Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <net/xdp_sock_drv.h>
   6#include <net/xdp.h>
   7#include "ice.h"
   8#include "ice_base.h"
   9#include "ice_type.h"
  10#include "ice_xsk.h"
  11#include "ice_txrx.h"
  12#include "ice_txrx_lib.h"
  13#include "ice_lib.h"
  14
  15static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
  16{
  17	return &rx_ring->xdp_buf[idx];
  18}
  19
  20/**
  21 * ice_qp_reset_stats - Resets all stats for rings of given index
  22 * @vsi: VSI that contains rings of interest
  23 * @q_idx: ring index in array
  24 */
  25static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
  26{
  27	struct ice_vsi_stats *vsi_stat;
  28	struct ice_pf *pf;
  29
  30	pf = vsi->back;
  31	if (!pf->vsi_stats)
  32		return;
  33
  34	vsi_stat = pf->vsi_stats[vsi->idx];
  35	if (!vsi_stat)
  36		return;
  37
  38	memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
  39	       sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
  40	memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
  41	       sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
  42	if (ice_is_xdp_ena_vsi(vsi))
  43		memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
  44		       sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
  45}
  46
  47/**
  48 * ice_qp_clean_rings - Cleans all the rings of a given index
  49 * @vsi: VSI that contains rings of interest
  50 * @q_idx: ring index in array
  51 */
  52static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
  53{
  54	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
  55	if (ice_is_xdp_ena_vsi(vsi)) {
  56		synchronize_rcu();
  57		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
  58	}
  59	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
  60}
  61
  62/**
  63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
  64 * @vsi: VSI that has netdev
  65 * @q_vector: q_vector that has NAPI context
  66 * @enable: true for enable, false for disable
  67 */
  68static void
  69ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
  70		     bool enable)
  71{
  72	if (!vsi->netdev || !q_vector)
  73		return;
  74
  75	if (enable)
  76		napi_enable(&q_vector->napi);
  77	else
  78		napi_disable(&q_vector->napi);
  79}
  80
  81/**
  82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
  83 * @vsi: the VSI that contains queue vector being un-configured
  84 * @rx_ring: Rx ring that will have its IRQ disabled
  85 * @q_vector: queue vector
  86 */
  87static void
  88ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
  89		 struct ice_q_vector *q_vector)
  90{
  91	struct ice_pf *pf = vsi->back;
  92	struct ice_hw *hw = &pf->hw;
 
  93	u16 reg;
  94	u32 val;
  95
  96	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
  97	 * here only QINT_RQCTL
  98	 */
  99	reg = rx_ring->reg_idx;
 100	val = rd32(hw, QINT_RQCTL(reg));
 101	val &= ~QINT_RQCTL_CAUSE_ENA_M;
 102	wr32(hw, QINT_RQCTL(reg), val);
 103
 104	if (q_vector) {
 
 
 105		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
 106		ice_flush(hw);
 107		synchronize_irq(q_vector->irq.virq);
 108	}
 109}
 110
 111/**
 112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
 113 * @vsi: the VSI that contains queue vector
 114 * @q_vector: queue vector
 115 */
 116static void
 117ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
 118{
 119	u16 reg_idx = q_vector->reg_idx;
 120	struct ice_pf *pf = vsi->back;
 121	struct ice_hw *hw = &pf->hw;
 122	struct ice_tx_ring *tx_ring;
 123	struct ice_rx_ring *rx_ring;
 124
 125	ice_cfg_itr(hw, q_vector);
 126
 127	ice_for_each_tx_ring(tx_ring, q_vector->tx)
 128		ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
 129				      q_vector->tx.itr_idx);
 130
 131	ice_for_each_rx_ring(rx_ring, q_vector->rx)
 132		ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
 133				      q_vector->rx.itr_idx);
 134
 135	ice_flush(hw);
 136}
 137
 138/**
 139 * ice_qvec_ena_irq - Enable IRQ for given queue vector
 140 * @vsi: the VSI that contains queue vector
 141 * @q_vector: queue vector
 142 */
 143static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
 144{
 145	struct ice_pf *pf = vsi->back;
 146	struct ice_hw *hw = &pf->hw;
 147
 148	ice_irq_dynamic_ena(hw, vsi, q_vector);
 149
 150	ice_flush(hw);
 151}
 152
 153/**
 154 * ice_qp_dis - Disables a queue pair
 155 * @vsi: VSI of interest
 156 * @q_idx: ring index in array
 157 *
 158 * Returns 0 on success, negative on failure.
 159 */
 160static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
 161{
 162	struct ice_txq_meta txq_meta = { };
 
 163	struct ice_q_vector *q_vector;
 164	struct ice_tx_ring *tx_ring;
 165	struct ice_rx_ring *rx_ring;
 166	int timeout = 50;
 167	int err;
 168
 169	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
 170		return -EINVAL;
 171
 172	tx_ring = vsi->tx_rings[q_idx];
 173	rx_ring = vsi->rx_rings[q_idx];
 174	q_vector = rx_ring->q_vector;
 175
 176	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
 177		timeout--;
 178		if (!timeout)
 179			return -EBUSY;
 180		usleep_range(1000, 2000);
 181	}
 
 182
 183	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
 184	ice_qvec_toggle_napi(vsi, q_vector, false);
 185
 186	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
 187
 188	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
 189	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
 190	if (err)
 191		return err;
 192	if (ice_is_xdp_ena_vsi(vsi)) {
 193		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
 194
 195		memset(&txq_meta, 0, sizeof(txq_meta));
 196		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
 197		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
 198					   &txq_meta);
 199		if (err)
 200			return err;
 201	}
 202	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
 203	if (err)
 204		return err;
 205
 
 206	ice_qp_clean_rings(vsi, q_idx);
 207	ice_qp_reset_stats(vsi, q_idx);
 208
 209	return 0;
 210}
 211
 212/**
 213 * ice_qp_ena - Enables a queue pair
 214 * @vsi: VSI of interest
 215 * @q_idx: ring index in array
 216 *
 217 * Returns 0 on success, negative on failure.
 218 */
 219static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
 220{
 221	DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
 222	u16 size = __struct_size(qg_buf);
 223	struct ice_q_vector *q_vector;
 224	struct ice_tx_ring *tx_ring;
 225	struct ice_rx_ring *rx_ring;
 226	int err;
 227
 228	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
 229		return -EINVAL;
 230
 
 
 
 
 
 231	qg_buf->num_txqs = 1;
 232
 233	tx_ring = vsi->tx_rings[q_idx];
 234	rx_ring = vsi->rx_rings[q_idx];
 235	q_vector = rx_ring->q_vector;
 236
 237	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
 238	if (err)
 239		return err;
 240
 241	if (ice_is_xdp_ena_vsi(vsi)) {
 242		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
 243
 244		memset(qg_buf, 0, size);
 245		qg_buf->num_txqs = 1;
 246		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
 247		if (err)
 248			return err;
 249		ice_set_ring_xdp(xdp_ring);
 250		ice_tx_xsk_pool(vsi, q_idx);
 251	}
 252
 253	err = ice_vsi_cfg_rxq(rx_ring);
 254	if (err)
 255		return err;
 256
 257	ice_qvec_cfg_msix(vsi, q_vector);
 258
 259	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
 260	if (err)
 261		return err;
 262
 
