Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/init.h>
  30#include <linux/input.h>
  31#include <linux/jiffies.h>
  32#include <linux/kbd_diacr.h>
  33#include <linux/kbd_kern.h>
  34#include <linux/leds.h>
  35#include <linux/mm.h>
  36#include <linux/module.h>
  37#include <linux/nospec.h>
  38#include <linux/notifier.h>
  39#include <linux/reboot.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/signal.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/string.h>
  45#include <linux/tty_flip.h>
  46#include <linux/tty.h>
  47#include <linux/uaccess.h>
  48#include <linux/vt_kern.h>
  49
  50#include <asm/irq_regs.h>
  51
  52/*
  53 * Exported functions/variables
  54 */
  55
  56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
  57
  58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  59#include <asm/kbdleds.h>
  60#else
  61static inline int kbd_defleds(void)
  62{
  63	return 0;
  64}
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69/*
  70 * Handler Tables.
  71 */
  72
  73#define K_HANDLERS\
  74	k_self,		k_fn,		k_spec,		k_pad,\
  75	k_dead,		k_cons,		k_cur,		k_shift,\
  76	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  77	k_slock,	k_dead2,	k_brl,		k_ignore
  78
  79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  80			    char up_flag);
  81static k_handler_fn K_HANDLERS;
  82static k_handler_fn *k_handler[16] = { K_HANDLERS };
  83
  84#define FN_HANDLERS\
  85	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  86	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  87	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  88	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  89	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  90
  91typedef void (fn_handler_fn)(struct vc_data *vc);
  92static fn_handler_fn FN_HANDLERS;
  93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  94
  95/*
  96 * Variables exported for vt_ioctl.c
  97 */
  98
  99struct vt_spawn_console vt_spawn_con = {
 100	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 101	.pid  = NULL,
 102	.sig  = 0,
 103};
 104
 105
 106/*
 107 * Internal Data.
 108 */
 109
 110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111static struct kbd_struct *kbd = kbd_table;
 112
 113/* maximum values each key_handler can handle */
 114static const unsigned char max_vals[] = {
 115	[ KT_LATIN	] = 255,
 116	[ KT_FN		] = ARRAY_SIZE(func_table) - 1,
 117	[ KT_SPEC	] = ARRAY_SIZE(fn_handler) - 1,
 118	[ KT_PAD	] = NR_PAD - 1,
 119	[ KT_DEAD	] = NR_DEAD - 1,
 120	[ KT_CONS	] = 255,
 121	[ KT_CUR	] = 3,
 122	[ KT_SHIFT	] = NR_SHIFT - 1,
 123	[ KT_META	] = 255,
 124	[ KT_ASCII	] = NR_ASCII - 1,
 125	[ KT_LOCK	] = NR_LOCK - 1,
 126	[ KT_LETTER	] = 255,
 127	[ KT_SLOCK	] = NR_LOCK - 1,
 128	[ KT_DEAD2	] = 255,
 129	[ KT_BRL	] = NR_BRL - 1,
 130};
 131
 132static const int NR_TYPES = ARRAY_SIZE(max_vals);
 133
 134static void kbd_bh(struct tasklet_struct *unused);
 135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
 136
 137static struct input_handler kbd_handler;
 138static DEFINE_SPINLOCK(kbd_event_lock);
 139static DEFINE_SPINLOCK(led_lock);
 140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 141static DECLARE_BITMAP(key_down, KEY_CNT);	/* keyboard key bitmap */
 142static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 143static bool dead_key_next;
 144
 145/* Handles a number being assembled on the number pad */
 146static bool npadch_active;
 147static unsigned int npadch_value;
 148
 149static unsigned int diacr;
 150static bool rep;			/* flag telling character repeat */
 151
 152static int shift_state = 0;
 153
 154static unsigned int ledstate = -1U;			/* undefined */
 155static unsigned char ledioctl;
 156static bool vt_switch;
 157
 158/*
 159 * Notifier list for console keyboard events
 160 */
 161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 162
 163int register_keyboard_notifier(struct notifier_block *nb)
 164{
 165	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 166}
 167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 168
 169int unregister_keyboard_notifier(struct notifier_block *nb)
 170{
 171	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 172}
 173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 174
 175/*
 176 * Translation of scancodes to keycodes. We set them on only the first
 177 * keyboard in the list that accepts the scancode and keycode.
 178 * Explanation for not choosing the first attached keyboard anymore:
 179 *  USB keyboards for example have two event devices: one for all "normal"
 180 *  keys and one for extra function keys (like "volume up", "make coffee",
 181 *  etc.). So this means that scancodes for the extra function keys won't
 182 *  be valid for the first event device, but will be for the second.
 183 */
 184
 185struct getset_keycode_data {
 186	struct input_keymap_entry ke;
 187	int error;
 188};
 189
 190static int getkeycode_helper(struct input_handle *handle, void *data)
 191{
 192	struct getset_keycode_data *d = data;
 193
 194	d->error = input_get_keycode(handle->dev, &d->ke);
 195
 196	return d->error == 0; /* stop as soon as we successfully get one */
 197}
 198
 199static int getkeycode(unsigned int scancode)
 200{
 201	struct getset_keycode_data d = {
 202		.ke	= {
 203			.flags		= 0,
 204			.len		= sizeof(scancode),
 205			.keycode	= 0,
 206		},
 207		.error	= -ENODEV,
 208	};
 209
 210	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 211
 212	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 213
 214	return d.error ?: d.ke.keycode;
 215}
 216
 217static int setkeycode_helper(struct input_handle *handle, void *data)
 218{
 219	struct getset_keycode_data *d = data;
 220
 221	d->error = input_set_keycode(handle->dev, &d->ke);
 222
 223	return d->error == 0; /* stop as soon as we successfully set one */
 224}
 225
 226static int setkeycode(unsigned int scancode, unsigned int keycode)
 227{
 228	struct getset_keycode_data d = {
 229		.ke	= {
 230			.flags		= 0,
 231			.len		= sizeof(scancode),
 232			.keycode	= keycode,
 233		},
 234		.error	= -ENODEV,
 235	};
 236
 237	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 238
 239	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 240
 241	return d.error;
 242}
 243
 244/*
 245 * Making beeps and bells. Note that we prefer beeps to bells, but when
 246 * shutting the sound off we do both.
 247 */
 248
 249static int kd_sound_helper(struct input_handle *handle, void *data)
 250{
 251	unsigned int *hz = data;
 252	struct input_dev *dev = handle->dev;
 253
 254	if (test_bit(EV_SND, dev->evbit)) {
 255		if (test_bit(SND_TONE, dev->sndbit)) {
 256			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 257			if (*hz)
 258				return 0;
 259		}
 260		if (test_bit(SND_BELL, dev->sndbit))
 261			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 262	}
 263
 264	return 0;
 265}
 266
 267static void kd_nosound(struct timer_list *unused)
 268{
 269	static unsigned int zero;
 270
 271	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 272}
 273
 274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 275
 276void kd_mksound(unsigned int hz, unsigned int ticks)
 277{
 278	del_timer_sync(&kd_mksound_timer);
 279
 280	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 281
 282	if (hz && ticks)
 283		mod_timer(&kd_mksound_timer, jiffies + ticks);
 284}
 285EXPORT_SYMBOL(kd_mksound);
 286
 287/*
 288 * Setting the keyboard rate.
 289 */
 290
 291static int kbd_rate_helper(struct input_handle *handle, void *data)
 292{
 293	struct input_dev *dev = handle->dev;
 294	struct kbd_repeat *rpt = data;
 295
 296	if (test_bit(EV_REP, dev->evbit)) {
 297
 298		if (rpt[0].delay > 0)
 299			input_inject_event(handle,
 300					   EV_REP, REP_DELAY, rpt[0].delay);
 301		if (rpt[0].period > 0)
 302			input_inject_event(handle,
 303					   EV_REP, REP_PERIOD, rpt[0].period);
 304
 305		rpt[1].delay = dev->rep[REP_DELAY];
 306		rpt[1].period = dev->rep[REP_PERIOD];
 307	}
 308
 309	return 0;
 310}
 311
 312int kbd_rate(struct kbd_repeat *rpt)
 313{
 314	struct kbd_repeat data[2] = { *rpt };
 315
 316	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 317	*rpt = data[1];	/* Copy currently used settings */
 318
 319	return 0;
 320}
 321
 322/*
 323 * Helper Functions.
 324 */
 325static void put_queue(struct vc_data *vc, int ch)
 326{
 327	tty_insert_flip_char(&vc->port, ch, 0);
 328	tty_flip_buffer_push(&vc->port);
 329}
 330
 331static void puts_queue(struct vc_data *vc, const char *cp)
 332{
 333	tty_insert_flip_string(&vc->port, cp, strlen(cp));
 334	tty_flip_buffer_push(&vc->port);
 335}
 336
 337static void applkey(struct vc_data *vc, int key, char mode)
 338{
 339	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 340
 341	buf[1] = (mode ? 'O' : '[');
 342	buf[2] = key;
 343	puts_queue(vc, buf);
 344}
 345
 346/*
 347 * Many other routines do put_queue, but I think either
 348 * they produce ASCII, or they produce some user-assigned
 349 * string, and in both cases we might assume that it is
 350 * in utf-8 already.
 351 */
 352static void to_utf8(struct vc_data *vc, uint c)
 353{
 354	if (c < 0x80)
 355		/*  0******* */
 356		put_queue(vc, c);
 357	else if (c < 0x800) {
 358		/* 110***** 10****** */
 359		put_queue(vc, 0xc0 | (c >> 6));
 360		put_queue(vc, 0x80 | (c & 0x3f));
 361	} else if (c < 0x10000) {
 362		if (c >= 0xD800 && c < 0xE000)
 363			return;
 364		if (c == 0xFFFF)
 365			return;
 366		/* 1110**** 10****** 10****** */
 367		put_queue(vc, 0xe0 | (c >> 12));
 368		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 369		put_queue(vc, 0x80 | (c & 0x3f));
 370	} else if (c < 0x110000) {
 371		/* 11110*** 10****** 10****** 10****** */
 372		put_queue(vc, 0xf0 | (c >> 18));
 373		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 374		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 375		put_queue(vc, 0x80 | (c & 0x3f));
 376	}
 377}
 378
 379/* FIXME: review locking for vt.c callers */
 380static void set_leds(void)
 381{
 382	tasklet_schedule(&keyboard_tasklet);
 383}
 384
 385/*
 386 * Called after returning from RAW mode or when changing consoles - recompute
 387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 388 * undefined, so that shiftkey release is seen. The caller must hold the
 389 * kbd_event_lock.
 390 */
 391
 392static void do_compute_shiftstate(void)
 393{
 394	unsigned int k, sym, val;
 395
 396	shift_state = 0;
 397	memset(shift_down, 0, sizeof(shift_down));
 398
 399	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 400		sym = U(key_maps[0][k]);
 401		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 402			continue;
 403
 404		val = KVAL(sym);
 405		if (val == KVAL(K_CAPSSHIFT))
 406			val = KVAL(K_SHIFT);
 407
 408		shift_down[val]++;
 409		shift_state |= BIT(val);
 410	}
 411}
 412
 413/* We still have to export this method to vt.c */
 414void vt_set_leds_compute_shiftstate(void)
 415{
 416	unsigned long flags;
 417
 418	/*
 419	 * When VT is switched, the keyboard led needs to be set once.
 420	 * Ensure that after the switch is completed, the state of the
 421	 * keyboard LED is consistent with the state of the keyboard lock.
 422	 */
 423	vt_switch = true;
 424	set_leds();
 425
 426	spin_lock_irqsave(&kbd_event_lock, flags);
 427	do_compute_shiftstate();
 428	spin_unlock_irqrestore(&kbd_event_lock, flags);
 429}
 430
 431/*
 432 * We have a combining character DIACR here, followed by the character CH.
 433 * If the combination occurs in the table, return the corresponding value.
 434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 435 * Otherwise, conclude that DIACR was not combining after all,
 436 * queue it and return CH.
 437 */
 438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 439{
 440	unsigned int d = diacr;
 441	unsigned int i;
 442
 443	diacr = 0;
 444
 445	if ((d & ~0xff) == BRL_UC_ROW) {
 446		if ((ch & ~0xff) == BRL_UC_ROW)
 447			return d | ch;
 448	} else {
 449		for (i = 0; i < accent_table_size; i++)
 450			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 451				return accent_table[i].result;
 452	}
 453
 454	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 455		return d;
 456
 457	if (kbd->kbdmode == VC_UNICODE)
 458		to_utf8(vc, d);
 459	else {
 460		int c = conv_uni_to_8bit(d);
 461		if (c != -1)
 462			put_queue(vc, c);
 463	}
 464
 465	return ch;
 466}
 467
 468/*
 469 * Special function handlers
 470 */
 471static void fn_enter(struct vc_data *vc)
 472{
 473	if (diacr) {
 474		if (kbd->kbdmode == VC_UNICODE)
 475			to_utf8(vc, diacr);
 476		else {
 477			int c = conv_uni_to_8bit(diacr);
 478			if (c != -1)
 479				put_queue(vc, c);
 480		}
 481		diacr = 0;
 482	}
 483
 484	put_queue(vc, '\r');
 485	if (vc_kbd_mode(kbd, VC_CRLF))
 486		put_queue(vc, '\n');
 487}
 488
 489static void fn_caps_toggle(struct vc_data *vc)
 490{
 491	if (rep)
 492		return;
 493
 494	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 495}
 496
 497static void fn_caps_on(struct vc_data *vc)
 498{
 499	if (rep)
 500		return;
 501
 502	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 503}
 504
 505static void fn_show_ptregs(struct vc_data *vc)
 506{
 507	struct pt_regs *regs = get_irq_regs();
 508
 509	if (regs)
 510		show_regs(regs);
 511}
 512
 513static void fn_hold(struct vc_data *vc)
 514{
 515	struct tty_struct *tty = vc->port.tty;
 516
 517	if (rep || !tty)
 518		return;
 519
 520	/*
 521	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 522	 * these routines are also activated by ^S/^Q.
 523	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 524	 */
 525	if (tty->flow.stopped)
 526		start_tty(tty);
 527	else
 528		stop_tty(tty);
 529}
 530
 531static void fn_num(struct vc_data *vc)
 532{
 533	if (vc_kbd_mode(kbd, VC_APPLIC))
 534		applkey(vc, 'P', 1);
 535	else
 536		fn_bare_num(vc);
 537}
 538
 539/*
 540 * Bind this to Shift-NumLock if you work in application keypad mode
 541 * but want to be able to change the NumLock flag.
 542 * Bind this to NumLock if you prefer that the NumLock key always
 543 * changes the NumLock flag.
