Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitfield.h>
  10#include <linux/bitmap.h>
  11#include <linux/cpu.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
 
  14#include <linux/efi.h>
  15#include <linux/interrupt.h>
  16#include <linux/iommu.h>
  17#include <linux/iopoll.h>
  18#include <linux/irqdomain.h>
  19#include <linux/list.h>
  20#include <linux/log2.h>
  21#include <linux/memblock.h>
  22#include <linux/mm.h>
  23#include <linux/msi.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/of_pci.h>
  28#include <linux/of_platform.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/syscore_ops.h>
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
  35#include <linux/irqchip/arm-gic-v4.h>
  36
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  45#define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
  46
  47#define RD_LOCAL_LPI_ENABLED                    BIT(0)
  48#define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
  49#define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
  50
  51static u32 lpi_id_bits;
  52
  53/*
  54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  55 * deal with (one configuration byte per interrupt). PENDBASE has to
  56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  57 */
  58#define LPI_NRBITS		lpi_id_bits
  59#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  60#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  61
  62#define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
  63
  64/*
  65 * Collection structure - just an ID, and a redistributor address to
  66 * ping. We use one per CPU as a bag of interrupts assigned to this
  67 * CPU.
  68 */
  69struct its_collection {
  70	u64			target_address;
  71	u16			col_id;
  72};
  73
  74/*
  75 * The ITS_BASER structure - contains memory information, cached
  76 * value of BASER register configuration and ITS page size.
  77 */
  78struct its_baser {
  79	void		*base;
  80	u64		val;
  81	u32		order;
  82	u32		psz;
  83};
  84
  85struct its_device;
  86
  87/*
  88 * The ITS structure - contains most of the infrastructure, with the
  89 * top-level MSI domain, the command queue, the collections, and the
  90 * list of devices writing to it.
  91 *
  92 * dev_alloc_lock has to be taken for device allocations, while the
  93 * spinlock must be taken to parse data structures such as the device
  94 * list.
  95 */
  96struct its_node {
  97	raw_spinlock_t		lock;
  98	struct mutex		dev_alloc_lock;
  99	struct list_head	entry;
 100	void __iomem		*base;
 101	void __iomem		*sgir_base;
 102	phys_addr_t		phys_base;
 103	struct its_cmd_block	*cmd_base;
 104	struct its_cmd_block	*cmd_write;
 105	struct its_baser	tables[GITS_BASER_NR_REGS];
 106	struct its_collection	*collections;
 107	struct fwnode_handle	*fwnode_handle;
 108	u64			(*get_msi_base)(struct its_device *its_dev);
 109	u64			typer;
 110	u64			cbaser_save;
 111	u32			ctlr_save;
 112	u32			mpidr;
 113	struct list_head	its_device_list;
 114	u64			flags;
 115	unsigned long		list_nr;
 116	int			numa_node;
 117	unsigned int		msi_domain_flags;
 118	u32			pre_its_base; /* for Socionext Synquacer */
 119	int			vlpi_redist_offset;
 120};
 121
 122#define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
 123#define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
 124#define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
 125
 126#define ITS_ITT_ALIGN		SZ_256
 127
 128/* The maximum number of VPEID bits supported by VLPI commands */
 129#define ITS_MAX_VPEID_BITS						\
 130	({								\
 131		int nvpeid = 16;					\
 132		if (gic_rdists->has_rvpeid &&				\
 133		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
 134			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
 135				      GICD_TYPER2_VID);			\
 136									\
 137		nvpeid;							\
 138	})
 139#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 140
 141/* Convert page order to size in bytes */
 142#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 143
 144struct event_lpi_map {
 145	unsigned long		*lpi_map;
 146	u16			*col_map;
 147	irq_hw_number_t		lpi_base;
 148	int			nr_lpis;
 149	raw_spinlock_t		vlpi_lock;
 150	struct its_vm		*vm;
 151	struct its_vlpi_map	*vlpi_maps;
 152	int			nr_vlpis;
 153};
 154
 155/*
 156 * The ITS view of a device - belongs to an ITS, owns an interrupt
 157 * translation table, and a list of interrupts.  If it some of its
 158 * LPIs are injected into a guest (GICv4), the event_map.vm field
 159 * indicates which one.
 160 */
 161struct its_device {
 162	struct list_head	entry;
 163	struct its_node		*its;
 164	struct event_lpi_map	event_map;
 165	void			*itt;
 166	u32			nr_ites;
 167	u32			device_id;
 168	bool			shared;
 169};
 170
 171static struct {
 172	raw_spinlock_t		lock;
 173	struct its_device	*dev;
 174	struct its_vpe		**vpes;
 175	int			next_victim;
 176} vpe_proxy;
 177
 178struct cpu_lpi_count {
 179	atomic_t	managed;
 180	atomic_t	unmanaged;
 181};
 182
 183static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
 184
 185static LIST_HEAD(its_nodes);
 186static DEFINE_RAW_SPINLOCK(its_lock);
 187static struct rdists *gic_rdists;
 188static struct irq_domain *its_parent;
 189
 190static unsigned long its_list_map;
 191static u16 vmovp_seq_num;
 192static DEFINE_RAW_SPINLOCK(vmovp_lock);
 193
 194static DEFINE_IDA(its_vpeid_ida);
 195
 196#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 197#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
 198#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 199#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 200
 201/*
 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
 203 * always have vSGIs mapped.
 204 */
 205static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
 206{
 207	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
 208}
 209
 210static bool rdists_support_shareable(void)
 211{
 212	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
 213}
 214
 215static u16 get_its_list(struct its_vm *vm)
 216{
 217	struct its_node *its;
 218	unsigned long its_list = 0;
 219
 220	list_for_each_entry(its, &its_nodes, entry) {
 221		if (!is_v4(its))
 222			continue;
 223
 224		if (require_its_list_vmovp(vm, its))
 225			__set_bit(its->list_nr, &its_list);
 226	}
 227
 228	return (u16)its_list;
 229}
 230
 231static inline u32 its_get_event_id(struct irq_data *d)
 232{
 233	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 234	return d->hwirq - its_dev->event_map.lpi_base;
 235}
 236
 237static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 238					       u32 event)
 239{
 240	struct its_node *its = its_dev->its;
 241
 242	return its->collections + its_dev->event_map.col_map[event];
 243}
 244
 245static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
 246					       u32 event)
 247{
 248	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
 249		return NULL;
 250
 251	return &its_dev->event_map.vlpi_maps[event];
 252}
 253
 254static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
 255{
 256	if (irqd_is_forwarded_to_vcpu(d)) {
 257		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 258		u32 event = its_get_event_id(d);
 259
 260		return dev_event_to_vlpi_map(its_dev, event);
 261	}
 262
 263	return NULL;
 264}
 265
 266static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
 267{
 268	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
 269	return vpe->col_idx;
 270}
 271
 272static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
 273{
 274	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
 275}
 276
 277static struct irq_chip its_vpe_irq_chip;
 278
 279static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
 280{
 281	struct its_vpe *vpe = NULL;
 282	int cpu;
 283
 284	if (d->chip == &its_vpe_irq_chip) {
 285		vpe = irq_data_get_irq_chip_data(d);
 286	} else {
 287		struct its_vlpi_map *map = get_vlpi_map(d);
 288		if (map)
 289			vpe = map->vpe;
 290	}
 291
 292	if (vpe) {
 293		cpu = vpe_to_cpuid_lock(vpe, flags);
 294	} else {
 295		/* Physical LPIs are already locked via the irq_desc lock */
 296		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 297		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
 298		/* Keep GCC quiet... */
 299		*flags = 0;
 300	}
 301
 302	return cpu;
 303}
 304
 305static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
 306{
 307	struct its_vpe *vpe = NULL;
 308
 309	if (d->chip == &its_vpe_irq_chip) {
 310		vpe = irq_data_get_irq_chip_data(d);
 311	} else {
 312		struct its_vlpi_map *map = get_vlpi_map(d);
 313		if (map)
 314			vpe = map->vpe;
 315	}
 316
 317	if (vpe)
 318		vpe_to_cpuid_unlock(vpe, flags);
 319}
 320
 321static struct its_collection *valid_col(struct its_collection *col)
 322{
 323	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 324		return NULL;
 325
 326	return col;
 327}
 328
 329static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 330{
 331	if (valid_col(its->collections + vpe->col_idx))
 332		return vpe;
 333
 334	return NULL;
 335}
 336
 337/*
 338 * ITS command descriptors - parameters to be encoded in a command
 339 * block.
 340 */
 341struct its_cmd_desc {
 342	union {
 343		struct {
 344			struct its_device *dev;
 345			u32 event_id;
 346		} its_inv_cmd;
 347
 348		struct {
 349			struct its_device *dev;
 350			u32 event_id;
 351		} its_clear_cmd;
 352
 353		struct {
 354			struct its_device *dev;
 355			u32 event_id;
 356		} its_int_cmd;
 357
 358		struct {
 359			struct its_device *dev;
 360			int valid;
 361		} its_mapd_cmd;
 362
 363		struct {
 364			struct its_collection *col;
 365			int valid;
 366		} its_mapc_cmd;
 367
 368		struct {
 369			struct its_device *dev;
 370			u32 phys_id;
 371			u32 event_id;
 372		} its_mapti_cmd;
 373
 374		struct {
 375			struct its_device *dev;
 376			struct its_collection *col;
 377			u32 event_id;
 378		} its_movi_cmd;
 379
 380		struct {
 381			struct its_device *dev;
 382			u32 event_id;
 383		} its_discard_cmd;
 384
 385		struct {
 386			struct its_collection *col;
 387		} its_invall_cmd;
 388
 389		struct {
 390			struct its_vpe *vpe;
 391		} its_vinvall_cmd;
 392
 393		struct {
 394			struct its_vpe *vpe;
 395			struct its_collection *col;
 396			bool valid;
 397		} its_vmapp_cmd;
 398
 399		struct {
 400			struct its_vpe *vpe;
 401			struct its_device *dev;
 402			u32 virt_id;
 403			u32 event_id;
 404			bool db_enabled;
 405		} its_vmapti_cmd;
 406
 407		struct {
 408			struct its_vpe *vpe;
 409			struct its_device *dev;
 410			u32 event_id;
 411			bool db_enabled;
 412		} its_vmovi_cmd;
 413
 414		struct {
 415			struct its_vpe *vpe;
 416			struct its_collection *col;
 417			u16 seq_num;
 418			u16 its_list;
 419		} its_vmovp_cmd;
 420
 421		struct {
 422			struct its_vpe *vpe;
 423		} its_invdb_cmd;
 424
 425		struct {
 426			struct its_vpe *vpe;
 427			u8 sgi;
 428			u8 priority;
 429			bool enable;
 430			bool group;
 431			bool clear;
 432		} its_vsgi_cmd;
 433	};
 434};
 435
 436/*
 437 * The ITS command block, which is what the ITS actually parses.
 438 */
 439struct its_cmd_block {
 440	union {
 441		u64	raw_cmd[4];
 442		__le64	raw_cmd_le[4];
 443	};
 444};
 445
 446#define ITS_CMD_QUEUE_SZ		SZ_64K
 447#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 448
 449typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 450						    struct its_cmd_block *,
 451						    struct its_cmd_desc *);
 452
 453typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 454					      struct its_cmd_block *,
 455					      struct its_cmd_desc *);
 456
 457static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 458{
 459	u64 mask = GENMASK_ULL(h, l);
 460	*raw_cmd &= ~mask;
 461	*raw_cmd |= (val << l) & mask;
 462}
 463
 464static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 465{
 466	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 467}
 468
 469static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 470{
 471	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 472}
 473
 474static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 475{
 476	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 477}
 478
 479static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 480{
 481	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 482}
 483
 484static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 485{
 486	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 487}
 488
 489static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 490{
 491	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 492}
 493
 494static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 495{
 496	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 497}
 498
 499static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 500{
 501	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 502}
 503
 504static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 505{
 506	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 507}
 508
 509static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 510{
 511	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 512}
 513
 514static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 515{
 516	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 517}
 518
 519static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 520{
 521	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 522}
 523
 524static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 525{
 526	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 527}
 528
 529static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 530{
 531	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 532}
 533
 534static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 535{
 536	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 537}
 538
 539static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 540{
 541	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 542}
 543
 544static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 545{
 546	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 547}
 548
 549static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
 550{
 551	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
 552}
 553
 554static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
 555{
 556	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
 557}
 558
 559static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
 560{
 561	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
 562}
 563
 564static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
 565					u32 vpe_db_lpi)
 566{
 567	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
 568}
 569
 570static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
 571					u32 vpe_db_lpi)
 572{
 573	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
 574}
 575
 576static void its_encode_db(struct its_cmd_block *cmd, bool db)
 577{
 578	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
 579}
 580
 581static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
 582{
 583	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
 584}
 585
 586static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
 587{
 588	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
 589}
 590
 591static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
 592{
 593	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
 594}
 595
 596static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
 597{
 598	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
 599}
 600
 601static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
 602{
 603	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
 604}
 605
 606static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 607{
 608	/* Let's fixup BE commands */
 609	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
 610	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
 611	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
 612	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
 613}
 614
 615static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 616						 struct its_cmd_block *cmd,
 617						 struct its_cmd_desc *desc)
 618{
 619	unsigned long itt_addr;
 620	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 621
 622	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 623	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 624
 625	its_encode_cmd(cmd, GITS_CMD_MAPD);
 626	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 627	its_encode_size(cmd, size - 1);
 628	its_encode_itt(cmd, itt_addr);
 629	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 630
 631	its_fixup_cmd(cmd);
 632
 633	return NULL;
 634}
 635
 636static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 637						 struct its_cmd_block *cmd,
 638						 struct its_cmd_desc *desc)
 639{
 640	its_encode_cmd(cmd, GITS_CMD_MAPC);
 641	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 642	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 643	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 644
 645	its_fixup_cmd(cmd);
 646
 647	return desc->its_mapc_cmd.col;
 648}
 649
 650static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 651						  struct its_cmd_block *cmd,
 652						  struct its_cmd_desc *desc)
 653{
 654	struct its_collection *col;
 655
 656	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 657			       desc->its_mapti_cmd.event_id);
 658
 659	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 660	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 661	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 662	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 663	its_encode_collection(cmd, col->col_id);
 664
 665	its_fixup_cmd(cmd);
 666
 667	return valid_col(col);
 668}
 669
 670static struct its_collection *its_build_movi_cmd(struct its_node *its,
 671						 struct its_cmd_block *cmd,
 672						 struct its_cmd_desc *desc)
 673{
 674	struct its_collection *col;
 675
 676	col = dev_event_to_col(desc->its_movi_cmd.dev,
 677			       desc->its_movi_cmd.event_id);
 678
 679	its_encode_cmd(cmd, GITS_CMD_MOVI);
 680	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 681	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 682	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 683
 684	its_fixup_cmd(cmd);
 685
 686	return valid_col(col);
 687}
 688
 689static struct its_collection *its_build_discard_cmd(struct its_node *its,
 690						    struct its_cmd_block *cmd,
 691						    struct its_cmd_desc *desc)
 692{
 693	struct its_collection *col;
 694
 695	col = dev_event_to_col(desc->its_discard_cmd.dev,
 696			       desc->its_discard_cmd.event_id);
 697
 698	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 699	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 700	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 701
 702	its_fixup_cmd(cmd);
 703
 704	return valid_col(col);
 705}
 706
 707static struct its_collection *its_build_inv_cmd(struct its_node *its,
 708						struct its_cmd_block *cmd,
 709						struct its_cmd_desc *desc)
 710{
 711	struct its_collection *col;
 712
 713	col = dev_event_to_col(desc->its_inv_cmd.dev,
 714			       desc->its_inv_cmd.event_id);
 715
 716	its_encode_cmd(cmd, GITS_CMD_INV);
 717	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 718	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 719
 720	its_fixup_cmd(cmd);
 721
 722	return valid_col(col);
 723}
 724
 725static struct its_collection *its_build_int_cmd(struct its_node *its,
 726						struct its_cmd_block *cmd,
 727						struct its_cmd_desc *desc)
 728{
 729	struct its_collection *col;
 730
 731	col = dev_event_to_col(desc->its_int_cmd.dev,
 732			       desc->its_int_cmd.event_id);
 733
 734	its_encode_cmd(cmd, GITS_CMD_INT);
 735	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 736	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 737
 738	its_fixup_cmd(cmd);
 739
 740	return valid_col(col);
 741}
 742
 743static struct its_collection *its_build_clear_cmd(struct its_node *its,
 744						  struct its_cmd_block *cmd,
 745						  struct its_cmd_desc *desc)
 746{
 747	struct its_collection *col;
 748
 749	col = dev_event_to_col(desc->its_clear_cmd.dev,
 750			       desc->its_clear_cmd.event_id);
 751
 752	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 753	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 754	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 755
 756	its_fixup_cmd(cmd);
 757
 758	return valid_col(col);
 759}
 760
 761static struct its_collection *its_build_invall_cmd(struct its_node *its,
 762						   struct its_cmd_block *cmd,
 763						   struct its_cmd_desc *desc)
 764{
 765	its_encode_cmd(cmd, GITS_CMD_INVALL);
 766	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
 767
 768	its_fixup_cmd(cmd);
 769
 770	return desc->its_invall_cmd.col;
 771}
 772
 773static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 774					     struct its_cmd_block *cmd,
 775					     struct its_cmd_desc *desc)
 776{
 777	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 778	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 779
 780	its_fixup_cmd(cmd);
 781
 782	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 783}
 784
 785static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 786					   struct its_cmd_block *cmd,
 787					   struct its_cmd_desc *desc)
 788{
 789	unsigned long vpt_addr, vconf_addr;
 790	u64 target;
 791	bool alloc;
 792
 793	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 794	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 795	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 796
 797	if (!desc->its_vmapp_cmd.valid) {
 798		if (is_v4_1(its)) {
 799			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
 800			its_encode_alloc(cmd, alloc);
 801		}
 802
 803		goto out;
 804	}
 805
 806	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 807	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 808
 809	its_encode_target(cmd, target);
 810	its_encode_vpt_addr(cmd, vpt_addr);
 811	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 812
 813	if (!is_v4_1(its))
 814		goto out;
 815
 816	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
 817
 818	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
 819
 820	its_encode_alloc(cmd, alloc);
 821
 822	/*
 823	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
 824	 * to be unmapped first, and in this case, we may remap the vPE
 825	 * back while the VPT is not empty. So we can't assume that the
 826	 * VPT is empty on map. This is why we never advertise PTZ.
 827	 */
 828	its_encode_ptz(cmd, false);
 829	its_encode_vconf_addr(cmd, vconf_addr);
 830	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
 831
 832out:
 833	its_fixup_cmd(cmd);
 834
 835	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 836}
 837
 838static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 839					    struct its_cmd_block *cmd,
 840					    struct its_cmd_desc *desc)
 841{
 842	u32 db;
 843
 844	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
 845		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 846	else
 847		db = 1023;
 848
 849	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 850	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 851	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 852	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 853	its_encode_db_phys_id(cmd, db);
 854	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 855
 856	its_fixup_cmd(cmd);
 857
 858	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 859}
 860
 861static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 862					   struct its_cmd_block *cmd,
 863					   struct its_cmd_desc *desc)
 864{
 865	u32 db;
 866
 867	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
 868		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 869	else
 870		db = 1023;
 871
 872	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 873	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 874	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 875	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 876	its_encode_db_phys_id(cmd, db);
 877	its_encode_db_valid(cmd, true);
 878
 879	its_fixup_cmd(cmd);
 880
 881	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 882}
 883
 884static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 885					   struct its_cmd_block *cmd,
 886					   struct its_cmd_desc *desc)
 887{
 888	u64 target;
 889
 890	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 891	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 892	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 893	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 894	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 895	its_encode_target(cmd, target);
 896
 897	if (is_v4_1(its)) {
 898		its_encode_db(cmd, true);
 899		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
 900	}
 901
 902	its_fixup_cmd(cmd);
 903
 904	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 905}
 906
 907static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
 908					  struct its_cmd_block *cmd,
 909					  struct its_cmd_desc *desc)
 910{
 911	struct its_vlpi_map *map;
 912
 913	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
 914				    desc->its_inv_cmd.event_id);
 915
 916	its_encode_cmd(cmd, GITS_CMD_INV);
 917	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 918	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 919
 920	its_fixup_cmd(cmd);
 921
 922	return valid_vpe(its, map->vpe);
 923}
 924
 925static struct its_vpe *its_build_vint_cmd(struct its_node *its,
 926					  struct its_cmd_block *cmd,
 927					  struct its_cmd_desc *desc)
 928{
 929	struct its_vlpi_map *map;
 930
 931	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
 932				    desc->its_int_cmd.event_id);
 933
 934	its_encode_cmd(cmd, GITS_CMD_INT);
 935	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 936	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 937
 938	its_fixup_cmd(cmd);
 939
 940	return valid_vpe(its, map->vpe);
 941}
 942
 943static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
 944					    struct its_cmd_block *cmd,
 945					    struct its_cmd_desc *desc)
 946{
 947	struct its_vlpi_map *map;
 948
 949	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
 950				    desc->its_clear_cmd.event_id);
 951
 952	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 953	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 954	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 955
 956	its_fixup_cmd(cmd);
 957
 958	return valid_vpe(its, map->vpe);
 959}
 960
 961static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
 962					   struct its_cmd_block *cmd,
 963					   struct its_cmd_desc *desc)
 964{
 965	if (WARN_ON(!is_v4_1(its)))
 966		return NULL;
 967
 968	its_encode_cmd(cmd, GITS_CMD_INVDB);
 969	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
 970
 971	its_fixup_cmd(cmd);
 972
 973	return valid_vpe(its, desc->its_invdb_cmd.vpe);
 974}
 975
 976static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
 977					  struct its_cmd_block *cmd,
 978					  struct its_cmd_desc *desc)
 979{
 980	if (WARN_ON(!is_v4_1(its)))
 981		return NULL;
 982
 983	its_encode_cmd(cmd, GITS_CMD_VSGI);
 984	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
 985	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
 986	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
 987	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
 988	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
 989	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
 990
 991	its_fixup_cmd(cmd);
 992
 993	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
 994}
 995
 996static u64 its_cmd_ptr_to_offset(struct its_node *its,
 997				 struct its_cmd_block *ptr)
 998{
 999	return (ptr - its->cmd_base) * sizeof(*ptr);
1000}
1001
1002static int its_queue_full(struct its_node *its)
1003{
1004	int widx;
1005	int ridx;
1006
1007	widx = its->cmd_write - its->cmd_base;
1008	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1009
1010	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1011	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1012		return 1;
1013
1014	return 0;
1015}
1016
1017static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1018{
1019	struct its_cmd_block *cmd;
1020	u32 count = 1000000;	/* 1s! */
1021
1022	while (its_queue_full(its)) {
1023		count--;
1024		if (!count) {
1025			pr_err_ratelimited("ITS queue not draining\n");
1026			return NULL;
1027		}
1028		cpu_relax();
1029		udelay(1);
1030	}
1031
1032	cmd = its->cmd_write++;
1033
1034	/* Handle queue wrapping */
1035	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1036		its->cmd_write = its->cmd_base;
1037
1038	/* Clear command  */
1039	cmd->raw_cmd[0] = 0;
1040	cmd->raw_cmd[1] = 0;
1041	cmd->raw_cmd[2] = 0;
1042	cmd->raw_cmd[3] = 0;
1043
1044	return cmd;
1045}
1046
1047static struct its_cmd_block *its_post_commands(struct its_node *its)
1048{
1049	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1050
1051	writel_relaxed(wr, its->base + GITS_CWRITER);
1052
1053	return its->cmd_write;
1054}
1055
1056static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1057{
1058	/*
1059	 * Make sure the commands written to memory are observable by
1060	 * the ITS.
1061	 */
1062	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1063		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1064	else
1065		dsb(ishst);
1066}
1067
1068static int its_wait_for_range_completion(struct its_node *its,
1069					 u64	prev_idx,
1070					 struct its_cmd_block *to)
1071{
1072	u64 rd_idx, to_idx, linear_idx;
1073	u32 count = 1000000;	/* 1s! */
1074
1075	/* Linearize to_idx if the command set has wrapped around */
1076	to_idx = its_cmd_ptr_to_offset(its, to);
1077	if (to_idx < prev_idx)
1078		to_idx += ITS_CMD_QUEUE_SZ;
1079
1080	linear_idx = prev_idx;
1081
1082	while (1) {
1083		s64 delta;
1084
1085		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1086
1087		/*
1088		 * Compute the read pointer progress, taking the
1089		 * potential wrap-around into account.
1090		 */
1091		delta = rd_idx - prev_idx;
1092		if (rd_idx < prev_idx)
1093			delta += ITS_CMD_QUEUE_SZ;
1094
1095		linear_idx += delta;
1096		if (linear_idx >= to_idx)
1097			break;
1098
1099		count--;
1100		if (!count) {
1101			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1102					   to_idx, linear_idx);
1103			return -1;
1104		}
1105		prev_idx = rd_idx;
1106		cpu_relax();
1107		udelay(1);
1108	}
1109
1110	return 0;
1111}
1112
1113/* Warning, macro hell follows */
1114#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1115void name(struct its_node *its,						\
1116	  buildtype builder,						\
1117	  struct its_cmd_desc *desc)					\
1118{									\
1119	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1120	synctype *sync_obj;						\
1121	unsigned long flags;						\
1122	u64 rd_idx;							\
1123									\
1124	raw_spin_lock_irqsave(&its->lock, flags);			\
1125									\
1126	cmd = its_allocate_entry(its);					\
1127	if (!cmd) {		/* We're soooooo screewed... */		\
1128		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1129		return;							\
1130	}								\
1131	sync_obj = builder(its, cmd, desc);				\
1132	its_flush_cmd(its, cmd);					\
1133									\
1134	if (sync_obj) {							\
1135		sync_cmd = its_allocate_entry(its);			\
1136		if (!sync_cmd)						\
1137			goto post;					\
1138									\
1139		buildfn(its, sync_cmd, sync_obj);			\
1140		its_flush_cmd(its, sync_cmd);				\
1141	}								\
1142									\
1143post:									\
1144	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1145	next_cmd = its_post_commands(its);				\
1146	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1147									\
1148	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1149		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1150}
1151
1152static void its_build_sync_cmd(struct its_node *its,
1153			       struct its_cmd_block *sync_cmd,
1154			       struct its_collection *sync_col)
1155{
1156	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1157	its_encode_target(sync_cmd, sync_col->target_address);
1158
1159	its_fixup_cmd(sync_cmd);
1160}
1161
1162static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1163			     struct its_collection, its_build_sync_cmd)
1164
1165static void its_build_vsync_cmd(struct its_node *its,
1166				struct its_cmd_block *sync_cmd,
1167				struct its_vpe *sync_vpe)
1168{
1169	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1170	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1171
1172	its_fixup_cmd(sync_cmd);
1173}
1174
1175static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1176			     struct its_vpe, its_build_vsync_cmd)
1177
1178static void its_send_int(struct its_device *dev, u32 event_id)
1179{
1180	struct its_cmd_desc desc;
1181
1182	desc.its_int_cmd.dev = dev;
1183	desc.its_int_cmd.event_id = event_id;
1184
1185	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1186}
1187
1188static void its_send_clear(struct its_device *dev, u32 event_id)
1189{
1190	struct its_cmd_desc desc;
1191
1192	desc.its_clear_cmd.dev = dev;
1193	desc.its_clear_cmd.event_id = event_id;
1194
1195	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1196}
1197
1198static void its_send_inv(struct its_device *dev, u32 event_id)
1199{
1200	struct its_cmd_desc desc;
1201
1202	desc.its_inv_cmd.dev = dev;
1203	desc.its_inv_cmd.event_id = event_id;
1204
1205	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1206}
1207
1208static void its_send_mapd(struct its_device *dev, int valid)
1209{
1210	struct its_cmd_desc desc;
1211
1212	desc.its_mapd_cmd.dev = dev;
1213	desc.its_mapd_cmd.valid = !!valid;
1214
1215	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1216}
1217
1218static void its_send_mapc(struct its_node *its, struct its_collection *col,
1219			  int valid)
1220{
1221	struct its_cmd_desc desc;
1222
1223	desc.its_mapc_cmd.col = col;
1224	desc.its_mapc_cmd.valid = !!valid;
1225
1226	its_send_single_command(its, its_build_mapc_cmd, &desc);
1227}
1228
1229static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1230{
1231	struct its_cmd_desc desc;
1232
1233	desc.its_mapti_cmd.dev = dev;
1234	desc.its_mapti_cmd.phys_id = irq_id;
1235	desc.its_mapti_cmd.event_id = id;
1236
1237	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1238}
1239
1240static void its_send_movi(struct its_device *dev,
1241			  struct its_collection *col, u32 id)
1242{
1243	struct its_cmd_desc desc;
1244
1245	desc.its_movi_cmd.dev = dev;
1246	desc.its_movi_cmd.col = col;
1247	desc.its_movi_cmd.event_id = id;
1248
1249	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1250}
1251
1252static void its_send_discard(struct its_device *dev, u32 id)
1253{
1254	struct its_cmd_desc desc;
1255
1256	desc.its_discard_cmd.dev = dev;
1257	desc.its_discard_cmd.event_id = id;
1258
1259	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1260}
1261
1262static void its_send_invall(struct its_node *its, struct its_collection *col)
1263{
1264	struct its_cmd_desc desc;
1265
1266	desc.its_invall_cmd.col = col;
1267
1268	its_send_single_command(its, its_build_invall_cmd, &desc);
1269}
1270
1271static void its_send_vmapti(struct its_device *dev, u32 id)
1272{
1273	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1274	struct its_cmd_desc desc;
1275
1276	desc.its_vmapti_cmd.vpe = map->vpe;
1277	desc.its_vmapti_cmd.dev = dev;
1278	desc.its_vmapti_cmd.virt_id = map->vintid;
1279	desc.its_vmapti_cmd.event_id = id;
1280	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1281
1282	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1283}
1284
1285static void its_send_vmovi(struct its_device *dev, u32 id)
1286{
1287	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1288	struct its_cmd_desc desc;
1289
1290	desc.its_vmovi_cmd.vpe = map->vpe;
1291	desc.its_vmovi_cmd.dev = dev;
1292	desc.its_vmovi_cmd.event_id = id;
1293	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1294
1295	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1296}
1297
1298static void its_send_vmapp(struct its_node *its,
1299			   struct its_vpe *vpe, bool valid)
1300{
1301	struct its_cmd_desc desc;
1302
1303	desc.its_vmapp_cmd.vpe = vpe;
1304	desc.its_vmapp_cmd.valid = valid;
1305	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1306
1307	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1308}
1309
1310static void its_send_vmovp(struct its_vpe *vpe)
1311{
1312	struct its_cmd_desc desc = {};
1313	struct its_node *its;
1314	unsigned long flags;
1315	int col_id = vpe->col_idx;
1316
1317	desc.its_vmovp_cmd.vpe = vpe;
1318
1319	if (!its_list_map) {
1320		its = list_first_entry(&its_nodes, struct its_node, entry);
1321		desc.its_vmovp_cmd.col = &its->collections[col_id];
1322		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1323		return;
1324	}
1325
1326	/*
1327	 * Yet another marvel of the architecture. If using the
1328	 * its_list "feature", we need to make sure that all ITSs
1329	 * receive all VMOVP commands in the same order. The only way
1330	 * to guarantee this is to make vmovp a serialization point.
1331	 *
1332	 * Wall <-- Head.
1333	 */
1334	raw_spin_lock_irqsave(&vmovp_lock, flags);
1335
1336	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1337	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1338
1339	/* Emit VMOVPs */
1340	list_for_each_entry(its, &its_nodes, entry) {
1341		if (!is_v4(its))
1342			continue;
1343
1344		if (!require_its_list_vmovp(vpe->its_vm, its))
1345			continue;
1346
1347		desc.its_vmovp_cmd.col = &its->collections[col_id];
1348		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1349	}
1350
1351	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1352}
1353
1354static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1355{
1356	struct its_cmd_desc desc;
1357
1358	desc.its_vinvall_cmd.vpe = vpe;
1359	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1360}
1361
1362static void its_send_vinv(struct its_device *dev, u32 event_id)
1363{
1364	struct its_cmd_desc desc;
1365
1366	/*
1367	 * There is no real VINV command. This is just a normal INV,
1368	 * with a VSYNC instead of a SYNC.
1369	 */
1370	desc.its_inv_cmd.dev = dev;
1371	desc.its_inv_cmd.event_id = event_id;
1372
1373	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1374}
1375
1376static void its_send_vint(struct its_device *dev, u32 event_id)
1377{
1378	struct its_cmd_desc desc;
1379
1380	/*
1381	 * There is no real VINT command. This is just a normal INT,
1382	 * with a VSYNC instead of a SYNC.
1383	 */
1384	desc.its_int_cmd.dev = dev;
1385	desc.its_int_cmd.event_id = event_id;
1386
1387	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1388}
1389
1390static void its_send_vclear(struct its_device *dev, u32 event_id)
1391{
1392	struct its_cmd_desc desc;
1393
1394	/*
1395	 * There is no real VCLEAR command. This is just a normal CLEAR,
1396	 * with a VSYNC instead of a SYNC.
1397	 */
1398	desc.its_clear_cmd.dev = dev;
1399	desc.its_clear_cmd.event_id = event_id;
1400
1401	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1402}
1403
1404static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1405{
1406	struct its_cmd_desc desc;
1407
1408	desc.its_invdb_cmd.vpe = vpe;
1409	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1410}
1411
1412/*
1413 * irqchip functions - assumes MSI, mostly.
1414 */
1415static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1416{
1417	struct its_vlpi_map *map = get_vlpi_map(d);
1418	irq_hw_number_t hwirq;
1419	void *va;
1420	u8 *cfg;
1421
1422	if (map) {
1423		va = page_address(map->vm->vprop_page);
1424		hwirq = map->vintid;
1425
1426		/* Remember the updated property */
1427		map->properties &= ~clr;
1428		map->properties |= set | LPI_PROP_GROUP1;
1429	} else {
1430		va = gic_rdists->prop_table_va;
1431		hwirq = d->hwirq;
1432	}
1433
1434	cfg = va + hwirq - 8192;
1435	*cfg &= ~clr;
1436	*cfg |= set | LPI_PROP_GROUP1;
1437
1438	/*
1439	 * Make the above write visible to the redistributors.
1440	 * And yes, we're flushing exactly: One. Single. Byte.
1441	 * Humpf...
1442	 */
1443	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1444		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1445	else
1446		dsb(ishst);
1447}
1448
1449static void wait_for_syncr(void __iomem *rdbase)
1450{
1451	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1452		cpu_relax();
1453}
1454
1455static void __direct_lpi_inv(struct irq_data *d, u64 val)
1456{
1457	void __iomem *rdbase;
1458	unsigned long flags;
1459	int cpu;
1460
1461	/* Target the redistributor this LPI is currently routed to */
1462	cpu = irq_to_cpuid_lock(d, &flags);
1463	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464
1465	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1466	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1467	wait_for_syncr(rdbase);
1468
1469	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1470	irq_to_cpuid_unlock(d, flags);
1471}
1472
1473static void direct_lpi_inv(struct irq_data *d)
1474{
1475	struct its_vlpi_map *map = get_vlpi_map(d);
 
 
1476	u64 val;
 
1477
1478	if (map) {
1479		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1480
1481		WARN_ON(!is_v4_1(its_dev->its));
1482
1483		val  = GICR_INVLPIR_V;
1484		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1485		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1486	} else {
1487		val = d->hwirq;
1488	}
1489
1490	__direct_lpi_inv(d, val);
 
 
 
 
 
 
 
