt))
 962		free_signal_struct(sig);
 963}
 964
 965void __put_task_struct(struct task_struct *tsk)
 966{
 967	WARN_ON(!tsk->exit_state);
 968	WARN_ON(refcount_read(&tsk->usage));
 969	WARN_ON(tsk == current);
 970
 971	io_uring_free(tsk);
 972	cgroup_free(tsk);
 973	task_numa_free(tsk, true);
 974	security_task_free(tsk);
 975	exit_creds(tsk);
 976	delayacct_tsk_free(tsk);
 977	put_signal_struct(tsk->signal);
 978	sched_core_free(tsk);
 979	free_task(tsk);
 980}
 981EXPORT_SYMBOL_GPL(__put_task_struct);
 982
 983void __put_task_struct_rcu_cb(struct rcu_head *rhp)
 984{
 985	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
 986
 987	__put_task_struct(task);
 988}
 989EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
 990
 991void __init __weak arch_task_cache_init(void) { }
 992
 993/*
 994 * set_max_threads
 995 */
 996static void set_max_threads(unsigned int max_threads_suggested)
 997{
 998	u64 threads;
 999	unsigned long nr_pages = totalram_pages();
1000
1001	/*
1002	 * The number of threads shall be limited such that the thread
1003	 * structures may only consume a small part of the available memory.
1004	 */
1005	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1006		threads = MAX_THREADS;
1007	else
1008		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1009				    (u64) THREAD_SIZE * 8UL);
1010
1011	if (threads > max_threads_suggested)
1012		threads = max_threads_suggested;
1013
1014	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1015}
1016
1017#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1018/* Initialized by the architecture: */
1019int arch_task_struct_size __read_mostly;
1020#endif
1021
1022static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1023{
1024	/* Fetch thread_struct whitelist for the architecture. */
1025	arch_thread_struct_whitelist(offset, size);
1026
1027	/*
1028	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1029	 * adjust offset to position of thread_struct in task_struct.
1030	 */
1031	if (unlikely(*size == 0))
1032		*offset = 0;
1033	else
1034		*offset += offsetof(struct task_struct, thread);
1035}
1036
1037void __init fork_init(void)
1038{
1039	int i;
1040#ifndef ARCH_MIN_TASKALIGN
1041#define ARCH_MIN_TASKALIGN	0
1042#endif
1043	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1044	unsigned long useroffset, usersize;
1045
1046	/* create a slab on which task_structs can be allocated */
1047	task_struct_whitelist(&useroffset, &usersize);
1048	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1049			arch_task_struct_size, align,
1050			SLAB_PANIC|SLAB_ACCOUNT,
1051			useroffset, usersize, NULL);
1052
1053	/* do the arch specific task caches init */
1054	arch_task_cache_init();
1055
1056	set_max_threads(MAX_THREADS);
1057
1058	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1059	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1060	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1061		init_task.signal->rlim[RLIMIT_NPROC];
1062
1063	for (i = 0; i < UCOUNT_COUNTS; i++)
1064		init_user_ns.ucount_max[i] = max_threads/2;
1065
1066	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1067	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1068	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1069	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1070
1071#ifdef CONFIG_VMAP_STACK
1072	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1073			  NULL, free_vm_stack_cache);
1074#endif
1075
1076	scs_init();
1077
1078	lockdep_init_task(&init_task);
1079	uprobes_init();
1080}
1081
1082int __weak arch_dup_task_struct(struct task_struct *dst,
1083					       struct task_struct *src)
1084{
1085	*dst = *src;
1086	return 0;
1087}
1088
1089void set_task_stack_end_magic(struct task_struct *tsk)
1090{
1091	unsigned long *stackend;
1092
1093	stackend = end_of_stack(tsk);
1094	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1095}
1096
1097static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1098{
1099	struct task_struct *tsk;
1100	int err;
1101
1102	if (node == NUMA_NO_NODE)
1103		node = tsk_fork_get_node(orig);
1104	tsk = alloc_task_struct_node(node);
1105	if (!tsk)
1106		return NULL;
1107
1108	err = arch_dup_task_struct(tsk, orig);
1109	if (err)
1110		goto free_tsk;
1111
1112	err = alloc_thread_stack_node(tsk, node);
1113	if (err)
1114		goto free_tsk;
1115
1116#ifdef CONFIG_THREAD_INFO_IN_TASK
1117	refcount_set(&tsk->stack_refcount, 1);
1118#endif
1119	account_kernel_stack(tsk, 1);
1120
1121	err = scs_prepare(tsk, node);
1122	if (err)
1123		goto free_stack;
1124
1125#ifdef CONFIG_SECCOMP
1126	/*
1127	 * We must handle setting up seccomp filters once we're under
1128	 * the sighand lock in case orig has changed between now and
1129	 * then. Until then, filter must be NULL to avoid messing up
1130	 * the usage counts on the error path calling free_task.
1131	 */
1132	tsk->seccomp.filter = NULL;
1133#endif
1134
1135	setup_thread_stack(tsk, orig);
1136	clear_user_return_notifier(tsk);
1137	clear_tsk_need_resched(tsk);
1138	set_task_stack_end_magic(tsk);
1139	clear_syscall_work_syscall_user_dispatch(tsk);
1140
1141#ifdef CONFIG_STACKPROTECTOR
1142	tsk->stack_canary = get_random_canary();
1143#endif
1144	if (orig->cpus_ptr == &orig->cpus_mask)
1145		tsk->cpus_ptr = &tsk->cpus_mask;
1146	dup_user_cpus_ptr(tsk, orig, node);
1147
1148	/*
1149	 * One for the user space visible state that goes away when reaped.
1150	 * One for the scheduler.
1151	 */
1152	refcount_set(&tsk->rcu_users, 2);
1153	/* One for the rcu users */
1154	refcount_set(&tsk->usage, 1);
1155#ifdef CONFIG_BLK_DEV_IO_TRACE
1156	tsk->btrace_seq = 0;
1157#endif
1158	tsk->splice_pipe = NULL;
1159	tsk->task_frag.page = NULL;
1160	tsk->wake_q.next = NULL;
1161	tsk->worker_private = NULL;
1162
1163	kcov_task_init(tsk);
1164	kmsan_task_create(tsk);
1165	kmap_local_fork(tsk);
1166
1167#ifdef CONFIG_FAULT_INJECTION
1168	tsk->fail_nth = 0;
1169#endif
1170
1171#ifdef CONFIG_BLK_CGROUP
1172	tsk->throttle_disk = NULL;
1173	tsk->use_memdelay = 0;
1174#endif
1175
1176#ifdef CONFIG_ARCH_HAS_CPU_PASID
1177	tsk->pasid_activated = 0;
1178#endif
1179
1180#ifdef CONFIG_MEMCG
1181	tsk->active_memcg = NULL;
1182#endif
1183
1184#ifdef CONFIG_CPU_SUP_INTEL
1185	tsk->reported_split_lock = 0;
1186#endif
1187
1188#ifdef CONFIG_SCHED_MM_CID
1189	tsk->mm_cid = -1;
1190	tsk->last_mm_cid = -1;
1191	tsk->mm_cid_active = 0;
1192	tsk->migrate_from_cpu = -1;
1193#endif
1194	return tsk;
1195
1196free_stack:
1197	exit_task_stack_account(tsk);
1198	free_thread_stack(tsk);
1199free_tsk:
1200	free_task_struct(tsk);
1201	return NULL;
1202}
1203
1204__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1205
1206static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1207
1208static int __init coredump_filter_setup(char *s)
1209{
1210	default_dump_filter =
1211		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1212		MMF_DUMP_FILTER_MASK;
1213	return 1;
1214}
1215
1216__setup("coredump_filter=", coredump_filter_setup);
1217
1218#include <linux/init_task.h>
1219
1220static void mm_init_aio(struct mm_struct *mm)
1221{
1222#ifdef CONFIG_AIO
1223	spin_lock_init(&mm->ioctx_lock);
1224	mm->ioctx_table = NULL;
1225#endif
1226}
1227
1228static __always_inline void mm_clear_owner(struct mm_struct *mm,
1229					   struct task_struct *p)
1230{
1231#ifdef CONFIG_MEMCG
1232	if (mm->owner == p)
1233		WRITE_ONCE(mm->owner, NULL);
1234#endif
1235}
1236
1237static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1238{
1239#ifdef CONFIG_MEMCG
1240	mm->owner = p;
1241#endif
1242}
1243
1244static void mm_init_uprobes_state(struct mm_struct *mm)
1245{
1246#ifdef CONFIG_UPROBES
1247	mm->uprobes_state.xol_area = NULL;
1248#endif
1249}
1250
1251static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1252	struct user_namespace *user_ns)
1253{
1254	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1255	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1256	atomic_set(&mm->mm_users, 1);
1257	atomic_set(&mm->mm_count, 1);
1258	seqcount_init(&mm->write_protect_seq);
1259	mmap_init_lock(mm);
1260	INIT_LIST_HEAD(&mm->mmlist);
1261#ifdef CONFIG_PER_VMA_LOCK
1262	mm->mm_lock_seq = 0;
1263#endif
1264	mm_pgtables_bytes_init(mm);
1265	mm->map_count = 0;
1266	mm->locked_vm = 0;
1267	atomic64_set(&mm->pinned_vm, 0);
1268	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1269	spin_lock_init(&mm->page_table_lock);
1270	spin_lock_init(&mm->arg_lock);
1271	mm_init_cpumask(mm);
1272	mm_init_aio(mm);
1273	mm_init_owner(mm, p);
1274	mm_pasid_init(mm);
1275	RCU_INIT_POINTER(mm->exe_file, NULL);
1276	mmu_notifier_subscriptions_init(mm);
1277	init_tlb_flush_pending(mm);
1278#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1279	mm->pmd_huge_pte = NULL;
1280#endif
1281	mm_init_uprobes_state(mm);
1282	hugetlb_count_init(mm);
1283
1284	if (current->mm) {
1285		mm->flags = mmf_init_flags(current->mm->flags);
1286		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1287	} else {
1288		mm->flags = default_dump_filter;
1289		mm->def_flags = 0;
 
 
1290	}
1291
1292	if (mm_alloc_pgd(mm))
1293		goto fail_nopgd;
1294
1295	if (init_new_context(p, mm))
1296		goto fail_nocontext;
1297
1298	if (mm_alloc_cid(mm))
1299		goto fail_cid;
1300
1301	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1302				     NR_MM_COUNTERS))
1303		goto fail_pcpu;
1304
1305	mm->user_ns = get_user_ns(user_ns);
1306	lru_gen_init_mm(mm);
1307	return mm;
1308
1309fail_pcpu:
1310	mm_destroy_cid(mm);
1311fail_cid:
1312	destroy_context(mm);
1313fail_nocontext:
1314	mm_free_pgd(mm);
1315fail_nopgd:
1316	free_mm(mm);
1317	return NULL;
1318}
1319
1320/*
1321 * Allocate and initialize an mm_struct.
1322 */
1323struct mm_struct *mm_alloc(void)
1324{
1325	struct mm_struct *mm;
1326
1327	mm = allocate_mm();
1328	if (!mm)
1329		return NULL;
1330
1331	memset(mm, 0, sizeof(*mm));
1332	return mm_init(mm, current, current_user_ns());
 
1333}
1334
1335static inline void __mmput(struct mm_struct *mm)
 
 
 
 
 
1336{
1337	VM_BUG_ON(atomic_read(&mm->mm_users));
1338
1339	uprobe_clear_state(mm);
1340	exit_aio(mm);
1341	ksm_exit(mm);
1342	khugepaged_exit(mm); /* must run before exit_mmap */
1343	exit_mmap(mm);
1344	mm_put_huge_zero_page(mm);
1345	set_mm_exe_file(mm, NULL);
1346	if (!list_empty(&mm->mmlist)) {
1347		spin_lock(&mmlist_lock);
1348		list_del(&mm->mmlist);
1349		spin_unlock(&mmlist_lock);
1350	}
1351	if (mm->binfmt)
1352		module_put(mm->binfmt->module);
1353	lru_gen_del_mm(mm);
1354	mmdrop(mm);
1355}
 
1356
1357/*
1358 * Decrement the use count and release all resources for an mm.
1359 */
1360void mmput(struct mm_struct *mm)
1361{
1362	might_sleep();
1363
1364	if (atomic_dec_and_test(&mm->mm_users))
1365		__mmput(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366}
1367EXPORT_SYMBOL_GPL(mmput);
1368
1369#ifdef CONFIG_MMU
1370static void mmput_async_fn(struct work_struct *work)
 
 
 
 
1371{
1372	struct mm_struct *mm = container_of(work, struct mm_struct,
1373					    async_put_work);
1374
1375	__mmput(mm);
1376}
1377
1378void mmput_async(struct mm_struct *mm)
1379{
1380	if (atomic_dec_and_test(&mm->mm_users)) {
1381		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1382		schedule_work(&mm->async_put_work);
 
1383	}
1384}
1385EXPORT_SYMBOL_GPL(mmput_async);
1386#endif
1387
1388/**
1389 * set_mm_exe_file - change a reference to the mm's executable file
1390 * @mm: The mm to change.
1391 * @new_exe_file: The new file to use.
1392 *
1393 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1394 *
1395 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1396 * invocations: in mmput() nobody alive left, in execve it happens before
1397 * the new mm is made visible to anyone.
1398 *
1399 * Can only fail if new_exe_file != NULL.
1400 */
1401int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1402{
1403	struct file *old_exe_file;
1404
1405	/*
1406	 * It is safe to dereference the exe_file without RCU as
1407	 * this function is only called if nobody else can access
1408	 * this mm -- see comment above for justification.
1409	 */
1410	old_exe_file = rcu_dereference_raw(mm->exe_file);
1411
1412	if (new_exe_file) {
1413		/*
1414		 * We expect the caller (i.e., sys_execve) to already denied
1415		 * write access, so this is unlikely to fail.
1416		 */
1417		if (unlikely(deny_write_access(new_exe_file)))
1418			return -EACCES;
1419		get_file(new_exe_file);
1420	}
1421	rcu_assign_pointer(mm->exe_file, new_exe_file);
1422	if (old_exe_file) {
1423		allow_write_access(old_exe_file);
1424		fput(old_exe_file);
1425	}
1426	return 0;
1427}
1428
1429/**
1430 * replace_mm_exe_file - replace a reference to the mm's executable file
1431 * @mm: The mm to change.
1432 * @new_exe_file: The new file to use.
1433 *
1434 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1435 *
1436 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1437 */
1438int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1439{
1440	struct vm_area_struct *vma;
1441	struct file *old_exe_file;
1442	int ret = 0;
1443
1444	/* Forbid mm->exe_file change if old file still mapped. */
1445	old_exe_file = get_mm_exe_file(mm);
1446	if (old_exe_file) {
1447		VMA_ITERATOR(vmi, mm, 0);
1448		mmap_read_lock(mm);
1449		for_each_vma(vmi, vma) {
1450			if (!vma->vm_file)
1451				continue;
1452			if (path_equal(&vma->vm_file->f_path,
1453				       &old_exe_file->f_path)) {
1454				ret = -EBUSY;
1455				break;
1456			}
1457		}
1458		mmap_read_unlock(mm);
1459		fput(old_exe_file);
1460		if (ret)
1461			return ret;
1462	}
1463
1464	ret = deny_write_access(new_exe_file);
1465	if (ret)
1466		return -EACCES;
1467	get_file(new_exe_file);
1468
1469	/* set the new file */
1470	mmap_write_lock(mm);
1471	old_exe_file = rcu_dereference_raw(mm->exe_file);
1472	rcu_assign_pointer(mm->exe_file, new_exe_file);
1473	mmap_write_unlock(mm);
1474
1475	if (old_exe_file) {
1476		allow_write_access(old_exe_file);
1477		fput(old_exe_file);
1478	}
1479	return 0;
1480}
1481
1482/**
1483 * get_mm_exe_file - acquire a reference to the mm's executable file
1484 * @mm: The mm of interest.
1485 *
1486 * Returns %NULL if mm has no associated executable file.
1487 * User must release file via fput().
1488 */
1489struct file *get_mm_exe_file(struct mm_struct *mm)
1490{
1491	struct file *exe_file;
1492
1493	rcu_read_lock();
1494	exe_file = get_file_rcu(&mm->exe_file);
1495	rcu_read_unlock();
 
 
 
