Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <net/xdp_sock_drv.h>
6#include <net/xdp.h>
7#include "ice.h"
8#include "ice_base.h"
9#include "ice_type.h"
10#include "ice_xsk.h"
11#include "ice_txrx.h"
12#include "ice_txrx_lib.h"
13#include "ice_lib.h"
14
15static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16{
17 return &rx_ring->xdp_buf[idx];
18}
19
20/**
21 * ice_qp_reset_stats - Resets all stats for rings of given index
22 * @vsi: VSI that contains rings of interest
23 * @q_idx: ring index in array
24 */
25static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26{
27 struct ice_vsi_stats *vsi_stat;
28 struct ice_pf *pf;
29
30 pf = vsi->back;
31 if (!pf->vsi_stats)
32 return;
33
34 vsi_stat = pf->vsi_stats[vsi->idx];
35 if (!vsi_stat)
36 return;
37
38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 if (ice_is_xdp_ena_vsi(vsi))
43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45}
46
47/**
48 * ice_qp_clean_rings - Cleans all the rings of a given index
49 * @vsi: VSI that contains rings of interest
50 * @q_idx: ring index in array
51 */
52static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53{
54 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 if (ice_is_xdp_ena_vsi(vsi)) {
56 synchronize_rcu();
57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
58 }
59 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
60}
61
62/**
63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
64 * @vsi: VSI that has netdev
65 * @q_vector: q_vector that has NAPI context
66 * @enable: true for enable, false for disable
67 */
68static void
69ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
70 bool enable)
71{
72 if (!vsi->netdev || !q_vector)
73 return;
74
75 if (enable)
76 napi_enable(&q_vector->napi);
77 else
78 napi_disable(&q_vector->napi);
79}
80
81/**
82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
83 * @vsi: the VSI that contains queue vector being un-configured
84 * @rx_ring: Rx ring that will have its IRQ disabled
85 * @q_vector: queue vector
86 */
87static void
88ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
89 struct ice_q_vector *q_vector)
90{
91 struct ice_pf *pf = vsi->back;
92 struct ice_hw *hw = &pf->hw;
93 u16 reg;
94 u32 val;
95
96 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
97 * here only QINT_RQCTL
98 */
99 reg = rx_ring->reg_idx;
100 val = rd32(hw, QINT_RQCTL(reg));
101 val &= ~QINT_RQCTL_CAUSE_ENA_M;
102 wr32(hw, QINT_RQCTL(reg), val);
103
104 if (q_vector) {
105 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
106 ice_flush(hw);
107 synchronize_irq(q_vector->irq.virq);
108 }
109}
110
111/**
112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
113 * @vsi: the VSI that contains queue vector
114 * @q_vector: queue vector
115 */
116static void
117ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
118{
119 u16 reg_idx = q_vector->reg_idx;
120 struct ice_pf *pf = vsi->back;
121 struct ice_hw *hw = &pf->hw;
122 struct ice_tx_ring *tx_ring;
123 struct ice_rx_ring *rx_ring;
124
125 ice_cfg_itr(hw, q_vector);
126
127 ice_for_each_tx_ring(tx_ring, q_vector->tx)
128 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
129 q_vector->tx.itr_idx);
130
131 ice_for_each_rx_ring(rx_ring, q_vector->rx)
132 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
133 q_vector->rx.itr_idx);
134
135 ice_flush(hw);
136}
137
138/**
139 * ice_qvec_ena_irq - Enable IRQ for given queue vector
140 * @vsi: the VSI that contains queue vector
141 * @q_vector: queue vector
142 */
143static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
144{
145 struct ice_pf *pf = vsi->back;
146 struct ice_hw *hw = &pf->hw;
147
148 ice_irq_dynamic_ena(hw, vsi, q_vector);
149
150 ice_flush(hw);
151}
152
153/**
154 * ice_qp_dis - Disables a queue pair
155 * @vsi: VSI of interest
156 * @q_idx: ring index in array
157 *
158 * Returns 0 on success, negative on failure.
159 */
160static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
161{
162 struct ice_txq_meta txq_meta = { };
163 struct ice_q_vector *q_vector;
164 struct ice_tx_ring *tx_ring;
165 struct ice_rx_ring *rx_ring;
166 int timeout = 50;
167 int err;
168
169 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
170 return -EINVAL;
171
172 tx_ring = vsi->tx_rings[q_idx];
173 rx_ring = vsi->rx_rings[q_idx];
174 q_vector = rx_ring->q_vector;
175
176 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
177 timeout--;
178 if (!timeout)
179 return -EBUSY;
180 usleep_range(1000, 2000);
181 }
182
183 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
184 ice_qvec_toggle_napi(vsi, q_vector, false);
185
186 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
187
188 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
189 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
190 if (err)
191 return err;
192 if (ice_is_xdp_ena_vsi(vsi)) {
193 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
194
195 memset(&txq_meta, 0, sizeof(txq_meta));
196 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
197 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
198 &txq_meta);
199 if (err)
200 return err;
201 }
202 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
203 if (err)
204 return err;
205
206 ice_qp_clean_rings(vsi, q_idx);
207 ice_qp_reset_stats(vsi, q_idx);
208
209 return 0;
210}
211
212/**
213 * ice_qp_ena - Enables a queue pair
214 * @vsi: VSI of interest
215 * @q_idx: ring index in array
216 *
217 * Returns 0 on success, negative on failure.
218 */
219static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
220{
221 DEFINE_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
222 u16 size = __struct_size(qg_buf);
223 struct ice_q_vector *q_vector;
224 struct ice_tx_ring *tx_ring;
225 struct ice_rx_ring *rx_ring;
226 int err;
227
228 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
229 return -EINVAL;
230
231 qg_buf->num_txqs = 1;
232
233 tx_ring = vsi->tx_rings[q_idx];
234 rx_ring = vsi->rx_rings[q_idx];
235 q_vector = rx_ring->q_vector;
236
237 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
238 if (err)
239 return err;
240
241 if (ice_is_xdp_ena_vsi(vsi)) {
242 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
243
244 memset(qg_buf, 0, size);
245 qg_buf->num_txqs = 1;
246 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
247 if (err)
248 return err;
249 ice_set_ring_xdp(xdp_ring);
250 ice_tx_xsk_pool(vsi, q_idx);
251 }
252
253 err = ice_vsi_cfg_rxq(rx_ring);
254 if (err)
255 return err;
256
257 ice_qvec_cfg_msix(vsi, q_vector);
258
259 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
260 if (err)
261 return err;
262
263 ice_qvec_toggle_napi(vsi, q_vector, true);
264 ice_qvec_ena_irq(vsi, q_vector);
265
266 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
267 clear_bit(ICE_CFG_BUSY, vsi->state);
268
269 return 0;
270}
271
272/**
273 * ice_xsk_pool_disable - disable a buffer pool region
274 * @vsi: Current VSI
275 * @qid: queue ID
276 *
277 * Returns 0 on success, negative on failure
278 */
279static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
280{
281 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
282
283 if (!pool)
284 return -EINVAL;
285
286 clear_bit(qid, vsi->af_xdp_zc_qps);
287 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
288
289 return 0;
290}
291
292/**
293 * ice_xsk_pool_enable - enable a buffer pool region
294 * @vsi: Current VSI
295 * @pool: pointer to a requested buffer pool region
296 * @qid: queue ID
297 *
298 * Returns 0 on success, negative on failure
299 */
300static int
301ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
302{
303 int err;
304
305 if (vsi->type != ICE_VSI_PF)
306 return -EINVAL;
307
308 if (qid >= vsi->netdev->real_num_rx_queues ||
309 qid >= vsi->netdev->real_num_tx_queues)
310 return -EINVAL;
311
312 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
313 ICE_RX_DMA_ATTR);
314 if (err)
315 return err;
316
317 set_bit(qid, vsi->af_xdp_zc_qps);
318
319 return 0;
320}
321
322/**
323 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
324 * @rx_ring: Rx ring
325 * @pool_present: is pool for XSK present
326 *
327 * Try allocating memory and return ENOMEM, if failed to allocate.
