Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/* Framework for finding and configuring PHYs.
3 * Also contains generic PHY driver
4 *
5 * Author: Andy Fleming
6 *
7 * Copyright (c) 2004 Freescale Semiconductor, Inc.
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/acpi.h>
13#include <linux/bitmap.h>
14#include <linux/delay.h>
15#include <linux/errno.h>
16#include <linux/etherdevice.h>
17#include <linux/ethtool.h>
18#include <linux/init.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/list.h>
23#include <linux/mdio.h>
24#include <linux/mii.h>
25#include <linux/mm.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/netdevice.h>
29#include <linux/phy.h>
30#include <linux/phylib_stubs.h>
31#include <linux/phy_led_triggers.h>
32#include <linux/pse-pd/pse.h>
33#include <linux/property.h>
34#include <linux/rtnetlink.h>
35#include <linux/sfp.h>
36#include <linux/skbuff.h>
37#include <linux/slab.h>
38#include <linux/string.h>
39#include <linux/uaccess.h>
40#include <linux/unistd.h>
41
42MODULE_DESCRIPTION("PHY library");
43MODULE_AUTHOR("Andy Fleming");
44MODULE_LICENSE("GPL");
45
46__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
47EXPORT_SYMBOL_GPL(phy_basic_features);
48
49__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
50EXPORT_SYMBOL_GPL(phy_basic_t1_features);
51
52__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
53EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
54
55__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
56EXPORT_SYMBOL_GPL(phy_gbit_features);
57
58__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
59EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
60
61__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
62EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
63
64__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
65EXPORT_SYMBOL_GPL(phy_10gbit_features);
66
67__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
68EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
69
70const int phy_basic_ports_array[3] = {
71 ETHTOOL_LINK_MODE_Autoneg_BIT,
72 ETHTOOL_LINK_MODE_TP_BIT,
73 ETHTOOL_LINK_MODE_MII_BIT,
74};
75EXPORT_SYMBOL_GPL(phy_basic_ports_array);
76
77const int phy_fibre_port_array[1] = {
78 ETHTOOL_LINK_MODE_FIBRE_BIT,
79};
80EXPORT_SYMBOL_GPL(phy_fibre_port_array);
81
82const int phy_all_ports_features_array[7] = {
83 ETHTOOL_LINK_MODE_Autoneg_BIT,
84 ETHTOOL_LINK_MODE_TP_BIT,
85 ETHTOOL_LINK_MODE_MII_BIT,
86 ETHTOOL_LINK_MODE_FIBRE_BIT,
87 ETHTOOL_LINK_MODE_AUI_BIT,
88 ETHTOOL_LINK_MODE_BNC_BIT,
89 ETHTOOL_LINK_MODE_Backplane_BIT,
90};
91EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
92
93const int phy_10_100_features_array[4] = {
94 ETHTOOL_LINK_MODE_10baseT_Half_BIT,
95 ETHTOOL_LINK_MODE_10baseT_Full_BIT,
96 ETHTOOL_LINK_MODE_100baseT_Half_BIT,
97 ETHTOOL_LINK_MODE_100baseT_Full_BIT,
98};
99EXPORT_SYMBOL_GPL(phy_10_100_features_array);
100
101const int phy_basic_t1_features_array[3] = {
102 ETHTOOL_LINK_MODE_TP_BIT,
103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
105};
106EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
107
108const int phy_basic_t1s_p2mp_features_array[2] = {
109 ETHTOOL_LINK_MODE_TP_BIT,
110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
111};
112EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
113
114const int phy_gbit_features_array[2] = {
115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
117};
118EXPORT_SYMBOL_GPL(phy_gbit_features_array);
119
120const int phy_10gbit_features_array[1] = {
121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122};
123EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
124
125static const int phy_10gbit_fec_features_array[1] = {
126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
127};
128
129__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
130EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
131
132static const int phy_10gbit_full_features_array[] = {
133 ETHTOOL_LINK_MODE_10baseT_Full_BIT,
134 ETHTOOL_LINK_MODE_100baseT_Full_BIT,
135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
137};
138
139static const int phy_eee_cap1_features_array[] = {
140 ETHTOOL_LINK_MODE_100baseT_Full_BIT,
141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
146};
147
148__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
149EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
150
151static void features_init(void)
152{
153 /* 10/100 half/full*/
154 linkmode_set_bit_array(phy_basic_ports_array,
155 ARRAY_SIZE(phy_basic_ports_array),
156 phy_basic_features);
157 linkmode_set_bit_array(phy_10_100_features_array,
158 ARRAY_SIZE(phy_10_100_features_array),
159 phy_basic_features);
160
161 /* 100 full, TP */
162 linkmode_set_bit_array(phy_basic_t1_features_array,
163 ARRAY_SIZE(phy_basic_t1_features_array),
164 phy_basic_t1_features);
165
166 /* 10 half, P2MP, TP */
167 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
168 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
169 phy_basic_t1s_p2mp_features);
170
171 /* 10/100 half/full + 1000 half/full */
172 linkmode_set_bit_array(phy_basic_ports_array,
173 ARRAY_SIZE(phy_basic_ports_array),
174 phy_gbit_features);
175 linkmode_set_bit_array(phy_10_100_features_array,
176 ARRAY_SIZE(phy_10_100_features_array),
177 phy_gbit_features);
178 linkmode_set_bit_array(phy_gbit_features_array,
179 ARRAY_SIZE(phy_gbit_features_array),
180 phy_gbit_features);
181
182 /* 10/100 half/full + 1000 half/full + fibre*/
183 linkmode_set_bit_array(phy_basic_ports_array,
184 ARRAY_SIZE(phy_basic_ports_array),
185 phy_gbit_fibre_features);
186 linkmode_set_bit_array(phy_10_100_features_array,
187 ARRAY_SIZE(phy_10_100_features_array),
188 phy_gbit_fibre_features);
189 linkmode_set_bit_array(phy_gbit_features_array,
190 ARRAY_SIZE(phy_gbit_features_array),
191 phy_gbit_fibre_features);
192 linkmode_set_bit_array(phy_fibre_port_array,
193 ARRAY_SIZE(phy_fibre_port_array),
194 phy_gbit_fibre_features);
195
196 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
197 linkmode_set_bit_array(phy_all_ports_features_array,
198 ARRAY_SIZE(phy_all_ports_features_array),
199 phy_gbit_all_ports_features);
200 linkmode_set_bit_array(phy_10_100_features_array,
201 ARRAY_SIZE(phy_10_100_features_array),
202 phy_gbit_all_ports_features);
203 linkmode_set_bit_array(phy_gbit_features_array,
204 ARRAY_SIZE(phy_gbit_features_array),
205 phy_gbit_all_ports_features);
206
207 /* 10/100 half/full + 1000 half/full + 10G full*/
208 linkmode_set_bit_array(phy_all_ports_features_array,
209 ARRAY_SIZE(phy_all_ports_features_array),
210 phy_10gbit_features);
211 linkmode_set_bit_array(phy_10_100_features_array,
212 ARRAY_SIZE(phy_10_100_features_array),
213 phy_10gbit_features);
214 linkmode_set_bit_array(phy_gbit_features_array,
215 ARRAY_SIZE(phy_gbit_features_array),
216 phy_10gbit_features);
217 linkmode_set_bit_array(phy_10gbit_features_array,
218 ARRAY_SIZE(phy_10gbit_features_array),
219 phy_10gbit_features);
220
221 /* 10/100/1000/10G full */
222 linkmode_set_bit_array(phy_all_ports_features_array,
223 ARRAY_SIZE(phy_all_ports_features_array),
224 phy_10gbit_full_features);
225 linkmode_set_bit_array(phy_10gbit_full_features_array,
226 ARRAY_SIZE(phy_10gbit_full_features_array),
227 phy_10gbit_full_features);
228 /* 10G FEC only */
229 linkmode_set_bit_array(phy_10gbit_fec_features_array,
230 ARRAY_SIZE(phy_10gbit_fec_features_array),
231 phy_10gbit_fec_features);
232 linkmode_set_bit_array(phy_eee_cap1_features_array,
233 ARRAY_SIZE(phy_eee_cap1_features_array),
234 phy_eee_cap1_features);
235
236}
237
238void phy_device_free(struct phy_device *phydev)
239{
240 put_device(&phydev->mdio.dev);
241}
242EXPORT_SYMBOL(phy_device_free);
243
244static void phy_mdio_device_free(struct mdio_device *mdiodev)
245{
246 struct phy_device *phydev;
247
248 phydev = container_of(mdiodev, struct phy_device, mdio);
249 phy_device_free(phydev);
250}
251
252static void phy_device_release(struct device *dev)
253{
254 fwnode_handle_put(dev->fwnode);
255 kfree(to_phy_device(dev));
256}
257
258static void phy_mdio_device_remove(struct mdio_device *mdiodev)
259{
260 struct phy_device *phydev;
261
262 phydev = container_of(mdiodev, struct phy_device, mdio);
263 phy_device_remove(phydev);
264}
265
266static struct phy_driver genphy_driver;
267
268static LIST_HEAD(phy_fixup_list);
269static DEFINE_MUTEX(phy_fixup_lock);
270
271static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
272{
273 struct device_driver *drv = phydev->mdio.dev.driver;
274 struct phy_driver *phydrv = to_phy_driver(drv);
275 struct net_device *netdev = phydev->attached_dev;
276
277 if (!drv || !phydrv->suspend)
278 return false;
279
280 /* PHY not attached? May suspend if the PHY has not already been
281 * suspended as part of a prior call to phy_disconnect() ->
282 * phy_detach() -> phy_suspend() because the parent netdev might be the
283 * MDIO bus driver and clock gated at this point.
284 */
285 if (!netdev)
286 goto out;
287
288 if (netdev->wol_enabled)
289 return false;
290
291 /* As long as not all affected network drivers support the
292 * wol_enabled flag, let's check for hints that WoL is enabled.
293 * Don't suspend PHY if the attached netdev parent may wake up.
294 * The parent may point to a PCI device, as in tg3 driver.
295 */
296 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
297 return false;
298
299 /* Also don't suspend PHY if the netdev itself may wakeup. This
300 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
301 * e.g. SoC devices.
302 */
303 if (device_may_wakeup(&netdev->dev))
304 return false;
305
306out:
307 return !phydev->suspended;
308}
309
310static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
311{
312 struct phy_device *phydev = to_phy_device(dev);
313
314 if (phydev->mac_managed_pm)
315 return 0;
316
317 /* Wakeup interrupts may occur during the system sleep transition when
318 * the PHY is inaccessible. Set flag to postpone handling until the PHY
319 * has resumed. Wait for concurrent interrupt handler to complete.
320 */
321 if (phy_interrupt_is_valid(phydev)) {
322 phydev->irq_suspended = 1;
323 synchronize_irq(phydev->irq);
324 }
325
326 /* We must stop the state machine manually, otherwise it stops out of
327 * control, possibly with the phydev->lock held. Upon resume, netdev
328 * may call phy routines that try to grab the same lock, and that may
329 * lead to a deadlock.
330 */
331 if (phydev->attached_dev && phydev->adjust_link)
332 phy_stop_machine(phydev);
333
334 if (!mdio_bus_phy_may_suspend(phydev))
335 return 0;
336
337 phydev->suspended_by_mdio_bus = 1;
338
339 return phy_suspend(phydev);
340}
341
342static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
343{
344 struct phy_device *phydev = to_phy_device(dev);
345 int ret;
346
347 if (phydev->mac_managed_pm)
348 return 0;
349
350 if (!phydev->suspended_by_mdio_bus)
351 goto no_resume;
352
353 phydev->suspended_by_mdio_bus = 0;
354
355 /* If we managed to get here with the PHY state machine in a state
356 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
357 * that something went wrong and we should most likely be using
358 * MAC managed PM, but we are not.
359 */
360 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
361 phydev->state != PHY_UP);
362
363 ret = phy_init_hw(phydev);
364 if (ret < 0)
365 return ret;
366
367 ret = phy_resume(phydev);
368 if (ret < 0)
369 return ret;
370no_resume:
371 if (phy_interrupt_is_valid(phydev)) {
372 phydev->irq_suspended = 0;
373 synchronize_irq(phydev->irq);
374
375 /* Rerun interrupts which were postponed by phy_interrupt()
376 * because they occurred during the system sleep transition.
377 */
378 if (phydev->irq_rerun) {
379 phydev->irq_rerun = 0;
380 enable_irq(phydev->irq);
381 irq_wake_thread(phydev->irq, phydev);
382 }
383 }
384
385 if (phydev->attached_dev && phydev->adjust_link)
386 phy_start_machine(phydev);
387
388 return 0;
389}
390
391static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
392 mdio_bus_phy_resume);
393
394/**
395 * phy_register_fixup - creates a new phy_fixup and adds it to the list
396 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
397 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
398 * It can also be PHY_ANY_UID
399 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
400 * comparison
401 * @run: The actual code to be run when a matching PHY is found
402 */
403int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
404 int (*run)(struct phy_device *))
405{
406 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
407
408 if (!fixup)
409 return -ENOMEM;
410
411 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
412 fixup->phy_uid = phy_uid;
413 fixup->phy_uid_mask = phy_uid_mask;
414 fixup->run = run;
415
416 mutex_lock(&phy_fixup_lock);
417 list_add_tail(&fixup->list, &phy_fixup_list);
418 mutex_unlock(&phy_fixup_lock);
419
420 return 0;
421}
422EXPORT_SYMBOL(phy_register_fixup);
423
424/* Registers a fixup to be run on any PHY with the UID in phy_uid */
425int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
426 int (*run)(struct phy_device *))
427{
428 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
429}
430EXPORT_SYMBOL(phy_register_fixup_for_uid);
431
432/* Registers a fixup to be run on the PHY with id string bus_id */
433int phy_register_fixup_for_id(const char *bus_id,
434 int (*run)(struct phy_device *))
435{
436 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
437}
438EXPORT_SYMBOL(phy_register_fixup_for_id);
439
440/**
441 * phy_unregister_fixup - remove a phy_fixup from the list
442 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
443 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
444 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
445 */
446int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
447{
448 struct list_head *pos, *n;
449 struct phy_fixup *fixup;
450 int ret;
451
452 ret = -ENODEV;
453
454 mutex_lock(&phy_fixup_lock);
455 list_for_each_safe(pos, n, &phy_fixup_list) {
456 fixup = list_entry(pos, struct phy_fixup, list);
457
458 if ((!strcmp(fixup->bus_id, bus_id)) &&
459 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
460 list_del(&fixup->list);
461 kfree(fixup);
462 ret = 0;
463 break;
464 }
465 }
466 mutex_unlock(&phy_fixup_lock);
467
468 return ret;
469}
470EXPORT_SYMBOL(phy_unregister_fixup);
471
472/* Unregisters a fixup of any PHY with the UID in phy_uid */
473int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
474{
475 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
476}
477EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
478
479/* Unregisters a fixup of the PHY with id string bus_id */
480int phy_unregister_fixup_for_id(const char *bus_id)
481{
482 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
483}
484EXPORT_SYMBOL(phy_unregister_fixup_for_id);
485
486/* Returns 1 if fixup matches phydev in bus_id and phy_uid.
487 * Fixups can be set to match any in one or more fields.
488 */
489static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
490{
491 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
492 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
493 return 0;
494
495 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
496 fixup->phy_uid_mask))
497 if (fixup->phy_uid != PHY_ANY_UID)
498 return 0;
499
500 return 1;
501}
502
503/* Runs any matching fixups for this phydev */
504static int phy_scan_fixups(struct phy_device *phydev)
505{
506 struct phy_fixup *fixup;
507
508 mutex_lock(&phy_fixup_lock);
509 list_for_each_entry(fixup, &phy_fixup_list, list) {
510 if (phy_needs_fixup(phydev, fixup)) {
511 int err = fixup->run(phydev);
512
513 if (err < 0) {
514 mutex_unlock(&phy_fixup_lock);
515 return err;
516 }
517 phydev->has_fixups = true;
518 }
519 }
520 mutex_unlock(&phy_fixup_lock);
521
522 return 0;
523}
524
525static int phy_bus_match(struct device *dev, struct device_driver *drv)
526{
527 struct phy_device *phydev = to_phy_device(dev);
528 struct phy_driver *phydrv = to_phy_driver(drv);
529 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
530 int i;
531
532 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
533 return 0;
534
535 if (phydrv->match_phy_device)
536 return phydrv->match_phy_device(phydev);
537
538 if (phydev->is_c45) {
539 for (i = 1; i < num_ids; i++) {
540 if (phydev->c45_ids.device_ids[i] == 0xffffffff)
541 continue;
542
543 if (phy_id_compare(phydev->c45_ids.device_ids[i],
544 phydrv->phy_id, phydrv->phy_id_mask))
545 return 1;
546 }
547 return 0;
548 } else {
549 return phy_id_compare(phydev->phy_id, phydrv->phy_id,
550 phydrv->phy_id_mask);
551 }
552}
553
554static ssize_t
555phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
556{
557 struct phy_device *phydev = to_phy_device(dev);
558
559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
560}
561static DEVICE_ATTR_RO(phy_id);
562
563static ssize_t
564phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
565{
566 struct phy_device *phydev = to_phy_device(dev);
567 const char *mode = NULL;
568
569 if (phy_is_internal(phydev))
570 mode = "internal";
571 else
572 mode = phy_modes(phydev->interface);
573
574 return sysfs_emit(buf, "%s\n", mode);
575}
576static DEVICE_ATTR_RO(phy_interface);
577
578static ssize_t
579phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
580 char *buf)
581{
582 struct phy_device *phydev = to_phy_device(dev);
583
584 return sysfs_emit(buf, "%d\n", phydev->has_fixups);
585}
586static DEVICE_ATTR_RO(phy_has_fixups);
587
588static ssize_t phy_dev_flags_show(struct device *dev,
589 struct device_attribute *attr,
590 char *buf)
591{
592 struct phy_device *phydev = to_phy_device(dev);
593
594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
595}
596static DEVICE_ATTR_RO(phy_dev_flags);
597
598static struct attribute *phy_dev_attrs[] = {
599 &dev_attr_phy_id.attr,
600 &dev_attr_phy_interface.attr,
601 &dev_attr_phy_has_fixups.attr,
602 &dev_attr_phy_dev_flags.attr,
603 NULL,
604};
605ATTRIBUTE_GROUPS(phy_dev);
606
607static const struct device_type mdio_bus_phy_type = {
608 .name = "PHY",
609 .groups = phy_dev_groups,
610 .release = phy_device_release,
611 .pm = pm_ptr(&mdio_bus_phy_pm_ops),
612};
613
614static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
615{
616 int ret;
617
618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
619 MDIO_ID_ARGS(phy_id));
620 /* We only check for failures in executing the usermode binary,
621 * not whether a PHY driver module exists for the PHY ID.
622 * Accept -ENOENT because this may occur in case no initramfs exists,
623 * then modprobe isn't available.
624 */
625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
627 ret, (unsigned long)phy_id);
628 return ret;
629 }
630
631 return 0;
632}
633
634struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
635 bool is_c45,
636 struct phy_c45_device_ids *c45_ids)
637{
638 struct phy_device *dev;
639 struct mdio_device *mdiodev;
640 int ret = 0;
641
642 /* We allocate the device, and initialize the default values */
643 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
644 if (!dev)
645 return ERR_PTR(-ENOMEM);
646
647 mdiodev = &dev->mdio;
648 mdiodev->dev.parent = &bus->dev;
649 mdiodev->dev.bus = &mdio_bus_type;
650 mdiodev->dev.type = &mdio_bus_phy_type;
651 mdiodev->bus = bus;
652 mdiodev->bus_match = phy_bus_match;
653 mdiodev->addr = addr;
654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
655 mdiodev->device_free = phy_mdio_device_free;
656 mdiodev->device_remove = phy_mdio_device_remove;
657 mdiodev->reset_state = -1;
658
659 dev->speed = SPEED_UNKNOWN;
660 dev->duplex = DUPLEX_UNKNOWN;
661 dev->pause = 0;
662 dev->asym_pause = 0;
663 dev->link = 0;
664 dev->port = PORT_TP;
665 dev->interface = PHY_INTERFACE_MODE_GMII;
666
667 dev->autoneg = AUTONEG_ENABLE;
668
669 dev->pma_extable = -ENODATA;
670 dev->is_c45 = is_c45;
671 dev->phy_id = phy_id;
672 if (c45_ids)
673 dev->c45_ids = *c45_ids;
674 dev->irq = bus->irq[addr];
675
676 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
677 device_initialize(&mdiodev->dev);
678
679 dev->state = PHY_DOWN;
680 INIT_LIST_HEAD(&dev->leds);
681
682 mutex_init(&dev->lock);
683 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
684
685 /* Request the appropriate module unconditionally; don't
686 * bother trying to do so only if it isn't already loaded,
687 * because that gets complicated. A hotplug event would have
688 * done an unconditional modprobe anyway.
689 * We don't do normal hotplug because it won't work for MDIO
690 * -- because it relies on the device staying around for long
691 * enough for the driver to get loaded. With MDIO, the NIC
692 * driver will get bored and give up as soon as it finds that
693 * there's no driver _already_ loaded.
694 */
695 if (is_c45 && c45_ids) {
696 const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
697 int i;
698
699 for (i = 1; i < num_ids; i++) {
700 if (c45_ids->device_ids[i] == 0xffffffff)
701 continue;
702
703 ret = phy_request_driver_module(dev,
704 c45_ids->device_ids[i]);
705 if (ret)
706 break;
707 }
708 } else {
709 ret = phy_request_driver_module(dev, phy_id);
710 }
711
712 if (ret) {
713 put_device(&mdiodev->dev);
714 dev = ERR_PTR(ret);
715 }
716
717 return dev;
718}
719EXPORT_SYMBOL(phy_device_create);
720
721/* phy_c45_probe_present - checks to see if a MMD is present in the package
722 * @bus: the target MII bus
723 * @prtad: PHY package address on the MII bus
724 * @devad: PHY device (MMD) address
725 *
726 * Read the MDIO_STAT2 register, and check whether a device is responding
727 * at this address.
728 *
729 * Returns: negative error number on bus access error, zero if no device
730 * is responding, or positive if a device is present.
731 */
732static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
733{
734 int stat2;
735
736 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
737 if (stat2 < 0)
738 return stat2;
739
740 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
741}
742
743/* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
744 * @bus: the target MII bus
745 * @addr: PHY address on the MII bus
746 * @dev_addr: MMD address in the PHY.
747 * @devices_in_package: where to store the devices in package information.
748 *
749 * Description: reads devices in package registers of a MMD at @dev_addr
750 * from PHY at @addr on @bus.
751 *
752 * Returns: 0 on success, -EIO on failure.
753 */
754static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
755 u32 *devices_in_package)
756{
757 int phy_reg;
758
759 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
760 if (phy_reg < 0)
761 return -EIO;
762 *devices_in_package = phy_reg << 16;
763
764 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
765 if (phy_reg < 0)
766 return -EIO;
767 *devices_in_package |= phy_reg;
768
769 return 0;
770}
771
772/**
773 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
774 * @bus: the target MII bus
775 * @addr: PHY address on the MII bus
776 * @c45_ids: where to store the c45 ID information.
777 *
778 * Read the PHY "devices in package". If this appears to be valid, read
779 * the PHY identifiers for each device. Return the "devices in package"
780 * and identifiers in @c45_ids.
781 *
782 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
783 * the "devices in package" is invalid.
784 */
785static int get_phy_c45_ids(struct mii_bus *bus, int addr,
786 struct phy_c45_device_ids *c45_ids)
787{
788 const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
789 u32 devs_in_pkg = 0;
790 int i, ret, phy_reg;
791
792 /* Find first non-zero Devices In package. Device zero is reserved
793 * for 802.3 c45 complied PHYs, so don't probe it at first.
794 */
795 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
796 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
797 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
798 /* Check that there is a device present at this
799 * address before reading the devices-in-package
800 * register to avoid reading garbage from the PHY.
801 * Some PHYs (88x3310) vendor space is not IEEE802.3
802 * compliant.
803 */
804 ret = phy_c45_probe_present(bus, addr, i);
805 if (ret < 0)
806 return -EIO;
807
808 if (!ret)
809 continue;
810 }
811 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
812 if (phy_reg < 0)
813 return -EIO;
814 }
815
816 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
817 /* If mostly Fs, there is no device there, then let's probe
818 * MMD 0, as some 10G PHYs have zero Devices In package,
819 * e.g. Cortina CS4315/CS4340 PHY.
820 */
821 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
822 if (phy_reg < 0)
823 return -EIO;
824
825 /* no device there, let's get out of here */
826 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
827 return -ENODEV;
828 }
829
830 /* Now probe Device Identifiers for each device present. */
831 for (i = 1; i < num_ids; i++) {
832 if (!(devs_in_pkg & (1 << i)))
833 continue;
834
835 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
836 /* Probe the "Device Present" bits for the vendor MMDs
837 * to ignore these if they do not contain IEEE 802.3
838 * registers.
839 */
840 ret = phy_c45_probe_present(bus, addr, i);
841 if (ret < 0)
842 return ret;
843
844 if (!ret)
845 continue;
846 }
847
848 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
849 if (phy_reg < 0)
850 return -EIO;
851 c45_ids->device_ids[i] = phy_reg << 16;
852
853 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
854 if (phy_reg < 0)
855 return -EIO;
856 c45_ids->device_ids[i] |= phy_reg;
857 }
858
859 c45_ids->devices_in_package = devs_in_pkg;
860 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */
861 c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
862
863 return 0;
864}
865
866/**
867 * get_phy_c22_id - reads the specified addr for its clause 22 ID.