 
1496	return exe_file;
1497}
1498
1499/**
1500 * get_task_exe_file - acquire a reference to the task's executable file
1501 * @task: The task.
1502 *
1503 * Returns %NULL if task's mm (if any) has no associated executable file or
1504 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1505 * User must release file via fput().
1506 */
1507struct file *get_task_exe_file(struct task_struct *task)
1508{
1509	struct file *exe_file = NULL;
1510	struct mm_struct *mm;
1511
1512	task_lock(task);
1513	mm = task->mm;
1514	if (mm) {
1515		if (!(task->flags & PF_KTHREAD))
1516			exe_file = get_mm_exe_file(mm);
1517	}
1518	task_unlock(task);
1519	return exe_file;
1520}
1521
1522/**
1523 * get_task_mm - acquire a reference to the task's mm
1524 * @task: The task.
1525 *
1526 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1527 * this kernel workthread has transiently adopted a user mm with use_mm,
1528 * to do its AIO) is not set and if so returns a reference to it, after
1529 * bumping up the use count.  User must release the mm via mmput()
1530 * after use.  Typically used by /proc and ptrace.
1531 */
1532struct mm_struct *get_task_mm(struct task_struct *task)
1533{
1534	struct mm_struct *mm;
1535
1536	task_lock(task);
1537	mm = task->mm;
1538	if (mm) {
1539		if (task->flags & PF_KTHREAD)
1540			mm = NULL;
1541		else
1542			mmget(mm);
1543	}
1544	task_unlock(task);
1545	return mm;
1546}
1547EXPORT_SYMBOL_GPL(get_task_mm);
1548
1549struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1550{
1551	struct mm_struct *mm;
1552	int err;
1553
1554	err =  down_read_killable(&task->signal->exec_update_lock);
1555	if (err)
1556		return ERR_PTR(err);
1557
1558	mm = get_task_mm(task);
1559	if (mm && mm != current->mm &&
1560			!ptrace_may_access(task, mode)) {
1561		mmput(mm);
1562		mm = ERR_PTR(-EACCES);
1563	}
1564	up_read(&task->signal->exec_update_lock);
1565
1566	return mm;
1567}
1568
1569static void complete_vfork_done(struct task_struct *tsk)
1570{
1571	struct completion *vfork;
1572
1573	task_lock(tsk);
1574	vfork = tsk->vfork_done;
1575	if (likely(vfork)) {
1576		tsk->vfork_done = NULL;
1577		complete(vfork);
1578	}
1579	task_unlock(tsk);
1580}
1581
1582static int wait_for_vfork_done(struct task_struct *child,
1583				struct completion *vfork)
1584{
1585	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1586	int killed;
1587
1588	cgroup_enter_frozen();
1589	killed = wait_for_completion_state(vfork, state);
1590	cgroup_leave_frozen(false);
1591
1592	if (killed) {
1593		task_lock(child);
1594		child->vfork_done = NULL;
1595		task_unlock(child);
1596	}
1597
1598	put_task_struct(child);
1599	return killed;
1600}
1601
1602/* Please note the differences between mmput and mm_release.
1603 * mmput is called whenever we stop holding onto a mm_struct,
1604 * error success whatever.
1605 *
1606 * mm_release is called after a mm_struct has been removed
1607 * from the current process.
1608 *
1609 * This difference is important for error handling, when we
1610 * only half set up a mm_struct for a new process and need to restore
1611 * the old one.  Because we mmput the new mm_struct before
1612 * restoring the old one. . .
1613 * Eric Biederman 10 January 1998
1614 */
1615static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1616{
1617	uprobe_free_utask(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618
1619	/* Get rid of any cached register state */
1620	deactivate_mm(tsk, mm);
1621
 
 
 
 
 
 
1622	/*
1623	 * Signal userspace if we're not exiting with a core dump
1624	 * because we want to leave the value intact for debugging
1625	 * purposes.
 
1626	 */
1627	if (tsk->clear_child_tid) {
1628		if (atomic_read(&mm->mm_users) > 1) {
 
1629			/*
1630			 * We don't check the error code - if userspace has
1631			 * not set up a proper pointer then tough luck.
1632			 */
1633			put_user(0, tsk->clear_child_tid);
1634			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1635					1, NULL, NULL, 0, 0);
1636		}
1637		tsk->clear_child_tid = NULL;
1638	}
1639
1640	/*
1641	 * All done, finally we can wake up parent and return this mm to him.
1642	 * Also kthread_stop() uses this completion for synchronization.
1643	 */
1644	if (tsk->vfork_done)
1645		complete_vfork_done(tsk);
1646}
1647
1648void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1649{
1650	futex_exit_release(tsk);
1651	mm_release(tsk, mm);
1652}
1653
1654void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655{
1656	futex_exec_release(tsk);
1657	mm_release(tsk, mm);
1658}
1659
1660/**
1661 * dup_mm() - duplicates an existing mm structure
1662 * @tsk: the task_struct with which the new mm will be associated.
1663 * @oldmm: the mm to duplicate.
1664 *
1665 * Allocates a new mm structure and duplicates the provided @oldmm structure
1666 * content into it.
1667 *
1668 * Return: the duplicated mm or NULL on failure.
1669 */
1670static struct mm_struct *dup_mm(struct task_struct *tsk,
1671				struct mm_struct *oldmm)
1672{
1673	struct mm_struct *mm;
1674	int err;
1675
 
 
 
1676	mm = allocate_mm();
1677	if (!mm)
1678		goto fail_nomem;
1679
1680	memcpy(mm, oldmm, sizeof(*mm));
 
 
 
 
 
 
 
 
 
1681
1682	if (!mm_init(mm, tsk, mm->user_ns))
1683		goto fail_nomem;
1684
 
 
 
 
 
1685	err = dup_mmap(mm, oldmm);
1686	if (err)
1687		goto free_pt;
1688
1689	mm->hiwater_rss = get_mm_rss(mm);
1690	mm->hiwater_vm = mm->total_vm;
1691
1692	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1693		goto free_pt;
1694
1695	return mm;
1696
1697free_pt:
1698	/* don't put binfmt in mmput, we haven't got module yet */
1699	mm->binfmt = NULL;
1700	mm_init_owner(mm, NULL);
1701	mmput(mm);
1702
1703fail_nomem:
1704	return NULL;
 
 
 
 
 
 
 
 
 
1705}
1706
1707static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1708{
1709	struct mm_struct *mm, *oldmm;
 
1710
1711	tsk->min_flt = tsk->maj_flt = 0;
1712	tsk->nvcsw = tsk->nivcsw = 0;
1713#ifdef CONFIG_DETECT_HUNG_TASK
1714	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1715	tsk->last_switch_time = 0;
1716#endif
1717
1718	tsk->mm = NULL;
1719	tsk->active_mm = NULL;
1720
1721	/*
1722	 * Are we cloning a kernel thread?
1723	 *
1724	 * We need to steal a active VM for that..
1725	 */
1726	oldmm = current->mm;
1727	if (!oldmm)
1728		return 0;
1729
1730	if (clone_flags & CLONE_VM) {
1731		mmget(oldmm);
1732		mm = oldmm;
1733	} else {
1734		mm = dup_mm(tsk, current->mm);
1735		if (!mm)
1736			return -ENOMEM;
1737	}
1738
 
 
 
 
 
 
 
 
 
 
 
 
1739	tsk->mm = mm;
1740	tsk->active_mm = mm;
1741	sched_mm_cid_fork(tsk);
1742	return 0;
 
 
 
1743}
1744
1745static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1746{
1747	struct fs_struct *fs = current->fs;
1748	if (clone_flags & CLONE_FS) {
1749		/* tsk->fs is already what we want */
1750		spin_lock(&fs->lock);
1751		/* "users" and "in_exec" locked for check_unsafe_exec() */
1752		if (fs->in_exec) {
1753			spin_unlock(&fs->lock);
1754			return -EAGAIN;
1755		}
1756		fs->users++;
1757		spin_unlock(&fs->lock);
1758		return 0;
1759	}
1760	tsk->fs = copy_fs_struct(fs);
1761	if (!tsk->fs)
1762		return -ENOMEM;
1763	return 0;
1764}
1765
1766static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1767		      int no_files)
1768{
1769	struct files_struct *oldf, *newf;
1770	int error = 0;
1771
1772	/*
1773	 * A background process may not have any files ...
1774	 */
1775	oldf = current->files;
1776	if (!oldf)
1777		goto out;
1778
1779	if (no_files) {
1780		tsk->files = NULL;
1781		goto out;
1782	}
1783
1784	if (clone_flags & CLONE_FILES) {
1785		atomic_inc(&oldf->count);
1786		goto out;
1787	}
1788
1789	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1790	if (!newf)
1791		goto out;
1792
1793	tsk->files = newf;
1794	error = 0;
1795out:
1796	return error;
1797}
1798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1800{
1801	struct sighand_struct *sig;
1802
1803	if (clone_flags & CLONE_SIGHAND) {
1804		refcount_inc(&current->sighand->count);
1805		return 0;
1806	}
1807	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1808	RCU_INIT_POINTER(tsk->sighand, sig);
1809	if (!sig)
1810		return -ENOMEM;
1811
1812	refcount_set(&sig->count, 1);
1813	spin_lock_irq(&current->sighand->siglock);
1814	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1815	spin_unlock_irq(&current->sighand->siglock);
1816
1817	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1818	if (clone_flags & CLONE_CLEAR_SIGHAND)
1819		flush_signal_handlers(tsk, 0);
1820
1821	return 0;
1822}
1823
1824void __cleanup_sighand(struct sighand_struct *sighand)
1825{
1826	if (refcount_dec_and_test(&sighand->count)) {
1827		signalfd_cleanup(sighand);
1828		/*
1829		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1830		 * without an RCU grace period, see __lock_task_sighand().
1831		 */
1832		kmem_cache_free(sighand_cachep, sighand);
1833	}
1834}
1835
 
1836/*
1837 * Initialize POSIX timer handling for a thread group.
1838 */
1839static void posix_cpu_timers_init_group(struct signal_struct *sig)
1840{
1841	struct posix_cputimers *pct = &sig->posix_cputimers;
1842	unsigned long cpu_limit;
1843
1844	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1845	posix_cputimers_group_init(pct, cpu_limit);
 
 
 
 
 
 
 
 
 
 
 
1846}
1847
1848static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1849{
1850	struct signal_struct *sig;
1851
1852	if (clone_flags & CLONE_THREAD)
1853		return 0;
1854
1855	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1856	tsk->signal = sig;
1857	if (!sig)
1858		return -ENOMEM;
1859
1860	sig->nr_threads = 1;
1861	sig->quick_threads = 1;
1862	atomic_set(&sig->live, 1);
1863	refcount_set(&sig->sigcnt, 1);
1864
1865	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1866	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1867	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1868
1869	init_waitqueue_head(&sig->wait_chldexit);
 
 
1870	sig->curr_target = tsk;
1871	init_sigpending(&sig->shared_pending);
1872	INIT_HLIST_HEAD(&sig->multiprocess);
1873	seqlock_init(&sig->stats_lock);
1874	prev_cputime_init(&sig->prev_cputime);
1875
1876#ifdef CONFIG_POSIX_TIMERS
1877	INIT_LIST_HEAD(&sig->posix_timers);
 
1878	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1879	sig->real_timer.function = it_real_fn;
1880#endif
1881
1882	task_lock(current->group_leader);
1883	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1884	task_unlock(current->group_leader);
1885
1886	posix_cpu_timers_init_group(sig);
1887
1888	tty_audit_fork(sig);
1889	sched_autogroup_fork(sig);
1890
 
 
 
 
 
1891	sig->oom_score_adj = current->signal->oom_score_adj;
1892	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1893
1894	mutex_init(&sig->cred_guard_mutex);
1895	init_rwsem(&sig->exec_update_lock);
1896
1897	return 0;
1898}
1899
1900static void copy_seccomp(struct task_struct *p)
1901{
1902#ifdef CONFIG_SECCOMP
1903	/*
1904	 * Must be called with sighand->lock held, which is common to
1905	 * all threads in the group. Holding cred_guard_mutex is not
1906	 * needed because this new task is not yet running and cannot
1907	 * be racing exec.
1908	 */
1909	assert_spin_locked(&current->sighand->siglock);
1910
1911	/* Ref-count the new filter user, and assign it. */
1912	get_seccomp_filter(current);
1913	p->seccomp = current->seccomp;
1914
1915	/*
1916	 * Explicitly enable no_new_privs here in case it got set
1917	 * between the task_struct being duplicated and holding the
1918	 * sighand lock. The seccomp state and nnp must be in sync.
1919	 */
1920	if (task_no_new_privs(current))
1921		task_set_no_new_privs(p);
1922
1923	/*
1924	 * If the parent gained a seccomp mode after copying thread
1925	 * flags and between before we held the sighand lock, we have
1926	 * to manually enable the seccomp thread flag here.
1927	 */
1928	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1929		set_task_syscall_work(p, SECCOMP);
1930#endif
1931}
1932
1933SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1934{
1935	current->clear_child_tid = tidptr;
1936
1937	return task_pid_vnr(current);
1938}
1939
1940static void rt_mutex_init_task(struct task_struct *p)
1941{
1942	raw_spin_lock_init(&p->pi_lock);
1943#ifdef CONFIG_RT_MUTEXES
1944	p->pi_waiters = RB_ROOT_CACHED;
1945	p->pi_top_task = NULL;
1946	p->pi_blocked_on = NULL;
1947#endif
1948}
1949
1950static inline void init_task_pid_links(struct task_struct *task)
 
