Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/objtool.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
  35#include <linux/bpf_verifier.h>
  36#include <linux/nodemask.h>
  37#include <linux/nospec.h>
  38#include <linux/bpf_mem_alloc.h>
  39#include <linux/memcontrol.h>
  40
  41#include <asm/barrier.h>
  42#include <asm/unaligned.h>
  43
  44/* Registers */
  45#define BPF_R0	regs[BPF_REG_0]
  46#define BPF_R1	regs[BPF_REG_1]
  47#define BPF_R2	regs[BPF_REG_2]
  48#define BPF_R3	regs[BPF_REG_3]
  49#define BPF_R4	regs[BPF_REG_4]
  50#define BPF_R5	regs[BPF_REG_5]
  51#define BPF_R6	regs[BPF_REG_6]
  52#define BPF_R7	regs[BPF_REG_7]
  53#define BPF_R8	regs[BPF_REG_8]
  54#define BPF_R9	regs[BPF_REG_9]
  55#define BPF_R10	regs[BPF_REG_10]
  56
  57/* Named registers */
  58#define DST	regs[insn->dst_reg]
  59#define SRC	regs[insn->src_reg]
  60#define FP	regs[BPF_REG_FP]
  61#define AX	regs[BPF_REG_AX]
  62#define ARG1	regs[BPF_REG_ARG1]
  63#define CTX	regs[BPF_REG_CTX]
  64#define OFF	insn->off
  65#define IMM	insn->imm
  66
  67struct bpf_mem_alloc bpf_global_ma;
  68bool bpf_global_ma_set;
  69
  70/* No hurry in this branch
  71 *
  72 * Exported for the bpf jit load helper.
  73 */
  74void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  75{
  76	u8 *ptr = NULL;
  77
  78	if (k >= SKF_NET_OFF) {
  79		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  80	} else if (k >= SKF_LL_OFF) {
  81		if (unlikely(!skb_mac_header_was_set(skb)))
  82			return NULL;
  83		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  84	}
  85	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  86		return ptr;
  87
  88	return NULL;
  89}
  90
  91struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  92{
  93	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
  94	struct bpf_prog_aux *aux;
  95	struct bpf_prog *fp;
  96
  97	size = round_up(size, PAGE_SIZE);
  98	fp = __vmalloc(size, gfp_flags);
  99	if (fp == NULL)
 100		return NULL;
 101
 102	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 103	if (aux == NULL) {
 104		vfree(fp);
 105		return NULL;
 106	}
 107	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
 108	if (!fp->active) {
 109		vfree(fp);
 110		kfree(aux);
 111		return NULL;
 112	}
 113
 114	fp->pages = size / PAGE_SIZE;
 115	fp->aux = aux;
 116	fp->aux->prog = fp;
 117	fp->jit_requested = ebpf_jit_enabled();
 118	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
 119#ifdef CONFIG_CGROUP_BPF
 120	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
 121#endif
 122
 123	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 124#ifdef CONFIG_FINEIBT
 125	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
 126#endif
 127	mutex_init(&fp->aux->used_maps_mutex);
 128	mutex_init(&fp->aux->dst_mutex);
 129
 130	return fp;
 131}
 132
 133struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 134{
 135	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 136	struct bpf_prog *prog;
 137	int cpu;
 138
 139	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 140	if (!prog)
 141		return NULL;
 142
 143	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 144	if (!prog->stats) {
 145		free_percpu(prog->active);
 146		kfree(prog->aux);
 147		vfree(prog);
 148		return NULL;
 149	}
 150
 151	for_each_possible_cpu(cpu) {
 152		struct bpf_prog_stats *pstats;
 153
 154		pstats = per_cpu_ptr(prog->stats, cpu);
 155		u64_stats_init(&pstats->syncp);
 156	}
 157	return prog;
 158}
 159EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 160
 161int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 162{
 163	if (!prog->aux->nr_linfo || !prog->jit_requested)
 164		return 0;
 165
 166	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
 167					  sizeof(*prog->aux->jited_linfo),
 168					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
 169	if (!prog->aux->jited_linfo)
 170		return -ENOMEM;
 171
 172	return 0;
 173}
 174
 175void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
 176{
 177	if (prog->aux->jited_linfo &&
 178	    (!prog->jited || !prog->aux->jited_linfo[0])) {
 179		kvfree(prog->aux->jited_linfo);
 180		prog->aux->jited_linfo = NULL;
 181	}
 182
 183	kfree(prog->aux->kfunc_tab);
 184	prog->aux->kfunc_tab = NULL;
 
 
 185}
 186
 187/* The jit engine is responsible to provide an array
 188 * for insn_off to the jited_off mapping (insn_to_jit_off).
 189 *
 190 * The idx to this array is the insn_off.  Hence, the insn_off
 191 * here is relative to the prog itself instead of the main prog.
 192 * This array has one entry for each xlated bpf insn.
 193 *
 194 * jited_off is the byte off to the end of the jited insn.
 195 *
 196 * Hence, with
 197 * insn_start:
 198 *      The first bpf insn off of the prog.  The insn off
 199 *      here is relative to the main prog.
 200 *      e.g. if prog is a subprog, insn_start > 0
 201 * linfo_idx:
 202 *      The prog's idx to prog->aux->linfo and jited_linfo
 203 *
 204 * jited_linfo[linfo_idx] = prog->bpf_func
 205 *
 206 * For i > linfo_idx,
 207 *
 208 * jited_linfo[i] = prog->bpf_func +
 209 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 210 */
 211void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 212			       const u32 *insn_to_jit_off)
 213{
 214	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 215	const struct bpf_line_info *linfo;
 216	void **jited_linfo;
 217
 218	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
 219		/* Userspace did not provide linfo */
 220		return;
 221
 222	linfo_idx = prog->aux->linfo_idx;
 223	linfo = &prog->aux->linfo[linfo_idx];
 224	insn_start = linfo[0].insn_off;
 225	insn_end = insn_start + prog->len;
 226
 227	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 228	jited_linfo[0] = prog->bpf_func;
 229
 230	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 231
 232	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 233		/* The verifier ensures that linfo[i].insn_off is
 234		 * strictly increasing
 235		 */
 236		jited_linfo[i] = prog->bpf_func +
 237			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 238}
 239
 
 
 
 
 
 
 240struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 241				  gfp_t gfp_extra_flags)
 242{
 243	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
 244	struct bpf_prog *fp;
 245	u32 pages;
 
 246
 247	size = round_up(size, PAGE_SIZE);
 248	pages = size / PAGE_SIZE;
 249	if (pages <= fp_old->pages)
 250		return fp_old;
 251
 
 
 
 
 
 252	fp = __vmalloc(size, gfp_flags);
 253	if (fp) {
 
 
 254		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 255		fp->pages = pages;
 256		fp->aux->prog = fp;
 257
 258		/* We keep fp->aux from fp_old around in the new
 259		 * reallocated structure.
 260		 */
 261		fp_old->aux = NULL;
 262		fp_old->stats = NULL;
 263		fp_old->active = NULL;
 264		__bpf_prog_free(fp_old);
 265	}
 266
 267	return fp;
 268}
 269
 270void __bpf_prog_free(struct bpf_prog *fp)
 271{
 272	if (fp->aux) {
 273		mutex_destroy(&fp->aux->used_maps_mutex);
 274		mutex_destroy(&fp->aux->dst_mutex);
 275		kfree(fp->aux->poke_tab);
 276		kfree(fp->aux);
 277	}
 278	free_percpu(fp->stats);
 279	free_percpu(fp->active);
 280	vfree(fp);
 281}
 282
 283int bpf_prog_calc_tag(struct bpf_prog *fp)
 284{
 285	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 286	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 287	u32 digest[SHA1_DIGEST_WORDS];
 288	u32 ws[SHA1_WORKSPACE_WORDS];
 289	u32 i, bsize, psize, blocks;
 290	struct bpf_insn *dst;
 291	bool was_ld_map;
 292	u8 *raw, *todo;
 293	__be32 *result;
 294	__be64 *bits;
 295
 296	raw = vmalloc(raw_size);
 297	if (!raw)
 298		return -ENOMEM;
 299
 300	sha1_init(digest);
 301	memset(ws, 0, sizeof(ws));
 302
 303	/* We need to take out the map fd for the digest calculation
 304	 * since they are unstable from user space side.
 305	 */
 306	dst = (void *)raw;
 307	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 308		dst[i] = fp->insnsi[i];
 309		if (!was_ld_map &&
 310		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 311		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 312		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 313			was_ld_map = true;
 314			dst[i].imm = 0;
 315		} else if (was_ld_map &&
 316			   dst[i].code == 0 &&
 317			   dst[i].dst_reg == 0 &&
 318			   dst[i].src_reg == 0 &&
 319			   dst[i].off == 0) {
 320			was_ld_map = false;
 321			dst[i].imm = 0;
 322		} else {
 323			was_ld_map = false;
 324		}
 325	}
 326
 327	psize = bpf_prog_insn_size(fp);
 328	memset(&raw[psize], 0, raw_size - psize);
 329	raw[psize++] = 0x80;
 330
 331	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 332	blocks = bsize / SHA1_BLOCK_SIZE;
 333	todo   = raw;
 334	if (bsize - psize >= sizeof(__be64)) {
 335		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 336	} else {
 337		bits = (__be64 *)(todo + bsize + bits_offset);
 338		blocks++;
 339	}
 340	*bits = cpu_to_be64((psize - 1) << 3);
 341
 342	while (blocks--) {
 343		sha1_transform(digest, todo, ws);
 344		todo += SHA1_BLOCK_SIZE;
 345	}
 346
 347	result = (__force __be32 *)digest;
 348	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 349		result[i] = cpu_to_be32(digest[i]);
 350	memcpy(fp->tag, result, sizeof(fp->tag));
 351
 352	vfree(raw);
 353	return 0;
 354}
 355
 356static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 357				s32 end_new, s32 curr, const bool probe_pass)
 358{
 359	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 360	s32 delta = end_new - end_old;
 361	s64 imm = insn->imm;
 362
 363	if (curr < pos && curr + imm + 1 >= end_old)
 364		imm += delta;
 365	else if (curr >= end_new && curr + imm + 1 < end_new)
 366		imm -= delta;
 367	if (imm < imm_min || imm > imm_max)
 368		return -ERANGE;
 369	if (!probe_pass)
 370		insn->imm = imm;
 371	return 0;
 372}
 373
 374static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 375				s32 end_new, s32 curr, const bool probe_pass)
 376{
 377	s64 off_min, off_max, off;
 378	s32 delta = end_new - end_old;
 379
 380	if (insn->code == (BPF_JMP32 | BPF_JA)) {
 381		off = insn->imm;
 382		off_min = S32_MIN;
 383		off_max = S32_MAX;
 384	} else {
 385		off = insn->off;
 386		off_min = S16_MIN;
 387		off_max = S16_MAX;
 388	}
 389
 390	if (curr < pos && curr + off + 1 >= end_old)
 391		off += delta;
 392	else if (curr >= end_new && curr + off + 1 < end_new)
 393		off -= delta;
 394	if (off < off_min || off > off_max)
 395		return -ERANGE;
 396	if (!probe_pass) {
 397		if (insn->code == (BPF_JMP32 | BPF_JA))
 398			insn->imm = off;
 399		else
 400			insn->off = off;
 401	}
 402	return 0;
 403}
 404
 405static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 406			    s32 end_new, const bool probe_pass)
 407{
 408	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 409	struct bpf_insn *insn = prog->insnsi;
 410	int ret = 0;
 411
 412	for (i = 0; i < insn_cnt; i++, insn++) {
 413		u8 code;
 414
 415		/* In the probing pass we still operate on the original,
 416		 * unpatched image in order to check overflows before we
 417		 * do any other adjustments. Therefore skip the patchlet.
 418		 */
 419		if (probe_pass && i == pos) {
 420			i = end_new;
 421			insn = prog->insnsi + end_old;
 422		}
 423		if (bpf_pseudo_func(insn)) {
 424			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 425						   end_new, i, probe_pass);
 426			if (ret)
 427				return ret;
 428			continue;
 429		}
 430		code = insn->code;
 431		if ((BPF_CLASS(code) != BPF_JMP &&
 432		     BPF_CLASS(code) != BPF_JMP32) ||
 433		    BPF_OP(code) == BPF_EXIT)
 434			continue;
 435		/* Adjust offset of jmps if we cross patch boundaries. */
 436		if (BPF_OP(code) == BPF_CALL) {
 437			if (insn->src_reg != BPF_PSEUDO_CALL)
 438				continue;
 439			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 440						   end_new, i, probe_pass);
 441		} else {
 442			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 443						   end_new, i, probe_pass);
 444		}
 445		if (ret)
 446			break;
 447	}
 448
 449	return ret;
 450}
 451
 452static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 453{
 454	struct bpf_line_info *linfo;
 455	u32 i, nr_linfo;
 456
 457	nr_linfo = prog->aux->nr_linfo;
 458	if (!nr_linfo || !delta)
 459		return;
 460
 461	linfo = prog->aux->linfo;
 462
 463	for (i = 0; i < nr_linfo; i++)
 464		if (off < linfo[i].insn_off)
 465			break;
 466
 467	/* Push all off < linfo[i].insn_off by delta */
 468	for (; i < nr_linfo; i++)
 469		linfo[i].insn_off += delta;
 470}
 471
 472struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 473				       const struct bpf_insn *patch, u32 len)
 474{
 475	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 476	const u32 cnt_max = S16_MAX;
 477	struct bpf_prog *prog_adj;
 478	int err;
 479
 480	/* Since our patchlet doesn't expand the image, we're done. */
 481	if (insn_delta == 0) {
 482		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 483		return prog;
 484	}
 485
 486	insn_adj_cnt = prog->len + insn_delta;
 487
 488	/* Reject anything that would potentially let the insn->off
 489	 * target overflow when we have excessive program expansions.
 490	 * We need to probe here before we do any reallocation where
 491	 * we afterwards may not fail anymore.
 492	 */
 493	if (insn_adj_cnt > cnt_max &&
 494	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 495		return ERR_PTR(err);
 496
 497	/* Several new instructions need to be inserted. Make room
 498	 * for them. Likely, there's no need for a new allocation as
 499	 * last page could have large enough tailroom.
 500	 */
 501	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 502				    GFP_USER);
 503	if (!prog_adj)
 504		return ERR_PTR(-ENOMEM);
 505
 506	prog_adj->len = insn_adj_cnt;
 507
 508	/* Patching happens in 3 steps:
 509	 *
 510	 * 1) Move over tail of insnsi from next instruction onwards,
 511	 *    so we can patch the single target insn with one or more
 512	 *    new ones (patching is always from 1 to n insns, n > 0).
 513	 * 2) Inject new instructions at the target location.
 514	 * 3) Adjust branch offsets if necessary.
 515	 */
 516	insn_rest = insn_adj_cnt - off - len;
 517
 518	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 519		sizeof(*patch) * insn_rest);
 520	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 521
 522	/* We are guaranteed to not fail at this point, otherwise
 523	 * the ship has sailed to reverse to the original state. An
 524	 * overflow cannot happen at this point.
 525	 */
 526	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 527
 528	bpf_adj_linfo(prog_adj, off, insn_delta);
 529
 530	return prog_adj;
 531}
 532
 533int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 534{
 535	/* Branch offsets can't overflow when program is shrinking, no need
 536	 * to call bpf_adj_branches(..., true) here
 537	 */
 538	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 539		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 540	prog->len -= cnt;
 541
 542	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 543}
 544
 545static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 546{
 547	int i;
 548
 549	for (i = 0; i < fp->aux->real_func_cnt; i++)
 550		bpf_prog_kallsyms_del(fp->aux->func[i]);
 551}
 552
 553void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 554{
 555	bpf_prog_kallsyms_del_subprogs(fp);
 556	bpf_prog_kallsyms_del(fp);
 557}
 558
 559#ifdef CONFIG_BPF_JIT
 560/* All BPF JIT sysctl knobs here. */
 561int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 562int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 563int bpf_jit_harden   __read_mostly;
 564long bpf_jit_limit   __read_mostly;
 565long bpf_jit_limit_max __read_mostly;
 566
 567static void
 568bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 569{
 
 
 
 570	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 571
 572	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 573	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
 574}
 575
 576static void
 577bpf_prog_ksym_set_name(struct bpf_prog *prog)
 578{
 579	char *sym = prog->aux->ksym.name;
 580	const char *end = sym + KSYM_NAME_LEN;
 581	const struct btf_type *type;
 582	const char *func_name;
 583
 584	BUILD_BUG_ON(sizeof("bpf_prog_") +
 585		     sizeof(prog->tag) * 2 +
 586		     /* name has been null terminated.
 587		      * We should need +1 for the '_' preceding
 588		      * the name.  However, the null character
 589		      * is double counted between the name and the
 590		      * sizeof("bpf_prog_") above, so we omit
 591		      * the +1 here.
 592		      */
 593		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 594
 595	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 596	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 597
 598	/* prog->aux->name will be ignored if full btf name is available */
 599	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
 600		type = btf_type_by_id(prog->aux->btf,
 601				      prog->aux->func_info[prog->aux->func_idx].type_id);
 602		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 603		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 604		return;
 605	}
 606
 607	if (prog->aux->name[0])
 608		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 609	else
 610		*sym = 0;
 611}
 612
 613static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 614{
 615	return container_of(n, struct bpf_ksym, tnode)->start;
 616}
 617
 618static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 619					  struct latch_tree_node *b)
 620{
 621	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 622}
 623
 624static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 625{
 626	unsigned long val = (unsigned long)key;
 627	const struct bpf_ksym *ksym;
 628
 629	ksym = container_of(n, struct bpf_ksym, tnode);
 630
 631	if (val < ksym->start)
 632		return -1;
 633	/* Ensure that we detect return addresses as part of the program, when
 634	 * the final instruction is a call for a program part of the stack
 635	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
 636	 */
 637	if (val > ksym->end)
 638		return  1;
 639
 640	return 0;
 641}
 642
 643static const struct latch_tree_ops bpf_tree_ops = {
 644	.less	= bpf_tree_less,
 645	.comp	= bpf_tree_comp,
 646};
 647
 648static DEFINE_SPINLOCK(bpf_lock);
 649static LIST_HEAD(bpf_kallsyms);
 650static struct latch_tree_root bpf_tree __cacheline_aligned;
 651
 652void bpf_ksym_add(struct bpf_ksym *ksym)
 653{
 654	spin_lock_bh(&bpf_lock);
 655	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 656	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 657	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 658	spin_unlock_bh(&bpf_lock);
 659}
 660
 661static void __bpf_ksym_del(struct bpf_ksym *ksym)
 662{
 663	if (list_empty(&ksym->lnode))
 664		return;
 665
 666	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 667	list_del_rcu(&ksym->lnode);
 668}
 669
 670void bpf_ksym_del(struct bpf_ksym *ksym)
 671{
 672	spin_lock_bh(&bpf_lock);
 673	__bpf_ksym_del(ksym);
 674	spin_unlock_bh(&bpf_lock);
 675}
 676
 677static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 678{
 679	return fp->jited && !bpf_prog_was_classic(fp);
 680}
 681
 
 
 
 
 