 263	ice_qvec_toggle_napi(vsi, q_vector, true);
 264	ice_qvec_ena_irq(vsi, q_vector);
 265
 266	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
 267	clear_bit(ICE_CFG_BUSY, vsi->state);
 268
 269	return 0;
 270}
 271
 272/**
 273 * ice_xsk_pool_disable - disable a buffer pool region
 274 * @vsi: Current VSI
 275 * @qid: queue ID
 276 *
 277 * Returns 0 on success, negative on failure
 278 */
 279static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
 280{
 281	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
 282
 283	if (!pool)
 284		return -EINVAL;
 285
 286	clear_bit(qid, vsi->af_xdp_zc_qps);
 287	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
 288
 289	return 0;
 290}
 291
 292/**
 293 * ice_xsk_pool_enable - enable a buffer pool region
 294 * @vsi: Current VSI
 295 * @pool: pointer to a requested buffer pool region
 296 * @qid: queue ID
 297 *
 298 * Returns 0 on success, negative on failure
 299 */
 300static int
 301ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
 302{
 303	int err;
 304
 305	if (vsi->type != ICE_VSI_PF)
 306		return -EINVAL;
 307
 308	if (qid >= vsi->netdev->real_num_rx_queues ||
 309	    qid >= vsi->netdev->real_num_tx_queues)
 310		return -EINVAL;
 311
 312	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
 313			       ICE_RX_DMA_ATTR);
 314	if (err)
 315		return err;
 316
 317	set_bit(qid, vsi->af_xdp_zc_qps);
 318
 319	return 0;
 320}
 321
 322/**
 323 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
 324 * @rx_ring: Rx ring
 325 * @pool_present: is pool for XSK present
 326 *
 327 * Try allocating memory and return ENOMEM, if failed to allocate.
 328 * If allocation was successful, substitute buffer with allocated one.
 329 * Returns 0 on success, negative on failure
 330 */
 331static int
 332ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
 333{
 334	size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
 335					  sizeof(*rx_ring->rx_buf);
 336	void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
 337
 338	if (!sw_ring)
 339		return -ENOMEM;
 340
 341	if (pool_present) {
 342		kfree(rx_ring->rx_buf);
 343		rx_ring->rx_buf = NULL;
 344		rx_ring->xdp_buf = sw_ring;
 345	} else {
 346		kfree(rx_ring->xdp_buf);
 347		rx_ring->xdp_buf = NULL;
 348		rx_ring->rx_buf = sw_ring;
 349	}
 350
 351	return 0;
 352}
 353
 354/**
 355 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
 356 * @vsi: Current VSI
 357 * @zc: is zero copy set
 358 *
 359 * Reallocate buffer for rx_rings that might be used by XSK.
 360 * XDP requires more memory, than rx_buf provides.
 361 * Returns 0 on success, negative on failure
 362 */
 363int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
 364{
 365	struct ice_rx_ring *rx_ring;
 366	unsigned long q;
 367
 368	for_each_set_bit(q, vsi->af_xdp_zc_qps,
 369			 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
 370		rx_ring = vsi->rx_rings[q];
 371		if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
 372			return -ENOMEM;
 373	}
 374
 375	return 0;
 376}
 377
 378/**
 379 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
 380 * @vsi: Current VSI
 381 * @pool: buffer pool to enable/associate to a ring, NULL to disable
 382 * @qid: queue ID
 383 *
 384 * Returns 0 on success, negative on failure
 385 */
 386int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
 387{
 388	bool if_running, pool_present = !!pool;
 389	int ret = 0, pool_failure = 0;
 390
 391	if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
 392		netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
 393		pool_failure = -EINVAL;
 394		goto failure;
 395	}
 396
 397	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
 398
 399	if (if_running) {
 400		struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
 401
 402		ret = ice_qp_dis(vsi, qid);
 403		if (ret) {
 404			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
 405			goto xsk_pool_if_up;
 406		}
 407
 408		ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
 409		if (ret)
 410			goto xsk_pool_if_up;
 411	}
 412
 413	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
 414				      ice_xsk_pool_disable(vsi, qid);
 415
 416xsk_pool_if_up:
 417	if (if_running) {
 418		ret = ice_qp_ena(vsi, qid);
 419		if (!ret && pool_present)
 420			napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
 421		else if (ret)
 422			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
 423	}
 424
 425failure:
 426	if (pool_failure) {
 427		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
 428			   pool_present ? "en" : "dis", pool_failure);
 429		return pool_failure;
 430	}
 431
 432	return ret;
 433}
 434
 435/**
 436 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
 437 * @pool: XSK Buffer pool to pull the buffers from
 438 * @xdp: SW ring of xdp_buff that will hold the buffers
 439 * @rx_desc: Pointer to Rx descriptors that will be filled
 440 * @count: The number of buffers to allocate
 441 *
 442 * This function allocates a number of Rx buffers from the fill ring
 443 * or the internal recycle mechanism and places them on the Rx ring.
 444 *
 445 * Note that ring wrap should be handled by caller of this function.
 446 *
 447 * Returns the amount of allocated Rx descriptors
 448 */
 449static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
 450			     union ice_32b_rx_flex_desc *rx_desc, u16 count)
 451{
 452	dma_addr_t dma;
 453	u16 buffs;
 454	int i;
 455
 456	buffs = xsk_buff_alloc_batch(pool, xdp, count);
 457	for (i = 0; i < buffs; i++) {
 458		dma = xsk_buff_xdp_get_dma(*xdp);
 459		rx_desc->read.pkt_addr = cpu_to_le64(dma);
 460		rx_desc->wb.status_error0 = 0;
 461
 462		/* Put private info that changes on a per-packet basis
 463		 * into xdp_buff_xsk->cb.
 464		 */
 465		ice_xdp_meta_set_desc(*xdp, rx_desc);
 466
 467		rx_desc++;
 468		xdp++;
 469	}
 470
 471	return buffs;
 472}
 473
 474/**
 475 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
 476 * @rx_ring: Rx ring
 477 * @count: The number of buffers to allocate
 478 *
 479 * Place the @count of descriptors onto Rx ring. Handle the ring wrap
 480 * for case where space from next_to_use up to the end of ring is less
 481 * than @count. Finally do a tail bump.
 482 *
 483 * Returns true if all allocations were successful, false if any fail.
 484 */
 485static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
 486{
 487	u32 nb_buffs_extra = 0, nb_buffs = 0;
 488	union ice_32b_rx_flex_desc *rx_desc;
 489	u16 ntu = rx_ring->next_to_use;
 490	u16 total_count = count;
 491	struct xdp_buff **xdp;
 
 
 
 
 492
 493	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 494	xdp = ice_xdp_buf(rx_ring, ntu);
 495
 496	if (ntu + count >= rx_ring->count) {
 497		nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
 498						   rx_desc,
 499						   rx_ring->count - ntu);
 500		if (nb_buffs_extra != rx_ring->count - ntu) {
 501			ntu += nb_buffs_extra;
 502			goto exit;
 503		}
 504		rx_desc = ICE_RX_DESC(rx_ring, 0);
 505		xdp = ice_xdp_buf(rx_ring, 0);
 506		ntu = 0;
 507		count -= nb_buffs_extra;
 508		ice_release_rx_desc(rx_ring, 0);
 509	}
 510
 511	nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
 