1951{
1952	enum pid_type type;
1953
1954	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1955		INIT_HLIST_NODE(&task->pid_links[type]);
1956}
1957
1958static inline void
1959init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1960{
1961	if (type == PIDTYPE_PID)
1962		task->thread_pid = pid;
1963	else
1964		task->signal->pids[type] = pid;
1965}
1966
1967static inline void rcu_copy_process(struct task_struct *p)
1968{
1969#ifdef CONFIG_PREEMPT_RCU
1970	p->rcu_read_lock_nesting = 0;
1971	p->rcu_read_unlock_special.s = 0;
1972	p->rcu_blocked_node = NULL;
1973	INIT_LIST_HEAD(&p->rcu_node_entry);
1974#endif /* #ifdef CONFIG_PREEMPT_RCU */
1975#ifdef CONFIG_TASKS_RCU
1976	p->rcu_tasks_holdout = false;
1977	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1978	p->rcu_tasks_idle_cpu = -1;
1979#endif /* #ifdef CONFIG_TASKS_RCU */
1980#ifdef CONFIG_TASKS_TRACE_RCU
1981	p->trc_reader_nesting = 0;
1982	p->trc_reader_special.s = 0;
1983	INIT_LIST_HEAD(&p->trc_holdout_list);
1984	INIT_LIST_HEAD(&p->trc_blkd_node);
1985#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1986}
1987
1988struct pid *pidfd_pid(const struct file *file)
1989{
1990	if (file->f_op == &pidfd_fops)
1991		return file->private_data;
1992
1993	return ERR_PTR(-EBADF);
1994}
1995
1996static int pidfd_release(struct inode *inode, struct file *file)
1997{
1998	struct pid *pid = file->private_data;
1999
2000	file->private_data = NULL;
2001	put_pid(pid);
2002	return 0;
2003}
2004
2005#ifdef CONFIG_PROC_FS
2006/**
2007 * pidfd_show_fdinfo - print information about a pidfd
2008 * @m: proc fdinfo file
2009 * @f: file referencing a pidfd
2010 *
2011 * Pid:
2012 * This function will print the pid that a given pidfd refers to in the
2013 * pid namespace of the procfs instance.
2014 * If the pid namespace of the process is not a descendant of the pid
2015 * namespace of the procfs instance 0 will be shown as its pid. This is
2016 * similar to calling getppid() on a process whose parent is outside of
2017 * its pid namespace.
2018 *
2019 * NSpid:
2020 * If pid namespaces are supported then this function will also print
2021 * the pid of a given pidfd refers to for all descendant pid namespaces
2022 * starting from the current pid namespace of the instance, i.e. the
2023 * Pid field and the first entry in the NSpid field will be identical.
2024 * If the pid namespace of the process is not a descendant of the pid
2025 * namespace of the procfs instance 0 will be shown as its first NSpid
2026 * entry and no others will be shown.
2027 * Note that this differs from the Pid and NSpid fields in
2028 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2029 * the  pid namespace of the procfs instance. The difference becomes
2030 * obvious when sending around a pidfd between pid namespaces from a
2031 * different branch of the tree, i.e. where no ancestral relation is
2032 * present between the pid namespaces:
2033 * - create two new pid namespaces ns1 and ns2 in the initial pid
2034 *   namespace (also take care to create new mount namespaces in the
2035 *   new pid namespace and mount procfs)
2036 * - create a process with a pidfd in ns1
2037 * - send pidfd from ns1 to ns2
2038 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2039 *   have exactly one entry, which is 0
2040 */
2041static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2042{
2043	struct pid *pid = f->private_data;
2044	struct pid_namespace *ns;
2045	pid_t nr = -1;
2046
2047	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2048		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2049		nr = pid_nr_ns(pid, ns);
2050	}
2051
2052	seq_put_decimal_ll(m, "Pid:\t", nr);
2053
2054#ifdef CONFIG_PID_NS
2055	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2056	if (nr > 0) {
2057		int i;
2058
2059		/* If nr is non-zero it means that 'pid' is valid and that
2060		 * ns, i.e. the pid namespace associated with the procfs
2061		 * instance, is in the pid namespace hierarchy of pid.
2062		 * Start at one below the already printed level.
2063		 */
2064		for (i = ns->level + 1; i <= pid->level; i++)
2065			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2066	}
2067#endif
2068	seq_putc(m, '\n');
2069}
2070#endif
2071
2072/*
2073 * Poll support for process exit notification.
2074 */
2075static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2076{
2077	struct pid *pid = file->private_data;
2078	__poll_t poll_flags = 0;
2079
2080	poll_wait(file, &pid->wait_pidfd, pts);
2081
2082	/*
2083	 * Inform pollers only when the whole thread group exits.
2084	 * If the thread group leader exits before all other threads in the
2085	 * group, then poll(2) should block, similar to the wait(2) family.
2086	 */
2087	if (thread_group_exited(pid))
2088		poll_flags = EPOLLIN | EPOLLRDNORM;
2089
2090	return poll_flags;
2091}
2092
2093const struct file_operations pidfd_fops = {
2094	.release = pidfd_release,
2095	.poll = pidfd_poll,
2096#ifdef CONFIG_PROC_FS
2097	.show_fdinfo = pidfd_show_fdinfo,
2098#endif
2099};
2100
2101/**
2102 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2103 * @pid:   the struct pid for which to create a pidfd
2104 * @flags: flags of the new @pidfd
2105 * @ret: Where to return the file for the pidfd.
2106 *
2107 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2108 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2109 *
2110 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2111 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2112 * pidfd file are prepared.
2113 *
2114 * If this function returns successfully the caller is responsible to either
2115 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2116 * order to install the pidfd into its file descriptor table or they must use
2117 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2118 * respectively.
2119 *
2120 * This function is useful when a pidfd must already be reserved but there
2121 * might still be points of failure afterwards and the caller wants to ensure
2122 * that no pidfd is leaked into its file descriptor table.
2123 *
2124 * Return: On success, a reserved pidfd is returned from the function and a new
2125 *         pidfd file is returned in the last argument to the function. On
2126 *         error, a negative error code is returned from the function and the
2127 *         last argument remains unchanged.
2128 */
2129static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2130{
2131	int pidfd;
2132	struct file *pidfd_file;
2133
2134	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2135		return -EINVAL;
2136
2137	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2138	if (pidfd < 0)
2139		return pidfd;
2140
2141	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2142					flags | O_RDWR | O_CLOEXEC);
2143	if (IS_ERR(pidfd_file)) {
2144		put_unused_fd(pidfd);
2145		return PTR_ERR(pidfd_file);
2146	}
2147	get_pid(pid); /* held by pidfd_file now */
2148	*ret = pidfd_file;
2149	return pidfd;
2150}
2151
2152/**
2153 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2154 * @pid:   the struct pid for which to create a pidfd
2155 * @flags: flags of the new @pidfd
2156 * @ret: Where to return the pidfd.
2157 *
2158 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2159 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2160 *
2161 * The helper verifies that @pid is used as a thread group leader.
2162 *
2163 * If this function returns successfully the caller is responsible to either
2164 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2165 * order to install the pidfd into its file descriptor table or they must use
2166 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2167 * respectively.
2168 *
2169 * This function is useful when a pidfd must already be reserved but there
2170 * might still be points of failure afterwards and the caller wants to ensure
2171 * that no pidfd is leaked into its file descriptor table.
2172 *
2173 * Return: On success, a reserved pidfd is returned from the function and a new
2174 *         pidfd file is returned in the last argument to the function. On
2175 *         error, a negative error code is returned from the function and the
2176 *         last argument remains unchanged.
2177 */
2178int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2179{
2180	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2181		return -EINVAL;
2182
2183	return __pidfd_prepare(pid, flags, ret);
2184}
2185
2186static void __delayed_free_task(struct rcu_head *rhp)
2187{
2188	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2189
2190	free_task(tsk);
2191}
2192
2193static __always_inline void delayed_free_task(struct task_struct *tsk)
2194{
2195	if (IS_ENABLED(CONFIG_MEMCG))
2196		call_rcu(&tsk->rcu, __delayed_free_task);
2197	else
2198		free_task(tsk);
2199}
2200
2201static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2202{
2203	/* Skip if kernel thread */
2204	if (!tsk->mm)
2205		return;
2206
2207	/* Skip if spawning a thread or using vfork */
2208	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2209		return;
2210
2211	/* We need to synchronize with __set_oom_adj */
2212	mutex_lock(&oom_adj_mutex);
2213	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2214	/* Update the values in case they were changed after copy_signal */
2215	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2216	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2217	mutex_unlock(&oom_adj_mutex);
2218}
2219
2220#ifdef CONFIG_RV
2221static void rv_task_fork(struct task_struct *p)
2222{
2223	int i;
2224
2225	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2226		p->rv[i].da_mon.monitoring = false;
2227}
2228#else
2229#define rv_task_fork(p) do {} while (0)
2230#endif
2231
2232/*
2233 * This creates a new process as a copy of the old one,
2234 * but does not actually start it yet.
2235 *
2236 * It copies the registers, and all the appropriate
2237 * parts of the process environment (as per the clone
2238 * flags). The actual kick-off is left to the caller.
2239 */
2240__latent_entropy struct task_struct *copy_process(
 
 
 
 
2241					struct pid *pid,
2242					int trace,
2243					int node,
2244					struct kernel_clone_args *args)
2245{
2246	int pidfd = -1, retval;
2247	struct task_struct *p;
2248	struct multiprocess_signals delayed;
2249	struct file *pidfile = NULL;
2250	const u64 clone_flags = args->flags;
2251	struct nsproxy *nsp = current->nsproxy;
2252
2253	/*
2254	 * Don't allow sharing the root directory with processes in a different
2255	 * namespace
2256	 */
2257	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2258		return ERR_PTR(-EINVAL);
2259
2260	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2261		return ERR_PTR(-EINVAL);
2262
2263	/*
2264	 * Thread groups must share signals as well, and detached threads
2265	 * can only be started up within the thread group.
2266	 */
2267	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2268		return ERR_PTR(-EINVAL);
2269
2270	/*
2271	 * Shared signal handlers imply shared VM. By way of the above,
2272	 * thread groups also imply shared VM. Blocking this case allows
2273	 * for various simplifications in other code.
2274	 */
2275	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2276		return ERR_PTR(-EINVAL);
2277
2278	/*
2279	 * Siblings of global init remain as zombies on exit since they are
2280	 * not reaped by their parent (swapper). To solve this and to avoid
2281	 * multi-rooted process trees, prevent global and container-inits
2282	 * from creating siblings.
2283	 */
2284	if ((clone_flags & CLONE_PARENT) &&
2285				current->signal->flags & SIGNAL_UNKILLABLE)
2286		return ERR_PTR(-EINVAL);
2287
2288	/*
2289	 * If the new process will be in a different pid or user namespace
2290	 * do not allow it to share a thread group with the forking task.
2291	 */
2292	if (clone_flags & CLONE_THREAD) {
2293		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2294		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2295			return ERR_PTR(-EINVAL);
2296	}
2297
2298	if (clone_flags & CLONE_PIDFD) {
2299		/*
2300		 * - CLONE_DETACHED is blocked so that we can potentially
2301		 *   reuse it later for CLONE_PIDFD.
2302		 * - CLONE_THREAD is blocked until someone really needs it.
2303		 */
2304		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2305			return ERR_PTR(-EINVAL);
2306	}
2307
2308	/*
2309	 * Force any signals received before this point to be delivered
2310	 * before the fork happens.  Collect up signals sent to multiple
2311	 * processes that happen during the fork and delay them so that
2312	 * they appear to happen after the fork.
2313	 */
2314	sigemptyset(&delayed.signal);
2315	INIT_HLIST_NODE(&delayed.node);
2316
2317	spin_lock_irq(&current->sighand->siglock);
2318	if (!(clone_flags & CLONE_THREAD))
2319		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2320	recalc_sigpending();
2321	spin_unlock_irq(&current->sighand->siglock);
2322	retval = -ERESTARTNOINTR;
2323	if (task_sigpending(current))
2324		goto fork_out;
2325
2326	retval = -ENOMEM;
2327	p = dup_task_struct(current, node);
2328	if (!p)
2329		goto fork_out;
2330	p->flags &= ~PF_KTHREAD;
2331	if (args->kthread)
2332		p->flags |= PF_KTHREAD;
2333	if (args->user_worker) {
2334		/*
2335		 * Mark us a user worker, and block any signal that isn't
2336		 * fatal or STOP
2337		 */
2338		p->flags |= PF_USER_WORKER;
2339		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2340	}
2341	if (args->io_thread)
2342		p->flags |= PF_IO_WORKER;
2343
2344	if (args->name)
2345		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2346
2347	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2348	/*
2349	 * Clear TID on mm_release()?
2350	 */
2351	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2352
2353	ftrace_graph_init_task(p);
2354
2355	rt_mutex_init_task(p);
2356
2357	lockdep_assert_irqs_enabled();
2358#ifdef CONFIG_PROVE_LOCKING
 
2359	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2360#endif
2361	retval = copy_creds(p, clone_flags);
2362	if (retval < 0)
2363		goto bad_fork_free;
2364
2365	retval = -EAGAIN;
2366	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2367		if (p->real_cred->user != INIT_USER &&
2368		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2369			goto bad_fork_cleanup_count;
 
2370	}
2371	current->flags &= ~PF_NPROC_EXCEEDED;
2372
 
 
 
 
2373	/*
2374	 * If multiple threads are within copy_process(), then this check
2375	 * triggers too late. This doesn't hurt, the check is only there
2376	 * to stop root fork bombs.
2377	 */
2378	retval = -EAGAIN;
2379	if (data_race(nr_threads >= max_threads))
 
 
 
2380		goto bad_fork_cleanup_count;
2381
 
2382	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2383	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2384	p->flags |= PF_FORKNOEXEC;
2385	INIT_LIST_HEAD(&p->children);
2386	INIT_LIST_HEAD(&p->sibling);
2387	rcu_copy_process(p);
2388	p->vfork_done = NULL;
2389	spin_lock_init(&p->alloc_lock);
2390
2391	init_sigpending(&p->pending);
2392
2393	p->utime = p->stime = p->gtime = 0;
2394#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2395	p->utimescaled = p->stimescaled = 0;
 
 
 
 
 
2396#endif
2397	prev_cputime_init(&p->prev_cputime);
2398
2399#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2400	seqcount_init(&p->vtime.seqcount);
2401	p->vtime.starttime = 0;
2402	p->vtime.state = VTIME_INACTIVE;
2403#endif
2404
2405#ifdef CONFIG_IO_URING
2406	p->io_uring = NULL;
2407#endif
2408
2409	p->default_timer_slack_ns = current->timer_slack_ns;
2410
2411#ifdef CONFIG_PSI
2412	p->psi_flags = 0;
2413#endif
2414
2415	task_io_accounting_init(&p->ioac);
2416	acct_clear_integrals(p);
2417
2418	posix_cputimers_init(&p->posix_cputimers);
2419
 
 
 
2420	p->io_context = NULL;
2421	audit_set_context(p, NULL);
 
 
2422	cgroup_fork(p);
2423	if (args->kthread) {
2424		if (!set_kthread_struct(p))
2425			goto bad_fork_cleanup_delayacct;
2426	}
2427#ifdef CONFIG_NUMA
2428	p->mempolicy = mpol_dup(p->mempolicy);
2429	if (IS_ERR(p->mempolicy)) {
2430		retval = PTR_ERR(p->mempolicy);
2431		p->mempolicy = NULL;
2432		goto bad_fork_cleanup_delayacct;
2433	}
 
2434#endif
2435#ifdef CONFIG_CPUSETS
2436	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2437	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2438	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2439#endif
2440#ifdef CONFIG_TRACE_IRQFLAGS
2441	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2442	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2443	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2444	p->softirqs_enabled		= 1;
2445	p->softirq_context		= 0;
 
 
 
 
 
 
 
 
 
 
 
 
2446#endif
2447
2448	p->pagefault_disabled = 0;
2449
2450#ifdef CONFIG_LOCKDEP
2451	lockdep_init_task(p);
 
 
2452#endif
2453
2454#ifdef CONFIG_DEBUG_MUTEXES
2455	p->blocked_on = NULL; /* not blocked yet */
2456#endif
2457#ifdef CONFIG_BCACHE
2458	p->sequential_io	= 0;
2459	p->sequential_io_avg	= 0;
2460#endif
2461#ifdef CONFIG_BPF_SYSCALL
2462	RCU_INIT_POINTER(p->bpf_storage, NULL);
2463	p->bpf_ctx = NULL;
2464#endif
2465
2466	/* Perform scheduler related setup. Assign this task to a CPU. */
2467	retval = sched_fork(clone_flags, p);
2468	if (retval)
2469		goto bad_fork_cleanup_policy;
2470
2471	retval = perf_event_init_task(p, clone_flags);
2472	if (retval)
2473		goto bad_fork_cleanup_policy;
2474	retval = audit_alloc(p);
2475	if (retval)
2476		goto bad_fork_cleanup_perf;
2477	/* copy all the process information */
2478	shm_init_task(p);
2479	retval = security_task_alloc(p, clone_flags);
2480	if (retval)
2481		goto bad_fork_cleanup_audit;
2482	retval = copy_semundo(clone_flags, p);
2483	if (retval)
2484		goto bad_fork_cleanup_security;
2485	retval = copy_files(clone_flags, p, args->no_files);
2486	if (retval)
2487		goto bad_fork_cleanup_semundo;
2488	retval = copy_fs(clone_flags, p);
2489	if (retval)
2490		goto bad_fork_cleanup_files;
2491	retval = copy_sighand(clone_flags, p);
2492	if (retval)
2493		goto bad_fork_cleanup_fs;
2494	retval = copy_signal(clone_flags, p);
2495	if (retval)
2496		goto bad_fork_cleanup_sighand;
2497	retval = copy_mm(clone_flags, p);
2498	if (retval)
2499		goto bad_fork_cleanup_signal;
2500	retval = copy_namespaces(clone_flags, p);
2501	if (retval)
2502		goto bad_fork_cleanup_mm;
2503	retval = copy_io(clone_flags, p);
2504	if (retval)
2505		goto bad_fork_cleanup_namespaces;
2506	retval = copy_thread(p, args);
2507	if (retval)
2508		goto bad_fork_cleanup_io;
2509
2510	stackleak_task_init(p);
2511
2512	if (pid != &init_struct_pid) {
2513		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2514				args->set_tid_size);
2515		if (IS_ERR(pid)) {
2516			retval = PTR_ERR(pid);
2517			goto bad_fork_cleanup_thread;
2518		}
2519	}
2520
2521	/*
2522	 * This has to happen after we've potentially unshared the file
2523	 * descriptor table (so that the pidfd doesn't leak into the child
2524	 * if the fd table isn't shared).
2525	 */
2526	if (clone_flags & CLONE_PIDFD) {
2527		/* Note that no task has been attached to @pid yet. */
2528		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2529		if (retval < 0)
2530			goto bad_fork_free_pid;
2531		pidfd = retval;
2532
2533		retval = put_user(pidfd, args->pidfd);
2534		if (retval)
2535			goto bad_fork_put_pidfd;
2536	}
2537
 
 
 
 
 
2538#ifdef CONFIG_BLOCK
2539	p->plug = NULL;
2540#endif
2541	futex_init_task(p);
2542
 
 
 
 
 
 
2543	/*
2544	 * sigaltstack should be cleared when sharing the same VM
2545	 */
2546	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2547		sas_ss_reset(p);
2548
2549	/*
2550	 * Syscall tracing and stepping should be turned off in the
2551	 * child regardless of CLONE_PTRACE.
2552	 */
2553	user_disable_single_step(p);
2554	clear_task_syscall_work(p, SYSCALL_TRACE);
2555#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2556	clear_task_syscall_work(p, SYSCALL_EMU);
2557#endif
2558	clear_tsk_latency_tracing(p);
2559
2560	/* ok, now we should be set up.. */
2561	p->pid = pid_nr(pid);
2562	if (clone_flags & CLONE_THREAD) {
2563		p->group_leader = current->group_leader;
2564		p->tgid = current->tgid;
2565	} else {
2566		p->group_leader = p;
2567		p->tgid = p->pid;
2568	}
2569
2570	p->nr_dirtied = 0;
2571	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2572	p->dirty_paused_when = 0;
2573
2574	p->pdeath_signal = 0;
2575	p->task_works = NULL;
2576	clear_posix_cputimers_work(p);
2577
2578#ifdef CONFIG_KRETPROBES
2579	p->kretprobe_instances.first = NULL;
2580#endif
2581#ifdef CONFIG_RETHOOK
2582	p->rethooks.first = NULL;
2583#endif
2584
2585	/*
2586	 * Ensure that the cgroup subsystem policies allow the new process to be
2587	 * forked. It should be noted that the new process's css_set can be changed
2588	 * between here and cgroup_post_fork() if an organisation operation is in
2589	 * progress.
2590	 */
2591	retval = cgroup_can_fork(p, args);
2592	if (retval)
2593		goto bad_fork_put_pidfd;
2594
2595	/*
2596	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2597	 * the new task on the correct runqueue. All this *before* the task
2598	 * becomes visible.
2599	 *
2600	 * This isn't part of ->can_fork() because while the re-cloning is
2601	 * cgroup specific, it unconditionally needs to place the task on a
2602	 * runqueue.
2603	 */
2604	sched_cgroup_fork(p, args);
2605
2606	/*
2607	 * From this point on we must avoid any synchronous user-space
2608	 * communication until we take the tasklist-lock. In particular, we do
2609	 * not want user-space to be able to predict the process start-time by
2610	 * stalling fork(2) after we recorded the start_time but before it is
2611	 * visible to the system.
2612	 */
2613
2614	p->start_time = ktime_get_ns();
2615	p->start_boottime = ktime_get_boottime_ns();
2616
2617	/*
2618	 * Make it visible to the rest of the system, but dont wake it up yet.
2619	 * Need tasklist lock for parent etc handling!
2620	 */
2621	write_lock_irq(&tasklist_lock);
2622
2623	/* CLONE_PARENT re-uses the old parent */
2624	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2625		p->real_parent = current->real_parent;
2626		p->parent_exec_id = current->parent_exec_id;
2627		if (clone_flags & CLONE_THREAD)
2628			p->exit_signal = -1;
2629		else
2630			p->exit_signal = current->group_leader->exit_signal;
2631	} else {
2632		p->real_parent = current;
2633		p->parent_exec_id = current->self_exec_id;
2634		p->exit_signal = args->exit_signal;
2635	}
2636
2637	klp_copy_process(p);
2638
2639	sched_core_fork(p);
2640
2641	spin_lock(&current->sighand->siglock);
2642
2643	rv_task_fork(p);
2644
2645	rseq_fork(p, clone_flags);
2646
2647	/* Don't start children in a dying pid namespace */
2648	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2649		retval = -ENOMEM;
2650		goto bad_fork_cancel_cgroup;
 
