Linux Audio

Check our new training course

Loading...
v6.8
   1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
   2/*
   3 * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#ifndef __iwl_trans_h__
   8#define __iwl_trans_h__
   9
  10#include <linux/ieee80211.h>
  11#include <linux/mm.h> /* for page_address */
  12#include <linux/lockdep.h>
  13#include <linux/kernel.h>
  14
  15#include "iwl-debug.h"
  16#include "iwl-config.h"
  17#include "fw/img.h"
  18#include "iwl-op-mode.h"
  19#include <linux/firmware.h>
  20#include "fw/api/cmdhdr.h"
  21#include "fw/api/txq.h"
  22#include "fw/api/dbg-tlv.h"
  23#include "iwl-dbg-tlv.h"
  24
  25/**
  26 * DOC: Transport layer - what is it ?
  27 *
  28 * The transport layer is the layer that deals with the HW directly. It provides
  29 * an abstraction of the underlying HW to the upper layer. The transport layer
  30 * doesn't provide any policy, algorithm or anything of this kind, but only
  31 * mechanisms to make the HW do something. It is not completely stateless but
  32 * close to it.
  33 * We will have an implementation for each different supported bus.
  34 */
  35
  36/**
  37 * DOC: Life cycle of the transport layer
  38 *
  39 * The transport layer has a very precise life cycle.
  40 *
  41 *	1) A helper function is called during the module initialization and
  42 *	   registers the bus driver's ops with the transport's alloc function.
  43 *	2) Bus's probe calls to the transport layer's allocation functions.
  44 *	   Of course this function is bus specific.
  45 *	3) This allocation functions will spawn the upper layer which will
  46 *	   register mac80211.
  47 *
  48 *	4) At some point (i.e. mac80211's start call), the op_mode will call
  49 *	   the following sequence:
  50 *	   start_hw
  51 *	   start_fw
  52 *
  53 *	5) Then when finished (or reset):
  54 *	   stop_device
  55 *
  56 *	6) Eventually, the free function will be called.
  57 */
  58
  59/* default preset 0 (start from bit 16)*/
  60#define IWL_FW_DBG_DOMAIN_POS	16
  61#define IWL_FW_DBG_DOMAIN	BIT(IWL_FW_DBG_DOMAIN_POS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63#define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65#define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
  66#define FH_RSCSR_FRAME_INVALID		0x55550000
  67#define FH_RSCSR_FRAME_ALIGN		0x40
  68#define FH_RSCSR_RPA_EN			BIT(25)
  69#define FH_RSCSR_RADA_EN		BIT(26)
  70#define FH_RSCSR_RXQ_POS		16
  71#define FH_RSCSR_RXQ_MASK		0x3F0000
  72
  73struct iwl_rx_packet {
  74	/*
  75	 * The first 4 bytes of the RX frame header contain both the RX frame
  76	 * size and some flags.
  77	 * Bit fields:
  78	 * 31:    flag flush RB request
  79	 * 30:    flag ignore TC (terminal counter) request
  80	 * 29:    flag fast IRQ request
  81	 * 28-27: Reserved
  82	 * 26:    RADA enabled
  83	 * 25:    Offload enabled
  84	 * 24:    RPF enabled
  85	 * 23:    RSS enabled
  86	 * 22:    Checksum enabled
  87	 * 21-16: RX queue
  88	 * 15-14: Reserved
  89	 * 13-00: RX frame size
  90	 */
  91	__le32 len_n_flags;
  92	struct iwl_cmd_header hdr;
  93	u8 data[];
  94} __packed;
  95
  96static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
  97{
  98	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
  99}
 100
 101static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
 102{
 103	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
 104}
 105
 106/**
 107 * enum CMD_MODE - how to send the host commands ?
 108 *
 109 * @CMD_ASYNC: Return right away and don't wait for the response
 110 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
 111 *	the response. The caller needs to call iwl_free_resp when done.
 112 * @CMD_SEND_IN_RFKILL: Send the command even if the NIC is in RF-kill.
 113 * @CMD_BLOCK_TXQS: Block TXQs while the comment is executing.
 114 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
 115 *	SUSPEND and RESUME commands. We are in D3 mode when we set
 116 *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
 
 
 
 
 117 */
 118enum CMD_MODE {
 119	CMD_ASYNC		= BIT(0),
 120	CMD_WANT_SKB		= BIT(1),
 121	CMD_SEND_IN_RFKILL	= BIT(2),
 122	CMD_BLOCK_TXQS		= BIT(3),
 123	CMD_SEND_IN_D3          = BIT(4),
 
 
 
 124};
 125
 126#define DEF_CMD_PAYLOAD_SIZE 320
 127
 128/**
 129 * struct iwl_device_cmd
 130 *
 131 * For allocation of the command and tx queues, this establishes the overall
 132 * size of the largest command we send to uCode, except for commands that
 133 * aren't fully copied and use other TFD space.
 134 */
 135struct iwl_device_cmd {
 136	union {
 137		struct {
 138			struct iwl_cmd_header hdr;	/* uCode API */
 139			u8 payload[DEF_CMD_PAYLOAD_SIZE];
 140		};
 141		struct {
 142			struct iwl_cmd_header_wide hdr_wide;
 143			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
 144					sizeof(struct iwl_cmd_header_wide) +
 145					sizeof(struct iwl_cmd_header)];
 146		};
 147	};
 148} __packed;
 149
 150/**
 151 * struct iwl_device_tx_cmd - buffer for TX command
 152 * @hdr: the header
 153 * @payload: the payload placeholder
 154 *
 155 * The actual structure is sized dynamically according to need.
 156 */
 157struct iwl_device_tx_cmd {
 158	struct iwl_cmd_header hdr;
 159	u8 payload[];
 160} __packed;
 161
 162#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
 163
 164/*
 165 * number of transfer buffers (fragments) per transmit frame descriptor;
 166 * this is just the driver's idea, the hardware supports 20
 167 */
 168#define IWL_MAX_CMD_TBS_PER_TFD	2
 169
 170/* We need 2 entries for the TX command and header, and another one might
 171 * be needed for potential data in the SKB's head. The remaining ones can
 172 * be used for frags.
 173 */
 174#define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
 175
 176/**
 177 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
 178 *
 179 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
 180 *	ring. The transport layer doesn't map the command's buffer to DMA, but
 181 *	rather copies it to a previously allocated DMA buffer. This flag tells
 182 *	the transport layer not to copy the command, but to map the existing
 183 *	buffer (that is passed in) instead. This saves the memcpy and allows
 184 *	commands that are bigger than the fixed buffer to be submitted.
 185 *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
 186 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
 187 *	chunk internally and free it again after the command completes. This
 188 *	can (currently) be used only once per command.
 189 *	Note that a TFD entry after a DUP one cannot be a normal copied one.
 190 */
 191enum iwl_hcmd_dataflag {
 192	IWL_HCMD_DFL_NOCOPY	= BIT(0),
 193	IWL_HCMD_DFL_DUP	= BIT(1),
 194};
 195
 196enum iwl_error_event_table_status {
 197	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
 198	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
 199	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
 200	IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
 201	IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
 202	IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
 203	IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
 204};
 205
 206/**
 207 * struct iwl_host_cmd - Host command to the uCode
 208 *
 209 * @data: array of chunks that composes the data of the host command
 210 * @resp_pkt: response packet, if %CMD_WANT_SKB was set
 211 * @_rx_page_order: (internally used to free response packet)
 212 * @_rx_page_addr: (internally used to free response packet)
 213 * @flags: can be CMD_*
 214 * @len: array of the lengths of the chunks in data
 215 * @dataflags: IWL_HCMD_DFL_*
 216 * @id: command id of the host command, for wide commands encoding the
 217 *	version and group as well
 218 */
 219struct iwl_host_cmd {
 220	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
 221	struct iwl_rx_packet *resp_pkt;
 222	unsigned long _rx_page_addr;
 223	u32 _rx_page_order;
 224
 225	u32 flags;
 226	u32 id;
 227	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
 228	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
 229};
 230
 231static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
 232{
 233	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
 234}
 235
 236struct iwl_rx_cmd_buffer {
 237	struct page *_page;
 238	int _offset;
 239	bool _page_stolen;
 240	u32 _rx_page_order;
 241	unsigned int truesize;
 242};
 243
 244static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
 245{
 246	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
 247}
 248
 249static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
 250{
 251	return r->_offset;
 252}
 253
 254static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
 255{
 256	r->_page_stolen = true;
 257	get_page(r->_page);
 258	return r->_page;
 259}
 260
 261static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
 262{
 263	__free_pages(r->_page, r->_rx_page_order);
 264}
 265
 266#define MAX_NO_RECLAIM_CMDS	6
 267
 268#define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
 269
 270/*
 271 * Maximum number of HW queues the transport layer
 272 * currently supports
 273 */
 274#define IWL_MAX_HW_QUEUES		32
 275#define IWL_MAX_TVQM_QUEUES		512
 276
 277#define IWL_MAX_TID_COUNT	8
 278#define IWL_MGMT_TID		15
 279#define IWL_FRAME_LIMIT	64
 280#define IWL_MAX_RX_HW_QUEUES	16
 281#define IWL_9000_MAX_RX_HW_QUEUES	1
 282
 283/**
 284 * enum iwl_wowlan_status - WoWLAN image/device status
 285 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
 286 * @IWL_D3_STATUS_RESET: device was reset while suspended
 287 */
 288enum iwl_d3_status {
 289	IWL_D3_STATUS_ALIVE,
 290	IWL_D3_STATUS_RESET,
 291};
 292
 293/**
 294 * enum iwl_trans_status: transport status flags
 295 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
 296 * @STATUS_DEVICE_ENABLED: APM is enabled
 297 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
 298 * @STATUS_INT_ENABLED: interrupts are enabled
 299 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
 300 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
 301 * @STATUS_FW_ERROR: the fw is in error state
 302 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
 303 *	are sent
 304 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
 305 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
 306 * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
 307 *	e.g. for testing
 308 */
 309enum iwl_trans_status {
 310	STATUS_SYNC_HCMD_ACTIVE,
 311	STATUS_DEVICE_ENABLED,
 312	STATUS_TPOWER_PMI,
 313	STATUS_INT_ENABLED,
 314	STATUS_RFKILL_HW,
 315	STATUS_RFKILL_OPMODE,
 316	STATUS_FW_ERROR,
 317	STATUS_TRANS_GOING_IDLE,
 318	STATUS_TRANS_IDLE,
 319	STATUS_TRANS_DEAD,
 320	STATUS_SUPPRESS_CMD_ERROR_ONCE,
 321};
 322
 323static inline int
 324iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
 325{
 326	switch (rb_size) {
 327	case IWL_AMSDU_2K:
 328		return get_order(2 * 1024);
 329	case IWL_AMSDU_4K:
 330		return get_order(4 * 1024);
 331	case IWL_AMSDU_8K:
 332		return get_order(8 * 1024);
 333	case IWL_AMSDU_12K:
 334		return get_order(16 * 1024);
 335	default:
 336		WARN_ON(1);
 337		return -1;
 338	}
 339}
 340
 341static inline int
 342iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
 343{
 344	switch (rb_size) {
 345	case IWL_AMSDU_2K:
 346		return 2 * 1024;
 347	case IWL_AMSDU_4K:
 348		return 4 * 1024;
 349	case IWL_AMSDU_8K:
 350		return 8 * 1024;
 351	case IWL_AMSDU_12K:
 352		return 16 * 1024;
 353	default:
 354		WARN_ON(1);
 355		return 0;
 356	}
 357}
 358
 359struct iwl_hcmd_names {
 360	u8 cmd_id;
 361	const char *const cmd_name;
 362};
 363
 364#define HCMD_NAME(x)	\
 365	{ .cmd_id = x, .cmd_name = #x }
 366
 367struct iwl_hcmd_arr {
 368	const struct iwl_hcmd_names *arr;
 369	int size;
 370};
 371
 372#define HCMD_ARR(x)	\
 373	{ .arr = x, .size = ARRAY_SIZE(x) }
 374
 375/**
 376 * struct iwl_dump_sanitize_ops - dump sanitization operations
 377 * @frob_txf: Scrub the TX FIFO data
 378 * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
 379 *	but that might be short or long (&struct iwl_cmd_header or
 380 *	&struct iwl_cmd_header_wide)
 381 * @frob_mem: Scrub memory data
 382 */
 383struct iwl_dump_sanitize_ops {
 384	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
 385	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
 386	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
 387};
 388
 389/**
 390 * struct iwl_trans_config - transport configuration
 391 *
 392 * @op_mode: pointer to the upper layer.
 393 * @cmd_queue: the index of the command queue.
 394 *	Must be set before start_fw.
 395 * @cmd_fifo: the fifo for host commands
 396 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
 397 * @no_reclaim_cmds: Some devices erroneously don't set the
 398 *	SEQ_RX_FRAME bit on some notifications, this is the
 399 *	list of such notifications to filter. Max length is
 400 *	%MAX_NO_RECLAIM_CMDS.
 401 * @n_no_reclaim_cmds: # of commands in list
 402 * @rx_buf_size: RX buffer size needed for A-MSDUs
 403 *	if unset 4k will be the RX buffer size
 404 * @bc_table_dword: set to true if the BC table expects the byte count to be
 405 *	in DWORD (as opposed to bytes)
 406 * @scd_set_active: should the transport configure the SCD for HCMD queue
 