 
 
 
 
 
 512
 513	ntu += nb_buffs;
 514	if (ntu == rx_ring->count)
 515		ntu = 0;
 
 
 
 516
 517exit:
 518	if (rx_ring->next_to_use != ntu)
 
 519		ice_release_rx_desc(rx_ring, ntu);
 
 520
 521	return total_count == (nb_buffs_extra + nb_buffs);
 522}
 523
 524/**
 525 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
 526 * @rx_ring: Rx ring
 527 * @count: The number of buffers to allocate
 528 *
 529 * Wrapper for internal allocation routine; figure out how many tail
 530 * bumps should take place based on the given threshold
 531 *
 532 * Returns true if all calls to internal alloc routine succeeded
 533 */
 534bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
 535{
 536	u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
 537	u16 leftover, i, tail_bumps;
 538
 539	tail_bumps = count / rx_thresh;
 540	leftover = count - (tail_bumps * rx_thresh);
 541
 542	for (i = 0; i < tail_bumps; i++)
 543		if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
 544			return false;
 545	return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
 546}
 547
 548/**
 549 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
 550 * @rx_ring: Rx ring
 551 * @xdp: Pointer to XDP buffer
 552 *
 553 * This function allocates a new skb from a zero-copy Rx buffer.
 554 *
 555 * Returns the skb on success, NULL on failure.
 556 */
 557static struct sk_buff *
 558ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
 559{
 560	unsigned int totalsize = xdp->data_end - xdp->data_meta;
 561	unsigned int metasize = xdp->data - xdp->data_meta;
 562	struct skb_shared_info *sinfo = NULL;
 
 563	struct sk_buff *skb;
 564	u32 nr_frags = 0;
 565
 566	if (unlikely(xdp_buff_has_frags(xdp))) {
 567		sinfo = xdp_get_shared_info_from_buff(xdp);
 568		nr_frags = sinfo->nr_frags;
 569	}
 570	net_prefetch(xdp->data_meta);
 571
 572	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
 573			       GFP_ATOMIC | __GFP_NOWARN);
 574	if (unlikely(!skb))
 575		return NULL;
 576
 577	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
 578	       ALIGN(totalsize, sizeof(long)));
 579
 580	if (metasize) {
 581		skb_metadata_set(skb, metasize);
 582		__skb_pull(skb, metasize);
 583	}
 584
 585	if (likely(!xdp_buff_has_frags(xdp)))
 586		goto out;
 587
 588	for (int i = 0; i < nr_frags; i++) {
 589		struct skb_shared_info *skinfo = skb_shinfo(skb);
 590		skb_frag_t *frag = &sinfo->frags[i];
 591		struct page *page;
 592		void *addr;
 593
 594		page = dev_alloc_page();
 595		if (!page) {
 596			dev_kfree_skb(skb);
 597			return NULL;
 598		}
 599		addr = page_to_virt(page);
 600
 601		memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
 602
 603		__skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
 604					   addr, 0, skb_frag_size(frag));
 605	}
 606
 607out:
 608	xsk_buff_free(xdp);
 609	return skb;
 610}
 611
 612/**
 613 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
 614 * @xdp_ring: XDP Tx ring
 615 */
 616static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
 617{
 618	u16 ntc = xdp_ring->next_to_clean;
 619	struct ice_tx_desc *tx_desc;
 620	u16 cnt = xdp_ring->count;
 621	struct ice_tx_buf *tx_buf;
 622	u16 completed_frames = 0;
 623	u16 xsk_frames = 0;
 624	u16 last_rs;
 625	int i;
 626
 627	last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
 628	tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
 629	if (tx_desc->cmd_type_offset_bsz &
 630	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
 631		if (last_rs >= ntc)
 632			completed_frames = last_rs - ntc + 1;
 633		else
 634			completed_frames = last_rs + cnt - ntc + 1;
 635	}
 636
 637	if (!completed_frames)
 638		return 0;
 639
 640	if (likely(!xdp_ring->xdp_tx_active)) {
 641		xsk_frames = completed_frames;
 642		goto skip;
 643	}
 644
 645	ntc = xdp_ring->next_to_clean;
 646	for (i = 0; i < completed_frames; i++) {
 647		tx_buf = &xdp_ring->tx_buf[ntc];
 648
 649		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
 650			tx_buf->type = ICE_TX_BUF_EMPTY;
 651			xsk_buff_free(tx_buf->xdp);
 652			xdp_ring->xdp_tx_active--;
 653		} else {
 654			xsk_frames++;
 655		}
 656
 657		ntc++;
 658		if (ntc >= xdp_ring->count)
 659			ntc = 0;
 660	}
 661skip:
 662	tx_desc->cmd_type_offset_bsz = 0;
 663	xdp_ring->next_to_clean += completed_frames;
 664	if (xdp_ring->next_to_clean >= cnt)
 665		xdp_ring->next_to_clean -= cnt;
 666	if (xsk_frames)
 667		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
 668
 669	return completed_frames;
 670}
 671
 672/**
 673 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
 674 * @xdp: XDP buffer to xmit
 675 * @xdp_ring: XDP ring to produce descriptor onto
 676 *
 677 * note that this function works directly on xdp_buff, no need to convert
 678 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
 679 * side will be able to xsk_buff_free() it.
 680 *
 681 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
 682 * was not enough space on XDP ring
 683 */
 684static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
 685			      struct ice_tx_ring *xdp_ring)
 686{
 687	struct skb_shared_info *sinfo = NULL;
 688	u32 size = xdp->data_end - xdp->data;
 689	u32 ntu = xdp_ring->next_to_use;
 690	struct ice_tx_desc *tx_desc;
 691	struct ice_tx_buf *tx_buf;
 692	struct xdp_buff *head;
 693	u32 nr_frags = 0;
 694	u32 free_space;
 695	u32 frag = 0;
 696
 697	free_space = ICE_DESC_UNUSED(xdp_ring);
 698	if (free_space < ICE_RING_QUARTER(xdp_ring))
 699		free_space += ice_clean_xdp_irq_zc(xdp_ring);
 700
 701	if (unlikely(!free_space))
 702		goto busy;
 703
 704	if (unlikely(xdp_buff_has_frags(xdp))) {
 705		sinfo = xdp_get_shared_info_from_buff(xdp);
 706		nr_frags = sinfo->nr_frags;
 707		if (free_space < nr_frags + 1)
 708			goto busy;
 709	}
 710
 711	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
 712	tx_buf = &xdp_ring->tx_buf[ntu];
 713	head = xdp;
 714
 715	for (;;) {
 716		dma_addr_t dma;
 717
 718		dma = xsk_buff_xdp_get_dma(xdp);
 719		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
 720
 721		tx_buf->xdp = xdp;
 722		tx_buf->type = ICE_TX_BUF_XSK_TX;
 723		tx_desc->buf_addr = cpu_to_le64(dma);
 724		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
 725		/* account for each xdp_buff from xsk_buff_pool */
 726		xdp_ring->xdp_tx_active++;
 727
 728		if (++ntu == xdp_ring->count)
 729			ntu = 0;
 730
 731		if (frag == nr_frags)
 732			break;
 733
 734		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
 735		tx_buf = &xdp_ring->tx_buf[ntu];
 736
 737		xdp = xsk_buff_get_frag(head);
 738		size = skb_frag_size(&sinfo->frags[frag]);
 739		frag++;
 740	}
 741
 742	xdp_ring->next_to_use = ntu;
 743	/* update last descriptor from a frame with EOP */
 744	tx_desc->cmd_type_offset_bsz |=
 745		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
 746
 747	return ICE_XDP_TX;
 748
 749busy:
 750	xdp_ring->ring_stats->tx_stats.tx_busy++;
 751
 752	return ICE_XDP_CONSUMED;
 753}
 754
 755/**
 756 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
 757 * @rx_ring: Rx ring
 758 * @xdp: xdp_buff used as input to the XDP program
 759 * @xdp_prog: XDP program to run
 760 * @xdp_ring: ring to be used for XDP_TX action
 761 *
 762 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 763 */
 764static int
 765ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
 766	       struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
 767{
 768	int err, result = ICE_XDP_PASS;
 