868 * @bus: the target MII bus
869 * @addr: PHY address on the MII bus
870 * @phy_id: where to store the ID retrieved.
871 *
872 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
873 * placing it in @phy_id. Return zero on successful read and the ID is
874 * valid, %-EIO on bus access error, or %-ENODEV if no device responds
875 * or invalid ID.
876 */
877static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
878{
879 int phy_reg;
880
881 /* Grab the bits from PHYIR1, and put them in the upper half */
882 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
883 if (phy_reg < 0) {
884 /* returning -ENODEV doesn't stop bus scanning */
885 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
886 }
887
888 *phy_id = phy_reg << 16;
889
890 /* Grab the bits from PHYIR2, and put them in the lower half */
891 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
892 if (phy_reg < 0) {
893 /* returning -ENODEV doesn't stop bus scanning */
894 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
895 }
896
897 *phy_id |= phy_reg;
898
899 /* If the phy_id is mostly Fs, there is no device there */
900 if ((*phy_id & 0x1fffffff) == 0x1fffffff)
901 return -ENODEV;
902
903 return 0;
904}
905
906/* Extract the phy ID from the compatible string of the form
907 * ethernet-phy-idAAAA.BBBB.
908 */
909int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
910{
911 unsigned int upper, lower;
912 const char *cp;
913 int ret;
914
915 ret = fwnode_property_read_string(fwnode, "compatible", &cp);
916 if (ret)
917 return ret;
918
919 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
920 return -EINVAL;
921
922 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
923 return 0;
924}
925EXPORT_SYMBOL(fwnode_get_phy_id);
926
927/**
928 * get_phy_device - reads the specified PHY device and returns its @phy_device
929 * struct
930 * @bus: the target MII bus
931 * @addr: PHY address on the MII bus
932 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
933 *
934 * Probe for a PHY at @addr on @bus.
935 *
936 * When probing for a clause 22 PHY, then read the ID registers. If we find
937 * a valid ID, allocate and return a &struct phy_device.
938 *
939 * When probing for a clause 45 PHY, read the "devices in package" registers.
940 * If the "devices in package" appears valid, read the ID registers for each
941 * MMD, allocate and return a &struct phy_device.
942 *
943 * Returns an allocated &struct phy_device on success, %-ENODEV if there is
944 * no PHY present, or %-EIO on bus access error.
945 */
946struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
947{
948 struct phy_c45_device_ids c45_ids;
949 u32 phy_id = 0;
950 int r;
951
952 c45_ids.devices_in_package = 0;
953 c45_ids.mmds_present = 0;
954 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
955
956 if (is_c45)
957 r = get_phy_c45_ids(bus, addr, &c45_ids);
958 else
959 r = get_phy_c22_id(bus, addr, &phy_id);
960
961 if (r)
962 return ERR_PTR(r);
963
964 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
965 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
966 * probe with C45 to see if we're able to get a valid PHY ID in the C45
967 * space, if successful, create the C45 PHY device.
968 */
969 if (!is_c45 && phy_id == 0 && bus->read_c45) {
970 r = get_phy_c45_ids(bus, addr, &c45_ids);
971 if (!r)
972 return phy_device_create(bus, addr, phy_id,
973 true, &c45_ids);
974 }
975
976 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
977}
978EXPORT_SYMBOL(get_phy_device);
979
980/**
981 * phy_device_register - Register the phy device on the MDIO bus
982 * @phydev: phy_device structure to be added to the MDIO bus
983 */
984int phy_device_register(struct phy_device *phydev)
985{
986 int err;
987
988 err = mdiobus_register_device(&phydev->mdio);
989 if (err)
990 return err;
991
992 /* Deassert the reset signal */
993 phy_device_reset(phydev, 0);
994
995 /* Run all of the fixups for this PHY */
996 err = phy_scan_fixups(phydev);
997 if (err) {
998 phydev_err(phydev, "failed to initialize\n");
999 goto out;
1000 }
1001
1002 err = device_add(&phydev->mdio.dev);
1003 if (err) {
1004 phydev_err(phydev, "failed to add\n");
1005 goto out;
1006 }
1007
1008 return 0;
1009
1010 out:
1011 /* Assert the reset signal */
1012 phy_device_reset(phydev, 1);
1013
1014 mdiobus_unregister_device(&phydev->mdio);
1015 return err;
1016}
1017EXPORT_SYMBOL(phy_device_register);
1018
1019/**
1020 * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1021 * @phydev: phy_device structure to remove
1022 *
1023 * This doesn't free the phy_device itself, it merely reverses the effects
1024 * of phy_device_register(). Use phy_device_free() to free the device
1025 * after calling this function.
1026 */
1027void phy_device_remove(struct phy_device *phydev)
1028{
1029 unregister_mii_timestamper(phydev->mii_ts);
1030 pse_control_put(phydev->psec);
1031
1032 device_del(&phydev->mdio.dev);
1033
1034 /* Assert the reset signal */
1035 phy_device_reset(phydev, 1);
1036
1037 mdiobus_unregister_device(&phydev->mdio);
1038}
1039EXPORT_SYMBOL(phy_device_remove);
1040
1041/**
1042 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1043 * @phydev: phy_device structure to read 802.3-c45 IDs
1044 *
1045 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1046 * the "devices in package" is invalid.
1047 */
1048int phy_get_c45_ids(struct phy_device *phydev)
1049{
1050 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1051 &phydev->c45_ids);
1052}
1053EXPORT_SYMBOL(phy_get_c45_ids);
1054
1055/**
1056 * phy_find_first - finds the first PHY device on the bus
1057 * @bus: the target MII bus
1058 */
1059struct phy_device *phy_find_first(struct mii_bus *bus)
1060{
1061 struct phy_device *phydev;
1062 int addr;
1063
1064 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1065 phydev = mdiobus_get_phy(bus, addr);
1066 if (phydev)
1067 return phydev;
1068 }
1069 return NULL;
1070}
1071EXPORT_SYMBOL(phy_find_first);
1072
1073static void phy_link_change(struct phy_device *phydev, bool up)
1074{
1075 struct net_device *netdev = phydev->attached_dev;
1076
1077 if (up)
1078 netif_carrier_on(netdev);
1079 else
1080 netif_carrier_off(netdev);
1081 phydev->adjust_link(netdev);
1082 if (phydev->mii_ts && phydev->mii_ts->link_state)
1083 phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1084}
1085
1086/**
1087 * phy_prepare_link - prepares the PHY layer to monitor link status
1088 * @phydev: target phy_device struct
1089 * @handler: callback function for link status change notifications
1090 *
1091 * Description: Tells the PHY infrastructure to handle the
1092 * gory details on monitoring link status (whether through
1093 * polling or an interrupt), and to call back to the
1094 * connected device driver when the link status changes.
1095 * If you want to monitor your own link state, don't call
1096 * this function.
1097 */
1098static void phy_prepare_link(struct phy_device *phydev,
1099 void (*handler)(struct net_device *))
1100{
1101 phydev->adjust_link = handler;
1102}
1103
1104/**
1105 * phy_connect_direct - connect an ethernet device to a specific phy_device
1106 * @dev: the network device to connect
1107 * @phydev: the pointer to the phy device
1108 * @handler: callback function for state change notifications
1109 * @interface: PHY device's interface
1110 */
1111int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1112 void (*handler)(struct net_device *),
1113 phy_interface_t interface)
1114{
1115 int rc;
1116
1117 if (!dev)
1118 return -EINVAL;
1119
1120 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1121 if (rc)
1122 return rc;
1123
1124 phy_prepare_link(phydev, handler);
1125 if (phy_interrupt_is_valid(phydev))
1126 phy_request_interrupt(phydev);
1127
1128 return 0;
1129}
1130EXPORT_SYMBOL(phy_connect_direct);
1131
1132/**
1133 * phy_connect - connect an ethernet device to a PHY device
1134 * @dev: the network device to connect
1135 * @bus_id: the id string of the PHY device to connect
1136 * @handler: callback function for state change notifications
1137 * @interface: PHY device's interface
1138 *
1139 * Description: Convenience function for connecting ethernet
1140 * devices to PHY devices. The default behavior is for
1141 * the PHY infrastructure to handle everything, and only notify
1142 * the connected driver when the link status changes. If you
1143 * don't want, or can't use the provided functionality, you may
1144 * choose to call only the subset of functions which provide
1145 * the desired functionality.
1146 */
1147struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1148 void (*handler)(struct net_device *),
1149 phy_interface_t interface)
1150{
1151 struct phy_device *phydev;
1152 struct device *d;
1153 int rc;
1154
1155 /* Search the list of PHY devices on the mdio bus for the
1156 * PHY with the requested name
1157 */
1158 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1159 if (!d) {
1160 pr_err("PHY %s not found\n", bus_id);
1161 return ERR_PTR(-ENODEV);
1162 }
1163 phydev = to_phy_device(d);
1164
1165 rc = phy_connect_direct(dev, phydev, handler, interface);
1166 put_device(d);
1167 if (rc)
1168 return ERR_PTR(rc);
1169
1170 return phydev;
1171}
1172EXPORT_SYMBOL(phy_connect);
1173
1174/**
1175 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1176 * device
1177 * @phydev: target phy_device struct
1178 */
1179void phy_disconnect(struct phy_device *phydev)
1180{
1181 if (phy_is_started(phydev))
1182 phy_stop(phydev);
1183
1184 if (phy_interrupt_is_valid(phydev))
1185 phy_free_interrupt(phydev);
1186
1187 phydev->adjust_link = NULL;
1188
1189 phy_detach(phydev);
1190}
1191EXPORT_SYMBOL(phy_disconnect);
1192
1193/**
1194 * phy_poll_reset - Safely wait until a PHY reset has properly completed
1195 * @phydev: The PHY device to poll
1196 *
1197 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1198 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR
1199 * register must be polled until the BMCR_RESET bit clears.
1200 *
1201 * Furthermore, any attempts to write to PHY registers may have no effect
1202 * or even generate MDIO bus errors until this is complete.
1203 *
1204 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1205 * standard and do not fully reset after the BMCR_RESET bit is set, and may
1206 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an
1207 * effort to support such broken PHYs, this function is separate from the
1208 * standard phy_init_hw() which will zero all the other bits in the BMCR
1209 * and reapply all driver-specific and board-specific fixups.
1210 */
1211static int phy_poll_reset(struct phy_device *phydev)
1212{
1213 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1214 int ret, val;
1215
1216 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1217 50000, 600000, true);
1218 if (ret)
1219 return ret;
1220 /* Some chips (smsc911x) may still need up to another 1ms after the
1221 * BMCR_RESET bit is cleared before they are usable.
1222 */
1223 msleep(1);
1224 return 0;
1225}
1226
1227int phy_init_hw(struct phy_device *phydev)
1228{
1229 int ret = 0;
1230
1231 /* Deassert the reset signal */
1232 phy_device_reset(phydev, 0);
1233
1234 if (!phydev->drv)
1235 return 0;
1236
1237 if (phydev->drv->soft_reset) {
1238 ret = phydev->drv->soft_reset(phydev);
1239 if (ret < 0)
1240 return ret;
1241
1242 /* see comment in genphy_soft_reset for an explanation */
1243 phydev->suspended = 0;
1244 }
1245
1246 ret = phy_scan_fixups(phydev);
1247 if (ret < 0)
1248 return ret;
1249
1250 phy_interface_zero(phydev->possible_interfaces);
1251
1252 if (phydev->drv->config_init) {
1253 ret = phydev->drv->config_init(phydev);
1254 if (ret < 0)
1255 return ret;
1256 }
1257
1258 if (phydev->drv->config_intr) {
1259 ret = phydev->drv->config_intr(phydev);
1260 if (ret < 0)
1261 return ret;
1262 }
1263
1264 return 0;
1265}
1266EXPORT_SYMBOL(phy_init_hw);
1267
1268void phy_attached_info(struct phy_device *phydev)
1269{
1270 phy_attached_print(phydev, NULL);
1271}
1272EXPORT_SYMBOL(phy_attached_info);
1273
1274#define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1275char *phy_attached_info_irq(struct phy_device *phydev)
1276{
1277 char *irq_str;
1278 char irq_num[8];
1279
1280 switch(phydev->irq) {
1281 case PHY_POLL:
1282 irq_str = "POLL";
1283 break;
1284 case PHY_MAC_INTERRUPT:
1285 irq_str = "MAC";
1286 break;
1287 default:
1288 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1289 irq_str = irq_num;
1290 break;
1291 }
1292
1293 return kasprintf(GFP_KERNEL, "%s", irq_str);
1294}
1295EXPORT_SYMBOL(phy_attached_info_irq);
1296
1297void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1298{
1299 const char *unbound = phydev->drv ? "" : "[unbound] ";
1300 char *irq_str = phy_attached_info_irq(phydev);
1301
1302 if (!fmt) {
1303 phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1304 phydev_name(phydev), irq_str);
1305 } else {
1306 va_list ap;
1307
1308 phydev_info(phydev, ATTACHED_FMT, unbound,
1309 phydev_name(phydev), irq_str);
1310
1311 va_start(ap, fmt);
1312 vprintk(fmt, ap);
1313 va_end(ap);
1314 }
1315 kfree(irq_str);
1316}
1317EXPORT_SYMBOL(phy_attached_print);
1318
1319static void phy_sysfs_create_links(struct phy_device *phydev)
1320{
1321 struct net_device *dev = phydev->attached_dev;
1322 int err;
1323
1324 if (!dev)
1325 return;
1326
1327 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1328 "attached_dev");
1329 if (err)
1330 return;
1331
1332 err = sysfs_create_link_nowarn(&dev->dev.kobj,
1333 &phydev->mdio.dev.kobj,
1334 "phydev");
1335 if (err) {
1336 dev_err(&dev->dev, "could not add device link to %s err %d\n",
1337 kobject_name(&phydev->mdio.dev.kobj),
1338 err);
1339 /* non-fatal - some net drivers can use one netdevice
1340 * with more then one phy
1341 */
1342 }
1343
1344 phydev->sysfs_links = true;
1345}
1346
1347static ssize_t
1348phy_standalone_show(struct device *dev, struct device_attribute *attr,
1349 char *buf)
1350{
1351 struct phy_device *phydev = to_phy_device(dev);
1352
1353 return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1354}
1355static DEVICE_ATTR_RO(phy_standalone);
1356
1357/**
1358 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1359 * @upstream: pointer to the phy device
1360 * @bus: sfp bus representing cage being attached
1361 *
1362 * This is used to fill in the sfp_upstream_ops .attach member.
1363 */
1364void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1365{
1366 struct phy_device *phydev = upstream;
1367
1368 if (phydev->attached_dev)
1369 phydev->attached_dev->sfp_bus = bus;
1370 phydev->sfp_bus_attached = true;
1371}
1372EXPORT_SYMBOL(phy_sfp_attach);
1373
1374/**
1375 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1376 * @upstream: pointer to the phy device
1377 * @bus: sfp bus representing cage being attached
1378 *
1379 * This is used to fill in the sfp_upstream_ops .detach member.
1380 */
1381void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1382{
1383 struct phy_device *phydev = upstream;
1384
1385 if (phydev->attached_dev)
1386 phydev->attached_dev->sfp_bus = NULL;
1387 phydev->sfp_bus_attached = false;
1388}
1389EXPORT_SYMBOL(phy_sfp_detach);
1390
1391/**
1392 * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1393 * @phydev: Pointer to phy_device
1394 * @ops: SFP's upstream operations
1395 */
1396int phy_sfp_probe(struct phy_device *phydev,
1397 const struct sfp_upstream_ops *ops)
1398{
1399 struct sfp_bus *bus;
1400 int ret = 0;
1401
1402 if (phydev->mdio.dev.fwnode) {
1403 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1404 if (IS_ERR(bus))
1405 return PTR_ERR(bus);
1406
1407 phydev->sfp_bus = bus;
1408
1409 ret = sfp_bus_add_upstream(bus, phydev, ops);
1410 sfp_bus_put(bus);
1411 }
1412 return ret;
1413}
1414EXPORT_SYMBOL(phy_sfp_probe);
1415
1416/**
1417 * phy_attach_direct - attach a network device to a given PHY device pointer
1418 * @dev: network device to attach
1419 * @phydev: Pointer to phy_device to attach
1420 * @flags: PHY device's dev_flags
1421 * @interface: PHY device's interface
1422 *
1423 * Description: Called by drivers to attach to a particular PHY
1424 * device. The phy_device is found, and properly hooked up
1425 * to the phy_driver. If no driver is attached, then a
1426 * generic driver is used. The phy_device is given a ptr to
1427 * the attaching device, and given a callback for link status
1428 * change. The phy_device is returned to the attaching driver.
1429 * This function takes a reference on the phy device.
1430 */
1431int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1432 u32 flags, phy_interface_t interface)
1433{
1434 struct mii_bus *bus = phydev->mdio.bus;
1435 struct device *d = &phydev->mdio.dev;
1436 struct module *ndev_owner = NULL;
1437 bool using_genphy = false;
1438 int err;
1439
1440 /* For Ethernet device drivers that register their own MDIO bus, we
1441 * will have bus->owner match ndev_mod, so we do not want to increment
1442 * our own module->refcnt here, otherwise we would not be able to
1443 * unload later on.
1444 */
1445 if (dev)
1446 ndev_owner = dev->dev.parent->driver->owner;
1447 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1448 phydev_err(phydev, "failed to get the bus module\n");
1449 return -EIO;
1450 }
1451
1452 get_device(d);
1453
1454 /* Assume that if there is no driver, that it doesn't
1455 * exist, and we should use the genphy driver.
1456 */
1457 if (!d->driver) {
1458 if (phydev->is_c45)
1459 d->driver = &genphy_c45_driver.mdiodrv.driver;
1460 else
1461 d->driver = &genphy_driver.mdiodrv.driver;
1462
1463 using_genphy = true;
1464 }
1465
1466 if (!try_module_get(d->driver->owner)) {
1467 phydev_err(phydev, "failed to get the device driver module\n");
1468 err = -EIO;
1469 goto error_put_device;
1470 }
1471
1472 if (using_genphy) {
1473 err = d->driver->probe(d);
1474 if (err >= 0)
1475 err = device_bind_driver(d);
1476
1477 if (err)
1478 goto error_module_put;
1479 }
1480
1481 if (phydev->attached_dev) {
1482 dev_err(&dev->dev, "PHY already attached\n");
1483 err = -EBUSY;
1484 goto error;
1485 }
1486
1487 phydev->phy_link_change = phy_link_change;
1488 if (dev) {
1489 phydev->attached_dev = dev;
1490 dev->phydev = phydev;
1491
1492 if (phydev->sfp_bus_attached)
1493 dev->sfp_bus = phydev->sfp_bus;
1494 }
1495
1496 /* Some Ethernet drivers try to connect to a PHY device before
1497 * calling register_netdevice() -> netdev_register_kobject() and
1498 * does the dev->dev.kobj initialization. Here we only check for
1499 * success which indicates that the network device kobject is
1500 * ready. Once we do that we still need to keep track of whether
1501 * links were successfully set up or not for phy_detach() to
1502 * remove them accordingly.
1503 */
1504 phydev->sysfs_links = false;
1505
1506 phy_sysfs_create_links(phydev);
1507
1508 if (!phydev->attached_dev) {
1509 err = sysfs_create_file(&phydev->mdio.dev.kobj,
1510 &dev_attr_phy_standalone.attr);
1511 if (err)
1512 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1513 }
1514
1515 phydev->dev_flags |= flags;
1516
1517 phydev->interface = interface;
1518
1519 phydev->state = PHY_READY;
1520
1521 phydev->interrupts = PHY_INTERRUPT_DISABLED;
1522
1523 /* PHYs can request to use poll mode even though they have an
1524 * associated interrupt line. This could be the case if they
1525 * detect a broken interrupt handling.
1526 */
1527 if (phydev->dev_flags & PHY_F_NO_IRQ)
1528 phydev->irq = PHY_POLL;
1529
1530 /* Port is set to PORT_TP by default and the actual PHY driver will set
1531 * it to different value depending on the PHY configuration. If we have
1532 * the generic PHY driver we can't figure it out, thus set the old
1533 * legacy PORT_MII value.
1534 */
1535 if (using_genphy)
1536 phydev->port = PORT_MII;
1537
1538 /* Initial carrier state is off as the phy is about to be
1539 * (re)initialized.
1540 */
1541 if (dev)
1542 netif_carrier_off(phydev->attached_dev);
1543
1544 /* Do initial configuration here, now that
1545 * we have certain key parameters
1546 * (dev_flags and interface)
1547 */
1548 err = phy_init_hw(phydev);
1549 if (err)
1550 goto error;
1551
1552 phy_resume(phydev);
1553 if (!phydev->is_on_sfp_module)
1554 phy_led_triggers_register(phydev);
1555
1556 /**
1557 * If the external phy used by current mac interface is managed by
1558 * another mac interface, so we should create a device link between
1559 * phy dev and mac dev.
1560 */
1561 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1562 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1563 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1564
1565 return err;
1566
1567error:
1568 /* phy_detach() does all of the cleanup below */
1569 phy_detach(phydev);
1570 return err;
1571
1572error_module_put:
1573 module_put(d->driver->owner);
1574 d->driver = NULL;
1575error_put_device:
1576 put_device(d);
1577 if (ndev_owner != bus->owner)
1578 module_put(bus->owner);
1579 return err;
1580}
1581EXPORT_SYMBOL(phy_attach_direct);
1582
1583/**
1584 * phy_attach - attach a network device to a particular PHY device
1585 * @dev: network device to attach
1586 * @bus_id: Bus ID of PHY device to attach
1587 * @interface: PHY device's interface
1588 *
1589 * Description: Same as phy_attach_direct() except that a PHY bus_id
1590 * string is passed instead of a pointer to a struct phy_device.
1591 */
1592struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1593 phy_interface_t interface)
1594{
1595 struct bus_type *bus = &mdio_bus_type;
1596 struct phy_device *phydev;
1597 struct device *d;
1598 int rc;
1599
1600 if (!dev)
1601 return ERR_PTR(-EINVAL);
1602
1603 /* Search the list of PHY devices on the mdio bus for the
1604 * PHY with the requested name
1605 */
1606 d = bus_find_device_by_name(bus, NULL, bus_id);
1607 if (!d) {
1608 pr_err("PHY %s not found\n", bus_id);
1609 return ERR_PTR(-ENODEV);
1610 }
1611 phydev = to_phy_device(d);
1612
1613 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1614 put_device(d);
1615 if (rc)
1616 return ERR_PTR(rc);
1617
1618 return phydev;
1619}
1620EXPORT_SYMBOL(phy_attach);
1621
1622static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1623 struct device_driver *driver)
1624{
1625 struct device *d = &phydev->mdio.dev;
1626 bool ret = false;
1627
1628 if (!phydev->drv)
1629 return ret;
1630
1631 get_device(d);
1632 ret = d->driver == driver;
1633 put_device(d);
1634
1635 return ret;
1636}
1637
1638bool phy_driver_is_genphy(struct phy_device *phydev)
1639{
1640 return phy_driver_is_genphy_kind(phydev,
1641 &genphy_driver.mdiodrv.driver);
1642}
1643EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1644
1645bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1646{
1647 return phy_driver_is_genphy_kind(phydev,
1648 &genphy_c45_driver.mdiodrv.driver);
1649}
1650EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1651
1652/**
1653 * phy_package_join - join a common PHY group
1654 * @phydev: target phy_device struct
1655 * @base_addr: cookie and base PHY address of PHY package for offset
1656 * calculation of global register access
1657 * @priv_size: if non-zero allocate this amount of bytes for private data
1658 *
1659 * This joins a PHY group and provides a shared storage for all phydevs in
1660 * this group. This is intended to be used for packages which contain
1661 * more than one PHY, for example a quad PHY transceiver.
1662 *
1663 * The base_addr parameter serves as cookie which has to have the same values
1664 * for all members of one group and as the base PHY address of the PHY package
1665 * for offset calculation to access generic registers of a PHY package.
1666 * Usually, one of the PHY addresses of the different PHYs in the package
1667 * provides access to these global registers.
1668 * The address which is given here, will be used in the phy_package_read()
1669 * and phy_package_write() convenience functions as base and added to the
1670 * passed offset in those functions.
1671 *
1672 * This will set the shared pointer of the phydev to the shared storage.
1673 * If this is the first call for a this cookie the shared storage will be
1674 * allocated. If priv_size is non-zero, the given amount of bytes are
1675 * allocated for the priv member.
1676 *
1677 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1678 * with the same cookie but a different priv_size is an error.
1679 */
1680int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size)
1681{
1682 struct mii_bus *bus = phydev->mdio.bus;
1683 struct phy_package_shared *shared;
1684 int ret;
1685
1686 if (base_addr < 0 || base_addr >= PHY_MAX_ADDR)
1687 return -EINVAL;
1688
1689 mutex_lock(&bus->shared_lock);
1690 shared = bus->shared[base_addr];
1691 if (!shared) {
1692 ret = -ENOMEM;
1693 shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1694 if (!shared)
1695 goto err_unlock;
1696 if (priv_size) {
1697 shared->priv = kzalloc(priv_size, GFP_KERNEL);
1698 if (!shared->priv)
1699 goto err_free;
1700 shared->priv_size = priv_size;
1701 }
1702 shared->base_addr = base_addr;
1703 refcount_set(&shared->refcnt, 1);
1704 bus->shared[base_addr] = shared;
1705 } else {
1706 ret = -EINVAL;
1707 if (priv_size && priv_size != shared->priv_size)
1708 goto err_unlock;
1709 refcount_inc(&shared->refcnt);
1710 }
1711 mutex_unlock(&bus->shared_lock);
1712
1713 phydev->shared = shared;
1714
1715 return 0;
1716
1717err_free:
1718 kfree(shared);
1719err_unlock:
1720 mutex_unlock(&bus->shared_lock);
1721 return ret;
1722}
1723EXPORT_SYMBOL_GPL(phy_package_join);
1724
1725/**
1726 * phy_package_leave - leave a common PHY group
1727 * @phydev: target phy_device struct
1728 *
1729 * This leaves a PHY group created by phy_package_join(). If this phydev
1730 * was the last user of the shared data between the group, this data is
1731 * freed. Resets the phydev->shared pointer to NULL.
