Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/objtool.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
  35#include <linux/bpf_verifier.h>
  36#include <linux/nodemask.h>
  37#include <linux/nospec.h>
  38#include <linux/bpf_mem_alloc.h>
  39#include <linux/memcontrol.h>
  40
  41#include <asm/barrier.h>
  42#include <asm/unaligned.h>
  43
  44/* Registers */
  45#define BPF_R0	regs[BPF_REG_0]
  46#define BPF_R1	regs[BPF_REG_1]
  47#define BPF_R2	regs[BPF_REG_2]
  48#define BPF_R3	regs[BPF_REG_3]
  49#define BPF_R4	regs[BPF_REG_4]
  50#define BPF_R5	regs[BPF_REG_5]
  51#define BPF_R6	regs[BPF_REG_6]
  52#define BPF_R7	regs[BPF_REG_7]
  53#define BPF_R8	regs[BPF_REG_8]
  54#define BPF_R9	regs[BPF_REG_9]
  55#define BPF_R10	regs[BPF_REG_10]
  56
  57/* Named registers */
  58#define DST	regs[insn->dst_reg]
  59#define SRC	regs[insn->src_reg]
  60#define FP	regs[BPF_REG_FP]
  61#define AX	regs[BPF_REG_AX]
  62#define ARG1	regs[BPF_REG_ARG1]
  63#define CTX	regs[BPF_REG_CTX]
  64#define OFF	insn->off
  65#define IMM	insn->imm
  66
  67struct bpf_mem_alloc bpf_global_ma;
  68bool bpf_global_ma_set;
  69
  70/* No hurry in this branch
  71 *
  72 * Exported for the bpf jit load helper.
  73 */
  74void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  75{
  76	u8 *ptr = NULL;
  77
  78	if (k >= SKF_NET_OFF) {
  79		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  80	} else if (k >= SKF_LL_OFF) {
  81		if (unlikely(!skb_mac_header_was_set(skb)))
  82			return NULL;
  83		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  84	}
  85	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  86		return ptr;
  87
  88	return NULL;
  89}
  90
  91struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  92{
  93	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
  94	struct bpf_prog_aux *aux;
  95	struct bpf_prog *fp;
  96
  97	size = round_up(size, PAGE_SIZE);
  98	fp = __vmalloc(size, gfp_flags);
  99	if (fp == NULL)
 100		return NULL;
 101
 102	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 103	if (aux == NULL) {
 104		vfree(fp);
 105		return NULL;
 106	}
 107	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 108	if (!fp->active) {
 109		vfree(fp);
 110		kfree(aux);
 111		return NULL;
 112	}
 113
 114	fp->pages = size / PAGE_SIZE;
 115	fp->aux = aux;
 116	fp->aux->prog = fp;
 117	fp->jit_requested = ebpf_jit_enabled();
 118	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
 119#ifdef CONFIG_CGROUP_BPF
 120	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
 121#endif
 122
 123	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 124#ifdef CONFIG_FINEIBT
 125	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
 126#endif
 127	mutex_init(&fp->aux->used_maps_mutex);
 128	mutex_init(&fp->aux->dst_mutex);
 129
 130	return fp;
 131}
 132
 133struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 134{
 135	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 136	struct bpf_prog *prog;
 137	int cpu;
 138
 139	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 140	if (!prog)
 141		return NULL;
 142
 143	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 144	if (!prog->stats) {
 145		free_percpu(prog->active);
 146		kfree(prog->aux);
 147		vfree(prog);
 148		return NULL;
 149	}
 150
 151	for_each_possible_cpu(cpu) {
 152		struct bpf_prog_stats *pstats;
 153
 154		pstats = per_cpu_ptr(prog->stats, cpu);
 155		u64_stats_init(&pstats->syncp);
 156	}
 157	return prog;
 158}
 159EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 160
 161int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 162{
 163	if (!prog->aux->nr_linfo || !prog->jit_requested)
 164		return 0;
 165
 166	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
 167					  sizeof(*prog->aux->jited_linfo),
 168					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
 169	if (!prog->aux->jited_linfo)
 170		return -ENOMEM;
 171
 172	return 0;
 173}
 174
 175void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
 176{
 177	if (prog->aux->jited_linfo &&
 178	    (!prog->jited || !prog->aux->jited_linfo[0])) {
 179		kvfree(prog->aux->jited_linfo);
 180		prog->aux->jited_linfo = NULL;
 181	}
 182
 183	kfree(prog->aux->kfunc_tab);
 184	prog->aux->kfunc_tab = NULL;
 185}
 186
 187/* The jit engine is responsible to provide an array
 188 * for insn_off to the jited_off mapping (insn_to_jit_off).
 189 *
 190 * The idx to this array is the insn_off.  Hence, the insn_off
 191 * here is relative to the prog itself instead of the main prog.
 192 * This array has one entry for each xlated bpf insn.
 193 *
 194 * jited_off is the byte off to the end of the jited insn.
 195 *
 196 * Hence, with
 197 * insn_start:
 198 *      The first bpf insn off of the prog.  The insn off
 199 *      here is relative to the main prog.
 200 *      e.g. if prog is a subprog, insn_start > 0
 201 * linfo_idx:
 202 *      The prog's idx to prog->aux->linfo and jited_linfo
 203 *
 204 * jited_linfo[linfo_idx] = prog->bpf_func
 205 *
 206 * For i > linfo_idx,
 207 *
 208 * jited_linfo[i] = prog->bpf_func +
 209 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 210 */
 211void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 212			       const u32 *insn_to_jit_off)
 213{
 214	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 215	const struct bpf_line_info *linfo;
 216	void **jited_linfo;
 217
 218	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
 219		/* Userspace did not provide linfo */
 220		return;
 221
 222	linfo_idx = prog->aux->linfo_idx;
 223	linfo = &prog->aux->linfo[linfo_idx];
 224	insn_start = linfo[0].insn_off;
 225	insn_end = insn_start + prog->len;
 226
 227	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 228	jited_linfo[0] = prog->bpf_func;
 229
 230	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 231
 232	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 233		/* The verifier ensures that linfo[i].insn_off is
 234		 * strictly increasing
 235		 */
 236		jited_linfo[i] = prog->bpf_func +
 237			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 238}
 239
 240struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 241				  gfp_t gfp_extra_flags)
 242{
 243	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 244	struct bpf_prog *fp;
 245	u32 pages;
 246
 247	size = round_up(size, PAGE_SIZE);
 248	pages = size / PAGE_SIZE;
 249	if (pages <= fp_old->pages)
 250		return fp_old;
 251
 252	fp = __vmalloc(size, gfp_flags);
 253	if (fp) {
 254		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 255		fp->pages = pages;
 256		fp->aux->prog = fp;
 257
 258		/* We keep fp->aux from fp_old around in the new
 259		 * reallocated structure.
 260		 */
 261		fp_old->aux = NULL;
 262		fp_old->stats = NULL;
 263		fp_old->active = NULL;
 264		__bpf_prog_free(fp_old);
 265	}
 266
 267	return fp;
 268}
 269
 270void __bpf_prog_free(struct bpf_prog *fp)
 271{
 272	if (fp->aux) {
 273		mutex_destroy(&fp->aux->used_maps_mutex);
 274		mutex_destroy(&fp->aux->dst_mutex);
 275		kfree(fp->aux->poke_tab);
 276		kfree(fp->aux);
 277	}
 278	free_percpu(fp->stats);
 279	free_percpu(fp->active);
 280	vfree(fp);
 281}
 282
 283int bpf_prog_calc_tag(struct bpf_prog *fp)
 284{
 285	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 286	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 287	u32 digest[SHA1_DIGEST_WORDS];
 288	u32 ws[SHA1_WORKSPACE_WORDS];
 289	u32 i, bsize, psize, blocks;
 290	struct bpf_insn *dst;
 291	bool was_ld_map;
 292	u8 *raw, *todo;
 293	__be32 *result;
 294	__be64 *bits;
 295
 296	raw = vmalloc(raw_size);
 297	if (!raw)
 298		return -ENOMEM;
 299
 300	sha1_init(digest);
 301	memset(ws, 0, sizeof(ws));
 302
 303	/* We need to take out the map fd for the digest calculation
 304	 * since they are unstable from user space side.
 305	 */
 306	dst = (void *)raw;
 307	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 308		dst[i] = fp->insnsi[i];
 309		if (!was_ld_map &&
 310		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 311		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 312		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 313			was_ld_map = true;
 314			dst[i].imm = 0;
 315		} else if (was_ld_map &&
 316			   dst[i].code == 0 &&
 317			   dst[i].dst_reg == 0 &&
 318			   dst[i].src_reg == 0 &&
 319			   dst[i].off == 0) {
 320			was_ld_map = false;
 321			dst[i].imm = 0;
 322		} else {
 323			was_ld_map = false;
 324		}
 325	}
 326
 327	psize = bpf_prog_insn_size(fp);
 328	memset(&raw[psize], 0, raw_size - psize);
 329	raw[psize++] = 0x80;
 330
 331	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 332	blocks = bsize / SHA1_BLOCK_SIZE;
 333	todo   = raw;
 334	if (bsize - psize >= sizeof(__be64)) {
 335		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 336	} else {
 337		bits = (__be64 *)(todo + bsize + bits_offset);
 338		blocks++;
 339	}
 340	*bits = cpu_to_be64((psize - 1) << 3);
 341
 342	while (blocks--) {
 343		sha1_transform(digest, todo, ws);
 344		todo += SHA1_BLOCK_SIZE;
 345	}
 346
 347	result = (__force __be32 *)digest;
 348	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 349		result[i] = cpu_to_be32(digest[i]);
 350	memcpy(fp->tag, result, sizeof(fp->tag));
 351
 352	vfree(raw);
 353	return 0;
 354}
 355
 356static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 357				s32 end_new, s32 curr, const bool probe_pass)
 358{
 359	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 360	s32 delta = end_new - end_old;
 361	s64 imm = insn->imm;
 362
 363	if (curr < pos && curr + imm + 1 >= end_old)
 364		imm += delta;
 365	else if (curr >= end_new && curr + imm + 1 < end_new)
 366		imm -= delta;
 367	if (imm < imm_min || imm > imm_max)
 368		return -ERANGE;
 369	if (!probe_pass)
 370		insn->imm = imm;
 371	return 0;
 372}
 373
 374static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 375				s32 end_new, s32 curr, const bool probe_pass)
 376{
 377	s64 off_min, off_max, off;
 378	s32 delta = end_new - end_old;
 379
 380	if (insn->code == (BPF_JMP32 | BPF_JA)) {
 381		off = insn->imm;
 382		off_min = S32_MIN;
 383		off_max = S32_MAX;
 384	} else {
 385		off = insn->off;
 386		off_min = S16_MIN;
 387		off_max = S16_MAX;
 388	}
 389
 390	if (curr < pos && curr + off + 1 >= end_old)
 391		off += delta;
 392	else if (curr >= end_new && curr + off + 1 < end_new)
 393		off -= delta;
 394	if (off < off_min || off > off_max)
 395		return -ERANGE;
 396	if (!probe_pass) {
 397		if (insn->code == (BPF_JMP32 | BPF_JA))
 398			insn->imm = off;
 399		else
 400			insn->off = off;
 401	}
 402	return 0;
 403}
 404
 405static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 406			    s32 end_new, const bool probe_pass)
 407{
 408	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 409	struct bpf_insn *insn = prog->insnsi;
 410	int ret = 0;
 411
 412	for (i = 0; i < insn_cnt; i++, insn++) {
 413		u8 code;
 414
 415		/* In the probing pass we still operate on the original,
 416		 * unpatched image in order to check overflows before we
 417		 * do any other adjustments. Therefore skip the patchlet.
 418		 */
 419		if (probe_pass && i == pos) {
 420			i = end_new;
 421			insn = prog->insnsi + end_old;
 422		}
 423		if (bpf_pseudo_func(insn)) {
 424			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 425						   end_new, i, probe_pass);
 426			if (ret)
 427				return ret;
 428			continue;
 429		}
 430		code = insn->code;
 431		if ((BPF_CLASS(code) != BPF_JMP &&
 432		     BPF_CLASS(code) != BPF_JMP32) ||
 433		    BPF_OP(code) == BPF_EXIT)
 434			continue;
 435		/* Adjust offset of jmps if we cross patch boundaries. */
 436		if (BPF_OP(code) == BPF_CALL) {
 437			if (insn->src_reg != BPF_PSEUDO_CALL)
 438				continue;
 439			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 440						   end_new, i, probe_pass);
 441		} else {
 442			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 443						   end_new, i, probe_pass);
 444		}
 445		if (ret)
 446			break;
 447	}
 448
 449	return ret;
 450}
 451
 452static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 453{
 454	struct bpf_line_info *linfo;
 455	u32 i, nr_linfo;
 456
 457	nr_linfo = prog->aux->nr_linfo;
 458	if (!nr_linfo || !delta)
 459		return;
 460
 461	linfo = prog->aux->linfo;
 462
 463	for (i = 0; i < nr_linfo; i++)
 464		if (off < linfo[i].insn_off)
 465			break;
 466
 467	/* Push all off < linfo[i].insn_off by delta */
 468	for (; i < nr_linfo; i++)
 469		linfo[i].insn_off += delta;
 470}
 471
 472struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 473				       const struct bpf_insn *patch, u32 len)
 474{
 475	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 476	const u32 cnt_max = S16_MAX;
 477	struct bpf_prog *prog_adj;
 478	int err;
 479
 480	/* Since our patchlet doesn't expand the image, we're done. */
 481	if (insn_delta == 0) {
 482		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 483		return prog;
 484	}
 485
 486	insn_adj_cnt = prog->len + insn_delta;
 487
 488	/* Reject anything that would potentially let the insn->off
 489	 * target overflow when we have excessive program expansions.
 490	 * We need to probe here before we do any reallocation where
 491	 * we afterwards may not fail anymore.
 492	 */
 493	if (insn_adj_cnt > cnt_max &&
 494	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 495		return ERR_PTR(err);
 496
 497	/* Several new instructions need to be inserted. Make room
 498	 * for them. Likely, there's no need for a new allocation as
 499	 * last page could have large enough tailroom.
 500	 */
 501	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 502				    GFP_USER);
 503	if (!prog_adj)
 504		return ERR_PTR(-ENOMEM);
 505
 506	prog_adj->len = insn_adj_cnt;
 507
 508	/* Patching happens in 3 steps:
 509	 *
 510	 * 1) Move over tail of insnsi from next instruction onwards,
 511	 *    so we can patch the single target insn with one or more
 512	 *    new ones (patching is always from 1 to n insns, n > 0).
 513	 * 2) Inject new instructions at the target location.
 514	 * 3) Adjust branch offsets if necessary.
 515	 */
 516	insn_rest = insn_adj_cnt - off - len;
 517
 518	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 519		sizeof(*patch) * insn_rest);
 520	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 521
 522	/* We are guaranteed to not fail at this point, otherwise
 523	 * the ship has sailed to reverse to the original state. An
 524	 * overflow cannot happen at this point.
 525	 */
 526	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 527
 528	bpf_adj_linfo(prog_adj, off, insn_delta);
 529
 530	return prog_adj;
 531}
 532
 533int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 534{
 535	/* Branch offsets can't overflow when program is shrinking, no need
 536	 * to call bpf_adj_branches(..., true) here
 537	 */
 538	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 539		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 540	prog->len -= cnt;
 541
 542	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 543}
 544
 545static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 546{
 547	int i;
 548
 549	for (i = 0; i < fp->aux->real_func_cnt; i++)
 550		bpf_prog_kallsyms_del(fp->aux->func[i]);
 551}
 552
 553void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 554{
 555	bpf_prog_kallsyms_del_subprogs(fp);
 556	bpf_prog_kallsyms_del(fp);
 557}
 558
 559#ifdef CONFIG_BPF_JIT
 560/* All BPF JIT sysctl knobs here. */
 561int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 562int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 563int bpf_jit_harden   __read_mostly;
 564long bpf_jit_limit   __read_mostly;
 565long bpf_jit_limit_max __read_mostly;
 566
 567static void
 568bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 569{
 
 
 
 570	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 571
 572	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 573	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
 574}
 575
 576static void
 577bpf_prog_ksym_set_name(struct bpf_prog *prog)
 578{
 579	char *sym = prog->aux->ksym.name;
 580	const char *end = sym + KSYM_NAME_LEN;
 581	const struct btf_type *type;
 582	const char *func_name;
 583
 584	BUILD_BUG_ON(sizeof("bpf_prog_") +
 585		     sizeof(prog->tag) * 2 +
 586		     /* name has been null terminated.
 587		      * We should need +1 for the '_' preceding
 588		      * the name.  However, the null character
 589		      * is double counted between the name and the
 590		      * sizeof("bpf_prog_") above, so we omit
 591		      * the +1 here.
 592		      */
 593		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 594
 595	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 596	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 597
 598	/* prog->aux->name will be ignored if full btf name is available */
 599	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
 600		type = btf_type_by_id(prog->aux->btf,
 601				      prog->aux->func_info[prog->aux->func_idx].type_id);
 602		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 603		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 604		return;
 605	}
 606
 607	if (prog->aux->name[0])
 608		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 609	else
 610		*sym = 0;
 611}
 612
 613static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 614{
 615	return container_of(n, struct bpf_ksym, tnode)->start;
 616}
 617
 618static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 619					  struct latch_tree_node *b)
 620{
 621	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 622}
 623
 624static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 625{
 626	unsigned long val = (unsigned long)key;
 627	const struct bpf_ksym *ksym;
 628
 629	ksym = container_of(n, struct bpf_ksym, tnode);
 630
 631	if (val < ksym->start)
 632		return -1;
 633	/* Ensure that we detect return addresses as part of the program, when
 634	 * the final instruction is a call for a program part of the stack
 635	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
 636	 */
 637	if (val > ksym->end)
 638		return  1;
 639
 640	return 0;
 641}
 642
 643static const struct latch_tree_ops bpf_tree_ops = {
 644	.less	= bpf_tree_less,
 645	.comp	= bpf_tree_comp,
 646};
 647
 648static DEFINE_SPINLOCK(bpf_lock);
 649static LIST_HEAD(bpf_kallsyms);
 650static struct latch_tree_root bpf_tree __cacheline_aligned;
 651
 652void bpf_ksym_add(struct bpf_ksym *ksym)
 653{
 654	spin_lock_bh(&bpf_lock);
 655	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 656	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 657	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 658	spin_unlock_bh(&bpf_lock);
 659}
 660
 661static void __bpf_ksym_del(struct bpf_ksym *ksym)
 662{
 663	if (list_empty(&ksym->lnode))
 664		return;
 665
 666	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 667	list_del_rcu(&ksym->lnode);
 668}
 669
 670void bpf_ksym_del(struct bpf_ksym *ksym)
 671{
 672	spin_lock_bh(&bpf_lock);
 673	__bpf_ksym_del(ksym);
 674	spin_unlock_bh(&bpf_lock);
 675}
 676
 677static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 678{
 679	return fp->jited && !bpf_prog_was_classic(fp);
 680}
 681
 
 
 
 
 
