Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitfield.h>
  10#include <linux/bitmap.h>
  11#include <linux/cpu.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
  14#include <linux/efi.h>
  15#include <linux/interrupt.h>
  16#include <linux/iommu.h>
  17#include <linux/iopoll.h>
  18#include <linux/irqdomain.h>
  19#include <linux/list.h>
  20#include <linux/log2.h>
  21#include <linux/memblock.h>
  22#include <linux/mm.h>
  23#include <linux/msi.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/of_pci.h>
  28#include <linux/of_platform.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/syscore_ops.h>
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
  35#include <linux/irqchip/arm-gic-v4.h>
  36
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  45#define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
 
 
  46
  47#define RD_LOCAL_LPI_ENABLED                    BIT(0)
  48#define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
  49#define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
  50
  51static u32 lpi_id_bits;
  52
  53/*
  54 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  55 * deal with (one configuration byte per interrupt). PENDBASE has to
  56 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  57 */
  58#define LPI_NRBITS		lpi_id_bits
  59#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  60#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  61
  62#define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
  63
  64/*
  65 * Collection structure - just an ID, and a redistributor address to
  66 * ping. We use one per CPU as a bag of interrupts assigned to this
  67 * CPU.
  68 */
  69struct its_collection {
  70	u64			target_address;
  71	u16			col_id;
  72};
  73
  74/*
  75 * The ITS_BASER structure - contains memory information, cached
  76 * value of BASER register configuration and ITS page size.
  77 */
  78struct its_baser {
  79	void		*base;
  80	u64		val;
  81	u32		order;
  82	u32		psz;
  83};
  84
  85struct its_device;
  86
  87/*
  88 * The ITS structure - contains most of the infrastructure, with the
  89 * top-level MSI domain, the command queue, the collections, and the
  90 * list of devices writing to it.
  91 *
  92 * dev_alloc_lock has to be taken for device allocations, while the
  93 * spinlock must be taken to parse data structures such as the device
  94 * list.
  95 */
  96struct its_node {
  97	raw_spinlock_t		lock;
  98	struct mutex		dev_alloc_lock;
  99	struct list_head	entry;
 100	void __iomem		*base;
 101	void __iomem		*sgir_base;
 102	phys_addr_t		phys_base;
 103	struct its_cmd_block	*cmd_base;
 104	struct its_cmd_block	*cmd_write;
 105	struct its_baser	tables[GITS_BASER_NR_REGS];
 106	struct its_collection	*collections;
 107	struct fwnode_handle	*fwnode_handle;
 108	u64			(*get_msi_base)(struct its_device *its_dev);
 109	u64			typer;
 110	u64			cbaser_save;
 111	u32			ctlr_save;
 112	u32			mpidr;
 113	struct list_head	its_device_list;
 114	u64			flags;
 115	unsigned long		list_nr;
 116	int			numa_node;
 117	unsigned int		msi_domain_flags;
 118	u32			pre_its_base; /* for Socionext Synquacer */
 119	int			vlpi_redist_offset;
 120};
 121
 122#define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
 123#define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
 124#define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
 125
 126#define ITS_ITT_ALIGN		SZ_256
 127
 128/* The maximum number of VPEID bits supported by VLPI commands */
 129#define ITS_MAX_VPEID_BITS						\
 130	({								\
 131		int nvpeid = 16;					\
 132		if (gic_rdists->has_rvpeid &&				\
 133		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
 134			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
 135				      GICD_TYPER2_VID);			\
 136									\
 137		nvpeid;							\
 138	})
 139#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 140
 141/* Convert page order to size in bytes */
 142#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 143
 144struct event_lpi_map {
 145	unsigned long		*lpi_map;
 146	u16			*col_map;
 147	irq_hw_number_t		lpi_base;
 148	int			nr_lpis;
 149	raw_spinlock_t		vlpi_lock;
 150	struct its_vm		*vm;
 151	struct its_vlpi_map	*vlpi_maps;
 152	int			nr_vlpis;
 153};
 154
 155/*
 156 * The ITS view of a device - belongs to an ITS, owns an interrupt
 157 * translation table, and a list of interrupts.  If it some of its
 158 * LPIs are injected into a guest (GICv4), the event_map.vm field
 159 * indicates which one.
 160 */
 161struct its_device {
 162	struct list_head	entry;
 163	struct its_node		*its;
 164	struct event_lpi_map	event_map;
 165	void			*itt;
 166	u32			nr_ites;
 167	u32			device_id;
 168	bool			shared;
 169};
 170
 171static struct {
 172	raw_spinlock_t		lock;
 173	struct its_device	*dev;
 174	struct its_vpe		**vpes;
 175	int			next_victim;
 176} vpe_proxy;
 177
 178struct cpu_lpi_count {
 179	atomic_t	managed;
 180	atomic_t	unmanaged;
 181};
 182
 183static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
 184
 185static LIST_HEAD(its_nodes);
 186static DEFINE_RAW_SPINLOCK(its_lock);
 187static struct rdists *gic_rdists;
 188static struct irq_domain *its_parent;
 189
 190static unsigned long its_list_map;
 191static u16 vmovp_seq_num;
 192static DEFINE_RAW_SPINLOCK(vmovp_lock);
 193
 194static DEFINE_IDA(its_vpeid_ida);
 195
 196#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 197#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
 198#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 199#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 200
 201/*
 202 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
 203 * always have vSGIs mapped.
 204 */
 205static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
 206{
 207	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
 208}
 209
 210static bool rdists_support_shareable(void)
 211{
 212	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
 213}
 214
 215static u16 get_its_list(struct its_vm *vm)
 216{
 217	struct its_node *its;
 218	unsigned long its_list = 0;
 219
 220	list_for_each_entry(its, &its_nodes, entry) {
 221		if (!is_v4(its))
 222			continue;
 223
 224		if (require_its_list_vmovp(vm, its))
 225			__set_bit(its->list_nr, &its_list);
 226	}
 227
 228	return (u16)its_list;
 229}
 230
 231static inline u32 its_get_event_id(struct irq_data *d)
 232{
 233	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 234	return d->hwirq - its_dev->event_map.lpi_base;
 235}
 236
 237static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 238					       u32 event)
 239{
 240	struct its_node *its = its_dev->its;
 241
 242	return its->collections + its_dev->event_map.col_map[event];
 243}
 244
 245static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
 246					       u32 event)
 247{
 248	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
 249		return NULL;
 250
 251	return &its_dev->event_map.vlpi_maps[event];
 252}
 253
 254static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
 255{
 256	if (irqd_is_forwarded_to_vcpu(d)) {
 257		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 258		u32 event = its_get_event_id(d);
 259
 260		return dev_event_to_vlpi_map(its_dev, event);
 261	}
 262
 263	return NULL;
 264}
 265
 266static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
 267{
 268	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
 269	return vpe->col_idx;
 270}
 271
 272static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
 273{
 274	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
 275}
 276
 277static struct irq_chip its_vpe_irq_chip;
 278
 279static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
 280{
 281	struct its_vpe *vpe = NULL;
 282	int cpu;
 283
 284	if (d->chip == &its_vpe_irq_chip) {
 285		vpe = irq_data_get_irq_chip_data(d);
 286	} else {
 287		struct its_vlpi_map *map = get_vlpi_map(d);
 288		if (map)
 289			vpe = map->vpe;
 290	}
 291
 292	if (vpe) {
 293		cpu = vpe_to_cpuid_lock(vpe, flags);
 294	} else {
 295		/* Physical LPIs are already locked via the irq_desc lock */
 296		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 297		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
 298		/* Keep GCC quiet... */
 299		*flags = 0;
 300	}
 301
 302	return cpu;
 303}
 304
 305static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
 306{
 307	struct its_vpe *vpe = NULL;
 308
 309	if (d->chip == &its_vpe_irq_chip) {
 310		vpe = irq_data_get_irq_chip_data(d);
 311	} else {
 312		struct its_vlpi_map *map = get_vlpi_map(d);
 313		if (map)
 314			vpe = map->vpe;
 315	}
 316
 317	if (vpe)
 318		vpe_to_cpuid_unlock(vpe, flags);
 319}
 320
 321static struct its_collection *valid_col(struct its_collection *col)
 322{
 323	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 324		return NULL;
 325
 326	return col;
 327}
 328
 329static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 330{
 331	if (valid_col(its->collections + vpe->col_idx))
 332		return vpe;
 333
 334	return NULL;
 335}
 336
 337/*
 338 * ITS command descriptors - parameters to be encoded in a command
 339 * block.
 340 */
 341struct its_cmd_desc {
 342	union {
 343		struct {
 344			struct its_device *dev;
 345			u32 event_id;
 346		} its_inv_cmd;
 347
 348		struct {
 349			struct its_device *dev;
 350			u32 event_id;
 351		} its_clear_cmd;
 352
 353		struct {
 354			struct its_device *dev;
 355			u32 event_id;
 356		} its_int_cmd;
 357
 358		struct {
 359			struct its_device *dev;
 360			int valid;
 361		} its_mapd_cmd;
 362
 363		struct {
 364			struct its_collection *col;
 365			int valid;
 366		} its_mapc_cmd;
 367
 368		struct {
 369			struct its_device *dev;
 370			u32 phys_id;
 371			u32 event_id;
 372		} its_mapti_cmd;
 373
 374		struct {
 375			struct its_device *dev;
 376			struct its_collection *col;
 377			u32 event_id;
 378		} its_movi_cmd;
 379
 380		struct {
 381			struct its_device *dev;
 382			u32 event_id;
 383		} its_discard_cmd;
 384
 385		struct {
 386			struct its_collection *col;
 387		} its_invall_cmd;
 388
 389		struct {
 390			struct its_vpe *vpe;
 391		} its_vinvall_cmd;
 392
 393		struct {
 394			struct its_vpe *vpe;
 395			struct its_collection *col;
 396			bool valid;
 397		} its_vmapp_cmd;
 398
 399		struct {
 400			struct its_vpe *vpe;
 401			struct its_device *dev;
 402			u32 virt_id;
 403			u32 event_id;
 404			bool db_enabled;
 405		} its_vmapti_cmd;
 406
 407		struct {
 408			struct its_vpe *vpe;
 409			struct its_device *dev;
 410			u32 event_id;
 411			bool db_enabled;
 412		} its_vmovi_cmd;
 413
 414		struct {
 415			struct its_vpe *vpe;
 416			struct its_collection *col;
 417			u16 seq_num;
 418			u16 its_list;
 419		} its_vmovp_cmd;
 420
 421		struct {
 422			struct its_vpe *vpe;
 423		} its_invdb_cmd;
 424
 425		struct {
 426			struct its_vpe *vpe;
 427			u8 sgi;
 428			u8 priority;
 429			bool enable;
 430			bool group;
 431			bool clear;
 432		} its_vsgi_cmd;
 433	};
 434};
 435
 436/*
 437 * The ITS command block, which is what the ITS actually parses.
 438 */
 439struct its_cmd_block {
 440	union {
 441		u64	raw_cmd[4];
 442		__le64	raw_cmd_le[4];
 443	};
 444};
 445
 446#define ITS_CMD_QUEUE_SZ		SZ_64K
 447#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 448
 449typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 450						    struct its_cmd_block *,
 451						    struct its_cmd_desc *);
 452
 453typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 454					      struct its_cmd_block *,
 455					      struct its_cmd_desc *);
 456
 457static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 458{
 459	u64 mask = GENMASK_ULL(h, l);
 460	*raw_cmd &= ~mask;
 461	*raw_cmd |= (val << l) & mask;
 462}
 463
 464static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 465{
 466	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 467}
 468
 469static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 470{
 471	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 472}
 473
 474static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 475{
 476	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 477}
 478
 479static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 480{
 481	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 482}
 483
 484static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 485{
 486	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 487}
 488
 489static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 490{
 491	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 492}
 493
 494static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 495{
 496	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 497}
 498
 499static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 500{
 501	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 502}
 503
 504static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 505{
 506	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 507}
 508
 509static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 510{
 511	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 512}
 513
 514static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 515{
 516	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 517}
 518
 519static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 520{
 521	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 522}
 523
 524static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 525{
 526	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 527}
 528
 529static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 530{
 531	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 532}
 533
 534static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 535{
 536	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 537}
 538
 539static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 540{
 541	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 542}
 543
 544static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 545{
 546	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 547}
 548
 549static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
 550{
 551	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
 552}
 553
 554static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
 555{
 556	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
 557}
 558
 559static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
 560{
 561	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
 562}
 563
 564static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
 565					u32 vpe_db_lpi)
 566{
 567	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
 568}
 569
 570static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
 571					u32 vpe_db_lpi)
 572{
 573	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
 574}
 575
 576static void its_encode_db(struct its_cmd_block *cmd, bool db)
 577{
 578	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
 579}
 580
 581static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
 582{
 583	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
 584}
 585
 586static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
 587{
 588	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
 589}
 590
 591static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
 592{
 593	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
 594}
 595
 596static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
 597{
 598	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
 599}
 600
 601static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
 602{
 603	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
 604}
 605
 606static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 607{
 608	/* Let's fixup BE commands */
 609	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
 610	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
 611	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
 612	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
 613}
 614
 615static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 616						 struct its_cmd_block *cmd,
 617						 struct its_cmd_desc *desc)
 618{
 619	unsigned long itt_addr;
 620	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 621
 622	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 623	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 624
 625	its_encode_cmd(cmd, GITS_CMD_MAPD);
 626	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 627	its_encode_size(cmd, size - 1);
 628	its_encode_itt(cmd, itt_addr);
 629	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 630
 631	its_fixup_cmd(cmd);
 632
 633	return NULL;
 634}
 635
 636static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 637						 struct its_cmd_block *cmd,
 638						 struct its_cmd_desc *desc)
 639{
 640	its_encode_cmd(cmd, GITS_CMD_MAPC);
 641	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 642	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 643	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 644
 645	its_fixup_cmd(cmd);
 646
 647	return desc->its_mapc_cmd.col;
 648}
 649
 650static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 651						  struct its_cmd_block *cmd,
 652						  struct its_cmd_desc *desc)
 653{
 654	struct its_collection *col;
 655
 656	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 657			       desc->its_mapti_cmd.event_id);
 658
 659	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 660	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 661	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 662	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 663	its_encode_collection(cmd, col->col_id);
 664
 665	its_fixup_cmd(cmd);
 666
 667	return valid_col(col);
 668}
 669
 670static struct its_collection *its_build_movi_cmd(struct its_node *its,
 671						 struct its_cmd_block *cmd,
 672						 struct its_cmd_desc *desc)
 673{
 674	struct its_collection *col;
 675
 676	col = dev_event_to_col(desc->its_movi_cmd.dev,
 677			       desc->its_movi_cmd.event_id);
 678
 679	its_encode_cmd(cmd, GITS_CMD_MOVI);
 680	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 681	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 682	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 683
 684	its_fixup_cmd(cmd);
 685
 686	return valid_col(col);
 687}
 688
 689static struct its_collection *its_build_discard_cmd(struct its_node *its,
 690						    struct its_cmd_block *cmd,
 691						    struct its_cmd_desc *desc)
 692{
 693	struct its_collection *col;
 694
 695	col = dev_event_to_col(desc->its_discard_cmd.dev,
 696			       desc->its_discard_cmd.event_id);
 697
 698	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 699	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 700	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 701
 702	its_fixup_cmd(cmd);
 703
 704	return valid_col(col);
 705}
 706
 707static struct its_collection *its_build_inv_cmd(struct its_node *its,
 708						struct its_cmd_block *cmd,
 709						struct its_cmd_desc *desc)
 710{
 711	struct its_collection *col;
 712
 713	col = dev_event_to_col(desc->its_inv_cmd.dev,
 714			       desc->its_inv_cmd.event_id);
 715
 716	its_encode_cmd(cmd, GITS_CMD_INV);
 717	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 718	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 719
 720	its_fixup_cmd(cmd);
 721
 722	return valid_col(col);
 723}
 724
 725static struct its_collection *its_build_int_cmd(struct its_node *its,
 726						struct its_cmd_block *cmd,
 727						struct its_cmd_desc *desc)
 728{
 729	struct its_collection *col;
 730
 731	col = dev_event_to_col(desc->its_int_cmd.dev,
 732			       desc->its_int_cmd.event_id);
 733
 734	its_encode_cmd(cmd, GITS_CMD_INT);
 735	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 736	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 737
 738	its_fixup_cmd(cmd);
 739
 740	return valid_col(col);
 741}
 742
 743static struct its_collection *its_build_clear_cmd(struct its_node *its,
 744						  struct its_cmd_block *cmd,
 745						  struct its_cmd_desc *desc)
 746{
 747	struct its_collection *col;
 748
 749	col = dev_event_to_col(desc->its_clear_cmd.dev,
 750			       desc->its_clear_cmd.event_id);
 751
 752	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 753	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 754	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 755
 756	its_fixup_cmd(cmd);
 757
 758	return valid_col(col);
 759}
 760
 761static struct its_collection *its_build_invall_cmd(struct its_node *its,
 762						   struct its_cmd_block *cmd,
 763						   struct its_cmd_desc *desc)
 764{
 765	its_encode_cmd(cmd, GITS_CMD_INVALL);
 766	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
 767
 768	its_fixup_cmd(cmd);
 769
 770	return desc->its_invall_cmd.col;
 771}
 772
 773static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 774					     struct its_cmd_block *cmd,
 775					     struct its_cmd_desc *desc)
 776{
 777	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 778	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 779
 780	its_fixup_cmd(cmd);
 781
 782	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 783}
 784
 785static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 786					   struct its_cmd_block *cmd,
 787					   struct its_cmd_desc *desc)
 788{
 789	unsigned long vpt_addr, vconf_addr;
 790	u64 target;
 791	bool alloc;
 792
 793	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 794	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 795	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 796
 797	if (!desc->its_vmapp_cmd.valid) {
 798		if (is_v4_1(its)) {
 799			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
 800			its_encode_alloc(cmd, alloc);
 801		}
 802
 803		goto out;
 804	}
 805
 806	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 807	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 808
 809	its_encode_target(cmd, target);
 810	its_encode_vpt_addr(cmd, vpt_addr);
 811	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 812
 813	if (!is_v4_1(its))
 814		goto out;
 815
 816	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
 817
 818	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
 819
 820	its_encode_alloc(cmd, alloc);
 821
 822	/*
 823	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
 824	 * to be unmapped first, and in this case, we may remap the vPE
 825	 * back while the VPT is not empty. So we can't assume that the
 826	 * VPT is empty on map. This is why we never advertise PTZ.
 827	 */
 828	its_encode_ptz(cmd, false);
 829	its_encode_vconf_addr(cmd, vconf_addr);
 830	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
 831
 832out:
 833	its_fixup_cmd(cmd);
 834
 835	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 836}
 837
 838static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 839					    struct its_cmd_block *cmd,
 840					    struct its_cmd_desc *desc)
 841{
 842	u32 db;
 843
 844	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
 845		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 846	else
 847		db = 1023;
 848
 849	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 850	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 851	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 852	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 853	its_encode_db_phys_id(cmd, db);
 854	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 855
 856	its_fixup_cmd(cmd);
 857
 858	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 859}
 860
 861static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 862					   struct its_cmd_block *cmd,
 863					   struct its_cmd_desc *desc)
 864{
 865	u32 db;
 866
 867	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
 868		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 869	else
 870		db = 1023;
 871
 872	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 873	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 874	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 875	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 876	its_encode_db_phys_id(cmd, db);
 877	its_encode_db_valid(cmd, true);
 878
 879	its_fixup_cmd(cmd);
 880
 881	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 882}
 883
 884static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 885					   struct its_cmd_block *cmd,
 886					   struct its_cmd_desc *desc)
 887{
 888	u64 target;
 889
 890	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 891	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 892	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 893	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 894	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 895	its_encode_target(cmd, target);
 896
 897	if (is_v4_1(its)) {
 898		its_encode_db(cmd, true);
 899		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
 900	}
 901
 902	its_fixup_cmd(cmd);
 903
 904	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 905}
 906
 907static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
 908					  struct its_cmd_block *cmd,
 909					  struct its_cmd_desc *desc)
 910{
 911	struct its_vlpi_map *map;
 912
 913	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
 914				    desc->its_inv_cmd.event_id);
 915
 916	its_encode_cmd(cmd, GITS_CMD_INV);
 917	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 918	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 919
 920	its_fixup_cmd(cmd);
 921
 922	return valid_vpe(its, map->vpe);
 923}
 924
 925static struct its_vpe *its_build_vint_cmd(struct its_node *its,
 926					  struct its_cmd_block *cmd,
 927					  struct its_cmd_desc *desc)
 928{
 929	struct its_vlpi_map *map;
 930
 931	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
 932				    desc->its_int_cmd.event_id);
 933
 934	its_encode_cmd(cmd, GITS_CMD_INT);
 935	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 936	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 937
 938	its_fixup_cmd(cmd);
 939
 940	return valid_vpe(its, map->vpe);
 941}
 942
 943static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
 944					    struct its_cmd_block *cmd,
 945					    struct its_cmd_desc *desc)
 946{
 947	struct its_vlpi_map *map;
 948
 949	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
 950				    desc->its_clear_cmd.event_id);
 951
 952	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 953	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 954	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 955
 956	its_fixup_cmd(cmd);
 957
 958	return valid_vpe(its, map->vpe);
 959}
 960
 961static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
 962					   struct its_cmd_block *cmd,
 963					   struct its_cmd_desc *desc)
 964{
 965	if (WARN_ON(!is_v4_1(its)))
 966		return NULL;
 967
 968	its_encode_cmd(cmd, GITS_CMD_INVDB);
 969	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
 970
 971	its_fixup_cmd(cmd);
 972
 973	return valid_vpe(its, desc->its_invdb_cmd.vpe);
 974}
 975
 976static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
 977					  struct its_cmd_block *cmd,
 978					  struct its_cmd_desc *desc)
 979{
 980	if (WARN_ON(!is_v4_1(its)))
 981		return NULL;
 982
 983	its_encode_cmd(cmd, GITS_CMD_VSGI);
 984	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
 985	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
 986	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
 987	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
 988	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
 989	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
 990
 991	its_fixup_cmd(cmd);
 992
 993	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
 994}
 995
 996static u64 its_cmd_ptr_to_offset(struct its_node *its,
 997				 struct its_cmd_block *ptr)
 998{
 999	return (ptr - its->cmd_base) * sizeof(*ptr);
1000}
1001
1002static int its_queue_full(struct its_node *its)
1003{
1004	int widx;
1005	int ridx;
1006
1007	widx = its->cmd_write - its->cmd_base;
1008	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1009
1010	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1011	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1012		return 1;
1013
1014	return 0;
1015}
1016
1017static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1018{
1019	struct its_cmd_block *cmd;
1020	u32 count = 1000000;	/* 1s! */
1021
1022	while (its_queue_full(its)) {
1023		count--;
1024		if (!count) {
1025			pr_err_ratelimited("ITS queue not draining\n");
1026			return NULL;
1027		}
1028		cpu_relax();
1029		udelay(1);
1030	}
1031
1032	cmd = its->cmd_write++;
1033
1034	/* Handle queue wrapping */
1035	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1036		its->cmd_write = its->cmd_base;
1037
1038	/* Clear command  */
1039	cmd->raw_cmd[0] = 0;
1040	cmd->raw_cmd[1] = 0;
1041	cmd->raw_cmd[2] = 0;
1042	cmd->raw_cmd[3] = 0;
1043
1044	return cmd;
1045}
1046
1047static struct its_cmd_block *its_post_commands(struct its_node *its)
1048{
1049	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1050
1051	writel_relaxed(wr, its->base + GITS_CWRITER);
1052
1053	return its->cmd_write;
1054}
1055
1056static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1057{
1058	/*
1059	 * Make sure the commands written to memory are observable by
1060	 * the ITS.
1061	 */
1062	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1063		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1064	else
1065		dsb(ishst);
1066}
1067
1068static int its_wait_for_range_completion(struct its_node *its,
1069					 u64	prev_idx,
1070					 struct its_cmd_block *to)
1071{
1072	u64 rd_idx, to_idx, linear_idx;
1073	u32 count = 1000000;	/* 1s! */
1074
1075	/* Linearize to_idx if the command set has wrapped around */
1076	to_idx = its_cmd_ptr_to_offset(its, to);
1077	if (to_idx < prev_idx)
1078		to_idx += ITS_CMD_QUEUE_SZ;
1079
1080	linear_idx = prev_idx;
1081
1082	while (1) {
1083		s64 delta;
1084
1085		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1086
1087		/*
1088		 * Compute the read pointer progress, taking the
1089		 * potential wrap-around into account.
1090		 */
1091		delta = rd_idx - prev_idx;
1092		if (rd_idx < prev_idx)
1093			delta += ITS_CMD_QUEUE_SZ;
1094
1095		linear_idx += delta;
1096		if (linear_idx >= to_idx)
1097			break;
1098
1099		count--;
1100		if (!count) {
1101			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1102					   to_idx, linear_idx);
1103			return -1;
1104		}
1105		prev_idx = rd_idx;
1106		cpu_relax();
1107		udelay(1);
1108	}
1109
1110	return 0;
1111}
1112
1113/* Warning, macro hell follows */
1114#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1115void name(struct its_node *its,						\
1116	  buildtype builder,						\
1117	  struct its_cmd_desc *desc)					\
1118{									\
1119	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1120	synctype *sync_obj;						\
1121	unsigned long flags;						\
1122	u64 rd_idx;							\
1123									\
1124	raw_spin_lock_irqsave(&its->lock, flags);			\
1125									\
1126	cmd = its_allocate_entry(its);					\
1127	if (!cmd) {		/* We're soooooo screewed... */		\
1128		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1129		return;							\
1130	}								\
1131	sync_obj = builder(its, cmd, desc);				\
1132	its_flush_cmd(its, cmd);					\
1133									\
1134	if (sync_obj) {							\
1135		sync_cmd = its_allocate_entry(its);			\
1136		if (!sync_cmd)						\
1137			goto post;					\
1138									\
1139		buildfn(its, sync_cmd, sync_obj);			\
1140		its_flush_cmd(its, sync_cmd);				\
1141	}								\
1142									\
1143post:									\
1144	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1145	next_cmd = its_post_commands(its);				\
1146	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1147									\
1148	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1149		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1150}
1151
1152static void its_build_sync_cmd(struct its_node *its,
1153			       struct its_cmd_block *sync_cmd,
1154			       struct its_collection *sync_col)
1155{
1156	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1157	its_encode_target(sync_cmd, sync_col->target_address);
1158
1159	its_fixup_cmd(sync_cmd);
1160}
1161
1162static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1163			     struct its_collection, its_build_sync_cmd)
1164
1165static void its_build_vsync_cmd(struct its_node *its,
1166				struct its_cmd_block *sync_cmd,
1167				struct its_vpe *sync_vpe)
1168{
1169	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1170	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1171
1172	its_fixup_cmd(sync_cmd);
1173}
1174
1175static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1176			     struct its_vpe, its_build_vsync_cmd)
1177
1178static void its_send_int(struct its_device *dev, u32 event_id)
1179{
1180	struct its_cmd_desc desc;
1181
1182	desc.its_int_cmd.dev = dev;
1183	desc.its_int_cmd.event_id = event_id;
1184
1185	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1186}
1187
1188static void its_send_clear(struct its_device *dev, u32 event_id)
1189{
1190	struct its_cmd_desc desc;
1191
1192	desc.its_clear_cmd.dev = dev;
1193	desc.its_clear_cmd.event_id = event_id;
1194
1195	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1196}
1197
1198static void its_send_inv(struct its_device *dev, u32 event_id)
1199{
1200	struct its_cmd_desc desc;
1201
1202	desc.its_inv_cmd.dev = dev;
1203	desc.its_inv_cmd.event_id = event_id;
1204
1205	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1206}
1207
1208static void its_send_mapd(struct its_device *dev, int valid)
1209{
1210	struct its_cmd_desc desc;
1211
1212	desc.its_mapd_cmd.dev = dev;
1213	desc.its_mapd_cmd.valid = !!valid;
1214
1215	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1216}
1217
1218static void its_send_mapc(struct its_node *its, struct its_collection *col,
1219			  int valid)
1220{
1221	struct its_cmd_desc desc;
1222
1223	desc.its_mapc_cmd.col = col;
1224	desc.its_mapc_cmd.valid = !!valid;
1225
1226	its_send_single_command(its, its_build_mapc_cmd, &desc);
1227}
1228
1229static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1230{
1231	struct its_cmd_desc desc;
1232
1233	desc.its_mapti_cmd.dev = dev;
1234	desc.its_mapti_cmd.phys_id = irq_id;
1235	desc.its_mapti_cmd.event_id = id;
1236
1237	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1238}
1239
1240static void its_send_movi(struct its_device *dev,
1241			  struct its_collection *col, u32 id)
1242{
1243	struct its_cmd_desc desc;
1244
1245	desc.its_movi_cmd.dev = dev;
1246	desc.its_movi_cmd.col = col;
1247	desc.its_movi_cmd.event_id = id;
1248
1249	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1250}
1251
1252static void its_send_discard(struct its_device *dev, u32 id)
1253{
1254	struct its_cmd_desc desc;
1255
1256	desc.its_discard_cmd.dev = dev;
1257	desc.its_discard_cmd.event_id = id;
1258
1259	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1260}
1261
1262static void its_send_invall(struct its_node *its, struct its_collection *col)
1263{
1264	struct its_cmd_desc desc;
1265
1266	desc.its_invall_cmd.col = col;
1267
1268	its_send_single_command(its, its_build_invall_cmd, &desc);
1269}
1270
1271static void its_send_vmapti(struct its_device *dev, u32 id)
1272{
1273	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1274	struct its_cmd_desc desc;
1275
1276	desc.its_vmapti_cmd.vpe = map->vpe;
1277	desc.its_vmapti_cmd.dev = dev;
1278	desc.its_vmapti_cmd.virt_id = map->vintid;
1279	desc.its_vmapti_cmd.event_id = id;
1280	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1281
1282	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1283}
1284
1285static void its_send_vmovi(struct its_device *dev, u32 id)
1286{
1287	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1288	struct its_cmd_desc desc;
1289
1290	desc.its_vmovi_cmd.vpe = map->vpe;
1291	desc.its_vmovi_cmd.dev = dev;
1292	desc.its_vmovi_cmd.event_id = id;
1293	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1294
1295	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1296}
1297
1298static void its_send_vmapp(struct its_node *its,
1299			   struct its_vpe *vpe, bool valid)
1300{
1301	struct its_cmd_desc desc;
1302
1303	desc.its_vmapp_cmd.vpe = vpe;
1304	desc.its_vmapp_cmd.valid = valid;
1305	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1306
1307	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1308}
1309
1310static void its_send_vmovp(struct its_vpe *vpe)
1311{
1312	struct its_cmd_desc desc = {};
1313	struct its_node *its;
1314	unsigned long flags;
1315	int col_id = vpe->col_idx;
1316
1317	desc.its_vmovp_cmd.vpe = vpe;
1318
1319	if (!its_list_map) {
1320		its = list_first_entry(&its_nodes, struct its_node, entry);
1321		desc.its_vmovp_cmd.col = &its->collections[col_id];
1322		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1323		return;
1324	}
1325
1326	/*
1327	 * Yet another marvel of the architecture. If using the
1328	 * its_list "feature", we need to make sure that all ITSs
1329	 * receive all VMOVP commands in the same order. The only way
1330	 * to guarantee this is to make vmovp a serialization point.
1331	 *
1332	 * Wall <-- Head.
1333	 */
1334	raw_spin_lock_irqsave(&vmovp_lock, flags);
1335
1336	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1337	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1338
1339	/* Emit VMOVPs */
1340	list_for_each_entry(its, &its_nodes, entry) {
1341		if (!is_v4(its))
1342			continue;
1343
1344		if (!require_its_list_vmovp(vpe->its_vm, its))
1345			continue;
1346
1347		desc.its_vmovp_cmd.col = &its->collections[col_id];
1348		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1349	}
1350
1351	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1352}
1353
1354static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1355{
1356	struct its_cmd_desc desc;
1357
1358	desc.its_vinvall_cmd.vpe = vpe;
1359	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1360}
1361
1362static void its_send_vinv(struct its_device *dev, u32 event_id)
1363{
1364	struct its_cmd_desc desc;
1365
1366	/*
1367	 * There is no real VINV command. This is just a normal INV,
1368	 * with a VSYNC instead of a SYNC.
1369	 */
1370	desc.its_inv_cmd.dev = dev;
1371	desc.its_inv_cmd.event_id = event_id;
1372
1373	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1374}
1375
1376static void its_send_vint(struct its_device *dev, u32 event_id)
1377{
1378	struct its_cmd_desc desc;
1379
1380	/*
1381	 * There is no real VINT command. This is just a normal INT,
1382	 * with a VSYNC instead of a SYNC.
1383	 */
1384	desc.its_int_cmd.dev = dev;
1385	desc.its_int_cmd.event_id = event_id;
1386
1387	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1388}
1389
1390static void its_send_vclear(struct its_device *dev, u32 event_id)
1391{
1392	struct its_cmd_desc desc;
1393
1394	/*
1395	 * There is no real VCLEAR command. This is just a normal CLEAR,
1396	 * with a VSYNC instead of a SYNC.
1397	 */
1398	desc.its_clear_cmd.dev = dev;
1399	desc.its_clear_cmd.event_id = event_id;
1400
1401	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1402}
1403
1404static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1405{
1406	struct its_cmd_desc desc;
1407
1408	desc.its_invdb_cmd.vpe = vpe;
1409	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1410}
1411
1412/*
1413 * irqchip functions - assumes MSI, mostly.
1414 */
1415static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1416{
1417	struct its_vlpi_map *map = get_vlpi_map(d);
1418	irq_hw_number_t hwirq;
1419	void *va;
1420	u8 *cfg;
1421
1422	if (map) {
1423		va = page_address(map->vm->vprop_page);
1424		hwirq = map->vintid;
1425
1426		/* Remember the updated property */
1427		map->properties &= ~clr;
1428		map->properties |= set | LPI_PROP_GROUP1;
1429	} else {
1430		va = gic_rdists->prop_table_va;
1431		hwirq = d->hwirq;
1432	}
1433
1434	cfg = va + hwirq - 8192;
1435	*cfg &= ~clr;
1436	*cfg |= set | LPI_PROP_GROUP1;
1437
1438	/*
1439	 * Make the above write visible to the redistributors.
1440	 * And yes, we're flushing exactly: One. Single. Byte.
1441	 * Humpf...
1442	 */
1443	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1444		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1445	else
1446		dsb(ishst);
1447}
1448
1449static void wait_for_syncr(void __iomem *rdbase)
1450{
1451	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1452		cpu_relax();
1453}
1454
1455static void __direct_lpi_inv(struct irq_data *d, u64 val)
1456{
1457	void __iomem *rdbase;
1458	unsigned long flags;
1459	int cpu;
1460
1461	/* Target the redistributor this LPI is currently routed to */
1462	cpu = irq_to_cpuid_lock(d, &flags);
1463	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1464
1465	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1466	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1467	wait_for_syncr(rdbase);
1468
1469	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1470	irq_to_cpuid_unlock(d, flags);
1471}
1472
1473static void direct_lpi_inv(struct irq_data *d)
1474{
1475	struct its_vlpi_map *map = get_vlpi_map(d);
 
