Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156static bool vt_switch;
157
158/*
159 * Notifier list for console keyboard events
160 */
161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
163int register_keyboard_notifier(struct notifier_block *nb)
164{
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166}
167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
169int unregister_keyboard_notifier(struct notifier_block *nb)
170{
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172}
173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175/*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188};
189
190static int getkeycode_helper(struct input_handle *handle, void *data)
191{
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197}
198
199static int getkeycode(unsigned int scancode)
200{
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215}
216
217static int setkeycode_helper(struct input_handle *handle, void *data)
218{
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224}
225
226static int setkeycode(unsigned int scancode, unsigned int keycode)
227{
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242}
243
244/*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
249static int kd_sound_helper(struct input_handle *handle, void *data)
250{
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265}
266
267static void kd_nosound(struct timer_list *unused)
268{
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272}
273
274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
276void kd_mksound(unsigned int hz, unsigned int ticks)
277{
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284}
285EXPORT_SYMBOL(kd_mksound);
286
287/*
288 * Setting the keyboard rate.
289 */
290
291static int kbd_rate_helper(struct input_handle *handle, void *data)
292{
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310}
311
312int kbd_rate(struct kbd_repeat *rpt)
313{
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320}
321
322/*
323 * Helper Functions.
324 */
325static void put_queue(struct vc_data *vc, int ch)
326{
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329}
330
331static void puts_queue(struct vc_data *vc, const char *cp)
332{
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335}
336
337static void applkey(struct vc_data *vc, int key, char mode)
338{
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344}
345
346/*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
352static void to_utf8(struct vc_data *vc, uint c)
353{
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377}
378
379/* FIXME: review locking for vt.c callers */
380static void set_leds(void)
381{
382 tasklet_schedule(&keyboard_tasklet);
383}
384
385/*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
392static void do_compute_shiftstate(void)
393{
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411}
412
413/* We still have to export this method to vt.c */
414void vt_set_leds_compute_shiftstate(void)
415{
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429}
430
431/*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439{
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466}
467
468/*
469 * Special function handlers
470 */
471static void fn_enter(struct vc_data *vc)
472{
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487}
488
489static void fn_caps_toggle(struct vc_data *vc)
490{
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495}
496
497static void fn_caps_on(struct vc_data *vc)
498{
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503}
504
505static void fn_show_ptregs(struct vc_data *vc)
506{
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511}
512
513static void fn_hold(struct vc_data *vc)
514{
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529}
530
531static void fn_num(struct vc_data *vc)
532{
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537}
538
539/*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
545static void fn_bare_num(struct vc_data *vc)
546{
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549}
550
551static void fn_lastcons(struct vc_data *vc)
552{
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555}
556
557static void fn_dec_console(struct vc_data *vc)
558{
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572}
573
574static void fn_inc_console(struct vc_data *vc)
575{
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589}
590
591static void fn_send_intr(struct vc_data *vc)
592{
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595}
596
597static void fn_scroll_forw(struct vc_data *vc)
598{
599 scrollfront(vc, 0);
600}
601
602static void fn_scroll_back(struct vc_data *vc)
603{
604 scrollback(vc);
605}
606
607static void fn_show_mem(struct vc_data *vc)
608{
609 show_mem();
610}
611
612static void fn_show_state(struct vc_data *vc)
613{
614 show_state();
615}
616
617static void fn_boot_it(struct vc_data *vc)
618{
619 ctrl_alt_del();
620}
621
622static void fn_compose(struct vc_data *vc)
623{
624 dead_key_next = true;
625}
626
627static void fn_spawn_con(struct vc_data *vc)
628{
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636}
637
638static void fn_SAK(struct vc_data *vc)
639{
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642}
643
644static void fn_null(struct vc_data *vc)
645{
646 do_compute_shiftstate();
647}
648
649/*
650 * Special key handlers
651 */
652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653{
654}
655
656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657{
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668}
669
670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671{
672 pr_err("k_lowercase was called - impossible\n");
673}
674
675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676{
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695}
696
697/*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703{
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708}
709
710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713}
714
715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 k_deadunicode(vc, value, up_flag);
718}
719
720/*
721 * Obsolete - for backwards compatibility only
722 */
723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724{
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756}
757
758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759{
760 if (up_flag)
761 return;
762
763 set_console(value);
764}
765
766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767{
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781}
782
783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784{
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791}
792
793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794{
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850}
851
852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891}
892
893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894{
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903}
904
905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906{
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927}
928
929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930{
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935}
936
937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938{
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949}
950
951/* by default, 300ms interval for combination release */
952static unsigned brl_timeout = 300;
953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954module_param(brl_timeout, uint, 0644);
955
956static unsigned brl_nbchords = 1;
957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958module_param(brl_nbchords, uint, 0644);
959
960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961{
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976}
977
978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979{
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_trigger_event(&trigger->trigger,
1037 ledstate & trigger->mask ?
1038 LED_FULL : LED_OFF);
1039 tasklet_enable(&keyboard_tasklet);
1040
1041 return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) { \
1045 .trigger = { \
1046 .name = _name, \
1047 .activate = kbd_led_trigger_activate, \
1048 }, \
1049 .mask = BIT(_led_bit), \
1050 }
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1053 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1058 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1059 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1060
1061 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1068 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072 unsigned int new_state)
1073{
1074 struct kbd_led_trigger *trigger;
1075 unsigned int changed = old_state ^ new_state;
1076 int i;
1077
1078 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079 trigger = &kbd_led_triggers[i];
1080
1081 if (changed & trigger->mask)
1082 led_trigger_event(&trigger->trigger,
1083 new_state & trigger->mask ?
1084 LED_FULL : LED_OFF);
1085 }
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090 unsigned int led_state = *(unsigned int *)data;
1091
1092 if (test_bit(EV_LED, handle->dev->evbit))
1093 kbd_propagate_led_state(~led_state, led_state);
1094
1095 return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100 int error;
1101 int i;
1102
1103 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105 if (error)
1106 pr_err("error %d while registering trigger %s\n",
1107 error, kbd_led_triggers[i].trigger.name);
1108 }
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115 unsigned int leds = *(unsigned int *)data;
1116
1117 if (test_bit(EV_LED, handle->dev->evbit)) {
1118 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1120 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1121 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122 }
1123
1124 return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128 unsigned int new_state)
1129{
1130 input_handler_for_each_handle(&kbd_handler, &new_state,
1131 kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147 return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152 unsigned long flags;
1153 spin_lock_irqsave(&led_lock, flags);
1154 if (!(led & ~7)) {
1155 ledioctl = led;
1156 kb->ledmode = LED_SHOW_IOCTL;
1157 } else
1158 kb->ledmode = LED_SHOW_FLAGS;
1159
1160 set_leds();
1161 spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166 struct kbd_struct *kb = kbd_table + fg_console;
1167
1168 if (kb->ledmode == LED_SHOW_IOCTL)
1169 return ledioctl;
1170
1171 return kb->ledflagstate;
1172}
1173
1174/**
1175 * vt_get_leds - helper for braille console
1176 * @console: console to read
1177 * @flag: flag we want to check
1178 *
1179 * Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183 struct kbd_struct *kb = &kbd_table[console];
1184 int ret;
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&led_lock, flags);
1188 ret = vc_kbd_led(kb, flag);
1189 spin_unlock_irqrestore(&led_lock, flags);
1190
1191 return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 * vt_set_led_state - set LED state of a console
1197 * @console: console to set
1198 * @leds: LED bits
1199 *
1200 * Set the LEDs on a console. This is a wrapper for the VT layer
1201 * so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205 struct kbd_struct *kb = &kbd_table[console];
1206 setledstate(kb, leds);
1207}
1208
1209/**
1210 * vt_kbd_con_start - Keyboard side of console start
1211 * @console: console
1212 *
1213 * Handle console start. This is a wrapper for the VT layer
1214 * so that we can keep kbd knowledge internal
1215 *
1216 * FIXME: We eventually need to hold the kbd lock here to protect
1217 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 * and start_tty under the kbd_event_lock, while normal tty paths
1219 * don't hold the lock. We probably need to split out an LED lock
1220 * but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224 struct kbd_struct *kb = &kbd_table[console];
1225 unsigned long flags;
1226 spin_lock_irqsave(&led_lock, flags);
1227 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228 set_leds();
1229 spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 * vt_kbd_con_stop - Keyboard side of console stop
1234 * @console: console
1235 *
1236 * Handle console stop. This is a wrapper for the VT layer
1237 * so that we can keep kbd knowledge internal
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241 struct kbd_struct *kb = &kbd_table[console];
1242 unsigned long flags;
1243 spin_lock_irqsave(&led_lock, flags);
1244 set_vc_kbd_led(kb, VC_SCROLLOCK);
1245 set_leds();
1246 spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257 unsigned int leds;
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&led_lock, flags);
1261 leds = getleds();
1262 leds |= (unsigned int)kbd->lockstate << 8;
1263 spin_unlock_irqrestore(&led_lock, flags);
1264
1265 if (vt_switch) {
1266 ledstate = ~leds;
1267 vt_switch = false;
1268 }
1269
1270 if (leds != ledstate) {
1271 kbd_propagate_led_state(ledstate, leds);
1272 ledstate = leds;
1273 }
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1277 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284 return false;
1285
1286 return dev->id.bustype == BUS_I8042 &&
1287 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1292 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313 unsigned char up_flag)
1314{
1315 int code;
1316
1317 switch (keycode) {
1318
1319 case KEY_PAUSE:
1320 put_queue(vc, 0xe1);
1321 put_queue(vc, 0x1d | up_flag);
1322 put_queue(vc, 0x45 | up_flag);
1323 break;
1324
1325 case KEY_HANGEUL:
1326 if (!up_flag)
1327 put_queue(vc, 0xf2);
1328 break;
1329
1330 case KEY_HANJA:
1331 if (!up_flag)
1332 put_queue(vc, 0xf1);
1333 break;
1334
1335 case KEY_SYSRQ:
1336 /*
1337 * Real AT keyboards (that's what we're trying
1338 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339 * pressing PrtSc/SysRq alone, but simply 0x54
1340 * when pressing Alt+PrtSc/SysRq.
1341 */
1342 if (test_bit(KEY_LEFTALT, key_down) ||
1343 test_bit(KEY_RIGHTALT, key_down)) {
1344 put_queue(vc, 0x54 | up_flag);
1345 } else {
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x2a | up_flag);
1348 put_queue(vc, 0xe0);
1349 put_queue(vc, 0x37 | up_flag);
1350 }
1351 break;
1352
1353 default:
1354 if (keycode > 255)
1355 return -1;
1356
1357 code = x86_keycodes[keycode];
1358 if (!code)
1359 return -1;
1360
1361 if (code & 0x100)
1362 put_queue(vc, 0xe0);
1363 put_queue(vc, (code & 0x7f) | up_flag);
1364
1365 break;
1366 }
1367
1368 return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375 return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380 if (keycode > 127)
1381 return -1;
1382
1383 put_queue(vc, keycode | up_flag);
1384 return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390 struct vc_data *vc = vc_cons[fg_console].d;
1391
1392 kbd = &kbd_table[vc->vc_num];
1393 if (kbd->kbdmode == VC_RAW)
1394 put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399 struct vc_data *vc = vc_cons[fg_console].d;
1400 unsigned short keysym, *key_map;
1401 unsigned char type;
1402 bool raw_mode;
1403 struct tty_struct *tty;
1404 int shift_final;
1405 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406 int rc;
1407
1408 tty = vc->port.tty;
1409
1410 if (tty && (!tty->driver_data)) {
1411 /* No driver data? Strange. Okay we fix it then. */
1412 tty->driver_data = vc;
1413 }
1414
1415 kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418 if (keycode == KEY_STOP)
1419 sparc_l1_a_state = down;
1420#endif
1421
1422 rep = (down == 2);
1423
1424 raw_mode = (kbd->kbdmode == VC_RAW);
1425 if (raw_mode && !hw_raw)
1426 if (emulate_raw(vc, keycode, !down << 7))
1427 if (keycode < BTN_MISC && printk_ratelimit())
1428 pr_warn("can't emulate rawmode for keycode %d\n",
1429 keycode);
1430
1431#ifdef CONFIG_SPARC
1432 if (keycode == KEY_A && sparc_l1_a_state) {
1433 sparc_l1_a_state = false;
1434 sun_do_break();
1435 }
1436#endif
1437
1438 if (kbd->kbdmode == VC_MEDIUMRAW) {
1439 /*
1440 * This is extended medium raw mode, with keys above 127
1441 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443 * interfere with anything else. The two bytes after 0 will
1444 * always have the up flag set not to interfere with older
1445 * applications. This allows for 16384 different keycodes,
1446 * which should be enough.