 
 682void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 683{
 684	if (!bpf_prog_kallsyms_candidate(fp) ||
 685	    !bpf_capable())
 686		return;
 687
 688	bpf_prog_ksym_set_addr(fp);
 689	bpf_prog_ksym_set_name(fp);
 690	fp->aux->ksym.prog = true;
 691
 692	bpf_ksym_add(&fp->aux->ksym);
 693
 694#ifdef CONFIG_FINEIBT
 695	/*
 696	 * When FineIBT, code in the __cfi_foo() symbols can get executed
 697	 * and hence unwinder needs help.
 698	 */
 699	if (cfi_mode != CFI_FINEIBT)
 700		return;
 701
 702	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
 703		 "__cfi_%s", fp->aux->ksym.name);
 704
 705	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
 706	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
 707
 708	bpf_ksym_add(&fp->aux->ksym_prefix);
 709#endif
 710}
 711
 712void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 713{
 714	if (!bpf_prog_kallsyms_candidate(fp))
 715		return;
 716
 717	bpf_ksym_del(&fp->aux->ksym);
 718#ifdef CONFIG_FINEIBT
 719	if (cfi_mode != CFI_FINEIBT)
 720		return;
 721	bpf_ksym_del(&fp->aux->ksym_prefix);
 722#endif
 723}
 724
 725static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 726{
 727	struct latch_tree_node *n;
 728
 729	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 730	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 731}
 732
 733const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 734				 unsigned long *off, char *sym)
 735{
 736	struct bpf_ksym *ksym;
 737	char *ret = NULL;
 738
 739	rcu_read_lock();
 740	ksym = bpf_ksym_find(addr);
 741	if (ksym) {
 742		unsigned long symbol_start = ksym->start;
 743		unsigned long symbol_end = ksym->end;
 744
 745		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 746
 747		ret = sym;
 748		if (size)
 749			*size = symbol_end - symbol_start;
 750		if (off)
 751			*off  = addr - symbol_start;
 752	}
 753	rcu_read_unlock();
 754
 755	return ret;
 756}
 757
 758bool is_bpf_text_address(unsigned long addr)
 759{
 760	bool ret;
 761
 762	rcu_read_lock();
 763	ret = bpf_ksym_find(addr) != NULL;
 764	rcu_read_unlock();
 765
 766	return ret;
 767}
 768
 769struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 770{
 771	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 772
 773	return ksym && ksym->prog ?
 774	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 775	       NULL;
 776}
 777
 778const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 779{
 780	const struct exception_table_entry *e = NULL;
 781	struct bpf_prog *prog;
 782
 783	rcu_read_lock();
 784	prog = bpf_prog_ksym_find(addr);
 785	if (!prog)
 786		goto out;
 787	if (!prog->aux->num_exentries)
 788		goto out;
 789
 790	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 791out:
 792	rcu_read_unlock();
 793	return e;
 794}
 795
 796int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 797		    char *sym)
 798{
 799	struct bpf_ksym *ksym;
 800	unsigned int it = 0;
 801	int ret = -ERANGE;
 802
 803	if (!bpf_jit_kallsyms_enabled())
 804		return ret;
 805
 806	rcu_read_lock();
 807	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 808		if (it++ != symnum)
 809			continue;
 810
 811		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 812
 813		*value = ksym->start;
 814		*type  = BPF_SYM_ELF_TYPE;
 815
 816		ret = 0;
 817		break;
 818	}
 819	rcu_read_unlock();
 820
 821	return ret;
 822}
 823
 824int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 825				struct bpf_jit_poke_descriptor *poke)
 826{
 827	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 828	static const u32 poke_tab_max = 1024;
 829	u32 slot = prog->aux->size_poke_tab;
 830	u32 size = slot + 1;
 831
 832	if (size > poke_tab_max)
 833		return -ENOSPC;
 834	if (poke->tailcall_target || poke->tailcall_target_stable ||
 835	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
 836		return -EINVAL;
 837
 838	switch (poke->reason) {
 839	case BPF_POKE_REASON_TAIL_CALL:
 840		if (!poke->tail_call.map)
 841			return -EINVAL;
 842		break;
 843	default:
 844		return -EINVAL;
 845	}
 846
 847	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
 848	if (!tab)
 849		return -ENOMEM;
 850
 851	memcpy(&tab[slot], poke, sizeof(*poke));
 852	prog->aux->size_poke_tab = size;
 853	prog->aux->poke_tab = tab;
 854
 855	return slot;
 856}
 857
 858/*
 859 * BPF program pack allocator.
 860 *
 861 * Most BPF programs are pretty small. Allocating a hole page for each
 862 * program is sometime a waste. Many small bpf program also adds pressure
 863 * to instruction TLB. To solve this issue, we introduce a BPF program pack
 864 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
 865 * to host BPF programs.
 866 */
 867#define BPF_PROG_CHUNK_SHIFT	6
 868#define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
 869#define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
 870
 871struct bpf_prog_pack {
 872	struct list_head list;
 873	void *ptr;
 874	unsigned long bitmap[];
 875};
 876
 877void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
 878{
 879	memset(area, 0, size);
 880}
 881
 882#define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
 883
 884static DEFINE_MUTEX(pack_mutex);
 885static LIST_HEAD(pack_list);
 886
 887/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
 888 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
 889 */
 890#ifdef PMD_SIZE
 891#define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
 892#else
 893#define BPF_PROG_PACK_SIZE PAGE_SIZE
 894#endif
 895
 896#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
 897
 898static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
 899{
 900	struct bpf_prog_pack *pack;
 901
 902	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
 903		       GFP_KERNEL);
 904	if (!pack)
 905		return NULL;
 906	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
 907	if (!pack->ptr) {
 908		kfree(pack);
 909		return NULL;
 910	}
 911	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
 912	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
 913	list_add_tail(&pack->list, &pack_list);
 914
 915	set_vm_flush_reset_perms(pack->ptr);
 916	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
 917	return pack;
 918}
 919
 920void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
 921{
 922	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
 923	struct bpf_prog_pack *pack;
 924	unsigned long pos;
 925	void *ptr = NULL;
 926
 927	mutex_lock(&pack_mutex);
 928	if (size > BPF_PROG_PACK_SIZE) {
 929		size = round_up(size, PAGE_SIZE);
 930		ptr = bpf_jit_alloc_exec(size);
 931		if (ptr) {
 932			bpf_fill_ill_insns(ptr, size);
 933			set_vm_flush_reset_perms(ptr);
 934			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
 935		}
 936		goto out;
 937	}
 938	list_for_each_entry(pack, &pack_list, list) {
 939		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 940						 nbits, 0);
 941		if (pos < BPF_PROG_CHUNK_COUNT)
 942			goto found_free_area;
 943	}
 944
 945	pack = alloc_new_pack(bpf_fill_ill_insns);
 946	if (!pack)
 947		goto out;
 948
 949	pos = 0;
 950
 951found_free_area:
 952	bitmap_set(pack->bitmap, pos, nbits);
 953	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
 954
 955out:
 956	mutex_unlock(&pack_mutex);
 957	return ptr;
 958}
 959
 960void bpf_prog_pack_free(void *ptr, u32 size)
 961{
 962	struct bpf_prog_pack *pack = NULL, *tmp;
 963	unsigned int nbits;
 964	unsigned long pos;
 965
 966	mutex_lock(&pack_mutex);
 967	if (size > BPF_PROG_PACK_SIZE) {
 968		bpf_jit_free_exec(ptr);
 969		goto out;
 970	}
 971
 972	list_for_each_entry(tmp, &pack_list, list) {
 973		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
 974			pack = tmp;
 975			break;
 976		}
 977	}
 978
 979	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
 980		goto out;
 981
 982	nbits = BPF_PROG_SIZE_TO_NBITS(size);
 983	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
 984
 985	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
 986		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
 987
 988	bitmap_clear(pack->bitmap, pos, nbits);
 989	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 990				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
 991		list_del(&pack->list);
 992		bpf_jit_free_exec(pack->ptr);
 993		kfree(pack);
 994	}
 995out:
 996	mutex_unlock(&pack_mutex);
 997}
 998
 999static atomic_long_t bpf_jit_current;
1000
1001/* Can be overridden by an arch's JIT compiler if it has a custom,
1002 * dedicated BPF backend memory area, or if neither of the two
1003 * below apply.
1004 */
1005u64 __weak bpf_jit_alloc_exec_limit(void)
1006{
1007#if defined(MODULES_VADDR)
1008	return MODULES_END - MODULES_VADDR;
1009#else
1010	return VMALLOC_END - VMALLOC_START;
1011#endif
1012}
1013
1014static int __init bpf_jit_charge_init(void)
1015{
1016	/* Only used as heuristic here to derive limit. */
1017	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1018	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1019					    PAGE_SIZE), LONG_MAX);
1020	return 0;
1021}
1022pure_initcall(bpf_jit_charge_init);
1023
1024int bpf_jit_charge_modmem(u32 size)
1025{
1026	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
 
1027		if (!bpf_capable()) {
1028			atomic_long_sub(size, &bpf_jit_current);
1029			return -EPERM;
1030		}
1031	}
1032
1033	return 0;
1034}
1035
1036void bpf_jit_uncharge_modmem(u32 size)
1037{
1038	atomic_long_sub(size, &bpf_jit_current);
1039}
1040
1041void *__weak bpf_jit_alloc_exec(unsigned long size)
1042{
1043	return module_alloc(size);
1044}
1045
1046void __weak bpf_jit_free_exec(void *addr)
1047{
1048	module_memfree(addr);
1049}
1050
1051struct bpf_binary_header *
1052bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1053		     unsigned int alignment,
1054		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1055{
1056	struct bpf_binary_header *hdr;
1057	u32 size, hole, start;
1058
1059	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1060		     alignment > BPF_IMAGE_ALIGNMENT);
1061
1062	/* Most of BPF filters are really small, but if some of them
1063	 * fill a page, allow at least 128 extra bytes to insert a
1064	 * random section of illegal instructions.
1065	 */
1066	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 
1067
1068	if (bpf_jit_charge_modmem(size))
1069		return NULL;
1070	hdr = bpf_jit_alloc_exec(size);
1071	if (!hdr) {
1072		bpf_jit_uncharge_modmem(size);
1073		return NULL;
1074	}
1075
1076	/* Fill space with illegal/arch-dep instructions. */
1077	bpf_fill_ill_insns(hdr, size);
1078
1079	hdr->size = size;
1080	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1081		     PAGE_SIZE - sizeof(*hdr));
1082	start = get_random_u32_below(hole) & ~(alignment - 1);
1083
1084	/* Leave a random number of instructions before BPF code. */
1085	*image_ptr = &hdr->image[start];
1086
1087	return hdr;
1088}
1089
1090void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1091{
1092	u32 size = hdr->size;
1093
1094	bpf_jit_free_exec(hdr);
1095	bpf_jit_uncharge_modmem(size);
1096}
1097
1098/* Allocate jit binary from bpf_prog_pack allocator.
1099 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1100 * to the memory. To solve this problem, a RW buffer is also allocated at
1101 * as the same time. The JIT engine should calculate offsets based on the
1102 * RO memory address, but write JITed program to the RW buffer. Once the
1103 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1104 * the JITed program to the RO memory.
1105 */
1106struct bpf_binary_header *
1107bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1108			  unsigned int alignment,
1109			  struct bpf_binary_header **rw_header,
1110			  u8 **rw_image,
1111			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1112{
1113	struct bpf_binary_header *ro_header;
1114	u32 size, hole, start;
1115
1116	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1117		     alignment > BPF_IMAGE_ALIGNMENT);
1118
1119	/* add 16 bytes for a random section of illegal instructions */
1120	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1121
1122	if (bpf_jit_charge_modmem(size))
1123		return NULL;
1124	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1125	if (!ro_header) {
1126		bpf_jit_uncharge_modmem(size);
1127		return NULL;
1128	}
1129
1130	*rw_header = kvmalloc(size, GFP_KERNEL);
1131	if (!*rw_header) {
1132		bpf_prog_pack_free(ro_header, size);
1133		bpf_jit_uncharge_modmem(size);
1134		return NULL;
1135	}
1136
1137	/* Fill space with illegal/arch-dep instructions. */
1138	bpf_fill_ill_insns(*rw_header, size);
1139	(*rw_header)->size = size;
1140
1141	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1142		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1143	start = get_random_u32_below(hole) & ~(alignment - 1);
1144
1145	*image_ptr = &ro_header->image[start];
1146	*rw_image = &(*rw_header)->image[start];
1147
1148	return ro_header;
1149}
1150
1151/* Copy JITed text from rw_header to its final location, the ro_header. */
1152int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1153				 struct bpf_binary_header *ro_header,
1154				 struct bpf_binary_header *rw_header)
1155{
1156	void *ptr;
1157
1158	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1159
1160	kvfree(rw_header);
1161
1162	if (IS_ERR(ptr)) {
1163		bpf_prog_pack_free(ro_header, ro_header->size);
1164		return PTR_ERR(ptr);
1165	}
1166	return 0;
1167}
1168
1169/* bpf_jit_binary_pack_free is called in two different scenarios:
1170 *   1) when the program is freed after;
1171 *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1172 * For case 2), we need to free both the RO memory and the RW buffer.
1173 *
1174 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1175 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1176 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1177 * bpf_arch_text_copy (when jit fails).
1178 */
1179void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1180			      struct bpf_binary_header *rw_header)
1181{
1182	u32 size = ro_header->size;
1183
1184	bpf_prog_pack_free(ro_header, size);
1185	kvfree(rw_header);
1186	bpf_jit_uncharge_modmem(size);
1187}
1188
1189struct bpf_binary_header *
1190bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1191{
1192	unsigned long real_start = (unsigned long)fp->bpf_func;
1193	unsigned long addr;
1194
1195	addr = real_start & BPF_PROG_CHUNK_MASK;
1196	return (void *)addr;
1197}
1198
1199static inline struct bpf_binary_header *
1200bpf_jit_binary_hdr(const struct bpf_prog *fp)
1201{
1202	unsigned long real_start = (unsigned long)fp->bpf_func;
1203	unsigned long addr;
1204
1205	addr = real_start & PAGE_MASK;
1206	return (void *)addr;
1207}
1208
1209/* This symbol is only overridden by archs that have different
1210 * requirements than the usual eBPF JITs, f.e. when they only
1211 * implement cBPF JIT, do not set images read-only, etc.
1212 */
1213void __weak bpf_jit_free(struct bpf_prog *fp)
1214{
1215	if (fp->jited) {
1216		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1217
1218		bpf_jit_binary_free(hdr);
 