 
 682void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 683{
 684	if (!bpf_prog_kallsyms_candidate(fp) ||
 685	    !bpf_capable())
 686		return;
 687
 688	bpf_prog_ksym_set_addr(fp);
 689	bpf_prog_ksym_set_name(fp);
 690	fp->aux->ksym.prog = true;
 691
 692	bpf_ksym_add(&fp->aux->ksym);
 693
 694#ifdef CONFIG_FINEIBT
 695	/*
 696	 * When FineIBT, code in the __cfi_foo() symbols can get executed
 697	 * and hence unwinder needs help.
 698	 */
 699	if (cfi_mode != CFI_FINEIBT)
 700		return;
 701
 702	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
 703		 "__cfi_%s", fp->aux->ksym.name);
 704
 705	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
 706	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
 707
 708	bpf_ksym_add(&fp->aux->ksym_prefix);
 709#endif
 710}
 711
 712void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 713{
 714	if (!bpf_prog_kallsyms_candidate(fp))
 715		return;
 716
 717	bpf_ksym_del(&fp->aux->ksym);
 718#ifdef CONFIG_FINEIBT
 719	if (cfi_mode != CFI_FINEIBT)
 720		return;
 721	bpf_ksym_del(&fp->aux->ksym_prefix);
 722#endif
 723}
 724
 725static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 726{
 727	struct latch_tree_node *n;
 728
 729	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 730	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 731}
 732
 733const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 734				 unsigned long *off, char *sym)
 735{
 736	struct bpf_ksym *ksym;
 737	char *ret = NULL;
 738
 739	rcu_read_lock();
 740	ksym = bpf_ksym_find(addr);
 741	if (ksym) {
 742		unsigned long symbol_start = ksym->start;
 743		unsigned long symbol_end = ksym->end;
 744
 745		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 746
 747		ret = sym;
 748		if (size)
 749			*size = symbol_end - symbol_start;
 750		if (off)
 751			*off  = addr - symbol_start;
 752	}
 753	rcu_read_unlock();
 754
 755	return ret;
 756}
 757
 758bool is_bpf_text_address(unsigned long addr)
 759{
 760	bool ret;
 761
 762	rcu_read_lock();
 763	ret = bpf_ksym_find(addr) != NULL;
 764	rcu_read_unlock();
 765
 766	return ret;
 767}
 768
 769struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 770{
 771	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 772
 773	return ksym && ksym->prog ?
 774	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 775	       NULL;
 776}
 777
 778const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 779{
 780	const struct exception_table_entry *e = NULL;
 781	struct bpf_prog *prog;
 782
 783	rcu_read_lock();
 784	prog = bpf_prog_ksym_find(addr);
 785	if (!prog)
 786		goto out;
 787	if (!prog->aux->num_exentries)
 788		goto out;
 789
 790	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 791out:
 792	rcu_read_unlock();
 793	return e;
 794}
 795
 796int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 797		    char *sym)
 798{
 799	struct bpf_ksym *ksym;
 800	unsigned int it = 0;
 801	int ret = -ERANGE;
 802
 803	if (!bpf_jit_kallsyms_enabled())
 804		return ret;
 805
 806	rcu_read_lock();
 807	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 808		if (it++ != symnum)
 809			continue;
 810
 811		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 812
 813		*value = ksym->start;
 814		*type  = BPF_SYM_ELF_TYPE;
 815
 816		ret = 0;
 817		break;
 818	}
 819	rcu_read_unlock();
 820
 821	return ret;
 822}
 823
 824int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 825				struct bpf_jit_poke_descriptor *poke)
 826{
 827	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 828	static const u32 poke_tab_max = 1024;
 829	u32 slot = prog->aux->size_poke_tab;
 830	u32 size = slot + 1;
 831
 832	if (size > poke_tab_max)
 833		return -ENOSPC;
 834	if (poke->tailcall_target || poke->tailcall_target_stable ||
 835	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
 836		return -EINVAL;
 837
 838	switch (poke->reason) {
 839	case BPF_POKE_REASON_TAIL_CALL:
 840		if (!poke->tail_call.map)
 841			return -EINVAL;
 842		break;
 843	default:
 844		return -EINVAL;
 845	}
 846
 847	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
 848	if (!tab)
 849		return -ENOMEM;
 850
 851	memcpy(&tab[slot], poke, sizeof(*poke));
 852	prog->aux->size_poke_tab = size;
 853	prog->aux->poke_tab = tab;
 854
 855	return slot;
 856}
 857
 858/*
 859 * BPF program pack allocator.
 860 *
 861 * Most BPF programs are pretty small. Allocating a hole page for each
 862 * program is sometime a waste. Many small bpf program also adds pressure
 863 * to instruction TLB. To solve this issue, we introduce a BPF program pack
 864 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
 865 * to host BPF programs.
 866 */
 867#define BPF_PROG_CHUNK_SHIFT	6
 868#define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
 869#define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
 870
 871struct bpf_prog_pack {
 872	struct list_head list;
 873	void *ptr;
 874	unsigned long bitmap[];
 875};
 876
 877void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
 878{
 879	memset(area, 0, size);
 880}
 881
 882#define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
 883
 884static DEFINE_MUTEX(pack_mutex);
 885static LIST_HEAD(pack_list);
 886
 887/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
 888 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
 889 */
 890#ifdef PMD_SIZE
 891#define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
 892#else
 893#define BPF_PROG_PACK_SIZE PAGE_SIZE
 894#endif
 895
 896#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
 897
 898static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
 899{
 900	struct bpf_prog_pack *pack;
 901
 902	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
 903		       GFP_KERNEL);
 904	if (!pack)
 905		return NULL;
 906	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
 907	if (!pack->ptr) {
 908		kfree(pack);
 909		return NULL;
 910	}
 911	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
 912	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
 913	list_add_tail(&pack->list, &pack_list);
 914
 915	set_vm_flush_reset_perms(pack->ptr);
 916	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
 917	return pack;
 918}
 919
 920void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
 921{
 922	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
 923	struct bpf_prog_pack *pack;
 924	unsigned long pos;
 925	void *ptr = NULL;
 926
 927	mutex_lock(&pack_mutex);
 928	if (size > BPF_PROG_PACK_SIZE) {
 929		size = round_up(size, PAGE_SIZE);
 930		ptr = bpf_jit_alloc_exec(size);
 931		if (ptr) {
 932			bpf_fill_ill_insns(ptr, size);
 933			set_vm_flush_reset_perms(ptr);
 934			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
 935		}
 936		goto out;
 937	}
 938	list_for_each_entry(pack, &pack_list, list) {
 939		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 940						 nbits, 0);
 941		if (pos < BPF_PROG_CHUNK_COUNT)
 942			goto found_free_area;
 943	}
 944
 945	pack = alloc_new_pack(bpf_fill_ill_insns);
 946	if (!pack)
 947		goto out;
 948
 949	pos = 0;
 950
 951found_free_area:
 952	bitmap_set(pack->bitmap, pos, nbits);
 953	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
 954
 955out:
 956	mutex_unlock(&pack_mutex);
 957	return ptr;
 958}
 959
 960void bpf_prog_pack_free(void *ptr, u32 size)
 961{
 962	struct bpf_prog_pack *pack = NULL, *tmp;
 963	unsigned int nbits;
 964	unsigned long pos;
 965
 966	mutex_lock(&pack_mutex);
 967	if (size > BPF_PROG_PACK_SIZE) {
 968		bpf_jit_free_exec(ptr);
 969		goto out;
 970	}
 971
 972	list_for_each_entry(tmp, &pack_list, list) {
 973		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
 974			pack = tmp;
 975			break;
 976		}
 977	}
 978
 979	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
 980		goto out;
 981
 982	nbits = BPF_PROG_SIZE_TO_NBITS(size);
 983	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
 984
 985	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
 986		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
 987
 988	bitmap_clear(pack->bitmap, pos, nbits);
 989	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 990				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
 991		list_del(&pack->list);
 992		bpf_jit_free_exec(pack->ptr);
 993		kfree(pack);
 994	}
 995out:
 996	mutex_unlock(&pack_mutex);
 997}
 998
 999static atomic_long_t bpf_jit_current;
1000
1001/* Can be overridden by an arch's JIT compiler if it has a custom,
1002 * dedicated BPF backend memory area, or if neither of the two
1003 * below apply.
1004 */
1005u64 __weak bpf_jit_alloc_exec_limit(void)
1006{
1007#if defined(MODULES_VADDR)
1008	return MODULES_END - MODULES_VADDR;
1009#else
1010	return VMALLOC_END - VMALLOC_START;
1011#endif
1012}
1013
1014static int __init bpf_jit_charge_init(void)
1015{
1016	/* Only used as heuristic here to derive limit. */
1017	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1018	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1019					    PAGE_SIZE), LONG_MAX);
1020	return 0;
1021}
1022pure_initcall(bpf_jit_charge_init);
1023
1024int bpf_jit_charge_modmem(u32 size)
1025{
1026	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1027		if (!bpf_capable()) {
1028			atomic_long_sub(size, &bpf_jit_current);
 
1029			return -EPERM;
1030		}
1031	}
1032
1033	return 0;
1034}
1035
1036void bpf_jit_uncharge_modmem(u32 size)
1037{
1038	atomic_long_sub(size, &bpf_jit_current);
1039}
1040
1041void *__weak bpf_jit_alloc_exec(unsigned long size)
1042{
1043	return module_alloc(size);
1044}
1045
1046void __weak bpf_jit_free_exec(void *addr)
1047{
1048	module_memfree(addr);
1049}
1050
1051struct bpf_binary_header *
1052bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1053		     unsigned int alignment,
1054		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1055{
1056	struct bpf_binary_header *hdr;
1057	u32 size, hole, start;
1058
1059	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1060		     alignment > BPF_IMAGE_ALIGNMENT);
1061
1062	/* Most of BPF filters are really small, but if some of them
1063	 * fill a page, allow at least 128 extra bytes to insert a
1064	 * random section of illegal instructions.
1065	 */
1066	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 
1067
1068	if (bpf_jit_charge_modmem(size))
1069		return NULL;
1070	hdr = bpf_jit_alloc_exec(size);
1071	if (!hdr) {
1072		bpf_jit_uncharge_modmem(size);
1073		return NULL;
1074	}
1075
1076	/* Fill space with illegal/arch-dep instructions. */
1077	bpf_fill_ill_insns(hdr, size);
1078
1079	hdr->size = size;
1080	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1081		     PAGE_SIZE - sizeof(*hdr));
1082	start = get_random_u32_below(hole) & ~(alignment - 1);
1083
1084	/* Leave a random number of instructions before BPF code. */
1085	*image_ptr = &hdr->image[start];
1086
1087	return hdr;
1088}
1089
1090void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1091{
1092	u32 size = hdr->size;
1093
1094	bpf_jit_free_exec(hdr);
1095	bpf_jit_uncharge_modmem(size);
1096}
1097
1098/* Allocate jit binary from bpf_prog_pack allocator.
1099 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1100 * to the memory. To solve this problem, a RW buffer is also allocated at
1101 * as the same time. The JIT engine should calculate offsets based on the
1102 * RO memory address, but write JITed program to the RW buffer. Once the
1103 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1104 * the JITed program to the RO memory.
1105 */
1106struct bpf_binary_header *
1107bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1108			  unsigned int alignment,
1109			  struct bpf_binary_header **rw_header,
1110			  u8 **rw_image,
1111			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1112{
1113	struct bpf_binary_header *ro_header;
1114	u32 size, hole, start;
1115
1116	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1117		     alignment > BPF_IMAGE_ALIGNMENT);
1118
1119	/* add 16 bytes for a random section of illegal instructions */
1120	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1121
1122	if (bpf_jit_charge_modmem(size))
1123		return NULL;
1124	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1125	if (!ro_header) {
1126		bpf_jit_uncharge_modmem(size);
1127		return NULL;
1128	}
1129
1130	*rw_header = kvmalloc(size, GFP_KERNEL);
1131	if (!*rw_header) {
1132		bpf_prog_pack_free(ro_header, size);
1133		bpf_jit_uncharge_modmem(size);
1134		return NULL;
1135	}
1136
1137	/* Fill space with illegal/arch-dep instructions. */
1138	bpf_fill_ill_insns(*rw_header, size);
1139	(*rw_header)->size = size;
1140
1141	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1142		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1143	start = get_random_u32_below(hole) & ~(alignment - 1);
1144
1145	*image_ptr = &ro_header->image[start];
1146	*rw_image = &(*rw_header)->image[start];
1147
1148	return ro_header;
1149}
1150
1151/* Copy JITed text from rw_header to its final location, the ro_header. */
1152int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1153				 struct bpf_binary_header *ro_header,
1154				 struct bpf_binary_header *rw_header)
1155{
1156	void *ptr;
1157
1158	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1159
1160	kvfree(rw_header);
1161
1162	if (IS_ERR(ptr)) {
1163		bpf_prog_pack_free(ro_header, ro_header->size);
1164		return PTR_ERR(ptr);
1165	}
1166	return 0;
1167}
1168
1169/* bpf_jit_binary_pack_free is called in two different scenarios:
1170 *   1) when the program is freed after;
1171 *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1172 * For case 2), we need to free both the RO memory and the RW buffer.
1173 *
1174 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1175 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1176 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1177 * bpf_arch_text_copy (when jit fails).
1178 */
1179void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1180			      struct bpf_binary_header *rw_header)
1181{
1182	u32 size = ro_header->size;
1183
1184	bpf_prog_pack_free(ro_header, size);
1185	kvfree(rw_header);
1186	bpf_jit_uncharge_modmem(size);
1187}
1188
1189struct bpf_binary_header *
1190bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1191{
1192	unsigned long real_start = (unsigned long)fp->bpf_func;
1193	unsigned long addr;
1194
1195	addr = real_start & BPF_PROG_CHUNK_MASK;
1196	return (void *)addr;
1197}
1198
1199static inline struct bpf_binary_header *
1200bpf_jit_binary_hdr(const struct bpf_prog *fp)
1201{
1202	unsigned long real_start = (unsigned long)fp->bpf_func;
1203	unsigned long addr;
1204
1205	addr = real_start & PAGE_MASK;
1206	return (void *)addr;
1207}
1208
1209/* This symbol is only overridden by archs that have different
1210 * requirements than the usual eBPF JITs, f.e. when they only
1211 * implement cBPF JIT, do not set images read-only, etc.
1212 */
1213void __weak bpf_jit_free(struct bpf_prog *fp)
1214{
1215	if (fp->jited) {
1216		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1217
1218		bpf_jit_binary_free(hdr);
 