1447 */
1448 if (keycode < 128) {
1449 put_queue(vc, keycode | (!down << 7));
1450 } else {
1451 put_queue(vc, !down << 7);
1452 put_queue(vc, (keycode >> 7) | BIT(7));
1453 put_queue(vc, keycode | BIT(7));
1454 }
1455 raw_mode = true;
1456 }
1457
1458 assign_bit(keycode, key_down, down);
1459
1460 if (rep &&
1461 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463 /*
1464 * Don't repeat a key if the input buffers are not empty and the
1465 * characters get aren't echoed locally. This makes key repeat
1466 * usable with slow applications and under heavy loads.
1467 */
1468 return;
1469 }
1470
1471 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472 param.ledstate = kbd->ledflagstate;
1473 key_map = key_maps[shift_final];
1474
1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476 KBD_KEYCODE, ¶m);
1477 if (rc == NOTIFY_STOP || !key_map) {
1478 atomic_notifier_call_chain(&keyboard_notifier_list,
1479 KBD_UNBOUND_KEYCODE, ¶m);
1480 do_compute_shiftstate();
1481 kbd->slockstate = 0;
1482 return;
1483 }
1484
1485 if (keycode < NR_KEYS)
1486 keysym = key_map[keycode];
1487 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489 else
1490 return;
1491
1492 type = KTYP(keysym);
1493
1494 if (type < 0xf0) {
1495 param.value = keysym;
1496 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497 KBD_UNICODE, ¶m);
1498 if (rc != NOTIFY_STOP)
1499 if (down && !raw_mode)
1500 k_unicode(vc, keysym, !down);
1501 return;
1502 }
1503
1504 type -= 0xf0;
1505
1506 if (type == KT_LETTER) {
1507 type = KT_LATIN;
1508 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510 if (key_map)
1511 keysym = key_map[keycode];
1512 }
1513 }
1514
1515 param.value = keysym;
1516 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517 KBD_KEYSYM, ¶m);
1518 if (rc == NOTIFY_STOP)
1519 return;
1520
1521 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522 return;
1523
1524 (*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526 param.ledstate = kbd->ledflagstate;
1527 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1528
1529 if (type != KT_SLOCK)
1530 kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534 unsigned int event_code, int value)
1535{
1536 /* We are called with interrupts disabled, just take the lock */
1537 spin_lock(&kbd_event_lock);
1538
1539 if (event_type == EV_MSC && event_code == MSC_RAW &&
1540 kbd_is_hw_raw(handle->dev))
1541 kbd_rawcode(value);
1542 if (event_type == EV_KEY && event_code <= KEY_MAX)
1543 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545 spin_unlock(&kbd_event_lock);
1546
1547 tasklet_schedule(&keyboard_tasklet);
1548 do_poke_blanked_console = 1;
1549 schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
1554 if (test_bit(EV_SND, dev->evbit))
1555 return true;
1556
1557 if (test_bit(EV_KEY, dev->evbit)) {
1558 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559 BTN_MISC)
1560 return true;
1561 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563 return true;
1564 }
1565
1566 return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576 const struct input_device_id *id)
1577{
1578 struct input_handle *handle;
1579 int error;
1580
1581 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582 if (!handle)
1583 return -ENOMEM;
1584
1585 handle->dev = dev;
1586 handle->handler = handler;
1587 handle->name = "kbd";
1588
1589 error = input_register_handle(handle);
1590 if (error)
1591 goto err_free_handle;
1592
1593 error = input_open_device(handle);
1594 if (error)
1595 goto err_unregister_handle;
1596
1597 return 0;
1598
1599 err_unregister_handle:
1600 input_unregister_handle(handle);
1601 err_free_handle:
1602 kfree(handle);
1603 return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608 input_close_device(handle);
1609 input_unregister_handle(handle);
1610 kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619 tasklet_disable(&keyboard_tasklet);
1620
1621 if (ledstate != -1U)
1622 kbd_update_leds_helper(handle, &ledstate);
1623
1624 tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628 {
1629 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630 .evbit = { BIT_MASK(EV_KEY) },
1631 },
1632
1633 {
1634 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635 .evbit = { BIT_MASK(EV_SND) },
1636 },
1637
1638 { }, /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644 .event = kbd_event,
1645 .match = kbd_match,
1646 .connect = kbd_connect,
1647 .disconnect = kbd_disconnect,
1648 .start = kbd_start,
1649 .name = "kbd",
1650 .id_table = kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655 int i;
1656 int error;
1657
1658 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659 kbd_table[i].ledflagstate = kbd_defleds();
1660 kbd_table[i].default_ledflagstate = kbd_defleds();
1661 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662 kbd_table[i].lockstate = KBD_DEFLOCK;
1663 kbd_table[i].slockstate = 0;
1664 kbd_table[i].modeflags = KBD_DEFMODE;
1665 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666 }
1667
1668 kbd_init_leds();
1669
1670 error = input_register_handler(&kbd_handler);
1671 if (error)
1672 return error;
1673
1674 tasklet_enable(&keyboard_tasklet);
1675 tasklet_schedule(&keyboard_tasklet);
1676
1677 return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 * vt_do_diacrit - diacritical table updates
1684 * @cmd: ioctl request
1685 * @udp: pointer to user data for ioctl
1686 * @perm: permissions check computed by caller
1687 *
1688 * Update the diacritical tables atomically and safely. Lock them
1689 * against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
1693 unsigned long flags;
1694 int asize;
1695 int ret = 0;
1696
1697 switch (cmd) {
1698 case KDGKBDIACR:
1699 {
1700 struct kbdiacrs __user *a = udp;
1701 struct kbdiacr *dia;
1702 int i;
1703
1704 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705 GFP_KERNEL);
1706 if (!dia)
1707 return -ENOMEM;
1708
1709 /* Lock the diacriticals table, make a copy and then
1710 copy it after we unlock */
1711 spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713 asize = accent_table_size;
1714 for (i = 0; i < asize; i++) {
1715 dia[i].diacr = conv_uni_to_8bit(
1716 accent_table[i].diacr);
1717 dia[i].base = conv_uni_to_8bit(
1718 accent_table[i].base);
1719 dia[i].result = conv_uni_to_8bit(
1720 accent_table[i].result);
1721 }
1722 spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724 if (put_user(asize, &a->kb_cnt))
1725 ret = -EFAULT;
1726 else if (copy_to_user(a->kbdiacr, dia,
1727 asize * sizeof(struct kbdiacr)))
1728 ret = -EFAULT;
1729 kfree(dia);
1730 return ret;
1731 }
1732 case KDGKBDIACRUC:
1733 {
1734 struct kbdiacrsuc __user *a = udp;
1735 void *buf;
1736
1737 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738 GFP_KERNEL);
1739 if (buf == NULL)
1740 return -ENOMEM;
1741
1742 /* Lock the diacriticals table, make a copy and then
1743 copy it after we unlock */
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746 asize = accent_table_size;
1747 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749 spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751 if (put_user(asize, &a->kb_cnt))
1752 ret = -EFAULT;
1753 else if (copy_to_user(a->kbdiacruc, buf,
1754 asize*sizeof(struct kbdiacruc)))
1755 ret = -EFAULT;
1756 kfree(buf);
1757 return ret;
1758 }
1759
1760 case KDSKBDIACR:
1761 {
1762 struct kbdiacrs __user *a = udp;
1763 struct kbdiacr *dia = NULL;
1764 unsigned int ct;
1765 int i;
1766
1767 if (!perm)
1768 return -EPERM;
1769 if (get_user(ct, &a->kb_cnt))
1770 return -EFAULT;
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 dia = memdup_array_user(a->kbdiacr,
1776 ct, sizeof(struct kbdiacr));
1777 if (IS_ERR(dia))
1778 return PTR_ERR(dia);
1779 }
1780
1781 spin_lock_irqsave(&kbd_event_lock, flags);
1782 accent_table_size = ct;
1783 for (i = 0; i < ct; i++) {
1784 accent_table[i].diacr =
1785 conv_8bit_to_uni(dia[i].diacr);
1786 accent_table[i].base =
1787 conv_8bit_to_uni(dia[i].base);
1788 accent_table[i].result =
1789 conv_8bit_to_uni(dia[i].result);
1790 }
1791 spin_unlock_irqrestore(&kbd_event_lock, flags);
1792 kfree(dia);
1793 return 0;
1794 }
1795
1796 case KDSKBDIACRUC:
1797 {
1798 struct kbdiacrsuc __user *a = udp;
1799 unsigned int ct;
1800 void *buf = NULL;
1801
1802 if (!perm)
1803 return -EPERM;
1804
1805 if (get_user(ct, &a->kb_cnt))
1806 return -EFAULT;
1807
1808 if (ct >= MAX_DIACR)
1809 return -EINVAL;
1810
1811 if (ct) {
1812 buf = memdup_array_user(a->kbdiacruc,
1813 ct, sizeof(struct kbdiacruc));
1814 if (IS_ERR(buf))
1815 return PTR_ERR(buf);
1816 }
1817 spin_lock_irqsave(&kbd_event_lock, flags);
1818 if (ct)
1819 memcpy(accent_table, buf,
1820 ct * sizeof(struct kbdiacruc));
1821 accent_table_size = ct;
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 kfree(buf);
1824 return 0;
1825 }
1826 }
1827 return ret;
1828}
1829
1830/**
1831 * vt_do_kdskbmode - set keyboard mode ioctl
1832 * @console: the console to use
1833 * @arg: the requested mode
1834 *
1835 * Update the keyboard mode bits while holding the correct locks.
1836 * Return 0 for success or an error code.
1837 */
1838int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1839{
1840 struct kbd_struct *kb = &kbd_table[console];
1841 int ret = 0;
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&kbd_event_lock, flags);
1845 switch(arg) {
1846 case K_RAW:
1847 kb->kbdmode = VC_RAW;
1848 break;
1849 case K_MEDIUMRAW:
1850 kb->kbdmode = VC_MEDIUMRAW;
1851 break;
1852 case K_XLATE:
1853 kb->kbdmode = VC_XLATE;
1854 do_compute_shiftstate();
1855 break;
1856 case K_UNICODE:
1857 kb->kbdmode = VC_UNICODE;
1858 do_compute_shiftstate();
1859 break;
1860 case K_OFF:
1861 kb->kbdmode = VC_OFF;
1862 break;
1863 default:
1864 ret = -EINVAL;
1865 }
1866 spin_unlock_irqrestore(&kbd_event_lock, flags);
1867 return ret;
1868}
1869
1870/**
1871 * vt_do_kdskbmeta - set keyboard meta state
1872 * @console: the console to use
1873 * @arg: the requested meta state
1874 *
1875 * Update the keyboard meta bits while holding the correct locks.
1876 * Return 0 for success or an error code.