1219		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1220	}
1221
1222	bpf_prog_unlock_free(fp);
1223}
1224
1225int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1226			  const struct bpf_insn *insn, bool extra_pass,
1227			  u64 *func_addr, bool *func_addr_fixed)
1228{
1229	s16 off = insn->off;
1230	s32 imm = insn->imm;
1231	u8 *addr;
1232	int err;
1233
1234	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1235	if (!*func_addr_fixed) {
1236		/* Place-holder address till the last pass has collected
1237		 * all addresses for JITed subprograms in which case we
1238		 * can pick them up from prog->aux.
1239		 */
1240		if (!extra_pass)
1241			addr = NULL;
1242		else if (prog->aux->func &&
1243			 off >= 0 && off < prog->aux->real_func_cnt)
1244			addr = (u8 *)prog->aux->func[off]->bpf_func;
1245		else
1246			return -EINVAL;
1247	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1248		   bpf_jit_supports_far_kfunc_call()) {
1249		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1250		if (err)
1251			return err;
1252	} else {
1253		/* Address of a BPF helper call. Since part of the core
1254		 * kernel, it's always at a fixed location. __bpf_call_base
1255		 * and the helper with imm relative to it are both in core
1256		 * kernel.
1257		 */
1258		addr = (u8 *)__bpf_call_base + imm;
1259	}
1260
1261	*func_addr = (unsigned long)addr;
1262	return 0;
1263}
1264
1265static int bpf_jit_blind_insn(const struct bpf_insn *from,
1266			      const struct bpf_insn *aux,
1267			      struct bpf_insn *to_buff,
1268			      bool emit_zext)
1269{
1270	struct bpf_insn *to = to_buff;
1271	u32 imm_rnd = get_random_u32();
1272	s16 off;
1273
1274	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1275	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1276
1277	/* Constraints on AX register:
1278	 *
1279	 * AX register is inaccessible from user space. It is mapped in
1280	 * all JITs, and used here for constant blinding rewrites. It is
1281	 * typically "stateless" meaning its contents are only valid within
1282	 * the executed instruction, but not across several instructions.
1283	 * There are a few exceptions however which are further detailed
1284	 * below.
1285	 *
1286	 * Constant blinding is only used by JITs, not in the interpreter.
1287	 * The interpreter uses AX in some occasions as a local temporary
1288	 * register e.g. in DIV or MOD instructions.
1289	 *
1290	 * In restricted circumstances, the verifier can also use the AX
1291	 * register for rewrites as long as they do not interfere with
1292	 * the above cases!
1293	 */
1294	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1295		goto out;
1296
1297	if (from->imm == 0 &&
1298	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1299	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1300		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1301		goto out;
1302	}
1303
1304	switch (from->code) {
1305	case BPF_ALU | BPF_ADD | BPF_K:
1306	case BPF_ALU | BPF_SUB | BPF_K:
1307	case BPF_ALU | BPF_AND | BPF_K:
1308	case BPF_ALU | BPF_OR  | BPF_K:
1309	case BPF_ALU | BPF_XOR | BPF_K:
1310	case BPF_ALU | BPF_MUL | BPF_K:
1311	case BPF_ALU | BPF_MOV | BPF_K:
1312	case BPF_ALU | BPF_DIV | BPF_K:
1313	case BPF_ALU | BPF_MOD | BPF_K:
1314		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1315		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1316		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1317		break;
1318
1319	case BPF_ALU64 | BPF_ADD | BPF_K:
1320	case BPF_ALU64 | BPF_SUB | BPF_K:
1321	case BPF_ALU64 | BPF_AND | BPF_K:
1322	case BPF_ALU64 | BPF_OR  | BPF_K:
1323	case BPF_ALU64 | BPF_XOR | BPF_K:
1324	case BPF_ALU64 | BPF_MUL | BPF_K:
1325	case BPF_ALU64 | BPF_MOV | BPF_K:
1326	case BPF_ALU64 | BPF_DIV | BPF_K:
1327	case BPF_ALU64 | BPF_MOD | BPF_K:
1328		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1329		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1330		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1331		break;
1332
1333	case BPF_JMP | BPF_JEQ  | BPF_K:
1334	case BPF_JMP | BPF_JNE  | BPF_K:
1335	case BPF_JMP | BPF_JGT  | BPF_K:
1336	case BPF_JMP | BPF_JLT  | BPF_K:
1337	case BPF_JMP | BPF_JGE  | BPF_K:
1338	case BPF_JMP | BPF_JLE  | BPF_K:
1339	case BPF_JMP | BPF_JSGT | BPF_K:
1340	case BPF_JMP | BPF_JSLT | BPF_K:
1341	case BPF_JMP | BPF_JSGE | BPF_K:
1342	case BPF_JMP | BPF_JSLE | BPF_K:
1343	case BPF_JMP | BPF_JSET | BPF_K:
1344		/* Accommodate for extra offset in case of a backjump. */
1345		off = from->off;
1346		if (off < 0)
1347			off -= 2;
1348		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1349		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1350		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1351		break;
1352
1353	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1354	case BPF_JMP32 | BPF_JNE  | BPF_K:
1355	case BPF_JMP32 | BPF_JGT  | BPF_K:
1356	case BPF_JMP32 | BPF_JLT  | BPF_K:
1357	case BPF_JMP32 | BPF_JGE  | BPF_K:
1358	case BPF_JMP32 | BPF_JLE  | BPF_K:
1359	case BPF_JMP32 | BPF_JSGT | BPF_K:
1360	case BPF_JMP32 | BPF_JSLT | BPF_K:
1361	case BPF_JMP32 | BPF_JSGE | BPF_K:
1362	case BPF_JMP32 | BPF_JSLE | BPF_K:
1363	case BPF_JMP32 | BPF_JSET | BPF_K:
1364		/* Accommodate for extra offset in case of a backjump. */
1365		off = from->off;
1366		if (off < 0)
1367			off -= 2;
1368		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1369		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1370		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1371				      off);
1372		break;
1373
1374	case BPF_LD | BPF_IMM | BPF_DW:
1375		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1376		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1377		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1378		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1379		break;
1380	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1381		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1382		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1383		if (emit_zext)
1384			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1385		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1386		break;
1387
1388	case BPF_ST | BPF_MEM | BPF_DW:
1389	case BPF_ST | BPF_MEM | BPF_W:
1390	case BPF_ST | BPF_MEM | BPF_H:
1391	case BPF_ST | BPF_MEM | BPF_B:
1392		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1393		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1394		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1395		break;
1396	}
1397out:
1398	return to - to_buff;
1399}
1400
1401static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1402					      gfp_t gfp_extra_flags)
1403{
1404	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1405	struct bpf_prog *fp;
1406
1407	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1408	if (fp != NULL) {
1409		/* aux->prog still points to the fp_other one, so
1410		 * when promoting the clone to the real program,
1411		 * this still needs to be adapted.
1412		 */
1413		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1414	}
1415
1416	return fp;
1417}
1418
1419static void bpf_prog_clone_free(struct bpf_prog *fp)
1420{
1421	/* aux was stolen by the other clone, so we cannot free
1422	 * it from this path! It will be freed eventually by the
1423	 * other program on release.
1424	 *
1425	 * At this point, we don't need a deferred release since
1426	 * clone is guaranteed to not be locked.
1427	 */
1428	fp->aux = NULL;
1429	fp->stats = NULL;
1430	fp->active = NULL;
1431	__bpf_prog_free(fp);
1432}
1433
1434void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1435{
1436	/* We have to repoint aux->prog to self, as we don't
1437	 * know whether fp here is the clone or the original.
1438	 */
1439	fp->aux->prog = fp;
1440	bpf_prog_clone_free(fp_other);
1441}
1442
1443struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1444{
1445	struct bpf_insn insn_buff[16], aux[2];
1446	struct bpf_prog *clone, *tmp;
1447	int insn_delta, insn_cnt;
1448	struct bpf_insn *insn;
1449	int i, rewritten;
1450
1451	if (!prog->blinding_requested || prog->blinded)
1452		return prog;
1453
1454	clone = bpf_prog_clone_create(prog, GFP_USER);
1455	if (!clone)
1456		return ERR_PTR(-ENOMEM);
1457
1458	insn_cnt = clone->len;
1459	insn = clone->insnsi;
1460
1461	for (i = 0; i < insn_cnt; i++, insn++) {
1462		if (bpf_pseudo_func(insn)) {
1463			/* ld_imm64 with an address of bpf subprog is not
1464			 * a user controlled constant. Don't randomize it,
1465			 * since it will conflict with jit_subprogs() logic.
1466			 */
1467			insn++;
1468			i++;
1469			continue;
1470		}
1471
1472		/* We temporarily need to hold the original ld64 insn
1473		 * so that we can still access the first part in the
1474		 * second blinding run.
1475		 */
1476		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1477		    insn[1].code == 0)
1478			memcpy(aux, insn, sizeof(aux));
1479
1480		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1481						clone->aux->verifier_zext);
1482		if (!rewritten)
1483			continue;
1484
1485		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1486		if (IS_ERR(tmp)) {
1487			/* Patching may have repointed aux->prog during
1488			 * realloc from the original one, so we need to
1489			 * fix it up here on error.
1490			 */
1491			bpf_jit_prog_release_other(prog, clone);
1492			return tmp;
1493		}
1494
1495		clone = tmp;
1496		insn_delta = rewritten - 1;
1497
1498		/* Walk new program and skip insns we just inserted. */
1499		insn = clone->insnsi + i + insn_delta;
1500		insn_cnt += insn_delta;
1501		i        += insn_delta;
1502	}
1503
1504	clone->blinded = 1;
1505	return clone;
1506}
1507#endif /* CONFIG_BPF_JIT */
1508
1509/* Base function for offset calculation. Needs to go into .text section,
1510 * therefore keeping it non-static as well; will also be used by JITs
1511 * anyway later on, so do not let the compiler omit it. This also needs
1512 * to go into kallsyms for correlation from e.g. bpftool, so naming
1513 * must not change.
1514 */
1515noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1516{
1517	return 0;
1518}
1519EXPORT_SYMBOL_GPL(__bpf_call_base);
1520
1521/* All UAPI available opcodes. */
1522#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1523	/* 32 bit ALU operations. */		\
1524	/*   Register based. */			\
1525	INSN_3(ALU, ADD,  X),			\
1526	INSN_3(ALU, SUB,  X),			\
1527	INSN_3(ALU, AND,  X),			\
1528	INSN_3(ALU, OR,   X),			\
1529	INSN_3(ALU, LSH,  X),			\
1530	INSN_3(ALU, RSH,  X),			\
1531	INSN_3(ALU, XOR,  X),			\
1532	INSN_3(ALU, MUL,  X),			\
1533	INSN_3(ALU, MOV,  X),			\
1534	INSN_3(ALU, ARSH, X),			\
1535	INSN_3(ALU, DIV,  X),			\
1536	INSN_3(ALU, MOD,  X),			\
1537	INSN_2(ALU, NEG),			\
1538	INSN_3(ALU, END, TO_BE),		\
1539	INSN_3(ALU, END, TO_LE),		\
1540	/*   Immediate based. */		\
1541	INSN_3(ALU, ADD,  K),			\
1542	INSN_3(ALU, SUB,  K),			\
1543	INSN_3(ALU, AND,  K),			\
1544	INSN_3(ALU, OR,   K),			\
1545	INSN_3(ALU, LSH,  K),			\
1546	INSN_3(ALU, RSH,  K),			\
1547	INSN_3(ALU, XOR,  K),			\
1548	INSN_3(ALU, MUL,  K),			\
1549	INSN_3(ALU, MOV,  K),			\
1550	INSN_3(ALU, ARSH, K),			\
1551	INSN_3(ALU, DIV,  K),			\
1552	INSN_3(ALU, MOD,  K),			\
1553	/* 64 bit ALU operations. */		\
1554	/*   Register based. */			\
1555	INSN_3(ALU64, ADD,  X),			\
1556	INSN_3(ALU64, SUB,  X),			\
1557	INSN_3(ALU64, AND,  X),			\
1558	INSN_3(ALU64, OR,   X),			\
1559	INSN_3(ALU64, LSH,  X),			\
1560	INSN_3(ALU64, RSH,  X),			\
1561	INSN_3(ALU64, XOR,  X),			\
1562	INSN_3(ALU64, MUL,  X),			\
1563	INSN_3(ALU64, MOV,  X),			\
1564	INSN_3(ALU64, ARSH, X),			\
1565	INSN_3(ALU64, DIV,  X),			\
1566	INSN_3(ALU64, MOD,  X),			\
1567	INSN_2(ALU64, NEG),			\
1568	INSN_3(ALU64, END, TO_LE),		\
1569	/*   Immediate based. */		\
1570	INSN_3(ALU64, ADD,  K),			\
1571	INSN_3(ALU64, SUB,  K),			\
1572	INSN_3(ALU64, AND,  K),			\
1573	INSN_3(ALU64, OR,   K),			\
1574	INSN_3(ALU64, LSH,  K),			\
1575	INSN_3(ALU64, RSH,  K),			\
1576	INSN_3(ALU64, XOR,  K),			\
1577	INSN_3(ALU64, MUL,  K),			\
1578	INSN_3(ALU64, MOV,  K),			\
1579	INSN_3(ALU64, ARSH, K),			\
1580	INSN_3(ALU64, DIV,  K),			\
1581	INSN_3(ALU64, MOD,  K),			\
1582	/* Call instruction. */			\
1583	INSN_2(JMP, CALL),			\
1584	/* Exit instruction. */			\
1585	INSN_2(JMP, EXIT),			\
1586	/* 32-bit Jump instructions. */		\
1587	/*   Register based. */			\
1588	INSN_3(JMP32, JEQ,  X),			\
1589	INSN_3(JMP32, JNE,  X),			\
1590	INSN_3(JMP32, JGT,  X),			\
1591	INSN_3(JMP32, JLT,  X),			\
1592	INSN_3(JMP32, JGE,  X),			\
1593	INSN_3(JMP32, JLE,  X),			\
1594	INSN_3(JMP32, JSGT, X),			\
1595	INSN_3(JMP32, JSLT, X),			\
1596	INSN_3(JMP32, JSGE, X),			\
1597	INSN_3(JMP32, JSLE, X),			\
1598	INSN_3(JMP32, JSET, X),			\
1599	/*   Immediate based. */		\
1600	INSN_3(JMP32, JEQ,  K),			\
1601	INSN_3(JMP32, JNE,  K),			\
1602	INSN_3(JMP32, JGT,  K),			\
1603	INSN_3(JMP32, JLT,  K),			\
1604	INSN_3(JMP32, JGE,  K),			\
1605	INSN_3(JMP32, JLE,  K),			\
1606	INSN_3(JMP32, JSGT, K),			\
1607	INSN_3(JMP32, JSLT, K),			\
1608	INSN_3(JMP32, JSGE, K),			\
1609	INSN_3(JMP32, JSLE, K),			\
1610	INSN_3(JMP32, JSET, K),			\
1611	/* Jump instructions. */		\
1612	/*   Register based. */			\
1613	INSN_3(JMP, JEQ,  X),			\
1614	INSN_3(JMP, JNE,  X),			\
1615	INSN_3(JMP, JGT,  X),			\
1616	INSN_3(JMP, JLT,  X),			\
1617	INSN_3(JMP, JGE,  X),			\
1618	INSN_3(JMP, JLE,  X),			\
1619	INSN_3(JMP, JSGT, X),			\
1620	INSN_3(JMP, JSLT, X),			\
1621	INSN_3(JMP, JSGE, X),			\
1622	INSN_3(JMP, JSLE, X),			\
1623	INSN_3(JMP, JSET, X),			\
1624	/*   Immediate based. */		\
1625	INSN_3(JMP, JEQ,  K),			\
1626	INSN_3(JMP, JNE,  K),			\
1627	INSN_3(JMP, JGT,  K),			\
1628	INSN_3(JMP, JLT,  K),			\
1629	INSN_3(JMP, JGE,  K),			\
1630	INSN_3(JMP, JLE,  K),			\
1631	INSN_3(JMP, JSGT, K),			\
1632	INSN_3(JMP, JSLT, K),			\
1633	INSN_3(JMP, JSGE, K),			\
1634	INSN_3(JMP, JSLE, K),			\
1635	INSN_3(JMP, JSET, K),			\
1636	INSN_2(JMP, JA),			\
1637	INSN_2(JMP32, JA),			\
1638	/* Store instructions. */		\
1639	/*   Register based. */			\
1640	INSN_3(STX, MEM,  B),			\
1641	INSN_3(STX, MEM,  H),			\
1642	INSN_3(STX, MEM,  W),			\
1643	INSN_3(STX, MEM,  DW),			\
1644	INSN_3(STX, ATOMIC, W),			\
1645	INSN_3(STX, ATOMIC, DW),		\
1646	/*   Immediate based. */		\
1647	INSN_3(ST, MEM, B),			\
1648	INSN_3(ST, MEM, H),			\
1649	INSN_3(ST, MEM, W),			\
1650	INSN_3(ST, MEM, DW),			\
1651	/* Load instructions. */		\
1652	/*   Register based. */			\
1653	INSN_3(LDX, MEM, B),			\
1654	INSN_3(LDX, MEM, H),			\
1655	INSN_3(LDX, MEM, W),			\
1656	INSN_3(LDX, MEM, DW),			\
1657	INSN_3(LDX, MEMSX, B),			\
1658	INSN_3(LDX, MEMSX, H),			\
1659	INSN_3(LDX, MEMSX, W),			\
1660	/*   Immediate based. */		\
1661	INSN_3(LD, IMM, DW)
1662
1663bool bpf_opcode_in_insntable(u8 code)
1664{
1665#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1666#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1667	static const bool public_insntable[256] = {
1668		[0 ... 255] = false,
1669		/* Now overwrite non-defaults ... */
1670		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1671		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1672		[BPF_LD | BPF_ABS | BPF_B] = true,
1673		[BPF_LD | BPF_ABS | BPF_H] = true,
1674		[BPF_LD | BPF_ABS | BPF_W] = true,
1675		[BPF_LD | BPF_IND | BPF_B] = true,
1676		[BPF_LD | BPF_IND | BPF_H] = true,
1677		[BPF_LD | BPF_IND | BPF_W] = true,
1678	};
1679#undef BPF_INSN_3_TBL
1680#undef BPF_INSN_2_TBL
1681	return public_insntable[code];
1682}
1683
1684#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 
 
 
 
 
 
1685/**
1686 *	___bpf_prog_run - run eBPF program on a given context
1687 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1688 *	@insn: is the array of eBPF instructions
1689 *
1690 * Decode and execute eBPF instructions.
1691 *
1692 * Return: whatever value is in %BPF_R0 at program exit
1693 */
1694static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1695{
1696#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1697#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1698	static const void * const jumptable[256] __annotate_jump_table = {
1699		[0 ... 255] = &&default_label,
1700		/* Now overwrite non-defaults ... */
1701		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1702		/* Non-UAPI available opcodes. */
1703		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1704		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1705		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1706		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1707		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1708		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1709		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1710		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1711		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1712		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1713	};
1714#undef BPF_INSN_3_LBL
1715#undef BPF_INSN_2_LBL
1716	u32 tail_call_cnt = 0;
1717
1718#define CONT	 ({ insn++; goto select_insn; })
1719#define CONT_JMP ({ insn++; goto select_insn; })
1720
1721select_insn:
1722	goto *jumptable[insn->code];
1723
1724	/* Explicitly mask the register-based shift amounts with 63 or 31
1725	 * to avoid undefined behavior. Normally this won't affect the
1726	 * generated code, for example, in case of native 64 bit archs such
1727	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1728	 * the interpreter. In case of JITs, each of the JIT backends compiles
1729	 * the BPF shift operations to machine instructions which produce
1730	 * implementation-defined results in such a case; the resulting
1731	 * contents of the register may be arbitrary, but program behaviour
1732	 * as a whole remains defined. In other words, in case of JIT backends,
1733	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1734	 */
1735	/* ALU (shifts) */
1736#define SHT(OPCODE, OP)					\
1737	ALU64_##OPCODE##_X:				\
1738		DST = DST OP (SRC & 63);		\
1739		CONT;					\
1740	ALU_##OPCODE##_X:				\
1741		DST = (u32) DST OP ((u32) SRC & 31);	\
1742		CONT;					\
1743	ALU64_##OPCODE##_K:				\
1744		DST = DST OP IMM;			\
1745		CONT;					\
1746	ALU_##OPCODE##_K:				\
1747		DST = (u32) DST OP (u32) IMM;		\
1748		CONT;
1749	/* ALU (rest) */
1750#define ALU(OPCODE, OP)					\
1751	ALU64_##OPCODE##_X:				\
1752		DST = DST OP SRC;			\
1753		CONT;					\
1754	ALU_##OPCODE##_X:				\
1755		DST = (u32) DST OP (u32) SRC;		\
1756		CONT;					\
1757	ALU64_##OPCODE##_K:				\
1758		DST = DST OP IMM;			\
1759		CONT;					\
1760	ALU_##OPCODE##_K:				\
1761		DST = (u32) DST OP (u32) IMM;		\
1762		CONT;
1763	ALU(ADD,  +)
1764	ALU(SUB,  -)
1765	ALU(AND,  &)
1766	ALU(OR,   |)
1767	ALU(XOR,  ^)
1768	ALU(MUL,  *)
1769	SHT(LSH, <<)
1770	SHT(RSH, >>)
1771#undef SHT
1772#undef ALU
1773	ALU_NEG:
1774		DST = (u32) -DST;
1775		CONT;
1776	ALU64_NEG:
1777		DST = -DST;
1778		CONT;
1779	ALU_MOV_X:
1780		switch (OFF) {
1781		case 0:
1782			DST = (u32) SRC;
1783			break;
1784		case 8:
1785			DST = (u32)(s8) SRC;
1786			break;
1787		case 16:
1788			DST = (u32)(s16) SRC;
1789			break;
1790		}
1791		CONT;
1792	ALU_MOV_K:
1793		DST = (u32) IMM;
1794		CONT;
1795	ALU64_MOV_X:
1796		switch (OFF) {
1797		case 0:
1798			DST = SRC;
1799			break;
1800		case 8:
1801			DST = (s8) SRC;
1802			break;
1803		case 16:
1804			DST = (s16) SRC;
1805			break;
1806		case 32:
1807			DST = (s32) SRC;
1808			break;
1809		}
1810		CONT;
1811	ALU64_MOV_K:
1812		DST = IMM;
1813		CONT;
1814	LD_IMM_DW:
1815		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1816		insn++;
1817		CONT;
1818	ALU_ARSH_X:
1819		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1820		CONT;
1821	ALU_ARSH_K:
1822		DST = (u64) (u32) (((s32) DST) >> IMM);
1823		CONT;
1824	ALU64_ARSH_X:
1825		(*(s64 *) &DST) >>= (SRC & 63);
1826		CONT;
1827	ALU64_ARSH_K:
1828		(*(s64 *) &DST) >>= IMM;
1829		CONT;
1830	ALU64_MOD_X:
1831		switch (OFF) {
1832		case 0:
1833			div64_u64_rem(DST, SRC, &AX);
1834			DST = AX;
1835			break;
1836		case 1:
1837			AX = div64_s64(DST, SRC);
1838			DST = DST - AX * SRC;
1839			break;
1840		}
1841		CONT;
1842	ALU_MOD_X:
1843		switch (OFF) {
1844		case 0:
1845			AX = (u32) DST;
1846			DST = do_div(AX, (u32) SRC);
1847			break;
1848		case 1:
1849			AX = abs((s32)DST);
1850			AX = do_div(AX, abs((s32)SRC));
1851			if ((s32)DST < 0)
1852				DST = (u32)-AX;
1853			else
1854				DST = (u32)AX;
1855			break;
1856		}
1857		CONT;
1858	ALU64_MOD_K:
1859		switch (OFF) {
1860		case 0:
1861			div64_u64_rem(DST, IMM, &AX);
1862			DST = AX;
1863			break;
1864		case 1:
1865			AX = div64_s64(DST, IMM);
1866			DST = DST - AX * IMM;
1867			break;
1868		}
1869		CONT;
1870	ALU_MOD_K:
1871		switch (OFF) {
1872		case 0:
1873			AX = (u32) DST;
1874			DST = do_div(AX, (u32) IMM);
1875			break;
1876		case 1:
1877			AX = abs((s32)DST);
1878			AX = do_div(AX, abs((s32)IMM));
1879			if ((s32)DST < 0)
1880				DST = (u32)-AX;
1881			else
1882				DST = (u32)AX;
1883			break;
1884		}
1885		CONT;
1886	ALU64_DIV_X:
1887		switch (OFF) {
1888		case 0:
1889			DST = div64_u64(DST, SRC);
1890			break;
1891		case 1:
1892			DST = div64_s64(DST, SRC);
1893			break;
1894		}
1895		CONT;
1896	ALU_DIV_X:
1897		switch (OFF) {
1898		case 0:
1899			AX = (u32) DST;
1900			do_div(AX, (u32) SRC);
1901			DST = (u32) AX;
1902			break;
1903		case 1:
1904			AX = abs((s32)DST);
1905			do_div(AX, abs((s32)SRC));
1906			if (((s32)DST < 0) == ((s32)SRC < 0))
1907				DST = (u32)AX;
1908			else
1909				DST = (u32)-AX;
1910			break;
1911		}
1912		CONT;
1913	ALU64_DIV_K:
1914		switch (OFF) {
1915		case 0:
1916			DST = div64_u64(DST, IMM);
1917			break;
1918		case 1:
1919			DST = div64_s64(DST, IMM);
1920			break;
1921		}
1922		CONT;
1923	ALU_DIV_K:
1924		switch (OFF) {
1925		case 0:
1926			AX = (u32) DST;
1927			do_div(AX, (u32) IMM);
1928			DST = (u32) AX;
1929			break;
1930		case 1:
1931			AX = abs((s32)DST);
1932			do_div(AX, abs((s32)IMM));
1933			if (((s32)DST < 0) == ((s32)IMM < 0))
1934				DST = (u32)AX;
1935			else
1936				DST = (u32)-AX;
1937			break;
1938		}
1939		CONT;
1940	ALU_END_TO_BE:
1941		switch (IMM) {
1942		case 16:
1943			DST = (__force u16) cpu_to_be16(DST);
1944			break;
1945		case 32:
1946			DST = (__force u32) cpu_to_be32(DST);
1947			break;
1948		case 64:
1949			DST = (__force u64) cpu_to_be64(DST);
1950			break;
1951		}
1952		CONT;
1953	ALU_END_TO_LE:
1954		switch (IMM) {
1955		case 16:
1956			DST = (__force u16) cpu_to_le16(DST);
1957			break;
1958		case 32:
1959			DST = (__force u32) cpu_to_le32(DST);
1960			break;
1961		case 64:
1962			DST = (__force u64) cpu_to_le64(DST);
1963			break;
1964		}
1965		CONT;
1966	ALU64_END_TO_LE:
1967		switch (IMM) {
1968		case 16:
1969			DST = (__force u16) __swab16(DST);
1970			break;
1971		case 32:
1972			DST = (__force u32) __swab32(DST);
1973			break;
1974		case 64:
1975			DST = (__force u64) __swab64(DST);
1976			break;
1977		}
1978		CONT;
1979
1980	/* CALL */
1981	JMP_CALL:
1982		/* Function call scratches BPF_R1-BPF_R5 registers,
1983		 * preserves BPF_R6-BPF_R9, and stores return value
1984		 * into BPF_R0.
1985		 */
1986		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1987						       BPF_R4, BPF_R5);
1988		CONT;
1989
1990	JMP_CALL_ARGS:
1991		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1992							    BPF_R3, BPF_R4,
1993							    BPF_R5,
1994							    insn + insn->off + 1);
1995		CONT;
1996
1997	JMP_TAIL_CALL: {
1998		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1999		struct bpf_array *array = container_of(map, struct bpf_array, map);
2000		struct bpf_prog *prog;
2001		u32 index = BPF_R3;
2002
2003		if (unlikely(index >= array->map.max_entries))
2004			goto out;
2005
2006		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2007			goto out;
2008
2009		tail_call_cnt++;
2010
2011		prog = READ_ONCE(array->ptrs[index]);
2012		if (!prog)
2013			goto out;
2014
2015		/* ARG1 at this point is guaranteed to point to CTX from
2016		 * the verifier side due to the fact that the tail call is
2017		 * handled like a helper, that is, bpf_tail_call_proto,
2018		 * where arg1_type is ARG_PTR_TO_CTX.
2019		 */
2020		insn = prog->insnsi;
2021		goto select_insn;
2022out:
2023		CONT;
2024	}
2025	JMP_JA:
2026		insn += insn->off;
2027		CONT;
2028	JMP32_JA:
2029		insn += insn->imm;
2030		CONT;
2031	JMP_EXIT:
2032		return BPF_R0;
2033	/* JMP */
2034#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2035	JMP_##OPCODE##_X:					\
2036		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2037			insn += insn->off;			\
2038			CONT_JMP;				\
2039		}						\
2040		CONT;						\
2041	JMP32_##OPCODE##_X:					\
2042		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2043			insn += insn->off;			\
2044			CONT_JMP;				\
2045		}						\
2046		CONT;						\
2047	JMP_##OPCODE##_K:					\
2048		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2049			insn += insn->off;			\
2050			CONT_JMP;				\
2051		}						\
2052		CONT;						\
2053	JMP32_##OPCODE##_K:					\
2054		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2055			insn += insn->off;			\
2056			CONT_JMP;				\
2057		}						\
2058		CONT;
2059	COND_JMP(u, JEQ, ==)
2060	COND_JMP(u, JNE, !=)
2061	COND_JMP(u, JGT, >)
2062	COND_JMP(u, JLT, <)
2063	COND_JMP(u, JGE, >=)
2064	COND_JMP(u, JLE, <=)
2065	COND_JMP(u, JSET, &)
2066	COND_JMP(s, JSGT, >)
2067	COND_JMP(s, JSLT, <)
2068	COND_JMP(s, JSGE, >=)
2069	COND_JMP(s, JSLE, <=)
2070#undef COND_JMP
2071	/* ST, STX and LDX*/
2072	ST_NOSPEC:
2073		/* Speculation barrier for mitigating Speculative Store Bypass.
2074		 * In case of arm64, we rely on the firmware mitigation as
2075		 * controlled via the ssbd kernel parameter. Whenever the
2076		 * mitigation is enabled, it works for all of the kernel code
2077		 * with no need to provide any additional instructions here.
2078		 * In case of x86, we use 'lfence' insn for mitigation. We
2079		 * reuse preexisting logic from Spectre v1 mitigation that
2080		 * happens to produce the required code on x86 for v4 as well.
2081		 */
 