1732 */
1733void phy_package_leave(struct phy_device *phydev)
1734{
1735 struct phy_package_shared *shared = phydev->shared;
1736 struct mii_bus *bus = phydev->mdio.bus;
1737
1738 if (!shared)
1739 return;
1740
1741 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1742 bus->shared[shared->base_addr] = NULL;
1743 mutex_unlock(&bus->shared_lock);
1744 kfree(shared->priv);
1745 kfree(shared);
1746 }
1747
1748 phydev->shared = NULL;
1749}
1750EXPORT_SYMBOL_GPL(phy_package_leave);
1751
1752static void devm_phy_package_leave(struct device *dev, void *res)
1753{
1754 phy_package_leave(*(struct phy_device **)res);
1755}
1756
1757/**
1758 * devm_phy_package_join - resource managed phy_package_join()
1759 * @dev: device that is registering this PHY package
1760 * @phydev: target phy_device struct
1761 * @base_addr: cookie and base PHY address of PHY package for offset
1762 * calculation of global register access
1763 * @priv_size: if non-zero allocate this amount of bytes for private data
1764 *
1765 * Managed phy_package_join(). Shared storage fetched by this function,
1766 * phy_package_leave() is automatically called on driver detach. See
1767 * phy_package_join() for more information.
1768 */
1769int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1770 int base_addr, size_t priv_size)
1771{
1772 struct phy_device **ptr;
1773 int ret;
1774
1775 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1776 GFP_KERNEL);
1777 if (!ptr)
1778 return -ENOMEM;
1779
1780 ret = phy_package_join(phydev, base_addr, priv_size);
1781
1782 if (!ret) {
1783 *ptr = phydev;
1784 devres_add(dev, ptr);
1785 } else {
1786 devres_free(ptr);
1787 }
1788
1789 return ret;
1790}
1791EXPORT_SYMBOL_GPL(devm_phy_package_join);
1792
1793/**
1794 * phy_detach - detach a PHY device from its network device
1795 * @phydev: target phy_device struct
1796 *
1797 * This detaches the phy device from its network device and the phy
1798 * driver, and drops the reference count taken in phy_attach_direct().
1799 */
1800void phy_detach(struct phy_device *phydev)
1801{
1802 struct net_device *dev = phydev->attached_dev;
1803 struct module *ndev_owner = NULL;
1804 struct mii_bus *bus;
1805
1806 if (phydev->devlink)
1807 device_link_del(phydev->devlink);
1808
1809 if (phydev->sysfs_links) {
1810 if (dev)
1811 sysfs_remove_link(&dev->dev.kobj, "phydev");
1812 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1813 }
1814
1815 if (!phydev->attached_dev)
1816 sysfs_remove_file(&phydev->mdio.dev.kobj,
1817 &dev_attr_phy_standalone.attr);
1818
1819 phy_suspend(phydev);
1820 if (dev) {
1821 phydev->attached_dev->phydev = NULL;
1822 phydev->attached_dev = NULL;
1823 }
1824 phydev->phylink = NULL;
1825
1826 if (!phydev->is_on_sfp_module)
1827 phy_led_triggers_unregister(phydev);
1828
1829 if (phydev->mdio.dev.driver)
1830 module_put(phydev->mdio.dev.driver->owner);
1831
1832 /* If the device had no specific driver before (i.e. - it
1833 * was using the generic driver), we unbind the device
1834 * from the generic driver so that there's a chance a
1835 * real driver could be loaded
1836 */
1837 if (phy_driver_is_genphy(phydev) ||
1838 phy_driver_is_genphy_10g(phydev))
1839 device_release_driver(&phydev->mdio.dev);
1840
1841 /* Assert the reset signal */
1842 phy_device_reset(phydev, 1);
1843
1844 /*
1845 * The phydev might go away on the put_device() below, so avoid
1846 * a use-after-free bug by reading the underlying bus first.
1847 */
1848 bus = phydev->mdio.bus;
1849
1850 put_device(&phydev->mdio.dev);
1851 if (dev)
1852 ndev_owner = dev->dev.parent->driver->owner;
1853 if (ndev_owner != bus->owner)
1854 module_put(bus->owner);
1855}
1856EXPORT_SYMBOL(phy_detach);
1857
1858int phy_suspend(struct phy_device *phydev)
1859{
1860 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1861 struct net_device *netdev = phydev->attached_dev;
1862 struct phy_driver *phydrv = phydev->drv;
1863 int ret;
1864
1865 if (phydev->suspended)
1866 return 0;
1867
1868 phy_ethtool_get_wol(phydev, &wol);
1869 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
1870 /* If the device has WOL enabled, we cannot suspend the PHY */
1871 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
1872 return -EBUSY;
1873
1874 if (!phydrv || !phydrv->suspend)
1875 return 0;
1876
1877 ret = phydrv->suspend(phydev);
1878 if (!ret)
1879 phydev->suspended = true;
1880
1881 return ret;
1882}
1883EXPORT_SYMBOL(phy_suspend);
1884
1885int __phy_resume(struct phy_device *phydev)
1886{
1887 struct phy_driver *phydrv = phydev->drv;
1888 int ret;
1889
1890 lockdep_assert_held(&phydev->lock);
1891
1892 if (!phydrv || !phydrv->resume)
1893 return 0;
1894
1895 ret = phydrv->resume(phydev);
1896 if (!ret)
1897 phydev->suspended = false;
1898
1899 return ret;
1900}
1901EXPORT_SYMBOL(__phy_resume);
1902
1903int phy_resume(struct phy_device *phydev)
1904{
1905 int ret;
1906
1907 mutex_lock(&phydev->lock);
1908 ret = __phy_resume(phydev);
1909 mutex_unlock(&phydev->lock);
1910
1911 return ret;
1912}
1913EXPORT_SYMBOL(phy_resume);
1914
1915int phy_loopback(struct phy_device *phydev, bool enable)
1916{
1917 int ret = 0;
1918
1919 if (!phydev->drv)
1920 return -EIO;
1921
1922 mutex_lock(&phydev->lock);
1923
1924 if (enable && phydev->loopback_enabled) {
1925 ret = -EBUSY;
1926 goto out;
1927 }
1928
1929 if (!enable && !phydev->loopback_enabled) {
1930 ret = -EINVAL;
1931 goto out;
1932 }
1933
1934 if (phydev->drv->set_loopback)
1935 ret = phydev->drv->set_loopback(phydev, enable);
1936 else
1937 ret = genphy_loopback(phydev, enable);
1938
1939 if (ret)
1940 goto out;
1941
1942 phydev->loopback_enabled = enable;
1943
1944out:
1945 mutex_unlock(&phydev->lock);
1946 return ret;
1947}
1948EXPORT_SYMBOL(phy_loopback);
1949
1950/**
1951 * phy_reset_after_clk_enable - perform a PHY reset if needed
1952 * @phydev: target phy_device struct
1953 *
1954 * Description: Some PHYs are known to need a reset after their refclk was
1955 * enabled. This function evaluates the flags and perform the reset if it's
1956 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1957 * was reset.
1958 */
1959int phy_reset_after_clk_enable(struct phy_device *phydev)
1960{
1961 if (!phydev || !phydev->drv)
1962 return -ENODEV;
1963
1964 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1965 phy_device_reset(phydev, 1);
1966 phy_device_reset(phydev, 0);
1967 return 1;
1968 }
1969
1970 return 0;
1971}
1972EXPORT_SYMBOL(phy_reset_after_clk_enable);
1973
1974/* Generic PHY support and helper functions */
1975
1976/**
1977 * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1978 * @phydev: target phy_device struct
1979 *
1980 * Description: Writes MII_ADVERTISE with the appropriate values,
1981 * after sanitizing the values to make sure we only advertise
1982 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement
1983 * hasn't changed, and > 0 if it has changed.
1984 */
1985static int genphy_config_advert(struct phy_device *phydev)
1986{
1987 int err, bmsr, changed = 0;
1988 u32 adv;
1989
1990 /* Only allow advertising what this PHY supports */
1991 linkmode_and(phydev->advertising, phydev->advertising,
1992 phydev->supported);
1993
1994 adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1995
1996 /* Setup standard advertisement */
1997 err = phy_modify_changed(phydev, MII_ADVERTISE,
1998 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1999 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
2000 adv);
2001 if (err < 0)
2002 return err;
2003 if (err > 0)
2004 changed = 1;
2005
2006 bmsr = phy_read(phydev, MII_BMSR);
2007 if (bmsr < 0)
2008 return bmsr;
2009
2010 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2011 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2012 * logical 1.
2013 */
2014 if (!(bmsr & BMSR_ESTATEN))
2015 return changed;
2016
2017 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2018
2019 err = phy_modify_changed(phydev, MII_CTRL1000,
2020 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2021 adv);
2022 if (err < 0)
2023 return err;
2024 if (err > 0)
2025 changed = 1;
2026
2027 return changed;
2028}
2029
2030/**
2031 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2032 * @phydev: target phy_device struct
2033 *
2034 * Description: Writes MII_ADVERTISE with the appropriate values,
2035 * after sanitizing the values to make sure we only advertise
2036 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement
2037 * hasn't changed, and > 0 if it has changed. This function is intended
2038 * for Clause 37 1000Base-X mode.
2039 */
2040static int genphy_c37_config_advert(struct phy_device *phydev)
2041{
2042 u16 adv = 0;
2043
2044 /* Only allow advertising what this PHY supports */
2045 linkmode_and(phydev->advertising, phydev->advertising,
2046 phydev->supported);
2047
2048 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2049 phydev->advertising))
2050 adv |= ADVERTISE_1000XFULL;
2051 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2052 phydev->advertising))
2053 adv |= ADVERTISE_1000XPAUSE;
2054 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2055 phydev->advertising))
2056 adv |= ADVERTISE_1000XPSE_ASYM;
2057
2058 return phy_modify_changed(phydev, MII_ADVERTISE,
2059 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2060 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2061 adv);
2062}
2063
2064/**
2065 * genphy_config_eee_advert - disable unwanted eee mode advertisement
2066 * @phydev: target phy_device struct
2067 *
2068 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2069 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2070 * changed, and 1 if it has changed.
2071 */
2072int genphy_config_eee_advert(struct phy_device *phydev)
2073{
2074 int err;
2075
2076 /* Nothing to disable */
2077 if (!phydev->eee_broken_modes)
2078 return 0;
2079
2080 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2081 phydev->eee_broken_modes, 0);
2082 /* If the call failed, we assume that EEE is not supported */
2083 return err < 0 ? 0 : err;
2084}
2085EXPORT_SYMBOL(genphy_config_eee_advert);
2086
2087/**
2088 * genphy_setup_forced - configures/forces speed/duplex from @phydev
2089 * @phydev: target phy_device struct
2090 *
2091 * Description: Configures MII_BMCR to force speed/duplex
2092 * to the values in phydev. Assumes that the values are valid.
2093 * Please see phy_sanitize_settings().
2094 */
2095int genphy_setup_forced(struct phy_device *phydev)
2096{
2097 u16 ctl;
2098
2099 phydev->pause = 0;
2100 phydev->asym_pause = 0;
2101
2102 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2103
2104 return phy_modify(phydev, MII_BMCR,
2105 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2106}
2107EXPORT_SYMBOL(genphy_setup_forced);
2108
2109static int genphy_setup_master_slave(struct phy_device *phydev)
2110{
2111 u16 ctl = 0;
2112
2113 if (!phydev->is_gigabit_capable)
2114 return 0;
2115
2116 switch (phydev->master_slave_set) {
2117 case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2118 ctl |= CTL1000_PREFER_MASTER;
2119 break;
2120 case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2121 break;
2122 case MASTER_SLAVE_CFG_MASTER_FORCE:
2123 ctl |= CTL1000_AS_MASTER;
2124 fallthrough;
2125 case MASTER_SLAVE_CFG_SLAVE_FORCE:
2126 ctl |= CTL1000_ENABLE_MASTER;
2127 break;
2128 case MASTER_SLAVE_CFG_UNKNOWN:
2129 case MASTER_SLAVE_CFG_UNSUPPORTED:
2130 return 0;
2131 default:
2132 phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2133 return -EOPNOTSUPP;
2134 }
2135
2136 return phy_modify_changed(phydev, MII_CTRL1000,
2137 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2138 CTL1000_PREFER_MASTER), ctl);
2139}
2140
2141int genphy_read_master_slave(struct phy_device *phydev)
2142{
2143 int cfg, state;
2144 int val;
2145
2146 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2147 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2148
2149 val = phy_read(phydev, MII_CTRL1000);
2150 if (val < 0)
2151 return val;
2152
2153 if (val & CTL1000_ENABLE_MASTER) {
2154 if (val & CTL1000_AS_MASTER)
2155 cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2156 else
2157 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2158 } else {
2159 if (val & CTL1000_PREFER_MASTER)
2160 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2161 else
2162 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2163 }
2164
2165 val = phy_read(phydev, MII_STAT1000);
2166 if (val < 0)
2167 return val;
2168
2169 if (val & LPA_1000MSFAIL) {
2170 state = MASTER_SLAVE_STATE_ERR;
2171 } else if (phydev->link) {
2172 /* this bits are valid only for active link */
2173 if (val & LPA_1000MSRES)
2174 state = MASTER_SLAVE_STATE_MASTER;
2175 else
2176 state = MASTER_SLAVE_STATE_SLAVE;
2177 } else {
2178 state = MASTER_SLAVE_STATE_UNKNOWN;
2179 }
2180
2181 phydev->master_slave_get = cfg;
2182 phydev->master_slave_state = state;
2183
2184 return 0;
2185}
2186EXPORT_SYMBOL(genphy_read_master_slave);
2187
2188/**
2189 * genphy_restart_aneg - Enable and Restart Autonegotiation
2190 * @phydev: target phy_device struct
2191 */
2192int genphy_restart_aneg(struct phy_device *phydev)
2193{
2194 /* Don't isolate the PHY if we're negotiating */
2195 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2196 BMCR_ANENABLE | BMCR_ANRESTART);
2197}
2198EXPORT_SYMBOL(genphy_restart_aneg);
2199
2200/**
2201 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2202 * @phydev: target phy_device struct
2203 * @restart: whether aneg restart is requested
2204 *
2205 * Check, and restart auto-negotiation if needed.
2206 */
2207int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2208{
2209 int ret;
2210
2211 if (!restart) {
2212 /* Advertisement hasn't changed, but maybe aneg was never on to
2213 * begin with? Or maybe phy was isolated?
2214 */
2215 ret = phy_read(phydev, MII_BMCR);
2216 if (ret < 0)
2217 return ret;
2218
2219 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2220 restart = true;
2221 }
2222
2223 if (restart)
2224 return genphy_restart_aneg(phydev);
2225
2226 return 0;
2227}
2228EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2229
2230/**
2231 * __genphy_config_aneg - restart auto-negotiation or write BMCR
2232 * @phydev: target phy_device struct
2233 * @changed: whether autoneg is requested
2234 *
2235 * Description: If auto-negotiation is enabled, we configure the
2236 * advertising, and then restart auto-negotiation. If it is not
2237 * enabled, then we write the BMCR.
2238 */
2239int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2240{
2241 int err;
2242
2243 err = genphy_c45_an_config_eee_aneg(phydev);
2244 if (err < 0)
2245 return err;
2246 else if (err)
2247 changed = true;
2248
2249 err = genphy_setup_master_slave(phydev);
2250 if (err < 0)
2251 return err;
2252 else if (err)
2253 changed = true;
2254
2255 if (AUTONEG_ENABLE != phydev->autoneg)
2256 return genphy_setup_forced(phydev);
2257
2258 err = genphy_config_advert(phydev);
2259 if (err < 0) /* error */
2260 return err;
2261 else if (err)
2262 changed = true;
2263
2264 return genphy_check_and_restart_aneg(phydev, changed);
2265}
2266EXPORT_SYMBOL(__genphy_config_aneg);
2267
2268/**
2269 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2270 * @phydev: target phy_device struct
2271 *
2272 * Description: If auto-negotiation is enabled, we configure the
2273 * advertising, and then restart auto-negotiation. If it is not
2274 * enabled, then we write the BMCR. This function is intended
2275 * for use with Clause 37 1000Base-X mode.
2276 */
2277int genphy_c37_config_aneg(struct phy_device *phydev)
2278{
2279 int err, changed;
2280
2281 if (phydev->autoneg != AUTONEG_ENABLE)
2282 return genphy_setup_forced(phydev);
2283
2284 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2285 BMCR_SPEED1000);
2286 if (err)
2287 return err;
2288
2289 changed = genphy_c37_config_advert(phydev);
2290 if (changed < 0) /* error */
2291 return changed;
2292
2293 if (!changed) {
2294 /* Advertisement hasn't changed, but maybe aneg was never on to
2295 * begin with? Or maybe phy was isolated?
2296 */
2297 int ctl = phy_read(phydev, MII_BMCR);
2298
2299 if (ctl < 0)
2300 return ctl;
2301
2302 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2303 changed = 1; /* do restart aneg */
2304 }
2305
2306 /* Only restart aneg if we are advertising something different
2307 * than we were before.
2308 */
2309 if (changed > 0)
2310 return genphy_restart_aneg(phydev);
2311
2312 return 0;
2313}
2314EXPORT_SYMBOL(genphy_c37_config_aneg);
2315
2316/**
2317 * genphy_aneg_done - return auto-negotiation status
2318 * @phydev: target phy_device struct
2319 *
2320 * Description: Reads the status register and returns 0 either if
2321 * auto-negotiation is incomplete, or if there was an error.
2322 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2323 */
2324int genphy_aneg_done(struct phy_device *phydev)
2325{
2326 int retval = phy_read(phydev, MII_BMSR);
2327
2328 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2329}
2330EXPORT_SYMBOL(genphy_aneg_done);
2331
2332/**
2333 * genphy_update_link - update link status in @phydev
2334 * @phydev: target phy_device struct
2335 *
2336 * Description: Update the value in phydev->link to reflect the
2337 * current link value. In order to do this, we need to read
2338 * the status register twice, keeping the second value.
2339 */
2340int genphy_update_link(struct phy_device *phydev)
2341{
2342 int status = 0, bmcr;
2343
2344 bmcr = phy_read(phydev, MII_BMCR);
2345 if (bmcr < 0)
2346 return bmcr;
2347
2348 /* Autoneg is being started, therefore disregard BMSR value and
2349 * report link as down.
2350 */
2351 if (bmcr & BMCR_ANRESTART)
2352 goto done;
2353
2354 /* The link state is latched low so that momentary link
2355 * drops can be detected. Do not double-read the status
2356 * in polling mode to detect such short link drops except
2357 * the link was already down.
2358 */
2359 if (!phy_polling_mode(phydev) || !phydev->link) {
2360 status = phy_read(phydev, MII_BMSR);
2361 if (status < 0)
2362 return status;
2363 else if (status & BMSR_LSTATUS)
2364 goto done;
2365 }
2366
2367 /* Read link and autonegotiation status */
2368 status = phy_read(phydev, MII_BMSR);
2369 if (status < 0)
2370 return status;
2371done:
2372 phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2373 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2374
2375 /* Consider the case that autoneg was started and "aneg complete"
2376 * bit has been reset, but "link up" bit not yet.
2377 */
2378 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2379 phydev->link = 0;
2380
2381 return 0;
2382}
2383EXPORT_SYMBOL(genphy_update_link);
2384
2385int genphy_read_lpa(struct phy_device *phydev)
2386{
2387 int lpa, lpagb;
2388
2389 if (phydev->autoneg == AUTONEG_ENABLE) {
2390 if (!phydev->autoneg_complete) {
2391 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2392 0);
2393 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2394 return 0;
2395 }
2396
2397 if (phydev->is_gigabit_capable) {
2398 lpagb = phy_read(phydev, MII_STAT1000);
2399 if (lpagb < 0)
2400 return lpagb;
2401
2402 if (lpagb & LPA_1000MSFAIL) {
2403 int adv = phy_read(phydev, MII_CTRL1000);
2404
2405 if (adv < 0)
2406 return adv;
2407
2408 if (adv & CTL1000_ENABLE_MASTER)
2409 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2410 else
2411 phydev_err(phydev, "Master/Slave resolution failed\n");
2412 return -ENOLINK;
2413 }
2414
2415 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2416 lpagb);
2417 }
2418
2419 lpa = phy_read(phydev, MII_LPA);
2420 if (lpa < 0)
2421 return lpa;
2422
2423 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2424 } else {
2425 linkmode_zero(phydev->lp_advertising);
2426 }
2427
2428 return 0;
2429}
2430EXPORT_SYMBOL(genphy_read_lpa);
2431
2432/**
2433 * genphy_read_status_fixed - read the link parameters for !aneg mode
2434 * @phydev: target phy_device struct
2435 *
2436 * Read the current duplex and speed state for a PHY operating with
2437 * autonegotiation disabled.
2438 */
2439int genphy_read_status_fixed(struct phy_device *phydev)
2440{
2441 int bmcr = phy_read(phydev, MII_BMCR);
2442
2443 if (bmcr < 0)
2444 return bmcr;
2445
2446 if (bmcr & BMCR_FULLDPLX)
2447 phydev->duplex = DUPLEX_FULL;
2448 else
2449 phydev->duplex = DUPLEX_HALF;
2450
2451 if (bmcr & BMCR_SPEED1000)
2452 phydev->speed = SPEED_1000;
2453 else if (bmcr & BMCR_SPEED100)
2454 phydev->speed = SPEED_100;
2455 else
2456 phydev->speed = SPEED_10;
2457
2458 return 0;
2459}
2460EXPORT_SYMBOL(genphy_read_status_fixed);
2461
2462/**
2463 * genphy_read_status - check the link status and update current link state
2464 * @phydev: target phy_device struct
2465 *
2466 * Description: Check the link, then figure out the current state
2467 * by comparing what we advertise with what the link partner
2468 * advertises. Start by checking the gigabit possibilities,
2469 * then move on to 10/100.
2470 */
2471int genphy_read_status(struct phy_device *phydev)
2472{
2473 int err, old_link = phydev->link;
2474
2475 /* Update the link, but return if there was an error */
2476 err = genphy_update_link(phydev);
2477 if (err)
2478 return err;
2479
2480 /* why bother the PHY if nothing can have changed */
2481 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2482 return 0;
2483
2484 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2485 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2486 phydev->speed = SPEED_UNKNOWN;
2487 phydev->duplex = DUPLEX_UNKNOWN;
2488 phydev->pause = 0;
2489 phydev->asym_pause = 0;
2490
2491 if (phydev->is_gigabit_capable) {
2492 err = genphy_read_master_slave(phydev);
2493 if (err < 0)
2494 return err;
2495 }
2496
2497 err = genphy_read_lpa(phydev);
2498 if (err < 0)
2499 return err;
2500
2501 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2502 phy_resolve_aneg_linkmode(phydev);
2503 } else if (phydev->autoneg == AUTONEG_DISABLE) {
2504 err = genphy_read_status_fixed(phydev);
2505 if (err < 0)
2506 return err;
2507 }
2508
2509 return 0;
2510}
2511EXPORT_SYMBOL(genphy_read_status);
2512
2513/**
2514 * genphy_c37_read_status - check the link status and update current link state
2515 * @phydev: target phy_device struct
2516 *
2517 * Description: Check the link, then figure out the current state
2518 * by comparing what we advertise with what the link partner
2519 * advertises. This function is for Clause 37 1000Base-X mode.
2520 */
2521int genphy_c37_read_status(struct phy_device *phydev)
2522{
2523 int lpa, err, old_link = phydev->link;
2524
2525 /* Update the link, but return if there was an error */
2526 err = genphy_update_link(phydev);
2527 if (err)
2528 return err;
2529
2530 /* why bother the PHY if nothing can have changed */
2531 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2532 return 0;
2533
2534 phydev->duplex = DUPLEX_UNKNOWN;
2535 phydev->pause = 0;
2536 phydev->asym_pause = 0;
2537
2538 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2539 lpa = phy_read(phydev, MII_LPA);
2540 if (lpa < 0)
2541 return lpa;
2542
2543 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2544 phydev->lp_advertising, lpa & LPA_LPACK);
2545 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2546 phydev->lp_advertising, lpa & LPA_1000XFULL);
2547 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2548 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2549 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2550 phydev->lp_advertising,
2551 lpa & LPA_1000XPAUSE_ASYM);
2552
2553 phy_resolve_aneg_linkmode(phydev);
2554 } else if (phydev->autoneg == AUTONEG_DISABLE) {
2555 int bmcr = phy_read(phydev, MII_BMCR);
2556
2557 if (bmcr < 0)
2558 return bmcr;
2559
2560 if (bmcr & BMCR_FULLDPLX)
2561 phydev->duplex = DUPLEX_FULL;
2562 else
2563 phydev->duplex = DUPLEX_HALF;
2564 }
2565
2566 return 0;
2567}
2568EXPORT_SYMBOL(genphy_c37_read_status);
2569
2570/**
2571 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2572 * @phydev: target phy_device struct
2573 *
2574 * Description: Perform a software PHY reset using the standard
2575 * BMCR_RESET bit and poll for the reset bit to be cleared.