 544 */
 545static void fn_bare_num(struct vc_data *vc)
 546{
 547	if (!rep)
 548		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 549}
 550
 551static void fn_lastcons(struct vc_data *vc)
 552{
 553	/* switch to the last used console, ChN */
 554	set_console(last_console);
 555}
 556
 557static void fn_dec_console(struct vc_data *vc)
 558{
 559	int i, cur = fg_console;
 560
 561	/* Currently switching?  Queue this next switch relative to that. */
 562	if (want_console != -1)
 563		cur = want_console;
 564
 565	for (i = cur - 1; i != cur; i--) {
 566		if (i == -1)
 567			i = MAX_NR_CONSOLES - 1;
 568		if (vc_cons_allocated(i))
 569			break;
 570	}
 571	set_console(i);
 572}
 573
 574static void fn_inc_console(struct vc_data *vc)
 575{
 576	int i, cur = fg_console;
 577
 578	/* Currently switching?  Queue this next switch relative to that. */
 579	if (want_console != -1)
 580		cur = want_console;
 581
 582	for (i = cur+1; i != cur; i++) {
 583		if (i == MAX_NR_CONSOLES)
 584			i = 0;
 585		if (vc_cons_allocated(i))
 586			break;
 587	}
 588	set_console(i);
 589}
 590
 591static void fn_send_intr(struct vc_data *vc)
 592{
 593	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 594	tty_flip_buffer_push(&vc->port);
 595}
 596
 597static void fn_scroll_forw(struct vc_data *vc)
 598{
 599	scrollfront(vc, 0);
 600}
 601
 602static void fn_scroll_back(struct vc_data *vc)
 603{
 604	scrollback(vc);
 605}
 606
 607static void fn_show_mem(struct vc_data *vc)
 608{
 609	show_mem();
 610}
 611
 612static void fn_show_state(struct vc_data *vc)
 613{
 614	show_state();
 615}
 616
 617static void fn_boot_it(struct vc_data *vc)
 618{
 619	ctrl_alt_del();
 620}
 621
 622static void fn_compose(struct vc_data *vc)
 623{
 624	dead_key_next = true;
 625}
 626
 627static void fn_spawn_con(struct vc_data *vc)
 628{
 629	spin_lock(&vt_spawn_con.lock);
 630	if (vt_spawn_con.pid)
 631		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 632			put_pid(vt_spawn_con.pid);
 633			vt_spawn_con.pid = NULL;
 634		}
 635	spin_unlock(&vt_spawn_con.lock);
 636}
 637
 638static void fn_SAK(struct vc_data *vc)
 639{
 640	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 641	schedule_work(SAK_work);
 642}
 643
 644static void fn_null(struct vc_data *vc)
 645{
 646	do_compute_shiftstate();
 647}
 648
 649/*
 650 * Special key handlers
 651 */
 652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 653{
 654}
 655
 656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 657{
 658	if (up_flag)
 659		return;
 660	if (value >= ARRAY_SIZE(fn_handler))
 661		return;
 662	if ((kbd->kbdmode == VC_RAW ||
 663	     kbd->kbdmode == VC_MEDIUMRAW ||
 664	     kbd->kbdmode == VC_OFF) &&
 665	     value != KVAL(K_SAK))
 666		return;		/* SAK is allowed even in raw mode */
 667	fn_handler[value](vc);
 668}
 669
 670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 671{
 672	pr_err("k_lowercase was called - impossible\n");
 673}
 674
 675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 676{
 677	if (up_flag)
 678		return;		/* no action, if this is a key release */
 679
 680	if (diacr)
 681		value = handle_diacr(vc, value);
 682
 683	if (dead_key_next) {
 684		dead_key_next = false;
 685		diacr = value;
 686		return;
 687	}
 688	if (kbd->kbdmode == VC_UNICODE)
 689		to_utf8(vc, value);
 690	else {
 691		int c = conv_uni_to_8bit(value);
 692		if (c != -1)
 693			put_queue(vc, c);
 694	}
 695}
 696
 697/*
 698 * Handle dead key. Note that we now may have several
 699 * dead keys modifying the same character. Very useful
 700 * for Vietnamese.
 701 */
 702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 703{
 704	if (up_flag)
 705		return;
 706
 707	diacr = (diacr ? handle_diacr(vc, value) : value);
 708}
 709
 710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 711{
 712	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 713}
 714
 715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 716{
 717	k_deadunicode(vc, value, up_flag);
 718}
 719
 720/*
 721 * Obsolete - for backwards compatibility only
 722 */
 723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 724{
 725	static const unsigned char ret_diacr[NR_DEAD] = {
 726		'`',	/* dead_grave */
 727		'\'',	/* dead_acute */
 728		'^',	/* dead_circumflex */
 729		'~',	/* dead_tilda */
 730		'"',	/* dead_diaeresis */
 731		',',	/* dead_cedilla */
 732		'_',	/* dead_macron */
 733		'U',	/* dead_breve */
 734		'.',	/* dead_abovedot */
 735		'*',	/* dead_abovering */
 736		'=',	/* dead_doubleacute */
 737		'c',	/* dead_caron */
 738		'k',	/* dead_ogonek */
 739		'i',	/* dead_iota */
 740		'#',	/* dead_voiced_sound */
 741		'o',	/* dead_semivoiced_sound */
 742		'!',	/* dead_belowdot */
 743		'?',	/* dead_hook */
 744		'+',	/* dead_horn */
 745		'-',	/* dead_stroke */
 746		')',	/* dead_abovecomma */
 747		'(',	/* dead_abovereversedcomma */
 748		':',	/* dead_doublegrave */
 749		'n',	/* dead_invertedbreve */
 750		';',	/* dead_belowcomma */
 751		'$',	/* dead_currency */
 752		'@',	/* dead_greek */
 753	};
 754
 755	k_deadunicode(vc, ret_diacr[value], up_flag);
 756}
 757
 758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 759{
 760	if (up_flag)
 761		return;
 762
 763	set_console(value);
 764}
 765
 766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 767{
 768	if (up_flag)
 769		return;
 770
 771	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 772		unsigned long flags;
 773
 774		spin_lock_irqsave(&func_buf_lock, flags);
 775		if (func_table[value])
 776			puts_queue(vc, func_table[value]);
 777		spin_unlock_irqrestore(&func_buf_lock, flags);
 778
 779	} else
 780		pr_err("k_fn called with value=%d\n", value);
 781}
 782
 783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 784{
 785	static const char cur_chars[] = "BDCA";
 786
 787	if (up_flag)
 788		return;
 789
 790	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 791}
 792
 793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 794{
 795	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 796	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 797
 798	if (up_flag)
 799		return;		/* no action, if this is a key release */
 800
 801	/* kludge... shift forces cursor/number keys */
 802	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 803		applkey(vc, app_map[value], 1);
 804		return;
 805	}
 806
 807	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 808
 809		switch (value) {
 810		case KVAL(K_PCOMMA):
 811		case KVAL(K_PDOT):
 812			k_fn(vc, KVAL(K_REMOVE), 0);
 813			return;
 814		case KVAL(K_P0):
 815			k_fn(vc, KVAL(K_INSERT), 0);
 816			return;
 817		case KVAL(K_P1):
 818			k_fn(vc, KVAL(K_SELECT), 0);
 819			return;
 820		case KVAL(K_P2):
 821			k_cur(vc, KVAL(K_DOWN), 0);
 822			return;
 823		case KVAL(K_P3):
 824			k_fn(vc, KVAL(K_PGDN), 0);
 825			return;
 826		case KVAL(K_P4):
 827			k_cur(vc, KVAL(K_LEFT), 0);
 828			return;
 829		case KVAL(K_P6):
 830			k_cur(vc, KVAL(K_RIGHT), 0);
 831			return;
 832		case KVAL(K_P7):
 833			k_fn(vc, KVAL(K_FIND), 0);
 834			return;
 835		case KVAL(K_P8):
 836			k_cur(vc, KVAL(K_UP), 0);
 837			return;
 838		case KVAL(K_P9):
 839			k_fn(vc, KVAL(K_PGUP), 0);
 840			return;
 841		case KVAL(K_P5):
 842			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 843			return;
 844		}
 845	}
 846
 847	put_queue(vc, pad_chars[value]);
 848	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 849		put_queue(vc, '\n');
 850}
 851
 852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 853{
 854	int old_state = shift_state;
 855
 856	if (rep)
 857		return;
 858	/*
 859	 * Mimic typewriter:
 860	 * a CapsShift key acts like Shift but undoes CapsLock
 861	 */
 862	if (value == KVAL(K_CAPSSHIFT)) {
 863		value = KVAL(K_SHIFT);
 864		if (!up_flag)
 865			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 866	}
 867
 868	if (up_flag) {
 869		/*
 870		 * handle the case that two shift or control
 871		 * keys are depressed simultaneously
 872		 */
 873		if (shift_down[value])
 874			shift_down[value]--;
 875	} else
 876		shift_down[value]++;
 877
 878	if (shift_down[value])
 879		shift_state |= BIT(value);
 880	else
 881		shift_state &= ~BIT(value);
 882
 883	/* kludge */
 884	if (up_flag && shift_state != old_state && npadch_active) {
 885		if (kbd->kbdmode == VC_UNICODE)
 886			to_utf8(vc, npadch_value);
 887		else
 888			put_queue(vc, npadch_value & 0xff);
 889		npadch_active = false;
 890	}
 891}
 892
 893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 894{
 895	if (up_flag)
 896		return;
 897
 898	if (vc_kbd_mode(kbd, VC_META)) {
 899		put_queue(vc, '\033');
 900		put_queue(vc, value);
 901	} else
 902		put_queue(vc, value | BIT(7));
 903}
 904
 905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 906{
 907	unsigned int base;
 908
 909	if (up_flag)
 910		return;
 911
 912	if (value < 10) {
 913		/* decimal input of code, while Alt depressed */
 914		base = 10;
 915	} else {
 916		/* hexadecimal input of code, while AltGr depressed */
 917		value -= 10;
 918		base = 16;
 919	}
 920
 921	if (!npadch_active) {
 922		npadch_value = 0;
 923		npadch_active = true;
 924	}
 925
 926	npadch_value = npadch_value * base + value;
 927}
 928
 929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 930{
 931	if (up_flag || rep)
 932		return;
 933
 934	chg_vc_kbd_lock(kbd, value);
 935}
 936
 937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 938{
 939	k_shift(vc, value, up_flag);
 940	if (up_flag || rep)
 941		return;
 942
 943	chg_vc_kbd_slock(kbd, value);
 944	/* try to make Alt, oops, AltGr and such work */
 945	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 946		kbd->slockstate = 0;
 947		chg_vc_kbd_slock(kbd, value);
 948	}
 949}
 950
 951/* by default, 300ms interval for combination release */
 952static unsigned brl_timeout = 300;
 953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 954module_param(brl_timeout, uint, 0644);
 955
 956static unsigned brl_nbchords = 1;
 957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 958module_param(brl_nbchords, uint, 0644);
 959
 960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 961{
 962	static unsigned long chords;
 963	static unsigned committed;
 964
 965	if (!brl_nbchords)
 966		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 967	else {
 968		committed |= pattern;
 969		chords++;
 970		if (chords == brl_nbchords) {
 971			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 972			chords = 0;
 973			committed = 0;
 974		}
 975	}
 976}
 977
 978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 979{
 980	static unsigned pressed, committing;
 981	static unsigned long releasestart;
 982
 983	if (kbd->kbdmode != VC_UNICODE) {
 984		if (!up_flag)
 985			pr_warn("keyboard mode must be unicode for braille patterns\n");
 986		return;
 987	}
 988
 989	if (!value) {
 990		k_unicode(vc, BRL_UC_ROW, up_flag);
 991		return;
 992	}
 993
 994	if (value > 8)
 995		return;
 996
 997	if (!up_flag) {
 998		pressed |= BIT(value - 1);
 999		if (!brl_timeout)
1000			committing = pressed;
1001	} else if (brl_timeout) {
1002		if (!committing ||
1003		    time_after(jiffies,
1004			       releasestart + msecs_to_jiffies(brl_timeout))) {
1005			committing = pressed;
1006			releasestart = jiffies;
1007		}
1008		pressed &= ~BIT(value - 1);
1009		if (!pressed && committing) {
1010			k_brlcommit(vc, committing, 0);
1011			committing = 0;
1012		}
1013	} else {
1014		if (committing) {
1015			k_brlcommit(vc, committing, 0);
1016			committing = 0;
1017		}
1018		pressed &= ~BIT(value - 1);
1019	}
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025	struct led_trigger trigger;
1026	unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031	struct kbd_led_trigger *trigger =
1032		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034	tasklet_disable(&keyboard_tasklet);
1035	if (ledstate != -1U)
1036		led_trigger_event(&trigger->trigger,
1037				  ledstate & trigger->mask ?
1038					LED_FULL : LED_OFF);
1039	tasklet_enable(&keyboard_tasklet);
1040
1041	return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) {			\
1045		.trigger = {					\
1046			.name = _name,				\
1047			.activate = kbd_led_trigger_activate,	\
1048		},						\
1049		.mask	= BIT(_led_bit),			\
1050	}
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1053	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1058	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1059	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1060
1061	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1062	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1063	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1064	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1065	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1068	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072				    unsigned int new_state)
1073{
1074	struct kbd_led_trigger *trigger;
1075	unsigned int changed = old_state ^ new_state;
1076	int i;
1077
1078	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079		trigger = &kbd_led_triggers[i];
1080
1081		if (changed & trigger->mask)
1082			led_trigger_event(&trigger->trigger,
1083					  new_state & trigger->mask ?
1084						LED_FULL : LED_OFF);
1085	}
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090	unsigned int led_state = *(unsigned int *)data;
1091
1092	if (test_bit(EV_LED, handle->dev->evbit))
1093		kbd_propagate_led_state(~led_state, led_state);
1094
1095	return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100	int error;
1101	int i;
1102
1103	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105		if (error)
1106			pr_err("error %d while registering trigger %s\n",
1107			       error, kbd_led_triggers[i].trigger.name);
1108	}
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115	unsigned int leds = *(unsigned int *)data;
1116
1117	if (test_bit(EV_LED, handle->dev->evbit)) {
1118		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & BIT(1)));
1120		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & BIT(2)));
1121		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122	}
1123
1124	return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128				    unsigned int new_state)
1129{
1130	input_handler_for_each_handle(&kbd_handler, &new_state,
1131				      kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147	return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152        unsigned long flags;
1153        spin_lock_irqsave(&led_lock, flags);
1154	if (!(led & ~7)) {
1155		ledioctl = led;
1156		kb->ledmode = LED_SHOW_IOCTL;
1157	} else
1158		kb->ledmode = LED_SHOW_FLAGS;
1159
1160	set_leds();
1161	spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166	struct kbd_struct *kb = kbd_table + fg_console;
1167
1168	if (kb->ledmode == LED_SHOW_IOCTL)
1169		return ledioctl;
1170
1171	return kb->ledflagstate;
1172}
1173
1174/**
1175 *	vt_get_leds	-	helper for braille console
1176 *	@console: console to read
1177 *	@flag: flag we want to check
1178 *
1179 *	Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183	struct kbd_struct *kb = &kbd_table[console];
1184	int ret;
1185	unsigned long flags;
1186
1187	spin_lock_irqsave(&led_lock, flags);
1188	ret = vc_kbd_led(kb, flag);
1189	spin_unlock_irqrestore(&led_lock, flags);
1190
1191	return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 *	vt_set_led_state	-	set LED state of a console
1197 *	@console: console to set
1198 *	@leds: LED bits
1199 *
1200 *	Set the LEDs on a console. This is a wrapper for the VT layer
1201 *	so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205	struct kbd_struct *kb = &kbd_table[console];
1206	setledstate(kb, leds);
1207}
1208
1209/**
1210 *	vt_kbd_con_start	-	Keyboard side of console start
1211 *	@console: console
1212 *
1213 *	Handle console start. This is a wrapper for the VT layer
1214 *	so that we can keep kbd knowledge internal
1215 *
1216 *	FIXME: We eventually need to hold the kbd lock here to protect
1217 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 *	and start_tty under the kbd_event_lock, while normal tty paths
1219 *	don't hold the lock. We probably need to split out an LED lock
1220 *	but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224	struct kbd_struct *kb = &kbd_table[console];
1225	unsigned long flags;
1226	spin_lock_irqsave(&led_lock, flags);
1227	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228	set_leds();
1229	spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 *	vt_kbd_con_stop		-	Keyboard side of console stop
1234 *	@console: console
1235 *
1236 *	Handle console stop. This is a wrapper for the VT layer
1237 *	so that we can keep kbd knowledge internal
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241	struct kbd_struct *kb = &kbd_table[console];
1242	unsigned long flags;
1243	spin_lock_irqsave(&led_lock, flags);
1244	set_vc_kbd_led(kb, VC_SCROLLOCK);
1245	set_leds();
1246	spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257	unsigned int leds;
1258	unsigned long flags;
1259
1260	spin_lock_irqsave(&led_lock, flags);
1261	leds = getleds();
1262	leds |= (unsigned int)kbd->lockstate << 8;
1263	spin_unlock_irqrestore(&led_lock, flags);
1264
1265	if (vt_switch) {
1266		ledstate = ~leds;
1267		vt_switch = false;
1268	}
1269
1270	if (leds != ledstate) {
1271		kbd_propagate_led_state(ledstate, leds);
1272		ledstate = leds;
1273	}
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1277    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283	if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284		return false;
1285
1286	return dev->id.bustype == BUS_I8042 &&
1287		dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1292	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313		       unsigned char up_flag)
1314{
1315	int code;
1316
1317	switch (keycode) {
1318
1319	case KEY_PAUSE:
1320		put_queue(vc, 0xe1);
1321		put_queue(vc, 0x1d | up_flag);
1322		put_queue(vc, 0x45 | up_flag);
1323		break;
1324
1325	case KEY_HANGEUL:
1326		if (!up_flag)
1327			put_queue(vc, 0xf2);
1328		break;
1329
1330	case KEY_HANJA:
1331		if (!up_flag)
1332			put_queue(vc, 0xf1);
1333		break;
1334
1335	case KEY_SYSRQ:
1336		/*
1337		 * Real AT keyboards (that's what we're trying
1338		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339		 * pressing PrtSc/SysRq alone, but simply 0x54
1340		 * when pressing Alt+PrtSc/SysRq.