2082		barrier_nospec();
 
2083		CONT;
2084#define LDST(SIZEOP, SIZE)						\
2085	STX_MEM_##SIZEOP:						\
2086		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2087		CONT;							\
2088	ST_MEM_##SIZEOP:						\
2089		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2090		CONT;							\
2091	LDX_MEM_##SIZEOP:						\
2092		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2093		CONT;							\
2094	LDX_PROBE_MEM_##SIZEOP:						\
2095		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2096			      (const void *)(long) (SRC + insn->off));	\
2097		DST = *((SIZE *)&DST);					\
2098		CONT;
2099
2100	LDST(B,   u8)
2101	LDST(H,  u16)
2102	LDST(W,  u32)
2103	LDST(DW, u64)
2104#undef LDST
2105
2106#define LDSX(SIZEOP, SIZE)						\
2107	LDX_MEMSX_##SIZEOP:						\
2108		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2109		CONT;							\
2110	LDX_PROBE_MEMSX_##SIZEOP:					\
2111		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2112				      (const void *)(long) (SRC + insn->off));	\
2113		DST = *((SIZE *)&DST);					\
2114		CONT;
2115
2116	LDSX(B,   s8)
2117	LDSX(H,  s16)
2118	LDSX(W,  s32)
2119#undef LDSX
2120
2121#define ATOMIC_ALU_OP(BOP, KOP)						\
2122		case BOP:						\
2123			if (BPF_SIZE(insn->code) == BPF_W)		\
2124				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2125					     (DST + insn->off));	\
2126			else						\
2127				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2128					       (DST + insn->off));	\
2129			break;						\
2130		case BOP | BPF_FETCH:					\
2131			if (BPF_SIZE(insn->code) == BPF_W)		\
2132				SRC = (u32) atomic_fetch_##KOP(		\
2133					(u32) SRC,			\
2134					(atomic_t *)(unsigned long) (DST + insn->off)); \
2135			else						\
2136				SRC = (u64) atomic64_fetch_##KOP(	\
2137					(u64) SRC,			\
2138					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2139			break;
2140
2141	STX_ATOMIC_DW:
2142	STX_ATOMIC_W:
2143		switch (IMM) {
2144		ATOMIC_ALU_OP(BPF_ADD, add)
2145		ATOMIC_ALU_OP(BPF_AND, and)
2146		ATOMIC_ALU_OP(BPF_OR, or)
2147		ATOMIC_ALU_OP(BPF_XOR, xor)
2148#undef ATOMIC_ALU_OP
2149
2150		case BPF_XCHG:
2151			if (BPF_SIZE(insn->code) == BPF_W)
2152				SRC = (u32) atomic_xchg(
2153					(atomic_t *)(unsigned long) (DST + insn->off),
2154					(u32) SRC);
2155			else
2156				SRC = (u64) atomic64_xchg(
2157					(atomic64_t *)(unsigned long) (DST + insn->off),
2158					(u64) SRC);
2159			break;
2160		case BPF_CMPXCHG:
2161			if (BPF_SIZE(insn->code) == BPF_W)
2162				BPF_R0 = (u32) atomic_cmpxchg(
2163					(atomic_t *)(unsigned long) (DST + insn->off),
2164					(u32) BPF_R0, (u32) SRC);
2165			else
2166				BPF_R0 = (u64) atomic64_cmpxchg(
2167					(atomic64_t *)(unsigned long) (DST + insn->off),
2168					(u64) BPF_R0, (u64) SRC);
2169			break;
2170
2171		default:
2172			goto default_label;
2173		}
2174		CONT;
2175
2176	default_label:
2177		/* If we ever reach this, we have a bug somewhere. Die hard here
2178		 * instead of just returning 0; we could be somewhere in a subprog,
2179		 * so execution could continue otherwise which we do /not/ want.
2180		 *
2181		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2182		 */
2183		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2184			insn->code, insn->imm);
2185		BUG_ON(1);
2186		return 0;
2187}
2188
2189#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2190#define DEFINE_BPF_PROG_RUN(stack_size) \
2191static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2192{ \
2193	u64 stack[stack_size / sizeof(u64)]; \
2194	u64 regs[MAX_BPF_EXT_REG] = {}; \
2195\
2196	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2197	ARG1 = (u64) (unsigned long) ctx; \
2198	return ___bpf_prog_run(regs, insn); \
2199}
2200
2201#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2202#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2203static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2204				      const struct bpf_insn *insn) \
2205{ \
2206	u64 stack[stack_size / sizeof(u64)]; \
2207	u64 regs[MAX_BPF_EXT_REG]; \
2208\
2209	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2210	BPF_R1 = r1; \
2211	BPF_R2 = r2; \
2212	BPF_R3 = r3; \
2213	BPF_R4 = r4; \
2214	BPF_R5 = r5; \
2215	return ___bpf_prog_run(regs, insn); \
2216}
2217
2218#define EVAL1(FN, X) FN(X)
2219#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2220#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2221#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2222#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2223#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2224
2225EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2226EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2227EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2228
2229EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2230EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2231EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2232
2233#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2234
2235static unsigned int (*interpreters[])(const void *ctx,
2236				      const struct bpf_insn *insn) = {
2237EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2238EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2239EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2240};
2241#undef PROG_NAME_LIST
2242#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2243static __maybe_unused
2244u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2245			   const struct bpf_insn *insn) = {
2246EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2247EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2248EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2249};
2250#undef PROG_NAME_LIST
2251
2252#ifdef CONFIG_BPF_SYSCALL
2253void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2254{
2255	stack_depth = max_t(u32, stack_depth, 1);
2256	insn->off = (s16) insn->imm;
2257	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2258		__bpf_call_base_args;
2259	insn->code = BPF_JMP | BPF_CALL_ARGS;
2260}
2261#endif
2262#else
2263static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2264					 const struct bpf_insn *insn)
2265{
2266	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2267	 * is not working properly, so warn about it!
2268	 */
2269	WARN_ON_ONCE(1);
2270	return 0;
2271}
2272#endif
2273
2274bool bpf_prog_map_compatible(struct bpf_map *map,
2275			     const struct bpf_prog *fp)
2276{
2277	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2278	bool ret;
2279
2280	if (fp->kprobe_override)
2281		return false;
2282
2283	/* XDP programs inserted into maps are not guaranteed to run on
2284	 * a particular netdev (and can run outside driver context entirely
2285	 * in the case of devmap and cpumap). Until device checks
2286	 * are implemented, prohibit adding dev-bound programs to program maps.
2287	 */
2288	if (bpf_prog_is_dev_bound(fp->aux))
2289		return false;
2290
2291	spin_lock(&map->owner.lock);
2292	if (!map->owner.type) {
2293		/* There's no owner yet where we could check for
2294		 * compatibility.
2295		 */
2296		map->owner.type  = prog_type;
2297		map->owner.jited = fp->jited;
2298		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2299		ret = true;
2300	} else {
2301		ret = map->owner.type  == prog_type &&
2302		      map->owner.jited == fp->jited &&
2303		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2304	}
2305	spin_unlock(&map->owner.lock);
2306
2307	return ret;
 
2308}
2309
2310static int bpf_check_tail_call(const struct bpf_prog *fp)
2311{
2312	struct bpf_prog_aux *aux = fp->aux;
2313	int i, ret = 0;
2314
2315	mutex_lock(&aux->used_maps_mutex);
2316	for (i = 0; i < aux->used_map_cnt; i++) {
2317		struct bpf_map *map = aux->used_maps[i];
 
2318
2319		if (!map_type_contains_progs(map))
2320			continue;
2321
2322		if (!bpf_prog_map_compatible(map, fp)) {
 
2323			ret = -EINVAL;
2324			goto out;
2325		}
2326	}
2327
2328out:
2329	mutex_unlock(&aux->used_maps_mutex);
2330	return ret;
2331}
2332
2333static void bpf_prog_select_func(struct bpf_prog *fp)
2334{
2335#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2336	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2337
2338	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2339#else
2340	fp->bpf_func = __bpf_prog_ret0_warn;
2341#endif
2342}
2343
2344/**
2345 *	bpf_prog_select_runtime - select exec runtime for BPF program
2346 *	@fp: bpf_prog populated with BPF program
2347 *	@err: pointer to error variable
2348 *
2349 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2350 * The BPF program will be executed via bpf_prog_run() function.
2351 *
2352 * Return: the &fp argument along with &err set to 0 for success or
2353 * a negative errno code on failure
2354 */
2355struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2356{
2357	/* In case of BPF to BPF calls, verifier did all the prep
2358	 * work with regards to JITing, etc.
2359	 */
2360	bool jit_needed = false;
2361
2362	if (fp->bpf_func)
2363		goto finalize;
2364
2365	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2366	    bpf_prog_has_kfunc_call(fp))
2367		jit_needed = true;
2368
2369	bpf_prog_select_func(fp);
2370
2371	/* eBPF JITs can rewrite the program in case constant
2372	 * blinding is active. However, in case of error during
2373	 * blinding, bpf_int_jit_compile() must always return a
2374	 * valid program, which in this case would simply not
2375	 * be JITed, but falls back to the interpreter.
2376	 */
2377	if (!bpf_prog_is_offloaded(fp->aux)) {
2378		*err = bpf_prog_alloc_jited_linfo(fp);
2379		if (*err)
2380			return fp;
2381
2382		fp = bpf_int_jit_compile(fp);
2383		bpf_prog_jit_attempt_done(fp);
2384		if (!fp->jited && jit_needed) {
2385			*err = -ENOTSUPP;
2386			return fp;
2387		}
2388	} else {
2389		*err = bpf_prog_offload_compile(fp);
2390		if (*err)
2391			return fp;
2392	}
2393
2394finalize:
2395	bpf_prog_lock_ro(fp);
2396
2397	/* The tail call compatibility check can only be done at
2398	 * this late stage as we need to determine, if we deal
2399	 * with JITed or non JITed program concatenations and not
2400	 * all eBPF JITs might immediately support all features.
2401	 */
2402	*err = bpf_check_tail_call(fp);
2403
2404	return fp;
2405}
2406EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2407
2408static unsigned int __bpf_prog_ret1(const void *ctx,
2409				    const struct bpf_insn *insn)
2410{
2411	return 1;
2412}
2413
2414static struct bpf_prog_dummy {
2415	struct bpf_prog prog;
2416} dummy_bpf_prog = {
2417	.prog = {
2418		.bpf_func = __bpf_prog_ret1,
2419	},
2420};
2421
2422struct bpf_empty_prog_array bpf_empty_prog_array = {
 
 
 
 
 
 
 
 
 
2423	.null_prog = NULL,
2424};
2425EXPORT_SYMBOL(bpf_empty_prog_array);
2426
2427struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2428{
2429	if (prog_cnt)
2430		return kzalloc(sizeof(struct bpf_prog_array) +
2431			       sizeof(struct bpf_prog_array_item) *
2432			       (prog_cnt + 1),
2433			       flags);
2434
2435	return &bpf_empty_prog_array.hdr;
2436}
2437
2438void bpf_prog_array_free(struct bpf_prog_array *progs)
2439{
2440	if (!progs || progs == &bpf_empty_prog_array.hdr)
2441		return;
2442	kfree_rcu(progs, rcu);
2443}
2444
2445static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2446{
2447	struct bpf_prog_array *progs;
2448
2449	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2450	 * no need to call kfree_rcu(), just call kfree() directly.
2451	 */
2452	progs = container_of(rcu, struct bpf_prog_array, rcu);
2453	if (rcu_trace_implies_rcu_gp())
2454		kfree(progs);
2455	else
2456		kfree_rcu(progs, rcu);
2457}
2458
2459void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2460{
2461	if (!progs || progs == &bpf_empty_prog_array.hdr)
2462		return;
2463	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2464}
2465
2466int bpf_prog_array_length(struct bpf_prog_array *array)
2467{
2468	struct bpf_prog_array_item *item;
2469	u32 cnt = 0;
2470
2471	for (item = array->items; item->prog; item++)
2472		if (item->prog != &dummy_bpf_prog.prog)
2473			cnt++;
2474	return cnt;
2475}
2476
2477bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2478{
2479	struct bpf_prog_array_item *item;
2480
2481	for (item = array->items; item->prog; item++)
2482		if (item->prog != &dummy_bpf_prog.prog)
2483			return false;
2484	return true;
2485}
2486
2487static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2488				     u32 *prog_ids,
2489				     u32 request_cnt)
2490{
2491	struct bpf_prog_array_item *item;
2492	int i = 0;
2493
2494	for (item = array->items; item->prog; item++) {
2495		if (item->prog == &dummy_bpf_prog.prog)
2496			continue;
2497		prog_ids[i] = item->prog->aux->id;
2498		if (++i == request_cnt) {
2499			item++;
2500			break;
2501		}
2502	}
2503
2504	return !!(item->prog);
2505}
2506
2507int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2508				__u32 __user *prog_ids, u32 cnt)
2509{
2510	unsigned long err = 0;
2511	bool nospc;
2512	u32 *ids;
2513
2514	/* users of this function are doing:
2515	 * cnt = bpf_prog_array_length();
2516	 * if (cnt > 0)
2517	 *     bpf_prog_array_copy_to_user(..., cnt);
2518	 * so below kcalloc doesn't need extra cnt > 0 check.
2519	 */
2520	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2521	if (!ids)
2522		return -ENOMEM;
2523	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2524	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2525	kfree(ids);
2526	if (err)
2527		return -EFAULT;
2528	if (nospc)
2529		return -ENOSPC;
2530	return 0;
2531}
2532
2533void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2534				struct bpf_prog *old_prog)
2535{
2536	struct bpf_prog_array_item *item;
2537
2538	for (item = array->items; item->prog; item++)
2539		if (item->prog == old_prog) {
2540			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2541			break;
2542		}
2543}
2544
2545/**
2546 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2547 *                                   index into the program array with
2548 *                                   a dummy no-op program.
2549 * @array: a bpf_prog_array
2550 * @index: the index of the program to replace
2551 *
2552 * Skips over dummy programs, by not counting them, when calculating
2553 * the position of the program to replace.
2554 *
2555 * Return:
2556 * * 0		- Success
2557 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2558 * * -ENOENT	- Index out of range
2559 */
2560int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2561{
2562	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2563}
2564
2565/**
2566 * bpf_prog_array_update_at() - Updates the program at the given index
2567 *                              into the program array.
2568 * @array: a bpf_prog_array
2569 * @index: the index of the program to update
2570 * @prog: the program to insert into the array
2571 *
2572 * Skips over dummy programs, by not counting them, when calculating
2573 * the position of the program to update.
2574 *
2575 * Return:
2576 * * 0		- Success
2577 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2578 * * -ENOENT	- Index out of range
2579 */
2580int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2581			     struct bpf_prog *prog)
2582{
2583	struct bpf_prog_array_item *item;
2584
2585	if (unlikely(index < 0))
2586		return -EINVAL;
2587
2588	for (item = array->items; item->prog; item++) {
2589		if (item->prog == &dummy_bpf_prog.prog)
2590			continue;
2591		if (!index) {
2592			WRITE_ONCE(item->prog, prog);
2593			return 0;
2594		}
2595		index--;
2596	}
2597	return -ENOENT;
2598}
2599
2600int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2601			struct bpf_prog *exclude_prog,
2602			struct bpf_prog *include_prog,
2603			u64 bpf_cookie,
2604			struct bpf_prog_array **new_array)
2605{
2606	int new_prog_cnt, carry_prog_cnt = 0;
2607	struct bpf_prog_array_item *existing, *new;
2608	struct bpf_prog_array *array;
2609	bool found_exclude = false;
 
2610
2611	/* Figure out how many existing progs we need to carry over to
2612	 * the new array.
2613	 */
2614	if (old_array) {
2615		existing = old_array->items;
2616		for (; existing->prog; existing++) {
2617			if (existing->prog == exclude_prog) {
2618				found_exclude = true;
2619				continue;
2620			}
2621			if (existing->prog != &dummy_bpf_prog.prog)
2622				carry_prog_cnt++;
2623			if (existing->prog == include_prog)
2624				return -EEXIST;
2625		}
2626	}
2627
2628	if (exclude_prog && !found_exclude)
2629		return -ENOENT;
2630
2631	/* How many progs (not NULL) will be in the new array? */
2632	new_prog_cnt = carry_prog_cnt;
2633	if (include_prog)
2634		new_prog_cnt += 1;
2635
2636	/* Do we have any prog (not NULL) in the new array? */
2637	if (!new_prog_cnt) {
2638		*new_array = NULL;
2639		return 0;
2640	}
2641
2642	/* +1 as the end of prog_array is marked with NULL */
2643	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2644	if (!array)
2645		return -ENOMEM;
2646	new = array->items;
2647
2648	/* Fill in the new prog array */
2649	if (carry_prog_cnt) {
2650		existing = old_array->items;
2651		for (; existing->prog; existing++) {
2652			if (existing->prog == exclude_prog ||
2653			    existing->prog == &dummy_bpf_prog.prog)
2654				continue;
2655
2656			new->prog = existing->prog;
2657			new->bpf_cookie = existing->bpf_cookie;
2658			new++;
2659		}
2660	}
2661	if (include_prog) {
2662		new->prog = include_prog;
2663		new->bpf_cookie = bpf_cookie;
2664		new++;
2665	}
2666	new->prog = NULL;
 