 
1491}
1492
1493static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1494{
1495	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496
1497	lpi_write_config(d, clr, set);
1498	if (gic_rdists->has_direct_lpi &&
1499	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1500		direct_lpi_inv(d);
1501	else if (!irqd_is_forwarded_to_vcpu(d))
1502		its_send_inv(its_dev, its_get_event_id(d));
1503	else
1504		its_send_vinv(its_dev, its_get_event_id(d));
1505}
1506
1507static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1508{
1509	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1510	u32 event = its_get_event_id(d);
1511	struct its_vlpi_map *map;
1512
1513	/*
1514	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1515	 * here.
1516	 */
1517	if (is_v4_1(its_dev->its))
1518		return;
1519
1520	map = dev_event_to_vlpi_map(its_dev, event);
1521
1522	if (map->db_enabled == enable)
1523		return;
1524
1525	map->db_enabled = enable;
1526
1527	/*
1528	 * More fun with the architecture:
1529	 *
1530	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1531	 * value or to 1023, depending on the enable bit. But that
1532	 * would be issuing a mapping for an /existing/ DevID+EventID
1533	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1534	 * to the /same/ vPE, using this opportunity to adjust the
1535	 * doorbell. Mouahahahaha. We loves it, Precious.
1536	 */
1537	its_send_vmovi(its_dev, event);
1538}
1539
1540static void its_mask_irq(struct irq_data *d)
1541{
1542	if (irqd_is_forwarded_to_vcpu(d))
1543		its_vlpi_set_doorbell(d, false);
1544
1545	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1546}
1547
1548static void its_unmask_irq(struct irq_data *d)
1549{
1550	if (irqd_is_forwarded_to_vcpu(d))
1551		its_vlpi_set_doorbell(d, true);
1552
1553	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1554}
1555
1556static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1557{
1558	if (irqd_affinity_is_managed(d))
1559		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1560
1561	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1562}
1563
1564static void its_inc_lpi_count(struct irq_data *d, int cpu)
1565{
1566	if (irqd_affinity_is_managed(d))
1567		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1568	else
1569		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1570}
1571
1572static void its_dec_lpi_count(struct irq_data *d, int cpu)
1573{
1574	if (irqd_affinity_is_managed(d))
1575		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1576	else
1577		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1578}
1579
1580static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1581					      const struct cpumask *cpu_mask)
1582{
1583	unsigned int cpu = nr_cpu_ids, tmp;
1584	int count = S32_MAX;
1585
1586	for_each_cpu(tmp, cpu_mask) {
1587		int this_count = its_read_lpi_count(d, tmp);
1588		if (this_count < count) {
1589			cpu = tmp;
1590		        count = this_count;
1591		}
1592	}
1593
1594	return cpu;
1595}
1596
1597/*
1598 * As suggested by Thomas Gleixner in:
1599 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1600 */
1601static int its_select_cpu(struct irq_data *d,
1602			  const struct cpumask *aff_mask)
1603{
1604	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1605	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1606	static struct cpumask __tmpmask;
1607	struct cpumask *tmpmask;
1608	unsigned long flags;
1609	int cpu, node;
1610	node = its_dev->its->numa_node;
1611	tmpmask = &__tmpmask;
1612
1613	raw_spin_lock_irqsave(&tmpmask_lock, flags);
 
 
 
1614
1615	if (!irqd_affinity_is_managed(d)) {
1616		/* First try the NUMA node */
1617		if (node != NUMA_NO_NODE) {
1618			/*
1619			 * Try the intersection of the affinity mask and the
1620			 * node mask (and the online mask, just to be safe).
1621			 */
1622			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1623			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1624
1625			/*
1626			 * Ideally, we would check if the mask is empty, and
1627			 * try again on the full node here.
1628			 *
1629			 * But it turns out that the way ACPI describes the
1630			 * affinity for ITSs only deals about memory, and
1631			 * not target CPUs, so it cannot describe a single
1632			 * ITS placed next to two NUMA nodes.
1633			 *
1634			 * Instead, just fallback on the online mask. This
1635			 * diverges from Thomas' suggestion above.
1636			 */
1637			cpu = cpumask_pick_least_loaded(d, tmpmask);
1638			if (cpu < nr_cpu_ids)
1639				goto out;
1640
1641			/* If we can't cross sockets, give up */
1642			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1643				goto out;
1644
1645			/* If the above failed, expand the search */
1646		}
1647
1648		/* Try the intersection of the affinity and online masks */
1649		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1650
1651		/* If that doesn't fly, the online mask is the last resort */
1652		if (cpumask_empty(tmpmask))
1653			cpumask_copy(tmpmask, cpu_online_mask);
1654
1655		cpu = cpumask_pick_least_loaded(d, tmpmask);
1656	} else {
1657		cpumask_copy(tmpmask, aff_mask);
1658
1659		/* If we cannot cross sockets, limit the search to that node */
1660		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1661		    node != NUMA_NO_NODE)
1662			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1663
1664		cpu = cpumask_pick_least_loaded(d, tmpmask);
1665	}
1666out:
1667	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1668
1669	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1670	return cpu;
1671}
1672
1673static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1674			    bool force)
1675{
1676	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1677	struct its_collection *target_col;
1678	u32 id = its_get_event_id(d);
1679	int cpu, prev_cpu;
1680
1681	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1682	if (irqd_is_forwarded_to_vcpu(d))
1683		return -EINVAL;
1684
1685	prev_cpu = its_dev->event_map.col_map[id];
1686	its_dec_lpi_count(d, prev_cpu);
1687
1688	if (!force)
1689		cpu = its_select_cpu(d, mask_val);
1690	else
1691		cpu = cpumask_pick_least_loaded(d, mask_val);
1692
1693	if (cpu < 0 || cpu >= nr_cpu_ids)
1694		goto err;
1695
1696	/* don't set the affinity when the target cpu is same as current one */
1697	if (cpu != prev_cpu) {
1698		target_col = &its_dev->its->collections[cpu];
1699		its_send_movi(its_dev, target_col, id);
1700		its_dev->event_map.col_map[id] = cpu;
1701		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1702	}
1703
1704	its_inc_lpi_count(d, cpu);
1705
1706	return IRQ_SET_MASK_OK_DONE;
1707
1708err:
1709	its_inc_lpi_count(d, prev_cpu);
1710	return -EINVAL;
1711}
1712
1713static u64 its_irq_get_msi_base(struct its_device *its_dev)
1714{
1715	struct its_node *its = its_dev->its;
1716
1717	return its->phys_base + GITS_TRANSLATER;
1718}
1719
1720static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1721{
1722	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1723	struct its_node *its;
1724	u64 addr;
1725
1726	its = its_dev->its;
1727	addr = its->get_msi_base(its_dev);
1728
1729	msg->address_lo		= lower_32_bits(addr);
1730	msg->address_hi		= upper_32_bits(addr);
1731	msg->data		= its_get_event_id(d);
1732
1733	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1734}
1735
1736static int its_irq_set_irqchip_state(struct irq_data *d,
1737				     enum irqchip_irq_state which,
1738				     bool state)
1739{
1740	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1741	u32 event = its_get_event_id(d);
1742
1743	if (which != IRQCHIP_STATE_PENDING)
1744		return -EINVAL;
1745
1746	if (irqd_is_forwarded_to_vcpu(d)) {
1747		if (state)
1748			its_send_vint(its_dev, event);
1749		else
1750			its_send_vclear(its_dev, event);
1751	} else {
1752		if (state)
1753			its_send_int(its_dev, event);
1754		else
1755			its_send_clear(its_dev, event);
1756	}
1757
1758	return 0;
1759}
1760
1761static int its_irq_retrigger(struct irq_data *d)
1762{
1763	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1764}
1765
1766/*
1767 * Two favourable cases:
1768 *
1769 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1770 *     for vSGI delivery
1771 *
1772 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1773 *     and we're better off mapping all VPEs always
1774 *
1775 * If neither (a) nor (b) is true, then we map vPEs on demand.
1776 *
1777 */
1778static bool gic_requires_eager_mapping(void)
1779{
1780	if (!its_list_map || gic_rdists->has_rvpeid)
1781		return true;
1782
1783	return false;
1784}
1785
1786static void its_map_vm(struct its_node *its, struct its_vm *vm)
1787{
1788	unsigned long flags;
1789
1790	if (gic_requires_eager_mapping())
1791		return;
1792
1793	raw_spin_lock_irqsave(&vmovp_lock, flags);
1794
1795	/*
1796	 * If the VM wasn't mapped yet, iterate over the vpes and get
1797	 * them mapped now.
1798	 */
1799	vm->vlpi_count[its->list_nr]++;
1800
1801	if (vm->vlpi_count[its->list_nr] == 1) {
1802		int i;
1803
1804		for (i = 0; i < vm->nr_vpes; i++) {
1805			struct its_vpe *vpe = vm->vpes[i];
1806			struct irq_data *d = irq_get_irq_data(vpe->irq);
1807
1808			/* Map the VPE to the first possible CPU */
1809			vpe->col_idx = cpumask_first(cpu_online_mask);
1810			its_send_vmapp(its, vpe, true);
1811			its_send_vinvall(its, vpe);
1812			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1813		}
1814	}
1815
1816	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1817}
1818
1819static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1820{
1821	unsigned long flags;
1822
1823	/* Not using the ITS list? Everything is always mapped. */
1824	if (gic_requires_eager_mapping())
1825		return;
1826
1827	raw_spin_lock_irqsave(&vmovp_lock, flags);
1828
1829	if (!--vm->vlpi_count[its->list_nr]) {
1830		int i;
1831
1832		for (i = 0; i < vm->nr_vpes; i++)
1833			its_send_vmapp(its, vm->vpes[i], false);
1834	}
1835
1836	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1837}
1838
1839static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1840{
1841	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1842	u32 event = its_get_event_id(d);
1843	int ret = 0;
1844
1845	if (!info->map)
1846		return -EINVAL;
1847
1848	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1849
1850	if (!its_dev->event_map.vm) {
1851		struct its_vlpi_map *maps;
1852
1853		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1854			       GFP_ATOMIC);
1855		if (!maps) {
1856			ret = -ENOMEM;
1857			goto out;
1858		}
1859
1860		its_dev->event_map.vm = info->map->vm;
1861		its_dev->event_map.vlpi_maps = maps;
1862	} else if (its_dev->event_map.vm != info->map->vm) {
1863		ret = -EINVAL;
1864		goto out;
1865	}
1866
1867	/* Get our private copy of the mapping information */
1868	its_dev->event_map.vlpi_maps[event] = *info->map;
1869
1870	if (irqd_is_forwarded_to_vcpu(d)) {
1871		/* Already mapped, move it around */
1872		its_send_vmovi(its_dev, event);
1873	} else {
1874		/* Ensure all the VPEs are mapped on this ITS */
1875		its_map_vm(its_dev->its, info->map->vm);
1876
1877		/*
1878		 * Flag the interrupt as forwarded so that we can
1879		 * start poking the virtual property table.
1880		 */
1881		irqd_set_forwarded_to_vcpu(d);
1882
1883		/* Write out the property to the prop table */
1884		lpi_write_config(d, 0xff, info->map->properties);
1885
1886		/* Drop the physical mapping */
1887		its_send_discard(its_dev, event);
1888
1889		/* and install the virtual one */
1890		its_send_vmapti(its_dev, event);
1891
1892		/* Increment the number of VLPIs */
1893		its_dev->event_map.nr_vlpis++;
1894	}
1895
1896out:
1897	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1898	return ret;
1899}
1900
1901static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1902{
1903	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1904	struct its_vlpi_map *map;
1905	int ret = 0;
1906
1907	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1908
1909	map = get_vlpi_map(d);
1910
1911	if (!its_dev->event_map.vm || !map) {
1912		ret = -EINVAL;
1913		goto out;
1914	}
1915
1916	/* Copy our mapping information to the incoming request */
1917	*info->map = *map;
1918
1919out:
1920	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1921	return ret;
1922}
1923
1924static int its_vlpi_unmap(struct irq_data *d)
1925{
1926	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1927	u32 event = its_get_event_id(d);
1928	int ret = 0;
1929
1930	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1931
1932	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1933		ret = -EINVAL;
1934		goto out;
1935	}
1936
1937	/* Drop the virtual mapping */
1938	its_send_discard(its_dev, event);
1939
1940	/* and restore the physical one */
1941	irqd_clr_forwarded_to_vcpu(d);
1942	its_send_mapti(its_dev, d->hwirq, event);
1943	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1944				    LPI_PROP_ENABLED |
1945				    LPI_PROP_GROUP1));
1946
1947	/* Potentially unmap the VM from this ITS */
1948	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1949
1950	/*
1951	 * Drop the refcount and make the device available again if
1952	 * this was the last VLPI.
1953	 */
1954	if (!--its_dev->event_map.nr_vlpis) {
1955		its_dev->event_map.vm = NULL;
1956		kfree(its_dev->event_map.vlpi_maps);
1957	}
1958
1959out:
1960	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1961	return ret;
1962}
1963
1964static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1965{
1966	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1967
1968	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1969		return -EINVAL;
1970
1971	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1972		lpi_update_config(d, 0xff, info->config);
1973	else
1974		lpi_write_config(d, 0xff, info->config);
1975	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1976
1977	return 0;
1978}
1979
1980static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1981{
1982	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1983	struct its_cmd_info *info = vcpu_info;
1984
1985	/* Need a v4 ITS */
1986	if (!is_v4(its_dev->its))
1987		return -EINVAL;
1988
1989	/* Unmap request? */
1990	if (!info)
1991		return its_vlpi_unmap(d);
1992
1993	switch (info->cmd_type) {
1994	case MAP_VLPI:
1995		return its_vlpi_map(d, info);
1996
1997	case GET_VLPI:
1998		return its_vlpi_get(d, info);
1999
2000	case PROP_UPDATE_VLPI:
2001	case PROP_UPDATE_AND_INV_VLPI:
2002		return its_vlpi_prop_update(d, info);
2003
2004	default:
2005		return -EINVAL;
2006	}
2007}
2008
2009static struct irq_chip its_irq_chip = {
2010	.name			= "ITS",
2011	.irq_mask		= its_mask_irq,
2012	.irq_unmask		= its_unmask_irq,
2013	.irq_eoi		= irq_chip_eoi_parent,
2014	.irq_set_affinity	= its_set_affinity,
2015	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2016	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2017	.irq_retrigger		= its_irq_retrigger,
2018	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2019};
2020
2021
2022/*
2023 * How we allocate LPIs:
2024 *
2025 * lpi_range_list contains ranges of LPIs that are to available to
2026 * allocate from. To allocate LPIs, just pick the first range that
2027 * fits the required allocation, and reduce it by the required
2028 * amount. Once empty, remove the range from the list.
2029 *
2030 * To free a range of LPIs, add a free range to the list, sort it and
2031 * merge the result if the new range happens to be adjacent to an
2032 * already free block.
2033 *
2034 * The consequence of the above is that allocation is cost is low, but
2035 * freeing is expensive. We assumes that freeing rarely occurs.
2036 */
2037#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2038
2039static DEFINE_MUTEX(lpi_range_lock);
2040static LIST_HEAD(lpi_range_list);
2041
2042struct lpi_range {
2043	struct list_head	entry;
2044	u32			base_id;
2045	u32			span;
2046};
2047
2048static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2049{
2050	struct lpi_range *range;
2051
2052	range = kmalloc(sizeof(*range), GFP_KERNEL);
2053	if (range) {
2054		range->base_id = base;
2055		range->span = span;
2056	}
2057
2058	return range;
2059}
2060
2061static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2062{
2063	struct lpi_range *range, *tmp;
2064	int err = -ENOSPC;
2065
2066	mutex_lock(&lpi_range_lock);
2067
2068	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2069		if (range->span >= nr_lpis) {
2070			*base = range->base_id;
2071			range->base_id += nr_lpis;
2072			range->span -= nr_lpis;
2073
2074			if (range->span == 0) {
2075				list_del(&range->entry);
2076				kfree(range);
2077			}
2078
2079			err = 0;
2080			break;
2081		}
2082	}
2083
2084	mutex_unlock(&lpi_range_lock);
2085
2086	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2087	return err;
2088}
2089
2090static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2091{
2092	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2093		return;
2094	if (a->base_id + a->span != b->base_id)
2095		return;
2096	b->base_id = a->base_id;
2097	b->span += a->span;
2098	list_del(&a->entry);
2099	kfree(a);
2100}
2101
2102static int free_lpi_range(u32 base, u32 nr_lpis)
2103{
2104	struct lpi_range *new, *old;
2105
2106	new = mk_lpi_range(base, nr_lpis);
2107	if (!new)
2108		return -ENOMEM;
2109
2110	mutex_lock(&lpi_range_lock);
2111
2112	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2113		if (old->base_id < base)
2114			break;
2115	}
2116	/*
2117	 * old is the last element with ->base_id smaller than base,
2118	 * so new goes right after it. If there are no elements with
2119	 * ->base_id smaller than base, &old->entry ends up pointing
2120	 * at the head of the list, and inserting new it the start of
2121	 * the list is the right thing to do in that case as well.
2122	 */
2123	list_add(&new->entry, &old->entry);
2124	/*
2125	 * Now check if we can merge with the preceding and/or
2126	 * following ranges.
2127	 */
2128	merge_lpi_ranges(old, new);
2129	merge_lpi_ranges(new, list_next_entry(new, entry));
2130
2131	mutex_unlock(&lpi_range_lock);
2132	return 0;
2133}
2134
2135static int __init its_lpi_init(u32 id_bits)
2136{
2137	u32 lpis = (1UL << id_bits) - 8192;
2138	u32 numlpis;
2139	int err;
2140
2141	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2142
2143	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2144		lpis = numlpis;
2145		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2146			lpis);
2147	}
2148
2149	/*
2150	 * Initializing the allocator is just the same as freeing the
2151	 * full range of LPIs.
2152	 */
2153	err = free_lpi_range(8192, lpis);
2154	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2155	return err;
2156}
2157
2158static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2159{
2160	unsigned long *bitmap = NULL;
2161	int err = 0;
2162
2163	do {
2164		err = alloc_lpi_range(nr_irqs, base);
2165		if (!err)
2166			break;
2167
2168		nr_irqs /= 2;
2169	} while (nr_irqs > 0);
2170
2171	if (!nr_irqs)
2172		err = -ENOSPC;
2173
2174	if (err)
2175		goto out;
2176
2177	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2178	if (!bitmap)
2179		goto out;
2180
2181	*nr_ids = nr_irqs;
2182
2183out:
2184	if (!bitmap)
2185		*base = *nr_ids = 0;
2186
2187	return bitmap;
2188}
2189
2190static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2191{
2192	WARN_ON(free_lpi_range(base, nr_ids));
2193	bitmap_free(bitmap);
2194}
2195
2196static void gic_reset_prop_table(void *va)
2197{
2198	/* Priority 0xa0, Group-1, disabled */
2199	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2200
2201	/* Make sure the GIC will observe the written configuration */
2202	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2203}
2204
2205static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2206{
2207	struct page *prop_page;
2208
2209	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2210	if (!prop_page)
2211		return NULL;
2212
2213	gic_reset_prop_table(page_address(prop_page));
2214
2215	return prop_page;
2216}
2217
2218static void its_free_prop_table(struct page *prop_page)
2219{
2220	free_pages((unsigned long)page_address(prop_page),
2221		   get_order(LPI_PROPBASE_SZ));
2222}
2223
2224static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2225{
2226	phys_addr_t start, end, addr_end;
2227	u64 i;
2228
2229	/*
2230	 * We don't bother checking for a kdump kernel as by
2231	 * construction, the LPI tables are out of this kernel's
2232	 * memory map.
2233	 */
2234	if (is_kdump_kernel())
2235		return true;
2236
2237	addr_end = addr + size - 1;
2238
2239	for_each_reserved_mem_range(i, &start, &end) {
2240		if (addr >= start && addr_end <= end)
2241			return true;
2242	}
2243
2244	/* Not found, not a good sign... */
2245	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2246		&addr, &addr_end);
2247	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2248	return false;
2249}
2250
2251static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2252{
2253	if (efi_enabled(EFI_CONFIG_TABLES))
2254		return efi_mem_reserve_persistent(addr, size);
2255
2256	return 0;
2257}
2258
2259static int __init its_setup_lpi_prop_table(void)
2260{
2261	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2262		u64 val;
2263
2264		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2265		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2266
2267		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2268		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2269						     LPI_PROPBASE_SZ,
2270						     MEMREMAP_WB);
2271		gic_reset_prop_table(gic_rdists->prop_table_va);
2272	} else {
2273		struct page *page;
2274
2275		lpi_id_bits = min_t(u32,
2276				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2277				    ITS_MAX_LPI_NRBITS);
2278		page = its_allocate_prop_table(GFP_NOWAIT);
2279		if (!page) {
2280			pr_err("Failed to allocate PROPBASE\n");
2281			return -ENOMEM;
2282		}
2283
2284		gic_rdists->prop_table_pa = page_to_phys(page);
2285		gic_rdists->prop_table_va = page_address(page);
2286		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2287					  LPI_PROPBASE_SZ));
2288	}
2289
2290	pr_info("GICv3: using LPI property table @%pa\n",
2291		&gic_rdists->prop_table_pa);
2292
2293	return its_lpi_init(lpi_id_bits);
2294}
2295
2296static const char *its_base_type_string[] = {
2297	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2298	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2299	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2300	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2301	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2302	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2303	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2304};
2305
2306static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2307{
2308	u32 idx = baser - its->tables;
2309
2310	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2311}
2312
2313static void its_write_baser(struct its_node *its, struct its_baser *baser,
2314			    u64 val)
2315{
2316	u32 idx = baser - its->tables;
2317
2318	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2319	baser->val = its_read_baser(its, baser);
2320}
2321
2322static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2323			   u64 cache, u64 shr, u32 order, bool indirect)
2324{
2325	u64 val = its_read_baser(its, baser);
2326	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2327	u64 type = GITS_BASER_TYPE(val);
2328	u64 baser_phys, tmp;
2329	u32 alloc_pages, psz;
2330	struct page *page;
2331	void *base;
2332
2333	psz = baser->psz;
2334	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2335	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2336		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2337			&its->phys_base, its_base_type_string[type],
2338			alloc_pages, GITS_BASER_PAGES_MAX);
2339		alloc_pages = GITS_BASER_PAGES_MAX;
2340		order = get_order(GITS_BASER_PAGES_MAX * psz);
2341	}
2342
2343	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2344	if (!page)
2345		return -ENOMEM;
2346
2347	base = (void *)page_address(page);
2348	baser_phys = virt_to_phys(base);
2349
2350	/* Check if the physical address of the memory is above 48bits */
2351	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2352
2353		/* 52bit PA is supported only when PageSize=64K */
2354		if (psz != SZ_64K) {
2355			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2356			free_pages((unsigned long)base, order);
2357			return -ENXIO;
2358		}
2359
2360		/* Convert 52bit PA to 48bit field */
2361		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2362	}
2363
2364retry_baser:
2365	val = (baser_phys					 |
2366		(type << GITS_BASER_TYPE_SHIFT)			 |
2367		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2368		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2369		cache						 |
2370		shr						 |
2371		GITS_BASER_VALID);
2372
2373	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2374
2375	switch (psz) {
2376	case SZ_4K:
2377		val |= GITS_BASER_PAGE_SIZE_4K;
2378		break;
2379	case SZ_16K:
2380		val |= GITS_BASER_PAGE_SIZE_16K;
2381		break;
2382	case SZ_64K:
2383		val |= GITS_BASER_PAGE_SIZE_64K;
2384		break;
2385	}
2386
2387	if (!shr)
2388		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2389
2390	its_write_baser(its, baser, val);
2391	tmp = baser->val;
2392
2393	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2394		/*
2395		 * Shareability didn't stick. Just use
2396		 * whatever the read reported, which is likely
2397		 * to be the only thing this redistributor
2398		 * supports. If that's zero, make it
2399		 * non-cacheable as well.
2400		 */
2401		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2402		if (!shr)
2403			cache = GITS_BASER_nC;
2404
 
2405		goto retry_baser;
2406	}
2407
2408	if (val != tmp) {
2409		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2410		       &its->phys_base, its_base_type_string[type],
2411		       val, tmp);
2412		free_pages((unsigned long)base, order);
2413		return -ENXIO;
2414	}
2415
2416	baser->order = order;
2417	baser->base = base;
2418	baser->psz = psz;
2419	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2420
2421	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2422		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2423		its_base_type_string[type],
2424		(unsigned long)virt_to_phys(base),
2425		indirect ? "indirect" : "flat", (int)esz,
2426		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2427
2428	return 0;
2429}
2430
2431static bool its_parse_indirect_baser(struct its_node *its,
2432				     struct its_baser *baser,
2433				     u32 *order, u32 ids)
2434{
2435	u64 tmp = its_read_baser(its, baser);
2436	u64 type = GITS_BASER_TYPE(tmp);
2437	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2438	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2439	u32 new_order = *order;
2440	u32 psz = baser->psz;
2441	bool indirect = false;
2442
2443	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444	if ((esz << ids) > (psz * 2)) {
2445		/*
2446		 * Find out whether hw supports a single or two-level table by
2447		 * table by reading bit at offset '62' after writing '1' to it.
2448		 */
2449		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2451
2452		if (indirect) {
2453			/*
2454			 * The size of the lvl2 table is equal to ITS page size
2455			 * which is 'psz'. For computing lvl1 table size,
2456			 * subtract ID bits that sparse lvl2 table from 'ids'
2457			 * which is reported by ITS hardware times lvl1 table
2458			 * entry size.
2459			 */
2460			ids -= ilog2(psz / (int)esz);
2461			esz = GITS_LVL1_ENTRY_SIZE;
2462		}
2463	}
2464
2465	/*
2466	 * Allocate as many entries as required to fit the
2467	 * range of device IDs that the ITS can grok... The ID
2468	 * space being incredibly sparse, this results in a
2469	 * massive waste of memory if two-level device table
2470	 * feature is not supported by hardware.
2471	 */
2472	new_order = max_t(u32, get_order(esz << ids), new_order);
2473	if (new_order > MAX_PAGE_ORDER) {
2474		new_order = MAX_PAGE_ORDER;
2475		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2476		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2477			&its->phys_base, its_base_type_string[type],
2478			device_ids(its), ids);
2479	}
2480
2481	*order = new_order;
2482
2483	return indirect;
2484}
2485
2486static u32 compute_common_aff(u64 val)
2487{
2488	u32 aff, clpiaff;
2489
2490	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2492
2493	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2494}
2495
2496static u32 compute_its_aff(struct its_node *its)
2497{
2498	u64 val;
2499	u32 svpet;
2500
2501	/*
2502	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503	 * the resulting affinity. We then use that to see if this match
2504	 * our own affinity.
2505	 */
2506	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509	return compute_common_aff(val);
2510}
2511
2512static struct its_node *find_sibling_its(struct its_node *cur_its)
2513{
2514	struct its_node *its;
2515	u32 aff;
2516
2517	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2518		return NULL;
2519
2520	aff = compute_its_aff(cur_its);
2521
2522	list_for_each_entry(its, &its_nodes, entry) {
2523		u64 baser;
2524
2525		if (!is_v4_1(its) || its == cur_its)
2526			continue;
2527
2528		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2529			continue;
2530
2531		if (aff != compute_its_aff(its))
2532			continue;
2533
2534		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535		baser = its->tables[2].val;
2536		if (!(baser & GITS_BASER_VALID))
2537			continue;
2538
2539		return its;
2540	}
2541
2542	return NULL;
2543}
2544
2545static void its_free_tables(struct its_node *its)
2546{
2547	int i;
2548
2549	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2550		if (its->tables[i].base) {
2551			free_pages((unsigned long)its->tables[i].base,
2552				   its->tables[i].order);
2553			its->tables[i].base = NULL;
2554		}
2555	}
2556}
2557
2558static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559{
2560	u64 psz = SZ_64K;
2561
2562	while (psz) {
2563		u64 val, gpsz;
2564
2565		val = its_read_baser(its, baser);
2566		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567
2568		switch (psz) {
2569		case SZ_64K:
2570			gpsz = GITS_BASER_PAGE_SIZE_64K;
2571			break;
2572		case SZ_16K:
2573			gpsz = GITS_BASER_PAGE_SIZE_16K;
2574			break;
2575		case SZ_4K:
2576		default:
2577			gpsz = GITS_BASER_PAGE_SIZE_4K;
2578			break;
2579		}
2580
2581		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582
2583		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584		its_write_baser(its, baser, val);
2585
2586		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587			break;
2588
2589		switch (psz) {
2590		case SZ_64K:
2591			psz = SZ_16K;
2592			break;
2593		case SZ_16K:
2594			psz = SZ_4K;
2595			break;
2596		case SZ_4K:
2597		default:
2598			return -1;
2599		}
2600	}
2601
2602	baser->psz = psz;
2603	return 0;
2604}
2605
2606static int its_alloc_tables(struct its_node *its)
2607{
2608	u64 shr = GITS_BASER_InnerShareable;
2609	u64 cache = GITS_BASER_RaWaWb;
2610	int err, i;
2611
2612	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613		/* erratum 24313: ignore memory access type */
2614		cache = GITS_BASER_nCnB;
2615
2616	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2617		cache = GITS_BASER_nC;
2618		shr = 0;
2619	}
2620
2621	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2622		struct its_baser *baser = its->tables + i;
2623		u64 val = its_read_baser(its, baser);
2624		u64 type = GITS_BASER_TYPE(val);
2625		bool indirect = false;
2626		u32 order;
2627
2628		if (type == GITS_BASER_TYPE_NONE)
2629			continue;
2630
2631		if (its_probe_baser_psz(its, baser)) {
2632			its_free_tables(its);
2633			return -ENXIO;
2634		}
2635
2636		order = get_order(baser->psz);
2637
2638		switch (type) {
2639		case GITS_BASER_TYPE_DEVICE:
2640			indirect = its_parse_indirect_baser(its, baser, &order,
2641							    device_ids(its));
2642			break;
2643
2644		case GITS_BASER_TYPE_VCPU:
2645			if (is_v4_1(its)) {
2646				struct its_node *sibling;
2647
2648				WARN_ON(i != 2);
2649				if ((sibling = find_sibling_its(its))) {
2650					*baser = sibling->tables[2];
2651					its_write_baser(its, baser, baser->val);
2652					continue;
2653				}
2654			}
2655
2656			indirect = its_parse_indirect_baser(its, baser, &order,
2657							    ITS_MAX_VPEID_BITS);
2658			break;
2659		}
2660
2661		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2662		if (err < 0) {
2663			its_free_tables(its);
2664			return err;
2665		}
2666
2667		/* Update settings which will be used for next BASERn */
2668		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2669		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2670	}
2671
2672	return 0;
2673}
2674
2675static u64 inherit_vpe_l1_table_from_its(void)
2676{
2677	struct its_node *its;
2678	u64 val;
2679	u32 aff;
2680
2681	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2682	aff = compute_common_aff(val);
2683
2684	list_for_each_entry(its, &its_nodes, entry) {
2685		u64 baser, addr;
2686
2687		if (!is_v4_1(its))
2688			continue;
2689
2690		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2691			continue;
2692
2693		if (aff != compute_its_aff(its))
2694			continue;
2695
2696		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2697		baser = its->tables[2].val;
2698		if (!(baser & GITS_BASER_VALID))
2699			continue;
2700
2701		/* We have a winner! */
2702		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2703
2704		val  = GICR_VPROPBASER_4_1_VALID;
2705		if (baser & GITS_BASER_INDIRECT)
2706			val |= GICR_VPROPBASER_4_1_INDIRECT;
2707		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2708				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2709		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2710		case GIC_PAGE_SIZE_64K:
2711			addr = GITS_BASER_ADDR_48_to_52(baser);
2712			break;
2713		default:
2714			addr = baser & GENMASK_ULL(47, 12);
2715			break;
2716		}
2717		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2718		if (rdists_support_shareable()) {
2719			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2720					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2721			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2722					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2723		}
2724		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2725
2726		return val;
2727	}
2728
2729	return 0;
2730}
2731
2732static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2733{
2734	u32 aff;
2735	u64 val;
2736	int cpu;
2737
2738	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2739	aff = compute_common_aff(val);
2740
2741	for_each_possible_cpu(cpu) {
2742		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2743
2744		if (!base || cpu == smp_processor_id())
2745			continue;
2746
2747		val = gic_read_typer(base + GICR_TYPER);
2748		if (aff != compute_common_aff(val))
2749			continue;
2750
2751		/*
2752		 * At this point, we have a victim. This particular CPU
2753		 * has already booted, and has an affinity that matches
2754		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2755		 * Make sure we don't write the Z bit in that case.
2756		 */
2757		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2758		val &= ~GICR_VPROPBASER_4_1_Z;
2759
2760		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2761		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2762
2763		return val;
2764	}
2765
2766	return 0;
2767}
2768
2769static bool allocate_vpe_l2_table(int cpu, u32 id)
2770{
2771	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2772	unsigned int psz, esz, idx, npg, gpsz;
2773	u64 val;
2774	struct page *page;
2775	__le64 *table;
2776
2777	if (!gic_rdists->has_rvpeid)
2778		return true;
2779
2780	/* Skip non-present CPUs */
2781	if (!base)
2782		return true;
2783
2784	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2785
2786	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2787	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2788	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2789
2790	switch (gpsz) {
2791	default:
2792		WARN_ON(1);
2793		fallthrough;
2794	case GIC_PAGE_SIZE_4K:
2795		psz = SZ_4K;
2796		break;
2797	case GIC_PAGE_SIZE_16K:
2798		psz = SZ_16K;
2799		break;
2800	case GIC_PAGE_SIZE_64K:
2801		psz = SZ_64K;
2802		break;
2803	}
2804
2805	/* Don't allow vpe_id that exceeds single, flat table limit */
2806	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2807		return (id < (npg * psz / (esz * SZ_8)));
2808
2809	/* Compute 1st level table index & check if that exceeds table limit */
2810	idx = id >> ilog2(psz / (esz * SZ_8));
2811	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2812		return false;
2813
2814	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2815
2816	/* Allocate memory for 2nd level table */
2817	if (!table[idx]) {
2818		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2819		if (!page)
2820			return false;
2821
2822		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2823		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2824			gic_flush_dcache_to_poc(page_address(page), psz);
2825
2826		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2827
2828		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2829		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2830			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2831
2832		/* Ensure updated table contents are visible to RD hardware */
2833		dsb(sy);
2834	}
2835
2836	return true;
2837}
2838
2839static int allocate_vpe_l1_table(void)
2840{
2841	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2842	u64 val, gpsz, npg, pa;
2843	unsigned int psz = SZ_64K;
2844	unsigned int np, epp, esz;
2845	struct page *page;
2846
2847	if (!gic_rdists->has_rvpeid)
2848		return 0;
2849
2850	/*
2851	 * if VPENDBASER.Valid is set, disable any previously programmed
2852	 * VPE by setting PendingLast while clearing Valid. This has the
2853	 * effect of making sure no doorbell will be generated and we can
2854	 * then safely clear VPROPBASER.Valid.
2855	 */
2856	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2857		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2858				      vlpi_base + GICR_VPENDBASER);
2859
2860	/*
2861	 * If we can inherit the configuration from another RD, let's do
2862	 * so. Otherwise, we have to go through the allocation process. We
2863	 * assume that all RDs have the exact same requirements, as
2864	 * nothing will work otherwise.
2865	 */
2866	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2867	if (val & GICR_VPROPBASER_4_1_VALID)
2868		goto out;
2869
2870	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2871	if (!gic_data_rdist()->vpe_table_mask)
2872		return -ENOMEM;
2873
2874	val = inherit_vpe_l1_table_from_its();
2875	if (val & GICR_VPROPBASER_4_1_VALID)
2876		goto out;
2877
2878	/* First probe the page size */
2879	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2880	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2881	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2882	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2883	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2884
2885	switch (gpsz) {
2886	default:
2887		gpsz = GIC_PAGE_SIZE_4K;
2888		fallthrough;
2889	case GIC_PAGE_SIZE_4K:
2890		psz = SZ_4K;
2891		break;
2892	case GIC_PAGE_SIZE_16K:
2893		psz = SZ_16K;
2894		break;
2895	case GIC_PAGE_SIZE_64K:
2896		psz = SZ_64K;
2897		break;
2898	}
2899
2900	/*
2901	 * Start populating the register from scratch, including RO fields
2902	 * (which we want to print in debug cases...)
2903	 */
2904	val = 0;
2905	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2906	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2907
2908	/* How many entries per GIC page? */
2909	esz++;
2910	epp = psz / (esz * SZ_8);
2911
2912	/*
2913	 * If we need more than just a single L1 page, flag the table
2914	 * as indirect and compute the number of required L1 pages.
2915	 */
2916	if (epp < ITS_MAX_VPEID) {
2917		int nl2;
2918
2919		val |= GICR_VPROPBASER_4_1_INDIRECT;
2920
2921		/* Number of L2 pages required to cover the VPEID space */
2922		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2923
2924		/* Number of L1 pages to point to the L2 pages */
2925		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2926	} else {
2927		npg = 1;
2928	}
2929
2930	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2931
2932	/* Right, that's the number of CPU pages we need for L1 */
2933	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2934
2935	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2936		 np, npg, psz, epp, esz);
2937	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2938	if (!page)
2939		return -ENOMEM;
2940
2941	gic_data_rdist()->vpe_l1_base = page_address(page);
2942	pa = virt_to_phys(page_address(page));
2943	WARN_ON(!IS_ALIGNED(pa, psz));
2944
2945	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2946	if (rdists_support_shareable()) {
2947		val |= GICR_VPROPBASER_RaWb;
2948		val |= GICR_VPROPBASER_InnerShareable;
2949	}
2950	val |= GICR_VPROPBASER_4_1_Z;
2951	val |= GICR_VPROPBASER_4_1_VALID;
2952
2953out:
2954	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2955	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2956
2957	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2958		 smp_processor_id(), val,
2959		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2960
2961	return 0;
2962}
2963
2964static int its_alloc_collections(struct its_node *its)
2965{
2966	int i;
2967
2968	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2969				   GFP_KERNEL);
2970	if (!its->collections)
2971		return -ENOMEM;
2972
2973	for (i = 0; i < nr_cpu_ids; i++)
2974		its->collections[i].target_address = ~0ULL;
2975
2976	return 0;
2977}
2978
2979static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2980{
2981	struct page *pend_page;
2982
2983	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2984				get_order(LPI_PENDBASE_SZ));
2985	if (!pend_page)
2986		return NULL;
2987
2988	/* Make sure the GIC will observe the zero-ed page */
2989	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2990
2991	return pend_page;
2992}
2993
2994static void its_free_pending_table(struct page *pt)
2995{
2996	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2997}
2998
2999/*
3000 * Booting with kdump and LPIs enabled is generally fine. Any other
3001 * case is wrong in the absence of firmware/EFI support.
3002 */
3003static bool enabled_lpis_allowed(void)
3004{
3005	phys_addr_t addr;
3006	u64 val;
3007
3008	/* Check whether the property table is in a reserved region */
3009	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3010	addr = val & GENMASK_ULL(51, 12);
3011
3012	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3013}
3014
3015static int __init allocate_lpi_tables(void)
3016{
3017	u64 val;
3018	int err, cpu;
3019
3020	/*
3021	 * If LPIs are enabled while we run this from the boot CPU,
3022	 * flag the RD tables as pre-allocated if the stars do align.
3023	 */
3024	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3025	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3026		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3027				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3028		pr_info("GICv3: Using preallocated redistributor tables\n");
3029	}
3030
3031	err = its_setup_lpi_prop_table();
3032	if (err)
3033		return err;
3034
3035	/*
3036	 * We allocate all the pending tables anyway, as we may have a
3037	 * mix of RDs that have had LPIs enabled, and some that
3038	 * don't. We'll free the unused ones as each CPU comes online.
3039	 */
3040	for_each_possible_cpu(cpu) {
3041		struct page *pend_page;
3042
3043		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3044		if (!pend_page) {
3045			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3046			return -ENOMEM;
3047		}
3048
3049		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3050	}
3051
3052	return 0;
3053}
3054
3055static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3056{
3057	u32 count = 1000000;	/* 1s! */
3058	bool clean;
3059	u64 val;
3060
 
