Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#ifndef __iwl_trans_h__
8#define __iwl_trans_h__
9
10#include <linux/ieee80211.h>
11#include <linux/mm.h> /* for page_address */
12#include <linux/lockdep.h>
13#include <linux/kernel.h>
14
15#include "iwl-debug.h"
16#include "iwl-config.h"
17#include "fw/img.h"
18#include "iwl-op-mode.h"
19#include <linux/firmware.h>
20#include "fw/api/cmdhdr.h"
21#include "fw/api/txq.h"
22#include "fw/api/dbg-tlv.h"
23#include "iwl-dbg-tlv.h"
24
25/**
26 * DOC: Transport layer - what is it ?
27 *
28 * The transport layer is the layer that deals with the HW directly. It provides
29 * an abstraction of the underlying HW to the upper layer. The transport layer
30 * doesn't provide any policy, algorithm or anything of this kind, but only
31 * mechanisms to make the HW do something. It is not completely stateless but
32 * close to it.
33 * We will have an implementation for each different supported bus.
34 */
35
36/**
37 * DOC: Life cycle of the transport layer
38 *
39 * The transport layer has a very precise life cycle.
40 *
41 * 1) A helper function is called during the module initialization and
42 * registers the bus driver's ops with the transport's alloc function.
43 * 2) Bus's probe calls to the transport layer's allocation functions.
44 * Of course this function is bus specific.
45 * 3) This allocation functions will spawn the upper layer which will
46 * register mac80211.
47 *
48 * 4) At some point (i.e. mac80211's start call), the op_mode will call
49 * the following sequence:
50 * start_hw
51 * start_fw
52 *
53 * 5) Then when finished (or reset):
54 * stop_device
55 *
56 * 6) Eventually, the free function will be called.
57 */
58
59/* default preset 0 (start from bit 16)*/
60#define IWL_FW_DBG_DOMAIN_POS 16
61#define IWL_FW_DBG_DOMAIN BIT(IWL_FW_DBG_DOMAIN_POS)
62
63#define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON
64
65#define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */
66#define FH_RSCSR_FRAME_INVALID 0x55550000
67#define FH_RSCSR_FRAME_ALIGN 0x40
68#define FH_RSCSR_RPA_EN BIT(25)
69#define FH_RSCSR_RADA_EN BIT(26)
70#define FH_RSCSR_RXQ_POS 16
71#define FH_RSCSR_RXQ_MASK 0x3F0000
72
73struct iwl_rx_packet {
74 /*
75 * The first 4 bytes of the RX frame header contain both the RX frame
76 * size and some flags.
77 * Bit fields:
78 * 31: flag flush RB request
79 * 30: flag ignore TC (terminal counter) request
80 * 29: flag fast IRQ request
81 * 28-27: Reserved
82 * 26: RADA enabled
83 * 25: Offload enabled
84 * 24: RPF enabled
85 * 23: RSS enabled
86 * 22: Checksum enabled
87 * 21-16: RX queue
88 * 15-14: Reserved
89 * 13-00: RX frame size
90 */
91 __le32 len_n_flags;
92 struct iwl_cmd_header hdr;
93 u8 data[];
94} __packed;
95
96static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
97{
98 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
99}
100
101static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
102{
103 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
104}
105
106/**
107 * enum CMD_MODE - how to send the host commands ?
108 *
109 * @CMD_ASYNC: Return right away and don't wait for the response
110 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
111 * the response. The caller needs to call iwl_free_resp when done.
112 * @CMD_SEND_IN_RFKILL: Send the command even if the NIC is in RF-kill.
113 * @CMD_BLOCK_TXQS: Block TXQs while the comment is executing.
114 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
115 * SUSPEND and RESUME commands. We are in D3 mode when we set
116 * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
117 */
118enum CMD_MODE {
119 CMD_ASYNC = BIT(0),
120 CMD_WANT_SKB = BIT(1),
121 CMD_SEND_IN_RFKILL = BIT(2),
122 CMD_BLOCK_TXQS = BIT(3),
123 CMD_SEND_IN_D3 = BIT(4),
124};
125
126#define DEF_CMD_PAYLOAD_SIZE 320
127
128/**
129 * struct iwl_device_cmd
130 *
131 * For allocation of the command and tx queues, this establishes the overall
132 * size of the largest command we send to uCode, except for commands that
133 * aren't fully copied and use other TFD space.
134 */
135struct iwl_device_cmd {
136 union {
137 struct {
138 struct iwl_cmd_header hdr; /* uCode API */
139 u8 payload[DEF_CMD_PAYLOAD_SIZE];
140 };
141 struct {
142 struct iwl_cmd_header_wide hdr_wide;
143 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
144 sizeof(struct iwl_cmd_header_wide) +
145 sizeof(struct iwl_cmd_header)];
146 };
147 };
148} __packed;
149
150/**
151 * struct iwl_device_tx_cmd - buffer for TX command
152 * @hdr: the header
153 * @payload: the payload placeholder
154 *
155 * The actual structure is sized dynamically according to need.
156 */
157struct iwl_device_tx_cmd {
158 struct iwl_cmd_header hdr;
159 u8 payload[];
160} __packed;
161
162#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
163
164/*
165 * number of transfer buffers (fragments) per transmit frame descriptor;
166 * this is just the driver's idea, the hardware supports 20
167 */
168#define IWL_MAX_CMD_TBS_PER_TFD 2
169
170/* We need 2 entries for the TX command and header, and another one might
171 * be needed for potential data in the SKB's head. The remaining ones can
172 * be used for frags.
173 */
174#define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
175
176/**
177 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
178 *
179 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
180 * ring. The transport layer doesn't map the command's buffer to DMA, but
181 * rather copies it to a previously allocated DMA buffer. This flag tells
182 * the transport layer not to copy the command, but to map the existing
183 * buffer (that is passed in) instead. This saves the memcpy and allows
184 * commands that are bigger than the fixed buffer to be submitted.
185 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
186 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
187 * chunk internally and free it again after the command completes. This
188 * can (currently) be used only once per command.
189 * Note that a TFD entry after a DUP one cannot be a normal copied one.
190 */
191enum iwl_hcmd_dataflag {
192 IWL_HCMD_DFL_NOCOPY = BIT(0),
193 IWL_HCMD_DFL_DUP = BIT(1),
194};
195
196enum iwl_error_event_table_status {
197 IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
198 IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
199 IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
200 IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
201 IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
202 IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
203 IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
204};
205
206/**
207 * struct iwl_host_cmd - Host command to the uCode
208 *
209 * @data: array of chunks that composes the data of the host command
210 * @resp_pkt: response packet, if %CMD_WANT_SKB was set
211 * @_rx_page_order: (internally used to free response packet)
212 * @_rx_page_addr: (internally used to free response packet)
213 * @flags: can be CMD_*
214 * @len: array of the lengths of the chunks in data
215 * @dataflags: IWL_HCMD_DFL_*
216 * @id: command id of the host command, for wide commands encoding the
217 * version and group as well
218 */
219struct iwl_host_cmd {
220 const void *data[IWL_MAX_CMD_TBS_PER_TFD];
221 struct iwl_rx_packet *resp_pkt;
222 unsigned long _rx_page_addr;
223 u32 _rx_page_order;
224
225 u32 flags;
226 u32 id;
227 u16 len[IWL_MAX_CMD_TBS_PER_TFD];
228 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
229};
230
231static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
232{
233 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
234}
235
236struct iwl_rx_cmd_buffer {
237 struct page *_page;
238 int _offset;
239 bool _page_stolen;
240 u32 _rx_page_order;
241 unsigned int truesize;
242};
243
244static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
245{
246 return (void *)((unsigned long)page_address(r->_page) + r->_offset);
247}
248
249static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
250{
251 return r->_offset;
252}
253
254static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
255{
256 r->_page_stolen = true;
257 get_page(r->_page);
258 return r->_page;
259}
260
261static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
262{
263 __free_pages(r->_page, r->_rx_page_order);
264}
265
266#define MAX_NO_RECLAIM_CMDS 6
267
268#define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
269
270/*
271 * Maximum number of HW queues the transport layer
272 * currently supports
273 */
274#define IWL_MAX_HW_QUEUES 32
275#define IWL_MAX_TVQM_QUEUES 512
276
277#define IWL_MAX_TID_COUNT 8
278#define IWL_MGMT_TID 15
279#define IWL_FRAME_LIMIT 64
280#define IWL_MAX_RX_HW_QUEUES 16
281#define IWL_9000_MAX_RX_HW_QUEUES 1
282
283/**
284 * enum iwl_wowlan_status - WoWLAN image/device status
285 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
286 * @IWL_D3_STATUS_RESET: device was reset while suspended
287 */
288enum iwl_d3_status {
289 IWL_D3_STATUS_ALIVE,
290 IWL_D3_STATUS_RESET,
291};
292
293/**
294 * enum iwl_trans_status: transport status flags
295 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
296 * @STATUS_DEVICE_ENABLED: APM is enabled
297 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
298 * @STATUS_INT_ENABLED: interrupts are enabled
299 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
300 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
301 * @STATUS_FW_ERROR: the fw is in error state
302 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
303 * are sent
304 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
305 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
306 * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
307 * e.g. for testing
308 */
309enum iwl_trans_status {
310 STATUS_SYNC_HCMD_ACTIVE,
311 STATUS_DEVICE_ENABLED,
312 STATUS_TPOWER_PMI,
313 STATUS_INT_ENABLED,
314 STATUS_RFKILL_HW,
315 STATUS_RFKILL_OPMODE,
316 STATUS_FW_ERROR,
317 STATUS_TRANS_GOING_IDLE,
318 STATUS_TRANS_IDLE,
319 STATUS_TRANS_DEAD,
320 STATUS_SUPPRESS_CMD_ERROR_ONCE,
321};
322
323static inline int
324iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
325{
326 switch (rb_size) {
327 case IWL_AMSDU_2K:
328 return get_order(2 * 1024);
329 case IWL_AMSDU_4K:
330 return get_order(4 * 1024);
331 case IWL_AMSDU_8K:
332 return get_order(8 * 1024);
333 case IWL_AMSDU_12K:
334 return get_order(16 * 1024);
335 default:
336 WARN_ON(1);
337 return -1;
338 }
339}
340
341static inline int
342iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
343{
344 switch (rb_size) {
345 case IWL_AMSDU_2K:
346 return 2 * 1024;
347 case IWL_AMSDU_4K:
348 return 4 * 1024;
349 case IWL_AMSDU_8K:
350 return 8 * 1024;
351 case IWL_AMSDU_12K:
352 return 16 * 1024;
353 default:
354 WARN_ON(1);
355 return 0;
356 }
357}
358
359struct iwl_hcmd_names {
360 u8 cmd_id;
361 const char *const cmd_name;
362};
363
364#define HCMD_NAME(x) \
365 { .cmd_id = x, .cmd_name = #x }
366
367struct iwl_hcmd_arr {
368 const struct iwl_hcmd_names *arr;
369 int size;
370};
371
372#define HCMD_ARR(x) \
373 { .arr = x, .size = ARRAY_SIZE(x) }
374
375/**
376 * struct iwl_dump_sanitize_ops - dump sanitization operations
377 * @frob_txf: Scrub the TX FIFO data
378 * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
379 * but that might be short or long (&struct iwl_cmd_header or
380 * &struct iwl_cmd_header_wide)
381 * @frob_mem: Scrub memory data
382 */
383struct iwl_dump_sanitize_ops {
384 void (*frob_txf)(void *ctx, void *buf, size_t buflen);
385 void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
386 void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
387};
388
389/**
390 * struct iwl_trans_config - transport configuration
391 *
392 * @op_mode: pointer to the upper layer.
393 * @cmd_queue: the index of the command queue.
394 * Must be set before start_fw.