1219		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1220	}
1221
1222	bpf_prog_unlock_free(fp);
1223}
1224
1225int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1226			  const struct bpf_insn *insn, bool extra_pass,
1227			  u64 *func_addr, bool *func_addr_fixed)
1228{
1229	s16 off = insn->off;
1230	s32 imm = insn->imm;
1231	u8 *addr;
1232	int err;
1233
1234	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1235	if (!*func_addr_fixed) {
1236		/* Place-holder address till the last pass has collected
1237		 * all addresses for JITed subprograms in which case we
1238		 * can pick them up from prog->aux.
1239		 */
1240		if (!extra_pass)
1241			addr = NULL;
1242		else if (prog->aux->func &&
1243			 off >= 0 && off < prog->aux->real_func_cnt)
1244			addr = (u8 *)prog->aux->func[off]->bpf_func;
1245		else
1246			return -EINVAL;
1247	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1248		   bpf_jit_supports_far_kfunc_call()) {
1249		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1250		if (err)
1251			return err;
1252	} else {
1253		/* Address of a BPF helper call. Since part of the core
1254		 * kernel, it's always at a fixed location. __bpf_call_base
1255		 * and the helper with imm relative to it are both in core
1256		 * kernel.
1257		 */
1258		addr = (u8 *)__bpf_call_base + imm;
1259	}
1260
1261	*func_addr = (unsigned long)addr;
1262	return 0;
1263}
1264
1265static int bpf_jit_blind_insn(const struct bpf_insn *from,
1266			      const struct bpf_insn *aux,
1267			      struct bpf_insn *to_buff,
1268			      bool emit_zext)
1269{
1270	struct bpf_insn *to = to_buff;
1271	u32 imm_rnd = get_random_u32();
1272	s16 off;
1273
1274	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1275	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1276
1277	/* Constraints on AX register:
1278	 *
1279	 * AX register is inaccessible from user space. It is mapped in
1280	 * all JITs, and used here for constant blinding rewrites. It is
1281	 * typically "stateless" meaning its contents are only valid within
1282	 * the executed instruction, but not across several instructions.
1283	 * There are a few exceptions however which are further detailed
1284	 * below.
1285	 *
1286	 * Constant blinding is only used by JITs, not in the interpreter.
1287	 * The interpreter uses AX in some occasions as a local temporary
1288	 * register e.g. in DIV or MOD instructions.
1289	 *
1290	 * In restricted circumstances, the verifier can also use the AX
1291	 * register for rewrites as long as they do not interfere with
1292	 * the above cases!
1293	 */
1294	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1295		goto out;
1296
1297	if (from->imm == 0 &&
1298	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1299	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1300		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1301		goto out;
1302	}
1303
1304	switch (from->code) {
1305	case BPF_ALU | BPF_ADD | BPF_K:
1306	case BPF_ALU | BPF_SUB | BPF_K:
1307	case BPF_ALU | BPF_AND | BPF_K:
1308	case BPF_ALU | BPF_OR  | BPF_K:
1309	case BPF_ALU | BPF_XOR | BPF_K:
1310	case BPF_ALU | BPF_MUL | BPF_K:
1311	case BPF_ALU | BPF_MOV | BPF_K:
1312	case BPF_ALU | BPF_DIV | BPF_K:
1313	case BPF_ALU | BPF_MOD | BPF_K:
1314		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1315		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1316		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1317		break;
1318
1319	case BPF_ALU64 | BPF_ADD | BPF_K:
1320	case BPF_ALU64 | BPF_SUB | BPF_K:
1321	case BPF_ALU64 | BPF_AND | BPF_K:
1322	case BPF_ALU64 | BPF_OR  | BPF_K:
1323	case BPF_ALU64 | BPF_XOR | BPF_K:
1324	case BPF_ALU64 | BPF_MUL | BPF_K:
1325	case BPF_ALU64 | BPF_MOV | BPF_K:
1326	case BPF_ALU64 | BPF_DIV | BPF_K:
1327	case BPF_ALU64 | BPF_MOD | BPF_K:
1328		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1329		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1330		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1331		break;
1332
1333	case BPF_JMP | BPF_JEQ  | BPF_K:
1334	case BPF_JMP | BPF_JNE  | BPF_K:
1335	case BPF_JMP | BPF_JGT  | BPF_K:
1336	case BPF_JMP | BPF_JLT  | BPF_K:
1337	case BPF_JMP | BPF_JGE  | BPF_K:
1338	case BPF_JMP | BPF_JLE  | BPF_K:
1339	case BPF_JMP | BPF_JSGT | BPF_K:
1340	case BPF_JMP | BPF_JSLT | BPF_K:
1341	case BPF_JMP | BPF_JSGE | BPF_K:
1342	case BPF_JMP | BPF_JSLE | BPF_K:
1343	case BPF_JMP | BPF_JSET | BPF_K:
1344		/* Accommodate for extra offset in case of a backjump. */
1345		off = from->off;
1346		if (off < 0)
1347			off -= 2;
1348		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1349		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1350		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1351		break;
1352
1353	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1354	case BPF_JMP32 | BPF_JNE  | BPF_K:
1355	case BPF_JMP32 | BPF_JGT  | BPF_K:
1356	case BPF_JMP32 | BPF_JLT  | BPF_K:
1357	case BPF_JMP32 | BPF_JGE  | BPF_K:
1358	case BPF_JMP32 | BPF_JLE  | BPF_K:
1359	case BPF_JMP32 | BPF_JSGT | BPF_K:
1360	case BPF_JMP32 | BPF_JSLT | BPF_K:
1361	case BPF_JMP32 | BPF_JSGE | BPF_K:
1362	case BPF_JMP32 | BPF_JSLE | BPF_K:
1363	case BPF_JMP32 | BPF_JSET | BPF_K:
1364		/* Accommodate for extra offset in case of a backjump. */
1365		off = from->off;
1366		if (off < 0)
1367			off -= 2;
1368		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1369		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1370		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1371				      off);
1372		break;
1373
1374	case BPF_LD | BPF_IMM | BPF_DW:
1375		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1376		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1377		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1378		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1379		break;
1380	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1381		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1382		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1383		if (emit_zext)
1384			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1385		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1386		break;
1387
1388	case BPF_ST | BPF_MEM | BPF_DW:
1389	case BPF_ST | BPF_MEM | BPF_W:
1390	case BPF_ST | BPF_MEM | BPF_H:
1391	case BPF_ST | BPF_MEM | BPF_B:
1392		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1393		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1394		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1395		break;
1396	}
1397out:
1398	return to - to_buff;
1399}
1400
1401static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1402					      gfp_t gfp_extra_flags)
1403{
1404	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1405	struct bpf_prog *fp;
1406
1407	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1408	if (fp != NULL) {
1409		/* aux->prog still points to the fp_other one, so
1410		 * when promoting the clone to the real program,
1411		 * this still needs to be adapted.
1412		 */
1413		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1414	}
1415
1416	return fp;
1417}
1418
1419static void bpf_prog_clone_free(struct bpf_prog *fp)
1420{
1421	/* aux was stolen by the other clone, so we cannot free
1422	 * it from this path! It will be freed eventually by the
1423	 * other program on release.
1424	 *
1425	 * At this point, we don't need a deferred release since
1426	 * clone is guaranteed to not be locked.
1427	 */
1428	fp->aux = NULL;
1429	fp->stats = NULL;
1430	fp->active = NULL;
1431	__bpf_prog_free(fp);
1432}
1433
1434void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1435{
1436	/* We have to repoint aux->prog to self, as we don't
1437	 * know whether fp here is the clone or the original.
1438	 */
1439	fp->aux->prog = fp;
1440	bpf_prog_clone_free(fp_other);
1441}
1442
1443struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1444{
1445	struct bpf_insn insn_buff[16], aux[2];
1446	struct bpf_prog *clone, *tmp;
1447	int insn_delta, insn_cnt;
1448	struct bpf_insn *insn;
1449	int i, rewritten;
1450
1451	if (!prog->blinding_requested || prog->blinded)
1452		return prog;
1453
1454	clone = bpf_prog_clone_create(prog, GFP_USER);
1455	if (!clone)
1456		return ERR_PTR(-ENOMEM);
1457
1458	insn_cnt = clone->len;
1459	insn = clone->insnsi;
1460
1461	for (i = 0; i < insn_cnt; i++, insn++) {
1462		if (bpf_pseudo_func(insn)) {
1463			/* ld_imm64 with an address of bpf subprog is not
1464			 * a user controlled constant. Don't randomize it,
1465			 * since it will conflict with jit_subprogs() logic.
1466			 */
1467			insn++;
1468			i++;
1469			continue;
1470		}
1471
1472		/* We temporarily need to hold the original ld64 insn
1473		 * so that we can still access the first part in the
1474		 * second blinding run.
1475		 */
1476		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1477		    insn[1].code == 0)
1478			memcpy(aux, insn, sizeof(aux));
1479
1480		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1481						clone->aux->verifier_zext);
1482		if (!rewritten)
1483			continue;
1484
1485		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1486		if (IS_ERR(tmp)) {
1487			/* Patching may have repointed aux->prog during
1488			 * realloc from the original one, so we need to
1489			 * fix it up here on error.
1490			 */
1491			bpf_jit_prog_release_other(prog, clone);
1492			return tmp;
1493		}
1494
1495		clone = tmp;
1496		insn_delta = rewritten - 1;
1497
1498		/* Walk new program and skip insns we just inserted. */
1499		insn = clone->insnsi + i + insn_delta;
1500		insn_cnt += insn_delta;
1501		i        += insn_delta;
1502	}
1503
1504	clone->blinded = 1;
1505	return clone;
1506}
1507#endif /* CONFIG_BPF_JIT */
1508
1509/* Base function for offset calculation. Needs to go into .text section,
1510 * therefore keeping it non-static as well; will also be used by JITs
1511 * anyway later on, so do not let the compiler omit it. This also needs
1512 * to go into kallsyms for correlation from e.g. bpftool, so naming
1513 * must not change.
1514 */
1515noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1516{
1517	return 0;
1518}
1519EXPORT_SYMBOL_GPL(__bpf_call_base);
1520
1521/* All UAPI available opcodes. */
1522#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1523	/* 32 bit ALU operations. */		\
1524	/*   Register based. */			\
1525	INSN_3(ALU, ADD,  X),			\
1526	INSN_3(ALU, SUB,  X),			\
1527	INSN_3(ALU, AND,  X),			\
1528	INSN_3(ALU, OR,   X),			\
1529	INSN_3(ALU, LSH,  X),			\
1530	INSN_3(ALU, RSH,  X),			\
1531	INSN_3(ALU, XOR,  X),			\
1532	INSN_3(ALU, MUL,  X),			\
1533	INSN_3(ALU, MOV,  X),			\
1534	INSN_3(ALU, ARSH, X),			\
1535	INSN_3(ALU, DIV,  X),			\
1536	INSN_3(ALU, MOD,  X),			\
1537	INSN_2(ALU, NEG),			\
1538	INSN_3(ALU, END, TO_BE),		\
1539	INSN_3(ALU, END, TO_LE),		\
1540	/*   Immediate based. */		\
1541	INSN_3(ALU, ADD,  K),			\
1542	INSN_3(ALU, SUB,  K),			\
1543	INSN_3(ALU, AND,  K),			\
1544	INSN_3(ALU, OR,   K),			\
1545	INSN_3(ALU, LSH,  K),			\
1546	INSN_3(ALU, RSH,  K),			\
1547	INSN_3(ALU, XOR,  K),			\
1548	INSN_3(ALU, MUL,  K),			\
1549	INSN_3(ALU, MOV,  K),			\
1550	INSN_3(ALU, ARSH, K),			\
1551	INSN_3(ALU, DIV,  K),			\
1552	INSN_3(ALU, MOD,  K),			\
1553	/* 64 bit ALU operations. */		\
1554	/*   Register based. */			\
1555	INSN_3(ALU64, ADD,  X),			\
1556	INSN_3(ALU64, SUB,  X),			\
1557	INSN_3(ALU64, AND,  X),			\
1558	INSN_3(ALU64, OR,   X),			\
1559	INSN_3(ALU64, LSH,  X),			\
1560	INSN_3(ALU64, RSH,  X),			\
1561	INSN_3(ALU64, XOR,  X),			\
1562	INSN_3(ALU64, MUL,  X),			\
1563	INSN_3(ALU64, MOV,  X),			\
1564	INSN_3(ALU64, ARSH, X),			\
1565	INSN_3(ALU64, DIV,  X),			\
1566	INSN_3(ALU64, MOD,  X),			\
1567	INSN_2(ALU64, NEG),			\
1568	INSN_3(ALU64, END, TO_LE),		\
1569	/*   Immediate based. */		\
1570	INSN_3(ALU64, ADD,  K),			\
1571	INSN_3(ALU64, SUB,  K),			\
1572	INSN_3(ALU64, AND,  K),			\
1573	INSN_3(ALU64, OR,   K),			\
1574	INSN_3(ALU64, LSH,  K),			\
1575	INSN_3(ALU64, RSH,  K),			\
1576	INSN_3(ALU64, XOR,  K),			\
1577	INSN_3(ALU64, MUL,  K),			\
1578	INSN_3(ALU64, MOV,  K),			\
1579	INSN_3(ALU64, ARSH, K),			\
1580	INSN_3(ALU64, DIV,  K),			\
1581	INSN_3(ALU64, MOD,  K),			\
1582	/* Call instruction. */			\
1583	INSN_2(JMP, CALL),			\
1584	/* Exit instruction. */			\
1585	INSN_2(JMP, EXIT),			\
1586	/* 32-bit Jump instructions. */		\
1587	/*   Register based. */			\
1588	INSN_3(JMP32, JEQ,  X),			\
1589	INSN_3(JMP32, JNE,  X),			\
1590	INSN_3(JMP32, JGT,  X),			\
1591	INSN_3(JMP32, JLT,  X),			\
1592	INSN_3(JMP32, JGE,  X),			\
1593	INSN_3(JMP32, JLE,  X),			\
1594	INSN_3(JMP32, JSGT, X),			\
1595	INSN_3(JMP32, JSLT, X),			\
1596	INSN_3(JMP32, JSGE, X),			\
1597	INSN_3(JMP32, JSLE, X),			\
1598	INSN_3(JMP32, JSET, X),			\
1599	/*   Immediate based. */		\
1600	INSN_3(JMP32, JEQ,  K),			\
1601	INSN_3(JMP32, JNE,  K),			\
1602	INSN_3(JMP32, JGT,  K),			\
1603	INSN_3(JMP32, JLT,  K),			\
1604	INSN_3(JMP32, JGE,  K),			\
1605	INSN_3(JMP32, JLE,  K),			\
1606	INSN_3(JMP32, JSGT, K),			\
1607	INSN_3(JMP32, JSLT, K),			\
1608	INSN_3(JMP32, JSGE, K),			\
1609	INSN_3(JMP32, JSLE, K),			\
1610	INSN_3(JMP32, JSET, K),			\
1611	/* Jump instructions. */		\
1612	/*   Register based. */			\
1613	INSN_3(JMP, JEQ,  X),			\
1614	INSN_3(JMP, JNE,  X),			\
1615	INSN_3(JMP, JGT,  X),			\
1616	INSN_3(JMP, JLT,  X),			\
1617	INSN_3(JMP, JGE,  X),			\
1618	INSN_3(JMP, JLE,  X),			\
1619	INSN_3(JMP, JSGT, X),			\
1620	INSN_3(JMP, JSLT, X),			\
1621	INSN_3(JMP, JSGE, X),			\
1622	INSN_3(JMP, JSLE, X),			\
1623	INSN_3(JMP, JSET, X),			\
1624	/*   Immediate based. */		\
1625	INSN_3(JMP, JEQ,  K),			\
1626	INSN_3(JMP, JNE,  K),			\
1627	INSN_3(JMP, JGT,  K),			\
1628	INSN_3(JMP, JLT,  K),			\
1629	INSN_3(JMP, JGE,  K),			\
1630	INSN_3(JMP, JLE,  K),			\
1631	INSN_3(JMP, JSGT, K),			\
1632	INSN_3(JMP, JSLT, K),			\
1633	INSN_3(JMP, JSGE, K),			\
1634	INSN_3(JMP, JSLE, K),			\
1635	INSN_3(JMP, JSET, K),			\
1636	INSN_2(JMP, JA),			\
1637	INSN_2(JMP32, JA),			\
1638	/* Store instructions. */		\
1639	/*   Register based. */			\
1640	INSN_3(STX, MEM,  B),			\
1641	INSN_3(STX, MEM,  H),			\
1642	INSN_3(STX, MEM,  W),			\
1643	INSN_3(STX, MEM,  DW),			\
1644	INSN_3(STX, ATOMIC, W),			\
1645	INSN_3(STX, ATOMIC, DW),		\
1646	/*   Immediate based. */		\
1647	INSN_3(ST, MEM, B),			\
1648	INSN_3(ST, MEM, H),			\
1649	INSN_3(ST, MEM, W),			\
1650	INSN_3(ST, MEM, DW),			\
1651	/* Load instructions. */		\
1652	/*   Register based. */			\
1653	INSN_3(LDX, MEM, B),			\
1654	INSN_3(LDX, MEM, H),			\
1655	INSN_3(LDX, MEM, W),			\
1656	INSN_3(LDX, MEM, DW),			\
1657	INSN_3(LDX, MEMSX, B),			\
1658	INSN_3(LDX, MEMSX, H),			\
1659	INSN_3(LDX, MEMSX, W),			\
1660	/*   Immediate based. */		\
1661	INSN_3(LD, IMM, DW)
1662
1663bool bpf_opcode_in_insntable(u8 code)
1664{
1665#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1666#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1667	static const bool public_insntable[256] = {
1668		[0 ... 255] = false,
1669		/* Now overwrite non-defaults ... */
1670		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1671		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1672		[BPF_LD | BPF_ABS | BPF_B] = true,
1673		[BPF_LD | BPF_ABS | BPF_H] = true,
1674		[BPF_LD | BPF_ABS | BPF_W] = true,
1675		[BPF_LD | BPF_IND | BPF_B] = true,
1676		[BPF_LD | BPF_IND | BPF_H] = true,
1677		[BPF_LD | BPF_IND | BPF_W] = true,
1678	};
1679#undef BPF_INSN_3_TBL
1680#undef BPF_INSN_2_TBL
1681	return public_insntable[code];
1682}
1683
1684#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 
 
 
 
 
 
1685/**
1686 *	___bpf_prog_run - run eBPF program on a given context
1687 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1688 *	@insn: is the array of eBPF instructions
 
1689 *
1690 * Decode and execute eBPF instructions.
1691 *
1692 * Return: whatever value is in %BPF_R0 at program exit
1693 */
1694static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1695{
1696#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1697#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1698	static const void * const jumptable[256] __annotate_jump_table = {
1699		[0 ... 255] = &&default_label,
1700		/* Now overwrite non-defaults ... */
1701		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1702		/* Non-UAPI available opcodes. */
1703		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1704		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1705		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1706		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1707		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1708		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1709		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1710		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1711		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1712		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1713	};
1714#undef BPF_INSN_3_LBL
1715#undef BPF_INSN_2_LBL
1716	u32 tail_call_cnt = 0;
1717
1718#define CONT	 ({ insn++; goto select_insn; })
1719#define CONT_JMP ({ insn++; goto select_insn; })
1720
1721select_insn:
1722	goto *jumptable[insn->code];
1723
1724	/* Explicitly mask the register-based shift amounts with 63 or 31
1725	 * to avoid undefined behavior. Normally this won't affect the
1726	 * generated code, for example, in case of native 64 bit archs such
1727	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1728	 * the interpreter. In case of JITs, each of the JIT backends compiles
1729	 * the BPF shift operations to machine instructions which produce
1730	 * implementation-defined results in such a case; the resulting
1731	 * contents of the register may be arbitrary, but program behaviour
1732	 * as a whole remains defined. In other words, in case of JIT backends,
1733	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1734	 */
1735	/* ALU (shifts) */
1736#define SHT(OPCODE, OP)					\
1737	ALU64_##OPCODE##_X:				\
1738		DST = DST OP (SRC & 63);		\
1739		CONT;					\
1740	ALU_##OPCODE##_X:				\
1741		DST = (u32) DST OP ((u32) SRC & 31);	\
1742		CONT;					\
1743	ALU64_##OPCODE##_K:				\
1744		DST = DST OP IMM;			\
1745		CONT;					\
1746	ALU_##OPCODE##_K:				\
1747		DST = (u32) DST OP (u32) IMM;		\
1748		CONT;
1749	/* ALU (rest) */
1750#define ALU(OPCODE, OP)					\
1751	ALU64_##OPCODE##_X:				\
1752		DST = DST OP SRC;			\
1753		CONT;					\
1754	ALU_##OPCODE##_X:				\
1755		DST = (u32) DST OP (u32) SRC;		\
1756		CONT;					\
1757	ALU64_##OPCODE##_K:				\
1758		DST = DST OP IMM;			\
1759		CONT;					\
1760	ALU_##OPCODE##_K:				\
1761		DST = (u32) DST OP (u32) IMM;		\
1762		CONT;
 