1341		 */
1342		if (test_bit(KEY_LEFTALT, key_down) ||
1343		    test_bit(KEY_RIGHTALT, key_down)) {
1344			put_queue(vc, 0x54 | up_flag);
1345		} else {
1346			put_queue(vc, 0xe0);
1347			put_queue(vc, 0x2a | up_flag);
1348			put_queue(vc, 0xe0);
1349			put_queue(vc, 0x37 | up_flag);
1350		}
1351		break;
1352
1353	default:
1354		if (keycode > 255)
1355			return -1;
1356
1357		code = x86_keycodes[keycode];
1358		if (!code)
1359			return -1;
1360
1361		if (code & 0x100)
1362			put_queue(vc, 0xe0);
1363		put_queue(vc, (code & 0x7f) | up_flag);
1364
1365		break;
1366	}
1367
1368	return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375	return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380	if (keycode > 127)
1381		return -1;
1382
1383	put_queue(vc, keycode | up_flag);
1384	return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390	struct vc_data *vc = vc_cons[fg_console].d;
1391
1392	kbd = &kbd_table[vc->vc_num];
1393	if (kbd->kbdmode == VC_RAW)
1394		put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399	struct vc_data *vc = vc_cons[fg_console].d;
1400	unsigned short keysym, *key_map;
1401	unsigned char type;
1402	bool raw_mode;
1403	struct tty_struct *tty;
1404	int shift_final;
1405	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406	int rc;
1407
1408	tty = vc->port.tty;
1409
1410	if (tty && (!tty->driver_data)) {
1411		/* No driver data? Strange. Okay we fix it then. */
1412		tty->driver_data = vc;
1413	}
1414
1415	kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418	if (keycode == KEY_STOP)
1419		sparc_l1_a_state = down;
1420#endif
1421
1422	rep = (down == 2);
1423
1424	raw_mode = (kbd->kbdmode == VC_RAW);
1425	if (raw_mode && !hw_raw)
1426		if (emulate_raw(vc, keycode, !down << 7))
1427			if (keycode < BTN_MISC && printk_ratelimit())
1428				pr_warn("can't emulate rawmode for keycode %d\n",
1429					keycode);
1430
1431#ifdef CONFIG_SPARC
1432	if (keycode == KEY_A && sparc_l1_a_state) {
1433		sparc_l1_a_state = false;
1434		sun_do_break();
1435	}
1436#endif
1437
1438	if (kbd->kbdmode == VC_MEDIUMRAW) {
1439		/*
1440		 * This is extended medium raw mode, with keys above 127
1441		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443		 * interfere with anything else. The two bytes after 0 will
1444		 * always have the up flag set not to interfere with older
1445		 * applications. This allows for 16384 different keycodes,
1446		 * which should be enough.
1447		 */
1448		if (keycode < 128) {
1449			put_queue(vc, keycode | (!down << 7));
1450		} else {
1451			put_queue(vc, !down << 7);
1452			put_queue(vc, (keycode >> 7) | BIT(7));
1453			put_queue(vc, keycode | BIT(7));
1454		}
1455		raw_mode = true;
1456	}
1457
1458	assign_bit(keycode, key_down, down);
1459
1460	if (rep &&
1461	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463		/*
1464		 * Don't repeat a key if the input buffers are not empty and the
1465		 * characters get aren't echoed locally. This makes key repeat
1466		 * usable with slow applications and under heavy loads.
1467		 */
1468		return;
1469	}
1470
1471	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472	param.ledstate = kbd->ledflagstate;
1473	key_map = key_maps[shift_final];
1474
1475	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476					KBD_KEYCODE, &param);
1477	if (rc == NOTIFY_STOP || !key_map) {
1478		atomic_notifier_call_chain(&keyboard_notifier_list,
1479					   KBD_UNBOUND_KEYCODE, &param);
1480		do_compute_shiftstate();
1481		kbd->slockstate = 0;
1482		return;
1483	}
1484
1485	if (keycode < NR_KEYS)
1486		keysym = key_map[keycode];
1487	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489	else
1490		return;
1491
1492	type = KTYP(keysym);
1493
1494	if (type < 0xf0) {
1495		param.value = keysym;
1496		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497						KBD_UNICODE, &param);
1498		if (rc != NOTIFY_STOP)
1499			if (down && !raw_mode)
1500				k_unicode(vc, keysym, !down);
1501		return;
1502	}
1503
1504	type -= 0xf0;
1505
1506	if (type == KT_LETTER) {
1507		type = KT_LATIN;
1508		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509			key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510			if (key_map)
1511				keysym = key_map[keycode];
1512		}
1513	}
1514
1515	param.value = keysym;
1516	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517					KBD_KEYSYM, &param);
1518	if (rc == NOTIFY_STOP)
1519		return;
1520
1521	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522		return;
1523
1524	(*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526	param.ledstate = kbd->ledflagstate;
1527	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1528
1529	if (type != KT_SLOCK)
1530		kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534		      unsigned int event_code, int value)
1535{
1536	/* We are called with interrupts disabled, just take the lock */
1537	spin_lock(&kbd_event_lock);
1538
1539	if (event_type == EV_MSC && event_code == MSC_RAW &&
1540			kbd_is_hw_raw(handle->dev))
1541		kbd_rawcode(value);
1542	if (event_type == EV_KEY && event_code <= KEY_MAX)
1543		kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545	spin_unlock(&kbd_event_lock);
1546
1547	tasklet_schedule(&keyboard_tasklet);
1548	do_poke_blanked_console = 1;
1549	schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
1554	if (test_bit(EV_SND, dev->evbit))
1555		return true;
1556
1557	if (test_bit(EV_KEY, dev->evbit)) {
1558		if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559				BTN_MISC)
1560			return true;
1561		if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562					KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563			return true;
1564	}
1565
1566	return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576			const struct input_device_id *id)
1577{
1578	struct input_handle *handle;
1579	int error;
1580
1581	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582	if (!handle)
1583		return -ENOMEM;
1584
1585	handle->dev = dev;
1586	handle->handler = handler;
1587	handle->name = "kbd";
1588
1589	error = input_register_handle(handle);
1590	if (error)
1591		goto err_free_handle;
1592
1593	error = input_open_device(handle);
1594	if (error)
1595		goto err_unregister_handle;
1596
1597	return 0;
1598
1599 err_unregister_handle:
1600	input_unregister_handle(handle);
1601 err_free_handle:
1602	kfree(handle);
1603	return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608	input_close_device(handle);
1609	input_unregister_handle(handle);
1610	kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619	tasklet_disable(&keyboard_tasklet);
1620
1621	if (ledstate != -1U)
1622		kbd_update_leds_helper(handle, &ledstate);
1623
1624	tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628	{
1629		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630		.evbit = { BIT_MASK(EV_KEY) },
1631	},
1632
1633	{
1634		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635		.evbit = { BIT_MASK(EV_SND) },
1636	},
1637
1638	{ },    /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644	.event		= kbd_event,
1645	.match		= kbd_match,
1646	.connect	= kbd_connect,
1647	.disconnect	= kbd_disconnect,
1648	.start		= kbd_start,
1649	.name		= "kbd",
1650	.id_table	= kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655	int i;
1656	int error;
1657
1658	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659		kbd_table[i].ledflagstate = kbd_defleds();
1660		kbd_table[i].default_ledflagstate = kbd_defleds();
1661		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662		kbd_table[i].lockstate = KBD_DEFLOCK;
1663		kbd_table[i].slockstate = 0;
1664		kbd_table[i].modeflags = KBD_DEFMODE;
1665		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666	}
1667
1668	kbd_init_leds();
1669
1670	error = input_register_handler(&kbd_handler);
1671	if (error)
1672		return error;
1673
1674	tasklet_enable(&keyboard_tasklet);
1675	tasklet_schedule(&keyboard_tasklet);
1676
1677	return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 *	vt_do_diacrit		-	diacritical table updates
1684 *	@cmd: ioctl request
1685 *	@udp: pointer to user data for ioctl
1686 *	@perm: permissions check computed by caller
1687 *
1688 *	Update the diacritical tables atomically and safely. Lock them
1689 *	against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
1693	unsigned long flags;
1694	int asize;
1695	int ret = 0;
1696
1697	switch (cmd) {
1698	case KDGKBDIACR:
1699	{
1700		struct kbdiacrs __user *a = udp;
1701		struct kbdiacr *dia;
1702		int i;
1703
1704		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705								GFP_KERNEL);
1706		if (!dia)
1707			return -ENOMEM;
1708
1709		/* Lock the diacriticals table, make a copy and then
1710		   copy it after we unlock */
1711		spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713		asize = accent_table_size;
1714		for (i = 0; i < asize; i++) {
1715			dia[i].diacr = conv_uni_to_8bit(
1716						accent_table[i].diacr);
1717			dia[i].base = conv_uni_to_8bit(
1718						accent_table[i].base);
1719			dia[i].result = conv_uni_to_8bit(
1720						accent_table[i].result);
1721		}
1722		spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724		if (put_user(asize, &a->kb_cnt))
1725			ret = -EFAULT;
1726		else  if (copy_to_user(a->kbdiacr, dia,
1727				asize * sizeof(struct kbdiacr)))
1728			ret = -EFAULT;
1729		kfree(dia);
1730		return ret;
1731	}
1732	case KDGKBDIACRUC:
1733	{
1734		struct kbdiacrsuc __user *a = udp;
1735		void *buf;
1736
1737		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738								GFP_KERNEL);
1739		if (buf == NULL)
1740			return -ENOMEM;
1741
1742		/* Lock the diacriticals table, make a copy and then
1743		   copy it after we unlock */
1744		spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746		asize = accent_table_size;
1747		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749		spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751		if (put_user(asize, &a->kb_cnt))
1752			ret = -EFAULT;
1753		else if (copy_to_user(a->kbdiacruc, buf,
1754				asize*sizeof(struct kbdiacruc)))
1755			ret = -EFAULT;
1756		kfree(buf);
1757		return ret;
1758	}
1759
1760	case KDSKBDIACR:
1761	{
1762		struct kbdiacrs __user *a = udp;
1763		struct kbdiacr *dia = NULL;
1764		unsigned int ct;
1765		int i;
1766
1767		if (!perm)
1768			return -EPERM;
1769		if (get_user(ct, &a->kb_cnt))
1770			return -EFAULT;
1771		if (ct >= MAX_DIACR)
1772			return -EINVAL;
1773
1774		if (ct) {
1775			dia = memdup_array_user(a->kbdiacr,
1776						ct, sizeof(struct kbdiacr));
 
1777			if (IS_ERR(dia))
1778				return PTR_ERR(dia);
 
1779		}
1780
1781		spin_lock_irqsave(&kbd_event_lock, flags);
1782		accent_table_size = ct;
1783		for (i = 0; i < ct; i++) {
1784			accent_table[i].diacr =
1785					conv_8bit_to_uni(dia[i].diacr);
1786			accent_table[i].base =
1787					conv_8bit_to_uni(dia[i].base);
1788			accent_table[i].result =
1789					conv_8bit_to_uni(dia[i].result);
1790		}
1791		spin_unlock_irqrestore(&kbd_event_lock, flags);
1792		kfree(dia);
1793		return 0;
1794	}
1795
1796	case KDSKBDIACRUC:
1797	{
1798		struct kbdiacrsuc __user *a = udp;
1799		unsigned int ct;
1800		void *buf = NULL;
1801
1802		if (!perm)
1803			return -EPERM;
1804
1805		if (get_user(ct, &a->kb_cnt))
1806			return -EFAULT;
1807
1808		if (ct >= MAX_DIACR)
1809			return -EINVAL;
1810
1811		if (ct) {
1812			buf = memdup_array_user(a->kbdiacruc,
1813						ct, sizeof(struct kbdiacruc));
1814			if (IS_ERR(buf))
1815				return PTR_ERR(buf);
1816		} 
1817		spin_lock_irqsave(&kbd_event_lock, flags);
1818		if (ct)
1819			memcpy(accent_table, buf,
1820					ct * sizeof(struct kbdiacruc));
1821		accent_table_size = ct;
1822		spin_unlock_irqrestore(&kbd_event_lock, flags);
1823		kfree(buf);
1824		return 0;
1825	}
1826	}
1827	return ret;
1828}
1829
1830/**
1831 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1832 *	@console: the console to use
1833 *	@arg: the requested mode
1834 *
1835 *	Update the keyboard mode bits while holding the correct locks.
1836 *	Return 0 for success or an error code.
1837 */
1838int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1839{
1840	struct kbd_struct *kb = &kbd_table[console];
1841	int ret = 0;
1842	unsigned long flags;
1843
1844	spin_lock_irqsave(&kbd_event_lock, flags);
1845	switch(arg) {
1846	case K_RAW:
1847		kb->kbdmode = VC_RAW;
1848		break;
1849	case K_MEDIUMRAW:
1850		kb->kbdmode = VC_MEDIUMRAW;
1851		break;
1852	case K_XLATE:
1853		kb->kbdmode = VC_XLATE;
1854		do_compute_shiftstate();
1855		break;
1856	case K_UNICODE:
1857		kb->kbdmode = VC_UNICODE;
1858		do_compute_shiftstate();
1859		break;
1860	case K_OFF:
1861		kb->kbdmode = VC_OFF;
1862		break;
1863	default:
1864		ret = -EINVAL;
1865	}
1866	spin_unlock_irqrestore(&kbd_event_lock, flags);
1867	return ret;
1868}
1869
1870/**
1871 *	vt_do_kdskbmeta		-	set keyboard meta state
1872 *	@console: the console to use
1873 *	@arg: the requested meta state
1874 *
1875 *	Update the keyboard meta bits while holding the correct locks.