395 * @cmd_fifo: the fifo for host commands
396 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
397 * @no_reclaim_cmds: Some devices erroneously don't set the
398 * SEQ_RX_FRAME bit on some notifications, this is the
399 * list of such notifications to filter. Max length is
400 * %MAX_NO_RECLAIM_CMDS.
401 * @n_no_reclaim_cmds: # of commands in list
402 * @rx_buf_size: RX buffer size needed for A-MSDUs
403 * if unset 4k will be the RX buffer size
404 * @bc_table_dword: set to true if the BC table expects the byte count to be
405 * in DWORD (as opposed to bytes)
406 * @scd_set_active: should the transport configure the SCD for HCMD queue
407 * @command_groups: array of command groups, each member is an array of the
408 * commands in the group; for debugging only
409 * @command_groups_size: number of command groups, to avoid illegal access
410 * @cb_data_offs: offset inside skb->cb to store transport data at, must have
411 * space for at least two pointers
412 * @fw_reset_handshake: firmware supports reset flow handshake
413 * @queue_alloc_cmd_ver: queue allocation command version, set to 0
414 * for using the older SCD_QUEUE_CFG, set to the version of
415 * SCD_QUEUE_CONFIG_CMD otherwise.
416 */
417struct iwl_trans_config {
418 struct iwl_op_mode *op_mode;
419
420 u8 cmd_queue;
421 u8 cmd_fifo;
422 unsigned int cmd_q_wdg_timeout;
423 const u8 *no_reclaim_cmds;
424 unsigned int n_no_reclaim_cmds;
425
426 enum iwl_amsdu_size rx_buf_size;
427 bool bc_table_dword;
428 bool scd_set_active;
429 const struct iwl_hcmd_arr *command_groups;
430 int command_groups_size;
431
432 u8 cb_data_offs;
433 bool fw_reset_handshake;
434 u8 queue_alloc_cmd_ver;
435};
436
437struct iwl_trans_dump_data {
438 u32 len;
439 u8 data[];
440};
441
442struct iwl_trans;
443
444struct iwl_trans_txq_scd_cfg {
445 u8 fifo;
446 u8 sta_id;
447 u8 tid;
448 bool aggregate;
449 int frame_limit;
450};
451
452/**
453 * struct iwl_trans_rxq_dma_data - RX queue DMA data
454 * @fr_bd_cb: DMA address of free BD cyclic buffer
455 * @fr_bd_wid: Initial write index of the free BD cyclic buffer
456 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
457 * @ur_bd_cb: DMA address of used BD cyclic buffer
458 */
459struct iwl_trans_rxq_dma_data {
460 u64 fr_bd_cb;
461 u32 fr_bd_wid;
462 u64 urbd_stts_wrptr;
463 u64 ur_bd_cb;
464};
465
466/* maximal number of DRAM MAP entries supported by FW */
467#define IPC_DRAM_MAP_ENTRY_NUM_MAX 64
468
469/**
470 * struct iwl_pnvm_image - contains info about the parsed pnvm image
471 * @chunks: array of pointers to pnvm payloads and their sizes
472 * @n_chunks: the number of the pnvm payloads.
473 * @version: the version of the loaded PNVM image
474 */
475struct iwl_pnvm_image {
476 struct {
477 const void *data;
478 u32 len;
479 } chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX];
480 u32 n_chunks;
481 u32 version;
482};
483
484/**
485 * struct iwl_trans_ops - transport specific operations
486 *
487 * All the handlers MUST be implemented
488 *
489 * @start_hw: starts the HW. From that point on, the HW can send interrupts.
490 * May sleep.
491 * @op_mode_leave: Turn off the HW RF kill indication if on
492 * May sleep
493 * @start_fw: allocates and inits all the resources for the transport
494 * layer. Also kick a fw image.
495 * May sleep
496 * @fw_alive: called when the fw sends alive notification. If the fw provides
497 * the SCD base address in SRAM, then provide it here, or 0 otherwise.
498 * May sleep
499 * @stop_device: stops the whole device (embedded CPU put to reset) and stops
500 * the HW. From that point on, the HW will be stopped but will still issue
501 * an interrupt if the HW RF kill switch is triggered.
502 * This callback must do the right thing and not crash even if %start_hw()
503 * was called but not &start_fw(). May sleep.
504 * @d3_suspend: put the device into the correct mode for WoWLAN during
505 * suspend. This is optional, if not implemented WoWLAN will not be
506 * supported. This callback may sleep.
507 * @d3_resume: resume the device after WoWLAN, enabling the opmode to
508 * talk to the WoWLAN image to get its status. This is optional, if not
509 * implemented WoWLAN will not be supported. This callback may sleep.
510 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
511 * If RFkill is asserted in the middle of a SYNC host command, it must
512 * return -ERFKILL straight away.
513 * May sleep only if CMD_ASYNC is not set
514 * @tx: send an skb. The transport relies on the op_mode to zero the
515 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
516 * the CSUM will be taken care of (TCP CSUM and IP header in case of
517 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
518 * header if it is IPv4.
519 * Must be atomic
520 * @reclaim: free packet until ssn. Returns a list of freed packets.
521 * Must be atomic
522 * @txq_enable: setup a queue. To setup an AC queue, use the
523 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
524 * this one. The op_mode must not configure the HCMD queue. The scheduler
525 * configuration may be %NULL, in which case the hardware will not be
526 * configured. If true is returned, the operation mode needs to increment
527 * the sequence number of the packets routed to this queue because of a
528 * hardware scheduler bug. May sleep.
529 * @txq_disable: de-configure a Tx queue to send AMPDUs
530 * Must be atomic
531 * @txq_set_shared_mode: change Tx queue shared/unshared marking
532 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
533 * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
534 * @freeze_txq_timer: prevents the timer of the queue from firing until the
535 * queue is set to awake. Must be atomic.
536 * @write8: write a u8 to a register at offset ofs from the BAR
537 * @write32: write a u32 to a register at offset ofs from the BAR
538 * @read32: read a u32 register at offset ofs from the BAR
539 * @read_prph: read a DWORD from a periphery register
540 * @write_prph: write a DWORD to a periphery register
541 * @read_mem: read device's SRAM in DWORD
542 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
543 * will be zeroed.
544 * @read_config32: read a u32 value from the device's config space at
545 * the given offset.
546 * @configure: configure parameters required by the transport layer from
547 * the op_mode. May be called several times before start_fw, can't be
548 * called after that.
549 * @set_pmi: set the power pmi state
550 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
551 * Sleeping is not allowed between grab_nic_access and
552 * release_nic_access.
553 * @release_nic_access: let the NIC go to sleep. The "flags" parameter
554 * must be the same one that was sent before to the grab_nic_access.
555 * @set_bits_mask - set SRAM register according to value and mask.
556 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
557 * TX'ed commands and similar. The buffer will be vfree'd by the caller.
558 * Note that the transport must fill in the proper file headers.
559 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
560 * of the trans debugfs
561 * @load_pnvm: save the pnvm data in DRAM
562 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
563 * context info.
564 * @load_reduce_power: copy reduce power table to the corresponding DRAM memory
565 * @set_reduce_power: set reduce power table addresses in the sratch buffer
566 * @interrupts: disable/enable interrupts to transport
567 */
568struct iwl_trans_ops {
569
570 int (*start_hw)(struct iwl_trans *iwl_trans);
571 void (*op_mode_leave)(struct iwl_trans *iwl_trans);
572 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
573 bool run_in_rfkill);
574 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
575 void (*stop_device)(struct iwl_trans *trans);
576
577 int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
578 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
579 bool test, bool reset);
580
581 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
582
583 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
584 struct iwl_device_tx_cmd *dev_cmd, int queue);
585 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
586 struct sk_buff_head *skbs, bool is_flush);
587
588 void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
589
590 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
591 const struct iwl_trans_txq_scd_cfg *cfg,
592 unsigned int queue_wdg_timeout);
593 void (*txq_disable)(struct iwl_trans *trans, int queue,
594 bool configure_scd);
595 /* 22000 functions */
596 int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
597 u32 sta_mask, u8 tid,
598 int size, unsigned int queue_wdg_timeout);
599 void (*txq_free)(struct iwl_trans *trans, int queue);
600 int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
601 struct iwl_trans_rxq_dma_data *data);
602
603 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
604 bool shared);
605
606 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
607 int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
608 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
609 bool freeze);
610
611 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
612 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
613 u32 (*read32)(struct iwl_trans *trans, u32 ofs);
614 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
615 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
616 int (*read_mem)(struct iwl_trans *trans, u32 addr,
617 void *buf, int dwords);
618 int (*write_mem)(struct iwl_trans *trans, u32 addr,
619 const void *buf, int dwords);
620 int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
621 void (*configure)(struct iwl_trans *trans,
622 const struct iwl_trans_config *trans_cfg);
623 void (*set_pmi)(struct iwl_trans *trans, bool state);
624 int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
625 bool (*grab_nic_access)(struct iwl_trans *trans);
626 void (*release_nic_access)(struct iwl_trans *trans);
627 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
628 u32 value);
629
630 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
631 u32 dump_mask,
632 const struct iwl_dump_sanitize_ops *sanitize_ops,
633 void *sanitize_ctx);
634 void (*debugfs_cleanup)(struct iwl_trans *trans);
635 void (*sync_nmi)(struct iwl_trans *trans);
636 int (*load_pnvm)(struct iwl_trans *trans,
637 const struct iwl_pnvm_image *pnvm_payloads,
638 const struct iwl_ucode_capabilities *capa);
639 void (*set_pnvm)(struct iwl_trans *trans,
640 const struct iwl_ucode_capabilities *capa);
641 int (*load_reduce_power)(struct iwl_trans *trans,
642 const struct iwl_pnvm_image *payloads,
643 const struct iwl_ucode_capabilities *capa);
644 void (*set_reduce_power)(struct iwl_trans *trans,
645 const struct iwl_ucode_capabilities *capa);
646
647 void (*interrupts)(struct iwl_trans *trans, bool enable);
648 int (*imr_dma_data)(struct iwl_trans *trans,
649 u32 dst_addr, u64 src_addr,
650 u32 byte_cnt);
651
652};
653
654/**
655 * enum iwl_trans_state - state of the transport layer
656 *
657 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
658 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
659 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
660 */
661enum iwl_trans_state {
662 IWL_TRANS_NO_FW,
663 IWL_TRANS_FW_STARTED,
664 IWL_TRANS_FW_ALIVE,
665};
666
667/**
668 * DOC: Platform power management
669 *
670 * In system-wide power management the entire platform goes into a low
671 * power state (e.g. idle or suspend to RAM) at the same time and the
672 * device is configured as a wakeup source for the entire platform.
673 * This is usually triggered by userspace activity (e.g. the user
674 * presses the suspend button or a power management daemon decides to
675 * put the platform in low power mode). The device's behavior in this
676 * mode is dictated by the wake-on-WLAN configuration.
677 *
678 * The terms used for the device's behavior are as follows:
679 *
680 * - D0: the device is fully powered and the host is awake;
681 * - D3: the device is in low power mode and only reacts to
682 * specific events (e.g. magic-packet received or scan
683 * results found);
684 *
685 * These terms reflect the power modes in the firmware and are not to
686 * be confused with the physical device power state.
687 */
688
689/**
690 * enum iwl_plat_pm_mode - platform power management mode
691 *
692 * This enumeration describes the device's platform power management
693 * behavior when in system-wide suspend (i.e WoWLAN).
694 *
695 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
696 * device. In system-wide suspend mode, it means that the all
697 * connections will be closed automatically by mac80211 before
698 * the platform is suspended.