2576 *
2577 * Returns: 0 on success, < 0 on failure
2578 */
2579int genphy_soft_reset(struct phy_device *phydev)
2580{
2581 u16 res = BMCR_RESET;
2582 int ret;
2583
2584 if (phydev->autoneg == AUTONEG_ENABLE)
2585 res |= BMCR_ANRESTART;
2586
2587 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2588 if (ret < 0)
2589 return ret;
2590
2591 /* Clause 22 states that setting bit BMCR_RESET sets control registers
2592 * to their default value. Therefore the POWER DOWN bit is supposed to
2593 * be cleared after soft reset.
2594 */
2595 phydev->suspended = 0;
2596
2597 ret = phy_poll_reset(phydev);
2598 if (ret)
2599 return ret;
2600
2601 /* BMCR may be reset to defaults */
2602 if (phydev->autoneg == AUTONEG_DISABLE)
2603 ret = genphy_setup_forced(phydev);
2604
2605 return ret;
2606}
2607EXPORT_SYMBOL(genphy_soft_reset);
2608
2609irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2610{
2611 /* It seems there are cases where the interrupts are handled by another
2612 * entity (ie an IRQ controller embedded inside the PHY) and do not
2613 * need any other interraction from phylib. In this case, just trigger
2614 * the state machine directly.
2615 */
2616 phy_trigger_machine(phydev);
2617
2618 return 0;
2619}
2620EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2621
2622/**
2623 * genphy_read_abilities - read PHY abilities from Clause 22 registers
2624 * @phydev: target phy_device struct
2625 *
2626 * Description: Reads the PHY's abilities and populates
2627 * phydev->supported accordingly.
2628 *
2629 * Returns: 0 on success, < 0 on failure
2630 */
2631int genphy_read_abilities(struct phy_device *phydev)
2632{
2633 int val;
2634
2635 linkmode_set_bit_array(phy_basic_ports_array,
2636 ARRAY_SIZE(phy_basic_ports_array),
2637 phydev->supported);
2638
2639 val = phy_read(phydev, MII_BMSR);
2640 if (val < 0)
2641 return val;
2642
2643 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2644 val & BMSR_ANEGCAPABLE);
2645
2646 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2647 val & BMSR_100FULL);
2648 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2649 val & BMSR_100HALF);
2650 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2651 val & BMSR_10FULL);
2652 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2653 val & BMSR_10HALF);
2654
2655 if (val & BMSR_ESTATEN) {
2656 val = phy_read(phydev, MII_ESTATUS);
2657 if (val < 0)
2658 return val;
2659
2660 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2661 phydev->supported, val & ESTATUS_1000_TFULL);
2662 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2663 phydev->supported, val & ESTATUS_1000_THALF);
2664 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2665 phydev->supported, val & ESTATUS_1000_XFULL);
2666 }
2667
2668 /* This is optional functionality. If not supported, we may get an error
2669 * which should be ignored.
2670 */
2671 genphy_c45_read_eee_abilities(phydev);
2672
2673 return 0;
2674}
2675EXPORT_SYMBOL(genphy_read_abilities);
2676
2677/* This is used for the phy device which doesn't support the MMD extended
2678 * register access, but it does have side effect when we are trying to access
2679 * the MMD register via indirect method.
2680 */
2681int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2682{
2683 return -EOPNOTSUPP;
2684}
2685EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2686
2687int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2688 u16 regnum, u16 val)
2689{
2690 return -EOPNOTSUPP;
2691}
2692EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2693
2694int genphy_suspend(struct phy_device *phydev)
2695{
2696 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2697}
2698EXPORT_SYMBOL(genphy_suspend);
2699
2700int genphy_resume(struct phy_device *phydev)
2701{
2702 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2703}
2704EXPORT_SYMBOL(genphy_resume);
2705
2706int genphy_loopback(struct phy_device *phydev, bool enable)
2707{
2708 if (enable) {
2709 u16 val, ctl = BMCR_LOOPBACK;
2710 int ret;
2711
2712 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2713
2714 phy_modify(phydev, MII_BMCR, ~0, ctl);
2715
2716 ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2717 val & BMSR_LSTATUS,
2718 5000, 500000, true);
2719 if (ret)
2720 return ret;
2721 } else {
2722 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2723
2724 phy_config_aneg(phydev);
2725 }
2726
2727 return 0;
2728}
2729EXPORT_SYMBOL(genphy_loopback);
2730
2731/**
2732 * phy_remove_link_mode - Remove a supported link mode
2733 * @phydev: phy_device structure to remove link mode from
2734 * @link_mode: Link mode to be removed
2735 *
2736 * Description: Some MACs don't support all link modes which the PHY
2737 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper
2738 * to remove a link mode.
2739 */
2740void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2741{
2742 linkmode_clear_bit(link_mode, phydev->supported);
2743 phy_advertise_supported(phydev);
2744}
2745EXPORT_SYMBOL(phy_remove_link_mode);
2746
2747static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2748{
2749 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2750 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2751 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2752 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2753}
2754
2755/**
2756 * phy_advertise_supported - Advertise all supported modes
2757 * @phydev: target phy_device struct
2758 *
2759 * Description: Called to advertise all supported modes, doesn't touch
2760 * pause mode advertising.
2761 */
2762void phy_advertise_supported(struct phy_device *phydev)
2763{
2764 __ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2765
2766 linkmode_copy(new, phydev->supported);
2767 phy_copy_pause_bits(new, phydev->advertising);
2768 linkmode_copy(phydev->advertising, new);
2769}
2770EXPORT_SYMBOL(phy_advertise_supported);
2771
2772/**
2773 * phy_support_sym_pause - Enable support of symmetrical pause
2774 * @phydev: target phy_device struct
2775 *
2776 * Description: Called by the MAC to indicate is supports symmetrical
2777 * Pause, but not asym pause.
2778 */
2779void phy_support_sym_pause(struct phy_device *phydev)
2780{
2781 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2782 phy_copy_pause_bits(phydev->advertising, phydev->supported);
2783}
2784EXPORT_SYMBOL(phy_support_sym_pause);
2785
2786/**
2787 * phy_support_asym_pause - Enable support of asym pause
2788 * @phydev: target phy_device struct
2789 *
2790 * Description: Called by the MAC to indicate is supports Asym Pause.
2791 */
2792void phy_support_asym_pause(struct phy_device *phydev)
2793{
2794 phy_copy_pause_bits(phydev->advertising, phydev->supported);
2795}
2796EXPORT_SYMBOL(phy_support_asym_pause);
2797
2798/**
2799 * phy_set_sym_pause - Configure symmetric Pause
2800 * @phydev: target phy_device struct
2801 * @rx: Receiver Pause is supported
2802 * @tx: Transmit Pause is supported
2803 * @autoneg: Auto neg should be used
2804 *
2805 * Description: Configure advertised Pause support depending on if
2806 * receiver pause and pause auto neg is supported. Generally called
2807 * from the set_pauseparam .ndo.
2808 */
2809void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2810 bool autoneg)
2811{
2812 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2813
2814 if (rx && tx && autoneg)
2815 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2816 phydev->supported);
2817
2818 linkmode_copy(phydev->advertising, phydev->supported);
2819}
2820EXPORT_SYMBOL(phy_set_sym_pause);
2821
2822/**
2823 * phy_set_asym_pause - Configure Pause and Asym Pause
2824 * @phydev: target phy_device struct
2825 * @rx: Receiver Pause is supported
2826 * @tx: Transmit Pause is supported
2827 *
2828 * Description: Configure advertised Pause support depending on if
2829 * transmit and receiver pause is supported. If there has been a
2830 * change in adverting, trigger a new autoneg. Generally called from
2831 * the set_pauseparam .ndo.
2832 */
2833void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2834{
2835 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2836
2837 linkmode_copy(oldadv, phydev->advertising);
2838 linkmode_set_pause(phydev->advertising, tx, rx);
2839
2840 if (!linkmode_equal(oldadv, phydev->advertising) &&
2841 phydev->autoneg)
2842 phy_start_aneg(phydev);
2843}
2844EXPORT_SYMBOL(phy_set_asym_pause);
2845
2846/**
2847 * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2848 * @phydev: phy_device struct
2849 * @pp: requested pause configuration
2850 *
2851 * Description: Test if the PHY/MAC combination supports the Pause
2852 * configuration the user is requesting. Returns True if it is
2853 * supported, false otherwise.
2854 */
2855bool phy_validate_pause(struct phy_device *phydev,
2856 struct ethtool_pauseparam *pp)
2857{
2858 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2859 phydev->supported) && pp->rx_pause)
2860 return false;
2861
2862 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2863 phydev->supported) &&
2864 pp->rx_pause != pp->tx_pause)
2865 return false;
2866
2867 return true;
2868}
2869EXPORT_SYMBOL(phy_validate_pause);
2870
2871/**
2872 * phy_get_pause - resolve negotiated pause modes
2873 * @phydev: phy_device struct
2874 * @tx_pause: pointer to bool to indicate whether transmit pause should be
2875 * enabled.
2876 * @rx_pause: pointer to bool to indicate whether receive pause should be
2877 * enabled.
2878 *
2879 * Resolve and return the flow control modes according to the negotiation
2880 * result. This includes checking that we are operating in full duplex mode.
2881 * See linkmode_resolve_pause() for further details.
2882 */
2883void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2884{
2885 if (phydev->duplex != DUPLEX_FULL) {
2886 *tx_pause = false;
2887 *rx_pause = false;
2888 return;
2889 }
2890
2891 return linkmode_resolve_pause(phydev->advertising,
2892 phydev->lp_advertising,
2893 tx_pause, rx_pause);
2894}
2895EXPORT_SYMBOL(phy_get_pause);
2896
2897#if IS_ENABLED(CONFIG_OF_MDIO)
2898static int phy_get_int_delay_property(struct device *dev, const char *name)
2899{
2900 s32 int_delay;
2901 int ret;
2902
2903 ret = device_property_read_u32(dev, name, &int_delay);
2904 if (ret)
2905 return ret;
2906
2907 return int_delay;
2908}
2909#else
2910static int phy_get_int_delay_property(struct device *dev, const char *name)
2911{
2912 return -EINVAL;
2913}
2914#endif
2915
2916/**
2917 * phy_get_internal_delay - returns the index of the internal delay
2918 * @phydev: phy_device struct
2919 * @dev: pointer to the devices device struct
2920 * @delay_values: array of delays the PHY supports
2921 * @size: the size of the delay array
2922 * @is_rx: boolean to indicate to get the rx internal delay
2923 *
2924 * Returns the index within the array of internal delay passed in.
2925 * If the device property is not present then the interface type is checked
2926 * if the interface defines use of internal delay then a 1 is returned otherwise
2927 * a 0 is returned.
2928 * The array must be in ascending order. If PHY does not have an ascending order
2929 * array then size = 0 and the value of the delay property is returned.
2930 * Return -EINVAL if the delay is invalid or cannot be found.
2931 */
2932s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2933 const int *delay_values, int size, bool is_rx)
2934{
2935 s32 delay;
2936 int i;
2937
2938 if (is_rx) {
2939 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2940 if (delay < 0 && size == 0) {
2941 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2942 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2943 return 1;
2944 else
2945 return 0;
2946 }
2947
2948 } else {
2949 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2950 if (delay < 0 && size == 0) {
2951 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2952 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2953 return 1;
2954 else
2955 return 0;
2956 }
2957 }
2958
2959 if (delay < 0)
2960 return delay;
2961
2962 if (delay && size == 0)
2963 return delay;
2964
2965 if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2966 phydev_err(phydev, "Delay %d is out of range\n", delay);
2967 return -EINVAL;
2968 }
2969
2970 if (delay == delay_values[0])
2971 return 0;
2972
2973 for (i = 1; i < size; i++) {
2974 if (delay == delay_values[i])
2975 return i;
2976
2977 /* Find an approximate index by looking up the table */
2978 if (delay > delay_values[i - 1] &&
2979 delay < delay_values[i]) {
2980 if (delay - delay_values[i - 1] <
2981 delay_values[i] - delay)
2982 return i - 1;
2983 else
2984 return i;
2985 }
2986 }
2987
2988 phydev_err(phydev, "error finding internal delay index for %d\n",
2989 delay);
2990
2991 return -EINVAL;
2992}
2993EXPORT_SYMBOL(phy_get_internal_delay);
2994
2995static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2996{
2997 return phydrv->config_intr && phydrv->handle_interrupt;
2998}
2999
3000static int phy_led_set_brightness(struct led_classdev *led_cdev,
3001 enum led_brightness value)
3002{
3003 struct phy_led *phyled = to_phy_led(led_cdev);
3004 struct phy_device *phydev = phyled->phydev;
3005 int err;
3006
3007 mutex_lock(&phydev->lock);
3008 err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3009 mutex_unlock(&phydev->lock);
3010
3011 return err;
3012}
3013
3014static int phy_led_blink_set(struct led_classdev *led_cdev,
3015 unsigned long *delay_on,
3016 unsigned long *delay_off)
3017{
3018 struct phy_led *phyled = to_phy_led(led_cdev);
3019 struct phy_device *phydev = phyled->phydev;
3020 int err;
3021
3022 mutex_lock(&phydev->lock);
3023 err = phydev->drv->led_blink_set(phydev, phyled->index,
3024 delay_on, delay_off);
3025 mutex_unlock(&phydev->lock);
3026
3027 return err;
3028}
3029
3030static __maybe_unused struct device *
3031phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3032{
3033 struct phy_led *phyled = to_phy_led(led_cdev);
3034 struct phy_device *phydev = phyled->phydev;
3035
3036 if (phydev->attached_dev)
3037 return &phydev->attached_dev->dev;
3038 return NULL;
3039}
3040
3041static int __maybe_unused
3042phy_led_hw_control_get(struct led_classdev *led_cdev,
3043 unsigned long *rules)
3044{
3045 struct phy_led *phyled = to_phy_led(led_cdev);
3046 struct phy_device *phydev = phyled->phydev;
3047 int err;
3048
3049 mutex_lock(&phydev->lock);
3050 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3051 mutex_unlock(&phydev->lock);
3052
3053 return err;
3054}
3055
3056static int __maybe_unused
3057phy_led_hw_control_set(struct led_classdev *led_cdev,
3058 unsigned long rules)
3059{
3060 struct phy_led *phyled = to_phy_led(led_cdev);
3061 struct phy_device *phydev = phyled->phydev;
3062 int err;
3063
3064 mutex_lock(&phydev->lock);
3065 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3066 mutex_unlock(&phydev->lock);
3067
3068 return err;
3069}
3070
3071static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3072 unsigned long rules)
3073{
3074 struct phy_led *phyled = to_phy_led(led_cdev);
3075 struct phy_device *phydev = phyled->phydev;
3076 int err;
3077
3078 mutex_lock(&phydev->lock);
3079 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3080 mutex_unlock(&phydev->lock);
3081
3082 return err;
3083}
3084
3085static void phy_leds_unregister(struct phy_device *phydev)
3086{
3087 struct phy_led *phyled;
3088
3089 list_for_each_entry(phyled, &phydev->leds, list) {
3090 led_classdev_unregister(&phyled->led_cdev);
3091 }
3092}
3093
3094static int of_phy_led(struct phy_device *phydev,
3095 struct device_node *led)
3096{
3097 struct device *dev = &phydev->mdio.dev;
3098 struct led_init_data init_data = {};
3099 struct led_classdev *cdev;
3100 struct phy_led *phyled;
3101 u32 index;
3102 int err;
3103
3104 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3105 if (!phyled)
3106 return -ENOMEM;
3107
3108 cdev = &phyled->led_cdev;
3109 phyled->phydev = phydev;
3110
3111 err = of_property_read_u32(led, "reg", &index);
3112 if (err)
3113 return err;
3114 if (index > U8_MAX)
3115 return -EINVAL;
3116
3117 phyled->index = index;
3118 if (phydev->drv->led_brightness_set)
3119 cdev->brightness_set_blocking = phy_led_set_brightness;
3120 if (phydev->drv->led_blink_set)
3121 cdev->blink_set = phy_led_blink_set;
3122
3123#ifdef CONFIG_LEDS_TRIGGERS
3124 if (phydev->drv->led_hw_is_supported &&
3125 phydev->drv->led_hw_control_set &&
3126 phydev->drv->led_hw_control_get) {
3127 cdev->hw_control_is_supported = phy_led_hw_is_supported;
3128 cdev->hw_control_set = phy_led_hw_control_set;
3129 cdev->hw_control_get = phy_led_hw_control_get;
3130 cdev->hw_control_trigger = "netdev";
3131 }
3132
3133 cdev->hw_control_get_device = phy_led_hw_control_get_device;
3134#endif
3135 cdev->max_brightness = 1;
3136 init_data.devicename = dev_name(&phydev->mdio.dev);
3137 init_data.fwnode = of_fwnode_handle(led);
3138 init_data.devname_mandatory = true;
3139
3140 err = led_classdev_register_ext(dev, cdev, &init_data);
3141 if (err)
3142 return err;
3143
3144 list_add(&phyled->list, &phydev->leds);
3145
3146 return 0;
3147}
3148
3149static int of_phy_leds(struct phy_device *phydev)
3150{
3151 struct device_node *node = phydev->mdio.dev.of_node;
3152 struct device_node *leds, *led;
3153 int err;
3154
3155 if (!IS_ENABLED(CONFIG_OF_MDIO))
3156 return 0;
3157
3158 if (!node)
3159 return 0;
3160
3161 leds = of_get_child_by_name(node, "leds");
3162 if (!leds)
3163 return 0;
3164
3165 for_each_available_child_of_node(leds, led) {
3166 err = of_phy_led(phydev, led);
3167 if (err) {
3168 of_node_put(led);
3169 phy_leds_unregister(phydev);
3170 return err;
3171 }
3172 }
3173
3174 return 0;
3175}
3176
3177/**
3178 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3179 * @fwnode: pointer to the mdio_device's fwnode
3180 *
3181 * If successful, returns a pointer to the mdio_device with the embedded
3182 * struct device refcount incremented by one, or NULL on failure.
3183 * The caller should call put_device() on the mdio_device after its use.
3184 */
3185struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3186{
3187 struct device *d;
3188
3189 if (!fwnode)
3190 return NULL;
3191
3192 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3193 if (!d)
3194 return NULL;
3195
3196 return to_mdio_device(d);
3197}
3198EXPORT_SYMBOL(fwnode_mdio_find_device);
3199
3200/**
3201 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3202 *
3203 * @phy_fwnode: Pointer to the phy's fwnode.
3204 *
3205 * If successful, returns a pointer to the phy_device with the embedded
3206 * struct device refcount incremented by one, or NULL on failure.
3207 */
3208struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3209{
3210 struct mdio_device *mdiodev;
3211
3212 mdiodev = fwnode_mdio_find_device(phy_fwnode);
3213 if (!mdiodev)
3214 return NULL;
3215
3216 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3217 return to_phy_device(&mdiodev->dev);
3218
3219 put_device(&mdiodev->dev);
3220
3221 return NULL;
3222}
3223EXPORT_SYMBOL(fwnode_phy_find_device);
3224
3225/**
3226 * device_phy_find_device - For the given device, get the phy_device
3227 * @dev: Pointer to the given device
3228 *
3229 * Refer return conditions of fwnode_phy_find_device().
3230 */
3231struct phy_device *device_phy_find_device(struct device *dev)
3232{
3233 return fwnode_phy_find_device(dev_fwnode(dev));
3234}
3235EXPORT_SYMBOL_GPL(device_phy_find_device);
3236
3237/**
3238 * fwnode_get_phy_node - Get the phy_node using the named reference.
3239 * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3240 *
3241 * Refer return conditions of fwnode_find_reference().
3242 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3243 * and "phy-device" are not supported in ACPI. DT supports all the three
3244 * named references to the phy node.
3245 */
3246struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3247{
3248 struct fwnode_handle *phy_node;
3249
3250 /* Only phy-handle is used for ACPI */
3251 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3252 if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3253 return phy_node;
3254 phy_node = fwnode_find_reference(fwnode, "phy", 0);
3255 if (IS_ERR(phy_node))
3256 phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3257 return phy_node;
3258}
3259EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3260
3261/**
3262 * phy_probe - probe and init a PHY device
3263 * @dev: device to probe and init
3264 *
3265 * Take care of setting up the phy_device structure, set the state to READY.
3266 */
3267static int phy_probe(struct device *dev)
3268{
3269 struct phy_device *phydev = to_phy_device(dev);
3270 struct device_driver *drv = phydev->mdio.dev.driver;
3271 struct phy_driver *phydrv = to_phy_driver(drv);
3272 int err = 0;
3273
3274 phydev->drv = phydrv;
3275
3276 /* Disable the interrupt if the PHY doesn't support it
3277 * but the interrupt is still a valid one
3278 */
3279 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3280 phydev->irq = PHY_POLL;
3281
3282 if (phydrv->flags & PHY_IS_INTERNAL)
3283 phydev->is_internal = true;
3284
3285 /* Deassert the reset signal */
3286 phy_device_reset(phydev, 0);
3287
3288 if (phydev->drv->probe) {
3289 err = phydev->drv->probe(phydev);
3290 if (err)
3291 goto out;
3292 }
3293
3294 phy_disable_interrupts(phydev);
3295
3296 /* Start out supporting everything. Eventually,
3297 * a controller will attach, and may modify one
3298 * or both of these values
3299 */
3300 if (phydrv->features) {
3301 linkmode_copy(phydev->supported, phydrv->features);
3302 genphy_c45_read_eee_abilities(phydev);
3303 }
3304 else if (phydrv->get_features)
3305 err = phydrv->get_features(phydev);
3306 else if (phydev->is_c45)
3307 err = genphy_c45_pma_read_abilities(phydev);
3308 else
3309 err = genphy_read_abilities(phydev);
3310
3311 if (err)
3312 goto out;
3313
3314 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3315 phydev->supported))
3316 phydev->autoneg = 0;
3317
3318 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3319 phydev->supported))
3320 phydev->is_gigabit_capable = 1;
3321 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3322 phydev->supported))
3323 phydev->is_gigabit_capable = 1;
3324
3325 of_set_phy_supported(phydev);
3326 phy_advertise_supported(phydev);
3327
3328 /* Get PHY default EEE advertising modes and handle them as potentially
3329 * safe initial configuration.
3330 */
3331 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3332 if (err)
3333 goto out;
3334
3335 /* There is no "enabled" flag. If PHY is advertising, assume it is
3336 * kind of enabled.
3337 */
3338 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3339
3340 /* Some PHYs may advertise, by default, not support EEE modes. So,
3341 * we need to clean them.
3342 */
3343 if (phydev->eee_enabled)
3344 linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3345 phydev->advertising_eee);
3346
3347 /* Get the EEE modes we want to prohibit. We will ask
3348 * the PHY stop advertising these mode later on
3349 */
3350 of_set_phy_eee_broken(phydev);
3351
3352 /* The Pause Frame bits indicate that the PHY can support passing
3353 * pause frames. During autonegotiation, the PHYs will determine if
3354 * they should allow pause frames to pass. The MAC driver should then
3355 * use that result to determine whether to enable flow control via
3356 * pause frames.
3357 *
3358 * Normally, PHY drivers should not set the Pause bits, and instead
3359 * allow phylib to do that. However, there may be some situations
3360 * (e.g. hardware erratum) where the driver wants to set only one
3361 * of these bits.
3362 */
3363 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3364 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3365 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3366 phydev->supported);
3367 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3368 phydev->supported);
3369 }
3370
3371 /* Set the state to READY by default */
3372 phydev->state = PHY_READY;
3373
3374 /* Get the LEDs from the device tree, and instantiate standard
3375 * LEDs for them.
3376 */
3377 if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3378 err = of_phy_leds(phydev);
3379
3380out:
3381 /* Re-assert the reset signal on error */
3382 if (err)
3383 phy_device_reset(phydev, 1);
3384
3385 return err;
3386}
3387
3388static int phy_remove(struct device *dev)
3389{
3390 struct phy_device *phydev = to_phy_device(dev);
3391
3392 cancel_delayed_work_sync(&phydev->state_queue);
3393
3394 if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3395 phy_leds_unregister(phydev);
3396
3397 phydev->state = PHY_DOWN;
3398
3399 sfp_bus_del_upstream(phydev->sfp_bus);
3400 phydev->sfp_bus = NULL;
3401
3402 if (phydev->drv && phydev->drv->remove)
3403 phydev->drv->remove(phydev);
3404
3405 /* Assert the reset signal */
3406 phy_device_reset(phydev, 1);
3407
3408 phydev->drv = NULL;
3409
3410 return 0;
3411}
3412
3413/**
3414 * phy_driver_register - register a phy_driver with the PHY layer
3415 * @new_driver: new phy_driver to register
3416 * @owner: module owning this PHY
3417 */
3418int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3419{
3420 int retval;
3421
3422 /* Either the features are hard coded, or dynamically
3423 * determined. It cannot be both.