 407 * @command_groups: array of command groups, each member is an array of the
 408 *	commands in the group; for debugging only
 409 * @command_groups_size: number of command groups, to avoid illegal access
 
 
 410 * @cb_data_offs: offset inside skb->cb to store transport data at, must have
 411 *	space for at least two pointers
 412 * @fw_reset_handshake: firmware supports reset flow handshake
 413 * @queue_alloc_cmd_ver: queue allocation command version, set to 0
 414 *	for using the older SCD_QUEUE_CFG, set to the version of
 415 *	SCD_QUEUE_CONFIG_CMD otherwise.
 416 */
 417struct iwl_trans_config {
 418	struct iwl_op_mode *op_mode;
 419
 420	u8 cmd_queue;
 421	u8 cmd_fifo;
 422	unsigned int cmd_q_wdg_timeout;
 423	const u8 *no_reclaim_cmds;
 424	unsigned int n_no_reclaim_cmds;
 425
 426	enum iwl_amsdu_size rx_buf_size;
 427	bool bc_table_dword;
 428	bool scd_set_active;
 
 429	const struct iwl_hcmd_arr *command_groups;
 430	int command_groups_size;
 431
 
 
 432	u8 cb_data_offs;
 433	bool fw_reset_handshake;
 434	u8 queue_alloc_cmd_ver;
 435};
 436
 437struct iwl_trans_dump_data {
 438	u32 len;
 439	u8 data[];
 440};
 441
 442struct iwl_trans;
 443
 444struct iwl_trans_txq_scd_cfg {
 445	u8 fifo;
 446	u8 sta_id;
 447	u8 tid;
 448	bool aggregate;
 449	int frame_limit;
 450};
 451
 452/**
 453 * struct iwl_trans_rxq_dma_data - RX queue DMA data
 454 * @fr_bd_cb: DMA address of free BD cyclic buffer
 455 * @fr_bd_wid: Initial write index of the free BD cyclic buffer
 456 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
 457 * @ur_bd_cb: DMA address of used BD cyclic buffer
 458 */
 459struct iwl_trans_rxq_dma_data {
 460	u64 fr_bd_cb;
 461	u32 fr_bd_wid;
 462	u64 urbd_stts_wrptr;
 463	u64 ur_bd_cb;
 464};
 465
 466/* maximal number of DRAM MAP entries supported by FW */
 467#define IPC_DRAM_MAP_ENTRY_NUM_MAX 64
 468
 469/**
 470 * struct iwl_pnvm_image - contains info about the parsed pnvm image
 471 * @chunks: array of pointers to pnvm payloads and their sizes
 472 * @n_chunks: the number of the pnvm payloads.
 473 * @version: the version of the loaded PNVM image
 474 */
 475struct iwl_pnvm_image {
 476	struct {
 477		const void *data;
 478		u32 len;
 479	} chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX];
 480	u32 n_chunks;
 481	u32 version;
 482};
 483
 484/**
 485 * struct iwl_trans_ops - transport specific operations
 486 *
 487 * All the handlers MUST be implemented
 488 *
 489 * @start_hw: starts the HW. From that point on, the HW can send interrupts.
 490 *	May sleep.
 
 491 * @op_mode_leave: Turn off the HW RF kill indication if on
 492 *	May sleep
 493 * @start_fw: allocates and inits all the resources for the transport
 494 *	layer. Also kick a fw image.
 495 *	May sleep
 496 * @fw_alive: called when the fw sends alive notification. If the fw provides
 497 *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
 498 *	May sleep
 499 * @stop_device: stops the whole device (embedded CPU put to reset) and stops
 500 *	the HW. From that point on, the HW will be stopped but will still issue
 501 *	an interrupt if the HW RF kill switch is triggered.
 
 502 *	This callback must do the right thing and not crash even if %start_hw()
 503 *	was called but not &start_fw(). May sleep.
 504 * @d3_suspend: put the device into the correct mode for WoWLAN during
 505 *	suspend. This is optional, if not implemented WoWLAN will not be
 506 *	supported. This callback may sleep.
 507 * @d3_resume: resume the device after WoWLAN, enabling the opmode to
 508 *	talk to the WoWLAN image to get its status. This is optional, if not
 509 *	implemented WoWLAN will not be supported. This callback may sleep.
 510 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
 511 *	If RFkill is asserted in the middle of a SYNC host command, it must
 512 *	return -ERFKILL straight away.
 513 *	May sleep only if CMD_ASYNC is not set
 514 * @tx: send an skb. The transport relies on the op_mode to zero the
 515 *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
 516 *	the CSUM will be taken care of (TCP CSUM and IP header in case of
 517 *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
 518 *	header if it is IPv4.
 519 *	Must be atomic
 520 * @reclaim: free packet until ssn. Returns a list of freed packets.
 521 *	Must be atomic
 522 * @txq_enable: setup a queue. To setup an AC queue, use the
 523 *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
 524 *	this one. The op_mode must not configure the HCMD queue. The scheduler
 525 *	configuration may be %NULL, in which case the hardware will not be
 526 *	configured. If true is returned, the operation mode needs to increment
 527 *	the sequence number of the packets routed to this queue because of a
 528 *	hardware scheduler bug. May sleep.
 529 * @txq_disable: de-configure a Tx queue to send AMPDUs
 530 *	Must be atomic
 531 * @txq_set_shared_mode: change Tx queue shared/unshared marking
 532 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
 533 * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
 534 * @freeze_txq_timer: prevents the timer of the queue from firing until the
 535 *	queue is set to awake. Must be atomic.
 
 
 
 
 
 536 * @write8: write a u8 to a register at offset ofs from the BAR
 537 * @write32: write a u32 to a register at offset ofs from the BAR
 538 * @read32: read a u32 register at offset ofs from the BAR
 539 * @read_prph: read a DWORD from a periphery register
 540 * @write_prph: write a DWORD to a periphery register
 541 * @read_mem: read device's SRAM in DWORD
 542 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
 543 *	will be zeroed.
 544 * @read_config32: read a u32 value from the device's config space at
 545 *	the given offset.
 546 * @configure: configure parameters required by the transport layer from
 547 *	the op_mode. May be called several times before start_fw, can't be
 548 *	called after that.
 549 * @set_pmi: set the power pmi state
 550 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
 551 *	Sleeping is not allowed between grab_nic_access and
 552 *	release_nic_access.
 553 * @release_nic_access: let the NIC go to sleep. The "flags" parameter
 554 *	must be the same one that was sent before to the grab_nic_access.
 555 * @set_bits_mask - set SRAM register according to value and mask.
 
 
 
 
 
 556 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
 557 *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
 558 *	Note that the transport must fill in the proper file headers.
 559 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
 560 *	of the trans debugfs
 561 * @load_pnvm: save the pnvm data in DRAM
 562 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
 563 *	context info.
 564 * @load_reduce_power: copy reduce power table to the corresponding DRAM memory
 565 * @set_reduce_power: set reduce power table addresses in the sratch buffer
 566 * @interrupts: disable/enable interrupts to transport
 567 */
 568struct iwl_trans_ops {
 569
 570	int (*start_hw)(struct iwl_trans *iwl_trans);
 571	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
 572	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
 573			bool run_in_rfkill);
 
 
 574	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
 575	void (*stop_device)(struct iwl_trans *trans);
 576
 577	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
 578	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
 579			 bool test, bool reset);
 580
 581	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
 582
 583	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
 584		  struct iwl_device_tx_cmd *dev_cmd, int queue);
 585	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
 586			struct sk_buff_head *skbs, bool is_flush);
 587
 588	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
 589
 590	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
 591			   const struct iwl_trans_txq_scd_cfg *cfg,
 592			   unsigned int queue_wdg_timeout);
 593	void (*txq_disable)(struct iwl_trans *trans, int queue,
 594			    bool configure_scd);
 595	/* 22000 functions */
 596	int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
 597			 u32 sta_mask, u8 tid,
 598			 int size, unsigned int queue_wdg_timeout);
 599	void (*txq_free)(struct iwl_trans *trans, int queue);
 600	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
 601			    struct iwl_trans_rxq_dma_data *data);
 602
 603	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
 604				    bool shared);
 605
 606	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
 607	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
 
 608	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
 609				 bool freeze);
 
 610
 611	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
 612	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
 613	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
 614	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
 615	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
 616	int (*read_mem)(struct iwl_trans *trans, u32 addr,
 617			void *buf, int dwords);
 618	int (*write_mem)(struct iwl_trans *trans, u32 addr,
 619			 const void *buf, int dwords);
 620	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
 621	void (*configure)(struct iwl_trans *trans,
 622			  const struct iwl_trans_config *trans_cfg);
 623	void (*set_pmi)(struct iwl_trans *trans, bool state);
 624	int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
 625	bool (*grab_nic_access)(struct iwl_trans *trans);
 626	void (*release_nic_access)(struct iwl_trans *trans);
 627	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
 628			      u32 value);
 
 
 
 
 629
 630	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
 631						 u32 dump_mask,
 632						 const struct iwl_dump_sanitize_ops *sanitize_ops,
 633						 void *sanitize_ctx);
 634	void (*debugfs_cleanup)(struct iwl_trans *trans);
 635	void (*sync_nmi)(struct iwl_trans *trans);
 636	int (*load_pnvm)(struct iwl_trans *trans,
 637			 const struct iwl_pnvm_image *pnvm_payloads,
 638			 const struct iwl_ucode_capabilities *capa);
 639	void (*set_pnvm)(struct iwl_trans *trans,
 640			 const struct iwl_ucode_capabilities *capa);
 641	int (*load_reduce_power)(struct iwl_trans *trans,
 642				 const struct iwl_pnvm_image *payloads,
 643				 const struct iwl_ucode_capabilities *capa);
 644	void (*set_reduce_power)(struct iwl_trans *trans,
 645				 const struct iwl_ucode_capabilities *capa);
 646
 647	void (*interrupts)(struct iwl_trans *trans, bool enable);
 648	int (*imr_dma_data)(struct iwl_trans *trans,
 649			    u32 dst_addr, u64 src_addr,
 650			    u32 byte_cnt);
 651
 652};
 653
 654/**
 655 * enum iwl_trans_state - state of the transport layer
 656 *
 657 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
 658 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
 659 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
 660 */
 661enum iwl_trans_state {
 662	IWL_TRANS_NO_FW,
 663	IWL_TRANS_FW_STARTED,
 664	IWL_TRANS_FW_ALIVE,
 665};
 666
 667/**
 668 * DOC: Platform power management
 669 *
 
 
 
 670 * In system-wide power management the entire platform goes into a low
 671 * power state (e.g. idle or suspend to RAM) at the same time and the
 672 * device is configured as a wakeup source for the entire platform.
 673 * This is usually triggered by userspace activity (e.g. the user
 674 * presses the suspend button or a power management daemon decides to
 675 * put the platform in low power mode).  The device's behavior in this
 676 * mode is dictated by the wake-on-WLAN configuration.
 677 *
 
 
 
 
 
 
 
 678 * The terms used for the device's behavior are as follows:
 679 *
 680 *	- D0: the device is fully powered and the host is awake;
 681 *	- D3: the device is in low power mode and only reacts to
 682 *		specific events (e.g. magic-packet received or scan
 683 *		results found);
 
 
 684 *
 685 * These terms reflect the power modes in the firmware and are not to
 686 * be confused with the physical device power state.
 