699 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
700 */
701enum iwl_plat_pm_mode {
702 IWL_PLAT_PM_MODE_DISABLED,
703 IWL_PLAT_PM_MODE_D3,
704};
705
706/**
707 * enum iwl_ini_cfg_state
708 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
709 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
710 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
711 * are corrupted. The rest of the debug TLVs will still be used
712 */
713enum iwl_ini_cfg_state {
714 IWL_INI_CFG_STATE_NOT_LOADED,
715 IWL_INI_CFG_STATE_LOADED,
716 IWL_INI_CFG_STATE_CORRUPTED,
717};
718
719/* Max time to wait for nmi interrupt */
720#define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
721
722/**
723 * struct iwl_dram_data
724 * @physical: page phy pointer
725 * @block: pointer to the allocated block/page
726 * @size: size of the block/page
727 */
728struct iwl_dram_data {
729 dma_addr_t physical;
730 void *block;
731 int size;
732};
733
734/**
735 * struct iwl_dram_regions - DRAM regions container structure
736 * @drams: array of several DRAM areas that contains the pnvm and power
737 * reduction table payloads.
738 * @n_regions: number of DRAM regions that were allocated
739 * @prph_scratch_mem_desc: points to a structure allocated in dram,
740 * designed to show FW where all the payloads are.
741 */
742struct iwl_dram_regions {
743 struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX];
744 struct iwl_dram_data prph_scratch_mem_desc;
745 u8 n_regions;
746};
747
748/**
749 * struct iwl_fw_mon - fw monitor per allocation id
750 * @num_frags: number of fragments
751 * @frags: an array of DRAM buffer fragments
752 */
753struct iwl_fw_mon {
754 u32 num_frags;
755 struct iwl_dram_data *frags;
756};
757
758/**
759 * struct iwl_self_init_dram - dram data used by self init process
760 * @fw: lmac and umac dram data
761 * @fw_cnt: total number of items in array
762 * @paging: paging dram data
763 * @paging_cnt: total number of items in array
764 */
765struct iwl_self_init_dram {
766 struct iwl_dram_data *fw;
767 int fw_cnt;
768 struct iwl_dram_data *paging;
769 int paging_cnt;
770};
771
772/**
773 * struct iwl_imr_data - imr dram data used during debug process
774 * @imr_enable: imr enable status received from fw
775 * @imr_size: imr dram size received from fw
776 * @sram_addr: sram address from debug tlv
777 * @sram_size: sram size from debug tlv
778 * @imr2sram_remainbyte`: size remained after each dma transfer
779 * @imr_curr_addr: current dst address used during dma transfer
780 * @imr_base_addr: imr address received from fw
781 */
782struct iwl_imr_data {
783 u32 imr_enable;
784 u32 imr_size;
785 u32 sram_addr;
786 u32 sram_size;
787 u32 imr2sram_remainbyte;
788 u64 imr_curr_addr;
789 __le64 imr_base_addr;
790};
791
792#define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES 32
793
794/**
795 * struct iwl_pc_data - program counter details
796 * @pc_name: cpu name
797 * @pc_address: cpu program counter
798 */
799struct iwl_pc_data {
800 u8 pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES];
801 u32 pc_address;
802};
803
804/**
805 * struct iwl_trans_debug - transport debug related data
806 *
807 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
808 * @rec_on: true iff there is a fw debug recording currently active
809 * @dest_tlv: points to the destination TLV for debug
810 * @conf_tlv: array of pointers to configuration TLVs for debug
811 * @trigger_tlv: array of pointers to triggers TLVs for debug
812 * @lmac_error_event_table: addrs of lmacs error tables
813 * @umac_error_event_table: addr of umac error table
814 * @tcm_error_event_table: address(es) of TCM error table(s)
815 * @rcm_error_event_table: address(es) of RCM error table(s)
816 * @error_event_table_tlv_status: bitmap that indicates what error table
817 * pointers was recevied via TLV. uses enum &iwl_error_event_table_status
818 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
819 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
820 * @fw_mon_cfg: debug buffer allocation configuration
821 * @fw_mon_ini: DRAM buffer fragments per allocation id
822 * @fw_mon: DRAM buffer for firmware monitor
823 * @hw_error: equals true if hw error interrupt was received from the FW
824 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
825 * @active_regions: active regions
826 * @debug_info_tlv_list: list of debug info TLVs
827 * @time_point: array of debug time points
828 * @periodic_trig_list: periodic triggers list
829 * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
830 * @ucode_preset: preset based on ucode
831 * @dump_file_name_ext: dump file name extension
832 * @dump_file_name_ext_valid: dump file name extension if valid or not
833 * @num_pc: number of program counter for cpu
834 * @pc_data: details of the program counter
835 * @yoyo_bin_loaded: tells if a yoyo debug file has been loaded
836 */
837struct iwl_trans_debug {
838 u8 n_dest_reg;
839 bool rec_on;
840
841 const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
842 const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
843 struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
844
845 u32 lmac_error_event_table[2];
846 u32 umac_error_event_table;
847 u32 tcm_error_event_table[2];
848 u32 rcm_error_event_table[2];
849 unsigned int error_event_table_tlv_status;
850
851 enum iwl_ini_cfg_state internal_ini_cfg;
852 enum iwl_ini_cfg_state external_ini_cfg;
853
854 struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
855 struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
856
857 struct iwl_dram_data fw_mon;
858
859 bool hw_error;
860 enum iwl_fw_ini_buffer_location ini_dest;
861
862 u64 unsupported_region_msk;
863 struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
864 struct list_head debug_info_tlv_list;
865 struct iwl_dbg_tlv_time_point_data time_point[IWL_FW_INI_TIME_POINT_NUM];
866 struct list_head periodic_trig_list;
867
868 u32 domains_bitmap;
869 u32 ucode_preset;
870 bool restart_required;
871 u32 last_tp_resetfw;
872 struct iwl_imr_data imr_data;
873 u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME];
874 bool dump_file_name_ext_valid;
875 u32 num_pc;
876 struct iwl_pc_data *pc_data;
877 bool yoyo_bin_loaded;
878};
879
880struct iwl_dma_ptr {
881 dma_addr_t dma;
882 void *addr;
883 size_t size;
884};
885
886struct iwl_cmd_meta {
887 /* only for SYNC commands, iff the reply skb is wanted */
888 struct iwl_host_cmd *source;
889 u32 flags;
890 u32 tbs;
891};
892
893/*
894 * The FH will write back to the first TB only, so we need to copy some data
895 * into the buffer regardless of whether it should be mapped or not.
896 * This indicates how big the first TB must be to include the scratch buffer
897 * and the assigned PN.
898 * Since PN location is 8 bytes at offset 12, it's 20 now.
899 * If we make it bigger then allocations will be bigger and copy slower, so
900 * that's probably not useful.
901 */
902#define IWL_FIRST_TB_SIZE 20
903#define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
904
905struct iwl_pcie_txq_entry {
906 void *cmd;
907 struct sk_buff *skb;
908 /* buffer to free after command completes */
909 const void *free_buf;
910 struct iwl_cmd_meta meta;
911};
912
913struct iwl_pcie_first_tb_buf {
914 u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
915};
916
917/**
918 * struct iwl_txq - Tx Queue for DMA
919 * @tfds: transmit frame descriptors (DMA memory)
920 * @first_tb_bufs: start of command headers, including scratch buffers, for
921 * the writeback -- this is DMA memory and an array holding one buffer
922 * for each command on the queue
923 * @first_tb_dma: DMA address for the first_tb_bufs start
924 * @entries: transmit entries (driver state)
925 * @lock: queue lock
926 * @stuck_timer: timer that fires if queue gets stuck
927 * @trans: pointer back to transport (for timer)
928 * @need_update: indicates need to update read/write index
929 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
930 * @wd_timeout: queue watchdog timeout (jiffies) - per queue
931 * @frozen: tx stuck queue timer is frozen
932 * @frozen_expiry_remainder: remember how long until the timer fires
933 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
934 * @write_ptr: 1-st empty entry (index) host_w
935 * @read_ptr: last used entry (index) host_r
936 * @dma_addr: physical addr for BD's
937 * @n_window: safe queue window
938 * @id: queue id
939 * @low_mark: low watermark, resume queue if free space more than this
940 * @high_mark: high watermark, stop queue if free space less than this
941 *
942 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
943 * descriptors) and required locking structures.
944 *
945 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
946 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
947 * there might be HW changes in the future). For the normal TX
948 * queues, n_window, which is the size of the software queue data
949 * is also 256; however, for the command queue, n_window is only
950 * 32 since we don't need so many commands pending. Since the HW
951 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
952 * This means that we end up with the following:
953 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
954 * SW entries: | 0 | ... | 31 |
955 * where N is a number between 0 and 7. This means that the SW
956 * data is a window overlayed over the HW queue.
957 */
958struct iwl_txq {
959 void *tfds;
960 struct iwl_pcie_first_tb_buf *first_tb_bufs;
961 dma_addr_t first_tb_dma;
962 struct iwl_pcie_txq_entry *entries;
963 /* lock for syncing changes on the queue */
964 spinlock_t lock;
965 unsigned long frozen_expiry_remainder;
966 struct timer_list stuck_timer;
967 struct iwl_trans *trans;
968 bool need_update;
969 bool frozen;
970 bool ampdu;
971 int block;
972 unsigned long wd_timeout;
973 struct sk_buff_head overflow_q;
974 struct iwl_dma_ptr bc_tbl;
975
976 int write_ptr;
977 int read_ptr;
978 dma_addr_t dma_addr;
979 int n_window;
980 u32 id;
981 int low_mark;
982 int high_mark;
983
984 bool overflow_tx;
985};
986
987/**
988 * struct iwl_trans_txqs - transport tx queues data
989 *
990 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
991 * @page_offs: offset from skb->cb to mac header page pointer
992 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
993 * @queue_used - bit mask of used queues
994 * @queue_stopped - bit mask of stopped queues
995 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
996 * @queue_alloc_cmd_ver: queue allocation command version
997 */
998struct iwl_trans_txqs {
999 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1000 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1001 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
1002 struct dma_pool *bc_pool;
1003 size_t bc_tbl_size;
1004 bool bc_table_dword;
1005 u8 page_offs;
1006 u8 dev_cmd_offs;
1007 struct iwl_tso_hdr_page __percpu *tso_hdr_page;
1008
1009 struct {
1010 u8 fifo;
1011 u8 q_id;
1012 unsigned int wdg_timeout;
1013 } cmd;
1014
1015 struct {
1016 u8 max_tbs;
1017 u16 size;
1018 u8 addr_size;
1019 } tfd;
1020
1021 struct iwl_dma_ptr scd_bc_tbls;
1022
1023 u8 queue_alloc_cmd_ver;
1024};
1025
1026/**
1027 * struct iwl_trans - transport common data
1028 *
1029 * @csme_own - true if we couldn't get ownership on the device
1030 * @ops - pointer to iwl_trans_ops
1031 * @op_mode - pointer to the op_mode
1032 * @trans_cfg: the trans-specific configuration part
1033 * @cfg - pointer to the configuration
1034 * @drv - pointer to iwl_drv
1035 * @status: a bit-mask of transport status flags
1036 * @dev - pointer to struct device * that represents the device
1037 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
1038 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
1039 * @hw_rf_id a u32 with the device RF ID
1040 * @hw_crf_id a u32 with the device CRF ID
1041 * @hw_wfpm_id a u32 with the device wfpm ID
1042 * @hw_id: a u32 with the ID of the device / sub-device.
1043 * Set during transport allocation.