1877 */
1878int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1879{
1880 struct kbd_struct *kb = &kbd_table[console];
1881 int ret = 0;
1882 unsigned long flags;
1883
1884 spin_lock_irqsave(&kbd_event_lock, flags);
1885 switch(arg) {
1886 case K_METABIT:
1887 clr_vc_kbd_mode(kb, VC_META);
1888 break;
1889 case K_ESCPREFIX:
1890 set_vc_kbd_mode(kb, VC_META);
1891 break;
1892 default:
1893 ret = -EINVAL;
1894 }
1895 spin_unlock_irqrestore(&kbd_event_lock, flags);
1896 return ret;
1897}
1898
1899int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1900 int perm)
1901{
1902 struct kbkeycode tmp;
1903 int kc = 0;
1904
1905 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1906 return -EFAULT;
1907 switch (cmd) {
1908 case KDGETKEYCODE:
1909 kc = getkeycode(tmp.scancode);
1910 if (kc >= 0)
1911 kc = put_user(kc, &user_kbkc->keycode);
1912 break;
1913 case KDSETKEYCODE:
1914 if (!perm)
1915 return -EPERM;
1916 kc = setkeycode(tmp.scancode, tmp.keycode);
1917 break;
1918 }
1919 return kc;
1920}
1921
1922static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1923 unsigned char map)
1924{
1925 unsigned short *key_map, val;
1926 unsigned long flags;
1927
1928 /* Ensure another thread doesn't free it under us */
1929 spin_lock_irqsave(&kbd_event_lock, flags);
1930 key_map = key_maps[map];
1931 if (key_map) {
1932 val = U(key_map[idx]);
1933 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1934 val = K_HOLE;
1935 } else
1936 val = idx ? K_HOLE : K_NOSUCHMAP;
1937 spin_unlock_irqrestore(&kbd_event_lock, flags);
1938
1939 return val;
1940}
1941
1942static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1943 unsigned char map, unsigned short val)
1944{
1945 unsigned long flags;
1946 unsigned short *key_map, *new_map, oldval;
1947
1948 if (!idx && val == K_NOSUCHMAP) {
1949 spin_lock_irqsave(&kbd_event_lock, flags);
1950 /* deallocate map */
1951 key_map = key_maps[map];
1952 if (map && key_map) {
1953 key_maps[map] = NULL;
1954 if (key_map[0] == U(K_ALLOCATED)) {
1955 kfree(key_map);
1956 keymap_count--;
1957 }
1958 }
1959 spin_unlock_irqrestore(&kbd_event_lock, flags);
1960
1961 return 0;
1962 }
1963
1964 if (KTYP(val) < NR_TYPES) {
1965 if (KVAL(val) > max_vals[KTYP(val)])
1966 return -EINVAL;
1967 } else if (kbdmode != VC_UNICODE)
1968 return -EINVAL;
1969
1970 /* ++Geert: non-PC keyboards may generate keycode zero */
1971#if !defined(__mc68000__) && !defined(__powerpc__)
1972 /* assignment to entry 0 only tests validity of args */
1973 if (!idx)
1974 return 0;
1975#endif
1976
1977 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1978 if (!new_map)
1979 return -ENOMEM;
1980
1981 spin_lock_irqsave(&kbd_event_lock, flags);
1982 key_map = key_maps[map];
1983 if (key_map == NULL) {
1984 int j;
1985
1986 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1987 !capable(CAP_SYS_RESOURCE)) {
1988 spin_unlock_irqrestore(&kbd_event_lock, flags);
1989 kfree(new_map);
1990 return -EPERM;
1991 }
1992 key_maps[map] = new_map;
1993 key_map = new_map;
1994 key_map[0] = U(K_ALLOCATED);
1995 for (j = 1; j < NR_KEYS; j++)
1996 key_map[j] = U(K_HOLE);
1997 keymap_count++;
1998 } else
1999 kfree(new_map);
2000
2001 oldval = U(key_map[idx]);
2002 if (val == oldval)
2003 goto out;
2004
2005 /* Attention Key */
2006 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2007 spin_unlock_irqrestore(&kbd_event_lock, flags);
2008 return -EPERM;
2009 }
2010
2011 key_map[idx] = U(val);
2012 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2013 do_compute_shiftstate();
2014out:
2015 spin_unlock_irqrestore(&kbd_event_lock, flags);
2016
2017 return 0;
2018}
2019
2020int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2021 unsigned int console)
2022{
2023 struct kbd_struct *kb = &kbd_table[console];
2024 struct kbentry kbe;
2025
2026 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2027 return -EFAULT;
2028
2029 switch (cmd) {
2030 case KDGKBENT:
2031 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2032 kbe.kb_table),
2033 &user_kbe->kb_value);
2034 case KDSKBENT:
2035 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2036 return -EPERM;
2037 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2038 kbe.kb_value);
2039 }
2040 return 0;
2041}
2042
2043static char *vt_kdskbsent(char *kbs, unsigned char cur)
2044{
2045 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2046 char *cur_f = func_table[cur];
2047
2048 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2049 strcpy(cur_f, kbs);
2050 return kbs;
2051 }
2052
2053 func_table[cur] = kbs;
2054
2055 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056}
2057
2058int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2059{
2060 unsigned char kb_func;
2061 unsigned long flags;
2062 char *kbs;
2063 int ret;
2064
2065 if (get_user(kb_func, &user_kdgkb->kb_func))
2066 return -EFAULT;
2067
2068 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2069
2070 switch (cmd) {
2071 case KDGKBSENT: {
2072 /* size should have been a struct member */
2073 ssize_t len = sizeof(user_kdgkb->kb_string);
2074
2075 kbs = kmalloc(len, GFP_KERNEL);
2076 if (!kbs)
2077 return -ENOMEM;
2078
2079 spin_lock_irqsave(&func_buf_lock, flags);
2080 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2081 spin_unlock_irqrestore(&func_buf_lock, flags);
2082
2083 if (len < 0) {
2084 ret = -ENOSPC;
2085 break;
2086 }
2087 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2088 -EFAULT : 0;
2089 break;
2090 }
2091 case KDSKBSENT:
2092 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2093 return -EPERM;
2094
2095 kbs = strndup_user(user_kdgkb->kb_string,
2096 sizeof(user_kdgkb->kb_string));
2097 if (IS_ERR(kbs))
2098 return PTR_ERR(kbs);
2099
2100 spin_lock_irqsave(&func_buf_lock, flags);
2101 kbs = vt_kdskbsent(kbs, kb_func);
2102 spin_unlock_irqrestore(&func_buf_lock, flags);
2103
2104 ret = 0;
2105 break;
2106 }
2107
2108 kfree(kbs);
2109
2110 return ret;
2111}
2112
2113int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114{
2115 struct kbd_struct *kb = &kbd_table[console];
2116 unsigned long flags;
2117 unsigned char ucval;
2118
2119 switch(cmd) {
2120 /* the ioctls below read/set the flags usually shown in the leds */
2121 /* don't use them - they will go away without warning */
2122 case KDGKBLED:
2123 spin_lock_irqsave(&kbd_event_lock, flags);
2124 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2125 spin_unlock_irqrestore(&kbd_event_lock, flags);
2126 return put_user(ucval, (char __user *)arg);
2127
2128 case KDSKBLED:
2129 if (!perm)
2130 return -EPERM;
2131 if (arg & ~0x77)
2132 return -EINVAL;
2133 spin_lock_irqsave(&led_lock, flags);
2134 kb->ledflagstate = (arg & 7);
2135 kb->default_ledflagstate = ((arg >> 4) & 7);
2136 set_leds();
2137 spin_unlock_irqrestore(&led_lock, flags);
2138 return 0;
2139
2140 /* the ioctls below only set the lights, not the functions */
2141 /* for those, see KDGKBLED and KDSKBLED above */
2142 case KDGETLED:
2143 ucval = getledstate();
2144 return put_user(ucval, (char __user *)arg);
2145
2146 case KDSETLED:
2147 if (!perm)
2148 return -EPERM;
2149 setledstate(kb, arg);
2150 return 0;
2151 }
2152 return -ENOIOCTLCMD;
2153}
2154
2155int vt_do_kdgkbmode(unsigned int console)
2156{
2157 struct kbd_struct *kb = &kbd_table[console];
2158 /* This is a spot read so needs no locking */
2159 switch (kb->kbdmode) {
2160 case VC_RAW:
2161 return K_RAW;
2162 case VC_MEDIUMRAW:
2163 return K_MEDIUMRAW;
2164 case VC_UNICODE:
2165 return K_UNICODE;
2166 case VC_OFF:
2167 return K_OFF;
2168 default:
2169 return K_XLATE;
2170 }
2171}
2172
2173/**
2174 * vt_do_kdgkbmeta - report meta status
2175 * @console: console to report
2176 *
2177 * Report the meta flag status of this console
2178 */
2179int vt_do_kdgkbmeta(unsigned int console)
2180{
2181 struct kbd_struct *kb = &kbd_table[console];
2182 /* Again a spot read so no locking */
2183 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2184}
2185
2186/**
2187 * vt_reset_unicode - reset the unicode status
2188 * @console: console being reset
2189 *
2190 * Restore the unicode console state to its default
2191 */
2192void vt_reset_unicode(unsigned int console)
2193{
2194 unsigned long flags;
2195
2196 spin_lock_irqsave(&kbd_event_lock, flags);
2197 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2198 spin_unlock_irqrestore(&kbd_event_lock, flags);
2199}
2200
2201/**
2202 * vt_get_shift_state - shift bit state
2203 *
2204 * Report the shift bits from the keyboard state. We have to export
2205 * this to support some oddities in the vt layer.
2206 */
2207int vt_get_shift_state(void)
2208{
2209 /* Don't lock as this is a transient report */
2210 return shift_state;
2211}
2212
2213/**
2214 * vt_reset_keyboard - reset keyboard state
2215 * @console: console to reset
2216 *
2217 * Reset the keyboard bits for a console as part of a general console
2218 * reset event
2219 */
2220void vt_reset_keyboard(unsigned int console)
2221{
2222 struct kbd_struct *kb = &kbd_table[console];
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&kbd_event_lock, flags);
2226 set_vc_kbd_mode(kb, VC_REPEAT);
2227 clr_vc_kbd_mode(kb, VC_CKMODE);
2228 clr_vc_kbd_mode(kb, VC_APPLIC);
2229 clr_vc_kbd_mode(kb, VC_CRLF);
2230 kb->lockstate = 0;
2231 kb->slockstate = 0;
2232 spin_lock(&led_lock);
2233 kb->ledmode = LED_SHOW_FLAGS;
2234 kb->ledflagstate = kb->default_ledflagstate;
2235 spin_unlock(&led_lock);
2236 /* do not do set_leds here because this causes an endless tasklet loop
2237 when the keyboard hasn't been initialized yet */
2238 spin_unlock_irqrestore(&kbd_event_lock, flags);
2239}
2240
2241/**
2242 * vt_get_kbd_mode_bit - read keyboard status bits
2243 * @console: console to read from
2244 * @bit: mode bit to read
2245 *
2246 * Report back a vt mode bit. We do this without locking so the
2247 * caller must be sure that there are no synchronization needs
2248 */
2249
2250int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251{
2252 struct kbd_struct *kb = &kbd_table[console];
2253 return vc_kbd_mode(kb, bit);
2254}
2255
2256/**
2257 * vt_set_kbd_mode_bit - read keyboard status bits
2258 * @console: console to read from
2259 * @bit: mode bit to read
2260 *
2261 * Set a vt mode bit. We do this without locking so the
2262 * caller must be sure that there are no synchronization needs
2263 */
2264
2265void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266{
2267 struct kbd_struct *kb = &kbd_table[console];
2268 unsigned long flags;
2269
2270 spin_lock_irqsave(&kbd_event_lock, flags);
2271 set_vc_kbd_mode(kb, bit);
2272 spin_unlock_irqrestore(&kbd_event_lock, flags);
2273}
2274
2275/**
2276 * vt_clr_kbd_mode_bit - read keyboard status bits
2277 * @console: console to read from
2278 * @bit: mode bit to read
2279 *
2280 * Report back a vt mode bit. We do this without locking so the
2281 * caller must be sure that there are no synchronization needs
2282 */
2283
2284void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285{
2286 struct kbd_struct *kb = &kbd_table[console];
2287 unsigned long flags;
2288
2289 spin_lock_irqsave(&kbd_event_lock, flags);
2290 clr_vc_kbd_mode(kb, bit);
2291 spin_unlock_irqrestore(&kbd_event_lock, flags);
2292}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156
157/*
158 * Notifier list for console keyboard events
159 */
160static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
161
162int register_keyboard_notifier(struct notifier_block *nb)
163{
164 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
165}
166EXPORT_SYMBOL_GPL(register_keyboard_notifier);
167
168int unregister_keyboard_notifier(struct notifier_block *nb)
169{
170 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
171}
172EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
173
174/*
175 * Translation of scancodes to keycodes. We set them on only the first
176 * keyboard in the list that accepts the scancode and keycode.