 
2667	*new_array = array;
2668	return 0;
2669}
2670
2671int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2672			     u32 *prog_ids, u32 request_cnt,
2673			     u32 *prog_cnt)
2674{
2675	u32 cnt = 0;
2676
2677	if (array)
2678		cnt = bpf_prog_array_length(array);
2679
2680	*prog_cnt = cnt;
2681
2682	/* return early if user requested only program count or nothing to copy */
2683	if (!request_cnt || !cnt)
2684		return 0;
2685
2686	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2687	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2688								     : 0;
2689}
2690
2691void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2692			  struct bpf_map **used_maps, u32 len)
2693{
2694	struct bpf_map *map;
2695	bool sleepable;
2696	u32 i;
2697
2698	sleepable = aux->sleepable;
2699	for (i = 0; i < len; i++) {
2700		map = used_maps[i];
2701		if (map->ops->map_poke_untrack)
2702			map->ops->map_poke_untrack(map, aux);
2703		if (sleepable)
2704			atomic64_dec(&map->sleepable_refcnt);
2705		bpf_map_put(map);
2706	}
2707}
2708
2709static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2710{
2711	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2712	kfree(aux->used_maps);
2713}
2714
2715void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2716			  struct btf_mod_pair *used_btfs, u32 len)
2717{
2718#ifdef CONFIG_BPF_SYSCALL
2719	struct btf_mod_pair *btf_mod;
2720	u32 i;
2721
2722	for (i = 0; i < len; i++) {
2723		btf_mod = &used_btfs[i];
2724		if (btf_mod->module)
2725			module_put(btf_mod->module);
2726		btf_put(btf_mod->btf);
2727	}
2728#endif
2729}
2730
2731static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2732{
2733	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2734	kfree(aux->used_btfs);
2735}
2736
2737static void bpf_prog_free_deferred(struct work_struct *work)
2738{
2739	struct bpf_prog_aux *aux;
2740	int i;
2741
2742	aux = container_of(work, struct bpf_prog_aux, work);
2743#ifdef CONFIG_BPF_SYSCALL
2744	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2745#endif
2746#ifdef CONFIG_CGROUP_BPF
2747	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2748		bpf_cgroup_atype_put(aux->cgroup_atype);
2749#endif
2750	bpf_free_used_maps(aux);
2751	bpf_free_used_btfs(aux);
2752	if (bpf_prog_is_dev_bound(aux))
2753		bpf_prog_dev_bound_destroy(aux->prog);
2754#ifdef CONFIG_PERF_EVENTS
2755	if (aux->prog->has_callchain_buf)
2756		put_callchain_buffers();
2757#endif
2758	if (aux->dst_trampoline)
2759		bpf_trampoline_put(aux->dst_trampoline);
2760	for (i = 0; i < aux->real_func_cnt; i++) {
2761		/* We can just unlink the subprog poke descriptor table as
2762		 * it was originally linked to the main program and is also
2763		 * released along with it.
2764		 */
2765		aux->func[i]->aux->poke_tab = NULL;
2766		bpf_jit_free(aux->func[i]);
2767	}
2768	if (aux->real_func_cnt) {
2769		kfree(aux->func);
2770		bpf_prog_unlock_free(aux->prog);
2771	} else {
2772		bpf_jit_free(aux->prog);
2773	}
2774}
2775
 
2776void bpf_prog_free(struct bpf_prog *fp)
2777{
2778	struct bpf_prog_aux *aux = fp->aux;
2779
2780	if (aux->dst_prog)
2781		bpf_prog_put(aux->dst_prog);
2782	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2783	schedule_work(&aux->work);
2784}
2785EXPORT_SYMBOL_GPL(bpf_prog_free);
2786
2787/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2788static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2789
2790void bpf_user_rnd_init_once(void)
2791{
2792	prandom_init_once(&bpf_user_rnd_state);
2793}
2794
2795BPF_CALL_0(bpf_user_rnd_u32)
2796{
2797	/* Should someone ever have the rather unwise idea to use some
2798	 * of the registers passed into this function, then note that
2799	 * this function is called from native eBPF and classic-to-eBPF
2800	 * transformations. Register assignments from both sides are
2801	 * different, f.e. classic always sets fn(ctx, A, X) here.
2802	 */
2803	struct rnd_state *state;
2804	u32 res;
2805
2806	state = &get_cpu_var(bpf_user_rnd_state);
2807	res = prandom_u32_state(state);
2808	put_cpu_var(bpf_user_rnd_state);
2809
2810	return res;
2811}
2812
2813BPF_CALL_0(bpf_get_raw_cpu_id)
2814{
2815	return raw_smp_processor_id();
2816}
2817
2818/* Weak definitions of helper functions in case we don't have bpf syscall. */
2819const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2820const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2821const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2822const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2823const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2824const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2825const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2826const struct bpf_func_proto bpf_spin_lock_proto __weak;
2827const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2828const struct bpf_func_proto bpf_jiffies64_proto __weak;
2829
2830const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2831const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2832const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2833const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2834const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2835const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2836const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2837
2838const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2839const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2840const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2841const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2842const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2843const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2844const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2845const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2846const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2847const struct bpf_func_proto bpf_set_retval_proto __weak;
2848const struct bpf_func_proto bpf_get_retval_proto __weak;
2849
2850const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2851{
2852	return NULL;
2853}
2854
2855const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2856{
2857	return NULL;
2858}
2859
2860u64 __weak
2861bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2862		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2863{
2864	return -ENOTSUPP;
2865}
2866EXPORT_SYMBOL_GPL(bpf_event_output);
2867
2868/* Always built-in helper functions. */
2869const struct bpf_func_proto bpf_tail_call_proto = {
2870	.func		= NULL,
2871	.gpl_only	= false,
2872	.ret_type	= RET_VOID,
2873	.arg1_type	= ARG_PTR_TO_CTX,
2874	.arg2_type	= ARG_CONST_MAP_PTR,
2875	.arg3_type	= ARG_ANYTHING,
2876};
2877
2878/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2879 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2880 * eBPF and implicitly also cBPF can get JITed!
2881 */
2882struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2883{
2884	return prog;
2885}
2886
2887/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2888 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2889 */
2890void __weak bpf_jit_compile(struct bpf_prog *prog)
2891{
2892}
2893
2894bool __weak bpf_helper_changes_pkt_data(void *func)
2895{
2896	return false;
2897}
2898
2899/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2900 * analysis code and wants explicit zero extension inserted by verifier.
2901 * Otherwise, return FALSE.
2902 *
2903 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2904 * you don't override this. JITs that don't want these extra insns can detect
2905 * them using insn_is_zext.
2906 */
2907bool __weak bpf_jit_needs_zext(void)
2908{
2909	return false;
2910}
2911
2912/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2913bool __weak bpf_jit_supports_subprog_tailcalls(void)
2914{
2915	return false;
2916}
2917
2918bool __weak bpf_jit_supports_kfunc_call(void)
2919{
2920	return false;
2921}
2922
2923bool __weak bpf_jit_supports_far_kfunc_call(void)
2924{
2925	return false;
2926}
2927
2928/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2929 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2930 */
2931int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2932			 int len)
2933{
2934	return -EFAULT;
2935}
2936
2937int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2938			      void *addr1, void *addr2)
2939{
2940	return -ENOTSUPP;
2941}
2942
2943void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2944{
2945	return ERR_PTR(-ENOTSUPP);
2946}
2947
2948int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2949{
2950	return -ENOTSUPP;
2951}
2952
2953bool __weak bpf_jit_supports_exceptions(void)
2954{
2955	return false;
2956}
2957
2958void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
2959{
2960}
2961
2962#ifdef CONFIG_BPF_SYSCALL
2963static int __init bpf_global_ma_init(void)
2964{
2965	int ret;
2966
2967	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2968	bpf_global_ma_set = !ret;
2969	return ret;
2970}
2971late_initcall(bpf_global_ma_init);
2972#endif
2973
2974DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2975EXPORT_SYMBOL(bpf_stats_enabled_key);
2976
2977/* All definitions of tracepoints related to BPF. */
2978#define CREATE_TRACE_POINTS
2979#include <linux/bpf_trace.h>
2980
2981EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2982EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/objtool.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
 
 
 
 
 
  35
  36#include <asm/barrier.h>
  37#include <asm/unaligned.h>
  38
  39/* Registers */
  40#define BPF_R0	regs[BPF_REG_0]
  41#define BPF_R1	regs[BPF_REG_1]
  42#define BPF_R2	regs[BPF_REG_2]
  43#define BPF_R3	regs[BPF_REG_3]
  44#define BPF_R4	regs[BPF_REG_4]
  45#define BPF_R5	regs[BPF_REG_5]
  46#define BPF_R6	regs[BPF_REG_6]
  47#define BPF_R7	regs[BPF_REG_7]
  48#define BPF_R8	regs[BPF_REG_8]
  49#define BPF_R9	regs[BPF_REG_9]
  50#define BPF_R10	regs[BPF_REG_10]
  51
  52/* Named registers */
  53#define DST	regs[insn->dst_reg]
  54#define SRC	regs[insn->src_reg]
  55#define FP	regs[BPF_REG_FP]
  56#define AX	regs[BPF_REG_AX]
  57#define ARG1	regs[BPF_REG_ARG1]
  58#define CTX	regs[BPF_REG_CTX]
 
  59#define IMM	insn->imm
  60
 
 
 
  61/* No hurry in this branch
  62 *
  63 * Exported for the bpf jit load helper.
  64 */
  65void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  66{
  67	u8 *ptr = NULL;
  68
  69	if (k >= SKF_NET_OFF)
  70		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  71	else if (k >= SKF_LL_OFF)
 
 
  72		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  73
  74	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  75		return ptr;
  76
  77	return NULL;
  78}
  79
  80struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  81{
  82	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
  83	struct bpf_prog_aux *aux;
  84	struct bpf_prog *fp;
  85
  86	size = round_up(size, PAGE_SIZE);
  87	fp = __vmalloc(size, gfp_flags);
  88	if (fp == NULL)
  89		return NULL;
  90
  91	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
  92	if (aux == NULL) {
  93		vfree(fp);
  94		return NULL;
  95	}
  96	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
  97	if (!fp->active) {
  98		vfree(fp);
  99		kfree(aux);
 100		return NULL;
 101	}
 102
 103	fp->pages = size / PAGE_SIZE;
 104	fp->aux = aux;
 105	fp->aux->prog = fp;
 106	fp->jit_requested = ebpf_jit_enabled();
 
 
 
 
 107
 108	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 
 
 
 109	mutex_init(&fp->aux->used_maps_mutex);
 110	mutex_init(&fp->aux->dst_mutex);
 111
 112	return fp;
 113}
 114
 115struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 116{
 117	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
 118	struct bpf_prog *prog;
 119	int cpu;
 120
 121	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 122	if (!prog)
 123		return NULL;
 124
 125	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 126	if (!prog->stats) {
 127		free_percpu(prog->active);
 128		kfree(prog->aux);
 129		vfree(prog);
 130		return NULL;
 131	}
 132
 133	for_each_possible_cpu(cpu) {
 134		struct bpf_prog_stats *pstats;
 135
 136		pstats = per_cpu_ptr(prog->stats, cpu);
 137		u64_stats_init(&pstats->syncp);
 138	}
 139	return prog;
 140}
 141EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 142
 143int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 144{
 145	if (!prog->aux->nr_linfo || !prog->jit_requested)
 146		return 0;
 147
 148	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
 149					  sizeof(*prog->aux->jited_linfo),
 150					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
 151	if (!prog->aux->jited_linfo)
 152		return -ENOMEM;
 153
 154	return 0;
 155}
 156
 157void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
 158{
 159	if (prog->aux->jited_linfo &&
 160	    (!prog->jited || !prog->aux->jited_linfo[0])) {
 161		kvfree(prog->aux->jited_linfo);
 162		prog->aux->jited_linfo = NULL;
 163	}
 164
 165	kfree(prog->aux->kfunc_tab);
 166	prog->aux->kfunc_tab = NULL;
 167}
 168
 169/* The jit engine is responsible to provide an array
 170 * for insn_off to the jited_off mapping (insn_to_jit_off).
 171 *
 172 * The idx to this array is the insn_off.  Hence, the insn_off
 173 * here is relative to the prog itself instead of the main prog.
 174 * This array has one entry for each xlated bpf insn.
 175 *
 176 * jited_off is the byte off to the last byte of the jited insn.
 177 *
 178 * Hence, with
 179 * insn_start:
 180 *      The first bpf insn off of the prog.  The insn off
 181 *      here is relative to the main prog.
 182 *      e.g. if prog is a subprog, insn_start > 0
 183 * linfo_idx:
 184 *      The prog's idx to prog->aux->linfo and jited_linfo
 185 *
 186 * jited_linfo[linfo_idx] = prog->bpf_func
 187 *
 188 * For i > linfo_idx,
 189 *
 190 * jited_linfo[i] = prog->bpf_func +
 191 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 192 */
 193void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 194			       const u32 *insn_to_jit_off)
 195{
 196	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 197	const struct bpf_line_info *linfo;
 198	void **jited_linfo;
 199
 200	if (!prog->aux->jited_linfo)
 201		/* Userspace did not provide linfo */
 202		return;
 203
 204	linfo_idx = prog->aux->linfo_idx;
 205	linfo = &prog->aux->linfo[linfo_idx];
 206	insn_start = linfo[0].insn_off;
 207	insn_end = insn_start + prog->len;
 208
 209	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 210	jited_linfo[0] = prog->bpf_func;
 211
 212	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 213
 214	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 215		/* The verifier ensures that linfo[i].insn_off is
 216		 * strictly increasing
 217		 */
 218		jited_linfo[i] = prog->bpf_func +
 219			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 220}
 221
 222struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 223				  gfp_t gfp_extra_flags)
 224{
 225	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
 226	struct bpf_prog *fp;
 227	u32 pages;
 228
 229	size = round_up(size, PAGE_SIZE);
 230	pages = size / PAGE_SIZE;
 231	if (pages <= fp_old->pages)
 232		return fp_old;
 233
 234	fp = __vmalloc(size, gfp_flags);
 235	if (fp) {
 236		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 237		fp->pages = pages;
 238		fp->aux->prog = fp;
 239
 240		/* We keep fp->aux from fp_old around in the new
 241		 * reallocated structure.
 242		 */
 243		fp_old->aux = NULL;
 244		fp_old->stats = NULL;
 245		fp_old->active = NULL;
 246		__bpf_prog_free(fp_old);
 247	}
 248
 249	return fp;
 250}
 251
 252void __bpf_prog_free(struct bpf_prog *fp)
 253{
 254	if (fp->aux) {
 255		mutex_destroy(&fp->aux->used_maps_mutex);
 256		mutex_destroy(&fp->aux->dst_mutex);
 257		kfree(fp->aux->poke_tab);
 258		kfree(fp->aux);
 259	}
 260	free_percpu(fp->stats);
 261	free_percpu(fp->active);
 262	vfree(fp);
 263}
 264
 265int bpf_prog_calc_tag(struct bpf_prog *fp)
 266{
 267	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 268	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 269	u32 digest[SHA1_DIGEST_WORDS];
 270	u32 ws[SHA1_WORKSPACE_WORDS];
 271	u32 i, bsize, psize, blocks;
 272	struct bpf_insn *dst;
 273	bool was_ld_map;
 274	u8 *raw, *todo;
 275	__be32 *result;
 276	__be64 *bits;
 277
 278	raw = vmalloc(raw_size);
 279	if (!raw)
 280		return -ENOMEM;
 281
 282	sha1_init(digest);
 283	memset(ws, 0, sizeof(ws));
 284
 285	/* We need to take out the map fd for the digest calculation
 286	 * since they are unstable from user space side.
 287	 */
 288	dst = (void *)raw;
 289	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 290		dst[i] = fp->insnsi[i];
 291		if (!was_ld_map &&
 292		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 293		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 294		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 295			was_ld_map = true;
 296			dst[i].imm = 0;
 297		} else if (was_ld_map &&
 298			   dst[i].code == 0 &&
 299			   dst[i].dst_reg == 0 &&
 300			   dst[i].src_reg == 0 &&
 301			   dst[i].off == 0) {
 302			was_ld_map = false;
 303			dst[i].imm = 0;
 304		} else {
 305			was_ld_map = false;
 306		}
 307	}
 308
 309	psize = bpf_prog_insn_size(fp);
 310	memset(&raw[psize], 0, raw_size - psize);
 311	raw[psize++] = 0x80;
 312
 313	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 314	blocks = bsize / SHA1_BLOCK_SIZE;
 315	todo   = raw;
 316	if (bsize - psize >= sizeof(__be64)) {
 317		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 318	} else {
 319		bits = (__be64 *)(todo + bsize + bits_offset);
 320		blocks++;
 321	}
 322	*bits = cpu_to_be64((psize - 1) << 3);
 323
 324	while (blocks--) {
 325		sha1_transform(digest, todo, ws);
 326		todo += SHA1_BLOCK_SIZE;
 327	}
 328
 329	result = (__force __be32 *)digest;
 330	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 331		result[i] = cpu_to_be32(digest[i]);
 332	memcpy(fp->tag, result, sizeof(fp->tag));
 333
 334	vfree(raw);
 335	return 0;
 336}
 337
 338static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 339				s32 end_new, s32 curr, const bool probe_pass)
 340{
 341	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 342	s32 delta = end_new - end_old;
 343	s64 imm = insn->imm;
 344
 345	if (curr < pos && curr + imm + 1 >= end_old)
 346		imm += delta;
 347	else if (curr >= end_new && curr + imm + 1 < end_new)
 348		imm -= delta;
 349	if (imm < imm_min || imm > imm_max)
 350		return -ERANGE;
 351	if (!probe_pass)
 352		insn->imm = imm;
 353	return 0;
 354}
 355
 356static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 357				s32 end_new, s32 curr, const bool probe_pass)
 358{
 359	const s32 off_min = S16_MIN, off_max = S16_MAX;
 360	s32 delta = end_new - end_old;
 361	s32 off = insn->off;
 
 
 
 
 
 
 
 
 
 362
 363	if (curr < pos && curr + off + 1 >= end_old)
 364		off += delta;
 365	else if (curr >= end_new && curr + off + 1 < end_new)
 366		off -= delta;
 367	if (off < off_min || off > off_max)
 368		return -ERANGE;
 369	if (!probe_pass)
 370		insn->off = off;
 
 
 
 
 371	return 0;
 372}
 373
 374static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 375			    s32 end_new, const bool probe_pass)
 376{
 377	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 378	struct bpf_insn *insn = prog->insnsi;
 379	int ret = 0;
 380
 381	for (i = 0; i < insn_cnt; i++, insn++) {
 382		u8 code;
 383
 384		/* In the probing pass we still operate on the original,
 385		 * unpatched image in order to check overflows before we
 386		 * do any other adjustments. Therefore skip the patchlet.
 387		 */
 388		if (probe_pass && i == pos) {
 389			i = end_new;
 390			insn = prog->insnsi + end_old;
 391		}
 
 
 
 
 
 
 
 392		code = insn->code;
 393		if ((BPF_CLASS(code) != BPF_JMP &&
 394		     BPF_CLASS(code) != BPF_JMP32) ||
 395		    BPF_OP(code) == BPF_EXIT)
 396			continue;
 397		/* Adjust offset of jmps if we cross patch boundaries. */
 398		if (BPF_OP(code) == BPF_CALL) {
 399			if (insn->src_reg != BPF_PSEUDO_CALL)
 400				continue;
 401			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 402						   end_new, i, probe_pass);
 403		} else {
 404			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 405						   end_new, i, probe_pass);
 406		}
 407		if (ret)
 408			break;
 409	}
 410
 411	return ret;
 412}
 413
 414static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 415{
 416	struct bpf_line_info *linfo;
 417	u32 i, nr_linfo;
 418
 419	nr_linfo = prog->aux->nr_linfo;
 420	if (!nr_linfo || !delta)
 421		return;
 422
 423	linfo = prog->aux->linfo;
 424
 425	for (i = 0; i < nr_linfo; i++)
 426		if (off < linfo[i].insn_off)
 427			break;
 428
 429	/* Push all off < linfo[i].insn_off by delta */
 430	for (; i < nr_linfo; i++)
 431		linfo[i].insn_off += delta;
 432}
 433
 434struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 435				       const struct bpf_insn *patch, u32 len)
 436{
 437	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 438	const u32 cnt_max = S16_MAX;
 439	struct bpf_prog *prog_adj;
 440	int err;
 441
 442	/* Since our patchlet doesn't expand the image, we're done. */
 443	if (insn_delta == 0) {
 444		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 445		return prog;
 446	}
 447
 448	insn_adj_cnt = prog->len + insn_delta;
 449
 450	/* Reject anything that would potentially let the insn->off
 451	 * target overflow when we have excessive program expansions.
 452	 * We need to probe here before we do any reallocation where
 453	 * we afterwards may not fail anymore.
 454	 */
 455	if (insn_adj_cnt > cnt_max &&
 456	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 457		return ERR_PTR(err);
 458
 459	/* Several new instructions need to be inserted. Make room
 460	 * for them. Likely, there's no need for a new allocation as
 461	 * last page could have large enough tailroom.
 462	 */
 463	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 464				    GFP_USER);
 465	if (!prog_adj)
 466		return ERR_PTR(-ENOMEM);
 467
 468	prog_adj->len = insn_adj_cnt;
 469
 470	/* Patching happens in 3 steps:
 471	 *
 472	 * 1) Move over tail of insnsi from next instruction onwards,
 473	 *    so we can patch the single target insn with one or more
 474	 *    new ones (patching is always from 1 to n insns, n > 0).
 475	 * 2) Inject new instructions at the target location.
 476	 * 3) Adjust branch offsets if necessary.
 477	 */
 478	insn_rest = insn_adj_cnt - off - len;
 479
 480	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 481		sizeof(*patch) * insn_rest);
 482	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 483
 484	/* We are guaranteed to not fail at this point, otherwise
 485	 * the ship has sailed to reverse to the original state. An
 486	 * overflow cannot happen at this point.
 487	 */
 488	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 489
 490	bpf_adj_linfo(prog_adj, off, insn_delta);
 491
 492	return prog_adj;
 493}
 494
 495int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 496{
 497	/* Branch offsets can't overflow when program is shrinking, no need
 498	 * to call bpf_adj_branches(..., true) here
 499	 */
 500	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 501		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 502	prog->len -= cnt;
 503
 504	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 505}
 506
 507static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 508{
 509	int i;
 510
 511	for (i = 0; i < fp->aux->func_cnt; i++)
 512		bpf_prog_kallsyms_del(fp->aux->func[i]);
 513}
 514
 515void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 516{
 517	bpf_prog_kallsyms_del_subprogs(fp);
 518	bpf_prog_kallsyms_del(fp);
 519}
 520
 521#ifdef CONFIG_BPF_JIT
 522/* All BPF JIT sysctl knobs here. */
 523int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 524int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 525int bpf_jit_harden   __read_mostly;
 526long bpf_jit_limit   __read_mostly;
 