3424 */
3425 if (WARN_ON(new_driver->features && new_driver->get_features)) {
3426 pr_err("%s: features and get_features must not both be set\n",
3427 new_driver->name);
3428 return -EINVAL;
3429 }
3430
3431 /* PHYLIB device drivers must not match using a DT compatible table
3432 * as this bypasses our checks that the mdiodev that is being matched
3433 * is backed by a struct phy_device. If such a case happens, we will
3434 * make out-of-bounds accesses and lockup in phydev->lock.
3435 */
3436 if (WARN(new_driver->mdiodrv.driver.of_match_table,
3437 "%s: driver must not provide a DT match table\n",
3438 new_driver->name))
3439 return -EINVAL;
3440
3441 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3442 new_driver->mdiodrv.driver.name = new_driver->name;
3443 new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3444 new_driver->mdiodrv.driver.probe = phy_probe;
3445 new_driver->mdiodrv.driver.remove = phy_remove;
3446 new_driver->mdiodrv.driver.owner = owner;
3447 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3448
3449 retval = driver_register(&new_driver->mdiodrv.driver);
3450 if (retval) {
3451 pr_err("%s: Error %d in registering driver\n",
3452 new_driver->name, retval);
3453
3454 return retval;
3455 }
3456
3457 pr_debug("%s: Registered new driver\n", new_driver->name);
3458
3459 return 0;
3460}
3461EXPORT_SYMBOL(phy_driver_register);
3462
3463int phy_drivers_register(struct phy_driver *new_driver, int n,
3464 struct module *owner)
3465{
3466 int i, ret = 0;
3467
3468 for (i = 0; i < n; i++) {
3469 ret = phy_driver_register(new_driver + i, owner);
3470 if (ret) {
3471 while (i-- > 0)
3472 phy_driver_unregister(new_driver + i);
3473 break;
3474 }
3475 }
3476 return ret;
3477}
3478EXPORT_SYMBOL(phy_drivers_register);
3479
3480void phy_driver_unregister(struct phy_driver *drv)
3481{
3482 driver_unregister(&drv->mdiodrv.driver);
3483}
3484EXPORT_SYMBOL(phy_driver_unregister);
3485
3486void phy_drivers_unregister(struct phy_driver *drv, int n)
3487{
3488 int i;
3489
3490 for (i = 0; i < n; i++)
3491 phy_driver_unregister(drv + i);
3492}
3493EXPORT_SYMBOL(phy_drivers_unregister);
3494
3495static struct phy_driver genphy_driver = {
3496 .phy_id = 0xffffffff,
3497 .phy_id_mask = 0xffffffff,
3498 .name = "Generic PHY",
3499 .get_features = genphy_read_abilities,
3500 .suspend = genphy_suspend,
3501 .resume = genphy_resume,
3502 .set_loopback = genphy_loopback,
3503};
3504
3505static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3506 .get_sset_count = phy_ethtool_get_sset_count,
3507 .get_strings = phy_ethtool_get_strings,
3508 .get_stats = phy_ethtool_get_stats,
3509 .get_plca_cfg = phy_ethtool_get_plca_cfg,
3510 .set_plca_cfg = phy_ethtool_set_plca_cfg,
3511 .get_plca_status = phy_ethtool_get_plca_status,
3512 .start_cable_test = phy_start_cable_test,
3513 .start_cable_test_tdr = phy_start_cable_test_tdr,
3514};
3515
3516static const struct phylib_stubs __phylib_stubs = {
3517 .hwtstamp_get = __phy_hwtstamp_get,
3518 .hwtstamp_set = __phy_hwtstamp_set,
3519};
3520
3521static void phylib_register_stubs(void)
3522{
3523 phylib_stubs = &__phylib_stubs;
3524}
3525
3526static void phylib_unregister_stubs(void)
3527{
3528 phylib_stubs = NULL;
3529}
3530
3531static int __init phy_init(void)
3532{
3533 int rc;
3534
3535 rtnl_lock();
3536 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3537 phylib_register_stubs();
3538 rtnl_unlock();
3539
3540 rc = mdio_bus_init();
3541 if (rc)
3542 goto err_ethtool_phy_ops;
3543
3544 features_init();
3545
3546 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3547 if (rc)
3548 goto err_mdio_bus;
3549
3550 rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3551 if (rc)
3552 goto err_c45;
3553
3554 return 0;
3555
3556err_c45:
3557 phy_driver_unregister(&genphy_c45_driver);
3558err_mdio_bus:
3559 mdio_bus_exit();
3560err_ethtool_phy_ops:
3561 rtnl_lock();
3562 phylib_unregister_stubs();
3563 ethtool_set_ethtool_phy_ops(NULL);
3564 rtnl_unlock();
3565
3566 return rc;
3567}
3568
3569static void __exit phy_exit(void)
3570{
3571 phy_driver_unregister(&genphy_c45_driver);
3572 phy_driver_unregister(&genphy_driver);
3573 mdio_bus_exit();
3574 rtnl_lock();
3575 phylib_unregister_stubs();
3576 ethtool_set_ethtool_phy_ops(NULL);
3577 rtnl_unlock();
3578}
3579
3580subsys_initcall(phy_init);
3581module_exit(phy_exit);
1// SPDX-License-Identifier: GPL-2.0+
2/* Framework for finding and configuring PHYs.
3 * Also contains generic PHY driver
4 *
5 * Author: Andy Fleming
6 *
7 * Copyright (c) 2004 Freescale Semiconductor, Inc.
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/acpi.h>
13#include <linux/bitmap.h>
14#include <linux/delay.h>
15#include <linux/errno.h>
16#include <linux/etherdevice.h>
17#include <linux/ethtool.h>
18#include <linux/init.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/mdio.h>
23#include <linux/mii.h>
24#include <linux/mm.h>
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/phy.h>
28#include <linux/phy_led_triggers.h>
29#include <linux/property.h>
30#include <linux/sfp.h>
31#include <linux/skbuff.h>
32#include <linux/slab.h>
33#include <linux/string.h>
34#include <linux/uaccess.h>
35#include <linux/unistd.h>
36
37MODULE_DESCRIPTION("PHY library");
38MODULE_AUTHOR("Andy Fleming");
39MODULE_LICENSE("GPL");
40
41__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
42EXPORT_SYMBOL_GPL(phy_basic_features);
43
44__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
45EXPORT_SYMBOL_GPL(phy_basic_t1_features);
46
47__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
48EXPORT_SYMBOL_GPL(phy_gbit_features);
49
50__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
51EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
52
53__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
54EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
55
56__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
57EXPORT_SYMBOL_GPL(phy_10gbit_features);
58
59__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
60EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
61
62const int phy_basic_ports_array[3] = {
63 ETHTOOL_LINK_MODE_Autoneg_BIT,
64 ETHTOOL_LINK_MODE_TP_BIT,
65 ETHTOOL_LINK_MODE_MII_BIT,
66};
67EXPORT_SYMBOL_GPL(phy_basic_ports_array);
68
69const int phy_fibre_port_array[1] = {
70 ETHTOOL_LINK_MODE_FIBRE_BIT,
71};
72EXPORT_SYMBOL_GPL(phy_fibre_port_array);
73
74const int phy_all_ports_features_array[7] = {
75 ETHTOOL_LINK_MODE_Autoneg_BIT,
76 ETHTOOL_LINK_MODE_TP_BIT,
77 ETHTOOL_LINK_MODE_MII_BIT,
78 ETHTOOL_LINK_MODE_FIBRE_BIT,
79 ETHTOOL_LINK_MODE_AUI_BIT,
80 ETHTOOL_LINK_MODE_BNC_BIT,
81 ETHTOOL_LINK_MODE_Backplane_BIT,
82};
83EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
84
85const int phy_10_100_features_array[4] = {
86 ETHTOOL_LINK_MODE_10baseT_Half_BIT,
87 ETHTOOL_LINK_MODE_10baseT_Full_BIT,
88 ETHTOOL_LINK_MODE_100baseT_Half_BIT,
89 ETHTOOL_LINK_MODE_100baseT_Full_BIT,
90};
91EXPORT_SYMBOL_GPL(phy_10_100_features_array);
92
93const int phy_basic_t1_features_array[2] = {
94 ETHTOOL_LINK_MODE_TP_BIT,
95 ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
96};
97EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
98
99const int phy_gbit_features_array[2] = {
100 ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
101 ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
102};
103EXPORT_SYMBOL_GPL(phy_gbit_features_array);
104
105const int phy_10gbit_features_array[1] = {
106 ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
107};
108EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
109
110static const int phy_10gbit_fec_features_array[1] = {
111 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
112};
113
114__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
115EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
116
117static const int phy_10gbit_full_features_array[] = {
118 ETHTOOL_LINK_MODE_10baseT_Full_BIT,
119 ETHTOOL_LINK_MODE_100baseT_Full_BIT,
120 ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122};
123
124static void features_init(void)
125{
126 /* 10/100 half/full*/
127 linkmode_set_bit_array(phy_basic_ports_array,
128 ARRAY_SIZE(phy_basic_ports_array),
129 phy_basic_features);
130 linkmode_set_bit_array(phy_10_100_features_array,
131 ARRAY_SIZE(phy_10_100_features_array),
132 phy_basic_features);
133
134 /* 100 full, TP */
135 linkmode_set_bit_array(phy_basic_t1_features_array,
136 ARRAY_SIZE(phy_basic_t1_features_array),
137 phy_basic_t1_features);
138
139 /* 10/100 half/full + 1000 half/full */
140 linkmode_set_bit_array(phy_basic_ports_array,
141 ARRAY_SIZE(phy_basic_ports_array),
142 phy_gbit_features);
143 linkmode_set_bit_array(phy_10_100_features_array,
144 ARRAY_SIZE(phy_10_100_features_array),
145 phy_gbit_features);
146 linkmode_set_bit_array(phy_gbit_features_array,
147 ARRAY_SIZE(phy_gbit_features_array),
148 phy_gbit_features);
149
150 /* 10/100 half/full + 1000 half/full + fibre*/
151 linkmode_set_bit_array(phy_basic_ports_array,
152 ARRAY_SIZE(phy_basic_ports_array),
153 phy_gbit_fibre_features);
154 linkmode_set_bit_array(phy_10_100_features_array,
155 ARRAY_SIZE(phy_10_100_features_array),
156 phy_gbit_fibre_features);
157 linkmode_set_bit_array(phy_gbit_features_array,
158 ARRAY_SIZE(phy_gbit_features_array),
159 phy_gbit_fibre_features);
160 linkmode_set_bit_array(phy_fibre_port_array,
161 ARRAY_SIZE(phy_fibre_port_array),
162 phy_gbit_fibre_features);
163
164 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
165 linkmode_set_bit_array(phy_all_ports_features_array,
166 ARRAY_SIZE(phy_all_ports_features_array),
167 phy_gbit_all_ports_features);
168 linkmode_set_bit_array(phy_10_100_features_array,
169 ARRAY_SIZE(phy_10_100_features_array),
170 phy_gbit_all_ports_features);
171 linkmode_set_bit_array(phy_gbit_features_array,
172 ARRAY_SIZE(phy_gbit_features_array),
173 phy_gbit_all_ports_features);
174
175 /* 10/100 half/full + 1000 half/full + 10G full*/
176 linkmode_set_bit_array(phy_all_ports_features_array,
177 ARRAY_SIZE(phy_all_ports_features_array),
178 phy_10gbit_features);
179 linkmode_set_bit_array(phy_10_100_features_array,
180 ARRAY_SIZE(phy_10_100_features_array),
181 phy_10gbit_features);
182 linkmode_set_bit_array(phy_gbit_features_array,
183 ARRAY_SIZE(phy_gbit_features_array),
184 phy_10gbit_features);
185 linkmode_set_bit_array(phy_10gbit_features_array,
186 ARRAY_SIZE(phy_10gbit_features_array),
187 phy_10gbit_features);
188
189 /* 10/100/1000/10G full */
190 linkmode_set_bit_array(phy_all_ports_features_array,
191 ARRAY_SIZE(phy_all_ports_features_array),
192 phy_10gbit_full_features);
193 linkmode_set_bit_array(phy_10gbit_full_features_array,
194 ARRAY_SIZE(phy_10gbit_full_features_array),
195 phy_10gbit_full_features);
196 /* 10G FEC only */
197 linkmode_set_bit_array(phy_10gbit_fec_features_array,
198 ARRAY_SIZE(phy_10gbit_fec_features_array),
199 phy_10gbit_fec_features);
200}
201
202void phy_device_free(struct phy_device *phydev)
203{
204 put_device(&phydev->mdio.dev);
205}
206EXPORT_SYMBOL(phy_device_free);
207
208static void phy_mdio_device_free(struct mdio_device *mdiodev)
209{
210 struct phy_device *phydev;
211
212 phydev = container_of(mdiodev, struct phy_device, mdio);
213 phy_device_free(phydev);
214}
215
216static void phy_device_release(struct device *dev)
217{
218 kfree(to_phy_device(dev));
219}
220
221static void phy_mdio_device_remove(struct mdio_device *mdiodev)
222{
223 struct phy_device *phydev;
224
225 phydev = container_of(mdiodev, struct phy_device, mdio);
226 phy_device_remove(phydev);
227}
228
229static struct phy_driver genphy_driver;
230
231static LIST_HEAD(phy_fixup_list);
232static DEFINE_MUTEX(phy_fixup_lock);
233
234static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
235{
236 struct device_driver *drv = phydev->mdio.dev.driver;
237 struct phy_driver *phydrv = to_phy_driver(drv);
238 struct net_device *netdev = phydev->attached_dev;
239
240 if (!drv || !phydrv->suspend)
241 return false;
242
243 /* PHY not attached? May suspend if the PHY has not already been
244 * suspended as part of a prior call to phy_disconnect() ->
245 * phy_detach() -> phy_suspend() because the parent netdev might be the
246 * MDIO bus driver and clock gated at this point.
247 */
248 if (!netdev)
249 goto out;
250
251 if (netdev->wol_enabled)
252 return false;
253
254 /* As long as not all affected network drivers support the
255 * wol_enabled flag, let's check for hints that WoL is enabled.
256 * Don't suspend PHY if the attached netdev parent may wake up.
257 * The parent may point to a PCI device, as in tg3 driver.
258 */
259 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
260 return false;
261
262 /* Also don't suspend PHY if the netdev itself may wakeup. This
263 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
264 * e.g. SoC devices.
265 */
266 if (device_may_wakeup(&netdev->dev))
267 return false;
268
269out:
270 return !phydev->suspended;
271}
272
273static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
274{
275 struct phy_device *phydev = to_phy_device(dev);
276
277 if (phydev->mac_managed_pm)
278 return 0;
279
280 /* We must stop the state machine manually, otherwise it stops out of
281 * control, possibly with the phydev->lock held. Upon resume, netdev
282 * may call phy routines that try to grab the same lock, and that may
283 * lead to a deadlock.
284 */
285 if (phydev->attached_dev && phydev->adjust_link)
286 phy_stop_machine(phydev);
287
288 if (!mdio_bus_phy_may_suspend(phydev))
289 return 0;
290
291 phydev->suspended_by_mdio_bus = 1;
292
293 return phy_suspend(phydev);
294}
295
296static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
297{
298 struct phy_device *phydev = to_phy_device(dev);
299 int ret;
300
301 if (phydev->mac_managed_pm)
302 return 0;
303
304 if (!phydev->suspended_by_mdio_bus)
305 goto no_resume;
306
307 phydev->suspended_by_mdio_bus = 0;
308
309 ret = phy_init_hw(phydev);
310 if (ret < 0)
311 return ret;
312
313 ret = phy_resume(phydev);
314 if (ret < 0)
315 return ret;
316no_resume:
317 if (phydev->attached_dev && phydev->adjust_link)
318 phy_start_machine(phydev);
319
320 return 0;
321}
322
323static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
324 mdio_bus_phy_resume);
325
326/**
327 * phy_register_fixup - creates a new phy_fixup and adds it to the list
328 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
329 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
330 * It can also be PHY_ANY_UID
331 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
332 * comparison
333 * @run: The actual code to be run when a matching PHY is found
334 */
335int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
336 int (*run)(struct phy_device *))
337{
338 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
339
340 if (!fixup)
341 return -ENOMEM;
342
343 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
344 fixup->phy_uid = phy_uid;
345 fixup->phy_uid_mask = phy_uid_mask;
346 fixup->run = run;
347
348 mutex_lock(&phy_fixup_lock);
349 list_add_tail(&fixup->list, &phy_fixup_list);
350 mutex_unlock(&phy_fixup_lock);
351
352 return 0;
353}
354EXPORT_SYMBOL(phy_register_fixup);
355
356/* Registers a fixup to be run on any PHY with the UID in phy_uid */
357int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
358 int (*run)(struct phy_device *))
359{
360 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
361}
362EXPORT_SYMBOL(phy_register_fixup_for_uid);
363
364/* Registers a fixup to be run on the PHY with id string bus_id */
365int phy_register_fixup_for_id(const char *bus_id,
366 int (*run)(struct phy_device *))
367{
368 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
369}
370EXPORT_SYMBOL(phy_register_fixup_for_id);
371
372/**
373 * phy_unregister_fixup - remove a phy_fixup from the list
374 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
375 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
376 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
377 */
378int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
379{
380 struct list_head *pos, *n;
381 struct phy_fixup *fixup;
382 int ret;
383
384 ret = -ENODEV;
385
386 mutex_lock(&phy_fixup_lock);
387 list_for_each_safe(pos, n, &phy_fixup_list) {
388 fixup = list_entry(pos, struct phy_fixup, list);
389
390 if ((!strcmp(fixup->bus_id, bus_id)) &&
391 ((fixup->phy_uid & phy_uid_mask) ==
392 (phy_uid & phy_uid_mask))) {
393 list_del(&fixup->list);
394 kfree(fixup);
395 ret = 0;
396 break;
397 }
398 }
399 mutex_unlock(&phy_fixup_lock);
400
401 return ret;
402}
403EXPORT_SYMBOL(phy_unregister_fixup);
404
405/* Unregisters a fixup of any PHY with the UID in phy_uid */
406int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
407{
408 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
409}
410EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
411
412/* Unregisters a fixup of the PHY with id string bus_id */
413int phy_unregister_fixup_for_id(const char *bus_id)
414{
415 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
416}
417EXPORT_SYMBOL(phy_unregister_fixup_for_id);
418
419/* Returns 1 if fixup matches phydev in bus_id and phy_uid.
420 * Fixups can be set to match any in one or more fields.
421 */
422static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
423{
424 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
425 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
426 return 0;
427
428 if ((fixup->phy_uid & fixup->phy_uid_mask) !=
429 (phydev->phy_id & fixup->phy_uid_mask))
430 if (fixup->phy_uid != PHY_ANY_UID)
431 return 0;
432
433 return 1;
434}
435
436/* Runs any matching fixups for this phydev */
437static int phy_scan_fixups(struct phy_device *phydev)
438{
439 struct phy_fixup *fixup;
440
441 mutex_lock(&phy_fixup_lock);
442 list_for_each_entry(fixup, &phy_fixup_list, list) {
443 if (phy_needs_fixup(phydev, fixup)) {
444 int err = fixup->run(phydev);
445
446 if (err < 0) {
447 mutex_unlock(&phy_fixup_lock);
448 return err;
449 }
450 phydev->has_fixups = true;
451 }
452 }
453 mutex_unlock(&phy_fixup_lock);
454
455 return 0;
456}
457
458static int phy_bus_match(struct device *dev, struct device_driver *drv)
459{
460 struct phy_device *phydev = to_phy_device(dev);
461 struct phy_driver *phydrv = to_phy_driver(drv);
462 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
463 int i;
464
465 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
466 return 0;
467
468 if (phydrv->match_phy_device)
469 return phydrv->match_phy_device(phydev);
470
471 if (phydev->is_c45) {
472 for (i = 1; i < num_ids; i++) {
473 if (phydev->c45_ids.device_ids[i] == 0xffffffff)
474 continue;
475
476 if ((phydrv->phy_id & phydrv->phy_id_mask) ==
477 (phydev->c45_ids.device_ids[i] &
478 phydrv->phy_id_mask))
479 return 1;
480 }
481 return 0;
482 } else {
483 return (phydrv->phy_id & phydrv->phy_id_mask) ==
484 (phydev->phy_id & phydrv->phy_id_mask);
485 }
486}
487
488static ssize_t
489phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
490{
491 struct phy_device *phydev = to_phy_device(dev);
492
493 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
494}
495static DEVICE_ATTR_RO(phy_id);
496
497static ssize_t
498phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
499{
500 struct phy_device *phydev = to_phy_device(dev);
501 const char *mode = NULL;
502
503 if (phy_is_internal(phydev))
504 mode = "internal";
505 else
506 mode = phy_modes(phydev->interface);
507
508 return sprintf(buf, "%s\n", mode);
509}
510static DEVICE_ATTR_RO(phy_interface);
511
512static ssize_t
513phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
514 char *buf)
515{
516 struct phy_device *phydev = to_phy_device(dev);
517
518 return sprintf(buf, "%d\n", phydev->has_fixups);
519}
520static DEVICE_ATTR_RO(phy_has_fixups);
521
522static ssize_t phy_dev_flags_show(struct device *dev,
523 struct device_attribute *attr,
524 char *buf)
525{
526 struct phy_device *phydev = to_phy_device(dev);
527
528 return sprintf(buf, "0x%08x\n", phydev->dev_flags);
529}
530static DEVICE_ATTR_RO(phy_dev_flags);
531
532static struct attribute *phy_dev_attrs[] = {
533 &dev_attr_phy_id.attr,
534 &dev_attr_phy_interface.attr,
535 &dev_attr_phy_has_fixups.attr,
536 &dev_attr_phy_dev_flags.attr,
537 NULL,
538};
539ATTRIBUTE_GROUPS(phy_dev);
540
541static const struct device_type mdio_bus_phy_type = {
542 .name = "PHY",
543 .groups = phy_dev_groups,
544 .release = phy_device_release,
545 .pm = pm_ptr(&mdio_bus_phy_pm_ops),
546};
547
548static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
549{
550 int ret;
551
552 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
553 MDIO_ID_ARGS(phy_id));
554 /* We only check for failures in executing the usermode binary,
555 * not whether a PHY driver module exists for the PHY ID.
556 * Accept -ENOENT because this may occur in case no initramfs exists,
557 * then modprobe isn't available.
558 */
559 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
560 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
561 ret, (unsigned long)phy_id);
562 return ret;
563 }
564
565 return 0;
566}
567
568struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
569 bool is_c45,
570 struct phy_c45_device_ids *c45_ids)
571{
572 struct phy_device *dev;
573 struct mdio_device *mdiodev;
574 int ret = 0;
575
576 /* We allocate the device, and initialize the default values */
577 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
578 if (!dev)
579 return ERR_PTR(-ENOMEM);
580
581 mdiodev = &dev->mdio;
582 mdiodev->dev.parent = &bus->dev;
583 mdiodev->dev.bus = &mdio_bus_type;
584 mdiodev->dev.type = &mdio_bus_phy_type;
585 mdiodev->bus = bus;
586 mdiodev->bus_match = phy_bus_match;
587 mdiodev->addr = addr;
588 mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
589 mdiodev->device_free = phy_mdio_device_free;
590 mdiodev->device_remove = phy_mdio_device_remove;
591
592 dev->speed = SPEED_UNKNOWN;
593 dev->duplex = DUPLEX_UNKNOWN;
594 dev->pause = 0;
595 dev->asym_pause = 0;
596 dev->link = 0;
597 dev->port = PORT_TP;
598 dev->interface = PHY_INTERFACE_MODE_GMII;
599
600 dev->autoneg = AUTONEG_ENABLE;
601
602 dev->is_c45 = is_c45;
603 dev->phy_id = phy_id;
604 if (c45_ids)
605 dev->c45_ids = *c45_ids;
606 dev->irq = bus->irq[addr];
607
608 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
609 device_initialize(&mdiodev->dev);
610
611 dev->state = PHY_DOWN;
612
613 mutex_init(&dev->lock);
614 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
615
616 /* Request the appropriate module unconditionally; don't
617 * bother trying to do so only if it isn't already loaded,
618 * because that gets complicated. A hotplug event would have
619 * done an unconditional modprobe anyway.
620 * We don't do normal hotplug because it won't work for MDIO
621 * -- because it relies on the device staying around for long
622 * enough for the driver to get loaded. With MDIO, the NIC
623 * driver will get bored and give up as soon as it finds that
624 * there's no driver _already_ loaded.
625 */
626 if (is_c45 && c45_ids) {
627 const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
628 int i;
629
630 for (i = 1; i < num_ids; i++) {
631 if (c45_ids->device_ids[i] == 0xffffffff)
632 continue;
633
634 ret = phy_request_driver_module(dev,
635 c45_ids->device_ids[i]);
636 if (ret)
637 break;
638 }
639 } else {
640 ret = phy_request_driver_module(dev, phy_id);
641 }
642
643 if (ret) {
644 put_device(&mdiodev->dev);
645 dev = ERR_PTR(ret);
646 }
647
648 return dev;
649}
650EXPORT_SYMBOL(phy_device_create);
651
652/* phy_c45_probe_present - checks to see if a MMD is present in the package
653 * @bus: the target MII bus
654 * @prtad: PHY package address on the MII bus
655 * @devad: PHY device (MMD) address
656 *
657 * Read the MDIO_STAT2 register, and check whether a device is responding
658 * at this address.
659 *
660 * Returns: negative error number on bus access error, zero if no device
661 * is responding, or positive if a device is present.
662 */
663static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
664{
665 int stat2;
666
667 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
668 if (stat2 < 0)
669 return stat2;
670
671 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
672}
673
674/* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
675 * @bus: the target MII bus
676 * @addr: PHY address on the MII bus
677 * @dev_addr: MMD address in the PHY.