1763	ALU(ADD,  +)
1764	ALU(SUB,  -)
1765	ALU(AND,  &)
1766	ALU(OR,   |)
 
 
1767	ALU(XOR,  ^)
1768	ALU(MUL,  *)
1769	SHT(LSH, <<)
1770	SHT(RSH, >>)
1771#undef SHT
1772#undef ALU
1773	ALU_NEG:
1774		DST = (u32) -DST;
1775		CONT;
1776	ALU64_NEG:
1777		DST = -DST;
1778		CONT;
1779	ALU_MOV_X:
1780		switch (OFF) {
1781		case 0:
1782			DST = (u32) SRC;
1783			break;
1784		case 8:
1785			DST = (u32)(s8) SRC;
1786			break;
1787		case 16:
1788			DST = (u32)(s16) SRC;
1789			break;
1790		}
1791		CONT;
1792	ALU_MOV_K:
1793		DST = (u32) IMM;
1794		CONT;
1795	ALU64_MOV_X:
1796		switch (OFF) {
1797		case 0:
1798			DST = SRC;
1799			break;
1800		case 8:
1801			DST = (s8) SRC;
1802			break;
1803		case 16:
1804			DST = (s16) SRC;
1805			break;
1806		case 32:
1807			DST = (s32) SRC;
1808			break;
1809		}
1810		CONT;
1811	ALU64_MOV_K:
1812		DST = IMM;
1813		CONT;
1814	LD_IMM_DW:
1815		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1816		insn++;
1817		CONT;
1818	ALU_ARSH_X:
1819		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1820		CONT;
1821	ALU_ARSH_K:
1822		DST = (u64) (u32) (((s32) DST) >> IMM);
1823		CONT;
1824	ALU64_ARSH_X:
1825		(*(s64 *) &DST) >>= (SRC & 63);
1826		CONT;
1827	ALU64_ARSH_K:
1828		(*(s64 *) &DST) >>= IMM;
1829		CONT;
1830	ALU64_MOD_X:
1831		switch (OFF) {
1832		case 0:
1833			div64_u64_rem(DST, SRC, &AX);
1834			DST = AX;
1835			break;
1836		case 1:
1837			AX = div64_s64(DST, SRC);
1838			DST = DST - AX * SRC;
1839			break;
1840		}
1841		CONT;
1842	ALU_MOD_X:
1843		switch (OFF) {
1844		case 0:
1845			AX = (u32) DST;
1846			DST = do_div(AX, (u32) SRC);
1847			break;
1848		case 1:
1849			AX = abs((s32)DST);
1850			AX = do_div(AX, abs((s32)SRC));
1851			if ((s32)DST < 0)
1852				DST = (u32)-AX;
1853			else
1854				DST = (u32)AX;
1855			break;
1856		}
1857		CONT;
1858	ALU64_MOD_K:
1859		switch (OFF) {
1860		case 0:
1861			div64_u64_rem(DST, IMM, &AX);
1862			DST = AX;
1863			break;
1864		case 1:
1865			AX = div64_s64(DST, IMM);
1866			DST = DST - AX * IMM;
1867			break;
1868		}
1869		CONT;
1870	ALU_MOD_K:
1871		switch (OFF) {
1872		case 0:
1873			AX = (u32) DST;
1874			DST = do_div(AX, (u32) IMM);
1875			break;
1876		case 1:
1877			AX = abs((s32)DST);
1878			AX = do_div(AX, abs((s32)IMM));
1879			if ((s32)DST < 0)
1880				DST = (u32)-AX;
1881			else
1882				DST = (u32)AX;
1883			break;
1884		}
1885		CONT;
1886	ALU64_DIV_X:
1887		switch (OFF) {
1888		case 0:
1889			DST = div64_u64(DST, SRC);
1890			break;
1891		case 1:
1892			DST = div64_s64(DST, SRC);
1893			break;
1894		}
1895		CONT;
1896	ALU_DIV_X:
1897		switch (OFF) {
1898		case 0:
1899			AX = (u32) DST;
1900			do_div(AX, (u32) SRC);
1901			DST = (u32) AX;
1902			break;
1903		case 1:
1904			AX = abs((s32)DST);
1905			do_div(AX, abs((s32)SRC));
1906			if (((s32)DST < 0) == ((s32)SRC < 0))
1907				DST = (u32)AX;
1908			else
1909				DST = (u32)-AX;
1910			break;
1911		}
1912		CONT;
1913	ALU64_DIV_K:
1914		switch (OFF) {
1915		case 0:
1916			DST = div64_u64(DST, IMM);
1917			break;
1918		case 1:
1919			DST = div64_s64(DST, IMM);
1920			break;
1921		}
1922		CONT;
1923	ALU_DIV_K:
1924		switch (OFF) {
1925		case 0:
1926			AX = (u32) DST;
1927			do_div(AX, (u32) IMM);
1928			DST = (u32) AX;
1929			break;
1930		case 1:
1931			AX = abs((s32)DST);
1932			do_div(AX, abs((s32)IMM));
1933			if (((s32)DST < 0) == ((s32)IMM < 0))
1934				DST = (u32)AX;
1935			else
1936				DST = (u32)-AX;
1937			break;
1938		}
1939		CONT;
1940	ALU_END_TO_BE:
1941		switch (IMM) {
1942		case 16:
1943			DST = (__force u16) cpu_to_be16(DST);
1944			break;
1945		case 32:
1946			DST = (__force u32) cpu_to_be32(DST);
1947			break;
1948		case 64:
1949			DST = (__force u64) cpu_to_be64(DST);
1950			break;
1951		}
1952		CONT;
1953	ALU_END_TO_LE:
1954		switch (IMM) {
1955		case 16:
1956			DST = (__force u16) cpu_to_le16(DST);
1957			break;
1958		case 32:
1959			DST = (__force u32) cpu_to_le32(DST);
1960			break;
1961		case 64:
1962			DST = (__force u64) cpu_to_le64(DST);
1963			break;
1964		}
1965		CONT;
1966	ALU64_END_TO_LE:
1967		switch (IMM) {
1968		case 16:
1969			DST = (__force u16) __swab16(DST);
1970			break;
1971		case 32:
1972			DST = (__force u32) __swab32(DST);
1973			break;
1974		case 64:
1975			DST = (__force u64) __swab64(DST);
1976			break;
1977		}
1978		CONT;
1979
1980	/* CALL */
1981	JMP_CALL:
1982		/* Function call scratches BPF_R1-BPF_R5 registers,
1983		 * preserves BPF_R6-BPF_R9, and stores return value
1984		 * into BPF_R0.
1985		 */
1986		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1987						       BPF_R4, BPF_R5);
1988		CONT;
1989
1990	JMP_CALL_ARGS:
1991		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1992							    BPF_R3, BPF_R4,
1993							    BPF_R5,
1994							    insn + insn->off + 1);
1995		CONT;
1996
1997	JMP_TAIL_CALL: {
1998		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1999		struct bpf_array *array = container_of(map, struct bpf_array, map);
2000		struct bpf_prog *prog;
2001		u32 index = BPF_R3;
2002
2003		if (unlikely(index >= array->map.max_entries))
2004			goto out;
2005
2006		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2007			goto out;
2008
2009		tail_call_cnt++;
2010
2011		prog = READ_ONCE(array->ptrs[index]);
2012		if (!prog)
2013			goto out;
2014
2015		/* ARG1 at this point is guaranteed to point to CTX from
2016		 * the verifier side due to the fact that the tail call is
2017		 * handled like a helper, that is, bpf_tail_call_proto,
2018		 * where arg1_type is ARG_PTR_TO_CTX.
2019		 */
2020		insn = prog->insnsi;
2021		goto select_insn;
2022out:
2023		CONT;
2024	}
2025	JMP_JA:
2026		insn += insn->off;
2027		CONT;
2028	JMP32_JA:
2029		insn += insn->imm;
2030		CONT;
2031	JMP_EXIT:
2032		return BPF_R0;
2033	/* JMP */
2034#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2035	JMP_##OPCODE##_X:					\
2036		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2037			insn += insn->off;			\
2038			CONT_JMP;				\
2039		}						\
2040		CONT;						\
2041	JMP32_##OPCODE##_X:					\
2042		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2043			insn += insn->off;			\
2044			CONT_JMP;				\
2045		}						\
2046		CONT;						\
2047	JMP_##OPCODE##_K:					\
2048		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2049			insn += insn->off;			\
2050			CONT_JMP;				\
2051		}						\
2052		CONT;						\
2053	JMP32_##OPCODE##_K:					\
2054		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2055			insn += insn->off;			\
2056			CONT_JMP;				\
2057		}						\
2058		CONT;
2059	COND_JMP(u, JEQ, ==)
2060	COND_JMP(u, JNE, !=)
2061	COND_JMP(u, JGT, >)
2062	COND_JMP(u, JLT, <)
2063	COND_JMP(u, JGE, >=)
2064	COND_JMP(u, JLE, <=)
2065	COND_JMP(u, JSET, &)
2066	COND_JMP(s, JSGT, >)
2067	COND_JMP(s, JSLT, <)
2068	COND_JMP(s, JSGE, >=)
2069	COND_JMP(s, JSLE, <=)
2070#undef COND_JMP
2071	/* ST, STX and LDX*/
2072	ST_NOSPEC:
2073		/* Speculation barrier for mitigating Speculative Store Bypass.
2074		 * In case of arm64, we rely on the firmware mitigation as
2075		 * controlled via the ssbd kernel parameter. Whenever the
2076		 * mitigation is enabled, it works for all of the kernel code
2077		 * with no need to provide any additional instructions here.
2078		 * In case of x86, we use 'lfence' insn for mitigation. We
2079		 * reuse preexisting logic from Spectre v1 mitigation that
2080		 * happens to produce the required code on x86 for v4 as well.
2081		 */
2082		barrier_nospec();
2083		CONT;
2084#define LDST(SIZEOP, SIZE)						\
2085	STX_MEM_##SIZEOP:						\
2086		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2087		CONT;							\
2088	ST_MEM_##SIZEOP:						\
2089		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2090		CONT;							\
2091	LDX_MEM_##SIZEOP:						\
2092		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2093		CONT;							\
2094	LDX_PROBE_MEM_##SIZEOP:						\
2095		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2096			      (const void *)(long) (SRC + insn->off));	\
2097		DST = *((SIZE *)&DST);					\
2098		CONT;
2099
2100	LDST(B,   u8)
2101	LDST(H,  u16)
2102	LDST(W,  u32)
2103	LDST(DW, u64)
2104#undef LDST
2105
2106#define LDSX(SIZEOP, SIZE)						\
2107	LDX_MEMSX_##SIZEOP:						\
2108		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2109		CONT;							\
2110	LDX_PROBE_MEMSX_##SIZEOP:					\
2111		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2112				      (const void *)(long) (SRC + insn->off));	\
2113		DST = *((SIZE *)&DST);					\
2114		CONT;
2115
2116	LDSX(B,   s8)
2117	LDSX(H,  s16)
2118	LDSX(W,  s32)
2119#undef LDSX
2120
2121#define ATOMIC_ALU_OP(BOP, KOP)						\
2122		case BOP:						\
2123			if (BPF_SIZE(insn->code) == BPF_W)		\
2124				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2125					     (DST + insn->off));	\
2126			else						\
2127				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2128					       (DST + insn->off));	\
2129			break;						\
2130		case BOP | BPF_FETCH:					\
2131			if (BPF_SIZE(insn->code) == BPF_W)		\
2132				SRC = (u32) atomic_fetch_##KOP(		\
2133					(u32) SRC,			\
2134					(atomic_t *)(unsigned long) (DST + insn->off)); \
2135			else						\
2136				SRC = (u64) atomic64_fetch_##KOP(	\
2137					(u64) SRC,			\
2138					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2139			break;
2140
2141	STX_ATOMIC_DW:
2142	STX_ATOMIC_W:
2143		switch (IMM) {
2144		ATOMIC_ALU_OP(BPF_ADD, add)
2145		ATOMIC_ALU_OP(BPF_AND, and)
2146		ATOMIC_ALU_OP(BPF_OR, or)
2147		ATOMIC_ALU_OP(BPF_XOR, xor)
2148#undef ATOMIC_ALU_OP
2149
2150		case BPF_XCHG:
2151			if (BPF_SIZE(insn->code) == BPF_W)
2152				SRC = (u32) atomic_xchg(
2153					(atomic_t *)(unsigned long) (DST + insn->off),
2154					(u32) SRC);
2155			else
2156				SRC = (u64) atomic64_xchg(
2157					(atomic64_t *)(unsigned long) (DST + insn->off),
2158					(u64) SRC);
2159			break;
2160		case BPF_CMPXCHG:
2161			if (BPF_SIZE(insn->code) == BPF_W)
2162				BPF_R0 = (u32) atomic_cmpxchg(
2163					(atomic_t *)(unsigned long) (DST + insn->off),
2164					(u32) BPF_R0, (u32) SRC);
2165			else
2166				BPF_R0 = (u64) atomic64_cmpxchg(
2167					(atomic64_t *)(unsigned long) (DST + insn->off),
2168					(u64) BPF_R0, (u64) SRC);
2169			break;
2170
2171		default:
2172			goto default_label;
2173		}
2174		CONT;
2175
2176	default_label:
2177		/* If we ever reach this, we have a bug somewhere. Die hard here
2178		 * instead of just returning 0; we could be somewhere in a subprog,
2179		 * so execution could continue otherwise which we do /not/ want.
2180		 *
2181		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2182		 */
2183		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2184			insn->code, insn->imm);
2185		BUG_ON(1);
2186		return 0;
2187}
2188
2189#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2190#define DEFINE_BPF_PROG_RUN(stack_size) \
2191static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2192{ \
2193	u64 stack[stack_size / sizeof(u64)]; \
2194	u64 regs[MAX_BPF_EXT_REG] = {}; \
2195\
2196	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2197	ARG1 = (u64) (unsigned long) ctx; \
2198	return ___bpf_prog_run(regs, insn); \
2199}
2200
2201#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2202#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2203static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2204				      const struct bpf_insn *insn) \
2205{ \
2206	u64 stack[stack_size / sizeof(u64)]; \
2207	u64 regs[MAX_BPF_EXT_REG]; \
2208\
2209	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2210	BPF_R1 = r1; \
2211	BPF_R2 = r2; \
2212	BPF_R3 = r3; \
2213	BPF_R4 = r4; \
2214	BPF_R5 = r5; \
2215	return ___bpf_prog_run(regs, insn); \
2216}
2217
2218#define EVAL1(FN, X) FN(X)
2219#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2220#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2221#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2222#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2223#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2224
2225EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2226EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2227EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2228
2229EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2230EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2231EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2232
2233#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2234
2235static unsigned int (*interpreters[])(const void *ctx,
2236				      const struct bpf_insn *insn) = {
2237EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2238EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2239EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2240};
2241#undef PROG_NAME_LIST
2242#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2243static __maybe_unused
2244u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2245			   const struct bpf_insn *insn) = {
2246EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2247EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2248EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2249};
2250#undef PROG_NAME_LIST
2251
2252#ifdef CONFIG_BPF_SYSCALL
2253void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2254{
2255	stack_depth = max_t(u32, stack_depth, 1);
2256	insn->off = (s16) insn->imm;
2257	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2258		__bpf_call_base_args;
2259	insn->code = BPF_JMP | BPF_CALL_ARGS;
2260}
2261#endif
2262#else
2263static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2264					 const struct bpf_insn *insn)
2265{
2266	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2267	 * is not working properly, so warn about it!
2268	 */
2269	WARN_ON_ONCE(1);
2270	return 0;
2271}
2272#endif
2273
2274bool bpf_prog_map_compatible(struct bpf_map *map,
2275			     const struct bpf_prog *fp)
2276{
2277	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2278	bool ret;
2279
2280	if (fp->kprobe_override)
2281		return false;
2282
2283	/* XDP programs inserted into maps are not guaranteed to run on
2284	 * a particular netdev (and can run outside driver context entirely
2285	 * in the case of devmap and cpumap). Until device checks
2286	 * are implemented, prohibit adding dev-bound programs to program maps.
2287	 */
2288	if (bpf_prog_is_dev_bound(fp->aux))
2289		return false;
2290
2291	spin_lock(&map->owner.lock);
2292	if (!map->owner.type) {
2293		/* There's no owner yet where we could check for
2294		 * compatibility.
2295		 */
2296		map->owner.type  = prog_type;
2297		map->owner.jited = fp->jited;
2298		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2299		ret = true;
2300	} else {
2301		ret = map->owner.type  == prog_type &&
2302		      map->owner.jited == fp->jited &&
2303		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2304	}
2305	spin_unlock(&map->owner.lock);
2306
2307	return ret;
 
2308}
2309
2310static int bpf_check_tail_call(const struct bpf_prog *fp)
2311{
2312	struct bpf_prog_aux *aux = fp->aux;
2313	int i, ret = 0;
2314
2315	mutex_lock(&aux->used_maps_mutex);
2316	for (i = 0; i < aux->used_map_cnt; i++) {
2317		struct bpf_map *map = aux->used_maps[i];
 
2318
2319		if (!map_type_contains_progs(map))
2320			continue;
2321
2322		if (!bpf_prog_map_compatible(map, fp)) {
2323			ret = -EINVAL;
2324			goto out;
2325		}
2326	}
2327
2328out:
2329	mutex_unlock(&aux->used_maps_mutex);
2330	return ret;
2331}
2332
2333static void bpf_prog_select_func(struct bpf_prog *fp)
2334{
2335#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2336	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2337
2338	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2339#else
2340	fp->bpf_func = __bpf_prog_ret0_warn;
2341#endif
2342}
2343
2344/**
2345 *	bpf_prog_select_runtime - select exec runtime for BPF program
2346 *	@fp: bpf_prog populated with BPF program
2347 *	@err: pointer to error variable
2348 *
2349 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2350 * The BPF program will be executed via bpf_prog_run() function.
2351 *
2352 * Return: the &fp argument along with &err set to 0 for success or
2353 * a negative errno code on failure
2354 */
2355struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2356{
2357	/* In case of BPF to BPF calls, verifier did all the prep
2358	 * work with regards to JITing, etc.
2359	 */
2360	bool jit_needed = false;
2361
2362	if (fp->bpf_func)
2363		goto finalize;
2364
2365	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2366	    bpf_prog_has_kfunc_call(fp))
2367		jit_needed = true;
2368
2369	bpf_prog_select_func(fp);
2370
2371	/* eBPF JITs can rewrite the program in case constant
2372	 * blinding is active. However, in case of error during
2373	 * blinding, bpf_int_jit_compile() must always return a
2374	 * valid program, which in this case would simply not
2375	 * be JITed, but falls back to the interpreter.
2376	 */
2377	if (!bpf_prog_is_offloaded(fp->aux)) {
2378		*err = bpf_prog_alloc_jited_linfo(fp);
2379		if (*err)
2380			return fp;
2381
2382		fp = bpf_int_jit_compile(fp);
2383		bpf_prog_jit_attempt_done(fp);
2384		if (!fp->jited && jit_needed) {
 
2385			*err = -ENOTSUPP;
2386			return fp;
 
 
 
2387		}
2388	} else {
2389		*err = bpf_prog_offload_compile(fp);
2390		if (*err)
2391			return fp;
2392	}
2393
2394finalize:
2395	bpf_prog_lock_ro(fp);
2396
2397	/* The tail call compatibility check can only be done at
2398	 * this late stage as we need to determine, if we deal
2399	 * with JITed or non JITed program concatenations and not
2400	 * all eBPF JITs might immediately support all features.
2401	 */
2402	*err = bpf_check_tail_call(fp);
2403
2404	return fp;
2405}
2406EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2407
2408static unsigned int __bpf_prog_ret1(const void *ctx,
2409				    const struct bpf_insn *insn)
2410{
2411	return 1;
2412}
2413
2414static struct bpf_prog_dummy {
2415	struct bpf_prog prog;
2416} dummy_bpf_prog = {
2417	.prog = {
2418		.bpf_func = __bpf_prog_ret1,
2419	},
2420};
2421
2422struct bpf_empty_prog_array bpf_empty_prog_array = {
 
 
 
 
 
 
 
 
 
2423	.null_prog = NULL,
2424};
2425EXPORT_SYMBOL(bpf_empty_prog_array);
2426
2427struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2428{
2429	if (prog_cnt)
2430		return kzalloc(sizeof(struct bpf_prog_array) +
2431			       sizeof(struct bpf_prog_array_item) *
2432			       (prog_cnt + 1),
2433			       flags);
2434
2435	return &bpf_empty_prog_array.hdr;
2436}
2437
2438void bpf_prog_array_free(struct bpf_prog_array *progs)
2439{
2440	if (!progs || progs == &bpf_empty_prog_array.hdr)
2441		return;
2442	kfree_rcu(progs, rcu);
2443}
2444
2445static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2446{
2447	struct bpf_prog_array *progs;
2448
2449	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2450	 * no need to call kfree_rcu(), just call kfree() directly.
2451	 */
2452	progs = container_of(rcu, struct bpf_prog_array, rcu);
2453	if (rcu_trace_implies_rcu_gp())
2454		kfree(progs);
2455	else
2456		kfree_rcu(progs, rcu);
2457}
2458
2459void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2460{
2461	if (!progs || progs == &bpf_empty_prog_array.hdr)
2462		return;
2463	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2464}
2465
2466int bpf_prog_array_length(struct bpf_prog_array *array)
2467{
2468	struct bpf_prog_array_item *item;
2469	u32 cnt = 0;
2470
2471	for (item = array->items; item->prog; item++)
2472		if (item->prog != &dummy_bpf_prog.prog)
2473			cnt++;
2474	return cnt;
2475}
2476
2477bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2478{
2479	struct bpf_prog_array_item *item;
2480
2481	for (item = array->items; item->prog; item++)
2482		if (item->prog != &dummy_bpf_prog.prog)
2483			return false;
2484	return true;
2485}
2486
2487static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2488				     u32 *prog_ids,
2489				     u32 request_cnt)
2490{
2491	struct bpf_prog_array_item *item;
2492	int i = 0;
2493
2494	for (item = array->items; item->prog; item++) {
2495		if (item->prog == &dummy_bpf_prog.prog)
2496			continue;
2497		prog_ids[i] = item->prog->aux->id;
2498		if (++i == request_cnt) {
2499			item++;
2500			break;
2501		}
2502	}
2503
2504	return !!(item->prog);
2505}
2506
2507int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2508				__u32 __user *prog_ids, u32 cnt)
2509{
2510	unsigned long err = 0;
2511	bool nospc;
2512	u32 *ids;
2513
2514	/* users of this function are doing:
2515	 * cnt = bpf_prog_array_length();
2516	 * if (cnt > 0)
2517	 *     bpf_prog_array_copy_to_user(..., cnt);
2518	 * so below kcalloc doesn't need extra cnt > 0 check.
2519	 */
2520	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2521	if (!ids)
2522		return -ENOMEM;
2523	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2524	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2525	kfree(ids);
2526	if (err)
2527		return -EFAULT;
2528	if (nospc)
2529		return -ENOSPC;
2530	return 0;
2531}
2532
2533void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2534				struct bpf_prog *old_prog)
2535{
2536	struct bpf_prog_array_item *item;
2537
2538	for (item = array->items; item->prog; item++)
2539		if (item->prog == old_prog) {
2540			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2541			break;
2542		}
2543}
2544
2545/**
2546 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2547 *                                   index into the program array with
2548 *                                   a dummy no-op program.
2549 * @array: a bpf_prog_array
2550 * @index: the index of the program to replace
2551 *
2552 * Skips over dummy programs, by not counting them, when calculating
2553 * the position of the program to replace.
2554 *
2555 * Return:
2556 * * 0		- Success
2557 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2558 * * -ENOENT	- Index out of range
2559 */
2560int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2561{
2562	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2563}
2564
2565/**
2566 * bpf_prog_array_update_at() - Updates the program at the given index
2567 *                              into the program array.
2568 * @array: a bpf_prog_array
2569 * @index: the index of the program to update
2570 * @prog: the program to insert into the array
2571 *
2572 * Skips over dummy programs, by not counting them, when calculating
2573 * the position of the program to update.
2574 *
2575 * Return:
2576 * * 0		- Success
2577 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2578 * * -ENOENT	- Index out of range
2579 */
2580int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2581			     struct bpf_prog *prog)
2582{
2583	struct bpf_prog_array_item *item;
2584
2585	if (unlikely(index < 0))
2586		return -EINVAL;
2587
2588	for (item = array->items; item->prog; item++) {
2589		if (item->prog == &dummy_bpf_prog.prog)
2590			continue;
2591		if (!index) {
2592			WRITE_ONCE(item->prog, prog);
2593			return 0;
2594		}
2595		index--;
2596	}
2597	return -ENOENT;
2598}
2599
2600int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2601			struct bpf_prog *exclude_prog,
2602			struct bpf_prog *include_prog,
2603			u64 bpf_cookie,
2604			struct bpf_prog_array **new_array)
2605{
2606	int new_prog_cnt, carry_prog_cnt = 0;
2607	struct bpf_prog_array_item *existing, *new;
2608	struct bpf_prog_array *array;
2609	bool found_exclude = false;
 