 527
 528static void
 529bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 530{
 531	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 532	unsigned long addr = (unsigned long)hdr;
 533
 534	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 535
 536	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 537	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
 538}
 539
 540static void
 541bpf_prog_ksym_set_name(struct bpf_prog *prog)
 542{
 543	char *sym = prog->aux->ksym.name;
 544	const char *end = sym + KSYM_NAME_LEN;
 545	const struct btf_type *type;
 546	const char *func_name;
 547
 548	BUILD_BUG_ON(sizeof("bpf_prog_") +
 549		     sizeof(prog->tag) * 2 +
 550		     /* name has been null terminated.
 551		      * We should need +1 for the '_' preceding
 552		      * the name.  However, the null character
 553		      * is double counted between the name and the
 554		      * sizeof("bpf_prog_") above, so we omit
 555		      * the +1 here.
 556		      */
 557		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 558
 559	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 560	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 561
 562	/* prog->aux->name will be ignored if full btf name is available */
 563	if (prog->aux->func_info_cnt) {
 564		type = btf_type_by_id(prog->aux->btf,
 565				      prog->aux->func_info[prog->aux->func_idx].type_id);
 566		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 567		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 568		return;
 569	}
 570
 571	if (prog->aux->name[0])
 572		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 573	else
 574		*sym = 0;
 575}
 576
 577static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 578{
 579	return container_of(n, struct bpf_ksym, tnode)->start;
 580}
 581
 582static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 583					  struct latch_tree_node *b)
 584{
 585	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 586}
 587
 588static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 589{
 590	unsigned long val = (unsigned long)key;
 591	const struct bpf_ksym *ksym;
 592
 593	ksym = container_of(n, struct bpf_ksym, tnode);
 594
 595	if (val < ksym->start)
 596		return -1;
 597	if (val >= ksym->end)
 
 
 
 
 598		return  1;
 599
 600	return 0;
 601}
 602
 603static const struct latch_tree_ops bpf_tree_ops = {
 604	.less	= bpf_tree_less,
 605	.comp	= bpf_tree_comp,
 606};
 607
 608static DEFINE_SPINLOCK(bpf_lock);
 609static LIST_HEAD(bpf_kallsyms);
 610static struct latch_tree_root bpf_tree __cacheline_aligned;
 611
 612void bpf_ksym_add(struct bpf_ksym *ksym)
 613{
 614	spin_lock_bh(&bpf_lock);
 615	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 616	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 617	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 618	spin_unlock_bh(&bpf_lock);
 619}
 620
 621static void __bpf_ksym_del(struct bpf_ksym *ksym)
 622{
 623	if (list_empty(&ksym->lnode))
 624		return;
 625
 626	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 627	list_del_rcu(&ksym->lnode);
 628}
 629
 630void bpf_ksym_del(struct bpf_ksym *ksym)
 631{
 632	spin_lock_bh(&bpf_lock);
 633	__bpf_ksym_del(ksym);
 634	spin_unlock_bh(&bpf_lock);
 635}
 636
 637static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 638{
 639	return fp->jited && !bpf_prog_was_classic(fp);
 640}
 641
 642static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 643{
 644	return list_empty(&fp->aux->ksym.lnode) ||
 645	       fp->aux->ksym.lnode.prev == LIST_POISON2;
 646}
 647
 648void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 649{
 650	if (!bpf_prog_kallsyms_candidate(fp) ||
 651	    !bpf_capable())
 652		return;
 653
 654	bpf_prog_ksym_set_addr(fp);
 655	bpf_prog_ksym_set_name(fp);
 656	fp->aux->ksym.prog = true;
 657
 658	bpf_ksym_add(&fp->aux->ksym);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659}
 660
 661void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 662{
 663	if (!bpf_prog_kallsyms_candidate(fp))
 664		return;
 665
 666	bpf_ksym_del(&fp->aux->ksym);
 
 
 
 
 
 667}
 668
 669static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 670{
 671	struct latch_tree_node *n;
 672
 673	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 674	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 675}
 676
 677const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 678				 unsigned long *off, char *sym)
 679{
 680	struct bpf_ksym *ksym;
 681	char *ret = NULL;
 682
 683	rcu_read_lock();
 684	ksym = bpf_ksym_find(addr);
 685	if (ksym) {
 686		unsigned long symbol_start = ksym->start;
 687		unsigned long symbol_end = ksym->end;
 688
 689		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 690
 691		ret = sym;
 692		if (size)
 693			*size = symbol_end - symbol_start;
 694		if (off)
 695			*off  = addr - symbol_start;
 696	}
 697	rcu_read_unlock();
 698
 699	return ret;
 700}
 701
 702bool is_bpf_text_address(unsigned long addr)
 703{
 704	bool ret;
 705
 706	rcu_read_lock();
 707	ret = bpf_ksym_find(addr) != NULL;
 708	rcu_read_unlock();
 709
 710	return ret;
 711}
 712
 713static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 714{
 715	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 716
 717	return ksym && ksym->prog ?
 718	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 719	       NULL;
 720}
 721
 722const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 723{
 724	const struct exception_table_entry *e = NULL;
 725	struct bpf_prog *prog;
 726
 727	rcu_read_lock();
 728	prog = bpf_prog_ksym_find(addr);
 729	if (!prog)
 730		goto out;
 731	if (!prog->aux->num_exentries)
 732		goto out;
 733
 734	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 735out:
 736	rcu_read_unlock();
 737	return e;
 738}
 739
 740int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 741		    char *sym)
 742{
 743	struct bpf_ksym *ksym;
 744	unsigned int it = 0;
 745	int ret = -ERANGE;
 746
 747	if (!bpf_jit_kallsyms_enabled())
 748		return ret;
 749
 750	rcu_read_lock();
 751	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 752		if (it++ != symnum)
 753			continue;
 754
 755		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 756
 757		*value = ksym->start;
 758		*type  = BPF_SYM_ELF_TYPE;
 759
 760		ret = 0;
 761		break;
 762	}
 763	rcu_read_unlock();
 764
 765	return ret;
 766}
 767
 768int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 769				struct bpf_jit_poke_descriptor *poke)
 770{
 771	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 772	static const u32 poke_tab_max = 1024;
 773	u32 slot = prog->aux->size_poke_tab;
 774	u32 size = slot + 1;
 775
 776	if (size > poke_tab_max)
 777		return -ENOSPC;
 778	if (poke->tailcall_target || poke->tailcall_target_stable ||
 779	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
 780		return -EINVAL;
 781
 782	switch (poke->reason) {
 783	case BPF_POKE_REASON_TAIL_CALL:
 784		if (!poke->tail_call.map)
 785			return -EINVAL;
 786		break;
 787	default:
 788		return -EINVAL;
 789	}
 790
 791	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
 792	if (!tab)
 793		return -ENOMEM;
 794
 795	memcpy(&tab[slot], poke, sizeof(*poke));
 796	prog->aux->size_poke_tab = size;
 797	prog->aux->poke_tab = tab;
 798
 799	return slot;
 800}
 801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802static atomic_long_t bpf_jit_current;
 803
 804/* Can be overridden by an arch's JIT compiler if it has a custom,
 805 * dedicated BPF backend memory area, or if neither of the two
 806 * below apply.
 807 */
 808u64 __weak bpf_jit_alloc_exec_limit(void)
 809{
 810#if defined(MODULES_VADDR)
 811	return MODULES_END - MODULES_VADDR;
 812#else
 813	return VMALLOC_END - VMALLOC_START;
 814#endif
 815}
 816
 817static int __init bpf_jit_charge_init(void)
 818{
 819	/* Only used as heuristic here to derive limit. */
 820	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
 
 821					    PAGE_SIZE), LONG_MAX);
 822	return 0;
 823}
 824pure_initcall(bpf_jit_charge_init);
 825
 826int bpf_jit_charge_modmem(u32 pages)
 827{
 828	if (atomic_long_add_return(pages, &bpf_jit_current) >
 829	    (bpf_jit_limit >> PAGE_SHIFT)) {
 830		if (!bpf_capable()) {
 831			atomic_long_sub(pages, &bpf_jit_current);
 832			return -EPERM;
 833		}
 834	}
 835
 836	return 0;
 837}
 838
 839void bpf_jit_uncharge_modmem(u32 pages)
 840{
 841	atomic_long_sub(pages, &bpf_jit_current);
 842}
 843
 844void *__weak bpf_jit_alloc_exec(unsigned long size)
 845{
 846	return module_alloc(size);
 847}
 848
 849void __weak bpf_jit_free_exec(void *addr)
 850{
 851	module_memfree(addr);
 852}
 853
 854struct bpf_binary_header *
 855bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 856		     unsigned int alignment,
 857		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 858{
 859	struct bpf_binary_header *hdr;
 860	u32 size, hole, start, pages;
 861
 862	WARN_ON_ONCE(!is_power_of_2(alignment) ||
 863		     alignment > BPF_IMAGE_ALIGNMENT);
 864
 865	/* Most of BPF filters are really small, but if some of them
 866	 * fill a page, allow at least 128 extra bytes to insert a
 867	 * random section of illegal instructions.
 868	 */
 869	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 870	pages = size / PAGE_SIZE;
 871
 872	if (bpf_jit_charge_modmem(pages))
 873		return NULL;
 874	hdr = bpf_jit_alloc_exec(size);
 875	if (!hdr) {
 876		bpf_jit_uncharge_modmem(pages);
 877		return NULL;
 878	}
 879
 880	/* Fill space with illegal/arch-dep instructions. */
 881	bpf_fill_ill_insns(hdr, size);
 882
 883	hdr->pages = pages;
 884	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 885		     PAGE_SIZE - sizeof(*hdr));
 886	start = (get_random_int() % hole) & ~(alignment - 1);
 887
 888	/* Leave a random number of instructions before BPF code. */
 889	*image_ptr = &hdr->image[start];
 890
 891	return hdr;
 892}
 893
 894void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 895{
 896	u32 pages = hdr->pages;
 897
 898	bpf_jit_free_exec(hdr);
 899	bpf_jit_uncharge_modmem(pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900}
 901
 902/* This symbol is only overridden by archs that have different
 903 * requirements than the usual eBPF JITs, f.e. when they only
 904 * implement cBPF JIT, do not set images read-only, etc.
 905 */
 906void __weak bpf_jit_free(struct bpf_prog *fp)
 907{
 908	if (fp->jited) {
 909		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 910
 911		bpf_jit_binary_free(hdr);
 912
 913		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 914	}
 915
 916	bpf_prog_unlock_free(fp);
 917}
 918
 919int bpf_jit_get_func_addr(const struct bpf_prog *prog,
 920			  const struct bpf_insn *insn, bool extra_pass,
 921			  u64 *func_addr, bool *func_addr_fixed)
 922{
 923	s16 off = insn->off;
 924	s32 imm = insn->imm;
 925	u8 *addr;
 
 926
 927	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
 928	if (!*func_addr_fixed) {
 929		/* Place-holder address till the last pass has collected
 930		 * all addresses for JITed subprograms in which case we
 931		 * can pick them up from prog->aux.
 932		 */
 933		if (!extra_pass)
 934			addr = NULL;
 935		else if (prog->aux->func &&
 936			 off >= 0 && off < prog->aux->func_cnt)
 937			addr = (u8 *)prog->aux->func[off]->bpf_func;
 938		else
 939			return -EINVAL;
 
 
 
 
 
 940	} else {
 941		/* Address of a BPF helper call. Since part of the core
 942		 * kernel, it's always at a fixed location. __bpf_call_base
 943		 * and the helper with imm relative to it are both in core
 944		 * kernel.
 945		 */
 946		addr = (u8 *)__bpf_call_base + imm;
 947	}
 948
 949	*func_addr = (unsigned long)addr;
 950	return 0;
 951}
 952
 953static int bpf_jit_blind_insn(const struct bpf_insn *from,
 954			      const struct bpf_insn *aux,
 955			      struct bpf_insn *to_buff,
 956			      bool emit_zext)
 957{
 958	struct bpf_insn *to = to_buff;
 959	u32 imm_rnd = get_random_int();
 960	s16 off;
 961
 962	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 963	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 964
 965	/* Constraints on AX register:
 966	 *
 967	 * AX register is inaccessible from user space. It is mapped in
 968	 * all JITs, and used here for constant blinding rewrites. It is
 969	 * typically "stateless" meaning its contents are only valid within
 970	 * the executed instruction, but not across several instructions.
 971	 * There are a few exceptions however which are further detailed
 972	 * below.
 973	 *
 974	 * Constant blinding is only used by JITs, not in the interpreter.
 975	 * The interpreter uses AX in some occasions as a local temporary
 976	 * register e.g. in DIV or MOD instructions.
 977	 *
 978	 * In restricted circumstances, the verifier can also use the AX
 979	 * register for rewrites as long as they do not interfere with
 980	 * the above cases!
 981	 */
 982	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
 983		goto out;
 984
 985	if (from->imm == 0 &&
 986	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 987	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 988		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 989		goto out;
 990	}
 991
 992	switch (from->code) {
 993	case BPF_ALU | BPF_ADD | BPF_K:
 994	case BPF_ALU | BPF_SUB | BPF_K:
 995	case BPF_ALU | BPF_AND | BPF_K:
 996	case BPF_ALU | BPF_OR  | BPF_K:
 997	case BPF_ALU | BPF_XOR | BPF_K:
 998	case BPF_ALU | BPF_MUL | BPF_K:
 999	case BPF_ALU | BPF_MOV | BPF_K:
1000	case BPF_ALU | BPF_DIV | BPF_K:
1001	case BPF_ALU | BPF_MOD | BPF_K:
1002		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1003		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1004		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1005		break;
1006
1007	case BPF_ALU64 | BPF_ADD | BPF_K:
1008	case BPF_ALU64 | BPF_SUB | BPF_K:
1009	case BPF_ALU64 | BPF_AND | BPF_K:
1010	case BPF_ALU64 | BPF_OR  | BPF_K:
1011	case BPF_ALU64 | BPF_XOR | BPF_K:
1012	case BPF_ALU64 | BPF_MUL | BPF_K:
1013	case BPF_ALU64 | BPF_MOV | BPF_K:
1014	case BPF_ALU64 | BPF_DIV | BPF_K:
1015	case BPF_ALU64 | BPF_MOD | BPF_K:
1016		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1017		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1018		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1019		break;
1020
1021	case BPF_JMP | BPF_JEQ  | BPF_K:
1022	case BPF_JMP | BPF_JNE  | BPF_K:
1023	case BPF_JMP | BPF_JGT  | BPF_K:
1024	case BPF_JMP | BPF_JLT  | BPF_K:
1025	case BPF_JMP | BPF_JGE  | BPF_K:
1026	case BPF_JMP | BPF_JLE  | BPF_K:
1027	case BPF_JMP | BPF_JSGT | BPF_K:
1028	case BPF_JMP | BPF_JSLT | BPF_K:
1029	case BPF_JMP | BPF_JSGE | BPF_K:
1030	case BPF_JMP | BPF_JSLE | BPF_K:
1031	case BPF_JMP | BPF_JSET | BPF_K:
1032		/* Accommodate for extra offset in case of a backjump. */
1033		off = from->off;
1034		if (off < 0)
1035			off -= 2;
1036		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1037		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1038		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1039		break;
1040
1041	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1042	case BPF_JMP32 | BPF_JNE  | BPF_K:
1043	case BPF_JMP32 | BPF_JGT  | BPF_K:
1044	case BPF_JMP32 | BPF_JLT  | BPF_K:
1045	case BPF_JMP32 | BPF_JGE  | BPF_K:
1046	case BPF_JMP32 | BPF_JLE  | BPF_K:
1047	case BPF_JMP32 | BPF_JSGT | BPF_K:
1048	case BPF_JMP32 | BPF_JSLT | BPF_K:
1049	case BPF_JMP32 | BPF_JSGE | BPF_K:
1050	case BPF_JMP32 | BPF_JSLE | BPF_K:
1051	case BPF_JMP32 | BPF_JSET | BPF_K:
1052		/* Accommodate for extra offset in case of a backjump. */
1053		off = from->off;
1054		if (off < 0)
1055			off -= 2;
1056		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1057		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1058		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1059				      off);
1060		break;
1061
1062	case BPF_LD | BPF_IMM | BPF_DW:
1063		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1064		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1065		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1066		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1067		break;
1068	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1069		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1070		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1071		if (emit_zext)
1072			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1073		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1074		break;
1075
1076	case BPF_ST | BPF_MEM | BPF_DW:
1077	case BPF_ST | BPF_MEM | BPF_W:
1078	case BPF_ST | BPF_MEM | BPF_H:
1079	case BPF_ST | BPF_MEM | BPF_B:
1080		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1081		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1082		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1083		break;
1084	}
1085out:
1086	return to - to_buff;
1087}
1088
1089static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1090					      gfp_t gfp_extra_flags)
1091{
1092	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1093	struct bpf_prog *fp;
1094
1095	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1096	if (fp != NULL) {
1097		/* aux->prog still points to the fp_other one, so
1098		 * when promoting the clone to the real program,
1099		 * this still needs to be adapted.
1100		 */
1101		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1102	}
1103
1104	return fp;
1105}
1106
1107static void bpf_prog_clone_free(struct bpf_prog *fp)
1108{
1109	/* aux was stolen by the other clone, so we cannot free
1110	 * it from this path! It will be freed eventually by the
1111	 * other program on release.
1112	 *
1113	 * At this point, we don't need a deferred release since
1114	 * clone is guaranteed to not be locked.
1115	 */
1116	fp->aux = NULL;
1117	fp->stats = NULL;
1118	fp->active = NULL;
1119	__bpf_prog_free(fp);
1120}
1121
1122void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1123{
1124	/* We have to repoint aux->prog to self, as we don't
1125	 * know whether fp here is the clone or the original.
1126	 */
1127	fp->aux->prog = fp;
1128	bpf_prog_clone_free(fp_other);
1129}
1130
1131struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1132{
1133	struct bpf_insn insn_buff[16], aux[2];
1134	struct bpf_prog *clone, *tmp;
1135	int insn_delta, insn_cnt;
1136	struct bpf_insn *insn;
1137	int i, rewritten;
1138
1139	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1140		return prog;
1141
1142	clone = bpf_prog_clone_create(prog, GFP_USER);
1143	if (!clone)
1144		return ERR_PTR(-ENOMEM);
1145
1146	insn_cnt = clone->len;
1147	insn = clone->insnsi;
1148
1149	for (i = 0; i < insn_cnt; i++, insn++) {
 
 
 
 
 
 
 
 
 