 
 
 
 
 
3061	do {
3062		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3063		clean = !(val & GICR_VPENDBASER_Dirty);
3064		if (!clean) {
3065			count--;
3066			cpu_relax();
3067			udelay(1);
3068		}
3069	} while (!clean && count);
3070
3071	if (unlikely(!clean))
3072		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3073
3074	return val;
3075}
3076
3077static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3078{
3079	u64 val;
3080
3081	/* Make sure we wait until the RD is done with the initial scan */
3082	val = read_vpend_dirty_clear(vlpi_base);
3083	val &= ~GICR_VPENDBASER_Valid;
3084	val &= ~clr;
3085	val |= set;
3086	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3087
3088	val = read_vpend_dirty_clear(vlpi_base);
3089	if (unlikely(val & GICR_VPENDBASER_Dirty))
3090		val |= GICR_VPENDBASER_PendingLast;
 
3091
3092	return val;
3093}
3094
3095static void its_cpu_init_lpis(void)
3096{
3097	void __iomem *rbase = gic_data_rdist_rd_base();
3098	struct page *pend_page;
3099	phys_addr_t paddr;
3100	u64 val, tmp;
3101
3102	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3103		return;
3104
3105	val = readl_relaxed(rbase + GICR_CTLR);
3106	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3107	    (val & GICR_CTLR_ENABLE_LPIS)) {
3108		/*
3109		 * Check that we get the same property table on all
3110		 * RDs. If we don't, this is hopeless.
3111		 */
3112		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3113		paddr &= GENMASK_ULL(51, 12);
3114		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3115			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3116
3117		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3118		paddr &= GENMASK_ULL(51, 16);
3119
3120		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3121		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
 
3122
3123		goto out;
3124	}
3125
3126	pend_page = gic_data_rdist()->pend_page;
3127	paddr = page_to_phys(pend_page);
 
3128
3129	/* set PROPBASE */
3130	val = (gic_rdists->prop_table_pa |
3131	       GICR_PROPBASER_InnerShareable |
3132	       GICR_PROPBASER_RaWaWb |
3133	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3134
3135	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3136	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3137
3138	if (!rdists_support_shareable())
3139		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3140
3141	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3142		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3143			/*
3144			 * The HW reports non-shareable, we must
3145			 * remove the cacheability attributes as
3146			 * well.
3147			 */
3148			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3149				 GICR_PROPBASER_CACHEABILITY_MASK);
3150			val |= GICR_PROPBASER_nC;
3151			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3152		}
3153		pr_info_once("GIC: using cache flushing for LPI property table\n");
3154		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3155	}
3156
3157	/* set PENDBASE */
3158	val = (page_to_phys(pend_page) |
3159	       GICR_PENDBASER_InnerShareable |
3160	       GICR_PENDBASER_RaWaWb);
3161
3162	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3163	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3164
3165	if (!rdists_support_shareable())
3166		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3167
3168	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3169		/*
3170		 * The HW reports non-shareable, we must remove the
3171		 * cacheability attributes as well.
3172		 */
3173		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3174			 GICR_PENDBASER_CACHEABILITY_MASK);
3175		val |= GICR_PENDBASER_nC;
3176		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3177	}
3178
3179	/* Enable LPIs */
3180	val = readl_relaxed(rbase + GICR_CTLR);
3181	val |= GICR_CTLR_ENABLE_LPIS;
3182	writel_relaxed(val, rbase + GICR_CTLR);
3183
3184out:
3185	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3186		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3187
3188		/*
3189		 * It's possible for CPU to receive VLPIs before it is
3190		 * scheduled as a vPE, especially for the first CPU, and the
3191		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3192		 * as out of range and dropped by GIC.
3193		 * So we initialize IDbits to known value to avoid VLPI drop.
3194		 */
3195		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3196		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3197			smp_processor_id(), val);
3198		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3199
3200		/*
3201		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3202		 * ancient programming gets left in and has possibility of
3203		 * corrupting memory.
3204		 */
3205		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3206	}
3207
3208	if (allocate_vpe_l1_table()) {
3209		/*
3210		 * If the allocation has failed, we're in massive trouble.
3211		 * Disable direct injection, and pray that no VM was
3212		 * already running...
3213		 */
3214		gic_rdists->has_rvpeid = false;
3215		gic_rdists->has_vlpis = false;
3216	}
3217
3218	/* Make sure the GIC has seen the above */
3219	dsb(sy);
3220	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
 
3221	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3222		smp_processor_id(),
3223		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3224		"reserved" : "allocated",
3225		&paddr);
3226}
3227
3228static void its_cpu_init_collection(struct its_node *its)
3229{
3230	int cpu = smp_processor_id();
3231	u64 target;
3232
3233	/* avoid cross node collections and its mapping */
3234	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3235		struct device_node *cpu_node;
3236
3237		cpu_node = of_get_cpu_node(cpu, NULL);
3238		if (its->numa_node != NUMA_NO_NODE &&
3239			its->numa_node != of_node_to_nid(cpu_node))
3240			return;
3241	}
3242
3243	/*
3244	 * We now have to bind each collection to its target
3245	 * redistributor.
3246	 */
3247	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3248		/*
3249		 * This ITS wants the physical address of the
3250		 * redistributor.
3251		 */
3252		target = gic_data_rdist()->phys_base;
3253	} else {
3254		/* This ITS wants a linear CPU number. */
3255		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3256		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3257	}
3258
3259	/* Perform collection mapping */
3260	its->collections[cpu].target_address = target;
3261	its->collections[cpu].col_id = cpu;
3262
3263	its_send_mapc(its, &its->collections[cpu], 1);
3264	its_send_invall(its, &its->collections[cpu]);
3265}
3266
3267static void its_cpu_init_collections(void)
3268{
3269	struct its_node *its;
3270
3271	raw_spin_lock(&its_lock);
3272
3273	list_for_each_entry(its, &its_nodes, entry)
3274		its_cpu_init_collection(its);
3275
3276	raw_spin_unlock(&its_lock);
3277}
3278
3279static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3280{
3281	struct its_device *its_dev = NULL, *tmp;
3282	unsigned long flags;
3283
3284	raw_spin_lock_irqsave(&its->lock, flags);
3285
3286	list_for_each_entry(tmp, &its->its_device_list, entry) {
3287		if (tmp->device_id == dev_id) {
3288			its_dev = tmp;
3289			break;
3290		}
3291	}
3292
3293	raw_spin_unlock_irqrestore(&its->lock, flags);
3294
3295	return its_dev;
3296}
3297
3298static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3299{
3300	int i;
3301
3302	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3303		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3304			return &its->tables[i];
3305	}
3306
3307	return NULL;
3308}
3309
3310static bool its_alloc_table_entry(struct its_node *its,
3311				  struct its_baser *baser, u32 id)
3312{
3313	struct page *page;
3314	u32 esz, idx;
3315	__le64 *table;
3316
3317	/* Don't allow device id that exceeds single, flat table limit */
3318	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3319	if (!(baser->val & GITS_BASER_INDIRECT))
3320		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3321
3322	/* Compute 1st level table index & check if that exceeds table limit */
3323	idx = id >> ilog2(baser->psz / esz);
3324	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3325		return false;
3326
3327	table = baser->base;
3328
3329	/* Allocate memory for 2nd level table */
3330	if (!table[idx]) {
3331		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3332					get_order(baser->psz));
3333		if (!page)
3334			return false;
3335
3336		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3337		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3338			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3339
3340		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3341
3342		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3343		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3344			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3345
3346		/* Ensure updated table contents are visible to ITS hardware */
3347		dsb(sy);
3348	}
3349
3350	return true;
3351}
3352
3353static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3354{
3355	struct its_baser *baser;
3356
3357	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3358
3359	/* Don't allow device id that exceeds ITS hardware limit */
3360	if (!baser)
3361		return (ilog2(dev_id) < device_ids(its));
3362
3363	return its_alloc_table_entry(its, baser, dev_id);
3364}
3365
3366static bool its_alloc_vpe_table(u32 vpe_id)
3367{
3368	struct its_node *its;
3369	int cpu;
3370
3371	/*
3372	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3373	 * could try and only do it on ITSs corresponding to devices
3374	 * that have interrupts targeted at this VPE, but the
3375	 * complexity becomes crazy (and you have tons of memory
3376	 * anyway, right?).
3377	 */
3378	list_for_each_entry(its, &its_nodes, entry) {
3379		struct its_baser *baser;
3380
3381		if (!is_v4(its))
3382			continue;
3383
3384		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3385		if (!baser)
3386			return false;
3387
3388		if (!its_alloc_table_entry(its, baser, vpe_id))
3389			return false;
3390	}
3391
3392	/* Non v4.1? No need to iterate RDs and go back early. */
3393	if (!gic_rdists->has_rvpeid)
3394		return true;
3395
3396	/*
3397	 * Make sure the L2 tables are allocated for all copies of
3398	 * the L1 table on *all* v4.1 RDs.
3399	 */
3400	for_each_possible_cpu(cpu) {
3401		if (!allocate_vpe_l2_table(cpu, vpe_id))
3402			return false;
3403	}
3404
3405	return true;
3406}
3407
3408static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3409					    int nvecs, bool alloc_lpis)
3410{
3411	struct its_device *dev;
3412	unsigned long *lpi_map = NULL;
3413	unsigned long flags;
3414	u16 *col_map = NULL;
3415	void *itt;
3416	int lpi_base;
3417	int nr_lpis;
3418	int nr_ites;
3419	int sz;
3420
3421	if (!its_alloc_device_table(its, dev_id))
3422		return NULL;
3423
3424	if (WARN_ON(!is_power_of_2(nvecs)))
3425		nvecs = roundup_pow_of_two(nvecs);
3426
3427	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3428	/*
3429	 * Even if the device wants a single LPI, the ITT must be
3430	 * sized as a power of two (and you need at least one bit...).
3431	 */
3432	nr_ites = max(2, nvecs);
3433	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3434	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3435	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3436	if (alloc_lpis) {
3437		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3438		if (lpi_map)
3439			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3440					  GFP_KERNEL);
3441	} else {
3442		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3443		nr_lpis = 0;
3444		lpi_base = 0;
3445	}
3446
3447	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3448		kfree(dev);
3449		kfree(itt);
3450		bitmap_free(lpi_map);
3451		kfree(col_map);
3452		return NULL;
3453	}
3454
3455	gic_flush_dcache_to_poc(itt, sz);
3456
3457	dev->its = its;
3458	dev->itt = itt;
3459	dev->nr_ites = nr_ites;
3460	dev->event_map.lpi_map = lpi_map;
3461	dev->event_map.col_map = col_map;
3462	dev->event_map.lpi_base = lpi_base;
3463	dev->event_map.nr_lpis = nr_lpis;
3464	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3465	dev->device_id = dev_id;
3466	INIT_LIST_HEAD(&dev->entry);
3467
3468	raw_spin_lock_irqsave(&its->lock, flags);
3469	list_add(&dev->entry, &its->its_device_list);
3470	raw_spin_unlock_irqrestore(&its->lock, flags);
3471
3472	/* Map device to its ITT */
3473	its_send_mapd(dev, 1);
3474
3475	return dev;
3476}
3477
3478static void its_free_device(struct its_device *its_dev)
3479{
3480	unsigned long flags;
3481
3482	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3483	list_del(&its_dev->entry);
3484	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3485	kfree(its_dev->event_map.col_map);
3486	kfree(its_dev->itt);
3487	kfree(its_dev);
3488}
3489
3490static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3491{
3492	int idx;
3493
3494	/* Find a free LPI region in lpi_map and allocate them. */
3495	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3496				      dev->event_map.nr_lpis,
3497				      get_count_order(nvecs));
3498	if (idx < 0)
3499		return -ENOSPC;
3500
3501	*hwirq = dev->event_map.lpi_base + idx;
3502
3503	return 0;
3504}
3505
3506static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3507			   int nvec, msi_alloc_info_t *info)
3508{
3509	struct its_node *its;
3510	struct its_device *its_dev;
3511	struct msi_domain_info *msi_info;
3512	u32 dev_id;
3513	int err = 0;
3514
3515	/*
3516	 * We ignore "dev" entirely, and rely on the dev_id that has
3517	 * been passed via the scratchpad. This limits this domain's
3518	 * usefulness to upper layers that definitely know that they
3519	 * are built on top of the ITS.
3520	 */
3521	dev_id = info->scratchpad[0].ul;
3522
3523	msi_info = msi_get_domain_info(domain);
3524	its = msi_info->data;
3525
3526	if (!gic_rdists->has_direct_lpi &&
3527	    vpe_proxy.dev &&
3528	    vpe_proxy.dev->its == its &&
3529	    dev_id == vpe_proxy.dev->device_id) {
3530		/* Bad luck. Get yourself a better implementation */
3531		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3532			  dev_id);
3533		return -EINVAL;
3534	}
3535
3536	mutex_lock(&its->dev_alloc_lock);
3537	its_dev = its_find_device(its, dev_id);
3538	if (its_dev) {
3539		/*
3540		 * We already have seen this ID, probably through
3541		 * another alias (PCI bridge of some sort). No need to
3542		 * create the device.
3543		 */
3544		its_dev->shared = true;
3545		pr_debug("Reusing ITT for devID %x\n", dev_id);
3546		goto out;
3547	}
3548
3549	its_dev = its_create_device(its, dev_id, nvec, true);
3550	if (!its_dev) {
3551		err = -ENOMEM;
3552		goto out;
3553	}
3554
3555	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3556		its_dev->shared = true;
3557
3558	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3559out:
3560	mutex_unlock(&its->dev_alloc_lock);
3561	info->scratchpad[0].ptr = its_dev;
3562	return err;
3563}
3564
3565static struct msi_domain_ops its_msi_domain_ops = {
3566	.msi_prepare	= its_msi_prepare,
3567};
3568
3569static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3570				    unsigned int virq,
3571				    irq_hw_number_t hwirq)
3572{
3573	struct irq_fwspec fwspec;
3574
3575	if (irq_domain_get_of_node(domain->parent)) {
3576		fwspec.fwnode = domain->parent->fwnode;
3577		fwspec.param_count = 3;
3578		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3579		fwspec.param[1] = hwirq;
3580		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3581	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3582		fwspec.fwnode = domain->parent->fwnode;
3583		fwspec.param_count = 2;
3584		fwspec.param[0] = hwirq;
3585		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3586	} else {
3587		return -EINVAL;
3588	}
3589
3590	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3591}
3592
3593static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3594				unsigned int nr_irqs, void *args)
3595{
3596	msi_alloc_info_t *info = args;
3597	struct its_device *its_dev = info->scratchpad[0].ptr;
3598	struct its_node *its = its_dev->its;
3599	struct irq_data *irqd;
3600	irq_hw_number_t hwirq;
3601	int err;
3602	int i;
3603
3604	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3605	if (err)
3606		return err;
3607
3608	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3609	if (err)
3610		return err;
3611
3612	for (i = 0; i < nr_irqs; i++) {
3613		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3614		if (err)
3615			return err;
3616
3617		irq_domain_set_hwirq_and_chip(domain, virq + i,
3618					      hwirq + i, &its_irq_chip, its_dev);
3619		irqd = irq_get_irq_data(virq + i);
3620		irqd_set_single_target(irqd);
3621		irqd_set_affinity_on_activate(irqd);
3622		irqd_set_resend_when_in_progress(irqd);
3623		pr_debug("ID:%d pID:%d vID:%d\n",
3624			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3625			 (int)(hwirq + i), virq + i);
3626	}
3627
3628	return 0;
3629}
3630
3631static int its_irq_domain_activate(struct irq_domain *domain,
3632				   struct irq_data *d, bool reserve)
3633{
3634	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3635	u32 event = its_get_event_id(d);
3636	int cpu;
3637
3638	cpu = its_select_cpu(d, cpu_online_mask);
3639	if (cpu < 0 || cpu >= nr_cpu_ids)
3640		return -EINVAL;
3641
3642	its_inc_lpi_count(d, cpu);
3643	its_dev->event_map.col_map[event] = cpu;
3644	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3645
3646	/* Map the GIC IRQ and event to the device */
3647	its_send_mapti(its_dev, d->hwirq, event);
3648	return 0;
3649}
3650
3651static void its_irq_domain_deactivate(struct irq_domain *domain,
3652				      struct irq_data *d)
3653{
3654	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3655	u32 event = its_get_event_id(d);
3656
3657	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3658	/* Stop the delivery of interrupts */
3659	its_send_discard(its_dev, event);
3660}
3661
3662static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3663				unsigned int nr_irqs)
3664{
3665	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3666	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3667	struct its_node *its = its_dev->its;
3668	int i;
3669
3670	bitmap_release_region(its_dev->event_map.lpi_map,
3671			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3672			      get_count_order(nr_irqs));
3673
3674	for (i = 0; i < nr_irqs; i++) {
3675		struct irq_data *data = irq_domain_get_irq_data(domain,
3676								virq + i);
3677		/* Nuke the entry in the domain */
3678		irq_domain_reset_irq_data(data);
3679	}
3680
3681	mutex_lock(&its->dev_alloc_lock);
3682
3683	/*
3684	 * If all interrupts have been freed, start mopping the
3685	 * floor. This is conditioned on the device not being shared.
3686	 */
3687	if (!its_dev->shared &&
3688	    bitmap_empty(its_dev->event_map.lpi_map,
3689			 its_dev->event_map.nr_lpis)) {
3690		its_lpi_free(its_dev->event_map.lpi_map,
3691			     its_dev->event_map.lpi_base,
3692			     its_dev->event_map.nr_lpis);
3693
3694		/* Unmap device/itt */
3695		its_send_mapd(its_dev, 0);
3696		its_free_device(its_dev);
3697	}
3698
3699	mutex_unlock(&its->dev_alloc_lock);
3700
3701	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3702}
3703
3704static const struct irq_domain_ops its_domain_ops = {
3705	.alloc			= its_irq_domain_alloc,
3706	.free			= its_irq_domain_free,
3707	.activate		= its_irq_domain_activate,
3708	.deactivate		= its_irq_domain_deactivate,
3709};
3710
3711/*
3712 * This is insane.
3713 *
3714 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3715 * likely), the only way to perform an invalidate is to use a fake
3716 * device to issue an INV command, implying that the LPI has first
3717 * been mapped to some event on that device. Since this is not exactly
3718 * cheap, we try to keep that mapping around as long as possible, and
3719 * only issue an UNMAP if we're short on available slots.
3720 *
3721 * Broken by design(tm).
3722 *
3723 * GICv4.1, on the other hand, mandates that we're able to invalidate
3724 * by writing to a MMIO register. It doesn't implement the whole of
3725 * DirectLPI, but that's good enough. And most of the time, we don't
3726 * even have to invalidate anything, as the redistributor can be told
3727 * whether to generate a doorbell or not (we thus leave it enabled,
3728 * always).
3729 */
3730static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3731{
3732	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3733	if (gic_rdists->has_rvpeid)
3734		return;
3735
3736	/* Already unmapped? */
3737	if (vpe->vpe_proxy_event == -1)
3738		return;
3739
3740	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3741	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3742
3743	/*
3744	 * We don't track empty slots at all, so let's move the
3745	 * next_victim pointer if we can quickly reuse that slot
3746	 * instead of nuking an existing entry. Not clear that this is
3747	 * always a win though, and this might just generate a ripple
3748	 * effect... Let's just hope VPEs don't migrate too often.
3749	 */
3750	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3751		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3752
3753	vpe->vpe_proxy_event = -1;
3754}
3755
3756static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3757{
3758	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3759	if (gic_rdists->has_rvpeid)
3760		return;
3761
3762	if (!gic_rdists->has_direct_lpi) {
3763		unsigned long flags;
3764
3765		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3766		its_vpe_db_proxy_unmap_locked(vpe);
3767		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3768	}
3769}
3770
3771static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3772{
3773	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3774	if (gic_rdists->has_rvpeid)
3775		return;
3776
3777	/* Already mapped? */
3778	if (vpe->vpe_proxy_event != -1)
3779		return;
3780
3781	/* This slot was already allocated. Kick the other VPE out. */
3782	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3783		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3784
3785	/* Map the new VPE instead */
3786	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3787	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3788	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3789
3790	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3791	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3792}
3793
3794static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3795{
3796	unsigned long flags;
3797	struct its_collection *target_col;
3798
3799	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3800	if (gic_rdists->has_rvpeid)
3801		return;
3802
3803	if (gic_rdists->has_direct_lpi) {
3804		void __iomem *rdbase;
3805
3806		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3807		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3808		wait_for_syncr(rdbase);
3809
3810		return;
3811	}
3812
3813	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3814
3815	its_vpe_db_proxy_map_locked(vpe);
3816
3817	target_col = &vpe_proxy.dev->its->collections[to];
3818	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3819	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3820
3821	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3822}
3823
3824static int its_vpe_set_affinity(struct irq_data *d,
3825				const struct cpumask *mask_val,
3826				bool force)
3827{
3828	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3829	struct cpumask common, *table_mask;
3830	unsigned long flags;
3831	int from, cpu;
3832
3833	/*
3834	 * Changing affinity is mega expensive, so let's be as lazy as
3835	 * we can and only do it if we really have to. Also, if mapped
3836	 * into the proxy device, we need to move the doorbell
3837	 * interrupt to its new location.
3838	 *
3839	 * Another thing is that changing the affinity of a vPE affects
3840	 * *other interrupts* such as all the vLPIs that are routed to
3841	 * this vPE. This means that the irq_desc lock is not enough to
3842	 * protect us, and that we must ensure nobody samples vpe->col_idx
3843	 * during the update, hence the lock below which must also be
3844	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3845	 */
3846	from = vpe_to_cpuid_lock(vpe, &flags);
3847	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3848
3849	/*
3850	 * If we are offered another CPU in the same GICv4.1 ITS
3851	 * affinity, pick this one. Otherwise, any CPU will do.
3852	 */
3853	if (table_mask && cpumask_and(&common, mask_val, table_mask))
3854		cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3855	else
3856		cpu = cpumask_first(mask_val);
3857
3858	if (from == cpu)
3859		goto out;
3860
3861	vpe->col_idx = cpu;
3862
 
 
 
 
 
 
 
 
3863	its_send_vmovp(vpe);
3864	its_vpe_db_proxy_move(vpe, from, cpu);
3865
3866out:
3867	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3868	vpe_to_cpuid_unlock(vpe, flags);
3869
3870	return IRQ_SET_MASK_OK_DONE;
3871}
3872
3873static void its_wait_vpt_parse_complete(void)
3874{
3875	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3876	u64 val;
3877
3878	if (!gic_rdists->has_vpend_valid_dirty)
3879		return;
3880
3881	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3882						       val,
3883						       !(val & GICR_VPENDBASER_Dirty),
3884						       1, 500));
3885}
3886
3887static void its_vpe_schedule(struct its_vpe *vpe)
3888{
3889	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3890	u64 val;
3891
3892	/* Schedule the VPE */
3893	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3894		GENMASK_ULL(51, 12);
3895	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3896	if (rdists_support_shareable()) {
3897		val |= GICR_VPROPBASER_RaWb;
3898		val |= GICR_VPROPBASER_InnerShareable;
3899	}
3900	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3901
3902	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3903		GENMASK_ULL(51, 16);
3904	if (rdists_support_shareable()) {
3905		val |= GICR_VPENDBASER_RaWaWb;
3906		val |= GICR_VPENDBASER_InnerShareable;
3907	}
3908	/*
3909	 * There is no good way of finding out if the pending table is
3910	 * empty as we can race against the doorbell interrupt very
3911	 * easily. So in the end, vpe->pending_last is only an
3912	 * indication that the vcpu has something pending, not one
3913	 * that the pending table is empty. A good implementation
3914	 * would be able to read its coarse map pretty quickly anyway,
3915	 * making this a tolerable issue.
3916	 */
3917	val |= GICR_VPENDBASER_PendingLast;
3918	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3919	val |= GICR_VPENDBASER_Valid;
3920	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3921}
3922
3923static void its_vpe_deschedule(struct its_vpe *vpe)
3924{
3925	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3926	u64 val;
3927
3928	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3929
3930	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3931	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3932}
3933
3934static void its_vpe_invall(struct its_vpe *vpe)
3935{
3936	struct its_node *its;
3937
3938	list_for_each_entry(its, &its_nodes, entry) {
3939		if (!is_v4(its))
3940			continue;
3941
3942		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3943			continue;
3944
3945		/*
3946		 * Sending a VINVALL to a single ITS is enough, as all
3947		 * we need is to reach the redistributors.
3948		 */
3949		its_send_vinvall(its, vpe);
3950		return;
3951	}
3952}
3953
3954static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3955{
3956	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3957	struct its_cmd_info *info = vcpu_info;
3958
3959	switch (info->cmd_type) {
3960	case SCHEDULE_VPE:
3961		its_vpe_schedule(vpe);
3962		return 0;
3963
3964	case DESCHEDULE_VPE:
3965		its_vpe_deschedule(vpe);
3966		return 0;
3967
3968	case COMMIT_VPE:
3969		its_wait_vpt_parse_complete();
3970		return 0;
3971
3972	case INVALL_VPE:
3973		its_vpe_invall(vpe);
3974		return 0;
3975
3976	default:
3977		return -EINVAL;
3978	}
3979}
3980
3981static void its_vpe_send_cmd(struct its_vpe *vpe,
3982			     void (*cmd)(struct its_device *, u32))
3983{
3984	unsigned long flags;
3985
3986	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3987
3988	its_vpe_db_proxy_map_locked(vpe);
3989	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3990
3991	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3992}
3993
3994static void its_vpe_send_inv(struct irq_data *d)
3995{
3996	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3997
3998	if (gic_rdists->has_direct_lpi)
3999		__direct_lpi_inv(d, d->parent_data->hwirq);
4000	else
 
 
 
 
 
 
 
4001		its_vpe_send_cmd(vpe, its_send_inv);
 