1044 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
1045 * @hw_rev_step: The mac step of the HW
1046 * @pm_support: set to true in start_hw if link pm is supported
1047 * @ltr_enabled: set to true if the LTR is enabled
1048 * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed
1049 * @failed_to_load_reduce_power_image: set to true if pnvm loading failed
1050 * @wide_cmd_header: true when ucode supports wide command header format
1051 * @wait_command_queue: wait queue for sync commands
1052 * @num_rx_queues: number of RX queues allocated by the transport;
1053 * the transport must set this before calling iwl_drv_start()
1054 * @iml_len: the length of the image loader
1055 * @iml: a pointer to the image loader itself
1056 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
1057 * The user should use iwl_trans_{alloc,free}_tx_cmd.
1058 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
1059 * starting the firmware, used for tracing
1060 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1061 * start of the 802.11 header in the @rx_mpdu_cmd
1062 * @system_pm_mode: the system-wide power management mode in use.
1063 * This mode is set dynamically, depending on the WoWLAN values
1064 * configured from the userspace at runtime.
1065 * @txqs: transport tx queues data.
1066 * @mbx_addr_0_step: step address data 0
1067 * @mbx_addr_1_step: step address data 1
1068 * @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*),
1069 * only valid for discrete (not integrated) NICs
1070 * @invalid_tx_cmd: invalid TX command buffer
1071 */
1072struct iwl_trans {
1073 bool csme_own;
1074 const struct iwl_trans_ops *ops;
1075 struct iwl_op_mode *op_mode;
1076 const struct iwl_cfg_trans_params *trans_cfg;
1077 const struct iwl_cfg *cfg;
1078 struct iwl_drv *drv;
1079 enum iwl_trans_state state;
1080 unsigned long status;
1081
1082 struct device *dev;
1083 u32 max_skb_frags;
1084 u32 hw_rev;
1085 u32 hw_rev_step;
1086 u32 hw_rf_id;
1087 u32 hw_crf_id;
1088 u32 hw_cnv_id;
1089 u32 hw_wfpm_id;
1090 u32 hw_id;
1091 char hw_id_str[52];
1092 u32 sku_id[3];
1093
1094 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1095
1096 bool pm_support;
1097 bool ltr_enabled;
1098 u8 pnvm_loaded:1;
1099 u8 fail_to_parse_pnvm_image:1;
1100 u8 reduce_power_loaded:1;
1101 u8 failed_to_load_reduce_power_image:1;
1102
1103 const struct iwl_hcmd_arr *command_groups;
1104 int command_groups_size;
1105 bool wide_cmd_header;
1106
1107 wait_queue_head_t wait_command_queue;
1108 u8 num_rx_queues;
1109
1110 size_t iml_len;
1111 u8 *iml;
1112
1113 /* The following fields are internal only */
1114 struct kmem_cache *dev_cmd_pool;
1115 char dev_cmd_pool_name[50];
1116
1117 struct dentry *dbgfs_dir;
1118
1119#ifdef CONFIG_LOCKDEP
1120 struct lockdep_map sync_cmd_lockdep_map;
1121#endif
1122
1123 struct iwl_trans_debug dbg;
1124 struct iwl_self_init_dram init_dram;
1125
1126 enum iwl_plat_pm_mode system_pm_mode;
1127
1128 const char *name;
1129 struct iwl_trans_txqs txqs;
1130 u32 mbx_addr_0_step;
1131 u32 mbx_addr_1_step;
1132
1133 u8 pcie_link_speed;
1134
1135 struct iwl_dma_ptr invalid_tx_cmd;
1136
1137 /* pointer to trans specific struct */
1138 /*Ensure that this pointer will always be aligned to sizeof pointer */
1139 char trans_specific[] __aligned(sizeof(void *));
1140};
1141
1142const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1143int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1144
1145static inline void iwl_trans_configure(struct iwl_trans *trans,
1146 const struct iwl_trans_config *trans_cfg)
1147{
1148 trans->op_mode = trans_cfg->op_mode;
1149
1150 trans->ops->configure(trans, trans_cfg);
1151 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1152}
1153
1154static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1155{
1156 might_sleep();
1157
1158 return trans->ops->start_hw(trans);
1159}
1160
1161static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1162{
1163 might_sleep();
1164
1165 if (trans->ops->op_mode_leave)
1166 trans->ops->op_mode_leave(trans);
1167
1168 trans->op_mode = NULL;
1169
1170 trans->state = IWL_TRANS_NO_FW;
1171}
1172
1173static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1174{
1175 might_sleep();
1176
1177 trans->state = IWL_TRANS_FW_ALIVE;
1178
1179 trans->ops->fw_alive(trans, scd_addr);
1180}
1181
1182static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1183 const struct fw_img *fw,
1184 bool run_in_rfkill)
1185{
1186 int ret;
1187
1188 might_sleep();
1189
1190 WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1191
1192 clear_bit(STATUS_FW_ERROR, &trans->status);
1193 ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1194 if (ret == 0)
1195 trans->state = IWL_TRANS_FW_STARTED;
1196
1197 return ret;
1198}
1199
1200static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1201{
1202 might_sleep();
1203
1204 trans->ops->stop_device(trans);
1205
1206 trans->state = IWL_TRANS_NO_FW;
1207}
1208
1209static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1210 bool reset)
1211{
1212 might_sleep();
1213 if (!trans->ops->d3_suspend)
1214 return -EOPNOTSUPP;
1215
1216 return trans->ops->d3_suspend(trans, test, reset);
1217}
1218
1219static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1220 enum iwl_d3_status *status,
1221 bool test, bool reset)
1222{
1223 might_sleep();
1224 if (!trans->ops->d3_resume)
1225 return -EOPNOTSUPP;
1226
1227 return trans->ops->d3_resume(trans, status, test, reset);
1228}
1229
1230static inline struct iwl_trans_dump_data *
1231iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1232 const struct iwl_dump_sanitize_ops *sanitize_ops,
1233 void *sanitize_ctx)
1234{
1235 if (!trans->ops->dump_data)
1236 return NULL;
1237 return trans->ops->dump_data(trans, dump_mask,
1238 sanitize_ops, sanitize_ctx);
1239}
1240
1241static inline struct iwl_device_tx_cmd *
1242iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1243{
1244 return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1245}
1246
1247int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1248
1249static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1250 struct iwl_device_tx_cmd *dev_cmd)
1251{
1252 kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1253}
1254
1255static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1256 struct iwl_device_tx_cmd *dev_cmd, int queue)
1257{
1258 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1259 return -EIO;
1260
1261 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1262 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1263 return -EIO;
1264 }
1265
1266 return trans->ops->tx(trans, skb, dev_cmd, queue);
1267}
1268
1269static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1270 int ssn, struct sk_buff_head *skbs,
1271 bool is_flush)
1272{
1273 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1274 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1275 return;
1276 }
1277
1278 trans->ops->reclaim(trans, queue, ssn, skbs, is_flush);
1279}
1280
1281static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1282 int ptr)
1283{
1284 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1285 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1286 return;
1287 }
1288
1289 trans->ops->set_q_ptrs(trans, queue, ptr);
1290}
1291
1292static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1293 bool configure_scd)
1294{
1295 trans->ops->txq_disable(trans, queue, configure_scd);
1296}
1297
1298static inline bool
1299iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1300 const struct iwl_trans_txq_scd_cfg *cfg,
1301 unsigned int queue_wdg_timeout)
1302{
1303 might_sleep();
1304
1305 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1306 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1307 return false;
1308 }
1309
1310 return trans->ops->txq_enable(trans, queue, ssn,
1311 cfg, queue_wdg_timeout);
1312}
1313
1314static inline int
1315iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1316 struct iwl_trans_rxq_dma_data *data)
1317{
1318 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1319 return -EOPNOTSUPP;
1320
1321 return trans->ops->rxq_dma_data(trans, queue, data);
1322}
1323
1324static inline void
1325iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1326{
1327 if (WARN_ON_ONCE(!trans->ops->txq_free))
1328 return;
1329
1330 trans->ops->txq_free(trans, queue);
1331}
1332
1333static inline int
1334iwl_trans_txq_alloc(struct iwl_trans *trans,
1335 u32 flags, u32 sta_mask, u8 tid,
1336 int size, unsigned int wdg_timeout)
1337{
1338 might_sleep();
1339
1340 if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1341 return -EOPNOTSUPP;
1342
1343 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1344 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1345 return -EIO;
1346 }
1347
1348 return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1349 size, wdg_timeout);
1350}
1351
1352static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1353 int queue, bool shared_mode)
1354{
1355 if (trans->ops->txq_set_shared_mode)
1356 trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1357}
1358
1359static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1360 int fifo, int sta_id, int tid,
1361 int frame_limit, u16 ssn,
1362 unsigned int queue_wdg_timeout)
1363{
1364 struct iwl_trans_txq_scd_cfg cfg = {
1365 .fifo = fifo,
1366 .sta_id = sta_id,
1367 .tid = tid,
1368 .frame_limit = frame_limit,
1369 .aggregate = sta_id >= 0,
1370 };
1371
1372 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1373}
1374
1375static inline
1376void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1377 unsigned int queue_wdg_timeout)
1378{
1379 struct iwl_trans_txq_scd_cfg cfg = {
1380 .fifo = fifo,
1381 .sta_id = -1,
1382 .tid = IWL_MAX_TID_COUNT,
1383 .frame_limit = IWL_FRAME_LIMIT,
1384 .aggregate = false,
1385 };
1386
1387 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1388}
1389
1390static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1391 unsigned long txqs,
1392 bool freeze)
1393{
1394 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1395 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1396 return;
1397 }
1398
1399 if (trans->ops->freeze_txq_timer)
1400 trans->ops->freeze_txq_timer(trans, txqs, freeze);
1401}
1402
1403static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1404 u32 txqs)
1405{
1406 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1407 return -EOPNOTSUPP;
1408
1409 /* No need to wait if the firmware is not alive */
1410 if (trans->state != IWL_TRANS_FW_ALIVE) {
1411 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1412 return -EIO;
1413 }
1414
1415 return trans->ops->wait_tx_queues_empty(trans, txqs);
1416}
1417
1418static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1419{
1420 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1421 return -EOPNOTSUPP;
1422
1423 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1424 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1425 return -EIO;
1426 }
1427
1428 return trans->ops->wait_txq_empty(trans, queue);
1429}
1430
1431static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1432{
1433 trans->ops->write8(trans, ofs, val);
1434}
1435
1436static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1437{
1438 trans->ops->write32(trans, ofs, val);
1439}
1440
1441static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1442{
1443 return trans->ops->read32(trans, ofs);
1444}
1445
1446static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1447{
1448 return trans->ops->read_prph(trans, ofs);
1449}
1450
1451static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1452 u32 val)
1453{
1454 return trans->ops->write_prph(trans, ofs, val);
1455}
1456
1457static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1458 void *buf, int dwords)
1459{
1460 return trans->ops->read_mem(trans, addr, buf, dwords);
1461}
1462
1463#define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \
1464 do { \
1465 if (__builtin_constant_p(bufsize)) \
1466 BUILD_BUG_ON((bufsize) % sizeof(u32)); \
1467 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1468 } while (0)
1469
1470static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1471 u32 dst_addr, u64 src_addr,
1472 u32 byte_cnt)
1473{
1474 if (trans->ops->imr_dma_data)
1475 return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1476 return 0;
1477}
1478
1479static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1480{
1481 u32 value;
1482
1483 if (iwl_trans_read_mem(trans, addr, &value, 1))
1484 return 0xa5a5a5a5;
1485
1486 return value;
1487}
1488
1489static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1490 const void *buf, int dwords)
1491{
1492 return trans->ops->write_mem(trans, addr, buf, dwords);
1493}
1494
1495static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1496 u32 val)
1497{
1498 return iwl_trans_write_mem(trans, addr, &val, 1);
1499}
1500
1501static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1502{
1503 if (trans->ops->set_pmi)
1504 trans->ops->set_pmi(trans, state);
1505}
1506
1507static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1508 bool retake_ownership)
1509{
1510 if (trans->ops->sw_reset)
1511 return trans->ops->sw_reset(trans, retake_ownership);
1512 return 0;
1513}
1514
1515static inline void
1516iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1517{
1518 trans->ops->set_bits_mask(trans, reg, mask, value);
1519}
1520
1521#define iwl_trans_grab_nic_access(trans) \
1522 __cond_lock(nic_access, \
1523 likely((trans)->ops->grab_nic_access(trans)))
1524
1525static inline void __releases(nic_access)
1526iwl_trans_release_nic_access(struct iwl_trans *trans)
1527{
1528 trans->ops->release_nic_access(trans);
1529 __release(nic_access);