1876 *	Return 0 for success or an error code.
1877 */
1878int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1879{
1880	struct kbd_struct *kb = &kbd_table[console];
1881	int ret = 0;
1882	unsigned long flags;
1883
1884	spin_lock_irqsave(&kbd_event_lock, flags);
1885	switch(arg) {
1886	case K_METABIT:
1887		clr_vc_kbd_mode(kb, VC_META);
1888		break;
1889	case K_ESCPREFIX:
1890		set_vc_kbd_mode(kb, VC_META);
1891		break;
1892	default:
1893		ret = -EINVAL;
1894	}
1895	spin_unlock_irqrestore(&kbd_event_lock, flags);
1896	return ret;
1897}
1898
1899int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1900								int perm)
1901{
1902	struct kbkeycode tmp;
1903	int kc = 0;
1904
1905	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1906		return -EFAULT;
1907	switch (cmd) {
1908	case KDGETKEYCODE:
1909		kc = getkeycode(tmp.scancode);
1910		if (kc >= 0)
1911			kc = put_user(kc, &user_kbkc->keycode);
1912		break;
1913	case KDSETKEYCODE:
1914		if (!perm)
1915			return -EPERM;
1916		kc = setkeycode(tmp.scancode, tmp.keycode);
1917		break;
1918	}
1919	return kc;
1920}
1921
1922static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1923		unsigned char map)
1924{
1925	unsigned short *key_map, val;
1926	unsigned long flags;
1927
1928	/* Ensure another thread doesn't free it under us */
1929	spin_lock_irqsave(&kbd_event_lock, flags);
1930	key_map = key_maps[map];
1931	if (key_map) {
1932		val = U(key_map[idx]);
1933		if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1934			val = K_HOLE;
1935	} else
1936		val = idx ? K_HOLE : K_NOSUCHMAP;
1937	spin_unlock_irqrestore(&kbd_event_lock, flags);
1938
1939	return val;
1940}
1941
1942static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1943		unsigned char map, unsigned short val)
1944{
1945	unsigned long flags;
1946	unsigned short *key_map, *new_map, oldval;
1947
1948	if (!idx && val == K_NOSUCHMAP) {
1949		spin_lock_irqsave(&kbd_event_lock, flags);
1950		/* deallocate map */
1951		key_map = key_maps[map];
1952		if (map && key_map) {
1953			key_maps[map] = NULL;
1954			if (key_map[0] == U(K_ALLOCATED)) {
1955				kfree(key_map);
1956				keymap_count--;
1957			}
1958		}
1959		spin_unlock_irqrestore(&kbd_event_lock, flags);
1960
1961		return 0;
1962	}
1963
1964	if (KTYP(val) < NR_TYPES) {
1965		if (KVAL(val) > max_vals[KTYP(val)])
1966			return -EINVAL;
1967	} else if (kbdmode != VC_UNICODE)
1968		return -EINVAL;
1969
1970	/* ++Geert: non-PC keyboards may generate keycode zero */
1971#if !defined(__mc68000__) && !defined(__powerpc__)
1972	/* assignment to entry 0 only tests validity of args */
1973	if (!idx)
1974		return 0;
1975#endif
1976
1977	new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1978	if (!new_map)
1979		return -ENOMEM;
1980
1981	spin_lock_irqsave(&kbd_event_lock, flags);
1982	key_map = key_maps[map];
1983	if (key_map == NULL) {
1984		int j;
1985
1986		if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1987		    !capable(CAP_SYS_RESOURCE)) {
1988			spin_unlock_irqrestore(&kbd_event_lock, flags);
1989			kfree(new_map);
1990			return -EPERM;
1991		}
1992		key_maps[map] = new_map;
1993		key_map = new_map;
1994		key_map[0] = U(K_ALLOCATED);
1995		for (j = 1; j < NR_KEYS; j++)
1996			key_map[j] = U(K_HOLE);
1997		keymap_count++;
1998	} else
1999		kfree(new_map);
2000
2001	oldval = U(key_map[idx]);
2002	if (val == oldval)
2003		goto out;
2004
2005	/* Attention Key */
2006	if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2007		spin_unlock_irqrestore(&kbd_event_lock, flags);
2008		return -EPERM;
2009	}
2010
2011	key_map[idx] = U(val);
2012	if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2013		do_compute_shiftstate();
2014out:
2015	spin_unlock_irqrestore(&kbd_event_lock, flags);
2016
2017	return 0;
2018}
2019
2020int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2021						unsigned int console)
2022{
2023	struct kbd_struct *kb = &kbd_table[console];
2024	struct kbentry kbe;
2025
2026	if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2027		return -EFAULT;
2028
2029	switch (cmd) {
2030	case KDGKBENT:
2031		return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2032					kbe.kb_table),
2033				&user_kbe->kb_value);
2034	case KDSKBENT:
2035		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2036			return -EPERM;
2037		return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2038				kbe.kb_value);
2039	}
2040	return 0;
2041}
2042
2043static char *vt_kdskbsent(char *kbs, unsigned char cur)
2044{
2045	static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2046	char *cur_f = func_table[cur];
2047
2048	if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2049		strcpy(cur_f, kbs);
2050		return kbs;
2051	}
2052
2053	func_table[cur] = kbs;
2054
2055	return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056}
2057
2058int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2059{
2060	unsigned char kb_func;
2061	unsigned long flags;
2062	char *kbs;
2063	int ret;
2064
2065	if (get_user(kb_func, &user_kdgkb->kb_func))
2066		return -EFAULT;
2067
2068	kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2069
2070	switch (cmd) {
2071	case KDGKBSENT: {
2072		/* size should have been a struct member */
2073		ssize_t len = sizeof(user_kdgkb->kb_string);
2074
2075		kbs = kmalloc(len, GFP_KERNEL);
2076		if (!kbs)
2077			return -ENOMEM;
2078
2079		spin_lock_irqsave(&func_buf_lock, flags);
2080		len = strscpy(kbs, func_table[kb_func] ? : "", len);
2081		spin_unlock_irqrestore(&func_buf_lock, flags);
2082
2083		if (len < 0) {
2084			ret = -ENOSPC;
2085			break;
2086		}
2087		ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2088			-EFAULT : 0;
 
2089		break;
2090	}
2091	case KDSKBSENT:
2092		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2093			return -EPERM;
2094
2095		kbs = strndup_user(user_kdgkb->kb_string,
2096				sizeof(user_kdgkb->kb_string));
2097		if (IS_ERR(kbs))
2098			return PTR_ERR(kbs);
2099
2100		spin_lock_irqsave(&func_buf_lock, flags);
2101		kbs = vt_kdskbsent(kbs, kb_func);
2102		spin_unlock_irqrestore(&func_buf_lock, flags);
2103
2104		ret = 0;
2105		break;
2106	}
2107
2108	kfree(kbs);
2109
2110	return ret;
2111}
2112
2113int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114{
2115	struct kbd_struct *kb = &kbd_table[console];
2116        unsigned long flags;
2117	unsigned char ucval;
2118
2119        switch(cmd) {
2120	/* the ioctls below read/set the flags usually shown in the leds */
2121	/* don't use them - they will go away without warning */
2122	case KDGKBLED:
2123                spin_lock_irqsave(&kbd_event_lock, flags);
2124		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2125                spin_unlock_irqrestore(&kbd_event_lock, flags);
2126		return put_user(ucval, (char __user *)arg);
2127
2128	case KDSKBLED:
2129		if (!perm)
2130			return -EPERM;
2131		if (arg & ~0x77)
2132			return -EINVAL;
2133                spin_lock_irqsave(&led_lock, flags);
2134		kb->ledflagstate = (arg & 7);
2135		kb->default_ledflagstate = ((arg >> 4) & 7);
2136		set_leds();
2137                spin_unlock_irqrestore(&led_lock, flags);
2138		return 0;
2139
2140	/* the ioctls below only set the lights, not the functions */
2141	/* for those, see KDGKBLED and KDSKBLED above */
2142	case KDGETLED:
2143		ucval = getledstate();
2144		return put_user(ucval, (char __user *)arg);
2145
2146	case KDSETLED:
2147		if (!perm)
2148			return -EPERM;
2149		setledstate(kb, arg);
2150		return 0;
2151        }
2152        return -ENOIOCTLCMD;
2153}
2154
2155int vt_do_kdgkbmode(unsigned int console)
2156{
2157	struct kbd_struct *kb = &kbd_table[console];
2158	/* This is a spot read so needs no locking */
2159	switch (kb->kbdmode) {
2160	case VC_RAW:
2161		return K_RAW;
2162	case VC_MEDIUMRAW:
2163		return K_MEDIUMRAW;
2164	case VC_UNICODE:
2165		return K_UNICODE;
2166	case VC_OFF:
2167		return K_OFF;
2168	default:
2169		return K_XLATE;
2170	}
2171}
2172
2173/**
2174 *	vt_do_kdgkbmeta		-	report meta status
2175 *	@console: console to report
2176 *
2177 *	Report the meta flag status of this console
2178 */
2179int vt_do_kdgkbmeta(unsigned int console)
2180{
2181	struct kbd_struct *kb = &kbd_table[console];
2182        /* Again a spot read so no locking */
2183	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2184}
2185
2186/**
2187 *	vt_reset_unicode	-	reset the unicode status
2188 *	@console: console being reset
2189 *
2190 *	Restore the unicode console state to its default
2191 */
2192void vt_reset_unicode(unsigned int console)
2193{
2194	unsigned long flags;
2195
2196	spin_lock_irqsave(&kbd_event_lock, flags);
2197	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2198	spin_unlock_irqrestore(&kbd_event_lock, flags);
2199}
2200
2201/**
2202 *	vt_get_shift_state	-	shift bit state
2203 *
2204 *	Report the shift bits from the keyboard state. We have to export
2205 *	this to support some oddities in the vt layer.
2206 */
2207int vt_get_shift_state(void)
2208{
2209        /* Don't lock as this is a transient report */
2210        return shift_state;
2211}
2212
2213/**
2214 *	vt_reset_keyboard	-	reset keyboard state
2215 *	@console: console to reset
2216 *
2217 *	Reset the keyboard bits for a console as part of a general console
2218 *	reset event
2219 */
2220void vt_reset_keyboard(unsigned int console)
2221{
2222	struct kbd_struct *kb = &kbd_table[console];
2223	unsigned long flags;
2224
2225	spin_lock_irqsave(&kbd_event_lock, flags);
2226	set_vc_kbd_mode(kb, VC_REPEAT);
2227	clr_vc_kbd_mode(kb, VC_CKMODE);
2228	clr_vc_kbd_mode(kb, VC_APPLIC);
2229	clr_vc_kbd_mode(kb, VC_CRLF);
2230	kb->lockstate = 0;
2231	kb->slockstate = 0;
2232	spin_lock(&led_lock);
2233	kb->ledmode = LED_SHOW_FLAGS;
2234	kb->ledflagstate = kb->default_ledflagstate;
2235	spin_unlock(&led_lock);
2236	/* do not do set_leds here because this causes an endless tasklet loop
2237	   when the keyboard hasn't been initialized yet */
2238	spin_unlock_irqrestore(&kbd_event_lock, flags);
2239}
2240
2241/**
2242 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2243 *	@console: console to read from
2244 *	@bit: mode bit to read
2245 *
2246 *	Report back a vt mode bit. We do this without locking so the
2247 *	caller must be sure that there are no synchronization needs
2248 */
2249
2250int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251{
2252	struct kbd_struct *kb = &kbd_table[console];
2253	return vc_kbd_mode(kb, bit);
2254}
2255
2256/**
2257 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2258 *	@console: console to read from
2259 *	@bit: mode bit to read
2260 *
2261 *	Set a vt mode bit. We do this without locking so the
2262 *	caller must be sure that there are no synchronization needs
2263 */
2264
2265void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266{
2267	struct kbd_struct *kb = &kbd_table[console];
2268	unsigned long flags;
2269
2270	spin_lock_irqsave(&kbd_event_lock, flags);
2271	set_vc_kbd_mode(kb, bit);
2272	spin_unlock_irqrestore(&kbd_event_lock, flags);
2273}
2274
2275/**
2276 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2277 *	@console: console to read from
2278 *	@bit: mode bit to read
2279 *
2280 *	Report back a vt mode bit. We do this without locking so the
2281 *	caller must be sure that there are no synchronization needs
2282 */
2283
2284void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285{
2286	struct kbd_struct *kb = &kbd_table[console];
2287	unsigned long flags;
2288
2289	spin_lock_irqsave(&kbd_event_lock, flags);
2290	clr_vc_kbd_mode(kb, bit);
2291	spin_unlock_irqrestore(&kbd_event_lock, flags);
2292}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/init.h>
  30#include <linux/input.h>
  31#include <linux/jiffies.h>
  32#include <linux/kbd_diacr.h>
  33#include <linux/kbd_kern.h>
  34#include <linux/leds.h>
  35#include <linux/mm.h>
  36#include <linux/module.h>
  37#include <linux/nospec.h>
  38#include <linux/notifier.h>
  39#include <linux/reboot.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/signal.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/string.h>
  45#include <linux/tty_flip.h>
  46#include <linux/tty.h>
  47#include <linux/uaccess.h>
  48#include <linux/vt_kern.h>
  49
  50#include <asm/irq_regs.h>
  51
  52/*
  53 * Exported functions/variables
  54 */
  55
  56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
  57
  58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  59#include <asm/kbdleds.h>
  60#else
  61static inline int kbd_defleds(void)
  62{
  63	return 0;
  64}
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69/*
  70 * Handler Tables.
  71 */
  72
  73#define K_HANDLERS\
  74	k_self,		k_fn,		k_spec,		k_pad,\
  75	k_dead,		k_cons,		k_cur,		k_shift,\
  76	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  77	k_slock,	k_dead2,	k_brl,		k_ignore
  78
  79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  80			    char up_flag);
  81static k_handler_fn K_HANDLERS;
  82static k_handler_fn *k_handler[16] = { K_HANDLERS };
  83
  84#define FN_HANDLERS\
  85	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  86	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  87	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  88	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  89	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  90
  91typedef void (fn_handler_fn)(struct vc_data *vc);
  92static fn_handler_fn FN_HANDLERS;
  93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  94
  95/*
  96 * Variables exported for vt_ioctl.c
  97 */
  98
  99struct vt_spawn_console vt_spawn_con = {
 100	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 101	.pid  = NULL,
 102	.sig  = 0,
 103};
 104
 105
 106/*
 107 * Internal Data.