4002}
4003
4004static void its_vpe_mask_irq(struct irq_data *d)
4005{
4006	/*
4007	 * We need to unmask the LPI, which is described by the parent
4008	 * irq_data. Instead of calling into the parent (which won't
4009	 * exactly do the right thing, let's simply use the
4010	 * parent_data pointer. Yes, I'm naughty.
4011	 */
4012	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4013	its_vpe_send_inv(d);
4014}
4015
4016static void its_vpe_unmask_irq(struct irq_data *d)
4017{
4018	/* Same hack as above... */
4019	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4020	its_vpe_send_inv(d);
4021}
4022
4023static int its_vpe_set_irqchip_state(struct irq_data *d,
4024				     enum irqchip_irq_state which,
4025				     bool state)
4026{
4027	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4028
4029	if (which != IRQCHIP_STATE_PENDING)
4030		return -EINVAL;
4031
4032	if (gic_rdists->has_direct_lpi) {
4033		void __iomem *rdbase;
4034
4035		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4036		if (state) {
4037			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4038		} else {
4039			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4040			wait_for_syncr(rdbase);
4041		}
4042	} else {
4043		if (state)
4044			its_vpe_send_cmd(vpe, its_send_int);
4045		else
4046			its_vpe_send_cmd(vpe, its_send_clear);
4047	}
4048
4049	return 0;
4050}
4051
4052static int its_vpe_retrigger(struct irq_data *d)
4053{
4054	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4055}
4056
4057static struct irq_chip its_vpe_irq_chip = {
4058	.name			= "GICv4-vpe",
4059	.irq_mask		= its_vpe_mask_irq,
4060	.irq_unmask		= its_vpe_unmask_irq,
4061	.irq_eoi		= irq_chip_eoi_parent,
4062	.irq_set_affinity	= its_vpe_set_affinity,
4063	.irq_retrigger		= its_vpe_retrigger,
4064	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4065	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4066};
4067
4068static struct its_node *find_4_1_its(void)
4069{
4070	static struct its_node *its = NULL;
4071
4072	if (!its) {
4073		list_for_each_entry(its, &its_nodes, entry) {
4074			if (is_v4_1(its))
4075				return its;
4076		}
4077
4078		/* Oops? */
4079		its = NULL;
4080	}
4081
4082	return its;
4083}
4084
4085static void its_vpe_4_1_send_inv(struct irq_data *d)
4086{
4087	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4088	struct its_node *its;
4089
4090	/*
4091	 * GICv4.1 wants doorbells to be invalidated using the
4092	 * INVDB command in order to be broadcast to all RDs. Send
4093	 * it to the first valid ITS, and let the HW do its magic.
4094	 */
4095	its = find_4_1_its();
4096	if (its)
4097		its_send_invdb(its, vpe);
4098}
4099
4100static void its_vpe_4_1_mask_irq(struct irq_data *d)
4101{
4102	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4103	its_vpe_4_1_send_inv(d);
4104}
4105
4106static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4107{
4108	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4109	its_vpe_4_1_send_inv(d);
4110}
4111
4112static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4113				 struct its_cmd_info *info)
4114{
4115	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4116	u64 val = 0;
4117
4118	/* Schedule the VPE */
4119	val |= GICR_VPENDBASER_Valid;
4120	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4121	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4122	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4123
4124	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4125}
4126
4127static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4128				   struct its_cmd_info *info)
4129{
4130	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4131	u64 val;
4132
4133	if (info->req_db) {
4134		unsigned long flags;
4135
4136		/*
4137		 * vPE is going to block: make the vPE non-resident with
4138		 * PendingLast clear and DB set. The GIC guarantees that if
4139		 * we read-back PendingLast clear, then a doorbell will be
4140		 * delivered when an interrupt comes.
4141		 *
4142		 * Note the locking to deal with the concurrent update of
4143		 * pending_last from the doorbell interrupt handler that can
4144		 * run concurrently.
4145		 */
4146		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4147		val = its_clear_vpend_valid(vlpi_base,
4148					    GICR_VPENDBASER_PendingLast,
4149					    GICR_VPENDBASER_4_1_DB);
4150		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4151		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4152	} else {
4153		/*
4154		 * We're not blocking, so just make the vPE non-resident
4155		 * with PendingLast set, indicating that we'll be back.
4156		 */
4157		val = its_clear_vpend_valid(vlpi_base,
4158					    0,
4159					    GICR_VPENDBASER_PendingLast);
4160		vpe->pending_last = true;
4161	}
4162}
4163
4164static void its_vpe_4_1_invall(struct its_vpe *vpe)
4165{
4166	void __iomem *rdbase;
4167	unsigned long flags;
4168	u64 val;
4169	int cpu;
4170
4171	val  = GICR_INVALLR_V;
4172	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4173
4174	/* Target the redistributor this vPE is currently known on */
4175	cpu = vpe_to_cpuid_lock(vpe, &flags);
4176	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4177	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4178	gic_write_lpir(val, rdbase + GICR_INVALLR);
4179
4180	wait_for_syncr(rdbase);
4181	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4182	vpe_to_cpuid_unlock(vpe, flags);
4183}
4184
4185static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4186{
4187	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4188	struct its_cmd_info *info = vcpu_info;
4189
4190	switch (info->cmd_type) {
4191	case SCHEDULE_VPE:
4192		its_vpe_4_1_schedule(vpe, info);
4193		return 0;
4194
4195	case DESCHEDULE_VPE:
4196		its_vpe_4_1_deschedule(vpe, info);
4197		return 0;
4198
4199	case COMMIT_VPE:
4200		its_wait_vpt_parse_complete();
4201		return 0;
4202
4203	case INVALL_VPE:
4204		its_vpe_4_1_invall(vpe);
4205		return 0;
4206
4207	default:
4208		return -EINVAL;
4209	}
4210}
4211
4212static struct irq_chip its_vpe_4_1_irq_chip = {
4213	.name			= "GICv4.1-vpe",
4214	.irq_mask		= its_vpe_4_1_mask_irq,
4215	.irq_unmask		= its_vpe_4_1_unmask_irq,
4216	.irq_eoi		= irq_chip_eoi_parent,
4217	.irq_set_affinity	= its_vpe_set_affinity,
4218	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4219};
4220
4221static void its_configure_sgi(struct irq_data *d, bool clear)
4222{
4223	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4224	struct its_cmd_desc desc;
4225
4226	desc.its_vsgi_cmd.vpe = vpe;
4227	desc.its_vsgi_cmd.sgi = d->hwirq;
4228	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4229	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4230	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4231	desc.its_vsgi_cmd.clear = clear;
4232
4233	/*
4234	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4235	 * destination VPE is mapped there. Since we map them eagerly at
4236	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4237	 */
4238	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4239}
4240
4241static void its_sgi_mask_irq(struct irq_data *d)
4242{
4243	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244
4245	vpe->sgi_config[d->hwirq].enabled = false;
4246	its_configure_sgi(d, false);
4247}
4248
4249static void its_sgi_unmask_irq(struct irq_data *d)
4250{
4251	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4252
4253	vpe->sgi_config[d->hwirq].enabled = true;
4254	its_configure_sgi(d, false);
4255}
4256
4257static int its_sgi_set_affinity(struct irq_data *d,
4258				const struct cpumask *mask_val,
4259				bool force)
4260{
4261	/*
4262	 * There is no notion of affinity for virtual SGIs, at least
4263	 * not on the host (since they can only be targeting a vPE).
4264	 * Tell the kernel we've done whatever it asked for.
4265	 */
4266	irq_data_update_effective_affinity(d, mask_val);
4267	return IRQ_SET_MASK_OK;
4268}
4269
4270static int its_sgi_set_irqchip_state(struct irq_data *d,
4271				     enum irqchip_irq_state which,
4272				     bool state)
4273{
4274	if (which != IRQCHIP_STATE_PENDING)
4275		return -EINVAL;
4276
4277	if (state) {
4278		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279		struct its_node *its = find_4_1_its();
4280		u64 val;
4281
4282		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4283		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4284		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4285	} else {
4286		its_configure_sgi(d, true);
4287	}
4288
4289	return 0;
4290}
4291
4292static int its_sgi_get_irqchip_state(struct irq_data *d,
4293				     enum irqchip_irq_state which, bool *val)
4294{
4295	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296	void __iomem *base;
4297	unsigned long flags;
4298	u32 count = 1000000;	/* 1s! */
4299	u32 status;
4300	int cpu;
4301
4302	if (which != IRQCHIP_STATE_PENDING)
4303		return -EINVAL;
4304
4305	/*
4306	 * Locking galore! We can race against two different events:
4307	 *
4308	 * - Concurrent vPE affinity change: we must make sure it cannot
4309	 *   happen, or we'll talk to the wrong redistributor. This is
4310	 *   identical to what happens with vLPIs.
4311	 *
4312	 * - Concurrent VSGIPENDR access: As it involves accessing two
4313	 *   MMIO registers, this must be made atomic one way or another.
4314	 */
4315	cpu = vpe_to_cpuid_lock(vpe, &flags);
4316	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4317	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4318	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4319	do {
4320		status = readl_relaxed(base + GICR_VSGIPENDR);
4321		if (!(status & GICR_VSGIPENDR_BUSY))
4322			goto out;
4323
4324		count--;
4325		if (!count) {
4326			pr_err_ratelimited("Unable to get SGI status\n");
4327			goto out;
4328		}
4329		cpu_relax();
4330		udelay(1);
4331	} while (count);
4332
4333out:
4334	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4335	vpe_to_cpuid_unlock(vpe, flags);
4336
4337	if (!count)
4338		return -ENXIO;
4339
4340	*val = !!(status & (1 << d->hwirq));
4341
4342	return 0;
4343}
4344
4345static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4346{
4347	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4348	struct its_cmd_info *info = vcpu_info;
4349
4350	switch (info->cmd_type) {
4351	case PROP_UPDATE_VSGI:
4352		vpe->sgi_config[d->hwirq].priority = info->priority;
4353		vpe->sgi_config[d->hwirq].group = info->group;
4354		its_configure_sgi(d, false);
4355		return 0;
4356
4357	default:
4358		return -EINVAL;
4359	}
4360}
4361
4362static struct irq_chip its_sgi_irq_chip = {
4363	.name			= "GICv4.1-sgi",
4364	.irq_mask		= its_sgi_mask_irq,
4365	.irq_unmask		= its_sgi_unmask_irq,
4366	.irq_set_affinity	= its_sgi_set_affinity,
4367	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4368	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4369	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4370};
4371
4372static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4373				    unsigned int virq, unsigned int nr_irqs,
4374				    void *args)
4375{
4376	struct its_vpe *vpe = args;
4377	int i;
4378
4379	/* Yes, we do want 16 SGIs */
4380	WARN_ON(nr_irqs != 16);
4381
4382	for (i = 0; i < 16; i++) {
4383		vpe->sgi_config[i].priority = 0;
4384		vpe->sgi_config[i].enabled = false;
4385		vpe->sgi_config[i].group = false;
4386
4387		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4388					      &its_sgi_irq_chip, vpe);
4389		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4390	}
4391
4392	return 0;
4393}
4394
4395static void its_sgi_irq_domain_free(struct irq_domain *domain,
4396				    unsigned int virq,
4397				    unsigned int nr_irqs)
4398{
4399	/* Nothing to do */
4400}
4401
4402static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4403				       struct irq_data *d, bool reserve)
4404{
4405	/* Write out the initial SGI configuration */
4406	its_configure_sgi(d, false);
4407	return 0;
4408}
4409
4410static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4411					  struct irq_data *d)
4412{
4413	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4414
4415	/*
4416	 * The VSGI command is awkward:
4417	 *
4418	 * - To change the configuration, CLEAR must be set to false,
4419	 *   leaving the pending bit unchanged.
4420	 * - To clear the pending bit, CLEAR must be set to true, leaving
4421	 *   the configuration unchanged.
4422	 *
4423	 * You just can't do both at once, hence the two commands below.
4424	 */
4425	vpe->sgi_config[d->hwirq].enabled = false;
4426	its_configure_sgi(d, false);
4427	its_configure_sgi(d, true);
4428}
4429
4430static const struct irq_domain_ops its_sgi_domain_ops = {
4431	.alloc		= its_sgi_irq_domain_alloc,
4432	.free		= its_sgi_irq_domain_free,
4433	.activate	= its_sgi_irq_domain_activate,
4434	.deactivate	= its_sgi_irq_domain_deactivate,
4435};
4436
4437static int its_vpe_id_alloc(void)
4438{
4439	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4440}
4441
4442static void its_vpe_id_free(u16 id)
4443{
4444	ida_simple_remove(&its_vpeid_ida, id);
4445}
4446
4447static int its_vpe_init(struct its_vpe *vpe)
4448{
4449	struct page *vpt_page;
4450	int vpe_id;
4451
4452	/* Allocate vpe_id */
4453	vpe_id = its_vpe_id_alloc();
4454	if (vpe_id < 0)
4455		return vpe_id;
4456
4457	/* Allocate VPT */
4458	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4459	if (!vpt_page) {
4460		its_vpe_id_free(vpe_id);
4461		return -ENOMEM;
4462	}
4463
4464	if (!its_alloc_vpe_table(vpe_id)) {
4465		its_vpe_id_free(vpe_id);
4466		its_free_pending_table(vpt_page);
4467		return -ENOMEM;
4468	}
4469
4470	raw_spin_lock_init(&vpe->vpe_lock);
4471	vpe->vpe_id = vpe_id;
4472	vpe->vpt_page = vpt_page;
4473	if (gic_rdists->has_rvpeid)
4474		atomic_set(&vpe->vmapp_count, 0);
4475	else
4476		vpe->vpe_proxy_event = -1;
4477
4478	return 0;
4479}
4480
4481static void its_vpe_teardown(struct its_vpe *vpe)
4482{
4483	its_vpe_db_proxy_unmap(vpe);
4484	its_vpe_id_free(vpe->vpe_id);
4485	its_free_pending_table(vpe->vpt_page);
4486}
4487
4488static void its_vpe_irq_domain_free(struct irq_domain *domain,
4489				    unsigned int virq,
4490				    unsigned int nr_irqs)
4491{
4492	struct its_vm *vm = domain->host_data;
4493	int i;
4494
4495	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4496
4497	for (i = 0; i < nr_irqs; i++) {
4498		struct irq_data *data = irq_domain_get_irq_data(domain,
4499								virq + i);
4500		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4501
4502		BUG_ON(vm != vpe->its_vm);
4503
4504		clear_bit(data->hwirq, vm->db_bitmap);
4505		its_vpe_teardown(vpe);
4506		irq_domain_reset_irq_data(data);
4507	}
4508
4509	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4510		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4511		its_free_prop_table(vm->vprop_page);
4512	}
4513}
4514
4515static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4516				    unsigned int nr_irqs, void *args)
4517{
4518	struct irq_chip *irqchip = &its_vpe_irq_chip;
4519	struct its_vm *vm = args;
4520	unsigned long *bitmap;
4521	struct page *vprop_page;
4522	int base, nr_ids, i, err = 0;
4523
4524	BUG_ON(!vm);
4525
4526	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4527	if (!bitmap)
4528		return -ENOMEM;
4529
4530	if (nr_ids < nr_irqs) {
4531		its_lpi_free(bitmap, base, nr_ids);
4532		return -ENOMEM;
4533	}
4534
4535	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4536	if (!vprop_page) {
4537		its_lpi_free(bitmap, base, nr_ids);
4538		return -ENOMEM;
4539	}
4540
4541	vm->db_bitmap = bitmap;
4542	vm->db_lpi_base = base;
4543	vm->nr_db_lpis = nr_ids;
4544	vm->vprop_page = vprop_page;
4545
4546	if (gic_rdists->has_rvpeid)
4547		irqchip = &its_vpe_4_1_irq_chip;
4548
4549	for (i = 0; i < nr_irqs; i++) {
4550		vm->vpes[i]->vpe_db_lpi = base + i;
4551		err = its_vpe_init(vm->vpes[i]);
4552		if (err)
4553			break;
4554		err = its_irq_gic_domain_alloc(domain, virq + i,
4555					       vm->vpes[i]->vpe_db_lpi);
4556		if (err)
4557			break;
4558		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4559					      irqchip, vm->vpes[i]);
4560		set_bit(i, bitmap);
4561		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4562	}
4563
4564	if (err) {
4565		if (i > 0)
4566			its_vpe_irq_domain_free(domain, virq, i);
4567
4568		its_lpi_free(bitmap, base, nr_ids);
4569		its_free_prop_table(vprop_page);
4570	}
4571
4572	return err;
4573}
4574
4575static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4576				       struct irq_data *d, bool reserve)
4577{
4578	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4579	struct its_node *its;
4580
4581	/*
4582	 * If we use the list map, we issue VMAPP on demand... Unless
4583	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4584	 * so that VSGIs can work.
4585	 */
4586	if (!gic_requires_eager_mapping())
4587		return 0;
4588
4589	/* Map the VPE to the first possible CPU */
4590	vpe->col_idx = cpumask_first(cpu_online_mask);
4591
4592	list_for_each_entry(its, &its_nodes, entry) {
4593		if (!is_v4(its))
4594			continue;
4595
4596		its_send_vmapp(its, vpe, true);
4597		its_send_vinvall(its, vpe);
4598	}
4599
4600	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4601
4602	return 0;
4603}
4604
4605static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4606					  struct irq_data *d)
4607{
4608	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4609	struct its_node *its;
4610
4611	/*
4612	 * If we use the list map on GICv4.0, we unmap the VPE once no
4613	 * VLPIs are associated with the VM.
4614	 */
4615	if (!gic_requires_eager_mapping())
4616		return;
4617
4618	list_for_each_entry(its, &its_nodes, entry) {
4619		if (!is_v4(its))
4620			continue;
4621
4622		its_send_vmapp(its, vpe, false);
4623	}
4624
4625	/*
4626	 * There may be a direct read to the VPT after unmapping the
4627	 * vPE, to guarantee the validity of this, we make the VPT
4628	 * memory coherent with the CPU caches here.
4629	 */
4630	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4631		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4632					LPI_PENDBASE_SZ);
4633}
4634
4635static const struct irq_domain_ops its_vpe_domain_ops = {
4636	.alloc			= its_vpe_irq_domain_alloc,
4637	.free			= its_vpe_irq_domain_free,
4638	.activate		= its_vpe_irq_domain_activate,
4639	.deactivate		= its_vpe_irq_domain_deactivate,
4640};
4641
4642static int its_force_quiescent(void __iomem *base)
4643{
4644	u32 count = 1000000;	/* 1s */
4645	u32 val;
4646
4647	val = readl_relaxed(base + GITS_CTLR);
4648	/*
4649	 * GIC architecture specification requires the ITS to be both
4650	 * disabled and quiescent for writes to GITS_BASER<n> or
4651	 * GITS_CBASER to not have UNPREDICTABLE results.
4652	 */
4653	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4654		return 0;
4655
4656	/* Disable the generation of all interrupts to this ITS */
4657	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4658	writel_relaxed(val, base + GITS_CTLR);
4659
4660	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4661	while (1) {
4662		val = readl_relaxed(base + GITS_CTLR);
4663		if (val & GITS_CTLR_QUIESCENT)
4664			return 0;
4665
4666		count--;
4667		if (!count)
4668			return -EBUSY;
4669
4670		cpu_relax();
4671		udelay(1);
4672	}
4673}
4674
4675static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4676{
4677	struct its_node *its = data;
4678
4679	/* erratum 22375: only alloc 8MB table size (20 bits) */
4680	its->typer &= ~GITS_TYPER_DEVBITS;
4681	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4682	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4683
4684	return true;
4685}
4686
4687static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4688{
4689	struct its_node *its = data;
4690
4691	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4692
4693	return true;
4694}
4695
4696static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4697{
4698	struct its_node *its = data;
4699
4700	/* On QDF2400, the size of the ITE is 16Bytes */
4701	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4702	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4703
4704	return true;
4705}
4706
4707static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4708{
4709	struct its_node *its = its_dev->its;
4710
4711	/*
4712	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4713	 * which maps 32-bit writes targeted at a separate window of
4714	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4715	 * with device ID taken from bits [device_id_bits + 1:2] of
4716	 * the window offset.
4717	 */
4718	return its->pre_its_base + (its_dev->device_id << 2);
4719}
4720
4721static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4722{
4723	struct its_node *its = data;
4724	u32 pre_its_window[2];
4725	u32 ids;
4726
4727	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4728					   "socionext,synquacer-pre-its",
4729					   pre_its_window,
4730					   ARRAY_SIZE(pre_its_window))) {
4731
4732		its->pre_its_base = pre_its_window[0];
4733		its->get_msi_base = its_irq_get_msi_base_pre_its;
4734
4735		ids = ilog2(pre_its_window[1]) - 2;
4736		if (device_ids(its) > ids) {
4737			its->typer &= ~GITS_TYPER_DEVBITS;
4738			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4739		}
4740
4741		/* the pre-ITS breaks isolation, so disable MSI remapping */
4742		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4743		return true;
4744	}
4745	return false;
4746}
4747
4748static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4749{
4750	struct its_node *its = data;
4751
4752	/*
4753	 * Hip07 insists on using the wrong address for the VLPI
4754	 * page. Trick it into doing the right thing...
4755	 */
4756	its->vlpi_redist_offset = SZ_128K;
4757	return true;
4758}
4759
4760static bool __maybe_unused its_enable_rk3588001(void *data)
4761{
4762	struct its_node *its = data;
4763
4764	if (!of_machine_is_compatible("rockchip,rk3588") &&
4765	    !of_machine_is_compatible("rockchip,rk3588s"))
4766		return false;
4767
4768	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4769	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4770
4771	return true;
4772}
4773
4774static bool its_set_non_coherent(void *data)
4775{
4776	struct its_node *its = data;
4777
4778	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4779	return true;
4780}
4781
4782static const struct gic_quirk its_quirks[] = {
4783#ifdef CONFIG_CAVIUM_ERRATUM_22375
4784	{
4785		.desc	= "ITS: Cavium errata 22375, 24313",
4786		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4787		.mask	= 0xffff0fff,
4788		.init	= its_enable_quirk_cavium_22375,
4789	},
4790#endif
4791#ifdef CONFIG_CAVIUM_ERRATUM_23144
4792	{
4793		.desc	= "ITS: Cavium erratum 23144",
4794		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4795		.mask	= 0xffff0fff,
4796		.init	= its_enable_quirk_cavium_23144,
4797	},
4798#endif
4799#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4800	{
4801		.desc	= "ITS: QDF2400 erratum 0065",
4802		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4803		.mask	= 0xffffffff,
4804		.init	= its_enable_quirk_qdf2400_e0065,
4805	},
4806#endif
4807#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4808	{
4809		/*
4810		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4811		 * implementation, but with a 'pre-ITS' added that requires
4812		 * special handling in software.
4813		 */
4814		.desc	= "ITS: Socionext Synquacer pre-ITS",
4815		.iidr	= 0x0001143b,
4816		.mask	= 0xffffffff,
4817		.init	= its_enable_quirk_socionext_synquacer,
4818	},
4819#endif
4820#ifdef CONFIG_HISILICON_ERRATUM_161600802
4821	{
4822		.desc	= "ITS: Hip07 erratum 161600802",
4823		.iidr	= 0x00000004,
4824		.mask	= 0xffffffff,
4825		.init	= its_enable_quirk_hip07_161600802,
4826	},
4827#endif
4828#ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4829	{
4830		.desc   = "ITS: Rockchip erratum RK3588001",
4831		.iidr   = 0x0201743b,
4832		.mask   = 0xffffffff,
4833		.init   = its_enable_rk3588001,
4834	},
4835#endif
4836	{
4837		.desc   = "ITS: non-coherent attribute",
4838		.property = "dma-noncoherent",
4839		.init   = its_set_non_coherent,
4840	},
4841	{
4842	}
4843};
4844
4845static void its_enable_quirks(struct its_node *its)
4846{
4847	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4848
4849	gic_enable_quirks(iidr, its_quirks, its);
4850
4851	if (is_of_node(its->fwnode_handle))
4852		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4853				     its_quirks, its);
4854}
4855
4856static int its_save_disable(void)
4857{
4858	struct its_node *its;
4859	int err = 0;
4860
4861	raw_spin_lock(&its_lock);
4862	list_for_each_entry(its, &its_nodes, entry) {
4863		void __iomem *base;
4864
4865		base = its->base;
4866		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4867		err = its_force_quiescent(base);
4868		if (err) {
4869			pr_err("ITS@%pa: failed to quiesce: %d\n",
4870			       &its->phys_base, err);
4871			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4872			goto err;
4873		}
4874
4875		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4876	}
4877
4878err:
4879	if (err) {
4880		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4881			void __iomem *base;
4882
4883			base = its->base;
4884			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4885		}
4886	}
4887	raw_spin_unlock(&its_lock);
4888
4889	return err;
4890}
4891
4892static void its_restore_enable(void)
4893{
4894	struct its_node *its;
4895	int ret;
4896
4897	raw_spin_lock(&its_lock);
4898	list_for_each_entry(its, &its_nodes, entry) {
4899		void __iomem *base;
4900		int i;
4901
4902		base = its->base;
4903
4904		/*
4905		 * Make sure that the ITS is disabled. If it fails to quiesce,
4906		 * don't restore it since writing to CBASER or BASER<n>
4907		 * registers is undefined according to the GIC v3 ITS
4908		 * Specification.
4909		 *
4910		 * Firmware resuming with the ITS enabled is terminally broken.
4911		 */
4912		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4913		ret = its_force_quiescent(base);
4914		if (ret) {
4915			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4916			       &its->phys_base, ret);
4917			continue;
4918		}
4919
4920		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4921
4922		/*
4923		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4924		 * cmd_write line up with it.
4925		 */
4926		its->cmd_write = its->cmd_base;
4927		gits_write_cwriter(0, base + GITS_CWRITER);
4928
4929		/* Restore GITS_BASER from the value cache. */
4930		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4931			struct its_baser *baser = &its->tables[i];
4932
4933			if (!(baser->val & GITS_BASER_VALID))
4934				continue;
4935
4936			its_write_baser(its, baser, baser->val);
4937		}
4938		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4939
4940		/*
4941		 * Reinit the collection if it's stored in the ITS. This is
4942		 * indicated by the col_id being less than the HCC field.
4943		 * CID < HCC as specified in the GIC v3 Documentation.
4944		 */
4945		if (its->collections[smp_processor_id()].col_id <
4946		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4947			its_cpu_init_collection(its);
4948	}
4949	raw_spin_unlock(&its_lock);
4950}
4951
4952static struct syscore_ops its_syscore_ops = {
4953	.suspend = its_save_disable,
4954	.resume = its_restore_enable,
4955};
4956
4957static void __init __iomem *its_map_one(struct resource *res, int *err)
4958{
4959	void __iomem *its_base;
4960	u32 val;
4961
4962	its_base = ioremap(res->start, SZ_64K);
4963	if (!its_base) {
4964		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4965		*err = -ENOMEM;
4966		return NULL;
4967	}
4968
4969	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4970	if (val != 0x30 && val != 0x40) {
4971		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4972		*err = -ENODEV;
4973		goto out_unmap;
4974	}
4975
4976	*err = its_force_quiescent(its_base);
4977	if (*err) {
4978		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4979		goto out_unmap;
4980	}
4981
4982	return its_base;
4983
4984out_unmap:
4985	iounmap(its_base);
4986	return NULL;
4987}
4988
4989static int its_init_domain(struct its_node *its)
4990{
4991	struct irq_domain *inner_domain;
4992	struct msi_domain_info *info;
4993
4994	info = kzalloc(sizeof(*info), GFP_KERNEL);
4995	if (!info)
4996		return -ENOMEM;
4997
4998	info->ops = &its_msi_domain_ops;
4999	info->data = its;
5000
5001	inner_domain = irq_domain_create_hierarchy(its_parent,
5002						   its->msi_domain_flags, 0,
5003						   its->fwnode_handle, &its_domain_ops,
5004						   info);
5005	if (!inner_domain) {
5006		kfree(info);
5007		return -ENOMEM;
5008	}
5009
 
5010	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
 
 
 
 
5011
5012	return 0;
5013}
5014
5015static int its_init_vpe_domain(void)
5016{
5017	struct its_node *its;
5018	u32 devid;
5019	int entries;
5020
5021	if (gic_rdists->has_direct_lpi) {
5022		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5023		return 0;
5024	}
5025
5026	/* Any ITS will do, even if not v4 */
5027	its = list_first_entry(&its_nodes, struct its_node, entry);
5028
5029	entries = roundup_pow_of_two(nr_cpu_ids);
5030	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5031				 GFP_KERNEL);
5032	if (!vpe_proxy.vpes)
5033		return -ENOMEM;
5034
5035	/* Use the last possible DevID */
5036	devid = GENMASK(device_ids(its) - 1, 0);
5037	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5038	if (!vpe_proxy.dev) {
5039		kfree(vpe_proxy.vpes);
5040		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5041		return -ENOMEM;
5042	}
5043
5044	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5045
5046	raw_spin_lock_init(&vpe_proxy.lock);
5047	vpe_proxy.next_victim = 0;
5048	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5049		devid, vpe_proxy.dev->nr_ites);
5050
5051	return 0;
5052}
5053
5054static int __init its_compute_its_list_map(struct its_node *its)
 
5055{
5056	int its_number;
5057	u32 ctlr;
5058
5059	/*
5060	 * This is assumed to be done early enough that we're
5061	 * guaranteed to be single-threaded, hence no
5062	 * locking. Should this change, we should address
5063	 * this.
5064	 */
5065	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5066	if (its_number >= GICv4_ITS_LIST_MAX) {
5067		pr_err("ITS@%pa: No ITSList entry available!\n",
5068		       &its->phys_base);
5069		return -EINVAL;
5070	}
5071
5072	ctlr = readl_relaxed(its->base + GITS_CTLR);
5073	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5074	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5075	writel_relaxed(ctlr, its->base + GITS_CTLR);
5076	ctlr = readl_relaxed(its->base + GITS_CTLR);
5077	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5078		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5079		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5080	}
5081
5082	if (test_and_set_bit(its_number, &its_list_map)) {
5083		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5084		       &its->phys_base, its_number);
5085		return -EINVAL;
5086	}
5087
5088	return its_number;
5089}
5090
5091static int __init its_probe_one(struct its_node *its)
 
5092{
5093	u64 baser, tmp;
 
 
 
5094	struct page *page;
5095	u32 ctlr;
5096	int err;
5097
5098	its_enable_quirks(its);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5099
 
 
 
 
 
 
 
 
5100	if (is_v4(its)) {
5101		if (!(its->typer & GITS_TYPER_VMOVP)) {
5102			err = its_compute_its_list_map(its);
5103			if (err < 0)
5104				goto out;
5105
5106			its->list_nr = err;
5107
5108			pr_info("ITS@%pa: Using ITS number %d\n",
5109				&its->phys_base, err);
5110		} else {
5111			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5112		}
5113
5114		if (is_v4_1(its)) {
5115			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5116
5117			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5118			if (!its->sgir_base) {
5119				err = -ENOMEM;
5120				goto out;
5121			}
5122
5123			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5124
5125			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5126				&its->phys_base, its->mpidr, svpet);
5127		}
5128	}
5129
 
 
5130	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5131				get_order(ITS_CMD_QUEUE_SZ));
5132	if (!page) {
5133		err = -ENOMEM;
5134		goto out_unmap_sgir;
5135	}
5136	its->cmd_base = (void *)page_address(page);
5137	its->cmd_write = its->cmd_base;
 
 
 
 
 
5138
5139	err = its_alloc_tables(its);
5140	if (err)
5141		goto out_free_cmd;
5142
5143	err = its_alloc_collections(its);
5144	if (err)
5145		goto out_free_tables;
5146
5147	baser = (virt_to_phys(its->cmd_base)	|
5148		 GITS_CBASER_RaWaWb		|
5149		 GITS_CBASER_InnerShareable	|
5150		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5151		 GITS_CBASER_VALID);
5152
5153	gits_write_cbaser(baser, its->base + GITS_CBASER);
5154	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5155
5156	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5157		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5158
5159	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5160		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5161			/*
5162			 * The HW reports non-shareable, we must
5163			 * remove the cacheability attributes as
5164			 * well.
5165			 */
5166			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5167				   GITS_CBASER_CACHEABILITY_MASK);
5168			baser |= GITS_CBASER_nC;
5169			gits_write_cbaser(baser, its->base + GITS_CBASER);
5170		}
5171		pr_info("ITS: using cache flushing for cmd queue\n");
5172		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5173	}
5174
5175	gits_write_cwriter(0, its->base + GITS_CWRITER);
5176	ctlr = readl_relaxed(its->base + GITS_CTLR);
5177	ctlr |= GITS_CTLR_ENABLE;
5178	if (is_v4(its))
5179		ctlr |= GITS_CTLR_ImDe;
5180	writel_relaxed(ctlr, its->base + GITS_CTLR);
5181
5182	err = its_init_domain(its);
5183	if (err)
5184		goto out_free_tables;
5185
5186	raw_spin_lock(&its_lock);
5187	list_add(&its->entry, &its_nodes);
5188	raw_spin_unlock(&its_lock);
5189
5190	return 0;
5191
5192out_free_tables:
5193	its_free_tables(its);
5194out_free_cmd:
5195	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5196out_unmap_sgir:
5197	if (its->sgir_base)
5198		iounmap(its->sgir_base);
5199out:
5200	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
 
 
 
5201	return err;
5202}
5203
5204static bool gic_rdists_supports_plpis(void)
5205{
5206	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5207}
5208
5209static int redist_disable_lpis(void)
5210{
5211	void __iomem *rbase = gic_data_rdist_rd_base();
5212	u64 timeout = USEC_PER_SEC;
5213	u64 val;
5214
5215	if (!gic_rdists_supports_plpis()) {
5216		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5217		return -ENXIO;
5218	}
5219
5220	val = readl_relaxed(rbase + GICR_CTLR);
5221	if (!(val & GICR_CTLR_ENABLE_LPIS))
5222		return 0;
5223
5224	/*
5225	 * If coming via a CPU hotplug event, we don't need to disable
5226	 * LPIs before trying to re-enable them. They are already
5227	 * configured and all is well in the world.
5228	 *
5229	 * If running with preallocated tables, there is nothing to do.
5230	 */
5231	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5232	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5233		return 0;
5234
5235	/*
5236	 * From that point on, we only try to do some damage control.
5237	 */
5238	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5239		smp_processor_id());
5240	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5241
5242	/* Disable LPIs */
5243	val &= ~GICR_CTLR_ENABLE_LPIS;
5244	writel_relaxed(val, rbase + GICR_CTLR);
5245
5246	/* Make sure any change to GICR_CTLR is observable by the GIC */
5247	dsb(sy);
5248
5249	/*
5250	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5251	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5252	 * Error out if we time out waiting for RWP to clear.
5253	 */
5254	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5255		if (!timeout) {
5256			pr_err("CPU%d: Timeout while disabling LPIs\n",
5257			       smp_processor_id());
5258			return -ETIMEDOUT;
5259		}
5260		udelay(1);
5261		timeout--;
5262	}
5263
5264	/*
5265	 * After it has been written to 1, it is IMPLEMENTATION
5266	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5267	 * cleared to 0. Error out if clearing the bit failed.
5268	 */
5269	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5270		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5271		return -EBUSY;
5272	}
5273
5274	return 0;
5275}
5276
5277int its_cpu_init(void)
5278{
5279	if (!list_empty(&its_nodes)) {
5280		int ret;
5281
5282		ret = redist_disable_lpis();
5283		if (ret)
5284			return ret;
5285
5286		its_cpu_init_lpis();
5287		its_cpu_init_collections();
5288	}
5289
5290	return 0;
5291}
5292
5293static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5294{
5295	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5296	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5297}
5298
5299static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5300		    rdist_memreserve_cpuhp_cleanup_workfn);
5301
5302static int its_cpu_memreserve_lpi(unsigned int cpu)
5303{
5304	struct page *pend_page;
5305	int ret = 0;
5306
5307	/* This gets to run exactly once per CPU */
5308	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5309		return 0;
5310
5311	pend_page = gic_data_rdist()->pend_page;
5312	if (WARN_ON(!pend_page)) {
5313		ret = -ENOMEM;
5314		goto out;
5315	}
5316	/*
5317	 * If the pending table was pre-programmed, free the memory we
5318	 * preemptively allocated. Otherwise, reserve that memory for
5319	 * later kexecs.
5320	 */
5321	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5322		its_free_pending_table(pend_page);
5323		gic_data_rdist()->pend_page = NULL;
5324	} else {
5325		phys_addr_t paddr = page_to_phys(pend_page);
5326		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5327	}
5328
5329out:
5330	/* Last CPU being brought up gets to issue the cleanup */
5331	if (!IS_ENABLED(CONFIG_SMP) ||
5332	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5333		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5334
5335	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5336	return ret;
5337}
5338
5339/* Mark all the BASER registers as invalid before they get reprogrammed */
5340static int __init its_reset_one(struct resource *res)
5341{
5342	void __iomem *its_base;
5343	int err, i;
5344
5345	its_base = its_map_one(res, &err);
5346	if (!its_base)
5347		return err;
5348
5349	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5350		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5351
5352	iounmap(its_base);
5353	return 0;
5354}
5355
5356static const struct of_device_id its_device_id[] = {
5357	{	.compatible	= "arm,gic-v3-its",	},
5358	{},
5359};
5360
5361static struct its_node __init *its_node_init(struct resource *res,
5362					     struct fwnode_handle *handle, int numa_node)
5363{
5364	void __iomem *its_base;
5365	struct its_node *its;
5366	int err;
5367
5368	its_base = its_map_one(res, &err);
5369	if (!its_base)
5370		return NULL;
5371
5372	pr_info("ITS %pR\n", res);
5373
5374	its = kzalloc(sizeof(*its), GFP_KERNEL);
5375	if (!its)
5376		goto out_unmap;
5377
5378	raw_spin_lock_init(&its->lock);
5379	mutex_init(&its->dev_alloc_lock);
5380	INIT_LIST_HEAD(&its->entry);
5381	INIT_LIST_HEAD(&its->its_device_list);
5382
5383	its->typer = gic_read_typer(its_base + GITS_TYPER);
5384	its->base = its_base;
5385	its->phys_base = res->start;
5386	its->get_msi_base = its_irq_get_msi_base;
5387	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5388
5389	its->numa_node = numa_node;
5390	its->fwnode_handle = handle;
5391
5392	return its;
5393
5394out_unmap:
5395	iounmap(its_base);
5396	return NULL;
5397}
5398
5399static void its_node_destroy(struct its_node *its)
5400{
5401	iounmap(its->base);
5402	kfree(its);
5403}
5404
5405static int __init its_of_probe(struct device_node *node)
5406{
5407	struct device_node *np;
5408	struct resource res;
5409	int err;
5410
5411	/*
5412	 * Make sure *all* the ITS are reset before we probe any, as
5413	 * they may be sharing memory. If any of the ITS fails to
5414	 * reset, don't even try to go any further, as this could
5415	 * result in something even worse.
5416	 */
5417	for (np = of_find_matching_node(node, its_device_id); np;
5418	     np = of_find_matching_node(np, its_device_id)) {
5419		if (!of_device_is_available(np) ||
5420		    !of_property_read_bool(np, "msi-controller") ||
5421		    of_address_to_resource(np, 0, &res))
5422			continue;
5423
5424		err = its_reset_one(&res);
5425		if (err)
5426			return err;
5427	}
5428
5429	for (np = of_find_matching_node(node, its_device_id); np;
5430	     np = of_find_matching_node(np, its_device_id)) {
5431		struct its_node *its;
5432
5433		if (!of_device_is_available(np))
5434			continue;
5435		if (!of_property_read_bool(np, "msi-controller")) {
5436			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5437				np);
5438			continue;
5439		}
5440
5441		if (of_address_to_resource(np, 0, &res)) {
5442			pr_warn("%pOF: no regs?\n", np);
5443			continue;
5444		}
5445
5446
5447		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5448		if (!its)
5449			return -ENOMEM;
5450
5451		err = its_probe_one(its);
5452		if (err)  {
5453			its_node_destroy(its);
5454			return err;
5455		}
5456	}
5457	return 0;
5458}
5459
5460#ifdef CONFIG_ACPI
5461
5462#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5463
5464#ifdef CONFIG_ACPI_NUMA
5465struct its_srat_map {
5466	/* numa node id */
5467	u32	numa_node;
5468	/* GIC ITS ID */
5469	u32	its_id;
5470};
5471
5472static struct its_srat_map *its_srat_maps __initdata;
5473static int its_in_srat __initdata;
5474
5475static int __init acpi_get_its_numa_node(u32 its_id)
5476{
5477	int i;
5478
5479	for (i = 0; i < its_in_srat; i++) {
5480		if (its_id == its_srat_maps[i].its_id)
5481			return its_srat_maps[i].numa_node;
5482	}
5483	return NUMA_NO_NODE;
5484}
5485
5486static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5487					  const unsigned long end)
5488{
5489	return 0;
5490}
5491
5492static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5493			 const unsigned long end)
5494{
5495	int node;
5496	struct acpi_srat_gic_its_affinity *its_affinity;
5497
5498	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5499	if (!its_affinity)
5500		return -EINVAL;
5501
5502	if (its_affinity->header.length < sizeof(*its_affinity)) {
5503		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5504			its_affinity->header.length);
5505		return -EINVAL;
5506	}
5507
5508	/*
5509	 * Note that in theory a new proximity node could be created by this
5510	 * entry as it is an SRAT resource allocation structure.
5511	 * We do not currently support doing so.
5512	 */
5513	node = pxm_to_node(its_affinity->proximity_domain);
5514
5515	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5516		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5517		return 0;
5518	}
5519
5520	its_srat_maps[its_in_srat].numa_node = node;
5521	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5522	its_in_srat++;
5523	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5524		its_affinity->proximity_domain, its_affinity->its_id, node);
5525
5526	return 0;
5527}
5528
5529static void __init acpi_table_parse_srat_its(void)
5530{
5531	int count;
5532
5533	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5534			sizeof(struct acpi_table_srat),
5535			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5536			gic_acpi_match_srat_its, 0);
5537	if (count <= 0)
5538		return;
5539
5540	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5541				      GFP_KERNEL);
5542	if (!its_srat_maps)
5543		return;
5544
5545	acpi_table_parse_entries(ACPI_SIG_SRAT,
5546			sizeof(struct acpi_table_srat),
5547			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5548			gic_acpi_parse_srat_its, 0);
5549}
5550
5551/* free the its_srat_maps after ITS probing */
5552static void __init acpi_its_srat_maps_free(void)
5553{
5554	kfree(its_srat_maps);
5555}
5556#else
5557static void __init acpi_table_parse_srat_its(void)	{ }
5558static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5559static void __init acpi_its_srat_maps_free(void) { }
5560#endif
5561
5562static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5563					  const unsigned long end)
5564{
5565	struct acpi_madt_generic_translator *its_entry;
5566	struct fwnode_handle *dom_handle;
5567	struct its_node *its;
5568	struct resource res;
5569	int err;
5570
5571	its_entry = (struct acpi_madt_generic_translator *)header;
5572	memset(&res, 0, sizeof(res));
5573	res.start = its_entry->base_address;
5574	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5575	res.flags = IORESOURCE_MEM;
5576
5577	dom_handle = irq_domain_alloc_fwnode(&res.start);
5578	if (!dom_handle) {
5579		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5580		       &res.start);
5581		return -ENOMEM;
5582	}
5583
5584	err = iort_register_domain_token(its_entry->translation_id, res.start,
5585					 dom_handle);
5586	if (err) {
5587		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5588		       &res.start, its_entry->translation_id);
5589		goto dom_err;
5590	}
5591
5592	its = its_node_init(&res, dom_handle,
5593			    acpi_get_its_numa_node(its_entry->translation_id));
5594	if (!its) {
5595		err = -ENOMEM;
5596		goto node_err;
5597	}
5598
5599	err = its_probe_one(its);
5600	if (!err)
5601		return 0;
5602
5603node_err:
5604	iort_deregister_domain_token(its_entry->translation_id);
5605dom_err:
5606	irq_domain_free_fwnode(dom_handle);
5607	return err;
5608}
5609
5610static int __init its_acpi_reset(union acpi_subtable_headers *header,
5611				 const unsigned long end)
5612{
5613	struct acpi_madt_generic_translator *its_entry;
5614	struct resource res;
5615
5616	its_entry = (struct acpi_madt_generic_translator *)header;
5617	res = (struct resource) {
5618		.start	= its_entry->base_address,
5619		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5620		.flags	= IORESOURCE_MEM,
5621	};
5622
5623	return its_reset_one(&res);
5624}
5625
5626static void __init its_acpi_probe(void)
5627{
5628	acpi_table_parse_srat_its();
5629	/*
5630	 * Make sure *all* the ITS are reset before we probe any, as
5631	 * they may be sharing memory. If any of the ITS fails to
5632	 * reset, don't even try to go any further, as this could
5633	 * result in something even worse.
5634	 */
5635	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5636				  its_acpi_reset, 0) > 0)
5637		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5638				      gic_acpi_parse_madt_its, 0);
5639	acpi_its_srat_maps_free();
5640}
5641#else
5642static void __init its_acpi_probe(void) { }
5643#endif
5644
5645int __init its_lpi_memreserve_init(void)
5646{
5647	int state;
5648
5649	if (!efi_enabled(EFI_CONFIG_TABLES))
5650		return 0;
5651
5652	if (list_empty(&its_nodes))
5653		return 0;
5654
5655	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5656	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5657				  "irqchip/arm/gicv3/memreserve:online",
5658				  its_cpu_memreserve_lpi,
5659				  NULL);
5660	if (state < 0)
5661		return state;
5662
5663	gic_rdists->cpuhp_memreserve_state = state;
5664
5665	return 0;
5666}
5667
5668int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5669		    struct irq_domain *parent_domain)
5670{
5671	struct device_node *of_node;
5672	struct its_node *its;
5673	bool has_v4 = false;
5674	bool has_v4_1 = false;
5675	int err;
5676
5677	gic_rdists = rdists;
5678
5679	its_parent = parent_domain;
5680	of_node = to_of_node(handle);
5681	if (of_node)
5682		its_of_probe(of_node);
5683	else
5684		its_acpi_probe();
5685
5686	if (list_empty(&its_nodes)) {
5687		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5688		return -ENXIO;
5689	}
5690
5691	err = allocate_lpi_tables();
5692	if (err)
5693		return err;
5694
5695	list_for_each_entry(its, &its_nodes, entry) {
5696		has_v4 |= is_v4(its);
5697		has_v4_1 |= is_v4_1(its);
5698	}
5699
5700	/* Don't bother with inconsistent systems */
5701	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5702		rdists->has_rvpeid = false;
5703
5704	if (has_v4 & rdists->has_vlpis) {
5705		const struct irq_domain_ops *sgi_ops;
5706
5707		if (has_v4_1)
5708			sgi_ops = &its_sgi_domain_ops;
5709		else
5710			sgi_ops = NULL;
5711
5712		if (its_init_vpe_domain() ||
5713		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5714			rdists->has_vlpis = false;
5715			pr_err("ITS: Disabling GICv4 support\n");
5716		}
5717	}
5718
5719	register_syscore_ops(&its_syscore_ops);
5720
5721	return 0;
5722}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitfield.h>
  10#include <linux/bitmap.h>
  11#include <linux/cpu.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
  14#include <linux/dma-iommu.h>
  15#include <linux/efi.h>
  16#include <linux/interrupt.h>
 