177 * Explanation for not choosing the first attached keyboard anymore:
178 * USB keyboards for example have two event devices: one for all "normal"
179 * keys and one for extra function keys (like "volume up", "make coffee",
180 * etc.). So this means that scancodes for the extra function keys won't
181 * be valid for the first event device, but will be for the second.
182 */
183
184struct getset_keycode_data {
185 struct input_keymap_entry ke;
186 int error;
187};
188
189static int getkeycode_helper(struct input_handle *handle, void *data)
190{
191 struct getset_keycode_data *d = data;
192
193 d->error = input_get_keycode(handle->dev, &d->ke);
194
195 return d->error == 0; /* stop as soon as we successfully get one */
196}
197
198static int getkeycode(unsigned int scancode)
199{
200 struct getset_keycode_data d = {
201 .ke = {
202 .flags = 0,
203 .len = sizeof(scancode),
204 .keycode = 0,
205 },
206 .error = -ENODEV,
207 };
208
209 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
210
211 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
212
213 return d.error ?: d.ke.keycode;
214}
215
216static int setkeycode_helper(struct input_handle *handle, void *data)
217{
218 struct getset_keycode_data *d = data;
219
220 d->error = input_set_keycode(handle->dev, &d->ke);
221
222 return d->error == 0; /* stop as soon as we successfully set one */
223}
224
225static int setkeycode(unsigned int scancode, unsigned int keycode)
226{
227 struct getset_keycode_data d = {
228 .ke = {
229 .flags = 0,
230 .len = sizeof(scancode),
231 .keycode = keycode,
232 },
233 .error = -ENODEV,
234 };
235
236 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
237
238 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
239
240 return d.error;
241}
242
243/*
244 * Making beeps and bells. Note that we prefer beeps to bells, but when
245 * shutting the sound off we do both.
246 */
247
248static int kd_sound_helper(struct input_handle *handle, void *data)
249{
250 unsigned int *hz = data;
251 struct input_dev *dev = handle->dev;
252
253 if (test_bit(EV_SND, dev->evbit)) {
254 if (test_bit(SND_TONE, dev->sndbit)) {
255 input_inject_event(handle, EV_SND, SND_TONE, *hz);
256 if (*hz)
257 return 0;
258 }
259 if (test_bit(SND_BELL, dev->sndbit))
260 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
261 }
262
263 return 0;
264}
265
266static void kd_nosound(struct timer_list *unused)
267{
268 static unsigned int zero;
269
270 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
271}
272
273static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
274
275void kd_mksound(unsigned int hz, unsigned int ticks)
276{
277 del_timer_sync(&kd_mksound_timer);
278
279 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
280
281 if (hz && ticks)
282 mod_timer(&kd_mksound_timer, jiffies + ticks);
283}
284EXPORT_SYMBOL(kd_mksound);
285
286/*
287 * Setting the keyboard rate.
288 */
289
290static int kbd_rate_helper(struct input_handle *handle, void *data)
291{
292 struct input_dev *dev = handle->dev;
293 struct kbd_repeat *rpt = data;
294
295 if (test_bit(EV_REP, dev->evbit)) {
296
297 if (rpt[0].delay > 0)
298 input_inject_event(handle,
299 EV_REP, REP_DELAY, rpt[0].delay);
300 if (rpt[0].period > 0)
301 input_inject_event(handle,
302 EV_REP, REP_PERIOD, rpt[0].period);
303
304 rpt[1].delay = dev->rep[REP_DELAY];
305 rpt[1].period = dev->rep[REP_PERIOD];
306 }
307
308 return 0;
309}
310
311int kbd_rate(struct kbd_repeat *rpt)
312{
313 struct kbd_repeat data[2] = { *rpt };
314
315 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
316 *rpt = data[1]; /* Copy currently used settings */
317
318 return 0;
319}
320
321/*
322 * Helper Functions.
323 */
324static void put_queue(struct vc_data *vc, int ch)
325{
326 tty_insert_flip_char(&vc->port, ch, 0);
327 tty_schedule_flip(&vc->port);
328}
329
330static void puts_queue(struct vc_data *vc, const char *cp)
331{
332 tty_insert_flip_string(&vc->port, cp, strlen(cp));
333 tty_schedule_flip(&vc->port);
334}
335
336static void applkey(struct vc_data *vc, int key, char mode)
337{
338 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
339
340 buf[1] = (mode ? 'O' : '[');
341 buf[2] = key;
342 puts_queue(vc, buf);
343}
344
345/*
346 * Many other routines do put_queue, but I think either
347 * they produce ASCII, or they produce some user-assigned
348 * string, and in both cases we might assume that it is
349 * in utf-8 already.
350 */
351static void to_utf8(struct vc_data *vc, uint c)
352{
353 if (c < 0x80)
354 /* 0******* */
355 put_queue(vc, c);
356 else if (c < 0x800) {
357 /* 110***** 10****** */
358 put_queue(vc, 0xc0 | (c >> 6));
359 put_queue(vc, 0x80 | (c & 0x3f));
360 } else if (c < 0x10000) {
361 if (c >= 0xD800 && c < 0xE000)
362 return;
363 if (c == 0xFFFF)
364 return;
365 /* 1110**** 10****** 10****** */
366 put_queue(vc, 0xe0 | (c >> 12));
367 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
368 put_queue(vc, 0x80 | (c & 0x3f));
369 } else if (c < 0x110000) {
370 /* 11110*** 10****** 10****** 10****** */
371 put_queue(vc, 0xf0 | (c >> 18));
372 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
373 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
374 put_queue(vc, 0x80 | (c & 0x3f));
375 }
376}
377
378/* FIXME: review locking for vt.c callers */
379static void set_leds(void)
380{
381 tasklet_schedule(&keyboard_tasklet);
382}
383
384/*
385 * Called after returning from RAW mode or when changing consoles - recompute
386 * shift_down[] and shift_state from key_down[] maybe called when keymap is
387 * undefined, so that shiftkey release is seen. The caller must hold the
388 * kbd_event_lock.
389 */
390
391static void do_compute_shiftstate(void)
392{
393 unsigned int k, sym, val;
394
395 shift_state = 0;
396 memset(shift_down, 0, sizeof(shift_down));
397
398 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
399 sym = U(key_maps[0][k]);
400 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
401 continue;
402
403 val = KVAL(sym);
404 if (val == KVAL(K_CAPSSHIFT))
405 val = KVAL(K_SHIFT);
406
407 shift_down[val]++;
408 shift_state |= BIT(val);
409 }
410}
411
412/* We still have to export this method to vt.c */
413void vt_set_leds_compute_shiftstate(void)
414{
415 unsigned long flags;
416
417 set_leds();
418
419 spin_lock_irqsave(&kbd_event_lock, flags);
420 do_compute_shiftstate();
421 spin_unlock_irqrestore(&kbd_event_lock, flags);
422}
423
424/*
425 * We have a combining character DIACR here, followed by the character CH.
426 * If the combination occurs in the table, return the corresponding value.
427 * Otherwise, if CH is a space or equals DIACR, return DIACR.
428 * Otherwise, conclude that DIACR was not combining after all,
429 * queue it and return CH.
430 */
431static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
432{
433 unsigned int d = diacr;
434 unsigned int i;
435
436 diacr = 0;
437
438 if ((d & ~0xff) == BRL_UC_ROW) {
439 if ((ch & ~0xff) == BRL_UC_ROW)
440 return d | ch;
441 } else {
442 for (i = 0; i < accent_table_size; i++)
443 if (accent_table[i].diacr == d && accent_table[i].base == ch)
444 return accent_table[i].result;
445 }
446
447 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
448 return d;
449
450 if (kbd->kbdmode == VC_UNICODE)
451 to_utf8(vc, d);
452 else {
453 int c = conv_uni_to_8bit(d);
454 if (c != -1)
455 put_queue(vc, c);
456 }
457
458 return ch;
459}
460
461/*
462 * Special function handlers
463 */
464static void fn_enter(struct vc_data *vc)
465{
466 if (diacr) {
467 if (kbd->kbdmode == VC_UNICODE)
468 to_utf8(vc, diacr);
469 else {
470 int c = conv_uni_to_8bit(diacr);
471 if (c != -1)
472 put_queue(vc, c);
473 }
474 diacr = 0;
475 }
476
477 put_queue(vc, '\r');
478 if (vc_kbd_mode(kbd, VC_CRLF))
479 put_queue(vc, '\n');
480}
481
482static void fn_caps_toggle(struct vc_data *vc)
483{
484 if (rep)
485 return;
486
487 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
488}
489
490static void fn_caps_on(struct vc_data *vc)
491{
492 if (rep)
493 return;
494
495 set_vc_kbd_led(kbd, VC_CAPSLOCK);
496}
497
498static void fn_show_ptregs(struct vc_data *vc)
499{
500 struct pt_regs *regs = get_irq_regs();
501
502 if (regs)
503 show_regs(regs);
504}
505
506static void fn_hold(struct vc_data *vc)
507{
508 struct tty_struct *tty = vc->port.tty;
509
510 if (rep || !tty)
511 return;
512
513 /*
514 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
515 * these routines are also activated by ^S/^Q.
516 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
517 */
518 if (tty->flow.stopped)
519 start_tty(tty);
520 else
521 stop_tty(tty);
522}
523
524static void fn_num(struct vc_data *vc)
525{
526 if (vc_kbd_mode(kbd, VC_APPLIC))
527 applkey(vc, 'P', 1);
528 else
529 fn_bare_num(vc);
530}
531
532/*
533 * Bind this to Shift-NumLock if you work in application keypad mode
534 * but want to be able to change the NumLock flag.
535 * Bind this to NumLock if you prefer that the NumLock key always
536 * changes the NumLock flag.