 
1476	u64 val;
 
1477
1478	if (map) {
1479		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1480
1481		WARN_ON(!is_v4_1(its_dev->its));
1482
1483		val  = GICR_INVLPIR_V;
1484		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1485		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1486	} else {
1487		val = d->hwirq;
1488	}
1489
1490	__direct_lpi_inv(d, val);
 
 
 
 
 
 
 
 
1491}
1492
1493static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1494{
1495	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496
1497	lpi_write_config(d, clr, set);
1498	if (gic_rdists->has_direct_lpi &&
1499	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1500		direct_lpi_inv(d);
1501	else if (!irqd_is_forwarded_to_vcpu(d))
1502		its_send_inv(its_dev, its_get_event_id(d));
1503	else
1504		its_send_vinv(its_dev, its_get_event_id(d));
1505}
1506
1507static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1508{
1509	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1510	u32 event = its_get_event_id(d);
1511	struct its_vlpi_map *map;
1512
1513	/*
1514	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1515	 * here.
1516	 */
1517	if (is_v4_1(its_dev->its))
1518		return;
1519
1520	map = dev_event_to_vlpi_map(its_dev, event);
1521
1522	if (map->db_enabled == enable)
1523		return;
1524
1525	map->db_enabled = enable;
1526
1527	/*
1528	 * More fun with the architecture:
1529	 *
1530	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1531	 * value or to 1023, depending on the enable bit. But that
1532	 * would be issuing a mapping for an /existing/ DevID+EventID
1533	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1534	 * to the /same/ vPE, using this opportunity to adjust the
1535	 * doorbell. Mouahahahaha. We loves it, Precious.
1536	 */
1537	its_send_vmovi(its_dev, event);
1538}
1539
1540static void its_mask_irq(struct irq_data *d)
1541{
1542	if (irqd_is_forwarded_to_vcpu(d))
1543		its_vlpi_set_doorbell(d, false);
1544
1545	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1546}
1547
1548static void its_unmask_irq(struct irq_data *d)
1549{
1550	if (irqd_is_forwarded_to_vcpu(d))
1551		its_vlpi_set_doorbell(d, true);
1552
1553	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1554}
1555
1556static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1557{
1558	if (irqd_affinity_is_managed(d))
1559		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1560
1561	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1562}
1563
1564static void its_inc_lpi_count(struct irq_data *d, int cpu)
1565{
1566	if (irqd_affinity_is_managed(d))
1567		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1568	else
1569		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1570}
1571
1572static void its_dec_lpi_count(struct irq_data *d, int cpu)
1573{
1574	if (irqd_affinity_is_managed(d))
1575		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1576	else
1577		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1578}
1579
1580static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1581					      const struct cpumask *cpu_mask)
1582{
1583	unsigned int cpu = nr_cpu_ids, tmp;
1584	int count = S32_MAX;
1585
1586	for_each_cpu(tmp, cpu_mask) {
1587		int this_count = its_read_lpi_count(d, tmp);
1588		if (this_count < count) {
1589			cpu = tmp;
1590		        count = this_count;
1591		}
1592	}
1593
1594	return cpu;
1595}
1596
1597/*
1598 * As suggested by Thomas Gleixner in:
1599 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1600 */
1601static int its_select_cpu(struct irq_data *d,
1602			  const struct cpumask *aff_mask)
1603{
1604	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1605	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1606	static struct cpumask __tmpmask;
1607	struct cpumask *tmpmask;
1608	unsigned long flags;
1609	int cpu, node;
1610	node = its_dev->its->numa_node;
1611	tmpmask = &__tmpmask;
1612
1613	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1614
1615	if (!irqd_affinity_is_managed(d)) {
1616		/* First try the NUMA node */
1617		if (node != NUMA_NO_NODE) {
1618			/*
1619			 * Try the intersection of the affinity mask and the
1620			 * node mask (and the online mask, just to be safe).
1621			 */
1622			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1623			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1624
1625			/*
1626			 * Ideally, we would check if the mask is empty, and
1627			 * try again on the full node here.
1628			 *
1629			 * But it turns out that the way ACPI describes the
1630			 * affinity for ITSs only deals about memory, and
1631			 * not target CPUs, so it cannot describe a single
1632			 * ITS placed next to two NUMA nodes.
1633			 *
1634			 * Instead, just fallback on the online mask. This
1635			 * diverges from Thomas' suggestion above.
1636			 */
1637			cpu = cpumask_pick_least_loaded(d, tmpmask);
1638			if (cpu < nr_cpu_ids)
1639				goto out;
1640
1641			/* If we can't cross sockets, give up */
1642			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1643				goto out;
1644
1645			/* If the above failed, expand the search */
1646		}
1647
1648		/* Try the intersection of the affinity and online masks */
1649		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1650
1651		/* If that doesn't fly, the online mask is the last resort */
1652		if (cpumask_empty(tmpmask))
1653			cpumask_copy(tmpmask, cpu_online_mask);
1654
1655		cpu = cpumask_pick_least_loaded(d, tmpmask);
1656	} else {
1657		cpumask_copy(tmpmask, aff_mask);
1658
1659		/* If we cannot cross sockets, limit the search to that node */
1660		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1661		    node != NUMA_NO_NODE)
1662			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1663
1664		cpu = cpumask_pick_least_loaded(d, tmpmask);
1665	}
1666out:
1667	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1668
1669	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1670	return cpu;
1671}
1672
1673static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1674			    bool force)
1675{
1676	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1677	struct its_collection *target_col;
1678	u32 id = its_get_event_id(d);
1679	int cpu, prev_cpu;
1680
1681	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1682	if (irqd_is_forwarded_to_vcpu(d))
1683		return -EINVAL;
1684
1685	prev_cpu = its_dev->event_map.col_map[id];
1686	its_dec_lpi_count(d, prev_cpu);
1687
1688	if (!force)
1689		cpu = its_select_cpu(d, mask_val);
1690	else
1691		cpu = cpumask_pick_least_loaded(d, mask_val);
1692
1693	if (cpu < 0 || cpu >= nr_cpu_ids)
1694		goto err;
1695
1696	/* don't set the affinity when the target cpu is same as current one */
1697	if (cpu != prev_cpu) {
1698		target_col = &its_dev->its->collections[cpu];
1699		its_send_movi(its_dev, target_col, id);
1700		its_dev->event_map.col_map[id] = cpu;
1701		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1702	}
1703
1704	its_inc_lpi_count(d, cpu);
1705
1706	return IRQ_SET_MASK_OK_DONE;
1707
1708err:
1709	its_inc_lpi_count(d, prev_cpu);
1710	return -EINVAL;
1711}
1712
1713static u64 its_irq_get_msi_base(struct its_device *its_dev)
1714{
1715	struct its_node *its = its_dev->its;
1716
1717	return its->phys_base + GITS_TRANSLATER;
1718}
1719
1720static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1721{
1722	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1723	struct its_node *its;
1724	u64 addr;
1725
1726	its = its_dev->its;
1727	addr = its->get_msi_base(its_dev);
1728
1729	msg->address_lo		= lower_32_bits(addr);
1730	msg->address_hi		= upper_32_bits(addr);
1731	msg->data		= its_get_event_id(d);
1732
1733	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1734}
1735
1736static int its_irq_set_irqchip_state(struct irq_data *d,
1737				     enum irqchip_irq_state which,
1738				     bool state)
1739{
1740	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1741	u32 event = its_get_event_id(d);
1742
1743	if (which != IRQCHIP_STATE_PENDING)
1744		return -EINVAL;
1745
1746	if (irqd_is_forwarded_to_vcpu(d)) {
1747		if (state)
1748			its_send_vint(its_dev, event);
1749		else
1750			its_send_vclear(its_dev, event);
1751	} else {
1752		if (state)
1753			its_send_int(its_dev, event);
1754		else
1755			its_send_clear(its_dev, event);
1756	}
1757
1758	return 0;
1759}
1760
1761static int its_irq_retrigger(struct irq_data *d)
1762{
1763	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1764}
1765
1766/*
1767 * Two favourable cases:
1768 *
1769 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1770 *     for vSGI delivery
1771 *
1772 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1773 *     and we're better off mapping all VPEs always
1774 *
1775 * If neither (a) nor (b) is true, then we map vPEs on demand.
1776 *
1777 */
1778static bool gic_requires_eager_mapping(void)
1779{
1780	if (!its_list_map || gic_rdists->has_rvpeid)
1781		return true;
1782
1783	return false;
1784}
1785
1786static void its_map_vm(struct its_node *its, struct its_vm *vm)
1787{
1788	unsigned long flags;
1789
1790	if (gic_requires_eager_mapping())
1791		return;
1792
1793	raw_spin_lock_irqsave(&vmovp_lock, flags);
1794
1795	/*
1796	 * If the VM wasn't mapped yet, iterate over the vpes and get
1797	 * them mapped now.
1798	 */
1799	vm->vlpi_count[its->list_nr]++;
1800
1801	if (vm->vlpi_count[its->list_nr] == 1) {
1802		int i;
1803
1804		for (i = 0; i < vm->nr_vpes; i++) {
1805			struct its_vpe *vpe = vm->vpes[i];
1806			struct irq_data *d = irq_get_irq_data(vpe->irq);
1807
1808			/* Map the VPE to the first possible CPU */
1809			vpe->col_idx = cpumask_first(cpu_online_mask);
1810			its_send_vmapp(its, vpe, true);
1811			its_send_vinvall(its, vpe);
1812			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1813		}
1814	}
1815
1816	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1817}
1818
1819static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1820{
1821	unsigned long flags;
1822
1823	/* Not using the ITS list? Everything is always mapped. */
1824	if (gic_requires_eager_mapping())
1825		return;
1826
1827	raw_spin_lock_irqsave(&vmovp_lock, flags);
1828
1829	if (!--vm->vlpi_count[its->list_nr]) {
1830		int i;
1831
1832		for (i = 0; i < vm->nr_vpes; i++)
1833			its_send_vmapp(its, vm->vpes[i], false);
1834	}
1835
1836	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1837}
1838
1839static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1840{
1841	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1842	u32 event = its_get_event_id(d);
1843	int ret = 0;
1844
1845	if (!info->map)
1846		return -EINVAL;
1847
1848	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1849
1850	if (!its_dev->event_map.vm) {
1851		struct its_vlpi_map *maps;
1852
1853		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1854			       GFP_ATOMIC);
1855		if (!maps) {
1856			ret = -ENOMEM;
1857			goto out;
1858		}
1859
1860		its_dev->event_map.vm = info->map->vm;
1861		its_dev->event_map.vlpi_maps = maps;
1862	} else if (its_dev->event_map.vm != info->map->vm) {
1863		ret = -EINVAL;
1864		goto out;
1865	}
1866
1867	/* Get our private copy of the mapping information */
1868	its_dev->event_map.vlpi_maps[event] = *info->map;
1869
1870	if (irqd_is_forwarded_to_vcpu(d)) {
1871		/* Already mapped, move it around */
1872		its_send_vmovi(its_dev, event);
1873	} else {
1874		/* Ensure all the VPEs are mapped on this ITS */
1875		its_map_vm(its_dev->its, info->map->vm);
1876
1877		/*
1878		 * Flag the interrupt as forwarded so that we can
1879		 * start poking the virtual property table.
1880		 */
1881		irqd_set_forwarded_to_vcpu(d);
1882
1883		/* Write out the property to the prop table */
1884		lpi_write_config(d, 0xff, info->map->properties);
1885
1886		/* Drop the physical mapping */
1887		its_send_discard(its_dev, event);
1888
1889		/* and install the virtual one */
1890		its_send_vmapti(its_dev, event);
1891
1892		/* Increment the number of VLPIs */
1893		its_dev->event_map.nr_vlpis++;
1894	}
1895
1896out:
1897	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1898	return ret;
1899}
1900
1901static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1902{
1903	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1904	struct its_vlpi_map *map;
1905	int ret = 0;
1906
1907	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1908
1909	map = get_vlpi_map(d);
1910
1911	if (!its_dev->event_map.vm || !map) {
1912		ret = -EINVAL;
1913		goto out;
1914	}
1915
1916	/* Copy our mapping information to the incoming request */
1917	*info->map = *map;
1918
1919out:
1920	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1921	return ret;
1922}
1923
1924static int its_vlpi_unmap(struct irq_data *d)
1925{
1926	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1927	u32 event = its_get_event_id(d);
1928	int ret = 0;
1929
1930	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1931
1932	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1933		ret = -EINVAL;
1934		goto out;
1935	}
1936
1937	/* Drop the virtual mapping */
1938	its_send_discard(its_dev, event);
1939
1940	/* and restore the physical one */
1941	irqd_clr_forwarded_to_vcpu(d);
1942	its_send_mapti(its_dev, d->hwirq, event);
1943	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1944				    LPI_PROP_ENABLED |
1945				    LPI_PROP_GROUP1));
1946
1947	/* Potentially unmap the VM from this ITS */
1948	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1949
1950	/*
1951	 * Drop the refcount and make the device available again if
1952	 * this was the last VLPI.
1953	 */
1954	if (!--its_dev->event_map.nr_vlpis) {
1955		its_dev->event_map.vm = NULL;
1956		kfree(its_dev->event_map.vlpi_maps);
1957	}
1958
1959out:
1960	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1961	return ret;
1962}
1963
1964static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1965{
1966	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1967
1968	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1969		return -EINVAL;
1970
1971	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1972		lpi_update_config(d, 0xff, info->config);
1973	else
1974		lpi_write_config(d, 0xff, info->config);
1975	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1976
1977	return 0;
1978}
1979
1980static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1981{
1982	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1983	struct its_cmd_info *info = vcpu_info;
1984
1985	/* Need a v4 ITS */
1986	if (!is_v4(its_dev->its))
1987		return -EINVAL;
1988
1989	/* Unmap request? */
1990	if (!info)
1991		return its_vlpi_unmap(d);
1992
1993	switch (info->cmd_type) {
1994	case MAP_VLPI:
1995		return its_vlpi_map(d, info);
1996
1997	case GET_VLPI:
1998		return its_vlpi_get(d, info);
1999
2000	case PROP_UPDATE_VLPI:
2001	case PROP_UPDATE_AND_INV_VLPI:
2002		return its_vlpi_prop_update(d, info);
2003
2004	default:
2005		return -EINVAL;
2006	}
2007}
2008
2009static struct irq_chip its_irq_chip = {
2010	.name			= "ITS",
2011	.irq_mask		= its_mask_irq,
2012	.irq_unmask		= its_unmask_irq,
2013	.irq_eoi		= irq_chip_eoi_parent,
2014	.irq_set_affinity	= its_set_affinity,
2015	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2016	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2017	.irq_retrigger		= its_irq_retrigger,
2018	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2019};
2020
2021
2022/*
2023 * How we allocate LPIs:
2024 *
2025 * lpi_range_list contains ranges of LPIs that are to available to
2026 * allocate from. To allocate LPIs, just pick the first range that
2027 * fits the required allocation, and reduce it by the required
2028 * amount. Once empty, remove the range from the list.
2029 *
2030 * To free a range of LPIs, add a free range to the list, sort it and
2031 * merge the result if the new range happens to be adjacent to an
2032 * already free block.
2033 *
2034 * The consequence of the above is that allocation is cost is low, but
2035 * freeing is expensive. We assumes that freeing rarely occurs.
2036 */
2037#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2038
2039static DEFINE_MUTEX(lpi_range_lock);
2040static LIST_HEAD(lpi_range_list);
2041
2042struct lpi_range {
2043	struct list_head	entry;
2044	u32			base_id;
2045	u32			span;
2046};
2047
2048static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2049{
2050	struct lpi_range *range;
2051
2052	range = kmalloc(sizeof(*range), GFP_KERNEL);
2053	if (range) {
2054		range->base_id = base;
2055		range->span = span;
2056	}
2057
2058	return range;
2059}
2060
2061static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2062{
2063	struct lpi_range *range, *tmp;
2064	int err = -ENOSPC;
2065
2066	mutex_lock(&lpi_range_lock);
2067
2068	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2069		if (range->span >= nr_lpis) {
2070			*base = range->base_id;
2071			range->base_id += nr_lpis;
2072			range->span -= nr_lpis;
2073
2074			if (range->span == 0) {
2075				list_del(&range->entry);
2076				kfree(range);
2077			}
2078
2079			err = 0;
2080			break;
2081		}
2082	}
2083
2084	mutex_unlock(&lpi_range_lock);
2085
2086	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2087	return err;
2088}
2089
2090static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2091{
2092	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2093		return;
2094	if (a->base_id + a->span != b->base_id)
2095		return;
2096	b->base_id = a->base_id;
2097	b->span += a->span;
2098	list_del(&a->entry);
2099	kfree(a);
2100}
2101
2102static int free_lpi_range(u32 base, u32 nr_lpis)
2103{
2104	struct lpi_range *new, *old;
2105
2106	new = mk_lpi_range(base, nr_lpis);
2107	if (!new)
2108		return -ENOMEM;
2109
2110	mutex_lock(&lpi_range_lock);
2111
2112	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2113		if (old->base_id < base)
2114			break;
2115	}
2116	/*
2117	 * old is the last element with ->base_id smaller than base,
2118	 * so new goes right after it. If there are no elements with
2119	 * ->base_id smaller than base, &old->entry ends up pointing
2120	 * at the head of the list, and inserting new it the start of
2121	 * the list is the right thing to do in that case as well.
2122	 */
2123	list_add(&new->entry, &old->entry);
2124	/*
2125	 * Now check if we can merge with the preceding and/or
2126	 * following ranges.
2127	 */
2128	merge_lpi_ranges(old, new);
2129	merge_lpi_ranges(new, list_next_entry(new, entry));
2130
2131	mutex_unlock(&lpi_range_lock);
2132	return 0;
2133}
2134
2135static int __init its_lpi_init(u32 id_bits)
2136{
2137	u32 lpis = (1UL << id_bits) - 8192;
2138	u32 numlpis;
2139	int err;
2140
2141	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2142
2143	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2144		lpis = numlpis;
2145		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2146			lpis);
2147	}
2148
2149	/*
2150	 * Initializing the allocator is just the same as freeing the
2151	 * full range of LPIs.
2152	 */
2153	err = free_lpi_range(8192, lpis);
2154	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2155	return err;
2156}
2157
2158static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2159{
2160	unsigned long *bitmap = NULL;
2161	int err = 0;
2162
2163	do {
2164		err = alloc_lpi_range(nr_irqs, base);
2165		if (!err)
2166			break;
2167
2168		nr_irqs /= 2;
2169	} while (nr_irqs > 0);
2170
2171	if (!nr_irqs)
2172		err = -ENOSPC;
2173
2174	if (err)
2175		goto out;
2176
2177	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2178	if (!bitmap)
2179		goto out;
2180
2181	*nr_ids = nr_irqs;
2182
2183out:
2184	if (!bitmap)
2185		*base = *nr_ids = 0;
2186
2187	return bitmap;
2188}
2189
2190static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2191{
2192	WARN_ON(free_lpi_range(base, nr_ids));
2193	bitmap_free(bitmap);
2194}
2195
2196static void gic_reset_prop_table(void *va)
2197{
2198	/* Priority 0xa0, Group-1, disabled */
2199	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2200
2201	/* Make sure the GIC will observe the written configuration */
2202	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2203}
2204
2205static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2206{
2207	struct page *prop_page;
2208
2209	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2210	if (!prop_page)
2211		return NULL;
2212
2213	gic_reset_prop_table(page_address(prop_page));
2214
2215	return prop_page;
2216}
2217
2218static void its_free_prop_table(struct page *prop_page)
2219{
2220	free_pages((unsigned long)page_address(prop_page),
2221		   get_order(LPI_PROPBASE_SZ));
2222}
2223
2224static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2225{
2226	phys_addr_t start, end, addr_end;
2227	u64 i;
2228
2229	/*
2230	 * We don't bother checking for a kdump kernel as by
2231	 * construction, the LPI tables are out of this kernel's
2232	 * memory map.
2233	 */
2234	if (is_kdump_kernel())
2235		return true;
2236
2237	addr_end = addr + size - 1;
2238
2239	for_each_reserved_mem_range(i, &start, &end) {
2240		if (addr >= start && addr_end <= end)
2241			return true;
2242	}
2243
2244	/* Not found, not a good sign... */
2245	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2246		&addr, &addr_end);
2247	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2248	return false;
2249}
2250
2251static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2252{
2253	if (efi_enabled(EFI_CONFIG_TABLES))
2254		return efi_mem_reserve_persistent(addr, size);
2255
2256	return 0;
2257}
2258
2259static int __init its_setup_lpi_prop_table(void)
2260{
2261	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2262		u64 val;
2263
2264		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2265		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2266
2267		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2268		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2269						     LPI_PROPBASE_SZ,
2270						     MEMREMAP_WB);
2271		gic_reset_prop_table(gic_rdists->prop_table_va);
2272	} else {
2273		struct page *page;
2274
2275		lpi_id_bits = min_t(u32,
2276				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2277				    ITS_MAX_LPI_NRBITS);
2278		page = its_allocate_prop_table(GFP_NOWAIT);
2279		if (!page) {
2280			pr_err("Failed to allocate PROPBASE\n");
2281			return -ENOMEM;
2282		}
2283
2284		gic_rdists->prop_table_pa = page_to_phys(page);
2285		gic_rdists->prop_table_va = page_address(page);
2286		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2287					  LPI_PROPBASE_SZ));
2288	}
2289
2290	pr_info("GICv3: using LPI property table @%pa\n",
2291		&gic_rdists->prop_table_pa);
2292
2293	return its_lpi_init(lpi_id_bits);
2294}
2295
2296static const char *its_base_type_string[] = {
2297	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2298	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2299	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2300	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2301	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2302	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2303	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2304};
2305
2306static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2307{
2308	u32 idx = baser - its->tables;
2309
2310	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2311}
2312
2313static void its_write_baser(struct its_node *its, struct its_baser *baser,
2314			    u64 val)
2315{
2316	u32 idx = baser - its->tables;
2317
2318	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2319	baser->val = its_read_baser(its, baser);
2320}
2321
2322static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2323			   u64 cache, u64 shr, u32 order, bool indirect)
2324{
2325	u64 val = its_read_baser(its, baser);
2326	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2327	u64 type = GITS_BASER_TYPE(val);
2328	u64 baser_phys, tmp;
2329	u32 alloc_pages, psz;
2330	struct page *page;
2331	void *base;
2332
2333	psz = baser->psz;
2334	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2335	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2336		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2337			&its->phys_base, its_base_type_string[type],
2338			alloc_pages, GITS_BASER_PAGES_MAX);
2339		alloc_pages = GITS_BASER_PAGES_MAX;
2340		order = get_order(GITS_BASER_PAGES_MAX * psz);
2341	}
2342
2343	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2344	if (!page)
2345		return -ENOMEM;
2346
2347	base = (void *)page_address(page);
2348	baser_phys = virt_to_phys(base);
2349
2350	/* Check if the physical address of the memory is above 48bits */
2351	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2352
2353		/* 52bit PA is supported only when PageSize=64K */
2354		if (psz != SZ_64K) {
2355			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2356			free_pages((unsigned long)base, order);
2357			return -ENXIO;
2358		}
2359
2360		/* Convert 52bit PA to 48bit field */
2361		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2362	}
2363
2364retry_baser:
2365	val = (baser_phys					 |
2366		(type << GITS_BASER_TYPE_SHIFT)			 |
2367		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2368		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2369		cache						 |
2370		shr						 |
2371		GITS_BASER_VALID);
2372
2373	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2374
2375	switch (psz) {
2376	case SZ_4K:
2377		val |= GITS_BASER_PAGE_SIZE_4K;
2378		break;
2379	case SZ_16K:
2380		val |= GITS_BASER_PAGE_SIZE_16K;
2381		break;
2382	case SZ_64K:
2383		val |= GITS_BASER_PAGE_SIZE_64K;
2384		break;
2385	}
2386
2387	if (!shr)
2388		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2389
2390	its_write_baser(its, baser, val);
2391	tmp = baser->val;
2392
2393	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2394		/*
2395		 * Shareability didn't stick. Just use
2396		 * whatever the read reported, which is likely
2397		 * to be the only thing this redistributor
2398		 * supports. If that's zero, make it
2399		 * non-cacheable as well.
2400		 */
2401		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2402		if (!shr)
2403			cache = GITS_BASER_nC;
2404
 