  17#include <linux/iopoll.h>
  18#include <linux/irqdomain.h>
  19#include <linux/list.h>
  20#include <linux/log2.h>
  21#include <linux/memblock.h>
  22#include <linux/mm.h>
  23#include <linux/msi.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/of_pci.h>
  28#include <linux/of_platform.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/syscore_ops.h>
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
  35#include <linux/irqchip/arm-gic-v4.h>
  36
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
 
  45
  46#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
  47#define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
 
  48
  49static u32 lpi_id_bits;
  50
  51/*
  52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  53 * deal with (one configuration byte per interrupt). PENDBASE has to
  54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  55 */
  56#define LPI_NRBITS		lpi_id_bits
  57#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  58#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  59
  60#define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
  61
  62/*
  63 * Collection structure - just an ID, and a redistributor address to
  64 * ping. We use one per CPU as a bag of interrupts assigned to this
  65 * CPU.
  66 */
  67struct its_collection {
  68	u64			target_address;
  69	u16			col_id;
  70};
  71
  72/*
  73 * The ITS_BASER structure - contains memory information, cached
  74 * value of BASER register configuration and ITS page size.
  75 */
  76struct its_baser {
  77	void		*base;
  78	u64		val;
  79	u32		order;
  80	u32		psz;
  81};
  82
  83struct its_device;
  84
  85/*
  86 * The ITS structure - contains most of the infrastructure, with the
  87 * top-level MSI domain, the command queue, the collections, and the
  88 * list of devices writing to it.
  89 *
  90 * dev_alloc_lock has to be taken for device allocations, while the
  91 * spinlock must be taken to parse data structures such as the device
  92 * list.
  93 */
  94struct its_node {
  95	raw_spinlock_t		lock;
  96	struct mutex		dev_alloc_lock;
  97	struct list_head	entry;
  98	void __iomem		*base;
  99	void __iomem		*sgir_base;
 100	phys_addr_t		phys_base;
 101	struct its_cmd_block	*cmd_base;
 102	struct its_cmd_block	*cmd_write;
 103	struct its_baser	tables[GITS_BASER_NR_REGS];
 104	struct its_collection	*collections;
 105	struct fwnode_handle	*fwnode_handle;
 106	u64			(*get_msi_base)(struct its_device *its_dev);
 107	u64			typer;
 108	u64			cbaser_save;
 109	u32			ctlr_save;
 110	u32			mpidr;
 111	struct list_head	its_device_list;
 112	u64			flags;
 113	unsigned long		list_nr;
 114	int			numa_node;
 115	unsigned int		msi_domain_flags;
 116	u32			pre_its_base; /* for Socionext Synquacer */
 117	int			vlpi_redist_offset;
 118};
 119
 120#define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
 121#define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
 122#define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
 123
 124#define ITS_ITT_ALIGN		SZ_256
 125
 126/* The maximum number of VPEID bits supported by VLPI commands */
 127#define ITS_MAX_VPEID_BITS						\
 128	({								\
 129		int nvpeid = 16;					\
 130		if (gic_rdists->has_rvpeid &&				\
 131		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
 132			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
 133				      GICD_TYPER2_VID);			\
 134									\
 135		nvpeid;							\
 136	})
 137#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 138
 139/* Convert page order to size in bytes */
 140#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 141
 142struct event_lpi_map {
 143	unsigned long		*lpi_map;
 144	u16			*col_map;
 145	irq_hw_number_t		lpi_base;
 146	int			nr_lpis;
 147	raw_spinlock_t		vlpi_lock;
 148	struct its_vm		*vm;
 149	struct its_vlpi_map	*vlpi_maps;
 150	int			nr_vlpis;
 151};
 152
 153/*
 154 * The ITS view of a device - belongs to an ITS, owns an interrupt
 155 * translation table, and a list of interrupts.  If it some of its
 156 * LPIs are injected into a guest (GICv4), the event_map.vm field
 157 * indicates which one.
 158 */
 159struct its_device {
 160	struct list_head	entry;
 161	struct its_node		*its;
 162	struct event_lpi_map	event_map;
 163	void			*itt;
 164	u32			nr_ites;
 165	u32			device_id;
 166	bool			shared;
 167};
 168
 169static struct {
 170	raw_spinlock_t		lock;
 171	struct its_device	*dev;
 172	struct its_vpe		**vpes;
 173	int			next_victim;
 174} vpe_proxy;
 175
 176struct cpu_lpi_count {
 177	atomic_t	managed;
 178	atomic_t	unmanaged;
 179};
 180
 181static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
 182
 183static LIST_HEAD(its_nodes);
 184static DEFINE_RAW_SPINLOCK(its_lock);
 185static struct rdists *gic_rdists;
 186static struct irq_domain *its_parent;
 187
 188static unsigned long its_list_map;
 189static u16 vmovp_seq_num;
 190static DEFINE_RAW_SPINLOCK(vmovp_lock);
 191
 192static DEFINE_IDA(its_vpeid_ida);
 193
 194#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 195#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
 196#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 197#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 198
 199/*
 200 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
 201 * always have vSGIs mapped.
 202 */
 203static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
 204{
 205	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
 206}
 207
 
 
 
 
 
 208static u16 get_its_list(struct its_vm *vm)
 209{
 210	struct its_node *its;
 211	unsigned long its_list = 0;
 212
 213	list_for_each_entry(its, &its_nodes, entry) {
 214		if (!is_v4(its))
 215			continue;
 216
 217		if (require_its_list_vmovp(vm, its))
 218			__set_bit(its->list_nr, &its_list);
 219	}
 220
 221	return (u16)its_list;
 222}
 223
 224static inline u32 its_get_event_id(struct irq_data *d)
 225{
 226	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 227	return d->hwirq - its_dev->event_map.lpi_base;
 228}
 229
 230static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 231					       u32 event)
 232{
 233	struct its_node *its = its_dev->its;
 234
 235	return its->collections + its_dev->event_map.col_map[event];
 236}
 237
 238static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
 239					       u32 event)
 240{
 241	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
 242		return NULL;
 243
 244	return &its_dev->event_map.vlpi_maps[event];
 245}
 246
 247static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
 248{
 249	if (irqd_is_forwarded_to_vcpu(d)) {
 250		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 251		u32 event = its_get_event_id(d);
 252
 253		return dev_event_to_vlpi_map(its_dev, event);
 254	}
 255
 256	return NULL;
 257}
 258
 259static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
 260{
 261	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
 262	return vpe->col_idx;
 263}
 264
 265static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
 266{
 267	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
 268}
 269
 
 
 270static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
 271{
 272	struct its_vlpi_map *map = get_vlpi_map(d);
 273	int cpu;
 274
 275	if (map) {
 276		cpu = vpe_to_cpuid_lock(map->vpe, flags);
 
 
 
 
 
 
 
 
 277	} else {
 278		/* Physical LPIs are already locked via the irq_desc lock */
 279		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 280		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
 281		/* Keep GCC quiet... */
 282		*flags = 0;
 283	}
 284
 285	return cpu;
 286}
 287
 288static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
 289{
 290	struct its_vlpi_map *map = get_vlpi_map(d);
 
 
 
 
 
 
 
 
 291
 292	if (map)
 293		vpe_to_cpuid_unlock(map->vpe, flags);
 294}
 295
 296static struct its_collection *valid_col(struct its_collection *col)
 297{
 298	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 299		return NULL;
 300
 301	return col;
 302}
 303
 304static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 305{
 306	if (valid_col(its->collections + vpe->col_idx))
 307		return vpe;
 308
 309	return NULL;
 310}
 311
 312/*
 313 * ITS command descriptors - parameters to be encoded in a command
 314 * block.
 315 */
 316struct its_cmd_desc {
 317	union {
 318		struct {
 319			struct its_device *dev;
 320			u32 event_id;
 321		} its_inv_cmd;
 322
 323		struct {
 324			struct its_device *dev;
 325			u32 event_id;
 326		} its_clear_cmd;
 327
 328		struct {
 329			struct its_device *dev;
 330			u32 event_id;
 331		} its_int_cmd;
 332
 333		struct {
 334			struct its_device *dev;
 335			int valid;
 336		} its_mapd_cmd;
 337
 338		struct {
 339			struct its_collection *col;
 340			int valid;
 341		} its_mapc_cmd;
 342
 343		struct {
 344			struct its_device *dev;
 345			u32 phys_id;
 346			u32 event_id;
 347		} its_mapti_cmd;
 348
 349		struct {
 350			struct its_device *dev;
 351			struct its_collection *col;
 352			u32 event_id;
 353		} its_movi_cmd;
 354
 355		struct {
 356			struct its_device *dev;
 357			u32 event_id;
 358		} its_discard_cmd;
 359
 360		struct {
 361			struct its_collection *col;
 362		} its_invall_cmd;
 363
 364		struct {
 365			struct its_vpe *vpe;
 366		} its_vinvall_cmd;
 367
 368		struct {
 369			struct its_vpe *vpe;
 370			struct its_collection *col;
 371			bool valid;
 372		} its_vmapp_cmd;
 373
 374		struct {
 375			struct its_vpe *vpe;
 376			struct its_device *dev;
 377			u32 virt_id;
 378			u32 event_id;
 379			bool db_enabled;
 380		} its_vmapti_cmd;
 381
 382		struct {
 383			struct its_vpe *vpe;
 384			struct its_device *dev;
 385			u32 event_id;
 386			bool db_enabled;
 387		} its_vmovi_cmd;
 388
 389		struct {
 390			struct its_vpe *vpe;
 391			struct its_collection *col;
 392			u16 seq_num;
 393			u16 its_list;
 394		} its_vmovp_cmd;
 395
 396		struct {
 397			struct its_vpe *vpe;
 398		} its_invdb_cmd;
 399
 400		struct {
 401			struct its_vpe *vpe;
 402			u8 sgi;
 403			u8 priority;
 404			bool enable;
 405			bool group;
 406			bool clear;
 407		} its_vsgi_cmd;
 408	};
 409};
 410
 411/*
 412 * The ITS command block, which is what the ITS actually parses.
 413 */
 414struct its_cmd_block {
 415	union {
 416		u64	raw_cmd[4];
 417		__le64	raw_cmd_le[4];
 418	};
 419};
 420
 421#define ITS_CMD_QUEUE_SZ		SZ_64K
 422#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 423
 424typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 425						    struct its_cmd_block *,
 426						    struct its_cmd_desc *);
 427
 428typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 429					      struct its_cmd_block *,
 430					      struct its_cmd_desc *);
 431
 432static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 433{
 434	u64 mask = GENMASK_ULL(h, l);
 435	*raw_cmd &= ~mask;
 436	*raw_cmd |= (val << l) & mask;
 437}
 438
 439static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 440{
 441	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 442}
 443
 444static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 445{
 446	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 447}
 448
 449static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 450{
 451	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 452}
 453
 454static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 455{
 456	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 457}
 458
 459static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 460{
 461	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 462}
 463
 464static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 465{
 466	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 467}
 468
 469static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 470{
 471	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 472}
 473
 474static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 475{
 476	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 477}
 478
 479static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 480{
 481	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 482}
 483
 484static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 485{
 486	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 487}
 488
 489static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 490{
 491	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 492}
 493
 494static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 495{
 496	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 497}
 498
 499static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 500{
 501	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 502}
 503
 504static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 505{
 506	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 507}
 508
 509static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 510{
 511	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 512}
 513
 514static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 515{
 516	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 517}
 518
 519static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 520{
 521	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 522}
 523
 524static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
 525{
 526	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
 527}
 528
 529static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
 530{
 531	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
 532}
 533
 534static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
 535{
 536	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
 537}
 538
 539static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
 540					u32 vpe_db_lpi)
 541{
 542	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
 543}
 544
 545static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
 546					u32 vpe_db_lpi)
 547{
 548	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
 549}
 550
 551static void its_encode_db(struct its_cmd_block *cmd, bool db)
 552{
 553	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
 554}
 555
 556static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
 557{
 558	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
 559}
 560
 561static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
 562{
 563	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
 564}
 565
 566static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
 567{
 568	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
 569}
 570
 571static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
 572{
 573	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
 574}
 575
 576static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
 577{
 578	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
 579}
 580
 581static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 582{
 583	/* Let's fixup BE commands */
 584	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
 585	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
 586	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
 587	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
 588}
 589
 590static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 591						 struct its_cmd_block *cmd,
 592						 struct its_cmd_desc *desc)
 593{
 594	unsigned long itt_addr;
 595	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 596
 597	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 598	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 599
 600	its_encode_cmd(cmd, GITS_CMD_MAPD);
 601	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 602	its_encode_size(cmd, size - 1);
 603	its_encode_itt(cmd, itt_addr);
 604	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 605
 606	its_fixup_cmd(cmd);
 607
 608	return NULL;
 609}
 610
 611static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 612						 struct its_cmd_block *cmd,
 613						 struct its_cmd_desc *desc)
 614{
 615	its_encode_cmd(cmd, GITS_CMD_MAPC);
 616	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 617	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 618	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 619
 620	its_fixup_cmd(cmd);
 621
 622	return desc->its_mapc_cmd.col;
 623}
 624
 625static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 626						  struct its_cmd_block *cmd,
 627						  struct its_cmd_desc *desc)
 628{
 629	struct its_collection *col;
 630
 631	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 632			       desc->its_mapti_cmd.event_id);
 633
 634	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 635	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 636	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 637	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 638	its_encode_collection(cmd, col->col_id);
 639
 640	its_fixup_cmd(cmd);
 641
 642	return valid_col(col);
 643}
 644
 645static struct its_collection *its_build_movi_cmd(struct its_node *its,
 646						 struct its_cmd_block *cmd,
 647						 struct its_cmd_desc *desc)
 648{
 649	struct its_collection *col;
 650
 651	col = dev_event_to_col(desc->its_movi_cmd.dev,
 652			       desc->its_movi_cmd.event_id);
 653
 654	its_encode_cmd(cmd, GITS_CMD_MOVI);
 655	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 656	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 657	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 658
 659	its_fixup_cmd(cmd);
 660
 661	return valid_col(col);
 662}
 663
 664static struct its_collection *its_build_discard_cmd(struct its_node *its,
 665						    struct its_cmd_block *cmd,
 666						    struct its_cmd_desc *desc)
 667{
 668	struct its_collection *col;
 669
 670	col = dev_event_to_col(desc->its_discard_cmd.dev,
 671			       desc->its_discard_cmd.event_id);
 672
 673	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 674	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 675	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 676
 677	its_fixup_cmd(cmd);
 678
 679	return valid_col(col);
 680}
 681
 682static struct its_collection *its_build_inv_cmd(struct its_node *its,
 683						struct its_cmd_block *cmd,
 684						struct its_cmd_desc *desc)
 685{
 686	struct its_collection *col;
 687
 688	col = dev_event_to_col(desc->its_inv_cmd.dev,
 689			       desc->its_inv_cmd.event_id);
 690
 691	its_encode_cmd(cmd, GITS_CMD_INV);
 692	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 693	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 694
 695	its_fixup_cmd(cmd);
 696
 697	return valid_col(col);
 698}
 699
 700static struct its_collection *its_build_int_cmd(struct its_node *its,
 701						struct its_cmd_block *cmd,
 702						struct its_cmd_desc *desc)
 703{
 704	struct its_collection *col;
 705
 706	col = dev_event_to_col(desc->its_int_cmd.dev,
 707			       desc->its_int_cmd.event_id);
 708
 709	its_encode_cmd(cmd, GITS_CMD_INT);
 710	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 711	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 712
 713	its_fixup_cmd(cmd);
 714
 715	return valid_col(col);
 716}
 717
 718static struct its_collection *its_build_clear_cmd(struct its_node *its,
 719						  struct its_cmd_block *cmd,
 720						  struct its_cmd_desc *desc)
 721{
 722	struct its_collection *col;
 723
 724	col = dev_event_to_col(desc->its_clear_cmd.dev,
 725			       desc->its_clear_cmd.event_id);
 726
 727	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 728	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 729	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 730
 731	its_fixup_cmd(cmd);
 732
 733	return valid_col(col);
 734}
 735
 736static struct its_collection *its_build_invall_cmd(struct its_node *its,
 737						   struct its_cmd_block *cmd,
 738						   struct its_cmd_desc *desc)
 739{
 740	its_encode_cmd(cmd, GITS_CMD_INVALL);
 741	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
 742
 743	its_fixup_cmd(cmd);
 744
 745	return NULL;
 746}
 747
 748static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 749					     struct its_cmd_block *cmd,
 750					     struct its_cmd_desc *desc)
 751{
 752	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 753	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 754
 755	its_fixup_cmd(cmd);
 756
 757	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 758}
 759
 760static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 761					   struct its_cmd_block *cmd,
 762					   struct its_cmd_desc *desc)
 763{
 764	unsigned long vpt_addr, vconf_addr;
 765	u64 target;
 766	bool alloc;
 767
 768	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 769	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 770	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 771
 772	if (!desc->its_vmapp_cmd.valid) {
 773		if (is_v4_1(its)) {
 774			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
 775			its_encode_alloc(cmd, alloc);
 776		}
 777
 778		goto out;
 779	}
 780
 781	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 782	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 783
 784	its_encode_target(cmd, target);
 785	its_encode_vpt_addr(cmd, vpt_addr);
 786	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 787
 788	if (!is_v4_1(its))
 789		goto out;
 790
 791	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
 792
 793	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
 794
 795	its_encode_alloc(cmd, alloc);
 796
 797	/*
 798	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
 799	 * to be unmapped first, and in this case, we may remap the vPE
 800	 * back while the VPT is not empty. So we can't assume that the
 801	 * VPT is empty on map. This is why we never advertise PTZ.
 802	 */
 803	its_encode_ptz(cmd, false);
 804	its_encode_vconf_addr(cmd, vconf_addr);
 805	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
 806
 807out:
 808	its_fixup_cmd(cmd);
 809
 810	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 811}
 812
 813static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 814					    struct its_cmd_block *cmd,
 815					    struct its_cmd_desc *desc)
 816{
 817	u32 db;
 818
 819	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
 820		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 821	else
 822		db = 1023;
 823
 824	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 825	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 826	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 827	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 828	its_encode_db_phys_id(cmd, db);
 829	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 830
 831	its_fixup_cmd(cmd);
 832
 833	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 834}
 835
 836static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 837					   struct its_cmd_block *cmd,
 838					   struct its_cmd_desc *desc)
 839{
 840	u32 db;
 841
 842	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
 843		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 844	else
 845		db = 1023;
 846
 847	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 848	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 849	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 850	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 851	its_encode_db_phys_id(cmd, db);
 852	its_encode_db_valid(cmd, true);
 853
 854	its_fixup_cmd(cmd);
 855
 856	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 857}
 858
 859static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 860					   struct its_cmd_block *cmd,
 861					   struct its_cmd_desc *desc)
 862{
 863	u64 target;
 864
 865	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 866	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 867	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 868	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 869	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 870	its_encode_target(cmd, target);
 871
 872	if (is_v4_1(its)) {
 873		its_encode_db(cmd, true);
 874		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
 875	}
 876
 877	its_fixup_cmd(cmd);
 878
 879	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 880}
 881
 882static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
 883					  struct its_cmd_block *cmd,
 884					  struct its_cmd_desc *desc)
 885{
 886	struct its_vlpi_map *map;
 887
 888	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
 889				    desc->its_inv_cmd.event_id);
 890
 891	its_encode_cmd(cmd, GITS_CMD_INV);
 892	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 893	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 894
 895	its_fixup_cmd(cmd);
 896
 897	return valid_vpe(its, map->vpe);
 898}
 899
 900static struct its_vpe *its_build_vint_cmd(struct its_node *its,
 901					  struct its_cmd_block *cmd,
 902					  struct its_cmd_desc *desc)
 903{
 904	struct its_vlpi_map *map;
 905
 906	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
 907				    desc->its_int_cmd.event_id);
 908
 909	its_encode_cmd(cmd, GITS_CMD_INT);
 910	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 911	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 912
 913	its_fixup_cmd(cmd);
 914
 915	return valid_vpe(its, map->vpe);
 916}
 917
 918static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
 919					    struct its_cmd_block *cmd,
 920					    struct its_cmd_desc *desc)
 921{
 922	struct its_vlpi_map *map;
 923
 924	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
 925				    desc->its_clear_cmd.event_id);
 926
 927	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 928	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 929	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 930
 931	its_fixup_cmd(cmd);
 932
 933	return valid_vpe(its, map->vpe);
 934}
 935
 936static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
 937					   struct its_cmd_block *cmd,
 938					   struct its_cmd_desc *desc)
 939{
 940	if (WARN_ON(!is_v4_1(its)))
 941		return NULL;
 942
 943	its_encode_cmd(cmd, GITS_CMD_INVDB);
 944	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
 945
 946	its_fixup_cmd(cmd);
 947
 948	return valid_vpe(its, desc->its_invdb_cmd.vpe);
 949}
 950
 951static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
 952					  struct its_cmd_block *cmd,
 953					  struct its_cmd_desc *desc)
 954{
 955	if (WARN_ON(!is_v4_1(its)))
 956		return NULL;
 957
 958	its_encode_cmd(cmd, GITS_CMD_VSGI);
 959	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
 960	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
 961	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
 962	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
 963	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
 964	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
 965
 966	its_fixup_cmd(cmd);
 967
 968	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
 969}
 970
 971static u64 its_cmd_ptr_to_offset(struct its_node *its,
 972				 struct its_cmd_block *ptr)
 973{
 974	return (ptr - its->cmd_base) * sizeof(*ptr);
 975}
 976
 977static int its_queue_full(struct its_node *its)
 978{
 979	int widx;
 980	int ridx;
 981
 982	widx = its->cmd_write - its->cmd_base;
 983	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 984
 985	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 986	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 987		return 1;
 988
 989	return 0;
 990}
 991
 992static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 993{
 994	struct its_cmd_block *cmd;
 995	u32 count = 1000000;	/* 1s! */
 996
 997	while (its_queue_full(its)) {
 998		count--;
 999		if (!count) {
1000			pr_err_ratelimited("ITS queue not draining\n");
1001			return NULL;
1002		}
1003		cpu_relax();
1004		udelay(1);
1005	}
1006
1007	cmd = its->cmd_write++;
1008
1009	/* Handle queue wrapping */
1010	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1011		its->cmd_write = its->cmd_base;
1012
1013	/* Clear command  */
1014	cmd->raw_cmd[0] = 0;
1015	cmd->raw_cmd[1] = 0;
1016	cmd->raw_cmd[2] = 0;
1017	cmd->raw_cmd[3] = 0;
1018
1019	return cmd;
1020}
1021
1022static struct its_cmd_block *its_post_commands(struct its_node *its)
1023{
1024	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1025
1026	writel_relaxed(wr, its->base + GITS_CWRITER);
1027
1028	return its->cmd_write;
1029}
1030
1031static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1032{
1033	/*
1034	 * Make sure the commands written to memory are observable by
1035	 * the ITS.
1036	 */
1037	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1038		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1039	else
1040		dsb(ishst);
1041}
1042
1043static int its_wait_for_range_completion(struct its_node *its,
1044					 u64	prev_idx,
1045					 struct its_cmd_block *to)
1046{
1047	u64 rd_idx, to_idx, linear_idx;
1048	u32 count = 1000000;	/* 1s! */
1049
1050	/* Linearize to_idx if the command set has wrapped around */
1051	to_idx = its_cmd_ptr_to_offset(its, to);
1052	if (to_idx < prev_idx)
1053		to_idx += ITS_CMD_QUEUE_SZ;
1054
1055	linear_idx = prev_idx;
1056
1057	while (1) {
1058		s64 delta;
1059
1060		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1061
1062		/*
1063		 * Compute the read pointer progress, taking the
1064		 * potential wrap-around into account.
1065		 */
1066		delta = rd_idx - prev_idx;
1067		if (rd_idx < prev_idx)
1068			delta += ITS_CMD_QUEUE_SZ;
1069
1070		linear_idx += delta;
1071		if (linear_idx >= to_idx)
1072			break;
1073
1074		count--;
1075		if (!count) {
1076			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1077					   to_idx, linear_idx);
1078			return -1;
1079		}
1080		prev_idx = rd_idx;
1081		cpu_relax();
1082		udelay(1);
1083	}
1084
1085	return 0;
1086}
1087
1088/* Warning, macro hell follows */
1089#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1090void name(struct its_node *its,						\
1091	  buildtype builder,						\
1092	  struct its_cmd_desc *desc)					\
1093{									\
1094	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1095	synctype *sync_obj;						\
1096	unsigned long flags;						\
1097	u64 rd_idx;							\
1098									\
1099	raw_spin_lock_irqsave(&its->lock, flags);			\
1100									\
1101	cmd = its_allocate_entry(its);					\
1102	if (!cmd) {		/* We're soooooo screewed... */		\
1103		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1104		return;							\
1105	}								\
1106	sync_obj = builder(its, cmd, desc);				\
1107	its_flush_cmd(its, cmd);					\
1108									\
1109	if (sync_obj) {							\
1110		sync_cmd = its_allocate_entry(its);			\
1111		if (!sync_cmd)						\
1112			goto post;					\
1113									\
1114		buildfn(its, sync_cmd, sync_obj);			\
1115		its_flush_cmd(its, sync_cmd);				\
1116	}								\
1117									\
1118post:									\
1119	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1120	next_cmd = its_post_commands(its);				\
1121	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1122									\
1123	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1124		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1125}
1126
1127static void its_build_sync_cmd(struct its_node *its,
1128			       struct its_cmd_block *sync_cmd,
1129			       struct its_collection *sync_col)
1130{
1131	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1132	its_encode_target(sync_cmd, sync_col->target_address);
1133
1134	its_fixup_cmd(sync_cmd);
1135}
1136
1137static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1138			     struct its_collection, its_build_sync_cmd)
1139
1140static void its_build_vsync_cmd(struct its_node *its,
1141				struct its_cmd_block *sync_cmd,
1142				struct its_vpe *sync_vpe)
1143{
1144	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1145	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1146
1147	its_fixup_cmd(sync_cmd);
1148}
1149
1150static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1151			     struct its_vpe, its_build_vsync_cmd)
1152
1153static void its_send_int(struct its_device *dev, u32 event_id)
1154{
1155	struct its_cmd_desc desc;
1156
1157	desc.its_int_cmd.dev = dev;
1158	desc.its_int_cmd.event_id = event_id;
1159
1160	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1161}
1162
1163static void its_send_clear(struct its_device *dev, u32 event_id)
1164{
1165	struct its_cmd_desc desc;
1166
1167	desc.its_clear_cmd.dev = dev;
1168	desc.its_clear_cmd.event_id = event_id;
1169
1170	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1171}
1172
1173static void its_send_inv(struct its_device *dev, u32 event_id)
1174{
1175	struct its_cmd_desc desc;
1176
1177	desc.its_inv_cmd.dev = dev;
1178	desc.its_inv_cmd.event_id = event_id;
1179
1180	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1181}
1182
1183static void its_send_mapd(struct its_device *dev, int valid)
1184{
1185	struct its_cmd_desc desc;
1186
1187	desc.its_mapd_cmd.dev = dev;
1188	desc.its_mapd_cmd.valid = !!valid;
1189
1190	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1191}
1192
1193static void its_send_mapc(struct its_node *its, struct its_collection *col,
1194			  int valid)
1195{
1196	struct its_cmd_desc desc;
1197
1198	desc.its_mapc_cmd.col = col;
1199	desc.its_mapc_cmd.valid = !!valid;
1200
1201	its_send_single_command(its, its_build_mapc_cmd, &desc);
1202}
1203
1204static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1205{
1206	struct its_cmd_desc desc;
1207
1208	desc.its_mapti_cmd.dev = dev;
1209	desc.its_mapti_cmd.phys_id = irq_id;
1210	desc.its_mapti_cmd.event_id = id;
1211
1212	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1213}
1214
1215static void its_send_movi(struct its_device *dev,
1216			  struct its_collection *col, u32 id)
1217{
1218	struct its_cmd_desc desc;
1219
1220	desc.its_movi_cmd.dev = dev;
1221	desc.its_movi_cmd.col = col;
1222	desc.its_movi_cmd.event_id = id;
1223
1224	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1225}
1226
1227static void its_send_discard(struct its_device *dev, u32 id)
1228{
1229	struct its_cmd_desc desc;
1230
1231	desc.its_discard_cmd.dev = dev;
1232	desc.its_discard_cmd.event_id = id;
1233
1234	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1235}
1236
1237static void its_send_invall(struct its_node *its, struct its_collection *col)
1238{
1239	struct its_cmd_desc desc;
1240
1241	desc.its_invall_cmd.col = col;
1242
1243	its_send_single_command(its, its_build_invall_cmd, &desc);
1244}
1245
1246static void its_send_vmapti(struct its_device *dev, u32 id)
1247{
1248	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1249	struct its_cmd_desc desc;
1250
1251	desc.its_vmapti_cmd.vpe = map->vpe;
1252	desc.its_vmapti_cmd.dev = dev;
1253	desc.its_vmapti_cmd.virt_id = map->vintid;
1254	desc.its_vmapti_cmd.event_id = id;
1255	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1256
1257	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1258}
1259
1260static void its_send_vmovi(struct its_device *dev, u32 id)
1261{
1262	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1263	struct its_cmd_desc desc;
1264
1265	desc.its_vmovi_cmd.vpe = map->vpe;
1266	desc.its_vmovi_cmd.dev = dev;
1267	desc.its_vmovi_cmd.event_id = id;
1268	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1269
1270	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1271}
1272
1273static void its_send_vmapp(struct its_node *its,
1274			   struct its_vpe *vpe, bool valid)
1275{
1276	struct its_cmd_desc desc;
1277
1278	desc.its_vmapp_cmd.vpe = vpe;
1279	desc.its_vmapp_cmd.valid = valid;
1280	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1281
1282	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1283}
1284
1285static void its_send_vmovp(struct its_vpe *vpe)
1286{
1287	struct its_cmd_desc desc = {};
1288	struct its_node *its;
1289	unsigned long flags;
1290	int col_id = vpe->col_idx;
1291
1292	desc.its_vmovp_cmd.vpe = vpe;
1293
1294	if (!its_list_map) {
1295		its = list_first_entry(&its_nodes, struct its_node, entry);
1296		desc.its_vmovp_cmd.col = &its->collections[col_id];
1297		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1298		return;
1299	}
1300
1301	/*
1302	 * Yet another marvel of the architecture. If using the
1303	 * its_list "feature", we need to make sure that all ITSs
1304	 * receive all VMOVP commands in the same order. The only way
1305	 * to guarantee this is to make vmovp a serialization point.
1306	 *
1307	 * Wall <-- Head.
1308	 */
1309	raw_spin_lock_irqsave(&vmovp_lock, flags);
1310
1311	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1312	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1313
1314	/* Emit VMOVPs */
1315	list_for_each_entry(its, &its_nodes, entry) {
1316		if (!is_v4(its))
1317			continue;
1318
1319		if (!require_its_list_vmovp(vpe->its_vm, its))
1320			continue;
1321
1322		desc.its_vmovp_cmd.col = &its->collections[col_id];
1323		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1324	}
1325
1326	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1327}
1328
1329static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1330{
1331	struct its_cmd_desc desc;
1332
1333	desc.its_vinvall_cmd.vpe = vpe;
1334	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1335}
1336
1337static void its_send_vinv(struct its_device *dev, u32 event_id)
1338{
1339	struct its_cmd_desc desc;
1340
1341	/*
1342	 * There is no real VINV command. This is just a normal INV,
1343	 * with a VSYNC instead of a SYNC.
1344	 */
1345	desc.its_inv_cmd.dev = dev;
1346	desc.its_inv_cmd.event_id = event_id;
1347
1348	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1349}
1350
1351static void its_send_vint(struct its_device *dev, u32 event_id)
1352{
1353	struct its_cmd_desc desc;
1354
1355	/*
1356	 * There is no real VINT command. This is just a normal INT,
1357	 * with a VSYNC instead of a SYNC.
1358	 */
1359	desc.its_int_cmd.dev = dev;
1360	desc.its_int_cmd.event_id = event_id;
1361
1362	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1363}
1364
1365static void its_send_vclear(struct its_device *dev, u32 event_id)
1366{
1367	struct its_cmd_desc desc;
1368
1369	/*
1370	 * There is no real VCLEAR command. This is just a normal CLEAR,
1371	 * with a VSYNC instead of a SYNC.
1372	 */
1373	desc.its_clear_cmd.dev = dev;
1374	desc.its_clear_cmd.event_id = event_id;
1375
1376	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1377}
1378
1379static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1380{
1381	struct its_cmd_desc desc;
1382
1383	desc.its_invdb_cmd.vpe = vpe;
1384	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1385}
1386
1387/*
1388 * irqchip functions - assumes MSI, mostly.
1389 */
1390static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1391{
1392	struct its_vlpi_map *map = get_vlpi_map(d);
1393	irq_hw_number_t hwirq;
1394	void *va;
1395	u8 *cfg;
1396
1397	if (map) {
1398		va = page_address(map->vm->vprop_page);
1399		hwirq = map->vintid;
1400
1401		/* Remember the updated property */
1402		map->properties &= ~clr;
1403		map->properties |= set | LPI_PROP_GROUP1;
1404	} else {
1405		va = gic_rdists->prop_table_va;
1406		hwirq = d->hwirq;
1407	}
1408
1409	cfg = va + hwirq - 8192;
1410	*cfg &= ~clr;
1411	*cfg |= set | LPI_PROP_GROUP1;
1412
1413	/*
1414	 * Make the above write visible to the redistributors.
1415	 * And yes, we're flushing exactly: One. Single. Byte.
1416	 * Humpf...
1417	 */
1418	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1419		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1420	else
1421		dsb(ishst);
1422}
1423
1424static void wait_for_syncr(void __iomem *rdbase)
1425{
1426	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1427		cpu_relax();
1428}
1429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430static void direct_lpi_inv(struct irq_data *d)
1431{
1432	struct its_vlpi_map *map = get_vlpi_map(d);
1433	void __iomem *rdbase;
1434	unsigned long flags;
1435	u64 val;
1436	int cpu;
1437
1438	if (map) {
1439		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1440
1441		WARN_ON(!is_v4_1(its_dev->its));
1442
1443		val  = GICR_INVLPIR_V;
1444		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1445		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1446	} else {
1447		val = d->hwirq;
1448	}
1449
1450	/* Target the redistributor this LPI is currently routed to */
1451	cpu = irq_to_cpuid_lock(d, &flags);
1452	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1453	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1454	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1455
1456	wait_for_syncr(rdbase);
1457	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1458	irq_to_cpuid_unlock(d, flags);
1459}
1460
1461static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1462{
1463	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1464
1465	lpi_write_config(d, clr, set);
1466	if (gic_rdists->has_direct_lpi &&
1467	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1468		direct_lpi_inv(d);
1469	else if (!irqd_is_forwarded_to_vcpu(d))
1470		its_send_inv(its_dev, its_get_event_id(d));
1471	else
1472		its_send_vinv(its_dev, its_get_event_id(d));
1473}
1474
1475static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1476{
1477	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1478	u32 event = its_get_event_id(d);
1479	struct its_vlpi_map *map;
1480
1481	/*
1482	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1483	 * here.
1484	 */
1485	if (is_v4_1(its_dev->its))
1486		return;
1487
1488	map = dev_event_to_vlpi_map(its_dev, event);
1489
1490	if (map->db_enabled == enable)
1491		return;
1492
1493	map->db_enabled = enable;
1494
1495	/*
1496	 * More fun with the architecture:
1497	 *
1498	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1499	 * value or to 1023, depending on the enable bit. But that
1500	 * would be issuing a mapping for an /existing/ DevID+EventID
1501	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1502	 * to the /same/ vPE, using this opportunity to adjust the
1503	 * doorbell. Mouahahahaha. We loves it, Precious.
1504	 */
1505	its_send_vmovi(its_dev, event);
1506}
1507
1508static void its_mask_irq(struct irq_data *d)
1509{
1510	if (irqd_is_forwarded_to_vcpu(d))
1511		its_vlpi_set_doorbell(d, false);
1512
1513	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1514}
1515
1516static void its_unmask_irq(struct irq_data *d)
1517{
1518	if (irqd_is_forwarded_to_vcpu(d))
1519		its_vlpi_set_doorbell(d, true);
1520
1521	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1522}
1523
1524static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1525{
1526	if (irqd_affinity_is_managed(d))
1527		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1528
1529	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1530}
1531
1532static void its_inc_lpi_count(struct irq_data *d, int cpu)
1533{
1534	if (irqd_affinity_is_managed(d))
1535		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1536	else
1537		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1538}
1539
1540static void its_dec_lpi_count(struct irq_data *d, int cpu)
1541{
1542	if (irqd_affinity_is_managed(d))
1543		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1544	else
1545		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1546}
1547
1548static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1549					      const struct cpumask *cpu_mask)
1550{
1551	unsigned int cpu = nr_cpu_ids, tmp;
1552	int count = S32_MAX;
1553
1554	for_each_cpu(tmp, cpu_mask) {
1555		int this_count = its_read_lpi_count(d, tmp);
1556		if (this_count < count) {
1557			cpu = tmp;
1558		        count = this_count;
1559		}
1560	}
1561
1562	return cpu;
1563}
1564
1565/*
1566 * As suggested by Thomas Gleixner in:
1567 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1568 */
1569static int its_select_cpu(struct irq_data *d,
1570			  const struct cpumask *aff_mask)
1571{
1572	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1573	cpumask_var_t tmpmask;
 