328 * If allocation was successful, substitute buffer with allocated one.
329 * Returns 0 on success, negative on failure
330 */
331static int
332ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
333{
334 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
335 sizeof(*rx_ring->rx_buf);
336 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
337
338 if (!sw_ring)
339 return -ENOMEM;
340
341 if (pool_present) {
342 kfree(rx_ring->rx_buf);
343 rx_ring->rx_buf = NULL;
344 rx_ring->xdp_buf = sw_ring;
345 } else {
346 kfree(rx_ring->xdp_buf);
347 rx_ring->xdp_buf = NULL;
348 rx_ring->rx_buf = sw_ring;
349 }
350
351 return 0;
352}
353
354/**
355 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
356 * @vsi: Current VSI
357 * @zc: is zero copy set
358 *
359 * Reallocate buffer for rx_rings that might be used by XSK.
360 * XDP requires more memory, than rx_buf provides.
361 * Returns 0 on success, negative on failure
362 */
363int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
364{
365 struct ice_rx_ring *rx_ring;
366 unsigned long q;
367
368 for_each_set_bit(q, vsi->af_xdp_zc_qps,
369 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
370 rx_ring = vsi->rx_rings[q];
371 if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
372 return -ENOMEM;
373 }
374
375 return 0;
376}
377
378/**
379 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
380 * @vsi: Current VSI
381 * @pool: buffer pool to enable/associate to a ring, NULL to disable
382 * @qid: queue ID
383 *
384 * Returns 0 on success, negative on failure
385 */
386int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
387{
388 bool if_running, pool_present = !!pool;
389 int ret = 0, pool_failure = 0;
390
391 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
392 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
393 pool_failure = -EINVAL;
394 goto failure;
395 }
396
397 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
398
399 if (if_running) {
400 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
401
402 ret = ice_qp_dis(vsi, qid);
403 if (ret) {
404 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
405 goto xsk_pool_if_up;
406 }
407
408 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
409 if (ret)
410 goto xsk_pool_if_up;
411 }
412
413 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
414 ice_xsk_pool_disable(vsi, qid);
415
416xsk_pool_if_up:
417 if (if_running) {
418 ret = ice_qp_ena(vsi, qid);
419 if (!ret && pool_present)
420 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
421 else if (ret)
422 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
423 }
424
425failure:
426 if (pool_failure) {
427 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
428 pool_present ? "en" : "dis", pool_failure);
429 return pool_failure;
430 }
431
432 return ret;
433}
434
435/**
436 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
437 * @pool: XSK Buffer pool to pull the buffers from
438 * @xdp: SW ring of xdp_buff that will hold the buffers
439 * @rx_desc: Pointer to Rx descriptors that will be filled
440 * @count: The number of buffers to allocate
441 *
442 * This function allocates a number of Rx buffers from the fill ring
443 * or the internal recycle mechanism and places them on the Rx ring.
444 *
445 * Note that ring wrap should be handled by caller of this function.
446 *
447 * Returns the amount of allocated Rx descriptors
448 */
449static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
450 union ice_32b_rx_flex_desc *rx_desc, u16 count)
451{
452 dma_addr_t dma;
453 u16 buffs;
454 int i;
455
456 buffs = xsk_buff_alloc_batch(pool, xdp, count);
457 for (i = 0; i < buffs; i++) {
458 dma = xsk_buff_xdp_get_dma(*xdp);
459 rx_desc->read.pkt_addr = cpu_to_le64(dma);
460 rx_desc->wb.status_error0 = 0;
461
462 /* Put private info that changes on a per-packet basis
463 * into xdp_buff_xsk->cb.
464 */
465 ice_xdp_meta_set_desc(*xdp, rx_desc);
466
467 rx_desc++;
468 xdp++;
469 }
470
471 return buffs;
472}
473
474/**
475 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
476 * @rx_ring: Rx ring
477 * @count: The number of buffers to allocate
478 *
479 * Place the @count of descriptors onto Rx ring. Handle the ring wrap
480 * for case where space from next_to_use up to the end of ring is less
481 * than @count. Finally do a tail bump.
482 *
483 * Returns true if all allocations were successful, false if any fail.
484 */
485static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
486{
487 u32 nb_buffs_extra = 0, nb_buffs = 0;
488 union ice_32b_rx_flex_desc *rx_desc;
489 u16 ntu = rx_ring->next_to_use;
490 u16 total_count = count;
491 struct xdp_buff **xdp;
492
493 rx_desc = ICE_RX_DESC(rx_ring, ntu);
494 xdp = ice_xdp_buf(rx_ring, ntu);
495
496 if (ntu + count >= rx_ring->count) {
497 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
498 rx_desc,
499 rx_ring->count - ntu);
500 if (nb_buffs_extra != rx_ring->count - ntu) {
501 ntu += nb_buffs_extra;
502 goto exit;
503 }
504 rx_desc = ICE_RX_DESC(rx_ring, 0);
505 xdp = ice_xdp_buf(rx_ring, 0);
506 ntu = 0;
507 count -= nb_buffs_extra;
508 ice_release_rx_desc(rx_ring, 0);
509 }
510
511 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
512
513 ntu += nb_buffs;
514 if (ntu == rx_ring->count)
515 ntu = 0;
516
517exit:
518 if (rx_ring->next_to_use != ntu)
519 ice_release_rx_desc(rx_ring, ntu);
520
521 return total_count == (nb_buffs_extra + nb_buffs);
522}
523
524/**
525 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
526 * @rx_ring: Rx ring
527 * @count: The number of buffers to allocate
528 *
529 * Wrapper for internal allocation routine; figure out how many tail
530 * bumps should take place based on the given threshold
531 *
532 * Returns true if all calls to internal alloc routine succeeded
533 */
534bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
535{
536 u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
537 u16 leftover, i, tail_bumps;
538
539 tail_bumps = count / rx_thresh;
540 leftover = count - (tail_bumps * rx_thresh);
541
542 for (i = 0; i < tail_bumps; i++)
543 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
544 return false;
545 return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
546}
547
548/**
549 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
550 * @rx_ring: Rx ring
551 * @xdp: Pointer to XDP buffer
552 *
553 * This function allocates a new skb from a zero-copy Rx buffer.