 687 */
 688
 689/**
 690 * enum iwl_plat_pm_mode - platform power management mode
 691 *
 692 * This enumeration describes the device's platform power management
 693 * behavior when in system-wide suspend (i.e WoWLAN).
 
 694 *
 695 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
 696 *	device.  In system-wide suspend mode, it means that the all
 697 *	connections will be closed automatically by mac80211 before
 698 *	the platform is suspended.
 
 699 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
 
 
 
 700 */
 701enum iwl_plat_pm_mode {
 702	IWL_PLAT_PM_MODE_DISABLED,
 703	IWL_PLAT_PM_MODE_D3,
 
 704};
 705
 706/**
 707 * enum iwl_ini_cfg_state
 708 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
 709 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
 710 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
 711 *	are corrupted. The rest of the debug TLVs will still be used
 712 */
 713enum iwl_ini_cfg_state {
 714	IWL_INI_CFG_STATE_NOT_LOADED,
 715	IWL_INI_CFG_STATE_LOADED,
 716	IWL_INI_CFG_STATE_CORRUPTED,
 717};
 718
 719/* Max time to wait for nmi interrupt */
 720#define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
 721
 722/**
 723 * struct iwl_dram_data
 724 * @physical: page phy pointer
 725 * @block: pointer to the allocated block/page
 726 * @size: size of the block/page
 727 */
 728struct iwl_dram_data {
 729	dma_addr_t physical;
 730	void *block;
 731	int size;
 732};
 733
 734/**
 735 * struct iwl_dram_regions - DRAM regions container structure
 736 * @drams: array of several DRAM areas that contains the pnvm and power
 737 *	reduction table payloads.
 738 * @n_regions: number of DRAM regions that were allocated
 739 * @prph_scratch_mem_desc: points to a structure allocated in dram,
 740 *	designed to show FW where all the payloads are.
 741 */
 742struct iwl_dram_regions {
 743	struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX];
 744	struct iwl_dram_data prph_scratch_mem_desc;
 745	u8 n_regions;
 746};
 747
 748/**
 749 * struct iwl_fw_mon - fw monitor per allocation id
 750 * @num_frags: number of fragments
 751 * @frags: an array of DRAM buffer fragments
 752 */
 753struct iwl_fw_mon {
 754	u32 num_frags;
 755	struct iwl_dram_data *frags;
 756};
 757
 758/**
 759 * struct iwl_self_init_dram - dram data used by self init process
 760 * @fw: lmac and umac dram data
 761 * @fw_cnt: total number of items in array
 762 * @paging: paging dram data
 763 * @paging_cnt: total number of items in array
 764 */
 765struct iwl_self_init_dram {
 766	struct iwl_dram_data *fw;
 767	int fw_cnt;
 768	struct iwl_dram_data *paging;
 769	int paging_cnt;
 770};
 771
 772/**
 773 * struct iwl_imr_data - imr dram data used during debug process
 774 * @imr_enable: imr enable status received from fw
 775 * @imr_size: imr dram size received from fw
 776 * @sram_addr: sram address from debug tlv
 777 * @sram_size: sram size from debug tlv
 778 * @imr2sram_remainbyte`: size remained after each dma transfer
 779 * @imr_curr_addr: current dst address used during dma transfer
 780 * @imr_base_addr: imr address received from fw
 781 */
 782struct iwl_imr_data {
 783	u32 imr_enable;
 784	u32 imr_size;
 785	u32 sram_addr;
 786	u32 sram_size;
 787	u32 imr2sram_remainbyte;
 788	u64 imr_curr_addr;
 789	__le64 imr_base_addr;
 790};
 791
 792#define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES      32
 793
 794/**
 795 * struct iwl_pc_data - program counter details
 796 * @pc_name: cpu name
 797 * @pc_address: cpu program counter
 798 */
 799struct iwl_pc_data {
 800	u8  pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES];
 801	u32 pc_address;
 802};
 803
 804/**
 805 * struct iwl_trans_debug - transport debug related data
 806 *
 807 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
 808 * @rec_on: true iff there is a fw debug recording currently active
 809 * @dest_tlv: points to the destination TLV for debug
 810 * @conf_tlv: array of pointers to configuration TLVs for debug
 811 * @trigger_tlv: array of pointers to triggers TLVs for debug
 812 * @lmac_error_event_table: addrs of lmacs error tables
 813 * @umac_error_event_table: addr of umac error table
 814 * @tcm_error_event_table: address(es) of TCM error table(s)
 815 * @rcm_error_event_table: address(es) of RCM error table(s)
 816 * @error_event_table_tlv_status: bitmap that indicates what error table
 817 *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
 818 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
 819 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
 820 * @fw_mon_cfg: debug buffer allocation configuration
 821 * @fw_mon_ini: DRAM buffer fragments per allocation id
 822 * @fw_mon: DRAM buffer for firmware monitor
 823 * @hw_error: equals true if hw error interrupt was received from the FW
 824 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
 825 * @active_regions: active regions
 826 * @debug_info_tlv_list: list of debug info TLVs
 827 * @time_point: array of debug time points
 828 * @periodic_trig_list: periodic triggers list
 829 * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
 830 * @ucode_preset: preset based on ucode
 831 * @dump_file_name_ext: dump file name extension
 832 * @dump_file_name_ext_valid: dump file name extension if valid or not
 833 * @num_pc: number of program counter for cpu
 834 * @pc_data: details of the program counter
 835 * @yoyo_bin_loaded: tells if a yoyo debug file has been loaded
 836 */
 837struct iwl_trans_debug {
 838	u8 n_dest_reg;
 839	bool rec_on;
 840
 841	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
 842	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
 843	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
 844
 845	u32 lmac_error_event_table[2];
 846	u32 umac_error_event_table;
 847	u32 tcm_error_event_table[2];
 848	u32 rcm_error_event_table[2];
 849	unsigned int error_event_table_tlv_status;
 850
 851	enum iwl_ini_cfg_state internal_ini_cfg;
 852	enum iwl_ini_cfg_state external_ini_cfg;
 853
 854	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
 855	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
 856
 857	struct iwl_dram_data fw_mon;
 858
 859	bool hw_error;
 860	enum iwl_fw_ini_buffer_location ini_dest;
 861
 862	u64 unsupported_region_msk;
 863	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
 864	struct list_head debug_info_tlv_list;
 865	struct iwl_dbg_tlv_time_point_data time_point[IWL_FW_INI_TIME_POINT_NUM];
 866	struct list_head periodic_trig_list;
 867
 868	u32 domains_bitmap;
 869	u32 ucode_preset;
 870	bool restart_required;
 871	u32 last_tp_resetfw;
 872	struct iwl_imr_data imr_data;
 873	u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME];
 874	bool dump_file_name_ext_valid;
 875	u32 num_pc;
 876	struct iwl_pc_data *pc_data;
 877	bool yoyo_bin_loaded;
 878};
 879
 880struct iwl_dma_ptr {
 881	dma_addr_t dma;
 882	void *addr;
 883	size_t size;
 884};
 885
 886struct iwl_cmd_meta {
 887	/* only for SYNC commands, iff the reply skb is wanted */
 888	struct iwl_host_cmd *source;
 889	u32 flags;
 890	u32 tbs;
 891};
 892
 893/*
 894 * The FH will write back to the first TB only, so we need to copy some data
 895 * into the buffer regardless of whether it should be mapped or not.
 896 * This indicates how big the first TB must be to include the scratch buffer
 897 * and the assigned PN.
 898 * Since PN location is 8 bytes at offset 12, it's 20 now.
 899 * If we make it bigger then allocations will be bigger and copy slower, so
 900 * that's probably not useful.
 901 */
 902#define IWL_FIRST_TB_SIZE	20
 903#define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
 904
 905struct iwl_pcie_txq_entry {
 906	void *cmd;
 907	struct sk_buff *skb;
 908	/* buffer to free after command completes */
 909	const void *free_buf;
 910	struct iwl_cmd_meta meta;
 911};
 912
 913struct iwl_pcie_first_tb_buf {
 914	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
 915};
 916
 917/**
 918 * struct iwl_txq - Tx Queue for DMA
 919 * @tfds: transmit frame descriptors (DMA memory)
 920 * @first_tb_bufs: start of command headers, including scratch buffers, for
 921 *	the writeback -- this is DMA memory and an array holding one buffer
 922 *	for each command on the queue
 923 * @first_tb_dma: DMA address for the first_tb_bufs start
 924 * @entries: transmit entries (driver state)
 925 * @lock: queue lock
 926 * @stuck_timer: timer that fires if queue gets stuck
 927 * @trans: pointer back to transport (for timer)
 928 * @need_update: indicates need to update read/write index
 929 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
 930 * @wd_timeout: queue watchdog timeout (jiffies) - per queue
 931 * @frozen: tx stuck queue timer is frozen
 932 * @frozen_expiry_remainder: remember how long until the timer fires
 933 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
 934 * @write_ptr: 1-st empty entry (index) host_w
 935 * @read_ptr: last used entry (index) host_r
 936 * @dma_addr:  physical addr for BD's
 937 * @n_window: safe queue window
 938 * @id: queue id
 939 * @low_mark: low watermark, resume queue if free space more than this
 940 * @high_mark: high watermark, stop queue if free space less than this
 941 *
 942 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
 943 * descriptors) and required locking structures.
 944 *
 945 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
 946 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
 947 * there might be HW changes in the future). For the normal TX
 948 * queues, n_window, which is the size of the software queue data
 949 * is also 256; however, for the command queue, n_window is only
 950 * 32 since we don't need so many commands pending. Since the HW
 951 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
 952 * This means that we end up with the following:
 953 *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
 954 *  SW entries:           | 0      | ... | 31          |
 955 * where N is a number between 0 and 7. This means that the SW
 956 * data is a window overlayed over the HW queue.
 957 */
 958struct iwl_txq {
 959	void *tfds;
 960	struct iwl_pcie_first_tb_buf *first_tb_bufs;
 961	dma_addr_t first_tb_dma;
 962	struct iwl_pcie_txq_entry *entries;
 963	/* lock for syncing changes on the queue */
 964	spinlock_t lock;
 965	unsigned long frozen_expiry_remainder;
 966	struct timer_list stuck_timer;
 967	struct iwl_trans *trans;
 968	bool need_update;
 969	bool frozen;
 970	bool ampdu;
 971	int block;
 972	unsigned long wd_timeout;
 973	struct sk_buff_head overflow_q;
 974	struct iwl_dma_ptr bc_tbl;
 975
 976	int write_ptr;
 977	int read_ptr;
 978	dma_addr_t dma_addr;
 979	int n_window;
 980	u32 id;
 981	int low_mark;
 982	int high_mark;
 983
 984	bool overflow_tx;
 985};
 986
 987/**
 988 * struct iwl_trans_txqs - transport tx queues data
 989 *
 990 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
 991 * @page_offs: offset from skb->cb to mac header page pointer
 992 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
 993 * @queue_used - bit mask of used queues
 994 * @queue_stopped - bit mask of stopped queues
 995 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
 996 * @queue_alloc_cmd_ver: queue allocation command version
 997 */
 998struct iwl_trans_txqs {
 999	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1000	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1001	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
1002	struct dma_pool *bc_pool;
1003	size_t bc_tbl_size;
1004	bool bc_table_dword;
1005	u8 page_offs;
1006	u8 dev_cmd_offs;
1007	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
1008
1009	struct {
1010		u8 fifo;
1011		u8 q_id;
1012		unsigned int wdg_timeout;
1013	} cmd;
1014
1015	struct {
1016		u8 max_tbs;
1017		u16 size;
1018		u8 addr_size;
1019	} tfd;
1020
1021	struct iwl_dma_ptr scd_bc_tbls;
1022
1023	u8 queue_alloc_cmd_ver;
1024};
1025
1026/**
1027 * struct iwl_trans - transport common data
1028 *
1029 * @csme_own - true if we couldn't get ownership on the device
1030 * @ops - pointer to iwl_trans_ops
1031 * @op_mode - pointer to the op_mode
1032 * @trans_cfg: the trans-specific configuration part
1033 * @cfg - pointer to the configuration
1034 * @drv - pointer to iwl_drv
1035 * @status: a bit-mask of transport status flags
1036 * @dev - pointer to struct device * that represents the device
1037 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
1038 *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
1039 * @hw_rf_id a u32 with the device RF ID
1040 * @hw_crf_id a u32 with the device CRF ID
1041 * @hw_wfpm_id a u32 with the device wfpm ID
1042 * @hw_id: a u32 with the ID of the device / sub-device.
1043 *	Set during transport allocation.
1044 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
1045 * @hw_rev_step: The mac step of the HW
1046 * @pm_support: set to true in start_hw if link pm is supported
1047 * @ltr_enabled: set to true if the LTR is enabled
1048 * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed
1049 * @failed_to_load_reduce_power_image: set to true if pnvm loading failed
1050 * @wide_cmd_header: true when ucode supports wide command header format
1051 * @wait_command_queue: wait queue for sync commands
1052 * @num_rx_queues: number of RX queues allocated by the transport;
1053 *	the transport must set this before calling iwl_drv_start()
1054 * @iml_len: the length of the image loader
1055 * @iml: a pointer to the image loader itself
1056 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
1057 *	The user should use iwl_trans_{alloc,free}_tx_cmd.
 