 
 
1574	int cpu, node;
 
 
1575
1576	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1577		return -ENOMEM;
1578
1579	node = its_dev->its->numa_node;
1580
1581	if (!irqd_affinity_is_managed(d)) {
1582		/* First try the NUMA node */
1583		if (node != NUMA_NO_NODE) {
1584			/*
1585			 * Try the intersection of the affinity mask and the
1586			 * node mask (and the online mask, just to be safe).
1587			 */
1588			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1589			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1590
1591			/*
1592			 * Ideally, we would check if the mask is empty, and
1593			 * try again on the full node here.
1594			 *
1595			 * But it turns out that the way ACPI describes the
1596			 * affinity for ITSs only deals about memory, and
1597			 * not target CPUs, so it cannot describe a single
1598			 * ITS placed next to two NUMA nodes.
1599			 *
1600			 * Instead, just fallback on the online mask. This
1601			 * diverges from Thomas' suggestion above.
1602			 */
1603			cpu = cpumask_pick_least_loaded(d, tmpmask);
1604			if (cpu < nr_cpu_ids)
1605				goto out;
1606
1607			/* If we can't cross sockets, give up */
1608			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1609				goto out;
1610
1611			/* If the above failed, expand the search */
1612		}
1613
1614		/* Try the intersection of the affinity and online masks */
1615		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1616
1617		/* If that doesn't fly, the online mask is the last resort */
1618		if (cpumask_empty(tmpmask))
1619			cpumask_copy(tmpmask, cpu_online_mask);
1620
1621		cpu = cpumask_pick_least_loaded(d, tmpmask);
1622	} else {
1623		cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1624
1625		/* If we cannot cross sockets, limit the search to that node */
1626		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1627		    node != NUMA_NO_NODE)
1628			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1629
1630		cpu = cpumask_pick_least_loaded(d, tmpmask);
1631	}
1632out:
1633	free_cpumask_var(tmpmask);
1634
1635	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1636	return cpu;
1637}
1638
1639static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1640			    bool force)
1641{
1642	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1643	struct its_collection *target_col;
1644	u32 id = its_get_event_id(d);
1645	int cpu, prev_cpu;
1646
1647	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1648	if (irqd_is_forwarded_to_vcpu(d))
1649		return -EINVAL;
1650
1651	prev_cpu = its_dev->event_map.col_map[id];
1652	its_dec_lpi_count(d, prev_cpu);
1653
1654	if (!force)
1655		cpu = its_select_cpu(d, mask_val);
1656	else
1657		cpu = cpumask_pick_least_loaded(d, mask_val);
1658
1659	if (cpu < 0 || cpu >= nr_cpu_ids)
1660		goto err;
1661
1662	/* don't set the affinity when the target cpu is same as current one */
1663	if (cpu != prev_cpu) {
1664		target_col = &its_dev->its->collections[cpu];
1665		its_send_movi(its_dev, target_col, id);
1666		its_dev->event_map.col_map[id] = cpu;
1667		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1668	}
1669
1670	its_inc_lpi_count(d, cpu);
1671
1672	return IRQ_SET_MASK_OK_DONE;
1673
1674err:
1675	its_inc_lpi_count(d, prev_cpu);
1676	return -EINVAL;
1677}
1678
1679static u64 its_irq_get_msi_base(struct its_device *its_dev)
1680{
1681	struct its_node *its = its_dev->its;
1682
1683	return its->phys_base + GITS_TRANSLATER;
1684}
1685
1686static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1687{
1688	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1689	struct its_node *its;
1690	u64 addr;
1691
1692	its = its_dev->its;
1693	addr = its->get_msi_base(its_dev);
1694
1695	msg->address_lo		= lower_32_bits(addr);
1696	msg->address_hi		= upper_32_bits(addr);
1697	msg->data		= its_get_event_id(d);
1698
1699	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1700}
1701
1702static int its_irq_set_irqchip_state(struct irq_data *d,
1703				     enum irqchip_irq_state which,
1704				     bool state)
1705{
1706	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1707	u32 event = its_get_event_id(d);
1708
1709	if (which != IRQCHIP_STATE_PENDING)
1710		return -EINVAL;
1711
1712	if (irqd_is_forwarded_to_vcpu(d)) {
1713		if (state)
1714			its_send_vint(its_dev, event);
1715		else
1716			its_send_vclear(its_dev, event);
1717	} else {
1718		if (state)
1719			its_send_int(its_dev, event);
1720		else
1721			its_send_clear(its_dev, event);
1722	}
1723
1724	return 0;
1725}
1726
1727static int its_irq_retrigger(struct irq_data *d)
1728{
1729	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1730}
1731
1732/*
1733 * Two favourable cases:
1734 *
1735 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1736 *     for vSGI delivery
1737 *
1738 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1739 *     and we're better off mapping all VPEs always
1740 *
1741 * If neither (a) nor (b) is true, then we map vPEs on demand.
1742 *
1743 */
1744static bool gic_requires_eager_mapping(void)
1745{
1746	if (!its_list_map || gic_rdists->has_rvpeid)
1747		return true;
1748
1749	return false;
1750}
1751
1752static void its_map_vm(struct its_node *its, struct its_vm *vm)
1753{
1754	unsigned long flags;
1755
1756	if (gic_requires_eager_mapping())
1757		return;
1758
1759	raw_spin_lock_irqsave(&vmovp_lock, flags);
1760
1761	/*
1762	 * If the VM wasn't mapped yet, iterate over the vpes and get
1763	 * them mapped now.
1764	 */
1765	vm->vlpi_count[its->list_nr]++;
1766
1767	if (vm->vlpi_count[its->list_nr] == 1) {
1768		int i;
1769
1770		for (i = 0; i < vm->nr_vpes; i++) {
1771			struct its_vpe *vpe = vm->vpes[i];
1772			struct irq_data *d = irq_get_irq_data(vpe->irq);
1773
1774			/* Map the VPE to the first possible CPU */
1775			vpe->col_idx = cpumask_first(cpu_online_mask);
1776			its_send_vmapp(its, vpe, true);
1777			its_send_vinvall(its, vpe);
1778			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1779		}
1780	}
1781
1782	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1783}
1784
1785static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1786{
1787	unsigned long flags;
1788
1789	/* Not using the ITS list? Everything is always mapped. */
1790	if (gic_requires_eager_mapping())
1791		return;
1792
1793	raw_spin_lock_irqsave(&vmovp_lock, flags);
1794
1795	if (!--vm->vlpi_count[its->list_nr]) {
1796		int i;
1797
1798		for (i = 0; i < vm->nr_vpes; i++)
1799			its_send_vmapp(its, vm->vpes[i], false);
1800	}
1801
1802	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1803}
1804
1805static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1806{
1807	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1808	u32 event = its_get_event_id(d);
1809	int ret = 0;
1810
1811	if (!info->map)
1812		return -EINVAL;
1813
1814	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1815
1816	if (!its_dev->event_map.vm) {
1817		struct its_vlpi_map *maps;
1818
1819		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1820			       GFP_ATOMIC);
1821		if (!maps) {
1822			ret = -ENOMEM;
1823			goto out;
1824		}
1825
1826		its_dev->event_map.vm = info->map->vm;
1827		its_dev->event_map.vlpi_maps = maps;
1828	} else if (its_dev->event_map.vm != info->map->vm) {
1829		ret = -EINVAL;
1830		goto out;
1831	}
1832
1833	/* Get our private copy of the mapping information */
1834	its_dev->event_map.vlpi_maps[event] = *info->map;
1835
1836	if (irqd_is_forwarded_to_vcpu(d)) {
1837		/* Already mapped, move it around */
1838		its_send_vmovi(its_dev, event);
1839	} else {
1840		/* Ensure all the VPEs are mapped on this ITS */
1841		its_map_vm(its_dev->its, info->map->vm);
1842
1843		/*
1844		 * Flag the interrupt as forwarded so that we can
1845		 * start poking the virtual property table.
1846		 */
1847		irqd_set_forwarded_to_vcpu(d);
1848
1849		/* Write out the property to the prop table */
1850		lpi_write_config(d, 0xff, info->map->properties);
1851
1852		/* Drop the physical mapping */
1853		its_send_discard(its_dev, event);
1854
1855		/* and install the virtual one */
1856		its_send_vmapti(its_dev, event);
1857
1858		/* Increment the number of VLPIs */
1859		its_dev->event_map.nr_vlpis++;
1860	}
1861
1862out:
1863	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1864	return ret;
1865}
1866
1867static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1868{
1869	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1870	struct its_vlpi_map *map;
1871	int ret = 0;
1872
1873	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1874
1875	map = get_vlpi_map(d);
1876
1877	if (!its_dev->event_map.vm || !map) {
1878		ret = -EINVAL;
1879		goto out;
1880	}
1881
1882	/* Copy our mapping information to the incoming request */
1883	*info->map = *map;
1884
1885out:
1886	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1887	return ret;
1888}
1889
1890static int its_vlpi_unmap(struct irq_data *d)
1891{
1892	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1893	u32 event = its_get_event_id(d);
1894	int ret = 0;
1895
1896	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1897
1898	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1899		ret = -EINVAL;
1900		goto out;
1901	}
1902
1903	/* Drop the virtual mapping */
1904	its_send_discard(its_dev, event);
1905
1906	/* and restore the physical one */
1907	irqd_clr_forwarded_to_vcpu(d);
1908	its_send_mapti(its_dev, d->hwirq, event);
1909	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1910				    LPI_PROP_ENABLED |
1911				    LPI_PROP_GROUP1));
1912
1913	/* Potentially unmap the VM from this ITS */
1914	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1915
1916	/*
1917	 * Drop the refcount and make the device available again if
1918	 * this was the last VLPI.
1919	 */
1920	if (!--its_dev->event_map.nr_vlpis) {
1921		its_dev->event_map.vm = NULL;
1922		kfree(its_dev->event_map.vlpi_maps);
1923	}
1924
1925out:
1926	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1927	return ret;
1928}
1929
1930static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1931{
1932	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1933
1934	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1935		return -EINVAL;
1936
1937	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1938		lpi_update_config(d, 0xff, info->config);
1939	else
1940		lpi_write_config(d, 0xff, info->config);
1941	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1942
1943	return 0;
1944}
1945
1946static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1947{
1948	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1949	struct its_cmd_info *info = vcpu_info;
1950
1951	/* Need a v4 ITS */
1952	if (!is_v4(its_dev->its))
1953		return -EINVAL;
1954
1955	/* Unmap request? */
1956	if (!info)
1957		return its_vlpi_unmap(d);
1958
1959	switch (info->cmd_type) {
1960	case MAP_VLPI:
1961		return its_vlpi_map(d, info);
1962
1963	case GET_VLPI:
1964		return its_vlpi_get(d, info);
1965
1966	case PROP_UPDATE_VLPI:
1967	case PROP_UPDATE_AND_INV_VLPI:
1968		return its_vlpi_prop_update(d, info);
1969
1970	default:
1971		return -EINVAL;
1972	}
1973}
1974
1975static struct irq_chip its_irq_chip = {
1976	.name			= "ITS",
1977	.irq_mask		= its_mask_irq,
1978	.irq_unmask		= its_unmask_irq,
1979	.irq_eoi		= irq_chip_eoi_parent,
1980	.irq_set_affinity	= its_set_affinity,
1981	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1982	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1983	.irq_retrigger		= its_irq_retrigger,
1984	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1985};
1986
1987
1988/*
1989 * How we allocate LPIs:
1990 *
1991 * lpi_range_list contains ranges of LPIs that are to available to
1992 * allocate from. To allocate LPIs, just pick the first range that
1993 * fits the required allocation, and reduce it by the required
1994 * amount. Once empty, remove the range from the list.
1995 *
1996 * To free a range of LPIs, add a free range to the list, sort it and
1997 * merge the result if the new range happens to be adjacent to an
1998 * already free block.
1999 *
2000 * The consequence of the above is that allocation is cost is low, but
2001 * freeing is expensive. We assumes that freeing rarely occurs.
2002 */
2003#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2004
2005static DEFINE_MUTEX(lpi_range_lock);
2006static LIST_HEAD(lpi_range_list);
2007
2008struct lpi_range {
2009	struct list_head	entry;
2010	u32			base_id;
2011	u32			span;
2012};
2013
2014static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2015{
2016	struct lpi_range *range;
2017
2018	range = kmalloc(sizeof(*range), GFP_KERNEL);
2019	if (range) {
2020		range->base_id = base;
2021		range->span = span;
2022	}
2023
2024	return range;
2025}
2026
2027static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2028{
2029	struct lpi_range *range, *tmp;
2030	int err = -ENOSPC;
2031
2032	mutex_lock(&lpi_range_lock);
2033
2034	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2035		if (range->span >= nr_lpis) {
2036			*base = range->base_id;
2037			range->base_id += nr_lpis;
2038			range->span -= nr_lpis;
2039
2040			if (range->span == 0) {
2041				list_del(&range->entry);
2042				kfree(range);
2043			}
2044
2045			err = 0;
2046			break;
2047		}
2048	}
2049
2050	mutex_unlock(&lpi_range_lock);
2051
2052	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2053	return err;
2054}
2055
2056static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2057{
2058	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2059		return;
2060	if (a->base_id + a->span != b->base_id)
2061		return;
2062	b->base_id = a->base_id;
2063	b->span += a->span;
2064	list_del(&a->entry);
2065	kfree(a);
2066}
2067
2068static int free_lpi_range(u32 base, u32 nr_lpis)
2069{
2070	struct lpi_range *new, *old;
2071
2072	new = mk_lpi_range(base, nr_lpis);
2073	if (!new)
2074		return -ENOMEM;
2075
2076	mutex_lock(&lpi_range_lock);
2077
2078	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2079		if (old->base_id < base)
2080			break;
2081	}
2082	/*
2083	 * old is the last element with ->base_id smaller than base,
2084	 * so new goes right after it. If there are no elements with
2085	 * ->base_id smaller than base, &old->entry ends up pointing
2086	 * at the head of the list, and inserting new it the start of
2087	 * the list is the right thing to do in that case as well.
2088	 */
2089	list_add(&new->entry, &old->entry);
2090	/*
2091	 * Now check if we can merge with the preceding and/or
2092	 * following ranges.
2093	 */
2094	merge_lpi_ranges(old, new);
2095	merge_lpi_ranges(new, list_next_entry(new, entry));
2096
2097	mutex_unlock(&lpi_range_lock);
2098	return 0;
2099}
2100
2101static int __init its_lpi_init(u32 id_bits)
2102{
2103	u32 lpis = (1UL << id_bits) - 8192;
2104	u32 numlpis;
2105	int err;
2106
2107	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2108
2109	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2110		lpis = numlpis;
2111		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2112			lpis);
2113	}
2114
2115	/*
2116	 * Initializing the allocator is just the same as freeing the
2117	 * full range of LPIs.
2118	 */
2119	err = free_lpi_range(8192, lpis);
2120	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2121	return err;
2122}
2123
2124static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2125{
2126	unsigned long *bitmap = NULL;
2127	int err = 0;
2128
2129	do {
2130		err = alloc_lpi_range(nr_irqs, base);
2131		if (!err)
2132			break;
2133
2134		nr_irqs /= 2;
2135	} while (nr_irqs > 0);
2136
2137	if (!nr_irqs)
2138		err = -ENOSPC;
2139
2140	if (err)
2141		goto out;
2142
2143	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2144	if (!bitmap)
2145		goto out;
2146
2147	*nr_ids = nr_irqs;
2148
2149out:
2150	if (!bitmap)
2151		*base = *nr_ids = 0;
2152
2153	return bitmap;
2154}
2155
2156static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2157{
2158	WARN_ON(free_lpi_range(base, nr_ids));
2159	kfree(bitmap);
2160}
2161
2162static void gic_reset_prop_table(void *va)
2163{
2164	/* Priority 0xa0, Group-1, disabled */
2165	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2166
2167	/* Make sure the GIC will observe the written configuration */
2168	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2169}
2170
2171static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2172{
2173	struct page *prop_page;
2174
2175	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2176	if (!prop_page)
2177		return NULL;
2178
2179	gic_reset_prop_table(page_address(prop_page));
2180
2181	return prop_page;
2182}
2183
2184static void its_free_prop_table(struct page *prop_page)
2185{
2186	free_pages((unsigned long)page_address(prop_page),
2187		   get_order(LPI_PROPBASE_SZ));
2188}
2189
2190static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2191{
2192	phys_addr_t start, end, addr_end;
2193	u64 i;
2194
2195	/*
2196	 * We don't bother checking for a kdump kernel as by
2197	 * construction, the LPI tables are out of this kernel's
2198	 * memory map.
2199	 */
2200	if (is_kdump_kernel())
2201		return true;
2202
2203	addr_end = addr + size - 1;
2204
2205	for_each_reserved_mem_range(i, &start, &end) {
2206		if (addr >= start && addr_end <= end)
2207			return true;
2208	}
2209
2210	/* Not found, not a good sign... */
2211	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2212		&addr, &addr_end);
2213	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2214	return false;
2215}
2216
2217static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2218{
2219	if (efi_enabled(EFI_CONFIG_TABLES))
2220		return efi_mem_reserve_persistent(addr, size);
2221
2222	return 0;
2223}
2224
2225static int __init its_setup_lpi_prop_table(void)
2226{
2227	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2228		u64 val;
2229
2230		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2231		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2232
2233		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2234		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2235						     LPI_PROPBASE_SZ,
2236						     MEMREMAP_WB);
2237		gic_reset_prop_table(gic_rdists->prop_table_va);
2238	} else {
2239		struct page *page;
2240
2241		lpi_id_bits = min_t(u32,
2242				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2243				    ITS_MAX_LPI_NRBITS);
2244		page = its_allocate_prop_table(GFP_NOWAIT);
2245		if (!page) {
2246			pr_err("Failed to allocate PROPBASE\n");
2247			return -ENOMEM;
2248		}
2249
2250		gic_rdists->prop_table_pa = page_to_phys(page);
2251		gic_rdists->prop_table_va = page_address(page);
2252		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2253					  LPI_PROPBASE_SZ));
2254	}
2255
2256	pr_info("GICv3: using LPI property table @%pa\n",
2257		&gic_rdists->prop_table_pa);
2258
2259	return its_lpi_init(lpi_id_bits);
2260}
2261
2262static const char *its_base_type_string[] = {
2263	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2264	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2265	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2266	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2267	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2268	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2269	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2270};
2271
2272static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2273{
2274	u32 idx = baser - its->tables;
2275
2276	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2277}
2278
2279static void its_write_baser(struct its_node *its, struct its_baser *baser,
2280			    u64 val)
2281{
2282	u32 idx = baser - its->tables;
2283
2284	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2285	baser->val = its_read_baser(its, baser);
2286}
2287
2288static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2289			   u64 cache, u64 shr, u32 order, bool indirect)
2290{
2291	u64 val = its_read_baser(its, baser);
2292	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2293	u64 type = GITS_BASER_TYPE(val);
2294	u64 baser_phys, tmp;
2295	u32 alloc_pages, psz;
2296	struct page *page;
2297	void *base;
2298
2299	psz = baser->psz;
2300	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2301	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2302		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2303			&its->phys_base, its_base_type_string[type],
2304			alloc_pages, GITS_BASER_PAGES_MAX);
2305		alloc_pages = GITS_BASER_PAGES_MAX;
2306		order = get_order(GITS_BASER_PAGES_MAX * psz);
2307	}
2308
2309	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2310	if (!page)
2311		return -ENOMEM;
2312
2313	base = (void *)page_address(page);
2314	baser_phys = virt_to_phys(base);
2315
2316	/* Check if the physical address of the memory is above 48bits */
2317	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2318
2319		/* 52bit PA is supported only when PageSize=64K */
2320		if (psz != SZ_64K) {
2321			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2322			free_pages((unsigned long)base, order);
2323			return -ENXIO;
2324		}
2325
2326		/* Convert 52bit PA to 48bit field */
2327		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2328	}
2329
2330retry_baser:
2331	val = (baser_phys					 |
2332		(type << GITS_BASER_TYPE_SHIFT)			 |
2333		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2334		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2335		cache						 |
2336		shr						 |
2337		GITS_BASER_VALID);
2338
2339	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2340
2341	switch (psz) {
2342	case SZ_4K:
2343		val |= GITS_BASER_PAGE_SIZE_4K;
2344		break;
2345	case SZ_16K:
2346		val |= GITS_BASER_PAGE_SIZE_16K;
2347		break;
2348	case SZ_64K:
2349		val |= GITS_BASER_PAGE_SIZE_64K;
2350		break;
2351	}
2352
 
 
 
2353	its_write_baser(its, baser, val);
2354	tmp = baser->val;
2355
2356	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2357		/*
2358		 * Shareability didn't stick. Just use
2359		 * whatever the read reported, which is likely
2360		 * to be the only thing this redistributor
2361		 * supports. If that's zero, make it
2362		 * non-cacheable as well.
2363		 */
2364		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2365		if (!shr) {
2366			cache = GITS_BASER_nC;
2367			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2368		}
2369		goto retry_baser;
2370	}
2371
2372	if (val != tmp) {
2373		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2374		       &its->phys_base, its_base_type_string[type],
2375		       val, tmp);
2376		free_pages((unsigned long)base, order);
2377		return -ENXIO;
2378	}
2379
2380	baser->order = order;
2381	baser->base = base;
2382	baser->psz = psz;
2383	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2384
2385	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2386		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2387		its_base_type_string[type],
2388		(unsigned long)virt_to_phys(base),
2389		indirect ? "indirect" : "flat", (int)esz,
2390		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2391
2392	return 0;
2393}
2394
2395static bool its_parse_indirect_baser(struct its_node *its,
2396				     struct its_baser *baser,
2397				     u32 *order, u32 ids)
2398{
2399	u64 tmp = its_read_baser(its, baser);
2400	u64 type = GITS_BASER_TYPE(tmp);
2401	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2402	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2403	u32 new_order = *order;
2404	u32 psz = baser->psz;
2405	bool indirect = false;
2406
2407	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2408	if ((esz << ids) > (psz * 2)) {
2409		/*
2410		 * Find out whether hw supports a single or two-level table by
2411		 * table by reading bit at offset '62' after writing '1' to it.
2412		 */
2413		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2414		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2415
2416		if (indirect) {
2417			/*
2418			 * The size of the lvl2 table is equal to ITS page size
2419			 * which is 'psz'. For computing lvl1 table size,
2420			 * subtract ID bits that sparse lvl2 table from 'ids'
2421			 * which is reported by ITS hardware times lvl1 table
2422			 * entry size.
2423			 */
2424			ids -= ilog2(psz / (int)esz);
2425			esz = GITS_LVL1_ENTRY_SIZE;
2426		}
2427	}
2428
2429	/*
2430	 * Allocate as many entries as required to fit the
2431	 * range of device IDs that the ITS can grok... The ID
2432	 * space being incredibly sparse, this results in a
2433	 * massive waste of memory if two-level device table
2434	 * feature is not supported by hardware.
2435	 */
2436	new_order = max_t(u32, get_order(esz << ids), new_order);
2437	if (new_order >= MAX_ORDER) {
2438		new_order = MAX_ORDER - 1;
2439		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2440		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2441			&its->phys_base, its_base_type_string[type],
2442			device_ids(its), ids);
2443	}
2444
2445	*order = new_order;
2446
2447	return indirect;
2448}
2449
2450static u32 compute_common_aff(u64 val)
2451{
2452	u32 aff, clpiaff;
2453
2454	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2455	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2456
2457	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2458}
2459
2460static u32 compute_its_aff(struct its_node *its)
2461{
2462	u64 val;
2463	u32 svpet;
2464
2465	/*
2466	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2467	 * the resulting affinity. We then use that to see if this match
2468	 * our own affinity.
2469	 */
2470	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2471	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2472	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2473	return compute_common_aff(val);
2474}
2475
2476static struct its_node *find_sibling_its(struct its_node *cur_its)
2477{
2478	struct its_node *its;
2479	u32 aff;
2480
2481	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2482		return NULL;
2483
2484	aff = compute_its_aff(cur_its);
2485
2486	list_for_each_entry(its, &its_nodes, entry) {
2487		u64 baser;
2488
2489		if (!is_v4_1(its) || its == cur_its)
2490			continue;
2491
2492		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2493			continue;
2494
2495		if (aff != compute_its_aff(its))
2496			continue;
2497
2498		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2499		baser = its->tables[2].val;
2500		if (!(baser & GITS_BASER_VALID))
2501			continue;
2502
2503		return its;
2504	}
2505
2506	return NULL;
2507}
2508
2509static void its_free_tables(struct its_node *its)
2510{
2511	int i;
2512
2513	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2514		if (its->tables[i].base) {
2515			free_pages((unsigned long)its->tables[i].base,
2516				   its->tables[i].order);
2517			its->tables[i].base = NULL;
2518		}
2519	}
2520}
2521
2522static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2523{
2524	u64 psz = SZ_64K;
2525
2526	while (psz) {
2527		u64 val, gpsz;
2528
2529		val = its_read_baser(its, baser);
2530		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2531
2532		switch (psz) {
2533		case SZ_64K:
2534			gpsz = GITS_BASER_PAGE_SIZE_64K;
2535			break;
2536		case SZ_16K:
2537			gpsz = GITS_BASER_PAGE_SIZE_16K;
2538			break;
2539		case SZ_4K:
2540		default:
2541			gpsz = GITS_BASER_PAGE_SIZE_4K;
2542			break;
2543		}
2544
2545		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2546
2547		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2548		its_write_baser(its, baser, val);
2549
2550		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2551			break;
2552
2553		switch (psz) {
2554		case SZ_64K:
2555			psz = SZ_16K;
2556			break;
2557		case SZ_16K:
2558			psz = SZ_4K;
2559			break;
2560		case SZ_4K:
2561		default:
2562			return -1;
2563		}
2564	}
2565
2566	baser->psz = psz;
2567	return 0;
2568}
2569
2570static int its_alloc_tables(struct its_node *its)
2571{
2572	u64 shr = GITS_BASER_InnerShareable;
2573	u64 cache = GITS_BASER_RaWaWb;
2574	int err, i;
2575
2576	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2577		/* erratum 24313: ignore memory access type */
2578		cache = GITS_BASER_nCnB;
2579
 
 
 
 
 
2580	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2581		struct its_baser *baser = its->tables + i;
2582		u64 val = its_read_baser(its, baser);
2583		u64 type = GITS_BASER_TYPE(val);
2584		bool indirect = false;
2585		u32 order;
2586
2587		if (type == GITS_BASER_TYPE_NONE)
2588			continue;
2589
2590		if (its_probe_baser_psz(its, baser)) {
2591			its_free_tables(its);
2592			return -ENXIO;
2593		}
2594
2595		order = get_order(baser->psz);
2596
2597		switch (type) {
2598		case GITS_BASER_TYPE_DEVICE:
2599			indirect = its_parse_indirect_baser(its, baser, &order,
2600							    device_ids(its));
2601			break;
2602
2603		case GITS_BASER_TYPE_VCPU:
2604			if (is_v4_1(its)) {
2605				struct its_node *sibling;
2606
2607				WARN_ON(i != 2);
2608				if ((sibling = find_sibling_its(its))) {
2609					*baser = sibling->tables[2];
2610					its_write_baser(its, baser, baser->val);
2611					continue;
2612				}
2613			}
2614
2615			indirect = its_parse_indirect_baser(its, baser, &order,
2616							    ITS_MAX_VPEID_BITS);
2617			break;
2618		}
2619
2620		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2621		if (err < 0) {
2622			its_free_tables(its);
2623			return err;
2624		}
2625
2626		/* Update settings which will be used for next BASERn */
2627		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2628		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2629	}
2630
2631	return 0;
2632}
2633
2634static u64 inherit_vpe_l1_table_from_its(void)
2635{
2636	struct its_node *its;
2637	u64 val;
2638	u32 aff;
2639
2640	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2641	aff = compute_common_aff(val);
2642
2643	list_for_each_entry(its, &its_nodes, entry) {
2644		u64 baser, addr;
2645
2646		if (!is_v4_1(its))
2647			continue;
2648
2649		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2650			continue;
2651
2652		if (aff != compute_its_aff(its))
2653			continue;
2654
2655		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2656		baser = its->tables[2].val;
2657		if (!(baser & GITS_BASER_VALID))
2658			continue;
2659
2660		/* We have a winner! */
2661		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2662
2663		val  = GICR_VPROPBASER_4_1_VALID;
2664		if (baser & GITS_BASER_INDIRECT)
2665			val |= GICR_VPROPBASER_4_1_INDIRECT;
2666		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2667				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2668		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2669		case GIC_PAGE_SIZE_64K:
2670			addr = GITS_BASER_ADDR_48_to_52(baser);
2671			break;
2672		default:
2673			addr = baser & GENMASK_ULL(47, 12);
2674			break;
2675		}
2676		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2677		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2678				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2679		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2680				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
 