 108 */
 109
 110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111static struct kbd_struct *kbd = kbd_table;
 112
 113/* maximum values each key_handler can handle */
 114static const unsigned char max_vals[] = {
 115	[ KT_LATIN	] = 255,
 116	[ KT_FN		] = ARRAY_SIZE(func_table) - 1,
 117	[ KT_SPEC	] = ARRAY_SIZE(fn_handler) - 1,
 118	[ KT_PAD	] = NR_PAD - 1,
 119	[ KT_DEAD	] = NR_DEAD - 1,
 120	[ KT_CONS	] = 255,
 121	[ KT_CUR	] = 3,
 122	[ KT_SHIFT	] = NR_SHIFT - 1,
 123	[ KT_META	] = 255,
 124	[ KT_ASCII	] = NR_ASCII - 1,
 125	[ KT_LOCK	] = NR_LOCK - 1,
 126	[ KT_LETTER	] = 255,
 127	[ KT_SLOCK	] = NR_LOCK - 1,
 128	[ KT_DEAD2	] = 255,
 129	[ KT_BRL	] = NR_BRL - 1,
 130};
 131
 132static const int NR_TYPES = ARRAY_SIZE(max_vals);
 133
 134static void kbd_bh(struct tasklet_struct *unused);
 135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
 136
 137static struct input_handler kbd_handler;
 138static DEFINE_SPINLOCK(kbd_event_lock);
 139static DEFINE_SPINLOCK(led_lock);
 140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 141static DECLARE_BITMAP(key_down, KEY_CNT);	/* keyboard key bitmap */
 142static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 143static bool dead_key_next;
 144
 145/* Handles a number being assembled on the number pad */
 146static bool npadch_active;
 147static unsigned int npadch_value;
 148
 149static unsigned int diacr;
 150static bool rep;			/* flag telling character repeat */
 151
 152static int shift_state = 0;
 153
 154static unsigned int ledstate = -1U;			/* undefined */
 155static unsigned char ledioctl;
 
 156
 157/*
 158 * Notifier list for console keyboard events
 159 */
 160static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 161
 162int register_keyboard_notifier(struct notifier_block *nb)
 163{
 164	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 165}
 166EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 167
 168int unregister_keyboard_notifier(struct notifier_block *nb)
 169{
 170	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 171}
 172EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 173
 174/*
 175 * Translation of scancodes to keycodes. We set them on only the first
 176 * keyboard in the list that accepts the scancode and keycode.
 177 * Explanation for not choosing the first attached keyboard anymore:
 178 *  USB keyboards for example have two event devices: one for all "normal"
 179 *  keys and one for extra function keys (like "volume up", "make coffee",
 180 *  etc.). So this means that scancodes for the extra function keys won't
 181 *  be valid for the first event device, but will be for the second.
 182 */
 183
 184struct getset_keycode_data {
 185	struct input_keymap_entry ke;
 186	int error;
 187};
 188
 189static int getkeycode_helper(struct input_handle *handle, void *data)
 190{
 191	struct getset_keycode_data *d = data;
 192
 193	d->error = input_get_keycode(handle->dev, &d->ke);
 194
 195	return d->error == 0; /* stop as soon as we successfully get one */
 196}
 197
 198static int getkeycode(unsigned int scancode)
 199{
 200	struct getset_keycode_data d = {
 201		.ke	= {
 202			.flags		= 0,
 203			.len		= sizeof(scancode),
 204			.keycode	= 0,
 205		},
 206		.error	= -ENODEV,
 207	};
 208
 209	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 210
 211	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 212
 213	return d.error ?: d.ke.keycode;
 214}
 215
 216static int setkeycode_helper(struct input_handle *handle, void *data)
 217{
 218	struct getset_keycode_data *d = data;
 219
 220	d->error = input_set_keycode(handle->dev, &d->ke);
 221
 222	return d->error == 0; /* stop as soon as we successfully set one */
 223}
 224
 225static int setkeycode(unsigned int scancode, unsigned int keycode)
 226{
 227	struct getset_keycode_data d = {
 228		.ke	= {
 229			.flags		= 0,
 230			.len		= sizeof(scancode),
 231			.keycode	= keycode,
 232		},
 233		.error	= -ENODEV,
 234	};
 235
 236	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 237
 238	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 239
 240	return d.error;
 241}
 242
 243/*
 244 * Making beeps and bells. Note that we prefer beeps to bells, but when
 245 * shutting the sound off we do both.
 246 */
 247
 248static int kd_sound_helper(struct input_handle *handle, void *data)
 249{
 250	unsigned int *hz = data;
 251	struct input_dev *dev = handle->dev;
 252
 253	if (test_bit(EV_SND, dev->evbit)) {
 254		if (test_bit(SND_TONE, dev->sndbit)) {
 255			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 256			if (*hz)
 257				return 0;
 258		}
 259		if (test_bit(SND_BELL, dev->sndbit))
 260			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 261	}
 262
 263	return 0;
 264}
 265
 266static void kd_nosound(struct timer_list *unused)
 267{
 268	static unsigned int zero;
 269
 270	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 271}
 272
 273static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 274
 275void kd_mksound(unsigned int hz, unsigned int ticks)
 276{
 277	del_timer_sync(&kd_mksound_timer);
 278
 279	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 280
 281	if (hz && ticks)
 282		mod_timer(&kd_mksound_timer, jiffies + ticks);
 283}
 284EXPORT_SYMBOL(kd_mksound);
 285
 286/*
 287 * Setting the keyboard rate.
 288 */
 289
 290static int kbd_rate_helper(struct input_handle *handle, void *data)
 291{
 292	struct input_dev *dev = handle->dev;
 293	struct kbd_repeat *rpt = data;
 294
 295	if (test_bit(EV_REP, dev->evbit)) {
 296
 297		if (rpt[0].delay > 0)
 298			input_inject_event(handle,
 299					   EV_REP, REP_DELAY, rpt[0].delay);
 300		if (rpt[0].period > 0)
 301			input_inject_event(handle,
 302					   EV_REP, REP_PERIOD, rpt[0].period);
 303
 304		rpt[1].delay = dev->rep[REP_DELAY];
 305		rpt[1].period = dev->rep[REP_PERIOD];
 306	}
 307
 308	return 0;
 309}
 310
 311int kbd_rate(struct kbd_repeat *rpt)
 312{
 313	struct kbd_repeat data[2] = { *rpt };
 314
 315	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 316	*rpt = data[1];	/* Copy currently used settings */
 317
 318	return 0;
 319}
 320
 321/*
 322 * Helper Functions.
 323 */
 324static void put_queue(struct vc_data *vc, int ch)
 325{
 326	tty_insert_flip_char(&vc->port, ch, 0);
 327	tty_schedule_flip(&vc->port);
 328}
 329
 330static void puts_queue(struct vc_data *vc, const char *cp)
 331{
 332	tty_insert_flip_string(&vc->port, cp, strlen(cp));
 333	tty_schedule_flip(&vc->port);
 334}
 335
 336static void applkey(struct vc_data *vc, int key, char mode)
 337{
 338	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 339
 340	buf[1] = (mode ? 'O' : '[');
 341	buf[2] = key;
 342	puts_queue(vc, buf);
 343}
 344
 345/*
 346 * Many other routines do put_queue, but I think either
 347 * they produce ASCII, or they produce some user-assigned
 348 * string, and in both cases we might assume that it is
 349 * in utf-8 already.
 350 */
 351static void to_utf8(struct vc_data *vc, uint c)
 352{
 353	if (c < 0x80)
 354		/*  0******* */
 355		put_queue(vc, c);
 356	else if (c < 0x800) {
 357		/* 110***** 10****** */
 358		put_queue(vc, 0xc0 | (c >> 6));
 359		put_queue(vc, 0x80 | (c & 0x3f));
 360	} else if (c < 0x10000) {
 361		if (c >= 0xD800 && c < 0xE000)
 362			return;
 363		if (c == 0xFFFF)
 364			return;
 365		/* 1110**** 10****** 10****** */
 366		put_queue(vc, 0xe0 | (c >> 12));
 367		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 368		put_queue(vc, 0x80 | (c & 0x3f));
 369	} else if (c < 0x110000) {
 370		/* 11110*** 10****** 10****** 10****** */
 371		put_queue(vc, 0xf0 | (c >> 18));
 372		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 373		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 374		put_queue(vc, 0x80 | (c & 0x3f));
 375	}
 376}
 377
 378/* FIXME: review locking for vt.c callers */
 379static void set_leds(void)
 380{
 381	tasklet_schedule(&keyboard_tasklet);
 382}
 383
 384/*
 385 * Called after returning from RAW mode or when changing consoles - recompute
 386 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 387 * undefined, so that shiftkey release is seen. The caller must hold the
 388 * kbd_event_lock.
 389 */
 390
 391static void do_compute_shiftstate(void)
 392{
 393	unsigned int k, sym, val;
 394
 395	shift_state = 0;
 396	memset(shift_down, 0, sizeof(shift_down));
 397
 398	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 399		sym = U(key_maps[0][k]);
 400		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 401			continue;
 402
 403		val = KVAL(sym);
 404		if (val == KVAL(K_CAPSSHIFT))
 405			val = KVAL(K_SHIFT);
 406
 407		shift_down[val]++;
 408		shift_state |= BIT(val);
 409	}
 410}
 411
 412/* We still have to export this method to vt.c */
 413void vt_set_leds_compute_shiftstate(void)
 414{
 415	unsigned long flags;
 416
 
 
 
 
 
 
 417	set_leds();
 418
 419	spin_lock_irqsave(&kbd_event_lock, flags);
 420	do_compute_shiftstate();
 421	spin_unlock_irqrestore(&kbd_event_lock, flags);
 422}
 423
 424/*
 425 * We have a combining character DIACR here, followed by the character CH.
 426 * If the combination occurs in the table, return the corresponding value.
 427 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 428 * Otherwise, conclude that DIACR was not combining after all,
 429 * queue it and return CH.
 430 */
 431static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 432{
 433	unsigned int d = diacr;
 434	unsigned int i;
 435
 436	diacr = 0;
 437
 438	if ((d & ~0xff) == BRL_UC_ROW) {
 439		if ((ch & ~0xff) == BRL_UC_ROW)
 440			return d | ch;
 441	} else {
 442		for (i = 0; i < accent_table_size; i++)
 443			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 444				return accent_table[i].result;
 445	}
 446
 447	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 448		return d;
 449
 450	if (kbd->kbdmode == VC_UNICODE)
 451		to_utf8(vc, d);
 452	else {
 453		int c = conv_uni_to_8bit(d);
 454		if (c != -1)
 455			put_queue(vc, c);
 456	}
 457
 458	return ch;
 459}
 460
 461/*
 462 * Special function handlers
 463 */
 464static void fn_enter(struct vc_data *vc)
 465{
 466	if (diacr) {
 467		if (kbd->kbdmode == VC_UNICODE)
 468			to_utf8(vc, diacr);
 469		else {
 470			int c = conv_uni_to_8bit(diacr);
 471			if (c != -1)
 472				put_queue(vc, c);
 473		}
 474		diacr = 0;
 475	}
 476
 477	put_queue(vc, '\r');
 478	if (vc_kbd_mode(kbd, VC_CRLF))
 479		put_queue(vc, '\n');
 480}
 481
 482static void fn_caps_toggle(struct vc_data *vc)
 483{
 484	if (rep)
 485		return;
 486
 487	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 488}
 489
 490static void fn_caps_on(struct vc_data *vc)
 491{
 492	if (rep)
 493		return;
 494
 495	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 496}
 497
 498static void fn_show_ptregs(struct vc_data *vc)
 499{
 500	struct pt_regs *regs = get_irq_regs();
 501
 502	if (regs)
 503		show_regs(regs);
 504}
 505
 506static void fn_hold(struct vc_data *vc)
 507{
 508	struct tty_struct *tty = vc->port.tty;
 509
 510	if (rep || !tty)
 511		return;
 512
 513	/*
 514	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 515	 * these routines are also activated by ^S/^Q.
 516	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 517	 */
 518	if (tty->flow.stopped)
 519		start_tty(tty);
 520	else
 521		stop_tty(tty);
 522}
 523
 524static void fn_num(struct vc_data *vc)
 525{
 526	if (vc_kbd_mode(kbd, VC_APPLIC))
 527		applkey(vc, 'P', 1);
 528	else
 529		fn_bare_num(vc);
 530}
 531
 532/*
 533 * Bind this to Shift-NumLock if you work in application keypad mode
 534 * but want to be able to change the NumLock flag.
 535 * Bind this to NumLock if you prefer that the NumLock key always
 536 * changes the NumLock flag.
 537 */
 538static void fn_bare_num(struct vc_data *vc)
 539{
 540	if (!rep)
 541		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 542}
 543
 544static void fn_lastcons(struct vc_data *vc)
 545{
 546	/* switch to the last used console, ChN */
 547	set_console(last_console);
 548}
 549
 550static void fn_dec_console(struct vc_data *vc)
 551{
 552	int i, cur = fg_console;
 553
 554	/* Currently switching?  Queue this next switch relative to that. */
 555	if (want_console != -1)
 556		cur = want_console;
 557
 558	for (i = cur - 1; i != cur; i--) {
 559		if (i == -1)
 560			i = MAX_NR_CONSOLES - 1;
 561		if (vc_cons_allocated(i))
 562			break;
 563	}
 564	set_console(i);
 565}
 566
 567static void fn_inc_console(struct vc_data *vc)
 568{
 569	int i, cur = fg_console;
 570
 571	/* Currently switching?  Queue this next switch relative to that. */
 572	if (want_console != -1)
 573		cur = want_console;
 574
 575	for (i = cur+1; i != cur; i++) {
 576		if (i == MAX_NR_CONSOLES)
 577			i = 0;
 578		if (vc_cons_allocated(i))
 579			break;
 580	}
 581	set_console(i);
 582}
 583
 584static void fn_send_intr(struct vc_data *vc)
 585{
 586	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 587	tty_schedule_flip(&vc->port);
 588}
 589
 590static void fn_scroll_forw(struct vc_data *vc)
 591{
 592	scrollfront(vc, 0);
 593}
 594
 595static void fn_scroll_back(struct vc_data *vc)
 596{
 597	scrollback(vc);
 598}
 599
 600static void fn_show_mem(struct vc_data *vc)
 601{
 602	show_mem(0, NULL);
 603}
 604
 605static void fn_show_state(struct vc_data *vc)
 606{
 607	show_state();
 608}
 609
 610static void fn_boot_it(struct vc_data *vc)
 611{
 612	ctrl_alt_del();
 613}
 614
 615static void fn_compose(struct vc_data *vc)
 616{
 617	dead_key_next = true;
 618}
 619
 620static void fn_spawn_con(struct vc_data *vc)
 621{
 622	spin_lock(&vt_spawn_con.lock);
 623	if (vt_spawn_con.pid)
 624		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 625			put_pid(vt_spawn_con.pid);
 626			vt_spawn_con.pid = NULL;
 627		}
 628	spin_unlock(&vt_spawn_con.lock);
 629}
 630
 631static void fn_SAK(struct vc_data *vc)
 632{
 633	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 634	schedule_work(SAK_work);
 635}
 636
 637static void fn_null(struct vc_data *vc)
 638{
 639	do_compute_shiftstate();
 640}
 641
 642/*
 643 * Special key handlers
 644 */
 645static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 646{
 647}
 648
 649static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 650{
 651	if (up_flag)
 652		return;
 653	if (value >= ARRAY_SIZE(fn_handler))
 654		return;
 655	if ((kbd->kbdmode == VC_RAW ||
 656	     kbd->kbdmode == VC_MEDIUMRAW ||
 657	     kbd->kbdmode == VC_OFF) &&
 658	     value != KVAL(K_SAK))
 659		return;		/* SAK is allowed even in raw mode */
 660	fn_handler[value](vc);
 661}
 662
 663static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 664{
 665	pr_err("k_lowercase was called - impossible\n");
 666}
 667
 668static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 669{
 670	if (up_flag)
 671		return;		/* no action, if this is a key release */
 672
 673	if (diacr)
 674		value = handle_diacr(vc, value);
 675
 676	if (dead_key_next) {
 677		dead_key_next = false;
 678		diacr = value;
 679		return;
 680	}
 681	if (kbd->kbdmode == VC_UNICODE)
 682		to_utf8(vc, value);
 683	else {
 684		int c = conv_uni_to_8bit(value);
 685		if (c != -1)
 686			put_queue(vc, c);
 687	}
 688}
 689
 690/*
 691 * Handle dead key. Note that we now may have several
 692 * dead keys modifying the same character. Very useful
 693 * for Vietnamese.