554 *
555 * Returns the skb on success, NULL on failure.
556 */
557static struct sk_buff *
558ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
559{
560 unsigned int totalsize = xdp->data_end - xdp->data_meta;
561 unsigned int metasize = xdp->data - xdp->data_meta;
562 struct skb_shared_info *sinfo = NULL;
563 struct sk_buff *skb;
564 u32 nr_frags = 0;
565
566 if (unlikely(xdp_buff_has_frags(xdp))) {
567 sinfo = xdp_get_shared_info_from_buff(xdp);
568 nr_frags = sinfo->nr_frags;
569 }
570 net_prefetch(xdp->data_meta);
571
572 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
573 GFP_ATOMIC | __GFP_NOWARN);
574 if (unlikely(!skb))
575 return NULL;
576
577 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
578 ALIGN(totalsize, sizeof(long)));
579
580 if (metasize) {
581 skb_metadata_set(skb, metasize);
582 __skb_pull(skb, metasize);
583 }
584
585 if (likely(!xdp_buff_has_frags(xdp)))
586 goto out;
587
588 for (int i = 0; i < nr_frags; i++) {
589 struct skb_shared_info *skinfo = skb_shinfo(skb);
590 skb_frag_t *frag = &sinfo->frags[i];
591 struct page *page;
592 void *addr;
593
594 page = dev_alloc_page();
595 if (!page) {
596 dev_kfree_skb(skb);
597 return NULL;
598 }
599 addr = page_to_virt(page);
600
601 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
602
603 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
604 addr, 0, skb_frag_size(frag));
605 }
606
607out:
608 xsk_buff_free(xdp);
609 return skb;
610}
611
612/**
613 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
614 * @xdp_ring: XDP Tx ring
615 */
616static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
617{
618 u16 ntc = xdp_ring->next_to_clean;
619 struct ice_tx_desc *tx_desc;
620 u16 cnt = xdp_ring->count;
621 struct ice_tx_buf *tx_buf;
622 u16 completed_frames = 0;
623 u16 xsk_frames = 0;
624 u16 last_rs;
625 int i;
626
627 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
628 tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
629 if (tx_desc->cmd_type_offset_bsz &
630 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
631 if (last_rs >= ntc)
632 completed_frames = last_rs - ntc + 1;
633 else
634 completed_frames = last_rs + cnt - ntc + 1;
635 }
636
637 if (!completed_frames)
638 return 0;
639
640 if (likely(!xdp_ring->xdp_tx_active)) {
641 xsk_frames = completed_frames;
642 goto skip;
643 }
644
645 ntc = xdp_ring->next_to_clean;
646 for (i = 0; i < completed_frames; i++) {
647 tx_buf = &xdp_ring->tx_buf[ntc];
648
649 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
650 tx_buf->type = ICE_TX_BUF_EMPTY;
651 xsk_buff_free(tx_buf->xdp);
652 xdp_ring->xdp_tx_active--;
653 } else {
654 xsk_frames++;
655 }
656
657 ntc++;
658 if (ntc >= xdp_ring->count)
659 ntc = 0;
660 }
661skip:
662 tx_desc->cmd_type_offset_bsz = 0;
663 xdp_ring->next_to_clean += completed_frames;
664 if (xdp_ring->next_to_clean >= cnt)
665 xdp_ring->next_to_clean -= cnt;
666 if (xsk_frames)
667 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
668
669 return completed_frames;
670}
671
672/**
673 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
674 * @xdp: XDP buffer to xmit
675 * @xdp_ring: XDP ring to produce descriptor onto
676 *
677 * note that this function works directly on xdp_buff, no need to convert
678 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
679 * side will be able to xsk_buff_free() it.
680 *
681 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
682 * was not enough space on XDP ring
683 */
684static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
685 struct ice_tx_ring *xdp_ring)
686{
687 struct skb_shared_info *sinfo = NULL;
688 u32 size = xdp->data_end - xdp->data;
689 u32 ntu = xdp_ring->next_to_use;
690 struct ice_tx_desc *tx_desc;
691 struct ice_tx_buf *tx_buf;
692 struct xdp_buff *head;
693 u32 nr_frags = 0;
694 u32 free_space;
695 u32 frag = 0;
696
697 free_space = ICE_DESC_UNUSED(xdp_ring);
698 if (free_space < ICE_RING_QUARTER(xdp_ring))
699 free_space += ice_clean_xdp_irq_zc(xdp_ring);
700
701 if (unlikely(!free_space))
702 goto busy;
703
704 if (unlikely(xdp_buff_has_frags(xdp))) {
705 sinfo = xdp_get_shared_info_from_buff(xdp);
706 nr_frags = sinfo->nr_frags;
707 if (free_space < nr_frags + 1)
708 goto busy;
709 }
710
711 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
712 tx_buf = &xdp_ring->tx_buf[ntu];
713 head = xdp;
714
715 for (;;) {
716 dma_addr_t dma;
717
718 dma = xsk_buff_xdp_get_dma(xdp);
719 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
720
721 tx_buf->xdp = xdp;
722 tx_buf->type = ICE_TX_BUF_XSK_TX;
723 tx_desc->buf_addr = cpu_to_le64(dma);
724 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
725 /* account for each xdp_buff from xsk_buff_pool */
726 xdp_ring->xdp_tx_active++;
727
728 if (++ntu == xdp_ring->count)
729 ntu = 0;
730
731 if (frag == nr_frags)
732 break;
733
734 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
735 tx_buf = &xdp_ring->tx_buf[ntu];
736
737 xdp = xsk_buff_get_frag(head);
738 size = skb_frag_size(&sinfo->frags[frag]);
739 frag++;
740 }
741
742 xdp_ring->next_to_use = ntu;
743 /* update last descriptor from a frame with EOP */
744 tx_desc->cmd_type_offset_bsz |=
745 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
746
747 return ICE_XDP_TX;
748
749busy:
750 xdp_ring->ring_stats->tx_stats.tx_busy++;
751
752 return ICE_XDP_CONSUMED;
753}
754
755/**
756 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
757 * @rx_ring: Rx ring
758 * @xdp: xdp_buff used as input to the XDP program
759 * @xdp_prog: XDP program to run
760 * @xdp_ring: ring to be used for XDP_TX action
761 *
762 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
763 */
764static int
765ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
766 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
767{
768 int err, result = ICE_XDP_PASS;
769 u32 act;
770
771 act = bpf_prog_run_xdp(xdp_prog, xdp);
772
773 if (likely(act == XDP_REDIRECT)) {
774 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
775 if (!err)
776 return ICE_XDP_REDIR;
777 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
778 result = ICE_XDP_EXIT;
779 else
780 result = ICE_XDP_CONSUMED;
781 goto out_failure;
782 }
783
784 switch (act) {
785 case XDP_PASS:
786 break;
787 case XDP_TX:
788 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
789 if (result == ICE_XDP_CONSUMED)
790 goto out_failure;
791 break;
792 case XDP_DROP:
793 result = ICE_XDP_CONSUMED;
794 break;
795 default:
796 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
797 fallthrough;
798 case XDP_ABORTED:
799 result = ICE_XDP_CONSUMED;
800out_failure:
801 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
802 break;
803 }
804
805 return result;
806}
807
808static int
809ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
810 struct xdp_buff *xdp, const unsigned int size)
811{
812 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
813
814 if (!size)
815 return 0;
816
817 if (!xdp_buff_has_frags(first)) {
818 sinfo->nr_frags = 0;
819 sinfo->xdp_frags_size = 0;
820 xdp_buff_set_frags_flag(first);
821 }
822
823 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
824 xsk_buff_free(first);
825 return -ENOMEM;
826 }
827
828 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
829 virt_to_page(xdp->data_hard_start),
830 XDP_PACKET_HEADROOM, size);
831 sinfo->xdp_frags_size += size;
832 xsk_buff_add_frag(xdp);
833
834 return 0;
835}
836
837/**
838 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
839 * @rx_ring: AF_XDP Rx ring
840 * @budget: NAPI budget
841 *
842 * Returns number of processed packets on success, remaining budget on failure.