 
2681		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2682
2683		return val;
2684	}
2685
2686	return 0;
2687}
2688
2689static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2690{
2691	u32 aff;
2692	u64 val;
2693	int cpu;
2694
2695	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2696	aff = compute_common_aff(val);
2697
2698	for_each_possible_cpu(cpu) {
2699		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2700
2701		if (!base || cpu == smp_processor_id())
2702			continue;
2703
2704		val = gic_read_typer(base + GICR_TYPER);
2705		if (aff != compute_common_aff(val))
2706			continue;
2707
2708		/*
2709		 * At this point, we have a victim. This particular CPU
2710		 * has already booted, and has an affinity that matches
2711		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2712		 * Make sure we don't write the Z bit in that case.
2713		 */
2714		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2715		val &= ~GICR_VPROPBASER_4_1_Z;
2716
2717		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2718		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2719
2720		return val;
2721	}
2722
2723	return 0;
2724}
2725
2726static bool allocate_vpe_l2_table(int cpu, u32 id)
2727{
2728	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2729	unsigned int psz, esz, idx, npg, gpsz;
2730	u64 val;
2731	struct page *page;
2732	__le64 *table;
2733
2734	if (!gic_rdists->has_rvpeid)
2735		return true;
2736
2737	/* Skip non-present CPUs */
2738	if (!base)
2739		return true;
2740
2741	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2742
2743	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2744	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2745	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2746
2747	switch (gpsz) {
2748	default:
2749		WARN_ON(1);
2750		fallthrough;
2751	case GIC_PAGE_SIZE_4K:
2752		psz = SZ_4K;
2753		break;
2754	case GIC_PAGE_SIZE_16K:
2755		psz = SZ_16K;
2756		break;
2757	case GIC_PAGE_SIZE_64K:
2758		psz = SZ_64K;
2759		break;
2760	}
2761
2762	/* Don't allow vpe_id that exceeds single, flat table limit */
2763	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2764		return (id < (npg * psz / (esz * SZ_8)));
2765
2766	/* Compute 1st level table index & check if that exceeds table limit */
2767	idx = id >> ilog2(psz / (esz * SZ_8));
2768	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2769		return false;
2770
2771	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2772
2773	/* Allocate memory for 2nd level table */
2774	if (!table[idx]) {
2775		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2776		if (!page)
2777			return false;
2778
2779		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2780		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2781			gic_flush_dcache_to_poc(page_address(page), psz);
2782
2783		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2784
2785		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2786		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2788
2789		/* Ensure updated table contents are visible to RD hardware */
2790		dsb(sy);
2791	}
2792
2793	return true;
2794}
2795
2796static int allocate_vpe_l1_table(void)
2797{
2798	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2799	u64 val, gpsz, npg, pa;
2800	unsigned int psz = SZ_64K;
2801	unsigned int np, epp, esz;
2802	struct page *page;
2803
2804	if (!gic_rdists->has_rvpeid)
2805		return 0;
2806
2807	/*
2808	 * if VPENDBASER.Valid is set, disable any previously programmed
2809	 * VPE by setting PendingLast while clearing Valid. This has the
2810	 * effect of making sure no doorbell will be generated and we can
2811	 * then safely clear VPROPBASER.Valid.
2812	 */
2813	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2814		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2815				      vlpi_base + GICR_VPENDBASER);
2816
2817	/*
2818	 * If we can inherit the configuration from another RD, let's do
2819	 * so. Otherwise, we have to go through the allocation process. We
2820	 * assume that all RDs have the exact same requirements, as
2821	 * nothing will work otherwise.
2822	 */
2823	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2824	if (val & GICR_VPROPBASER_4_1_VALID)
2825		goto out;
2826
2827	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2828	if (!gic_data_rdist()->vpe_table_mask)
2829		return -ENOMEM;
2830
2831	val = inherit_vpe_l1_table_from_its();
2832	if (val & GICR_VPROPBASER_4_1_VALID)
2833		goto out;
2834
2835	/* First probe the page size */
2836	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2837	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2838	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2839	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2840	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2841
2842	switch (gpsz) {
2843	default:
2844		gpsz = GIC_PAGE_SIZE_4K;
2845		fallthrough;
2846	case GIC_PAGE_SIZE_4K:
2847		psz = SZ_4K;
2848		break;
2849	case GIC_PAGE_SIZE_16K:
2850		psz = SZ_16K;
2851		break;
2852	case GIC_PAGE_SIZE_64K:
2853		psz = SZ_64K;
2854		break;
2855	}
2856
2857	/*
2858	 * Start populating the register from scratch, including RO fields
2859	 * (which we want to print in debug cases...)
2860	 */
2861	val = 0;
2862	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2863	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2864
2865	/* How many entries per GIC page? */
2866	esz++;
2867	epp = psz / (esz * SZ_8);
2868
2869	/*
2870	 * If we need more than just a single L1 page, flag the table
2871	 * as indirect and compute the number of required L1 pages.
2872	 */
2873	if (epp < ITS_MAX_VPEID) {
2874		int nl2;
2875
2876		val |= GICR_VPROPBASER_4_1_INDIRECT;
2877
2878		/* Number of L2 pages required to cover the VPEID space */
2879		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2880
2881		/* Number of L1 pages to point to the L2 pages */
2882		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2883	} else {
2884		npg = 1;
2885	}
2886
2887	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2888
2889	/* Right, that's the number of CPU pages we need for L1 */
2890	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2891
2892	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2893		 np, npg, psz, epp, esz);
2894	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2895	if (!page)
2896		return -ENOMEM;
2897
2898	gic_data_rdist()->vpe_l1_base = page_address(page);
2899	pa = virt_to_phys(page_address(page));
2900	WARN_ON(!IS_ALIGNED(pa, psz));
2901
2902	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2903	val |= GICR_VPROPBASER_RaWb;
2904	val |= GICR_VPROPBASER_InnerShareable;
 
 
2905	val |= GICR_VPROPBASER_4_1_Z;
2906	val |= GICR_VPROPBASER_4_1_VALID;
2907
2908out:
2909	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2910	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2911
2912	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2913		 smp_processor_id(), val,
2914		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2915
2916	return 0;
2917}
2918
2919static int its_alloc_collections(struct its_node *its)
2920{
2921	int i;
2922
2923	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2924				   GFP_KERNEL);
2925	if (!its->collections)
2926		return -ENOMEM;
2927
2928	for (i = 0; i < nr_cpu_ids; i++)
2929		its->collections[i].target_address = ~0ULL;
2930
2931	return 0;
2932}
2933
2934static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2935{
2936	struct page *pend_page;
2937
2938	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2939				get_order(LPI_PENDBASE_SZ));
2940	if (!pend_page)
2941		return NULL;
2942
2943	/* Make sure the GIC will observe the zero-ed page */
2944	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2945
2946	return pend_page;
2947}
2948
2949static void its_free_pending_table(struct page *pt)
2950{
2951	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2952}
2953
2954/*
2955 * Booting with kdump and LPIs enabled is generally fine. Any other
2956 * case is wrong in the absence of firmware/EFI support.
2957 */
2958static bool enabled_lpis_allowed(void)
2959{
2960	phys_addr_t addr;
2961	u64 val;
2962
2963	/* Check whether the property table is in a reserved region */
2964	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2965	addr = val & GENMASK_ULL(51, 12);
2966
2967	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2968}
2969
2970static int __init allocate_lpi_tables(void)
2971{
2972	u64 val;
2973	int err, cpu;
2974
2975	/*
2976	 * If LPIs are enabled while we run this from the boot CPU,
2977	 * flag the RD tables as pre-allocated if the stars do align.
2978	 */
2979	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2980	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2981		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2982				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2983		pr_info("GICv3: Using preallocated redistributor tables\n");
2984	}
2985
2986	err = its_setup_lpi_prop_table();
2987	if (err)
2988		return err;
2989
2990	/*
2991	 * We allocate all the pending tables anyway, as we may have a
2992	 * mix of RDs that have had LPIs enabled, and some that
2993	 * don't. We'll free the unused ones as each CPU comes online.
2994	 */
2995	for_each_possible_cpu(cpu) {
2996		struct page *pend_page;
2997
2998		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2999		if (!pend_page) {
3000			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3001			return -ENOMEM;
3002		}
3003
3004		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3005	}
3006
3007	return 0;
3008}
3009
3010static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3011{
3012	u32 count = 1000000;	/* 1s! */
3013	bool clean;
3014	u64 val;
3015
3016	val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3017	val &= ~GICR_VPENDBASER_Valid;
3018	val &= ~clr;
3019	val |= set;
3020	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3021
3022	do {
3023		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3024		clean = !(val & GICR_VPENDBASER_Dirty);
3025		if (!clean) {
3026			count--;
3027			cpu_relax();
3028			udelay(1);
3029		}
3030	} while (!clean && count);
3031
3032	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3033		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3034		val |= GICR_VPENDBASER_PendingLast;
3035	}
3036
3037	return val;
3038}
3039
3040static void its_cpu_init_lpis(void)
3041{
3042	void __iomem *rbase = gic_data_rdist_rd_base();
3043	struct page *pend_page;
3044	phys_addr_t paddr;
3045	u64 val, tmp;
3046
3047	if (gic_data_rdist()->lpi_enabled)
3048		return;
3049
3050	val = readl_relaxed(rbase + GICR_CTLR);
3051	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3052	    (val & GICR_CTLR_ENABLE_LPIS)) {
3053		/*
3054		 * Check that we get the same property table on all
3055		 * RDs. If we don't, this is hopeless.
3056		 */
3057		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3058		paddr &= GENMASK_ULL(51, 12);
3059		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3060			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3061
3062		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3063		paddr &= GENMASK_ULL(51, 16);
3064
3065		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3066		its_free_pending_table(gic_data_rdist()->pend_page);
3067		gic_data_rdist()->pend_page = NULL;
3068
3069		goto out;
3070	}
3071
3072	pend_page = gic_data_rdist()->pend_page;
3073	paddr = page_to_phys(pend_page);
3074	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3075
3076	/* set PROPBASE */
3077	val = (gic_rdists->prop_table_pa |
3078	       GICR_PROPBASER_InnerShareable |
3079	       GICR_PROPBASER_RaWaWb |
3080	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3081
3082	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3083	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3084
 
 
 
3085	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3086		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3087			/*
3088			 * The HW reports non-shareable, we must
3089			 * remove the cacheability attributes as
3090			 * well.
3091			 */
3092			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3093				 GICR_PROPBASER_CACHEABILITY_MASK);
3094			val |= GICR_PROPBASER_nC;
3095			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3096		}
3097		pr_info_once("GIC: using cache flushing for LPI property table\n");
3098		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3099	}
3100
3101	/* set PENDBASE */
3102	val = (page_to_phys(pend_page) |
3103	       GICR_PENDBASER_InnerShareable |
3104	       GICR_PENDBASER_RaWaWb);
3105
3106	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3107	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3108
 
 
 
3109	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3110		/*
3111		 * The HW reports non-shareable, we must remove the
3112		 * cacheability attributes as well.
3113		 */
3114		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3115			 GICR_PENDBASER_CACHEABILITY_MASK);
3116		val |= GICR_PENDBASER_nC;
3117		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3118	}
3119
3120	/* Enable LPIs */
3121	val = readl_relaxed(rbase + GICR_CTLR);
3122	val |= GICR_CTLR_ENABLE_LPIS;
3123	writel_relaxed(val, rbase + GICR_CTLR);
3124
 
3125	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3126		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3127
3128		/*
3129		 * It's possible for CPU to receive VLPIs before it is
3130		 * scheduled as a vPE, especially for the first CPU, and the
3131		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3132		 * as out of range and dropped by GIC.
3133		 * So we initialize IDbits to known value to avoid VLPI drop.
3134		 */
3135		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3136		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3137			smp_processor_id(), val);
3138		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3139
3140		/*
3141		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3142		 * ancient programming gets left in and has possibility of
3143		 * corrupting memory.
3144		 */
3145		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3146	}
3147
3148	if (allocate_vpe_l1_table()) {
3149		/*
3150		 * If the allocation has failed, we're in massive trouble.
3151		 * Disable direct injection, and pray that no VM was
3152		 * already running...
3153		 */
3154		gic_rdists->has_rvpeid = false;
3155		gic_rdists->has_vlpis = false;
3156	}
3157
3158	/* Make sure the GIC has seen the above */
3159	dsb(sy);
3160out:
3161	gic_data_rdist()->lpi_enabled = true;
3162	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3163		smp_processor_id(),
3164		gic_data_rdist()->pend_page ? "allocated" : "reserved",
 
3165		&paddr);
3166}
3167
3168static void its_cpu_init_collection(struct its_node *its)
3169{
3170	int cpu = smp_processor_id();
3171	u64 target;
3172
3173	/* avoid cross node collections and its mapping */
3174	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3175		struct device_node *cpu_node;
3176
3177		cpu_node = of_get_cpu_node(cpu, NULL);
3178		if (its->numa_node != NUMA_NO_NODE &&
3179			its->numa_node != of_node_to_nid(cpu_node))
3180			return;
3181	}
3182
3183	/*
3184	 * We now have to bind each collection to its target
3185	 * redistributor.
3186	 */
3187	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3188		/*
3189		 * This ITS wants the physical address of the
3190		 * redistributor.
3191		 */
3192		target = gic_data_rdist()->phys_base;
3193	} else {
3194		/* This ITS wants a linear CPU number. */
3195		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3196		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3197	}
3198
3199	/* Perform collection mapping */
3200	its->collections[cpu].target_address = target;
3201	its->collections[cpu].col_id = cpu;
3202
3203	its_send_mapc(its, &its->collections[cpu], 1);
3204	its_send_invall(its, &its->collections[cpu]);
3205}
3206
3207static void its_cpu_init_collections(void)
3208{
3209	struct its_node *its;
3210
3211	raw_spin_lock(&its_lock);
3212
3213	list_for_each_entry(its, &its_nodes, entry)
3214		its_cpu_init_collection(its);
3215
3216	raw_spin_unlock(&its_lock);
3217}
3218
3219static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3220{
3221	struct its_device *its_dev = NULL, *tmp;
3222	unsigned long flags;
3223
3224	raw_spin_lock_irqsave(&its->lock, flags);
3225
3226	list_for_each_entry(tmp, &its->its_device_list, entry) {
3227		if (tmp->device_id == dev_id) {
3228			its_dev = tmp;
3229			break;
3230		}
3231	}
3232
3233	raw_spin_unlock_irqrestore(&its->lock, flags);
3234
3235	return its_dev;
3236}
3237
3238static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3239{
3240	int i;
3241
3242	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3243		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3244			return &its->tables[i];
3245	}
3246
3247	return NULL;
3248}
3249
3250static bool its_alloc_table_entry(struct its_node *its,
3251				  struct its_baser *baser, u32 id)
3252{
3253	struct page *page;
3254	u32 esz, idx;
3255	__le64 *table;
3256
3257	/* Don't allow device id that exceeds single, flat table limit */
3258	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3259	if (!(baser->val & GITS_BASER_INDIRECT))
3260		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3261
3262	/* Compute 1st level table index & check if that exceeds table limit */
3263	idx = id >> ilog2(baser->psz / esz);
3264	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3265		return false;
3266
3267	table = baser->base;
3268
3269	/* Allocate memory for 2nd level table */
3270	if (!table[idx]) {
3271		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3272					get_order(baser->psz));
3273		if (!page)
3274			return false;
3275
3276		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3277		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3278			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3279
3280		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3281
3282		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3283		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3284			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3285
3286		/* Ensure updated table contents are visible to ITS hardware */
3287		dsb(sy);
3288	}
3289
3290	return true;
3291}
3292
3293static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3294{
3295	struct its_baser *baser;
3296
3297	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3298
3299	/* Don't allow device id that exceeds ITS hardware limit */
3300	if (!baser)
3301		return (ilog2(dev_id) < device_ids(its));
3302
3303	return its_alloc_table_entry(its, baser, dev_id);
3304}
3305
3306static bool its_alloc_vpe_table(u32 vpe_id)
3307{
3308	struct its_node *its;
3309	int cpu;
3310
3311	/*
3312	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3313	 * could try and only do it on ITSs corresponding to devices
3314	 * that have interrupts targeted at this VPE, but the
3315	 * complexity becomes crazy (and you have tons of memory
3316	 * anyway, right?).
3317	 */
3318	list_for_each_entry(its, &its_nodes, entry) {
3319		struct its_baser *baser;
3320
3321		if (!is_v4(its))
3322			continue;
3323
3324		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3325		if (!baser)
3326			return false;
3327
3328		if (!its_alloc_table_entry(its, baser, vpe_id))
3329			return false;
3330	}
3331
3332	/* Non v4.1? No need to iterate RDs and go back early. */
3333	if (!gic_rdists->has_rvpeid)
3334		return true;
3335
3336	/*
3337	 * Make sure the L2 tables are allocated for all copies of
3338	 * the L1 table on *all* v4.1 RDs.
3339	 */
3340	for_each_possible_cpu(cpu) {
3341		if (!allocate_vpe_l2_table(cpu, vpe_id))
3342			return false;
3343	}
3344
3345	return true;
3346}
3347
3348static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3349					    int nvecs, bool alloc_lpis)
3350{
3351	struct its_device *dev;
3352	unsigned long *lpi_map = NULL;
3353	unsigned long flags;
3354	u16 *col_map = NULL;
3355	void *itt;
3356	int lpi_base;
3357	int nr_lpis;
3358	int nr_ites;
3359	int sz;
3360
3361	if (!its_alloc_device_table(its, dev_id))
3362		return NULL;
3363
3364	if (WARN_ON(!is_power_of_2(nvecs)))
3365		nvecs = roundup_pow_of_two(nvecs);
3366
3367	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3368	/*
3369	 * Even if the device wants a single LPI, the ITT must be
3370	 * sized as a power of two (and you need at least one bit...).
3371	 */
3372	nr_ites = max(2, nvecs);
3373	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3374	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3375	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3376	if (alloc_lpis) {
3377		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3378		if (lpi_map)
3379			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3380					  GFP_KERNEL);
3381	} else {
3382		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3383		nr_lpis = 0;
3384		lpi_base = 0;
3385	}
3386
3387	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3388		kfree(dev);
3389		kfree(itt);
3390		kfree(lpi_map);
3391		kfree(col_map);
3392		return NULL;
3393	}
3394
3395	gic_flush_dcache_to_poc(itt, sz);
3396
3397	dev->its = its;
3398	dev->itt = itt;
3399	dev->nr_ites = nr_ites;
3400	dev->event_map.lpi_map = lpi_map;
3401	dev->event_map.col_map = col_map;
3402	dev->event_map.lpi_base = lpi_base;
3403	dev->event_map.nr_lpis = nr_lpis;
3404	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3405	dev->device_id = dev_id;
3406	INIT_LIST_HEAD(&dev->entry);
3407
3408	raw_spin_lock_irqsave(&its->lock, flags);
3409	list_add(&dev->entry, &its->its_device_list);
3410	raw_spin_unlock_irqrestore(&its->lock, flags);
3411
3412	/* Map device to its ITT */
3413	its_send_mapd(dev, 1);
3414
3415	return dev;
3416}
3417
3418static void its_free_device(struct its_device *its_dev)
3419{
3420	unsigned long flags;
3421
3422	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3423	list_del(&its_dev->entry);
3424	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3425	kfree(its_dev->event_map.col_map);
3426	kfree(its_dev->itt);
3427	kfree(its_dev);
3428}
3429
3430static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3431{
3432	int idx;
3433
3434	/* Find a free LPI region in lpi_map and allocate them. */
3435	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3436				      dev->event_map.nr_lpis,
3437				      get_count_order(nvecs));
3438	if (idx < 0)
3439		return -ENOSPC;
3440
3441	*hwirq = dev->event_map.lpi_base + idx;
3442
3443	return 0;
3444}
3445
3446static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3447			   int nvec, msi_alloc_info_t *info)
3448{
3449	struct its_node *its;
3450	struct its_device *its_dev;
3451	struct msi_domain_info *msi_info;
3452	u32 dev_id;
3453	int err = 0;
3454
3455	/*
3456	 * We ignore "dev" entirely, and rely on the dev_id that has
3457	 * been passed via the scratchpad. This limits this domain's
3458	 * usefulness to upper layers that definitely know that they
3459	 * are built on top of the ITS.
3460	 */
3461	dev_id = info->scratchpad[0].ul;
3462
3463	msi_info = msi_get_domain_info(domain);
3464	its = msi_info->data;
3465
3466	if (!gic_rdists->has_direct_lpi &&
3467	    vpe_proxy.dev &&
3468	    vpe_proxy.dev->its == its &&
3469	    dev_id == vpe_proxy.dev->device_id) {
3470		/* Bad luck. Get yourself a better implementation */
3471		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3472			  dev_id);
3473		return -EINVAL;
3474	}
3475
3476	mutex_lock(&its->dev_alloc_lock);
3477	its_dev = its_find_device(its, dev_id);
3478	if (its_dev) {
3479		/*
3480		 * We already have seen this ID, probably through
3481		 * another alias (PCI bridge of some sort). No need to
3482		 * create the device.
3483		 */
3484		its_dev->shared = true;
3485		pr_debug("Reusing ITT for devID %x\n", dev_id);
3486		goto out;
3487	}
3488
3489	its_dev = its_create_device(its, dev_id, nvec, true);
3490	if (!its_dev) {
3491		err = -ENOMEM;
3492		goto out;
3493	}
3494
3495	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3496		its_dev->shared = true;
3497
3498	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3499out:
3500	mutex_unlock(&its->dev_alloc_lock);
3501	info->scratchpad[0].ptr = its_dev;
3502	return err;
3503}
3504
3505static struct msi_domain_ops its_msi_domain_ops = {
3506	.msi_prepare	= its_msi_prepare,
3507};
3508
3509static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3510				    unsigned int virq,
3511				    irq_hw_number_t hwirq)
3512{
3513	struct irq_fwspec fwspec;
3514
3515	if (irq_domain_get_of_node(domain->parent)) {
3516		fwspec.fwnode = domain->parent->fwnode;
3517		fwspec.param_count = 3;
3518		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3519		fwspec.param[1] = hwirq;
3520		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3521	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3522		fwspec.fwnode = domain->parent->fwnode;
3523		fwspec.param_count = 2;
3524		fwspec.param[0] = hwirq;
3525		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3526	} else {
3527		return -EINVAL;
3528	}
3529
3530	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3531}
3532
3533static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3534				unsigned int nr_irqs, void *args)
3535{
3536	msi_alloc_info_t *info = args;
3537	struct its_device *its_dev = info->scratchpad[0].ptr;
3538	struct its_node *its = its_dev->its;
3539	struct irq_data *irqd;
3540	irq_hw_number_t hwirq;
3541	int err;
3542	int i;
3543
3544	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3545	if (err)
3546		return err;
3547
3548	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3549	if (err)
3550		return err;
3551
3552	for (i = 0; i < nr_irqs; i++) {
3553		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3554		if (err)
3555			return err;
3556
3557		irq_domain_set_hwirq_and_chip(domain, virq + i,
3558					      hwirq + i, &its_irq_chip, its_dev);
3559		irqd = irq_get_irq_data(virq + i);
3560		irqd_set_single_target(irqd);
3561		irqd_set_affinity_on_activate(irqd);
 
3562		pr_debug("ID:%d pID:%d vID:%d\n",
3563			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3564			 (int)(hwirq + i), virq + i);
3565	}
3566
3567	return 0;
3568}
3569
3570static int its_irq_domain_activate(struct irq_domain *domain,
3571				   struct irq_data *d, bool reserve)
3572{
3573	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3574	u32 event = its_get_event_id(d);
3575	int cpu;
3576
3577	cpu = its_select_cpu(d, cpu_online_mask);
3578	if (cpu < 0 || cpu >= nr_cpu_ids)
3579		return -EINVAL;
3580
3581	its_inc_lpi_count(d, cpu);
3582	its_dev->event_map.col_map[event] = cpu;
3583	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3584
3585	/* Map the GIC IRQ and event to the device */
3586	its_send_mapti(its_dev, d->hwirq, event);
3587	return 0;
3588}
3589
3590static void its_irq_domain_deactivate(struct irq_domain *domain,
3591				      struct irq_data *d)
3592{
3593	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3594	u32 event = its_get_event_id(d);
3595
3596	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3597	/* Stop the delivery of interrupts */
3598	its_send_discard(its_dev, event);
3599}
3600
3601static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3602				unsigned int nr_irqs)
3603{
3604	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3605	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3606	struct its_node *its = its_dev->its;
3607	int i;
3608
3609	bitmap_release_region(its_dev->event_map.lpi_map,
3610			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3611			      get_count_order(nr_irqs));
3612
3613	for (i = 0; i < nr_irqs; i++) {
3614		struct irq_data *data = irq_domain_get_irq_data(domain,
3615								virq + i);
3616		/* Nuke the entry in the domain */
3617		irq_domain_reset_irq_data(data);
3618	}
3619
3620	mutex_lock(&its->dev_alloc_lock);
3621
3622	/*
3623	 * If all interrupts have been freed, start mopping the
3624	 * floor. This is conditioned on the device not being shared.
3625	 */
3626	if (!its_dev->shared &&
3627	    bitmap_empty(its_dev->event_map.lpi_map,
3628			 its_dev->event_map.nr_lpis)) {
3629		its_lpi_free(its_dev->event_map.lpi_map,
3630			     its_dev->event_map.lpi_base,
3631			     its_dev->event_map.nr_lpis);
3632
3633		/* Unmap device/itt */
3634		its_send_mapd(its_dev, 0);
3635		its_free_device(its_dev);
3636	}
3637
3638	mutex_unlock(&its->dev_alloc_lock);
3639
3640	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3641}
3642
3643static const struct irq_domain_ops its_domain_ops = {
3644	.alloc			= its_irq_domain_alloc,
3645	.free			= its_irq_domain_free,
3646	.activate		= its_irq_domain_activate,
3647	.deactivate		= its_irq_domain_deactivate,
3648};
3649
3650/*
3651 * This is insane.
3652 *
3653 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3654 * likely), the only way to perform an invalidate is to use a fake
3655 * device to issue an INV command, implying that the LPI has first
3656 * been mapped to some event on that device. Since this is not exactly
3657 * cheap, we try to keep that mapping around as long as possible, and
3658 * only issue an UNMAP if we're short on available slots.
3659 *
3660 * Broken by design(tm).
3661 *
3662 * GICv4.1, on the other hand, mandates that we're able to invalidate
3663 * by writing to a MMIO register. It doesn't implement the whole of
3664 * DirectLPI, but that's good enough. And most of the time, we don't
3665 * even have to invalidate anything, as the redistributor can be told
3666 * whether to generate a doorbell or not (we thus leave it enabled,
3667 * always).
3668 */
3669static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3670{
3671	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3672	if (gic_rdists->has_rvpeid)
3673		return;
3674
3675	/* Already unmapped? */
3676	if (vpe->vpe_proxy_event == -1)
3677		return;
3678
3679	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3680	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3681
3682	/*
3683	 * We don't track empty slots at all, so let's move the
3684	 * next_victim pointer if we can quickly reuse that slot
3685	 * instead of nuking an existing entry. Not clear that this is
3686	 * always a win though, and this might just generate a ripple
3687	 * effect... Let's just hope VPEs don't migrate too often.
3688	 */
3689	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3690		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3691
3692	vpe->vpe_proxy_event = -1;
3693}
3694
3695static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3696{
3697	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3698	if (gic_rdists->has_rvpeid)
3699		return;
3700
3701	if (!gic_rdists->has_direct_lpi) {
3702		unsigned long flags;
3703
3704		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3705		its_vpe_db_proxy_unmap_locked(vpe);
3706		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3707	}
3708}
3709
3710static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3711{
3712	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3713	if (gic_rdists->has_rvpeid)
3714		return;
3715
3716	/* Already mapped? */
3717	if (vpe->vpe_proxy_event != -1)
3718		return;
3719
3720	/* This slot was already allocated. Kick the other VPE out. */
3721	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3722		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3723
3724	/* Map the new VPE instead */
3725	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3726	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3727	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3728
3729	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3730	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3731}
3732
3733static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3734{
3735	unsigned long flags;
3736	struct its_collection *target_col;
3737
3738	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3739	if (gic_rdists->has_rvpeid)
3740		return;
3741
3742	if (gic_rdists->has_direct_lpi) {
3743		void __iomem *rdbase;
3744
3745		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3746		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3747		wait_for_syncr(rdbase);
3748
3749		return;
3750	}
3751
3752	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3753
3754	its_vpe_db_proxy_map_locked(vpe);
3755
3756	target_col = &vpe_proxy.dev->its->collections[to];
3757	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3758	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3759
3760	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3761}
3762
3763static int its_vpe_set_affinity(struct irq_data *d,
3764				const struct cpumask *mask_val,
3765				bool force)
3766{
3767	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3768	int from, cpu = cpumask_first(mask_val);
3769	unsigned long flags;
 
3770
3771	/*
3772	 * Changing affinity is mega expensive, so let's be as lazy as
3773	 * we can and only do it if we really have to. Also, if mapped
3774	 * into the proxy device, we need to move the doorbell
3775	 * interrupt to its new location.
3776	 *
3777	 * Another thing is that changing the affinity of a vPE affects
3778	 * *other interrupts* such as all the vLPIs that are routed to
3779	 * this vPE. This means that the irq_desc lock is not enough to
3780	 * protect us, and that we must ensure nobody samples vpe->col_idx
3781	 * during the update, hence the lock below which must also be
3782	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3783	 */
3784	from = vpe_to_cpuid_lock(vpe, &flags);
 
 
 
 
 
 
 
 
 
 
 
3785	if (from == cpu)
3786		goto out;
3787
3788	vpe->col_idx = cpu;
3789
3790	/*
3791	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3792	 * is sharing its VPE table with the current one.
3793	 */
3794	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3795	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3796		goto out;
3797
3798	its_send_vmovp(vpe);
3799	its_vpe_db_proxy_move(vpe, from, cpu);
3800
3801out:
3802	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3803	vpe_to_cpuid_unlock(vpe, flags);
3804
3805	return IRQ_SET_MASK_OK_DONE;
3806}
3807
3808static void its_wait_vpt_parse_complete(void)
3809{
3810	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3811	u64 val;
3812
3813	if (!gic_rdists->has_vpend_valid_dirty)
3814		return;
3815
3816	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3817						       val,
3818						       !(val & GICR_VPENDBASER_Dirty),
3819						       1, 500));
3820}
3821
3822static void its_vpe_schedule(struct its_vpe *vpe)
3823{
3824	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3825	u64 val;
3826
3827	/* Schedule the VPE */
3828	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3829		GENMASK_ULL(51, 12);
3830	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3831	val |= GICR_VPROPBASER_RaWb;
3832	val |= GICR_VPROPBASER_InnerShareable;
 
 
3833	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3834
3835	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3836		GENMASK_ULL(51, 16);
3837	val |= GICR_VPENDBASER_RaWaWb;
3838	val |= GICR_VPENDBASER_InnerShareable;
 