 
 
 
 
 
2651	}
2652
2653	/* Let kill terminate clone/fork in the middle */
2654	if (fatal_signal_pending(current)) {
2655		retval = -EINTR;
2656		goto bad_fork_cancel_cgroup;
 
 
2657	}
2658
2659	/* No more failure paths after this point. */
2660
2661	/*
2662	 * Copy seccomp details explicitly here, in case they were changed
2663	 * before holding sighand lock.
2664	 */
2665	copy_seccomp(p);
2666
2667	init_task_pid_links(p);
2668	if (likely(p->pid)) {
2669		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2670
2671		init_task_pid(p, PIDTYPE_PID, pid);
2672		if (thread_group_leader(p)) {
2673			init_task_pid(p, PIDTYPE_TGID, pid);
2674			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2675			init_task_pid(p, PIDTYPE_SID, task_session(current));
2676
2677			if (is_child_reaper(pid)) {
2678				ns_of_pid(pid)->child_reaper = p;
2679				p->signal->flags |= SIGNAL_UNKILLABLE;
2680			}
2681			p->signal->shared_pending.signal = delayed.signal;
2682			p->signal->tty = tty_kref_get(current->signal->tty);
2683			/*
2684			 * Inherit has_child_subreaper flag under the same
2685			 * tasklist_lock with adding child to the process tree
2686			 * for propagate_has_child_subreaper optimization.
2687			 */
2688			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2689							 p->real_parent->signal->is_child_subreaper;
2690			list_add_tail(&p->sibling, &p->real_parent->children);
2691			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2692			attach_pid(p, PIDTYPE_TGID);
2693			attach_pid(p, PIDTYPE_PGID);
2694			attach_pid(p, PIDTYPE_SID);
2695			__this_cpu_inc(process_counts);
2696		} else {
2697			current->signal->nr_threads++;
2698			current->signal->quick_threads++;
2699			atomic_inc(&current->signal->live);
2700			refcount_inc(&current->signal->sigcnt);
2701			task_join_group_stop(p);
2702			list_add_tail_rcu(&p->thread_node,
2703					  &p->signal->thread_head);
2704		}
2705		attach_pid(p, PIDTYPE_PID);
2706		nr_threads++;
2707	}
 
2708	total_forks++;
2709	hlist_del_init(&delayed.node);
2710	spin_unlock(&current->sighand->siglock);
2711	syscall_tracepoint_update(p);
2712	write_unlock_irq(&tasklist_lock);
2713
2714	if (pidfile)
2715		fd_install(pidfd, pidfile);
2716
2717	proc_fork_connector(p);
2718	sched_post_fork(p);
2719	cgroup_post_fork(p, args);
 
2720	perf_event_fork(p);
2721
2722	trace_task_newtask(p, clone_flags);
2723	uprobe_copy_process(p, clone_flags);
2724	user_events_fork(p, clone_flags);
2725
2726	copy_oom_score_adj(clone_flags, p);
2727
2728	return p;
2729
2730bad_fork_cancel_cgroup:
2731	sched_core_free(p);
2732	spin_unlock(&current->sighand->siglock);
2733	write_unlock_irq(&tasklist_lock);
2734	cgroup_cancel_fork(p, args);
2735bad_fork_put_pidfd:
2736	if (clone_flags & CLONE_PIDFD) {
2737		fput(pidfile);
2738		put_unused_fd(pidfd);
2739	}
2740bad_fork_free_pid:
2741	if (pid != &init_struct_pid)
2742		free_pid(pid);
2743bad_fork_cleanup_thread:
2744	exit_thread(p);
2745bad_fork_cleanup_io:
2746	if (p->io_context)
2747		exit_io_context(p);
2748bad_fork_cleanup_namespaces:
2749	exit_task_namespaces(p);
2750bad_fork_cleanup_mm:
2751	if (p->mm) {
2752		mm_clear_owner(p->mm, p);
 
 
 
2753		mmput(p->mm);
2754	}
2755bad_fork_cleanup_signal:
2756	if (!(clone_flags & CLONE_THREAD))
2757		free_signal_struct(p->signal);
2758bad_fork_cleanup_sighand:
2759	__cleanup_sighand(p->sighand);
2760bad_fork_cleanup_fs:
2761	exit_fs(p); /* blocking */
2762bad_fork_cleanup_files:
2763	exit_files(p); /* blocking */
2764bad_fork_cleanup_semundo:
2765	exit_sem(p);
2766bad_fork_cleanup_security:
2767	security_task_free(p);
2768bad_fork_cleanup_audit:
2769	audit_free(p);
2770bad_fork_cleanup_perf:
2771	perf_event_free_task(p);
2772bad_fork_cleanup_policy:
2773	lockdep_free_task(p);
2774#ifdef CONFIG_NUMA
2775	mpol_put(p->mempolicy);
 
2776#endif
2777bad_fork_cleanup_delayacct:
 
 
2778	delayacct_tsk_free(p);
 
2779bad_fork_cleanup_count:
2780	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2781	exit_creds(p);
2782bad_fork_free:
2783	WRITE_ONCE(p->__state, TASK_DEAD);
2784	exit_task_stack_account(p);
2785	put_task_stack(p);
2786	delayed_free_task(p);
2787fork_out:
2788	spin_lock_irq(&current->sighand->siglock);
2789	hlist_del_init(&delayed.node);
2790	spin_unlock_irq(&current->sighand->siglock);
2791	return ERR_PTR(retval);
2792}
2793
2794static inline void init_idle_pids(struct task_struct *idle)
 
 
 
 
 
 
2795{
2796	enum pid_type type;
2797
2798	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2799		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2800		init_task_pid(idle, type, &init_struct_pid);
2801	}
2802}
2803
2804static int idle_dummy(void *dummy)
2805{
2806	/* This function is never called */
2807	return 0;
2808}
2809
2810struct task_struct * __init fork_idle(int cpu)
2811{
2812	struct task_struct *task;
2813	struct kernel_clone_args args = {
2814		.flags		= CLONE_VM,
2815		.fn		= &idle_dummy,
2816		.fn_arg		= NULL,
2817		.kthread	= 1,
2818		.idle		= 1,
2819	};
2820
2821	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
 
2822	if (!IS_ERR(task)) {
2823		init_idle_pids(task);
2824		init_idle(task, cpu);
2825	}
2826
2827	return task;
2828}
2829
2830/*
2831 * This is like kernel_clone(), but shaved down and tailored to just
2832 * creating io_uring workers. It returns a created task, or an error pointer.
2833 * The returned task is inactive, and the caller must fire it up through
2834 * wake_up_new_task(p). All signals are blocked in the created task.
2835 */
2836struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2837{
2838	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2839				CLONE_IO;
2840	struct kernel_clone_args args = {
2841		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2842				    CLONE_UNTRACED) & ~CSIGNAL),
2843		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2844		.fn		= fn,
2845		.fn_arg		= arg,
2846		.io_thread	= 1,
2847		.user_worker	= 1,
2848	};
2849
2850	return copy_process(NULL, 0, node, &args);
2851}
2852
2853/*
2854 *  Ok, this is the main fork-routine.
2855 *
2856 * It copies the process, and if successful kick-starts
2857 * it and waits for it to finish using the VM if required.
2858 *
2859 * args->exit_signal is expected to be checked for sanity by the caller.
2860 */
2861pid_t kernel_clone(struct kernel_clone_args *args)
 
 
 
 
 
2862{
2863	u64 clone_flags = args->flags;
2864	struct completion vfork;
2865	struct pid *pid;
2866	struct task_struct *p;
2867	int trace = 0;
2868	pid_t nr;
2869
2870	/*
2871	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2872	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2873	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2874	 * field in struct clone_args and it still doesn't make sense to have
2875	 * them both point at the same memory location. Performing this check
2876	 * here has the advantage that we don't need to have a separate helper
2877	 * to check for legacy clone().
2878	 */
2879	if ((args->flags & CLONE_PIDFD) &&
2880	    (args->flags & CLONE_PARENT_SETTID) &&
2881	    (args->pidfd == args->parent_tid))
2882		return -EINVAL;
 
2883
2884	/*
2885	 * Determine whether and which event to report to ptracer.  When
2886	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2887	 * requested, no event is reported; otherwise, report if the event
2888	 * for the type of forking is enabled.
2889	 */
2890	if (!(clone_flags & CLONE_UNTRACED)) {
2891		if (clone_flags & CLONE_VFORK)
2892			trace = PTRACE_EVENT_VFORK;
2893		else if (args->exit_signal != SIGCHLD)
2894			trace = PTRACE_EVENT_CLONE;
2895		else
2896			trace = PTRACE_EVENT_FORK;
2897
2898		if (likely(!ptrace_event_enabled(current, trace)))
2899			trace = 0;
2900	}
2901
2902	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2903	add_latent_entropy();
2904
2905	if (IS_ERR(p))
2906		return PTR_ERR(p);
2907
2908	/*
2909	 * Do this prior waking up the new thread - the thread pointer
2910	 * might get invalid after that point, if the thread exits quickly.
2911	 */
2912	trace_sched_process_fork(current, p);
2913
2914	pid = get_task_pid(p, PIDTYPE_PID);
2915	nr = pid_vnr(pid);
2916
2917	if (clone_flags & CLONE_PARENT_SETTID)
2918		put_user(nr, args->parent_tid);
2919
2920	if (clone_flags & CLONE_VFORK) {
2921		p->vfork_done = &vfork;
2922		init_completion(&vfork);
2923		get_task_struct(p);
2924	}
2925
2926	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2927		/* lock the task to synchronize with memcg migration */
2928		task_lock(p);
2929		lru_gen_add_mm(p->mm);
2930		task_unlock(p);
2931	}
2932
2933	wake_up_new_task(p);
2934
2935	/* forking complete and child started to run, tell ptracer */
2936	if (unlikely(trace))
2937		ptrace_event_pid(trace, pid);
2938
2939	if (clone_flags & CLONE_VFORK) {
2940		if (!wait_for_vfork_done(p, &vfork))
2941			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2942	}
2943
2944	put_pid(pid);
2945	return nr;
2946}
2947
2948/*
2949 * Create a kernel thread.
2950 */
2951pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2952		    unsigned long flags)
2953{
2954	struct kernel_clone_args args = {
2955		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2956				    CLONE_UNTRACED) & ~CSIGNAL),
2957		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2958		.fn		= fn,
2959		.fn_arg		= arg,
2960		.name		= name,
2961		.kthread	= 1,
2962	};
2963
2964	return kernel_clone(&args);
2965}
2966
2967/*
2968 * Create a user mode thread.
2969 */
2970pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2971{
2972	struct kernel_clone_args args = {
2973		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2974				    CLONE_UNTRACED) & ~CSIGNAL),
2975		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2976		.fn		= fn,
2977		.fn_arg		= arg,
2978	};
2979
2980	return kernel_clone(&args);
2981}
2982
2983#ifdef __ARCH_WANT_SYS_FORK
2984SYSCALL_DEFINE0(fork)
2985{
2986#ifdef CONFIG_MMU
2987	struct kernel_clone_args args = {
2988		.exit_signal = SIGCHLD,
2989	};
2990
2991	return kernel_clone(&args);
2992#else
2993	/* can not support in nommu mode */
2994	return -EINVAL;
2995#endif
2996}
2997#endif
2998
2999#ifdef __ARCH_WANT_SYS_VFORK
3000SYSCALL_DEFINE0(vfork)
3001{
3002	struct kernel_clone_args args = {
3003		.flags		= CLONE_VFORK | CLONE_VM,
3004		.exit_signal	= SIGCHLD,
3005	};
3006
3007	return kernel_clone(&args);
3008}
3009#endif
3010
3011#ifdef __ARCH_WANT_SYS_CLONE
3012#ifdef CONFIG_CLONE_BACKWARDS
3013SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3014		 int __user *, parent_tidptr,
3015		 unsigned long, tls,
3016		 int __user *, child_tidptr)
3017#elif defined(CONFIG_CLONE_BACKWARDS2)
3018SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3019		 int __user *, parent_tidptr,
3020		 int __user *, child_tidptr,
3021		 unsigned long, tls)
3022#elif defined(CONFIG_CLONE_BACKWARDS3)
3023SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3024		int, stack_size,
3025		int __user *, parent_tidptr,
3026		int __user *, child_tidptr,
3027		unsigned long, tls)
3028#else
3029SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3030		 int __user *, parent_tidptr,
3031		 int __user *, child_tidptr,
3032		 unsigned long, tls)
3033#endif
3034{
3035	struct kernel_clone_args args = {
3036		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3037		.pidfd		= parent_tidptr,
3038		.child_tid	= child_tidptr,
3039		.parent_tid	= parent_tidptr,
3040		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3041		.stack		= newsp,
3042		.tls		= tls,
3043	};
3044
3045	return kernel_clone(&args);
3046}
3047#endif
3048
3049#ifdef __ARCH_WANT_SYS_CLONE3
3050
3051noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3052					      struct clone_args __user *uargs,
3053					      size_t usize)
3054{
3055	int err;
3056	struct clone_args args;
3057	pid_t *kset_tid = kargs->set_tid;
3058
3059	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3060		     CLONE_ARGS_SIZE_VER0);
3061	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3062		     CLONE_ARGS_SIZE_VER1);
3063	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3064		     CLONE_ARGS_SIZE_VER2);
3065	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3066
3067	if (unlikely(usize > PAGE_SIZE))
3068		return -E2BIG;
3069	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3070		return -EINVAL;
3071
3072	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3073	if (err)
3074		return err;
3075
3076	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3077		return -EINVAL;
3078
3079	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3080		return -EINVAL;
3081
3082	if (unlikely(args.set_tid && args.set_tid_size == 0))
3083		return -EINVAL;
3084
3085	/*
3086	 * Verify that higher 32bits of exit_signal are unset and that
3087	 * it is a valid signal
3088	 */
3089	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3090		     !valid_signal(args.exit_signal)))
3091		return -EINVAL;
3092
3093	if ((args.flags & CLONE_INTO_CGROUP) &&
3094	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3095		return -EINVAL;
3096
3097	*kargs = (struct kernel_clone_args){
3098		.flags		= args.flags,
3099		.pidfd		= u64_to_user_ptr(args.pidfd),
3100		.child_tid	= u64_to_user_ptr(args.child_tid),
3101		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3102		.exit_signal	= args.exit_signal,
3103		.stack		= args.stack,
3104		.stack_size	= args.stack_size,
3105		.tls		= args.tls,
3106		.set_tid_size	= args.set_tid_size,
3107		.cgroup		= args.cgroup,
3108	};
3109
3110	if (args.set_tid &&
3111		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3112			(kargs->set_tid_size * sizeof(pid_t))))
3113		return -EFAULT;
3114
3115	kargs->set_tid = kset_tid;
3116
3117	return 0;
3118}
3119
3120/**
3121 * clone3_stack_valid - check and prepare stack
3122 * @kargs: kernel clone args
3123 *
3124 * Verify that the stack arguments userspace gave us are sane.
3125 * In addition, set the stack direction for userspace since it's easy for us to
3126 * determine.
3127 */
3128static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3129{
3130	if (kargs->stack == 0) {
3131		if (kargs->stack_size > 0)
3132			return false;
3133	} else {
3134		if (kargs->stack_size == 0)
3135			return false;
3136
3137		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3138			return false;
3139
3140#if !defined(CONFIG_STACK_GROWSUP)
3141		kargs->stack += kargs->stack_size;
3142#endif
3143	}
3144
3145	return true;
3146}
3147
3148static bool clone3_args_valid(struct kernel_clone_args *kargs)
3149{
3150	/* Verify that no unknown flags are passed along. */
3151	if (kargs->flags &
3152	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3153		return false;
3154
3155	/*
3156	 * - make the CLONE_DETACHED bit reusable for clone3
3157	 * - make the CSIGNAL bits reusable for clone3
3158	 */
3159	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3160		return false;
3161
3162	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3163	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3164		return false;
3165
3166	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3167	    kargs->exit_signal)
3168		return false;
3169
3170	if (!clone3_stack_valid(kargs))
3171		return false;
3172
3173	return true;
3174}
3175
3176/**
3177 * sys_clone3 - create a new process with specific properties
3178 * @uargs: argument structure
3179 * @size:  size of @uargs
3180 *
3181 * clone3() is the extensible successor to clone()/clone2().
3182 * It takes a struct as argument that is versioned by its size.
3183 *
3184 * Return: On success, a positive PID for the child process.
3185 *         On error, a negative errno number.
3186 */
3187SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3188{
3189	int err;
3190
3191	struct kernel_clone_args kargs;
3192	pid_t set_tid[MAX_PID_NS_LEVEL];
3193
3194	kargs.set_tid = set_tid;
3195
3196	err = copy_clone_args_from_user(&kargs, uargs, size);
3197	if (err)
3198		return err;
3199
3200	if (!clone3_args_valid(&kargs))
3201		return -EINVAL;
3202
3203	return kernel_clone(&kargs);
3204}
3205#endif
3206
3207void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3208{
3209	struct task_struct *leader, *parent, *child;
3210	int res;
3211
3212	read_lock(&tasklist_lock);
3213	leader = top = top->group_leader;
3214down:
3215	for_each_thread(leader, parent) {
3216		list_for_each_entry(child, &parent->children, sibling) {
3217			res = visitor(child, data);
3218			if (res) {
3219				if (res < 0)
3220					goto out;
3221				leader = child;
3222				goto down;
3223			}
3224up:
3225			;
3226		}
 