 694 */
 695static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 696{
 697	if (up_flag)
 698		return;
 699
 700	diacr = (diacr ? handle_diacr(vc, value) : value);
 701}
 702
 703static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 704{
 705	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 706}
 707
 708static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 709{
 710	k_deadunicode(vc, value, up_flag);
 711}
 712
 713/*
 714 * Obsolete - for backwards compatibility only
 715 */
 716static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 717{
 718	static const unsigned char ret_diacr[NR_DEAD] = {
 719		'`',	/* dead_grave */
 720		'\'',	/* dead_acute */
 721		'^',	/* dead_circumflex */
 722		'~',	/* dead_tilda */
 723		'"',	/* dead_diaeresis */
 724		',',	/* dead_cedilla */
 725		'_',	/* dead_macron */
 726		'U',	/* dead_breve */
 727		'.',	/* dead_abovedot */
 728		'*',	/* dead_abovering */
 729		'=',	/* dead_doubleacute */
 730		'c',	/* dead_caron */
 731		'k',	/* dead_ogonek */
 732		'i',	/* dead_iota */
 733		'#',	/* dead_voiced_sound */
 734		'o',	/* dead_semivoiced_sound */
 735		'!',	/* dead_belowdot */
 736		'?',	/* dead_hook */
 737		'+',	/* dead_horn */
 738		'-',	/* dead_stroke */
 739		')',	/* dead_abovecomma */
 740		'(',	/* dead_abovereversedcomma */
 741		':',	/* dead_doublegrave */
 742		'n',	/* dead_invertedbreve */
 743		';',	/* dead_belowcomma */
 744		'$',	/* dead_currency */
 745		'@',	/* dead_greek */
 746	};
 747
 748	k_deadunicode(vc, ret_diacr[value], up_flag);
 749}
 750
 751static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 752{
 753	if (up_flag)
 754		return;
 755
 756	set_console(value);
 757}
 758
 759static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 760{
 761	if (up_flag)
 762		return;
 763
 764	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 765		unsigned long flags;
 766
 767		spin_lock_irqsave(&func_buf_lock, flags);
 768		if (func_table[value])
 769			puts_queue(vc, func_table[value]);
 770		spin_unlock_irqrestore(&func_buf_lock, flags);
 771
 772	} else
 773		pr_err("k_fn called with value=%d\n", value);
 774}
 775
 776static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 777{
 778	static const char cur_chars[] = "BDCA";
 779
 780	if (up_flag)
 781		return;
 782
 783	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 784}
 785
 786static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 787{
 788	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 789	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 790
 791	if (up_flag)
 792		return;		/* no action, if this is a key release */
 793
 794	/* kludge... shift forces cursor/number keys */
 795	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 796		applkey(vc, app_map[value], 1);
 797		return;
 798	}
 799
 800	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 801
 802		switch (value) {
 803		case KVAL(K_PCOMMA):
 804		case KVAL(K_PDOT):
 805			k_fn(vc, KVAL(K_REMOVE), 0);
 806			return;
 807		case KVAL(K_P0):
 808			k_fn(vc, KVAL(K_INSERT), 0);
 809			return;
 810		case KVAL(K_P1):
 811			k_fn(vc, KVAL(K_SELECT), 0);
 812			return;
 813		case KVAL(K_P2):
 814			k_cur(vc, KVAL(K_DOWN), 0);
 815			return;
 816		case KVAL(K_P3):
 817			k_fn(vc, KVAL(K_PGDN), 0);
 818			return;
 819		case KVAL(K_P4):
 820			k_cur(vc, KVAL(K_LEFT), 0);
 821			return;
 822		case KVAL(K_P6):
 823			k_cur(vc, KVAL(K_RIGHT), 0);
 824			return;
 825		case KVAL(K_P7):
 826			k_fn(vc, KVAL(K_FIND), 0);
 827			return;
 828		case KVAL(K_P8):
 829			k_cur(vc, KVAL(K_UP), 0);
 830			return;
 831		case KVAL(K_P9):
 832			k_fn(vc, KVAL(K_PGUP), 0);
 833			return;
 834		case KVAL(K_P5):
 835			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 836			return;
 837		}
 838	}
 839
 840	put_queue(vc, pad_chars[value]);
 841	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 842		put_queue(vc, '\n');
 843}
 844
 845static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 846{
 847	int old_state = shift_state;
 848
 849	if (rep)
 850		return;
 851	/*
 852	 * Mimic typewriter:
 853	 * a CapsShift key acts like Shift but undoes CapsLock
 854	 */
 855	if (value == KVAL(K_CAPSSHIFT)) {
 856		value = KVAL(K_SHIFT);
 857		if (!up_flag)
 858			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 859	}
 860
 861	if (up_flag) {
 862		/*
 863		 * handle the case that two shift or control
 864		 * keys are depressed simultaneously
 865		 */
 866		if (shift_down[value])
 867			shift_down[value]--;
 868	} else
 869		shift_down[value]++;
 870
 871	if (shift_down[value])
 872		shift_state |= BIT(value);
 873	else
 874		shift_state &= ~BIT(value);
 875
 876	/* kludge */
 877	if (up_flag && shift_state != old_state && npadch_active) {
 878		if (kbd->kbdmode == VC_UNICODE)
 879			to_utf8(vc, npadch_value);
 880		else
 881			put_queue(vc, npadch_value & 0xff);
 882		npadch_active = false;
 883	}
 884}
 885
 886static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 887{
 888	if (up_flag)
 889		return;
 890
 891	if (vc_kbd_mode(kbd, VC_META)) {
 892		put_queue(vc, '\033');
 893		put_queue(vc, value);
 894	} else
 895		put_queue(vc, value | BIT(7));
 896}
 897
 898static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 899{
 900	unsigned int base;
 901
 902	if (up_flag)
 903		return;
 904
 905	if (value < 10) {
 906		/* decimal input of code, while Alt depressed */
 907		base = 10;
 908	} else {
 909		/* hexadecimal input of code, while AltGr depressed */
 910		value -= 10;
 911		base = 16;
 912	}
 913
 914	if (!npadch_active) {
 915		npadch_value = 0;
 916		npadch_active = true;
 917	}
 918
 919	npadch_value = npadch_value * base + value;
 920}
 921
 922static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 923{
 924	if (up_flag || rep)
 925		return;
 926
 927	chg_vc_kbd_lock(kbd, value);
 928}
 929
 930static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 931{
 932	k_shift(vc, value, up_flag);
 933	if (up_flag || rep)
 934		return;
 935
 936	chg_vc_kbd_slock(kbd, value);
 937	/* try to make Alt, oops, AltGr and such work */
 938	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 939		kbd->slockstate = 0;
 940		chg_vc_kbd_slock(kbd, value);
 941	}
 942}
 943
 944/* by default, 300ms interval for combination release */
 945static unsigned brl_timeout = 300;
 946MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 947module_param(brl_timeout, uint, 0644);
 948
 949static unsigned brl_nbchords = 1;
 950MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 951module_param(brl_nbchords, uint, 0644);
 952
 953static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 954{
 955	static unsigned long chords;
 956	static unsigned committed;
 957
 958	if (!brl_nbchords)
 959		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 960	else {
 961		committed |= pattern;
 962		chords++;
 963		if (chords == brl_nbchords) {
 964			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 965			chords = 0;
 966			committed = 0;
 967		}
 968	}
 969}
 970
 971static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 972{
 973	static unsigned pressed, committing;
 974	static unsigned long releasestart;
 975
 976	if (kbd->kbdmode != VC_UNICODE) {
 977		if (!up_flag)
 978			pr_warn("keyboard mode must be unicode for braille patterns\n");
 979		return;
 980	}
 981
 982	if (!value) {
 983		k_unicode(vc, BRL_UC_ROW, up_flag);
 984		return;
 985	}
 986
 987	if (value > 8)
 988		return;
 989
 990	if (!up_flag) {
 991		pressed |= BIT(value - 1);
 992		if (!brl_timeout)
 993			committing = pressed;
 994	} else if (brl_timeout) {
 995		if (!committing ||
 996		    time_after(jiffies,
 997			       releasestart + msecs_to_jiffies(brl_timeout))) {
 998			committing = pressed;
 999			releasestart = jiffies;
1000		}
1001		pressed &= ~BIT(value - 1);
1002		if (!pressed && committing) {
1003			k_brlcommit(vc, committing, 0);
1004			committing = 0;
1005		}
1006	} else {
1007		if (committing) {
1008			k_brlcommit(vc, committing, 0);
1009			committing = 0;
1010		}
1011		pressed &= ~BIT(value - 1);
1012	}
1013}
1014
1015#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1016
1017struct kbd_led_trigger {
1018	struct led_trigger trigger;
1019	unsigned int mask;
1020};
1021
1022static int kbd_led_trigger_activate(struct led_classdev *cdev)
1023{
1024	struct kbd_led_trigger *trigger =
1025		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1026
1027	tasklet_disable(&keyboard_tasklet);
1028	if (ledstate != -1U)
1029		led_trigger_event(&trigger->trigger,
1030				  ledstate & trigger->mask ?
1031					LED_FULL : LED_OFF);
1032	tasklet_enable(&keyboard_tasklet);
1033
1034	return 0;
1035}
1036
1037#define KBD_LED_TRIGGER(_led_bit, _name) {			\
1038		.trigger = {					\
1039			.name = _name,				\
1040			.activate = kbd_led_trigger_activate,	\
1041		},						\
1042		.mask	= BIT(_led_bit),			\
1043	}
1044
1045#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1046	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1047
1048static struct kbd_led_trigger kbd_led_triggers[] = {
1049	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1050	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1051	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1052	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1053
1054	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1055	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1056	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1057	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1058	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1059	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1060	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1061	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1062};
1063
1064static void kbd_propagate_led_state(unsigned int old_state,
1065				    unsigned int new_state)
1066{
1067	struct kbd_led_trigger *trigger;
1068	unsigned int changed = old_state ^ new_state;
1069	int i;
1070
1071	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1072		trigger = &kbd_led_triggers[i];
1073
1074		if (changed & trigger->mask)
1075			led_trigger_event(&trigger->trigger,
1076					  new_state & trigger->mask ?
1077						LED_FULL : LED_OFF);
1078	}
1079}
1080
1081static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1082{
1083	unsigned int led_state = *(unsigned int *)data;
1084
1085	if (test_bit(EV_LED, handle->dev->evbit))
1086		kbd_propagate_led_state(~led_state, led_state);
1087
1088	return 0;
1089}
1090
1091static void kbd_init_leds(void)
1092{
1093	int error;
1094	int i;
1095
1096	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1097		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1098		if (error)
1099			pr_err("error %d while registering trigger %s\n",
1100			       error, kbd_led_triggers[i].trigger.name);
1101	}
1102}
1103
1104#else
1105
1106static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1107{
1108	unsigned int leds = *(unsigned int *)data;
1109
1110	if (test_bit(EV_LED, handle->dev->evbit)) {
1111		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1112		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & BIT(1)));
1113		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & BIT(2)));
1114		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1115	}
1116
1117	return 0;
1118}
1119
1120static void kbd_propagate_led_state(unsigned int old_state,
1121				    unsigned int new_state)
1122{
1123	input_handler_for_each_handle(&kbd_handler, &new_state,
1124				      kbd_update_leds_helper);
1125}
1126
1127static void kbd_init_leds(void)
1128{
1129}
1130
1131#endif
1132
1133/*
1134 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1135 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1136 * or (iii) specified bits of specified words in kernel memory.
1137 */
1138static unsigned char getledstate(void)
1139{
1140	return ledstate & 0xff;
1141}
1142
1143void setledstate(struct kbd_struct *kb, unsigned int led)
1144{
1145        unsigned long flags;
1146        spin_lock_irqsave(&led_lock, flags);
1147	if (!(led & ~7)) {
1148		ledioctl = led;
1149		kb->ledmode = LED_SHOW_IOCTL;
1150	} else
1151		kb->ledmode = LED_SHOW_FLAGS;
1152
1153	set_leds();
1154	spin_unlock_irqrestore(&led_lock, flags);
1155}
1156
1157static inline unsigned char getleds(void)
1158{
1159	struct kbd_struct *kb = kbd_table + fg_console;
1160
1161	if (kb->ledmode == LED_SHOW_IOCTL)
1162		return ledioctl;
1163
1164	return kb->ledflagstate;
1165}
1166
1167/**
1168 *	vt_get_leds	-	helper for braille console
1169 *	@console: console to read
1170 *	@flag: flag we want to check
1171 *
1172 *	Check the status of a keyboard led flag and report it back
1173 */
1174int vt_get_leds(unsigned int console, int flag)
1175{
1176	struct kbd_struct *kb = kbd_table + console;
1177	int ret;
1178	unsigned long flags;
1179
1180	spin_lock_irqsave(&led_lock, flags);
1181	ret = vc_kbd_led(kb, flag);
1182	spin_unlock_irqrestore(&led_lock, flags);
1183
1184	return ret;
1185}
1186EXPORT_SYMBOL_GPL(vt_get_leds);
1187
1188/**
1189 *	vt_set_led_state	-	set LED state of a console
1190 *	@console: console to set
1191 *	@leds: LED bits
1192 *
1193 *	Set the LEDs on a console. This is a wrapper for the VT layer
1194 *	so that we can keep kbd knowledge internal
1195 */
1196void vt_set_led_state(unsigned int console, int leds)
1197{
1198	struct kbd_struct *kb = kbd_table + console;
1199	setledstate(kb, leds);
1200}
1201
1202/**
1203 *	vt_kbd_con_start	-	Keyboard side of console start
1204 *	@console: console
1205 *
1206 *	Handle console start. This is a wrapper for the VT layer
1207 *	so that we can keep kbd knowledge internal
1208 *
1209 *	FIXME: We eventually need to hold the kbd lock here to protect
1210 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1211 *	and start_tty under the kbd_event_lock, while normal tty paths
1212 *	don't hold the lock. We probably need to split out an LED lock
1213 *	but not during an -rc release!
1214 */
1215void vt_kbd_con_start(unsigned int console)
1216{
1217	struct kbd_struct *kb = kbd_table + console;
1218	unsigned long flags;
1219	spin_lock_irqsave(&led_lock, flags);
1220	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1221	set_leds();
1222	spin_unlock_irqrestore(&led_lock, flags);
1223}
1224
1225/**
1226 *	vt_kbd_con_stop		-	Keyboard side of console stop
1227 *	@console: console
1228 *
1229 *	Handle console stop. This is a wrapper for the VT layer
1230 *	so that we can keep kbd knowledge internal
1231 */
1232void vt_kbd_con_stop(unsigned int console)
1233{
1234	struct kbd_struct *kb = kbd_table + console;
1235	unsigned long flags;
1236	spin_lock_irqsave(&led_lock, flags);
1237	set_vc_kbd_led(kb, VC_SCROLLOCK);
1238	set_leds();
1239	spin_unlock_irqrestore(&led_lock, flags);
1240}
1241
1242/*
1243 * This is the tasklet that updates LED state of LEDs using standard
1244 * keyboard triggers. The reason we use tasklet is that we need to
1245 * handle the scenario when keyboard handler is not registered yet
1246 * but we already getting updates from the VT to update led state.