 
 
1058 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
1059 *	starting the firmware, used for tracing
1060 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1061 *	start of the 802.11 header in the @rx_mpdu_cmd
 
 
 
 
 
 
 
 
 
 
 
1062 * @system_pm_mode: the system-wide power management mode in use.
1063 *	This mode is set dynamically, depending on the WoWLAN values
1064 *	configured from the userspace at runtime.
1065 * @txqs: transport tx queues data.
1066 * @mbx_addr_0_step: step address data 0
1067 * @mbx_addr_1_step: step address data 1
1068 * @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*),
1069 *	only valid for discrete (not integrated) NICs
1070 * @invalid_tx_cmd: invalid TX command buffer
1071 */
1072struct iwl_trans {
1073	bool csme_own;
1074	const struct iwl_trans_ops *ops;
1075	struct iwl_op_mode *op_mode;
1076	const struct iwl_cfg_trans_params *trans_cfg;
1077	const struct iwl_cfg *cfg;
1078	struct iwl_drv *drv;
1079	enum iwl_trans_state state;
1080	unsigned long status;
1081
1082	struct device *dev;
1083	u32 max_skb_frags;
1084	u32 hw_rev;
1085	u32 hw_rev_step;
1086	u32 hw_rf_id;
1087	u32 hw_crf_id;
1088	u32 hw_cnv_id;
1089	u32 hw_wfpm_id;
1090	u32 hw_id;
1091	char hw_id_str[52];
1092	u32 sku_id[3];
1093
1094	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1095
1096	bool pm_support;
1097	bool ltr_enabled;
1098	u8 pnvm_loaded:1;
1099	u8 fail_to_parse_pnvm_image:1;
1100	u8 reduce_power_loaded:1;
1101	u8 failed_to_load_reduce_power_image:1;
1102
1103	const struct iwl_hcmd_arr *command_groups;
1104	int command_groups_size;
1105	bool wide_cmd_header;
1106
1107	wait_queue_head_t wait_command_queue;
1108	u8 num_rx_queues;
1109
1110	size_t iml_len;
1111	u8 *iml;
1112
1113	/* The following fields are internal only */
1114	struct kmem_cache *dev_cmd_pool;
 
1115	char dev_cmd_pool_name[50];
1116
1117	struct dentry *dbgfs_dir;
1118
1119#ifdef CONFIG_LOCKDEP
1120	struct lockdep_map sync_cmd_lockdep_map;
1121#endif
1122
1123	struct iwl_trans_debug dbg;
1124	struct iwl_self_init_dram init_dram;
1125
1126	enum iwl_plat_pm_mode system_pm_mode;
1127
1128	const char *name;
1129	struct iwl_trans_txqs txqs;
1130	u32 mbx_addr_0_step;
1131	u32 mbx_addr_1_step;
1132
1133	u8 pcie_link_speed;
 
 
 
 
 
 
1134
1135	struct iwl_dma_ptr invalid_tx_cmd;
 
 
1136
1137	/* pointer to trans specific struct */
1138	/*Ensure that this pointer will always be aligned to sizeof pointer */
1139	char trans_specific[] __aligned(sizeof(void *));
1140};
1141
1142const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1143int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1144
1145static inline void iwl_trans_configure(struct iwl_trans *trans,
1146				       const struct iwl_trans_config *trans_cfg)
1147{
1148	trans->op_mode = trans_cfg->op_mode;
1149
1150	trans->ops->configure(trans, trans_cfg);
1151	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1152}
1153
1154static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1155{
1156	might_sleep();
1157
1158	return trans->ops->start_hw(trans);
 
 
 
 
 
1159}
1160
1161static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1162{
1163	might_sleep();
1164
1165	if (trans->ops->op_mode_leave)
1166		trans->ops->op_mode_leave(trans);
1167
1168	trans->op_mode = NULL;
1169
1170	trans->state = IWL_TRANS_NO_FW;
1171}
1172
1173static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1174{
1175	might_sleep();
1176
1177	trans->state = IWL_TRANS_FW_ALIVE;
1178
1179	trans->ops->fw_alive(trans, scd_addr);
1180}
1181
1182static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1183				     const struct fw_img *fw,
1184				     bool run_in_rfkill)
1185{
1186	int ret;
1187
1188	might_sleep();
1189
1190	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1191
1192	clear_bit(STATUS_FW_ERROR, &trans->status);
1193	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1194	if (ret == 0)
1195		trans->state = IWL_TRANS_FW_STARTED;
1196
1197	return ret;
 
 
 
 
 
 
 
 
1198}
1199
1200static inline void iwl_trans_stop_device(struct iwl_trans *trans)
 
1201{
1202	might_sleep();
1203
1204	trans->ops->stop_device(trans);
1205
1206	trans->state = IWL_TRANS_NO_FW;
1207}
1208
1209static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1210				       bool reset)
1211{
1212	might_sleep();
1213	if (!trans->ops->d3_suspend)
1214		return -EOPNOTSUPP;
1215
1216	return trans->ops->d3_suspend(trans, test, reset);
 
 
 
 
 
1217}
1218
1219static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1220				      enum iwl_d3_status *status,
1221				      bool test, bool reset)
1222{
1223	might_sleep();
1224	if (!trans->ops->d3_resume)
1225		return -EOPNOTSUPP;
1226
1227	return trans->ops->d3_resume(trans, status, test, reset);
1228}
1229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230static inline struct iwl_trans_dump_data *
1231iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1232		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1233		    void *sanitize_ctx)
1234{
1235	if (!trans->ops->dump_data)
1236		return NULL;
1237	return trans->ops->dump_data(trans, dump_mask,
1238				     sanitize_ops, sanitize_ctx);
1239}
1240
1241static inline struct iwl_device_tx_cmd *
1242iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1243{
1244	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
 
 
 
 
 
 
1245}
1246
1247int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1248
1249static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1250					 struct iwl_device_tx_cmd *dev_cmd)
1251{
1252	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
 
 
1253}
1254
1255static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1256			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1257{
1258	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1259		return -EIO;
1260
1261	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1262		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1263		return -EIO;
1264	}
1265
1266	return trans->ops->tx(trans, skb, dev_cmd, queue);
1267}
1268
1269static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1270				     int ssn, struct sk_buff_head *skbs,
1271				     bool is_flush)
1272{
1273	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1274		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1275		return;
1276	}
1277
1278	trans->ops->reclaim(trans, queue, ssn, skbs, is_flush);
1279}
1280
1281static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1282					int ptr)
1283{
1284	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1285		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1286		return;
1287	}
1288
1289	trans->ops->set_q_ptrs(trans, queue, ptr);
1290}
1291
1292static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1293					 bool configure_scd)
1294{
1295	trans->ops->txq_disable(trans, queue, configure_scd);
1296}
1297
1298static inline bool
1299iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1300			 const struct iwl_trans_txq_scd_cfg *cfg,
1301			 unsigned int queue_wdg_timeout)
1302{
1303	might_sleep();
1304
1305	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1306		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1307		return false;
1308	}
1309
1310	return trans->ops->txq_enable(trans, queue, ssn,
1311				      cfg, queue_wdg_timeout);
1312}
1313
1314static inline int
1315iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1316			   struct iwl_trans_rxq_dma_data *data)
1317{
1318	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1319		return -EOPNOTSUPP;
1320
1321	return trans->ops->rxq_dma_data(trans, queue, data);
1322}
1323
1324static inline void
1325iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1326{
1327	if (WARN_ON_ONCE(!trans->ops->txq_free))
1328		return;
1329
1330	trans->ops->txq_free(trans, queue);
1331}
1332
1333static inline int
1334iwl_trans_txq_alloc(struct iwl_trans *trans,
1335		    u32 flags, u32 sta_mask, u8 tid,
1336		    int size, unsigned int wdg_timeout)
1337{
1338	might_sleep();
1339
1340	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1341		return -EOPNOTSUPP;
1342
1343	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1344		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1345		return -EIO;
1346	}
1347
1348	return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1349				     size, wdg_timeout);
1350}
1351
1352static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1353						 int queue, bool shared_mode)
1354{
1355	if (trans->ops->txq_set_shared_mode)
1356		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1357}
1358
 
 
 
 
 
 
 
 
 
1359static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1360					int fifo, int sta_id, int tid,
1361					int frame_limit, u16 ssn,
1362					unsigned int queue_wdg_timeout)
1363{
1364	struct iwl_trans_txq_scd_cfg cfg = {
1365		.fifo = fifo,
1366		.sta_id = sta_id,
1367		.tid = tid,
1368		.frame_limit = frame_limit,
1369		.aggregate = sta_id >= 0,
1370	};
1371
1372	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1373}
1374
1375static inline
1376void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1377			     unsigned int queue_wdg_timeout)
1378{
1379	struct iwl_trans_txq_scd_cfg cfg = {
1380		.fifo = fifo,
1381		.sta_id = -1,
1382		.tid = IWL_MAX_TID_COUNT,
1383		.frame_limit = IWL_FRAME_LIMIT,
1384		.aggregate = false,
1385	};
1386
1387	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1388}
1389
1390static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1391					      unsigned long txqs,
1392					      bool freeze)
1393{
1394	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1395		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1396		return;
1397	}
1398
1399	if (trans->ops->freeze_txq_timer)
1400		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1401}
1402
1403static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1404						 u32 txqs)
1405{
1406	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1407		return -EOPNOTSUPP;
1408
1409	/* No need to wait if the firmware is not alive */
1410	if (trans->state != IWL_TRANS_FW_ALIVE) {
1411		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1412		return -EIO;
1413	}
1414
1415	return trans->ops->wait_tx_queues_empty(trans, txqs);
 