2405		goto retry_baser;
2406	}
2407
2408	if (val != tmp) {
2409		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2410		       &its->phys_base, its_base_type_string[type],
2411		       val, tmp);
2412		free_pages((unsigned long)base, order);
2413		return -ENXIO;
2414	}
2415
2416	baser->order = order;
2417	baser->base = base;
2418	baser->psz = psz;
2419	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2420
2421	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2422		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2423		its_base_type_string[type],
2424		(unsigned long)virt_to_phys(base),
2425		indirect ? "indirect" : "flat", (int)esz,
2426		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2427
2428	return 0;
2429}
2430
2431static bool its_parse_indirect_baser(struct its_node *its,
2432				     struct its_baser *baser,
2433				     u32 *order, u32 ids)
2434{
2435	u64 tmp = its_read_baser(its, baser);
2436	u64 type = GITS_BASER_TYPE(tmp);
2437	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2438	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2439	u32 new_order = *order;
2440	u32 psz = baser->psz;
2441	bool indirect = false;
2442
2443	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2444	if ((esz << ids) > (psz * 2)) {
2445		/*
2446		 * Find out whether hw supports a single or two-level table by
2447		 * table by reading bit at offset '62' after writing '1' to it.
2448		 */
2449		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2450		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2451
2452		if (indirect) {
2453			/*
2454			 * The size of the lvl2 table is equal to ITS page size
2455			 * which is 'psz'. For computing lvl1 table size,
2456			 * subtract ID bits that sparse lvl2 table from 'ids'
2457			 * which is reported by ITS hardware times lvl1 table
2458			 * entry size.
2459			 */
2460			ids -= ilog2(psz / (int)esz);
2461			esz = GITS_LVL1_ENTRY_SIZE;
2462		}
2463	}
2464
2465	/*
2466	 * Allocate as many entries as required to fit the
2467	 * range of device IDs that the ITS can grok... The ID
2468	 * space being incredibly sparse, this results in a
2469	 * massive waste of memory if two-level device table
2470	 * feature is not supported by hardware.
2471	 */
2472	new_order = max_t(u32, get_order(esz << ids), new_order);
2473	if (new_order > MAX_PAGE_ORDER) {
2474		new_order = MAX_PAGE_ORDER;
2475		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2476		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2477			&its->phys_base, its_base_type_string[type],
2478			device_ids(its), ids);
2479	}
2480
2481	*order = new_order;
2482
2483	return indirect;
2484}
2485
2486static u32 compute_common_aff(u64 val)
2487{
2488	u32 aff, clpiaff;
2489
2490	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2491	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2492
2493	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2494}
2495
2496static u32 compute_its_aff(struct its_node *its)
2497{
2498	u64 val;
2499	u32 svpet;
2500
2501	/*
2502	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2503	 * the resulting affinity. We then use that to see if this match
2504	 * our own affinity.
2505	 */
2506	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2507	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2508	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2509	return compute_common_aff(val);
2510}
2511
2512static struct its_node *find_sibling_its(struct its_node *cur_its)
2513{
2514	struct its_node *its;
2515	u32 aff;
2516
2517	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2518		return NULL;
2519
2520	aff = compute_its_aff(cur_its);
2521
2522	list_for_each_entry(its, &its_nodes, entry) {
2523		u64 baser;
2524
2525		if (!is_v4_1(its) || its == cur_its)
2526			continue;
2527
2528		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2529			continue;
2530
2531		if (aff != compute_its_aff(its))
2532			continue;
2533
2534		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2535		baser = its->tables[2].val;
2536		if (!(baser & GITS_BASER_VALID))
2537			continue;
2538
2539		return its;
2540	}
2541
2542	return NULL;
2543}
2544
2545static void its_free_tables(struct its_node *its)
2546{
2547	int i;
2548
2549	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2550		if (its->tables[i].base) {
2551			free_pages((unsigned long)its->tables[i].base,
2552				   its->tables[i].order);
2553			its->tables[i].base = NULL;
2554		}
2555	}
2556}
2557
2558static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2559{
2560	u64 psz = SZ_64K;
2561
2562	while (psz) {
2563		u64 val, gpsz;
2564
2565		val = its_read_baser(its, baser);
2566		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2567
2568		switch (psz) {
2569		case SZ_64K:
2570			gpsz = GITS_BASER_PAGE_SIZE_64K;
2571			break;
2572		case SZ_16K:
2573			gpsz = GITS_BASER_PAGE_SIZE_16K;
2574			break;
2575		case SZ_4K:
2576		default:
2577			gpsz = GITS_BASER_PAGE_SIZE_4K;
2578			break;
2579		}
2580
2581		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2582
2583		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2584		its_write_baser(its, baser, val);
2585
2586		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2587			break;
2588
2589		switch (psz) {
2590		case SZ_64K:
2591			psz = SZ_16K;
2592			break;
2593		case SZ_16K:
2594			psz = SZ_4K;
2595			break;
2596		case SZ_4K:
2597		default:
2598			return -1;
2599		}
2600	}
2601
2602	baser->psz = psz;
2603	return 0;
2604}
2605
2606static int its_alloc_tables(struct its_node *its)
2607{
2608	u64 shr = GITS_BASER_InnerShareable;
2609	u64 cache = GITS_BASER_RaWaWb;
2610	int err, i;
2611
2612	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2613		/* erratum 24313: ignore memory access type */
2614		cache = GITS_BASER_nCnB;
2615
2616	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2617		cache = GITS_BASER_nC;
2618		shr = 0;
2619	}
2620
2621	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2622		struct its_baser *baser = its->tables + i;
2623		u64 val = its_read_baser(its, baser);
2624		u64 type = GITS_BASER_TYPE(val);
2625		bool indirect = false;
2626		u32 order;
2627
2628		if (type == GITS_BASER_TYPE_NONE)
2629			continue;
2630
2631		if (its_probe_baser_psz(its, baser)) {
2632			its_free_tables(its);
2633			return -ENXIO;
2634		}
2635
2636		order = get_order(baser->psz);
2637
2638		switch (type) {
2639		case GITS_BASER_TYPE_DEVICE:
2640			indirect = its_parse_indirect_baser(its, baser, &order,
2641							    device_ids(its));
2642			break;
2643
2644		case GITS_BASER_TYPE_VCPU:
2645			if (is_v4_1(its)) {
2646				struct its_node *sibling;
2647
2648				WARN_ON(i != 2);
2649				if ((sibling = find_sibling_its(its))) {
2650					*baser = sibling->tables[2];
2651					its_write_baser(its, baser, baser->val);
2652					continue;
2653				}
2654			}
2655
2656			indirect = its_parse_indirect_baser(its, baser, &order,
2657							    ITS_MAX_VPEID_BITS);
2658			break;
2659		}
2660
2661		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2662		if (err < 0) {
2663			its_free_tables(its);
2664			return err;
2665		}
2666
2667		/* Update settings which will be used for next BASERn */
2668		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2669		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2670	}
2671
2672	return 0;
2673}
2674
2675static u64 inherit_vpe_l1_table_from_its(void)
2676{
2677	struct its_node *its;
2678	u64 val;
2679	u32 aff;
2680
2681	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2682	aff = compute_common_aff(val);
2683
2684	list_for_each_entry(its, &its_nodes, entry) {
2685		u64 baser, addr;
2686
2687		if (!is_v4_1(its))
2688			continue;
2689
2690		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2691			continue;
2692
2693		if (aff != compute_its_aff(its))
2694			continue;
2695
2696		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2697		baser = its->tables[2].val;
2698		if (!(baser & GITS_BASER_VALID))
2699			continue;
2700
2701		/* We have a winner! */
2702		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2703
2704		val  = GICR_VPROPBASER_4_1_VALID;
2705		if (baser & GITS_BASER_INDIRECT)
2706			val |= GICR_VPROPBASER_4_1_INDIRECT;
2707		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2708				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2709		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2710		case GIC_PAGE_SIZE_64K:
2711			addr = GITS_BASER_ADDR_48_to_52(baser);
2712			break;
2713		default:
2714			addr = baser & GENMASK_ULL(47, 12);
2715			break;
2716		}
2717		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2718		if (rdists_support_shareable()) {
2719			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2720					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2721			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2722					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2723		}
2724		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2725
2726		return val;
2727	}
2728
2729	return 0;
2730}
2731
2732static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2733{
2734	u32 aff;
2735	u64 val;
2736	int cpu;
2737
2738	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2739	aff = compute_common_aff(val);
2740
2741	for_each_possible_cpu(cpu) {
2742		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2743
2744		if (!base || cpu == smp_processor_id())
2745			continue;
2746
2747		val = gic_read_typer(base + GICR_TYPER);
2748		if (aff != compute_common_aff(val))
2749			continue;
2750
2751		/*
2752		 * At this point, we have a victim. This particular CPU
2753		 * has already booted, and has an affinity that matches
2754		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2755		 * Make sure we don't write the Z bit in that case.
2756		 */
2757		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2758		val &= ~GICR_VPROPBASER_4_1_Z;
2759
2760		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2761		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2762
2763		return val;
2764	}
2765
2766	return 0;
2767}
2768
2769static bool allocate_vpe_l2_table(int cpu, u32 id)
2770{
2771	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2772	unsigned int psz, esz, idx, npg, gpsz;
2773	u64 val;
2774	struct page *page;
2775	__le64 *table;
2776
2777	if (!gic_rdists->has_rvpeid)
2778		return true;
2779
2780	/* Skip non-present CPUs */
2781	if (!base)
2782		return true;
2783
2784	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2785
2786	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2787	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2788	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2789
2790	switch (gpsz) {
2791	default:
2792		WARN_ON(1);
2793		fallthrough;
2794	case GIC_PAGE_SIZE_4K:
2795		psz = SZ_4K;
2796		break;
2797	case GIC_PAGE_SIZE_16K:
2798		psz = SZ_16K;
2799		break;
2800	case GIC_PAGE_SIZE_64K:
2801		psz = SZ_64K;
2802		break;
2803	}
2804
2805	/* Don't allow vpe_id that exceeds single, flat table limit */
2806	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2807		return (id < (npg * psz / (esz * SZ_8)));
2808
2809	/* Compute 1st level table index & check if that exceeds table limit */
2810	idx = id >> ilog2(psz / (esz * SZ_8));
2811	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2812		return false;
2813
2814	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2815
2816	/* Allocate memory for 2nd level table */
2817	if (!table[idx]) {
2818		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2819		if (!page)
2820			return false;
2821
2822		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2823		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2824			gic_flush_dcache_to_poc(page_address(page), psz);
2825
2826		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2827
2828		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2829		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2830			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2831
2832		/* Ensure updated table contents are visible to RD hardware */
2833		dsb(sy);
2834	}
2835
2836	return true;
2837}
2838
2839static int allocate_vpe_l1_table(void)
2840{
2841	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2842	u64 val, gpsz, npg, pa;
2843	unsigned int psz = SZ_64K;
2844	unsigned int np, epp, esz;
2845	struct page *page;
2846
2847	if (!gic_rdists->has_rvpeid)
2848		return 0;
2849
2850	/*
2851	 * if VPENDBASER.Valid is set, disable any previously programmed
2852	 * VPE by setting PendingLast while clearing Valid. This has the
2853	 * effect of making sure no doorbell will be generated and we can
2854	 * then safely clear VPROPBASER.Valid.
2855	 */
2856	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2857		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2858				      vlpi_base + GICR_VPENDBASER);
2859
2860	/*
2861	 * If we can inherit the configuration from another RD, let's do
2862	 * so. Otherwise, we have to go through the allocation process. We
2863	 * assume that all RDs have the exact same requirements, as
2864	 * nothing will work otherwise.
2865	 */
2866	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2867	if (val & GICR_VPROPBASER_4_1_VALID)
2868		goto out;
2869
2870	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2871	if (!gic_data_rdist()->vpe_table_mask)
2872		return -ENOMEM;
2873
2874	val = inherit_vpe_l1_table_from_its();
2875	if (val & GICR_VPROPBASER_4_1_VALID)
2876		goto out;
2877
2878	/* First probe the page size */
2879	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2880	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2881	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2882	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2883	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2884
2885	switch (gpsz) {
2886	default:
2887		gpsz = GIC_PAGE_SIZE_4K;
2888		fallthrough;
2889	case GIC_PAGE_SIZE_4K:
2890		psz = SZ_4K;
2891		break;
2892	case GIC_PAGE_SIZE_16K:
2893		psz = SZ_16K;
2894		break;
2895	case GIC_PAGE_SIZE_64K:
2896		psz = SZ_64K;
2897		break;
2898	}
2899
2900	/*
2901	 * Start populating the register from scratch, including RO fields
2902	 * (which we want to print in debug cases...)
2903	 */
2904	val = 0;
2905	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2906	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2907
2908	/* How many entries per GIC page? */
2909	esz++;
2910	epp = psz / (esz * SZ_8);
2911
2912	/*
2913	 * If we need more than just a single L1 page, flag the table
2914	 * as indirect and compute the number of required L1 pages.
2915	 */
2916	if (epp < ITS_MAX_VPEID) {
2917		int nl2;
2918
2919		val |= GICR_VPROPBASER_4_1_INDIRECT;
2920
2921		/* Number of L2 pages required to cover the VPEID space */
2922		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2923
2924		/* Number of L1 pages to point to the L2 pages */
2925		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2926	} else {
2927		npg = 1;
2928	}
2929
2930	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2931
2932	/* Right, that's the number of CPU pages we need for L1 */
2933	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2934
2935	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2936		 np, npg, psz, epp, esz);
2937	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2938	if (!page)
2939		return -ENOMEM;
2940
2941	gic_data_rdist()->vpe_l1_base = page_address(page);
2942	pa = virt_to_phys(page_address(page));
2943	WARN_ON(!IS_ALIGNED(pa, psz));
2944
2945	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2946	if (rdists_support_shareable()) {
2947		val |= GICR_VPROPBASER_RaWb;
2948		val |= GICR_VPROPBASER_InnerShareable;
2949	}
2950	val |= GICR_VPROPBASER_4_1_Z;
2951	val |= GICR_VPROPBASER_4_1_VALID;
2952
2953out:
2954	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2955	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2956
2957	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2958		 smp_processor_id(), val,
2959		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2960
2961	return 0;
2962}
2963
2964static int its_alloc_collections(struct its_node *its)
2965{
2966	int i;
2967
2968	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2969				   GFP_KERNEL);
2970	if (!its->collections)
2971		return -ENOMEM;
2972
2973	for (i = 0; i < nr_cpu_ids; i++)
2974		its->collections[i].target_address = ~0ULL;
2975
2976	return 0;
2977}
2978
2979static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2980{
2981	struct page *pend_page;
2982
2983	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2984				get_order(LPI_PENDBASE_SZ));
2985	if (!pend_page)
2986		return NULL;
2987
2988	/* Make sure the GIC will observe the zero-ed page */
2989	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2990
2991	return pend_page;
2992}
2993
2994static void its_free_pending_table(struct page *pt)
2995{
2996	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2997}
2998
2999/*
3000 * Booting with kdump and LPIs enabled is generally fine. Any other
3001 * case is wrong in the absence of firmware/EFI support.
3002 */
3003static bool enabled_lpis_allowed(void)
3004{
3005	phys_addr_t addr;
3006	u64 val;
3007
3008	/* Check whether the property table is in a reserved region */
3009	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3010	addr = val & GENMASK_ULL(51, 12);
3011
3012	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3013}
3014
3015static int __init allocate_lpi_tables(void)
3016{
3017	u64 val;
3018	int err, cpu;
3019
3020	/*
3021	 * If LPIs are enabled while we run this from the boot CPU,
3022	 * flag the RD tables as pre-allocated if the stars do align.
3023	 */
3024	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3025	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3026		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3027				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3028		pr_info("GICv3: Using preallocated redistributor tables\n");
3029	}
3030
3031	err = its_setup_lpi_prop_table();
3032	if (err)
3033		return err;
3034
3035	/*
3036	 * We allocate all the pending tables anyway, as we may have a
3037	 * mix of RDs that have had LPIs enabled, and some that
3038	 * don't. We'll free the unused ones as each CPU comes online.
3039	 */
3040	for_each_possible_cpu(cpu) {
3041		struct page *pend_page;
3042
3043		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3044		if (!pend_page) {
3045			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3046			return -ENOMEM;
3047		}
3048
3049		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3050	}
3051
3052	return 0;
3053}
3054
3055static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3056{
3057	u32 count = 1000000;	/* 1s! */
3058	bool clean;
3059	u64 val;
3060
3061	do {
3062		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3063		clean = !(val & GICR_VPENDBASER_Dirty);
3064		if (!clean) {
3065			count--;
3066			cpu_relax();
3067			udelay(1);
3068		}
3069	} while (!clean && count);
3070
3071	if (unlikely(!clean))
3072		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3073
3074	return val;
3075}
3076
3077static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3078{
3079	u64 val;
3080
3081	/* Make sure we wait until the RD is done with the initial scan */
3082	val = read_vpend_dirty_clear(vlpi_base);
3083	val &= ~GICR_VPENDBASER_Valid;
3084	val &= ~clr;
3085	val |= set;
3086	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3087
3088	val = read_vpend_dirty_clear(vlpi_base);
3089	if (unlikely(val & GICR_VPENDBASER_Dirty))
3090		val |= GICR_VPENDBASER_PendingLast;
3091
3092	return val;
3093}
3094
3095static void its_cpu_init_lpis(void)
3096{
3097	void __iomem *rbase = gic_data_rdist_rd_base();
3098	struct page *pend_page;
3099	phys_addr_t paddr;
3100	u64 val, tmp;
3101
3102	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3103		return;
3104
3105	val = readl_relaxed(rbase + GICR_CTLR);
3106	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3107	    (val & GICR_CTLR_ENABLE_LPIS)) {
3108		/*
3109		 * Check that we get the same property table on all
3110		 * RDs. If we don't, this is hopeless.
3111		 */
3112		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3113		paddr &= GENMASK_ULL(51, 12);
3114		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3115			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3116
3117		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3118		paddr &= GENMASK_ULL(51, 16);
3119
3120		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3121		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3122
3123		goto out;
3124	}
3125
3126	pend_page = gic_data_rdist()->pend_page;
3127	paddr = page_to_phys(pend_page);
3128
3129	/* set PROPBASE */
3130	val = (gic_rdists->prop_table_pa |
3131	       GICR_PROPBASER_InnerShareable |
3132	       GICR_PROPBASER_RaWaWb |
3133	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3134
3135	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3136	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3137
3138	if (!rdists_support_shareable())
3139		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3140
3141	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3142		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3143			/*
3144			 * The HW reports non-shareable, we must
3145			 * remove the cacheability attributes as
3146			 * well.
3147			 */
3148			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3149				 GICR_PROPBASER_CACHEABILITY_MASK);
3150			val |= GICR_PROPBASER_nC;
3151			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3152		}
3153		pr_info_once("GIC: using cache flushing for LPI property table\n");
3154		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3155	}
3156
3157	/* set PENDBASE */
3158	val = (page_to_phys(pend_page) |
3159	       GICR_PENDBASER_InnerShareable |
3160	       GICR_PENDBASER_RaWaWb);
3161
3162	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3163	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3164
3165	if (!rdists_support_shareable())
3166		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3167
3168	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3169		/*
3170		 * The HW reports non-shareable, we must remove the
3171		 * cacheability attributes as well.
3172		 */
3173		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3174			 GICR_PENDBASER_CACHEABILITY_MASK);
3175		val |= GICR_PENDBASER_nC;
3176		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3177	}
3178
3179	/* Enable LPIs */
3180	val = readl_relaxed(rbase + GICR_CTLR);
3181	val |= GICR_CTLR_ENABLE_LPIS;
3182	writel_relaxed(val, rbase + GICR_CTLR);
3183
3184out:
3185	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3186		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3187
3188		/*
3189		 * It's possible for CPU to receive VLPIs before it is
3190		 * scheduled as a vPE, especially for the first CPU, and the
3191		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3192		 * as out of range and dropped by GIC.
3193		 * So we initialize IDbits to known value to avoid VLPI drop.
3194		 */
3195		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3196		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3197			smp_processor_id(), val);
3198		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3199
3200		/*
3201		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3202		 * ancient programming gets left in and has possibility of
3203		 * corrupting memory.
3204		 */
3205		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3206	}
3207
3208	if (allocate_vpe_l1_table()) {
3209		/*
3210		 * If the allocation has failed, we're in massive trouble.
3211		 * Disable direct injection, and pray that no VM was
3212		 * already running...
3213		 */
3214		gic_rdists->has_rvpeid = false;
3215		gic_rdists->has_vlpis = false;
3216	}
3217
3218	/* Make sure the GIC has seen the above */
3219	dsb(sy);
 
3220	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3221	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3222		smp_processor_id(),
3223		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3224		"reserved" : "allocated",
3225		&paddr);
3226}
3227
3228static void its_cpu_init_collection(struct its_node *its)
3229{
3230	int cpu = smp_processor_id();
3231	u64 target;
3232
3233	/* avoid cross node collections and its mapping */
3234	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3235		struct device_node *cpu_node;
3236
3237		cpu_node = of_get_cpu_node(cpu, NULL);
3238		if (its->numa_node != NUMA_NO_NODE &&
3239			its->numa_node != of_node_to_nid(cpu_node))
3240			return;
3241	}
3242
3243	/*
3244	 * We now have to bind each collection to its target
3245	 * redistributor.
3246	 */
3247	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3248		/*
3249		 * This ITS wants the physical address of the
3250		 * redistributor.
3251		 */
3252		target = gic_data_rdist()->phys_base;
3253	} else {
3254		/* This ITS wants a linear CPU number. */
3255		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3256		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3257	}
3258
3259	/* Perform collection mapping */
3260	its->collections[cpu].target_address = target;
3261	its->collections[cpu].col_id = cpu;
3262
3263	its_send_mapc(its, &its->collections[cpu], 1);
3264	its_send_invall(its, &its->collections[cpu]);
3265}
3266
3267static void its_cpu_init_collections(void)
3268{
3269	struct its_node *its;
3270
3271	raw_spin_lock(&its_lock);
3272
3273	list_for_each_entry(its, &its_nodes, entry)
3274		its_cpu_init_collection(its);
3275
3276	raw_spin_unlock(&its_lock);
3277}
3278
3279static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3280{
3281	struct its_device *its_dev = NULL, *tmp;
3282	unsigned long flags;
3283
3284	raw_spin_lock_irqsave(&its->lock, flags);
3285
3286	list_for_each_entry(tmp, &its->its_device_list, entry) {
3287		if (tmp->device_id == dev_id) {
3288			its_dev = tmp;
3289			break;
3290		}
3291	}
3292
3293	raw_spin_unlock_irqrestore(&its->lock, flags);
3294
3295	return its_dev;
3296}
3297
3298static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3299{
3300	int i;
3301
3302	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3303		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3304			return &its->tables[i];
3305	}
3306
3307	return NULL;
3308}
3309
3310static bool its_alloc_table_entry(struct its_node *its,
3311				  struct its_baser *baser, u32 id)
3312{
3313	struct page *page;
3314	u32 esz, idx;
3315	__le64 *table;
3316
3317	/* Don't allow device id that exceeds single, flat table limit */
3318	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3319	if (!(baser->val & GITS_BASER_INDIRECT))
3320		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3321
3322	/* Compute 1st level table index & check if that exceeds table limit */
3323	idx = id >> ilog2(baser->psz / esz);
3324	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3325		return false;
3326
3327	table = baser->base;
3328
3329	/* Allocate memory for 2nd level table */
3330	if (!table[idx]) {
3331		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3332					get_order(baser->psz));
3333		if (!page)
3334			return false;
3335
3336		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3337		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3338			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3339
3340		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3341
3342		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3343		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3344			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3345
3346		/* Ensure updated table contents are visible to ITS hardware */
3347		dsb(sy);
3348	}
3349
3350	return true;
3351}
3352
3353static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3354{
3355	struct its_baser *baser;
3356
3357	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3358
3359	/* Don't allow device id that exceeds ITS hardware limit */
3360	if (!baser)
3361		return (ilog2(dev_id) < device_ids(its));
3362
3363	return its_alloc_table_entry(its, baser, dev_id);
3364}
3365
3366static bool its_alloc_vpe_table(u32 vpe_id)
3367{
3368	struct its_node *its;
3369	int cpu;
3370
3371	/*
3372	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3373	 * could try and only do it on ITSs corresponding to devices
3374	 * that have interrupts targeted at this VPE, but the
3375	 * complexity becomes crazy (and you have tons of memory
3376	 * anyway, right?).
3377	 */
3378	list_for_each_entry(its, &its_nodes, entry) {
3379		struct its_baser *baser;
3380
3381		if (!is_v4(its))
3382			continue;
3383
3384		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3385		if (!baser)
3386			return false;
3387
3388		if (!its_alloc_table_entry(its, baser, vpe_id))
3389			return false;
3390	}
3391
3392	/* Non v4.1? No need to iterate RDs and go back early. */
3393	if (!gic_rdists->has_rvpeid)
3394		return true;
3395
3396	/*
3397	 * Make sure the L2 tables are allocated for all copies of
3398	 * the L1 table on *all* v4.1 RDs.
3399	 */
3400	for_each_possible_cpu(cpu) {
3401		if (!allocate_vpe_l2_table(cpu, vpe_id))
3402			return false;
3403	}
3404
3405	return true;
3406}
3407
3408static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3409					    int nvecs, bool alloc_lpis)
3410{
3411	struct its_device *dev;
3412	unsigned long *lpi_map = NULL;
3413	unsigned long flags;
3414	u16 *col_map = NULL;
3415	void *itt;
3416	int lpi_base;
3417	int nr_lpis;
3418	int nr_ites;
3419	int sz;
3420
3421	if (!its_alloc_device_table(its, dev_id))
3422		return NULL;
3423
3424	if (WARN_ON(!is_power_of_2(nvecs)))
3425		nvecs = roundup_pow_of_two(nvecs);
3426
3427	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3428	/*
3429	 * Even if the device wants a single LPI, the ITT must be
3430	 * sized as a power of two (and you need at least one bit...).
3431	 */
3432	nr_ites = max(2, nvecs);
3433	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3434	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3435	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3436	if (alloc_lpis) {
3437		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3438		if (lpi_map)
3439			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3440					  GFP_KERNEL);
3441	} else {
3442		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3443		nr_lpis = 0;
3444		lpi_base = 0;
3445	}
3446
3447	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3448		kfree(dev);
3449		kfree(itt);
3450		bitmap_free(lpi_map);
3451		kfree(col_map);
3452		return NULL;
3453	}
3454
3455	gic_flush_dcache_to_poc(itt, sz);
3456
3457	dev->its = its;
3458	dev->itt = itt;
3459	dev->nr_ites = nr_ites;
3460	dev->event_map.lpi_map = lpi_map;
3461	dev->event_map.col_map = col_map;
3462	dev->event_map.lpi_base = lpi_base;
3463	dev->event_map.nr_lpis = nr_lpis;
3464	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3465	dev->device_id = dev_id;
3466	INIT_LIST_HEAD(&dev->entry);
3467
3468	raw_spin_lock_irqsave(&its->lock, flags);
3469	list_add(&dev->entry, &its->its_device_list);
3470	raw_spin_unlock_irqrestore(&its->lock, flags);
3471
3472	/* Map device to its ITT */
3473	its_send_mapd(dev, 1);
3474
3475	return dev;
3476}
3477
3478static void its_free_device(struct its_device *its_dev)
3479{
3480	unsigned long flags;
3481
3482	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3483	list_del(&its_dev->entry);
3484	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3485	kfree(its_dev->event_map.col_map);
3486	kfree(its_dev->itt);
3487	kfree(its_dev);
3488}
3489
3490static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3491{
3492	int idx;
3493
3494	/* Find a free LPI region in lpi_map and allocate them. */
3495	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3496				      dev->event_map.nr_lpis,
3497				      get_count_order(nvecs));
3498	if (idx < 0)
3499		return -ENOSPC;
3500
3501	*hwirq = dev->event_map.lpi_base + idx;
3502
3503	return 0;
3504}
3505
3506static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3507			   int nvec, msi_alloc_info_t *info)
3508{
3509	struct its_node *its;
3510	struct its_device *its_dev;
3511	struct msi_domain_info *msi_info;
3512	u32 dev_id;
3513	int err = 0;
3514
3515	/*
3516	 * We ignore "dev" entirely, and rely on the dev_id that has
3517	 * been passed via the scratchpad. This limits this domain's
3518	 * usefulness to upper layers that definitely know that they
3519	 * are built on top of the ITS.
3520	 */
3521	dev_id = info->scratchpad[0].ul;
3522
3523	msi_info = msi_get_domain_info(domain);
3524	its = msi_info->data;
3525
3526	if (!gic_rdists->has_direct_lpi &&
3527	    vpe_proxy.dev &&
3528	    vpe_proxy.dev->its == its &&
3529	    dev_id == vpe_proxy.dev->device_id) {
3530		/* Bad luck. Get yourself a better implementation */
3531		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3532			  dev_id);
3533		return -EINVAL;
3534	}
3535
3536	mutex_lock(&its->dev_alloc_lock);
3537	its_dev = its_find_device(its, dev_id);
3538	if (its_dev) {
3539		/*
3540		 * We already have seen this ID, probably through
3541		 * another alias (PCI bridge of some sort). No need to
3542		 * create the device.
3543		 */
3544		its_dev->shared = true;
3545		pr_debug("Reusing ITT for devID %x\n", dev_id);
3546		goto out;
3547	}
3548
3549	its_dev = its_create_device(its, dev_id, nvec, true);
3550	if (!its_dev) {
3551		err = -ENOMEM;
3552		goto out;
3553	}
3554
3555	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3556		its_dev->shared = true;
3557
3558	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3559out:
3560	mutex_unlock(&its->dev_alloc_lock);
3561	info->scratchpad[0].ptr = its_dev;
3562	return err;
3563}
3564
3565static struct msi_domain_ops its_msi_domain_ops = {
3566	.msi_prepare	= its_msi_prepare,
3567};
3568
3569static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3570				    unsigned int virq,
3571				    irq_hw_number_t hwirq)
3572{
3573	struct irq_fwspec fwspec;
3574
3575	if (irq_domain_get_of_node(domain->parent)) {
3576		fwspec.fwnode = domain->parent->fwnode;
3577		fwspec.param_count = 3;
3578		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3579		fwspec.param[1] = hwirq;
3580		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3581	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3582		fwspec.fwnode = domain->parent->fwnode;
3583		fwspec.param_count = 2;
3584		fwspec.param[0] = hwirq;
3585		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3586	} else {
3587		return -EINVAL;
3588	}
3589
3590	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3591}
3592
3593static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3594				unsigned int nr_irqs, void *args)
3595{
3596	msi_alloc_info_t *info = args;
3597	struct its_device *its_dev = info->scratchpad[0].ptr;
3598	struct its_node *its = its_dev->its;
3599	struct irq_data *irqd;
3600	irq_hw_number_t hwirq;
3601	int err;
3602	int i;
3603
3604	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3605	if (err)
3606		return err;
3607
3608	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3609	if (err)
3610		return err;
3611
3612	for (i = 0; i < nr_irqs; i++) {
3613		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3614		if (err)
3615			return err;
3616
3617		irq_domain_set_hwirq_and_chip(domain, virq + i,
3618					      hwirq + i, &its_irq_chip, its_dev);
3619		irqd = irq_get_irq_data(virq + i);
3620		irqd_set_single_target(irqd);
3621		irqd_set_affinity_on_activate(irqd);
3622		irqd_set_resend_when_in_progress(irqd);
3623		pr_debug("ID:%d pID:%d vID:%d\n",
3624			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3625			 (int)(hwirq + i), virq + i);
3626	}
3627
3628	return 0;
3629}
3630
3631static int its_irq_domain_activate(struct irq_domain *domain,
3632				   struct irq_data *d, bool reserve)
3633{
3634	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3635	u32 event = its_get_event_id(d);
3636	int cpu;
3637
3638	cpu = its_select_cpu(d, cpu_online_mask);
3639	if (cpu < 0 || cpu >= nr_cpu_ids)
3640		return -EINVAL;
3641
3642	its_inc_lpi_count(d, cpu);
3643	its_dev->event_map.col_map[event] = cpu;
3644	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3645
3646	/* Map the GIC IRQ and event to the device */
3647	its_send_mapti(its_dev, d->hwirq, event);
3648	return 0;
3649}
3650
3651static void its_irq_domain_deactivate(struct irq_domain *domain,
3652				      struct irq_data *d)
3653{
3654	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3655	u32 event = its_get_event_id(d);
3656
3657	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3658	/* Stop the delivery of interrupts */
3659	its_send_discard(its_dev, event);
3660}
3661
3662static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3663				unsigned int nr_irqs)
3664{
3665	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3666	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3667	struct its_node *its = its_dev->its;
3668	int i;
3669
3670	bitmap_release_region(its_dev->event_map.lpi_map,
3671			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3672			      get_count_order(nr_irqs));
3673
3674	for (i = 0; i < nr_irqs; i++) {
3675		struct irq_data *data = irq_domain_get_irq_data(domain,
3676								virq + i);
3677		/* Nuke the entry in the domain */
3678		irq_domain_reset_irq_data(data);
3679	}
3680
3681	mutex_lock(&its->dev_alloc_lock);
3682
3683	/*
3684	 * If all interrupts have been freed, start mopping the
3685	 * floor. This is conditioned on the device not being shared.
3686	 */
3687	if (!its_dev->shared &&
3688	    bitmap_empty(its_dev->event_map.lpi_map,
3689			 its_dev->event_map.nr_lpis)) {
3690		its_lpi_free(its_dev->event_map.lpi_map,
3691			     its_dev->event_map.lpi_base,
3692			     its_dev->event_map.nr_lpis);
3693
3694		/* Unmap device/itt */
3695		its_send_mapd(its_dev, 0);
3696		its_free_device(its_dev);
3697	}
3698
3699	mutex_unlock(&its->dev_alloc_lock);
3700
3701	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3702}
3703
3704static const struct irq_domain_ops its_domain_ops = {
3705	.alloc			= its_irq_domain_alloc,
3706	.free			= its_irq_domain_free,
3707	.activate		= its_irq_domain_activate,
3708	.deactivate		= its_irq_domain_deactivate,
3709};
3710
3711/*
3712 * This is insane.
3713 *
3714 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3715 * likely), the only way to perform an invalidate is to use a fake
3716 * device to issue an INV command, implying that the LPI has first
3717 * been mapped to some event on that device. Since this is not exactly
3718 * cheap, we try to keep that mapping around as long as possible, and
3719 * only issue an UNMAP if we're short on available slots.
3720 *
3721 * Broken by design(tm).
3722 *
3723 * GICv4.1, on the other hand, mandates that we're able to invalidate
3724 * by writing to a MMIO register. It doesn't implement the whole of
3725 * DirectLPI, but that's good enough. And most of the time, we don't
3726 * even have to invalidate anything, as the redistributor can be told
3727 * whether to generate a doorbell or not (we thus leave it enabled,
3728 * always).
3729 */
3730static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3731{
3732	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3733	if (gic_rdists->has_rvpeid)
3734		return;
3735
3736	/* Already unmapped? */
3737	if (vpe->vpe_proxy_event == -1)
3738		return;
3739
3740	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3741	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3742
3743	/*
3744	 * We don't track empty slots at all, so let's move the
3745	 * next_victim pointer if we can quickly reuse that slot
3746	 * instead of nuking an existing entry. Not clear that this is
3747	 * always a win though, and this might just generate a ripple
3748	 * effect... Let's just hope VPEs don't migrate too often.
3749	 */
3750	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3751		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3752
3753	vpe->vpe_proxy_event = -1;
3754}
3755
3756static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3757{
3758	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3759	if (gic_rdists->has_rvpeid)
3760		return;
3761
3762	if (!gic_rdists->has_direct_lpi) {
3763		unsigned long flags;
3764
3765		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3766		its_vpe_db_proxy_unmap_locked(vpe);
3767		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3768	}
3769}
3770
3771static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3772{
3773	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3774	if (gic_rdists->has_rvpeid)
3775		return;
3776
3777	/* Already mapped? */
3778	if (vpe->vpe_proxy_event != -1)
3779		return;
3780
3781	/* This slot was already allocated. Kick the other VPE out. */
3782	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3783		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3784
3785	/* Map the new VPE instead */
3786	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3787	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3788	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3789
3790	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3791	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3792}
3793
3794static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3795{
3796	unsigned long flags;
3797	struct its_collection *target_col;
3798
3799	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3800	if (gic_rdists->has_rvpeid)
3801		return;
3802
3803	if (gic_rdists->has_direct_lpi) {
3804		void __iomem *rdbase;
3805
3806		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3807		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3808		wait_for_syncr(rdbase);
3809
3810		return;
3811	}
3812
3813	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3814
3815	its_vpe_db_proxy_map_locked(vpe);
3816
3817	target_col = &vpe_proxy.dev->its->collections[to];
3818	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3819	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3820
3821	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3822}
3823
3824static int its_vpe_set_affinity(struct irq_data *d,
3825				const struct cpumask *mask_val,
3826				bool force)
3827{
3828	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3829	struct cpumask common, *table_mask;
3830	unsigned long flags;
3831	int from, cpu;
3832
3833	/*
3834	 * Changing affinity is mega expensive, so let's be as lazy as
3835	 * we can and only do it if we really have to. Also, if mapped
3836	 * into the proxy device, we need to move the doorbell
3837	 * interrupt to its new location.
3838	 *
3839	 * Another thing is that changing the affinity of a vPE affects
3840	 * *other interrupts* such as all the vLPIs that are routed to
3841	 * this vPE. This means that the irq_desc lock is not enough to
3842	 * protect us, and that we must ensure nobody samples vpe->col_idx
3843	 * during the update, hence the lock below which must also be
3844	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3845	 */
3846	from = vpe_to_cpuid_lock(vpe, &flags);
3847	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3848
3849	/*
3850	 * If we are offered another CPU in the same GICv4.1 ITS
3851	 * affinity, pick this one. Otherwise, any CPU will do.
3852	 */
3853	if (table_mask && cpumask_and(&common, mask_val, table_mask))
3854		cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3855	else
3856		cpu = cpumask_first(mask_val);
3857
3858	if (from == cpu)
3859		goto out;
3860
3861	vpe->col_idx = cpu;
3862
 