 
 769	u32 act;
 770
 
 
 
 
 
 771	act = bpf_prog_run_xdp(xdp_prog, xdp);
 772
 773	if (likely(act == XDP_REDIRECT)) {
 774		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 775		if (!err)
 776			return ICE_XDP_REDIR;
 777		if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
 778			result = ICE_XDP_EXIT;
 779		else
 780			result = ICE_XDP_CONSUMED;
 781		goto out_failure;
 782	}
 783
 784	switch (act) {
 785	case XDP_PASS:
 786		break;
 787	case XDP_TX:
 788		result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
 
 789		if (result == ICE_XDP_CONSUMED)
 790			goto out_failure;
 791		break;
 792	case XDP_DROP:
 793		result = ICE_XDP_CONSUMED;
 794		break;
 795	default:
 796		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
 797		fallthrough;
 798	case XDP_ABORTED:
 799		result = ICE_XDP_CONSUMED;
 800out_failure:
 801		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 
 
 
 802		break;
 803	}
 804
 805	return result;
 806}
 807
 808static int
 809ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
 810		 struct xdp_buff *xdp, const unsigned int size)
 811{
 812	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
 813
 814	if (!size)
 815		return 0;
 816
 817	if (!xdp_buff_has_frags(first)) {
 818		sinfo->nr_frags = 0;
 819		sinfo->xdp_frags_size = 0;
 820		xdp_buff_set_frags_flag(first);
 821	}
 822
 823	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
 824		xsk_buff_free(first);
 825		return -ENOMEM;
 826	}
 827
 828	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
 829				   virt_to_page(xdp->data_hard_start),
 830				   XDP_PACKET_HEADROOM, size);
 831	sinfo->xdp_frags_size += size;
 832	xsk_buff_add_frag(xdp);
 833
 834	return 0;
 835}
 836
 837/**
 838 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
 839 * @rx_ring: AF_XDP Rx ring
 840 * @budget: NAPI budget
 841 *
 842 * Returns number of processed packets on success, remaining budget on failure.
 843 */
 844int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
 845{
 846	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 847	struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
 848	u32 ntc = rx_ring->next_to_clean;
 849	u32 ntu = rx_ring->next_to_use;
 850	struct xdp_buff *first = NULL;
 851	struct ice_tx_ring *xdp_ring;
 852	unsigned int xdp_xmit = 0;
 853	struct bpf_prog *xdp_prog;
 854	u32 cnt = rx_ring->count;
 855	bool failure = false;
 856	int entries_to_alloc;
 857
 858	/* ZC patch is enabled only when XDP program is set,
 859	 * so here it can not be NULL
 860	 */
 861	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 862	xdp_ring = rx_ring->xdp_ring;
 863
 864	if (ntc != rx_ring->first_desc)
 865		first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
 866
 867	while (likely(total_rx_packets < (unsigned int)budget)) {
 868		union ice_32b_rx_flex_desc *rx_desc;
 869		unsigned int size, xdp_res = 0;
 870		struct xdp_buff *xdp;
 871		struct sk_buff *skb;
 872		u16 stat_err_bits;
 873		u16 vlan_tci;
 
 874
 875		rx_desc = ICE_RX_DESC(rx_ring, ntc);
 876
 877		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
 878		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
 879			break;
 880
 881		/* This memory barrier is needed to keep us from reading
 882		 * any other fields out of the rx_desc until we have
 883		 * verified the descriptor has been written back.
 884		 */
 885		dma_rmb();
 886
 887		if (unlikely(ntc == ntu))
 888			break;
 889
 890		xdp = *ice_xdp_buf(rx_ring, ntc);
 891
 892		size = le16_to_cpu(rx_desc->wb.pkt_len) &
 893				   ICE_RX_FLX_DESC_PKT_LEN_M;
 894
 895		xsk_buff_set_size(xdp, size);
 896		xsk_buff_dma_sync_for_cpu(xdp, xsk_pool);
 897
 898		if (!first) {
 899			first = xdp;
 900		} else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
 901			break;
 902		}
 903
 904		if (++ntc == cnt)
 905			ntc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 906
 907		if (ice_is_non_eop(rx_ring, rx_desc))
 908			continue;
 909
 910		xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
 911		if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
 912			xdp_xmit |= xdp_res;
 913		} else if (xdp_res == ICE_XDP_EXIT) {
 914			failure = true;
 915			first = NULL;
 916			rx_ring->first_desc = ntc;
 917			break;
 918		} else if (xdp_res == ICE_XDP_CONSUMED) {
 919			xsk_buff_free(first);
 920		} else if (xdp_res == ICE_XDP_PASS) {
 921			goto construct_skb;
 922		}
 923
 924		total_rx_bytes += xdp_get_buff_len(first);
 925		total_rx_packets++;
 926
 927		first = NULL;
 928		rx_ring->first_desc = ntc;
 929		continue;
 930
 931construct_skb:
 932		/* XDP_PASS path */
 933		skb = ice_construct_skb_zc(rx_ring, first);
 934		if (!skb) {
 935			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
 936			break;
 937		}
 938
 939		first = NULL;
 940		rx_ring->first_desc = ntc;
 941
 942		if (eth_skb_pad(skb)) {
 943			skb = NULL;
 944			continue;
 945		}
 946
 947		total_rx_bytes += skb->len;
 948		total_rx_packets++;
 949
 950		vlan_tci = ice_get_vlan_tci(rx_desc);
 
 
 951
 952		ice_process_skb_fields(rx_ring, rx_desc, skb);
 953		ice_receive_skb(rx_ring, skb, vlan_tci);
 
 
 
 954	}
 955
 956	rx_ring->next_to_clean = ntc;
 957	entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
 958	if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
 959		failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
 960
 961	ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
 962	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
 963
 964	if (xsk_uses_need_wakeup(xsk_pool)) {
 965		/* ntu could have changed when allocating entries above, so
 966		 * use rx_ring value instead of stack based one
 967		 */
 968		if (failure || ntc == rx_ring->next_to_use)
 969			xsk_set_rx_need_wakeup(xsk_pool);
 970		else
 971			xsk_clear_rx_need_wakeup(xsk_pool);
 972
 973		return (int)total_rx_packets;
 974	}
 975
 976	return failure ? budget : (int)total_rx_packets;
 977}
 978
 979/**
 980 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
 981 * @xdp_ring: XDP ring to produce the HW Tx descriptor on
 982 * @desc: AF_XDP descriptor to pull the DMA address and length from
 983 * @total_bytes: bytes accumulator that will be used for stats update
 