678 * @devices_in_package: where to store the devices in package information.
679 *
680 * Description: reads devices in package registers of a MMD at @dev_addr
681 * from PHY at @addr on @bus.
682 *
683 * Returns: 0 on success, -EIO on failure.
684 */
685static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
686 u32 *devices_in_package)
687{
688 int phy_reg;
689
690 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
691 if (phy_reg < 0)
692 return -EIO;
693 *devices_in_package = phy_reg << 16;
694
695 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
696 if (phy_reg < 0)
697 return -EIO;
698 *devices_in_package |= phy_reg;
699
700 return 0;
701}
702
703/**
704 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
705 * @bus: the target MII bus
706 * @addr: PHY address on the MII bus
707 * @c45_ids: where to store the c45 ID information.
708 *
709 * Read the PHY "devices in package". If this appears to be valid, read
710 * the PHY identifiers for each device. Return the "devices in package"
711 * and identifiers in @c45_ids.
712 *
713 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
714 * the "devices in package" is invalid.
715 */
716static int get_phy_c45_ids(struct mii_bus *bus, int addr,
717 struct phy_c45_device_ids *c45_ids)
718{
719 const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
720 u32 devs_in_pkg = 0;
721 int i, ret, phy_reg;
722
723 /* Find first non-zero Devices In package. Device zero is reserved
724 * for 802.3 c45 complied PHYs, so don't probe it at first.
725 */
726 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
727 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
728 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
729 /* Check that there is a device present at this
730 * address before reading the devices-in-package
731 * register to avoid reading garbage from the PHY.
732 * Some PHYs (88x3310) vendor space is not IEEE802.3
733 * compliant.
734 */
735 ret = phy_c45_probe_present(bus, addr, i);
736 if (ret < 0)
737 return -EIO;
738
739 if (!ret)
740 continue;
741 }
742 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
743 if (phy_reg < 0)
744 return -EIO;
745 }
746
747 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
748 /* If mostly Fs, there is no device there, then let's probe
749 * MMD 0, as some 10G PHYs have zero Devices In package,
750 * e.g. Cortina CS4315/CS4340 PHY.
751 */
752 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
753 if (phy_reg < 0)
754 return -EIO;
755
756 /* no device there, let's get out of here */
757 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
758 return -ENODEV;
759 }
760
761 /* Now probe Device Identifiers for each device present. */
762 for (i = 1; i < num_ids; i++) {
763 if (!(devs_in_pkg & (1 << i)))
764 continue;
765
766 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
767 /* Probe the "Device Present" bits for the vendor MMDs
768 * to ignore these if they do not contain IEEE 802.3
769 * registers.
770 */
771 ret = phy_c45_probe_present(bus, addr, i);
772 if (ret < 0)
773 return ret;
774
775 if (!ret)
776 continue;
777 }
778
779 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
780 if (phy_reg < 0)
781 return -EIO;
782 c45_ids->device_ids[i] = phy_reg << 16;
783
784 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
785 if (phy_reg < 0)
786 return -EIO;
787 c45_ids->device_ids[i] |= phy_reg;
788 }
789
790 c45_ids->devices_in_package = devs_in_pkg;
791 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */
792 c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
793
794 return 0;
795}
796
797/**
798 * get_phy_c22_id - reads the specified addr for its clause 22 ID.
799 * @bus: the target MII bus
800 * @addr: PHY address on the MII bus
801 * @phy_id: where to store the ID retrieved.
802 *
803 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
804 * placing it in @phy_id. Return zero on successful read and the ID is
805 * valid, %-EIO on bus access error, or %-ENODEV if no device responds
806 * or invalid ID.
807 */
808static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
809{
810 int phy_reg;
811
812 /* Grab the bits from PHYIR1, and put them in the upper half */
813 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
814 if (phy_reg < 0) {
815 /* returning -ENODEV doesn't stop bus scanning */
816 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
817 }
818
819 *phy_id = phy_reg << 16;
820
821 /* Grab the bits from PHYIR2, and put them in the lower half */
822 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
823 if (phy_reg < 0) {
824 /* returning -ENODEV doesn't stop bus scanning */
825 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
826 }
827
828 *phy_id |= phy_reg;
829
830 /* If the phy_id is mostly Fs, there is no device there */
831 if ((*phy_id & 0x1fffffff) == 0x1fffffff)
832 return -ENODEV;
833
834 return 0;
835}
836
837/* Extract the phy ID from the compatible string of the form
838 * ethernet-phy-idAAAA.BBBB.
839 */
840int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
841{
842 unsigned int upper, lower;
843 const char *cp;
844 int ret;
845
846 ret = fwnode_property_read_string(fwnode, "compatible", &cp);
847 if (ret)
848 return ret;
849
850 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
851 return -EINVAL;
852
853 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
854 return 0;
855}
856EXPORT_SYMBOL(fwnode_get_phy_id);
857
858/**
859 * get_phy_device - reads the specified PHY device and returns its @phy_device
860 * struct
861 * @bus: the target MII bus
862 * @addr: PHY address on the MII bus
863 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
864 *
865 * Probe for a PHY at @addr on @bus.
866 *
867 * When probing for a clause 22 PHY, then read the ID registers. If we find
868 * a valid ID, allocate and return a &struct phy_device.
869 *
870 * When probing for a clause 45 PHY, read the "devices in package" registers.
871 * If the "devices in package" appears valid, read the ID registers for each
872 * MMD, allocate and return a &struct phy_device.
873 *
874 * Returns an allocated &struct phy_device on success, %-ENODEV if there is
875 * no PHY present, or %-EIO on bus access error.
876 */
877struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
878{
879 struct phy_c45_device_ids c45_ids;
880 u32 phy_id = 0;
881 int r;
882
883 c45_ids.devices_in_package = 0;
884 c45_ids.mmds_present = 0;
885 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
886
887 if (is_c45)
888 r = get_phy_c45_ids(bus, addr, &c45_ids);
889 else
890 r = get_phy_c22_id(bus, addr, &phy_id);
891
892 if (r)
893 return ERR_PTR(r);
894
895 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
896 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
897 * probe with C45 to see if we're able to get a valid PHY ID in the C45
898 * space, if successful, create the C45 PHY device.
899 */
900 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) {
901 r = get_phy_c45_ids(bus, addr, &c45_ids);
902 if (!r)
903 return phy_device_create(bus, addr, phy_id,
904 true, &c45_ids);
905 }
906
907 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
908}
909EXPORT_SYMBOL(get_phy_device);
910
911/**
912 * phy_device_register - Register the phy device on the MDIO bus
913 * @phydev: phy_device structure to be added to the MDIO bus
914 */
915int phy_device_register(struct phy_device *phydev)
916{
917 int err;
918
919 err = mdiobus_register_device(&phydev->mdio);
920 if (err)
921 return err;
922
923 /* Deassert the reset signal */
924 phy_device_reset(phydev, 0);
925
926 /* Run all of the fixups for this PHY */
927 err = phy_scan_fixups(phydev);
928 if (err) {
929 phydev_err(phydev, "failed to initialize\n");
930 goto out;
931 }
932
933 err = device_add(&phydev->mdio.dev);
934 if (err) {
935 phydev_err(phydev, "failed to add\n");
936 goto out;
937 }
938
939 return 0;
940
941 out:
942 /* Assert the reset signal */
943 phy_device_reset(phydev, 1);
944
945 mdiobus_unregister_device(&phydev->mdio);
946 return err;
947}
948EXPORT_SYMBOL(phy_device_register);
949
950/**
951 * phy_device_remove - Remove a previously registered phy device from the MDIO bus
952 * @phydev: phy_device structure to remove
953 *
954 * This doesn't free the phy_device itself, it merely reverses the effects
955 * of phy_device_register(). Use phy_device_free() to free the device
956 * after calling this function.
957 */
958void phy_device_remove(struct phy_device *phydev)
959{
960 unregister_mii_timestamper(phydev->mii_ts);
961
962 device_del(&phydev->mdio.dev);
963
964 /* Assert the reset signal */
965 phy_device_reset(phydev, 1);
966
967 mdiobus_unregister_device(&phydev->mdio);
968}
969EXPORT_SYMBOL(phy_device_remove);
970
971/**
972 * phy_find_first - finds the first PHY device on the bus
973 * @bus: the target MII bus
974 */
975struct phy_device *phy_find_first(struct mii_bus *bus)
976{
977 struct phy_device *phydev;
978 int addr;
979
980 for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
981 phydev = mdiobus_get_phy(bus, addr);
982 if (phydev)
983 return phydev;
984 }
985 return NULL;
986}
987EXPORT_SYMBOL(phy_find_first);
988
989static void phy_link_change(struct phy_device *phydev, bool up)
990{
991 struct net_device *netdev = phydev->attached_dev;
992
993 if (up)
994 netif_carrier_on(netdev);
995 else
996 netif_carrier_off(netdev);
997 phydev->adjust_link(netdev);
998 if (phydev->mii_ts && phydev->mii_ts->link_state)
999 phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1000}
1001
1002/**
1003 * phy_prepare_link - prepares the PHY layer to monitor link status
1004 * @phydev: target phy_device struct
1005 * @handler: callback function for link status change notifications
1006 *
1007 * Description: Tells the PHY infrastructure to handle the
1008 * gory details on monitoring link status (whether through
1009 * polling or an interrupt), and to call back to the
1010 * connected device driver when the link status changes.
1011 * If you want to monitor your own link state, don't call
1012 * this function.
1013 */
1014static void phy_prepare_link(struct phy_device *phydev,
1015 void (*handler)(struct net_device *))
1016{
1017 phydev->adjust_link = handler;
1018}
1019
1020/**
1021 * phy_connect_direct - connect an ethernet device to a specific phy_device
1022 * @dev: the network device to connect
1023 * @phydev: the pointer to the phy device
1024 * @handler: callback function for state change notifications
1025 * @interface: PHY device's interface
1026 */
1027int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1028 void (*handler)(struct net_device *),
1029 phy_interface_t interface)
1030{
1031 int rc;
1032
1033 if (!dev)
1034 return -EINVAL;
1035
1036 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1037 if (rc)
1038 return rc;
1039
1040 phy_prepare_link(phydev, handler);
1041 if (phy_interrupt_is_valid(phydev))
1042 phy_request_interrupt(phydev);
1043
1044 return 0;
1045}
1046EXPORT_SYMBOL(phy_connect_direct);
1047
1048/**
1049 * phy_connect - connect an ethernet device to a PHY device
1050 * @dev: the network device to connect
1051 * @bus_id: the id string of the PHY device to connect
1052 * @handler: callback function for state change notifications
1053 * @interface: PHY device's interface
1054 *
1055 * Description: Convenience function for connecting ethernet
1056 * devices to PHY devices. The default behavior is for
1057 * the PHY infrastructure to handle everything, and only notify
1058 * the connected driver when the link status changes. If you
1059 * don't want, or can't use the provided functionality, you may
1060 * choose to call only the subset of functions which provide
1061 * the desired functionality.
1062 */
1063struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1064 void (*handler)(struct net_device *),
1065 phy_interface_t interface)
1066{
1067 struct phy_device *phydev;
1068 struct device *d;
1069 int rc;
1070
1071 /* Search the list of PHY devices on the mdio bus for the
1072 * PHY with the requested name
1073 */
1074 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1075 if (!d) {
1076 pr_err("PHY %s not found\n", bus_id);
1077 return ERR_PTR(-ENODEV);
1078 }
1079 phydev = to_phy_device(d);
1080
1081 rc = phy_connect_direct(dev, phydev, handler, interface);
1082 put_device(d);
1083 if (rc)
1084 return ERR_PTR(rc);
1085
1086 return phydev;
1087}
1088EXPORT_SYMBOL(phy_connect);
1089
1090/**
1091 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1092 * device
1093 * @phydev: target phy_device struct
1094 */
1095void phy_disconnect(struct phy_device *phydev)
1096{
1097 if (phy_is_started(phydev))
1098 phy_stop(phydev);
1099
1100 if (phy_interrupt_is_valid(phydev))
1101 phy_free_interrupt(phydev);
1102
1103 phydev->adjust_link = NULL;
1104
1105 phy_detach(phydev);
1106}
1107EXPORT_SYMBOL(phy_disconnect);
1108
1109/**
1110 * phy_poll_reset - Safely wait until a PHY reset has properly completed
1111 * @phydev: The PHY device to poll
1112 *
1113 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1114 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR
1115 * register must be polled until the BMCR_RESET bit clears.
1116 *
1117 * Furthermore, any attempts to write to PHY registers may have no effect
1118 * or even generate MDIO bus errors until this is complete.
1119 *
1120 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1121 * standard and do not fully reset after the BMCR_RESET bit is set, and may
1122 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an
1123 * effort to support such broken PHYs, this function is separate from the
1124 * standard phy_init_hw() which will zero all the other bits in the BMCR
1125 * and reapply all driver-specific and board-specific fixups.
1126 */
1127static int phy_poll_reset(struct phy_device *phydev)
1128{
1129 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1130 int ret, val;
1131
1132 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1133 50000, 600000, true);
1134 if (ret)
1135 return ret;
1136 /* Some chips (smsc911x) may still need up to another 1ms after the
1137 * BMCR_RESET bit is cleared before they are usable.
1138 */
1139 msleep(1);
1140 return 0;
1141}
1142
1143int phy_init_hw(struct phy_device *phydev)
1144{
1145 int ret = 0;
1146
1147 /* Deassert the reset signal */
1148 phy_device_reset(phydev, 0);
1149
1150 if (!phydev->drv)
1151 return 0;
1152
1153 if (phydev->drv->soft_reset) {
1154 ret = phydev->drv->soft_reset(phydev);
1155 /* see comment in genphy_soft_reset for an explanation */
1156 if (!ret)
1157 phydev->suspended = 0;
1158 }
1159
1160 if (ret < 0)
1161 return ret;
1162
1163 ret = phy_scan_fixups(phydev);
1164 if (ret < 0)
1165 return ret;
1166
1167 if (phydev->drv->config_init) {
1168 ret = phydev->drv->config_init(phydev);
1169 if (ret < 0)
1170 return ret;
1171 }
1172
1173 if (phydev->drv->config_intr) {
1174 ret = phydev->drv->config_intr(phydev);
1175 if (ret < 0)
1176 return ret;
1177 }
1178
1179 return 0;
1180}
1181EXPORT_SYMBOL(phy_init_hw);
1182
1183void phy_attached_info(struct phy_device *phydev)
1184{
1185 phy_attached_print(phydev, NULL);
1186}
1187EXPORT_SYMBOL(phy_attached_info);
1188
1189#define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1190char *phy_attached_info_irq(struct phy_device *phydev)
1191{
1192 char *irq_str;
1193 char irq_num[8];
1194
1195 switch(phydev->irq) {
1196 case PHY_POLL:
1197 irq_str = "POLL";
1198 break;
1199 case PHY_MAC_INTERRUPT:
1200 irq_str = "MAC";
1201 break;
1202 default:
1203 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1204 irq_str = irq_num;
1205 break;
1206 }
1207
1208 return kasprintf(GFP_KERNEL, "%s", irq_str);
1209}
1210EXPORT_SYMBOL(phy_attached_info_irq);
1211
1212void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1213{
1214 const char *unbound = phydev->drv ? "" : "[unbound] ";
1215 char *irq_str = phy_attached_info_irq(phydev);
1216
1217 if (!fmt) {
1218 phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1219 phydev_name(phydev), irq_str);
1220 } else {
1221 va_list ap;
1222
1223 phydev_info(phydev, ATTACHED_FMT, unbound,
1224 phydev_name(phydev), irq_str);
1225
1226 va_start(ap, fmt);
1227 vprintk(fmt, ap);
1228 va_end(ap);
1229 }
1230 kfree(irq_str);
1231}
1232EXPORT_SYMBOL(phy_attached_print);
1233
1234static void phy_sysfs_create_links(struct phy_device *phydev)
1235{
1236 struct net_device *dev = phydev->attached_dev;
1237 int err;
1238
1239 if (!dev)
1240 return;
1241
1242 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1243 "attached_dev");
1244 if (err)
1245 return;
1246
1247 err = sysfs_create_link_nowarn(&dev->dev.kobj,
1248 &phydev->mdio.dev.kobj,
1249 "phydev");
1250 if (err) {
1251 dev_err(&dev->dev, "could not add device link to %s err %d\n",
1252 kobject_name(&phydev->mdio.dev.kobj),
1253 err);
1254 /* non-fatal - some net drivers can use one netdevice
1255 * with more then one phy
1256 */
1257 }
1258
1259 phydev->sysfs_links = true;
1260}
1261
1262static ssize_t
1263phy_standalone_show(struct device *dev, struct device_attribute *attr,
1264 char *buf)
1265{
1266 struct phy_device *phydev = to_phy_device(dev);
1267
1268 return sprintf(buf, "%d\n", !phydev->attached_dev);
1269}
1270static DEVICE_ATTR_RO(phy_standalone);
1271
1272/**
1273 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1274 * @upstream: pointer to the phy device
1275 * @bus: sfp bus representing cage being attached
1276 *
1277 * This is used to fill in the sfp_upstream_ops .attach member.
1278 */
1279void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1280{
1281 struct phy_device *phydev = upstream;
1282
1283 if (phydev->attached_dev)
1284 phydev->attached_dev->sfp_bus = bus;
1285 phydev->sfp_bus_attached = true;
1286}
1287EXPORT_SYMBOL(phy_sfp_attach);
1288
1289/**
1290 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1291 * @upstream: pointer to the phy device
1292 * @bus: sfp bus representing cage being attached
1293 *
1294 * This is used to fill in the sfp_upstream_ops .detach member.
1295 */
1296void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1297{
1298 struct phy_device *phydev = upstream;
1299
1300 if (phydev->attached_dev)
1301 phydev->attached_dev->sfp_bus = NULL;
1302 phydev->sfp_bus_attached = false;
1303}
1304EXPORT_SYMBOL(phy_sfp_detach);
1305
1306/**
1307 * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1308 * @phydev: Pointer to phy_device
1309 * @ops: SFP's upstream operations
1310 */
1311int phy_sfp_probe(struct phy_device *phydev,
1312 const struct sfp_upstream_ops *ops)
1313{
1314 struct sfp_bus *bus;
1315 int ret = 0;
1316
1317 if (phydev->mdio.dev.fwnode) {
1318 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1319 if (IS_ERR(bus))
1320 return PTR_ERR(bus);
1321
1322 phydev->sfp_bus = bus;
1323
1324 ret = sfp_bus_add_upstream(bus, phydev, ops);
1325 sfp_bus_put(bus);
1326 }
1327 return ret;
1328}
1329EXPORT_SYMBOL(phy_sfp_probe);
1330
1331/**
1332 * phy_attach_direct - attach a network device to a given PHY device pointer
1333 * @dev: network device to attach
1334 * @phydev: Pointer to phy_device to attach
1335 * @flags: PHY device's dev_flags
1336 * @interface: PHY device's interface
1337 *
1338 * Description: Called by drivers to attach to a particular PHY
1339 * device. The phy_device is found, and properly hooked up
1340 * to the phy_driver. If no driver is attached, then a
1341 * generic driver is used. The phy_device is given a ptr to
1342 * the attaching device, and given a callback for link status
1343 * change. The phy_device is returned to the attaching driver.
1344 * This function takes a reference on the phy device.
1345 */
1346int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1347 u32 flags, phy_interface_t interface)
1348{
1349 struct mii_bus *bus = phydev->mdio.bus;
1350 struct device *d = &phydev->mdio.dev;
1351 struct module *ndev_owner = NULL;
1352 bool using_genphy = false;
1353 int err;
1354
1355 /* For Ethernet device drivers that register their own MDIO bus, we
1356 * will have bus->owner match ndev_mod, so we do not want to increment
1357 * our own module->refcnt here, otherwise we would not be able to
1358 * unload later on.
1359 */
1360 if (dev)
1361 ndev_owner = dev->dev.parent->driver->owner;
1362 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1363 phydev_err(phydev, "failed to get the bus module\n");
1364 return -EIO;
1365 }
1366
1367 get_device(d);
1368
1369 /* Assume that if there is no driver, that it doesn't
1370 * exist, and we should use the genphy driver.
1371 */
1372 if (!d->driver) {
1373 if (phydev->is_c45)
1374 d->driver = &genphy_c45_driver.mdiodrv.driver;
1375 else
1376 d->driver = &genphy_driver.mdiodrv.driver;
1377
1378 using_genphy = true;
1379 }
1380
1381 if (!try_module_get(d->driver->owner)) {
1382 phydev_err(phydev, "failed to get the device driver module\n");
1383 err = -EIO;
1384 goto error_put_device;
1385 }
1386
1387 if (using_genphy) {
1388 err = d->driver->probe(d);
1389 if (err >= 0)
1390 err = device_bind_driver(d);
1391
1392 if (err)
1393 goto error_module_put;
1394 }
1395
1396 if (phydev->attached_dev) {
1397 dev_err(&dev->dev, "PHY already attached\n");
1398 err = -EBUSY;
1399 goto error;
1400 }
1401
1402 phydev->phy_link_change = phy_link_change;
1403 if (dev) {
1404 phydev->attached_dev = dev;
1405 dev->phydev = phydev;
1406
1407 if (phydev->sfp_bus_attached)
1408 dev->sfp_bus = phydev->sfp_bus;
1409 else if (dev->sfp_bus)
1410 phydev->is_on_sfp_module = true;
1411 }
1412
1413 /* Some Ethernet drivers try to connect to a PHY device before
1414 * calling register_netdevice() -> netdev_register_kobject() and
1415 * does the dev->dev.kobj initialization. Here we only check for
1416 * success which indicates that the network device kobject is
1417 * ready. Once we do that we still need to keep track of whether
1418 * links were successfully set up or not for phy_detach() to
1419 * remove them accordingly.
1420 */
1421 phydev->sysfs_links = false;
1422
1423 phy_sysfs_create_links(phydev);
1424
1425 if (!phydev->attached_dev) {
1426 err = sysfs_create_file(&phydev->mdio.dev.kobj,
1427 &dev_attr_phy_standalone.attr);
1428 if (err)
1429 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1430 }
1431
1432 phydev->dev_flags |= flags;
1433
1434 phydev->interface = interface;
1435
1436 phydev->state = PHY_READY;
1437
1438 /* Port is set to PORT_TP by default and the actual PHY driver will set
1439 * it to different value depending on the PHY configuration. If we have
1440 * the generic PHY driver we can't figure it out, thus set the old
1441 * legacy PORT_MII value.
1442 */
1443 if (using_genphy)
1444 phydev->port = PORT_MII;
1445
1446 /* Initial carrier state is off as the phy is about to be
1447 * (re)initialized.
1448 */
1449 if (dev)
1450 netif_carrier_off(phydev->attached_dev);
1451
1452 /* Do initial configuration here, now that
1453 * we have certain key parameters
1454 * (dev_flags and interface)
1455 */
1456 err = phy_init_hw(phydev);
1457 if (err)
1458 goto error;
1459
1460 err = phy_disable_interrupts(phydev);
1461 if (err)
1462 return err;
1463
1464 phy_resume(phydev);
1465 phy_led_triggers_register(phydev);
1466
1467 return err;
1468
1469error:
1470 /* phy_detach() does all of the cleanup below */
1471 phy_detach(phydev);
1472 return err;
1473
1474error_module_put:
1475 module_put(d->driver->owner);
1476error_put_device:
1477 put_device(d);
1478 if (ndev_owner != bus->owner)
1479 module_put(bus->owner);
1480 return err;
1481}
1482EXPORT_SYMBOL(phy_attach_direct);
1483
1484/**
1485 * phy_attach - attach a network device to a particular PHY device
1486 * @dev: network device to attach
1487 * @bus_id: Bus ID of PHY device to attach
1488 * @interface: PHY device's interface
1489 *
1490 * Description: Same as phy_attach_direct() except that a PHY bus_id
1491 * string is passed instead of a pointer to a struct phy_device.
1492 */
1493struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1494 phy_interface_t interface)
1495{
1496 struct bus_type *bus = &mdio_bus_type;
1497 struct phy_device *phydev;
1498 struct device *d;
1499 int rc;
1500
1501 if (!dev)
1502 return ERR_PTR(-EINVAL);
1503
1504 /* Search the list of PHY devices on the mdio bus for the
1505 * PHY with the requested name
1506 */
1507 d = bus_find_device_by_name(bus, NULL, bus_id);
1508 if (!d) {
1509 pr_err("PHY %s not found\n", bus_id);
1510 return ERR_PTR(-ENODEV);
1511 }
1512 phydev = to_phy_device(d);
1513
1514 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1515 put_device(d);
1516 if (rc)
1517 return ERR_PTR(rc);
1518
1519 return phydev;
1520}
1521EXPORT_SYMBOL(phy_attach);
1522
1523static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1524 struct device_driver *driver)
1525{
1526 struct device *d = &phydev->mdio.dev;
1527 bool ret = false;
1528
1529 if (!phydev->drv)
1530 return ret;
1531
1532 get_device(d);
1533 ret = d->driver == driver;
1534 put_device(d);
1535
1536 return ret;
1537}
1538
1539bool phy_driver_is_genphy(struct phy_device *phydev)
1540{
1541 return phy_driver_is_genphy_kind(phydev,
1542 &genphy_driver.mdiodrv.driver);
1543}
1544EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1545
1546bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1547{
1548 return phy_driver_is_genphy_kind(phydev,
1549 &genphy_c45_driver.mdiodrv.driver);
1550}
1551EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1552
1553/**
1554 * phy_package_join - join a common PHY group
1555 * @phydev: target phy_device struct
1556 * @addr: cookie and PHY address for global register access
1557 * @priv_size: if non-zero allocate this amount of bytes for private data
1558 *
1559 * This joins a PHY group and provides a shared storage for all phydevs in
1560 * this group. This is intended to be used for packages which contain
1561 * more than one PHY, for example a quad PHY transceiver.