1416}
1417
1418static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
 
1419{
1420	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1421		return -EOPNOTSUPP;
1422
1423	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1424		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1425		return -EIO;
1426	}
1427
1428	return trans->ops->wait_txq_empty(trans, queue);
1429}
1430
1431static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1432{
1433	trans->ops->write8(trans, ofs, val);
1434}
1435
1436static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1437{
1438	trans->ops->write32(trans, ofs, val);
1439}
1440
1441static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1442{
1443	return trans->ops->read32(trans, ofs);
1444}
1445
1446static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1447{
1448	return trans->ops->read_prph(trans, ofs);
1449}
1450
1451static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1452					u32 val)
1453{
1454	return trans->ops->write_prph(trans, ofs, val);
1455}
1456
1457static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1458				     void *buf, int dwords)
1459{
1460	return trans->ops->read_mem(trans, addr, buf, dwords);
1461}
1462
1463#define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1464	do {								      \
1465		if (__builtin_constant_p(bufsize))			      \
1466			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1467		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1468	} while (0)
1469
1470static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1471					  u32 dst_addr, u64 src_addr,
1472					  u32 byte_cnt)
1473{
1474	if (trans->ops->imr_dma_data)
1475		return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1476	return 0;
1477}
1478
1479static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1480{
1481	u32 value;
1482
1483	if (iwl_trans_read_mem(trans, addr, &value, 1))
1484		return 0xa5a5a5a5;
1485
1486	return value;
1487}
1488
1489static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1490				      const void *buf, int dwords)
1491{
1492	return trans->ops->write_mem(trans, addr, buf, dwords);
1493}
1494
1495static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1496					u32 val)
1497{
1498	return iwl_trans_write_mem(trans, addr, &val, 1);
1499}
1500
1501static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1502{
1503	if (trans->ops->set_pmi)
1504		trans->ops->set_pmi(trans, state);
1505}
1506
1507static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1508				     bool retake_ownership)
1509{
1510	if (trans->ops->sw_reset)
1511		return trans->ops->sw_reset(trans, retake_ownership);
1512	return 0;
1513}
1514
1515static inline void
1516iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1517{
1518	trans->ops->set_bits_mask(trans, reg, mask, value);
1519}
1520
1521#define iwl_trans_grab_nic_access(trans)		\
1522	__cond_lock(nic_access,				\
1523		    likely((trans)->ops->grab_nic_access(trans)))
1524
1525static inline void __releases(nic_access)
1526iwl_trans_release_nic_access(struct iwl_trans *trans)
1527{
1528	trans->ops->release_nic_access(trans);
1529	__release(nic_access);
1530}
1531
1532static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1533{
1534	if (WARN_ON_ONCE(!trans->op_mode))
1535		return;
1536
1537	/* prevent double restarts due to the same erroneous FW */
1538	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1539		iwl_op_mode_nic_error(trans->op_mode, sync);
1540		trans->state = IWL_TRANS_NO_FW;
1541	}
1542}
1543
1544static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1545{
1546	return trans->state == IWL_TRANS_FW_ALIVE;
1547}
1548
1549static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1550{
1551	if (trans->ops->sync_nmi)
1552		trans->ops->sync_nmi(trans);
1553}
1554
1555void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1556				  u32 sw_err_bit);
1557
1558static inline int iwl_trans_load_pnvm(struct iwl_trans *trans,
1559				      const struct iwl_pnvm_image *pnvm_data,
1560				      const struct iwl_ucode_capabilities *capa)
1561{
1562	return trans->ops->load_pnvm(trans, pnvm_data, capa);
1563}
1564
1565static inline void iwl_trans_set_pnvm(struct iwl_trans *trans,
1566				      const struct iwl_ucode_capabilities *capa)
1567{
1568	if (trans->ops->set_pnvm)
1569		trans->ops->set_pnvm(trans, capa);
1570}
1571
1572static inline int iwl_trans_load_reduce_power
1573				(struct iwl_trans *trans,
1574				 const struct iwl_pnvm_image *payloads,
1575				 const struct iwl_ucode_capabilities *capa)
1576{
1577	return trans->ops->load_reduce_power(trans, payloads, capa);
1578}
1579
1580static inline void
1581iwl_trans_set_reduce_power(struct iwl_trans *trans,
1582			   const struct iwl_ucode_capabilities *capa)
1583{
1584	if (trans->ops->set_reduce_power)
1585		trans->ops->set_reduce_power(trans, capa);
1586}
1587
1588static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1589{
1590	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1591		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1592}
1593
1594static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1595{
1596	if (trans->ops->interrupts)
1597		trans->ops->interrupts(trans, enable);
1598}
1599
1600/*****************************************************
1601 * transport helper functions
1602 *****************************************************/
1603struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1604			  struct device *dev,
1605			  const struct iwl_trans_ops *ops,
1606			  const struct iwl_cfg_trans_params *cfg_trans);
1607int iwl_trans_init(struct iwl_trans *trans);
1608void iwl_trans_free(struct iwl_trans *trans);
1609
1610static inline bool iwl_trans_is_hw_error_value(u32 val)
1611{
1612	return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50);
1613}
1614
1615/*****************************************************
1616* driver (transport) register/unregister functions
1617******************************************************/
1618int __must_check iwl_pci_register_driver(void);
1619void iwl_pci_unregister_driver(void);
1620void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan);
1621
1622#endif /* __iwl_trans_h__ */
v4.10.11
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2007 - 2014 Intel Corporation. All rights reserved.
   9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  10 * Copyright(c) 2016        Intel Deutschland GmbH
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of version 2 of the GNU General Public License as
  14 * published by the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  24 * USA
  25 *
  26 * The full GNU General Public License is included in this distribution
  27 * in the file called COPYING.
  28 *
  29 * Contact Information:
  30 *  Intel Linux Wireless <linuxwifi@intel.com>
  31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  32 *
  33 * BSD LICENSE
  34 *
  35 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
  36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  37 * Copyright(c) 2016        Intel Deutschland GmbH
  38 * All rights reserved.
  39 *
  40 * Redistribution and use in source and binary forms, with or without
  41 * modification, are permitted provided that the following conditions
  42 * are met:
  43 *
  44 *  * Redistributions of source code must retain the above copyright
  45 *    notice, this list of conditions and the following disclaimer.
  46 *  * Redistributions in binary form must reproduce the above copyright
  47 *    notice, this list of conditions and the following disclaimer in
  48 *    the documentation and/or other materials provided with the
  49 *    distribution.
  50 *  * Neither the name Intel Corporation nor the names of its
  51 *    contributors may be used to endorse or promote products derived
  52 *    from this software without specific prior written permission.
  53 *
  54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  65 *
  66 *****************************************************************************/
  67#ifndef __iwl_trans_h__
  68#define __iwl_trans_h__
  69
  70#include <linux/ieee80211.h>
  71#include <linux/mm.h> /* for page_address */
  72#include <linux/lockdep.h>
  73#include <linux/kernel.h>
  74
  75#include "iwl-debug.h"
  76#include "iwl-config.h"
  77#include "iwl-fw.h"
  78#include "iwl-op-mode.h"
 
 
 
 
 
  79
  80/**
  81 * DOC: Transport layer - what is it ?
  82 *
  83 * The transport layer is the layer that deals with the HW directly. It provides
  84 * an abstraction of the underlying HW to the upper layer. The transport layer
  85 * doesn't provide any policy, algorithm or anything of this kind, but only
  86 * mechanisms to make the HW do something. It is not completely stateless but
  87 * close to it.
  88 * We will have an implementation for each different supported bus.
  89 */
  90
  91/**
  92 * DOC: Life cycle of the transport layer
  93 *
  94 * The transport layer has a very precise life cycle.
  95 *
  96 *	1) A helper function is called during the module initialization and
  97 *	   registers the bus driver's ops with the transport's alloc function.
  98 *	2) Bus's probe calls to the transport layer's allocation functions.
  99 *	   Of course this function is bus specific.
 100 *	3) This allocation functions will spawn the upper layer which will
 101 *	   register mac80211.
 102 *
 103 *	4) At some point (i.e. mac80211's start call), the op_mode will call
 104 *	   the following sequence:
 105 *	   start_hw
 106 *	   start_fw
 107 *
 108 *	5) Then when finished (or reset):
 109 *	   stop_device
 110 *
 111 *	6) Eventually, the free function will be called.
 112 */
 113
 114/**
 115 * DOC: Host command section
 116 *
 117 * A host command is a command issued by the upper layer to the fw. There are
 118 * several versions of fw that have several APIs. The transport layer is
 119 * completely agnostic to these differences.
 120 * The transport does provide helper functionality (i.e. SYNC / ASYNC mode),
 121 */
 122#define SEQ_TO_QUEUE(s)	(((s) >> 8) & 0x1f)
 123#define QUEUE_TO_SEQ(q)	(((q) & 0x1f) << 8)
 124#define SEQ_TO_INDEX(s)	((s) & 0xff)
 125#define INDEX_TO_SEQ(i)	((i) & 0xff)
 126#define SEQ_RX_FRAME	cpu_to_le16(0x8000)
 127
 128/*
 129 * those functions retrieve specific information from
 130 * the id field in the iwl_host_cmd struct which contains
 131 * the command id, the group id and the version of the command
 132 * and vice versa
 133*/
 134static inline u8 iwl_cmd_opcode(u32 cmdid)
 135{
 136	return cmdid & 0xFF;
 137}
 138
 139static inline u8 iwl_cmd_groupid(u32 cmdid)
 140{
 141	return ((cmdid & 0xFF00) >> 8);
 142}
 143
 144static inline u8 iwl_cmd_version(u32 cmdid)
 145{
 146	return ((cmdid & 0xFF0000) >> 16);
 147}
 148
 149static inline u32 iwl_cmd_id(u8 opcode, u8 groupid, u8 version)
 150{
 151	return opcode + (groupid << 8) + (version << 16);
 152}
 153
 154/* make u16 wide id out of u8 group and opcode */
 155#define WIDE_ID(grp, opcode) ((grp << 8) | opcode)
 156#define DEF_ID(opcode) ((1 << 8) | (opcode))
 157
 158/* due to the conversion, this group is special; new groups
 159 * should be defined in the appropriate fw-api header files
 160 */
 161#define IWL_ALWAYS_LONG_GROUP	1
 162
 163/**
 164 * struct iwl_cmd_header
 165 *
 166 * This header format appears in the beginning of each command sent from the
 167 * driver, and each response/notification received from uCode.
 168 */
 169struct iwl_cmd_header {
 170	u8 cmd;		/* Command ID:  REPLY_RXON, etc. */
 171	u8 group_id;
 172	/*
 173	 * The driver sets up the sequence number to values of its choosing.
 174	 * uCode does not use this value, but passes it back to the driver
 175	 * when sending the response to each driver-originated command, so
 176	 * the driver can match the response to the command.  Since the values
 177	 * don't get used by uCode, the driver may set up an arbitrary format.
 178	 *
 179	 * There is one exception:  uCode sets bit 15 when it originates
 180	 * the response/notification, i.e. when the response/notification
 181	 * is not a direct response to a command sent by the driver.  For
 182	 * example, uCode issues REPLY_RX when it sends a received frame
 183	 * to the driver; it is not a direct response to any driver command.
 184	 *
 185	 * The Linux driver uses the following format:
 186	 *
 187	 *  0:7		tfd index - position within TX queue
 188	 *  8:12	TX queue id
 189	 *  13:14	reserved
 190	 *  15		unsolicited RX or uCode-originated notification
 191	 */
 192	__le16 sequence;
 193} __packed;
 194
 195/**
 196 * struct iwl_cmd_header_wide
 197 *
 198 * This header format appears in the beginning of each command sent from the
 199 * driver, and each response/notification received from uCode.
 200 * this is the wide version that contains more information about the command
 201 * like length, version and command type
 202 */
 203struct iwl_cmd_header_wide {
 204	u8 cmd;
 205	u8 group_id;
 206	__le16 sequence;
 207	__le16 length;
 208	u8 reserved;
 209	u8 version;
 210} __packed;
 211
 212#define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
 213#define FH_RSCSR_FRAME_INVALID		0x55550000
 214#define FH_RSCSR_FRAME_ALIGN		0x40
 215#define FH_RSCSR_RPA_EN			BIT(25)
 