 984 */
 985static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
 986			 unsigned int *total_bytes)
 987{
 988	struct ice_tx_desc *tx_desc;
 
 
 989	dma_addr_t dma;
 990
 991	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
 992	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
 993
 994	tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
 995	tx_desc->buf_addr = cpu_to_le64(dma);
 996	tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
 997						      0, desc->len, 0);
 
 998
 999	*total_bytes += desc->len;
1000}
1001
1002/**
1003 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1004 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1005 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1006 * @total_bytes: bytes accumulator that will be used for stats update
1007 */
1008static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1009			       unsigned int *total_bytes)
1010{
1011	u16 ntu = xdp_ring->next_to_use;
1012	struct ice_tx_desc *tx_desc;
1013	u32 i;
1014
1015	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1016		dma_addr_t dma;
 
1017
1018		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
1019		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
1020
1021		tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1022		tx_desc->buf_addr = cpu_to_le64(dma);
1023		tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1024							      0, descs[i].len, 0);
1025
1026		*total_bytes += descs[i].len;
 
 
1027	}
1028
1029	xdp_ring->next_to_use = ntu;
 
 
 
 
 
1030}
1031
1032/**
1033 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1034 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1035 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1036 * @nb_pkts: count of packets to be send
1037 * @total_bytes: bytes accumulator that will be used for stats update
1038 */
1039static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1040				u32 nb_pkts, unsigned int *total_bytes)
1041{
1042	u32 batched, leftover, i;
1043
1044	batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1045	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1046	for (i = 0; i < batched; i += PKTS_PER_BATCH)
1047		ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
1048	for (; i < batched + leftover; i++)
1049		ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
1050}
1051
1052/**
1053 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1054 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
 
1055 *
1056 * Returns true if there is no more work that needs to be done, false otherwise
1057 */
1058bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
1059{
1060	struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
1061	u32 nb_pkts, nb_processed = 0;
1062	unsigned int total_bytes = 0;
1063	int budget;
 
 
1064
1065	ice_clean_xdp_irq_zc(xdp_ring);
 
 
 
 
 
 
 
1066
1067	budget = ICE_DESC_UNUSED(xdp_ring);
1068	budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1069
1070	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
1071	if (!nb_pkts)
1072		return true;
 
 
 
1073
1074	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1075		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1076		ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
1077		xdp_ring->next_to_use = 0;
1078	}
 
 
 
 
 
 
 
1079
1080	ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
1081			    &total_bytes);
1082
1083	ice_set_rs_bit(xdp_ring);
1084	ice_xdp_ring_update_tail(xdp_ring);
1085	ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
 
 
1086
1087	if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
1088		xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
1089
1090	return nb_pkts < budget;
 
 
 
1091}
1092
1093/**
1094 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1095 * @netdev: net_device
1096 * @queue_id: queue to wake up
1097 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1098 *
1099 * Returns negative on error, zero otherwise.
1100 */
1101int
1102ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1103	       u32 __always_unused flags)
1104{
1105	struct ice_netdev_priv *np = netdev_priv(netdev);
1106	struct ice_q_vector *q_vector;
1107	struct ice_vsi *vsi = np->vsi;
1108	struct ice_tx_ring *ring;
1109
1110	if (test_bit(ICE_VSI_DOWN, vsi->state))
1111		return -ENETDOWN;
1112
1113	if (!ice_is_xdp_ena_vsi(vsi))
1114		return -EINVAL;
1115
1116	if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1117		return -EINVAL;
1118
1119	ring = vsi->rx_rings[queue_id]->xdp_ring;
 
1120
1121	if (!ring->xsk_pool)
1122		return -EINVAL;
1123
1124	/* The idea here is that if NAPI is running, mark a miss, so
1125	 * it will run again. If not, trigger an interrupt and
1126	 * schedule the NAPI from interrupt context. If NAPI would be
1127	 * scheduled here, the interrupt affinity would not be
1128	 * honored.
1129	 */
1130	q_vector = ring->q_vector;
1131	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1132		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1133
1134	return 0;
1135}
1136
1137/**
1138 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1139 * @vsi: VSI to be checked
1140 *
1141 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1142 */
1143bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1144{
1145	int i;
1146
1147	ice_for_each_rxq(vsi, i) {
1148		if (xsk_get_pool_from_qid(vsi->netdev, i))
1149			return true;
1150	}
1151
1152	return false;
1153}
1154
1155/**
1156 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1157 * @rx_ring: ring to be cleaned
1158 */
1159void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1160{
1161	u16 ntc = rx_ring->next_to_clean;
1162	u16 ntu = rx_ring->next_to_use;
1163
1164	while (ntc != ntu) {
1165		struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1166
1167		xsk_buff_free(xdp);
1168		ntc++;
1169		if (ntc >= rx_ring->count)
1170			ntc = 0;
1171	}
1172}
1173
1174/**
1175 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1176 * @xdp_ring: XDP_Tx ring
1177 */
1178void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1179{
1180	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1181	u32 xsk_frames = 0;
1182
1183	while (ntc != ntu) {
1184		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1185
1186		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1187			tx_buf->type = ICE_TX_BUF_EMPTY;
1188			xsk_buff_free(tx_buf->xdp);
1189		} else {
1190			xsk_frames++;
1191		}
 
1192
1193		ntc++;
1194		if (ntc >= xdp_ring->count)
1195			ntc = 0;
1196	}
1197
1198	if (xsk_frames)
1199		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1200}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2019, Intel Corporation. */
  3
  4#include <linux/bpf_trace.h>
  5#include <net/xdp_sock_drv.h>
  6#include <net/xdp.h>
  7#include "ice.h"
  8#include "ice_base.h"
  9#include "ice_type.h"
 10#include "ice_xsk.h"
 11#include "ice_txrx.h"
 12#include "ice_txrx_lib.h"
 13#include "ice_lib.h"
 14
 
 
 
 
 
 15/**
 16 * ice_qp_reset_stats - Resets all stats for rings of given index
 17 * @vsi: VSI that contains rings of interest
 18 * @q_idx: ring index in array
 19 */
 20static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
 21{
 22	memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
 23	       sizeof(vsi->rx_rings[q_idx]->rx_stats));
 24	memset(&vsi->tx_rings[q_idx]->stats, 0,
 25	       sizeof(vsi->tx_rings[q_idx]->stats));
 
 
 
 
 
 
 
 
 
 
 
 26	if (ice_is_xdp_ena_vsi(vsi))
 27		memset(&vsi->xdp_rings[q_idx]->stats, 0,
 28		       sizeof(vsi->xdp_rings[q_idx]->stats));
 29}
 30
 31/**
 32 * ice_qp_clean_rings - Cleans all the rings of a given index
 33 * @vsi: VSI that contains rings of interest
 34 * @q_idx: ring index in array
 35 */
 36static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
 37{
 38	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
 39	if (ice_is_xdp_ena_vsi(vsi))
 