1562 *
1563 * The addr parameter serves as a cookie which has to have the same value
1564 * for all members of one group and as a PHY address to access generic
1565 * registers of a PHY package. Usually, one of the PHY addresses of the
1566 * different PHYs in the package provides access to these global registers.
1567 * The address which is given here, will be used in the phy_package_read()
1568 * and phy_package_write() convenience functions. If your PHY doesn't have
1569 * global registers you can just pick any of the PHY addresses.
1570 *
1571 * This will set the shared pointer of the phydev to the shared storage.
1572 * If this is the first call for a this cookie the shared storage will be
1573 * allocated. If priv_size is non-zero, the given amount of bytes are
1574 * allocated for the priv member.
1575 *
1576 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1577 * with the same cookie but a different priv_size is an error.
1578 */
1579int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1580{
1581 struct mii_bus *bus = phydev->mdio.bus;
1582 struct phy_package_shared *shared;
1583 int ret;
1584
1585 if (addr < 0 || addr >= PHY_MAX_ADDR)
1586 return -EINVAL;
1587
1588 mutex_lock(&bus->shared_lock);
1589 shared = bus->shared[addr];
1590 if (!shared) {
1591 ret = -ENOMEM;
1592 shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1593 if (!shared)
1594 goto err_unlock;
1595 if (priv_size) {
1596 shared->priv = kzalloc(priv_size, GFP_KERNEL);
1597 if (!shared->priv)
1598 goto err_free;
1599 shared->priv_size = priv_size;
1600 }
1601 shared->addr = addr;
1602 refcount_set(&shared->refcnt, 1);
1603 bus->shared[addr] = shared;
1604 } else {
1605 ret = -EINVAL;
1606 if (priv_size && priv_size != shared->priv_size)
1607 goto err_unlock;
1608 refcount_inc(&shared->refcnt);
1609 }
1610 mutex_unlock(&bus->shared_lock);
1611
1612 phydev->shared = shared;
1613
1614 return 0;
1615
1616err_free:
1617 kfree(shared);
1618err_unlock:
1619 mutex_unlock(&bus->shared_lock);
1620 return ret;
1621}
1622EXPORT_SYMBOL_GPL(phy_package_join);
1623
1624/**
1625 * phy_package_leave - leave a common PHY group
1626 * @phydev: target phy_device struct
1627 *
1628 * This leaves a PHY group created by phy_package_join(). If this phydev
1629 * was the last user of the shared data between the group, this data is
1630 * freed. Resets the phydev->shared pointer to NULL.
1631 */
1632void phy_package_leave(struct phy_device *phydev)
1633{
1634 struct phy_package_shared *shared = phydev->shared;
1635 struct mii_bus *bus = phydev->mdio.bus;
1636
1637 if (!shared)
1638 return;
1639
1640 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1641 bus->shared[shared->addr] = NULL;
1642 mutex_unlock(&bus->shared_lock);
1643 kfree(shared->priv);
1644 kfree(shared);
1645 }
1646
1647 phydev->shared = NULL;
1648}
1649EXPORT_SYMBOL_GPL(phy_package_leave);
1650
1651static void devm_phy_package_leave(struct device *dev, void *res)
1652{
1653 phy_package_leave(*(struct phy_device **)res);
1654}
1655
1656/**
1657 * devm_phy_package_join - resource managed phy_package_join()
1658 * @dev: device that is registering this PHY package
1659 * @phydev: target phy_device struct
1660 * @addr: cookie and PHY address for global register access
1661 * @priv_size: if non-zero allocate this amount of bytes for private data
1662 *
1663 * Managed phy_package_join(). Shared storage fetched by this function,
1664 * phy_package_leave() is automatically called on driver detach. See
1665 * phy_package_join() for more information.
1666 */
1667int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1668 int addr, size_t priv_size)
1669{
1670 struct phy_device **ptr;
1671 int ret;
1672
1673 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1674 GFP_KERNEL);
1675 if (!ptr)
1676 return -ENOMEM;
1677
1678 ret = phy_package_join(phydev, addr, priv_size);
1679
1680 if (!ret) {
1681 *ptr = phydev;
1682 devres_add(dev, ptr);
1683 } else {
1684 devres_free(ptr);
1685 }
1686
1687 return ret;
1688}
1689EXPORT_SYMBOL_GPL(devm_phy_package_join);
1690
1691/**
1692 * phy_detach - detach a PHY device from its network device
1693 * @phydev: target phy_device struct
1694 *
1695 * This detaches the phy device from its network device and the phy
1696 * driver, and drops the reference count taken in phy_attach_direct().
1697 */
1698void phy_detach(struct phy_device *phydev)
1699{
1700 struct net_device *dev = phydev->attached_dev;
1701 struct module *ndev_owner = NULL;
1702 struct mii_bus *bus;
1703
1704 if (phydev->sysfs_links) {
1705 if (dev)
1706 sysfs_remove_link(&dev->dev.kobj, "phydev");
1707 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1708 }
1709
1710 if (!phydev->attached_dev)
1711 sysfs_remove_file(&phydev->mdio.dev.kobj,
1712 &dev_attr_phy_standalone.attr);
1713
1714 phy_suspend(phydev);
1715 if (dev) {
1716 phydev->attached_dev->phydev = NULL;
1717 phydev->attached_dev = NULL;
1718 }
1719 phydev->phylink = NULL;
1720
1721 phy_led_triggers_unregister(phydev);
1722
1723 if (phydev->mdio.dev.driver)
1724 module_put(phydev->mdio.dev.driver->owner);
1725
1726 /* If the device had no specific driver before (i.e. - it
1727 * was using the generic driver), we unbind the device
1728 * from the generic driver so that there's a chance a
1729 * real driver could be loaded
1730 */
1731 if (phy_driver_is_genphy(phydev) ||
1732 phy_driver_is_genphy_10g(phydev))
1733 device_release_driver(&phydev->mdio.dev);
1734
1735 /*
1736 * The phydev might go away on the put_device() below, so avoid
1737 * a use-after-free bug by reading the underlying bus first.
1738 */
1739 bus = phydev->mdio.bus;
1740
1741 put_device(&phydev->mdio.dev);
1742 if (dev)
1743 ndev_owner = dev->dev.parent->driver->owner;
1744 if (ndev_owner != bus->owner)
1745 module_put(bus->owner);
1746
1747 /* Assert the reset signal */
1748 phy_device_reset(phydev, 1);
1749}
1750EXPORT_SYMBOL(phy_detach);
1751
1752int phy_suspend(struct phy_device *phydev)
1753{
1754 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1755 struct net_device *netdev = phydev->attached_dev;
1756 struct phy_driver *phydrv = phydev->drv;
1757 int ret;
1758
1759 if (phydev->suspended)
1760 return 0;
1761
1762 /* If the device has WOL enabled, we cannot suspend the PHY */
1763 phy_ethtool_get_wol(phydev, &wol);
1764 if (wol.wolopts || (netdev && netdev->wol_enabled))
1765 return -EBUSY;
1766
1767 if (!phydrv || !phydrv->suspend)
1768 return 0;
1769
1770 ret = phydrv->suspend(phydev);
1771 if (!ret)
1772 phydev->suspended = true;
1773
1774 return ret;
1775}
1776EXPORT_SYMBOL(phy_suspend);
1777
1778int __phy_resume(struct phy_device *phydev)
1779{
1780 struct phy_driver *phydrv = phydev->drv;
1781 int ret;
1782
1783 lockdep_assert_held(&phydev->lock);
1784
1785 if (!phydrv || !phydrv->resume)
1786 return 0;
1787
1788 ret = phydrv->resume(phydev);
1789 if (!ret)
1790 phydev->suspended = false;
1791
1792 return ret;
1793}
1794EXPORT_SYMBOL(__phy_resume);
1795
1796int phy_resume(struct phy_device *phydev)
1797{
1798 int ret;
1799
1800 mutex_lock(&phydev->lock);
1801 ret = __phy_resume(phydev);
1802 mutex_unlock(&phydev->lock);
1803
1804 return ret;
1805}
1806EXPORT_SYMBOL(phy_resume);
1807
1808int phy_loopback(struct phy_device *phydev, bool enable)
1809{
1810 struct phy_driver *phydrv = to_phy_driver(phydev->mdio.dev.driver);
1811 int ret = 0;
1812
1813 if (!phydrv)
1814 return -ENODEV;
1815
1816 mutex_lock(&phydev->lock);
1817
1818 if (enable && phydev->loopback_enabled) {
1819 ret = -EBUSY;
1820 goto out;
1821 }
1822
1823 if (!enable && !phydev->loopback_enabled) {
1824 ret = -EINVAL;
1825 goto out;
1826 }
1827
1828 if (phydrv->set_loopback)
1829 ret = phydrv->set_loopback(phydev, enable);
1830 else
1831 ret = genphy_loopback(phydev, enable);
1832
1833 if (ret)
1834 goto out;
1835
1836 phydev->loopback_enabled = enable;
1837
1838out:
1839 mutex_unlock(&phydev->lock);
1840 return ret;
1841}
1842EXPORT_SYMBOL(phy_loopback);
1843
1844/**
1845 * phy_reset_after_clk_enable - perform a PHY reset if needed
1846 * @phydev: target phy_device struct
1847 *
1848 * Description: Some PHYs are known to need a reset after their refclk was
1849 * enabled. This function evaluates the flags and perform the reset if it's
1850 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1851 * was reset.
1852 */
1853int phy_reset_after_clk_enable(struct phy_device *phydev)
1854{
1855 if (!phydev || !phydev->drv)
1856 return -ENODEV;
1857
1858 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1859 phy_device_reset(phydev, 1);
1860 phy_device_reset(phydev, 0);
1861 return 1;
1862 }
1863
1864 return 0;
1865}
1866EXPORT_SYMBOL(phy_reset_after_clk_enable);
1867
1868/* Generic PHY support and helper functions */
1869
1870/**
1871 * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1872 * @phydev: target phy_device struct
1873 *
1874 * Description: Writes MII_ADVERTISE with the appropriate values,
1875 * after sanitizing the values to make sure we only advertise
1876 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement
1877 * hasn't changed, and > 0 if it has changed.
1878 */
1879static int genphy_config_advert(struct phy_device *phydev)
1880{
1881 int err, bmsr, changed = 0;
1882 u32 adv;
1883
1884 /* Only allow advertising what this PHY supports */
1885 linkmode_and(phydev->advertising, phydev->advertising,
1886 phydev->supported);
1887
1888 adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1889
1890 /* Setup standard advertisement */
1891 err = phy_modify_changed(phydev, MII_ADVERTISE,
1892 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1893 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1894 adv);
1895 if (err < 0)
1896 return err;
1897 if (err > 0)
1898 changed = 1;
1899
1900 bmsr = phy_read(phydev, MII_BMSR);
1901 if (bmsr < 0)
1902 return bmsr;
1903
1904 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
1905 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
1906 * logical 1.
1907 */
1908 if (!(bmsr & BMSR_ESTATEN))
1909 return changed;
1910
1911 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
1912
1913 err = phy_modify_changed(phydev, MII_CTRL1000,
1914 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
1915 adv);
1916 if (err < 0)
1917 return err;
1918 if (err > 0)
1919 changed = 1;
1920
1921 return changed;
1922}
1923
1924/**
1925 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
1926 * @phydev: target phy_device struct
1927 *
1928 * Description: Writes MII_ADVERTISE with the appropriate values,
1929 * after sanitizing the values to make sure we only advertise
1930 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement
1931 * hasn't changed, and > 0 if it has changed. This function is intended
1932 * for Clause 37 1000Base-X mode.
1933 */
1934static int genphy_c37_config_advert(struct phy_device *phydev)
1935{
1936 u16 adv = 0;
1937
1938 /* Only allow advertising what this PHY supports */
1939 linkmode_and(phydev->advertising, phydev->advertising,
1940 phydev->supported);
1941
1942 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1943 phydev->advertising))
1944 adv |= ADVERTISE_1000XFULL;
1945 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
1946 phydev->advertising))
1947 adv |= ADVERTISE_1000XPAUSE;
1948 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
1949 phydev->advertising))
1950 adv |= ADVERTISE_1000XPSE_ASYM;
1951
1952 return phy_modify_changed(phydev, MII_ADVERTISE,
1953 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1954 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
1955 adv);
1956}
1957
1958/**
1959 * genphy_config_eee_advert - disable unwanted eee mode advertisement
1960 * @phydev: target phy_device struct
1961 *
1962 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
1963 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
1964 * changed, and 1 if it has changed.
1965 */
1966int genphy_config_eee_advert(struct phy_device *phydev)
1967{
1968 int err;
1969
1970 /* Nothing to disable */
1971 if (!phydev->eee_broken_modes)
1972 return 0;
1973
1974 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
1975 phydev->eee_broken_modes, 0);
1976 /* If the call failed, we assume that EEE is not supported */
1977 return err < 0 ? 0 : err;
1978}
1979EXPORT_SYMBOL(genphy_config_eee_advert);
1980
1981/**
1982 * genphy_setup_forced - configures/forces speed/duplex from @phydev
1983 * @phydev: target phy_device struct
1984 *
1985 * Description: Configures MII_BMCR to force speed/duplex
1986 * to the values in phydev. Assumes that the values are valid.
1987 * Please see phy_sanitize_settings().
1988 */
1989int genphy_setup_forced(struct phy_device *phydev)
1990{
1991 u16 ctl = 0;
1992
1993 phydev->pause = 0;
1994 phydev->asym_pause = 0;
1995
1996 if (SPEED_1000 == phydev->speed)
1997 ctl |= BMCR_SPEED1000;
1998 else if (SPEED_100 == phydev->speed)
1999 ctl |= BMCR_SPEED100;
2000
2001 if (DUPLEX_FULL == phydev->duplex)
2002 ctl |= BMCR_FULLDPLX;
2003
2004 return phy_modify(phydev, MII_BMCR,
2005 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2006}
2007EXPORT_SYMBOL(genphy_setup_forced);
2008
2009static int genphy_setup_master_slave(struct phy_device *phydev)
2010{
2011 u16 ctl = 0;
2012
2013 if (!phydev->is_gigabit_capable)
2014 return 0;
2015
2016 switch (phydev->master_slave_set) {
2017 case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2018 ctl |= CTL1000_PREFER_MASTER;
2019 break;
2020 case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2021 break;
2022 case MASTER_SLAVE_CFG_MASTER_FORCE:
2023 ctl |= CTL1000_AS_MASTER;
2024 fallthrough;
2025 case MASTER_SLAVE_CFG_SLAVE_FORCE:
2026 ctl |= CTL1000_ENABLE_MASTER;
2027 break;
2028 case MASTER_SLAVE_CFG_UNKNOWN:
2029 case MASTER_SLAVE_CFG_UNSUPPORTED:
2030 return 0;
2031 default:
2032 phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2033 return -EOPNOTSUPP;
2034 }
2035
2036 return phy_modify_changed(phydev, MII_CTRL1000,
2037 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2038 CTL1000_PREFER_MASTER), ctl);
2039}
2040
2041static int genphy_read_master_slave(struct phy_device *phydev)
2042{
2043 int cfg, state;
2044 int val;
2045
2046 if (!phydev->is_gigabit_capable) {
2047 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2048 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2049 return 0;
2050 }
2051
2052 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2053 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2054
2055 val = phy_read(phydev, MII_CTRL1000);
2056 if (val < 0)
2057 return val;
2058
2059 if (val & CTL1000_ENABLE_MASTER) {
2060 if (val & CTL1000_AS_MASTER)
2061 cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2062 else
2063 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2064 } else {
2065 if (val & CTL1000_PREFER_MASTER)
2066 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2067 else
2068 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2069 }
2070
2071 val = phy_read(phydev, MII_STAT1000);
2072 if (val < 0)
2073 return val;
2074
2075 if (val & LPA_1000MSFAIL) {
2076 state = MASTER_SLAVE_STATE_ERR;
2077 } else if (phydev->link) {
2078 /* this bits are valid only for active link */
2079 if (val & LPA_1000MSRES)
2080 state = MASTER_SLAVE_STATE_MASTER;
2081 else
2082 state = MASTER_SLAVE_STATE_SLAVE;
2083 } else {
2084 state = MASTER_SLAVE_STATE_UNKNOWN;
2085 }
2086
2087 phydev->master_slave_get = cfg;
2088 phydev->master_slave_state = state;
2089
2090 return 0;
2091}
2092
2093/**
2094 * genphy_restart_aneg - Enable and Restart Autonegotiation
2095 * @phydev: target phy_device struct
2096 */
2097int genphy_restart_aneg(struct phy_device *phydev)
2098{
2099 /* Don't isolate the PHY if we're negotiating */
2100 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2101 BMCR_ANENABLE | BMCR_ANRESTART);
2102}
2103EXPORT_SYMBOL(genphy_restart_aneg);
2104
2105/**
2106 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2107 * @phydev: target phy_device struct
2108 * @restart: whether aneg restart is requested
2109 *
2110 * Check, and restart auto-negotiation if needed.
2111 */
2112int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2113{
2114 int ret;
2115
2116 if (!restart) {
2117 /* Advertisement hasn't changed, but maybe aneg was never on to
2118 * begin with? Or maybe phy was isolated?
2119 */
2120 ret = phy_read(phydev, MII_BMCR);
2121 if (ret < 0)
2122 return ret;
2123
2124 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2125 restart = true;
2126 }
2127
2128 if (restart)
2129 return genphy_restart_aneg(phydev);
2130
2131 return 0;
2132}
2133EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2134
2135/**
2136 * __genphy_config_aneg - restart auto-negotiation or write BMCR
2137 * @phydev: target phy_device struct
2138 * @changed: whether autoneg is requested
2139 *
2140 * Description: If auto-negotiation is enabled, we configure the
2141 * advertising, and then restart auto-negotiation. If it is not
2142 * enabled, then we write the BMCR.
2143 */
2144int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2145{
2146 int err;
2147
2148 if (genphy_config_eee_advert(phydev))
2149 changed = true;
2150
2151 err = genphy_setup_master_slave(phydev);
2152 if (err < 0)
2153 return err;
2154 else if (err)
2155 changed = true;
2156
2157 if (AUTONEG_ENABLE != phydev->autoneg)
2158 return genphy_setup_forced(phydev);
2159
2160 err = genphy_config_advert(phydev);
2161 if (err < 0) /* error */
2162 return err;
2163 else if (err)
2164 changed = true;
2165
2166 return genphy_check_and_restart_aneg(phydev, changed);
2167}
2168EXPORT_SYMBOL(__genphy_config_aneg);
2169
2170/**
2171 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2172 * @phydev: target phy_device struct
2173 *
2174 * Description: If auto-negotiation is enabled, we configure the
2175 * advertising, and then restart auto-negotiation. If it is not
2176 * enabled, then we write the BMCR. This function is intended
2177 * for use with Clause 37 1000Base-X mode.
2178 */
2179int genphy_c37_config_aneg(struct phy_device *phydev)
2180{
2181 int err, changed;
2182
2183 if (phydev->autoneg != AUTONEG_ENABLE)
2184 return genphy_setup_forced(phydev);
2185
2186 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2187 BMCR_SPEED1000);
2188 if (err)
2189 return err;
2190
2191 changed = genphy_c37_config_advert(phydev);
2192 if (changed < 0) /* error */
2193 return changed;
2194
2195 if (!changed) {
2196 /* Advertisement hasn't changed, but maybe aneg was never on to
2197 * begin with? Or maybe phy was isolated?
2198 */
2199 int ctl = phy_read(phydev, MII_BMCR);
2200
2201 if (ctl < 0)
2202 return ctl;
2203
2204 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2205 changed = 1; /* do restart aneg */
2206 }
2207
2208 /* Only restart aneg if we are advertising something different
2209 * than we were before.
2210 */
2211 if (changed > 0)
2212 return genphy_restart_aneg(phydev);
2213
2214 return 0;
2215}
2216EXPORT_SYMBOL(genphy_c37_config_aneg);
2217
2218/**
2219 * genphy_aneg_done - return auto-negotiation status
2220 * @phydev: target phy_device struct
2221 *
2222 * Description: Reads the status register and returns 0 either if
2223 * auto-negotiation is incomplete, or if there was an error.
2224 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2225 */
2226int genphy_aneg_done(struct phy_device *phydev)
2227{
2228 int retval = phy_read(phydev, MII_BMSR);
2229
2230 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2231}
2232EXPORT_SYMBOL(genphy_aneg_done);
2233
2234/**
2235 * genphy_update_link - update link status in @phydev
2236 * @phydev: target phy_device struct
2237 *
2238 * Description: Update the value in phydev->link to reflect the
2239 * current link value. In order to do this, we need to read
2240 * the status register twice, keeping the second value.
2241 */
2242int genphy_update_link(struct phy_device *phydev)
2243{
2244 int status = 0, bmcr;
2245
2246 bmcr = phy_read(phydev, MII_BMCR);
2247 if (bmcr < 0)
2248 return bmcr;
2249
2250 /* Autoneg is being started, therefore disregard BMSR value and
2251 * report link as down.
2252 */
2253 if (bmcr & BMCR_ANRESTART)
2254 goto done;
2255
2256 /* The link state is latched low so that momentary link
2257 * drops can be detected. Do not double-read the status
2258 * in polling mode to detect such short link drops except
2259 * the link was already down.
2260 */
2261 if (!phy_polling_mode(phydev) || !phydev->link) {
2262 status = phy_read(phydev, MII_BMSR);
2263 if (status < 0)
2264 return status;
2265 else if (status & BMSR_LSTATUS)
2266 goto done;
2267 }
2268
2269 /* Read link and autonegotiation status */
2270 status = phy_read(phydev, MII_BMSR);
2271 if (status < 0)
2272 return status;
2273done:
2274 phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2275 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2276
2277 /* Consider the case that autoneg was started and "aneg complete"
2278 * bit has been reset, but "link up" bit not yet.
2279 */
2280 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2281 phydev->link = 0;
2282
2283 return 0;
2284}
2285EXPORT_SYMBOL(genphy_update_link);
2286
2287int genphy_read_lpa(struct phy_device *phydev)
2288{
2289 int lpa, lpagb;
2290
2291 if (phydev->autoneg == AUTONEG_ENABLE) {
2292 if (!phydev->autoneg_complete) {
2293 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2294 0);
2295 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2296 return 0;
2297 }
2298
2299 if (phydev->is_gigabit_capable) {
2300 lpagb = phy_read(phydev, MII_STAT1000);
2301 if (lpagb < 0)
2302 return lpagb;
2303
2304 if (lpagb & LPA_1000MSFAIL) {
2305 int adv = phy_read(phydev, MII_CTRL1000);
2306
2307 if (adv < 0)
2308 return adv;
2309
2310 if (adv & CTL1000_ENABLE_MASTER)
2311 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2312 else
2313 phydev_err(phydev, "Master/Slave resolution failed\n");
2314 return -ENOLINK;
2315 }
2316
2317 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2318 lpagb);
2319 }
2320
2321 lpa = phy_read(phydev, MII_LPA);
2322 if (lpa < 0)
2323 return lpa;
2324
2325 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2326 } else {
2327 linkmode_zero(phydev->lp_advertising);
2328 }
2329
2330 return 0;
2331}
2332EXPORT_SYMBOL(genphy_read_lpa);
2333
2334/**
2335 * genphy_read_status_fixed - read the link parameters for !aneg mode
2336 * @phydev: target phy_device struct
2337 *
2338 * Read the current duplex and speed state for a PHY operating with
2339 * autonegotiation disabled.
2340 */
2341int genphy_read_status_fixed(struct phy_device *phydev)
2342{
2343 int bmcr = phy_read(phydev, MII_BMCR);
2344
2345 if (bmcr < 0)
2346 return bmcr;
2347
2348 if (bmcr & BMCR_FULLDPLX)
2349 phydev->duplex = DUPLEX_FULL;
2350 else
2351 phydev->duplex = DUPLEX_HALF;
2352
2353 if (bmcr & BMCR_SPEED1000)
2354 phydev->speed = SPEED_1000;
2355 else if (bmcr & BMCR_SPEED100)
2356 phydev->speed = SPEED_100;
2357 else
2358 phydev->speed = SPEED_10;
2359
2360 return 0;
2361}
2362EXPORT_SYMBOL(genphy_read_status_fixed);
2363
2364/**
2365 * genphy_read_status - check the link status and update current link state
2366 * @phydev: target phy_device struct
2367 *
2368 * Description: Check the link, then figure out the current state
2369 * by comparing what we advertise with what the link partner
2370 * advertises. Start by checking the gigabit possibilities,
2371 * then move on to 10/100.