 
3227	}
3228
3229	if (leader != top) {
3230		child = leader;
3231		parent = child->real_parent;
3232		leader = parent->group_leader;
3233		goto up;
3234	}
3235out:
3236	read_unlock(&tasklist_lock);
3237}
3238
3239#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3240#define ARCH_MIN_MMSTRUCT_ALIGN 0
3241#endif
3242
3243static void sighand_ctor(void *data)
3244{
3245	struct sighand_struct *sighand = data;
3246
3247	spin_lock_init(&sighand->siglock);
3248	init_waitqueue_head(&sighand->signalfd_wqh);
3249}
3250
3251void __init mm_cache_init(void)
3252{
3253	unsigned int mm_size;
3254
3255	/*
3256	 * The mm_cpumask is located at the end of mm_struct, and is
3257	 * dynamically sized based on the maximum CPU number this system
3258	 * can have, taking hotplug into account (nr_cpu_ids).
3259	 */
3260	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3261
3262	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3263			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3264			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3265			offsetof(struct mm_struct, saved_auxv),
3266			sizeof_field(struct mm_struct, saved_auxv),
3267			NULL);
3268}
3269
3270void __init proc_caches_init(void)
3271{
3272	sighand_cachep = kmem_cache_create("sighand_cache",
3273			sizeof(struct sighand_struct), 0,
3274			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3275			SLAB_ACCOUNT, sighand_ctor);
3276	signal_cachep = kmem_cache_create("signal_cache",
3277			sizeof(struct signal_struct), 0,
3278			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3279			NULL);
3280	files_cachep = kmem_cache_create("files_cache",
3281			sizeof(struct files_struct), 0,
3282			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3283			NULL);
3284	fs_cachep = kmem_cache_create("fs_cache",
3285			sizeof(struct fs_struct), 0,
3286			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3287			NULL);
3288
3289	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3290#ifdef CONFIG_PER_VMA_LOCK
3291	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3292#endif
 
 
 
 
 
3293	mmap_init();
3294	nsproxy_cache_init();
3295}
3296
3297/*
3298 * Check constraints on flags passed to the unshare system call.
3299 */
3300static int check_unshare_flags(unsigned long unshare_flags)
3301{
3302	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3303				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3304				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3305				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3306				CLONE_NEWTIME))
3307		return -EINVAL;
3308	/*
3309	 * Not implemented, but pretend it works if there is nothing
3310	 * to unshare.  Note that unsharing the address space or the
3311	 * signal handlers also need to unshare the signal queues (aka
3312	 * CLONE_THREAD).
3313	 */
3314	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3315		if (!thread_group_empty(current))
3316			return -EINVAL;
3317	}
3318	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3319		if (refcount_read(&current->sighand->count) > 1)
3320			return -EINVAL;
3321	}
3322	if (unshare_flags & CLONE_VM) {
3323		if (!current_is_single_threaded())
3324			return -EINVAL;
3325	}
3326
3327	return 0;
3328}
3329
3330/*
3331 * Unshare the filesystem structure if it is being shared
3332 */
3333static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3334{
3335	struct fs_struct *fs = current->fs;
3336
3337	if (!(unshare_flags & CLONE_FS) || !fs)
3338		return 0;
3339
3340	/* don't need lock here; in the worst case we'll do useless copy */
3341	if (fs->users == 1)
3342		return 0;
3343
3344	*new_fsp = copy_fs_struct(fs);
3345	if (!*new_fsp)
3346		return -ENOMEM;
3347
3348	return 0;
3349}
3350
3351/*
3352 * Unshare file descriptor table if it is being shared
3353 */
3354int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3355	       struct files_struct **new_fdp)
3356{
3357	struct files_struct *fd = current->files;
3358	int error = 0;
3359
3360	if ((unshare_flags & CLONE_FILES) &&
3361	    (fd && atomic_read(&fd->count) > 1)) {
3362		*new_fdp = dup_fd(fd, max_fds, &error);
3363		if (!*new_fdp)
3364			return error;
3365	}
3366
3367	return 0;
3368}
3369
3370/*
3371 * unshare allows a process to 'unshare' part of the process
3372 * context which was originally shared using clone.  copy_*
3373 * functions used by kernel_clone() cannot be used here directly
3374 * because they modify an inactive task_struct that is being
3375 * constructed. Here we are modifying the current, active,
3376 * task_struct.
3377 */
3378int ksys_unshare(unsigned long unshare_flags)
3379{
3380	struct fs_struct *fs, *new_fs = NULL;
3381	struct files_struct *new_fd = NULL;
3382	struct cred *new_cred = NULL;
3383	struct nsproxy *new_nsproxy = NULL;
3384	int do_sysvsem = 0;
3385	int err;
3386
3387	/*
3388	 * If unsharing a user namespace must also unshare the thread group
3389	 * and unshare the filesystem root and working directories.
3390	 */
3391	if (unshare_flags & CLONE_NEWUSER)
3392		unshare_flags |= CLONE_THREAD | CLONE_FS;
3393	/*
3394	 * If unsharing vm, must also unshare signal handlers.
3395	 */
3396	if (unshare_flags & CLONE_VM)
3397		unshare_flags |= CLONE_SIGHAND;
3398	/*
3399	 * If unsharing a signal handlers, must also unshare the signal queues.
3400	 */
3401	if (unshare_flags & CLONE_SIGHAND)
3402		unshare_flags |= CLONE_THREAD;
3403	/*
3404	 * If unsharing namespace, must also unshare filesystem information.
3405	 */
3406	if (unshare_flags & CLONE_NEWNS)
3407		unshare_flags |= CLONE_FS;
3408
3409	err = check_unshare_flags(unshare_flags);
3410	if (err)
3411		goto bad_unshare_out;
3412	/*
3413	 * CLONE_NEWIPC must also detach from the undolist: after switching
3414	 * to a new ipc namespace, the semaphore arrays from the old
3415	 * namespace are unreachable.
3416	 */
3417	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3418		do_sysvsem = 1;
3419	err = unshare_fs(unshare_flags, &new_fs);
3420	if (err)
3421		goto bad_unshare_out;
3422	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3423	if (err)
3424		goto bad_unshare_cleanup_fs;
3425	err = unshare_userns(unshare_flags, &new_cred);
3426	if (err)
3427		goto bad_unshare_cleanup_fd;
3428	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3429					 new_cred, new_fs);
3430	if (err)
3431		goto bad_unshare_cleanup_cred;
3432
3433	if (new_cred) {
3434		err = set_cred_ucounts(new_cred);
3435		if (err)
3436			goto bad_unshare_cleanup_cred;
3437	}
3438
3439	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3440		if (do_sysvsem) {
3441			/*
3442			 * CLONE_SYSVSEM is equivalent to sys_exit().
3443			 */
3444			exit_sem(current);
3445		}
3446		if (unshare_flags & CLONE_NEWIPC) {
3447			/* Orphan segments in old ns (see sem above). */
3448			exit_shm(current);
3449			shm_init_task(current);
3450		}
3451
3452		if (new_nsproxy)
3453			switch_task_namespaces(current, new_nsproxy);
 
 
3454
3455		task_lock(current);
3456
3457		if (new_fs) {
3458			fs = current->fs;
3459			spin_lock(&fs->lock);
3460			current->fs = new_fs;
3461			if (--fs->users)
3462				new_fs = NULL;
3463			else
3464				new_fs = fs;
3465			spin_unlock(&fs->lock);
3466		}
3467
3468		if (new_fd)
3469			swap(current->files, new_fd);
 
 
 
3470
3471		task_unlock(current);
3472
3473		if (new_cred) {
3474			/* Install the new user namespace */
3475			commit_creds(new_cred);
3476			new_cred = NULL;
3477		}
3478	}
3479
3480	perf_event_namespaces(current);
 
3481
3482bad_unshare_cleanup_cred:
3483	if (new_cred)
3484		put_cred(new_cred);
3485bad_unshare_cleanup_fd:
3486	if (new_fd)
3487		put_files_struct(new_fd);
3488
3489bad_unshare_cleanup_fs:
3490	if (new_fs)
3491		free_fs_struct(new_fs);
3492
3493bad_unshare_out:
3494	return err;
3495}
3496
3497SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3498{
3499	return ksys_unshare(unshare_flags);
3500}
3501
3502/*
3503 *	Helper to unshare the files of the current task.
3504 *	We don't want to expose copy_files internals to
3505 *	the exec layer of the kernel.
3506 */
3507
3508int unshare_files(void)
3509{
3510	struct task_struct *task = current;
3511	struct files_struct *old, *copy = NULL;
3512	int error;
3513
3514	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3515	if (error || !copy)
 
3516		return error;
3517
3518	old = task->files;
3519	task_lock(task);
3520	task->files = copy;
3521	task_unlock(task);
3522	put_files_struct(old);
3523	return 0;
3524}
3525
3526int sysctl_max_threads(struct ctl_table *table, int write,
3527		       void *buffer, size_t *lenp, loff_t *ppos)
3528{
3529	struct ctl_table t;
3530	int ret;
3531	int threads = max_threads;
3532	int min = 1;
3533	int max = MAX_THREADS;
3534
3535	t = *table;
3536	t.data = &threads;
3537	t.extra1 = &min;
3538	t.extra2 = &max;
3539
3540	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3541	if (ret || !write)
3542		return ret;
3543
3544	max_threads = threads;
3545
3546	return 0;
3547}
v3.1
 
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
 
  14#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
 
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
 
 
  31#include <linux/nsproxy.h>
  32#include <linux/capability.h>
  33#include <linux/cpu.h>
  34#include <linux/cgroup.h>
  35#include <linux/security.h>
  36#include <linux/hugetlb.h>
 
  37#include <linux/swap.h>
  38#include <linux/syscalls.h>
 
  39#include <linux/jiffies.h>
  40#include <linux/futex.h>
  41#include <linux/compat.h>
  42#include <linux/kthread.h>
  43#include <linux/task_io_accounting_ops.h>
  44#include <linux/rcupdate.h>
  45#include <linux/ptrace.h>
  46#include <linux/mount.h>
  47#include <linux/audit.h>
  48#include <linux/memcontrol.h>
  49#include <linux/ftrace.h>
 
  50#include <linux/profile.h>
  51#include <linux/rmap.h>
  52#include <linux/ksm.h>
  53#include <linux/acct.h>
 
  54#include <linux/tsacct_kern.h>
  55#include <linux/cn_proc.h>
  56#include <linux/freezer.h>
  57#include <linux/delayacct.h>
  58#include <linux/taskstats_kern.h>
  59#include <linux/random.h>
  60#include <linux/tty.h>
  61#include <linux/blkdev.h>
  62#include <linux/fs_struct.h>
  63#include <linux/magic.h>
  64#include <linux/perf_event.h>
  65#include <linux/posix-timers.h>
  66#include <linux/user-return-notifier.h>
  67#include <linux/oom.h>
  68#include <linux/khugepaged.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70#include <asm/pgtable.h>
  71#include <asm/pgalloc.h>
  72#include <asm/uaccess.h>
  73#include <asm/mmu_context.h>
  74#include <asm/cacheflush.h>
  75#include <asm/tlbflush.h>
  76
  77#include <trace/events/sched.h>
  78
 
 
 
 
 
 
 
 
 
 
 
 
 
  79/*
  80 * Protected counters by write_lock_irq(&tasklist_lock)
  81 */
  82unsigned long total_forks;	/* Handle normal Linux uptimes. */
  83int nr_threads;			/* The idle threads do not count.. */
  84
  85int max_threads;		/* tunable limit on nr_threads */
 
 
 
 
 
 
 
 
 
  86
  87DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  88
  89__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
  90
  91#ifdef CONFIG_PROVE_RCU
  92int lockdep_tasklist_lock_is_held(void)
  93{
  94	return lockdep_is_held(&tasklist_lock);
  95}
  96EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  97#endif /* #ifdef CONFIG_PROVE_RCU */
  98
  99int nr_processes(void)
 100{
 101	int cpu;
 102	int total = 0;
 103
 104	for_each_possible_cpu(cpu)
 105		total += per_cpu(process_counts, cpu);
 106
 107	return total;
 108}
 109
 110#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 111# define alloc_task_struct_node(node)		\
 112		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
 113# define free_task_struct(tsk)			\
 114		kmem_cache_free(task_struct_cachep, (tsk))
 115static struct kmem_cache *task_struct_cachep;
 116#endif
 117
 118#ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
 119static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 120						  int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121{
 122#ifdef CONFIG_DEBUG_STACK_USAGE
 123	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
 124#else
 125	gfp_t mask = GFP_KERNEL;
 126#endif
 127	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
 128
 129	return page ? page_address(page) : NULL;
 
 
 
 130}
 131
 132static inline void free_thread_info(struct thread_info *ti)
 133{
 134	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
 
 
 
 135}
 136#endif
 
 137
 138/* SLAB cache for signal_struct structures (tsk->signal) */
 139static struct kmem_cache *signal_cachep;
 140
 141/* SLAB cache for sighand_struct structures (tsk->sighand) */
 142struct kmem_cache *sighand_cachep;
 143
 144/* SLAB cache for files_struct structures (tsk->files) */
 145struct kmem_cache *files_cachep;
 146
 147/* SLAB cache for fs_struct structures (tsk->fs) */
 148struct kmem_cache *fs_cachep;
 149
 150/* SLAB cache for vm_area_struct structures */
 151struct kmem_cache *vm_area_cachep;
 152
 153/* SLAB cache for mm_struct structures (tsk->mm) */
 154static struct kmem_cache *mm_cachep;
 155
 156static void account_kernel_stack(struct thread_info *ti, int account)
 
 
 
 
 
 157{
 158	struct zone *zone = page_zone(virt_to_page(ti));
 
 
 159
 160	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 
 
 
 161}
 162
 163void free_task(struct task_struct *tsk)
 164{
 165	prop_local_destroy_single(&tsk->dirties);
 166	account_kernel_stack(tsk->stack, -1);
 167	free_thread_info(tsk->stack);
 168	rt_mutex_debug_task_free(tsk);
 169	ftrace_graph_exit_task(tsk);
 170	free_task_struct(tsk);
 171}
 172EXPORT_SYMBOL(free_task);
 173
 174static inline void free_signal_struct(struct signal_struct *sig)
 175{
 176	taskstats_tgid_free(sig);
 177	sched_autogroup_exit(sig);
 178	kmem_cache_free(signal_cachep, sig);
 179}
 180
 181static inline void put_signal_struct(struct signal_struct *sig)
 182{
 183	if (atomic_dec_and_test(&sig->sigcnt))
 184		free_signal_struct(sig);
 185}
 186
 187void __put_task_struct(struct task_struct *tsk)
 188{
 189	WARN_ON(!tsk->exit_state);
 190	WARN_ON(atomic_read(&tsk->usage));
 191	WARN_ON(tsk == current);
 192
 193	exit_creds(tsk);
 194	delayacct_tsk_free(tsk);
 195	put_signal_struct(tsk->signal);
 
 
 196
 197	if (!profile_handoff_task(tsk))
 198		free_task(tsk);
 199}
 200EXPORT_SYMBOL_GPL(__put_task_struct);
 201
 202/*
 203 * macro override instead of weak attribute alias, to workaround
 204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
 205 */
 206#ifndef arch_task_cache_init
 207#define arch_task_cache_init()
 208#endif
 209
 210void __init fork_init(unsigned long mempages)
 211{
 212#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 213#ifndef ARCH_MIN_TASKALIGN
 214#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 215#endif
 216	/* create a slab on which task_structs can be allocated */
 217	task_struct_cachep =
 218		kmem_cache_create("task_struct", sizeof(struct task_struct),
 219			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
 220#endif
 221
 222	/* do the arch specific task caches init */
 223	arch_task_cache_init();
 224
 