 40		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
 
 41	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
 42}
 43
 44/**
 45 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
 46 * @vsi: VSI that has netdev
 47 * @q_vector: q_vector that has NAPI context
 48 * @enable: true for enable, false for disable
 49 */
 50static void
 51ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
 52		     bool enable)
 53{
 54	if (!vsi->netdev || !q_vector)
 55		return;
 56
 57	if (enable)
 58		napi_enable(&q_vector->napi);
 59	else
 60		napi_disable(&q_vector->napi);
 61}
 62
 63/**
 64 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
 65 * @vsi: the VSI that contains queue vector being un-configured
 66 * @rx_ring: Rx ring that will have its IRQ disabled
 67 * @q_vector: queue vector
 68 */
 69static void
 70ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
 71		 struct ice_q_vector *q_vector)
 72{
 73	struct ice_pf *pf = vsi->back;
 74	struct ice_hw *hw = &pf->hw;
 75	int base = vsi->base_vector;
 76	u16 reg;
 77	u32 val;
 78
 79	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
 80	 * here only QINT_RQCTL
 81	 */
 82	reg = rx_ring->reg_idx;
 83	val = rd32(hw, QINT_RQCTL(reg));
 84	val &= ~QINT_RQCTL_CAUSE_ENA_M;
 85	wr32(hw, QINT_RQCTL(reg), val);
 86
 87	if (q_vector) {
 88		u16 v_idx = q_vector->v_idx;
 89
 90		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
 91		ice_flush(hw);
 92		synchronize_irq(pf->msix_entries[v_idx + base].vector);
 93	}
 94}
 95
 96/**
 97 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
 98 * @vsi: the VSI that contains queue vector
 99 * @q_vector: queue vector
100 */
101static void
102ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103{
104	u16 reg_idx = q_vector->reg_idx;
105	struct ice_pf *pf = vsi->back;
106	struct ice_hw *hw = &pf->hw;
107	struct ice_ring *ring;
 
108
109	ice_cfg_itr(hw, q_vector);
110
111	ice_for_each_ring(ring, q_vector->tx)
112		ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
113				      q_vector->tx.itr_idx);
114
115	ice_for_each_ring(ring, q_vector->rx)
116		ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
117				      q_vector->rx.itr_idx);
118
119	ice_flush(hw);
120}
121
122/**
123 * ice_qvec_ena_irq - Enable IRQ for given queue vector
124 * @vsi: the VSI that contains queue vector
125 * @q_vector: queue vector
126 */
127static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
128{
129	struct ice_pf *pf = vsi->back;
130	struct ice_hw *hw = &pf->hw;
131
132	ice_irq_dynamic_ena(hw, vsi, q_vector);
133
134	ice_flush(hw);
135}
136
137/**
138 * ice_qp_dis - Disables a queue pair
139 * @vsi: VSI of interest
140 * @q_idx: ring index in array
141 *
142 * Returns 0 on success, negative on failure.
143 */
144static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
145{
146	struct ice_txq_meta txq_meta = { };
147	struct ice_ring *tx_ring, *rx_ring;
148	struct ice_q_vector *q_vector;
 
 
149	int timeout = 50;
150	int err;
151
152	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
153		return -EINVAL;
154
155	tx_ring = vsi->tx_rings[q_idx];
156	rx_ring = vsi->rx_rings[q_idx];
157	q_vector = rx_ring->q_vector;
158
159	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
160		timeout--;
161		if (!timeout)
162			return -EBUSY;
163		usleep_range(1000, 2000);
164	}
165	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
166
167	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
 
 
 
168
169	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
170	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
171	if (err)
172		return err;
173	if (ice_is_xdp_ena_vsi(vsi)) {
174		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
175
176		memset(&txq_meta, 0, sizeof(txq_meta));
177		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
178		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
179					   &txq_meta);
180		if (err)
181			return err;
182	}
183	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
184	if (err)
185		return err;
186
187	ice_qvec_toggle_napi(vsi, q_vector, false);
188	ice_qp_clean_rings(vsi, q_idx);
189	ice_qp_reset_stats(vsi, q_idx);
190
191	return 0;
192}
193
194/**
195 * ice_qp_ena - Enables a queue pair
196 * @vsi: VSI of interest
197 * @q_idx: ring index in array
198 *
199 * Returns 0 on success, negative on failure.
200 */
201static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
202{
203	struct ice_aqc_add_tx_qgrp *qg_buf;
204	struct ice_ring *tx_ring, *rx_ring;
205	struct ice_q_vector *q_vector;
206	u16 size;
 
207	int err;
208
209	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
210		return -EINVAL;
211
212	size = struct_size(qg_buf, txqs, 1);
213	qg_buf = kzalloc(size, GFP_KERNEL);
214	if (!qg_buf)
215		return -ENOMEM;
216
217	qg_buf->num_txqs = 1;
218
219	tx_ring = vsi->tx_rings[q_idx];
220	rx_ring = vsi->rx_rings[q_idx];
221	q_vector = rx_ring->q_vector;
222
223	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
224	if (err)
225		goto free_buf;
226
227	if (ice_is_xdp_ena_vsi(vsi)) {
228		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
229
230		memset(qg_buf, 0, size);
231		qg_buf->num_txqs = 1;
232		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
233		if (err)
234			goto free_buf;
235		ice_set_ring_xdp(xdp_ring);
236		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
237	}
238
239	err = ice_vsi_cfg_rxq(rx_ring);
240	if (err)
241		goto free_buf;
242
243	ice_qvec_cfg_msix(vsi, q_vector);
244
245	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
246	if (err)
247		goto free_buf;
248
249	clear_bit(ICE_CFG_BUSY, vsi->state);
250	ice_qvec_toggle_napi(vsi, q_vector, true);
251	ice_qvec_ena_irq(vsi, q_vector);
252
253	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
254free_buf:
255	kfree(qg_buf);
256	return err;
257}
258
259/**
260 * ice_xsk_pool_disable - disable a buffer pool region
261 * @vsi: Current VSI
262 * @qid: queue ID
263 *
264 * Returns 0 on success, negative on failure
265 */
266static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
267{
268	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
269
270	if (!pool)
271		return -EINVAL;
272
273	clear_bit(qid, vsi->af_xdp_zc_qps);
274	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
275
276	return 0;
277}
278
279/**
280 * ice_xsk_pool_enable - enable a buffer pool region
281 * @vsi: Current VSI
282 * @pool: pointer to a requested buffer pool region
283 * @qid: queue ID
284 *
285 * Returns 0 on success, negative on failure
286 */
287static int
288ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
289{
290	int err;
291
292	if (vsi->type != ICE_VSI_PF)
293		return -EINVAL;
294
295	if (qid >= vsi->netdev->real_num_rx_queues ||
296	    qid >= vsi->netdev->real_num_tx_queues)
297		return -EINVAL;
298
299	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
300			       ICE_RX_DMA_ATTR);
301	if (err)
302		return err;
303
304	set_bit(qid, vsi->af_xdp_zc_qps);
305
306	return 0;
307}
308
309/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
311 * @vsi: Current VSI
312 * @pool: buffer pool to enable/associate to a ring, NULL to disable
313 * @qid: queue ID
314 *
315 * Returns 0 on success, negative on failure
316 */
317int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
318{
319	bool if_running, pool_present = !!pool;
320	int ret = 0, pool_failure = 0;
321
 
 
 
 
 