843 */
844int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
845{
846 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
847 struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
848 u32 ntc = rx_ring->next_to_clean;
849 u32 ntu = rx_ring->next_to_use;
850 struct xdp_buff *first = NULL;
851 struct ice_tx_ring *xdp_ring;
852 unsigned int xdp_xmit = 0;
853 struct bpf_prog *xdp_prog;
854 u32 cnt = rx_ring->count;
855 bool failure = false;
856 int entries_to_alloc;
857
858 /* ZC patch is enabled only when XDP program is set,
859 * so here it can not be NULL
860 */
861 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
862 xdp_ring = rx_ring->xdp_ring;
863
864 if (ntc != rx_ring->first_desc)
865 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
866
867 while (likely(total_rx_packets < (unsigned int)budget)) {
868 union ice_32b_rx_flex_desc *rx_desc;
869 unsigned int size, xdp_res = 0;
870 struct xdp_buff *xdp;
871 struct sk_buff *skb;
872 u16 stat_err_bits;
873 u16 vlan_tci;
874
875 rx_desc = ICE_RX_DESC(rx_ring, ntc);
876
877 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
878 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
879 break;
880
881 /* This memory barrier is needed to keep us from reading
882 * any other fields out of the rx_desc until we have
883 * verified the descriptor has been written back.
884 */
885 dma_rmb();
886
887 if (unlikely(ntc == ntu))
888 break;
889
890 xdp = *ice_xdp_buf(rx_ring, ntc);
891
892 size = le16_to_cpu(rx_desc->wb.pkt_len) &
893 ICE_RX_FLX_DESC_PKT_LEN_M;
894
895 xsk_buff_set_size(xdp, size);
896 xsk_buff_dma_sync_for_cpu(xdp, xsk_pool);
897
898 if (!first) {
899 first = xdp;
900 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
901 break;
902 }
903
904 if (++ntc == cnt)
905 ntc = 0;
906
907 if (ice_is_non_eop(rx_ring, rx_desc))
908 continue;
909
910 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
911 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
912 xdp_xmit |= xdp_res;
913 } else if (xdp_res == ICE_XDP_EXIT) {
914 failure = true;
915 first = NULL;
916 rx_ring->first_desc = ntc;
917 break;
918 } else if (xdp_res == ICE_XDP_CONSUMED) {
919 xsk_buff_free(first);
920 } else if (xdp_res == ICE_XDP_PASS) {
921 goto construct_skb;
922 }
923
924 total_rx_bytes += xdp_get_buff_len(first);
925 total_rx_packets++;
926
927 first = NULL;
928 rx_ring->first_desc = ntc;
929 continue;
930
931construct_skb:
932 /* XDP_PASS path */
933 skb = ice_construct_skb_zc(rx_ring, first);
934 if (!skb) {
935 rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
936 break;
937 }
938
939 first = NULL;
940 rx_ring->first_desc = ntc;
941
942 if (eth_skb_pad(skb)) {
943 skb = NULL;
944 continue;
945 }
946
947 total_rx_bytes += skb->len;
948 total_rx_packets++;
949
950 vlan_tci = ice_get_vlan_tci(rx_desc);
951
952 ice_process_skb_fields(rx_ring, rx_desc, skb);
953 ice_receive_skb(rx_ring, skb, vlan_tci);
954 }
955
956 rx_ring->next_to_clean = ntc;
957 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
958 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
959 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
960
961 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
962 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
963
964 if (xsk_uses_need_wakeup(xsk_pool)) {
965 /* ntu could have changed when allocating entries above, so
966 * use rx_ring value instead of stack based one
967 */
968 if (failure || ntc == rx_ring->next_to_use)
969 xsk_set_rx_need_wakeup(xsk_pool);
970 else
971 xsk_clear_rx_need_wakeup(xsk_pool);
972
973 return (int)total_rx_packets;
974 }
975
976 return failure ? budget : (int)total_rx_packets;
977}
978
979/**
980 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
981 * @xdp_ring: XDP ring to produce the HW Tx descriptor on
982 * @desc: AF_XDP descriptor to pull the DMA address and length from
983 * @total_bytes: bytes accumulator that will be used for stats update
984 */
985static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
986 unsigned int *total_bytes)
987{
988 struct ice_tx_desc *tx_desc;
989 dma_addr_t dma;
990
991 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
992 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
993
994 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
995 tx_desc->buf_addr = cpu_to_le64(dma);
996 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
997 0, desc->len, 0);
998
999 *total_bytes += desc->len;
1000}
1001
1002/**
1003 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1004 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1005 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1006 * @total_bytes: bytes accumulator that will be used for stats update
1007 */
1008static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1009 unsigned int *total_bytes)
1010{
1011 u16 ntu = xdp_ring->next_to_use;
1012 struct ice_tx_desc *tx_desc;
1013 u32 i;
1014
1015 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1016 dma_addr_t dma;
1017
1018 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
1019 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
1020
1021 tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1022 tx_desc->buf_addr = cpu_to_le64(dma);
1023 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1024 0, descs[i].len, 0);
1025
1026 *total_bytes += descs[i].len;
1027 }
1028
1029 xdp_ring->next_to_use = ntu;
1030}
1031
1032/**
1033 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1034 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1035 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1036 * @nb_pkts: count of packets to be send
1037 * @total_bytes: bytes accumulator that will be used for stats update
1038 */
1039static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1040 u32 nb_pkts, unsigned int *total_bytes)
1041{
1042 u32 batched, leftover, i;
1043
1044 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1045 leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1046 for (i = 0; i < batched; i += PKTS_PER_BATCH)
1047 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
1048 for (; i < batched + leftover; i++)
1049 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
1050}
1051
1052/**
1053 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1054 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1055 *
1056 * Returns true if there is no more work that needs to be done, false otherwise
1057 */
1058bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
1059{
1060 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
1061 u32 nb_pkts, nb_processed = 0;
1062 unsigned int total_bytes = 0;
1063 int budget;
1064
1065 ice_clean_xdp_irq_zc(xdp_ring);
1066
1067 budget = ICE_DESC_UNUSED(xdp_ring);
1068 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1069
1070 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
1071 if (!nb_pkts)
1072 return true;
1073
1074 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1075 nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1076 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
1077 xdp_ring->next_to_use = 0;
1078 }
1079
1080 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
1081 &total_bytes);
1082
1083 ice_set_rs_bit(xdp_ring);
1084 ice_xdp_ring_update_tail(xdp_ring);
1085 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1086
1087 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
1088 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
1089
1090 return nb_pkts < budget;
1091}
1092
1093/**
1094 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1095 * @netdev: net_device
1096 * @queue_id: queue to wake up
1097 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1098 *
1099 * Returns negative on error, zero otherwise.