 
 225	/*
 226	 * The default maximum number of threads is set to a safe
 227	 * value: the thread structures can take up at most half
 228	 * of memory.
 229	 */
 230	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
 
 
 
 
 
 
 
 231
 232	/*
 233	 * we need to allow at least 20 threads to boot a system
 234	 */
 235	if (max_threads < 20)
 236		max_threads = 20;
 237
 238	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 239	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 240	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 241		init_task.signal->rlim[RLIMIT_NPROC];
 
 
 242}
 243
 244int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
 245					       struct task_struct *src)
 246{
 247	*dst = *src;
 248	return 0;
 
 
 
 
 249}
 
 250
 251static struct task_struct *dup_task_struct(struct task_struct *orig)
 252{
 253	struct task_struct *tsk;
 254	struct thread_info *ti;
 255	unsigned long *stackend;
 256	int node = tsk_fork_get_node(orig);
 257	int err;
 
 258
 259	prepare_to_copy(orig);
 
 
 
 
 260
 261	tsk = alloc_task_struct_node(node);
 262	if (!tsk)
 263		return NULL;
 
 
 264
 265	ti = alloc_thread_info_node(tsk, node);
 266	if (!ti) {
 267		free_task_struct(tsk);
 268		return NULL;
 269	}
 
 270
 271	err = arch_dup_task_struct(tsk, orig);
 272	if (err)
 273		goto out;
 
 
 
 
 
 
 
 
 
 
 274
 275	tsk->stack = ti;
 
 
 
 276
 277	err = prop_local_init_single(&tsk->dirties);
 278	if (err)
 279		goto out;
 280
 281	setup_thread_stack(tsk, orig);
 282	clear_user_return_notifier(tsk);
 283	clear_tsk_need_resched(tsk);
 284	stackend = end_of_stack(tsk);
 285	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 
 
 286
 287#ifdef CONFIG_CC_STACKPROTECTOR
 288	tsk->stack_canary = get_random_int();
 
 
 289#endif
 
 
 290
 
 
 
 
 
 
 
 291	/*
 292	 * One for us, one for whoever does the "release_task()" (usually
 293	 * parent)
 294	 */
 295	atomic_set(&tsk->usage, 2);
 296#ifdef CONFIG_BLK_DEV_IO_TRACE
 297	tsk->btrace_seq = 0;
 298#endif
 299	tsk->splice_pipe = NULL;
 
 
 
 
 
 
 
 
 300
 301	account_kernel_stack(ti, 1);
 
 
 302
 303	return tsk;
 304
 305out:
 306	free_thread_info(ti);
 307	free_task_struct(tsk);
 308	return NULL;
 
 
 309}
 310
 311#ifdef CONFIG_MMU
 312static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 
 313{
 314	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 315	struct rb_node **rb_link, *rb_parent;
 316	int retval;
 317	unsigned long charge;
 318	struct mempolicy *pol;
 319
 320	down_write(&oldmm->mmap_sem);
 
 
 
 
 
 321	flush_cache_dup_mm(oldmm);
 
 322	/*
 323	 * Not linked in yet - no deadlock potential:
 324	 */
 325	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
 
 
 326
 327	mm->locked_vm = 0;
 328	mm->mmap = NULL;
 329	mm->mmap_cache = NULL;
 330	mm->free_area_cache = oldmm->mmap_base;
 331	mm->cached_hole_size = ~0UL;
 332	mm->map_count = 0;
 333	cpumask_clear(mm_cpumask(mm));
 334	mm->mm_rb = RB_ROOT;
 335	rb_link = &mm->mm_rb.rb_node;
 336	rb_parent = NULL;
 337	pprev = &mm->mmap;
 338	retval = ksm_fork(mm, oldmm);
 339	if (retval)
 340		goto out;
 341	retval = khugepaged_fork(mm, oldmm);
 342	if (retval)
 
 
 
 343		goto out;
 344
 345	prev = NULL;
 346	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 347		struct file *file;
 348
 
 349		if (mpnt->vm_flags & VM_DONTCOPY) {
 350			long pages = vma_pages(mpnt);
 351			mm->total_vm -= pages;
 352			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 353								-pages);
 
 
 354			continue;
 355		}
 356		charge = 0;
 
 
 
 
 
 
 
 
 357		if (mpnt->vm_flags & VM_ACCOUNT) {
 358			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
 359			if (security_vm_enough_memory(len))
 
 360				goto fail_nomem;
 361			charge = len;
 362		}
 363		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 364		if (!tmp)
 365			goto fail_nomem;
 366		*tmp = *mpnt;
 367		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 368		pol = mpol_dup(vma_policy(mpnt));
 369		retval = PTR_ERR(pol);
 370		if (IS_ERR(pol))
 371			goto fail_nomem_policy;
 372		vma_set_policy(tmp, pol);
 373		tmp->vm_mm = mm;
 374		if (anon_vma_fork(tmp, mpnt))
 
 375			goto fail_nomem_anon_vma_fork;
 376		tmp->vm_flags &= ~VM_LOCKED;
 377		tmp->vm_next = tmp->vm_prev = NULL;
 
 
 
 
 
 
 
 
 378		file = tmp->vm_file;
 379		if (file) {
 380			struct inode *inode = file->f_path.dentry->d_inode;
 381			struct address_space *mapping = file->f_mapping;
 382
 383			get_file(file);
 384			if (tmp->vm_flags & VM_DENYWRITE)
 385				atomic_dec(&inode->i_writecount);
 386			mutex_lock(&mapping->i_mmap_mutex);
 387			if (tmp->vm_flags & VM_SHARED)
 388				mapping->i_mmap_writable++;
 389			flush_dcache_mmap_lock(mapping);
 390			/* insert tmp into the share list, just after mpnt */
 391			vma_prio_tree_add(tmp, mpnt);
 
 392			flush_dcache_mmap_unlock(mapping);
 393			mutex_unlock(&mapping->i_mmap_mutex);
 394		}
 395
 396		/*
 397		 * Clear hugetlb-related page reserves for children. This only
 398		 * affects MAP_PRIVATE mappings. Faults generated by the child
 399		 * are not guaranteed to succeed, even if read-only
 400		 */
 401		if (is_vm_hugetlb_page(tmp))
 402			reset_vma_resv_huge_pages(tmp);
 403
 404		/*
 405		 * Link in the new vma and copy the page table entries.
 
 406		 */
 407		*pprev = tmp;
 408		pprev = &tmp->vm_next;
 409		tmp->vm_prev = prev;
 410		prev = tmp;
 411
 412		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 413		rb_link = &tmp->vm_rb.rb_right;
 414		rb_parent = &tmp->vm_rb;
 415
 416		mm->map_count++;
 417		retval = copy_page_range(mm, oldmm, mpnt);
 
 418
 419		if (tmp->vm_ops && tmp->vm_ops->open)
 420			tmp->vm_ops->open(tmp);
 421
 422		if (retval)
 423			goto out;
 
 
 424	}
 425	/* a new mm has just been created */
 426	arch_dup_mmap(oldmm, mm);
 427	retval = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428out:
 429	up_write(&mm->mmap_sem);
 430	flush_tlb_mm(oldmm);
 431	up_write(&oldmm->mmap_sem);
 
 
 
 432	return retval;
 
 433fail_nomem_anon_vma_fork:
 434	mpol_put(pol);
 435fail_nomem_policy:
 436	kmem_cache_free(vm_area_cachep, tmp);
 437fail_nomem:
 438	retval = -ENOMEM;
 439	vm_unacct_memory(charge);
 440	goto out;
 441}
 442
 443static inline int mm_alloc_pgd(struct mm_struct *mm)
 444{
 445	mm->pgd = pgd_alloc(mm);
 446	if (unlikely(!mm->pgd))
 447		return -ENOMEM;
 448	return 0;
 449}
 450
 451static inline void mm_free_pgd(struct mm_struct *mm)
 452{
 453	pgd_free(mm, mm->pgd);
 454}
 455#else
 456#define dup_mmap(mm, oldmm)	(0)
 
 
 
 
 
 
 457#define mm_alloc_pgd(mm)	(0)
 458#define mm_free_pgd(mm)
 459#endif /* CONFIG_MMU */
 460
 461__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462
 463#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 464#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 467
 468static int __init coredump_filter_setup(char *s)
 469{
 470	default_dump_filter =
 471		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 472		MMF_DUMP_FILTER_MASK;
 473	return 1;
 474}
 475
 476__setup("coredump_filter=", coredump_filter_setup);
 477
 478#include <linux/init_task.h>
 479
 480static void mm_init_aio(struct mm_struct *mm)
 481{
 482#ifdef CONFIG_AIO
 483	spin_lock_init(&mm->ioctx_lock);
 484	INIT_HLIST_HEAD(&mm->ioctx_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485#endif
 486}
 487
 488static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 
 489{
 
 
 490	atomic_set(&mm->mm_users, 1);
 491	atomic_set(&mm->mm_count, 1);
 492	init_rwsem(&mm->mmap_sem);
 
 493	INIT_LIST_HEAD(&mm->mmlist);
 494	mm->flags = (current->mm) ?
 495		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
 496	mm->core_state = NULL;
 497	mm->nr_ptes = 0;
 
 
 
 498	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 499	spin_lock_init(&mm->page_table_lock);
 500	mm->free_area_cache = TASK_UNMAPPED_BASE;
 501	mm->cached_hole_size = ~0UL;
 502	mm_init_aio(mm);
 503	mm_init_owner(mm, p);
 504	atomic_set(&mm->oom_disable_count, 0);
 
 
 
 
 
 
 
 
 505
 506	if (likely(!mm_alloc_pgd(mm))) {
 
 
 
 
 507		mm->def_flags = 0;
 508		mmu_notifier_mm_init(mm);
 509		return mm;
 510	}
 511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512	free_mm(mm);
 513	return NULL;
 514}
 515
 516/*
 517 * Allocate and initialize an mm_struct.
 518 */
 519struct mm_struct *mm_alloc(void)
 520{
 521	struct mm_struct *mm;
 522
 523	mm = allocate_mm();
 524	if (!mm)
 525		return NULL;
 526
 527	memset(mm, 0, sizeof(*mm));
 528	mm_init_cpumask(mm);
 529	return mm_init(mm, current);
 530}
 531
 532/*
 533 * Called when the last reference to the mm
 534 * is dropped: either by a lazy thread or by
 535 * mmput. Free the page directory and the mm.
 536 */
 537void __mmdrop(struct mm_struct *mm)
 538{
 539	BUG_ON(mm == &init_mm);
 540	mm_free_pgd(mm);
 541	destroy_context(mm);
 542	mmu_notifier_mm_destroy(mm);
 543#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 544	VM_BUG_ON(mm->pmd_huge_pte);
 545#endif
 546	free_mm(mm);
 
 
 
 
 
 
 
 
 
 
 547}
 548EXPORT_SYMBOL_GPL(__mmdrop);
 549
 550/*
 551 * Decrement the use count and release all resources for an mm.
 552 */
 553void mmput(struct mm_struct *mm)
 554{
 555	might_sleep();
 556
 557	if (atomic_dec_and_test(&mm->mm_users)) {
 558		exit_aio(mm);
 559		ksm_exit(mm);
 560		khugepaged_exit(mm); /* must run before exit_mmap */
 561		exit_mmap(mm);
 562		set_mm_exe_file(mm, NULL);
 563		if (!list_empty(&mm->mmlist)) {
 564			spin_lock(&mmlist_lock);
 565			list_del(&mm->mmlist);
 566			spin_unlock(&mmlist_lock);
 567		}
 568		put_swap_token(mm);
 569		if (mm->binfmt)
 570			module_put(mm->binfmt->module);
 571		mmdrop(mm);
 572	}
 573}
 574EXPORT_SYMBOL_GPL(mmput);
 575
 576/*
 577 * We added or removed a vma mapping the executable. The vmas are only mapped
 578 * during exec and are not mapped with the mmap system call.
 579 * Callers must hold down_write() on the mm's mmap_sem for these
 580 */
 581void added_exe_file_vma(struct mm_struct *mm)
 582{
 583	mm->num_exe_file_vmas++;
 
 
 
 584}
 585
 586void removed_exe_file_vma(struct mm_struct *mm)
 587{
 588	mm->num_exe_file_vmas--;
 589	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
 590		fput(mm->exe_file);
 591		mm->exe_file = NULL;
 592	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594}
 595
 596void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 
 
 
 
 
 
 
 
 
 597{
 598	if (new_exe_file)
 599		get_file(new_exe_file);
 600	if (mm->exe_file)
 601		fput(mm->exe_file);
 602	mm->exe_file = new_exe_file;
 603	mm->num_exe_file_vmas = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604}
 605
 
 
 
 
 
 
 
 606struct file *get_mm_exe_file(struct mm_struct *mm)
 607{
 608	struct file *exe_file;
 609
 610	/* We need mmap_sem to protect against races with removal of
 611	 * VM_EXECUTABLE vmas */
 612	down_read(&mm->mmap_sem);
 613	exe_file = mm->exe_file;
 614	if (exe_file)
 615		get_file(exe_file);
 616	up_read(&mm->mmap_sem);
 617	return exe_file;
 618}
 619
 620static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
 
 
 
 
 
 
 
 
 621{
 622	/* It's safe to write the exe_file pointer without exe_file_lock because
 623	 * this is called during fork when the task is not yet in /proc */
 624	newmm->exe_file = get_mm_exe_file(oldmm);
 
 
 
 
 
 
 
 
 625}
 626
 627/**
 628 * get_task_mm - acquire a reference to the task's mm
 
 629 *
 630 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 631 * this kernel workthread has transiently adopted a user mm with use_mm,
 632 * to do its AIO) is not set and if so returns a reference to it, after
 633 * bumping up the use count.  User must release the mm via mmput()
 634 * after use.  Typically used by /proc and ptrace.
 635 */
 636struct mm_struct *get_task_mm(struct task_struct *task)
 637{
 638	struct mm_struct *mm;
 639
 640	task_lock(task);
 641	mm = task->mm;
 642	if (mm) {
 643		if (task->flags & PF_KTHREAD)
 644			mm = NULL;
 645		else
 646			atomic_inc(&mm->mm_users);
 647	}
 648	task_unlock(task);
 649	return mm;
 650}
 651EXPORT_SYMBOL_GPL(get_task_mm);
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653/* Please note the differences between mmput and mm_release.
 654 * mmput is called whenever we stop holding onto a mm_struct,
 655 * error success whatever.
 656 *
 657 * mm_release is called after a mm_struct has been removed
 658 * from the current process.
 659 *
 660 * This difference is important for error handling, when we
 661 * only half set up a mm_struct for a new process and need to restore
 662 * the old one.  Because we mmput the new mm_struct before
 663 * restoring the old one. . .
 664 * Eric Biederman 10 January 1998
 665 */
 666void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 667{
 668	struct completion *vfork_done = tsk->vfork_done;
 669
 670	/* Get rid of any futexes when releasing the mm */
 671#ifdef CONFIG_FUTEX
 672	if (unlikely(tsk->robust_list)) {
 673		exit_robust_list(tsk);
 674		tsk->robust_list = NULL;
 675	}
 676#ifdef CONFIG_COMPAT
 677	if (unlikely(tsk->compat_robust_list)) {
 678		compat_exit_robust_list(tsk);
 679		tsk->compat_robust_list = NULL;
 680	}
 681#endif
 682	if (unlikely(!list_empty(&tsk->pi_state_list)))
 683		exit_pi_state_list(tsk);
 684#endif
 685
 686	/* Get rid of any cached register state */
 687	deactivate_mm(tsk, mm);
 688
 689	/* notify parent sleeping on vfork() */
 690	if (vfork_done) {
 691		tsk->vfork_done = NULL;
 692		complete(vfork_done);
 693	}
 694
 695	/*
 696	 * If we're exiting normally, clear a user-space tid field if
 697	 * requested.  We leave this alone when dying by signal, to leave
 698	 * the value intact in a core dump, and to save the unnecessary
 699	 * trouble otherwise.  Userland only wants this done for a sys_exit.
 700	 */
 701	if (tsk->clear_child_tid) {
 702		if (!(tsk->flags & PF_SIGNALED) &&
 703		    atomic_read(&mm->mm_users) > 1) {
 704			/*
 705			 * We don't check the error code - if userspace has
 706			 * not set up a proper pointer then tough luck.
 707			 */
 708			put_user(0, tsk->clear_child_tid);
 709			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 710					1, NULL, NULL, 0);
 711		}
 712		tsk->clear_child_tid = NULL;
 713	}
 
 
 
 
 
 
 
 714}
 715
 716/*
 717 * Allocate a new mm structure and copy contents from the
 718 * mm structure of the passed in task structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719 */
 720struct mm_struct *dup_mm(struct task_struct *tsk)
 