2372 */
2373int genphy_read_status(struct phy_device *phydev)
2374{
2375 int err, old_link = phydev->link;
2376
2377 /* Update the link, but return if there was an error */
2378 err = genphy_update_link(phydev);
2379 if (err)
2380 return err;
2381
2382 /* why bother the PHY if nothing can have changed */
2383 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2384 return 0;
2385
2386 phydev->speed = SPEED_UNKNOWN;
2387 phydev->duplex = DUPLEX_UNKNOWN;
2388 phydev->pause = 0;
2389 phydev->asym_pause = 0;
2390
2391 err = genphy_read_master_slave(phydev);
2392 if (err < 0)
2393 return err;
2394
2395 err = genphy_read_lpa(phydev);
2396 if (err < 0)
2397 return err;
2398
2399 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2400 phy_resolve_aneg_linkmode(phydev);
2401 } else if (phydev->autoneg == AUTONEG_DISABLE) {
2402 err = genphy_read_status_fixed(phydev);
2403 if (err < 0)
2404 return err;
2405 }
2406
2407 return 0;
2408}
2409EXPORT_SYMBOL(genphy_read_status);
2410
2411/**
2412 * genphy_c37_read_status - check the link status and update current link state
2413 * @phydev: target phy_device struct
2414 *
2415 * Description: Check the link, then figure out the current state
2416 * by comparing what we advertise with what the link partner
2417 * advertises. This function is for Clause 37 1000Base-X mode.
2418 */
2419int genphy_c37_read_status(struct phy_device *phydev)
2420{
2421 int lpa, err, old_link = phydev->link;
2422
2423 /* Update the link, but return if there was an error */
2424 err = genphy_update_link(phydev);
2425 if (err)
2426 return err;
2427
2428 /* why bother the PHY if nothing can have changed */
2429 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2430 return 0;
2431
2432 phydev->duplex = DUPLEX_UNKNOWN;
2433 phydev->pause = 0;
2434 phydev->asym_pause = 0;
2435
2436 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2437 lpa = phy_read(phydev, MII_LPA);
2438 if (lpa < 0)
2439 return lpa;
2440
2441 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2442 phydev->lp_advertising, lpa & LPA_LPACK);
2443 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2444 phydev->lp_advertising, lpa & LPA_1000XFULL);
2445 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2446 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2447 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2448 phydev->lp_advertising,
2449 lpa & LPA_1000XPAUSE_ASYM);
2450
2451 phy_resolve_aneg_linkmode(phydev);
2452 } else if (phydev->autoneg == AUTONEG_DISABLE) {
2453 int bmcr = phy_read(phydev, MII_BMCR);
2454
2455 if (bmcr < 0)
2456 return bmcr;
2457
2458 if (bmcr & BMCR_FULLDPLX)
2459 phydev->duplex = DUPLEX_FULL;
2460 else
2461 phydev->duplex = DUPLEX_HALF;
2462 }
2463
2464 return 0;
2465}
2466EXPORT_SYMBOL(genphy_c37_read_status);
2467
2468/**
2469 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2470 * @phydev: target phy_device struct
2471 *
2472 * Description: Perform a software PHY reset using the standard
2473 * BMCR_RESET bit and poll for the reset bit to be cleared.
2474 *
2475 * Returns: 0 on success, < 0 on failure
2476 */
2477int genphy_soft_reset(struct phy_device *phydev)
2478{
2479 u16 res = BMCR_RESET;
2480 int ret;
2481
2482 if (phydev->autoneg == AUTONEG_ENABLE)
2483 res |= BMCR_ANRESTART;
2484
2485 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2486 if (ret < 0)
2487 return ret;
2488
2489 /* Clause 22 states that setting bit BMCR_RESET sets control registers
2490 * to their default value. Therefore the POWER DOWN bit is supposed to
2491 * be cleared after soft reset.
2492 */
2493 phydev->suspended = 0;
2494
2495 ret = phy_poll_reset(phydev);
2496 if (ret)
2497 return ret;
2498
2499 /* BMCR may be reset to defaults */
2500 if (phydev->autoneg == AUTONEG_DISABLE)
2501 ret = genphy_setup_forced(phydev);
2502
2503 return ret;
2504}
2505EXPORT_SYMBOL(genphy_soft_reset);
2506
2507irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2508{
2509 /* It seems there are cases where the interrupts are handled by another
2510 * entity (ie an IRQ controller embedded inside the PHY) and do not
2511 * need any other interraction from phylib. In this case, just trigger
2512 * the state machine directly.
2513 */
2514 phy_trigger_machine(phydev);
2515
2516 return 0;
2517}
2518EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2519
2520/**
2521 * genphy_read_abilities - read PHY abilities from Clause 22 registers
2522 * @phydev: target phy_device struct
2523 *
2524 * Description: Reads the PHY's abilities and populates
2525 * phydev->supported accordingly.
2526 *
2527 * Returns: 0 on success, < 0 on failure
2528 */
2529int genphy_read_abilities(struct phy_device *phydev)
2530{
2531 int val;
2532
2533 linkmode_set_bit_array(phy_basic_ports_array,
2534 ARRAY_SIZE(phy_basic_ports_array),
2535 phydev->supported);
2536
2537 val = phy_read(phydev, MII_BMSR);
2538 if (val < 0)
2539 return val;
2540
2541 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2542 val & BMSR_ANEGCAPABLE);
2543
2544 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2545 val & BMSR_100FULL);
2546 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2547 val & BMSR_100HALF);
2548 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2549 val & BMSR_10FULL);
2550 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2551 val & BMSR_10HALF);
2552
2553 if (val & BMSR_ESTATEN) {
2554 val = phy_read(phydev, MII_ESTATUS);
2555 if (val < 0)
2556 return val;
2557
2558 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2559 phydev->supported, val & ESTATUS_1000_TFULL);
2560 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2561 phydev->supported, val & ESTATUS_1000_THALF);
2562 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2563 phydev->supported, val & ESTATUS_1000_XFULL);
2564 }
2565
2566 return 0;
2567}
2568EXPORT_SYMBOL(genphy_read_abilities);
2569
2570/* This is used for the phy device which doesn't support the MMD extended
2571 * register access, but it does have side effect when we are trying to access
2572 * the MMD register via indirect method.
2573 */
2574int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2575{
2576 return -EOPNOTSUPP;
2577}
2578EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2579
2580int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2581 u16 regnum, u16 val)
2582{
2583 return -EOPNOTSUPP;
2584}
2585EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2586
2587int genphy_suspend(struct phy_device *phydev)
2588{
2589 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2590}
2591EXPORT_SYMBOL(genphy_suspend);
2592
2593int genphy_resume(struct phy_device *phydev)
2594{
2595 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2596}
2597EXPORT_SYMBOL(genphy_resume);
2598
2599int genphy_loopback(struct phy_device *phydev, bool enable)
2600{
2601 if (enable) {
2602 u16 val, ctl = BMCR_LOOPBACK;
2603 int ret;
2604
2605 if (phydev->speed == SPEED_1000)
2606 ctl |= BMCR_SPEED1000;
2607 else if (phydev->speed == SPEED_100)
2608 ctl |= BMCR_SPEED100;
2609
2610 if (phydev->duplex == DUPLEX_FULL)
2611 ctl |= BMCR_FULLDPLX;
2612
2613 phy_modify(phydev, MII_BMCR, ~0, ctl);
2614
2615 ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2616 val & BMSR_LSTATUS,
2617 5000, 500000, true);
2618 if (ret)
2619 return ret;
2620 } else {
2621 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2622
2623 phy_config_aneg(phydev);
2624 }
2625
2626 return 0;
2627}
2628EXPORT_SYMBOL(genphy_loopback);
2629
2630/**
2631 * phy_remove_link_mode - Remove a supported link mode
2632 * @phydev: phy_device structure to remove link mode from
2633 * @link_mode: Link mode to be removed
2634 *
2635 * Description: Some MACs don't support all link modes which the PHY
2636 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper
2637 * to remove a link mode.
2638 */
2639void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2640{
2641 linkmode_clear_bit(link_mode, phydev->supported);
2642 phy_advertise_supported(phydev);
2643}
2644EXPORT_SYMBOL(phy_remove_link_mode);
2645
2646static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2647{
2648 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2649 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2650 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2651 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2652}
2653
2654/**
2655 * phy_advertise_supported - Advertise all supported modes
2656 * @phydev: target phy_device struct
2657 *
2658 * Description: Called to advertise all supported modes, doesn't touch
2659 * pause mode advertising.
2660 */
2661void phy_advertise_supported(struct phy_device *phydev)
2662{
2663 __ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2664
2665 linkmode_copy(new, phydev->supported);
2666 phy_copy_pause_bits(new, phydev->advertising);
2667 linkmode_copy(phydev->advertising, new);
2668}
2669EXPORT_SYMBOL(phy_advertise_supported);
2670
2671/**
2672 * phy_support_sym_pause - Enable support of symmetrical pause
2673 * @phydev: target phy_device struct
2674 *
2675 * Description: Called by the MAC to indicate is supports symmetrical
2676 * Pause, but not asym pause.
2677 */
2678void phy_support_sym_pause(struct phy_device *phydev)
2679{
2680 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2681 phy_copy_pause_bits(phydev->advertising, phydev->supported);
2682}
2683EXPORT_SYMBOL(phy_support_sym_pause);
2684
2685/**
2686 * phy_support_asym_pause - Enable support of asym pause
2687 * @phydev: target phy_device struct
2688 *
2689 * Description: Called by the MAC to indicate is supports Asym Pause.
2690 */
2691void phy_support_asym_pause(struct phy_device *phydev)
2692{
2693 phy_copy_pause_bits(phydev->advertising, phydev->supported);
2694}
2695EXPORT_SYMBOL(phy_support_asym_pause);
2696
2697/**
2698 * phy_set_sym_pause - Configure symmetric Pause
2699 * @phydev: target phy_device struct
2700 * @rx: Receiver Pause is supported
2701 * @tx: Transmit Pause is supported
2702 * @autoneg: Auto neg should be used
2703 *
2704 * Description: Configure advertised Pause support depending on if
2705 * receiver pause and pause auto neg is supported. Generally called
2706 * from the set_pauseparam .ndo.
2707 */
2708void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2709 bool autoneg)
2710{
2711 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2712
2713 if (rx && tx && autoneg)
2714 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2715 phydev->supported);
2716
2717 linkmode_copy(phydev->advertising, phydev->supported);
2718}
2719EXPORT_SYMBOL(phy_set_sym_pause);
2720
2721/**
2722 * phy_set_asym_pause - Configure Pause and Asym Pause
2723 * @phydev: target phy_device struct
2724 * @rx: Receiver Pause is supported
2725 * @tx: Transmit Pause is supported
2726 *
2727 * Description: Configure advertised Pause support depending on if
2728 * transmit and receiver pause is supported. If there has been a
2729 * change in adverting, trigger a new autoneg. Generally called from
2730 * the set_pauseparam .ndo.
2731 */
2732void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2733{
2734 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2735
2736 linkmode_copy(oldadv, phydev->advertising);
2737 linkmode_set_pause(phydev->advertising, tx, rx);
2738
2739 if (!linkmode_equal(oldadv, phydev->advertising) &&
2740 phydev->autoneg)
2741 phy_start_aneg(phydev);
2742}
2743EXPORT_SYMBOL(phy_set_asym_pause);
2744
2745/**
2746 * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2747 * @phydev: phy_device struct
2748 * @pp: requested pause configuration
2749 *
2750 * Description: Test if the PHY/MAC combination supports the Pause
2751 * configuration the user is requesting. Returns True if it is
2752 * supported, false otherwise.
2753 */
2754bool phy_validate_pause(struct phy_device *phydev,
2755 struct ethtool_pauseparam *pp)
2756{
2757 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2758 phydev->supported) && pp->rx_pause)
2759 return false;
2760
2761 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2762 phydev->supported) &&
2763 pp->rx_pause != pp->tx_pause)
2764 return false;
2765
2766 return true;
2767}
2768EXPORT_SYMBOL(phy_validate_pause);
2769
2770/**
2771 * phy_get_pause - resolve negotiated pause modes
2772 * @phydev: phy_device struct
2773 * @tx_pause: pointer to bool to indicate whether transmit pause should be
2774 * enabled.
2775 * @rx_pause: pointer to bool to indicate whether receive pause should be
2776 * enabled.
2777 *
2778 * Resolve and return the flow control modes according to the negotiation
2779 * result. This includes checking that we are operating in full duplex mode.
2780 * See linkmode_resolve_pause() for further details.
2781 */
2782void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2783{
2784 if (phydev->duplex != DUPLEX_FULL) {
2785 *tx_pause = false;
2786 *rx_pause = false;
2787 return;
2788 }
2789
2790 return linkmode_resolve_pause(phydev->advertising,
2791 phydev->lp_advertising,
2792 tx_pause, rx_pause);
2793}
2794EXPORT_SYMBOL(phy_get_pause);
2795
2796#if IS_ENABLED(CONFIG_OF_MDIO)
2797static int phy_get_int_delay_property(struct device *dev, const char *name)
2798{
2799 s32 int_delay;
2800 int ret;
2801
2802 ret = device_property_read_u32(dev, name, &int_delay);
2803 if (ret)
2804 return ret;
2805
2806 return int_delay;
2807}
2808#else
2809static int phy_get_int_delay_property(struct device *dev, const char *name)
2810{
2811 return -EINVAL;
2812}
2813#endif
2814
2815/**
2816 * phy_get_internal_delay - returns the index of the internal delay
2817 * @phydev: phy_device struct
2818 * @dev: pointer to the devices device struct
2819 * @delay_values: array of delays the PHY supports
2820 * @size: the size of the delay array
2821 * @is_rx: boolean to indicate to get the rx internal delay
2822 *
2823 * Returns the index within the array of internal delay passed in.
2824 * If the device property is not present then the interface type is checked
2825 * if the interface defines use of internal delay then a 1 is returned otherwise
2826 * a 0 is returned.
2827 * The array must be in ascending order. If PHY does not have an ascending order
2828 * array then size = 0 and the value of the delay property is returned.
2829 * Return -EINVAL if the delay is invalid or cannot be found.
2830 */
2831s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2832 const int *delay_values, int size, bool is_rx)
2833{
2834 s32 delay;
2835 int i;
2836
2837 if (is_rx) {
2838 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2839 if (delay < 0 && size == 0) {
2840 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2841 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2842 return 1;
2843 else
2844 return 0;
2845 }
2846
2847 } else {
2848 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2849 if (delay < 0 && size == 0) {
2850 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2851 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2852 return 1;
2853 else
2854 return 0;
2855 }
2856 }
2857
2858 if (delay < 0)
2859 return delay;
2860
2861 if (delay && size == 0)
2862 return delay;
2863
2864 if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2865 phydev_err(phydev, "Delay %d is out of range\n", delay);
2866 return -EINVAL;
2867 }
2868
2869 if (delay == delay_values[0])
2870 return 0;
2871
2872 for (i = 1; i < size; i++) {
2873 if (delay == delay_values[i])
2874 return i;
2875
2876 /* Find an approximate index by looking up the table */
2877 if (delay > delay_values[i - 1] &&
2878 delay < delay_values[i]) {
2879 if (delay - delay_values[i - 1] <
2880 delay_values[i] - delay)
2881 return i - 1;
2882 else
2883 return i;
2884 }
2885 }
2886
2887 phydev_err(phydev, "error finding internal delay index for %d\n",
2888 delay);
2889
2890 return -EINVAL;
2891}
2892EXPORT_SYMBOL(phy_get_internal_delay);
2893
2894static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2895{
2896 return phydrv->config_intr && phydrv->handle_interrupt;
2897}
2898
2899/**
2900 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
2901 * @fwnode: pointer to the mdio_device's fwnode
2902 *
2903 * If successful, returns a pointer to the mdio_device with the embedded
2904 * struct device refcount incremented by one, or NULL on failure.
2905 * The caller should call put_device() on the mdio_device after its use.
2906 */
2907struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
2908{
2909 struct device *d;
2910
2911 if (!fwnode)
2912 return NULL;
2913
2914 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
2915 if (!d)
2916 return NULL;
2917
2918 return to_mdio_device(d);
2919}
2920EXPORT_SYMBOL(fwnode_mdio_find_device);
2921
2922/**
2923 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
2924 *
2925 * @phy_fwnode: Pointer to the phy's fwnode.
2926 *
2927 * If successful, returns a pointer to the phy_device with the embedded
2928 * struct device refcount incremented by one, or NULL on failure.
2929 */
2930struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
2931{
2932 struct mdio_device *mdiodev;
2933
2934 mdiodev = fwnode_mdio_find_device(phy_fwnode);
2935 if (!mdiodev)
2936 return NULL;
2937
2938 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
2939 return to_phy_device(&mdiodev->dev);
2940
2941 put_device(&mdiodev->dev);
2942
2943 return NULL;
2944}
2945EXPORT_SYMBOL(fwnode_phy_find_device);
2946
2947/**
2948 * device_phy_find_device - For the given device, get the phy_device
2949 * @dev: Pointer to the given device
2950 *
2951 * Refer return conditions of fwnode_phy_find_device().
2952 */
2953struct phy_device *device_phy_find_device(struct device *dev)
2954{
2955 return fwnode_phy_find_device(dev_fwnode(dev));
2956}
2957EXPORT_SYMBOL_GPL(device_phy_find_device);
2958
2959/**
2960 * fwnode_get_phy_node - Get the phy_node using the named reference.
2961 * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
2962 *
2963 * Refer return conditions of fwnode_find_reference().
2964 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
2965 * and "phy-device" are not supported in ACPI. DT supports all the three
2966 * named references to the phy node.
2967 */
2968struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode)
2969{
2970 struct fwnode_handle *phy_node;
2971
2972 /* Only phy-handle is used for ACPI */
2973 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
2974 if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
2975 return phy_node;
2976 phy_node = fwnode_find_reference(fwnode, "phy", 0);
2977 if (IS_ERR(phy_node))
2978 phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
2979 return phy_node;
2980}
2981EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
2982
2983/**
2984 * phy_probe - probe and init a PHY device
2985 * @dev: device to probe and init
2986 *
2987 * Description: Take care of setting up the phy_device structure,
2988 * set the state to READY (the driver's init function should
2989 * set it to STARTING if needed).
2990 */
2991static int phy_probe(struct device *dev)
2992{
2993 struct phy_device *phydev = to_phy_device(dev);
2994 struct device_driver *drv = phydev->mdio.dev.driver;
2995 struct phy_driver *phydrv = to_phy_driver(drv);
2996 int err = 0;
2997
2998 phydev->drv = phydrv;
2999
3000 /* Disable the interrupt if the PHY doesn't support it
3001 * but the interrupt is still a valid one
3002 */
3003 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3004 phydev->irq = PHY_POLL;
3005
3006 if (phydrv->flags & PHY_IS_INTERNAL)
3007 phydev->is_internal = true;
3008
3009 mutex_lock(&phydev->lock);
3010
3011 /* Deassert the reset signal */
3012 phy_device_reset(phydev, 0);
3013
3014 if (phydev->drv->probe) {
3015 err = phydev->drv->probe(phydev);
3016 if (err)
3017 goto out;
3018 }
3019
3020 /* Start out supporting everything. Eventually,
3021 * a controller will attach, and may modify one
3022 * or both of these values
3023 */
3024 if (phydrv->features)
3025 linkmode_copy(phydev->supported, phydrv->features);
3026 else if (phydrv->get_features)
3027 err = phydrv->get_features(phydev);
3028 else if (phydev->is_c45)
3029 err = genphy_c45_pma_read_abilities(phydev);
3030 else
3031 err = genphy_read_abilities(phydev);
3032
3033 if (err)
3034 goto out;
3035
3036 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3037 phydev->supported))
3038 phydev->autoneg = 0;
3039
3040 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3041 phydev->supported))
3042 phydev->is_gigabit_capable = 1;
3043 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3044 phydev->supported))
3045 phydev->is_gigabit_capable = 1;
3046
3047 of_set_phy_supported(phydev);
3048 phy_advertise_supported(phydev);
3049
3050 /* Get the EEE modes we want to prohibit. We will ask
3051 * the PHY stop advertising these mode later on
3052 */
3053 of_set_phy_eee_broken(phydev);
3054
3055 /* The Pause Frame bits indicate that the PHY can support passing
3056 * pause frames. During autonegotiation, the PHYs will determine if
3057 * they should allow pause frames to pass. The MAC driver should then
3058 * use that result to determine whether to enable flow control via
3059 * pause frames.
3060 *
3061 * Normally, PHY drivers should not set the Pause bits, and instead
3062 * allow phylib to do that. However, there may be some situations
3063 * (e.g. hardware erratum) where the driver wants to set only one
3064 * of these bits.
3065 */
3066 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3067 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3068 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3069 phydev->supported);
3070 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3071 phydev->supported);
3072 }
3073
3074 /* Set the state to READY by default */
3075 phydev->state = PHY_READY;
3076
3077out:
3078 /* Assert the reset signal */
3079 if (err)
3080 phy_device_reset(phydev, 1);
3081
3082 mutex_unlock(&phydev->lock);
3083
3084 return err;
3085}
3086
3087static int phy_remove(struct device *dev)
3088{
3089 struct phy_device *phydev = to_phy_device(dev);
3090
3091 cancel_delayed_work_sync(&phydev->state_queue);
3092
3093 mutex_lock(&phydev->lock);
3094 phydev->state = PHY_DOWN;
3095 mutex_unlock(&phydev->lock);
3096
3097 sfp_bus_del_upstream(phydev->sfp_bus);
3098 phydev->sfp_bus = NULL;
3099
3100 if (phydev->drv && phydev->drv->remove)
3101 phydev->drv->remove(phydev);
3102
3103 /* Assert the reset signal */
3104 phy_device_reset(phydev, 1);
3105
3106 phydev->drv = NULL;
3107
3108 return 0;
3109}
3110
3111static void phy_shutdown(struct device *dev)
3112{
3113 struct phy_device *phydev = to_phy_device(dev);
3114
3115 if (phydev->state == PHY_READY || !phydev->attached_dev)
3116 return;
3117
3118 phy_disable_interrupts(phydev);
3119}
3120
3121/**
3122 * phy_driver_register - register a phy_driver with the PHY layer
3123 * @new_driver: new phy_driver to register
3124 * @owner: module owning this PHY
3125 */
3126int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3127{
3128 int retval;
3129
3130 /* Either the features are hard coded, or dynamically
3131 * determined. It cannot be both.
3132 */
3133 if (WARN_ON(new_driver->features && new_driver->get_features)) {
3134 pr_err("%s: features and get_features must not both be set\n",
3135 new_driver->name);
3136 return -EINVAL;
3137 }
3138
3139 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3140 new_driver->mdiodrv.driver.name = new_driver->name;
3141 new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3142 new_driver->mdiodrv.driver.probe = phy_probe;
3143 new_driver->mdiodrv.driver.remove = phy_remove;
3144 new_driver->mdiodrv.driver.shutdown = phy_shutdown;
3145 new_driver->mdiodrv.driver.owner = owner;
3146 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3147
3148 retval = driver_register(&new_driver->mdiodrv.driver);
3149 if (retval) {
3150 pr_err("%s: Error %d in registering driver\n",
3151 new_driver->name, retval);
3152
3153 return retval;
3154 }
3155
3156 pr_debug("%s: Registered new driver\n", new_driver->name);
3157
3158 return 0;
3159}
3160EXPORT_SYMBOL(phy_driver_register);
3161
3162int phy_drivers_register(struct phy_driver *new_driver, int n,
3163 struct module *owner)
3164{
3165 int i, ret = 0;
3166
3167 for (i = 0; i < n; i++) {
3168 ret = phy_driver_register(new_driver + i, owner);
3169 if (ret) {
3170 while (i-- > 0)
3171 phy_driver_unregister(new_driver + i);
3172 break;
3173 }
3174 }
3175 return ret;
3176}
3177EXPORT_SYMBOL(phy_drivers_register);
3178
3179void phy_driver_unregister(struct phy_driver *drv)
3180{
3181 driver_unregister(&drv->mdiodrv.driver);
3182}
3183EXPORT_SYMBOL(phy_driver_unregister);
3184
3185void phy_drivers_unregister(struct phy_driver *drv, int n)
3186{
3187 int i;
3188
3189 for (i = 0; i < n; i++)
3190 phy_driver_unregister(drv + i);
3191}
3192EXPORT_SYMBOL(phy_drivers_unregister);
3193
3194static struct phy_driver genphy_driver = {
3195 .phy_id = 0xffffffff,
3196 .phy_id_mask = 0xffffffff,
3197 .name = "Generic PHY",
3198 .get_features = genphy_read_abilities,
3199 .suspend = genphy_suspend,
3200 .resume = genphy_resume,
3201 .set_loopback = genphy_loopback,
3202};
3203
3204static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3205 .get_sset_count = phy_ethtool_get_sset_count,
3206 .get_strings = phy_ethtool_get_strings,
3207 .get_stats = phy_ethtool_get_stats,
3208 .start_cable_test = phy_start_cable_test,
3209 .start_cable_test_tdr = phy_start_cable_test_tdr,
3210};
3211
3212static int __init phy_init(void)
3213{
3214 int rc;
3215
3216 rc = mdio_bus_init();
3217 if (rc)
3218 return rc;
3219
3220 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3221 features_init();
3222
3223 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3224 if (rc)
3225 goto err_c45;
3226
3227 rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3228 if (rc) {
3229 phy_driver_unregister(&genphy_c45_driver);
3230err_c45:
3231 mdio_bus_exit();
3232 }
3233
3234 return rc;
3235}
3236
3237static void __exit phy_exit(void)
3238{
3239 phy_driver_unregister(&genphy_c45_driver);
3240 phy_driver_unregister(&genphy_driver);
3241 mdio_bus_exit();
3242 ethtool_set_ethtool_phy_ops(NULL);
3243}
3244
3245subsys_initcall(phy_init);
3246module_exit(phy_exit);