 
 
 
 
 
 
 
3863	its_send_vmovp(vpe);
3864	its_vpe_db_proxy_move(vpe, from, cpu);
3865
3866out:
3867	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3868	vpe_to_cpuid_unlock(vpe, flags);
3869
3870	return IRQ_SET_MASK_OK_DONE;
3871}
3872
3873static void its_wait_vpt_parse_complete(void)
3874{
3875	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3876	u64 val;
3877
3878	if (!gic_rdists->has_vpend_valid_dirty)
3879		return;
3880
3881	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3882						       val,
3883						       !(val & GICR_VPENDBASER_Dirty),
3884						       1, 500));
3885}
3886
3887static void its_vpe_schedule(struct its_vpe *vpe)
3888{
3889	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3890	u64 val;
3891
3892	/* Schedule the VPE */
3893	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3894		GENMASK_ULL(51, 12);
3895	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3896	if (rdists_support_shareable()) {
3897		val |= GICR_VPROPBASER_RaWb;
3898		val |= GICR_VPROPBASER_InnerShareable;
3899	}
3900	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3901
3902	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3903		GENMASK_ULL(51, 16);
3904	if (rdists_support_shareable()) {
3905		val |= GICR_VPENDBASER_RaWaWb;
3906		val |= GICR_VPENDBASER_InnerShareable;
3907	}
3908	/*
3909	 * There is no good way of finding out if the pending table is
3910	 * empty as we can race against the doorbell interrupt very
3911	 * easily. So in the end, vpe->pending_last is only an
3912	 * indication that the vcpu has something pending, not one
3913	 * that the pending table is empty. A good implementation
3914	 * would be able to read its coarse map pretty quickly anyway,
3915	 * making this a tolerable issue.
3916	 */
3917	val |= GICR_VPENDBASER_PendingLast;
3918	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3919	val |= GICR_VPENDBASER_Valid;
3920	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3921}
3922
3923static void its_vpe_deschedule(struct its_vpe *vpe)
3924{
3925	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3926	u64 val;
3927
3928	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3929
3930	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3931	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3932}
3933
3934static void its_vpe_invall(struct its_vpe *vpe)
3935{
3936	struct its_node *its;
3937
3938	list_for_each_entry(its, &its_nodes, entry) {
3939		if (!is_v4(its))
3940			continue;
3941
3942		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3943			continue;
3944
3945		/*
3946		 * Sending a VINVALL to a single ITS is enough, as all
3947		 * we need is to reach the redistributors.
3948		 */
3949		its_send_vinvall(its, vpe);
3950		return;
3951	}
3952}
3953
3954static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3955{
3956	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3957	struct its_cmd_info *info = vcpu_info;
3958
3959	switch (info->cmd_type) {
3960	case SCHEDULE_VPE:
3961		its_vpe_schedule(vpe);
3962		return 0;
3963
3964	case DESCHEDULE_VPE:
3965		its_vpe_deschedule(vpe);
3966		return 0;
3967
3968	case COMMIT_VPE:
3969		its_wait_vpt_parse_complete();
3970		return 0;
3971
3972	case INVALL_VPE:
3973		its_vpe_invall(vpe);
3974		return 0;
3975
3976	default:
3977		return -EINVAL;
3978	}
3979}
3980
3981static void its_vpe_send_cmd(struct its_vpe *vpe,
3982			     void (*cmd)(struct its_device *, u32))
3983{
3984	unsigned long flags;
3985
3986	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3987
3988	its_vpe_db_proxy_map_locked(vpe);
3989	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3990
3991	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3992}
3993
3994static void its_vpe_send_inv(struct irq_data *d)
3995{
3996	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3997
3998	if (gic_rdists->has_direct_lpi)
3999		__direct_lpi_inv(d, d->parent_data->hwirq);
4000	else
 
 
 
 
 
 
 
4001		its_vpe_send_cmd(vpe, its_send_inv);
 
4002}
4003
4004static void its_vpe_mask_irq(struct irq_data *d)
4005{
4006	/*
4007	 * We need to unmask the LPI, which is described by the parent
4008	 * irq_data. Instead of calling into the parent (which won't
4009	 * exactly do the right thing, let's simply use the
4010	 * parent_data pointer. Yes, I'm naughty.
4011	 */
4012	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4013	its_vpe_send_inv(d);
4014}
4015
4016static void its_vpe_unmask_irq(struct irq_data *d)
4017{
4018	/* Same hack as above... */
4019	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4020	its_vpe_send_inv(d);
4021}
4022
4023static int its_vpe_set_irqchip_state(struct irq_data *d,
4024				     enum irqchip_irq_state which,
4025				     bool state)
4026{
4027	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4028
4029	if (which != IRQCHIP_STATE_PENDING)
4030		return -EINVAL;
4031
4032	if (gic_rdists->has_direct_lpi) {
4033		void __iomem *rdbase;
4034
4035		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4036		if (state) {
4037			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4038		} else {
4039			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4040			wait_for_syncr(rdbase);
4041		}
4042	} else {
4043		if (state)
4044			its_vpe_send_cmd(vpe, its_send_int);
4045		else
4046			its_vpe_send_cmd(vpe, its_send_clear);
4047	}
4048
4049	return 0;
4050}
4051
4052static int its_vpe_retrigger(struct irq_data *d)
4053{
4054	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4055}
4056
4057static struct irq_chip its_vpe_irq_chip = {
4058	.name			= "GICv4-vpe",
4059	.irq_mask		= its_vpe_mask_irq,
4060	.irq_unmask		= its_vpe_unmask_irq,
4061	.irq_eoi		= irq_chip_eoi_parent,
4062	.irq_set_affinity	= its_vpe_set_affinity,
4063	.irq_retrigger		= its_vpe_retrigger,
4064	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4065	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4066};
4067
4068static struct its_node *find_4_1_its(void)
4069{
4070	static struct its_node *its = NULL;
4071
4072	if (!its) {
4073		list_for_each_entry(its, &its_nodes, entry) {
4074			if (is_v4_1(its))
4075				return its;
4076		}
4077
4078		/* Oops? */
4079		its = NULL;
4080	}
4081
4082	return its;
4083}
4084
4085static void its_vpe_4_1_send_inv(struct irq_data *d)
4086{
4087	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4088	struct its_node *its;
4089
4090	/*
4091	 * GICv4.1 wants doorbells to be invalidated using the
4092	 * INVDB command in order to be broadcast to all RDs. Send
4093	 * it to the first valid ITS, and let the HW do its magic.
4094	 */
4095	its = find_4_1_its();
4096	if (its)
4097		its_send_invdb(its, vpe);
4098}
4099
4100static void its_vpe_4_1_mask_irq(struct irq_data *d)
4101{
4102	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4103	its_vpe_4_1_send_inv(d);
4104}
4105
4106static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4107{
4108	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4109	its_vpe_4_1_send_inv(d);
4110}
4111
4112static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4113				 struct its_cmd_info *info)
4114{
4115	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4116	u64 val = 0;
4117
4118	/* Schedule the VPE */
4119	val |= GICR_VPENDBASER_Valid;
4120	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4121	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4122	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4123
4124	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4125}
4126
4127static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4128				   struct its_cmd_info *info)
4129{
4130	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4131	u64 val;
4132
4133	if (info->req_db) {
4134		unsigned long flags;
4135
4136		/*
4137		 * vPE is going to block: make the vPE non-resident with
4138		 * PendingLast clear and DB set. The GIC guarantees that if
4139		 * we read-back PendingLast clear, then a doorbell will be
4140		 * delivered when an interrupt comes.
4141		 *
4142		 * Note the locking to deal with the concurrent update of
4143		 * pending_last from the doorbell interrupt handler that can
4144		 * run concurrently.
4145		 */
4146		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4147		val = its_clear_vpend_valid(vlpi_base,
4148					    GICR_VPENDBASER_PendingLast,
4149					    GICR_VPENDBASER_4_1_DB);
4150		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4151		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4152	} else {
4153		/*
4154		 * We're not blocking, so just make the vPE non-resident
4155		 * with PendingLast set, indicating that we'll be back.
4156		 */
4157		val = its_clear_vpend_valid(vlpi_base,
4158					    0,
4159					    GICR_VPENDBASER_PendingLast);
4160		vpe->pending_last = true;
4161	}
4162}
4163
4164static void its_vpe_4_1_invall(struct its_vpe *vpe)
4165{
4166	void __iomem *rdbase;
4167	unsigned long flags;
4168	u64 val;
4169	int cpu;
4170
4171	val  = GICR_INVALLR_V;
4172	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4173
4174	/* Target the redistributor this vPE is currently known on */
4175	cpu = vpe_to_cpuid_lock(vpe, &flags);
4176	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4177	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4178	gic_write_lpir(val, rdbase + GICR_INVALLR);
4179
4180	wait_for_syncr(rdbase);
4181	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4182	vpe_to_cpuid_unlock(vpe, flags);
4183}
4184
4185static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4186{
4187	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4188	struct its_cmd_info *info = vcpu_info;
4189
4190	switch (info->cmd_type) {
4191	case SCHEDULE_VPE:
4192		its_vpe_4_1_schedule(vpe, info);
4193		return 0;
4194
4195	case DESCHEDULE_VPE:
4196		its_vpe_4_1_deschedule(vpe, info);
4197		return 0;
4198
4199	case COMMIT_VPE:
4200		its_wait_vpt_parse_complete();
4201		return 0;
4202
4203	case INVALL_VPE:
4204		its_vpe_4_1_invall(vpe);
4205		return 0;
4206
4207	default:
4208		return -EINVAL;
4209	}
4210}
4211
4212static struct irq_chip its_vpe_4_1_irq_chip = {
4213	.name			= "GICv4.1-vpe",
4214	.irq_mask		= its_vpe_4_1_mask_irq,
4215	.irq_unmask		= its_vpe_4_1_unmask_irq,
4216	.irq_eoi		= irq_chip_eoi_parent,
4217	.irq_set_affinity	= its_vpe_set_affinity,
4218	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4219};
4220
4221static void its_configure_sgi(struct irq_data *d, bool clear)
4222{
4223	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4224	struct its_cmd_desc desc;
4225
4226	desc.its_vsgi_cmd.vpe = vpe;
4227	desc.its_vsgi_cmd.sgi = d->hwirq;
4228	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4229	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4230	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4231	desc.its_vsgi_cmd.clear = clear;
4232
4233	/*
4234	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4235	 * destination VPE is mapped there. Since we map them eagerly at
4236	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4237	 */
4238	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4239}
4240
4241static void its_sgi_mask_irq(struct irq_data *d)
4242{
4243	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244
4245	vpe->sgi_config[d->hwirq].enabled = false;
4246	its_configure_sgi(d, false);
4247}
4248
4249static void its_sgi_unmask_irq(struct irq_data *d)
4250{
4251	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4252
4253	vpe->sgi_config[d->hwirq].enabled = true;
4254	its_configure_sgi(d, false);
4255}
4256
4257static int its_sgi_set_affinity(struct irq_data *d,
4258				const struct cpumask *mask_val,
4259				bool force)
4260{
4261	/*
4262	 * There is no notion of affinity for virtual SGIs, at least
4263	 * not on the host (since they can only be targeting a vPE).
4264	 * Tell the kernel we've done whatever it asked for.
4265	 */
4266	irq_data_update_effective_affinity(d, mask_val);
4267	return IRQ_SET_MASK_OK;
4268}
4269
4270static int its_sgi_set_irqchip_state(struct irq_data *d,
4271				     enum irqchip_irq_state which,
4272				     bool state)
4273{
4274	if (which != IRQCHIP_STATE_PENDING)
4275		return -EINVAL;
4276
4277	if (state) {
4278		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4279		struct its_node *its = find_4_1_its();
4280		u64 val;
4281
4282		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4283		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4284		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4285	} else {
4286		its_configure_sgi(d, true);
4287	}
4288
4289	return 0;
4290}
4291
4292static int its_sgi_get_irqchip_state(struct irq_data *d,
4293				     enum irqchip_irq_state which, bool *val)
4294{
4295	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296	void __iomem *base;
4297	unsigned long flags;
4298	u32 count = 1000000;	/* 1s! */
4299	u32 status;
4300	int cpu;
4301
4302	if (which != IRQCHIP_STATE_PENDING)
4303		return -EINVAL;
4304
4305	/*
4306	 * Locking galore! We can race against two different events:
4307	 *
4308	 * - Concurrent vPE affinity change: we must make sure it cannot
4309	 *   happen, or we'll talk to the wrong redistributor. This is
4310	 *   identical to what happens with vLPIs.
4311	 *
4312	 * - Concurrent VSGIPENDR access: As it involves accessing two
4313	 *   MMIO registers, this must be made atomic one way or another.
4314	 */
4315	cpu = vpe_to_cpuid_lock(vpe, &flags);
4316	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4317	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4318	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4319	do {
4320		status = readl_relaxed(base + GICR_VSGIPENDR);
4321		if (!(status & GICR_VSGIPENDR_BUSY))
4322			goto out;
4323
4324		count--;
4325		if (!count) {
4326			pr_err_ratelimited("Unable to get SGI status\n");
4327			goto out;
4328		}
4329		cpu_relax();
4330		udelay(1);
4331	} while (count);
4332
4333out:
4334	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4335	vpe_to_cpuid_unlock(vpe, flags);
4336
4337	if (!count)
4338		return -ENXIO;
4339
4340	*val = !!(status & (1 << d->hwirq));
4341
4342	return 0;
4343}
4344
4345static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4346{
4347	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4348	struct its_cmd_info *info = vcpu_info;
4349
4350	switch (info->cmd_type) {
4351	case PROP_UPDATE_VSGI:
4352		vpe->sgi_config[d->hwirq].priority = info->priority;
4353		vpe->sgi_config[d->hwirq].group = info->group;
4354		its_configure_sgi(d, false);
4355		return 0;
4356
4357	default:
4358		return -EINVAL;
4359	}
4360}
4361
4362static struct irq_chip its_sgi_irq_chip = {
4363	.name			= "GICv4.1-sgi",
4364	.irq_mask		= its_sgi_mask_irq,
4365	.irq_unmask		= its_sgi_unmask_irq,
4366	.irq_set_affinity	= its_sgi_set_affinity,
4367	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4368	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4369	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4370};
4371
4372static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4373				    unsigned int virq, unsigned int nr_irqs,
4374				    void *args)
4375{
4376	struct its_vpe *vpe = args;
4377	int i;
4378
4379	/* Yes, we do want 16 SGIs */
4380	WARN_ON(nr_irqs != 16);
4381
4382	for (i = 0; i < 16; i++) {
4383		vpe->sgi_config[i].priority = 0;
4384		vpe->sgi_config[i].enabled = false;
4385		vpe->sgi_config[i].group = false;
4386
4387		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4388					      &its_sgi_irq_chip, vpe);
4389		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4390	}
4391
4392	return 0;
4393}
4394
4395static void its_sgi_irq_domain_free(struct irq_domain *domain,
4396				    unsigned int virq,
4397				    unsigned int nr_irqs)
4398{
4399	/* Nothing to do */
4400}
4401
4402static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4403				       struct irq_data *d, bool reserve)
4404{
4405	/* Write out the initial SGI configuration */
4406	its_configure_sgi(d, false);
4407	return 0;
4408}
4409
4410static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4411					  struct irq_data *d)
4412{
4413	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4414
4415	/*
4416	 * The VSGI command is awkward:
4417	 *
4418	 * - To change the configuration, CLEAR must be set to false,
4419	 *   leaving the pending bit unchanged.
4420	 * - To clear the pending bit, CLEAR must be set to true, leaving
4421	 *   the configuration unchanged.
4422	 *
4423	 * You just can't do both at once, hence the two commands below.
4424	 */
4425	vpe->sgi_config[d->hwirq].enabled = false;
4426	its_configure_sgi(d, false);
4427	its_configure_sgi(d, true);
4428}
4429
4430static const struct irq_domain_ops its_sgi_domain_ops = {
4431	.alloc		= its_sgi_irq_domain_alloc,
4432	.free		= its_sgi_irq_domain_free,
4433	.activate	= its_sgi_irq_domain_activate,
4434	.deactivate	= its_sgi_irq_domain_deactivate,
4435};
4436
4437static int its_vpe_id_alloc(void)
4438{
4439	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4440}
4441
4442static void its_vpe_id_free(u16 id)
4443{
4444	ida_simple_remove(&its_vpeid_ida, id);
4445}
4446
4447static int its_vpe_init(struct its_vpe *vpe)
4448{
4449	struct page *vpt_page;
4450	int vpe_id;
4451
4452	/* Allocate vpe_id */
4453	vpe_id = its_vpe_id_alloc();
4454	if (vpe_id < 0)
4455		return vpe_id;
4456
4457	/* Allocate VPT */
4458	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4459	if (!vpt_page) {
4460		its_vpe_id_free(vpe_id);
4461		return -ENOMEM;
4462	}
4463
4464	if (!its_alloc_vpe_table(vpe_id)) {
4465		its_vpe_id_free(vpe_id);
4466		its_free_pending_table(vpt_page);
4467		return -ENOMEM;
4468	}
4469
4470	raw_spin_lock_init(&vpe->vpe_lock);
4471	vpe->vpe_id = vpe_id;
4472	vpe->vpt_page = vpt_page;
4473	if (gic_rdists->has_rvpeid)
4474		atomic_set(&vpe->vmapp_count, 0);
4475	else
4476		vpe->vpe_proxy_event = -1;
4477
4478	return 0;
4479}
4480
4481static void its_vpe_teardown(struct its_vpe *vpe)
4482{
4483	its_vpe_db_proxy_unmap(vpe);
4484	its_vpe_id_free(vpe->vpe_id);
4485	its_free_pending_table(vpe->vpt_page);
4486}
4487
4488static void its_vpe_irq_domain_free(struct irq_domain *domain,
4489				    unsigned int virq,
4490				    unsigned int nr_irqs)
4491{
4492	struct its_vm *vm = domain->host_data;
4493	int i;
4494
4495	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4496
4497	for (i = 0; i < nr_irqs; i++) {
4498		struct irq_data *data = irq_domain_get_irq_data(domain,
4499								virq + i);
4500		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4501
4502		BUG_ON(vm != vpe->its_vm);
4503
4504		clear_bit(data->hwirq, vm->db_bitmap);
4505		its_vpe_teardown(vpe);
4506		irq_domain_reset_irq_data(data);
4507	}
4508
4509	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4510		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4511		its_free_prop_table(vm->vprop_page);
4512	}
4513}
4514
4515static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4516				    unsigned int nr_irqs, void *args)
4517{
4518	struct irq_chip *irqchip = &its_vpe_irq_chip;
4519	struct its_vm *vm = args;
4520	unsigned long *bitmap;
4521	struct page *vprop_page;
4522	int base, nr_ids, i, err = 0;
4523
4524	BUG_ON(!vm);
4525
4526	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4527	if (!bitmap)
4528		return -ENOMEM;
4529
4530	if (nr_ids < nr_irqs) {
4531		its_lpi_free(bitmap, base, nr_ids);
4532		return -ENOMEM;
4533	}
4534
4535	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4536	if (!vprop_page) {
4537		its_lpi_free(bitmap, base, nr_ids);
4538		return -ENOMEM;
4539	}
4540
4541	vm->db_bitmap = bitmap;
4542	vm->db_lpi_base = base;
4543	vm->nr_db_lpis = nr_ids;
4544	vm->vprop_page = vprop_page;
4545
4546	if (gic_rdists->has_rvpeid)
4547		irqchip = &its_vpe_4_1_irq_chip;
4548
4549	for (i = 0; i < nr_irqs; i++) {
4550		vm->vpes[i]->vpe_db_lpi = base + i;
4551		err = its_vpe_init(vm->vpes[i]);
4552		if (err)
4553			break;
4554		err = its_irq_gic_domain_alloc(domain, virq + i,
4555					       vm->vpes[i]->vpe_db_lpi);
4556		if (err)
4557			break;
4558		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4559					      irqchip, vm->vpes[i]);
4560		set_bit(i, bitmap);
4561		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4562	}
4563
4564	if (err) {
4565		if (i > 0)
4566			its_vpe_irq_domain_free(domain, virq, i);
4567
4568		its_lpi_free(bitmap, base, nr_ids);
4569		its_free_prop_table(vprop_page);
4570	}
4571
4572	return err;
4573}
4574
4575static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4576				       struct irq_data *d, bool reserve)
4577{
4578	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4579	struct its_node *its;
4580
4581	/*
4582	 * If we use the list map, we issue VMAPP on demand... Unless
4583	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4584	 * so that VSGIs can work.
4585	 */
4586	if (!gic_requires_eager_mapping())
4587		return 0;
4588
4589	/* Map the VPE to the first possible CPU */
4590	vpe->col_idx = cpumask_first(cpu_online_mask);
4591
4592	list_for_each_entry(its, &its_nodes, entry) {
4593		if (!is_v4(its))
4594			continue;
4595
4596		its_send_vmapp(its, vpe, true);
4597		its_send_vinvall(its, vpe);
4598	}
4599
4600	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4601
4602	return 0;
4603}
4604
4605static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4606					  struct irq_data *d)
4607{
4608	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4609	struct its_node *its;
4610
4611	/*
4612	 * If we use the list map on GICv4.0, we unmap the VPE once no
4613	 * VLPIs are associated with the VM.
4614	 */
4615	if (!gic_requires_eager_mapping())
4616		return;
4617
4618	list_for_each_entry(its, &its_nodes, entry) {
4619		if (!is_v4(its))
4620			continue;
4621
4622		its_send_vmapp(its, vpe, false);
4623	}
4624
4625	/*
4626	 * There may be a direct read to the VPT after unmapping the
4627	 * vPE, to guarantee the validity of this, we make the VPT
4628	 * memory coherent with the CPU caches here.
4629	 */
4630	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4631		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4632					LPI_PENDBASE_SZ);
4633}
4634
4635static const struct irq_domain_ops its_vpe_domain_ops = {
4636	.alloc			= its_vpe_irq_domain_alloc,
4637	.free			= its_vpe_irq_domain_free,
4638	.activate		= its_vpe_irq_domain_activate,
4639	.deactivate		= its_vpe_irq_domain_deactivate,
4640};
4641
4642static int its_force_quiescent(void __iomem *base)
4643{
4644	u32 count = 1000000;	/* 1s */
4645	u32 val;
4646
4647	val = readl_relaxed(base + GITS_CTLR);
4648	/*
4649	 * GIC architecture specification requires the ITS to be both
4650	 * disabled and quiescent for writes to GITS_BASER<n> or
4651	 * GITS_CBASER to not have UNPREDICTABLE results.
4652	 */
4653	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4654		return 0;
4655
4656	/* Disable the generation of all interrupts to this ITS */
4657	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4658	writel_relaxed(val, base + GITS_CTLR);
4659
4660	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4661	while (1) {
4662		val = readl_relaxed(base + GITS_CTLR);
4663		if (val & GITS_CTLR_QUIESCENT)
4664			return 0;
4665
4666		count--;
4667		if (!count)
4668			return -EBUSY;
4669
4670		cpu_relax();
4671		udelay(1);
4672	}
4673}
4674
4675static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4676{
4677	struct its_node *its = data;
4678
4679	/* erratum 22375: only alloc 8MB table size (20 bits) */
4680	its->typer &= ~GITS_TYPER_DEVBITS;
4681	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4682	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4683
4684	return true;
4685}
4686
4687static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4688{
4689	struct its_node *its = data;
4690
4691	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4692
4693	return true;
4694}
4695
4696static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4697{
4698	struct its_node *its = data;
4699
4700	/* On QDF2400, the size of the ITE is 16Bytes */
4701	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4702	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4703
4704	return true;
4705}
4706
4707static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4708{
4709	struct its_node *its = its_dev->its;
4710
4711	/*
4712	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4713	 * which maps 32-bit writes targeted at a separate window of
4714	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4715	 * with device ID taken from bits [device_id_bits + 1:2] of
4716	 * the window offset.
4717	 */
4718	return its->pre_its_base + (its_dev->device_id << 2);
4719}
4720
4721static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4722{
4723	struct its_node *its = data;
4724	u32 pre_its_window[2];
4725	u32 ids;
4726
4727	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4728					   "socionext,synquacer-pre-its",
4729					   pre_its_window,
4730					   ARRAY_SIZE(pre_its_window))) {
4731
4732		its->pre_its_base = pre_its_window[0];
4733		its->get_msi_base = its_irq_get_msi_base_pre_its;
4734
4735		ids = ilog2(pre_its_window[1]) - 2;
4736		if (device_ids(its) > ids) {
4737			its->typer &= ~GITS_TYPER_DEVBITS;
4738			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4739		}
4740
4741		/* the pre-ITS breaks isolation, so disable MSI remapping */
4742		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4743		return true;
4744	}
4745	return false;
4746}
4747
4748static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4749{
4750	struct its_node *its = data;
4751
4752	/*
4753	 * Hip07 insists on using the wrong address for the VLPI
4754	 * page. Trick it into doing the right thing...
4755	 */
4756	its->vlpi_redist_offset = SZ_128K;
4757	return true;
4758}
4759
4760static bool __maybe_unused its_enable_rk3588001(void *data)
4761{
4762	struct its_node *its = data;
4763
4764	if (!of_machine_is_compatible("rockchip,rk3588") &&
4765	    !of_machine_is_compatible("rockchip,rk3588s"))
4766		return false;
4767
4768	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4769	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4770
4771	return true;
4772}
4773
4774static bool its_set_non_coherent(void *data)
4775{
4776	struct its_node *its = data;
4777
4778	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4779	return true;
4780}
4781
4782static const struct gic_quirk its_quirks[] = {
4783#ifdef CONFIG_CAVIUM_ERRATUM_22375
4784	{
4785		.desc	= "ITS: Cavium errata 22375, 24313",
4786		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4787		.mask	= 0xffff0fff,
4788		.init	= its_enable_quirk_cavium_22375,
4789	},
4790#endif
4791#ifdef CONFIG_CAVIUM_ERRATUM_23144
4792	{
4793		.desc	= "ITS: Cavium erratum 23144",
4794		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4795		.mask	= 0xffff0fff,
4796		.init	= its_enable_quirk_cavium_23144,
4797	},
4798#endif
4799#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4800	{
4801		.desc	= "ITS: QDF2400 erratum 0065",
4802		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4803		.mask	= 0xffffffff,
4804		.init	= its_enable_quirk_qdf2400_e0065,
4805	},
4806#endif
4807#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4808	{
4809		/*
4810		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4811		 * implementation, but with a 'pre-ITS' added that requires
4812		 * special handling in software.
4813		 */
4814		.desc	= "ITS: Socionext Synquacer pre-ITS",
4815		.iidr	= 0x0001143b,
4816		.mask	= 0xffffffff,
4817		.init	= its_enable_quirk_socionext_synquacer,
4818	},
4819#endif
4820#ifdef CONFIG_HISILICON_ERRATUM_161600802
4821	{
4822		.desc	= "ITS: Hip07 erratum 161600802",
4823		.iidr	= 0x00000004,
4824		.mask	= 0xffffffff,
4825		.init	= its_enable_quirk_hip07_161600802,
4826	},
4827#endif
4828#ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4829	{
4830		.desc   = "ITS: Rockchip erratum RK3588001",
4831		.iidr   = 0x0201743b,
4832		.mask   = 0xffffffff,
4833		.init   = its_enable_rk3588001,
4834	},
4835#endif
4836	{
4837		.desc   = "ITS: non-coherent attribute",
4838		.property = "dma-noncoherent",
4839		.init   = its_set_non_coherent,
4840	},
4841	{
4842	}
4843};
4844
4845static void its_enable_quirks(struct its_node *its)
4846{
4847	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4848
4849	gic_enable_quirks(iidr, its_quirks, its);
4850
4851	if (is_of_node(its->fwnode_handle))
4852		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4853				     its_quirks, its);
4854}
4855
4856static int its_save_disable(void)
4857{
4858	struct its_node *its;
4859	int err = 0;
4860
4861	raw_spin_lock(&its_lock);
4862	list_for_each_entry(its, &its_nodes, entry) {
4863		void __iomem *base;
4864
4865		base = its->base;
4866		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4867		err = its_force_quiescent(base);
4868		if (err) {
4869			pr_err("ITS@%pa: failed to quiesce: %d\n",
4870			       &its->phys_base, err);
4871			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4872			goto err;
4873		}
4874
4875		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4876	}
4877
4878err:
4879	if (err) {
4880		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4881			void __iomem *base;
4882
4883			base = its->base;
4884			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4885		}
4886	}
4887	raw_spin_unlock(&its_lock);
4888
4889	return err;
4890}
4891
4892static void its_restore_enable(void)
4893{
4894	struct its_node *its;
4895	int ret;
4896
4897	raw_spin_lock(&its_lock);
4898	list_for_each_entry(its, &its_nodes, entry) {
4899		void __iomem *base;
4900		int i;
4901
4902		base = its->base;
4903
4904		/*
4905		 * Make sure that the ITS is disabled. If it fails to quiesce,
4906		 * don't restore it since writing to CBASER or BASER<n>
4907		 * registers is undefined according to the GIC v3 ITS
4908		 * Specification.
4909		 *
4910		 * Firmware resuming with the ITS enabled is terminally broken.
4911		 */
4912		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4913		ret = its_force_quiescent(base);
4914		if (ret) {
4915			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4916			       &its->phys_base, ret);
4917			continue;
4918		}
4919
4920		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4921
4922		/*
4923		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4924		 * cmd_write line up with it.
4925		 */
4926		its->cmd_write = its->cmd_base;
4927		gits_write_cwriter(0, base + GITS_CWRITER);
4928
4929		/* Restore GITS_BASER from the value cache. */
4930		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4931			struct its_baser *baser = &its->tables[i];
4932
4933			if (!(baser->val & GITS_BASER_VALID))
4934				continue;
4935
4936			its_write_baser(its, baser, baser->val);
4937		}
4938		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4939
4940		/*
4941		 * Reinit the collection if it's stored in the ITS. This is
4942		 * indicated by the col_id being less than the HCC field.
4943		 * CID < HCC as specified in the GIC v3 Documentation.
4944		 */
4945		if (its->collections[smp_processor_id()].col_id <
4946		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4947			its_cpu_init_collection(its);
4948	}
4949	raw_spin_unlock(&its_lock);
4950}
4951
4952static struct syscore_ops its_syscore_ops = {
4953	.suspend = its_save_disable,
4954	.resume = its_restore_enable,
4955};
4956
4957static void __init __iomem *its_map_one(struct resource *res, int *err)
4958{
4959	void __iomem *its_base;
4960	u32 val;
4961
4962	its_base = ioremap(res->start, SZ_64K);
4963	if (!its_base) {
4964		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4965		*err = -ENOMEM;
4966		return NULL;
4967	}
4968
4969	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4970	if (val != 0x30 && val != 0x40) {
4971		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4972		*err = -ENODEV;
4973		goto out_unmap;
4974	}
4975
4976	*err = its_force_quiescent(its_base);
4977	if (*err) {
4978		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4979		goto out_unmap;
4980	}
4981
4982	return its_base;
4983
4984out_unmap:
4985	iounmap(its_base);
4986	return NULL;
4987}
4988
4989static int its_init_domain(struct its_node *its)
4990{
4991	struct irq_domain *inner_domain;
4992	struct msi_domain_info *info;
4993
4994	info = kzalloc(sizeof(*info), GFP_KERNEL);
4995	if (!info)
4996		return -ENOMEM;
4997
4998	info->ops = &its_msi_domain_ops;
4999	info->data = its;
5000
5001	inner_domain = irq_domain_create_hierarchy(its_parent,
5002						   its->msi_domain_flags, 0,
5003						   its->fwnode_handle, &its_domain_ops,
5004						   info);
5005	if (!inner_domain) {
5006		kfree(info);
5007		return -ENOMEM;
5008	}
5009
 