 
1150		/* We temporarily need to hold the original ld64 insn
1151		 * so that we can still access the first part in the
1152		 * second blinding run.
1153		 */
1154		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1155		    insn[1].code == 0)
1156			memcpy(aux, insn, sizeof(aux));
1157
1158		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1159						clone->aux->verifier_zext);
1160		if (!rewritten)
1161			continue;
1162
1163		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1164		if (IS_ERR(tmp)) {
1165			/* Patching may have repointed aux->prog during
1166			 * realloc from the original one, so we need to
1167			 * fix it up here on error.
1168			 */
1169			bpf_jit_prog_release_other(prog, clone);
1170			return tmp;
1171		}
1172
1173		clone = tmp;
1174		insn_delta = rewritten - 1;
1175
1176		/* Walk new program and skip insns we just inserted. */
1177		insn = clone->insnsi + i + insn_delta;
1178		insn_cnt += insn_delta;
1179		i        += insn_delta;
1180	}
1181
1182	clone->blinded = 1;
1183	return clone;
1184}
1185#endif /* CONFIG_BPF_JIT */
1186
1187/* Base function for offset calculation. Needs to go into .text section,
1188 * therefore keeping it non-static as well; will also be used by JITs
1189 * anyway later on, so do not let the compiler omit it. This also needs
1190 * to go into kallsyms for correlation from e.g. bpftool, so naming
1191 * must not change.
1192 */
1193noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1194{
1195	return 0;
1196}
1197EXPORT_SYMBOL_GPL(__bpf_call_base);
1198
1199/* All UAPI available opcodes. */
1200#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1201	/* 32 bit ALU operations. */		\
1202	/*   Register based. */			\
1203	INSN_3(ALU, ADD,  X),			\
1204	INSN_3(ALU, SUB,  X),			\
1205	INSN_3(ALU, AND,  X),			\
1206	INSN_3(ALU, OR,   X),			\
1207	INSN_3(ALU, LSH,  X),			\
1208	INSN_3(ALU, RSH,  X),			\
1209	INSN_3(ALU, XOR,  X),			\
1210	INSN_3(ALU, MUL,  X),			\
1211	INSN_3(ALU, MOV,  X),			\
1212	INSN_3(ALU, ARSH, X),			\
1213	INSN_3(ALU, DIV,  X),			\
1214	INSN_3(ALU, MOD,  X),			\
1215	INSN_2(ALU, NEG),			\
1216	INSN_3(ALU, END, TO_BE),		\
1217	INSN_3(ALU, END, TO_LE),		\
1218	/*   Immediate based. */		\
1219	INSN_3(ALU, ADD,  K),			\
1220	INSN_3(ALU, SUB,  K),			\
1221	INSN_3(ALU, AND,  K),			\
1222	INSN_3(ALU, OR,   K),			\
1223	INSN_3(ALU, LSH,  K),			\
1224	INSN_3(ALU, RSH,  K),			\
1225	INSN_3(ALU, XOR,  K),			\
1226	INSN_3(ALU, MUL,  K),			\
1227	INSN_3(ALU, MOV,  K),			\
1228	INSN_3(ALU, ARSH, K),			\
1229	INSN_3(ALU, DIV,  K),			\
1230	INSN_3(ALU, MOD,  K),			\
1231	/* 64 bit ALU operations. */		\
1232	/*   Register based. */			\
1233	INSN_3(ALU64, ADD,  X),			\
1234	INSN_3(ALU64, SUB,  X),			\
1235	INSN_3(ALU64, AND,  X),			\
1236	INSN_3(ALU64, OR,   X),			\
1237	INSN_3(ALU64, LSH,  X),			\
1238	INSN_3(ALU64, RSH,  X),			\
1239	INSN_3(ALU64, XOR,  X),			\
1240	INSN_3(ALU64, MUL,  X),			\
1241	INSN_3(ALU64, MOV,  X),			\
1242	INSN_3(ALU64, ARSH, X),			\
1243	INSN_3(ALU64, DIV,  X),			\
1244	INSN_3(ALU64, MOD,  X),			\
1245	INSN_2(ALU64, NEG),			\
 
1246	/*   Immediate based. */		\
1247	INSN_3(ALU64, ADD,  K),			\
1248	INSN_3(ALU64, SUB,  K),			\
1249	INSN_3(ALU64, AND,  K),			\
1250	INSN_3(ALU64, OR,   K),			\
1251	INSN_3(ALU64, LSH,  K),			\
1252	INSN_3(ALU64, RSH,  K),			\
1253	INSN_3(ALU64, XOR,  K),			\
1254	INSN_3(ALU64, MUL,  K),			\
1255	INSN_3(ALU64, MOV,  K),			\
1256	INSN_3(ALU64, ARSH, K),			\
1257	INSN_3(ALU64, DIV,  K),			\
1258	INSN_3(ALU64, MOD,  K),			\
1259	/* Call instruction. */			\
1260	INSN_2(JMP, CALL),			\
1261	/* Exit instruction. */			\
1262	INSN_2(JMP, EXIT),			\
1263	/* 32-bit Jump instructions. */		\
1264	/*   Register based. */			\
1265	INSN_3(JMP32, JEQ,  X),			\
1266	INSN_3(JMP32, JNE,  X),			\
1267	INSN_3(JMP32, JGT,  X),			\
1268	INSN_3(JMP32, JLT,  X),			\
1269	INSN_3(JMP32, JGE,  X),			\
1270	INSN_3(JMP32, JLE,  X),			\
1271	INSN_3(JMP32, JSGT, X),			\
1272	INSN_3(JMP32, JSLT, X),			\
1273	INSN_3(JMP32, JSGE, X),			\
1274	INSN_3(JMP32, JSLE, X),			\
1275	INSN_3(JMP32, JSET, X),			\
1276	/*   Immediate based. */		\
1277	INSN_3(JMP32, JEQ,  K),			\
1278	INSN_3(JMP32, JNE,  K),			\
1279	INSN_3(JMP32, JGT,  K),			\
1280	INSN_3(JMP32, JLT,  K),			\
1281	INSN_3(JMP32, JGE,  K),			\
1282	INSN_3(JMP32, JLE,  K),			\
1283	INSN_3(JMP32, JSGT, K),			\
1284	INSN_3(JMP32, JSLT, K),			\
1285	INSN_3(JMP32, JSGE, K),			\
1286	INSN_3(JMP32, JSLE, K),			\
1287	INSN_3(JMP32, JSET, K),			\
1288	/* Jump instructions. */		\
1289	/*   Register based. */			\
1290	INSN_3(JMP, JEQ,  X),			\
1291	INSN_3(JMP, JNE,  X),			\
1292	INSN_3(JMP, JGT,  X),			\
1293	INSN_3(JMP, JLT,  X),			\
1294	INSN_3(JMP, JGE,  X),			\
1295	INSN_3(JMP, JLE,  X),			\
1296	INSN_3(JMP, JSGT, X),			\
1297	INSN_3(JMP, JSLT, X),			\
1298	INSN_3(JMP, JSGE, X),			\
1299	INSN_3(JMP, JSLE, X),			\
1300	INSN_3(JMP, JSET, X),			\
1301	/*   Immediate based. */		\
1302	INSN_3(JMP, JEQ,  K),			\
1303	INSN_3(JMP, JNE,  K),			\
1304	INSN_3(JMP, JGT,  K),			\
1305	INSN_3(JMP, JLT,  K),			\
1306	INSN_3(JMP, JGE,  K),			\
1307	INSN_3(JMP, JLE,  K),			\
1308	INSN_3(JMP, JSGT, K),			\
1309	INSN_3(JMP, JSLT, K),			\
1310	INSN_3(JMP, JSGE, K),			\
1311	INSN_3(JMP, JSLE, K),			\
1312	INSN_3(JMP, JSET, K),			\
1313	INSN_2(JMP, JA),			\
 
1314	/* Store instructions. */		\
1315	/*   Register based. */			\
1316	INSN_3(STX, MEM,  B),			\
1317	INSN_3(STX, MEM,  H),			\
1318	INSN_3(STX, MEM,  W),			\
1319	INSN_3(STX, MEM,  DW),			\
1320	INSN_3(STX, ATOMIC, W),			\
1321	INSN_3(STX, ATOMIC, DW),		\
1322	/*   Immediate based. */		\
1323	INSN_3(ST, MEM, B),			\
1324	INSN_3(ST, MEM, H),			\
1325	INSN_3(ST, MEM, W),			\
1326	INSN_3(ST, MEM, DW),			\
1327	/* Load instructions. */		\
1328	/*   Register based. */			\
1329	INSN_3(LDX, MEM, B),			\
1330	INSN_3(LDX, MEM, H),			\
1331	INSN_3(LDX, MEM, W),			\
1332	INSN_3(LDX, MEM, DW),			\
 
 
 
1333	/*   Immediate based. */		\
1334	INSN_3(LD, IMM, DW)
1335
1336bool bpf_opcode_in_insntable(u8 code)
1337{
1338#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1339#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1340	static const bool public_insntable[256] = {
1341		[0 ... 255] = false,
1342		/* Now overwrite non-defaults ... */
1343		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1344		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1345		[BPF_LD | BPF_ABS | BPF_B] = true,
1346		[BPF_LD | BPF_ABS | BPF_H] = true,
1347		[BPF_LD | BPF_ABS | BPF_W] = true,
1348		[BPF_LD | BPF_IND | BPF_B] = true,
1349		[BPF_LD | BPF_IND | BPF_H] = true,
1350		[BPF_LD | BPF_IND | BPF_W] = true,
1351	};
1352#undef BPF_INSN_3_TBL
1353#undef BPF_INSN_2_TBL
1354	return public_insntable[code];
1355}
1356
1357#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1358u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1359{
1360	memset(dst, 0, size);
1361	return -EFAULT;
1362}
1363
1364/**
1365 *	___bpf_prog_run - run eBPF program on a given context
1366 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1367 *	@insn: is the array of eBPF instructions
1368 *
1369 * Decode and execute eBPF instructions.
1370 *
1371 * Return: whatever value is in %BPF_R0 at program exit
1372 */
1373static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1374{
1375#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1376#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1377	static const void * const jumptable[256] __annotate_jump_table = {
1378		[0 ... 255] = &&default_label,
1379		/* Now overwrite non-defaults ... */
1380		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1381		/* Non-UAPI available opcodes. */
1382		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1383		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1384		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1385		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1386		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1387		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1388		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
 
 
 
1389	};
1390#undef BPF_INSN_3_LBL
1391#undef BPF_INSN_2_LBL
1392	u32 tail_call_cnt = 0;
1393
1394#define CONT	 ({ insn++; goto select_insn; })
1395#define CONT_JMP ({ insn++; goto select_insn; })
1396
1397select_insn:
1398	goto *jumptable[insn->code];
1399
1400	/* Explicitly mask the register-based shift amounts with 63 or 31
1401	 * to avoid undefined behavior. Normally this won't affect the
1402	 * generated code, for example, in case of native 64 bit archs such
1403	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1404	 * the interpreter. In case of JITs, each of the JIT backends compiles
1405	 * the BPF shift operations to machine instructions which produce
1406	 * implementation-defined results in such a case; the resulting
1407	 * contents of the register may be arbitrary, but program behaviour
1408	 * as a whole remains defined. In other words, in case of JIT backends,
1409	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1410	 */
1411	/* ALU (shifts) */
1412#define SHT(OPCODE, OP)					\
1413	ALU64_##OPCODE##_X:				\
1414		DST = DST OP (SRC & 63);		\
1415		CONT;					\
1416	ALU_##OPCODE##_X:				\
1417		DST = (u32) DST OP ((u32) SRC & 31);	\
1418		CONT;					\
1419	ALU64_##OPCODE##_K:				\
1420		DST = DST OP IMM;			\
1421		CONT;					\
1422	ALU_##OPCODE##_K:				\
1423		DST = (u32) DST OP (u32) IMM;		\
1424		CONT;
1425	/* ALU (rest) */
1426#define ALU(OPCODE, OP)					\
1427	ALU64_##OPCODE##_X:				\
1428		DST = DST OP SRC;			\
1429		CONT;					\
1430	ALU_##OPCODE##_X:				\
1431		DST = (u32) DST OP (u32) SRC;		\
1432		CONT;					\
1433	ALU64_##OPCODE##_K:				\
1434		DST = DST OP IMM;			\
1435		CONT;					\
1436	ALU_##OPCODE##_K:				\
1437		DST = (u32) DST OP (u32) IMM;		\
1438		CONT;
1439	ALU(ADD,  +)
1440	ALU(SUB,  -)
1441	ALU(AND,  &)
1442	ALU(OR,   |)
1443	ALU(XOR,  ^)
1444	ALU(MUL,  *)
1445	SHT(LSH, <<)
1446	SHT(RSH, >>)
1447#undef SHT
1448#undef ALU
1449	ALU_NEG:
1450		DST = (u32) -DST;
1451		CONT;
1452	ALU64_NEG:
1453		DST = -DST;
1454		CONT;
1455	ALU_MOV_X:
1456		DST = (u32) SRC;
 
 
 
 
 
 
 
 
 
 
1457		CONT;
1458	ALU_MOV_K:
1459		DST = (u32) IMM;
1460		CONT;
1461	ALU64_MOV_X:
1462		DST = SRC;
 
 
 
 
 
 
 
 
 
 
 
 
 
1463		CONT;
1464	ALU64_MOV_K:
1465		DST = IMM;
1466		CONT;
1467	LD_IMM_DW:
1468		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1469		insn++;
1470		CONT;
1471	ALU_ARSH_X:
1472		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1473		CONT;
1474	ALU_ARSH_K:
1475		DST = (u64) (u32) (((s32) DST) >> IMM);
1476		CONT;
1477	ALU64_ARSH_X:
1478		(*(s64 *) &DST) >>= (SRC & 63);
1479		CONT;
1480	ALU64_ARSH_K:
1481		(*(s64 *) &DST) >>= IMM;
1482		CONT;
1483	ALU64_MOD_X:
1484		div64_u64_rem(DST, SRC, &AX);
1485		DST = AX;
 
 
 
 
 
 
 
 
1486		CONT;
1487	ALU_MOD_X:
1488		AX = (u32) DST;
1489		DST = do_div(AX, (u32) SRC);
 
 
 
 
 
 
 
 
 
 
 
 
1490		CONT;
1491	ALU64_MOD_K:
1492		div64_u64_rem(DST, IMM, &AX);
1493		DST = AX;
 
 
 
 
 
 
 
 
1494		CONT;
1495	ALU_MOD_K:
1496		AX = (u32) DST;
1497		DST = do_div(AX, (u32) IMM);
 
 
 
 
 
 
 
 
 
 
 
 
1498		CONT;
1499	ALU64_DIV_X:
1500		DST = div64_u64(DST, SRC);
 
 
 
 
 
 
 
1501		CONT;
1502	ALU_DIV_X:
1503		AX = (u32) DST;
1504		do_div(AX, (u32) SRC);
1505		DST = (u32) AX;
 
 
 
 
 
 
 
 
 
 
 
 
1506		CONT;
1507	ALU64_DIV_K:
1508		DST = div64_u64(DST, IMM);
 
 
 
 
 
 
 
1509		CONT;
1510	ALU_DIV_K:
1511		AX = (u32) DST;
1512		do_div(AX, (u32) IMM);
1513		DST = (u32) AX;
 
 
 
 
 
 
 
 
 
 
 
 
1514		CONT;
1515	ALU_END_TO_BE:
1516		switch (IMM) {
1517		case 16:
1518			DST = (__force u16) cpu_to_be16(DST);
1519			break;
1520		case 32:
1521			DST = (__force u32) cpu_to_be32(DST);
1522			break;
1523		case 64:
1524			DST = (__force u64) cpu_to_be64(DST);
1525			break;
1526		}
1527		CONT;
1528	ALU_END_TO_LE:
1529		switch (IMM) {
1530		case 16:
1531			DST = (__force u16) cpu_to_le16(DST);
1532			break;
1533		case 32:
1534			DST = (__force u32) cpu_to_le32(DST);
1535			break;
1536		case 64:
1537			DST = (__force u64) cpu_to_le64(DST);
1538			break;
1539		}
1540		CONT;
 
 
 
 
 
 
 
 
 
 
 
 
 
1541
1542	/* CALL */
1543	JMP_CALL:
1544		/* Function call scratches BPF_R1-BPF_R5 registers,
1545		 * preserves BPF_R6-BPF_R9, and stores return value
1546		 * into BPF_R0.
1547		 */
1548		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1549						       BPF_R4, BPF_R5);
1550		CONT;
1551
1552	JMP_CALL_ARGS:
1553		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1554							    BPF_R3, BPF_R4,
1555							    BPF_R5,
1556							    insn + insn->off + 1);
1557		CONT;
1558
1559	JMP_TAIL_CALL: {
1560		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1561		struct bpf_array *array = container_of(map, struct bpf_array, map);
1562		struct bpf_prog *prog;
1563		u32 index = BPF_R3;
1564
1565		if (unlikely(index >= array->map.max_entries))
1566			goto out;
1567		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
 
1568			goto out;
1569
1570		tail_call_cnt++;
1571
1572		prog = READ_ONCE(array->ptrs[index]);
1573		if (!prog)
1574			goto out;
1575
1576		/* ARG1 at this point is guaranteed to point to CTX from
1577		 * the verifier side due to the fact that the tail call is
1578		 * handled like a helper, that is, bpf_tail_call_proto,
1579		 * where arg1_type is ARG_PTR_TO_CTX.
1580		 */
1581		insn = prog->insnsi;
1582		goto select_insn;
1583out:
1584		CONT;
1585	}
1586	JMP_JA:
1587		insn += insn->off;
1588		CONT;
 
 
 
1589	JMP_EXIT:
1590		return BPF_R0;
1591	/* JMP */
1592#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1593	JMP_##OPCODE##_X:					\
1594		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1595			insn += insn->off;			\
1596			CONT_JMP;				\
1597		}						\
1598		CONT;						\
1599	JMP32_##OPCODE##_X:					\
1600		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1601			insn += insn->off;			\
1602			CONT_JMP;				\
1603		}						\
1604		CONT;						\
1605	JMP_##OPCODE##_K:					\
1606		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1607			insn += insn->off;			\
1608			CONT_JMP;				\
1609		}						\
1610		CONT;						\
1611	JMP32_##OPCODE##_K:					\
1612		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1613			insn += insn->off;			\
1614			CONT_JMP;				\
1615		}						\
1616		CONT;
1617	COND_JMP(u, JEQ, ==)
1618	COND_JMP(u, JNE, !=)
1619	COND_JMP(u, JGT, >)
1620	COND_JMP(u, JLT, <)
1621	COND_JMP(u, JGE, >=)
1622	COND_JMP(u, JLE, <=)
1623	COND_JMP(u, JSET, &)
1624	COND_JMP(s, JSGT, >)
1625	COND_JMP(s, JSLT, <)
1626	COND_JMP(s, JSGE, >=)
1627	COND_JMP(s, JSLE, <=)
1628#undef COND_JMP
1629	/* ST, STX and LDX*/
1630	ST_NOSPEC:
1631		/* Speculation barrier for mitigating Speculative Store Bypass.
1632		 * In case of arm64, we rely on the firmware mitigation as
1633		 * controlled via the ssbd kernel parameter. Whenever the
1634		 * mitigation is enabled, it works for all of the kernel code
1635		 * with no need to provide any additional instructions here.
1636		 * In case of x86, we use 'lfence' insn for mitigation. We
1637		 * reuse preexisting logic from Spectre v1 mitigation that
1638		 * happens to produce the required code on x86 for v4 as well.
1639		 */
1640#ifdef CONFIG_X86
1641		barrier_nospec();
1642#endif
1643		CONT;
1644#define LDST(SIZEOP, SIZE)						\
1645	STX_MEM_##SIZEOP:						\
1646		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1647		CONT;							\
1648	ST_MEM_##SIZEOP:						\
1649		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1650		CONT;							\
1651	LDX_MEM_##SIZEOP:						\
1652		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
 
 
 
 
 
1653		CONT;
1654
1655	LDST(B,   u8)
1656	LDST(H,  u16)
1657	LDST(W,  u32)
1658	LDST(DW, u64)
1659#undef LDST
1660#define LDX_PROBE(SIZEOP, SIZE)							\
1661	LDX_PROBE_MEM_##SIZEOP:							\
1662		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1663		CONT;
1664	LDX_PROBE(B,  1)
1665	LDX_PROBE(H,  2)
1666	LDX_PROBE(W,  4)
1667	LDX_PROBE(DW, 8)
1668#undef LDX_PROBE
 
 
 
 
 