1100 */
1101int
1102ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1103 u32 __always_unused flags)
1104{
1105 struct ice_netdev_priv *np = netdev_priv(netdev);
1106 struct ice_q_vector *q_vector;
1107 struct ice_vsi *vsi = np->vsi;
1108 struct ice_tx_ring *ring;
1109
1110 if (test_bit(ICE_VSI_DOWN, vsi->state))
1111 return -ENETDOWN;
1112
1113 if (!ice_is_xdp_ena_vsi(vsi))
1114 return -EINVAL;
1115
1116 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1117 return -EINVAL;
1118
1119 ring = vsi->rx_rings[queue_id]->xdp_ring;
1120
1121 if (!ring->xsk_pool)
1122 return -EINVAL;
1123
1124 /* The idea here is that if NAPI is running, mark a miss, so
1125 * it will run again. If not, trigger an interrupt and
1126 * schedule the NAPI from interrupt context. If NAPI would be
1127 * scheduled here, the interrupt affinity would not be
1128 * honored.
1129 */
1130 q_vector = ring->q_vector;
1131 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1132 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1133
1134 return 0;
1135}
1136
1137/**
1138 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1139 * @vsi: VSI to be checked
1140 *
1141 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1142 */
1143bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1144{
1145 int i;
1146
1147 ice_for_each_rxq(vsi, i) {
1148 if (xsk_get_pool_from_qid(vsi->netdev, i))
1149 return true;
1150 }
1151
1152 return false;
1153}
1154
1155/**
1156 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1157 * @rx_ring: ring to be cleaned
1158 */
1159void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1160{
1161 u16 ntc = rx_ring->next_to_clean;
1162 u16 ntu = rx_ring->next_to_use;
1163
1164 while (ntc != ntu) {
1165 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1166
1167 xsk_buff_free(xdp);
1168 ntc++;
1169 if (ntc >= rx_ring->count)
1170 ntc = 0;
1171 }
1172}
1173
1174/**
1175 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1176 * @xdp_ring: XDP_Tx ring
1177 */
1178void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1179{
1180 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1181 u32 xsk_frames = 0;
1182
1183 while (ntc != ntu) {
1184 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1185
1186 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1187 tx_buf->type = ICE_TX_BUF_EMPTY;
1188 xsk_buff_free(tx_buf->xdp);
1189 } else {
1190 xsk_frames++;
1191 }
1192
1193 ntc++;
1194 if (ntc >= xdp_ring->count)
1195 ntc = 0;
1196 }
1197
1198 if (xsk_frames)
1199 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1200}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <net/xdp_sock_drv.h>
6#include <net/xdp.h>
7#include "ice.h"
8#include "ice_base.h"
9#include "ice_type.h"
10#include "ice_xsk.h"
11#include "ice_txrx.h"
12#include "ice_txrx_lib.h"
13#include "ice_lib.h"
14
15/**
16 * ice_qp_reset_stats - Resets all stats for rings of given index
17 * @vsi: VSI that contains rings of interest
18 * @q_idx: ring index in array
19 */
20static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
21{
22 memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
23 sizeof(vsi->rx_rings[q_idx]->rx_stats));
24 memset(&vsi->tx_rings[q_idx]->stats, 0,
25 sizeof(vsi->tx_rings[q_idx]->stats));
26 if (ice_is_xdp_ena_vsi(vsi))
27 memset(&vsi->xdp_rings[q_idx]->stats, 0,
28 sizeof(vsi->xdp_rings[q_idx]->stats));
29}
30
31/**
32 * ice_qp_clean_rings - Cleans all the rings of a given index
33 * @vsi: VSI that contains rings of interest
34 * @q_idx: ring index in array
35 */
36static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
37{
38 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
39 if (ice_is_xdp_ena_vsi(vsi))
40 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
41 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
42}
43
44/**
45 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
46 * @vsi: VSI that has netdev
47 * @q_vector: q_vector that has NAPI context
48 * @enable: true for enable, false for disable
49 */
50static void
51ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
52 bool enable)
53{
54 if (!vsi->netdev || !q_vector)
55 return;
56
57 if (enable)
58 napi_enable(&q_vector->napi);
59 else
60 napi_disable(&q_vector->napi);
61}
62
63/**
64 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
65 * @vsi: the VSI that contains queue vector being un-configured
66 * @rx_ring: Rx ring that will have its IRQ disabled
67 * @q_vector: queue vector
68 */
69static void
70ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
71 struct ice_q_vector *q_vector)
72{
73 struct ice_pf *pf = vsi->back;
74 struct ice_hw *hw = &pf->hw;
75 int base = vsi->base_vector;
76 u16 reg;
77 u32 val;
78
79 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
80 * here only QINT_RQCTL
81 */
82 reg = rx_ring->reg_idx;
83 val = rd32(hw, QINT_RQCTL(reg));
84 val &= ~QINT_RQCTL_CAUSE_ENA_M;
85 wr32(hw, QINT_RQCTL(reg), val);
86
87 if (q_vector) {
88 u16 v_idx = q_vector->v_idx;
89
90 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
91 ice_flush(hw);
92 synchronize_irq(pf->msix_entries[v_idx + base].vector);
93 }
94}
95
96/**
97 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
98 * @vsi: the VSI that contains queue vector
99 * @q_vector: queue vector
100 */
101static void
102ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103{
104 u16 reg_idx = q_vector->reg_idx;
105 struct ice_pf *pf = vsi->back;
106 struct ice_hw *hw = &pf->hw;
107 struct ice_ring *ring;
108
109 ice_cfg_itr(hw, q_vector);
110
111 wr32(hw, GLINT_RATE(reg_idx),
112 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
113
114 ice_for_each_ring(ring, q_vector->tx)
115 ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
116 q_vector->tx.itr_idx);
117
118 ice_for_each_ring(ring, q_vector->rx)
119 ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
120 q_vector->rx.itr_idx);
121
122 ice_flush(hw);
123}
124
125/**
126 * ice_qvec_ena_irq - Enable IRQ for given queue vector
127 * @vsi: the VSI that contains queue vector
128 * @q_vector: queue vector
129 */
130static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
131{
132 struct ice_pf *pf = vsi->back;
133 struct ice_hw *hw = &pf->hw;
134
135 ice_irq_dynamic_ena(hw, vsi, q_vector);
136
137 ice_flush(hw);
138}
139
140/**
141 * ice_qp_dis - Disables a queue pair
142 * @vsi: VSI of interest
143 * @q_idx: ring index in array
144 *
145 * Returns 0 on success, negative on failure.