5010	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
 
 
 
 
5011
5012	return 0;
5013}
5014
5015static int its_init_vpe_domain(void)
5016{
5017	struct its_node *its;
5018	u32 devid;
5019	int entries;
5020
5021	if (gic_rdists->has_direct_lpi) {
5022		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5023		return 0;
5024	}
5025
5026	/* Any ITS will do, even if not v4 */
5027	its = list_first_entry(&its_nodes, struct its_node, entry);
5028
5029	entries = roundup_pow_of_two(nr_cpu_ids);
5030	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5031				 GFP_KERNEL);
5032	if (!vpe_proxy.vpes)
5033		return -ENOMEM;
5034
5035	/* Use the last possible DevID */
5036	devid = GENMASK(device_ids(its) - 1, 0);
5037	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5038	if (!vpe_proxy.dev) {
5039		kfree(vpe_proxy.vpes);
5040		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5041		return -ENOMEM;
5042	}
5043
5044	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5045
5046	raw_spin_lock_init(&vpe_proxy.lock);
5047	vpe_proxy.next_victim = 0;
5048	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5049		devid, vpe_proxy.dev->nr_ites);
5050
5051	return 0;
5052}
5053
5054static int __init its_compute_its_list_map(struct its_node *its)
 
5055{
5056	int its_number;
5057	u32 ctlr;
5058
5059	/*
5060	 * This is assumed to be done early enough that we're
5061	 * guaranteed to be single-threaded, hence no
5062	 * locking. Should this change, we should address
5063	 * this.
5064	 */
5065	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5066	if (its_number >= GICv4_ITS_LIST_MAX) {
5067		pr_err("ITS@%pa: No ITSList entry available!\n",
5068		       &its->phys_base);
5069		return -EINVAL;
5070	}
5071
5072	ctlr = readl_relaxed(its->base + GITS_CTLR);
5073	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5074	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5075	writel_relaxed(ctlr, its->base + GITS_CTLR);
5076	ctlr = readl_relaxed(its->base + GITS_CTLR);
5077	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5078		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5079		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5080	}
5081
5082	if (test_and_set_bit(its_number, &its_list_map)) {
5083		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5084		       &its->phys_base, its_number);
5085		return -EINVAL;
5086	}
5087
5088	return its_number;
5089}
5090
5091static int __init its_probe_one(struct its_node *its)
 
5092{
5093	u64 baser, tmp;
 
 
5094	struct page *page;
5095	u32 ctlr;
5096	int err;
5097
5098	its_enable_quirks(its);
 
 
 
 
 
 
 
 
 
 
5099
 
 
 
 
 
 
 
 
5100	if (is_v4(its)) {
5101		if (!(its->typer & GITS_TYPER_VMOVP)) {
5102			err = its_compute_its_list_map(its);
5103			if (err < 0)
5104				goto out;
5105
5106			its->list_nr = err;
5107
5108			pr_info("ITS@%pa: Using ITS number %d\n",
5109				&its->phys_base, err);
5110		} else {
5111			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5112		}
5113
5114		if (is_v4_1(its)) {
5115			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5116
5117			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5118			if (!its->sgir_base) {
5119				err = -ENOMEM;
5120				goto out;
5121			}
5122
5123			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5124
5125			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5126				&its->phys_base, its->mpidr, svpet);
5127		}
5128	}
5129
 
 
5130	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5131				get_order(ITS_CMD_QUEUE_SZ));
5132	if (!page) {
5133		err = -ENOMEM;
5134		goto out_unmap_sgir;
5135	}
5136	its->cmd_base = (void *)page_address(page);
5137	its->cmd_write = its->cmd_base;
 
 
 
 
 
5138
5139	err = its_alloc_tables(its);
5140	if (err)
5141		goto out_free_cmd;
5142
5143	err = its_alloc_collections(its);
5144	if (err)
5145		goto out_free_tables;
5146
5147	baser = (virt_to_phys(its->cmd_base)	|
5148		 GITS_CBASER_RaWaWb		|
5149		 GITS_CBASER_InnerShareable	|
5150		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5151		 GITS_CBASER_VALID);
5152
5153	gits_write_cbaser(baser, its->base + GITS_CBASER);
5154	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5155
5156	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5157		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5158
5159	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5160		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5161			/*
5162			 * The HW reports non-shareable, we must
5163			 * remove the cacheability attributes as
5164			 * well.
5165			 */
5166			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5167				   GITS_CBASER_CACHEABILITY_MASK);
5168			baser |= GITS_CBASER_nC;
5169			gits_write_cbaser(baser, its->base + GITS_CBASER);
5170		}
5171		pr_info("ITS: using cache flushing for cmd queue\n");
5172		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5173	}
5174
5175	gits_write_cwriter(0, its->base + GITS_CWRITER);
5176	ctlr = readl_relaxed(its->base + GITS_CTLR);
5177	ctlr |= GITS_CTLR_ENABLE;
5178	if (is_v4(its))
5179		ctlr |= GITS_CTLR_ImDe;
5180	writel_relaxed(ctlr, its->base + GITS_CTLR);
5181
5182	err = its_init_domain(its);
5183	if (err)
5184		goto out_free_tables;
5185
5186	raw_spin_lock(&its_lock);
5187	list_add(&its->entry, &its_nodes);
5188	raw_spin_unlock(&its_lock);
5189
5190	return 0;
5191
5192out_free_tables:
5193	its_free_tables(its);
5194out_free_cmd:
5195	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5196out_unmap_sgir:
5197	if (its->sgir_base)
5198		iounmap(its->sgir_base);
5199out:
5200	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
 
 
 
5201	return err;
5202}
5203
5204static bool gic_rdists_supports_plpis(void)
5205{
5206	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5207}
5208
5209static int redist_disable_lpis(void)
5210{
5211	void __iomem *rbase = gic_data_rdist_rd_base();
5212	u64 timeout = USEC_PER_SEC;
5213	u64 val;
5214
5215	if (!gic_rdists_supports_plpis()) {
5216		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5217		return -ENXIO;
5218	}
5219
5220	val = readl_relaxed(rbase + GICR_CTLR);
5221	if (!(val & GICR_CTLR_ENABLE_LPIS))
5222		return 0;
5223
5224	/*
5225	 * If coming via a CPU hotplug event, we don't need to disable
5226	 * LPIs before trying to re-enable them. They are already
5227	 * configured and all is well in the world.
5228	 *
5229	 * If running with preallocated tables, there is nothing to do.
5230	 */
5231	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5232	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5233		return 0;
5234
5235	/*
5236	 * From that point on, we only try to do some damage control.
5237	 */
5238	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5239		smp_processor_id());
5240	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5241
5242	/* Disable LPIs */
5243	val &= ~GICR_CTLR_ENABLE_LPIS;
5244	writel_relaxed(val, rbase + GICR_CTLR);
5245
5246	/* Make sure any change to GICR_CTLR is observable by the GIC */
5247	dsb(sy);
5248
5249	/*
5250	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5251	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5252	 * Error out if we time out waiting for RWP to clear.
5253	 */
5254	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5255		if (!timeout) {
5256			pr_err("CPU%d: Timeout while disabling LPIs\n",
5257			       smp_processor_id());
5258			return -ETIMEDOUT;
5259		}
5260		udelay(1);
5261		timeout--;
5262	}
5263
5264	/*
5265	 * After it has been written to 1, it is IMPLEMENTATION
5266	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5267	 * cleared to 0. Error out if clearing the bit failed.
5268	 */
5269	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5270		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5271		return -EBUSY;
5272	}
5273
5274	return 0;
5275}
5276
5277int its_cpu_init(void)
5278{
5279	if (!list_empty(&its_nodes)) {
5280		int ret;
5281
5282		ret = redist_disable_lpis();
5283		if (ret)
5284			return ret;
5285
5286		its_cpu_init_lpis();
5287		its_cpu_init_collections();
5288	}
5289
5290	return 0;
5291}
5292
5293static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5294{
5295	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5296	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5297}
5298
5299static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5300		    rdist_memreserve_cpuhp_cleanup_workfn);
5301
5302static int its_cpu_memreserve_lpi(unsigned int cpu)
5303{
5304	struct page *pend_page;
5305	int ret = 0;
5306
5307	/* This gets to run exactly once per CPU */
5308	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5309		return 0;
5310
5311	pend_page = gic_data_rdist()->pend_page;
5312	if (WARN_ON(!pend_page)) {
5313		ret = -ENOMEM;
5314		goto out;
5315	}
5316	/*
5317	 * If the pending table was pre-programmed, free the memory we
5318	 * preemptively allocated. Otherwise, reserve that memory for
5319	 * later kexecs.
5320	 */
5321	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5322		its_free_pending_table(pend_page);
5323		gic_data_rdist()->pend_page = NULL;
5324	} else {
5325		phys_addr_t paddr = page_to_phys(pend_page);
5326		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5327	}
5328
5329out:
5330	/* Last CPU being brought up gets to issue the cleanup */
5331	if (!IS_ENABLED(CONFIG_SMP) ||
5332	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5333		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5334
5335	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5336	return ret;
5337}
5338
5339/* Mark all the BASER registers as invalid before they get reprogrammed */
5340static int __init its_reset_one(struct resource *res)
5341{
5342	void __iomem *its_base;
5343	int err, i;
5344
5345	its_base = its_map_one(res, &err);
5346	if (!its_base)
5347		return err;
5348
5349	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5350		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5351
5352	iounmap(its_base);
5353	return 0;
5354}
5355
5356static const struct of_device_id its_device_id[] = {
5357	{	.compatible	= "arm,gic-v3-its",	},
5358	{},
5359};
5360
5361static struct its_node __init *its_node_init(struct resource *res,
5362					     struct fwnode_handle *handle, int numa_node)
5363{
5364	void __iomem *its_base;
5365	struct its_node *its;
5366	int err;
5367
5368	its_base = its_map_one(res, &err);
5369	if (!its_base)
5370		return NULL;
5371
5372	pr_info("ITS %pR\n", res);
5373
5374	its = kzalloc(sizeof(*its), GFP_KERNEL);
5375	if (!its)
5376		goto out_unmap;
5377
5378	raw_spin_lock_init(&its->lock);
5379	mutex_init(&its->dev_alloc_lock);
5380	INIT_LIST_HEAD(&its->entry);
5381	INIT_LIST_HEAD(&its->its_device_list);
5382
5383	its->typer = gic_read_typer(its_base + GITS_TYPER);
5384	its->base = its_base;
5385	its->phys_base = res->start;
5386	its->get_msi_base = its_irq_get_msi_base;
5387	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5388
5389	its->numa_node = numa_node;
5390	its->fwnode_handle = handle;
5391
5392	return its;
5393
5394out_unmap:
5395	iounmap(its_base);
5396	return NULL;
5397}
5398
5399static void its_node_destroy(struct its_node *its)
5400{
5401	iounmap(its->base);
5402	kfree(its);
5403}
5404
5405static int __init its_of_probe(struct device_node *node)
5406{
5407	struct device_node *np;
5408	struct resource res;
5409	int err;
5410
5411	/*
5412	 * Make sure *all* the ITS are reset before we probe any, as
5413	 * they may be sharing memory. If any of the ITS fails to
5414	 * reset, don't even try to go any further, as this could
5415	 * result in something even worse.
5416	 */
5417	for (np = of_find_matching_node(node, its_device_id); np;
5418	     np = of_find_matching_node(np, its_device_id)) {
 
 
5419		if (!of_device_is_available(np) ||
5420		    !of_property_read_bool(np, "msi-controller") ||
5421		    of_address_to_resource(np, 0, &res))
5422			continue;
5423
5424		err = its_reset_one(&res);
5425		if (err)
5426			return err;
5427	}
5428
5429	for (np = of_find_matching_node(node, its_device_id); np;
5430	     np = of_find_matching_node(np, its_device_id)) {
5431		struct its_node *its;
5432
5433		if (!of_device_is_available(np))
5434			continue;
5435		if (!of_property_read_bool(np, "msi-controller")) {
5436			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5437				np);
5438			continue;
5439		}
5440
5441		if (of_address_to_resource(np, 0, &res)) {
5442			pr_warn("%pOF: no regs?\n", np);
5443			continue;
5444		}
5445
5446
5447		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5448		if (!its)
5449			return -ENOMEM;
5450
5451		err = its_probe_one(its);
5452		if (err)  {
5453			its_node_destroy(its);
5454			return err;
5455		}
5456	}
5457	return 0;
5458}
5459
5460#ifdef CONFIG_ACPI
5461
5462#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5463
5464#ifdef CONFIG_ACPI_NUMA
5465struct its_srat_map {
5466	/* numa node id */
5467	u32	numa_node;
5468	/* GIC ITS ID */
5469	u32	its_id;
5470};
5471
5472static struct its_srat_map *its_srat_maps __initdata;
5473static int its_in_srat __initdata;
5474
5475static int __init acpi_get_its_numa_node(u32 its_id)
5476{
5477	int i;
5478
5479	for (i = 0; i < its_in_srat; i++) {
5480		if (its_id == its_srat_maps[i].its_id)
5481			return its_srat_maps[i].numa_node;
5482	}
5483	return NUMA_NO_NODE;
5484}
5485
5486static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5487					  const unsigned long end)
5488{
5489	return 0;
5490}
5491
5492static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5493			 const unsigned long end)
5494{
5495	int node;
5496	struct acpi_srat_gic_its_affinity *its_affinity;
5497
5498	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5499	if (!its_affinity)
5500		return -EINVAL;
5501
5502	if (its_affinity->header.length < sizeof(*its_affinity)) {
5503		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5504			its_affinity->header.length);
5505		return -EINVAL;
5506	}
5507
5508	/*
5509	 * Note that in theory a new proximity node could be created by this
5510	 * entry as it is an SRAT resource allocation structure.
5511	 * We do not currently support doing so.
5512	 */
5513	node = pxm_to_node(its_affinity->proximity_domain);
5514
5515	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5516		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5517		return 0;
5518	}
5519
5520	its_srat_maps[its_in_srat].numa_node = node;
5521	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5522	its_in_srat++;
5523	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5524		its_affinity->proximity_domain, its_affinity->its_id, node);
5525
5526	return 0;
5527}
5528
5529static void __init acpi_table_parse_srat_its(void)
5530{
5531	int count;
5532
5533	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5534			sizeof(struct acpi_table_srat),
5535			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5536			gic_acpi_match_srat_its, 0);
5537	if (count <= 0)
5538		return;
5539
5540	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5541				      GFP_KERNEL);
5542	if (!its_srat_maps)
5543		return;
5544
5545	acpi_table_parse_entries(ACPI_SIG_SRAT,
5546			sizeof(struct acpi_table_srat),
5547			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5548			gic_acpi_parse_srat_its, 0);
5549}
5550
5551/* free the its_srat_maps after ITS probing */
5552static void __init acpi_its_srat_maps_free(void)
5553{
5554	kfree(its_srat_maps);
5555}
5556#else
5557static void __init acpi_table_parse_srat_its(void)	{ }
5558static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5559static void __init acpi_its_srat_maps_free(void) { }
5560#endif
5561
5562static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5563					  const unsigned long end)
5564{
5565	struct acpi_madt_generic_translator *its_entry;
5566	struct fwnode_handle *dom_handle;
5567	struct its_node *its;
5568	struct resource res;
5569	int err;
5570
5571	its_entry = (struct acpi_madt_generic_translator *)header;
5572	memset(&res, 0, sizeof(res));
5573	res.start = its_entry->base_address;
5574	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5575	res.flags = IORESOURCE_MEM;
5576
5577	dom_handle = irq_domain_alloc_fwnode(&res.start);
5578	if (!dom_handle) {
5579		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5580		       &res.start);
5581		return -ENOMEM;
5582	}
5583
5584	err = iort_register_domain_token(its_entry->translation_id, res.start,
5585					 dom_handle);
5586	if (err) {
5587		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5588		       &res.start, its_entry->translation_id);
5589		goto dom_err;
5590	}
5591
5592	its = its_node_init(&res, dom_handle,
5593			    acpi_get_its_numa_node(its_entry->translation_id));
5594	if (!its) {
5595		err = -ENOMEM;
5596		goto node_err;
5597	}
5598
5599	err = its_probe_one(its);
5600	if (!err)
5601		return 0;
5602
5603node_err:
5604	iort_deregister_domain_token(its_entry->translation_id);
5605dom_err:
5606	irq_domain_free_fwnode(dom_handle);
5607	return err;
5608}
5609
5610static int __init its_acpi_reset(union acpi_subtable_headers *header,
5611				 const unsigned long end)
5612{
5613	struct acpi_madt_generic_translator *its_entry;
5614	struct resource res;
5615
5616	its_entry = (struct acpi_madt_generic_translator *)header;
5617	res = (struct resource) {
5618		.start	= its_entry->base_address,
5619		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5620		.flags	= IORESOURCE_MEM,
5621	};
5622
5623	return its_reset_one(&res);
5624}
5625
5626static void __init its_acpi_probe(void)
5627{
5628	acpi_table_parse_srat_its();
5629	/*
5630	 * Make sure *all* the ITS are reset before we probe any, as
5631	 * they may be sharing memory. If any of the ITS fails to
5632	 * reset, don't even try to go any further, as this could
5633	 * result in something even worse.
5634	 */
5635	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5636				  its_acpi_reset, 0) > 0)
5637		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5638				      gic_acpi_parse_madt_its, 0);
5639	acpi_its_srat_maps_free();
5640}
5641#else
5642static void __init its_acpi_probe(void) { }
5643#endif
5644
5645int __init its_lpi_memreserve_init(void)
5646{
5647	int state;
5648
5649	if (!efi_enabled(EFI_CONFIG_TABLES))
5650		return 0;
5651
5652	if (list_empty(&its_nodes))
5653		return 0;
5654
5655	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5656	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5657				  "irqchip/arm/gicv3/memreserve:online",
5658				  its_cpu_memreserve_lpi,
5659				  NULL);
5660	if (state < 0)
5661		return state;
5662
5663	gic_rdists->cpuhp_memreserve_state = state;
5664
5665	return 0;
5666}
5667
5668int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5669		    struct irq_domain *parent_domain)
5670{
5671	struct device_node *of_node;
5672	struct its_node *its;
5673	bool has_v4 = false;
5674	bool has_v4_1 = false;
5675	int err;
5676
5677	gic_rdists = rdists;
5678
5679	its_parent = parent_domain;
5680	of_node = to_of_node(handle);
5681	if (of_node)
5682		its_of_probe(of_node);
5683	else
5684		its_acpi_probe();
5685
5686	if (list_empty(&its_nodes)) {
5687		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5688		return -ENXIO;
5689	}
5690
5691	err = allocate_lpi_tables();
5692	if (err)
5693		return err;
5694
5695	list_for_each_entry(its, &its_nodes, entry) {
5696		has_v4 |= is_v4(its);
5697		has_v4_1 |= is_v4_1(its);
5698	}
5699
5700	/* Don't bother with inconsistent systems */
5701	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5702		rdists->has_rvpeid = false;
5703
5704	if (has_v4 & rdists->has_vlpis) {
5705		const struct irq_domain_ops *sgi_ops;
5706
5707		if (has_v4_1)
5708			sgi_ops = &its_sgi_domain_ops;
5709		else
5710			sgi_ops = NULL;
5711
5712		if (its_init_vpe_domain() ||
5713		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5714			rdists->has_vlpis = false;
5715			pr_err("ITS: Disabling GICv4 support\n");
5716		}
5717	}
5718
5719	register_syscore_ops(&its_syscore_ops);
5720
5721	return 0;
5722}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/acpi_iort.h>
   9#include <linux/bitfield.h>
  10#include <linux/bitmap.h>
  11#include <linux/cpu.h>
  12#include <linux/crash_dump.h>
  13#include <linux/delay.h>
  14#include <linux/efi.h>
  15#include <linux/interrupt.h>
  16#include <linux/iommu.h>
  17#include <linux/iopoll.h>
  18#include <linux/irqdomain.h>
  19#include <linux/list.h>
  20#include <linux/log2.h>
  21#include <linux/memblock.h>
  22#include <linux/mm.h>
  23#include <linux/msi.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_irq.h>
  27#include <linux/of_pci.h>
  28#include <linux/of_platform.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/syscore_ops.h>
  32
  33#include <linux/irqchip.h>
  34#include <linux/irqchip/arm-gic-v3.h>
  35#include <linux/irqchip/arm-gic-v4.h>
  36
  37#include <asm/cputype.h>
  38#include <asm/exception.h>
  39
  40#include "irq-gic-common.h"
  41
  42#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  43#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  44#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  45
  46#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
  47#define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
  48
  49#define RD_LOCAL_LPI_ENABLED                    BIT(0)
  50#define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
  51#define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
  52
  53static u32 lpi_id_bits;
  54
  55/*
  56 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  57 * deal with (one configuration byte per interrupt). PENDBASE has to
  58 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  59 */
  60#define LPI_NRBITS		lpi_id_bits
  61#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  62#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  63
  64#define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
  65
  66/*
  67 * Collection structure - just an ID, and a redistributor address to
  68 * ping. We use one per CPU as a bag of interrupts assigned to this
  69 * CPU.
  70 */
  71struct its_collection {
  72	u64			target_address;
  73	u16			col_id;
  74};
  75
  76/*
  77 * The ITS_BASER structure - contains memory information, cached
  78 * value of BASER register configuration and ITS page size.
  79 */
  80struct its_baser {
  81	void		*base;
  82	u64		val;
  83	u32		order;
  84	u32		psz;
  85};
  86
  87struct its_device;
  88
  89/*
  90 * The ITS structure - contains most of the infrastructure, with the
  91 * top-level MSI domain, the command queue, the collections, and the
  92 * list of devices writing to it.
  93 *
  94 * dev_alloc_lock has to be taken for device allocations, while the
  95 * spinlock must be taken to parse data structures such as the device
  96 * list.
  97 */
  98struct its_node {
  99	raw_spinlock_t		lock;
 100	struct mutex		dev_alloc_lock;
 101	struct list_head	entry;
 102	void __iomem		*base;
 103	void __iomem		*sgir_base;
 104	phys_addr_t		phys_base;
 105	struct its_cmd_block	*cmd_base;
 106	struct its_cmd_block	*cmd_write;
 107	struct its_baser	tables[GITS_BASER_NR_REGS];
 108	struct its_collection	*collections;
 109	struct fwnode_handle	*fwnode_handle;
 110	u64			(*get_msi_base)(struct its_device *its_dev);
 111	u64			typer;
 112	u64			cbaser_save;
 113	u32			ctlr_save;
 114	u32			mpidr;
 115	struct list_head	its_device_list;
 116	u64			flags;
 117	unsigned long		list_nr;
 118	int			numa_node;
 119	unsigned int		msi_domain_flags;
 120	u32			pre_its_base; /* for Socionext Synquacer */
 121	int			vlpi_redist_offset;
 122};
 123
 124#define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
 125#define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
 126#define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
 127
 128#define ITS_ITT_ALIGN		SZ_256
 129
 130/* The maximum number of VPEID bits supported by VLPI commands */
 131#define ITS_MAX_VPEID_BITS						\
 132	({								\
 133		int nvpeid = 16;					\
 134		if (gic_rdists->has_rvpeid &&				\
 135		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
 136			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
 137				      GICD_TYPER2_VID);			\
 138									\
 139		nvpeid;							\
 140	})
 141#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 142
 143/* Convert page order to size in bytes */
 144#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 145
 146struct event_lpi_map {
 147	unsigned long		*lpi_map;
 148	u16			*col_map;
 149	irq_hw_number_t		lpi_base;
 150	int			nr_lpis;
 151	raw_spinlock_t		vlpi_lock;
 152	struct its_vm		*vm;
 153	struct its_vlpi_map	*vlpi_maps;
 154	int			nr_vlpis;
 155};
 156
 157/*
 158 * The ITS view of a device - belongs to an ITS, owns an interrupt
 159 * translation table, and a list of interrupts.  If it some of its
 160 * LPIs are injected into a guest (GICv4), the event_map.vm field
 161 * indicates which one.
 162 */
 163struct its_device {
 164	struct list_head	entry;
 165	struct its_node		*its;
 166	struct event_lpi_map	event_map;
 167	void			*itt;
 168	u32			nr_ites;
 169	u32			device_id;
 170	bool			shared;
 171};
 172
 173static struct {
 174	raw_spinlock_t		lock;
 175	struct its_device	*dev;
 176	struct its_vpe		**vpes;
 177	int			next_victim;
 178} vpe_proxy;
 179
 180struct cpu_lpi_count {
 181	atomic_t	managed;
 182	atomic_t	unmanaged;
 183};
 184
 185static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
 186
 187static LIST_HEAD(its_nodes);
 188static DEFINE_RAW_SPINLOCK(its_lock);
 189static struct rdists *gic_rdists;
 190static struct irq_domain *its_parent;
 191
 192static unsigned long its_list_map;
 193static u16 vmovp_seq_num;
 194static DEFINE_RAW_SPINLOCK(vmovp_lock);
 195
 196static DEFINE_IDA(its_vpeid_ida);
 197
 198#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 199#define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
 200#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 201#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 202
 203/*
 204 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
 205 * always have vSGIs mapped.
 206 */
 207static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
 208{
 209	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
 210}
 211
 
 
 
 
 
 212static u16 get_its_list(struct its_vm *vm)
 213{
 214	struct its_node *its;
 215	unsigned long its_list = 0;
 216
 217	list_for_each_entry(its, &its_nodes, entry) {
 218		if (!is_v4(its))
 219			continue;
 220
 221		if (require_its_list_vmovp(vm, its))
 222			__set_bit(its->list_nr, &its_list);
 223	}
 224
 225	return (u16)its_list;
 226}
 227
 228static inline u32 its_get_event_id(struct irq_data *d)
 229{
 230	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 231	return d->hwirq - its_dev->event_map.lpi_base;
 232}
 233
 234static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 235					       u32 event)
 236{
 237	struct its_node *its = its_dev->its;
 238
 239	return its->collections + its_dev->event_map.col_map[event];
 240}
 241
 242static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
 243					       u32 event)
 244{
 245	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
 246		return NULL;
 247
 248	return &its_dev->event_map.vlpi_maps[event];
 249}
 250
 251static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
 252{
 253	if (irqd_is_forwarded_to_vcpu(d)) {
 254		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 255		u32 event = its_get_event_id(d);
 256
 257		return dev_event_to_vlpi_map(its_dev, event);
 258	}
 259
 260	return NULL;
 261}
 262
 263static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
 264{
 265	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
 266	return vpe->col_idx;
 267}
 268
 269static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
 270{
 271	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
 272}
 273
 
 
 274static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
 275{
 276	struct its_vlpi_map *map = get_vlpi_map(d);
 277	int cpu;
 278
 279	if (map) {
 280		cpu = vpe_to_cpuid_lock(map->vpe, flags);
 
 
 
 
 
 
 
 
 281	} else {
 282		/* Physical LPIs are already locked via the irq_desc lock */
 283		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 284		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
 285		/* Keep GCC quiet... */
 286		*flags = 0;
 287	}
 288
 289	return cpu;
 290}
 291
 292static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
 293{
 294	struct its_vlpi_map *map = get_vlpi_map(d);
 
 
 
 
 
 
 