 721{
 722	struct mm_struct *mm, *oldmm = current->mm;
 723	int err;
 724
 725	if (!oldmm)
 726		return NULL;
 727
 728	mm = allocate_mm();
 729	if (!mm)
 730		goto fail_nomem;
 731
 732	memcpy(mm, oldmm, sizeof(*mm));
 733	mm_init_cpumask(mm);
 734
 735	/* Initializing for Swap token stuff */
 736	mm->token_priority = 0;
 737	mm->last_interval = 0;
 738
 739#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 740	mm->pmd_huge_pte = NULL;
 741#endif
 742
 743	if (!mm_init(mm, tsk))
 744		goto fail_nomem;
 745
 746	if (init_new_context(tsk, mm))
 747		goto fail_nocontext;
 748
 749	dup_mm_exe_file(oldmm, mm);
 750
 751	err = dup_mmap(mm, oldmm);
 752	if (err)
 753		goto free_pt;
 754
 755	mm->hiwater_rss = get_mm_rss(mm);
 756	mm->hiwater_vm = mm->total_vm;
 757
 758	if (mm->binfmt && !try_module_get(mm->binfmt->module))
 759		goto free_pt;
 760
 761	return mm;
 762
 763free_pt:
 764	/* don't put binfmt in mmput, we haven't got module yet */
 765	mm->binfmt = NULL;
 
 766	mmput(mm);
 767
 768fail_nomem:
 769	return NULL;
 770
 771fail_nocontext:
 772	/*
 773	 * If init_new_context() failed, we cannot use mmput() to free the mm
 774	 * because it calls destroy_context()
 775	 */
 776	mm_free_pgd(mm);
 777	free_mm(mm);
 778	return NULL;
 779}
 780
 781static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 782{
 783	struct mm_struct *mm, *oldmm;
 784	int retval;
 785
 786	tsk->min_flt = tsk->maj_flt = 0;
 787	tsk->nvcsw = tsk->nivcsw = 0;
 788#ifdef CONFIG_DETECT_HUNG_TASK
 789	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 
 790#endif
 791
 792	tsk->mm = NULL;
 793	tsk->active_mm = NULL;
 794
 795	/*
 796	 * Are we cloning a kernel thread?
 797	 *
 798	 * We need to steal a active VM for that..
 799	 */
 800	oldmm = current->mm;
 801	if (!oldmm)
 802		return 0;
 803
 804	if (clone_flags & CLONE_VM) {
 805		atomic_inc(&oldmm->mm_users);
 806		mm = oldmm;
 807		goto good_mm;
 
 
 
 808	}
 809
 810	retval = -ENOMEM;
 811	mm = dup_mm(tsk);
 812	if (!mm)
 813		goto fail_nomem;
 814
 815good_mm:
 816	/* Initializing for Swap token stuff */
 817	mm->token_priority = 0;
 818	mm->last_interval = 0;
 819	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
 820		atomic_inc(&mm->oom_disable_count);
 821
 822	tsk->mm = mm;
 823	tsk->active_mm = mm;
 
 824	return 0;
 825
 826fail_nomem:
 827	return retval;
 828}
 829
 830static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 831{
 832	struct fs_struct *fs = current->fs;
 833	if (clone_flags & CLONE_FS) {
 834		/* tsk->fs is already what we want */
 835		spin_lock(&fs->lock);
 
 836		if (fs->in_exec) {
 837			spin_unlock(&fs->lock);
 838			return -EAGAIN;
 839		}
 840		fs->users++;
 841		spin_unlock(&fs->lock);
 842		return 0;
 843	}
 844	tsk->fs = copy_fs_struct(fs);
 845	if (!tsk->fs)
 846		return -ENOMEM;
 847	return 0;
 848}
 849
 850static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
 
 851{
 852	struct files_struct *oldf, *newf;
 853	int error = 0;
 854
 855	/*
 856	 * A background process may not have any files ...
 857	 */
 858	oldf = current->files;
 859	if (!oldf)
 860		goto out;
 861
 
 
 
 
 
 862	if (clone_flags & CLONE_FILES) {
 863		atomic_inc(&oldf->count);
 864		goto out;
 865	}
 866
 867	newf = dup_fd(oldf, &error);
 868	if (!newf)
 869		goto out;
 870
 871	tsk->files = newf;
 872	error = 0;
 873out:
 874	return error;
 875}
 876
 877static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
 878{
 879#ifdef CONFIG_BLOCK
 880	struct io_context *ioc = current->io_context;
 881
 882	if (!ioc)
 883		return 0;
 884	/*
 885	 * Share io context with parent, if CLONE_IO is set
 886	 */
 887	if (clone_flags & CLONE_IO) {
 888		tsk->io_context = ioc_task_link(ioc);
 889		if (unlikely(!tsk->io_context))
 890			return -ENOMEM;
 891	} else if (ioprio_valid(ioc->ioprio)) {
 892		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
 893		if (unlikely(!tsk->io_context))
 894			return -ENOMEM;
 895
 896		tsk->io_context->ioprio = ioc->ioprio;
 897	}
 898#endif
 899	return 0;
 900}
 901
 902static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
 903{
 904	struct sighand_struct *sig;
 905
 906	if (clone_flags & CLONE_SIGHAND) {
 907		atomic_inc(&current->sighand->count);
 908		return 0;
 909	}
 910	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 911	rcu_assign_pointer(tsk->sighand, sig);
 912	if (!sig)
 913		return -ENOMEM;
 914	atomic_set(&sig->count, 1);
 
 
 915	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 
 
 
 
 
 
 916	return 0;
 917}
 918
 919void __cleanup_sighand(struct sighand_struct *sighand)
 920{
 921	if (atomic_dec_and_test(&sighand->count))
 
 
 
 
 
 922		kmem_cache_free(sighand_cachep, sighand);
 
 923}
 924
 925
 926/*
 927 * Initialize POSIX timer handling for a thread group.
 928 */
 929static void posix_cpu_timers_init_group(struct signal_struct *sig)
 930{
 
 931	unsigned long cpu_limit;
 932
 933	/* Thread group counters. */
 934	thread_group_cputime_init(sig);
 935
 936	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 937	if (cpu_limit != RLIM_INFINITY) {
 938		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
 939		sig->cputimer.running = 1;
 940	}
 941
 942	/* The timer lists. */
 943	INIT_LIST_HEAD(&sig->cpu_timers[0]);
 944	INIT_LIST_HEAD(&sig->cpu_timers[1]);
 945	INIT_LIST_HEAD(&sig->cpu_timers[2]);
 946}
 947
 948static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
 949{
 950	struct signal_struct *sig;
 951
 952	if (clone_flags & CLONE_THREAD)
 953		return 0;
 954
 955	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
 956	tsk->signal = sig;
 957	if (!sig)
 958		return -ENOMEM;
 959
 960	sig->nr_threads = 1;
 
 961	atomic_set(&sig->live, 1);
 962	atomic_set(&sig->sigcnt, 1);
 
 
 
 
 
 963	init_waitqueue_head(&sig->wait_chldexit);
 964	if (clone_flags & CLONE_NEWPID)
 965		sig->flags |= SIGNAL_UNKILLABLE;
 966	sig->curr_target = tsk;
 967	init_sigpending(&sig->shared_pending);
 
 
 
 
 
 968	INIT_LIST_HEAD(&sig->posix_timers);
 969
 970	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 971	sig->real_timer.function = it_real_fn;
 
 972
 973	task_lock(current->group_leader);
 974	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
 975	task_unlock(current->group_leader);
 976
 977	posix_cpu_timers_init_group(sig);
 978
 979	tty_audit_fork(sig);
 980	sched_autogroup_fork(sig);
 981
 982#ifdef CONFIG_CGROUPS
 983	init_rwsem(&sig->threadgroup_fork_lock);
 984#endif
 985
 986	sig->oom_adj = current->signal->oom_adj;
 987	sig->oom_score_adj = current->signal->oom_score_adj;
 988	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
 989
 990	mutex_init(&sig->cred_guard_mutex);
 
 991
 992	return 0;
 993}
 994
 995static void copy_flags(unsigned long clone_flags, struct task_struct *p)
 996{
 997	unsigned long new_flags = p->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998
 999	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1000	new_flags |= PF_FORKNOEXEC;
1001	new_flags |= PF_STARTING;
1002	p->flags = new_flags;
1003	clear_freeze_flag(p);
 
 
 
1004}
1005
1006SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1007{
1008	current->clear_child_tid = tidptr;
1009
1010	return task_pid_vnr(current);
1011}
1012
1013static void rt_mutex_init_task(struct task_struct *p)
1014{
1015	raw_spin_lock_init(&p->pi_lock);
1016#ifdef CONFIG_RT_MUTEXES
1017	plist_head_init(&p->pi_waiters);
 
1018	p->pi_blocked_on = NULL;
1019#endif
1020}
1021
1022#ifdef CONFIG_MM_OWNER
1023void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1024{
1025	mm->owner = p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026}
1027#endif /* CONFIG_MM_OWNER */
1028
1029/*
1030 * Initialize POSIX timer handling for a single task.
1031 */
1032static void posix_cpu_timers_init(struct task_struct *tsk)
1033{
1034	tsk->cputime_expires.prof_exp = cputime_zero;
1035	tsk->cputime_expires.virt_exp = cputime_zero;
1036	tsk->cputime_expires.sched_exp = 0;
1037	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1038	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1039	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040}
1041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042/*
1043 * This creates a new process as a copy of the old one,
1044 * but does not actually start it yet.
1045 *
1046 * It copies the registers, and all the appropriate
1047 * parts of the process environment (as per the clone
1048 * flags). The actual kick-off is left to the caller.
1049 */
1050static struct task_struct *copy_process(unsigned long clone_flags,
1051					unsigned long stack_start,
1052					struct pt_regs *regs,
1053					unsigned long stack_size,
1054					int __user *child_tidptr,
1055					struct pid *pid,
1056					int trace)
 
 
1057{
1058	int retval;
1059	struct task_struct *p;
1060	int cgroup_callbacks_done = 0;
 
 
 
1061
 
 
 
 
1062	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1063		return ERR_PTR(-EINVAL);
1064
 
 
 
1065	/*
1066	 * Thread groups must share signals as well, and detached threads
1067	 * can only be started up within the thread group.
1068	 */
1069	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1070		return ERR_PTR(-EINVAL);
1071
1072	/*
1073	 * Shared signal handlers imply shared VM. By way of the above,
1074	 * thread groups also imply shared VM. Blocking this case allows
1075	 * for various simplifications in other code.
1076	 */
1077	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1078		return ERR_PTR(-EINVAL);
1079
1080	/*
1081	 * Siblings of global init remain as zombies on exit since they are
1082	 * not reaped by their parent (swapper). To solve this and to avoid
1083	 * multi-rooted process trees, prevent global and container-inits
1084	 * from creating siblings.
1085	 */
1086	if ((clone_flags & CLONE_PARENT) &&
1087				current->signal->flags & SIGNAL_UNKILLABLE)
1088		return ERR_PTR(-EINVAL);
1089
1090	retval = security_task_create(clone_flags);
1091	if (retval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092		goto fork_out;
1093
1094	retval = -ENOMEM;
1095	p = dup_task_struct(current);
1096	if (!p)
1097		goto fork_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098
1099	ftrace_graph_init_task(p);
1100
1101	rt_mutex_init_task(p);
1102
 
1103#ifdef CONFIG_PROVE_LOCKING
1104	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1105	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1106#endif
 
 
 
 
1107	retval = -EAGAIN;
1108	if (atomic_read(&p->real_cred->user->processes) >=
1109			task_rlimit(p, RLIMIT_NPROC)) {
1110		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1111		    p->real_cred->user != INIT_USER)
1112			goto bad_fork_free;
1113	}
1114	current->flags &= ~PF_NPROC_EXCEEDED;
1115
1116	retval = copy_creds(p, clone_flags);
1117	if (retval < 0)
1118		goto bad_fork_free;
1119
1120	/*
1121	 * If multiple threads are within copy_process(), then this check
1122	 * triggers too late. This doesn't hurt, the check is only there
1123	 * to stop root fork bombs.
1124	 */
1125	retval = -EAGAIN;
1126	if (nr_threads >= max_threads)
1127		goto bad_fork_cleanup_count;
1128
1129	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1130		goto bad_fork_cleanup_count;
1131
1132	p->did_exec = 0;
1133	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1134	copy_flags(clone_flags, p);
 
1135	INIT_LIST_HEAD(&p->children);
1136	INIT_LIST_HEAD(&p->sibling);
1137	rcu_copy_process(p);
1138	p->vfork_done = NULL;
1139	spin_lock_init(&p->alloc_lock);
1140
1141	init_sigpending(&p->pending);
1142
1143	p->utime = cputime_zero;
1144	p->stime = cputime_zero;
1145	p->gtime = cputime_zero;
1146	p->utimescaled = cputime_zero;
1147	p->stimescaled = cputime_zero;
1148#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1149	p->prev_utime = cputime_zero;
1150	p->prev_stime = cputime_zero;
1151#endif
1152#if defined(SPLIT_RSS_COUNTING)
1153	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
 
 
 
 
 
 
 
 
1154#endif
1155
1156	p->default_timer_slack_ns = current->timer_slack_ns;
1157
 
 
 
 
1158	task_io_accounting_init(&p->ioac);
1159	acct_clear_integrals(p);
1160
1161	posix_cpu_timers_init(p);
1162
1163	do_posix_clock_monotonic_gettime(&p->start_time);
1164	p->real_start_time = p->start_time;
1165	monotonic_to_bootbased(&p->real_start_time);
1166	p->io_context = NULL;
1167	p->audit_context = NULL;
1168	if (clone_flags & CLONE_THREAD)
1169		threadgroup_fork_read_lock(current);
1170	cgroup_fork(p);
 
 
 
 
1171#ifdef CONFIG_NUMA
1172	p->mempolicy = mpol_dup(p->mempolicy);
1173	if (IS_ERR(p->mempolicy)) {
1174		retval = PTR_ERR(p->mempolicy);
1175		p->mempolicy = NULL;
1176		goto bad_fork_cleanup_cgroup;
1177	}
1178	mpol_fix_fork_child_flag(p);
1179#endif
1180#ifdef CONFIG_CPUSETS
1181	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1182	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
 
1183#endif
1184#ifdef CONFIG_TRACE_IRQFLAGS
1185	p->irq_events = 0;
1186#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1187	p->hardirqs_enabled = 1;
1188#else
1189	p->hardirqs_enabled = 0;
1190#endif
1191	p->hardirq_enable_ip = 0;
1192	p->hardirq_enable_event = 0;
1193	p->hardirq_disable_ip = _THIS_IP_;
1194	p->hardirq_disable_event = 0;
1195	p->softirqs_enabled = 1;
1196	p->softirq_enable_ip = _THIS_IP_;
1197	p->softirq_enable_event = 0;
1198	p->softirq_disable_ip = 0;
1199	p->softirq_disable_event = 0;
1200	p->hardirq_context = 0;
1201	p->softirq_context = 0;
1202#endif
 
 
 
1203#ifdef CONFIG_LOCKDEP
1204	p->lockdep_depth = 0; /* no locks held yet */
1205	p->curr_chain_key = 0;
1206	p->lockdep_recursion = 0;
1207#endif
1208
1209#ifdef CONFIG_DEBUG_MUTEXES
1210	p->blocked_on = NULL; /* not blocked yet */
1211#endif
1212#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1213	p->memcg_batch.do_batch = 0;
1214	p->memcg_batch.memcg = NULL;
 
 
 
 
1215#endif
1216
1217	/* Perform scheduler related setup. Assign this task to a CPU. */
1218	sched_fork(p);
 
 
1219
1220	retval = perf_event_init_task(p);
1221	if (retval)
1222		goto bad_fork_cleanup_policy;
1223	retval = audit_alloc(p);
1224	if (retval)
1225		goto bad_fork_cleanup_policy;
1226	/* copy all the process information */
 
 
 
 
1227	retval = copy_semundo(clone_flags, p);
1228	if (retval)
1229		goto bad_fork_cleanup_audit;
1230	retval = copy_files(clone_flags, p);
1231	if (retval)
1232		goto bad_fork_cleanup_semundo;
1233	retval = copy_fs(clone_flags, p);
1234	if (retval)
1235		goto bad_fork_cleanup_files;
1236	retval = copy_sighand(clone_flags, p);
1237	if (retval)
1238		goto bad_fork_cleanup_fs;
1239	retval = copy_signal(clone_flags, p);
1240	if (retval)
1241		goto bad_fork_cleanup_sighand;
1242	retval = copy_mm(clone_flags, p);
1243	if (retval)
1244		goto bad_fork_cleanup_signal;
1245	retval = copy_namespaces(clone_flags, p);
1246	if (retval)
1247		goto bad_fork_cleanup_mm;
1248	retval = copy_io(clone_flags, p);
1249	if (retval)
1250		goto bad_fork_cleanup_namespaces;
1251	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1252	if (retval)
1253		goto bad_fork_cleanup_io;
1254
 
 
1255	if (pid != &init_struct_pid) {
1256		retval = -ENOMEM;
1257		pid = alloc_pid(p->nsproxy->pid_ns);
1258		if (!pid)
1259			goto bad_fork_cleanup_io;
 
 
1260	}
1261
1262	p->pid = pid_nr(pid);
1263	p->tgid = p->pid;
1264	if (clone_flags & CLONE_THREAD)
1265		p->tgid = current->tgid;
 
 
 
 
 
 
 
 
 
 
 
 
1266
1267	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1268	/*
1269	 * Clear TID on mm_release()?
1270	 */
1271	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1272#ifdef CONFIG_BLOCK
1273	p->plug = NULL;
1274#endif
1275#ifdef CONFIG_FUTEX
1276	p->robust_list = NULL;
1277#ifdef CONFIG_COMPAT
1278	p->compat_robust_list = NULL;
1279#endif
1280	INIT_LIST_HEAD(&p->pi_state_list);
1281	p->pi_state_cache = NULL;
1282#endif
1283	/*
1284	 * sigaltstack should be cleared when sharing the same VM
1285	 */
1286	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1287		p->sas_ss_sp = p->sas_ss_size = 0;
1288
1289	/*
1290	 * Syscall tracing and stepping should be turned off in the
1291	 * child regardless of CLONE_PTRACE.
1292	 */
1293	user_disable_single_step(p);
1294	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1295#ifdef TIF_SYSCALL_EMU
1296	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1297#endif
1298	clear_all_latency_tracing(p);
1299
1300	/* ok, now we should be set up.. */
1301	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
 
 
 
 
 
 
 
 
 
 
 
 
1302	p->pdeath_signal = 0;
1303	p->exit_state = 0;
 
 
 
 
 
 
 
 
1304
1305	/*
1306	 * Ok, make it visible to the rest of the system.
1307	 * We dont wake it up yet.
 