 
322	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
323
324	if (if_running) {
 
 
325		ret = ice_qp_dis(vsi, qid);
326		if (ret) {
327			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
328			goto xsk_pool_if_up;
329		}
 
 
 
 
330	}
331
332	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
333				      ice_xsk_pool_disable(vsi, qid);
334
335xsk_pool_if_up:
336	if (if_running) {
337		ret = ice_qp_ena(vsi, qid);
338		if (!ret && pool_present)
339			napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
340		else if (ret)
341			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
342	}
343
 
344	if (pool_failure) {
345		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
346			   pool_present ? "en" : "dis", pool_failure);
347		return pool_failure;
348	}
349
350	return ret;
351}
352
353/**
354 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
355 * @rx_ring: Rx ring
 
 
356 * @count: The number of buffers to allocate
357 *
358 * This function allocates a number of Rx buffers from the fill ring
359 * or the internal recycle mechanism and places them on the Rx ring.
360 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361 * Returns true if all allocations were successful, false if any fail.
362 */
363bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count)
364{
 
365	union ice_32b_rx_flex_desc *rx_desc;
366	u16 ntu = rx_ring->next_to_use;
367	struct ice_rx_buf *rx_buf;
368	bool ok = true;
369	dma_addr_t dma;
370
371	if (!count)
372		return true;
373
374	rx_desc = ICE_RX_DESC(rx_ring, ntu);
375	rx_buf = &rx_ring->rx_buf[ntu];
376
377	do {
378		rx_buf->xdp = xsk_buff_alloc(rx_ring->xsk_pool);
379		if (!rx_buf->xdp) {
380			ok = false;
381			break;
 
 
382		}
 
 
 
 
 
 
383
384		dma = xsk_buff_xdp_get_dma(rx_buf->xdp);
385		rx_desc->read.pkt_addr = cpu_to_le64(dma);
386		rx_desc->wb.status_error0 = 0;
387
388		rx_desc++;
389		rx_buf++;
390		ntu++;
391
392		if (unlikely(ntu == rx_ring->count)) {
393			rx_desc = ICE_RX_DESC(rx_ring, 0);
394			rx_buf = rx_ring->rx_buf;
395			ntu = 0;
396		}
397	} while (--count);
398
399	if (rx_ring->next_to_use != ntu) {
400		/* clear the status bits for the next_to_use descriptor */
401		rx_desc->wb.status_error0 = 0;
402		ice_release_rx_desc(rx_ring, ntu);
403	}
404
405	return ok;
406}
407
408/**
409 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
410 * @rx_ring: Rx ring
 
 
 
 
 
 
411 */
412static void ice_bump_ntc(struct ice_ring *rx_ring)
413{
414	int ntc = rx_ring->next_to_clean + 1;
 
 
 
 
415
416	ntc = (ntc < rx_ring->count) ? ntc : 0;
417	rx_ring->next_to_clean = ntc;
418	prefetch(ICE_RX_DESC(rx_ring, ntc));
 
419}
420
421/**
422 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
423 * @rx_ring: Rx ring
424 * @rx_buf: zero-copy Rx buffer
425 *
426 * This function allocates a new skb from a zero-copy Rx buffer.
427 *
428 * Returns the skb on success, NULL on failure.
429 */
430static struct sk_buff *
431ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
432{
433	unsigned int metasize = rx_buf->xdp->data - rx_buf->xdp->data_meta;
434	unsigned int datasize = rx_buf->xdp->data_end - rx_buf->xdp->data;
435	unsigned int datasize_hard = rx_buf->xdp->data_end -
436				     rx_buf->xdp->data_hard_start;
437	struct sk_buff *skb;
 
 
 
 
 
 
 
438
439	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
440			       GFP_ATOMIC | __GFP_NOWARN);
441	if (unlikely(!skb))
442		return NULL;
443
444	skb_reserve(skb, rx_buf->xdp->data - rx_buf->xdp->data_hard_start);
445	memcpy(__skb_put(skb, datasize), rx_buf->xdp->data, datasize);
446	if (metasize)
 
447		skb_metadata_set(skb, metasize);
 
 
 
 
 
448
449	xsk_buff_free(rx_buf->xdp);
450	rx_buf->xdp = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451	return skb;
452}
453
454/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
456 * @rx_ring: Rx ring
457 * @xdp: xdp_buff used as input to the XDP program
 
 
458 *
459 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
460 */
461static int
462ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
 
463{
464	int err, result = ICE_XDP_PASS;
465	struct bpf_prog *xdp_prog;
466	struct ice_ring *xdp_ring;
467	u32 act;
468
469	/* ZC patch is enabled only when XDP program is set,
470	 * so here it can not be NULL
471	 */
472	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
473
474	act = bpf_prog_run_xdp(xdp_prog, xdp);
475
476	if (likely(act == XDP_REDIRECT)) {
477		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
478		if (err)
479			goto out_failure;
480		return ICE_XDP_REDIR;
 
 
 
 
481	}
482
483	switch (act) {
484	case XDP_PASS:
485		break;
486	case XDP_TX:
487		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
488		result = ice_xmit_xdp_buff(xdp, xdp_ring);
489		if (result == ICE_XDP_CONSUMED)
490			goto out_failure;
491		break;
 
 
 
492	default:
493		bpf_warn_invalid_xdp_action(act);
494		fallthrough;
495	case XDP_ABORTED:
 
496out_failure:
497		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
498		fallthrough;
499	case XDP_DROP:
500		result = ICE_XDP_CONSUMED;
501		break;
502	}
503
504	return result;
505}
506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507/**
508 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
509 * @rx_ring: AF_XDP Rx ring
510 * @budget: NAPI budget
511 *
512 * Returns number of processed packets on success, remaining budget on failure.
513 */
514int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
515{
516	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
517	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
 
 
 
 
518	unsigned int xdp_xmit = 0;
 
 
519	bool failure = false;
 
 
 
 
 
 
 
 
 
 
520
521	while (likely(total_rx_packets < (unsigned int)budget)) {
522		union ice_32b_rx_flex_desc *rx_desc;
523		unsigned int size, xdp_res = 0;
524		struct ice_rx_buf *rx_buf;
525		struct sk_buff *skb;
526		u16 stat_err_bits;
527		u16 vlan_tag = 0;
528		u16 rx_ptype;
529
530		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
531
532		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
533		if (!ice_test_staterr(rx_desc, stat_err_bits))
534			break;
535
536		/* This memory barrier is needed to keep us from reading
537		 * any other fields out of the rx_desc until we have
538		 * verified the descriptor has been written back.
539		 */
540		dma_rmb();
541
 
 
 
 
 
542		size = le16_to_cpu(rx_desc->wb.pkt_len) &
543				   ICE_RX_FLX_DESC_PKT_LEN_M;
544		if (!size)
 
 
 
 
 
 
545			break;
 
546
547		rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
548		rx_buf->xdp->data_end = rx_buf->xdp->data + size;
549		xsk_buff_dma_sync_for_cpu(rx_buf->xdp, rx_ring->xsk_pool);
550
551		xdp_res = ice_run_xdp_zc(rx_ring, rx_buf->xdp);
552		if (xdp_res) {
553			if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
554				xdp_xmit |= xdp_res;
555			else
556				xsk_buff_free(rx_buf->xdp);
557
558			rx_buf->xdp = NULL;
559			total_rx_bytes += size;
560			total_rx_packets++;
561			cleaned_count++;
562
563			ice_bump_ntc(rx_ring);
564			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
565		}
566
 