537 */
538static void fn_bare_num(struct vc_data *vc)
539{
540 if (!rep)
541 chg_vc_kbd_led(kbd, VC_NUMLOCK);
542}
543
544static void fn_lastcons(struct vc_data *vc)
545{
546 /* switch to the last used console, ChN */
547 set_console(last_console);
548}
549
550static void fn_dec_console(struct vc_data *vc)
551{
552 int i, cur = fg_console;
553
554 /* Currently switching? Queue this next switch relative to that. */
555 if (want_console != -1)
556 cur = want_console;
557
558 for (i = cur - 1; i != cur; i--) {
559 if (i == -1)
560 i = MAX_NR_CONSOLES - 1;
561 if (vc_cons_allocated(i))
562 break;
563 }
564 set_console(i);
565}
566
567static void fn_inc_console(struct vc_data *vc)
568{
569 int i, cur = fg_console;
570
571 /* Currently switching? Queue this next switch relative to that. */
572 if (want_console != -1)
573 cur = want_console;
574
575 for (i = cur+1; i != cur; i++) {
576 if (i == MAX_NR_CONSOLES)
577 i = 0;
578 if (vc_cons_allocated(i))
579 break;
580 }
581 set_console(i);
582}
583
584static void fn_send_intr(struct vc_data *vc)
585{
586 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
587 tty_schedule_flip(&vc->port);
588}
589
590static void fn_scroll_forw(struct vc_data *vc)
591{
592 scrollfront(vc, 0);
593}
594
595static void fn_scroll_back(struct vc_data *vc)
596{
597 scrollback(vc);
598}
599
600static void fn_show_mem(struct vc_data *vc)
601{
602 show_mem(0, NULL);
603}
604
605static void fn_show_state(struct vc_data *vc)
606{
607 show_state();
608}
609
610static void fn_boot_it(struct vc_data *vc)
611{
612 ctrl_alt_del();
613}
614
615static void fn_compose(struct vc_data *vc)
616{
617 dead_key_next = true;
618}
619
620static void fn_spawn_con(struct vc_data *vc)
621{
622 spin_lock(&vt_spawn_con.lock);
623 if (vt_spawn_con.pid)
624 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
625 put_pid(vt_spawn_con.pid);
626 vt_spawn_con.pid = NULL;
627 }
628 spin_unlock(&vt_spawn_con.lock);
629}
630
631static void fn_SAK(struct vc_data *vc)
632{
633 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
634 schedule_work(SAK_work);
635}
636
637static void fn_null(struct vc_data *vc)
638{
639 do_compute_shiftstate();
640}
641
642/*
643 * Special key handlers
644 */
645static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
646{
647}
648
649static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
650{
651 if (up_flag)
652 return;
653 if (value >= ARRAY_SIZE(fn_handler))
654 return;
655 if ((kbd->kbdmode == VC_RAW ||
656 kbd->kbdmode == VC_MEDIUMRAW ||
657 kbd->kbdmode == VC_OFF) &&
658 value != KVAL(K_SAK))
659 return; /* SAK is allowed even in raw mode */
660 fn_handler[value](vc);
661}
662
663static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
664{
665 pr_err("k_lowercase was called - impossible\n");
666}
667
668static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
669{
670 if (up_flag)
671 return; /* no action, if this is a key release */
672
673 if (diacr)
674 value = handle_diacr(vc, value);
675
676 if (dead_key_next) {
677 dead_key_next = false;
678 diacr = value;
679 return;
680 }
681 if (kbd->kbdmode == VC_UNICODE)
682 to_utf8(vc, value);
683 else {
684 int c = conv_uni_to_8bit(value);
685 if (c != -1)
686 put_queue(vc, c);
687 }
688}
689
690/*
691 * Handle dead key. Note that we now may have several
692 * dead keys modifying the same character. Very useful
693 * for Vietnamese.
694 */
695static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
696{
697 if (up_flag)
698 return;
699
700 diacr = (diacr ? handle_diacr(vc, value) : value);
701}
702
703static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
704{
705 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
706}
707
708static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
709{
710 k_deadunicode(vc, value, up_flag);
711}
712
713/*
714 * Obsolete - for backwards compatibility only
715 */
716static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
717{
718 static const unsigned char ret_diacr[NR_DEAD] = {
719 '`', /* dead_grave */
720 '\'', /* dead_acute */
721 '^', /* dead_circumflex */
722 '~', /* dead_tilda */
723 '"', /* dead_diaeresis */
724 ',', /* dead_cedilla */
725 '_', /* dead_macron */
726 'U', /* dead_breve */
727 '.', /* dead_abovedot */
728 '*', /* dead_abovering */
729 '=', /* dead_doubleacute */
730 'c', /* dead_caron */
731 'k', /* dead_ogonek */
732 'i', /* dead_iota */
733 '#', /* dead_voiced_sound */
734 'o', /* dead_semivoiced_sound */
735 '!', /* dead_belowdot */
736 '?', /* dead_hook */
737 '+', /* dead_horn */
738 '-', /* dead_stroke */
739 ')', /* dead_abovecomma */
740 '(', /* dead_abovereversedcomma */
741 ':', /* dead_doublegrave */
742 'n', /* dead_invertedbreve */
743 ';', /* dead_belowcomma */
744 '$', /* dead_currency */
745 '@', /* dead_greek */
746 };
747
748 k_deadunicode(vc, ret_diacr[value], up_flag);
749}
750
751static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
752{
753 if (up_flag)
754 return;
755
756 set_console(value);
757}
758
759static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
760{
761 if (up_flag)
762 return;
763
764 if ((unsigned)value < ARRAY_SIZE(func_table)) {
765 unsigned long flags;
766
767 spin_lock_irqsave(&func_buf_lock, flags);
768 if (func_table[value])
769 puts_queue(vc, func_table[value]);
770 spin_unlock_irqrestore(&func_buf_lock, flags);
771
772 } else
773 pr_err("k_fn called with value=%d\n", value);
774}
775
776static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
777{
778 static const char cur_chars[] = "BDCA";
779
780 if (up_flag)
781 return;
782
783 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
784}
785
786static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
787{
788 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
789 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
790
791 if (up_flag)
792 return; /* no action, if this is a key release */
793
794 /* kludge... shift forces cursor/number keys */
795 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
796 applkey(vc, app_map[value], 1);
797 return;
798 }
799
800 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
801
802 switch (value) {
803 case KVAL(K_PCOMMA):
804 case KVAL(K_PDOT):
805 k_fn(vc, KVAL(K_REMOVE), 0);
806 return;
807 case KVAL(K_P0):
808 k_fn(vc, KVAL(K_INSERT), 0);
809 return;
810 case KVAL(K_P1):
811 k_fn(vc, KVAL(K_SELECT), 0);
812 return;
813 case KVAL(K_P2):
814 k_cur(vc, KVAL(K_DOWN), 0);
815 return;
816 case KVAL(K_P3):
817 k_fn(vc, KVAL(K_PGDN), 0);
818 return;
819 case KVAL(K_P4):
820 k_cur(vc, KVAL(K_LEFT), 0);
821 return;
822 case KVAL(K_P6):
823 k_cur(vc, KVAL(K_RIGHT), 0);
824 return;
825 case KVAL(K_P7):
826 k_fn(vc, KVAL(K_FIND), 0);
827 return;
828 case KVAL(K_P8):
829 k_cur(vc, KVAL(K_UP), 0);
830 return;
831 case KVAL(K_P9):
832 k_fn(vc, KVAL(K_PGUP), 0);
833 return;
834 case KVAL(K_P5):
835 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
836 return;
837 }
838 }
839
840 put_queue(vc, pad_chars[value]);
841 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
842 put_queue(vc, '\n');
843}
844
845static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
846{
847 int old_state = shift_state;
848
849 if (rep)
850 return;
851 /*
852 * Mimic typewriter:
853 * a CapsShift key acts like Shift but undoes CapsLock
854 */
855 if (value == KVAL(K_CAPSSHIFT)) {
856 value = KVAL(K_SHIFT);
857 if (!up_flag)
858 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
859 }
860
861 if (up_flag) {
862 /*
863 * handle the case that two shift or control
864 * keys are depressed simultaneously
865 */
866 if (shift_down[value])
867 shift_down[value]--;
868 } else
869 shift_down[value]++;
870
871 if (shift_down[value])
872 shift_state |= BIT(value);
873 else
874 shift_state &= ~BIT(value);
875
876 /* kludge */
877 if (up_flag && shift_state != old_state && npadch_active) {
878 if (kbd->kbdmode == VC_UNICODE)
879 to_utf8(vc, npadch_value);
880 else
881 put_queue(vc, npadch_value & 0xff);
882 npadch_active = false;
883 }
884}
885
886static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
887{
888 if (up_flag)
889 return;
890
891 if (vc_kbd_mode(kbd, VC_META)) {
892 put_queue(vc, '\033');
893 put_queue(vc, value);
894 } else
895 put_queue(vc, value | BIT(7));
896}
897
898static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
899{
900 unsigned int base;
901
902 if (up_flag)
903 return;
904
905 if (value < 10) {
906 /* decimal input of code, while Alt depressed */
907 base = 10;
908 } else {
909 /* hexadecimal input of code, while AltGr depressed */
910 value -= 10;
911 base = 16;
912 }
913
914 if (!npadch_active) {
915 npadch_value = 0;
916 npadch_active = true;
917 }
918
919 npadch_value = npadch_value * base + value;
920}
921
922static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
923{
924 if (up_flag || rep)
925 return;
926
927 chg_vc_kbd_lock(kbd, value);
928}
929
930static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
931{
932 k_shift(vc, value, up_flag);
933 if (up_flag || rep)
934 return;
935
936 chg_vc_kbd_slock(kbd, value);
937 /* try to make Alt, oops, AltGr and such work */
938 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
939 kbd->slockstate = 0;
940 chg_vc_kbd_slock(kbd, value);
941 }
942}
943
944/* by default, 300ms interval for combination release */
945static unsigned brl_timeout = 300;
946MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
947module_param(brl_timeout, uint, 0644);
948
949static unsigned brl_nbchords = 1;
950MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
951module_param(brl_nbchords, uint, 0644);
952
953static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
954{
955 static unsigned long chords;
956 static unsigned committed;
957
958 if (!brl_nbchords)
959 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
960 else {
961 committed |= pattern;
962 chords++;
963 if (chords == brl_nbchords) {
964 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
965 chords = 0;
966 committed = 0;
967 }
968 }
969}
970
971static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
972{
973 static unsigned pressed, committing;
974 static unsigned long releasestart;
975
976 if (kbd->kbdmode != VC_UNICODE) {
977 if (!up_flag)
978 pr_warn("keyboard mode must be unicode for braille patterns\n");
979 return;
980 }
981
982 if (!value) {
983 k_unicode(vc, BRL_UC_ROW, up_flag);
984 return;
985 }
986
987 if (value > 8)
988 return;
989
990 if (!up_flag) {
991 pressed |= BIT(value - 1);
992 if (!brl_timeout)
993 committing = pressed;
994 } else if (brl_timeout) {
995 if (!committing ||
996 time_after(jiffies,
997 releasestart + msecs_to_jiffies(brl_timeout))) {
998 committing = pressed;
999 releasestart = jiffies;
1000 }
1001 pressed &= ~BIT(value - 1);
1002 if (!pressed && committing) {
1003 k_brlcommit(vc, committing, 0);
1004 committing = 0;
1005 }
1006 } else {
1007 if (committing) {
1008 k_brlcommit(vc, committing, 0);
1009 committing = 0;
1010 }
1011 pressed &= ~BIT(value - 1);
1012 }
1013}
1014
1015#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1016
1017struct kbd_led_trigger {
1018 struct led_trigger trigger;
1019 unsigned int mask;
1020};
1021
1022static int kbd_led_trigger_activate(struct led_classdev *cdev)
1023{
1024 struct kbd_led_trigger *trigger =
1025 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1026
1027 tasklet_disable(&keyboard_tasklet);
1028 if (ledstate != -1U)
1029 led_trigger_event(&trigger->trigger,
1030 ledstate & trigger->mask ?
1031 LED_FULL : LED_OFF);
1032 tasklet_enable(&keyboard_tasklet);
1033
1034 return 0;
1035}
1036
1037#define KBD_LED_TRIGGER(_led_bit, _name) { \
1038 .trigger = { \
1039 .name = _name, \
1040 .activate = kbd_led_trigger_activate, \
1041 }, \
1042 .mask = BIT(_led_bit), \
1043 }
1044
1045#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1046 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1047
1048static struct kbd_led_trigger kbd_led_triggers[] = {
1049 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1050 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1051 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1052 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1053
1054 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1055 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1056 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1057 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1058 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1059 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1060 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1061 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1062};
1063
1064static void kbd_propagate_led_state(unsigned int old_state,
1065 unsigned int new_state)
1066{
1067 struct kbd_led_trigger *trigger;
1068 unsigned int changed = old_state ^ new_state;
1069 int i;
1070
1071 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1072 trigger = &kbd_led_triggers[i];
1073
1074 if (changed & trigger->mask)
1075 led_trigger_event(&trigger->trigger,
1076 new_state & trigger->mask ?