 216#define FH_RSCSR_RXQ_POS		16
 217#define FH_RSCSR_RXQ_MASK		0x3F0000
 218
 219struct iwl_rx_packet {
 220	/*
 221	 * The first 4 bytes of the RX frame header contain both the RX frame
 222	 * size and some flags.
 223	 * Bit fields:
 224	 * 31:    flag flush RB request
 225	 * 30:    flag ignore TC (terminal counter) request
 226	 * 29:    flag fast IRQ request
 227	 * 28-26: Reserved
 
 228	 * 25:    Offload enabled
 229	 * 24:    RPF enabled
 230	 * 23:    RSS enabled
 231	 * 22:    Checksum enabled
 232	 * 21-16: RX queue
 233	 * 15-14: Reserved
 234	 * 13-00: RX frame size
 235	 */
 236	__le32 len_n_flags;
 237	struct iwl_cmd_header hdr;
 238	u8 data[];
 239} __packed;
 240
 241static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
 242{
 243	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
 244}
 245
 246static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
 247{
 248	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
 249}
 250
 251/**
 252 * enum CMD_MODE - how to send the host commands ?
 253 *
 254 * @CMD_ASYNC: Return right away and don't wait for the response
 255 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
 256 *	the response. The caller needs to call iwl_free_resp when done.
 257 * @CMD_HIGH_PRIO: The command is high priority - it goes to the front of the
 258 *	command queue, but after other high priority commands. Valid only
 259 *	with CMD_ASYNC.
 260 * @CMD_SEND_IN_IDLE: The command should be sent even when the trans is idle.
 261 * @CMD_MAKE_TRANS_IDLE: The command response should mark the trans as idle.
 262 * @CMD_WAKE_UP_TRANS: The command response should wake up the trans
 263 *	(i.e. mark it as non-idle).
 264 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
 265 *	called after this command completes. Valid only with CMD_ASYNC.
 266 */
 267enum CMD_MODE {
 268	CMD_ASYNC		= BIT(0),
 269	CMD_WANT_SKB		= BIT(1),
 270	CMD_SEND_IN_RFKILL	= BIT(2),
 271	CMD_HIGH_PRIO		= BIT(3),
 272	CMD_SEND_IN_IDLE	= BIT(4),
 273	CMD_MAKE_TRANS_IDLE	= BIT(5),
 274	CMD_WAKE_UP_TRANS	= BIT(6),
 275	CMD_WANT_ASYNC_CALLBACK	= BIT(7),
 276};
 277
 278#define DEF_CMD_PAYLOAD_SIZE 320
 279
 280/**
 281 * struct iwl_device_cmd
 282 *
 283 * For allocation of the command and tx queues, this establishes the overall
 284 * size of the largest command we send to uCode, except for commands that
 285 * aren't fully copied and use other TFD space.
 286 */
 287struct iwl_device_cmd {
 288	union {
 289		struct {
 290			struct iwl_cmd_header hdr;	/* uCode API */
 291			u8 payload[DEF_CMD_PAYLOAD_SIZE];
 292		};
 293		struct {
 294			struct iwl_cmd_header_wide hdr_wide;
 295			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
 296					sizeof(struct iwl_cmd_header_wide) +
 297					sizeof(struct iwl_cmd_header)];
 298		};
 299	};
 300} __packed;
 301
 
 
 
 
 
 
 
 
 
 
 
 
 302#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
 303
 304/*
 305 * number of transfer buffers (fragments) per transmit frame descriptor;
 306 * this is just the driver's idea, the hardware supports 20
 307 */
 308#define IWL_MAX_CMD_TBS_PER_TFD	2
 309
 
 
 
 
 
 
 310/**
 311 * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command
 312 *
 313 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
 314 *	ring. The transport layer doesn't map the command's buffer to DMA, but
 315 *	rather copies it to a previously allocated DMA buffer. This flag tells
 316 *	the transport layer not to copy the command, but to map the existing
 317 *	buffer (that is passed in) instead. This saves the memcpy and allows
 318 *	commands that are bigger than the fixed buffer to be submitted.
 319 *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
 320 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
 321 *	chunk internally and free it again after the command completes. This
 322 *	can (currently) be used only once per command.
 323 *	Note that a TFD entry after a DUP one cannot be a normal copied one.
 324 */
 325enum iwl_hcmd_dataflag {
 326	IWL_HCMD_DFL_NOCOPY	= BIT(0),
 327	IWL_HCMD_DFL_DUP	= BIT(1),
 328};
 329
 
 
 
 
 
 
 
 
 
 
 330/**
 331 * struct iwl_host_cmd - Host command to the uCode
 332 *
 333 * @data: array of chunks that composes the data of the host command
 334 * @resp_pkt: response packet, if %CMD_WANT_SKB was set
 335 * @_rx_page_order: (internally used to free response packet)
 336 * @_rx_page_addr: (internally used to free response packet)
 337 * @flags: can be CMD_*
 338 * @len: array of the lengths of the chunks in data
 339 * @dataflags: IWL_HCMD_DFL_*
 340 * @id: command id of the host command, for wide commands encoding the
 341 *	version and group as well
 342 */
 343struct iwl_host_cmd {
 344	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
 345	struct iwl_rx_packet *resp_pkt;
 346	unsigned long _rx_page_addr;
 347	u32 _rx_page_order;
 348
 349	u32 flags;
 350	u32 id;
 351	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
 352	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
 353};
 354
 355static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
 356{
 357	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
 358}
 359
 360struct iwl_rx_cmd_buffer {
 361	struct page *_page;
 362	int _offset;
 363	bool _page_stolen;
 364	u32 _rx_page_order;
 365	unsigned int truesize;
 366};
 367
 368static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
 369{
 370	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
 371}
 372
 373static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
 374{
 375	return r->_offset;
 376}
 377
 378static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
 379{
 380	r->_page_stolen = true;
 381	get_page(r->_page);
 382	return r->_page;
 383}
 384
 385static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
 386{
 387	__free_pages(r->_page, r->_rx_page_order);
 388}
 389
 390#define MAX_NO_RECLAIM_CMDS	6
 391
 392#define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
 393
 394/*
 395 * Maximum number of HW queues the transport layer
 396 * currently supports
 397 */
 398#define IWL_MAX_HW_QUEUES		32
 
 
 399#define IWL_MAX_TID_COUNT	8
 
 400#define IWL_FRAME_LIMIT	64
 401#define IWL_MAX_RX_HW_QUEUES	16
 
 402
 403/**
 404 * enum iwl_wowlan_status - WoWLAN image/device status
 405 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
 406 * @IWL_D3_STATUS_RESET: device was reset while suspended
 407 */
 408enum iwl_d3_status {
 409	IWL_D3_STATUS_ALIVE,
 410	IWL_D3_STATUS_RESET,
 411};
 412
 413/**
 414 * enum iwl_trans_status: transport status flags
 415 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
 416 * @STATUS_DEVICE_ENABLED: APM is enabled
 417 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
 418 * @STATUS_INT_ENABLED: interrupts are enabled
 419 * @STATUS_RFKILL: the HW RFkill switch is in KILL position
 
 420 * @STATUS_FW_ERROR: the fw is in error state
 421 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
 422 *	are sent
 423 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
 424 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
 
 
 425 */
 426enum iwl_trans_status {
 427	STATUS_SYNC_HCMD_ACTIVE,
 428	STATUS_DEVICE_ENABLED,
 429	STATUS_TPOWER_PMI,
 430	STATUS_INT_ENABLED,
 431	STATUS_RFKILL,
 
 432	STATUS_FW_ERROR,
 433	STATUS_TRANS_GOING_IDLE,
 434	STATUS_TRANS_IDLE,
 435	STATUS_TRANS_DEAD,
 
 436};
 437
 438static inline int
 439iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
 440{
 441	switch (rb_size) {
 
 
 442	case IWL_AMSDU_4K:
 443		return get_order(4 * 1024);
 444	case IWL_AMSDU_8K:
 445		return get_order(8 * 1024);
 446	case IWL_AMSDU_12K:
 447		return get_order(12 * 1024);
 448	default:
 449		WARN_ON(1);
 450		return -1;
 451	}
 452}
 453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454struct iwl_hcmd_names {
 455	u8 cmd_id;
 456	const char *const cmd_name;
 457};
 458
 459#define HCMD_NAME(x)	\
 460	{ .cmd_id = x, .cmd_name = #x }
 461
 462struct iwl_hcmd_arr {
 463	const struct iwl_hcmd_names *arr;
 464	int size;
 465};
 466
 467#define HCMD_ARR(x)	\
 468	{ .arr = x, .size = ARRAY_SIZE(x) }
 469
 470/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471 * struct iwl_trans_config - transport configuration
 472 *
 473 * @op_mode: pointer to the upper layer.
 474 * @cmd_queue: the index of the command queue.
 475 *	Must be set before start_fw.
 476 * @cmd_fifo: the fifo for host commands
 477 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
 478 * @no_reclaim_cmds: Some devices erroneously don't set the
 479 *	SEQ_RX_FRAME bit on some notifications, this is the
 480 *	list of such notifications to filter. Max length is
 481 *	%MAX_NO_RECLAIM_CMDS.
 482 * @n_no_reclaim_cmds: # of commands in list
 483 * @rx_buf_size: RX buffer size needed for A-MSDUs
 484 *	if unset 4k will be the RX buffer size
 485 * @bc_table_dword: set to true if the BC table expects the byte count to be
 486 *	in DWORD (as opposed to bytes)
 487 * @scd_set_active: should the transport configure the SCD for HCMD queue
 488 * @sw_csum_tx: transport should compute the TCP checksum
 489 * @command_groups: array of command groups, each member is an array of the
 490 *	commands in the group; for debugging only
 491 * @command_groups_size: number of command groups, to avoid illegal access
 492 * @sdio_adma_addr: the default address to set for the ADMA in SDIO mode until
 493 *	we get the ALIVE from the uCode
 494 * @cb_data_offs: offset inside skb->cb to store transport data at, must have
 495 *	space for at least two pointers
 
 
 
 
 496 */
 497struct iwl_trans_config {
 498	struct iwl_op_mode *op_mode;
 499
 500	u8 cmd_queue;
 501	u8 cmd_fifo;
 502	unsigned int cmd_q_wdg_timeout;
 503	const u8 *no_reclaim_cmds;
 504	unsigned int n_no_reclaim_cmds;
 505
 506	enum iwl_amsdu_size rx_buf_size;
 507	bool bc_table_dword;
 508	bool scd_set_active;
 509	bool sw_csum_tx;
 510	const struct iwl_hcmd_arr *command_groups;
 511	int command_groups_size;
 512
 513	u32 sdio_adma_addr;
 514
 515	u8 cb_data_offs;
 
 
 516};
 517
 518struct iwl_trans_dump_data {
 519	u32 len;
 520	u8 data[];
 521};
 522
 523struct iwl_trans;
 524
 525struct iwl_trans_txq_scd_cfg {
 526	u8 fifo;
 527	u8 sta_id;
 528	u8 tid;
 529	bool aggregate;
 530	int frame_limit;
 531};
 532
 533/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534 * struct iwl_trans_ops - transport specific operations
 535 *
 536 * All the handlers MUST be implemented
 537 *
 538 * @start_hw: starts the HW. If low_power is true, the NIC needs to be taken
 539 *	out of a low power state. From that point on, the HW can send
 540 *	interrupts. May sleep.
 541 * @op_mode_leave: Turn off the HW RF kill indication if on
 542 *	May sleep
 543 * @start_fw: allocates and inits all the resources for the transport
 544 *	layer. Also kick a fw image.
 545 *	May sleep
 546 * @fw_alive: called when the fw sends alive notification. If the fw provides
 547 *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
 548 *	May sleep
 549 * @stop_device: stops the whole device (embedded CPU put to reset) and stops
 550 *	the HW. If low_power is true, the NIC will be put in low power state.
 551 *	From that point on, the HW will be stopped but will still issue an
 552 *	interrupt if the HW RF kill switch is triggered.
 553 *	This callback must do the right thing and not crash even if %start_hw()
 554 *	was called but not &start_fw(). May sleep.
 555 * @d3_suspend: put the device into the correct mode for WoWLAN during
 556 *	suspend. This is optional, if not implemented WoWLAN will not be
 557 *	supported. This callback may sleep.
 558 * @d3_resume: resume the device after WoWLAN, enabling the opmode to
 559 *	talk to the WoWLAN image to get its status. This is optional, if not
 560 *	implemented WoWLAN will not be supported. This callback may sleep.
 561 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
 562 *	If RFkill is asserted in the middle of a SYNC host command, it must
 563 *	return -ERFKILL straight away.
 564 *	May sleep only if CMD_ASYNC is not set
 565 * @tx: send an skb. The transport relies on the op_mode to zero the
 566 *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
 567 *	the CSUM will be taken care of (TCP CSUM and IP header in case of
 568 *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
 569 *	header if it is IPv4.
 570 *	Must be atomic
 571 * @reclaim: free packet until ssn. Returns a list of freed packets.
 572 *	Must be atomic
 573 * @txq_enable: setup a queue. To setup an AC queue, use the
 574 *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
 575 *	this one. The op_mode must not configure the HCMD queue. The scheduler
 576 *	configuration may be %NULL, in which case the hardware will not be
 577 *	configured. May sleep.
 