1530}
1531
1532static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1533{
1534 if (WARN_ON_ONCE(!trans->op_mode))
1535 return;
1536
1537 /* prevent double restarts due to the same erroneous FW */
1538 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1539 iwl_op_mode_nic_error(trans->op_mode, sync);
1540 trans->state = IWL_TRANS_NO_FW;
1541 }
1542}
1543
1544static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1545{
1546 return trans->state == IWL_TRANS_FW_ALIVE;
1547}
1548
1549static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1550{
1551 if (trans->ops->sync_nmi)
1552 trans->ops->sync_nmi(trans);
1553}
1554
1555void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1556 u32 sw_err_bit);
1557
1558static inline int iwl_trans_load_pnvm(struct iwl_trans *trans,
1559 const struct iwl_pnvm_image *pnvm_data,
1560 const struct iwl_ucode_capabilities *capa)
1561{
1562 return trans->ops->load_pnvm(trans, pnvm_data, capa);
1563}
1564
1565static inline void iwl_trans_set_pnvm(struct iwl_trans *trans,
1566 const struct iwl_ucode_capabilities *capa)
1567{
1568 if (trans->ops->set_pnvm)
1569 trans->ops->set_pnvm(trans, capa);
1570}
1571
1572static inline int iwl_trans_load_reduce_power
1573 (struct iwl_trans *trans,
1574 const struct iwl_pnvm_image *payloads,
1575 const struct iwl_ucode_capabilities *capa)
1576{
1577 return trans->ops->load_reduce_power(trans, payloads, capa);
1578}
1579
1580static inline void
1581iwl_trans_set_reduce_power(struct iwl_trans *trans,
1582 const struct iwl_ucode_capabilities *capa)
1583{
1584 if (trans->ops->set_reduce_power)
1585 trans->ops->set_reduce_power(trans, capa);
1586}
1587
1588static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1589{
1590 return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1591 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1592}
1593
1594static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1595{
1596 if (trans->ops->interrupts)
1597 trans->ops->interrupts(trans, enable);
1598}
1599
1600/*****************************************************
1601 * transport helper functions
1602 *****************************************************/
1603struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1604 struct device *dev,
1605 const struct iwl_trans_ops *ops,
1606 const struct iwl_cfg_trans_params *cfg_trans);
1607int iwl_trans_init(struct iwl_trans *trans);
1608void iwl_trans_free(struct iwl_trans *trans);
1609
1610static inline bool iwl_trans_is_hw_error_value(u32 val)
1611{
1612 return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50);
1613}
1614
1615/*****************************************************
1616* driver (transport) register/unregister functions
1617******************************************************/
1618int __must_check iwl_pci_register_driver(void);
1619void iwl_pci_unregister_driver(void);
1620void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan);
1621
1622#endif /* __iwl_trans_h__ */
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#ifndef __iwl_trans_h__
8#define __iwl_trans_h__
9
10#include <linux/ieee80211.h>
11#include <linux/mm.h> /* for page_address */
12#include <linux/lockdep.h>
13#include <linux/kernel.h>
14
15#include "iwl-debug.h"
16#include "iwl-config.h"
17#include "fw/img.h"
18#include "iwl-op-mode.h"
19#include <linux/firmware.h>
20#include "fw/api/cmdhdr.h"
21#include "fw/api/txq.h"
22#include "fw/api/dbg-tlv.h"
23#include "iwl-dbg-tlv.h"
24
25/**
26 * DOC: Transport layer - what is it ?
27 *
28 * The transport layer is the layer that deals with the HW directly. It provides
29 * an abstraction of the underlying HW to the upper layer. The transport layer
30 * doesn't provide any policy, algorithm or anything of this kind, but only
31 * mechanisms to make the HW do something. It is not completely stateless but
32 * close to it.
33 * We will have an implementation for each different supported bus.
34 */
35
36/**
37 * DOC: Life cycle of the transport layer
38 *
39 * The transport layer has a very precise life cycle.
40 *
41 * 1) A helper function is called during the module initialization and
42 * registers the bus driver's ops with the transport's alloc function.
43 * 2) Bus's probe calls to the transport layer's allocation functions.
44 * Of course this function is bus specific.
45 * 3) This allocation functions will spawn the upper layer which will
46 * register mac80211.
47 *
48 * 4) At some point (i.e. mac80211's start call), the op_mode will call
49 * the following sequence:
50 * start_hw
51 * start_fw
52 *
53 * 5) Then when finished (or reset):
54 * stop_device
55 *
56 * 6) Eventually, the free function will be called.
57 */
58
59#define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON
60
61#define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */
62#define FH_RSCSR_FRAME_INVALID 0x55550000
63#define FH_RSCSR_FRAME_ALIGN 0x40
64#define FH_RSCSR_RPA_EN BIT(25)
65#define FH_RSCSR_RADA_EN BIT(26)
66#define FH_RSCSR_RXQ_POS 16
67#define FH_RSCSR_RXQ_MASK 0x3F0000
68
69struct iwl_rx_packet {
70 /*
71 * The first 4 bytes of the RX frame header contain both the RX frame
72 * size and some flags.
73 * Bit fields:
74 * 31: flag flush RB request
75 * 30: flag ignore TC (terminal counter) request
76 * 29: flag fast IRQ request
77 * 28-27: Reserved
78 * 26: RADA enabled
79 * 25: Offload enabled
80 * 24: RPF enabled
81 * 23: RSS enabled
82 * 22: Checksum enabled
83 * 21-16: RX queue
84 * 15-14: Reserved
85 * 13-00: RX frame size
86 */
87 __le32 len_n_flags;
88 struct iwl_cmd_header hdr;
89 u8 data[];
90} __packed;
91
92static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
93{
94 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
95}
96
97static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
98{
99 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
100}
101
102/**
103 * enum CMD_MODE - how to send the host commands ?
104 *
105 * @CMD_ASYNC: Return right away and don't wait for the response
106 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
107 * the response. The caller needs to call iwl_free_resp when done.
108 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
109 * called after this command completes. Valid only with CMD_ASYNC.
110 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
111 * SUSPEND and RESUME commands. We are in D3 mode when we set
112 * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
113 */
114enum CMD_MODE {
115 CMD_ASYNC = BIT(0),
116 CMD_WANT_SKB = BIT(1),
117 CMD_SEND_IN_RFKILL = BIT(2),
118 CMD_WANT_ASYNC_CALLBACK = BIT(3),
119 CMD_SEND_IN_D3 = BIT(4),
120};
121
122#define DEF_CMD_PAYLOAD_SIZE 320
123
124/**
125 * struct iwl_device_cmd
126 *
127 * For allocation of the command and tx queues, this establishes the overall
128 * size of the largest command we send to uCode, except for commands that
129 * aren't fully copied and use other TFD space.
130 */
131struct iwl_device_cmd {
132 union {
133 struct {
134 struct iwl_cmd_header hdr; /* uCode API */
135 u8 payload[DEF_CMD_PAYLOAD_SIZE];
136 };
137 struct {
138 struct iwl_cmd_header_wide hdr_wide;
139 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
140 sizeof(struct iwl_cmd_header_wide) +
141 sizeof(struct iwl_cmd_header)];
142 };
143 };
144} __packed;
145
146/**
147 * struct iwl_device_tx_cmd - buffer for TX command
148 * @hdr: the header
149 * @payload: the payload placeholder
150 *
151 * The actual structure is sized dynamically according to need.
152 */
153struct iwl_device_tx_cmd {
154 struct iwl_cmd_header hdr;
155 u8 payload[];
156} __packed;
157
158#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
159
160/*
161 * number of transfer buffers (fragments) per transmit frame descriptor;
162 * this is just the driver's idea, the hardware supports 20
163 */
164#define IWL_MAX_CMD_TBS_PER_TFD 2
165
166/* We need 2 entries for the TX command and header, and another one might
167 * be needed for potential data in the SKB's head. The remaining ones can
168 * be used for frags.
169 */
170#define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
171
172/**
173 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
174 *
175 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
176 * ring. The transport layer doesn't map the command's buffer to DMA, but
177 * rather copies it to a previously allocated DMA buffer. This flag tells
178 * the transport layer not to copy the command, but to map the existing
179 * buffer (that is passed in) instead. This saves the memcpy and allows
180 * commands that are bigger than the fixed buffer to be submitted.
181 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
182 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
183 * chunk internally and free it again after the command completes. This
184 * can (currently) be used only once per command.
185 * Note that a TFD entry after a DUP one cannot be a normal copied one.
186 */
187enum iwl_hcmd_dataflag {
188 IWL_HCMD_DFL_NOCOPY = BIT(0),
189 IWL_HCMD_DFL_DUP = BIT(1),
190};
191
192enum iwl_error_event_table_status {
193 IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
194 IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
195 IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
196 IWL_ERROR_EVENT_TABLE_TCM = BIT(3),
197};
198
199/**
200 * struct iwl_host_cmd - Host command to the uCode
201 *
202 * @data: array of chunks that composes the data of the host command
203 * @resp_pkt: response packet, if %CMD_WANT_SKB was set
204 * @_rx_page_order: (internally used to free response packet)
205 * @_rx_page_addr: (internally used to free response packet)
206 * @flags: can be CMD_*
207 * @len: array of the lengths of the chunks in data
208 * @dataflags: IWL_HCMD_DFL_*
209 * @id: command id of the host command, for wide commands encoding the
210 * version and group as well
211 */
212struct iwl_host_cmd {
213 const void *data[IWL_MAX_CMD_TBS_PER_TFD];
214 struct iwl_rx_packet *resp_pkt;
215 unsigned long _rx_page_addr;
216 u32 _rx_page_order;
217
218 u32 flags;
219 u32 id;
220 u16 len[IWL_MAX_CMD_TBS_PER_TFD];
221 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
222};
223
224static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
225{
226 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
227}
228
229struct iwl_rx_cmd_buffer {
230 struct page *_page;
231 int _offset;
232 bool _page_stolen;
233 u32 _rx_page_order;
234 unsigned int truesize;
235};
236
237static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
238{
239 return (void *)((unsigned long)page_address(r->_page) + r->_offset);
240}
241
242static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
243{
244 return r->_offset;
245}
246
247static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
248{
249 r->_page_stolen = true;
250 get_page(r->_page);
251 return r->_page;
252}
253
254static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
255{
256 __free_pages(r->_page, r->_rx_page_order);
257}
258
259#define MAX_NO_RECLAIM_CMDS 6
260
261#define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
262
263/*
264 * Maximum number of HW queues the transport layer
265 * currently supports
266 */
267#define IWL_MAX_HW_QUEUES 32
268#define IWL_MAX_TVQM_QUEUES 512
269
270#define IWL_MAX_TID_COUNT 8
271#define IWL_MGMT_TID 15
272#define IWL_FRAME_LIMIT 64
273#define IWL_MAX_RX_HW_QUEUES 16
274#define IWL_9000_MAX_RX_HW_QUEUES 6
275
276/**
277 * enum iwl_wowlan_status - WoWLAN image/device status
278 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
279 * @IWL_D3_STATUS_RESET: device was reset while suspended
280 */
281enum iwl_d3_status {
282 IWL_D3_STATUS_ALIVE,
283 IWL_D3_STATUS_RESET,
284};
285
286/**
287 * enum iwl_trans_status: transport status flags
288 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
289 * @STATUS_DEVICE_ENABLED: APM is enabled
290 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
291 * @STATUS_INT_ENABLED: interrupts are enabled
292 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
293 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
294 * @STATUS_FW_ERROR: the fw is in error state
295 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
296 * are sent
297 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
298 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
299 */
300enum iwl_trans_status {
301 STATUS_SYNC_HCMD_ACTIVE,
302 STATUS_DEVICE_ENABLED,
303 STATUS_TPOWER_PMI,
304 STATUS_INT_ENABLED,
305 STATUS_RFKILL_HW,
306 STATUS_RFKILL_OPMODE,
307 STATUS_FW_ERROR,
308 STATUS_TRANS_GOING_IDLE,
309 STATUS_TRANS_IDLE,
310 STATUS_TRANS_DEAD,
311};
312
313static inline int
314iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
315{
316 switch (rb_size) {
317 case IWL_AMSDU_2K:
318 return get_order(2 * 1024);
319 case IWL_AMSDU_4K:
320 return get_order(4 * 1024);
321 case IWL_AMSDU_8K:
322 return get_order(8 * 1024);
323 case IWL_AMSDU_12K:
324 return get_order(16 * 1024);
325 default:
326 WARN_ON(1);
327 return -1;
328 }
329}
330
331static inline int
332iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
333{
334 switch (rb_size) {
335 case IWL_AMSDU_2K:
336 return 2 * 1024;
337 case IWL_AMSDU_4K:
338 return 4 * 1024;
339 case IWL_AMSDU_8K:
340 return 8 * 1024;
341 case IWL_AMSDU_12K:
342 return 16 * 1024;
343 default:
344 WARN_ON(1);
345 return 0;
346 }
347}
348
349struct iwl_hcmd_names {
350 u8 cmd_id;
351 const char *const cmd_name;
352};
353
354#define HCMD_NAME(x) \
355 { .cmd_id = x, .cmd_name = #x }
356
357struct iwl_hcmd_arr {
358 const struct iwl_hcmd_names *arr;
359 int size;
360};
361
362#define HCMD_ARR(x) \
363 { .arr = x, .size = ARRAY_SIZE(x) }
364
365/**
366 * struct iwl_trans_config - transport configuration
367 *
368 * @op_mode: pointer to the upper layer.