2610
2611	/* Figure out how many existing progs we need to carry over to
2612	 * the new array.
2613	 */
2614	if (old_array) {
2615		existing = old_array->items;
2616		for (; existing->prog; existing++) {
2617			if (existing->prog == exclude_prog) {
2618				found_exclude = true;
2619				continue;
2620			}
2621			if (existing->prog != &dummy_bpf_prog.prog)
2622				carry_prog_cnt++;
2623			if (existing->prog == include_prog)
2624				return -EEXIST;
2625		}
2626	}
2627
2628	if (exclude_prog && !found_exclude)
2629		return -ENOENT;
2630
2631	/* How many progs (not NULL) will be in the new array? */
2632	new_prog_cnt = carry_prog_cnt;
2633	if (include_prog)
2634		new_prog_cnt += 1;
2635
2636	/* Do we have any prog (not NULL) in the new array? */
2637	if (!new_prog_cnt) {
2638		*new_array = NULL;
2639		return 0;
2640	}
2641
2642	/* +1 as the end of prog_array is marked with NULL */
2643	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2644	if (!array)
2645		return -ENOMEM;
2646	new = array->items;
2647
2648	/* Fill in the new prog array */
2649	if (carry_prog_cnt) {
2650		existing = old_array->items;
2651		for (; existing->prog; existing++) {
2652			if (existing->prog == exclude_prog ||
2653			    existing->prog == &dummy_bpf_prog.prog)
2654				continue;
2655
2656			new->prog = existing->prog;
2657			new->bpf_cookie = existing->bpf_cookie;
2658			new++;
2659		}
2660	}
2661	if (include_prog) {
2662		new->prog = include_prog;
2663		new->bpf_cookie = bpf_cookie;
2664		new++;
2665	}
2666	new->prog = NULL;
 
 
2667	*new_array = array;
2668	return 0;
2669}
2670
2671int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2672			     u32 *prog_ids, u32 request_cnt,
2673			     u32 *prog_cnt)
2674{
2675	u32 cnt = 0;
2676
2677	if (array)
2678		cnt = bpf_prog_array_length(array);
2679
2680	*prog_cnt = cnt;
2681
2682	/* return early if user requested only program count or nothing to copy */
2683	if (!request_cnt || !cnt)
2684		return 0;
2685
2686	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2687	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2688								     : 0;
2689}
2690
2691void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2692			  struct bpf_map **used_maps, u32 len)
2693{
2694	struct bpf_map *map;
2695	bool sleepable;
2696	u32 i;
2697
2698	sleepable = aux->sleepable;
2699	for (i = 0; i < len; i++) {
2700		map = used_maps[i];
2701		if (map->ops->map_poke_untrack)
2702			map->ops->map_poke_untrack(map, aux);
2703		if (sleepable)
2704			atomic64_dec(&map->sleepable_refcnt);
2705		bpf_map_put(map);
2706	}
2707}
2708
2709static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2710{
2711	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2712	kfree(aux->used_maps);
2713}
2714
2715void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2716			  struct btf_mod_pair *used_btfs, u32 len)
2717{
2718#ifdef CONFIG_BPF_SYSCALL
2719	struct btf_mod_pair *btf_mod;
2720	u32 i;
2721
2722	for (i = 0; i < len; i++) {
2723		btf_mod = &used_btfs[i];
2724		if (btf_mod->module)
2725			module_put(btf_mod->module);
2726		btf_put(btf_mod->btf);
2727	}
2728#endif
2729}
2730
2731static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2732{
2733	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2734	kfree(aux->used_btfs);
2735}
2736
2737static void bpf_prog_free_deferred(struct work_struct *work)
2738{
2739	struct bpf_prog_aux *aux;
2740	int i;
2741
2742	aux = container_of(work, struct bpf_prog_aux, work);
2743#ifdef CONFIG_BPF_SYSCALL
2744	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2745#endif
2746#ifdef CONFIG_CGROUP_BPF
2747	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2748		bpf_cgroup_atype_put(aux->cgroup_atype);
2749#endif
2750	bpf_free_used_maps(aux);
2751	bpf_free_used_btfs(aux);
2752	if (bpf_prog_is_dev_bound(aux))
2753		bpf_prog_dev_bound_destroy(aux->prog);
2754#ifdef CONFIG_PERF_EVENTS
2755	if (aux->prog->has_callchain_buf)
2756		put_callchain_buffers();
2757#endif
2758	if (aux->dst_trampoline)
2759		bpf_trampoline_put(aux->dst_trampoline);
2760	for (i = 0; i < aux->real_func_cnt; i++) {
2761		/* We can just unlink the subprog poke descriptor table as
2762		 * it was originally linked to the main program and is also
2763		 * released along with it.
2764		 */
2765		aux->func[i]->aux->poke_tab = NULL;
2766		bpf_jit_free(aux->func[i]);
2767	}
2768	if (aux->real_func_cnt) {
2769		kfree(aux->func);
2770		bpf_prog_unlock_free(aux->prog);
2771	} else {
2772		bpf_jit_free(aux->prog);
2773	}
2774}
2775
 
2776void bpf_prog_free(struct bpf_prog *fp)
2777{
2778	struct bpf_prog_aux *aux = fp->aux;
2779
2780	if (aux->dst_prog)
2781		bpf_prog_put(aux->dst_prog);
2782	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2783	schedule_work(&aux->work);
2784}
2785EXPORT_SYMBOL_GPL(bpf_prog_free);
2786
2787/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2788static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2789
2790void bpf_user_rnd_init_once(void)
2791{
2792	prandom_init_once(&bpf_user_rnd_state);
2793}
2794
2795BPF_CALL_0(bpf_user_rnd_u32)
2796{
2797	/* Should someone ever have the rather unwise idea to use some
2798	 * of the registers passed into this function, then note that
2799	 * this function is called from native eBPF and classic-to-eBPF
2800	 * transformations. Register assignments from both sides are
2801	 * different, f.e. classic always sets fn(ctx, A, X) here.
2802	 */
2803	struct rnd_state *state;
2804	u32 res;
2805
2806	state = &get_cpu_var(bpf_user_rnd_state);
2807	res = prandom_u32_state(state);
2808	put_cpu_var(bpf_user_rnd_state);
2809
2810	return res;
2811}
2812
2813BPF_CALL_0(bpf_get_raw_cpu_id)
2814{
2815	return raw_smp_processor_id();
2816}
2817
2818/* Weak definitions of helper functions in case we don't have bpf syscall. */
2819const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2820const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2821const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2822const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2823const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2824const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2825const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2826const struct bpf_func_proto bpf_spin_lock_proto __weak;
2827const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2828const struct bpf_func_proto bpf_jiffies64_proto __weak;
2829
2830const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2831const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2832const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2833const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2834const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2835const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2836const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2837
2838const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2839const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2840const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2841const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2842const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2843const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2844const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2845const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2846const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2847const struct bpf_func_proto bpf_set_retval_proto __weak;
2848const struct bpf_func_proto bpf_get_retval_proto __weak;
2849
2850const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2851{
2852	return NULL;
2853}
2854
2855const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2856{
2857	return NULL;
2858}
2859
2860u64 __weak
2861bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2862		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2863{
2864	return -ENOTSUPP;
2865}
2866EXPORT_SYMBOL_GPL(bpf_event_output);
2867
2868/* Always built-in helper functions. */
2869const struct bpf_func_proto bpf_tail_call_proto = {
2870	.func		= NULL,
2871	.gpl_only	= false,
2872	.ret_type	= RET_VOID,
2873	.arg1_type	= ARG_PTR_TO_CTX,
2874	.arg2_type	= ARG_CONST_MAP_PTR,
2875	.arg3_type	= ARG_ANYTHING,
2876};
2877
2878/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2879 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2880 * eBPF and implicitly also cBPF can get JITed!
2881 */
2882struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2883{
2884	return prog;
2885}
2886
2887/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2888 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2889 */
2890void __weak bpf_jit_compile(struct bpf_prog *prog)
2891{
2892}
2893
2894bool __weak bpf_helper_changes_pkt_data(void *func)
2895{
2896	return false;
2897}
2898
2899/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2900 * analysis code and wants explicit zero extension inserted by verifier.
2901 * Otherwise, return FALSE.
2902 *
2903 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2904 * you don't override this. JITs that don't want these extra insns can detect
2905 * them using insn_is_zext.
2906 */
2907bool __weak bpf_jit_needs_zext(void)
2908{
2909	return false;
2910}
2911
2912/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2913bool __weak bpf_jit_supports_subprog_tailcalls(void)
2914{
2915	return false;
2916}
2917
2918bool __weak bpf_jit_supports_kfunc_call(void)
2919{
2920	return false;
2921}
2922
2923bool __weak bpf_jit_supports_far_kfunc_call(void)
2924{
2925	return false;
2926}
2927
2928/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2929 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2930 */
2931int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2932			 int len)
2933{
2934	return -EFAULT;
2935}
2936
2937int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2938			      void *addr1, void *addr2)
2939{
2940	return -ENOTSUPP;
2941}
2942
2943void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2944{
2945	return ERR_PTR(-ENOTSUPP);
2946}
2947
2948int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2949{
2950	return -ENOTSUPP;
2951}
2952
2953bool __weak bpf_jit_supports_exceptions(void)
2954{
2955	return false;
2956}
2957
2958void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
2959{
2960}
2961
2962#ifdef CONFIG_BPF_SYSCALL
2963static int __init bpf_global_ma_init(void)
2964{
2965	int ret;
2966
2967	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2968	bpf_global_ma_set = !ret;
2969	return ret;
2970}
2971late_initcall(bpf_global_ma_init);
2972#endif
2973
2974DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2975EXPORT_SYMBOL(bpf_stats_enabled_key);
2976
2977/* All definitions of tracepoints related to BPF. */
2978#define CREATE_TRACE_POINTS
2979#include <linux/bpf_trace.h>
2980
2981EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2982EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/frame.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
 
 
 
 
 
 
 
  35#include <asm/unaligned.h>
  36
  37/* Registers */
  38#define BPF_R0	regs[BPF_REG_0]
  39#define BPF_R1	regs[BPF_REG_1]
  40#define BPF_R2	regs[BPF_REG_2]
  41#define BPF_R3	regs[BPF_REG_3]
  42#define BPF_R4	regs[BPF_REG_4]
  43#define BPF_R5	regs[BPF_REG_5]
  44#define BPF_R6	regs[BPF_REG_6]
  45#define BPF_R7	regs[BPF_REG_7]
  46#define BPF_R8	regs[BPF_REG_8]
  47#define BPF_R9	regs[BPF_REG_9]
  48#define BPF_R10	regs[BPF_REG_10]
  49
  50/* Named registers */
  51#define DST	regs[insn->dst_reg]
  52#define SRC	regs[insn->src_reg]
  53#define FP	regs[BPF_REG_FP]
  54#define AX	regs[BPF_REG_AX]
  55#define ARG1	regs[BPF_REG_ARG1]
  56#define CTX	regs[BPF_REG_CTX]
 
  57#define IMM	insn->imm
  58
 
 
 
  59/* No hurry in this branch
  60 *
  61 * Exported for the bpf jit load helper.
  62 */
  63void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  64{
  65	u8 *ptr = NULL;
  66
  67	if (k >= SKF_NET_OFF)
  68		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  69	else if (k >= SKF_LL_OFF)
 
 
  70		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  71
  72	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  73		return ptr;
  74
  75	return NULL;
  76}
  77
  78struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  79{
  80	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  81	struct bpf_prog_aux *aux;
  82	struct bpf_prog *fp;
  83
  84	size = round_up(size, PAGE_SIZE);
  85	fp = __vmalloc(size, gfp_flags);
  86	if (fp == NULL)
  87		return NULL;
  88
  89	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  90	if (aux == NULL) {
  91		vfree(fp);
  92		return NULL;
  93	}
 
 
 
 
 
 
  94
  95	fp->pages = size / PAGE_SIZE;
  96	fp->aux = aux;
  97	fp->aux->prog = fp;
  98	fp->jit_requested = ebpf_jit_enabled();
 
 
 
 
  99
 100	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 
 
 
 
 
 101
 102	return fp;
 103}
 104
 105struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 106{
 107	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 108	struct bpf_prog *prog;
 109	int cpu;
 110
 111	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 112	if (!prog)
 113		return NULL;
 114
 115	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 116	if (!prog->aux->stats) {
 
 117		kfree(prog->aux);
 118		vfree(prog);
 119		return NULL;
 120	}
 121
 122	for_each_possible_cpu(cpu) {
 123		struct bpf_prog_stats *pstats;
 124
 125		pstats = per_cpu_ptr(prog->aux->stats, cpu);
 126		u64_stats_init(&pstats->syncp);
 127	}
 128	return prog;
 129}
 130EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 131
 132int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 133{
 134	if (!prog->aux->nr_linfo || !prog->jit_requested)
 135		return 0;
 136
 137	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
 138					 sizeof(*prog->aux->jited_linfo),
 139					 GFP_KERNEL | __GFP_NOWARN);
 140	if (!prog->aux->jited_linfo)
 141		return -ENOMEM;
 142
 143	return 0;
 144}
 145
 146void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
 147{
 148	kfree(prog->aux->jited_linfo);
 149	prog->aux->jited_linfo = NULL;
 150}
 
 
 151
 152void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
 153{
 154	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
 155		bpf_prog_free_jited_linfo(prog);
 156}
 157
 158/* The jit engine is responsible to provide an array
 159 * for insn_off to the jited_off mapping (insn_to_jit_off).
 160 *
 161 * The idx to this array is the insn_off.  Hence, the insn_off
 162 * here is relative to the prog itself instead of the main prog.
 163 * This array has one entry for each xlated bpf insn.
 164 *
 165 * jited_off is the byte off to the last byte of the jited insn.
 166 *
 167 * Hence, with
 168 * insn_start:
 169 *      The first bpf insn off of the prog.  The insn off
 170 *      here is relative to the main prog.
 171 *      e.g. if prog is a subprog, insn_start > 0
 172 * linfo_idx:
 173 *      The prog's idx to prog->aux->linfo and jited_linfo
 174 *
 175 * jited_linfo[linfo_idx] = prog->bpf_func
 176 *
 177 * For i > linfo_idx,
 178 *
 179 * jited_linfo[i] = prog->bpf_func +
 180 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 181 */
 182void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 183			       const u32 *insn_to_jit_off)
 184{
 185	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 186	const struct bpf_line_info *linfo;
 187	void **jited_linfo;
 188
 189	if (!prog->aux->jited_linfo)
 190		/* Userspace did not provide linfo */
 191		return;
 192
 193	linfo_idx = prog->aux->linfo_idx;
 194	linfo = &prog->aux->linfo[linfo_idx];
 195	insn_start = linfo[0].insn_off;
 196	insn_end = insn_start + prog->len;
 197
 198	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 199	jited_linfo[0] = prog->bpf_func;
 200
 201	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 202
 203	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 204		/* The verifier ensures that linfo[i].insn_off is
 205		 * strictly increasing
 206		 */
 207		jited_linfo[i] = prog->bpf_func +
 208			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 209}
 210
 211void bpf_prog_free_linfo(struct bpf_prog *prog)
 212{
 213	bpf_prog_free_jited_linfo(prog);
 214	kvfree(prog->aux->linfo);
 215}
 216
 217struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 218				  gfp_t gfp_extra_flags)
 219{
 220	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 221	struct bpf_prog *fp;
 222	u32 pages, delta;
 223	int ret;
 224
 225	size = round_up(size, PAGE_SIZE);
 226	pages = size / PAGE_SIZE;
 227	if (pages <= fp_old->pages)
 228		return fp_old;
 229
 230	delta = pages - fp_old->pages;
 231	ret = __bpf_prog_charge(fp_old->aux->user, delta);
 232	if (ret)
 233		return NULL;
 234
 235	fp = __vmalloc(size, gfp_flags);
 236	if (fp == NULL) {
 237		__bpf_prog_uncharge(fp_old->aux->user, delta);
 238	} else {
 239		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 240		fp->pages = pages;
 241		fp->aux->prog = fp;
 242
 243		/* We keep fp->aux from fp_old around in the new
 244		 * reallocated structure.
 245		 */
 246		fp_old->aux = NULL;
 
 
 247		__bpf_prog_free(fp_old);
 248	}
 249
 250	return fp;
 251}
 252
 253void __bpf_prog_free(struct bpf_prog *fp)
 254{
 255	if (fp->aux) {
 256		free_percpu(fp->aux->stats);
 
 257		kfree(fp->aux->poke_tab);
 258		kfree(fp->aux);
 259	}
 
 
 260	vfree(fp);
 261}
 262
 263int bpf_prog_calc_tag(struct bpf_prog *fp)
 264{
 265	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 266	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 267	u32 digest[SHA1_DIGEST_WORDS];
 268	u32 ws[SHA1_WORKSPACE_WORDS];
 269	u32 i, bsize, psize, blocks;
 270	struct bpf_insn *dst;
 271	bool was_ld_map;
 272	u8 *raw, *todo;
 273	__be32 *result;
 274	__be64 *bits;
 275
 276	raw = vmalloc(raw_size);
 277	if (!raw)
 278		return -ENOMEM;
 279
 280	sha1_init(digest);
 281	memset(ws, 0, sizeof(ws));
 282
 283	/* We need to take out the map fd for the digest calculation
 284	 * since they are unstable from user space side.
 285	 */
 286	dst = (void *)raw;
 287	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 288		dst[i] = fp->insnsi[i];
 289		if (!was_ld_map &&
 290		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 291		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 292		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 293			was_ld_map = true;
 294			dst[i].imm = 0;
 295		} else if (was_ld_map &&
 296			   dst[i].code == 0 &&
 297			   dst[i].dst_reg == 0 &&
 298			   dst[i].src_reg == 0 &&
 299			   dst[i].off == 0) {
 300			was_ld_map = false;
 301			dst[i].imm = 0;
 302		} else {
 303			was_ld_map = false;
 304		}
 305	}
 306
 307	psize = bpf_prog_insn_size(fp);
 308	memset(&raw[psize], 0, raw_size - psize);
 309	raw[psize++] = 0x80;
 310
 311	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 312	blocks = bsize / SHA1_BLOCK_SIZE;
 313	todo   = raw;
 314	if (bsize - psize >= sizeof(__be64)) {
 315		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 316	} else {
 317		bits = (__be64 *)(todo + bsize + bits_offset);
 318		blocks++;
 319	}
 320	*bits = cpu_to_be64((psize - 1) << 3);
 321
 322	while (blocks--) {
 323		sha1_transform(digest, todo, ws);
 324		todo += SHA1_BLOCK_SIZE;
 325	}
 326
 327	result = (__force __be32 *)digest;
 328	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 329		result[i] = cpu_to_be32(digest[i]);
 330	memcpy(fp->tag, result, sizeof(fp->tag));
 331
 332	vfree(raw);
 333	return 0;
 334}
 335
 336static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 337				s32 end_new, s32 curr, const bool probe_pass)
 338{
 339	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 340	s32 delta = end_new - end_old;
 341	s64 imm = insn->imm;
 342
 343	if (curr < pos && curr + imm + 1 >= end_old)
 344		imm += delta;
 345	else if (curr >= end_new && curr + imm + 1 < end_new)
 346		imm -= delta;
 347	if (imm < imm_min || imm > imm_max)
 348		return -ERANGE;
 349	if (!probe_pass)
 350		insn->imm = imm;
 351	return 0;
 352}
 353
 354static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 355				s32 end_new, s32 curr, const bool probe_pass)
 356{
 357	const s32 off_min = S16_MIN, off_max = S16_MAX;
 358	s32 delta = end_new - end_old;
 359	s32 off = insn->off;
 
 
 
 
 
 
 
 
 
 360
 361	if (curr < pos && curr + off + 1 >= end_old)
 362		off += delta;
 363	else if (curr >= end_new && curr + off + 1 < end_new)
 364		off -= delta;
 365	if (off < off_min || off > off_max)
 366		return -ERANGE;
 367	if (!probe_pass)
 368		insn->off = off;
 
 
 