 
 578 * @txq_disable: de-configure a Tx queue to send AMPDUs
 579 *	Must be atomic
 580 * @txq_set_shared_mode: change Tx queue shared/unshared marking
 581 * @wait_tx_queue_empty: wait until tx queues are empty. May sleep.
 
 582 * @freeze_txq_timer: prevents the timer of the queue from firing until the
 583 *	queue is set to awake. Must be atomic.
 584 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
 585 *	that the transport needs to refcount the calls since this function
 586 *	will be called several times with block = true, and then the queues
 587 *	need to be unblocked only after the same number of calls with
 588 *	block = false.
 589 * @write8: write a u8 to a register at offset ofs from the BAR
 590 * @write32: write a u32 to a register at offset ofs from the BAR
 591 * @read32: read a u32 register at offset ofs from the BAR
 592 * @read_prph: read a DWORD from a periphery register
 593 * @write_prph: write a DWORD to a periphery register
 594 * @read_mem: read device's SRAM in DWORD
 595 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
 596 *	will be zeroed.
 
 
 597 * @configure: configure parameters required by the transport layer from
 598 *	the op_mode. May be called several times before start_fw, can't be
 599 *	called after that.
 600 * @set_pmi: set the power pmi state
 601 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
 602 *	Sleeping is not allowed between grab_nic_access and
 603 *	release_nic_access.
 604 * @release_nic_access: let the NIC go to sleep. The "flags" parameter
 605 *	must be the same one that was sent before to the grab_nic_access.
 606 * @set_bits_mask - set SRAM register according to value and mask.
 607 * @ref: grab a reference to the transport/FW layers, disallowing
 608 *	certain low power states
 609 * @unref: release a reference previously taken with @ref. Note that
 610 *	initially the reference count is 1, making an initial @unref
 611 *	necessary to allow low power states.
 612 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
 613 *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
 614 *	Note that the transport must fill in the proper file headers.
 
 
 
 
 
 
 
 
 615 */
 616struct iwl_trans_ops {
 617
 618	int (*start_hw)(struct iwl_trans *iwl_trans, bool low_power);
 619	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
 620	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
 621			bool run_in_rfkill);
 622	int (*update_sf)(struct iwl_trans *trans,
 623			 struct iwl_sf_region *st_fwrd_space);
 624	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
 625	void (*stop_device)(struct iwl_trans *trans, bool low_power);
 626
 627	void (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
 628	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
 629			 bool test, bool reset);
 630
 631	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
 632
 633	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
 634		  struct iwl_device_cmd *dev_cmd, int queue);
 635	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
 636			struct sk_buff_head *skbs);
 637
 638	void (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
 
 
 639			   const struct iwl_trans_txq_scd_cfg *cfg,
 640			   unsigned int queue_wdg_timeout);
 641	void (*txq_disable)(struct iwl_trans *trans, int queue,
 642			    bool configure_scd);
 
 
 
 
 
 
 
 643
 644	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
 645				    bool shared);
 646
 647	dma_addr_t (*get_txq_byte_table)(struct iwl_trans *trans, int txq_id);
 648
 649	int (*wait_tx_queue_empty)(struct iwl_trans *trans, u32 txq_bm);
 650	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
 651				 bool freeze);
 652	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
 653
 654	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
 655	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
 656	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
 657	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
 658	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
 659	int (*read_mem)(struct iwl_trans *trans, u32 addr,
 660			void *buf, int dwords);
 661	int (*write_mem)(struct iwl_trans *trans, u32 addr,
 662			 const void *buf, int dwords);
 
 663	void (*configure)(struct iwl_trans *trans,
 664			  const struct iwl_trans_config *trans_cfg);
 665	void (*set_pmi)(struct iwl_trans *trans, bool state);
 666	bool (*grab_nic_access)(struct iwl_trans *trans, unsigned long *flags);
 667	void (*release_nic_access)(struct iwl_trans *trans,
 668				   unsigned long *flags);
 669	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
 670			      u32 value);
 671	void (*ref)(struct iwl_trans *trans);
 672	void (*unref)(struct iwl_trans *trans);
 673	int  (*suspend)(struct iwl_trans *trans);
 674	void (*resume)(struct iwl_trans *trans);
 675
 676	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
 677						 const struct iwl_fw_dbg_trigger_tlv
 678						 *trigger);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679};
 680
 681/**
 682 * enum iwl_trans_state - state of the transport layer
 683 *
 684 * @IWL_TRANS_NO_FW: no fw has sent an alive response
 685 * @IWL_TRANS_FW_ALIVE: a fw has sent an alive response
 
 686 */
 687enum iwl_trans_state {
 688	IWL_TRANS_NO_FW = 0,
 689	IWL_TRANS_FW_ALIVE	= 1,
 
 690};
 691
 692/**
 693 * DOC: Platform power management
 694 *
 695 * There are two types of platform power management: system-wide
 696 * (WoWLAN) and runtime.
 697 *
 698 * In system-wide power management the entire platform goes into a low
 699 * power state (e.g. idle or suspend to RAM) at the same time and the
 700 * device is configured as a wakeup source for the entire platform.
 701 * This is usually triggered by userspace activity (e.g. the user
 702 * presses the suspend button or a power management daemon decides to
 703 * put the platform in low power mode).  The device's behavior in this
 704 * mode is dictated by the wake-on-WLAN configuration.
 705 *
 706 * In runtime power management, only the devices which are themselves
 707 * idle enter a low power state.  This is done at runtime, which means
 708 * that the entire system is still running normally.  This mode is
 709 * usually triggered automatically by the device driver and requires
 710 * the ability to enter and exit the low power modes in a very short
 711 * time, so there is not much impact in usability.
 712 *
 713 * The terms used for the device's behavior are as follows:
 714 *
 715 *	- D0: the device is fully powered and the host is awake;
 716 *	- D3: the device is in low power mode and only reacts to
 717 *		specific events (e.g. magic-packet received or scan
 718 *		results found);
 719 *	- D0I3: the device is in low power mode and reacts to any
 720 *		activity (e.g. RX);
 721 *
 722 * These terms reflect the power modes in the firmware and are not to
 723 * be confused with the physical device power state.  The NIC can be
 724 * in D0I3 mode even if, for instance, the PCI device is in D3 state.
 725 */
 726
 727/**
 728 * enum iwl_plat_pm_mode - platform power management mode
 729 *
 730 * This enumeration describes the device's platform power management
 731 * behavior when in idle mode (i.e. runtime power management) or when
 732 * in system-wide suspend (i.e WoWLAN).
 733 *
 734 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
 735 *	device.  At runtime, this means that nothing happens and the
 736 *	device always remains in active.  In system-wide suspend mode,
 737 *	it means that the all connections will be closed automatically
 738 *	by mac80211 before the platform is suspended.
 739 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
 740 *	For runtime power management, this mode is not officially
 741 *	supported.
 742 * @IWL_PLAT_PM_MODE_D0I3: the device goes into D0I3 mode.
 743 */
 744enum iwl_plat_pm_mode {
 745	IWL_PLAT_PM_MODE_DISABLED,
 746	IWL_PLAT_PM_MODE_D3,
 747	IWL_PLAT_PM_MODE_D0I3,
 748};
 749
 750/* Max time to wait for trans to become idle/non-idle on d0i3
 751 * enter/exit (in msecs).
 752 */
 753#define IWL_TRANS_IDLE_TIMEOUT 2000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754
 755/**
 756 * struct iwl_trans - transport common data
 757 *
 
 758 * @ops - pointer to iwl_trans_ops
 759 * @op_mode - pointer to the op_mode
 
 760 * @cfg - pointer to the configuration
 761 * @drv - pointer to iwl_drv
 762 * @status: a bit-mask of transport status flags
 763 * @dev - pointer to struct device * that represents the device
 764 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
 765 *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
 766 * @hw_rf_id a u32 with the device RF ID
 
 
 767 * @hw_id: a u32 with the ID of the device / sub-device.
 768 *	Set during transport allocation.
 769 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
 
 770 * @pm_support: set to true in start_hw if link pm is supported
 771 * @ltr_enabled: set to true if the LTR is enabled
 
 
 772 * @wide_cmd_header: true when ucode supports wide command header format
 
 773 * @num_rx_queues: number of RX queues allocated by the transport;
 774 *	the transport must set this before calling iwl_drv_start()
 
 
 775 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
 776 *	The user should use iwl_trans_{alloc,free}_tx_cmd.
 777 * @dev_cmd_headroom: room needed for the transport's private use before the
 778 *	device_cmd for Tx - for internal use only
 779 *	The user should use iwl_trans_{alloc,free}_tx_cmd.
 780 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
 781 *	starting the firmware, used for tracing
 782 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
 783 *	start of the 802.11 header in the @rx_mpdu_cmd
 784 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
 785 * @dbg_dest_tlv: points to the destination TLV for debug
 786 * @dbg_conf_tlv: array of pointers to configuration TLVs for debug
 787 * @dbg_trigger_tlv: array of pointers to triggers TLVs for debug
 788 * @dbg_dest_reg_num: num of reg_ops in %dbg_dest_tlv
 789 * @paging_req_addr: The location were the FW will upload / download the pages
 790 *	from. The address is set by the opmode
 791 * @paging_db: Pointer to the opmode paging data base, the pointer is set by
 792 *	the opmode.
 793 * @paging_download_buf: Buffer used for copying all of the pages before
 794 *	downloading them to the FW. The buffer is allocated in the opmode
 795 * @system_pm_mode: the system-wide power management mode in use.
 796 *	This mode is set dynamically, depending on the WoWLAN values
 797 *	configured from the userspace at runtime.
 798 * @runtime_pm_mode: the runtime power management mode in use.  This
 799 *	mode is set during the initialization phase and is not
 800 *	supposed to change during runtime.
 