369 * @cmd_queue: the index of the command queue.
370 * Must be set before start_fw.
371 * @cmd_fifo: the fifo for host commands
372 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
373 * @no_reclaim_cmds: Some devices erroneously don't set the
374 * SEQ_RX_FRAME bit on some notifications, this is the
375 * list of such notifications to filter. Max length is
376 * %MAX_NO_RECLAIM_CMDS.
377 * @n_no_reclaim_cmds: # of commands in list
378 * @rx_buf_size: RX buffer size needed for A-MSDUs
379 * if unset 4k will be the RX buffer size
380 * @bc_table_dword: set to true if the BC table expects the byte count to be
381 * in DWORD (as opposed to bytes)
382 * @scd_set_active: should the transport configure the SCD for HCMD queue
383 * @command_groups: array of command groups, each member is an array of the
384 * commands in the group; for debugging only
385 * @command_groups_size: number of command groups, to avoid illegal access
386 * @cb_data_offs: offset inside skb->cb to store transport data at, must have
387 * space for at least two pointers
388 * @fw_reset_handshake: firmware supports reset flow handshake
389 */
390struct iwl_trans_config {
391 struct iwl_op_mode *op_mode;
392
393 u8 cmd_queue;
394 u8 cmd_fifo;
395 unsigned int cmd_q_wdg_timeout;
396 const u8 *no_reclaim_cmds;
397 unsigned int n_no_reclaim_cmds;
398
399 enum iwl_amsdu_size rx_buf_size;
400 bool bc_table_dword;
401 bool scd_set_active;
402 const struct iwl_hcmd_arr *command_groups;
403 int command_groups_size;
404
405 u8 cb_data_offs;
406 bool fw_reset_handshake;
407};
408
409struct iwl_trans_dump_data {
410 u32 len;
411 u8 data[];
412};
413
414struct iwl_trans;
415
416struct iwl_trans_txq_scd_cfg {
417 u8 fifo;
418 u8 sta_id;
419 u8 tid;
420 bool aggregate;
421 int frame_limit;
422};
423
424/**
425 * struct iwl_trans_rxq_dma_data - RX queue DMA data
426 * @fr_bd_cb: DMA address of free BD cyclic buffer
427 * @fr_bd_wid: Initial write index of the free BD cyclic buffer
428 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
429 * @ur_bd_cb: DMA address of used BD cyclic buffer
430 */
431struct iwl_trans_rxq_dma_data {
432 u64 fr_bd_cb;
433 u32 fr_bd_wid;
434 u64 urbd_stts_wrptr;
435 u64 ur_bd_cb;
436};
437
438/**
439 * struct iwl_trans_ops - transport specific operations
440 *
441 * All the handlers MUST be implemented
442 *
443 * @start_hw: starts the HW. From that point on, the HW can send interrupts.
444 * May sleep.
445 * @op_mode_leave: Turn off the HW RF kill indication if on
446 * May sleep
447 * @start_fw: allocates and inits all the resources for the transport
448 * layer. Also kick a fw image.
449 * May sleep
450 * @fw_alive: called when the fw sends alive notification. If the fw provides
451 * the SCD base address in SRAM, then provide it here, or 0 otherwise.
452 * May sleep
453 * @stop_device: stops the whole device (embedded CPU put to reset) and stops
454 * the HW. From that point on, the HW will be stopped but will still issue
455 * an interrupt if the HW RF kill switch is triggered.
456 * This callback must do the right thing and not crash even if %start_hw()
457 * was called but not &start_fw(). May sleep.
458 * @d3_suspend: put the device into the correct mode for WoWLAN during
459 * suspend. This is optional, if not implemented WoWLAN will not be
460 * supported. This callback may sleep.
461 * @d3_resume: resume the device after WoWLAN, enabling the opmode to
462 * talk to the WoWLAN image to get its status. This is optional, if not
463 * implemented WoWLAN will not be supported. This callback may sleep.
464 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
465 * If RFkill is asserted in the middle of a SYNC host command, it must
466 * return -ERFKILL straight away.
467 * May sleep only if CMD_ASYNC is not set
468 * @tx: send an skb. The transport relies on the op_mode to zero the
469 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
470 * the CSUM will be taken care of (TCP CSUM and IP header in case of
471 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
472 * header if it is IPv4.
473 * Must be atomic
474 * @reclaim: free packet until ssn. Returns a list of freed packets.
475 * Must be atomic
476 * @txq_enable: setup a queue. To setup an AC queue, use the
477 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
478 * this one. The op_mode must not configure the HCMD queue. The scheduler
479 * configuration may be %NULL, in which case the hardware will not be
480 * configured. If true is returned, the operation mode needs to increment
481 * the sequence number of the packets routed to this queue because of a
482 * hardware scheduler bug. May sleep.
483 * @txq_disable: de-configure a Tx queue to send AMPDUs
484 * Must be atomic
485 * @txq_set_shared_mode: change Tx queue shared/unshared marking
486 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
487 * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
488 * @freeze_txq_timer: prevents the timer of the queue from firing until the
489 * queue is set to awake. Must be atomic.
490 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
491 * that the transport needs to refcount the calls since this function
492 * will be called several times with block = true, and then the queues
493 * need to be unblocked only after the same number of calls with
494 * block = false.
495 * @write8: write a u8 to a register at offset ofs from the BAR
496 * @write32: write a u32 to a register at offset ofs from the BAR
497 * @read32: read a u32 register at offset ofs from the BAR
498 * @read_prph: read a DWORD from a periphery register
499 * @write_prph: write a DWORD to a periphery register
500 * @read_mem: read device's SRAM in DWORD
501 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
502 * will be zeroed.
503 * @read_config32: read a u32 value from the device's config space at
504 * the given offset.
505 * @configure: configure parameters required by the transport layer from
506 * the op_mode. May be called several times before start_fw, can't be
507 * called after that.
508 * @set_pmi: set the power pmi state
509 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
510 * Sleeping is not allowed between grab_nic_access and
511 * release_nic_access.
512 * @release_nic_access: let the NIC go to sleep. The "flags" parameter
513 * must be the same one that was sent before to the grab_nic_access.
514 * @set_bits_mask - set SRAM register according to value and mask.
515 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
516 * TX'ed commands and similar. The buffer will be vfree'd by the caller.
517 * Note that the transport must fill in the proper file headers.
518 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
519 * of the trans debugfs
520 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
521 * context info.
522 * @interrupts: disable/enable interrupts to transport
523 */
524struct iwl_trans_ops {
525
526 int (*start_hw)(struct iwl_trans *iwl_trans);
527 void (*op_mode_leave)(struct iwl_trans *iwl_trans);
528 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
529 bool run_in_rfkill);
530 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
531 void (*stop_device)(struct iwl_trans *trans);
532
533 int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
534 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
535 bool test, bool reset);
536
537 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
538
539 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
540 struct iwl_device_tx_cmd *dev_cmd, int queue);
541 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
542 struct sk_buff_head *skbs);
543
544 void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
545
546 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
547 const struct iwl_trans_txq_scd_cfg *cfg,
548 unsigned int queue_wdg_timeout);
549 void (*txq_disable)(struct iwl_trans *trans, int queue,
550 bool configure_scd);
551 /* 22000 functions */
552 int (*txq_alloc)(struct iwl_trans *trans,
553 __le16 flags, u8 sta_id, u8 tid,
554 int cmd_id, int size,
555 unsigned int queue_wdg_timeout);
556 void (*txq_free)(struct iwl_trans *trans, int queue);
557 int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
558 struct iwl_trans_rxq_dma_data *data);
559
560 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
561 bool shared);
562
563 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
564 int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
565 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
566 bool freeze);
567 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
568
569 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
570 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
571 u32 (*read32)(struct iwl_trans *trans, u32 ofs);
572 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
573 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
574 int (*read_mem)(struct iwl_trans *trans, u32 addr,
575 void *buf, int dwords);
576 int (*write_mem)(struct iwl_trans *trans, u32 addr,
577 const void *buf, int dwords);
578 int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
579 void (*configure)(struct iwl_trans *trans,
580 const struct iwl_trans_config *trans_cfg);
581 void (*set_pmi)(struct iwl_trans *trans, bool state);
582 void (*sw_reset)(struct iwl_trans *trans);
583 bool (*grab_nic_access)(struct iwl_trans *trans);
584 void (*release_nic_access)(struct iwl_trans *trans);
585 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
586 u32 value);
587
588 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
589 u32 dump_mask);
590 void (*debugfs_cleanup)(struct iwl_trans *trans);
591 void (*sync_nmi)(struct iwl_trans *trans);
592 int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
593 int (*set_reduce_power)(struct iwl_trans *trans,
594 const void *data, u32 len);
595 void (*interrupts)(struct iwl_trans *trans, bool enable);
596};
597
598/**
599 * enum iwl_trans_state - state of the transport layer
600 *
601 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
602 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
603 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
604 */
605enum iwl_trans_state {
606 IWL_TRANS_NO_FW,
607 IWL_TRANS_FW_STARTED,
608 IWL_TRANS_FW_ALIVE,
609};
610
611/**
612 * DOC: Platform power management
613 *
614 * In system-wide power management the entire platform goes into a low
615 * power state (e.g. idle or suspend to RAM) at the same time and the
616 * device is configured as a wakeup source for the entire platform.