 
3839	/*
3840	 * There is no good way of finding out if the pending table is
3841	 * empty as we can race against the doorbell interrupt very
3842	 * easily. So in the end, vpe->pending_last is only an
3843	 * indication that the vcpu has something pending, not one
3844	 * that the pending table is empty. A good implementation
3845	 * would be able to read its coarse map pretty quickly anyway,
3846	 * making this a tolerable issue.
3847	 */
3848	val |= GICR_VPENDBASER_PendingLast;
3849	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3850	val |= GICR_VPENDBASER_Valid;
3851	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3852}
3853
3854static void its_vpe_deschedule(struct its_vpe *vpe)
3855{
3856	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3857	u64 val;
3858
3859	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3860
3861	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3862	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3863}
3864
3865static void its_vpe_invall(struct its_vpe *vpe)
3866{
3867	struct its_node *its;
3868
3869	list_for_each_entry(its, &its_nodes, entry) {
3870		if (!is_v4(its))
3871			continue;
3872
3873		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3874			continue;
3875
3876		/*
3877		 * Sending a VINVALL to a single ITS is enough, as all
3878		 * we need is to reach the redistributors.
3879		 */
3880		its_send_vinvall(its, vpe);
3881		return;
3882	}
3883}
3884
3885static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3886{
3887	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3888	struct its_cmd_info *info = vcpu_info;
3889
3890	switch (info->cmd_type) {
3891	case SCHEDULE_VPE:
3892		its_vpe_schedule(vpe);
3893		return 0;
3894
3895	case DESCHEDULE_VPE:
3896		its_vpe_deschedule(vpe);
3897		return 0;
3898
3899	case COMMIT_VPE:
3900		its_wait_vpt_parse_complete();
3901		return 0;
3902
3903	case INVALL_VPE:
3904		its_vpe_invall(vpe);
3905		return 0;
3906
3907	default:
3908		return -EINVAL;
3909	}
3910}
3911
3912static void its_vpe_send_cmd(struct its_vpe *vpe,
3913			     void (*cmd)(struct its_device *, u32))
3914{
3915	unsigned long flags;
3916
3917	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3918
3919	its_vpe_db_proxy_map_locked(vpe);
3920	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3921
3922	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3923}
3924
3925static void its_vpe_send_inv(struct irq_data *d)
3926{
3927	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3928
3929	if (gic_rdists->has_direct_lpi) {
3930		void __iomem *rdbase;
3931
3932		/* Target the redistributor this VPE is currently known on */
3933		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3934		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3935		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3936		wait_for_syncr(rdbase);
3937		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3938	} else {
3939		its_vpe_send_cmd(vpe, its_send_inv);
3940	}
3941}
3942
3943static void its_vpe_mask_irq(struct irq_data *d)
3944{
3945	/*
3946	 * We need to unmask the LPI, which is described by the parent
3947	 * irq_data. Instead of calling into the parent (which won't
3948	 * exactly do the right thing, let's simply use the
3949	 * parent_data pointer. Yes, I'm naughty.
3950	 */
3951	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3952	its_vpe_send_inv(d);
3953}
3954
3955static void its_vpe_unmask_irq(struct irq_data *d)
3956{
3957	/* Same hack as above... */
3958	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3959	its_vpe_send_inv(d);
3960}
3961
3962static int its_vpe_set_irqchip_state(struct irq_data *d,
3963				     enum irqchip_irq_state which,
3964				     bool state)
3965{
3966	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3967
3968	if (which != IRQCHIP_STATE_PENDING)
3969		return -EINVAL;
3970
3971	if (gic_rdists->has_direct_lpi) {
3972		void __iomem *rdbase;
3973
3974		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3975		if (state) {
3976			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3977		} else {
3978			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3979			wait_for_syncr(rdbase);
3980		}
3981	} else {
3982		if (state)
3983			its_vpe_send_cmd(vpe, its_send_int);
3984		else
3985			its_vpe_send_cmd(vpe, its_send_clear);
3986	}
3987
3988	return 0;
3989}
3990
3991static int its_vpe_retrigger(struct irq_data *d)
3992{
3993	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3994}
3995
3996static struct irq_chip its_vpe_irq_chip = {
3997	.name			= "GICv4-vpe",
3998	.irq_mask		= its_vpe_mask_irq,
3999	.irq_unmask		= its_vpe_unmask_irq,
4000	.irq_eoi		= irq_chip_eoi_parent,
4001	.irq_set_affinity	= its_vpe_set_affinity,
4002	.irq_retrigger		= its_vpe_retrigger,
4003	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4004	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4005};
4006
4007static struct its_node *find_4_1_its(void)
4008{
4009	static struct its_node *its = NULL;
4010
4011	if (!its) {
4012		list_for_each_entry(its, &its_nodes, entry) {
4013			if (is_v4_1(its))
4014				return its;
4015		}
4016
4017		/* Oops? */
4018		its = NULL;
4019	}
4020
4021	return its;
4022}
4023
4024static void its_vpe_4_1_send_inv(struct irq_data *d)
4025{
4026	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4027	struct its_node *its;
4028
4029	/*
4030	 * GICv4.1 wants doorbells to be invalidated using the
4031	 * INVDB command in order to be broadcast to all RDs. Send
4032	 * it to the first valid ITS, and let the HW do its magic.
4033	 */
4034	its = find_4_1_its();
4035	if (its)
4036		its_send_invdb(its, vpe);
4037}
4038
4039static void its_vpe_4_1_mask_irq(struct irq_data *d)
4040{
4041	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4042	its_vpe_4_1_send_inv(d);
4043}
4044
4045static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4046{
4047	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4048	its_vpe_4_1_send_inv(d);
4049}
4050
4051static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4052				 struct its_cmd_info *info)
4053{
4054	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4055	u64 val = 0;
4056
4057	/* Schedule the VPE */
4058	val |= GICR_VPENDBASER_Valid;
4059	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4060	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4061	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4062
4063	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4064}
4065
4066static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4067				   struct its_cmd_info *info)
4068{
4069	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4070	u64 val;
4071
4072	if (info->req_db) {
4073		unsigned long flags;
4074
4075		/*
4076		 * vPE is going to block: make the vPE non-resident with
4077		 * PendingLast clear and DB set. The GIC guarantees that if
4078		 * we read-back PendingLast clear, then a doorbell will be
4079		 * delivered when an interrupt comes.
4080		 *
4081		 * Note the locking to deal with the concurrent update of
4082		 * pending_last from the doorbell interrupt handler that can
4083		 * run concurrently.
4084		 */
4085		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4086		val = its_clear_vpend_valid(vlpi_base,
4087					    GICR_VPENDBASER_PendingLast,
4088					    GICR_VPENDBASER_4_1_DB);
4089		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4090		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4091	} else {
4092		/*
4093		 * We're not blocking, so just make the vPE non-resident
4094		 * with PendingLast set, indicating that we'll be back.
4095		 */
4096		val = its_clear_vpend_valid(vlpi_base,
4097					    0,
4098					    GICR_VPENDBASER_PendingLast);
4099		vpe->pending_last = true;
4100	}
4101}
4102
4103static void its_vpe_4_1_invall(struct its_vpe *vpe)
4104{
4105	void __iomem *rdbase;
4106	unsigned long flags;
4107	u64 val;
4108	int cpu;
4109
4110	val  = GICR_INVALLR_V;
4111	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4112
4113	/* Target the redistributor this vPE is currently known on */
4114	cpu = vpe_to_cpuid_lock(vpe, &flags);
4115	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4116	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4117	gic_write_lpir(val, rdbase + GICR_INVALLR);
4118
4119	wait_for_syncr(rdbase);
4120	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4121	vpe_to_cpuid_unlock(vpe, flags);
4122}
4123
4124static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4125{
4126	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4127	struct its_cmd_info *info = vcpu_info;
4128
4129	switch (info->cmd_type) {
4130	case SCHEDULE_VPE:
4131		its_vpe_4_1_schedule(vpe, info);
4132		return 0;
4133
4134	case DESCHEDULE_VPE:
4135		its_vpe_4_1_deschedule(vpe, info);
4136		return 0;
4137
4138	case COMMIT_VPE:
4139		its_wait_vpt_parse_complete();
4140		return 0;
4141
4142	case INVALL_VPE:
4143		its_vpe_4_1_invall(vpe);
4144		return 0;
4145
4146	default:
4147		return -EINVAL;
4148	}
4149}
4150
4151static struct irq_chip its_vpe_4_1_irq_chip = {
4152	.name			= "GICv4.1-vpe",
4153	.irq_mask		= its_vpe_4_1_mask_irq,
4154	.irq_unmask		= its_vpe_4_1_unmask_irq,
4155	.irq_eoi		= irq_chip_eoi_parent,
4156	.irq_set_affinity	= its_vpe_set_affinity,
4157	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4158};
4159
4160static void its_configure_sgi(struct irq_data *d, bool clear)
4161{
4162	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4163	struct its_cmd_desc desc;
4164
4165	desc.its_vsgi_cmd.vpe = vpe;
4166	desc.its_vsgi_cmd.sgi = d->hwirq;
4167	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4168	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4169	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4170	desc.its_vsgi_cmd.clear = clear;
4171
4172	/*
4173	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4174	 * destination VPE is mapped there. Since we map them eagerly at
4175	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4176	 */
4177	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4178}
4179
4180static void its_sgi_mask_irq(struct irq_data *d)
4181{
4182	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4183
4184	vpe->sgi_config[d->hwirq].enabled = false;
4185	its_configure_sgi(d, false);
4186}
4187
4188static void its_sgi_unmask_irq(struct irq_data *d)
4189{
4190	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4191
4192	vpe->sgi_config[d->hwirq].enabled = true;
4193	its_configure_sgi(d, false);
4194}
4195
4196static int its_sgi_set_affinity(struct irq_data *d,
4197				const struct cpumask *mask_val,
4198				bool force)
4199{
4200	/*
4201	 * There is no notion of affinity for virtual SGIs, at least
4202	 * not on the host (since they can only be targeting a vPE).
4203	 * Tell the kernel we've done whatever it asked for.
4204	 */
4205	irq_data_update_effective_affinity(d, mask_val);
4206	return IRQ_SET_MASK_OK;
4207}
4208
4209static int its_sgi_set_irqchip_state(struct irq_data *d,
4210				     enum irqchip_irq_state which,
4211				     bool state)
4212{
4213	if (which != IRQCHIP_STATE_PENDING)
4214		return -EINVAL;
4215
4216	if (state) {
4217		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4218		struct its_node *its = find_4_1_its();
4219		u64 val;
4220
4221		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4222		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4223		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4224	} else {
4225		its_configure_sgi(d, true);
4226	}
4227
4228	return 0;
4229}
4230
4231static int its_sgi_get_irqchip_state(struct irq_data *d,
4232				     enum irqchip_irq_state which, bool *val)
4233{
4234	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4235	void __iomem *base;
4236	unsigned long flags;
4237	u32 count = 1000000;	/* 1s! */
4238	u32 status;
4239	int cpu;
4240
4241	if (which != IRQCHIP_STATE_PENDING)
4242		return -EINVAL;
4243
4244	/*
4245	 * Locking galore! We can race against two different events:
4246	 *
4247	 * - Concurrent vPE affinity change: we must make sure it cannot
4248	 *   happen, or we'll talk to the wrong redistributor. This is
4249	 *   identical to what happens with vLPIs.
4250	 *
4251	 * - Concurrent VSGIPENDR access: As it involves accessing two
4252	 *   MMIO registers, this must be made atomic one way or another.
4253	 */
4254	cpu = vpe_to_cpuid_lock(vpe, &flags);
4255	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4256	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4257	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4258	do {
4259		status = readl_relaxed(base + GICR_VSGIPENDR);
4260		if (!(status & GICR_VSGIPENDR_BUSY))
4261			goto out;
4262
4263		count--;
4264		if (!count) {
4265			pr_err_ratelimited("Unable to get SGI status\n");
4266			goto out;
4267		}
4268		cpu_relax();
4269		udelay(1);
4270	} while (count);
4271
4272out:
4273	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4274	vpe_to_cpuid_unlock(vpe, flags);
4275
4276	if (!count)
4277		return -ENXIO;
4278
4279	*val = !!(status & (1 << d->hwirq));
4280
4281	return 0;
4282}
4283
4284static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4285{
4286	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4287	struct its_cmd_info *info = vcpu_info;
4288
4289	switch (info->cmd_type) {
4290	case PROP_UPDATE_VSGI:
4291		vpe->sgi_config[d->hwirq].priority = info->priority;
4292		vpe->sgi_config[d->hwirq].group = info->group;
4293		its_configure_sgi(d, false);
4294		return 0;
4295
4296	default:
4297		return -EINVAL;
4298	}
4299}
4300
4301static struct irq_chip its_sgi_irq_chip = {
4302	.name			= "GICv4.1-sgi",
4303	.irq_mask		= its_sgi_mask_irq,
4304	.irq_unmask		= its_sgi_unmask_irq,
4305	.irq_set_affinity	= its_sgi_set_affinity,
4306	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4307	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4308	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4309};
4310
4311static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4312				    unsigned int virq, unsigned int nr_irqs,
4313				    void *args)
4314{
4315	struct its_vpe *vpe = args;
4316	int i;
4317
4318	/* Yes, we do want 16 SGIs */
4319	WARN_ON(nr_irqs != 16);
4320
4321	for (i = 0; i < 16; i++) {
4322		vpe->sgi_config[i].priority = 0;
4323		vpe->sgi_config[i].enabled = false;
4324		vpe->sgi_config[i].group = false;
4325
4326		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4327					      &its_sgi_irq_chip, vpe);
4328		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4329	}
4330
4331	return 0;
4332}
4333
4334static void its_sgi_irq_domain_free(struct irq_domain *domain,
4335				    unsigned int virq,
4336				    unsigned int nr_irqs)
4337{
4338	/* Nothing to do */
4339}
4340
4341static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4342				       struct irq_data *d, bool reserve)
4343{
4344	/* Write out the initial SGI configuration */
4345	its_configure_sgi(d, false);
4346	return 0;
4347}
4348
4349static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4350					  struct irq_data *d)
4351{
4352	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4353
4354	/*
4355	 * The VSGI command is awkward:
4356	 *
4357	 * - To change the configuration, CLEAR must be set to false,
4358	 *   leaving the pending bit unchanged.
4359	 * - To clear the pending bit, CLEAR must be set to true, leaving
4360	 *   the configuration unchanged.
4361	 *
4362	 * You just can't do both at once, hence the two commands below.
4363	 */
4364	vpe->sgi_config[d->hwirq].enabled = false;
4365	its_configure_sgi(d, false);
4366	its_configure_sgi(d, true);
4367}
4368
4369static const struct irq_domain_ops its_sgi_domain_ops = {
4370	.alloc		= its_sgi_irq_domain_alloc,
4371	.free		= its_sgi_irq_domain_free,
4372	.activate	= its_sgi_irq_domain_activate,
4373	.deactivate	= its_sgi_irq_domain_deactivate,
4374};
4375
4376static int its_vpe_id_alloc(void)
4377{
4378	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4379}
4380
4381static void its_vpe_id_free(u16 id)
4382{
4383	ida_simple_remove(&its_vpeid_ida, id);
4384}
4385
4386static int its_vpe_init(struct its_vpe *vpe)
4387{
4388	struct page *vpt_page;
4389	int vpe_id;
4390
4391	/* Allocate vpe_id */
4392	vpe_id = its_vpe_id_alloc();
4393	if (vpe_id < 0)
4394		return vpe_id;
4395
4396	/* Allocate VPT */
4397	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4398	if (!vpt_page) {
4399		its_vpe_id_free(vpe_id);
4400		return -ENOMEM;
4401	}
4402
4403	if (!its_alloc_vpe_table(vpe_id)) {
4404		its_vpe_id_free(vpe_id);
4405		its_free_pending_table(vpt_page);
4406		return -ENOMEM;
4407	}
4408
4409	raw_spin_lock_init(&vpe->vpe_lock);
4410	vpe->vpe_id = vpe_id;
4411	vpe->vpt_page = vpt_page;
4412	if (gic_rdists->has_rvpeid)
4413		atomic_set(&vpe->vmapp_count, 0);
4414	else
4415		vpe->vpe_proxy_event = -1;
4416
4417	return 0;
4418}
4419
4420static void its_vpe_teardown(struct its_vpe *vpe)
4421{
4422	its_vpe_db_proxy_unmap(vpe);
4423	its_vpe_id_free(vpe->vpe_id);
4424	its_free_pending_table(vpe->vpt_page);
4425}
4426
4427static void its_vpe_irq_domain_free(struct irq_domain *domain,
4428				    unsigned int virq,
4429				    unsigned int nr_irqs)
4430{
4431	struct its_vm *vm = domain->host_data;
4432	int i;
4433
4434	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4435
4436	for (i = 0; i < nr_irqs; i++) {
4437		struct irq_data *data = irq_domain_get_irq_data(domain,
4438								virq + i);
4439		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4440
4441		BUG_ON(vm != vpe->its_vm);
4442
4443		clear_bit(data->hwirq, vm->db_bitmap);
4444		its_vpe_teardown(vpe);
4445		irq_domain_reset_irq_data(data);
4446	}
4447
4448	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4449		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4450		its_free_prop_table(vm->vprop_page);
4451	}
4452}
4453
4454static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4455				    unsigned int nr_irqs, void *args)
4456{
4457	struct irq_chip *irqchip = &its_vpe_irq_chip;
4458	struct its_vm *vm = args;
4459	unsigned long *bitmap;
4460	struct page *vprop_page;
4461	int base, nr_ids, i, err = 0;
4462
4463	BUG_ON(!vm);
4464
4465	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4466	if (!bitmap)
4467		return -ENOMEM;
4468
4469	if (nr_ids < nr_irqs) {
4470		its_lpi_free(bitmap, base, nr_ids);
4471		return -ENOMEM;
4472	}
4473
4474	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4475	if (!vprop_page) {
4476		its_lpi_free(bitmap, base, nr_ids);
4477		return -ENOMEM;
4478	}
4479
4480	vm->db_bitmap = bitmap;
4481	vm->db_lpi_base = base;
4482	vm->nr_db_lpis = nr_ids;
4483	vm->vprop_page = vprop_page;
4484
4485	if (gic_rdists->has_rvpeid)
4486		irqchip = &its_vpe_4_1_irq_chip;
4487
4488	for (i = 0; i < nr_irqs; i++) {
4489		vm->vpes[i]->vpe_db_lpi = base + i;
4490		err = its_vpe_init(vm->vpes[i]);
4491		if (err)
4492			break;
4493		err = its_irq_gic_domain_alloc(domain, virq + i,
4494					       vm->vpes[i]->vpe_db_lpi);
4495		if (err)
4496			break;
4497		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4498					      irqchip, vm->vpes[i]);
4499		set_bit(i, bitmap);
 
4500	}
4501
4502	if (err) {
4503		if (i > 0)
4504			its_vpe_irq_domain_free(domain, virq, i);
4505
4506		its_lpi_free(bitmap, base, nr_ids);
4507		its_free_prop_table(vprop_page);
4508	}
4509
4510	return err;
4511}
4512
4513static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4514				       struct irq_data *d, bool reserve)
4515{
4516	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4517	struct its_node *its;
4518
4519	/*
4520	 * If we use the list map, we issue VMAPP on demand... Unless
4521	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4522	 * so that VSGIs can work.
4523	 */
4524	if (!gic_requires_eager_mapping())
4525		return 0;
4526
4527	/* Map the VPE to the first possible CPU */
4528	vpe->col_idx = cpumask_first(cpu_online_mask);
4529
4530	list_for_each_entry(its, &its_nodes, entry) {
4531		if (!is_v4(its))
4532			continue;
4533
4534		its_send_vmapp(its, vpe, true);
4535		its_send_vinvall(its, vpe);
4536	}
4537
4538	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4539
4540	return 0;
4541}
4542
4543static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4544					  struct irq_data *d)
4545{
4546	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4547	struct its_node *its;
4548
4549	/*
4550	 * If we use the list map on GICv4.0, we unmap the VPE once no
4551	 * VLPIs are associated with the VM.
4552	 */
4553	if (!gic_requires_eager_mapping())
4554		return;
4555
4556	list_for_each_entry(its, &its_nodes, entry) {
4557		if (!is_v4(its))
4558			continue;
4559
4560		its_send_vmapp(its, vpe, false);
4561	}
4562
4563	/*
4564	 * There may be a direct read to the VPT after unmapping the
4565	 * vPE, to guarantee the validity of this, we make the VPT
4566	 * memory coherent with the CPU caches here.
4567	 */
4568	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4569		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4570					LPI_PENDBASE_SZ);
4571}
4572
4573static const struct irq_domain_ops its_vpe_domain_ops = {
4574	.alloc			= its_vpe_irq_domain_alloc,
4575	.free			= its_vpe_irq_domain_free,
4576	.activate		= its_vpe_irq_domain_activate,
4577	.deactivate		= its_vpe_irq_domain_deactivate,
4578};
4579
4580static int its_force_quiescent(void __iomem *base)
4581{
4582	u32 count = 1000000;	/* 1s */
4583	u32 val;
4584
4585	val = readl_relaxed(base + GITS_CTLR);
4586	/*
4587	 * GIC architecture specification requires the ITS to be both
4588	 * disabled and quiescent for writes to GITS_BASER<n> or
4589	 * GITS_CBASER to not have UNPREDICTABLE results.
4590	 */
4591	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4592		return 0;
4593
4594	/* Disable the generation of all interrupts to this ITS */
4595	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4596	writel_relaxed(val, base + GITS_CTLR);
4597
4598	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4599	while (1) {
4600		val = readl_relaxed(base + GITS_CTLR);
4601		if (val & GITS_CTLR_QUIESCENT)
4602			return 0;
4603
4604		count--;
4605		if (!count)
4606			return -EBUSY;
4607
4608		cpu_relax();
4609		udelay(1);
4610	}
4611}
4612
4613static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4614{
4615	struct its_node *its = data;
4616
4617	/* erratum 22375: only alloc 8MB table size (20 bits) */
4618	its->typer &= ~GITS_TYPER_DEVBITS;
4619	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4620	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4621
4622	return true;
4623}
4624
4625static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4626{
4627	struct its_node *its = data;
4628
4629	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4630
4631	return true;
4632}
4633
4634static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4635{
4636	struct its_node *its = data;
4637
4638	/* On QDF2400, the size of the ITE is 16Bytes */
4639	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4640	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4641
4642	return true;
4643}
4644
4645static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4646{
4647	struct its_node *its = its_dev->its;
4648
4649	/*
4650	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4651	 * which maps 32-bit writes targeted at a separate window of
4652	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4653	 * with device ID taken from bits [device_id_bits + 1:2] of
4654	 * the window offset.
4655	 */
4656	return its->pre_its_base + (its_dev->device_id << 2);
4657}
4658
4659static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4660{
4661	struct its_node *its = data;
4662	u32 pre_its_window[2];
4663	u32 ids;
4664
4665	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4666					   "socionext,synquacer-pre-its",
4667					   pre_its_window,
4668					   ARRAY_SIZE(pre_its_window))) {
4669
4670		its->pre_its_base = pre_its_window[0];
4671		its->get_msi_base = its_irq_get_msi_base_pre_its;
4672
4673		ids = ilog2(pre_its_window[1]) - 2;
4674		if (device_ids(its) > ids) {
4675			its->typer &= ~GITS_TYPER_DEVBITS;
4676			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4677		}
4678
4679		/* the pre-ITS breaks isolation, so disable MSI remapping */
4680		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4681		return true;
4682	}
4683	return false;
4684}
4685
4686static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4687{
4688	struct its_node *its = data;
4689
4690	/*
4691	 * Hip07 insists on using the wrong address for the VLPI
4692	 * page. Trick it into doing the right thing...
4693	 */
4694	its->vlpi_redist_offset = SZ_128K;
4695	return true;
4696}
4697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4698static const struct gic_quirk its_quirks[] = {
4699#ifdef CONFIG_CAVIUM_ERRATUM_22375
4700	{
4701		.desc	= "ITS: Cavium errata 22375, 24313",
4702		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4703		.mask	= 0xffff0fff,
4704		.init	= its_enable_quirk_cavium_22375,
4705	},
4706#endif
4707#ifdef CONFIG_CAVIUM_ERRATUM_23144
4708	{
4709		.desc	= "ITS: Cavium erratum 23144",
4710		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4711		.mask	= 0xffff0fff,
4712		.init	= its_enable_quirk_cavium_23144,
4713	},
4714#endif
4715#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4716	{
4717		.desc	= "ITS: QDF2400 erratum 0065",
4718		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4719		.mask	= 0xffffffff,
4720		.init	= its_enable_quirk_qdf2400_e0065,
4721	},
4722#endif
4723#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4724	{
4725		/*
4726		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4727		 * implementation, but with a 'pre-ITS' added that requires
4728		 * special handling in software.
4729		 */
4730		.desc	= "ITS: Socionext Synquacer pre-ITS",
4731		.iidr	= 0x0001143b,
4732		.mask	= 0xffffffff,
4733		.init	= its_enable_quirk_socionext_synquacer,
4734	},
4735#endif
4736#ifdef CONFIG_HISILICON_ERRATUM_161600802
4737	{
4738		.desc	= "ITS: Hip07 erratum 161600802",
4739		.iidr	= 0x00000004,
4740		.mask	= 0xffffffff,
4741		.init	= its_enable_quirk_hip07_161600802,
4742	},
4743#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
4744	{
4745	}
4746};
4747
4748static void its_enable_quirks(struct its_node *its)
4749{
4750	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4751
4752	gic_enable_quirks(iidr, its_quirks, its);
 
 
 
 
4753}
4754
4755static int its_save_disable(void)
4756{
4757	struct its_node *its;
4758	int err = 0;
4759
4760	raw_spin_lock(&its_lock);
4761	list_for_each_entry(its, &its_nodes, entry) {
4762		void __iomem *base;
4763
4764		base = its->base;
4765		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4766		err = its_force_quiescent(base);
4767		if (err) {
4768			pr_err("ITS@%pa: failed to quiesce: %d\n",
4769			       &its->phys_base, err);
4770			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4771			goto err;
4772		}
4773
4774		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4775	}
4776
4777err:
4778	if (err) {
4779		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4780			void __iomem *base;
4781
4782			base = its->base;
4783			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4784		}
4785	}
4786	raw_spin_unlock(&its_lock);
4787
4788	return err;
4789}
4790
4791static void its_restore_enable(void)
4792{
4793	struct its_node *its;
4794	int ret;
4795
4796	raw_spin_lock(&its_lock);
4797	list_for_each_entry(its, &its_nodes, entry) {
4798		void __iomem *base;
4799		int i;
4800
4801		base = its->base;
4802
4803		/*
4804		 * Make sure that the ITS is disabled. If it fails to quiesce,
4805		 * don't restore it since writing to CBASER or BASER<n>
4806		 * registers is undefined according to the GIC v3 ITS
4807		 * Specification.
4808		 *
4809		 * Firmware resuming with the ITS enabled is terminally broken.
4810		 */
4811		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4812		ret = its_force_quiescent(base);
4813		if (ret) {
4814			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4815			       &its->phys_base, ret);
4816			continue;
4817		}
4818
4819		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4820
4821		/*
4822		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4823		 * cmd_write line up with it.
4824		 */
4825		its->cmd_write = its->cmd_base;
4826		gits_write_cwriter(0, base + GITS_CWRITER);
4827
4828		/* Restore GITS_BASER from the value cache. */
4829		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4830			struct its_baser *baser = &its->tables[i];
4831
4832			if (!(baser->val & GITS_BASER_VALID))
4833				continue;
4834
4835			its_write_baser(its, baser, baser->val);
4836		}
4837		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4838
4839		/*
4840		 * Reinit the collection if it's stored in the ITS. This is
4841		 * indicated by the col_id being less than the HCC field.
4842		 * CID < HCC as specified in the GIC v3 Documentation.
4843		 */
4844		if (its->collections[smp_processor_id()].col_id <
4845		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4846			its_cpu_init_collection(its);
4847	}
4848	raw_spin_unlock(&its_lock);
4849}
4850
4851static struct syscore_ops its_syscore_ops = {
4852	.suspend = its_save_disable,
4853	.resume = its_restore_enable,
4854};
4855
4856static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4857{
4858	struct irq_domain *inner_domain;
4859	struct msi_domain_info *info;
4860
4861	info = kzalloc(sizeof(*info), GFP_KERNEL);
4862	if (!info)
4863		return -ENOMEM;
4864
4865	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
 
 
 
 
 
 
4866	if (!inner_domain) {
4867		kfree(info);
4868		return -ENOMEM;
4869	}
4870
4871	inner_domain->parent = its_parent;
4872	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4873	inner_domain->flags |= its->msi_domain_flags;
4874	info->ops = &its_msi_domain_ops;
4875	info->data = its;
4876	inner_domain->host_data = info;
4877
4878	return 0;
4879}
4880
4881static int its_init_vpe_domain(void)
4882{
4883	struct its_node *its;
4884	u32 devid;
4885	int entries;
4886
4887	if (gic_rdists->has_direct_lpi) {
4888		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4889		return 0;
4890	}
4891
4892	/* Any ITS will do, even if not v4 */
4893	its = list_first_entry(&its_nodes, struct its_node, entry);
4894
4895	entries = roundup_pow_of_two(nr_cpu_ids);
4896	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4897				 GFP_KERNEL);
4898	if (!vpe_proxy.vpes)
4899		return -ENOMEM;
4900
4901	/* Use the last possible DevID */
4902	devid = GENMASK(device_ids(its) - 1, 0);
4903	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4904	if (!vpe_proxy.dev) {
4905		kfree(vpe_proxy.vpes);
4906		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4907		return -ENOMEM;
4908	}
4909
4910	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4911
4912	raw_spin_lock_init(&vpe_proxy.lock);
4913	vpe_proxy.next_victim = 0;
4914	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4915		devid, vpe_proxy.dev->nr_ites);
4916
4917	return 0;
4918}
4919
4920static int __init its_compute_its_list_map(struct resource *res,
4921					   void __iomem *its_base)
4922{
4923	int its_number;
4924	u32 ctlr;
4925
4926	/*
4927	 * This is assumed to be done early enough that we're
4928	 * guaranteed to be single-threaded, hence no
4929	 * locking. Should this change, we should address
4930	 * this.
4931	 */
4932	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4933	if (its_number >= GICv4_ITS_LIST_MAX) {
4934		pr_err("ITS@%pa: No ITSList entry available!\n",
4935		       &res->start);
4936		return -EINVAL;
4937	}
4938
4939	ctlr = readl_relaxed(its_base + GITS_CTLR);
4940	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4941	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4942	writel_relaxed(ctlr, its_base + GITS_CTLR);
4943	ctlr = readl_relaxed(its_base + GITS_CTLR);
4944	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4945		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4946		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4947	}
4948
4949	if (test_and_set_bit(its_number, &its_list_map)) {
4950		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4951		       &res->start, its_number);
4952		return -EINVAL;
4953	}
4954
4955	return its_number;
4956}
4957
4958static int __init its_probe_one(struct resource *res,
4959				struct fwnode_handle *handle, int numa_node)
4960{
4961	struct its_node *its;
4962	void __iomem *its_base;
4963	u32 val, ctlr;
4964	u64 baser, tmp, typer;
4965	struct page *page;
 
4966	int err;
4967
4968	its_base = ioremap(res->start, SZ_64K);
4969	if (!its_base) {
4970		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4971		return -ENOMEM;
4972	}
4973
4974	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4975	if (val != 0x30 && val != 0x40) {
4976		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4977		err = -ENODEV;
4978		goto out_unmap;
4979	}
4980
4981	err = its_force_quiescent(its_base);
4982	if (err) {
4983		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4984		goto out_unmap;
4985	}
4986
4987	pr_info("ITS %pR\n", res);
4988
4989	its = kzalloc(sizeof(*its), GFP_KERNEL);
4990	if (!its) {
4991		err = -ENOMEM;
4992		goto out_unmap;
4993	}
4994
4995	raw_spin_lock_init(&its->lock);
4996	mutex_init(&its->dev_alloc_lock);
4997	INIT_LIST_HEAD(&its->entry);
4998	INIT_LIST_HEAD(&its->its_device_list);
4999	typer = gic_read_typer(its_base + GITS_TYPER);
5000	its->typer = typer;
5001	its->base = its_base;
5002	its->phys_base = res->start;
5003	if (is_v4(its)) {
5004		if (!(typer & GITS_TYPER_VMOVP)) {
5005			err = its_compute_its_list_map(res, its_base);
5006			if (err < 0)
5007				goto out_free_its;
5008
5009			its->list_nr = err;
5010
5011			pr_info("ITS@%pa: Using ITS number %d\n",
5012				&res->start, err);
5013		} else {
5014			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5015		}
5016
5017		if (is_v4_1(its)) {
5018			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5019
5020			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5021			if (!its->sgir_base) {
5022				err = -ENOMEM;
5023				goto out_free_its;
5024			}
5025
5026			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5027
5028			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5029				&res->start, its->mpidr, svpet);
5030		}
5031	}
5032
5033	its->numa_node = numa_node;
5034
5035	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5036				get_order(ITS_CMD_QUEUE_SZ));
5037	if (!page) {
5038		err = -ENOMEM;
5039		goto out_unmap_sgir;
5040	}
5041	its->cmd_base = (void *)page_address(page);
5042	its->cmd_write = its->cmd_base;
5043	its->fwnode_handle = handle;
5044	its->get_msi_base = its_irq_get_msi_base;
5045	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5046
5047	its_enable_quirks(its);
5048
5049	err = its_alloc_tables(its);
5050	if (err)
5051		goto out_free_cmd;
5052
5053	err = its_alloc_collections(its);
5054	if (err)
5055		goto out_free_tables;
5056
5057	baser = (virt_to_phys(its->cmd_base)	|
5058		 GITS_CBASER_RaWaWb		|
5059		 GITS_CBASER_InnerShareable	|
5060		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5061		 GITS_CBASER_VALID);
5062
5063	gits_write_cbaser(baser, its->base + GITS_CBASER);
5064	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5065
 
 
 
5066	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5067		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5068			/*
5069			 * The HW reports non-shareable, we must
5070			 * remove the cacheability attributes as
5071			 * well.
5072			 */
5073			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5074				   GITS_CBASER_CACHEABILITY_MASK);
5075			baser |= GITS_CBASER_nC;
5076			gits_write_cbaser(baser, its->base + GITS_CBASER);
5077		}
5078		pr_info("ITS: using cache flushing for cmd queue\n");
5079		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5080	}
5081
5082	gits_write_cwriter(0, its->base + GITS_CWRITER);
5083	ctlr = readl_relaxed(its->base + GITS_CTLR);
5084	ctlr |= GITS_CTLR_ENABLE;
5085	if (is_v4(its))
5086		ctlr |= GITS_CTLR_ImDe;
5087	writel_relaxed(ctlr, its->base + GITS_CTLR);
5088
5089	err = its_init_domain(handle, its);
5090	if (err)
5091		goto out_free_tables;
5092
5093	raw_spin_lock(&its_lock);
5094	list_add(&its->entry, &its_nodes);
5095	raw_spin_unlock(&its_lock);
5096
5097	return 0;
5098
5099out_free_tables:
5100	its_free_tables(its);
5101out_free_cmd:
5102	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5103out_unmap_sgir:
5104	if (its->sgir_base)
5105		iounmap(its->sgir_base);
5106out_free_its:
5107	kfree(its);
5108out_unmap:
5109	iounmap(its_base);
5110	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5111	return err;
5112}
5113
5114static bool gic_rdists_supports_plpis(void)
5115{
5116	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5117}
5118
5119static int redist_disable_lpis(void)
5120{
5121	void __iomem *rbase = gic_data_rdist_rd_base();
5122	u64 timeout = USEC_PER_SEC;
5123	u64 val;
5124
5125	if (!gic_rdists_supports_plpis()) {
5126		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5127		return -ENXIO;
5128	}
5129
5130	val = readl_relaxed(rbase + GICR_CTLR);
5131	if (!(val & GICR_CTLR_ENABLE_LPIS))
5132		return 0;
5133
5134	/*
5135	 * If coming via a CPU hotplug event, we don't need to disable
5136	 * LPIs before trying to re-enable them. They are already
5137	 * configured and all is well in the world.
5138	 *
5139	 * If running with preallocated tables, there is nothing to do.
5140	 */
5141	if (gic_data_rdist()->lpi_enabled ||
5142	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5143		return 0;
5144
5145	/*
5146	 * From that point on, we only try to do some damage control.
5147	 */
5148	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5149		smp_processor_id());
5150	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5151
5152	/* Disable LPIs */
5153	val &= ~GICR_CTLR_ENABLE_LPIS;
5154	writel_relaxed(val, rbase + GICR_CTLR);
5155
5156	/* Make sure any change to GICR_CTLR is observable by the GIC */
5157	dsb(sy);
5158
5159	/*
5160	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5161	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5162	 * Error out if we time out waiting for RWP to clear.
5163	 */
5164	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5165		if (!timeout) {
5166			pr_err("CPU%d: Timeout while disabling LPIs\n",
5167			       smp_processor_id());
5168			return -ETIMEDOUT;
5169		}
5170		udelay(1);
5171		timeout--;
5172	}
5173
5174	/*
5175	 * After it has been written to 1, it is IMPLEMENTATION
5176	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5177	 * cleared to 0. Error out if clearing the bit failed.
5178	 */
5179	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5180		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5181		return -EBUSY;
5182	}
5183
5184	return 0;
5185}
5186
5187int its_cpu_init(void)
5188{
5189	if (!list_empty(&its_nodes)) {
5190		int ret;
5191
5192		ret = redist_disable_lpis();
5193		if (ret)
5194			return ret;
5195
5196		its_cpu_init_lpis();
5197		its_cpu_init_collections();
5198	}
5199
5200	return 0;
5201}
5202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5203static const struct of_device_id its_device_id[] = {
5204	{	.compatible	= "arm,gic-v3-its",	},
5205	{},
5206};
5207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5208static int __init its_of_probe(struct device_node *node)
5209{
5210	struct device_node *np;
5211	struct resource res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5212
5213	for (np = of_find_matching_node(node, its_device_id); np;
5214	     np = of_find_matching_node(np, its_device_id)) {
 
 
5215		if (!of_device_is_available(np))
5216			continue;
5217		if (!of_property_read_bool(np, "msi-controller")) {
5218			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5219				np);
5220			continue;
5221		}
5222
5223		if (of_address_to_resource(np, 0, &res)) {
5224			pr_warn("%pOF: no regs?\n", np);
5225			continue;
5226		}
5227
5228		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
 
 
 
 
 
 
 
 
 
5229	}
5230	return 0;
5231}
5232
5233#ifdef CONFIG_ACPI
5234
5235#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5236
5237#ifdef CONFIG_ACPI_NUMA
5238struct its_srat_map {
5239	/* numa node id */
5240	u32	numa_node;
5241	/* GIC ITS ID */
5242	u32	its_id;
5243};
5244
5245static struct its_srat_map *its_srat_maps __initdata;
5246static int its_in_srat __initdata;
5247
5248static int __init acpi_get_its_numa_node(u32 its_id)
5249{
5250	int i;
5251
5252	for (i = 0; i < its_in_srat; i++) {
5253		if (its_id == its_srat_maps[i].its_id)
5254			return its_srat_maps[i].numa_node;
5255	}
5256	return NUMA_NO_NODE;
5257}
5258
5259static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5260					  const unsigned long end)
5261{
5262	return 0;
5263}
5264
5265static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5266			 const unsigned long end)
5267{
5268	int node;
5269	struct acpi_srat_gic_its_affinity *its_affinity;
5270
5271	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5272	if (!its_affinity)
5273		return -EINVAL;
5274
5275	if (its_affinity->header.length < sizeof(*its_affinity)) {
5276		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5277			its_affinity->header.length);
5278		return -EINVAL;
5279	}
5280
5281	/*
5282	 * Note that in theory a new proximity node could be created by this
5283	 * entry as it is an SRAT resource allocation structure.
5284	 * We do not currently support doing so.
5285	 */
5286	node = pxm_to_node(its_affinity->proximity_domain);
5287
5288	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5289		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5290		return 0;
5291	}
5292
5293	its_srat_maps[its_in_srat].numa_node = node;
5294	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5295	its_in_srat++;
5296	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5297		its_affinity->proximity_domain, its_affinity->its_id, node);
5298
5299	return 0;
5300}
5301
5302static void __init acpi_table_parse_srat_its(void)
5303{
5304	int count;
5305
5306	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5307			sizeof(struct acpi_table_srat),
5308			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5309			gic_acpi_match_srat_its, 0);
5310	if (count <= 0)
5311		return;
5312
5313	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5314				      GFP_KERNEL);
5315	if (!its_srat_maps)
5316		return;
5317
5318	acpi_table_parse_entries(ACPI_SIG_SRAT,
5319			sizeof(struct acpi_table_srat),
5320			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5321			gic_acpi_parse_srat_its, 0);
5322}
5323
5324/* free the its_srat_maps after ITS probing */
5325static void __init acpi_its_srat_maps_free(void)
5326{
5327	kfree(its_srat_maps);
5328}
5329#else
5330static void __init acpi_table_parse_srat_its(void)	{ }
5331static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5332static void __init acpi_its_srat_maps_free(void) { }
5333#endif
5334
5335static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5336					  const unsigned long end)
5337{
5338	struct acpi_madt_generic_translator *its_entry;
5339	struct fwnode_handle *dom_handle;
 
5340	struct resource res;
5341	int err;
5342
5343	its_entry = (struct acpi_madt_generic_translator *)header;
5344	memset(&res, 0, sizeof(res));
5345	res.start = its_entry->base_address;
5346	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5347	res.flags = IORESOURCE_MEM;
5348
5349	dom_handle = irq_domain_alloc_fwnode(&res.start);
5350	if (!dom_handle) {
5351		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5352		       &res.start);
5353		return -ENOMEM;
5354	}
5355
5356	err = iort_register_domain_token(its_entry->translation_id, res.start,
5357					 dom_handle);
5358	if (err) {
5359		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5360		       &res.start, its_entry->translation_id);
5361		goto dom_err;
5362	}
5363
5364	err = its_probe_one(&res, dom_handle,
5365			acpi_get_its_numa_node(its_entry->translation_id));
 
 
 
 
 
 
5366	if (!err)
5367		return 0;
5368
 
5369	iort_deregister_domain_token(its_entry->translation_id);
5370dom_err:
5371	irq_domain_free_fwnode(dom_handle);
5372	return err;
5373}
5374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5375static void __init its_acpi_probe(void)
5376{
5377	acpi_table_parse_srat_its();
5378	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5379			      gic_acpi_parse_madt_its, 0);
 
 
 
 
 
 
 
 
5380	acpi_its_srat_maps_free();
5381}
5382#else
5383static void __init its_acpi_probe(void) { }
5384#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5385
5386int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5387		    struct irq_domain *parent_domain)
5388{
5389	struct device_node *of_node;
5390	struct its_node *its;
5391	bool has_v4 = false;
5392	bool has_v4_1 = false;
5393	int err;
5394
5395	gic_rdists = rdists;
5396
5397	its_parent = parent_domain;
5398	of_node = to_of_node(handle);
5399	if (of_node)
5400		its_of_probe(of_node);
5401	else
5402		its_acpi_probe();
5403
5404	if (list_empty(&its_nodes)) {
5405		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5406		return -ENXIO;
5407	}
5408
5409	err = allocate_lpi_tables();
5410	if (err)
5411		return err;
5412
5413	list_for_each_entry(its, &its_nodes, entry) {
5414		has_v4 |= is_v4(its);
5415		has_v4_1 |= is_v4_1(its);
5416	}
5417
5418	/* Don't bother with inconsistent systems */
5419	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5420		rdists->has_rvpeid = false;
5421
5422	if (has_v4 & rdists->has_vlpis) {
5423		const struct irq_domain_ops *sgi_ops;
5424
5425		if (has_v4_1)
5426			sgi_ops = &its_sgi_domain_ops;
5427		else
5428			sgi_ops = NULL;
5429
5430		if (its_init_vpe_domain() ||
5431		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5432			rdists->has_vlpis = false;
5433			pr_err("ITS: Disabling GICv4 support\n");
5434		}
5435	}
5436
5437	register_syscore_ops(&its_syscore_ops);
5438
5439	return 0;
5440}