 
 
 
 
 
 
 
567		/* XDP_PASS path */
568		skb = ice_construct_skb_zc(rx_ring, rx_buf);
569		if (!skb) {
570			rx_ring->rx_stats.alloc_buf_failed++;
571			break;
572		}
573
574		cleaned_count++;
575		ice_bump_ntc(rx_ring);
576
577		if (eth_skb_pad(skb)) {
578			skb = NULL;
579			continue;
580		}
581
582		total_rx_bytes += skb->len;
583		total_rx_packets++;
584
585		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
586		if (ice_test_staterr(rx_desc, stat_err_bits))
587			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
588
589		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
590				       ICE_RX_FLEX_DESC_PTYPE_M;
591
592		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
593		ice_receive_skb(rx_ring, skb, vlan_tag);
594	}
595
596	if (cleaned_count >= ICE_RX_BUF_WRITE)
597		failure = !ice_alloc_rx_bufs_zc(rx_ring, cleaned_count);
 
 
598
599	ice_finalize_xdp_rx(rx_ring, xdp_xmit);
600	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
601
602	if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
603		if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
604			xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
 
 
 
605		else
606			xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
607
608		return (int)total_rx_packets;
609	}
610
611	return failure ? budget : (int)total_rx_packets;
612}
613
614/**
615 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
616 * @xdp_ring: XDP Tx ring
617 * @budget: max number of frames to xmit
618 *
619 * Returns true if cleanup/transmission is done.
620 */
621static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
 
622{
623	struct ice_tx_desc *tx_desc = NULL;
624	bool work_done = true;
625	struct xdp_desc desc;
626	dma_addr_t dma;
627
628	while (likely(budget-- > 0)) {
629		struct ice_tx_buf *tx_buf;
630
631		if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
632			xdp_ring->tx_stats.tx_busy++;
633			work_done = false;
634			break;
635		}
636
637		tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
 
638
639		if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc))
640			break;
 
 
 
 
 
 
 
 
 
 
641
642		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr);
643		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma,
644						 desc.len);
645
646		tx_buf->bytecount = desc.len;
 
647
648		tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
649		tx_desc->buf_addr = cpu_to_le64(dma);
650		tx_desc->cmd_type_offset_bsz =
651			ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0);
652
653		xdp_ring->next_to_use++;
654		if (xdp_ring->next_to_use == xdp_ring->count)
655			xdp_ring->next_to_use = 0;
656	}
657
658	if (tx_desc) {
659		ice_xdp_ring_update_tail(xdp_ring);
660		xsk_tx_release(xdp_ring->xsk_pool);
661	}
662
663	return budget > 0 && work_done;
664}
665
666/**
667 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
668 * @xdp_ring: XDP Tx ring
669 * @tx_buf: Tx buffer to clean
 
 
670 */
671static void
672ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
673{
674	xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
675	dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
676			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
677	dma_unmap_len_set(tx_buf, len, 0);
 
 
 
 
678}
679
680/**
681 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
682 * @xdp_ring: XDP Tx ring
683 * @budget: NAPI budget
684 *
685 * Returns true if cleanup/tranmission is done.
686 */
687bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
688{
689	int total_packets = 0, total_bytes = 0;
690	s16 ntc = xdp_ring->next_to_clean;
691	struct ice_tx_desc *tx_desc;
692	struct ice_tx_buf *tx_buf;
693	u32 xsk_frames = 0;
694	bool xmit_done;
695
696	tx_desc = ICE_TX_DESC(xdp_ring, ntc);
697	tx_buf = &xdp_ring->tx_buf[ntc];
698	ntc -= xdp_ring->count;
699
700	do {
701		if (!(tx_desc->cmd_type_offset_bsz &
702		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
703			break;
704
705		total_bytes += tx_buf->bytecount;
706		total_packets++;
707
708		if (tx_buf->raw_buf) {
709			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
710			tx_buf->raw_buf = NULL;
711		} else {
712			xsk_frames++;
713		}
714
715		tx_desc->cmd_type_offset_bsz = 0;
716		tx_buf++;
717		tx_desc++;
718		ntc++;
719
720		if (unlikely(!ntc)) {
721			ntc -= xdp_ring->count;
722			tx_buf = xdp_ring->tx_buf;
723			tx_desc = ICE_TX_DESC(xdp_ring, 0);
724		}
725
726		prefetch(tx_desc);
727
728	} while (likely(--budget));
 
729
730	ntc += xdp_ring->count;
731	xdp_ring->next_to_clean = ntc;
732
733	if (xsk_frames)
734		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
735
736	if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
737		xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
738
739	ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
740	xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
741
742	return budget > 0 && xmit_done;
743}
744
745/**
746 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
747 * @netdev: net_device
748 * @queue_id: queue to wake up
749 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
750 *
751 * Returns negative on error, zero otherwise.
752 */
753int
754ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
755	       u32 __always_unused flags)
756{
757	struct ice_netdev_priv *np = netdev_priv(netdev);
758	struct ice_q_vector *q_vector;
759	struct ice_vsi *vsi = np->vsi;
760	struct ice_ring *ring;
761
762	if (test_bit(ICE_DOWN, vsi->state))
763		return -ENETDOWN;
764
765	if (!ice_is_xdp_ena_vsi(vsi))
766		return -ENXIO;
767
768	if (queue_id >= vsi->num_txq)
769		return -ENXIO;
770
771	if (!vsi->xdp_rings[queue_id]->xsk_pool)
772		return -ENXIO;
773
774	ring = vsi->xdp_rings[queue_id];
 
775
776	/* The idea here is that if NAPI is running, mark a miss, so
777	 * it will run again. If not, trigger an interrupt and
778	 * schedule the NAPI from interrupt context. If NAPI would be
779	 * scheduled here, the interrupt affinity would not be
780	 * honored.
781	 */
782	q_vector = ring->q_vector;
783	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
784		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
785
786	return 0;
787}
788
789/**
790 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
791 * @vsi: VSI to be checked
792 *
793 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
794 */
795bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
796{
797	int i;
798
799	ice_for_each_rxq(vsi, i) {
800		if (xsk_get_pool_from_qid(vsi->netdev, i))
801			return true;
802	}
803
804	return false;
805}
806
807/**
808 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
809 * @rx_ring: ring to be cleaned
810 */
811void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
812{
813	u16 i;
 
814
815	for (i = 0; i < rx_ring->count; i++) {
816		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
817
818		if (!rx_buf->xdp)
819			continue;
820
821		rx_buf->xdp = NULL;
822	}
823}
824
825/**
826 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
827 * @xdp_ring: XDP_Tx ring
828 */
829void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
830{
831	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
832	u32 xsk_frames = 0;
833
834	while (ntc != ntu) {
835		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
836
837		if (tx_buf->raw_buf)
838			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
839		else
 
840			xsk_frames++;
841
842		tx_buf->raw_buf = NULL;
843
844		ntc++;
845		if (ntc >= xdp_ring->count)
846			ntc = 0;
847	}
848
849	if (xsk_frames)
850		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
851}