617 * This is usually triggered by userspace activity (e.g. the user
618 * presses the suspend button or a power management daemon decides to
619 * put the platform in low power mode). The device's behavior in this
620 * mode is dictated by the wake-on-WLAN configuration.
621 *
622 * The terms used for the device's behavior are as follows:
623 *
624 * - D0: the device is fully powered and the host is awake;
625 * - D3: the device is in low power mode and only reacts to
626 * specific events (e.g. magic-packet received or scan
627 * results found);
628 *
629 * These terms reflect the power modes in the firmware and are not to
630 * be confused with the physical device power state.
631 */
632
633/**
634 * enum iwl_plat_pm_mode - platform power management mode
635 *
636 * This enumeration describes the device's platform power management
637 * behavior when in system-wide suspend (i.e WoWLAN).
638 *
639 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
640 * device. In system-wide suspend mode, it means that the all
641 * connections will be closed automatically by mac80211 before
642 * the platform is suspended.
643 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
644 */
645enum iwl_plat_pm_mode {
646 IWL_PLAT_PM_MODE_DISABLED,
647 IWL_PLAT_PM_MODE_D3,
648};
649
650/**
651 * enum iwl_ini_cfg_state
652 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
653 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
654 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
655 * are corrupted. The rest of the debug TLVs will still be used
656 */
657enum iwl_ini_cfg_state {
658 IWL_INI_CFG_STATE_NOT_LOADED,
659 IWL_INI_CFG_STATE_LOADED,
660 IWL_INI_CFG_STATE_CORRUPTED,
661};
662
663/* Max time to wait for nmi interrupt */
664#define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
665
666/**
667 * struct iwl_dram_data
668 * @physical: page phy pointer
669 * @block: pointer to the allocated block/page
670 * @size: size of the block/page
671 */
672struct iwl_dram_data {
673 dma_addr_t physical;
674 void *block;
675 int size;
676};
677
678/**
679 * struct iwl_fw_mon - fw monitor per allocation id
680 * @num_frags: number of fragments
681 * @frags: an array of DRAM buffer fragments
682 */
683struct iwl_fw_mon {
684 u32 num_frags;
685 struct iwl_dram_data *frags;
686};
687
688/**
689 * struct iwl_self_init_dram - dram data used by self init process
690 * @fw: lmac and umac dram data
691 * @fw_cnt: total number of items in array
692 * @paging: paging dram data
693 * @paging_cnt: total number of items in array
694 */
695struct iwl_self_init_dram {
696 struct iwl_dram_data *fw;
697 int fw_cnt;
698 struct iwl_dram_data *paging;
699 int paging_cnt;
700};
701
702/**
703 * struct iwl_trans_debug - transport debug related data
704 *
705 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
706 * @rec_on: true iff there is a fw debug recording currently active
707 * @dest_tlv: points to the destination TLV for debug
708 * @conf_tlv: array of pointers to configuration TLVs for debug
709 * @trigger_tlv: array of pointers to triggers TLVs for debug
710 * @lmac_error_event_table: addrs of lmacs error tables
711 * @umac_error_event_table: addr of umac error table
712 * @tcm_error_event_table: address of TCM error table
713 * @error_event_table_tlv_status: bitmap that indicates what error table
714 * pointers was recevied via TLV. uses enum &iwl_error_event_table_status
715 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
716 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
717 * @fw_mon_cfg: debug buffer allocation configuration
718 * @fw_mon_ini: DRAM buffer fragments per allocation id
719 * @fw_mon: DRAM buffer for firmware monitor
720 * @hw_error: equals true if hw error interrupt was received from the FW
721 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
722 * @active_regions: active regions
723 * @debug_info_tlv_list: list of debug info TLVs
724 * @time_point: array of debug time points
725 * @periodic_trig_list: periodic triggers list
726 * @domains_bitmap: bitmap of active domains other than
727 * &IWL_FW_INI_DOMAIN_ALWAYS_ON
728 */
729struct iwl_trans_debug {
730 u8 n_dest_reg;
731 bool rec_on;
732
733 const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
734 const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
735 struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
736
737 u32 lmac_error_event_table[2];
738 u32 umac_error_event_table;
739 u32 tcm_error_event_table;
740 unsigned int error_event_table_tlv_status;
741
742 enum iwl_ini_cfg_state internal_ini_cfg;
743 enum iwl_ini_cfg_state external_ini_cfg;
744
745 struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
746 struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
747
748 struct iwl_dram_data fw_mon;
749
750 bool hw_error;
751 enum iwl_fw_ini_buffer_location ini_dest;
752
753 u64 unsupported_region_msk;
754 struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
755 struct list_head debug_info_tlv_list;
756 struct iwl_dbg_tlv_time_point_data
757 time_point[IWL_FW_INI_TIME_POINT_NUM];
758 struct list_head periodic_trig_list;
759
760 u32 domains_bitmap;
761};
762
763struct iwl_dma_ptr {
764 dma_addr_t dma;
765 void *addr;
766 size_t size;
767};
768
769struct iwl_cmd_meta {
770 /* only for SYNC commands, iff the reply skb is wanted */
771 struct iwl_host_cmd *source;
772 u32 flags;
773 u32 tbs;
774};
775
776/*
777 * The FH will write back to the first TB only, so we need to copy some data
778 * into the buffer regardless of whether it should be mapped or not.
779 * This indicates how big the first TB must be to include the scratch buffer
780 * and the assigned PN.
781 * Since PN location is 8 bytes at offset 12, it's 20 now.
782 * If we make it bigger then allocations will be bigger and copy slower, so
783 * that's probably not useful.
784 */
785#define IWL_FIRST_TB_SIZE 20
786#define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
787
788struct iwl_pcie_txq_entry {
789 void *cmd;
790 struct sk_buff *skb;
791 /* buffer to free after command completes */
792 const void *free_buf;
793 struct iwl_cmd_meta meta;
794};
795
796struct iwl_pcie_first_tb_buf {
797 u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
798};
799
800/**
801 * struct iwl_txq - Tx Queue for DMA
802 * @q: generic Rx/Tx queue descriptor
803 * @tfds: transmit frame descriptors (DMA memory)
804 * @first_tb_bufs: start of command headers, including scratch buffers, for
805 * the writeback -- this is DMA memory and an array holding one buffer
806 * for each command on the queue
807 * @first_tb_dma: DMA address for the first_tb_bufs start
808 * @entries: transmit entries (driver state)
809 * @lock: queue lock
810 * @stuck_timer: timer that fires if queue gets stuck
811 * @trans: pointer back to transport (for timer)
812 * @need_update: indicates need to update read/write index
813 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
814 * @wd_timeout: queue watchdog timeout (jiffies) - per queue
815 * @frozen: tx stuck queue timer is frozen
816 * @frozen_expiry_remainder: remember how long until the timer fires
817 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
818 * @write_ptr: 1-st empty entry (index) host_w
819 * @read_ptr: last used entry (index) host_r
820 * @dma_addr: physical addr for BD's
821 * @n_window: safe queue window
822 * @id: queue id
823 * @low_mark: low watermark, resume queue if free space more than this
824 * @high_mark: high watermark, stop queue if free space less than this
825 *
826 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
827 * descriptors) and required locking structures.
828 *
829 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
830 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
831 * there might be HW changes in the future). For the normal TX
832 * queues, n_window, which is the size of the software queue data
833 * is also 256; however, for the command queue, n_window is only
834 * 32 since we don't need so many commands pending. Since the HW
835 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
836 * This means that we end up with the following:
837 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
838 * SW entries: | 0 | ... | 31 |
839 * where N is a number between 0 and 7. This means that the SW
840 * data is a window overlayed over the HW queue.
841 */
842struct iwl_txq {
843 void *tfds;
844 struct iwl_pcie_first_tb_buf *first_tb_bufs;
845 dma_addr_t first_tb_dma;
846 struct iwl_pcie_txq_entry *entries;
847 /* lock for syncing changes on the queue */
848 spinlock_t lock;
849 unsigned long frozen_expiry_remainder;
850 struct timer_list stuck_timer;
851 struct iwl_trans *trans;
852 bool need_update;
853 bool frozen;
854 bool ampdu;
855 int block;
856 unsigned long wd_timeout;
857 struct sk_buff_head overflow_q;
858 struct iwl_dma_ptr bc_tbl;
859
860 int write_ptr;
861 int read_ptr;
862 dma_addr_t dma_addr;
863 int n_window;
864 u32 id;
865 int low_mark;
866 int high_mark;
867
868 bool overflow_tx;
869};
870
871/**
872 * struct iwl_trans_txqs - transport tx queues data
873 *
874 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
875 * @page_offs: offset from skb->cb to mac header page pointer
876 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
877 * @queue_used - bit mask of used queues
878 * @queue_stopped - bit mask of stopped queues
879 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
880 */
881struct iwl_trans_txqs {
882 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
883 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
884 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
885 struct dma_pool *bc_pool;
886 size_t bc_tbl_size;
887 bool bc_table_dword;
888 u8 page_offs;
889 u8 dev_cmd_offs;
890 struct __percpu iwl_tso_hdr_page * tso_hdr_page;
891
892 struct {
893 u8 fifo;
894 u8 q_id;
895 unsigned int wdg_timeout;
896 } cmd;
897
898 struct {
899 u8 max_tbs;
900 u16 size;
901 u8 addr_size;
902 } tfd;
903
904 struct iwl_dma_ptr scd_bc_tbls;
905};
906
907/**
908 * struct iwl_trans - transport common data
909 *
910 * @ops - pointer to iwl_trans_ops
911 * @op_mode - pointer to the op_mode
912 * @trans_cfg: the trans-specific configuration part
913 * @cfg - pointer to the configuration
914 * @drv - pointer to iwl_drv
915 * @status: a bit-mask of transport status flags
916 * @dev - pointer to struct device * that represents the device
917 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
918 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
919 * @hw_rf_id a u32 with the device RF ID
920 * @hw_id: a u32 with the ID of the device / sub-device.
921 * Set during transport allocation.
922 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
923 * @pm_support: set to true in start_hw if link pm is supported
924 * @ltr_enabled: set to true if the LTR is enabled
925 * @wide_cmd_header: true when ucode supports wide command header format
926 * @wait_command_queue: wait queue for sync commands
927 * @num_rx_queues: number of RX queues allocated by the transport;
928 * the transport must set this before calling iwl_drv_start()
929 * @iml_len: the length of the image loader
930 * @iml: a pointer to the image loader itself
931 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
932 * The user should use iwl_trans_{alloc,free}_tx_cmd.
933 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
934 * starting the firmware, used for tracing
935 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
936 * start of the 802.11 header in the @rx_mpdu_cmd
937 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
938 * @system_pm_mode: the system-wide power management mode in use.
939 * This mode is set dynamically, depending on the WoWLAN values
940 * configured from the userspace at runtime.
941 * @iwl_trans_txqs: transport tx queues data.