1077 LED_FULL : LED_OFF);
1078 }
1079}
1080
1081static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1082{
1083 unsigned int led_state = *(unsigned int *)data;
1084
1085 if (test_bit(EV_LED, handle->dev->evbit))
1086 kbd_propagate_led_state(~led_state, led_state);
1087
1088 return 0;
1089}
1090
1091static void kbd_init_leds(void)
1092{
1093 int error;
1094 int i;
1095
1096 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1097 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1098 if (error)
1099 pr_err("error %d while registering trigger %s\n",
1100 error, kbd_led_triggers[i].trigger.name);
1101 }
1102}
1103
1104#else
1105
1106static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1107{
1108 unsigned int leds = *(unsigned int *)data;
1109
1110 if (test_bit(EV_LED, handle->dev->evbit)) {
1111 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1112 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1113 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1114 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1115 }
1116
1117 return 0;
1118}
1119
1120static void kbd_propagate_led_state(unsigned int old_state,
1121 unsigned int new_state)
1122{
1123 input_handler_for_each_handle(&kbd_handler, &new_state,
1124 kbd_update_leds_helper);
1125}
1126
1127static void kbd_init_leds(void)
1128{
1129}
1130
1131#endif
1132
1133/*
1134 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1135 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1136 * or (iii) specified bits of specified words in kernel memory.
1137 */
1138static unsigned char getledstate(void)
1139{
1140 return ledstate & 0xff;
1141}
1142
1143void setledstate(struct kbd_struct *kb, unsigned int led)
1144{
1145 unsigned long flags;
1146 spin_lock_irqsave(&led_lock, flags);
1147 if (!(led & ~7)) {
1148 ledioctl = led;
1149 kb->ledmode = LED_SHOW_IOCTL;
1150 } else
1151 kb->ledmode = LED_SHOW_FLAGS;
1152
1153 set_leds();
1154 spin_unlock_irqrestore(&led_lock, flags);
1155}
1156
1157static inline unsigned char getleds(void)
1158{
1159 struct kbd_struct *kb = kbd_table + fg_console;
1160
1161 if (kb->ledmode == LED_SHOW_IOCTL)
1162 return ledioctl;
1163
1164 return kb->ledflagstate;
1165}
1166
1167/**
1168 * vt_get_leds - helper for braille console
1169 * @console: console to read
1170 * @flag: flag we want to check
1171 *
1172 * Check the status of a keyboard led flag and report it back
1173 */
1174int vt_get_leds(unsigned int console, int flag)
1175{
1176 struct kbd_struct *kb = kbd_table + console;
1177 int ret;
1178 unsigned long flags;
1179
1180 spin_lock_irqsave(&led_lock, flags);
1181 ret = vc_kbd_led(kb, flag);
1182 spin_unlock_irqrestore(&led_lock, flags);
1183
1184 return ret;
1185}
1186EXPORT_SYMBOL_GPL(vt_get_leds);
1187
1188/**
1189 * vt_set_led_state - set LED state of a console
1190 * @console: console to set
1191 * @leds: LED bits
1192 *
1193 * Set the LEDs on a console. This is a wrapper for the VT layer
1194 * so that we can keep kbd knowledge internal
1195 */
1196void vt_set_led_state(unsigned int console, int leds)
1197{
1198 struct kbd_struct *kb = kbd_table + console;
1199 setledstate(kb, leds);
1200}
1201
1202/**
1203 * vt_kbd_con_start - Keyboard side of console start
1204 * @console: console
1205 *
1206 * Handle console start. This is a wrapper for the VT layer
1207 * so that we can keep kbd knowledge internal
1208 *
1209 * FIXME: We eventually need to hold the kbd lock here to protect
1210 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1211 * and start_tty under the kbd_event_lock, while normal tty paths
1212 * don't hold the lock. We probably need to split out an LED lock
1213 * but not during an -rc release!
1214 */
1215void vt_kbd_con_start(unsigned int console)
1216{
1217 struct kbd_struct *kb = kbd_table + console;
1218 unsigned long flags;
1219 spin_lock_irqsave(&led_lock, flags);
1220 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1221 set_leds();
1222 spin_unlock_irqrestore(&led_lock, flags);
1223}
1224
1225/**
1226 * vt_kbd_con_stop - Keyboard side of console stop
1227 * @console: console
1228 *
1229 * Handle console stop. This is a wrapper for the VT layer
1230 * so that we can keep kbd knowledge internal
1231 */
1232void vt_kbd_con_stop(unsigned int console)
1233{
1234 struct kbd_struct *kb = kbd_table + console;
1235 unsigned long flags;
1236 spin_lock_irqsave(&led_lock, flags);
1237 set_vc_kbd_led(kb, VC_SCROLLOCK);
1238 set_leds();
1239 spin_unlock_irqrestore(&led_lock, flags);
1240}
1241
1242/*
1243 * This is the tasklet that updates LED state of LEDs using standard
1244 * keyboard triggers. The reason we use tasklet is that we need to
1245 * handle the scenario when keyboard handler is not registered yet
1246 * but we already getting updates from the VT to update led state.
1247 */
1248static void kbd_bh(struct tasklet_struct *unused)
1249{
1250 unsigned int leds;
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(&led_lock, flags);
1254 leds = getleds();
1255 leds |= (unsigned int)kbd->lockstate << 8;
1256 spin_unlock_irqrestore(&led_lock, flags);
1257
1258 if (leds != ledstate) {
1259 kbd_propagate_led_state(ledstate, leds);
1260 ledstate = leds;
1261 }
1262}
1263
1264#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1265 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1266 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1267 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1268
1269static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1270{
1271 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1272 return false;
1273
1274 return dev->id.bustype == BUS_I8042 &&
1275 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1276}
1277
1278static const unsigned short x86_keycodes[256] =
1279 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1280 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1281 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1282 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1283 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1284 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1285 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1286 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1287 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1288 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1289 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1290 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1291 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1292 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1293 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1294
1295#ifdef CONFIG_SPARC
1296static int sparc_l1_a_state;
1297extern void sun_do_break(void);
1298#endif
1299
1300static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1301 unsigned char up_flag)
1302{
1303 int code;
1304
1305 switch (keycode) {
1306
1307 case KEY_PAUSE:
1308 put_queue(vc, 0xe1);
1309 put_queue(vc, 0x1d | up_flag);
1310 put_queue(vc, 0x45 | up_flag);
1311 break;
1312
1313 case KEY_HANGEUL:
1314 if (!up_flag)
1315 put_queue(vc, 0xf2);
1316 break;
1317
1318 case KEY_HANJA:
1319 if (!up_flag)
1320 put_queue(vc, 0xf1);
1321 break;
1322
1323 case KEY_SYSRQ:
1324 /*
1325 * Real AT keyboards (that's what we're trying
1326 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1327 * pressing PrtSc/SysRq alone, but simply 0x54
1328 * when pressing Alt+PrtSc/SysRq.
1329 */
1330 if (test_bit(KEY_LEFTALT, key_down) ||
1331 test_bit(KEY_RIGHTALT, key_down)) {
1332 put_queue(vc, 0x54 | up_flag);
1333 } else {
1334 put_queue(vc, 0xe0);
1335 put_queue(vc, 0x2a | up_flag);
1336 put_queue(vc, 0xe0);
1337 put_queue(vc, 0x37 | up_flag);
1338 }
1339 break;
1340
1341 default:
1342 if (keycode > 255)
1343 return -1;
1344
1345 code = x86_keycodes[keycode];
1346 if (!code)
1347 return -1;
1348
1349 if (code & 0x100)
1350 put_queue(vc, 0xe0);
1351 put_queue(vc, (code & 0x7f) | up_flag);
1352
1353 break;
1354 }
1355
1356 return 0;
1357}
1358
1359#else
1360
1361static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1362{
1363 return false;
1364}
1365
1366static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1367{
1368 if (keycode > 127)
1369 return -1;
1370
1371 put_queue(vc, keycode | up_flag);
1372 return 0;
1373}
1374#endif
1375
1376static void kbd_rawcode(unsigned char data)
1377{
1378 struct vc_data *vc = vc_cons[fg_console].d;
1379
1380 kbd = kbd_table + vc->vc_num;
1381 if (kbd->kbdmode == VC_RAW)
1382 put_queue(vc, data);
1383}
1384
1385static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1386{
1387 struct vc_data *vc = vc_cons[fg_console].d;
1388 unsigned short keysym, *key_map;
1389 unsigned char type;
1390 bool raw_mode;
1391 struct tty_struct *tty;
1392 int shift_final;
1393 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1394 int rc;
1395
1396 tty = vc->port.tty;
1397
1398 if (tty && (!tty->driver_data)) {
1399 /* No driver data? Strange. Okay we fix it then. */
1400 tty->driver_data = vc;
1401 }
1402
1403 kbd = kbd_table + vc->vc_num;
1404
1405#ifdef CONFIG_SPARC
1406 if (keycode == KEY_STOP)
1407 sparc_l1_a_state = down;
1408#endif
1409
1410 rep = (down == 2);
1411
1412 raw_mode = (kbd->kbdmode == VC_RAW);
1413 if (raw_mode && !hw_raw)
1414 if (emulate_raw(vc, keycode, !down << 7))
1415 if (keycode < BTN_MISC && printk_ratelimit())
1416 pr_warn("can't emulate rawmode for keycode %d\n",
1417 keycode);
1418
1419#ifdef CONFIG_SPARC
1420 if (keycode == KEY_A && sparc_l1_a_state) {
1421 sparc_l1_a_state = false;
1422 sun_do_break();
1423 }
1424#endif
1425
1426 if (kbd->kbdmode == VC_MEDIUMRAW) {
1427 /*
1428 * This is extended medium raw mode, with keys above 127
1429 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1430 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1431 * interfere with anything else. The two bytes after 0 will
1432 * always have the up flag set not to interfere with older
1433 * applications. This allows for 16384 different keycodes,
1434 * which should be enough.
1435 */
1436 if (keycode < 128) {
1437 put_queue(vc, keycode | (!down << 7));
1438 } else {
1439 put_queue(vc, !down << 7);
1440 put_queue(vc, (keycode >> 7) | BIT(7));
1441 put_queue(vc, keycode | BIT(7));
1442 }
1443 raw_mode = true;
1444 }
1445
1446 assign_bit(keycode, key_down, down);
1447
1448 if (rep &&
1449 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1450 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1451 /*
1452 * Don't repeat a key if the input buffers are not empty and the
1453 * characters get aren't echoed locally. This makes key repeat
1454 * usable with slow applications and under heavy loads.