1247 */
1248static void kbd_bh(struct tasklet_struct *unused)
1249{
1250	unsigned int leds;
1251	unsigned long flags;
1252
1253	spin_lock_irqsave(&led_lock, flags);
1254	leds = getleds();
1255	leds |= (unsigned int)kbd->lockstate << 8;
1256	spin_unlock_irqrestore(&led_lock, flags);
1257
 
 
 
 
 
1258	if (leds != ledstate) {
1259		kbd_propagate_led_state(ledstate, leds);
1260		ledstate = leds;
1261	}
1262}
1263
1264#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1265    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1266    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1267    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1268
1269static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1270{
1271	if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1272		return false;
1273
1274	return dev->id.bustype == BUS_I8042 &&
1275		dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1276}
1277
1278static const unsigned short x86_keycodes[256] =
1279	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1280	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1281	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1282	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1283	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1284	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1285	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1286	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1287	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1288	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1289	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1290	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1291	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1292	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1293	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1294
1295#ifdef CONFIG_SPARC
1296static int sparc_l1_a_state;
1297extern void sun_do_break(void);
1298#endif
1299
1300static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1301		       unsigned char up_flag)
1302{
1303	int code;
1304
1305	switch (keycode) {
1306
1307	case KEY_PAUSE:
1308		put_queue(vc, 0xe1);
1309		put_queue(vc, 0x1d | up_flag);
1310		put_queue(vc, 0x45 | up_flag);
1311		break;
1312
1313	case KEY_HANGEUL:
1314		if (!up_flag)
1315			put_queue(vc, 0xf2);
1316		break;
1317
1318	case KEY_HANJA:
1319		if (!up_flag)
1320			put_queue(vc, 0xf1);
1321		break;
1322
1323	case KEY_SYSRQ:
1324		/*
1325		 * Real AT keyboards (that's what we're trying
1326		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1327		 * pressing PrtSc/SysRq alone, but simply 0x54
1328		 * when pressing Alt+PrtSc/SysRq.
1329		 */
1330		if (test_bit(KEY_LEFTALT, key_down) ||
1331		    test_bit(KEY_RIGHTALT, key_down)) {
1332			put_queue(vc, 0x54 | up_flag);
1333		} else {
1334			put_queue(vc, 0xe0);
1335			put_queue(vc, 0x2a | up_flag);
1336			put_queue(vc, 0xe0);
1337			put_queue(vc, 0x37 | up_flag);
1338		}
1339		break;
1340
1341	default:
1342		if (keycode > 255)
1343			return -1;
1344
1345		code = x86_keycodes[keycode];
1346		if (!code)
1347			return -1;
1348
1349		if (code & 0x100)
1350			put_queue(vc, 0xe0);
1351		put_queue(vc, (code & 0x7f) | up_flag);
1352
1353		break;
1354	}
1355
1356	return 0;
1357}
1358
1359#else
1360
1361static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1362{
1363	return false;
1364}
1365
1366static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1367{
1368	if (keycode > 127)
1369		return -1;
1370
1371	put_queue(vc, keycode | up_flag);
1372	return 0;
1373}
1374#endif
1375
1376static void kbd_rawcode(unsigned char data)
1377{
1378	struct vc_data *vc = vc_cons[fg_console].d;
1379
1380	kbd = kbd_table + vc->vc_num;
1381	if (kbd->kbdmode == VC_RAW)
1382		put_queue(vc, data);
1383}
1384
1385static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1386{
1387	struct vc_data *vc = vc_cons[fg_console].d;
1388	unsigned short keysym, *key_map;
1389	unsigned char type;
1390	bool raw_mode;
1391	struct tty_struct *tty;
1392	int shift_final;
1393	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1394	int rc;
1395
1396	tty = vc->port.tty;
1397
1398	if (tty && (!tty->driver_data)) {
1399		/* No driver data? Strange. Okay we fix it then. */
1400		tty->driver_data = vc;
1401	}
1402
1403	kbd = kbd_table + vc->vc_num;
1404
1405#ifdef CONFIG_SPARC
1406	if (keycode == KEY_STOP)
1407		sparc_l1_a_state = down;
1408#endif
1409
1410	rep = (down == 2);
1411
1412	raw_mode = (kbd->kbdmode == VC_RAW);
1413	if (raw_mode && !hw_raw)
1414		if (emulate_raw(vc, keycode, !down << 7))
1415			if (keycode < BTN_MISC && printk_ratelimit())
1416				pr_warn("can't emulate rawmode for keycode %d\n",
1417					keycode);
1418
1419#ifdef CONFIG_SPARC
1420	if (keycode == KEY_A && sparc_l1_a_state) {
1421		sparc_l1_a_state = false;
1422		sun_do_break();
1423	}
1424#endif
1425
1426	if (kbd->kbdmode == VC_MEDIUMRAW) {
1427		/*
1428		 * This is extended medium raw mode, with keys above 127
1429		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1430		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1431		 * interfere with anything else. The two bytes after 0 will
1432		 * always have the up flag set not to interfere with older
1433		 * applications. This allows for 16384 different keycodes,
1434		 * which should be enough.
1435		 */
1436		if (keycode < 128) {
1437			put_queue(vc, keycode | (!down << 7));
1438		} else {
1439			put_queue(vc, !down << 7);
1440			put_queue(vc, (keycode >> 7) | BIT(7));
1441			put_queue(vc, keycode | BIT(7));
1442		}
1443		raw_mode = true;
1444	}
1445
1446	assign_bit(keycode, key_down, down);
1447
1448	if (rep &&
1449	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1450	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1451		/*
1452		 * Don't repeat a key if the input buffers are not empty and the
1453		 * characters get aren't echoed locally. This makes key repeat
1454		 * usable with slow applications and under heavy loads.
1455		 */
1456		return;
1457	}
1458
1459	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1460	param.ledstate = kbd->ledflagstate;
1461	key_map = key_maps[shift_final];
1462
1463	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1464					KBD_KEYCODE, &param);
1465	if (rc == NOTIFY_STOP || !key_map) {
1466		atomic_notifier_call_chain(&keyboard_notifier_list,
1467					   KBD_UNBOUND_KEYCODE, &param);
1468		do_compute_shiftstate();
1469		kbd->slockstate = 0;
1470		return;
1471	}
1472
1473	if (keycode < NR_KEYS)
1474		keysym = key_map[keycode];
1475	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1476		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1477	else
1478		return;
1479
1480	type = KTYP(keysym);
1481
1482	if (type < 0xf0) {
1483		param.value = keysym;
1484		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1485						KBD_UNICODE, &param);
1486		if (rc != NOTIFY_STOP)
1487			if (down && !raw_mode)
1488				k_unicode(vc, keysym, !down);
1489		return;
1490	}
1491
1492	type -= 0xf0;
1493
1494	if (type == KT_LETTER) {
1495		type = KT_LATIN;
1496		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1497			key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1498			if (key_map)
1499				keysym = key_map[keycode];
1500		}
1501	}
1502
1503	param.value = keysym;
1504	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1505					KBD_KEYSYM, &param);
1506	if (rc == NOTIFY_STOP)
1507		return;
1508
1509	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1510		return;
1511
1512	(*k_handler[type])(vc, keysym & 0xff, !down);
1513
1514	param.ledstate = kbd->ledflagstate;
1515	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1516
1517	if (type != KT_SLOCK)
1518		kbd->slockstate = 0;
1519}
1520
1521static void kbd_event(struct input_handle *handle, unsigned int event_type,
1522		      unsigned int event_code, int value)
1523{
1524	/* We are called with interrupts disabled, just take the lock */
1525	spin_lock(&kbd_event_lock);
1526
1527	if (event_type == EV_MSC && event_code == MSC_RAW &&
1528			kbd_is_hw_raw(handle->dev))
1529		kbd_rawcode(value);
1530	if (event_type == EV_KEY && event_code <= KEY_MAX)
1531		kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1532
1533	spin_unlock(&kbd_event_lock);
1534
1535	tasklet_schedule(&keyboard_tasklet);
1536	do_poke_blanked_console = 1;
1537	schedule_console_callback();
1538}
1539
1540static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1541{
1542	if (test_bit(EV_SND, dev->evbit))
1543		return true;
1544
1545	if (test_bit(EV_KEY, dev->evbit)) {
1546		if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1547				BTN_MISC)
1548			return true;
1549		if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1550					KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1551			return true;
1552	}
1553
1554	return false;
1555}
1556
1557/*
1558 * When a keyboard (or other input device) is found, the kbd_connect
1559 * function is called. The function then looks at the device, and if it
1560 * likes it, it can open it and get events from it. In this (kbd_connect)
1561 * function, we should decide which VT to bind that keyboard to initially.
1562 */
1563static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1564			const struct input_device_id *id)
1565{
1566	struct input_handle *handle;
1567	int error;
1568
1569	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1570	if (!handle)
1571		return -ENOMEM;
1572
1573	handle->dev = dev;
1574	handle->handler = handler;
1575	handle->name = "kbd";
1576
1577	error = input_register_handle(handle);
1578	if (error)
1579		goto err_free_handle;
1580
1581	error = input_open_device(handle);
1582	if (error)
1583		goto err_unregister_handle;
1584
1585	return 0;
1586
1587 err_unregister_handle:
1588	input_unregister_handle(handle);
1589 err_free_handle:
1590	kfree(handle);
1591	return error;
1592}
1593
1594static void kbd_disconnect(struct input_handle *handle)
1595{
1596	input_close_device(handle);
1597	input_unregister_handle(handle);
1598	kfree(handle);
1599}
1600
1601/*
1602 * Start keyboard handler on the new keyboard by refreshing LED state to
1603 * match the rest of the system.
1604 */
1605static void kbd_start(struct input_handle *handle)
1606{
1607	tasklet_disable(&keyboard_tasklet);
1608
1609	if (ledstate != -1U)
1610		kbd_update_leds_helper(handle, &ledstate);
1611
1612	tasklet_enable(&keyboard_tasklet);
1613}
1614
1615static const struct input_device_id kbd_ids[] = {
1616	{
1617		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1618		.evbit = { BIT_MASK(EV_KEY) },
1619	},
1620
1621	{
1622		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1623		.evbit = { BIT_MASK(EV_SND) },
1624	},
1625
1626	{ },    /* Terminating entry */
1627};
1628
1629MODULE_DEVICE_TABLE(input, kbd_ids);
1630
1631static struct input_handler kbd_handler = {
1632	.event		= kbd_event,
1633	.match		= kbd_match,
1634	.connect	= kbd_connect,
1635	.disconnect	= kbd_disconnect,
1636	.start		= kbd_start,
1637	.name		= "kbd",
1638	.id_table	= kbd_ids,
1639};
1640
1641int __init kbd_init(void)
1642{
1643	int i;
1644	int error;
1645
1646	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1647		kbd_table[i].ledflagstate = kbd_defleds();
1648		kbd_table[i].default_ledflagstate = kbd_defleds();
1649		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1650		kbd_table[i].lockstate = KBD_DEFLOCK;
1651		kbd_table[i].slockstate = 0;
1652		kbd_table[i].modeflags = KBD_DEFMODE;
1653		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1654	}
1655
1656	kbd_init_leds();
1657
1658	error = input_register_handler(&kbd_handler);
1659	if (error)
1660		return error;
1661
1662	tasklet_enable(&keyboard_tasklet);
1663	tasklet_schedule(&keyboard_tasklet);
1664
1665	return 0;
1666}
1667
1668/* Ioctl support code */
1669
1670/**
1671 *	vt_do_diacrit		-	diacritical table updates
1672 *	@cmd: ioctl request
1673 *	@udp: pointer to user data for ioctl
1674 *	@perm: permissions check computed by caller
1675 *
1676 *	Update the diacritical tables atomically and safely. Lock them
1677 *	against simultaneous keypresses
1678 */
1679int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1680{
1681	unsigned long flags;
1682	int asize;
1683	int ret = 0;
1684
1685	switch (cmd) {
1686	case KDGKBDIACR:
1687	{
1688		struct kbdiacrs __user *a = udp;
1689		struct kbdiacr *dia;
1690		int i;
1691
1692		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1693								GFP_KERNEL);
1694		if (!dia)
1695			return -ENOMEM;
1696
1697		/* Lock the diacriticals table, make a copy and then
1698		   copy it after we unlock */
1699		spin_lock_irqsave(&kbd_event_lock, flags);
1700
1701		asize = accent_table_size;
1702		for (i = 0; i < asize; i++) {
1703			dia[i].diacr = conv_uni_to_8bit(
1704						accent_table[i].diacr);
1705			dia[i].base = conv_uni_to_8bit(
1706						accent_table[i].base);
1707			dia[i].result = conv_uni_to_8bit(
1708						accent_table[i].result);
1709		}
1710		spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712		if (put_user(asize, &a->kb_cnt))
1713			ret = -EFAULT;
1714		else  if (copy_to_user(a->kbdiacr, dia,
1715				asize * sizeof(struct kbdiacr)))
1716			ret = -EFAULT;
1717		kfree(dia);
1718		return ret;
1719	}
1720	case KDGKBDIACRUC:
1721	{
1722		struct kbdiacrsuc __user *a = udp;
1723		void *buf;
1724
1725		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1726								GFP_KERNEL);
1727		if (buf == NULL)
1728			return -ENOMEM;
1729
1730		/* Lock the diacriticals table, make a copy and then
1731		   copy it after we unlock */
1732		spin_lock_irqsave(&kbd_event_lock, flags);
1733
1734		asize = accent_table_size;
1735		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1736
1737		spin_unlock_irqrestore(&kbd_event_lock, flags);
1738
1739		if (put_user(asize, &a->kb_cnt))
1740			ret = -EFAULT;
1741		else if (copy_to_user(a->kbdiacruc, buf,
1742				asize*sizeof(struct kbdiacruc)))
1743			ret = -EFAULT;
1744		kfree(buf);
1745		return ret;
1746	}
1747
1748	case KDSKBDIACR:
1749	{
1750		struct kbdiacrs __user *a = udp;
1751		struct kbdiacr *dia = NULL;
1752		unsigned int ct;
1753		int i;
1754
1755		if (!perm)
1756			return -EPERM;
1757		if (get_user(ct, &a->kb_cnt))
1758			return -EFAULT;
1759		if (ct >= MAX_DIACR)
1760			return -EINVAL;
1761
1762		if (ct) {
1763
1764			dia = memdup_user(a->kbdiacr,
1765					sizeof(struct kbdiacr) * ct);
1766			if (IS_ERR(dia))
1767				return PTR_ERR(dia);
1768
1769		}
1770
1771		spin_lock_irqsave(&kbd_event_lock, flags);
1772		accent_table_size = ct;
1773		for (i = 0; i < ct; i++) {
1774			accent_table[i].diacr =
1775					conv_8bit_to_uni(dia[i].diacr);
1776			accent_table[i].base =
1777					conv_8bit_to_uni(dia[i].base);
1778			accent_table[i].result =
1779					conv_8bit_to_uni(dia[i].result);
1780		}
1781		spin_unlock_irqrestore(&kbd_event_lock, flags);
1782		kfree(dia);
1783		return 0;
1784	}
1785
1786	case KDSKBDIACRUC:
1787	{
1788		struct kbdiacrsuc __user *a = udp;
1789		unsigned int ct;
1790		void *buf = NULL;
1791
1792		if (!perm)
1793			return -EPERM;
1794
1795		if (get_user(ct, &a->kb_cnt))
1796			return -EFAULT;
1797
1798		if (ct >= MAX_DIACR)
1799			return -EINVAL;
1800
1801		if (ct) {
1802			buf = memdup_user(a->kbdiacruc,
1803					  ct * sizeof(struct kbdiacruc));
1804			if (IS_ERR(buf))
1805				return PTR_ERR(buf);
1806		} 
1807		spin_lock_irqsave(&kbd_event_lock, flags);
1808		if (ct)
1809			memcpy(accent_table, buf,
1810					ct * sizeof(struct kbdiacruc));
1811		accent_table_size = ct;
1812		spin_unlock_irqrestore(&kbd_event_lock, flags);
1813		kfree(buf);
1814		return 0;
1815	}
1816	}
1817	return ret;
1818}
1819
1820/**
1821 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1822 *	@console: the console to use
1823 *	@arg: the requested mode
1824 *
1825 *	Update the keyboard mode bits while holding the correct locks.