942 */
943struct iwl_trans {
944 const struct iwl_trans_ops *ops;
945 struct iwl_op_mode *op_mode;
946 const struct iwl_cfg_trans_params *trans_cfg;
947 const struct iwl_cfg *cfg;
948 struct iwl_drv *drv;
949 enum iwl_trans_state state;
950 unsigned long status;
951
952 struct device *dev;
953 u32 max_skb_frags;
954 u32 hw_rev;
955 u32 hw_rf_id;
956 u32 hw_id;
957 char hw_id_str[52];
958 u32 sku_id[3];
959
960 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
961
962 bool pm_support;
963 bool ltr_enabled;
964 u8 pnvm_loaded:1;
965 u8 reduce_power_loaded:1;
966
967 const struct iwl_hcmd_arr *command_groups;
968 int command_groups_size;
969 bool wide_cmd_header;
970
971 wait_queue_head_t wait_command_queue;
972 u8 num_rx_queues;
973
974 size_t iml_len;
975 u8 *iml;
976
977 /* The following fields are internal only */
978 struct kmem_cache *dev_cmd_pool;
979 char dev_cmd_pool_name[50];
980
981 struct dentry *dbgfs_dir;
982
983#ifdef CONFIG_LOCKDEP
984 struct lockdep_map sync_cmd_lockdep_map;
985#endif
986
987 struct iwl_trans_debug dbg;
988 struct iwl_self_init_dram init_dram;
989
990 enum iwl_plat_pm_mode system_pm_mode;
991
992 const char *name;
993 struct iwl_trans_txqs txqs;
994
995 /* pointer to trans specific struct */
996 /*Ensure that this pointer will always be aligned to sizeof pointer */
997 char trans_specific[] __aligned(sizeof(void *));
998};
999
1000const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1001int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1002
1003static inline void iwl_trans_configure(struct iwl_trans *trans,
1004 const struct iwl_trans_config *trans_cfg)
1005{
1006 trans->op_mode = trans_cfg->op_mode;
1007
1008 trans->ops->configure(trans, trans_cfg);
1009 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1010}
1011
1012static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1013{
1014 might_sleep();
1015
1016 return trans->ops->start_hw(trans);
1017}
1018
1019static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1020{
1021 might_sleep();
1022
1023 if (trans->ops->op_mode_leave)
1024 trans->ops->op_mode_leave(trans);
1025
1026 trans->op_mode = NULL;
1027
1028 trans->state = IWL_TRANS_NO_FW;
1029}
1030
1031static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1032{
1033 might_sleep();
1034
1035 trans->state = IWL_TRANS_FW_ALIVE;
1036
1037 trans->ops->fw_alive(trans, scd_addr);
1038}
1039
1040static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1041 const struct fw_img *fw,
1042 bool run_in_rfkill)
1043{
1044 int ret;
1045
1046 might_sleep();
1047
1048 WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1049
1050 clear_bit(STATUS_FW_ERROR, &trans->status);
1051 ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1052 if (ret == 0)
1053 trans->state = IWL_TRANS_FW_STARTED;
1054
1055 return ret;
1056}
1057
1058static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1059{
1060 might_sleep();
1061
1062 trans->ops->stop_device(trans);
1063
1064 trans->state = IWL_TRANS_NO_FW;
1065}
1066
1067static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1068 bool reset)
1069{
1070 might_sleep();
1071 if (!trans->ops->d3_suspend)
1072 return 0;
1073
1074 return trans->ops->d3_suspend(trans, test, reset);
1075}
1076
1077static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1078 enum iwl_d3_status *status,
1079 bool test, bool reset)
1080{
1081 might_sleep();
1082 if (!trans->ops->d3_resume)
1083 return 0;
1084
1085 return trans->ops->d3_resume(trans, status, test, reset);
1086}
1087
1088static inline struct iwl_trans_dump_data *
1089iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask)
1090{
1091 if (!trans->ops->dump_data)
1092 return NULL;
1093 return trans->ops->dump_data(trans, dump_mask);
1094}
1095
1096static inline struct iwl_device_tx_cmd *
1097iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1098{
1099 return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1100}
1101
1102int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1103
1104static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1105 struct iwl_device_tx_cmd *dev_cmd)
1106{
1107 kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1108}
1109
1110static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1111 struct iwl_device_tx_cmd *dev_cmd, int queue)
1112{
1113 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1114 return -EIO;
1115
1116 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1117 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1118 return -EIO;
1119 }
1120
1121 return trans->ops->tx(trans, skb, dev_cmd, queue);
1122}
1123
1124static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1125 int ssn, struct sk_buff_head *skbs)
1126{
1127 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1128 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1129 return;
1130 }
1131
1132 trans->ops->reclaim(trans, queue, ssn, skbs);
1133}
1134
1135static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1136 int ptr)
1137{
1138 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1139 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1140 return;
1141 }
1142
1143 trans->ops->set_q_ptrs(trans, queue, ptr);
1144}
1145
1146static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1147 bool configure_scd)
1148{
1149 trans->ops->txq_disable(trans, queue, configure_scd);
1150}
1151
1152static inline bool
1153iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1154 const struct iwl_trans_txq_scd_cfg *cfg,
1155 unsigned int queue_wdg_timeout)
1156{
1157 might_sleep();
1158
1159 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1160 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1161 return false;
1162 }
1163
1164 return trans->ops->txq_enable(trans, queue, ssn,
1165 cfg, queue_wdg_timeout);
1166}
1167
1168static inline int
1169iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1170 struct iwl_trans_rxq_dma_data *data)
1171{
1172 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1173 return -ENOTSUPP;
1174
1175 return trans->ops->rxq_dma_data(trans, queue, data);
1176}
1177
1178static inline void
1179iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1180{
1181 if (WARN_ON_ONCE(!trans->ops->txq_free))
1182 return;
1183
1184 trans->ops->txq_free(trans, queue);
1185}
1186
1187static inline int
1188iwl_trans_txq_alloc(struct iwl_trans *trans,
1189 __le16 flags, u8 sta_id, u8 tid,
1190 int cmd_id, int size,
1191 unsigned int wdg_timeout)
1192{
1193 might_sleep();
1194
1195 if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1196 return -ENOTSUPP;
1197
1198 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1199 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1200 return -EIO;
1201 }
1202
1203 return trans->ops->txq_alloc(trans, flags, sta_id, tid,
1204 cmd_id, size, wdg_timeout);
1205}
1206
1207static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1208 int queue, bool shared_mode)
1209{
1210 if (trans->ops->txq_set_shared_mode)
1211 trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1212}
1213
1214static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1215 int fifo, int sta_id, int tid,
1216 int frame_limit, u16 ssn,
1217 unsigned int queue_wdg_timeout)
1218{
1219 struct iwl_trans_txq_scd_cfg cfg = {
1220 .fifo = fifo,
1221 .sta_id = sta_id,
1222 .tid = tid,
1223 .frame_limit = frame_limit,
1224 .aggregate = sta_id >= 0,
1225 };
1226
1227 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1228}
1229
1230static inline
1231void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1232 unsigned int queue_wdg_timeout)
1233{
1234 struct iwl_trans_txq_scd_cfg cfg = {
1235 .fifo = fifo,
1236 .sta_id = -1,
1237 .tid = IWL_MAX_TID_COUNT,
1238 .frame_limit = IWL_FRAME_LIMIT,
1239 .aggregate = false,
1240 };
1241
1242 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1243}
1244
1245static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1246 unsigned long txqs,
1247 bool freeze)
1248{
1249 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1250 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1251 return;
1252 }
1253
1254 if (trans->ops->freeze_txq_timer)
1255 trans->ops->freeze_txq_timer(trans, txqs, freeze);
1256}
1257
1258static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1259 bool block)
1260{
1261 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1262 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1263 return;
1264 }
1265
1266 if (trans->ops->block_txq_ptrs)
1267 trans->ops->block_txq_ptrs(trans, block);
1268}
1269
1270static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1271 u32 txqs)
1272{
1273 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1274 return -ENOTSUPP;
1275
1276 /* No need to wait if the firmware is not alive */
1277 if (trans->state != IWL_TRANS_FW_ALIVE) {
1278 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1279 return -EIO;
1280 }
1281
1282 return trans->ops->wait_tx_queues_empty(trans, txqs);
1283}
1284
1285static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1286{
1287 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1288 return -ENOTSUPP;
1289
1290 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1291 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1292 return -EIO;
1293 }
1294
1295 return trans->ops->wait_txq_empty(trans, queue);
1296}
1297
1298static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1299{
1300 trans->ops->write8(trans, ofs, val);
1301}
1302
1303static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1304{
1305 trans->ops->write32(trans, ofs, val);
1306}
1307
1308static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1309{
1310 return trans->ops->read32(trans, ofs);
1311}
1312
1313static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1314{
1315 return trans->ops->read_prph(trans, ofs);
1316}
1317
1318static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1319 u32 val)
1320{
1321 return trans->ops->write_prph(trans, ofs, val);
1322}
1323
1324static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1325 void *buf, int dwords)
1326{
1327 return trans->ops->read_mem(trans, addr, buf, dwords);
1328}
1329
1330#define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \
1331 do { \
1332 if (__builtin_constant_p(bufsize)) \
1333 BUILD_BUG_ON((bufsize) % sizeof(u32)); \
1334 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1335 } while (0)
1336
1337static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1338{
1339 u32 value;
1340
1341 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1342 return 0xa5a5a5a5;
1343
1344 return value;
1345}
1346
1347static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1348 const void *buf, int dwords)
1349{
1350 return trans->ops->write_mem(trans, addr, buf, dwords);
1351}
1352
1353static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1354 u32 val)
1355{
1356 return iwl_trans_write_mem(trans, addr, &val, 1);
1357}
1358
1359static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1360{
1361 if (trans->ops->set_pmi)
1362 trans->ops->set_pmi(trans, state);
1363}
1364
1365static inline void iwl_trans_sw_reset(struct iwl_trans *trans)
1366{
1367 if (trans->ops->sw_reset)
1368 trans->ops->sw_reset(trans);
1369}
1370
1371static inline void
1372iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1373{
1374 trans->ops->set_bits_mask(trans, reg, mask, value);
1375}
1376
1377#define iwl_trans_grab_nic_access(trans) \
1378 __cond_lock(nic_access, \
1379 likely((trans)->ops->grab_nic_access(trans)))
1380
1381static inline void __releases(nic_access)
1382iwl_trans_release_nic_access(struct iwl_trans *trans)
1383{
1384 trans->ops->release_nic_access(trans);
1385 __release(nic_access);
1386}
1387
1388static inline void iwl_trans_fw_error(struct iwl_trans *trans)
1389{
1390 if (WARN_ON_ONCE(!trans->op_mode))
1391 return;
1392
1393 /* prevent double restarts due to the same erroneous FW */
1394 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1395 iwl_op_mode_nic_error(trans->op_mode);
1396 trans->state = IWL_TRANS_NO_FW;
1397 }
1398}
1399
1400static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1401{
1402 return trans->state == IWL_TRANS_FW_ALIVE;
1403}
1404
1405static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1406{
1407 if (trans->ops->sync_nmi)
1408 trans->ops->sync_nmi(trans);
1409}
1410
1411void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1412 u32 sw_err_bit);
1413
1414static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1415 const void *data, u32 len)
1416{
1417 if (trans->ops->set_pnvm) {
1418 int ret = trans->ops->set_pnvm(trans, data, len);
1419
1420 if (ret)
1421 return ret;
1422 }
1423
1424 trans->pnvm_loaded = true;
1425
1426 return 0;
1427}
1428
1429static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1430 const void *data, u32 len)
1431{
1432 if (trans->ops->set_reduce_power) {
1433 int ret = trans->ops->set_reduce_power(trans, data, len);
1434
1435 if (ret)
1436 return ret;
1437 }
1438
1439 trans->reduce_power_loaded = true;
1440 return 0;
1441}
1442
1443static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1444{
1445 return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1446 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1447}
1448
1449static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1450{
1451 if (trans->ops->interrupts)
1452 trans->ops->interrupts(trans, enable);
1453}
1454
1455/*****************************************************
1456 * transport helper functions
1457 *****************************************************/
1458struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1459 struct device *dev,
1460 const struct iwl_trans_ops *ops,
1461 const struct iwl_cfg_trans_params *cfg_trans);
1462int iwl_trans_init(struct iwl_trans *trans);
1463void iwl_trans_free(struct iwl_trans *trans);
1464
1465/*****************************************************
1466* driver (transport) register/unregister functions
1467******************************************************/
1468int __must_check iwl_pci_register_driver(void);
1469void iwl_pci_unregister_driver(void);
1470
1471#endif /* __iwl_trans_h__ */