146 */
147static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
148{
149 struct ice_txq_meta txq_meta = { };
150 struct ice_ring *tx_ring, *rx_ring;
151 struct ice_q_vector *q_vector;
152 int timeout = 50;
153 int err;
154
155 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
156 return -EINVAL;
157
158 tx_ring = vsi->tx_rings[q_idx];
159 rx_ring = vsi->rx_rings[q_idx];
160 q_vector = rx_ring->q_vector;
161
162 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
163 timeout--;
164 if (!timeout)
165 return -EBUSY;
166 usleep_range(1000, 2000);
167 }
168 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
169
170 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
171
172 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
173 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
174 if (err)
175 return err;
176 if (ice_is_xdp_ena_vsi(vsi)) {
177 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
178
179 memset(&txq_meta, 0, sizeof(txq_meta));
180 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
181 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
182 &txq_meta);
183 if (err)
184 return err;
185 }
186 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
187 if (err)
188 return err;
189
190 ice_qvec_toggle_napi(vsi, q_vector, false);
191 ice_qp_clean_rings(vsi, q_idx);
192 ice_qp_reset_stats(vsi, q_idx);
193
194 return 0;
195}
196
197/**
198 * ice_qp_ena - Enables a queue pair
199 * @vsi: VSI of interest
200 * @q_idx: ring index in array
201 *
202 * Returns 0 on success, negative on failure.
203 */
204static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
205{
206 struct ice_aqc_add_tx_qgrp *qg_buf;
207 struct ice_ring *tx_ring, *rx_ring;
208 struct ice_q_vector *q_vector;
209 u16 size;
210 int err;
211
212 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
213 return -EINVAL;
214
215 size = struct_size(qg_buf, txqs, 1);
216 qg_buf = kzalloc(size, GFP_KERNEL);
217 if (!qg_buf)
218 return -ENOMEM;
219
220 qg_buf->num_txqs = 1;
221
222 tx_ring = vsi->tx_rings[q_idx];
223 rx_ring = vsi->rx_rings[q_idx];
224 q_vector = rx_ring->q_vector;
225
226 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
227 if (err)
228 goto free_buf;
229
230 if (ice_is_xdp_ena_vsi(vsi)) {
231 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
232
233 memset(qg_buf, 0, size);
234 qg_buf->num_txqs = 1;
235 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
236 if (err)
237 goto free_buf;
238 ice_set_ring_xdp(xdp_ring);
239 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
240 }
241
242 err = ice_setup_rx_ctx(rx_ring);
243 if (err)
244 goto free_buf;
245
246 ice_qvec_cfg_msix(vsi, q_vector);
247
248 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
249 if (err)
250 goto free_buf;
251
252 clear_bit(__ICE_CFG_BUSY, vsi->state);
253 ice_qvec_toggle_napi(vsi, q_vector, true);
254 ice_qvec_ena_irq(vsi, q_vector);
255
256 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
257free_buf:
258 kfree(qg_buf);
259 return err;
260}
261
262/**
263 * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
264 * @vsi: VSI to allocate the UMEM on
265 *
266 * Returns 0 on success, negative on error
267 */
268static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
269{
270 if (vsi->xsk_umems)
271 return 0;
272
273 vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
274 GFP_KERNEL);
275
276 if (!vsi->xsk_umems) {
277 vsi->num_xsk_umems = 0;
278 return -ENOMEM;
279 }
280
281 return 0;
282}
283
284/**
285 * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
286 * @vsi: VSI from which the VSI will be removed
287 * @qid: Ring/qid associated with the UMEM
288 */
289static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
290{
291 vsi->xsk_umems[qid] = NULL;
292 vsi->num_xsk_umems_used--;
293
294 if (vsi->num_xsk_umems_used == 0) {
295 kfree(vsi->xsk_umems);
296 vsi->xsk_umems = NULL;
297 vsi->num_xsk_umems = 0;
298 }
299}
300
301/**
302 * ice_xsk_umem_disable - disable a UMEM region
303 * @vsi: Current VSI
304 * @qid: queue ID
305 *
306 * Returns 0 on success, negative on failure
307 */
308static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
309{
310 if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
311 !vsi->xsk_umems[qid])
312 return -EINVAL;
313
314 xsk_buff_dma_unmap(vsi->xsk_umems[qid], ICE_RX_DMA_ATTR);
315 ice_xsk_remove_umem(vsi, qid);
316
317 return 0;
318}
319
320/**
321 * ice_xsk_umem_enable - enable a UMEM region
322 * @vsi: Current VSI
323 * @umem: pointer to a requested UMEM region
324 * @qid: queue ID
325 *
326 * Returns 0 on success, negative on failure
327 */
328static int
329ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
330{
331 int err;
332
333 if (vsi->type != ICE_VSI_PF)
334 return -EINVAL;
335
336 if (!vsi->num_xsk_umems)
337 vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
338 if (qid >= vsi->num_xsk_umems)
339 return -EINVAL;
340
341 err = ice_xsk_alloc_umems(vsi);
342 if (err)
343 return err;
344
345 if (vsi->xsk_umems && vsi->xsk_umems[qid])
346 return -EBUSY;
347
348 vsi->xsk_umems[qid] = umem;
349 vsi->num_xsk_umems_used++;
350
351 err = xsk_buff_dma_map(vsi->xsk_umems[qid], ice_pf_to_dev(vsi->back),
352 ICE_RX_DMA_ATTR);
353 if (err)
354 return err;
355
356 return 0;
357}
358
359/**
360 * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
361 * @vsi: Current VSI
362 * @umem: UMEM to enable/associate to a ring, NULL to disable
363 * @qid: queue ID
364 *
365 * Returns 0 on success, negative on failure
366 */
367int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
368{
369 bool if_running, umem_present = !!umem;
370 int ret = 0, umem_failure = 0;
371
372 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
373
374 if (if_running) {
375 ret = ice_qp_dis(vsi, qid);
376 if (ret) {
377 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
378 goto xsk_umem_if_up;
379 }
380 }
381
382 umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
383 ice_xsk_umem_disable(vsi, qid);
384
385xsk_umem_if_up:
386 if (if_running) {
387 ret = ice_qp_ena(vsi, qid);
388 if (!ret && umem_present)
389 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
390 else if (ret)
391 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
392 }
393
394 if (umem_failure) {
395 netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d\n",
396 umem_present ? "en" : "dis", umem_failure);
397 return umem_failure;
398 }
399
400 return ret;
401}
402
403/**
404 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
405 * @rx_ring: Rx ring
406 * @count: The number of buffers to allocate
407 *
408 * This function allocates a number of Rx buffers from the fill ring
409 * or the internal recycle mechanism and places them on the Rx ring.