1826 *	Return 0 for success or an error code.
1827 */
1828int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1829{
1830	struct kbd_struct *kb = kbd_table + console;
1831	int ret = 0;
1832	unsigned long flags;
1833
1834	spin_lock_irqsave(&kbd_event_lock, flags);
1835	switch(arg) {
1836	case K_RAW:
1837		kb->kbdmode = VC_RAW;
1838		break;
1839	case K_MEDIUMRAW:
1840		kb->kbdmode = VC_MEDIUMRAW;
1841		break;
1842	case K_XLATE:
1843		kb->kbdmode = VC_XLATE;
1844		do_compute_shiftstate();
1845		break;
1846	case K_UNICODE:
1847		kb->kbdmode = VC_UNICODE;
1848		do_compute_shiftstate();
1849		break;
1850	case K_OFF:
1851		kb->kbdmode = VC_OFF;
1852		break;
1853	default:
1854		ret = -EINVAL;
1855	}
1856	spin_unlock_irqrestore(&kbd_event_lock, flags);
1857	return ret;
1858}
1859
1860/**
1861 *	vt_do_kdskbmeta		-	set keyboard meta state
1862 *	@console: the console to use
1863 *	@arg: the requested meta state
1864 *
1865 *	Update the keyboard meta bits while holding the correct locks.
1866 *	Return 0 for success or an error code.
1867 */
1868int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1869{
1870	struct kbd_struct *kb = kbd_table + console;
1871	int ret = 0;
1872	unsigned long flags;
1873
1874	spin_lock_irqsave(&kbd_event_lock, flags);
1875	switch(arg) {
1876	case K_METABIT:
1877		clr_vc_kbd_mode(kb, VC_META);
1878		break;
1879	case K_ESCPREFIX:
1880		set_vc_kbd_mode(kb, VC_META);
1881		break;
1882	default:
1883		ret = -EINVAL;
1884	}
1885	spin_unlock_irqrestore(&kbd_event_lock, flags);
1886	return ret;
1887}
1888
1889int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1890								int perm)
1891{
1892	struct kbkeycode tmp;
1893	int kc = 0;
1894
1895	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1896		return -EFAULT;
1897	switch (cmd) {
1898	case KDGETKEYCODE:
1899		kc = getkeycode(tmp.scancode);
1900		if (kc >= 0)
1901			kc = put_user(kc, &user_kbkc->keycode);
1902		break;
1903	case KDSETKEYCODE:
1904		if (!perm)
1905			return -EPERM;
1906		kc = setkeycode(tmp.scancode, tmp.keycode);
1907		break;
1908	}
1909	return kc;
1910}
1911
1912static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1913		unsigned char map)
1914{
1915	unsigned short *key_map, val;
1916	unsigned long flags;
1917
1918	/* Ensure another thread doesn't free it under us */
1919	spin_lock_irqsave(&kbd_event_lock, flags);
1920	key_map = key_maps[map];
1921	if (key_map) {
1922		val = U(key_map[idx]);
1923		if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1924			val = K_HOLE;
1925	} else
1926		val = idx ? K_HOLE : K_NOSUCHMAP;
1927	spin_unlock_irqrestore(&kbd_event_lock, flags);
1928
1929	return val;
1930}
1931
1932static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1933		unsigned char map, unsigned short val)
1934{
1935	unsigned long flags;
1936	unsigned short *key_map, *new_map, oldval;
1937
1938	if (!idx && val == K_NOSUCHMAP) {
1939		spin_lock_irqsave(&kbd_event_lock, flags);
1940		/* deallocate map */
1941		key_map = key_maps[map];
1942		if (map && key_map) {
1943			key_maps[map] = NULL;
1944			if (key_map[0] == U(K_ALLOCATED)) {
1945				kfree(key_map);
1946				keymap_count--;
1947			}
1948		}
1949		spin_unlock_irqrestore(&kbd_event_lock, flags);
1950
1951		return 0;
1952	}
1953
1954	if (KTYP(val) < NR_TYPES) {
1955		if (KVAL(val) > max_vals[KTYP(val)])
1956			return -EINVAL;
1957	} else if (kbdmode != VC_UNICODE)
1958		return -EINVAL;
1959
1960	/* ++Geert: non-PC keyboards may generate keycode zero */
1961#if !defined(__mc68000__) && !defined(__powerpc__)
1962	/* assignment to entry 0 only tests validity of args */
1963	if (!idx)
1964		return 0;
1965#endif
1966
1967	new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1968	if (!new_map)
1969		return -ENOMEM;
1970
1971	spin_lock_irqsave(&kbd_event_lock, flags);
1972	key_map = key_maps[map];
1973	if (key_map == NULL) {
1974		int j;
1975
1976		if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1977		    !capable(CAP_SYS_RESOURCE)) {
1978			spin_unlock_irqrestore(&kbd_event_lock, flags);
1979			kfree(new_map);
1980			return -EPERM;
1981		}
1982		key_maps[map] = new_map;
1983		key_map = new_map;
1984		key_map[0] = U(K_ALLOCATED);
1985		for (j = 1; j < NR_KEYS; j++)
1986			key_map[j] = U(K_HOLE);
1987		keymap_count++;
1988	} else
1989		kfree(new_map);
1990
1991	oldval = U(key_map[idx]);
1992	if (val == oldval)
1993		goto out;
1994
1995	/* Attention Key */
1996	if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
1997		spin_unlock_irqrestore(&kbd_event_lock, flags);
1998		return -EPERM;
1999	}
2000
2001	key_map[idx] = U(val);
2002	if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2003		do_compute_shiftstate();
2004out:
2005	spin_unlock_irqrestore(&kbd_event_lock, flags);
2006
2007	return 0;
2008}
2009
2010int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2011						unsigned int console)
2012{
2013	struct kbd_struct *kb = kbd_table + console;
2014	struct kbentry kbe;
2015
2016	if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2017		return -EFAULT;
2018
2019	switch (cmd) {
2020	case KDGKBENT:
2021		return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2022					kbe.kb_table),
2023				&user_kbe->kb_value);
2024	case KDSKBENT:
2025		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2026			return -EPERM;
2027		return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2028				kbe.kb_value);
2029	}
2030	return 0;
2031}
2032
2033static char *vt_kdskbsent(char *kbs, unsigned char cur)
2034{
2035	static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2036	char *cur_f = func_table[cur];
2037
2038	if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2039		strcpy(cur_f, kbs);
2040		return kbs;
2041	}
2042
2043	func_table[cur] = kbs;
2044
2045	return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2046}
2047
2048int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2049{
2050	unsigned char kb_func;
2051	unsigned long flags;
2052	char *kbs;
2053	int ret;
2054
2055	if (get_user(kb_func, &user_kdgkb->kb_func))
2056		return -EFAULT;
2057
2058	kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2059
2060	switch (cmd) {
2061	case KDGKBSENT: {
2062		/* size should have been a struct member */
2063		ssize_t len = sizeof(user_kdgkb->kb_string);
2064
2065		kbs = kmalloc(len, GFP_KERNEL);
2066		if (!kbs)
2067			return -ENOMEM;
2068
2069		spin_lock_irqsave(&func_buf_lock, flags);
2070		len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2071		spin_unlock_irqrestore(&func_buf_lock, flags);
2072
 
 
 
 
2073		ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2074			-EFAULT : 0;
2075
2076		break;
2077	}
2078	case KDSKBSENT:
2079		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2080			return -EPERM;
2081
2082		kbs = strndup_user(user_kdgkb->kb_string,
2083				sizeof(user_kdgkb->kb_string));
2084		if (IS_ERR(kbs))
2085			return PTR_ERR(kbs);
2086
2087		spin_lock_irqsave(&func_buf_lock, flags);
2088		kbs = vt_kdskbsent(kbs, kb_func);
2089		spin_unlock_irqrestore(&func_buf_lock, flags);
2090
2091		ret = 0;
2092		break;
2093	}
2094
2095	kfree(kbs);
2096
2097	return ret;
2098}
2099
2100int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2101{
2102	struct kbd_struct *kb = kbd_table + console;
2103        unsigned long flags;
2104	unsigned char ucval;
2105
2106        switch(cmd) {
2107	/* the ioctls below read/set the flags usually shown in the leds */
2108	/* don't use them - they will go away without warning */
2109	case KDGKBLED:
2110                spin_lock_irqsave(&kbd_event_lock, flags);
2111		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2112                spin_unlock_irqrestore(&kbd_event_lock, flags);
2113		return put_user(ucval, (char __user *)arg);
2114
2115	case KDSKBLED:
2116		if (!perm)
2117			return -EPERM;
2118		if (arg & ~0x77)
2119			return -EINVAL;
2120                spin_lock_irqsave(&led_lock, flags);
2121		kb->ledflagstate = (arg & 7);
2122		kb->default_ledflagstate = ((arg >> 4) & 7);
2123		set_leds();
2124                spin_unlock_irqrestore(&led_lock, flags);
2125		return 0;
2126
2127	/* the ioctls below only set the lights, not the functions */
2128	/* for those, see KDGKBLED and KDSKBLED above */
2129	case KDGETLED:
2130		ucval = getledstate();
2131		return put_user(ucval, (char __user *)arg);
2132
2133	case KDSETLED:
2134		if (!perm)
2135			return -EPERM;
2136		setledstate(kb, arg);
2137		return 0;
2138        }
2139        return -ENOIOCTLCMD;
2140}
2141
2142int vt_do_kdgkbmode(unsigned int console)
2143{
2144	struct kbd_struct *kb = kbd_table + console;
2145	/* This is a spot read so needs no locking */
2146	switch (kb->kbdmode) {
2147	case VC_RAW:
2148		return K_RAW;
2149	case VC_MEDIUMRAW:
2150		return K_MEDIUMRAW;
2151	case VC_UNICODE:
2152		return K_UNICODE;
2153	case VC_OFF:
2154		return K_OFF;
2155	default:
2156		return K_XLATE;
2157	}
2158}
2159
2160/**
2161 *	vt_do_kdgkbmeta		-	report meta status
2162 *	@console: console to report
2163 *
2164 *	Report the meta flag status of this console
2165 */
2166int vt_do_kdgkbmeta(unsigned int console)
2167{
2168	struct kbd_struct *kb = kbd_table + console;
2169        /* Again a spot read so no locking */
2170	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2171}
2172
2173/**
2174 *	vt_reset_unicode	-	reset the unicode status
2175 *	@console: console being reset
2176 *
2177 *	Restore the unicode console state to its default
2178 */
2179void vt_reset_unicode(unsigned int console)
2180{
2181	unsigned long flags;
2182
2183	spin_lock_irqsave(&kbd_event_lock, flags);
2184	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2185	spin_unlock_irqrestore(&kbd_event_lock, flags);
2186}
2187
2188/**
2189 *	vt_get_shift_state	-	shift bit state
2190 *
2191 *	Report the shift bits from the keyboard state. We have to export
2192 *	this to support some oddities in the vt layer.
2193 */
2194int vt_get_shift_state(void)
2195{
2196        /* Don't lock as this is a transient report */
2197        return shift_state;
2198}
2199
2200/**
2201 *	vt_reset_keyboard	-	reset keyboard state
2202 *	@console: console to reset
2203 *
2204 *	Reset the keyboard bits for a console as part of a general console
2205 *	reset event
2206 */
2207void vt_reset_keyboard(unsigned int console)
2208{
2209	struct kbd_struct *kb = kbd_table + console;
2210	unsigned long flags;
2211
2212	spin_lock_irqsave(&kbd_event_lock, flags);
2213	set_vc_kbd_mode(kb, VC_REPEAT);
2214	clr_vc_kbd_mode(kb, VC_CKMODE);
2215	clr_vc_kbd_mode(kb, VC_APPLIC);
2216	clr_vc_kbd_mode(kb, VC_CRLF);
2217	kb->lockstate = 0;
2218	kb->slockstate = 0;
2219	spin_lock(&led_lock);
2220	kb->ledmode = LED_SHOW_FLAGS;
2221	kb->ledflagstate = kb->default_ledflagstate;
2222	spin_unlock(&led_lock);
2223	/* do not do set_leds here because this causes an endless tasklet loop
2224	   when the keyboard hasn't been initialized yet */
2225	spin_unlock_irqrestore(&kbd_event_lock, flags);
2226}
2227
2228/**
2229 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2230 *	@console: console to read from
2231 *	@bit: mode bit to read
2232 *
2233 *	Report back a vt mode bit. We do this without locking so the
2234 *	caller must be sure that there are no synchronization needs
2235 */
2236
2237int vt_get_kbd_mode_bit(unsigned int console, int bit)
2238{
2239	struct kbd_struct *kb = kbd_table + console;
2240	return vc_kbd_mode(kb, bit);
2241}
2242
2243/**
2244 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2245 *	@console: console to read from
2246 *	@bit: mode bit to read
2247 *
2248 *	Set a vt mode bit. We do this without locking so the
2249 *	caller must be sure that there are no synchronization needs
2250 */
2251
2252void vt_set_kbd_mode_bit(unsigned int console, int bit)
2253{
2254	struct kbd_struct *kb = kbd_table + console;
2255	unsigned long flags;
2256
2257	spin_lock_irqsave(&kbd_event_lock, flags);
2258	set_vc_kbd_mode(kb, bit);
2259	spin_unlock_irqrestore(&kbd_event_lock, flags);
2260}
2261
2262/**
2263 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2264 *	@console: console to read from
2265 *	@bit: mode bit to read
2266 *
2267 *	Report back a vt mode bit. We do this without locking so the
2268 *	caller must be sure that there are no synchronization needs
2269 */
2270
2271void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2272{
2273	struct kbd_struct *kb = kbd_table + console;
2274	unsigned long flags;
2275
2276	spin_lock_irqsave(&kbd_event_lock, flags);
2277	clr_vc_kbd_mode(kb, bit);
2278	spin_unlock_irqrestore(&kbd_event_lock, flags);
2279}