 
 369	return 0;
 370}
 371
 372static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 373			    s32 end_new, const bool probe_pass)
 374{
 375	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 376	struct bpf_insn *insn = prog->insnsi;
 377	int ret = 0;
 378
 379	for (i = 0; i < insn_cnt; i++, insn++) {
 380		u8 code;
 381
 382		/* In the probing pass we still operate on the original,
 383		 * unpatched image in order to check overflows before we
 384		 * do any other adjustments. Therefore skip the patchlet.
 385		 */
 386		if (probe_pass && i == pos) {
 387			i = end_new;
 388			insn = prog->insnsi + end_old;
 389		}
 
 
 
 
 
 
 
 390		code = insn->code;
 391		if ((BPF_CLASS(code) != BPF_JMP &&
 392		     BPF_CLASS(code) != BPF_JMP32) ||
 393		    BPF_OP(code) == BPF_EXIT)
 394			continue;
 395		/* Adjust offset of jmps if we cross patch boundaries. */
 396		if (BPF_OP(code) == BPF_CALL) {
 397			if (insn->src_reg != BPF_PSEUDO_CALL)
 398				continue;
 399			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 400						   end_new, i, probe_pass);
 401		} else {
 402			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 403						   end_new, i, probe_pass);
 404		}
 405		if (ret)
 406			break;
 407	}
 408
 409	return ret;
 410}
 411
 412static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 413{
 414	struct bpf_line_info *linfo;
 415	u32 i, nr_linfo;
 416
 417	nr_linfo = prog->aux->nr_linfo;
 418	if (!nr_linfo || !delta)
 419		return;
 420
 421	linfo = prog->aux->linfo;
 422
 423	for (i = 0; i < nr_linfo; i++)
 424		if (off < linfo[i].insn_off)
 425			break;
 426
 427	/* Push all off < linfo[i].insn_off by delta */
 428	for (; i < nr_linfo; i++)
 429		linfo[i].insn_off += delta;
 430}
 431
 432struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 433				       const struct bpf_insn *patch, u32 len)
 434{
 435	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 436	const u32 cnt_max = S16_MAX;
 437	struct bpf_prog *prog_adj;
 438	int err;
 439
 440	/* Since our patchlet doesn't expand the image, we're done. */
 441	if (insn_delta == 0) {
 442		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 443		return prog;
 444	}
 445
 446	insn_adj_cnt = prog->len + insn_delta;
 447
 448	/* Reject anything that would potentially let the insn->off
 449	 * target overflow when we have excessive program expansions.
 450	 * We need to probe here before we do any reallocation where
 451	 * we afterwards may not fail anymore.
 452	 */
 453	if (insn_adj_cnt > cnt_max &&
 454	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 455		return ERR_PTR(err);
 456
 457	/* Several new instructions need to be inserted. Make room
 458	 * for them. Likely, there's no need for a new allocation as
 459	 * last page could have large enough tailroom.
 460	 */
 461	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 462				    GFP_USER);
 463	if (!prog_adj)
 464		return ERR_PTR(-ENOMEM);
 465
 466	prog_adj->len = insn_adj_cnt;
 467
 468	/* Patching happens in 3 steps:
 469	 *
 470	 * 1) Move over tail of insnsi from next instruction onwards,
 471	 *    so we can patch the single target insn with one or more
 472	 *    new ones (patching is always from 1 to n insns, n > 0).
 473	 * 2) Inject new instructions at the target location.
 474	 * 3) Adjust branch offsets if necessary.
 475	 */
 476	insn_rest = insn_adj_cnt - off - len;
 477
 478	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 479		sizeof(*patch) * insn_rest);
 480	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 481
 482	/* We are guaranteed to not fail at this point, otherwise
 483	 * the ship has sailed to reverse to the original state. An
 484	 * overflow cannot happen at this point.
 485	 */
 486	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 487
 488	bpf_adj_linfo(prog_adj, off, insn_delta);
 489
 490	return prog_adj;
 491}
 492
 493int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 494{
 495	/* Branch offsets can't overflow when program is shrinking, no need
 496	 * to call bpf_adj_branches(..., true) here
 497	 */
 498	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 499		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 500	prog->len -= cnt;
 501
 502	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 503}
 504
 505static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 506{
 507	int i;
 508
 509	for (i = 0; i < fp->aux->func_cnt; i++)
 510		bpf_prog_kallsyms_del(fp->aux->func[i]);
 511}
 512
 513void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 514{
 515	bpf_prog_kallsyms_del_subprogs(fp);
 516	bpf_prog_kallsyms_del(fp);
 517}
 518
 519#ifdef CONFIG_BPF_JIT
 520/* All BPF JIT sysctl knobs here. */
 521int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 522int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 523int bpf_jit_harden   __read_mostly;
 524long bpf_jit_limit   __read_mostly;
 
 525
 526static void
 527bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 528{
 529	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 530	unsigned long addr = (unsigned long)hdr;
 531
 532	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 533
 534	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 535	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
 536}
 537
 538static void
 539bpf_prog_ksym_set_name(struct bpf_prog *prog)
 540{
 541	char *sym = prog->aux->ksym.name;
 542	const char *end = sym + KSYM_NAME_LEN;
 543	const struct btf_type *type;
 544	const char *func_name;
 545
 546	BUILD_BUG_ON(sizeof("bpf_prog_") +
 547		     sizeof(prog->tag) * 2 +
 548		     /* name has been null terminated.
 549		      * We should need +1 for the '_' preceding
 550		      * the name.  However, the null character
 551		      * is double counted between the name and the
 552		      * sizeof("bpf_prog_") above, so we omit
 553		      * the +1 here.
 554		      */
 555		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 556
 557	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 558	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 559
 560	/* prog->aux->name will be ignored if full btf name is available */
 561	if (prog->aux->func_info_cnt) {
 562		type = btf_type_by_id(prog->aux->btf,
 563				      prog->aux->func_info[prog->aux->func_idx].type_id);
 564		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 565		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 566		return;
 567	}
 568
 569	if (prog->aux->name[0])
 570		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 571	else
 572		*sym = 0;
 573}
 574
 575static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 576{
 577	return container_of(n, struct bpf_ksym, tnode)->start;
 578}
 579
 580static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 581					  struct latch_tree_node *b)
 582{
 583	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 584}
 585
 586static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 587{
 588	unsigned long val = (unsigned long)key;
 589	const struct bpf_ksym *ksym;
 590
 591	ksym = container_of(n, struct bpf_ksym, tnode);
 592
 593	if (val < ksym->start)
 594		return -1;
 595	if (val >= ksym->end)
 
 
 
 
 596		return  1;
 597
 598	return 0;
 599}
 600
 601static const struct latch_tree_ops bpf_tree_ops = {
 602	.less	= bpf_tree_less,
 603	.comp	= bpf_tree_comp,
 604};
 605
 606static DEFINE_SPINLOCK(bpf_lock);
 607static LIST_HEAD(bpf_kallsyms);
 608static struct latch_tree_root bpf_tree __cacheline_aligned;
 609
 610void bpf_ksym_add(struct bpf_ksym *ksym)
 611{
 612	spin_lock_bh(&bpf_lock);
 613	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 614	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 615	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 616	spin_unlock_bh(&bpf_lock);
 617}
 618
 619static void __bpf_ksym_del(struct bpf_ksym *ksym)
 620{
 621	if (list_empty(&ksym->lnode))
 622		return;
 623
 624	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 625	list_del_rcu(&ksym->lnode);
 626}
 627
 628void bpf_ksym_del(struct bpf_ksym *ksym)
 629{
 630	spin_lock_bh(&bpf_lock);
 631	__bpf_ksym_del(ksym);
 632	spin_unlock_bh(&bpf_lock);
 633}
 634
 635static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 636{
 637	return fp->jited && !bpf_prog_was_classic(fp);
 638}
 639
 640static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 641{
 642	return list_empty(&fp->aux->ksym.lnode) ||
 643	       fp->aux->ksym.lnode.prev == LIST_POISON2;
 644}
 645
 646void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 647{
 648	if (!bpf_prog_kallsyms_candidate(fp) ||
 649	    !bpf_capable())
 650		return;
 651
 652	bpf_prog_ksym_set_addr(fp);
 653	bpf_prog_ksym_set_name(fp);
 654	fp->aux->ksym.prog = true;
 655
 656	bpf_ksym_add(&fp->aux->ksym);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657}
 658
 659void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 660{
 661	if (!bpf_prog_kallsyms_candidate(fp))
 662		return;
 663
 664	bpf_ksym_del(&fp->aux->ksym);
 
 
 
 
 
 665}
 666
 667static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 668{
 669	struct latch_tree_node *n;
 670
 671	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 672	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 673}
 674
 675const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 676				 unsigned long *off, char *sym)
 677{
 678	struct bpf_ksym *ksym;
 679	char *ret = NULL;
 680
 681	rcu_read_lock();
 682	ksym = bpf_ksym_find(addr);
 683	if (ksym) {
 684		unsigned long symbol_start = ksym->start;
 685		unsigned long symbol_end = ksym->end;
 686
 687		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 688
 689		ret = sym;
 690		if (size)
 691			*size = symbol_end - symbol_start;
 692		if (off)
 693			*off  = addr - symbol_start;
 694	}
 695	rcu_read_unlock();
 696
 697	return ret;
 698}
 699
 700bool is_bpf_text_address(unsigned long addr)
 701{
 702	bool ret;
 703
 704	rcu_read_lock();
 705	ret = bpf_ksym_find(addr) != NULL;
 706	rcu_read_unlock();
 707
 708	return ret;
 709}
 710
 711static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 712{
 713	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 714
 715	return ksym && ksym->prog ?
 716	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 717	       NULL;
 718}
 719
 720const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 721{
 722	const struct exception_table_entry *e = NULL;
 723	struct bpf_prog *prog;
 724
 725	rcu_read_lock();
 726	prog = bpf_prog_ksym_find(addr);
 727	if (!prog)
 728		goto out;
 729	if (!prog->aux->num_exentries)
 730		goto out;
 731
 732	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 733out:
 734	rcu_read_unlock();
 735	return e;
 736}
 737
 738int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 739		    char *sym)
 740{
 741	struct bpf_ksym *ksym;
 742	unsigned int it = 0;
 743	int ret = -ERANGE;
 744
 745	if (!bpf_jit_kallsyms_enabled())
 746		return ret;
 747
 748	rcu_read_lock();
 749	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 750		if (it++ != symnum)
 751			continue;
 752
 753		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 754
 755		*value = ksym->start;
 756		*type  = BPF_SYM_ELF_TYPE;
 757
 758		ret = 0;
 759		break;
 760	}
 761	rcu_read_unlock();
 762
 763	return ret;
 764}
 765
 766int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 767				struct bpf_jit_poke_descriptor *poke)
 768{
 769	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 770	static const u32 poke_tab_max = 1024;
 771	u32 slot = prog->aux->size_poke_tab;
 772	u32 size = slot + 1;
 773
 774	if (size > poke_tab_max)
 775		return -ENOSPC;
 776	if (poke->ip || poke->ip_stable || poke->adj_off)
 
 777		return -EINVAL;
 778
 779	switch (poke->reason) {
 780	case BPF_POKE_REASON_TAIL_CALL:
 781		if (!poke->tail_call.map)
 782			return -EINVAL;
 783		break;
 784	default:
 785		return -EINVAL;
 786	}
 787
 788	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
 789	if (!tab)
 790		return -ENOMEM;
 791
 792	memcpy(&tab[slot], poke, sizeof(*poke));
 793	prog->aux->size_poke_tab = size;
 794	prog->aux->poke_tab = tab;
 795
 796	return slot;
 797}
 798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799static atomic_long_t bpf_jit_current;
 800
 801/* Can be overridden by an arch's JIT compiler if it has a custom,
 802 * dedicated BPF backend memory area, or if neither of the two
 803 * below apply.
 804 */
 805u64 __weak bpf_jit_alloc_exec_limit(void)
 806{
 807#if defined(MODULES_VADDR)
 808	return MODULES_END - MODULES_VADDR;
 809#else
 810	return VMALLOC_END - VMALLOC_START;
 811#endif
 812}
 813
 814static int __init bpf_jit_charge_init(void)
 815{
 816	/* Only used as heuristic here to derive limit. */
 817	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
 
 818					    PAGE_SIZE), LONG_MAX);
 819	return 0;
 820}
 821pure_initcall(bpf_jit_charge_init);
 822
 823static int bpf_jit_charge_modmem(u32 pages)
 824{
 825	if (atomic_long_add_return(pages, &bpf_jit_current) >
 826	    (bpf_jit_limit >> PAGE_SHIFT)) {
 827		if (!capable(CAP_SYS_ADMIN)) {
 828			atomic_long_sub(pages, &bpf_jit_current);
 829			return -EPERM;
 830		}
 831	}
 832
 833	return 0;
 834}
 835
 836static void bpf_jit_uncharge_modmem(u32 pages)
 837{
 838	atomic_long_sub(pages, &bpf_jit_current);
 839}
 840
 841void *__weak bpf_jit_alloc_exec(unsigned long size)
 842{
 843	return module_alloc(size);
 844}
 845
 846void __weak bpf_jit_free_exec(void *addr)
 847{
 848	module_memfree(addr);
 849}
 850
 851struct bpf_binary_header *
 852bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 853		     unsigned int alignment,
 854		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 855{
 856	struct bpf_binary_header *hdr;
 857	u32 size, hole, start, pages;
 858
 859	WARN_ON_ONCE(!is_power_of_2(alignment) ||
 860		     alignment > BPF_IMAGE_ALIGNMENT);
 861
 862	/* Most of BPF filters are really small, but if some of them
 863	 * fill a page, allow at least 128 extra bytes to insert a
 864	 * random section of illegal instructions.
 865	 */
 866	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 867	pages = size / PAGE_SIZE;
 868
 869	if (bpf_jit_charge_modmem(pages))
 870		return NULL;
 871	hdr = bpf_jit_alloc_exec(size);
 872	if (!hdr) {
 873		bpf_jit_uncharge_modmem(pages);
 874		return NULL;
 875	}
 876
 877	/* Fill space with illegal/arch-dep instructions. */
 878	bpf_fill_ill_insns(hdr, size);
 879
 880	hdr->pages = pages;
 881	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 882		     PAGE_SIZE - sizeof(*hdr));
 883	start = (get_random_int() % hole) & ~(alignment - 1);
 884
 885	/* Leave a random number of instructions before BPF code. */
 886	*image_ptr = &hdr->image[start];
 887
 888	return hdr;
 889}
 890
 891void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 892{
 893	u32 pages = hdr->pages;
 894
 895	bpf_jit_free_exec(hdr);
 896	bpf_jit_uncharge_modmem(pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897}
 898
 899/* This symbol is only overridden by archs that have different
 900 * requirements than the usual eBPF JITs, f.e. when they only
 901 * implement cBPF JIT, do not set images read-only, etc.
 902 */
 903void __weak bpf_jit_free(struct bpf_prog *fp)
 904{
 905	if (fp->jited) {
 906		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 907
 908		bpf_jit_binary_free(hdr);
 909
 910		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 911	}
 912
 913	bpf_prog_unlock_free(fp);
 914}
 915
 916int bpf_jit_get_func_addr(const struct bpf_prog *prog,
 917			  const struct bpf_insn *insn, bool extra_pass,
 918			  u64 *func_addr, bool *func_addr_fixed)
 919{
 920	s16 off = insn->off;
 921	s32 imm = insn->imm;
 922	u8 *addr;
 
 923
 924	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
 925	if (!*func_addr_fixed) {
 926		/* Place-holder address till the last pass has collected
 927		 * all addresses for JITed subprograms in which case we
 928		 * can pick them up from prog->aux.
 929		 */
 930		if (!extra_pass)
 931			addr = NULL;
 932		else if (prog->aux->func &&
 933			 off >= 0 && off < prog->aux->func_cnt)
 934			addr = (u8 *)prog->aux->func[off]->bpf_func;
 935		else
 936			return -EINVAL;
 
 
 
 
 
 937	} else {
 938		/* Address of a BPF helper call. Since part of the core
 939		 * kernel, it's always at a fixed location. __bpf_call_base
 940		 * and the helper with imm relative to it are both in core
 941		 * kernel.
 942		 */
 943		addr = (u8 *)__bpf_call_base + imm;
 944	}
 945
 946	*func_addr = (unsigned long)addr;
 947	return 0;
 948}
 949
 950static int bpf_jit_blind_insn(const struct bpf_insn *from,
 951			      const struct bpf_insn *aux,
 952			      struct bpf_insn *to_buff,
 953			      bool emit_zext)
 954{
 955	struct bpf_insn *to = to_buff;
 956	u32 imm_rnd = get_random_int();
 957	s16 off;
 958
 959	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 960	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 961
 962	/* Constraints on AX register:
 963	 *
 964	 * AX register is inaccessible from user space. It is mapped in
 965	 * all JITs, and used here for constant blinding rewrites. It is
 966	 * typically "stateless" meaning its contents are only valid within
 967	 * the executed instruction, but not across several instructions.
 968	 * There are a few exceptions however which are further detailed
 969	 * below.
 970	 *
 971	 * Constant blinding is only used by JITs, not in the interpreter.
 972	 * The interpreter uses AX in some occasions as a local temporary
 973	 * register e.g. in DIV or MOD instructions.
 974	 *
 975	 * In restricted circumstances, the verifier can also use the AX
 976	 * register for rewrites as long as they do not interfere with
 977	 * the above cases!
 978	 */
 979	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
 980		goto out;
 981
 982	if (from->imm == 0 &&
 983	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 984	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 985		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 986		goto out;
 987	}
 988
 989	switch (from->code) {
 990	case BPF_ALU | BPF_ADD | BPF_K:
 991	case BPF_ALU | BPF_SUB | BPF_K:
 992	case BPF_ALU | BPF_AND | BPF_K:
 993	case BPF_ALU | BPF_OR  | BPF_K:
 994	case BPF_ALU | BPF_XOR | BPF_K:
 995	case BPF_ALU | BPF_MUL | BPF_K:
 996	case BPF_ALU | BPF_MOV | BPF_K:
 997	case BPF_ALU | BPF_DIV | BPF_K:
 998	case BPF_ALU | BPF_MOD | BPF_K:
 999		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1000		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1001		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1002		break;
1003
1004	case BPF_ALU64 | BPF_ADD | BPF_K:
1005	case BPF_ALU64 | BPF_SUB | BPF_K:
1006	case BPF_ALU64 | BPF_AND | BPF_K:
1007	case BPF_ALU64 | BPF_OR  | BPF_K:
1008	case BPF_ALU64 | BPF_XOR | BPF_K:
1009	case BPF_ALU64 | BPF_MUL | BPF_K:
1010	case BPF_ALU64 | BPF_MOV | BPF_K:
1011	case BPF_ALU64 | BPF_DIV | BPF_K:
1012	case BPF_ALU64 | BPF_MOD | BPF_K:
1013		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1014		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1015		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1016		break;
1017
1018	case BPF_JMP | BPF_JEQ  | BPF_K:
1019	case BPF_JMP | BPF_JNE  | BPF_K:
1020	case BPF_JMP | BPF_JGT  | BPF_K:
1021	case BPF_JMP | BPF_JLT  | BPF_K:
1022	case BPF_JMP | BPF_JGE  | BPF_K:
1023	case BPF_JMP | BPF_JLE  | BPF_K:
1024	case BPF_JMP | BPF_JSGT | BPF_K:
1025	case BPF_JMP | BPF_JSLT | BPF_K:
1026	case BPF_JMP | BPF_JSGE | BPF_K:
1027	case BPF_JMP | BPF_JSLE | BPF_K:
1028	case BPF_JMP | BPF_JSET | BPF_K:
1029		/* Accommodate for extra offset in case of a backjump. */
1030		off = from->off;
1031		if (off < 0)
1032			off -= 2;
1033		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1034		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1035		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1036		break;
1037
1038	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1039	case BPF_JMP32 | BPF_JNE  | BPF_K:
1040	case BPF_JMP32 | BPF_JGT  | BPF_K:
1041	case BPF_JMP32 | BPF_JLT  | BPF_K:
1042	case BPF_JMP32 | BPF_JGE  | BPF_K:
1043	case BPF_JMP32 | BPF_JLE  | BPF_K:
1044	case BPF_JMP32 | BPF_JSGT | BPF_K:
1045	case BPF_JMP32 | BPF_JSLT | BPF_K:
1046	case BPF_JMP32 | BPF_JSGE | BPF_K:
1047	case BPF_JMP32 | BPF_JSLE | BPF_K:
1048	case BPF_JMP32 | BPF_JSET | BPF_K:
1049		/* Accommodate for extra offset in case of a backjump. */
1050		off = from->off;
1051		if (off < 0)
1052			off -= 2;
1053		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1054		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1055		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1056				      off);
1057		break;
1058
1059	case BPF_LD | BPF_IMM | BPF_DW:
1060		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1061		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1062		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1063		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1064		break;
1065	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1066		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1067		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1068		if (emit_zext)
1069			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1070		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1071		break;
1072
1073	case BPF_ST | BPF_MEM | BPF_DW:
1074	case BPF_ST | BPF_MEM | BPF_W:
1075	case BPF_ST | BPF_MEM | BPF_H:
1076	case BPF_ST | BPF_MEM | BPF_B:
1077		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1078		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1079		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1080		break;
1081	}
1082out:
1083	return to - to_buff;
1084}
1085
1086static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1087					      gfp_t gfp_extra_flags)
1088{
1089	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1090	struct bpf_prog *fp;
1091
1092	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1093	if (fp != NULL) {
1094		/* aux->prog still points to the fp_other one, so
1095		 * when promoting the clone to the real program,
1096		 * this still needs to be adapted.
1097		 */
1098		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1099	}
1100
1101	return fp;
1102}
1103
1104static void bpf_prog_clone_free(struct bpf_prog *fp)
1105{
1106	/* aux was stolen by the other clone, so we cannot free
1107	 * it from this path! It will be freed eventually by the
1108	 * other program on release.
1109	 *
1110	 * At this point, we don't need a deferred release since
1111	 * clone is guaranteed to not be locked.
1112	 */
1113	fp->aux = NULL;
 