410 *
411 * Returns false if all allocations were successful, true if any fail.
412 */
413bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count)
414{
415 union ice_32b_rx_flex_desc *rx_desc;
416 u16 ntu = rx_ring->next_to_use;
417 struct ice_rx_buf *rx_buf;
418 bool ret = false;
419 dma_addr_t dma;
420
421 if (!count)
422 return false;
423
424 rx_desc = ICE_RX_DESC(rx_ring, ntu);
425 rx_buf = &rx_ring->rx_buf[ntu];
426
427 do {
428 rx_buf->xdp = xsk_buff_alloc(rx_ring->xsk_umem);
429 if (!rx_buf->xdp) {
430 ret = true;
431 break;
432 }
433
434 dma = xsk_buff_xdp_get_dma(rx_buf->xdp);
435 rx_desc->read.pkt_addr = cpu_to_le64(dma);
436 rx_desc->wb.status_error0 = 0;
437
438 rx_desc++;
439 rx_buf++;
440 ntu++;
441
442 if (unlikely(ntu == rx_ring->count)) {
443 rx_desc = ICE_RX_DESC(rx_ring, 0);
444 rx_buf = rx_ring->rx_buf;
445 ntu = 0;
446 }
447 } while (--count);
448
449 if (rx_ring->next_to_use != ntu)
450 ice_release_rx_desc(rx_ring, ntu);
451
452 return ret;
453}
454
455/**
456 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
457 * @rx_ring: Rx ring
458 */
459static void ice_bump_ntc(struct ice_ring *rx_ring)
460{
461 int ntc = rx_ring->next_to_clean + 1;
462
463 ntc = (ntc < rx_ring->count) ? ntc : 0;
464 rx_ring->next_to_clean = ntc;
465 prefetch(ICE_RX_DESC(rx_ring, ntc));
466}
467
468/**
469 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
470 * @rx_ring: Rx ring
471 * @rx_buf: zero-copy Rx buffer
472 *
473 * This function allocates a new skb from a zero-copy Rx buffer.
474 *
475 * Returns the skb on success, NULL on failure.
476 */
477static struct sk_buff *
478ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
479{
480 unsigned int metasize = rx_buf->xdp->data - rx_buf->xdp->data_meta;
481 unsigned int datasize = rx_buf->xdp->data_end - rx_buf->xdp->data;
482 unsigned int datasize_hard = rx_buf->xdp->data_end -
483 rx_buf->xdp->data_hard_start;
484 struct sk_buff *skb;
485
486 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
487 GFP_ATOMIC | __GFP_NOWARN);
488 if (unlikely(!skb))
489 return NULL;
490
491 skb_reserve(skb, rx_buf->xdp->data - rx_buf->xdp->data_hard_start);
492 memcpy(__skb_put(skb, datasize), rx_buf->xdp->data, datasize);
493 if (metasize)
494 skb_metadata_set(skb, metasize);
495
496 xsk_buff_free(rx_buf->xdp);
497 rx_buf->xdp = NULL;
498 return skb;
499}
500
501/**
502 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
503 * @rx_ring: Rx ring
504 * @xdp: xdp_buff used as input to the XDP program
505 *
506 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
507 */
508static int
509ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
510{
511 int err, result = ICE_XDP_PASS;
512 struct bpf_prog *xdp_prog;
513 struct ice_ring *xdp_ring;
514 u32 act;
515
516 rcu_read_lock();
517 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
518 if (!xdp_prog) {
519 rcu_read_unlock();
520 return ICE_XDP_PASS;
521 }
522
523 act = bpf_prog_run_xdp(xdp_prog, xdp);
524 switch (act) {
525 case XDP_PASS:
526 break;
527 case XDP_TX:
528 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
529 result = ice_xmit_xdp_buff(xdp, xdp_ring);
530 break;
531 case XDP_REDIRECT:
532 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
533 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
534 break;
535 default:
536 bpf_warn_invalid_xdp_action(act);
537 fallthrough;
538 case XDP_ABORTED:
539 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
540 fallthrough;
541 case XDP_DROP:
542 result = ICE_XDP_CONSUMED;
543 break;
544 }
545
546 rcu_read_unlock();
547 return result;
548}
549
550/**
551 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
552 * @rx_ring: AF_XDP Rx ring
553 * @budget: NAPI budget
554 *
555 * Returns number of processed packets on success, remaining budget on failure.
556 */
557int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
558{
559 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
560 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
561 unsigned int xdp_xmit = 0;
562 bool failure = false;
563
564 while (likely(total_rx_packets < (unsigned int)budget)) {
565 union ice_32b_rx_flex_desc *rx_desc;
566 unsigned int size, xdp_res = 0;
567 struct ice_rx_buf *rx_buf;
568 struct sk_buff *skb;
569 u16 stat_err_bits;
570 u16 vlan_tag = 0;
571 u8 rx_ptype;
572
573 if (cleaned_count >= ICE_RX_BUF_WRITE) {
574 failure |= ice_alloc_rx_bufs_zc(rx_ring,
575 cleaned_count);
576 cleaned_count = 0;
577 }
578
579 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
580
581 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
582 if (!ice_test_staterr(rx_desc, stat_err_bits))
583 break;
584
585 /* This memory barrier is needed to keep us from reading
586 * any other fields out of the rx_desc until we have
587 * verified the descriptor has been written back.