1455 */
1456 return;
1457 }
1458
1459 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1460 param.ledstate = kbd->ledflagstate;
1461 key_map = key_maps[shift_final];
1462
1463 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1464 KBD_KEYCODE, ¶m);
1465 if (rc == NOTIFY_STOP || !key_map) {
1466 atomic_notifier_call_chain(&keyboard_notifier_list,
1467 KBD_UNBOUND_KEYCODE, ¶m);
1468 do_compute_shiftstate();
1469 kbd->slockstate = 0;
1470 return;
1471 }
1472
1473 if (keycode < NR_KEYS)
1474 keysym = key_map[keycode];
1475 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1476 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1477 else
1478 return;
1479
1480 type = KTYP(keysym);
1481
1482 if (type < 0xf0) {
1483 param.value = keysym;
1484 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1485 KBD_UNICODE, ¶m);
1486 if (rc != NOTIFY_STOP)
1487 if (down && !raw_mode)
1488 k_unicode(vc, keysym, !down);
1489 return;
1490 }
1491
1492 type -= 0xf0;
1493
1494 if (type == KT_LETTER) {
1495 type = KT_LATIN;
1496 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1497 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1498 if (key_map)
1499 keysym = key_map[keycode];
1500 }
1501 }
1502
1503 param.value = keysym;
1504 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1505 KBD_KEYSYM, ¶m);
1506 if (rc == NOTIFY_STOP)
1507 return;
1508
1509 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1510 return;
1511
1512 (*k_handler[type])(vc, keysym & 0xff, !down);
1513
1514 param.ledstate = kbd->ledflagstate;
1515 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1516
1517 if (type != KT_SLOCK)
1518 kbd->slockstate = 0;
1519}
1520
1521static void kbd_event(struct input_handle *handle, unsigned int event_type,
1522 unsigned int event_code, int value)
1523{
1524 /* We are called with interrupts disabled, just take the lock */
1525 spin_lock(&kbd_event_lock);
1526
1527 if (event_type == EV_MSC && event_code == MSC_RAW &&
1528 kbd_is_hw_raw(handle->dev))
1529 kbd_rawcode(value);
1530 if (event_type == EV_KEY && event_code <= KEY_MAX)
1531 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1532
1533 spin_unlock(&kbd_event_lock);
1534
1535 tasklet_schedule(&keyboard_tasklet);
1536 do_poke_blanked_console = 1;
1537 schedule_console_callback();
1538}
1539
1540static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1541{
1542 if (test_bit(EV_SND, dev->evbit))
1543 return true;
1544
1545 if (test_bit(EV_KEY, dev->evbit)) {
1546 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1547 BTN_MISC)
1548 return true;
1549 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1550 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1551 return true;
1552 }
1553
1554 return false;
1555}
1556
1557/*
1558 * When a keyboard (or other input device) is found, the kbd_connect
1559 * function is called. The function then looks at the device, and if it
1560 * likes it, it can open it and get events from it. In this (kbd_connect)
1561 * function, we should decide which VT to bind that keyboard to initially.
1562 */
1563static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1564 const struct input_device_id *id)
1565{
1566 struct input_handle *handle;
1567 int error;
1568
1569 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1570 if (!handle)
1571 return -ENOMEM;
1572
1573 handle->dev = dev;
1574 handle->handler = handler;
1575 handle->name = "kbd";
1576
1577 error = input_register_handle(handle);
1578 if (error)
1579 goto err_free_handle;
1580
1581 error = input_open_device(handle);
1582 if (error)
1583 goto err_unregister_handle;
1584
1585 return 0;
1586
1587 err_unregister_handle:
1588 input_unregister_handle(handle);
1589 err_free_handle:
1590 kfree(handle);
1591 return error;
1592}
1593
1594static void kbd_disconnect(struct input_handle *handle)
1595{
1596 input_close_device(handle);
1597 input_unregister_handle(handle);
1598 kfree(handle);
1599}
1600
1601/*
1602 * Start keyboard handler on the new keyboard by refreshing LED state to
1603 * match the rest of the system.
1604 */
1605static void kbd_start(struct input_handle *handle)
1606{
1607 tasklet_disable(&keyboard_tasklet);
1608
1609 if (ledstate != -1U)
1610 kbd_update_leds_helper(handle, &ledstate);
1611
1612 tasklet_enable(&keyboard_tasklet);
1613}
1614
1615static const struct input_device_id kbd_ids[] = {
1616 {
1617 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1618 .evbit = { BIT_MASK(EV_KEY) },
1619 },
1620
1621 {
1622 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1623 .evbit = { BIT_MASK(EV_SND) },
1624 },
1625
1626 { }, /* Terminating entry */
1627};
1628
1629MODULE_DEVICE_TABLE(input, kbd_ids);
1630
1631static struct input_handler kbd_handler = {
1632 .event = kbd_event,
1633 .match = kbd_match,
1634 .connect = kbd_connect,
1635 .disconnect = kbd_disconnect,
1636 .start = kbd_start,
1637 .name = "kbd",
1638 .id_table = kbd_ids,
1639};
1640
1641int __init kbd_init(void)
1642{
1643 int i;
1644 int error;
1645
1646 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1647 kbd_table[i].ledflagstate = kbd_defleds();
1648 kbd_table[i].default_ledflagstate = kbd_defleds();
1649 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1650 kbd_table[i].lockstate = KBD_DEFLOCK;
1651 kbd_table[i].slockstate = 0;
1652 kbd_table[i].modeflags = KBD_DEFMODE;
1653 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1654 }
1655
1656 kbd_init_leds();
1657
1658 error = input_register_handler(&kbd_handler);
1659 if (error)
1660 return error;
1661
1662 tasklet_enable(&keyboard_tasklet);
1663 tasklet_schedule(&keyboard_tasklet);
1664
1665 return 0;
1666}
1667
1668/* Ioctl support code */
1669
1670/**
1671 * vt_do_diacrit - diacritical table updates
1672 * @cmd: ioctl request
1673 * @udp: pointer to user data for ioctl
1674 * @perm: permissions check computed by caller
1675 *
1676 * Update the diacritical tables atomically and safely. Lock them
1677 * against simultaneous keypresses
1678 */
1679int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1680{
1681 unsigned long flags;
1682 int asize;
1683 int ret = 0;
1684
1685 switch (cmd) {
1686 case KDGKBDIACR:
1687 {
1688 struct kbdiacrs __user *a = udp;
1689 struct kbdiacr *dia;
1690 int i;
1691
1692 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1693 GFP_KERNEL);
1694 if (!dia)
1695 return -ENOMEM;
1696
1697 /* Lock the diacriticals table, make a copy and then
1698 copy it after we unlock */
1699 spin_lock_irqsave(&kbd_event_lock, flags);
1700
1701 asize = accent_table_size;
1702 for (i = 0; i < asize; i++) {
1703 dia[i].diacr = conv_uni_to_8bit(
1704 accent_table[i].diacr);
1705 dia[i].base = conv_uni_to_8bit(
1706 accent_table[i].base);
1707 dia[i].result = conv_uni_to_8bit(
1708 accent_table[i].result);
1709 }
1710 spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712 if (put_user(asize, &a->kb_cnt))
1713 ret = -EFAULT;
1714 else if (copy_to_user(a->kbdiacr, dia,
1715 asize * sizeof(struct kbdiacr)))
1716 ret = -EFAULT;
1717 kfree(dia);
1718 return ret;
1719 }
1720 case KDGKBDIACRUC:
1721 {
1722 struct kbdiacrsuc __user *a = udp;
1723 void *buf;
1724
1725 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1726 GFP_KERNEL);
1727 if (buf == NULL)
1728 return -ENOMEM;
1729
1730 /* Lock the diacriticals table, make a copy and then
1731 copy it after we unlock */
1732 spin_lock_irqsave(&kbd_event_lock, flags);
1733
1734 asize = accent_table_size;
1735 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1736
1737 spin_unlock_irqrestore(&kbd_event_lock, flags);
1738
1739 if (put_user(asize, &a->kb_cnt))
1740 ret = -EFAULT;
1741 else if (copy_to_user(a->kbdiacruc, buf,
1742 asize*sizeof(struct kbdiacruc)))
1743 ret = -EFAULT;
1744 kfree(buf);
1745 return ret;
1746 }
1747
1748 case KDSKBDIACR:
1749 {
1750 struct kbdiacrs __user *a = udp;
1751 struct kbdiacr *dia = NULL;
1752 unsigned int ct;
1753 int i;
1754
1755 if (!perm)
1756 return -EPERM;
1757 if (get_user(ct, &a->kb_cnt))
1758 return -EFAULT;
1759 if (ct >= MAX_DIACR)
1760 return -EINVAL;
1761
1762 if (ct) {
1763
1764 dia = memdup_user(a->kbdiacr,
1765 sizeof(struct kbdiacr) * ct);
1766 if (IS_ERR(dia))
1767 return PTR_ERR(dia);
1768
1769 }
1770
1771 spin_lock_irqsave(&kbd_event_lock, flags);
1772 accent_table_size = ct;
1773 for (i = 0; i < ct; i++) {
1774 accent_table[i].diacr =
1775 conv_8bit_to_uni(dia[i].diacr);
1776 accent_table[i].base =
1777 conv_8bit_to_uni(dia[i].base);
1778 accent_table[i].result =
1779 conv_8bit_to_uni(dia[i].result);
1780 }
1781 spin_unlock_irqrestore(&kbd_event_lock, flags);
1782 kfree(dia);
1783 return 0;
1784 }
1785
1786 case KDSKBDIACRUC:
1787 {
1788 struct kbdiacrsuc __user *a = udp;
1789 unsigned int ct;
1790 void *buf = NULL;
1791
1792 if (!perm)
1793 return -EPERM;
1794
1795 if (get_user(ct, &a->kb_cnt))
1796 return -EFAULT;
1797
1798 if (ct >= MAX_DIACR)
1799 return -EINVAL;
1800
1801 if (ct) {
1802 buf = memdup_user(a->kbdiacruc,
1803 ct * sizeof(struct kbdiacruc));
1804 if (IS_ERR(buf))
1805 return PTR_ERR(buf);
1806 }
1807 spin_lock_irqsave(&kbd_event_lock, flags);
1808 if (ct)
1809 memcpy(accent_table, buf,
1810 ct * sizeof(struct kbdiacruc));
1811 accent_table_size = ct;
1812 spin_unlock_irqrestore(&kbd_event_lock, flags);
1813 kfree(buf);
1814 return 0;
1815 }
1816 }
1817 return ret;
1818}
1819
1820/**
1821 * vt_do_kdskbmode - set keyboard mode ioctl
1822 * @console: the console to use
1823 * @arg: the requested mode
1824 *
1825 * Update the keyboard mode bits while holding the correct locks.
1826 * Return 0 for success or an error code.
1827 */
1828int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1829{
1830 struct kbd_struct *kb = kbd_table + console;
1831 int ret = 0;
1832 unsigned long flags;
1833
1834 spin_lock_irqsave(&kbd_event_lock, flags);
1835 switch(arg) {
1836 case K_RAW:
1837 kb->kbdmode = VC_RAW;
1838 break;
1839 case K_MEDIUMRAW:
1840 kb->kbdmode = VC_MEDIUMRAW;
1841 break;
1842 case K_XLATE:
1843 kb->kbdmode = VC_XLATE;
1844 do_compute_shiftstate();
1845 break;
1846 case K_UNICODE:
1847 kb->kbdmode = VC_UNICODE;
1848 do_compute_shiftstate();
1849 break;
1850 case K_OFF:
1851 kb->kbdmode = VC_OFF;
1852 break;
1853 default:
1854 ret = -EINVAL;
1855 }
1856 spin_unlock_irqrestore(&kbd_event_lock, flags);
1857 return ret;
1858}
1859
1860/**
1861 * vt_do_kdskbmeta - set keyboard meta state
1862 * @console: the console to use
1863 * @arg: the requested meta state
1864 *
1865 * Update the keyboard meta bits while holding the correct locks.
1866 * Return 0 for success or an error code.