 
 295
 296	if (map)
 297		vpe_to_cpuid_unlock(map->vpe, flags);
 298}
 299
 300static struct its_collection *valid_col(struct its_collection *col)
 301{
 302	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
 303		return NULL;
 304
 305	return col;
 306}
 307
 308static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
 309{
 310	if (valid_col(its->collections + vpe->col_idx))
 311		return vpe;
 312
 313	return NULL;
 314}
 315
 316/*
 317 * ITS command descriptors - parameters to be encoded in a command
 318 * block.
 319 */
 320struct its_cmd_desc {
 321	union {
 322		struct {
 323			struct its_device *dev;
 324			u32 event_id;
 325		} its_inv_cmd;
 326
 327		struct {
 328			struct its_device *dev;
 329			u32 event_id;
 330		} its_clear_cmd;
 331
 332		struct {
 333			struct its_device *dev;
 334			u32 event_id;
 335		} its_int_cmd;
 336
 337		struct {
 338			struct its_device *dev;
 339			int valid;
 340		} its_mapd_cmd;
 341
 342		struct {
 343			struct its_collection *col;
 344			int valid;
 345		} its_mapc_cmd;
 346
 347		struct {
 348			struct its_device *dev;
 349			u32 phys_id;
 350			u32 event_id;
 351		} its_mapti_cmd;
 352
 353		struct {
 354			struct its_device *dev;
 355			struct its_collection *col;
 356			u32 event_id;
 357		} its_movi_cmd;
 358
 359		struct {
 360			struct its_device *dev;
 361			u32 event_id;
 362		} its_discard_cmd;
 363
 364		struct {
 365			struct its_collection *col;
 366		} its_invall_cmd;
 367
 368		struct {
 369			struct its_vpe *vpe;
 370		} its_vinvall_cmd;
 371
 372		struct {
 373			struct its_vpe *vpe;
 374			struct its_collection *col;
 375			bool valid;
 376		} its_vmapp_cmd;
 377
 378		struct {
 379			struct its_vpe *vpe;
 380			struct its_device *dev;
 381			u32 virt_id;
 382			u32 event_id;
 383			bool db_enabled;
 384		} its_vmapti_cmd;
 385
 386		struct {
 387			struct its_vpe *vpe;
 388			struct its_device *dev;
 389			u32 event_id;
 390			bool db_enabled;
 391		} its_vmovi_cmd;
 392
 393		struct {
 394			struct its_vpe *vpe;
 395			struct its_collection *col;
 396			u16 seq_num;
 397			u16 its_list;
 398		} its_vmovp_cmd;
 399
 400		struct {
 401			struct its_vpe *vpe;
 402		} its_invdb_cmd;
 403
 404		struct {
 405			struct its_vpe *vpe;
 406			u8 sgi;
 407			u8 priority;
 408			bool enable;
 409			bool group;
 410			bool clear;
 411		} its_vsgi_cmd;
 412	};
 413};
 414
 415/*
 416 * The ITS command block, which is what the ITS actually parses.
 417 */
 418struct its_cmd_block {
 419	union {
 420		u64	raw_cmd[4];
 421		__le64	raw_cmd_le[4];
 422	};
 423};
 424
 425#define ITS_CMD_QUEUE_SZ		SZ_64K
 426#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 427
 428typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 429						    struct its_cmd_block *,
 430						    struct its_cmd_desc *);
 431
 432typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 433					      struct its_cmd_block *,
 434					      struct its_cmd_desc *);
 435
 436static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 437{
 438	u64 mask = GENMASK_ULL(h, l);
 439	*raw_cmd &= ~mask;
 440	*raw_cmd |= (val << l) & mask;
 441}
 442
 443static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 444{
 445	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 446}
 447
 448static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 449{
 450	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 451}
 452
 453static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 454{
 455	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 456}
 457
 458static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 459{
 460	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 461}
 462
 463static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 464{
 465	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 466}
 467
 468static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 469{
 470	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 471}
 472
 473static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 474{
 475	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 476}
 477
 478static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 479{
 480	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 481}
 482
 483static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 484{
 485	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 486}
 487
 488static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 489{
 490	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 491}
 492
 493static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 494{
 495	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 496}
 497
 498static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 499{
 500	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 501}
 502
 503static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 504{
 505	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 506}
 507
 508static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 509{
 510	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 511}
 512
 513static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 514{
 515	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 516}
 517
 518static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 519{
 520	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 521}
 522
 523static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 524{
 525	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 526}
 527
 528static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
 529{
 530	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
 531}
 532
 533static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
 534{
 535	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
 536}
 537
 538static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
 539{
 540	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
 541}
 542
 543static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
 544					u32 vpe_db_lpi)
 545{
 546	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
 547}
 548
 549static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
 550					u32 vpe_db_lpi)
 551{
 552	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
 553}
 554
 555static void its_encode_db(struct its_cmd_block *cmd, bool db)
 556{
 557	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
 558}
 559
 560static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
 561{
 562	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
 563}
 564
 565static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
 566{
 567	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
 568}
 569
 570static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
 571{
 572	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
 573}
 574
 575static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
 576{
 577	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
 578}
 579
 580static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
 581{
 582	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
 583}
 584
 585static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 586{
 587	/* Let's fixup BE commands */
 588	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
 589	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
 590	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
 591	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
 592}
 593
 594static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 595						 struct its_cmd_block *cmd,
 596						 struct its_cmd_desc *desc)
 597{
 598	unsigned long itt_addr;
 599	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 600
 601	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 602	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 603
 604	its_encode_cmd(cmd, GITS_CMD_MAPD);
 605	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 606	its_encode_size(cmd, size - 1);
 607	its_encode_itt(cmd, itt_addr);
 608	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 609
 610	its_fixup_cmd(cmd);
 611
 612	return NULL;
 613}
 614
 615static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 616						 struct its_cmd_block *cmd,
 617						 struct its_cmd_desc *desc)
 618{
 619	its_encode_cmd(cmd, GITS_CMD_MAPC);
 620	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 621	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 622	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 623
 624	its_fixup_cmd(cmd);
 625
 626	return desc->its_mapc_cmd.col;
 627}
 628
 629static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 630						  struct its_cmd_block *cmd,
 631						  struct its_cmd_desc *desc)
 632{
 633	struct its_collection *col;
 634
 635	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 636			       desc->its_mapti_cmd.event_id);
 637
 638	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 639	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 640	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 641	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 642	its_encode_collection(cmd, col->col_id);
 643
 644	its_fixup_cmd(cmd);
 645
 646	return valid_col(col);
 647}
 648
 649static struct its_collection *its_build_movi_cmd(struct its_node *its,
 650						 struct its_cmd_block *cmd,
 651						 struct its_cmd_desc *desc)
 652{
 653	struct its_collection *col;
 654
 655	col = dev_event_to_col(desc->its_movi_cmd.dev,
 656			       desc->its_movi_cmd.event_id);
 657
 658	its_encode_cmd(cmd, GITS_CMD_MOVI);
 659	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 660	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 661	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 662
 663	its_fixup_cmd(cmd);
 664
 665	return valid_col(col);
 666}
 667
 668static struct its_collection *its_build_discard_cmd(struct its_node *its,
 669						    struct its_cmd_block *cmd,
 670						    struct its_cmd_desc *desc)
 671{
 672	struct its_collection *col;
 673
 674	col = dev_event_to_col(desc->its_discard_cmd.dev,
 675			       desc->its_discard_cmd.event_id);
 676
 677	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 678	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 679	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 680
 681	its_fixup_cmd(cmd);
 682
 683	return valid_col(col);
 684}
 685
 686static struct its_collection *its_build_inv_cmd(struct its_node *its,
 687						struct its_cmd_block *cmd,
 688						struct its_cmd_desc *desc)
 689{
 690	struct its_collection *col;
 691
 692	col = dev_event_to_col(desc->its_inv_cmd.dev,
 693			       desc->its_inv_cmd.event_id);
 694
 695	its_encode_cmd(cmd, GITS_CMD_INV);
 696	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 697	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 698
 699	its_fixup_cmd(cmd);
 700
 701	return valid_col(col);
 702}
 703
 704static struct its_collection *its_build_int_cmd(struct its_node *its,
 705						struct its_cmd_block *cmd,
 706						struct its_cmd_desc *desc)
 707{
 708	struct its_collection *col;
 709
 710	col = dev_event_to_col(desc->its_int_cmd.dev,
 711			       desc->its_int_cmd.event_id);
 712
 713	its_encode_cmd(cmd, GITS_CMD_INT);
 714	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 715	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 716
 717	its_fixup_cmd(cmd);
 718
 719	return valid_col(col);
 720}
 721
 722static struct its_collection *its_build_clear_cmd(struct its_node *its,
 723						  struct its_cmd_block *cmd,
 724						  struct its_cmd_desc *desc)
 725{
 726	struct its_collection *col;
 727
 728	col = dev_event_to_col(desc->its_clear_cmd.dev,
 729			       desc->its_clear_cmd.event_id);
 730
 731	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 732	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 733	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 734
 735	its_fixup_cmd(cmd);
 736
 737	return valid_col(col);
 738}
 739
 740static struct its_collection *its_build_invall_cmd(struct its_node *its,
 741						   struct its_cmd_block *cmd,
 742						   struct its_cmd_desc *desc)
 743{
 744	its_encode_cmd(cmd, GITS_CMD_INVALL);
 745	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
 746
 747	its_fixup_cmd(cmd);
 748
 749	return desc->its_invall_cmd.col;
 750}
 751
 752static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 753					     struct its_cmd_block *cmd,
 754					     struct its_cmd_desc *desc)
 755{
 756	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 757	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 758
 759	its_fixup_cmd(cmd);
 760
 761	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
 762}
 763
 764static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 765					   struct its_cmd_block *cmd,
 766					   struct its_cmd_desc *desc)
 767{
 768	unsigned long vpt_addr, vconf_addr;
 769	u64 target;
 770	bool alloc;
 771
 772	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 773	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 774	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 775
 776	if (!desc->its_vmapp_cmd.valid) {
 777		if (is_v4_1(its)) {
 778			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
 779			its_encode_alloc(cmd, alloc);
 780		}
 781
 782		goto out;
 783	}
 784
 785	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 786	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 787
 788	its_encode_target(cmd, target);
 789	its_encode_vpt_addr(cmd, vpt_addr);
 790	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 791
 792	if (!is_v4_1(its))
 793		goto out;
 794
 795	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
 796
 797	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
 798
 799	its_encode_alloc(cmd, alloc);
 800
 801	/*
 802	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
 803	 * to be unmapped first, and in this case, we may remap the vPE
 804	 * back while the VPT is not empty. So we can't assume that the
 805	 * VPT is empty on map. This is why we never advertise PTZ.
 806	 */
 807	its_encode_ptz(cmd, false);
 808	its_encode_vconf_addr(cmd, vconf_addr);
 809	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
 810
 811out:
 812	its_fixup_cmd(cmd);
 813
 814	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
 815}
 816
 817static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 818					    struct its_cmd_block *cmd,
 819					    struct its_cmd_desc *desc)
 820{
 821	u32 db;
 822
 823	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
 824		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 825	else
 826		db = 1023;
 827
 828	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 829	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 830	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 831	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 832	its_encode_db_phys_id(cmd, db);
 833	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 834
 835	its_fixup_cmd(cmd);
 836
 837	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
 838}
 839
 840static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 841					   struct its_cmd_block *cmd,
 842					   struct its_cmd_desc *desc)
 843{
 844	u32 db;
 845
 846	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
 847		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 848	else
 849		db = 1023;
 850
 851	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 852	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 853	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 854	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 855	its_encode_db_phys_id(cmd, db);
 856	its_encode_db_valid(cmd, true);
 857
 858	its_fixup_cmd(cmd);
 859
 860	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
 861}
 862
 863static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 864					   struct its_cmd_block *cmd,
 865					   struct its_cmd_desc *desc)
 866{
 867	u64 target;
 868
 869	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 870	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 871	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 872	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 873	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 874	its_encode_target(cmd, target);
 875
 876	if (is_v4_1(its)) {
 877		its_encode_db(cmd, true);
 878		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
 879	}
 880
 881	its_fixup_cmd(cmd);
 882
 883	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
 884}
 885
 886static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
 887					  struct its_cmd_block *cmd,
 888					  struct its_cmd_desc *desc)
 889{
 890	struct its_vlpi_map *map;
 891
 892	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
 893				    desc->its_inv_cmd.event_id);
 894
 895	its_encode_cmd(cmd, GITS_CMD_INV);
 896	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 897	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 898
 899	its_fixup_cmd(cmd);
 900
 901	return valid_vpe(its, map->vpe);
 902}
 903
 904static struct its_vpe *its_build_vint_cmd(struct its_node *its,
 905					  struct its_cmd_block *cmd,
 906					  struct its_cmd_desc *desc)
 907{
 908	struct its_vlpi_map *map;
 909
 910	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
 911				    desc->its_int_cmd.event_id);
 912
 913	its_encode_cmd(cmd, GITS_CMD_INT);
 914	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 915	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 916
 917	its_fixup_cmd(cmd);
 918
 919	return valid_vpe(its, map->vpe);
 920}
 921
 922static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
 923					    struct its_cmd_block *cmd,
 924					    struct its_cmd_desc *desc)
 925{
 926	struct its_vlpi_map *map;
 927
 928	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
 929				    desc->its_clear_cmd.event_id);
 930
 931	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 932	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 933	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 934
 935	its_fixup_cmd(cmd);
 936
 937	return valid_vpe(its, map->vpe);
 938}
 939
 940static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
 941					   struct its_cmd_block *cmd,
 942					   struct its_cmd_desc *desc)
 943{
 944	if (WARN_ON(!is_v4_1(its)))
 945		return NULL;
 946
 947	its_encode_cmd(cmd, GITS_CMD_INVDB);
 948	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
 949
 950	its_fixup_cmd(cmd);
 951
 952	return valid_vpe(its, desc->its_invdb_cmd.vpe);
 953}
 954
 955static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
 956					  struct its_cmd_block *cmd,
 957					  struct its_cmd_desc *desc)
 958{
 959	if (WARN_ON(!is_v4_1(its)))
 960		return NULL;
 961
 962	its_encode_cmd(cmd, GITS_CMD_VSGI);
 963	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
 964	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
 965	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
 966	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
 967	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
 968	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
 969
 970	its_fixup_cmd(cmd);
 971
 972	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
 973}
 974
 975static u64 its_cmd_ptr_to_offset(struct its_node *its,
 976				 struct its_cmd_block *ptr)
 977{
 978	return (ptr - its->cmd_base) * sizeof(*ptr);
 979}
 980
 981static int its_queue_full(struct its_node *its)
 982{
 983	int widx;
 984	int ridx;
 985
 986	widx = its->cmd_write - its->cmd_base;
 987	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 988
 989	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 990	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 991		return 1;
 992
 993	return 0;
 994}
 995
 996static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 997{
 998	struct its_cmd_block *cmd;
 999	u32 count = 1000000;	/* 1s! */
1000
1001	while (its_queue_full(its)) {
1002		count--;
1003		if (!count) {
1004			pr_err_ratelimited("ITS queue not draining\n");
1005			return NULL;
1006		}
1007		cpu_relax();
1008		udelay(1);
1009	}
1010
1011	cmd = its->cmd_write++;
1012
1013	/* Handle queue wrapping */
1014	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1015		its->cmd_write = its->cmd_base;
1016
1017	/* Clear command  */
1018	cmd->raw_cmd[0] = 0;
1019	cmd->raw_cmd[1] = 0;
1020	cmd->raw_cmd[2] = 0;
1021	cmd->raw_cmd[3] = 0;
1022
1023	return cmd;
1024}
1025
1026static struct its_cmd_block *its_post_commands(struct its_node *its)
1027{
1028	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1029
1030	writel_relaxed(wr, its->base + GITS_CWRITER);
1031
1032	return its->cmd_write;
1033}
1034
1035static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1036{
1037	/*
1038	 * Make sure the commands written to memory are observable by
1039	 * the ITS.
1040	 */
1041	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1042		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1043	else
1044		dsb(ishst);
1045}
1046
1047static int its_wait_for_range_completion(struct its_node *its,
1048					 u64	prev_idx,
1049					 struct its_cmd_block *to)
1050{
1051	u64 rd_idx, to_idx, linear_idx;
1052	u32 count = 1000000;	/* 1s! */
1053
1054	/* Linearize to_idx if the command set has wrapped around */
1055	to_idx = its_cmd_ptr_to_offset(its, to);
1056	if (to_idx < prev_idx)
1057		to_idx += ITS_CMD_QUEUE_SZ;
1058
1059	linear_idx = prev_idx;
1060
1061	while (1) {
1062		s64 delta;
1063
1064		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1065
1066		/*
1067		 * Compute the read pointer progress, taking the
1068		 * potential wrap-around into account.
1069		 */
1070		delta = rd_idx - prev_idx;
1071		if (rd_idx < prev_idx)
1072			delta += ITS_CMD_QUEUE_SZ;
1073
1074		linear_idx += delta;
1075		if (linear_idx >= to_idx)
1076			break;
1077
1078		count--;
1079		if (!count) {
1080			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1081					   to_idx, linear_idx);
1082			return -1;
1083		}
1084		prev_idx = rd_idx;
1085		cpu_relax();
1086		udelay(1);
1087	}
1088
1089	return 0;
1090}
1091
1092/* Warning, macro hell follows */
1093#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1094void name(struct its_node *its,						\
1095	  buildtype builder,						\
1096	  struct its_cmd_desc *desc)					\
1097{									\
1098	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1099	synctype *sync_obj;						\
1100	unsigned long flags;						\
1101	u64 rd_idx;							\
1102									\
1103	raw_spin_lock_irqsave(&its->lock, flags);			\
1104									\
1105	cmd = its_allocate_entry(its);					\
1106	if (!cmd) {		/* We're soooooo screewed... */		\
1107		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1108		return;							\
1109	}								\
1110	sync_obj = builder(its, cmd, desc);				\
1111	its_flush_cmd(its, cmd);					\
1112									\
1113	if (sync_obj) {							\
1114		sync_cmd = its_allocate_entry(its);			\
1115		if (!sync_cmd)						\
1116			goto post;					\
1117									\
1118		buildfn(its, sync_cmd, sync_obj);			\
1119		its_flush_cmd(its, sync_cmd);				\
1120	}								\
1121									\
1122post:									\
1123	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1124	next_cmd = its_post_commands(its);				\
1125	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1126									\
1127	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1128		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1129}
1130
1131static void its_build_sync_cmd(struct its_node *its,
1132			       struct its_cmd_block *sync_cmd,
1133			       struct its_collection *sync_col)
1134{
1135	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1136	its_encode_target(sync_cmd, sync_col->target_address);
1137
1138	its_fixup_cmd(sync_cmd);
1139}
1140
1141static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1142			     struct its_collection, its_build_sync_cmd)
1143
1144static void its_build_vsync_cmd(struct its_node *its,
1145				struct its_cmd_block *sync_cmd,
1146				struct its_vpe *sync_vpe)
1147{
1148	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1149	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1150
1151	its_fixup_cmd(sync_cmd);
1152}
1153
1154static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1155			     struct its_vpe, its_build_vsync_cmd)
1156
1157static void its_send_int(struct its_device *dev, u32 event_id)
1158{
1159	struct its_cmd_desc desc;
1160
1161	desc.its_int_cmd.dev = dev;
1162	desc.its_int_cmd.event_id = event_id;
1163
1164	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1165}
1166
1167static void its_send_clear(struct its_device *dev, u32 event_id)
1168{
1169	struct its_cmd_desc desc;
1170
1171	desc.its_clear_cmd.dev = dev;
1172	desc.its_clear_cmd.event_id = event_id;
1173
1174	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1175}
1176
1177static void its_send_inv(struct its_device *dev, u32 event_id)
1178{
1179	struct its_cmd_desc desc;
1180
1181	desc.its_inv_cmd.dev = dev;
1182	desc.its_inv_cmd.event_id = event_id;
1183
1184	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1185}
1186
1187static void its_send_mapd(struct its_device *dev, int valid)
1188{
1189	struct its_cmd_desc desc;
1190
1191	desc.its_mapd_cmd.dev = dev;
1192	desc.its_mapd_cmd.valid = !!valid;
1193
1194	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1195}
1196
1197static void its_send_mapc(struct its_node *its, struct its_collection *col,
1198			  int valid)
1199{
1200	struct its_cmd_desc desc;
1201
1202	desc.its_mapc_cmd.col = col;
1203	desc.its_mapc_cmd.valid = !!valid;
1204
1205	its_send_single_command(its, its_build_mapc_cmd, &desc);
1206}
1207
1208static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1209{
1210	struct its_cmd_desc desc;
1211
1212	desc.its_mapti_cmd.dev = dev;
1213	desc.its_mapti_cmd.phys_id = irq_id;
1214	desc.its_mapti_cmd.event_id = id;
1215
1216	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1217}
1218
1219static void its_send_movi(struct its_device *dev,
1220			  struct its_collection *col, u32 id)
1221{
1222	struct its_cmd_desc desc;
1223
1224	desc.its_movi_cmd.dev = dev;
1225	desc.its_movi_cmd.col = col;
1226	desc.its_movi_cmd.event_id = id;
1227
1228	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1229}
1230
1231static void its_send_discard(struct its_device *dev, u32 id)
1232{
1233	struct its_cmd_desc desc;
1234
1235	desc.its_discard_cmd.dev = dev;
1236	desc.its_discard_cmd.event_id = id;
1237
1238	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1239}
1240
1241static void its_send_invall(struct its_node *its, struct its_collection *col)
1242{
1243	struct its_cmd_desc desc;
1244
1245	desc.its_invall_cmd.col = col;
1246
1247	its_send_single_command(its, its_build_invall_cmd, &desc);
1248}
1249
1250static void its_send_vmapti(struct its_device *dev, u32 id)
1251{
1252	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1253	struct its_cmd_desc desc;
1254
1255	desc.its_vmapti_cmd.vpe = map->vpe;
1256	desc.its_vmapti_cmd.dev = dev;
1257	desc.its_vmapti_cmd.virt_id = map->vintid;
1258	desc.its_vmapti_cmd.event_id = id;
1259	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1260
1261	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1262}
1263
1264static void its_send_vmovi(struct its_device *dev, u32 id)
1265{
1266	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1267	struct its_cmd_desc desc;
1268
1269	desc.its_vmovi_cmd.vpe = map->vpe;
1270	desc.its_vmovi_cmd.dev = dev;
1271	desc.its_vmovi_cmd.event_id = id;
1272	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1273
1274	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1275}
1276
1277static void its_send_vmapp(struct its_node *its,
1278			   struct its_vpe *vpe, bool valid)
1279{
1280	struct its_cmd_desc desc;
1281
1282	desc.its_vmapp_cmd.vpe = vpe;
1283	desc.its_vmapp_cmd.valid = valid;
1284	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1285
1286	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1287}
1288
1289static void its_send_vmovp(struct its_vpe *vpe)
1290{
1291	struct its_cmd_desc desc = {};
1292	struct its_node *its;
1293	unsigned long flags;
1294	int col_id = vpe->col_idx;
1295
1296	desc.its_vmovp_cmd.vpe = vpe;
1297
1298	if (!its_list_map) {
1299		its = list_first_entry(&its_nodes, struct its_node, entry);
1300		desc.its_vmovp_cmd.col = &its->collections[col_id];
1301		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1302		return;
1303	}
1304
1305	/*
1306	 * Yet another marvel of the architecture. If using the
1307	 * its_list "feature", we need to make sure that all ITSs
1308	 * receive all VMOVP commands in the same order. The only way
1309	 * to guarantee this is to make vmovp a serialization point.
1310	 *
1311	 * Wall <-- Head.
1312	 */
1313	raw_spin_lock_irqsave(&vmovp_lock, flags);
1314
1315	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1316	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1317
1318	/* Emit VMOVPs */
1319	list_for_each_entry(its, &its_nodes, entry) {
1320		if (!is_v4(its))
1321			continue;
1322
1323		if (!require_its_list_vmovp(vpe->its_vm, its))
1324			continue;
1325
1326		desc.its_vmovp_cmd.col = &its->collections[col_id];
1327		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1328	}
1329
1330	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1331}
1332
1333static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1334{
1335	struct its_cmd_desc desc;
1336
1337	desc.its_vinvall_cmd.vpe = vpe;
1338	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1339}
1340
1341static void its_send_vinv(struct its_device *dev, u32 event_id)
1342{
1343	struct its_cmd_desc desc;
1344
1345	/*
1346	 * There is no real VINV command. This is just a normal INV,
1347	 * with a VSYNC instead of a SYNC.
1348	 */
1349	desc.its_inv_cmd.dev = dev;
1350	desc.its_inv_cmd.event_id = event_id;
1351
1352	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1353}
1354
1355static void its_send_vint(struct its_device *dev, u32 event_id)
1356{
1357	struct its_cmd_desc desc;
1358
1359	/*
1360	 * There is no real VINT command. This is just a normal INT,
1361	 * with a VSYNC instead of a SYNC.
1362	 */
1363	desc.its_int_cmd.dev = dev;
1364	desc.its_int_cmd.event_id = event_id;
1365
1366	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1367}
1368
1369static void its_send_vclear(struct its_device *dev, u32 event_id)
1370{
1371	struct its_cmd_desc desc;
1372
1373	/*
1374	 * There is no real VCLEAR command. This is just a normal CLEAR,
1375	 * with a VSYNC instead of a SYNC.
1376	 */
1377	desc.its_clear_cmd.dev = dev;
1378	desc.its_clear_cmd.event_id = event_id;
1379
1380	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1381}
1382
1383static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1384{
1385	struct its_cmd_desc desc;
1386
1387	desc.its_invdb_cmd.vpe = vpe;
1388	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1389}
1390
1391/*
1392 * irqchip functions - assumes MSI, mostly.
1393 */
1394static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1395{
1396	struct its_vlpi_map *map = get_vlpi_map(d);
1397	irq_hw_number_t hwirq;
1398	void *va;
1399	u8 *cfg;
1400
1401	if (map) {
1402		va = page_address(map->vm->vprop_page);
1403		hwirq = map->vintid;
1404
1405		/* Remember the updated property */
1406		map->properties &= ~clr;
1407		map->properties |= set | LPI_PROP_GROUP1;
1408	} else {
1409		va = gic_rdists->prop_table_va;
1410		hwirq = d->hwirq;
1411	}
1412
1413	cfg = va + hwirq - 8192;
1414	*cfg &= ~clr;
1415	*cfg |= set | LPI_PROP_GROUP1;
1416
1417	/*
1418	 * Make the above write visible to the redistributors.
1419	 * And yes, we're flushing exactly: One. Single. Byte.
1420	 * Humpf...
1421	 */
1422	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1423		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1424	else
1425		dsb(ishst);
1426}
1427
1428static void wait_for_syncr(void __iomem *rdbase)
1429{
1430	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1431		cpu_relax();
1432}
1433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434static void direct_lpi_inv(struct irq_data *d)
1435{
1436	struct its_vlpi_map *map = get_vlpi_map(d);
1437	void __iomem *rdbase;
1438	unsigned long flags;
1439	u64 val;
1440	int cpu;
1441
1442	if (map) {
1443		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1444
1445		WARN_ON(!is_v4_1(its_dev->its));
1446
1447		val  = GICR_INVLPIR_V;
1448		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1449		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1450	} else {
1451		val = d->hwirq;
1452	}
1453
1454	/* Target the redistributor this LPI is currently routed to */
1455	cpu = irq_to_cpuid_lock(d, &flags);
1456	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1457	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1458	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1459
1460	wait_for_syncr(rdbase);
1461	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1462	irq_to_cpuid_unlock(d, flags);
1463}
1464
1465static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1466{
1467	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468
1469	lpi_write_config(d, clr, set);
1470	if (gic_rdists->has_direct_lpi &&
1471	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1472		direct_lpi_inv(d);
1473	else if (!irqd_is_forwarded_to_vcpu(d))
1474		its_send_inv(its_dev, its_get_event_id(d));
1475	else
1476		its_send_vinv(its_dev, its_get_event_id(d));
1477}
1478
1479static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1480{
1481	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1482	u32 event = its_get_event_id(d);
1483	struct its_vlpi_map *map;
1484
1485	/*
1486	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1487	 * here.
1488	 */
1489	if (is_v4_1(its_dev->its))
1490		return;
1491
1492	map = dev_event_to_vlpi_map(its_dev, event);
1493
1494	if (map->db_enabled == enable)
1495		return;
1496
1497	map->db_enabled = enable;
1498
1499	/*
1500	 * More fun with the architecture:
1501	 *
1502	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1503	 * value or to 1023, depending on the enable bit. But that
1504	 * would be issuing a mapping for an /existing/ DevID+EventID
1505	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1506	 * to the /same/ vPE, using this opportunity to adjust the
1507	 * doorbell. Mouahahahaha. We loves it, Precious.
1508	 */
1509	its_send_vmovi(its_dev, event);
1510}
1511
1512static void its_mask_irq(struct irq_data *d)
1513{
1514	if (irqd_is_forwarded_to_vcpu(d))
1515		its_vlpi_set_doorbell(d, false);
1516
1517	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1518}
1519
1520static void its_unmask_irq(struct irq_data *d)
1521{
1522	if (irqd_is_forwarded_to_vcpu(d))
1523		its_vlpi_set_doorbell(d, true);
1524
1525	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1526}
1527
1528static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1529{
1530	if (irqd_affinity_is_managed(d))
1531		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532
1533	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534}
1535
1536static void its_inc_lpi_count(struct irq_data *d, int cpu)
1537{
1538	if (irqd_affinity_is_managed(d))
1539		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540	else
1541		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542}
1543
1544static void its_dec_lpi_count(struct irq_data *d, int cpu)
1545{
1546	if (irqd_affinity_is_managed(d))
1547		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548	else
1549		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550}
1551
1552static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1553					      const struct cpumask *cpu_mask)
1554{
1555	unsigned int cpu = nr_cpu_ids, tmp;
1556	int count = S32_MAX;
1557
1558	for_each_cpu(tmp, cpu_mask) {
1559		int this_count = its_read_lpi_count(d, tmp);
1560		if (this_count < count) {
1561			cpu = tmp;
1562		        count = this_count;
1563		}
1564	}
1565
1566	return cpu;
1567}
1568
1569/*
1570 * As suggested by Thomas Gleixner in:
1571 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1572 */
1573static int its_select_cpu(struct irq_data *d,
1574			  const struct cpumask *aff_mask)
1575{
1576	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1577	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1578	static struct cpumask __tmpmask;
1579	struct cpumask *tmpmask;
1580	unsigned long flags;
1581	int cpu, node;
1582	node = its_dev->its->numa_node;
1583	tmpmask = &__tmpmask;
1584
1585	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1586
1587	if (!irqd_affinity_is_managed(d)) {
1588		/* First try the NUMA node */
1589		if (node != NUMA_NO_NODE) {
1590			/*
1591			 * Try the intersection of the affinity mask and the
1592			 * node mask (and the online mask, just to be safe).
1593			 */
1594			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1595			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1596
1597			/*
1598			 * Ideally, we would check if the mask is empty, and
1599			 * try again on the full node here.
1600			 *
1601			 * But it turns out that the way ACPI describes the
1602			 * affinity for ITSs only deals about memory, and
1603			 * not target CPUs, so it cannot describe a single
1604			 * ITS placed next to two NUMA nodes.
1605			 *
1606			 * Instead, just fallback on the online mask. This
1607			 * diverges from Thomas' suggestion above.
1608			 */
1609			cpu = cpumask_pick_least_loaded(d, tmpmask);
1610			if (cpu < nr_cpu_ids)
1611				goto out;
1612
1613			/* If we can't cross sockets, give up */
1614			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1615				goto out;
1616
1617			/* If the above failed, expand the search */
1618		}
1619
1620		/* Try the intersection of the affinity and online masks */
1621		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1622
1623		/* If that doesn't fly, the online mask is the last resort */
1624		if (cpumask_empty(tmpmask))
1625			cpumask_copy(tmpmask, cpu_online_mask);
1626
1627		cpu = cpumask_pick_least_loaded(d, tmpmask);
1628	} else {
1629		cpumask_copy(tmpmask, aff_mask);
1630
1631		/* If we cannot cross sockets, limit the search to that node */
1632		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1633		    node != NUMA_NO_NODE)
1634			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1635
1636		cpu = cpumask_pick_least_loaded(d, tmpmask);
1637	}
1638out:
1639	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1640
1641	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1642	return cpu;
1643}
1644
1645static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1646			    bool force)
1647{
1648	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1649	struct its_collection *target_col;
1650	u32 id = its_get_event_id(d);
1651	int cpu, prev_cpu;
1652
1653	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1654	if (irqd_is_forwarded_to_vcpu(d))
1655		return -EINVAL;
1656
1657	prev_cpu = its_dev->event_map.col_map[id];
1658	its_dec_lpi_count(d, prev_cpu);
1659
1660	if (!force)
1661		cpu = its_select_cpu(d, mask_val);
1662	else
1663		cpu = cpumask_pick_least_loaded(d, mask_val);
1664
1665	if (cpu < 0 || cpu >= nr_cpu_ids)
1666		goto err;
1667
1668	/* don't set the affinity when the target cpu is same as current one */
1669	if (cpu != prev_cpu) {
1670		target_col = &its_dev->its->collections[cpu];
1671		its_send_movi(its_dev, target_col, id);
1672		its_dev->event_map.col_map[id] = cpu;
1673		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1674	}
1675
1676	its_inc_lpi_count(d, cpu);
1677
1678	return IRQ_SET_MASK_OK_DONE;
1679
1680err:
1681	its_inc_lpi_count(d, prev_cpu);
1682	return -EINVAL;
1683}
1684
1685static u64 its_irq_get_msi_base(struct its_device *its_dev)
1686{
1687	struct its_node *its = its_dev->its;
1688
1689	return its->phys_base + GITS_TRANSLATER;
1690}
1691
1692static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1693{
1694	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1695	struct its_node *its;
1696	u64 addr;
1697
1698	its = its_dev->its;
1699	addr = its->get_msi_base(its_dev);
1700
1701	msg->address_lo		= lower_32_bits(addr);
1702	msg->address_hi		= upper_32_bits(addr);
1703	msg->data		= its_get_event_id(d);
1704
1705	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1706}
1707
1708static int its_irq_set_irqchip_state(struct irq_data *d,
1709				     enum irqchip_irq_state which,
1710				     bool state)
1711{
1712	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1713	u32 event = its_get_event_id(d);
1714
1715	if (which != IRQCHIP_STATE_PENDING)
1716		return -EINVAL;
1717
1718	if (irqd_is_forwarded_to_vcpu(d)) {
1719		if (state)
1720			its_send_vint(its_dev, event);
1721		else
1722			its_send_vclear(its_dev, event);
1723	} else {
1724		if (state)
1725			its_send_int(its_dev, event);
1726		else
1727			its_send_clear(its_dev, event);
1728	}
1729
1730	return 0;
1731}
1732
1733static int its_irq_retrigger(struct irq_data *d)
1734{
1735	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1736}
1737
1738/*
1739 * Two favourable cases:
1740 *
1741 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1742 *     for vSGI delivery
1743 *
1744 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1745 *     and we're better off mapping all VPEs always
1746 *
1747 * If neither (a) nor (b) is true, then we map vPEs on demand.
1748 *
1749 */
1750static bool gic_requires_eager_mapping(void)
1751{
1752	if (!its_list_map || gic_rdists->has_rvpeid)
1753		return true;
1754
1755	return false;
1756}
1757
1758static void its_map_vm(struct its_node *its, struct its_vm *vm)
1759{
1760	unsigned long flags;
1761
1762	if (gic_requires_eager_mapping())
1763		return;
1764
1765	raw_spin_lock_irqsave(&vmovp_lock, flags);
1766
1767	/*
1768	 * If the VM wasn't mapped yet, iterate over the vpes and get
1769	 * them mapped now.
1770	 */
1771	vm->vlpi_count[its->list_nr]++;
1772
1773	if (vm->vlpi_count[its->list_nr] == 1) {
1774		int i;
1775
1776		for (i = 0; i < vm->nr_vpes; i++) {
1777			struct its_vpe *vpe = vm->vpes[i];
1778			struct irq_data *d = irq_get_irq_data(vpe->irq);
1779
1780			/* Map the VPE to the first possible CPU */
1781			vpe->col_idx = cpumask_first(cpu_online_mask);
1782			its_send_vmapp(its, vpe, true);
1783			its_send_vinvall(its, vpe);
1784			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1785		}
1786	}
1787
1788	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1789}
1790
1791static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1792{
1793	unsigned long flags;
1794
1795	/* Not using the ITS list? Everything is always mapped. */
1796	if (gic_requires_eager_mapping())
1797		return;
1798
1799	raw_spin_lock_irqsave(&vmovp_lock, flags);
1800
1801	if (!--vm->vlpi_count[its->list_nr]) {
1802		int i;
1803
1804		for (i = 0; i < vm->nr_vpes; i++)
1805			its_send_vmapp(its, vm->vpes[i], false);
1806	}
1807
1808	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1809}
1810
1811static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1812{
1813	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1814	u32 event = its_get_event_id(d);
1815	int ret = 0;
1816
1817	if (!info->map)
1818		return -EINVAL;
1819
1820	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1821
1822	if (!its_dev->event_map.vm) {
1823		struct its_vlpi_map *maps;
1824
1825		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1826			       GFP_ATOMIC);
1827		if (!maps) {
1828			ret = -ENOMEM;
1829			goto out;
1830		}
1831
1832		its_dev->event_map.vm = info->map->vm;
1833		its_dev->event_map.vlpi_maps = maps;
1834	} else if (its_dev->event_map.vm != info->map->vm) {
1835		ret = -EINVAL;
1836		goto out;
1837	}
1838
1839	/* Get our private copy of the mapping information */
1840	its_dev->event_map.vlpi_maps[event] = *info->map;
1841
1842	if (irqd_is_forwarded_to_vcpu(d)) {
1843		/* Already mapped, move it around */
1844		its_send_vmovi(its_dev, event);
1845	} else {
1846		/* Ensure all the VPEs are mapped on this ITS */
1847		its_map_vm(its_dev->its, info->map->vm);
1848
1849		/*
1850		 * Flag the interrupt as forwarded so that we can
1851		 * start poking the virtual property table.
1852		 */
1853		irqd_set_forwarded_to_vcpu(d);
1854
1855		/* Write out the property to the prop table */
1856		lpi_write_config(d, 0xff, info->map->properties);
1857
1858		/* Drop the physical mapping */
1859		its_send_discard(its_dev, event);
1860
1861		/* and install the virtual one */
1862		its_send_vmapti(its_dev, event);
1863
1864		/* Increment the number of VLPIs */
1865		its_dev->event_map.nr_vlpis++;
1866	}
1867
1868out:
1869	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1870	return ret;
1871}
1872
1873static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1874{
1875	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1876	struct its_vlpi_map *map;
1877	int ret = 0;
1878
1879	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1880
1881	map = get_vlpi_map(d);
1882
1883	if (!its_dev->event_map.vm || !map) {
1884		ret = -EINVAL;
1885		goto out;
1886	}
1887
1888	/* Copy our mapping information to the incoming request */
1889	*info->map = *map;
1890
1891out:
1892	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1893	return ret;
1894}
1895
1896static int its_vlpi_unmap(struct irq_data *d)
1897{
1898	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1899	u32 event = its_get_event_id(d);
1900	int ret = 0;
1901
1902	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1903
1904	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1905		ret = -EINVAL;
1906		goto out;
1907	}
1908
1909	/* Drop the virtual mapping */
1910	its_send_discard(its_dev, event);
1911
1912	/* and restore the physical one */
1913	irqd_clr_forwarded_to_vcpu(d);
1914	its_send_mapti(its_dev, d->hwirq, event);
1915	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1916				    LPI_PROP_ENABLED |
1917				    LPI_PROP_GROUP1));
1918
1919	/* Potentially unmap the VM from this ITS */
1920	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1921
1922	/*
1923	 * Drop the refcount and make the device available again if
1924	 * this was the last VLPI.
1925	 */
1926	if (!--its_dev->event_map.nr_vlpis) {
1927		its_dev->event_map.vm = NULL;
1928		kfree(its_dev->event_map.vlpi_maps);
1929	}
1930
1931out:
1932	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1933	return ret;
1934}
1935
1936static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1937{
1938	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1939
1940	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1941		return -EINVAL;
1942
1943	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1944		lpi_update_config(d, 0xff, info->config);
1945	else
1946		lpi_write_config(d, 0xff, info->config);
1947	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1948
1949	return 0;
1950}
1951
1952static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1953{
1954	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1955	struct its_cmd_info *info = vcpu_info;
1956
1957	/* Need a v4 ITS */
1958	if (!is_v4(its_dev->its))
1959		return -EINVAL;
1960
1961	/* Unmap request? */
1962	if (!info)
1963		return its_vlpi_unmap(d);
1964
1965	switch (info->cmd_type) {
1966	case MAP_VLPI:
1967		return its_vlpi_map(d, info);
1968
1969	case GET_VLPI:
1970		return its_vlpi_get(d, info);
1971
1972	case PROP_UPDATE_VLPI:
1973	case PROP_UPDATE_AND_INV_VLPI:
1974		return its_vlpi_prop_update(d, info);
1975
1976	default:
1977		return -EINVAL;
1978	}
1979}
1980
1981static struct irq_chip its_irq_chip = {
1982	.name			= "ITS",
1983	.irq_mask		= its_mask_irq,
1984	.irq_unmask		= its_unmask_irq,
1985	.irq_eoi		= irq_chip_eoi_parent,
1986	.irq_set_affinity	= its_set_affinity,
1987	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1988	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1989	.irq_retrigger		= its_irq_retrigger,
1990	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1991};
1992
1993
1994/*
1995 * How we allocate LPIs:
1996 *
1997 * lpi_range_list contains ranges of LPIs that are to available to
1998 * allocate from. To allocate LPIs, just pick the first range that
1999 * fits the required allocation, and reduce it by the required
2000 * amount. Once empty, remove the range from the list.
2001 *
2002 * To free a range of LPIs, add a free range to the list, sort it and
2003 * merge the result if the new range happens to be adjacent to an
2004 * already free block.
2005 *
2006 * The consequence of the above is that allocation is cost is low, but
2007 * freeing is expensive. We assumes that freeing rarely occurs.
2008 */
2009#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2010
2011static DEFINE_MUTEX(lpi_range_lock);
2012static LIST_HEAD(lpi_range_list);
2013
2014struct lpi_range {
2015	struct list_head	entry;
2016	u32			base_id;
2017	u32			span;
2018};
2019
2020static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2021{
2022	struct lpi_range *range;
2023
2024	range = kmalloc(sizeof(*range), GFP_KERNEL);
2025	if (range) {
2026		range->base_id = base;
2027		range->span = span;
2028	}
2029
2030	return range;
2031}
2032
2033static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2034{
2035	struct lpi_range *range, *tmp;
2036	int err = -ENOSPC;
2037
2038	mutex_lock(&lpi_range_lock);
2039
2040	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2041		if (range->span >= nr_lpis) {
2042			*base = range->base_id;
2043			range->base_id += nr_lpis;
2044			range->span -= nr_lpis;
2045
2046			if (range->span == 0) {
2047				list_del(&range->entry);
2048				kfree(range);
2049			}
2050
2051			err = 0;
2052			break;
2053		}
2054	}
2055
2056	mutex_unlock(&lpi_range_lock);
2057
2058	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2059	return err;
2060}
2061
2062static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2063{
2064	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2065		return;
2066	if (a->base_id + a->span != b->base_id)
2067		return;
2068	b->base_id = a->base_id;
2069	b->span += a->span;
2070	list_del(&a->entry);
2071	kfree(a);
2072}
2073
2074static int free_lpi_range(u32 base, u32 nr_lpis)
2075{
2076	struct lpi_range *new, *old;
2077
2078	new = mk_lpi_range(base, nr_lpis);
2079	if (!new)
2080		return -ENOMEM;
2081
2082	mutex_lock(&lpi_range_lock);
2083
2084	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2085		if (old->base_id < base)
2086			break;
2087	}
2088	/*
2089	 * old is the last element with ->base_id smaller than base,
2090	 * so new goes right after it. If there are no elements with
2091	 * ->base_id smaller than base, &old->entry ends up pointing
2092	 * at the head of the list, and inserting new it the start of
2093	 * the list is the right thing to do in that case as well.
2094	 */
2095	list_add(&new->entry, &old->entry);
2096	/*
2097	 * Now check if we can merge with the preceding and/or
2098	 * following ranges.
2099	 */
2100	merge_lpi_ranges(old, new);
2101	merge_lpi_ranges(new, list_next_entry(new, entry));
2102
2103	mutex_unlock(&lpi_range_lock);
2104	return 0;
2105}
2106
2107static int __init its_lpi_init(u32 id_bits)
2108{
2109	u32 lpis = (1UL << id_bits) - 8192;
2110	u32 numlpis;
2111	int err;
2112
2113	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2114
2115	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2116		lpis = numlpis;
2117		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2118			lpis);
2119	}
2120
2121	/*
2122	 * Initializing the allocator is just the same as freeing the
2123	 * full range of LPIs.
2124	 */
2125	err = free_lpi_range(8192, lpis);
2126	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2127	return err;
2128}
2129
2130static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2131{
2132	unsigned long *bitmap = NULL;
2133	int err = 0;
2134
2135	do {
2136		err = alloc_lpi_range(nr_irqs, base);
2137		if (!err)
2138			break;
2139
2140		nr_irqs /= 2;
2141	} while (nr_irqs > 0);
2142
2143	if (!nr_irqs)
2144		err = -ENOSPC;
2145
2146	if (err)
2147		goto out;
2148
2149	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2150	if (!bitmap)
2151		goto out;
2152
2153	*nr_ids = nr_irqs;
2154
2155out:
2156	if (!bitmap)
2157		*base = *nr_ids = 0;
2158
2159	return bitmap;
2160}
2161
2162static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2163{
2164	WARN_ON(free_lpi_range(base, nr_ids));
2165	bitmap_free(bitmap);
2166}
2167
2168static void gic_reset_prop_table(void *va)
2169{
2170	/* Priority 0xa0, Group-1, disabled */
2171	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2172
2173	/* Make sure the GIC will observe the written configuration */
2174	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2175}
2176
2177static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2178{
2179	struct page *prop_page;
2180
2181	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2182	if (!prop_page)
2183		return NULL;
2184
2185	gic_reset_prop_table(page_address(prop_page));
2186
2187	return prop_page;
2188}
2189
2190static void its_free_prop_table(struct page *prop_page)
2191{
2192	free_pages((unsigned long)page_address(prop_page),
2193		   get_order(LPI_PROPBASE_SZ));
2194}
2195
2196static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2197{
2198	phys_addr_t start, end, addr_end;
2199	u64 i;
2200
2201	/*
2202	 * We don't bother checking for a kdump kernel as by
2203	 * construction, the LPI tables are out of this kernel's
2204	 * memory map.
2205	 */
2206	if (is_kdump_kernel())
2207		return true;
2208
2209	addr_end = addr + size - 1;
2210
2211	for_each_reserved_mem_range(i, &start, &end) {
2212		if (addr >= start && addr_end <= end)
2213			return true;
2214	}
2215
2216	/* Not found, not a good sign... */
2217	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2218		&addr, &addr_end);
2219	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2220	return false;
2221}
2222
2223static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2224{
2225	if (efi_enabled(EFI_CONFIG_TABLES))
2226		return efi_mem_reserve_persistent(addr, size);
2227
2228	return 0;
2229}
2230
2231static int __init its_setup_lpi_prop_table(void)
2232{
2233	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2234		u64 val;
2235
2236		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2237		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2238
2239		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2240		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2241						     LPI_PROPBASE_SZ,
2242						     MEMREMAP_WB);
2243		gic_reset_prop_table(gic_rdists->prop_table_va);
2244	} else {
2245		struct page *page;
2246
2247		lpi_id_bits = min_t(u32,
2248				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2249				    ITS_MAX_LPI_NRBITS);
2250		page = its_allocate_prop_table(GFP_NOWAIT);
2251		if (!page) {
2252			pr_err("Failed to allocate PROPBASE\n");
2253			return -ENOMEM;
2254		}
2255
2256		gic_rdists->prop_table_pa = page_to_phys(page);
2257		gic_rdists->prop_table_va = page_address(page);
2258		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2259					  LPI_PROPBASE_SZ));
2260	}
2261
2262	pr_info("GICv3: using LPI property table @%pa\n",
2263		&gic_rdists->prop_table_pa);
2264
2265	return its_lpi_init(lpi_id_bits);
2266}
2267
2268static const char *its_base_type_string[] = {
2269	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2270	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2271	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2272	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2273	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2274	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2275	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2276};
2277
2278static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2279{
2280	u32 idx = baser - its->tables;
2281
2282	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2283}
2284
2285static void its_write_baser(struct its_node *its, struct its_baser *baser,
2286			    u64 val)
2287{
2288	u32 idx = baser - its->tables;
2289
2290	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2291	baser->val = its_read_baser(its, baser);
2292}
2293
2294static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2295			   u64 cache, u64 shr, u32 order, bool indirect)
2296{
2297	u64 val = its_read_baser(its, baser);
2298	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2299	u64 type = GITS_BASER_TYPE(val);
2300	u64 baser_phys, tmp;
2301	u32 alloc_pages, psz;
2302	struct page *page;
2303	void *base;
2304
2305	psz = baser->psz;
2306	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2307	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2308		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2309			&its->phys_base, its_base_type_string[type],
2310			alloc_pages, GITS_BASER_PAGES_MAX);
2311		alloc_pages = GITS_BASER_PAGES_MAX;
2312		order = get_order(GITS_BASER_PAGES_MAX * psz);
2313	}
2314
2315	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2316	if (!page)
2317		return -ENOMEM;
2318
2319	base = (void *)page_address(page);
2320	baser_phys = virt_to_phys(base);
2321
2322	/* Check if the physical address of the memory is above 48bits */
2323	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2324
2325		/* 52bit PA is supported only when PageSize=64K */
2326		if (psz != SZ_64K) {
2327			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2328			free_pages((unsigned long)base, order);
2329			return -ENXIO;
2330		}
2331
2332		/* Convert 52bit PA to 48bit field */
2333		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2334	}
2335
2336retry_baser:
2337	val = (baser_phys					 |
2338		(type << GITS_BASER_TYPE_SHIFT)			 |
2339		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2340		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2341		cache						 |
2342		shr						 |
2343		GITS_BASER_VALID);
2344
2345	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2346
2347	switch (psz) {
2348	case SZ_4K:
2349		val |= GITS_BASER_PAGE_SIZE_4K;
2350		break;
2351	case SZ_16K:
2352		val |= GITS_BASER_PAGE_SIZE_16K;
2353		break;
2354	case SZ_64K:
2355		val |= GITS_BASER_PAGE_SIZE_64K;
2356		break;
2357	}
2358
 