 
 
 801 */
 802struct iwl_trans {
 
 803	const struct iwl_trans_ops *ops;
 804	struct iwl_op_mode *op_mode;
 
 805	const struct iwl_cfg *cfg;
 806	struct iwl_drv *drv;
 807	enum iwl_trans_state state;
 808	unsigned long status;
 809
 810	struct device *dev;
 811	u32 max_skb_frags;
 812	u32 hw_rev;
 
 813	u32 hw_rf_id;
 
 
 
 814	u32 hw_id;
 815	char hw_id_str[52];
 
 816
 817	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
 818
 819	bool pm_support;
 820	bool ltr_enabled;
 
 
 
 
 821
 822	const struct iwl_hcmd_arr *command_groups;
 823	int command_groups_size;
 824	bool wide_cmd_header;
 825
 
 826	u8 num_rx_queues;
 827
 
 
 
 828	/* The following fields are internal only */
 829	struct kmem_cache *dev_cmd_pool;
 830	size_t dev_cmd_headroom;
 831	char dev_cmd_pool_name[50];
 832
 833	struct dentry *dbgfs_dir;
 834
 835#ifdef CONFIG_LOCKDEP
 836	struct lockdep_map sync_cmd_lockdep_map;
 837#endif
 838
 839	u64 dflt_pwr_limit;
 
 
 
 840
 841	const struct iwl_fw_dbg_dest_tlv *dbg_dest_tlv;
 842	const struct iwl_fw_dbg_conf_tlv *dbg_conf_tlv[FW_DBG_CONF_MAX];
 843	struct iwl_fw_dbg_trigger_tlv * const *dbg_trigger_tlv;
 844	u8 dbg_dest_reg_num;
 845
 846	/*
 847	 * Paging parameters - All of the parameters should be set by the
 848	 * opmode when paging is enabled
 849	 */
 850	u32 paging_req_addr;
 851	struct iwl_fw_paging *paging_db;
 852	void *paging_download_buf;
 853
 854	enum iwl_plat_pm_mode system_pm_mode;
 855	enum iwl_plat_pm_mode runtime_pm_mode;
 856	bool suspending;
 857
 858	/* pointer to trans specific struct */
 859	/*Ensure that this pointer will always be aligned to sizeof pointer */
 860	char trans_specific[0] __aligned(sizeof(void *));
 861};
 862
 863const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
 864int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
 865
 866static inline void iwl_trans_configure(struct iwl_trans *trans,
 867				       const struct iwl_trans_config *trans_cfg)
 868{
 869	trans->op_mode = trans_cfg->op_mode;
 870
 871	trans->ops->configure(trans, trans_cfg);
 872	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
 873}
 874
 875static inline int _iwl_trans_start_hw(struct iwl_trans *trans, bool low_power)
 876{
 877	might_sleep();
 878
 879	return trans->ops->start_hw(trans, low_power);
 880}
 881
 882static inline int iwl_trans_start_hw(struct iwl_trans *trans)
 883{
 884	return trans->ops->start_hw(trans, true);
 885}
 886
 887static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
 888{
 889	might_sleep();
 890
 891	if (trans->ops->op_mode_leave)
 892		trans->ops->op_mode_leave(trans);
 893
 894	trans->op_mode = NULL;
 895
 896	trans->state = IWL_TRANS_NO_FW;
 897}
 898
 899static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
 900{
 901	might_sleep();
 902
 903	trans->state = IWL_TRANS_FW_ALIVE;
 904
 905	trans->ops->fw_alive(trans, scd_addr);
 906}
 907
 908static inline int iwl_trans_start_fw(struct iwl_trans *trans,
 909				     const struct fw_img *fw,
 910				     bool run_in_rfkill)
 911{
 
 
 912	might_sleep();
 913
 914	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
 915
 916	clear_bit(STATUS_FW_ERROR, &trans->status);
 917	return trans->ops->start_fw(trans, fw, run_in_rfkill);
 918}
 
 919
 920static inline int iwl_trans_update_sf(struct iwl_trans *trans,
 921				      struct iwl_sf_region *st_fwrd_space)
 922{
 923	might_sleep();
 924
 925	if (trans->ops->update_sf)
 926		return trans->ops->update_sf(trans, st_fwrd_space);
 927
 928	return 0;
 929}
 930
 931static inline void _iwl_trans_stop_device(struct iwl_trans *trans,
 932					  bool low_power)
 933{
 934	might_sleep();
 935
 936	trans->ops->stop_device(trans, low_power);
 937
 938	trans->state = IWL_TRANS_NO_FW;
 939}
 940
 941static inline void iwl_trans_stop_device(struct iwl_trans *trans)
 
 942{
 943	_iwl_trans_stop_device(trans, true);
 944}
 
 945
 946static inline void iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
 947					bool reset)
 948{
 949	might_sleep();
 950	if (trans->ops->d3_suspend)
 951		trans->ops->d3_suspend(trans, test, reset);
 952}
 953
 954static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
 955				      enum iwl_d3_status *status,
 956				      bool test, bool reset)
 957{
 958	might_sleep();
 959	if (!trans->ops->d3_resume)
 960		return 0;
 961
 962	return trans->ops->d3_resume(trans, status, test, reset);
 963}
 964
 965static inline void iwl_trans_ref(struct iwl_trans *trans)
 966{
 967	if (trans->ops->ref)
 968		trans->ops->ref(trans);
 969}
 970
 971static inline void iwl_trans_unref(struct iwl_trans *trans)
 972{
 973	if (trans->ops->unref)
 974		trans->ops->unref(trans);
 975}
 976
 977static inline int iwl_trans_suspend(struct iwl_trans *trans)
 978{
 979	if (!trans->ops->suspend)
 980		return 0;
 981
 982	return trans->ops->suspend(trans);
 983}
 984
 985static inline void iwl_trans_resume(struct iwl_trans *trans)
 986{
 987	if (trans->ops->resume)
 988		trans->ops->resume(trans);
 989}
 990
 991static inline struct iwl_trans_dump_data *
 992iwl_trans_dump_data(struct iwl_trans *trans,
 993		    const struct iwl_fw_dbg_trigger_tlv *trigger)
 
 994{
 995	if (!trans->ops->dump_data)
 996		return NULL;
 997	return trans->ops->dump_data(trans, trigger);
 
 998}
 999
1000static inline struct iwl_device_cmd *
1001iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1002{
1003	u8 *dev_cmd_ptr = kmem_cache_alloc(trans->dev_cmd_pool, GFP_ATOMIC);
1004
1005	if (unlikely(dev_cmd_ptr == NULL))
1006		return NULL;
1007
1008	return (struct iwl_device_cmd *)
1009			(dev_cmd_ptr + trans->dev_cmd_headroom);
1010}
1011
1012int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1013
1014static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1015					 struct iwl_device_cmd *dev_cmd)
1016{
1017	u8 *dev_cmd_ptr = (u8 *)dev_cmd - trans->dev_cmd_headroom;
1018
1019	kmem_cache_free(trans->dev_cmd_pool, dev_cmd_ptr);
1020}
1021
1022static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1023			       struct iwl_device_cmd *dev_cmd, int queue)
1024{
1025	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1026		return -EIO;
1027
1028	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1029		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1030		return -EIO;
1031	}
1032
1033	return trans->ops->tx(trans, skb, dev_cmd, queue);
1034}
1035
1036static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1037				     int ssn, struct sk_buff_head *skbs)
 
 
 
 
 
 
 
 
 
 
 
 
1038{
1039	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1040		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1041		return;
1042	}
1043
1044	trans->ops->reclaim(trans, queue, ssn, skbs);
1045}
1046
1047static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1048					 bool configure_scd)
1049{
1050	trans->ops->txq_disable(trans, queue, configure_scd);
1051}
1052
1053static inline void
1054iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1055			 const struct iwl_trans_txq_scd_cfg *cfg,
1056			 unsigned int queue_wdg_timeout)
1057{
1058	might_sleep();
1059
1060	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1061		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063	}
1064
1065	trans->ops->txq_enable(trans, queue, ssn, cfg, queue_wdg_timeout);
 
1066}
1067
1068static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1069						 int queue, bool shared_mode)
1070{
1071	if (trans->ops->txq_set_shared_mode)
1072		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1073}
1074
1075static inline dma_addr_t iwl_trans_get_txq_byte_table(struct iwl_trans *trans,
1076						      int queue)
1077{
1078	/* we should never be called if the trans doesn't support it */
1079	BUG_ON(!trans->ops->get_txq_byte_table);
1080
1081	return trans->ops->get_txq_byte_table(trans, queue);
1082}
1083
1084static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1085					int fifo, int sta_id, int tid,
1086					int frame_limit, u16 ssn,
1087					unsigned int queue_wdg_timeout)
1088{
1089	struct iwl_trans_txq_scd_cfg cfg = {
1090		.fifo = fifo,
1091		.sta_id = sta_id,
1092		.tid = tid,
1093		.frame_limit = frame_limit,
1094		.aggregate = sta_id >= 0,
1095	};
1096
1097	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1098}
1099
1100static inline
1101void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1102			     unsigned int queue_wdg_timeout)
1103{
1104	struct iwl_trans_txq_scd_cfg cfg = {
1105		.fifo = fifo,
1106		.sta_id = -1,
1107		.tid = IWL_MAX_TID_COUNT,
1108		.frame_limit = IWL_FRAME_LIMIT,
1109		.aggregate = false,
1110	};
1111
1112	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1113}
1114
1115static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1116					      unsigned long txqs,
1117					      bool freeze)
1118{
1119	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1120		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1121		return;
1122	}
1123
1124	if (trans->ops->freeze_txq_timer)
1125		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1126}
1127
1128static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1129					    bool block)
1130{
1131	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
 
 
 
 
1132		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1133		return;
1134	}
1135
1136	if (trans->ops->block_txq_ptrs)
1137		trans->ops->block_txq_ptrs(trans, block);
1138}
1139
1140static inline int iwl_trans_wait_tx_queue_empty(struct iwl_trans *trans,
1141						u32 txqs)
1142{
 
 
 
1143	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1144		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1145		return -EIO;
1146	}
1147
1148	return trans->ops->wait_tx_queue_empty(trans, txqs);
1149}
1150
1151static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1152{
1153	trans->ops->write8(trans, ofs, val);
1154}
1155
1156static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1157{
1158	trans->ops->write32(trans, ofs, val);
1159}
1160
1161static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1162{
1163	return trans->ops->read32(trans, ofs);
1164}
1165
1166static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1167{
1168	return trans->ops->read_prph(trans, ofs);
1169}
1170
1171static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1172					u32 val)
1173{
1174	return trans->ops->write_prph(trans, ofs, val);
1175}
1176
1177static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1178				     void *buf, int dwords)
1179{
1180	return trans->ops->read_mem(trans, addr, buf, dwords);
1181}
1182
1183#define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1184	do {								      \
1185		if (__builtin_constant_p(bufsize))			      \
1186			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1187		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1188	} while (0)
1189
 
 
 
 
 
 
 
 
 
1190static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1191{
1192	u32 value;
1193
1194	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1195		return 0xa5a5a5a5;
1196
1197	return value;
1198}
1199
1200static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1201				      const void *buf, int dwords)
1202{
1203	return trans->ops->write_mem(trans, addr, buf, dwords);
1204}
1205
1206static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1207					u32 val)
1208{
1209	return iwl_trans_write_mem(trans, addr, &val, 1);
1210}
1211
1212static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1213{
1214	if (trans->ops->set_pmi)
1215		trans->ops->set_pmi(trans, state);
1216}
1217
 
 
 
 
 
 
 
 
1218static inline void
1219iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1220{
1221	trans->ops->set_bits_mask(trans, reg, mask, value);
1222}
1223
1224#define iwl_trans_grab_nic_access(trans, flags)	\
1225	__cond_lock(nic_access,				\
1226		    likely((trans)->ops->grab_nic_access(trans, flags)))
1227
1228static inline void __releases(nic_access)
1229iwl_trans_release_nic_access(struct iwl_trans *trans, unsigned long *flags)
1230{
1231	trans->ops->release_nic_access(trans, flags);
1232	__release(nic_access);
1233}
1234
1235static inline void iwl_trans_fw_error(struct iwl_trans *trans)
1236{
1237	if (WARN_ON_ONCE(!trans->op_mode))
1238		return;
1239
1240	/* prevent double restarts due to the same erroneous FW */
1241	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status))
1242		iwl_op_mode_nic_error(trans->op_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243}
1244
1245/*****************************************************
1246 * transport helper functions
1247 *****************************************************/
1248struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1249				  struct device *dev,
1250				  const struct iwl_cfg *cfg,
1251				  const struct iwl_trans_ops *ops,
1252				  size_t dev_cmd_headroom);
1253void iwl_trans_free(struct iwl_trans *trans);
1254
 
 
 
 
 
1255/*****************************************************
1256* driver (transport) register/unregister functions
1257******************************************************/
1258int __must_check iwl_pci_register_driver(void);
1259void iwl_pci_unregister_driver(void);
 
1260
1261#endif /* __iwl_trans_h__ */