1867 */
1868int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1869{
1870 struct kbd_struct *kb = kbd_table + console;
1871 int ret = 0;
1872 unsigned long flags;
1873
1874 spin_lock_irqsave(&kbd_event_lock, flags);
1875 switch(arg) {
1876 case K_METABIT:
1877 clr_vc_kbd_mode(kb, VC_META);
1878 break;
1879 case K_ESCPREFIX:
1880 set_vc_kbd_mode(kb, VC_META);
1881 break;
1882 default:
1883 ret = -EINVAL;
1884 }
1885 spin_unlock_irqrestore(&kbd_event_lock, flags);
1886 return ret;
1887}
1888
1889int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1890 int perm)
1891{
1892 struct kbkeycode tmp;
1893 int kc = 0;
1894
1895 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1896 return -EFAULT;
1897 switch (cmd) {
1898 case KDGETKEYCODE:
1899 kc = getkeycode(tmp.scancode);
1900 if (kc >= 0)
1901 kc = put_user(kc, &user_kbkc->keycode);
1902 break;
1903 case KDSETKEYCODE:
1904 if (!perm)
1905 return -EPERM;
1906 kc = setkeycode(tmp.scancode, tmp.keycode);
1907 break;
1908 }
1909 return kc;
1910}
1911
1912static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1913 unsigned char map)
1914{
1915 unsigned short *key_map, val;
1916 unsigned long flags;
1917
1918 /* Ensure another thread doesn't free it under us */
1919 spin_lock_irqsave(&kbd_event_lock, flags);
1920 key_map = key_maps[map];
1921 if (key_map) {
1922 val = U(key_map[idx]);
1923 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1924 val = K_HOLE;
1925 } else
1926 val = idx ? K_HOLE : K_NOSUCHMAP;
1927 spin_unlock_irqrestore(&kbd_event_lock, flags);
1928
1929 return val;
1930}
1931
1932static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1933 unsigned char map, unsigned short val)
1934{
1935 unsigned long flags;
1936 unsigned short *key_map, *new_map, oldval;
1937
1938 if (!idx && val == K_NOSUCHMAP) {
1939 spin_lock_irqsave(&kbd_event_lock, flags);
1940 /* deallocate map */
1941 key_map = key_maps[map];
1942 if (map && key_map) {
1943 key_maps[map] = NULL;
1944 if (key_map[0] == U(K_ALLOCATED)) {
1945 kfree(key_map);
1946 keymap_count--;
1947 }
1948 }
1949 spin_unlock_irqrestore(&kbd_event_lock, flags);
1950
1951 return 0;
1952 }
1953
1954 if (KTYP(val) < NR_TYPES) {
1955 if (KVAL(val) > max_vals[KTYP(val)])
1956 return -EINVAL;
1957 } else if (kbdmode != VC_UNICODE)
1958 return -EINVAL;
1959
1960 /* ++Geert: non-PC keyboards may generate keycode zero */
1961#if !defined(__mc68000__) && !defined(__powerpc__)
1962 /* assignment to entry 0 only tests validity of args */
1963 if (!idx)
1964 return 0;
1965#endif
1966
1967 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1968 if (!new_map)
1969 return -ENOMEM;
1970
1971 spin_lock_irqsave(&kbd_event_lock, flags);
1972 key_map = key_maps[map];
1973 if (key_map == NULL) {
1974 int j;
1975
1976 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1977 !capable(CAP_SYS_RESOURCE)) {
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 kfree(new_map);
1980 return -EPERM;
1981 }
1982 key_maps[map] = new_map;
1983 key_map = new_map;
1984 key_map[0] = U(K_ALLOCATED);
1985 for (j = 1; j < NR_KEYS; j++)
1986 key_map[j] = U(K_HOLE);
1987 keymap_count++;
1988 } else
1989 kfree(new_map);
1990
1991 oldval = U(key_map[idx]);
1992 if (val == oldval)
1993 goto out;
1994
1995 /* Attention Key */
1996 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
1997 spin_unlock_irqrestore(&kbd_event_lock, flags);
1998 return -EPERM;
1999 }
2000
2001 key_map[idx] = U(val);
2002 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2003 do_compute_shiftstate();
2004out:
2005 spin_unlock_irqrestore(&kbd_event_lock, flags);
2006
2007 return 0;
2008}
2009
2010int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2011 unsigned int console)
2012{
2013 struct kbd_struct *kb = kbd_table + console;
2014 struct kbentry kbe;
2015
2016 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2017 return -EFAULT;
2018
2019 switch (cmd) {
2020 case KDGKBENT:
2021 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2022 kbe.kb_table),
2023 &user_kbe->kb_value);
2024 case KDSKBENT:
2025 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2026 return -EPERM;
2027 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2028 kbe.kb_value);
2029 }
2030 return 0;
2031}
2032
2033static char *vt_kdskbsent(char *kbs, unsigned char cur)
2034{
2035 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2036 char *cur_f = func_table[cur];
2037
2038 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2039 strcpy(cur_f, kbs);
2040 return kbs;
2041 }
2042
2043 func_table[cur] = kbs;
2044
2045 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2046}
2047
2048int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2049{
2050 unsigned char kb_func;
2051 unsigned long flags;
2052 char *kbs;
2053 int ret;
2054
2055 if (get_user(kb_func, &user_kdgkb->kb_func))
2056 return -EFAULT;
2057
2058 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2059
2060 switch (cmd) {
2061 case KDGKBSENT: {
2062 /* size should have been a struct member */
2063 ssize_t len = sizeof(user_kdgkb->kb_string);
2064
2065 kbs = kmalloc(len, GFP_KERNEL);
2066 if (!kbs)
2067 return -ENOMEM;
2068
2069 spin_lock_irqsave(&func_buf_lock, flags);
2070 len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2071 spin_unlock_irqrestore(&func_buf_lock, flags);
2072
2073 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2074 -EFAULT : 0;
2075
2076 break;
2077 }
2078 case KDSKBSENT:
2079 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2080 return -EPERM;
2081
2082 kbs = strndup_user(user_kdgkb->kb_string,
2083 sizeof(user_kdgkb->kb_string));
2084 if (IS_ERR(kbs))
2085 return PTR_ERR(kbs);
2086
2087 spin_lock_irqsave(&func_buf_lock, flags);
2088 kbs = vt_kdskbsent(kbs, kb_func);
2089 spin_unlock_irqrestore(&func_buf_lock, flags);
2090
2091 ret = 0;
2092 break;
2093 }
2094
2095 kfree(kbs);
2096
2097 return ret;
2098}
2099
2100int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2101{
2102 struct kbd_struct *kb = kbd_table + console;
2103 unsigned long flags;
2104 unsigned char ucval;
2105
2106 switch(cmd) {
2107 /* the ioctls below read/set the flags usually shown in the leds */
2108 /* don't use them - they will go away without warning */
2109 case KDGKBLED:
2110 spin_lock_irqsave(&kbd_event_lock, flags);
2111 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2112 spin_unlock_irqrestore(&kbd_event_lock, flags);
2113 return put_user(ucval, (char __user *)arg);
2114
2115 case KDSKBLED:
2116 if (!perm)
2117 return -EPERM;
2118 if (arg & ~0x77)
2119 return -EINVAL;
2120 spin_lock_irqsave(&led_lock, flags);
2121 kb->ledflagstate = (arg & 7);
2122 kb->default_ledflagstate = ((arg >> 4) & 7);
2123 set_leds();
2124 spin_unlock_irqrestore(&led_lock, flags);
2125 return 0;
2126
2127 /* the ioctls below only set the lights, not the functions */
2128 /* for those, see KDGKBLED and KDSKBLED above */
2129 case KDGETLED:
2130 ucval = getledstate();
2131 return put_user(ucval, (char __user *)arg);
2132
2133 case KDSETLED:
2134 if (!perm)
2135 return -EPERM;
2136 setledstate(kb, arg);
2137 return 0;
2138 }
2139 return -ENOIOCTLCMD;
2140}
2141
2142int vt_do_kdgkbmode(unsigned int console)
2143{
2144 struct kbd_struct *kb = kbd_table + console;
2145 /* This is a spot read so needs no locking */
2146 switch (kb->kbdmode) {
2147 case VC_RAW:
2148 return K_RAW;
2149 case VC_MEDIUMRAW:
2150 return K_MEDIUMRAW;
2151 case VC_UNICODE:
2152 return K_UNICODE;
2153 case VC_OFF:
2154 return K_OFF;
2155 default:
2156 return K_XLATE;
2157 }
2158}
2159
2160/**
2161 * vt_do_kdgkbmeta - report meta status
2162 * @console: console to report
2163 *
2164 * Report the meta flag status of this console
2165 */
2166int vt_do_kdgkbmeta(unsigned int console)
2167{
2168 struct kbd_struct *kb = kbd_table + console;
2169 /* Again a spot read so no locking */
2170 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2171}
2172
2173/**
2174 * vt_reset_unicode - reset the unicode status
2175 * @console: console being reset
2176 *
2177 * Restore the unicode console state to its default
2178 */
2179void vt_reset_unicode(unsigned int console)
2180{
2181 unsigned long flags;
2182
2183 spin_lock_irqsave(&kbd_event_lock, flags);
2184 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2185 spin_unlock_irqrestore(&kbd_event_lock, flags);
2186}
2187
2188/**
2189 * vt_get_shift_state - shift bit state
2190 *
2191 * Report the shift bits from the keyboard state. We have to export
2192 * this to support some oddities in the vt layer.
2193 */
2194int vt_get_shift_state(void)
2195{
2196 /* Don't lock as this is a transient report */
2197 return shift_state;
2198}
2199
2200/**
2201 * vt_reset_keyboard - reset keyboard state
2202 * @console: console to reset
2203 *
2204 * Reset the keyboard bits for a console as part of a general console
2205 * reset event
2206 */
2207void vt_reset_keyboard(unsigned int console)
2208{
2209 struct kbd_struct *kb = kbd_table + console;
2210 unsigned long flags;
2211
2212 spin_lock_irqsave(&kbd_event_lock, flags);
2213 set_vc_kbd_mode(kb, VC_REPEAT);
2214 clr_vc_kbd_mode(kb, VC_CKMODE);
2215 clr_vc_kbd_mode(kb, VC_APPLIC);
2216 clr_vc_kbd_mode(kb, VC_CRLF);
2217 kb->lockstate = 0;
2218 kb->slockstate = 0;
2219 spin_lock(&led_lock);
2220 kb->ledmode = LED_SHOW_FLAGS;
2221 kb->ledflagstate = kb->default_ledflagstate;
2222 spin_unlock(&led_lock);
2223 /* do not do set_leds here because this causes an endless tasklet loop
2224 when the keyboard hasn't been initialized yet */
2225 spin_unlock_irqrestore(&kbd_event_lock, flags);
2226}
2227
2228/**
2229 * vt_get_kbd_mode_bit - read keyboard status bits
2230 * @console: console to read from
2231 * @bit: mode bit to read
2232 *
2233 * Report back a vt mode bit. We do this without locking so the
2234 * caller must be sure that there are no synchronization needs
2235 */
2236
2237int vt_get_kbd_mode_bit(unsigned int console, int bit)
2238{
2239 struct kbd_struct *kb = kbd_table + console;
2240 return vc_kbd_mode(kb, bit);
2241}
2242
2243/**
2244 * vt_set_kbd_mode_bit - read keyboard status bits
2245 * @console: console to read from
2246 * @bit: mode bit to read
2247 *
2248 * Set a vt mode bit. We do this without locking so the
2249 * caller must be sure that there are no synchronization needs
2250 */
2251
2252void vt_set_kbd_mode_bit(unsigned int console, int bit)
2253{
2254 struct kbd_struct *kb = kbd_table + console;
2255 unsigned long flags;
2256
2257 spin_lock_irqsave(&kbd_event_lock, flags);
2258 set_vc_kbd_mode(kb, bit);
2259 spin_unlock_irqrestore(&kbd_event_lock, flags);
2260}
2261
2262/**
2263 * vt_clr_kbd_mode_bit - read keyboard status bits
2264 * @console: console to read from
2265 * @bit: mode bit to read
2266 *
2267 * Report back a vt mode bit. We do this without locking so the
2268 * caller must be sure that there are no synchronization needs
2269 */
2270
2271void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2272{
2273 struct kbd_struct *kb = kbd_table + console;
2274 unsigned long flags;
2275
2276 spin_lock_irqsave(&kbd_event_lock, flags);
2277 clr_vc_kbd_mode(kb, bit);
2278 spin_unlock_irqrestore(&kbd_event_lock, flags);
2279}