 
1114	__bpf_prog_free(fp);
1115}
1116
1117void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1118{
1119	/* We have to repoint aux->prog to self, as we don't
1120	 * know whether fp here is the clone or the original.
1121	 */
1122	fp->aux->prog = fp;
1123	bpf_prog_clone_free(fp_other);
1124}
1125
1126struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1127{
1128	struct bpf_insn insn_buff[16], aux[2];
1129	struct bpf_prog *clone, *tmp;
1130	int insn_delta, insn_cnt;
1131	struct bpf_insn *insn;
1132	int i, rewritten;
1133
1134	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1135		return prog;
1136
1137	clone = bpf_prog_clone_create(prog, GFP_USER);
1138	if (!clone)
1139		return ERR_PTR(-ENOMEM);
1140
1141	insn_cnt = clone->len;
1142	insn = clone->insnsi;
1143
1144	for (i = 0; i < insn_cnt; i++, insn++) {
 
 
 
 
 
 
 
 
 
 
1145		/* We temporarily need to hold the original ld64 insn
1146		 * so that we can still access the first part in the
1147		 * second blinding run.
1148		 */
1149		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1150		    insn[1].code == 0)
1151			memcpy(aux, insn, sizeof(aux));
1152
1153		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1154						clone->aux->verifier_zext);
1155		if (!rewritten)
1156			continue;
1157
1158		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1159		if (IS_ERR(tmp)) {
1160			/* Patching may have repointed aux->prog during
1161			 * realloc from the original one, so we need to
1162			 * fix it up here on error.
1163			 */
1164			bpf_jit_prog_release_other(prog, clone);
1165			return tmp;
1166		}
1167
1168		clone = tmp;
1169		insn_delta = rewritten - 1;
1170
1171		/* Walk new program and skip insns we just inserted. */
1172		insn = clone->insnsi + i + insn_delta;
1173		insn_cnt += insn_delta;
1174		i        += insn_delta;
1175	}
1176
1177	clone->blinded = 1;
1178	return clone;
1179}
1180#endif /* CONFIG_BPF_JIT */
1181
1182/* Base function for offset calculation. Needs to go into .text section,
1183 * therefore keeping it non-static as well; will also be used by JITs
1184 * anyway later on, so do not let the compiler omit it. This also needs
1185 * to go into kallsyms for correlation from e.g. bpftool, so naming
1186 * must not change.
1187 */
1188noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1189{
1190	return 0;
1191}
1192EXPORT_SYMBOL_GPL(__bpf_call_base);
1193
1194/* All UAPI available opcodes. */
1195#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1196	/* 32 bit ALU operations. */		\
1197	/*   Register based. */			\
1198	INSN_3(ALU, ADD,  X),			\
1199	INSN_3(ALU, SUB,  X),			\
1200	INSN_3(ALU, AND,  X),			\
1201	INSN_3(ALU, OR,   X),			\
1202	INSN_3(ALU, LSH,  X),			\
1203	INSN_3(ALU, RSH,  X),			\
1204	INSN_3(ALU, XOR,  X),			\
1205	INSN_3(ALU, MUL,  X),			\
1206	INSN_3(ALU, MOV,  X),			\
1207	INSN_3(ALU, ARSH, X),			\
1208	INSN_3(ALU, DIV,  X),			\
1209	INSN_3(ALU, MOD,  X),			\
1210	INSN_2(ALU, NEG),			\
1211	INSN_3(ALU, END, TO_BE),		\
1212	INSN_3(ALU, END, TO_LE),		\
1213	/*   Immediate based. */		\
1214	INSN_3(ALU, ADD,  K),			\
1215	INSN_3(ALU, SUB,  K),			\
1216	INSN_3(ALU, AND,  K),			\
1217	INSN_3(ALU, OR,   K),			\
1218	INSN_3(ALU, LSH,  K),			\
1219	INSN_3(ALU, RSH,  K),			\
1220	INSN_3(ALU, XOR,  K),			\
1221	INSN_3(ALU, MUL,  K),			\
1222	INSN_3(ALU, MOV,  K),			\
1223	INSN_3(ALU, ARSH, K),			\
1224	INSN_3(ALU, DIV,  K),			\
1225	INSN_3(ALU, MOD,  K),			\
1226	/* 64 bit ALU operations. */		\
1227	/*   Register based. */			\
1228	INSN_3(ALU64, ADD,  X),			\
1229	INSN_3(ALU64, SUB,  X),			\
1230	INSN_3(ALU64, AND,  X),			\
1231	INSN_3(ALU64, OR,   X),			\
1232	INSN_3(ALU64, LSH,  X),			\
1233	INSN_3(ALU64, RSH,  X),			\
1234	INSN_3(ALU64, XOR,  X),			\
1235	INSN_3(ALU64, MUL,  X),			\
1236	INSN_3(ALU64, MOV,  X),			\
1237	INSN_3(ALU64, ARSH, X),			\
1238	INSN_3(ALU64, DIV,  X),			\
1239	INSN_3(ALU64, MOD,  X),			\
1240	INSN_2(ALU64, NEG),			\
 
1241	/*   Immediate based. */		\
1242	INSN_3(ALU64, ADD,  K),			\
1243	INSN_3(ALU64, SUB,  K),			\
1244	INSN_3(ALU64, AND,  K),			\
1245	INSN_3(ALU64, OR,   K),			\
1246	INSN_3(ALU64, LSH,  K),			\
1247	INSN_3(ALU64, RSH,  K),			\
1248	INSN_3(ALU64, XOR,  K),			\
1249	INSN_3(ALU64, MUL,  K),			\
1250	INSN_3(ALU64, MOV,  K),			\
1251	INSN_3(ALU64, ARSH, K),			\
1252	INSN_3(ALU64, DIV,  K),			\
1253	INSN_3(ALU64, MOD,  K),			\
1254	/* Call instruction. */			\
1255	INSN_2(JMP, CALL),			\
1256	/* Exit instruction. */			\
1257	INSN_2(JMP, EXIT),			\
1258	/* 32-bit Jump instructions. */		\
1259	/*   Register based. */			\
1260	INSN_3(JMP32, JEQ,  X),			\
1261	INSN_3(JMP32, JNE,  X),			\
1262	INSN_3(JMP32, JGT,  X),			\
1263	INSN_3(JMP32, JLT,  X),			\
1264	INSN_3(JMP32, JGE,  X),			\
1265	INSN_3(JMP32, JLE,  X),			\
1266	INSN_3(JMP32, JSGT, X),			\
1267	INSN_3(JMP32, JSLT, X),			\
1268	INSN_3(JMP32, JSGE, X),			\
1269	INSN_3(JMP32, JSLE, X),			\
1270	INSN_3(JMP32, JSET, X),			\
1271	/*   Immediate based. */		\
1272	INSN_3(JMP32, JEQ,  K),			\
1273	INSN_3(JMP32, JNE,  K),			\
1274	INSN_3(JMP32, JGT,  K),			\
1275	INSN_3(JMP32, JLT,  K),			\
1276	INSN_3(JMP32, JGE,  K),			\
1277	INSN_3(JMP32, JLE,  K),			\
1278	INSN_3(JMP32, JSGT, K),			\
1279	INSN_3(JMP32, JSLT, K),			\
1280	INSN_3(JMP32, JSGE, K),			\
1281	INSN_3(JMP32, JSLE, K),			\
1282	INSN_3(JMP32, JSET, K),			\
1283	/* Jump instructions. */		\
1284	/*   Register based. */			\
1285	INSN_3(JMP, JEQ,  X),			\
1286	INSN_3(JMP, JNE,  X),			\
1287	INSN_3(JMP, JGT,  X),			\
1288	INSN_3(JMP, JLT,  X),			\
1289	INSN_3(JMP, JGE,  X),			\
1290	INSN_3(JMP, JLE,  X),			\
1291	INSN_3(JMP, JSGT, X),			\
1292	INSN_3(JMP, JSLT, X),			\
1293	INSN_3(JMP, JSGE, X),			\
1294	INSN_3(JMP, JSLE, X),			\
1295	INSN_3(JMP, JSET, X),			\
1296	/*   Immediate based. */		\
1297	INSN_3(JMP, JEQ,  K),			\
1298	INSN_3(JMP, JNE,  K),			\
1299	INSN_3(JMP, JGT,  K),			\
1300	INSN_3(JMP, JLT,  K),			\
1301	INSN_3(JMP, JGE,  K),			\
1302	INSN_3(JMP, JLE,  K),			\
1303	INSN_3(JMP, JSGT, K),			\
1304	INSN_3(JMP, JSLT, K),			\
1305	INSN_3(JMP, JSGE, K),			\
1306	INSN_3(JMP, JSLE, K),			\
1307	INSN_3(JMP, JSET, K),			\
1308	INSN_2(JMP, JA),			\
 
1309	/* Store instructions. */		\
1310	/*   Register based. */			\
1311	INSN_3(STX, MEM,  B),			\
1312	INSN_3(STX, MEM,  H),			\
1313	INSN_3(STX, MEM,  W),			\
1314	INSN_3(STX, MEM,  DW),			\
1315	INSN_3(STX, XADD, W),			\
1316	INSN_3(STX, XADD, DW),			\
1317	/*   Immediate based. */		\
1318	INSN_3(ST, MEM, B),			\
1319	INSN_3(ST, MEM, H),			\
1320	INSN_3(ST, MEM, W),			\
1321	INSN_3(ST, MEM, DW),			\
1322	/* Load instructions. */		\
1323	/*   Register based. */			\
1324	INSN_3(LDX, MEM, B),			\
1325	INSN_3(LDX, MEM, H),			\
1326	INSN_3(LDX, MEM, W),			\
1327	INSN_3(LDX, MEM, DW),			\
 
 
 
1328	/*   Immediate based. */		\
1329	INSN_3(LD, IMM, DW)
1330
1331bool bpf_opcode_in_insntable(u8 code)
1332{
1333#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1334#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1335	static const bool public_insntable[256] = {
1336		[0 ... 255] = false,
1337		/* Now overwrite non-defaults ... */
1338		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1339		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1340		[BPF_LD | BPF_ABS | BPF_B] = true,
1341		[BPF_LD | BPF_ABS | BPF_H] = true,
1342		[BPF_LD | BPF_ABS | BPF_W] = true,
1343		[BPF_LD | BPF_IND | BPF_B] = true,
1344		[BPF_LD | BPF_IND | BPF_H] = true,
1345		[BPF_LD | BPF_IND | BPF_W] = true,
1346	};
1347#undef BPF_INSN_3_TBL
1348#undef BPF_INSN_2_TBL
1349	return public_insntable[code];
1350}
1351
1352#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1353u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1354{
1355	memset(dst, 0, size);
1356	return -EFAULT;
1357}
1358
1359/**
1360 *	__bpf_prog_run - run eBPF program on a given context
1361 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1362 *	@insn: is the array of eBPF instructions
1363 *	@stack: is the eBPF storage stack
1364 *
1365 * Decode and execute eBPF instructions.
 
 
1366 */
1367static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1368{
1369#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1370#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1371	static const void * const jumptable[256] __annotate_jump_table = {
1372		[0 ... 255] = &&default_label,
1373		/* Now overwrite non-defaults ... */
1374		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1375		/* Non-UAPI available opcodes. */
1376		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1377		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
 
1378		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1379		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1380		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1381		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
 
 
 
1382	};
1383#undef BPF_INSN_3_LBL
1384#undef BPF_INSN_2_LBL
1385	u32 tail_call_cnt = 0;
1386
1387#define CONT	 ({ insn++; goto select_insn; })
1388#define CONT_JMP ({ insn++; goto select_insn; })
1389
1390select_insn:
1391	goto *jumptable[insn->code];
1392
1393	/* ALU */
1394#define ALU(OPCODE, OP)			\
1395	ALU64_##OPCODE##_X:		\
1396		DST = DST OP SRC;	\
1397		CONT;			\
1398	ALU_##OPCODE##_X:		\
1399		DST = (u32) DST OP (u32) SRC;	\
1400		CONT;			\
1401	ALU64_##OPCODE##_K:		\
1402		DST = DST OP IMM;		\
1403		CONT;			\
1404	ALU_##OPCODE##_K:		\
1405		DST = (u32) DST OP (u32) IMM;	\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406		CONT;
1407
1408	ALU(ADD,  +)
1409	ALU(SUB,  -)
1410	ALU(AND,  &)
1411	ALU(OR,   |)
1412	ALU(LSH, <<)
1413	ALU(RSH, >>)
1414	ALU(XOR,  ^)
1415	ALU(MUL,  *)
 
 
 
1416#undef ALU
1417	ALU_NEG:
1418		DST = (u32) -DST;
1419		CONT;
1420	ALU64_NEG:
1421		DST = -DST;
1422		CONT;
1423	ALU_MOV_X:
1424		DST = (u32) SRC;
 
 
 
 
 
 
 
 
 
 
1425		CONT;
1426	ALU_MOV_K:
1427		DST = (u32) IMM;
1428		CONT;
1429	ALU64_MOV_X:
1430		DST = SRC;
 
 
 
 
 
 
 
 
 
 
 
 
 
1431		CONT;
1432	ALU64_MOV_K:
1433		DST = IMM;
1434		CONT;
1435	LD_IMM_DW:
1436		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1437		insn++;
1438		CONT;
1439	ALU_ARSH_X:
1440		DST = (u64) (u32) (((s32) DST) >> SRC);
1441		CONT;
1442	ALU_ARSH_K:
1443		DST = (u64) (u32) (((s32) DST) >> IMM);
1444		CONT;
1445	ALU64_ARSH_X:
1446		(*(s64 *) &DST) >>= SRC;
1447		CONT;
1448	ALU64_ARSH_K:
1449		(*(s64 *) &DST) >>= IMM;
1450		CONT;
1451	ALU64_MOD_X:
1452		div64_u64_rem(DST, SRC, &AX);
1453		DST = AX;
 
 
 
 
 
 
 
 
1454		CONT;
1455	ALU_MOD_X:
1456		AX = (u32) DST;
1457		DST = do_div(AX, (u32) SRC);
 
 
 
 
 
 
 
 
 
 
 
 
1458		CONT;
1459	ALU64_MOD_K:
1460		div64_u64_rem(DST, IMM, &AX);
1461		DST = AX;
 
 
 
 
 
 
 
 
1462		CONT;
1463	ALU_MOD_K:
1464		AX = (u32) DST;
1465		DST = do_div(AX, (u32) IMM);
 
 
 
 
 
 
 
 
 
 
 
 
1466		CONT;
1467	ALU64_DIV_X:
1468		DST = div64_u64(DST, SRC);
 
 
 
 
 
 
 
1469		CONT;
1470	ALU_DIV_X:
1471		AX = (u32) DST;
1472		do_div(AX, (u32) SRC);
1473		DST = (u32) AX;
 
 
 
 
 
 
 
 
 
 
 
 
1474		CONT;
1475	ALU64_DIV_K:
1476		DST = div64_u64(DST, IMM);
 
 
 
 
 
 
 
1477		CONT;
1478	ALU_DIV_K:
1479		AX = (u32) DST;
1480		do_div(AX, (u32) IMM);
1481		DST = (u32) AX;
 
 
 
 
 
 
 
 
 
 
 
 
1482		CONT;
1483	ALU_END_TO_BE:
1484		switch (IMM) {
1485		case 16:
1486			DST = (__force u16) cpu_to_be16(DST);
1487			break;
1488		case 32:
1489			DST = (__force u32) cpu_to_be32(DST);
1490			break;
1491		case 64:
1492			DST = (__force u64) cpu_to_be64(DST);
1493			break;
1494		}
1495		CONT;
1496	ALU_END_TO_LE:
1497		switch (IMM) {
1498		case 16:
1499			DST = (__force u16) cpu_to_le16(DST);
1500			break;
1501		case 32:
1502			DST = (__force u32) cpu_to_le32(DST);
1503			break;
1504		case 64:
1505			DST = (__force u64) cpu_to_le64(DST);
1506			break;
1507		}
1508		CONT;
 
 
 
 
 
 
 
 
 
 
 
 
 
1509
1510	/* CALL */
1511	JMP_CALL:
1512		/* Function call scratches BPF_R1-BPF_R5 registers,
1513		 * preserves BPF_R6-BPF_R9, and stores return value
1514		 * into BPF_R0.
1515		 */
1516		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1517						       BPF_R4, BPF_R5);
1518		CONT;
1519
1520	JMP_CALL_ARGS:
1521		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1522							    BPF_R3, BPF_R4,
1523							    BPF_R5,
1524							    insn + insn->off + 1);
1525		CONT;
1526
1527	JMP_TAIL_CALL: {
1528		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1529		struct bpf_array *array = container_of(map, struct bpf_array, map);
1530		struct bpf_prog *prog;
1531		u32 index = BPF_R3;
1532
1533		if (unlikely(index >= array->map.max_entries))
1534			goto out;
1535		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
 
1536			goto out;
1537
1538		tail_call_cnt++;
1539
1540		prog = READ_ONCE(array->ptrs[index]);
1541		if (!prog)
1542			goto out;
1543
1544		/* ARG1 at this point is guaranteed to point to CTX from
1545		 * the verifier side due to the fact that the tail call is
1546		 * handled like a helper, that is, bpf_tail_call_proto,
1547		 * where arg1_type is ARG_PTR_TO_CTX.
1548		 */
1549		insn = prog->insnsi;
1550		goto select_insn;
1551out:
1552		CONT;
1553	}
1554	JMP_JA:
1555		insn += insn->off;
1556		CONT;
 
 
 
1557	JMP_EXIT:
1558		return BPF_R0;
1559	/* JMP */
1560#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1561	JMP_##OPCODE##_X:					\
1562		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1563			insn += insn->off;			\
1564			CONT_JMP;				\
1565		}						\
1566		CONT;						\
1567	JMP32_##OPCODE##_X:					\
1568		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1569			insn += insn->off;			\
1570			CONT_JMP;				\
1571		}						\
1572		CONT;						\
1573	JMP_##OPCODE##_K:					\
1574		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1575			insn += insn->off;			\
1576			CONT_JMP;				\
1577		}						\
1578		CONT;						\
1579	JMP32_##OPCODE##_K:					\
1580		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1581			insn += insn->off;			\
1582			CONT_JMP;				\
1583		}						\
1584		CONT;
1585	COND_JMP(u, JEQ, ==)
1586	COND_JMP(u, JNE, !=)
1587	COND_JMP(u, JGT, >)
1588	COND_JMP(u, JLT, <)
1589	COND_JMP(u, JGE, >=)
1590	COND_JMP(u, JLE, <=)
1591	COND_JMP(u, JSET, &)
1592	COND_JMP(s, JSGT, >)
1593	COND_JMP(s, JSLT, <)
1594	COND_JMP(s, JSGE, >=)
1595	COND_JMP(s, JSLE, <=)
1596#undef COND_JMP
1597	/* STX and ST and LDX*/
 