 
1308	 */
1309	p->group_leader = p;
1310	INIT_LIST_HEAD(&p->thread_group);
 
1311
1312	/* Now that the task is set up, run cgroup callbacks if
1313	 * necessary. We need to run them before the task is visible
1314	 * on the tasklist. */
1315	cgroup_fork_callbacks(p);
1316	cgroup_callbacks_done = 1;
 
 
 
 
 
1317
1318	/* Need tasklist lock for parent etc handling! */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319	write_lock_irq(&tasklist_lock);
1320
1321	/* CLONE_PARENT re-uses the old parent */
1322	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1323		p->real_parent = current->real_parent;
1324		p->parent_exec_id = current->parent_exec_id;
 
 
 
 
1325	} else {
1326		p->real_parent = current;
1327		p->parent_exec_id = current->self_exec_id;
 
1328	}
1329
 
 
 
 
1330	spin_lock(&current->sighand->siglock);
1331
1332	/*
1333	 * Process group and session signals need to be delivered to just the
1334	 * parent before the fork or both the parent and the child after the
1335	 * fork. Restart if a signal comes in before we add the new process to
1336	 * it's process group.
1337	 * A fatal signal pending means that current will exit, so the new
1338	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1339	*/
1340	recalc_sigpending();
1341	if (signal_pending(current)) {
1342		spin_unlock(&current->sighand->siglock);
1343		write_unlock_irq(&tasklist_lock);
1344		retval = -ERESTARTNOINTR;
1345		goto bad_fork_free_pid;
1346	}
1347
1348	if (clone_flags & CLONE_THREAD) {
1349		current->signal->nr_threads++;
1350		atomic_inc(&current->signal->live);
1351		atomic_inc(&current->signal->sigcnt);
1352		p->group_leader = current->group_leader;
1353		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1354	}
1355
 
 
 
 
 
 
 
 
 
1356	if (likely(p->pid)) {
1357		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1358
 
1359		if (thread_group_leader(p)) {
1360			if (is_child_reaper(pid))
1361				p->nsproxy->pid_ns->child_reaper = p;
1362
1363			p->signal->leader_pid = pid;
 
 
 
 
 
1364			p->signal->tty = tty_kref_get(current->signal->tty);
1365			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1366			attach_pid(p, PIDTYPE_SID, task_session(current));
 
 
 
 
 
1367			list_add_tail(&p->sibling, &p->real_parent->children);
1368			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 
 
 
1369			__this_cpu_inc(process_counts);
 
 
 
 
 
 
 
 
1370		}
1371		attach_pid(p, PIDTYPE_PID, pid);
1372		nr_threads++;
1373	}
1374
1375	total_forks++;
 
1376	spin_unlock(&current->sighand->siglock);
 
1377	write_unlock_irq(&tasklist_lock);
 
 
 
 
1378	proc_fork_connector(p);
1379	cgroup_post_fork(p);
1380	if (clone_flags & CLONE_THREAD)
1381		threadgroup_fork_read_unlock(current);
1382	perf_event_fork(p);
 
 
 
 
 
 
 
1383	return p;
1384
 
 
 
 
 
 
 
 
 
 
1385bad_fork_free_pid:
1386	if (pid != &init_struct_pid)
1387		free_pid(pid);
 
 
1388bad_fork_cleanup_io:
1389	if (p->io_context)
1390		exit_io_context(p);
1391bad_fork_cleanup_namespaces:
1392	exit_task_namespaces(p);
1393bad_fork_cleanup_mm:
1394	if (p->mm) {
1395		task_lock(p);
1396		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1397			atomic_dec(&p->mm->oom_disable_count);
1398		task_unlock(p);
1399		mmput(p->mm);
1400	}
1401bad_fork_cleanup_signal:
1402	if (!(clone_flags & CLONE_THREAD))
1403		free_signal_struct(p->signal);
1404bad_fork_cleanup_sighand:
1405	__cleanup_sighand(p->sighand);
1406bad_fork_cleanup_fs:
1407	exit_fs(p); /* blocking */
1408bad_fork_cleanup_files:
1409	exit_files(p); /* blocking */
1410bad_fork_cleanup_semundo:
1411	exit_sem(p);
 
 
1412bad_fork_cleanup_audit:
1413	audit_free(p);
 
 
1414bad_fork_cleanup_policy:
1415	perf_event_free_task(p);
1416#ifdef CONFIG_NUMA
1417	mpol_put(p->mempolicy);
1418bad_fork_cleanup_cgroup:
1419#endif
1420	if (clone_flags & CLONE_THREAD)
1421		threadgroup_fork_read_unlock(current);
1422	cgroup_exit(p, cgroup_callbacks_done);
1423	delayacct_tsk_free(p);
1424	module_put(task_thread_info(p)->exec_domain->module);
1425bad_fork_cleanup_count:
1426	atomic_dec(&p->cred->user->processes);
1427	exit_creds(p);
1428bad_fork_free:
1429	free_task(p);
 
 
 
1430fork_out:
 
 
 
1431	return ERR_PTR(retval);
1432}
1433
1434noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1435{
1436	memset(regs, 0, sizeof(struct pt_regs));
1437	return regs;
1438}
1439
1440static inline void init_idle_pids(struct pid_link *links)
1441{
1442	enum pid_type type;
1443
1444	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1445		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1446		links[type].pid = &init_struct_pid;
1447	}
1448}
1449
1450struct task_struct * __cpuinit fork_idle(int cpu)
 
 
 
 
 
 
1451{
1452	struct task_struct *task;
1453	struct pt_regs regs;
 
 
 
 
 
 
1454
1455	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1456			    &init_struct_pid, 0);
1457	if (!IS_ERR(task)) {
1458		init_idle_pids(task->pids);
1459		init_idle(task, cpu);
1460	}
1461
1462	return task;
1463}
1464
1465/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466 *  Ok, this is the main fork-routine.
1467 *
1468 * It copies the process, and if successful kick-starts
1469 * it and waits for it to finish using the VM if required.
 
 
1470 */
1471long do_fork(unsigned long clone_flags,
1472	      unsigned long stack_start,
1473	      struct pt_regs *regs,
1474	      unsigned long stack_size,
1475	      int __user *parent_tidptr,
1476	      int __user *child_tidptr)
1477{
 
 
 
1478	struct task_struct *p;
1479	int trace = 0;
1480	long nr;
1481
1482	/*
1483	 * Do some preliminary argument and permissions checking before we
1484	 * actually start allocating stuff
1485	 */
1486	if (clone_flags & CLONE_NEWUSER) {
1487		if (clone_flags & CLONE_THREAD)
1488			return -EINVAL;
1489		/* hopefully this check will go away when userns support is
1490		 * complete
1491		 */
1492		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1493				!capable(CAP_SETGID))
1494			return -EPERM;
1495	}
1496
1497	/*
1498	 * Determine whether and which event to report to ptracer.  When
1499	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1500	 * requested, no event is reported; otherwise, report if the event
1501	 * for the type of forking is enabled.
1502	 */
1503	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1504		if (clone_flags & CLONE_VFORK)
1505			trace = PTRACE_EVENT_VFORK;
1506		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1507			trace = PTRACE_EVENT_CLONE;
1508		else
1509			trace = PTRACE_EVENT_FORK;
1510
1511		if (likely(!ptrace_event_enabled(current, trace)))
1512			trace = 0;
1513	}
1514
1515	p = copy_process(clone_flags, stack_start, regs, stack_size,
1516			 child_tidptr, NULL, trace);
 
 
 
 
1517	/*
1518	 * Do this prior waking up the new thread - the thread pointer
1519	 * might get invalid after that point, if the thread exits quickly.
1520	 */
1521	if (!IS_ERR(p)) {
1522		struct completion vfork;
 
 
1523
1524		trace_sched_process_fork(current, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525
1526		nr = task_pid_vnr(p);
1527
1528		if (clone_flags & CLONE_PARENT_SETTID)
1529			put_user(nr, parent_tidptr);
 
1530
1531		if (clone_flags & CLONE_VFORK) {
1532			p->vfork_done = &vfork;
1533			init_completion(&vfork);
1534		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535
1536		audit_finish_fork(p);
1537
1538		/*
1539		 * We set PF_STARTING at creation in case tracing wants to
1540		 * use this to distinguish a fully live task from one that
1541		 * hasn't finished SIGSTOP raising yet.  Now we clear it
1542		 * and set the child going.
1543		 */
1544		p->flags &= ~PF_STARTING;
 
 
 
1545
1546		wake_up_new_task(p);
 
 
 
1547
1548		/* forking complete and child started to run, tell ptracer */
1549		if (unlikely(trace))
1550			ptrace_event(trace, nr);
1551
1552		if (clone_flags & CLONE_VFORK) {
1553			freezer_do_not_count();
1554			wait_for_completion(&vfork);
1555			freezer_count();
1556			ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
 
 
 
 
 
1557		}
1558	} else {
1559		nr = PTR_ERR(p);
1560	}
1561	return nr;
 
 
 
 
 
 
 
 
1562}
1563
1564#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1565#define ARCH_MIN_MMSTRUCT_ALIGN 0
1566#endif
1567
1568static void sighand_ctor(void *data)
1569{
1570	struct sighand_struct *sighand = data;
1571
1572	spin_lock_init(&sighand->siglock);
1573	init_waitqueue_head(&sighand->signalfd_wqh);
1574}
1575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576void __init proc_caches_init(void)
1577{
1578	sighand_cachep = kmem_cache_create("sighand_cache",
1579			sizeof(struct sighand_struct), 0,
1580			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1581			SLAB_NOTRACK, sighand_ctor);
1582	signal_cachep = kmem_cache_create("signal_cache",
1583			sizeof(struct signal_struct), 0,
1584			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
1585	files_cachep = kmem_cache_create("files_cache",
1586			sizeof(struct files_struct), 0,
1587			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
 
1588	fs_cachep = kmem_cache_create("fs_cache",
1589			sizeof(struct fs_struct), 0,
1590			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1591	/*
1592	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1593	 * whole struct cpumask for the OFFSTACK case. We could change
1594	 * this to *only* allocate as much of it as required by the
1595	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1596	 * is at the end of the structure, exactly for that reason.
1597	 */
1598	mm_cachep = kmem_cache_create("mm_struct",
1599			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1600			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1601	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1602	mmap_init();
1603	nsproxy_cache_init();
1604}
1605
1606/*
1607 * Check constraints on flags passed to the unshare system call.
1608 */
1609static int check_unshare_flags(unsigned long unshare_flags)
1610{
1611	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1612				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1613				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
 
 
1614		return -EINVAL;
1615	/*
1616	 * Not implemented, but pretend it works if there is nothing to
1617	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1618	 * needs to unshare vm.
 
1619	 */
1620	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1621		/* FIXME: get_task_mm() increments ->mm_users */
1622		if (atomic_read(&current->mm->mm_users) > 1)
 
 
 
 
 
 
 
1623			return -EINVAL;
1624	}
1625
1626	return 0;
1627}
1628
1629/*
1630 * Unshare the filesystem structure if it is being shared
1631 */
1632static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1633{
1634	struct fs_struct *fs = current->fs;
1635
1636	if (!(unshare_flags & CLONE_FS) || !fs)
1637		return 0;
1638
1639	/* don't need lock here; in the worst case we'll do useless copy */
1640	if (fs->users == 1)
1641		return 0;
1642
1643	*new_fsp = copy_fs_struct(fs);
1644	if (!*new_fsp)
1645		return -ENOMEM;
1646
1647	return 0;
1648}
1649
1650/*
1651 * Unshare file descriptor table if it is being shared
1652 */
1653static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
1654{
1655	struct files_struct *fd = current->files;
1656	int error = 0;
1657
1658	if ((unshare_flags & CLONE_FILES) &&
1659	    (fd && atomic_read(&fd->count) > 1)) {
1660		*new_fdp = dup_fd(fd, &error);
1661		if (!*new_fdp)
1662			return error;
1663	}
1664
1665	return 0;
1666}
1667
1668/*
1669 * unshare allows a process to 'unshare' part of the process
1670 * context which was originally shared using clone.  copy_*
1671 * functions used by do_fork() cannot be used here directly
1672 * because they modify an inactive task_struct that is being
1673 * constructed. Here we are modifying the current, active,
1674 * task_struct.
1675 */
1676SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1677{
1678	struct fs_struct *fs, *new_fs = NULL;
1679	struct files_struct *fd, *new_fd = NULL;
 
1680	struct nsproxy *new_nsproxy = NULL;
1681	int do_sysvsem = 0;
1682	int err;
1683
1684	err = check_unshare_flags(unshare_flags);
1685	if (err)
1686		goto bad_unshare_out;
1687
 
 
 
 
 
 
 
 
 
 
 
 
1688	/*
1689	 * If unsharing namespace, must also unshare filesystem information.
1690	 */
1691	if (unshare_flags & CLONE_NEWNS)
1692		unshare_flags |= CLONE_FS;
 
 
 
 
1693	/*
1694	 * CLONE_NEWIPC must also detach from the undolist: after switching
1695	 * to a new ipc namespace, the semaphore arrays from the old
1696	 * namespace are unreachable.
1697	 */
1698	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1699		do_sysvsem = 1;
1700	err = unshare_fs(unshare_flags, &new_fs);
1701	if (err)
1702		goto bad_unshare_out;
1703	err = unshare_fd(unshare_flags, &new_fd);
1704	if (err)
1705		goto bad_unshare_cleanup_fs;
1706	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1707	if (err)
1708		goto bad_unshare_cleanup_fd;
 
 
 
 
 
 
 
 
 
 
1709
1710	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1711		if (do_sysvsem) {
1712			/*
1713			 * CLONE_SYSVSEM is equivalent to sys_exit().
1714			 */
1715			exit_sem(current);
1716		}
 
 
 
 
 
1717
1718		if (new_nsproxy) {
1719			switch_task_namespaces(current, new_nsproxy);
1720			new_nsproxy = NULL;
1721		}
1722
1723		task_lock(current);
1724
1725		if (new_fs) {
1726			fs = current->fs;
1727			spin_lock(&fs->lock);
1728			current->fs = new_fs;
1729			if (--fs->users)
1730				new_fs = NULL;
1731			else
1732				new_fs = fs;
1733			spin_unlock(&fs->lock);
1734		}
1735
1736		if (new_fd) {
1737			fd = current->files;
1738			current->files = new_fd;
1739			new_fd = fd;
1740		}
1741
1742		task_unlock(current);
 
 
 
 
 
 
1743	}
1744
1745	if (new_nsproxy)
1746		put_nsproxy(new_nsproxy);
1747
 
 
 
1748bad_unshare_cleanup_fd:
1749	if (new_fd)
1750		put_files_struct(new_fd);
1751
1752bad_unshare_cleanup_fs:
1753	if (new_fs)
1754		free_fs_struct(new_fs);
1755
1756bad_unshare_out:
1757	return err;
1758}
1759
 
 
 
 
 
1760/*
1761 *	Helper to unshare the files of the current task.
1762 *	We don't want to expose copy_files internals to
1763 *	the exec layer of the kernel.
1764 */
1765
1766int unshare_files(struct files_struct **displaced)
1767{
1768	struct task_struct *task = current;
1769	struct files_struct *copy = NULL;
1770	int error;
1771
1772	error = unshare_fd(CLONE_FILES, &copy);
1773	if (error || !copy) {
1774		*displaced = NULL;
1775		return error;
1776	}
1777	*displaced = task->files;
1778	task_lock(task);
1779	task->files = copy;
1780	task_unlock(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	return 0;
1782}