 
 
2359	its_write_baser(its, baser, val);
2360	tmp = baser->val;
2361
2362	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2363		/*
2364		 * Shareability didn't stick. Just use
2365		 * whatever the read reported, which is likely
2366		 * to be the only thing this redistributor
2367		 * supports. If that's zero, make it
2368		 * non-cacheable as well.
2369		 */
2370		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2371		if (!shr) {
2372			cache = GITS_BASER_nC;
2373			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2374		}
2375		goto retry_baser;
2376	}
2377
2378	if (val != tmp) {
2379		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2380		       &its->phys_base, its_base_type_string[type],
2381		       val, tmp);
2382		free_pages((unsigned long)base, order);
2383		return -ENXIO;
2384	}
2385
2386	baser->order = order;
2387	baser->base = base;
2388	baser->psz = psz;
2389	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2390
2391	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2392		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2393		its_base_type_string[type],
2394		(unsigned long)virt_to_phys(base),
2395		indirect ? "indirect" : "flat", (int)esz,
2396		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2397
2398	return 0;
2399}
2400
2401static bool its_parse_indirect_baser(struct its_node *its,
2402				     struct its_baser *baser,
2403				     u32 *order, u32 ids)
2404{
2405	u64 tmp = its_read_baser(its, baser);
2406	u64 type = GITS_BASER_TYPE(tmp);
2407	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2408	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2409	u32 new_order = *order;
2410	u32 psz = baser->psz;
2411	bool indirect = false;
2412
2413	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2414	if ((esz << ids) > (psz * 2)) {
2415		/*
2416		 * Find out whether hw supports a single or two-level table by
2417		 * table by reading bit at offset '62' after writing '1' to it.
2418		 */
2419		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2420		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2421
2422		if (indirect) {
2423			/*
2424			 * The size of the lvl2 table is equal to ITS page size
2425			 * which is 'psz'. For computing lvl1 table size,
2426			 * subtract ID bits that sparse lvl2 table from 'ids'
2427			 * which is reported by ITS hardware times lvl1 table
2428			 * entry size.
2429			 */
2430			ids -= ilog2(psz / (int)esz);
2431			esz = GITS_LVL1_ENTRY_SIZE;
2432		}
2433	}
2434
2435	/*
2436	 * Allocate as many entries as required to fit the
2437	 * range of device IDs that the ITS can grok... The ID
2438	 * space being incredibly sparse, this results in a
2439	 * massive waste of memory if two-level device table
2440	 * feature is not supported by hardware.
2441	 */
2442	new_order = max_t(u32, get_order(esz << ids), new_order);
2443	if (new_order >= MAX_ORDER) {
2444		new_order = MAX_ORDER - 1;
2445		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2446		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2447			&its->phys_base, its_base_type_string[type],
2448			device_ids(its), ids);
2449	}
2450
2451	*order = new_order;
2452
2453	return indirect;
2454}
2455
2456static u32 compute_common_aff(u64 val)
2457{
2458	u32 aff, clpiaff;
2459
2460	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2461	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2462
2463	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2464}
2465
2466static u32 compute_its_aff(struct its_node *its)
2467{
2468	u64 val;
2469	u32 svpet;
2470
2471	/*
2472	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2473	 * the resulting affinity. We then use that to see if this match
2474	 * our own affinity.
2475	 */
2476	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2477	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2478	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2479	return compute_common_aff(val);
2480}
2481
2482static struct its_node *find_sibling_its(struct its_node *cur_its)
2483{
2484	struct its_node *its;
2485	u32 aff;
2486
2487	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2488		return NULL;
2489
2490	aff = compute_its_aff(cur_its);
2491
2492	list_for_each_entry(its, &its_nodes, entry) {
2493		u64 baser;
2494
2495		if (!is_v4_1(its) || its == cur_its)
2496			continue;
2497
2498		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2499			continue;
2500
2501		if (aff != compute_its_aff(its))
2502			continue;
2503
2504		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2505		baser = its->tables[2].val;
2506		if (!(baser & GITS_BASER_VALID))
2507			continue;
2508
2509		return its;
2510	}
2511
2512	return NULL;
2513}
2514
2515static void its_free_tables(struct its_node *its)
2516{
2517	int i;
2518
2519	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2520		if (its->tables[i].base) {
2521			free_pages((unsigned long)its->tables[i].base,
2522				   its->tables[i].order);
2523			its->tables[i].base = NULL;
2524		}
2525	}
2526}
2527
2528static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2529{
2530	u64 psz = SZ_64K;
2531
2532	while (psz) {
2533		u64 val, gpsz;
2534
2535		val = its_read_baser(its, baser);
2536		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2537
2538		switch (psz) {
2539		case SZ_64K:
2540			gpsz = GITS_BASER_PAGE_SIZE_64K;
2541			break;
2542		case SZ_16K:
2543			gpsz = GITS_BASER_PAGE_SIZE_16K;
2544			break;
2545		case SZ_4K:
2546		default:
2547			gpsz = GITS_BASER_PAGE_SIZE_4K;
2548			break;
2549		}
2550
2551		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2552
2553		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2554		its_write_baser(its, baser, val);
2555
2556		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2557			break;
2558
2559		switch (psz) {
2560		case SZ_64K:
2561			psz = SZ_16K;
2562			break;
2563		case SZ_16K:
2564			psz = SZ_4K;
2565			break;
2566		case SZ_4K:
2567		default:
2568			return -1;
2569		}
2570	}
2571
2572	baser->psz = psz;
2573	return 0;
2574}
2575
2576static int its_alloc_tables(struct its_node *its)
2577{
2578	u64 shr = GITS_BASER_InnerShareable;
2579	u64 cache = GITS_BASER_RaWaWb;
2580	int err, i;
2581
2582	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2583		/* erratum 24313: ignore memory access type */
2584		cache = GITS_BASER_nCnB;
2585
 
 
 
 
 
2586	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2587		struct its_baser *baser = its->tables + i;
2588		u64 val = its_read_baser(its, baser);
2589		u64 type = GITS_BASER_TYPE(val);
2590		bool indirect = false;
2591		u32 order;
2592
2593		if (type == GITS_BASER_TYPE_NONE)
2594			continue;
2595
2596		if (its_probe_baser_psz(its, baser)) {
2597			its_free_tables(its);
2598			return -ENXIO;
2599		}
2600
2601		order = get_order(baser->psz);
2602
2603		switch (type) {
2604		case GITS_BASER_TYPE_DEVICE:
2605			indirect = its_parse_indirect_baser(its, baser, &order,
2606							    device_ids(its));
2607			break;
2608
2609		case GITS_BASER_TYPE_VCPU:
2610			if (is_v4_1(its)) {
2611				struct its_node *sibling;
2612
2613				WARN_ON(i != 2);
2614				if ((sibling = find_sibling_its(its))) {
2615					*baser = sibling->tables[2];
2616					its_write_baser(its, baser, baser->val);
2617					continue;
2618				}
2619			}
2620
2621			indirect = its_parse_indirect_baser(its, baser, &order,
2622							    ITS_MAX_VPEID_BITS);
2623			break;
2624		}
2625
2626		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2627		if (err < 0) {
2628			its_free_tables(its);
2629			return err;
2630		}
2631
2632		/* Update settings which will be used for next BASERn */
2633		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2634		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2635	}
2636
2637	return 0;
2638}
2639
2640static u64 inherit_vpe_l1_table_from_its(void)
2641{
2642	struct its_node *its;
2643	u64 val;
2644	u32 aff;
2645
2646	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2647	aff = compute_common_aff(val);
2648
2649	list_for_each_entry(its, &its_nodes, entry) {
2650		u64 baser, addr;
2651
2652		if (!is_v4_1(its))
2653			continue;
2654
2655		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2656			continue;
2657
2658		if (aff != compute_its_aff(its))
2659			continue;
2660
2661		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2662		baser = its->tables[2].val;
2663		if (!(baser & GITS_BASER_VALID))
2664			continue;
2665
2666		/* We have a winner! */
2667		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2668
2669		val  = GICR_VPROPBASER_4_1_VALID;
2670		if (baser & GITS_BASER_INDIRECT)
2671			val |= GICR_VPROPBASER_4_1_INDIRECT;
2672		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2673				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2674		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2675		case GIC_PAGE_SIZE_64K:
2676			addr = GITS_BASER_ADDR_48_to_52(baser);
2677			break;
2678		default:
2679			addr = baser & GENMASK_ULL(47, 12);
2680			break;
2681		}
2682		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2683		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2684				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2685		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2686				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
 
 
2687		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2688
2689		return val;
2690	}
2691
2692	return 0;
2693}
2694
2695static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2696{
2697	u32 aff;
2698	u64 val;
2699	int cpu;
2700
2701	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2702	aff = compute_common_aff(val);
2703
2704	for_each_possible_cpu(cpu) {
2705		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2706
2707		if (!base || cpu == smp_processor_id())
2708			continue;
2709
2710		val = gic_read_typer(base + GICR_TYPER);
2711		if (aff != compute_common_aff(val))
2712			continue;
2713
2714		/*
2715		 * At this point, we have a victim. This particular CPU
2716		 * has already booted, and has an affinity that matches
2717		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2718		 * Make sure we don't write the Z bit in that case.
2719		 */
2720		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2721		val &= ~GICR_VPROPBASER_4_1_Z;
2722
2723		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2724		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2725
2726		return val;
2727	}
2728
2729	return 0;
2730}
2731
2732static bool allocate_vpe_l2_table(int cpu, u32 id)
2733{
2734	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2735	unsigned int psz, esz, idx, npg, gpsz;
2736	u64 val;
2737	struct page *page;
2738	__le64 *table;
2739
2740	if (!gic_rdists->has_rvpeid)
2741		return true;
2742
2743	/* Skip non-present CPUs */
2744	if (!base)
2745		return true;
2746
2747	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2748
2749	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2750	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2751	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2752
2753	switch (gpsz) {
2754	default:
2755		WARN_ON(1);
2756		fallthrough;
2757	case GIC_PAGE_SIZE_4K:
2758		psz = SZ_4K;
2759		break;
2760	case GIC_PAGE_SIZE_16K:
2761		psz = SZ_16K;
2762		break;
2763	case GIC_PAGE_SIZE_64K:
2764		psz = SZ_64K;
2765		break;
2766	}
2767
2768	/* Don't allow vpe_id that exceeds single, flat table limit */
2769	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2770		return (id < (npg * psz / (esz * SZ_8)));
2771
2772	/* Compute 1st level table index & check if that exceeds table limit */
2773	idx = id >> ilog2(psz / (esz * SZ_8));
2774	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2775		return false;
2776
2777	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2778
2779	/* Allocate memory for 2nd level table */
2780	if (!table[idx]) {
2781		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2782		if (!page)
2783			return false;
2784
2785		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2786		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787			gic_flush_dcache_to_poc(page_address(page), psz);
2788
2789		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2790
2791		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2792		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2793			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2794
2795		/* Ensure updated table contents are visible to RD hardware */
2796		dsb(sy);
2797	}
2798
2799	return true;
2800}
2801
2802static int allocate_vpe_l1_table(void)
2803{
2804	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2805	u64 val, gpsz, npg, pa;
2806	unsigned int psz = SZ_64K;
2807	unsigned int np, epp, esz;
2808	struct page *page;
2809
2810	if (!gic_rdists->has_rvpeid)
2811		return 0;
2812
2813	/*
2814	 * if VPENDBASER.Valid is set, disable any previously programmed
2815	 * VPE by setting PendingLast while clearing Valid. This has the
2816	 * effect of making sure no doorbell will be generated and we can
2817	 * then safely clear VPROPBASER.Valid.
2818	 */
2819	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2820		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2821				      vlpi_base + GICR_VPENDBASER);
2822
2823	/*
2824	 * If we can inherit the configuration from another RD, let's do
2825	 * so. Otherwise, we have to go through the allocation process. We
2826	 * assume that all RDs have the exact same requirements, as
2827	 * nothing will work otherwise.
2828	 */
2829	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2830	if (val & GICR_VPROPBASER_4_1_VALID)
2831		goto out;
2832
2833	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2834	if (!gic_data_rdist()->vpe_table_mask)
2835		return -ENOMEM;
2836
2837	val = inherit_vpe_l1_table_from_its();
2838	if (val & GICR_VPROPBASER_4_1_VALID)
2839		goto out;
2840
2841	/* First probe the page size */
2842	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2843	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2844	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2845	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2846	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2847
2848	switch (gpsz) {
2849	default:
2850		gpsz = GIC_PAGE_SIZE_4K;
2851		fallthrough;
2852	case GIC_PAGE_SIZE_4K:
2853		psz = SZ_4K;
2854		break;
2855	case GIC_PAGE_SIZE_16K:
2856		psz = SZ_16K;
2857		break;
2858	case GIC_PAGE_SIZE_64K:
2859		psz = SZ_64K;
2860		break;
2861	}
2862
2863	/*
2864	 * Start populating the register from scratch, including RO fields
2865	 * (which we want to print in debug cases...)
2866	 */
2867	val = 0;
2868	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2869	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2870
2871	/* How many entries per GIC page? */
2872	esz++;
2873	epp = psz / (esz * SZ_8);
2874
2875	/*
2876	 * If we need more than just a single L1 page, flag the table
2877	 * as indirect and compute the number of required L1 pages.
2878	 */
2879	if (epp < ITS_MAX_VPEID) {
2880		int nl2;
2881
2882		val |= GICR_VPROPBASER_4_1_INDIRECT;
2883
2884		/* Number of L2 pages required to cover the VPEID space */
2885		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2886
2887		/* Number of L1 pages to point to the L2 pages */
2888		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2889	} else {
2890		npg = 1;
2891	}
2892
2893	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2894
2895	/* Right, that's the number of CPU pages we need for L1 */
2896	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2897
2898	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2899		 np, npg, psz, epp, esz);
2900	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2901	if (!page)
2902		return -ENOMEM;
2903
2904	gic_data_rdist()->vpe_l1_base = page_address(page);
2905	pa = virt_to_phys(page_address(page));
2906	WARN_ON(!IS_ALIGNED(pa, psz));
2907
2908	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2909	val |= GICR_VPROPBASER_RaWb;
2910	val |= GICR_VPROPBASER_InnerShareable;
 
 
2911	val |= GICR_VPROPBASER_4_1_Z;
2912	val |= GICR_VPROPBASER_4_1_VALID;
2913
2914out:
2915	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2916	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2917
2918	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2919		 smp_processor_id(), val,
2920		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2921
2922	return 0;
2923}
2924
2925static int its_alloc_collections(struct its_node *its)
2926{
2927	int i;
2928
2929	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2930				   GFP_KERNEL);
2931	if (!its->collections)
2932		return -ENOMEM;
2933
2934	for (i = 0; i < nr_cpu_ids; i++)
2935		its->collections[i].target_address = ~0ULL;
2936
2937	return 0;
2938}
2939
2940static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2941{
2942	struct page *pend_page;
2943
2944	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2945				get_order(LPI_PENDBASE_SZ));
2946	if (!pend_page)
2947		return NULL;
2948
2949	/* Make sure the GIC will observe the zero-ed page */
2950	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2951
2952	return pend_page;
2953}
2954
2955static void its_free_pending_table(struct page *pt)
2956{
2957	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2958}
2959
2960/*
2961 * Booting with kdump and LPIs enabled is generally fine. Any other
2962 * case is wrong in the absence of firmware/EFI support.
2963 */
2964static bool enabled_lpis_allowed(void)
2965{
2966	phys_addr_t addr;
2967	u64 val;
2968
2969	/* Check whether the property table is in a reserved region */
2970	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2971	addr = val & GENMASK_ULL(51, 12);
2972
2973	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2974}
2975
2976static int __init allocate_lpi_tables(void)
2977{
2978	u64 val;
2979	int err, cpu;
2980
2981	/*
2982	 * If LPIs are enabled while we run this from the boot CPU,
2983	 * flag the RD tables as pre-allocated if the stars do align.
2984	 */
2985	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2986	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2987		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2988				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2989		pr_info("GICv3: Using preallocated redistributor tables\n");
2990	}
2991
2992	err = its_setup_lpi_prop_table();
2993	if (err)
2994		return err;
2995
2996	/*
2997	 * We allocate all the pending tables anyway, as we may have a
2998	 * mix of RDs that have had LPIs enabled, and some that
2999	 * don't. We'll free the unused ones as each CPU comes online.
3000	 */
3001	for_each_possible_cpu(cpu) {
3002		struct page *pend_page;
3003
3004		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3005		if (!pend_page) {
3006			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3007			return -ENOMEM;
3008		}
3009
3010		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3011	}
3012
3013	return 0;
3014}
3015
3016static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3017{
3018	u32 count = 1000000;	/* 1s! */
3019	bool clean;
3020	u64 val;
3021
3022	do {
3023		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3024		clean = !(val & GICR_VPENDBASER_Dirty);
3025		if (!clean) {
3026			count--;
3027			cpu_relax();
3028			udelay(1);
3029		}
3030	} while (!clean && count);
3031
3032	if (unlikely(!clean))
3033		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3034
3035	return val;
3036}
3037
3038static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3039{
3040	u64 val;
3041
3042	/* Make sure we wait until the RD is done with the initial scan */
3043	val = read_vpend_dirty_clear(vlpi_base);
3044	val &= ~GICR_VPENDBASER_Valid;
3045	val &= ~clr;
3046	val |= set;
3047	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3048
3049	val = read_vpend_dirty_clear(vlpi_base);
3050	if (unlikely(val & GICR_VPENDBASER_Dirty))
3051		val |= GICR_VPENDBASER_PendingLast;
3052
3053	return val;
3054}
3055
3056static void its_cpu_init_lpis(void)
3057{
3058	void __iomem *rbase = gic_data_rdist_rd_base();
3059	struct page *pend_page;
3060	phys_addr_t paddr;
3061	u64 val, tmp;
3062
3063	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3064		return;
3065
3066	val = readl_relaxed(rbase + GICR_CTLR);
3067	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3068	    (val & GICR_CTLR_ENABLE_LPIS)) {
3069		/*
3070		 * Check that we get the same property table on all
3071		 * RDs. If we don't, this is hopeless.
3072		 */
3073		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3074		paddr &= GENMASK_ULL(51, 12);
3075		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3076			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3077
3078		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3079		paddr &= GENMASK_ULL(51, 16);
3080
3081		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3082		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3083
3084		goto out;
3085	}
3086
3087	pend_page = gic_data_rdist()->pend_page;
3088	paddr = page_to_phys(pend_page);
3089
3090	/* set PROPBASE */
3091	val = (gic_rdists->prop_table_pa |
3092	       GICR_PROPBASER_InnerShareable |
3093	       GICR_PROPBASER_RaWaWb |
3094	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3095
3096	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3097	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3098
 
 
 