588 */
589 dma_rmb();
590
591 size = le16_to_cpu(rx_desc->wb.pkt_len) &
592 ICE_RX_FLX_DESC_PKT_LEN_M;
593 if (!size)
594 break;
595
596 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
597 rx_buf->xdp->data_end = rx_buf->xdp->data + size;
598 xsk_buff_dma_sync_for_cpu(rx_buf->xdp);
599
600 xdp_res = ice_run_xdp_zc(rx_ring, rx_buf->xdp);
601 if (xdp_res) {
602 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
603 xdp_xmit |= xdp_res;
604 else
605 xsk_buff_free(rx_buf->xdp);
606
607 rx_buf->xdp = NULL;
608 total_rx_bytes += size;
609 total_rx_packets++;
610 cleaned_count++;
611
612 ice_bump_ntc(rx_ring);
613 continue;
614 }
615
616 /* XDP_PASS path */
617 skb = ice_construct_skb_zc(rx_ring, rx_buf);
618 if (!skb) {
619 rx_ring->rx_stats.alloc_buf_failed++;
620 break;
621 }
622
623 cleaned_count++;
624 ice_bump_ntc(rx_ring);
625
626 if (eth_skb_pad(skb)) {
627 skb = NULL;
628 continue;
629 }
630
631 total_rx_bytes += skb->len;
632 total_rx_packets++;
633
634 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
635 if (ice_test_staterr(rx_desc, stat_err_bits))
636 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
637
638 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
639 ICE_RX_FLEX_DESC_PTYPE_M;
640
641 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
642 ice_receive_skb(rx_ring, skb, vlan_tag);
643 }
644
645 ice_finalize_xdp_rx(rx_ring, xdp_xmit);
646 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
647
648 if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
649 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
650 xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
651 else
652 xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);
653
654 return (int)total_rx_packets;
655 }
656
657 return failure ? budget : (int)total_rx_packets;
658}
659
660/**
661 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
662 * @xdp_ring: XDP Tx ring
663 * @budget: max number of frames to xmit
664 *
665 * Returns true if cleanup/transmission is done.
666 */
667static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
668{
669 struct ice_tx_desc *tx_desc = NULL;
670 bool work_done = true;
671 struct xdp_desc desc;
672 dma_addr_t dma;
673
674 while (likely(budget-- > 0)) {
675 struct ice_tx_buf *tx_buf;
676
677 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
678 xdp_ring->tx_stats.tx_busy++;
679 work_done = false;
680 break;
681 }
682
683 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
684
685 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
686 break;
687
688 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_umem, desc.addr);
689 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_umem, dma,
690 desc.len);
691
692 tx_buf->bytecount = desc.len;
693
694 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
695 tx_desc->buf_addr = cpu_to_le64(dma);
696 tx_desc->cmd_type_offset_bsz =
697 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0);
698
699 xdp_ring->next_to_use++;
700 if (xdp_ring->next_to_use == xdp_ring->count)
701 xdp_ring->next_to_use = 0;
702 }
703
704 if (tx_desc) {
705 ice_xdp_ring_update_tail(xdp_ring);
706 xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
707 }
708
709 return budget > 0 && work_done;
710}
711
712/**
713 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
714 * @xdp_ring: XDP Tx ring
715 * @tx_buf: Tx buffer to clean
716 */
717static void
718ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
719{
720 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
721 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
722 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
723 dma_unmap_len_set(tx_buf, len, 0);
724}
725
726/**
727 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
728 * @xdp_ring: XDP Tx ring
729 * @budget: NAPI budget
730 *
731 * Returns true if cleanup/tranmission is done.
732 */
733bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
734{
735 int total_packets = 0, total_bytes = 0;
736 s16 ntc = xdp_ring->next_to_clean;
737 struct ice_tx_desc *tx_desc;
738 struct ice_tx_buf *tx_buf;
739 u32 xsk_frames = 0;
740 bool xmit_done;
741
742 tx_desc = ICE_TX_DESC(xdp_ring, ntc);
743 tx_buf = &xdp_ring->tx_buf[ntc];
744 ntc -= xdp_ring->count;
745
746 do {
747 if (!(tx_desc->cmd_type_offset_bsz &
748 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
749 break;
750
751 total_bytes += tx_buf->bytecount;
752 total_packets++;
753
754 if (tx_buf->raw_buf) {
755 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
756 tx_buf->raw_buf = NULL;
757 } else {
758 xsk_frames++;
759 }
760
761 tx_desc->cmd_type_offset_bsz = 0;
762 tx_buf++;
763 tx_desc++;
764 ntc++;
765
766 if (unlikely(!ntc)) {
767 ntc -= xdp_ring->count;
768 tx_buf = xdp_ring->tx_buf;
769 tx_desc = ICE_TX_DESC(xdp_ring, 0);
770 }
771
772 prefetch(tx_desc);
773
774 } while (likely(--budget));
775
776 ntc += xdp_ring->count;
777 xdp_ring->next_to_clean = ntc;
778
779 if (xsk_frames)
780 xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
781
782 if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem))
783 xsk_set_tx_need_wakeup(xdp_ring->xsk_umem);
784
785 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
786 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
787
788 return budget > 0 && xmit_done;
789}
790
791/**
792 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
793 * @netdev: net_device
794 * @queue_id: queue to wake up
795 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
796 *
797 * Returns negative on error, zero otherwise.
798 */
799int
800ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
801 u32 __always_unused flags)
802{
803 struct ice_netdev_priv *np = netdev_priv(netdev);
804 struct ice_q_vector *q_vector;
805 struct ice_vsi *vsi = np->vsi;
806 struct ice_ring *ring;
807
808 if (test_bit(__ICE_DOWN, vsi->state))
809 return -ENETDOWN;
810
811 if (!ice_is_xdp_ena_vsi(vsi))
812 return -ENXIO;
813
814 if (queue_id >= vsi->num_txq)
815 return -ENXIO;
816
817 if (!vsi->xdp_rings[queue_id]->xsk_umem)
818 return -ENXIO;
819
820 ring = vsi->xdp_rings[queue_id];
821
822 /* The idea here is that if NAPI is running, mark a miss, so
823 * it will run again. If not, trigger an interrupt and
824 * schedule the NAPI from interrupt context. If NAPI would be
825 * scheduled here, the interrupt affinity would not be
826 * honored.
827 */
828 q_vector = ring->q_vector;
829 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
830 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
831
832 return 0;
833}
834
835/**
836 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
837 * @vsi: VSI to be checked
838 *
839 * Returns true if any of the Rx rings has an AF_XDP UMEM attached
840 */
841bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
842{
843 int i;
844
845 if (!vsi->xsk_umems)
846 return false;
847
848 for (i = 0; i < vsi->num_xsk_umems; i++) {
849 if (vsi->xsk_umems[i])
850 return true;
851 }
852
853 return false;
854}
855
856/**
857 * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
858 * @rx_ring: ring to be cleaned
859 */
860void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
861{
862 u16 i;
863
864 for (i = 0; i < rx_ring->count; i++) {
865 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
866
867 if (!rx_buf->xdp)
868 continue;
869
870 rx_buf->xdp = NULL;
871 }
872}
873
874/**
875 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
876 * @xdp_ring: XDP_Tx ring
877 */
878void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
879{
880 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
881 u32 xsk_frames = 0;
882
883 while (ntc != ntu) {
884 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
885
886 if (tx_buf->raw_buf)
887 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
888 else
889 xsk_frames++;
890
891 tx_buf->raw_buf = NULL;
892
893 ntc++;
894 if (ntc >= xdp_ring->count)
895 ntc = 0;
896 }
897
898 if (xsk_frames)
899 xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
900}