 
 
 
 
 
 
 
 
 
 
 
1598#define LDST(SIZEOP, SIZE)						\
1599	STX_MEM_##SIZEOP:						\
1600		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1601		CONT;							\
1602	ST_MEM_##SIZEOP:						\
1603		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1604		CONT;							\
1605	LDX_MEM_##SIZEOP:						\
1606		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
 
 
 
 
 
1607		CONT;
1608
1609	LDST(B,   u8)
1610	LDST(H,  u16)
1611	LDST(W,  u32)
1612	LDST(DW, u64)
1613#undef LDST
1614#define LDX_PROBE(SIZEOP, SIZE)							\
1615	LDX_PROBE_MEM_##SIZEOP:							\
1616		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1617		CONT;
1618	LDX_PROBE(B,  1)
1619	LDX_PROBE(H,  2)
1620	LDX_PROBE(W,  4)
1621	LDX_PROBE(DW, 8)
1622#undef LDX_PROBE
1623
1624	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1625		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1626			   (DST + insn->off));
1627		CONT;
1628	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1629		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1630			     (DST + insn->off));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631		CONT;
1632
1633	default_label:
1634		/* If we ever reach this, we have a bug somewhere. Die hard here
1635		 * instead of just returning 0; we could be somewhere in a subprog,
1636		 * so execution could continue otherwise which we do /not/ want.
1637		 *
1638		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1639		 */
1640		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
 
1641		BUG_ON(1);
1642		return 0;
1643}
1644
1645#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1646#define DEFINE_BPF_PROG_RUN(stack_size) \
1647static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1648{ \
1649	u64 stack[stack_size / sizeof(u64)]; \
1650	u64 regs[MAX_BPF_EXT_REG]; \
1651\
1652	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1653	ARG1 = (u64) (unsigned long) ctx; \
1654	return ___bpf_prog_run(regs, insn, stack); \
1655}
1656
1657#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1658#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1659static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1660				      const struct bpf_insn *insn) \
1661{ \
1662	u64 stack[stack_size / sizeof(u64)]; \
1663	u64 regs[MAX_BPF_EXT_REG]; \
1664\
1665	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1666	BPF_R1 = r1; \
1667	BPF_R2 = r2; \
1668	BPF_R3 = r3; \
1669	BPF_R4 = r4; \
1670	BPF_R5 = r5; \
1671	return ___bpf_prog_run(regs, insn, stack); \
1672}
1673
1674#define EVAL1(FN, X) FN(X)
1675#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1676#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1677#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1678#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1679#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1680
1681EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1682EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1683EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1684
1685EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1686EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1687EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1688
1689#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1690
1691static unsigned int (*interpreters[])(const void *ctx,
1692				      const struct bpf_insn *insn) = {
1693EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1694EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1695EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1696};
1697#undef PROG_NAME_LIST
1698#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1699static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1700				  const struct bpf_insn *insn) = {
 
1701EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1702EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1703EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1704};
1705#undef PROG_NAME_LIST
1706
 
1707void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1708{
1709	stack_depth = max_t(u32, stack_depth, 1);
1710	insn->off = (s16) insn->imm;
1711	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1712		__bpf_call_base_args;
1713	insn->code = BPF_JMP | BPF_CALL_ARGS;
1714}
1715
1716#else
1717static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1718					 const struct bpf_insn *insn)
1719{
1720	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1721	 * is not working properly, so warn about it!
1722	 */
1723	WARN_ON_ONCE(1);
1724	return 0;
1725}
1726#endif
1727
1728bool bpf_prog_array_compatible(struct bpf_array *array,
1729			       const struct bpf_prog *fp)
1730{
 
 
 
1731	if (fp->kprobe_override)
1732		return false;
1733
1734	if (!array->aux->type) {
 
 
 
 
 
 
 
 
 
1735		/* There's no owner yet where we could check for
1736		 * compatibility.
1737		 */
1738		array->aux->type  = fp->type;
1739		array->aux->jited = fp->jited;
1740		return true;
 
 
 
 
 
1741	}
 
1742
1743	return array->aux->type  == fp->type &&
1744	       array->aux->jited == fp->jited;
1745}
1746
1747static int bpf_check_tail_call(const struct bpf_prog *fp)
1748{
1749	struct bpf_prog_aux *aux = fp->aux;
1750	int i;
1751
 
1752	for (i = 0; i < aux->used_map_cnt; i++) {
1753		struct bpf_map *map = aux->used_maps[i];
1754		struct bpf_array *array;
1755
1756		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1757			continue;
1758
1759		array = container_of(map, struct bpf_array, map);
1760		if (!bpf_prog_array_compatible(array, fp))
1761			return -EINVAL;
 
1762	}
1763
1764	return 0;
 
 
1765}
1766
1767static void bpf_prog_select_func(struct bpf_prog *fp)
1768{
1769#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1770	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1771
1772	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1773#else
1774	fp->bpf_func = __bpf_prog_ret0_warn;
1775#endif
1776}
1777
1778/**
1779 *	bpf_prog_select_runtime - select exec runtime for BPF program
1780 *	@fp: bpf_prog populated with internal BPF program
1781 *	@err: pointer to error variable
1782 *
1783 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1784 * The BPF program will be executed via BPF_PROG_RUN() macro.
 
 
 
1785 */
1786struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1787{
1788	/* In case of BPF to BPF calls, verifier did all the prep
1789	 * work with regards to JITing, etc.
1790	 */
 
 
1791	if (fp->bpf_func)
1792		goto finalize;
1793
 
 
 
 
1794	bpf_prog_select_func(fp);
1795
1796	/* eBPF JITs can rewrite the program in case constant
1797	 * blinding is active. However, in case of error during
1798	 * blinding, bpf_int_jit_compile() must always return a
1799	 * valid program, which in this case would simply not
1800	 * be JITed, but falls back to the interpreter.
1801	 */
1802	if (!bpf_prog_is_dev_bound(fp->aux)) {
1803		*err = bpf_prog_alloc_jited_linfo(fp);
1804		if (*err)
1805			return fp;
1806
1807		fp = bpf_int_jit_compile(fp);
1808		if (!fp->jited) {
1809			bpf_prog_free_jited_linfo(fp);
1810#ifdef CONFIG_BPF_JIT_ALWAYS_ON
1811			*err = -ENOTSUPP;
1812			return fp;
1813#endif
1814		} else {
1815			bpf_prog_free_unused_jited_linfo(fp);
1816		}
1817	} else {
1818		*err = bpf_prog_offload_compile(fp);
1819		if (*err)
1820			return fp;
1821	}
1822
1823finalize:
1824	bpf_prog_lock_ro(fp);
1825
1826	/* The tail call compatibility check can only be done at
1827	 * this late stage as we need to determine, if we deal
1828	 * with JITed or non JITed program concatenations and not
1829	 * all eBPF JITs might immediately support all features.
1830	 */
1831	*err = bpf_check_tail_call(fp);
1832
1833	return fp;
1834}
1835EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1836
1837static unsigned int __bpf_prog_ret1(const void *ctx,
1838				    const struct bpf_insn *insn)
1839{
1840	return 1;
1841}
1842
1843static struct bpf_prog_dummy {
1844	struct bpf_prog prog;
1845} dummy_bpf_prog = {
1846	.prog = {
1847		.bpf_func = __bpf_prog_ret1,
1848	},
1849};
1850
1851/* to avoid allocating empty bpf_prog_array for cgroups that
1852 * don't have bpf program attached use one global 'empty_prog_array'
1853 * It will not be modified the caller of bpf_prog_array_alloc()
1854 * (since caller requested prog_cnt == 0)
1855 * that pointer should be 'freed' by bpf_prog_array_free()
1856 */
1857static struct {
1858	struct bpf_prog_array hdr;
1859	struct bpf_prog *null_prog;
1860} empty_prog_array = {
1861	.null_prog = NULL,
1862};
 
1863
1864struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1865{
1866	if (prog_cnt)
1867		return kzalloc(sizeof(struct bpf_prog_array) +
1868			       sizeof(struct bpf_prog_array_item) *
1869			       (prog_cnt + 1),
1870			       flags);
1871
1872	return &empty_prog_array.hdr;
1873}
1874
1875void bpf_prog_array_free(struct bpf_prog_array *progs)
1876{
1877	if (!progs || progs == &empty_prog_array.hdr)
1878		return;
1879	kfree_rcu(progs, rcu);
1880}
1881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882int bpf_prog_array_length(struct bpf_prog_array *array)
1883{
1884	struct bpf_prog_array_item *item;
1885	u32 cnt = 0;
1886
1887	for (item = array->items; item->prog; item++)
1888		if (item->prog != &dummy_bpf_prog.prog)
1889			cnt++;
1890	return cnt;
1891}
1892
1893bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1894{
1895	struct bpf_prog_array_item *item;
1896
1897	for (item = array->items; item->prog; item++)
1898		if (item->prog != &dummy_bpf_prog.prog)
1899			return false;
1900	return true;
1901}
1902
1903static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1904				     u32 *prog_ids,
1905				     u32 request_cnt)
1906{
1907	struct bpf_prog_array_item *item;
1908	int i = 0;
1909
1910	for (item = array->items; item->prog; item++) {
1911		if (item->prog == &dummy_bpf_prog.prog)
1912			continue;
1913		prog_ids[i] = item->prog->aux->id;
1914		if (++i == request_cnt) {
1915			item++;
1916			break;
1917		}
1918	}
1919
1920	return !!(item->prog);
1921}
1922
1923int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1924				__u32 __user *prog_ids, u32 cnt)
1925{
1926	unsigned long err = 0;
1927	bool nospc;
1928	u32 *ids;
1929
1930	/* users of this function are doing:
1931	 * cnt = bpf_prog_array_length();
1932	 * if (cnt > 0)
1933	 *     bpf_prog_array_copy_to_user(..., cnt);
1934	 * so below kcalloc doesn't need extra cnt > 0 check.
1935	 */
1936	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1937	if (!ids)
1938		return -ENOMEM;
1939	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1940	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1941	kfree(ids);
1942	if (err)
1943		return -EFAULT;
1944	if (nospc)
1945		return -ENOSPC;
1946	return 0;
1947}
1948
1949void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1950				struct bpf_prog *old_prog)
1951{
1952	struct bpf_prog_array_item *item;
1953
1954	for (item = array->items; item->prog; item++)
1955		if (item->prog == old_prog) {
1956			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1957			break;
1958		}
1959}
1960
1961/**
1962 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
1963 *                                   index into the program array with
1964 *                                   a dummy no-op program.
1965 * @array: a bpf_prog_array
1966 * @index: the index of the program to replace
1967 *
1968 * Skips over dummy programs, by not counting them, when calculating
1969 * the position of the program to replace.
1970 *
1971 * Return:
1972 * * 0		- Success
1973 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
1974 * * -ENOENT	- Index out of range
1975 */
1976int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
1977{
1978	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
1979}
1980
1981/**
1982 * bpf_prog_array_update_at() - Updates the program at the given index
1983 *                              into the program array.
1984 * @array: a bpf_prog_array
1985 * @index: the index of the program to update
1986 * @prog: the program to insert into the array
1987 *
1988 * Skips over dummy programs, by not counting them, when calculating
1989 * the position of the program to update.
1990 *
1991 * Return:
1992 * * 0		- Success
1993 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
1994 * * -ENOENT	- Index out of range
1995 */
1996int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1997			     struct bpf_prog *prog)
1998{
1999	struct bpf_prog_array_item *item;
2000
2001	if (unlikely(index < 0))
2002		return -EINVAL;
2003
2004	for (item = array->items; item->prog; item++) {
2005		if (item->prog == &dummy_bpf_prog.prog)
2006			continue;
2007		if (!index) {
2008			WRITE_ONCE(item->prog, prog);
2009			return 0;
2010		}
2011		index--;
2012	}
2013	return -ENOENT;
2014}
2015
2016int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2017			struct bpf_prog *exclude_prog,
2018			struct bpf_prog *include_prog,
 
2019			struct bpf_prog_array **new_array)
2020{
2021	int new_prog_cnt, carry_prog_cnt = 0;
2022	struct bpf_prog_array_item *existing;
2023	struct bpf_prog_array *array;
2024	bool found_exclude = false;
2025	int new_prog_idx = 0;
2026
2027	/* Figure out how many existing progs we need to carry over to
2028	 * the new array.
2029	 */
2030	if (old_array) {
2031		existing = old_array->items;
2032		for (; existing->prog; existing++) {
2033			if (existing->prog == exclude_prog) {
2034				found_exclude = true;
2035				continue;
2036			}
2037			if (existing->prog != &dummy_bpf_prog.prog)
2038				carry_prog_cnt++;
2039			if (existing->prog == include_prog)
2040				return -EEXIST;
2041		}
2042	}
2043
2044	if (exclude_prog && !found_exclude)
2045		return -ENOENT;
2046
2047	/* How many progs (not NULL) will be in the new array? */
2048	new_prog_cnt = carry_prog_cnt;
2049	if (include_prog)
2050		new_prog_cnt += 1;
2051
2052	/* Do we have any prog (not NULL) in the new array? */
2053	if (!new_prog_cnt) {
2054		*new_array = NULL;
2055		return 0;
2056	}
2057
2058	/* +1 as the end of prog_array is marked with NULL */
2059	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2060	if (!array)
2061		return -ENOMEM;
 
2062
2063	/* Fill in the new prog array */
2064	if (carry_prog_cnt) {
2065		existing = old_array->items;
2066		for (; existing->prog; existing++)
2067			if (existing->prog != exclude_prog &&
2068			    existing->prog != &dummy_bpf_prog.prog) {
2069				array->items[new_prog_idx++].prog =
2070					existing->prog;
2071			}
 
 
 
 
 
 
 
 
2072	}
2073	if (include_prog)
2074		array->items[new_prog_idx++].prog = include_prog;
2075	array->items[new_prog_idx].prog = NULL;
2076	*new_array = array;
2077	return 0;
2078}
2079
2080int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2081			     u32 *prog_ids, u32 request_cnt,
2082			     u32 *prog_cnt)
2083{
2084	u32 cnt = 0;
2085
2086	if (array)
2087		cnt = bpf_prog_array_length(array);
2088
2089	*prog_cnt = cnt;
2090
2091	/* return early if user requested only program count or nothing to copy */
2092	if (!request_cnt || !cnt)
2093		return 0;
2094
2095	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2096	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2097								     : 0;
2098}
2099
2100void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2101			  struct bpf_map **used_maps, u32 len)
2102{
2103	struct bpf_map *map;
 
2104	u32 i;
2105
 
2106	for (i = 0; i < len; i++) {
2107		map = used_maps[i];
2108		if (map->ops->map_poke_untrack)
2109			map->ops->map_poke_untrack(map, aux);
 
 
2110		bpf_map_put(map);
2111	}
2112}
2113
2114static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2115{
2116	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2117	kfree(aux->used_maps);
2118}
2119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2120static void bpf_prog_free_deferred(struct work_struct *work)
2121{
2122	struct bpf_prog_aux *aux;
2123	int i;
2124
2125	aux = container_of(work, struct bpf_prog_aux, work);
 
 
 
 
 
 
 
2126	bpf_free_used_maps(aux);
 
2127	if (bpf_prog_is_dev_bound(aux))
2128		bpf_prog_offload_destroy(aux->prog);
2129#ifdef CONFIG_PERF_EVENTS
2130	if (aux->prog->has_callchain_buf)
2131		put_callchain_buffers();
2132#endif
2133	bpf_trampoline_put(aux->trampoline);
2134	for (i = 0; i < aux->func_cnt; i++)
 
 
 
 
 
 
2135		bpf_jit_free(aux->func[i]);
2136	if (aux->func_cnt) {
 
2137		kfree(aux->func);
2138		bpf_prog_unlock_free(aux->prog);
2139	} else {
2140		bpf_jit_free(aux->prog);
2141	}
2142}
2143
2144/* Free internal BPF program */
2145void bpf_prog_free(struct bpf_prog *fp)
2146{
2147	struct bpf_prog_aux *aux = fp->aux;
2148
2149	if (aux->linked_prog)
2150		bpf_prog_put(aux->linked_prog);
2151	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2152	schedule_work(&aux->work);
2153}
2154EXPORT_SYMBOL_GPL(bpf_prog_free);
2155
2156/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2157static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2158
2159void bpf_user_rnd_init_once(void)
2160{
2161	prandom_init_once(&bpf_user_rnd_state);
2162}
2163
2164BPF_CALL_0(bpf_user_rnd_u32)
2165{
2166	/* Should someone ever have the rather unwise idea to use some
2167	 * of the registers passed into this function, then note that
2168	 * this function is called from native eBPF and classic-to-eBPF
2169	 * transformations. Register assignments from both sides are
2170	 * different, f.e. classic always sets fn(ctx, A, X) here.
2171	 */
2172	struct rnd_state *state;
2173	u32 res;
2174
2175	state = &get_cpu_var(bpf_user_rnd_state);
2176	res = prandom_u32_state(state);
2177	put_cpu_var(bpf_user_rnd_state);
2178
2179	return res;
2180}
2181
2182BPF_CALL_0(bpf_get_raw_cpu_id)
2183{
2184	return raw_smp_processor_id();
2185}
2186
2187/* Weak definitions of helper functions in case we don't have bpf syscall. */
2188const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2189const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2190const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2191const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2192const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2193const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
 
2194const struct bpf_func_proto bpf_spin_lock_proto __weak;
2195const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2196const struct bpf_func_proto bpf_jiffies64_proto __weak;
2197
2198const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2199const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2200const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2201const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2202const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
 
 
2203
2204const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2205const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2206const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2207const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2208const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2209const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2210const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
 
 
 
 
2211
2212const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2213{
2214	return NULL;
2215}
2216
 
 
 
 
 
2217u64 __weak
2218bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2219		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2220{
2221	return -ENOTSUPP;
2222}
2223EXPORT_SYMBOL_GPL(bpf_event_output);
2224
2225/* Always built-in helper functions. */
2226const struct bpf_func_proto bpf_tail_call_proto = {
2227	.func		= NULL,
2228	.gpl_only	= false,
2229	.ret_type	= RET_VOID,
2230	.arg1_type	= ARG_PTR_TO_CTX,
2231	.arg2_type	= ARG_CONST_MAP_PTR,
2232	.arg3_type	= ARG_ANYTHING,
2233};
2234
2235/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2236 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2237 * eBPF and implicitly also cBPF can get JITed!
2238 */
2239struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2240{
2241	return prog;
2242}
2243
2244/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2245 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2246 */
2247void __weak bpf_jit_compile(struct bpf_prog *prog)
2248{
2249}
2250
2251bool __weak bpf_helper_changes_pkt_data(void *func)
2252{
2253	return false;
2254}
2255
2256/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2257 * analysis code and wants explicit zero extension inserted by verifier.
2258 * Otherwise, return FALSE.
 
 
 
 
2259 */
2260bool __weak bpf_jit_needs_zext(void)
2261{
2262	return false;
2263}
2264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2265/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2266 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2267 */
2268int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2269			 int len)
2270{
2271	return -EFAULT;
2272}
2273
2274int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2275			      void *addr1, void *addr2)
2276{
2277	return -ENOTSUPP;
2278}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279
2280DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2281EXPORT_SYMBOL(bpf_stats_enabled_key);
2282
2283/* All definitions of tracepoints related to BPF. */
2284#define CREATE_TRACE_POINTS
2285#include <linux/bpf_trace.h>
2286
2287EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2288EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);