 
1669
1670#define ATOMIC_ALU_OP(BOP, KOP)						\
1671		case BOP:						\
1672			if (BPF_SIZE(insn->code) == BPF_W)		\
1673				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1674					     (DST + insn->off));	\
1675			else						\
1676				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1677					       (DST + insn->off));	\
1678			break;						\
1679		case BOP | BPF_FETCH:					\
1680			if (BPF_SIZE(insn->code) == BPF_W)		\
1681				SRC = (u32) atomic_fetch_##KOP(		\
1682					(u32) SRC,			\
1683					(atomic_t *)(unsigned long) (DST + insn->off)); \
1684			else						\
1685				SRC = (u64) atomic64_fetch_##KOP(	\
1686					(u64) SRC,			\
1687					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1688			break;
1689
1690	STX_ATOMIC_DW:
1691	STX_ATOMIC_W:
1692		switch (IMM) {
1693		ATOMIC_ALU_OP(BPF_ADD, add)
1694		ATOMIC_ALU_OP(BPF_AND, and)
1695		ATOMIC_ALU_OP(BPF_OR, or)
1696		ATOMIC_ALU_OP(BPF_XOR, xor)
1697#undef ATOMIC_ALU_OP
1698
1699		case BPF_XCHG:
1700			if (BPF_SIZE(insn->code) == BPF_W)
1701				SRC = (u32) atomic_xchg(
1702					(atomic_t *)(unsigned long) (DST + insn->off),
1703					(u32) SRC);
1704			else
1705				SRC = (u64) atomic64_xchg(
1706					(atomic64_t *)(unsigned long) (DST + insn->off),
1707					(u64) SRC);
1708			break;
1709		case BPF_CMPXCHG:
1710			if (BPF_SIZE(insn->code) == BPF_W)
1711				BPF_R0 = (u32) atomic_cmpxchg(
1712					(atomic_t *)(unsigned long) (DST + insn->off),
1713					(u32) BPF_R0, (u32) SRC);
1714			else
1715				BPF_R0 = (u64) atomic64_cmpxchg(
1716					(atomic64_t *)(unsigned long) (DST + insn->off),
1717					(u64) BPF_R0, (u64) SRC);
1718			break;
1719
1720		default:
1721			goto default_label;
1722		}
1723		CONT;
1724
1725	default_label:
1726		/* If we ever reach this, we have a bug somewhere. Die hard here
1727		 * instead of just returning 0; we could be somewhere in a subprog,
1728		 * so execution could continue otherwise which we do /not/ want.
1729		 *
1730		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1731		 */
1732		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1733			insn->code, insn->imm);
1734		BUG_ON(1);
1735		return 0;
1736}
1737
1738#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1739#define DEFINE_BPF_PROG_RUN(stack_size) \
1740static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1741{ \
1742	u64 stack[stack_size / sizeof(u64)]; \
1743	u64 regs[MAX_BPF_EXT_REG]; \
1744\
1745	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1746	ARG1 = (u64) (unsigned long) ctx; \
1747	return ___bpf_prog_run(regs, insn); \
1748}
1749
1750#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1751#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1752static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1753				      const struct bpf_insn *insn) \
1754{ \
1755	u64 stack[stack_size / sizeof(u64)]; \
1756	u64 regs[MAX_BPF_EXT_REG]; \
1757\
1758	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1759	BPF_R1 = r1; \
1760	BPF_R2 = r2; \
1761	BPF_R3 = r3; \
1762	BPF_R4 = r4; \
1763	BPF_R5 = r5; \
1764	return ___bpf_prog_run(regs, insn); \
1765}
1766
1767#define EVAL1(FN, X) FN(X)
1768#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1769#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1770#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1771#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1772#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1773
1774EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1775EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1776EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1777
1778EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1779EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1780EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1781
1782#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1783
1784static unsigned int (*interpreters[])(const void *ctx,
1785				      const struct bpf_insn *insn) = {
1786EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1787EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1788EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1789};
1790#undef PROG_NAME_LIST
1791#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1792static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1793				  const struct bpf_insn *insn) = {
 
1794EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1795EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1796EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1797};
1798#undef PROG_NAME_LIST
1799
 
1800void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1801{
1802	stack_depth = max_t(u32, stack_depth, 1);
1803	insn->off = (s16) insn->imm;
1804	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1805		__bpf_call_base_args;
1806	insn->code = BPF_JMP | BPF_CALL_ARGS;
1807}
1808
1809#else
1810static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1811					 const struct bpf_insn *insn)
1812{
1813	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1814	 * is not working properly, so warn about it!
1815	 */
1816	WARN_ON_ONCE(1);
1817	return 0;
1818}
1819#endif
1820
1821bool bpf_prog_array_compatible(struct bpf_array *array,
1822			       const struct bpf_prog *fp)
1823{
 
 
 
1824	if (fp->kprobe_override)
1825		return false;
1826
1827	if (!array->aux->type) {
 
 
 
 
 
 
 
 
 
1828		/* There's no owner yet where we could check for
1829		 * compatibility.
1830		 */
1831		array->aux->type  = fp->type;
1832		array->aux->jited = fp->jited;
1833		return true;
 
 
 
 
 
1834	}
 
1835
1836	return array->aux->type  == fp->type &&
1837	       array->aux->jited == fp->jited;
1838}
1839
1840static int bpf_check_tail_call(const struct bpf_prog *fp)
1841{
1842	struct bpf_prog_aux *aux = fp->aux;
1843	int i, ret = 0;
1844
1845	mutex_lock(&aux->used_maps_mutex);
1846	for (i = 0; i < aux->used_map_cnt; i++) {
1847		struct bpf_map *map = aux->used_maps[i];
1848		struct bpf_array *array;
1849
1850		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1851			continue;
1852
1853		array = container_of(map, struct bpf_array, map);
1854		if (!bpf_prog_array_compatible(array, fp)) {
1855			ret = -EINVAL;
1856			goto out;
1857		}
1858	}
1859
1860out:
1861	mutex_unlock(&aux->used_maps_mutex);
1862	return ret;
1863}
1864
1865static void bpf_prog_select_func(struct bpf_prog *fp)
1866{
1867#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1868	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1869
1870	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1871#else
1872	fp->bpf_func = __bpf_prog_ret0_warn;
1873#endif
1874}
1875
1876/**
1877 *	bpf_prog_select_runtime - select exec runtime for BPF program
1878 *	@fp: bpf_prog populated with internal BPF program
1879 *	@err: pointer to error variable
1880 *
1881 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1882 * The BPF program will be executed via BPF_PROG_RUN() macro.
1883 *
1884 * Return: the &fp argument along with &err set to 0 for success or
1885 * a negative errno code on failure
1886 */
1887struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1888{
1889	/* In case of BPF to BPF calls, verifier did all the prep
1890	 * work with regards to JITing, etc.
1891	 */
1892	bool jit_needed = false;
1893
1894	if (fp->bpf_func)
1895		goto finalize;
1896
1897	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
1898	    bpf_prog_has_kfunc_call(fp))
1899		jit_needed = true;
1900
1901	bpf_prog_select_func(fp);
1902
1903	/* eBPF JITs can rewrite the program in case constant
1904	 * blinding is active. However, in case of error during
1905	 * blinding, bpf_int_jit_compile() must always return a
1906	 * valid program, which in this case would simply not
1907	 * be JITed, but falls back to the interpreter.
1908	 */
1909	if (!bpf_prog_is_dev_bound(fp->aux)) {
1910		*err = bpf_prog_alloc_jited_linfo(fp);
1911		if (*err)
1912			return fp;
1913
1914		fp = bpf_int_jit_compile(fp);
1915		bpf_prog_jit_attempt_done(fp);
1916		if (!fp->jited && jit_needed) {
1917			*err = -ENOTSUPP;
1918			return fp;
1919		}
1920	} else {
1921		*err = bpf_prog_offload_compile(fp);
1922		if (*err)
1923			return fp;
1924	}
1925
1926finalize:
1927	bpf_prog_lock_ro(fp);
1928
1929	/* The tail call compatibility check can only be done at
1930	 * this late stage as we need to determine, if we deal
1931	 * with JITed or non JITed program concatenations and not
1932	 * all eBPF JITs might immediately support all features.
1933	 */
1934	*err = bpf_check_tail_call(fp);
1935
1936	return fp;
1937}
1938EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1939
1940static unsigned int __bpf_prog_ret1(const void *ctx,
1941				    const struct bpf_insn *insn)
1942{
1943	return 1;
1944}
1945
1946static struct bpf_prog_dummy {
1947	struct bpf_prog prog;
1948} dummy_bpf_prog = {
1949	.prog = {
1950		.bpf_func = __bpf_prog_ret1,
1951	},
1952};
1953
1954/* to avoid allocating empty bpf_prog_array for cgroups that
1955 * don't have bpf program attached use one global 'empty_prog_array'
1956 * It will not be modified the caller of bpf_prog_array_alloc()
1957 * (since caller requested prog_cnt == 0)
1958 * that pointer should be 'freed' by bpf_prog_array_free()
1959 */
1960static struct {
1961	struct bpf_prog_array hdr;
1962	struct bpf_prog *null_prog;
1963} empty_prog_array = {
1964	.null_prog = NULL,
1965};
 
1966
1967struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1968{
1969	if (prog_cnt)
1970		return kzalloc(sizeof(struct bpf_prog_array) +
1971			       sizeof(struct bpf_prog_array_item) *
1972			       (prog_cnt + 1),
1973			       flags);
1974
1975	return &empty_prog_array.hdr;
1976}
1977
1978void bpf_prog_array_free(struct bpf_prog_array *progs)
1979{
1980	if (!progs || progs == &empty_prog_array.hdr)
1981		return;
1982	kfree_rcu(progs, rcu);
1983}
1984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985int bpf_prog_array_length(struct bpf_prog_array *array)
1986{
1987	struct bpf_prog_array_item *item;
1988	u32 cnt = 0;
1989
1990	for (item = array->items; item->prog; item++)
1991		if (item->prog != &dummy_bpf_prog.prog)
1992			cnt++;
1993	return cnt;
1994}
1995
1996bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1997{
1998	struct bpf_prog_array_item *item;
1999
2000	for (item = array->items; item->prog; item++)
2001		if (item->prog != &dummy_bpf_prog.prog)
2002			return false;
2003	return true;
2004}
2005
2006static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2007				     u32 *prog_ids,
2008				     u32 request_cnt)
2009{
2010	struct bpf_prog_array_item *item;
2011	int i = 0;
2012
2013	for (item = array->items; item->prog; item++) {
2014		if (item->prog == &dummy_bpf_prog.prog)
2015			continue;
2016		prog_ids[i] = item->prog->aux->id;
2017		if (++i == request_cnt) {
2018			item++;
2019			break;
2020		}
2021	}
2022
2023	return !!(item->prog);
2024}
2025
2026int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2027				__u32 __user *prog_ids, u32 cnt)
2028{
2029	unsigned long err = 0;
2030	bool nospc;
2031	u32 *ids;
2032
2033	/* users of this function are doing:
2034	 * cnt = bpf_prog_array_length();
2035	 * if (cnt > 0)
2036	 *     bpf_prog_array_copy_to_user(..., cnt);
2037	 * so below kcalloc doesn't need extra cnt > 0 check.
2038	 */
2039	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2040	if (!ids)
2041		return -ENOMEM;
2042	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2043	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2044	kfree(ids);
2045	if (err)
2046		return -EFAULT;
2047	if (nospc)
2048		return -ENOSPC;
2049	return 0;
2050}
2051
2052void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2053				struct bpf_prog *old_prog)
2054{
2055	struct bpf_prog_array_item *item;
2056
2057	for (item = array->items; item->prog; item++)
2058		if (item->prog == old_prog) {
2059			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2060			break;
2061		}
2062}
2063
2064/**
2065 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2066 *                                   index into the program array with
2067 *                                   a dummy no-op program.
2068 * @array: a bpf_prog_array
2069 * @index: the index of the program to replace
2070 *
2071 * Skips over dummy programs, by not counting them, when calculating
2072 * the position of the program to replace.
2073 *
2074 * Return:
2075 * * 0		- Success
2076 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2077 * * -ENOENT	- Index out of range
2078 */
2079int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2080{
2081	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2082}
2083
2084/**
2085 * bpf_prog_array_update_at() - Updates the program at the given index
2086 *                              into the program array.
2087 * @array: a bpf_prog_array
2088 * @index: the index of the program to update
2089 * @prog: the program to insert into the array
2090 *
2091 * Skips over dummy programs, by not counting them, when calculating
2092 * the position of the program to update.
2093 *
2094 * Return:
2095 * * 0		- Success
2096 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2097 * * -ENOENT	- Index out of range
2098 */
2099int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2100			     struct bpf_prog *prog)
2101{
2102	struct bpf_prog_array_item *item;
2103
2104	if (unlikely(index < 0))
2105		return -EINVAL;
2106
2107	for (item = array->items; item->prog; item++) {
2108		if (item->prog == &dummy_bpf_prog.prog)
2109			continue;
2110		if (!index) {
2111			WRITE_ONCE(item->prog, prog);
2112			return 0;
2113		}
2114		index--;
2115	}
2116	return -ENOENT;
2117}
2118
2119int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2120			struct bpf_prog *exclude_prog,
2121			struct bpf_prog *include_prog,
 
2122			struct bpf_prog_array **new_array)
2123{
2124	int new_prog_cnt, carry_prog_cnt = 0;
2125	struct bpf_prog_array_item *existing;
2126	struct bpf_prog_array *array;
2127	bool found_exclude = false;
2128	int new_prog_idx = 0;
2129
2130	/* Figure out how many existing progs we need to carry over to
2131	 * the new array.
2132	 */
2133	if (old_array) {
2134		existing = old_array->items;
2135		for (; existing->prog; existing++) {
2136			if (existing->prog == exclude_prog) {
2137				found_exclude = true;
2138				continue;
2139			}
2140			if (existing->prog != &dummy_bpf_prog.prog)
2141				carry_prog_cnt++;
2142			if (existing->prog == include_prog)
2143				return -EEXIST;
2144		}
2145	}
2146
2147	if (exclude_prog && !found_exclude)
2148		return -ENOENT;
2149
2150	/* How many progs (not NULL) will be in the new array? */
2151	new_prog_cnt = carry_prog_cnt;
2152	if (include_prog)
2153		new_prog_cnt += 1;
2154
2155	/* Do we have any prog (not NULL) in the new array? */
2156	if (!new_prog_cnt) {
2157		*new_array = NULL;
2158		return 0;
2159	}
2160
2161	/* +1 as the end of prog_array is marked with NULL */
2162	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2163	if (!array)
2164		return -ENOMEM;
 
2165
2166	/* Fill in the new prog array */
2167	if (carry_prog_cnt) {
2168		existing = old_array->items;
2169		for (; existing->prog; existing++)
2170			if (existing->prog != exclude_prog &&
2171			    existing->prog != &dummy_bpf_prog.prog) {
2172				array->items[new_prog_idx++].prog =
2173					existing->prog;
2174			}
 
 
 
 
 
 
 
 
2175	}
2176	if (include_prog)
2177		array->items[new_prog_idx++].prog = include_prog;
2178	array->items[new_prog_idx].prog = NULL;
2179	*new_array = array;
2180	return 0;
2181}
2182
2183int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2184			     u32 *prog_ids, u32 request_cnt,
2185			     u32 *prog_cnt)
2186{
2187	u32 cnt = 0;
2188
2189	if (array)
2190		cnt = bpf_prog_array_length(array);
2191
2192	*prog_cnt = cnt;
2193
2194	/* return early if user requested only program count or nothing to copy */
2195	if (!request_cnt || !cnt)
2196		return 0;
2197
2198	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2199	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2200								     : 0;
2201}
2202
2203void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2204			  struct bpf_map **used_maps, u32 len)
2205{
2206	struct bpf_map *map;
 
2207	u32 i;
2208
 
2209	for (i = 0; i < len; i++) {
2210		map = used_maps[i];
2211		if (map->ops->map_poke_untrack)
2212			map->ops->map_poke_untrack(map, aux);
 
 
2213		bpf_map_put(map);
2214	}
2215}
2216
2217static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2218{
2219	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2220	kfree(aux->used_maps);
2221}
2222
2223void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2224			  struct btf_mod_pair *used_btfs, u32 len)
2225{
2226#ifdef CONFIG_BPF_SYSCALL
2227	struct btf_mod_pair *btf_mod;
2228	u32 i;
2229
2230	for (i = 0; i < len; i++) {
2231		btf_mod = &used_btfs[i];
2232		if (btf_mod->module)
2233			module_put(btf_mod->module);
2234		btf_put(btf_mod->btf);
2235	}
2236#endif
2237}
2238
2239static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2240{
2241	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2242	kfree(aux->used_btfs);
2243}
2244
2245static void bpf_prog_free_deferred(struct work_struct *work)
2246{
2247	struct bpf_prog_aux *aux;
2248	int i;
2249
2250	aux = container_of(work, struct bpf_prog_aux, work);
 
 
 
 
 
 
 
2251	bpf_free_used_maps(aux);
2252	bpf_free_used_btfs(aux);
2253	if (bpf_prog_is_dev_bound(aux))
2254		bpf_prog_offload_destroy(aux->prog);
2255#ifdef CONFIG_PERF_EVENTS
2256	if (aux->prog->has_callchain_buf)
2257		put_callchain_buffers();
2258#endif
2259	if (aux->dst_trampoline)
2260		bpf_trampoline_put(aux->dst_trampoline);
2261	for (i = 0; i < aux->func_cnt; i++) {
2262		/* We can just unlink the subprog poke descriptor table as
2263		 * it was originally linked to the main program and is also
2264		 * released along with it.
2265		 */
2266		aux->func[i]->aux->poke_tab = NULL;
2267		bpf_jit_free(aux->func[i]);
2268	}
2269	if (aux->func_cnt) {
2270		kfree(aux->func);
2271		bpf_prog_unlock_free(aux->prog);
2272	} else {
2273		bpf_jit_free(aux->prog);
2274	}
2275}
2276
2277/* Free internal BPF program */
2278void bpf_prog_free(struct bpf_prog *fp)
2279{
2280	struct bpf_prog_aux *aux = fp->aux;
2281
2282	if (aux->dst_prog)
2283		bpf_prog_put(aux->dst_prog);
2284	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2285	schedule_work(&aux->work);
2286}
2287EXPORT_SYMBOL_GPL(bpf_prog_free);
2288
2289/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2290static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2291
2292void bpf_user_rnd_init_once(void)
2293{
2294	prandom_init_once(&bpf_user_rnd_state);
2295}
2296
2297BPF_CALL_0(bpf_user_rnd_u32)
2298{
2299	/* Should someone ever have the rather unwise idea to use some
2300	 * of the registers passed into this function, then note that
2301	 * this function is called from native eBPF and classic-to-eBPF
2302	 * transformations. Register assignments from both sides are
2303	 * different, f.e. classic always sets fn(ctx, A, X) here.
2304	 */
2305	struct rnd_state *state;
2306	u32 res;
2307
2308	state = &get_cpu_var(bpf_user_rnd_state);
2309	res = prandom_u32_state(state);
2310	put_cpu_var(bpf_user_rnd_state);
2311
2312	return res;
2313}
2314
2315BPF_CALL_0(bpf_get_raw_cpu_id)
2316{
2317	return raw_smp_processor_id();
2318}
2319
2320/* Weak definitions of helper functions in case we don't have bpf syscall. */
2321const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2322const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2323const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2324const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2325const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2326const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
 
2327const struct bpf_func_proto bpf_spin_lock_proto __weak;
2328const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2329const struct bpf_func_proto bpf_jiffies64_proto __weak;
2330
2331const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2332const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2333const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2334const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2335const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2336const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
 
2337
2338const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2339const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2340const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2341const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2342const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2343const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2344const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2345const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2346const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
 
 
2347
2348const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2349{
2350	return NULL;
2351}
2352
 
 
 
 
 
2353u64 __weak
2354bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2355		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2356{
2357	return -ENOTSUPP;
2358}
2359EXPORT_SYMBOL_GPL(bpf_event_output);
2360
2361/* Always built-in helper functions. */
2362const struct bpf_func_proto bpf_tail_call_proto = {
2363	.func		= NULL,
2364	.gpl_only	= false,
2365	.ret_type	= RET_VOID,
2366	.arg1_type	= ARG_PTR_TO_CTX,
2367	.arg2_type	= ARG_CONST_MAP_PTR,
2368	.arg3_type	= ARG_ANYTHING,
2369};
2370
2371/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2372 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2373 * eBPF and implicitly also cBPF can get JITed!
2374 */
2375struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2376{
2377	return prog;
2378}
2379
2380/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2381 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2382 */
2383void __weak bpf_jit_compile(struct bpf_prog *prog)
2384{
2385}
2386
2387bool __weak bpf_helper_changes_pkt_data(void *func)
2388{
2389	return false;
2390}
2391
2392/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2393 * analysis code and wants explicit zero extension inserted by verifier.
2394 * Otherwise, return FALSE.
2395 *
2396 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2397 * you don't override this. JITs that don't want these extra insns can detect
2398 * them using insn_is_zext.
2399 */
2400bool __weak bpf_jit_needs_zext(void)
2401{
2402	return false;
2403}
2404
 
 
 
 
 
 
2405bool __weak bpf_jit_supports_kfunc_call(void)
2406{
2407	return false;
2408}
2409
 
 
 
 
 
2410/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2411 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2412 */
2413int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2414			 int len)
2415{
2416	return -EFAULT;
2417}
2418
2419int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2420			      void *addr1, void *addr2)
2421{
2422	return -ENOTSUPP;
2423}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424
2425DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2426EXPORT_SYMBOL(bpf_stats_enabled_key);
2427
2428/* All definitions of tracepoints related to BPF. */
2429#define CREATE_TRACE_POINTS
2430#include <linux/bpf_trace.h>
2431
2432EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2433EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);