3099	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3100		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3101			/*
3102			 * The HW reports non-shareable, we must
3103			 * remove the cacheability attributes as
3104			 * well.
3105			 */
3106			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3107				 GICR_PROPBASER_CACHEABILITY_MASK);
3108			val |= GICR_PROPBASER_nC;
3109			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3110		}
3111		pr_info_once("GIC: using cache flushing for LPI property table\n");
3112		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3113	}
3114
3115	/* set PENDBASE */
3116	val = (page_to_phys(pend_page) |
3117	       GICR_PENDBASER_InnerShareable |
3118	       GICR_PENDBASER_RaWaWb);
3119
3120	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3121	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3122
 
 
 
3123	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3124		/*
3125		 * The HW reports non-shareable, we must remove the
3126		 * cacheability attributes as well.
3127		 */
3128		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3129			 GICR_PENDBASER_CACHEABILITY_MASK);
3130		val |= GICR_PENDBASER_nC;
3131		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3132	}
3133
3134	/* Enable LPIs */
3135	val = readl_relaxed(rbase + GICR_CTLR);
3136	val |= GICR_CTLR_ENABLE_LPIS;
3137	writel_relaxed(val, rbase + GICR_CTLR);
3138
 
3139	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3140		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3141
3142		/*
3143		 * It's possible for CPU to receive VLPIs before it is
3144		 * scheduled as a vPE, especially for the first CPU, and the
3145		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3146		 * as out of range and dropped by GIC.
3147		 * So we initialize IDbits to known value to avoid VLPI drop.
3148		 */
3149		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3150		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3151			smp_processor_id(), val);
3152		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3153
3154		/*
3155		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3156		 * ancient programming gets left in and has possibility of
3157		 * corrupting memory.
3158		 */
3159		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3160	}
3161
3162	if (allocate_vpe_l1_table()) {
3163		/*
3164		 * If the allocation has failed, we're in massive trouble.
3165		 * Disable direct injection, and pray that no VM was
3166		 * already running...
3167		 */
3168		gic_rdists->has_rvpeid = false;
3169		gic_rdists->has_vlpis = false;
3170	}
3171
3172	/* Make sure the GIC has seen the above */
3173	dsb(sy);
3174out:
3175	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3176	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3177		smp_processor_id(),
3178		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3179		"reserved" : "allocated",
3180		&paddr);
3181}
3182
3183static void its_cpu_init_collection(struct its_node *its)
3184{
3185	int cpu = smp_processor_id();
3186	u64 target;
3187
3188	/* avoid cross node collections and its mapping */
3189	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3190		struct device_node *cpu_node;
3191
3192		cpu_node = of_get_cpu_node(cpu, NULL);
3193		if (its->numa_node != NUMA_NO_NODE &&
3194			its->numa_node != of_node_to_nid(cpu_node))
3195			return;
3196	}
3197
3198	/*
3199	 * We now have to bind each collection to its target
3200	 * redistributor.
3201	 */
3202	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3203		/*
3204		 * This ITS wants the physical address of the
3205		 * redistributor.
3206		 */
3207		target = gic_data_rdist()->phys_base;
3208	} else {
3209		/* This ITS wants a linear CPU number. */
3210		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3211		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3212	}
3213
3214	/* Perform collection mapping */
3215	its->collections[cpu].target_address = target;
3216	its->collections[cpu].col_id = cpu;
3217
3218	its_send_mapc(its, &its->collections[cpu], 1);
3219	its_send_invall(its, &its->collections[cpu]);
3220}
3221
3222static void its_cpu_init_collections(void)
3223{
3224	struct its_node *its;
3225
3226	raw_spin_lock(&its_lock);
3227
3228	list_for_each_entry(its, &its_nodes, entry)
3229		its_cpu_init_collection(its);
3230
3231	raw_spin_unlock(&its_lock);
3232}
3233
3234static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3235{
3236	struct its_device *its_dev = NULL, *tmp;
3237	unsigned long flags;
3238
3239	raw_spin_lock_irqsave(&its->lock, flags);
3240
3241	list_for_each_entry(tmp, &its->its_device_list, entry) {
3242		if (tmp->device_id == dev_id) {
3243			its_dev = tmp;
3244			break;
3245		}
3246	}
3247
3248	raw_spin_unlock_irqrestore(&its->lock, flags);
3249
3250	return its_dev;
3251}
3252
3253static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3254{
3255	int i;
3256
3257	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3258		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3259			return &its->tables[i];
3260	}
3261
3262	return NULL;
3263}
3264
3265static bool its_alloc_table_entry(struct its_node *its,
3266				  struct its_baser *baser, u32 id)
3267{
3268	struct page *page;
3269	u32 esz, idx;
3270	__le64 *table;
3271
3272	/* Don't allow device id that exceeds single, flat table limit */
3273	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3274	if (!(baser->val & GITS_BASER_INDIRECT))
3275		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3276
3277	/* Compute 1st level table index & check if that exceeds table limit */
3278	idx = id >> ilog2(baser->psz / esz);
3279	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3280		return false;
3281
3282	table = baser->base;
3283
3284	/* Allocate memory for 2nd level table */
3285	if (!table[idx]) {
3286		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3287					get_order(baser->psz));
3288		if (!page)
3289			return false;
3290
3291		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3292		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3293			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3294
3295		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3296
3297		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3298		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3299			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3300
3301		/* Ensure updated table contents are visible to ITS hardware */
3302		dsb(sy);
3303	}
3304
3305	return true;
3306}
3307
3308static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3309{
3310	struct its_baser *baser;
3311
3312	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3313
3314	/* Don't allow device id that exceeds ITS hardware limit */
3315	if (!baser)
3316		return (ilog2(dev_id) < device_ids(its));
3317
3318	return its_alloc_table_entry(its, baser, dev_id);
3319}
3320
3321static bool its_alloc_vpe_table(u32 vpe_id)
3322{
3323	struct its_node *its;
3324	int cpu;
3325
3326	/*
3327	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3328	 * could try and only do it on ITSs corresponding to devices
3329	 * that have interrupts targeted at this VPE, but the
3330	 * complexity becomes crazy (and you have tons of memory
3331	 * anyway, right?).
3332	 */
3333	list_for_each_entry(its, &its_nodes, entry) {
3334		struct its_baser *baser;
3335
3336		if (!is_v4(its))
3337			continue;
3338
3339		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3340		if (!baser)
3341			return false;
3342
3343		if (!its_alloc_table_entry(its, baser, vpe_id))
3344			return false;
3345	}
3346
3347	/* Non v4.1? No need to iterate RDs and go back early. */
3348	if (!gic_rdists->has_rvpeid)
3349		return true;
3350
3351	/*
3352	 * Make sure the L2 tables are allocated for all copies of
3353	 * the L1 table on *all* v4.1 RDs.
3354	 */
3355	for_each_possible_cpu(cpu) {
3356		if (!allocate_vpe_l2_table(cpu, vpe_id))
3357			return false;
3358	}
3359
3360	return true;
3361}
3362
3363static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3364					    int nvecs, bool alloc_lpis)
3365{
3366	struct its_device *dev;
3367	unsigned long *lpi_map = NULL;
3368	unsigned long flags;
3369	u16 *col_map = NULL;
3370	void *itt;
3371	int lpi_base;
3372	int nr_lpis;
3373	int nr_ites;
3374	int sz;
3375
3376	if (!its_alloc_device_table(its, dev_id))
3377		return NULL;
3378
3379	if (WARN_ON(!is_power_of_2(nvecs)))
3380		nvecs = roundup_pow_of_two(nvecs);
3381
3382	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3383	/*
3384	 * Even if the device wants a single LPI, the ITT must be
3385	 * sized as a power of two (and you need at least one bit...).
3386	 */
3387	nr_ites = max(2, nvecs);
3388	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3389	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3390	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3391	if (alloc_lpis) {
3392		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3393		if (lpi_map)
3394			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3395					  GFP_KERNEL);
3396	} else {
3397		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3398		nr_lpis = 0;
3399		lpi_base = 0;
3400	}
3401
3402	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3403		kfree(dev);
3404		kfree(itt);
3405		bitmap_free(lpi_map);
3406		kfree(col_map);
3407		return NULL;
3408	}
3409
3410	gic_flush_dcache_to_poc(itt, sz);
3411
3412	dev->its = its;
3413	dev->itt = itt;
3414	dev->nr_ites = nr_ites;
3415	dev->event_map.lpi_map = lpi_map;
3416	dev->event_map.col_map = col_map;
3417	dev->event_map.lpi_base = lpi_base;
3418	dev->event_map.nr_lpis = nr_lpis;
3419	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3420	dev->device_id = dev_id;
3421	INIT_LIST_HEAD(&dev->entry);
3422
3423	raw_spin_lock_irqsave(&its->lock, flags);
3424	list_add(&dev->entry, &its->its_device_list);
3425	raw_spin_unlock_irqrestore(&its->lock, flags);
3426
3427	/* Map device to its ITT */
3428	its_send_mapd(dev, 1);
3429
3430	return dev;
3431}
3432
3433static void its_free_device(struct its_device *its_dev)
3434{
3435	unsigned long flags;
3436
3437	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3438	list_del(&its_dev->entry);
3439	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3440	kfree(its_dev->event_map.col_map);
3441	kfree(its_dev->itt);
3442	kfree(its_dev);
3443}
3444
3445static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3446{
3447	int idx;
3448
3449	/* Find a free LPI region in lpi_map and allocate them. */
3450	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3451				      dev->event_map.nr_lpis,
3452				      get_count_order(nvecs));
3453	if (idx < 0)
3454		return -ENOSPC;
3455
3456	*hwirq = dev->event_map.lpi_base + idx;
3457
3458	return 0;
3459}
3460
3461static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3462			   int nvec, msi_alloc_info_t *info)
3463{
3464	struct its_node *its;
3465	struct its_device *its_dev;
3466	struct msi_domain_info *msi_info;
3467	u32 dev_id;
3468	int err = 0;
3469
3470	/*
3471	 * We ignore "dev" entirely, and rely on the dev_id that has
3472	 * been passed via the scratchpad. This limits this domain's
3473	 * usefulness to upper layers that definitely know that they
3474	 * are built on top of the ITS.
3475	 */
3476	dev_id = info->scratchpad[0].ul;
3477
3478	msi_info = msi_get_domain_info(domain);
3479	its = msi_info->data;
3480
3481	if (!gic_rdists->has_direct_lpi &&
3482	    vpe_proxy.dev &&
3483	    vpe_proxy.dev->its == its &&
3484	    dev_id == vpe_proxy.dev->device_id) {
3485		/* Bad luck. Get yourself a better implementation */
3486		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3487			  dev_id);
3488		return -EINVAL;
3489	}
3490
3491	mutex_lock(&its->dev_alloc_lock);
3492	its_dev = its_find_device(its, dev_id);
3493	if (its_dev) {
3494		/*
3495		 * We already have seen this ID, probably through
3496		 * another alias (PCI bridge of some sort). No need to
3497		 * create the device.
3498		 */
3499		its_dev->shared = true;
3500		pr_debug("Reusing ITT for devID %x\n", dev_id);
3501		goto out;
3502	}
3503
3504	its_dev = its_create_device(its, dev_id, nvec, true);
3505	if (!its_dev) {
3506		err = -ENOMEM;
3507		goto out;
3508	}
3509
3510	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3511		its_dev->shared = true;
3512
3513	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3514out:
3515	mutex_unlock(&its->dev_alloc_lock);
3516	info->scratchpad[0].ptr = its_dev;
3517	return err;
3518}
3519
3520static struct msi_domain_ops its_msi_domain_ops = {
3521	.msi_prepare	= its_msi_prepare,
3522};
3523
3524static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3525				    unsigned int virq,
3526				    irq_hw_number_t hwirq)
3527{
3528	struct irq_fwspec fwspec;
3529
3530	if (irq_domain_get_of_node(domain->parent)) {
3531		fwspec.fwnode = domain->parent->fwnode;
3532		fwspec.param_count = 3;
3533		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3534		fwspec.param[1] = hwirq;
3535		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3536	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3537		fwspec.fwnode = domain->parent->fwnode;
3538		fwspec.param_count = 2;
3539		fwspec.param[0] = hwirq;
3540		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3541	} else {
3542		return -EINVAL;
3543	}
3544
3545	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3546}
3547
3548static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3549				unsigned int nr_irqs, void *args)
3550{
3551	msi_alloc_info_t *info = args;
3552	struct its_device *its_dev = info->scratchpad[0].ptr;
3553	struct its_node *its = its_dev->its;
3554	struct irq_data *irqd;
3555	irq_hw_number_t hwirq;
3556	int err;
3557	int i;
3558
3559	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3560	if (err)
3561		return err;
3562
3563	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3564	if (err)
3565		return err;
3566
3567	for (i = 0; i < nr_irqs; i++) {
3568		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3569		if (err)
3570			return err;
3571
3572		irq_domain_set_hwirq_and_chip(domain, virq + i,
3573					      hwirq + i, &its_irq_chip, its_dev);
3574		irqd = irq_get_irq_data(virq + i);
3575		irqd_set_single_target(irqd);
3576		irqd_set_affinity_on_activate(irqd);
 
3577		pr_debug("ID:%d pID:%d vID:%d\n",
3578			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3579			 (int)(hwirq + i), virq + i);
3580	}
3581
3582	return 0;
3583}
3584
3585static int its_irq_domain_activate(struct irq_domain *domain,
3586				   struct irq_data *d, bool reserve)
3587{
3588	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3589	u32 event = its_get_event_id(d);
3590	int cpu;
3591
3592	cpu = its_select_cpu(d, cpu_online_mask);
3593	if (cpu < 0 || cpu >= nr_cpu_ids)
3594		return -EINVAL;
3595
3596	its_inc_lpi_count(d, cpu);
3597	its_dev->event_map.col_map[event] = cpu;
3598	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3599
3600	/* Map the GIC IRQ and event to the device */
3601	its_send_mapti(its_dev, d->hwirq, event);
3602	return 0;
3603}
3604
3605static void its_irq_domain_deactivate(struct irq_domain *domain,
3606				      struct irq_data *d)
3607{
3608	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3609	u32 event = its_get_event_id(d);
3610
3611	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3612	/* Stop the delivery of interrupts */
3613	its_send_discard(its_dev, event);
3614}
3615
3616static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3617				unsigned int nr_irqs)
3618{
3619	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3620	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3621	struct its_node *its = its_dev->its;
3622	int i;
3623
3624	bitmap_release_region(its_dev->event_map.lpi_map,
3625			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3626			      get_count_order(nr_irqs));
3627
3628	for (i = 0; i < nr_irqs; i++) {
3629		struct irq_data *data = irq_domain_get_irq_data(domain,
3630								virq + i);
3631		/* Nuke the entry in the domain */
3632		irq_domain_reset_irq_data(data);
3633	}
3634
3635	mutex_lock(&its->dev_alloc_lock);
3636
3637	/*
3638	 * If all interrupts have been freed, start mopping the
3639	 * floor. This is conditioned on the device not being shared.
3640	 */
3641	if (!its_dev->shared &&
3642	    bitmap_empty(its_dev->event_map.lpi_map,
3643			 its_dev->event_map.nr_lpis)) {
3644		its_lpi_free(its_dev->event_map.lpi_map,
3645			     its_dev->event_map.lpi_base,
3646			     its_dev->event_map.nr_lpis);
3647
3648		/* Unmap device/itt */
3649		its_send_mapd(its_dev, 0);
3650		its_free_device(its_dev);
3651	}
3652
3653	mutex_unlock(&its->dev_alloc_lock);
3654
3655	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3656}
3657
3658static const struct irq_domain_ops its_domain_ops = {
3659	.alloc			= its_irq_domain_alloc,
3660	.free			= its_irq_domain_free,
3661	.activate		= its_irq_domain_activate,
3662	.deactivate		= its_irq_domain_deactivate,
3663};
3664
3665/*
3666 * This is insane.
3667 *
3668 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3669 * likely), the only way to perform an invalidate is to use a fake
3670 * device to issue an INV command, implying that the LPI has first
3671 * been mapped to some event on that device. Since this is not exactly
3672 * cheap, we try to keep that mapping around as long as possible, and
3673 * only issue an UNMAP if we're short on available slots.
3674 *
3675 * Broken by design(tm).
3676 *
3677 * GICv4.1, on the other hand, mandates that we're able to invalidate
3678 * by writing to a MMIO register. It doesn't implement the whole of
3679 * DirectLPI, but that's good enough. And most of the time, we don't
3680 * even have to invalidate anything, as the redistributor can be told
3681 * whether to generate a doorbell or not (we thus leave it enabled,
3682 * always).
3683 */
3684static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3685{
3686	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3687	if (gic_rdists->has_rvpeid)
3688		return;
3689
3690	/* Already unmapped? */
3691	if (vpe->vpe_proxy_event == -1)
3692		return;
3693
3694	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3695	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3696
3697	/*
3698	 * We don't track empty slots at all, so let's move the
3699	 * next_victim pointer if we can quickly reuse that slot
3700	 * instead of nuking an existing entry. Not clear that this is
3701	 * always a win though, and this might just generate a ripple
3702	 * effect... Let's just hope VPEs don't migrate too often.
3703	 */
3704	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3705		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3706
3707	vpe->vpe_proxy_event = -1;
3708}
3709
3710static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3711{
3712	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3713	if (gic_rdists->has_rvpeid)
3714		return;
3715
3716	if (!gic_rdists->has_direct_lpi) {
3717		unsigned long flags;
3718
3719		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3720		its_vpe_db_proxy_unmap_locked(vpe);
3721		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3722	}
3723}
3724
3725static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3726{
3727	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3728	if (gic_rdists->has_rvpeid)
3729		return;
3730
3731	/* Already mapped? */
3732	if (vpe->vpe_proxy_event != -1)
3733		return;
3734
3735	/* This slot was already allocated. Kick the other VPE out. */
3736	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3737		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3738
3739	/* Map the new VPE instead */
3740	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3741	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3742	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3743
3744	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3745	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3746}
3747
3748static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3749{
3750	unsigned long flags;
3751	struct its_collection *target_col;
3752
3753	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3754	if (gic_rdists->has_rvpeid)
3755		return;
3756
3757	if (gic_rdists->has_direct_lpi) {
3758		void __iomem *rdbase;
3759
3760		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3761		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3762		wait_for_syncr(rdbase);
3763
3764		return;
3765	}
3766
3767	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3768
3769	its_vpe_db_proxy_map_locked(vpe);
3770
3771	target_col = &vpe_proxy.dev->its->collections[to];
3772	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3773	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3774
3775	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3776}
3777
3778static int its_vpe_set_affinity(struct irq_data *d,
3779				const struct cpumask *mask_val,
3780				bool force)
3781{
3782	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3783	int from, cpu = cpumask_first(mask_val);
3784	unsigned long flags;
 
3785
3786	/*
3787	 * Changing affinity is mega expensive, so let's be as lazy as
3788	 * we can and only do it if we really have to. Also, if mapped
3789	 * into the proxy device, we need to move the doorbell
3790	 * interrupt to its new location.
3791	 *
3792	 * Another thing is that changing the affinity of a vPE affects
3793	 * *other interrupts* such as all the vLPIs that are routed to
3794	 * this vPE. This means that the irq_desc lock is not enough to
3795	 * protect us, and that we must ensure nobody samples vpe->col_idx
3796	 * during the update, hence the lock below which must also be
3797	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3798	 */
3799	from = vpe_to_cpuid_lock(vpe, &flags);
 
 
 
 
 
 
 
 
 
 
 
3800	if (from == cpu)
3801		goto out;
3802
3803	vpe->col_idx = cpu;
3804
3805	/*
3806	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3807	 * is sharing its VPE table with the current one.
3808	 */
3809	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3810	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3811		goto out;
3812
3813	its_send_vmovp(vpe);
3814	its_vpe_db_proxy_move(vpe, from, cpu);
3815
3816out:
3817	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3818	vpe_to_cpuid_unlock(vpe, flags);
3819
3820	return IRQ_SET_MASK_OK_DONE;
3821}
3822
3823static void its_wait_vpt_parse_complete(void)
3824{
3825	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3826	u64 val;
3827
3828	if (!gic_rdists->has_vpend_valid_dirty)
3829		return;
3830
3831	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3832						       val,
3833						       !(val & GICR_VPENDBASER_Dirty),
3834						       1, 500));
3835}
3836
3837static void its_vpe_schedule(struct its_vpe *vpe)
3838{
3839	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3840	u64 val;
3841
3842	/* Schedule the VPE */
3843	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3844		GENMASK_ULL(51, 12);
3845	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3846	val |= GICR_VPROPBASER_RaWb;
3847	val |= GICR_VPROPBASER_InnerShareable;
 
 
3848	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3849
3850	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3851		GENMASK_ULL(51, 16);
3852	val |= GICR_VPENDBASER_RaWaWb;
3853	val |= GICR_VPENDBASER_InnerShareable;
 
 
3854	/*
3855	 * There is no good way of finding out if the pending table is
3856	 * empty as we can race against the doorbell interrupt very
3857	 * easily. So in the end, vpe->pending_last is only an
3858	 * indication that the vcpu has something pending, not one
3859	 * that the pending table is empty. A good implementation
3860	 * would be able to read its coarse map pretty quickly anyway,
3861	 * making this a tolerable issue.
3862	 */
3863	val |= GICR_VPENDBASER_PendingLast;
3864	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3865	val |= GICR_VPENDBASER_Valid;
3866	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3867}
3868
3869static void its_vpe_deschedule(struct its_vpe *vpe)
3870{
3871	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3872	u64 val;
3873
3874	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3875
3876	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3877	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3878}
3879
3880static void its_vpe_invall(struct its_vpe *vpe)
3881{
3882	struct its_node *its;
3883
3884	list_for_each_entry(its, &its_nodes, entry) {
3885		if (!is_v4(its))
3886			continue;
3887
3888		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3889			continue;
3890
3891		/*
3892		 * Sending a VINVALL to a single ITS is enough, as all
3893		 * we need is to reach the redistributors.
3894		 */
3895		its_send_vinvall(its, vpe);
3896		return;
3897	}
3898}
3899
3900static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3901{
3902	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3903	struct its_cmd_info *info = vcpu_info;
3904
3905	switch (info->cmd_type) {
3906	case SCHEDULE_VPE:
3907		its_vpe_schedule(vpe);
3908		return 0;
3909
3910	case DESCHEDULE_VPE:
3911		its_vpe_deschedule(vpe);
3912		return 0;
3913
3914	case COMMIT_VPE:
3915		its_wait_vpt_parse_complete();
3916		return 0;
3917
3918	case INVALL_VPE:
3919		its_vpe_invall(vpe);
3920		return 0;
3921
3922	default:
3923		return -EINVAL;
3924	}
3925}
3926
3927static void its_vpe_send_cmd(struct its_vpe *vpe,
3928			     void (*cmd)(struct its_device *, u32))
3929{
3930	unsigned long flags;
3931
3932	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3933
3934	its_vpe_db_proxy_map_locked(vpe);
3935	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3936
3937	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3938}
3939
3940static void its_vpe_send_inv(struct irq_data *d)
3941{
3942	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3943
3944	if (gic_rdists->has_direct_lpi) {
3945		void __iomem *rdbase;
3946
3947		/* Target the redistributor this VPE is currently known on */
3948		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3949		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3950		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3951		wait_for_syncr(rdbase);
3952		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3953	} else {
3954		its_vpe_send_cmd(vpe, its_send_inv);
3955	}
3956}
3957
3958static void its_vpe_mask_irq(struct irq_data *d)
3959{
3960	/*
3961	 * We need to unmask the LPI, which is described by the parent
3962	 * irq_data. Instead of calling into the parent (which won't
3963	 * exactly do the right thing, let's simply use the
3964	 * parent_data pointer. Yes, I'm naughty.
3965	 */
3966	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3967	its_vpe_send_inv(d);
3968}
3969
3970static void its_vpe_unmask_irq(struct irq_data *d)
3971{
3972	/* Same hack as above... */
3973	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3974	its_vpe_send_inv(d);
3975}
3976
3977static int its_vpe_set_irqchip_state(struct irq_data *d,
3978				     enum irqchip_irq_state which,
3979				     bool state)
3980{
3981	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3982
3983	if (which != IRQCHIP_STATE_PENDING)
3984		return -EINVAL;
3985
3986	if (gic_rdists->has_direct_lpi) {
3987		void __iomem *rdbase;
3988
3989		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3990		if (state) {
3991			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3992		} else {
3993			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3994			wait_for_syncr(rdbase);
3995		}
3996	} else {
3997		if (state)
3998			its_vpe_send_cmd(vpe, its_send_int);
3999		else
4000			its_vpe_send_cmd(vpe, its_send_clear);
4001	}
4002
4003	return 0;
4004}
4005
4006static int its_vpe_retrigger(struct irq_data *d)
4007{
4008	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4009}
4010
4011static struct irq_chip its_vpe_irq_chip = {
4012	.name			= "GICv4-vpe",
4013	.irq_mask		= its_vpe_mask_irq,
4014	.irq_unmask		= its_vpe_unmask_irq,
4015	.irq_eoi		= irq_chip_eoi_parent,
4016	.irq_set_affinity	= its_vpe_set_affinity,
4017	.irq_retrigger		= its_vpe_retrigger,
4018	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4019	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4020};
4021
4022static struct its_node *find_4_1_its(void)
4023{
4024	static struct its_node *its = NULL;
4025
4026	if (!its) {
4027		list_for_each_entry(its, &its_nodes, entry) {
4028			if (is_v4_1(its))
4029				return its;
4030		}
4031
4032		/* Oops? */
4033		its = NULL;
4034	}
4035
4036	return its;
4037}
4038
4039static void its_vpe_4_1_send_inv(struct irq_data *d)
4040{
4041	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4042	struct its_node *its;
4043
4044	/*
4045	 * GICv4.1 wants doorbells to be invalidated using the
4046	 * INVDB command in order to be broadcast to all RDs. Send
4047	 * it to the first valid ITS, and let the HW do its magic.
4048	 */
4049	its = find_4_1_its();
4050	if (its)
4051		its_send_invdb(its, vpe);
4052}
4053
4054static void its_vpe_4_1_mask_irq(struct irq_data *d)
4055{
4056	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4057	its_vpe_4_1_send_inv(d);
4058}
4059
4060static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4061{
4062	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4063	its_vpe_4_1_send_inv(d);
4064}
4065
4066static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4067				 struct its_cmd_info *info)
4068{
4069	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4070	u64 val = 0;
4071
4072	/* Schedule the VPE */
4073	val |= GICR_VPENDBASER_Valid;
4074	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4075	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4076	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4077
4078	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4079}
4080
4081static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4082				   struct its_cmd_info *info)
4083{
4084	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4085	u64 val;
4086
4087	if (info->req_db) {
4088		unsigned long flags;
4089
4090		/*
4091		 * vPE is going to block: make the vPE non-resident with
4092		 * PendingLast clear and DB set. The GIC guarantees that if
4093		 * we read-back PendingLast clear, then a doorbell will be
4094		 * delivered when an interrupt comes.
4095		 *
4096		 * Note the locking to deal with the concurrent update of
4097		 * pending_last from the doorbell interrupt handler that can
4098		 * run concurrently.
4099		 */
4100		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4101		val = its_clear_vpend_valid(vlpi_base,
4102					    GICR_VPENDBASER_PendingLast,
4103					    GICR_VPENDBASER_4_1_DB);
4104		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4105		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4106	} else {
4107		/*
4108		 * We're not blocking, so just make the vPE non-resident
4109		 * with PendingLast set, indicating that we'll be back.
4110		 */
4111		val = its_clear_vpend_valid(vlpi_base,
4112					    0,
4113					    GICR_VPENDBASER_PendingLast);
4114		vpe->pending_last = true;
4115	}
4116}
4117
4118static void its_vpe_4_1_invall(struct its_vpe *vpe)
4119{
4120	void __iomem *rdbase;
4121	unsigned long flags;
4122	u64 val;
4123	int cpu;
4124
4125	val  = GICR_INVALLR_V;
4126	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4127
4128	/* Target the redistributor this vPE is currently known on */
4129	cpu = vpe_to_cpuid_lock(vpe, &flags);
4130	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4131	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4132	gic_write_lpir(val, rdbase + GICR_INVALLR);
4133
4134	wait_for_syncr(rdbase);
4135	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4136	vpe_to_cpuid_unlock(vpe, flags);
4137}
4138
4139static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4140{
4141	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4142	struct its_cmd_info *info = vcpu_info;
4143
4144	switch (info->cmd_type) {
4145	case SCHEDULE_VPE:
4146		its_vpe_4_1_schedule(vpe, info);
4147		return 0;
4148
4149	case DESCHEDULE_VPE:
4150		its_vpe_4_1_deschedule(vpe, info);
4151		return 0;
4152
4153	case COMMIT_VPE:
4154		its_wait_vpt_parse_complete();
4155		return 0;
4156
4157	case INVALL_VPE:
4158		its_vpe_4_1_invall(vpe);
4159		return 0;
4160
4161	default:
4162		return -EINVAL;
4163	}
4164}
4165
4166static struct irq_chip its_vpe_4_1_irq_chip = {
4167	.name			= "GICv4.1-vpe",
4168	.irq_mask		= its_vpe_4_1_mask_irq,
4169	.irq_unmask		= its_vpe_4_1_unmask_irq,
4170	.irq_eoi		= irq_chip_eoi_parent,
4171	.irq_set_affinity	= its_vpe_set_affinity,
4172	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4173};
4174
4175static void its_configure_sgi(struct irq_data *d, bool clear)
4176{
4177	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4178	struct its_cmd_desc desc;
4179
4180	desc.its_vsgi_cmd.vpe = vpe;
4181	desc.its_vsgi_cmd.sgi = d->hwirq;
4182	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4183	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4184	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4185	desc.its_vsgi_cmd.clear = clear;
4186
4187	/*
4188	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4189	 * destination VPE is mapped there. Since we map them eagerly at
4190	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4191	 */
4192	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4193}
4194
4195static void its_sgi_mask_irq(struct irq_data *d)
4196{
4197	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4198
4199	vpe->sgi_config[d->hwirq].enabled = false;
4200	its_configure_sgi(d, false);
4201}
4202
4203static void its_sgi_unmask_irq(struct irq_data *d)
4204{
4205	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206
4207	vpe->sgi_config[d->hwirq].enabled = true;
4208	its_configure_sgi(d, false);
4209}
4210
4211static int its_sgi_set_affinity(struct irq_data *d,
4212				const struct cpumask *mask_val,
4213				bool force)
4214{
4215	/*
4216	 * There is no notion of affinity for virtual SGIs, at least
4217	 * not on the host (since they can only be targeting a vPE).
4218	 * Tell the kernel we've done whatever it asked for.
4219	 */
4220	irq_data_update_effective_affinity(d, mask_val);
4221	return IRQ_SET_MASK_OK;
4222}
4223
4224static int its_sgi_set_irqchip_state(struct irq_data *d,
4225				     enum irqchip_irq_state which,
4226				     bool state)
4227{
4228	if (which != IRQCHIP_STATE_PENDING)
4229		return -EINVAL;
4230
4231	if (state) {
4232		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4233		struct its_node *its = find_4_1_its();
4234		u64 val;
4235
4236		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4237		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4238		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4239	} else {
4240		its_configure_sgi(d, true);
4241	}
4242
4243	return 0;
4244}
4245
4246static int its_sgi_get_irqchip_state(struct irq_data *d,
4247				     enum irqchip_irq_state which, bool *val)
4248{
4249	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4250	void __iomem *base;
4251	unsigned long flags;
4252	u32 count = 1000000;	/* 1s! */
4253	u32 status;
4254	int cpu;
4255
4256	if (which != IRQCHIP_STATE_PENDING)
4257		return -EINVAL;
4258
4259	/*
4260	 * Locking galore! We can race against two different events:
4261	 *
4262	 * - Concurrent vPE affinity change: we must make sure it cannot
4263	 *   happen, or we'll talk to the wrong redistributor. This is
4264	 *   identical to what happens with vLPIs.
4265	 *
4266	 * - Concurrent VSGIPENDR access: As it involves accessing two
4267	 *   MMIO registers, this must be made atomic one way or another.
4268	 */
4269	cpu = vpe_to_cpuid_lock(vpe, &flags);
4270	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4271	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4272	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4273	do {
4274		status = readl_relaxed(base + GICR_VSGIPENDR);
4275		if (!(status & GICR_VSGIPENDR_BUSY))
4276			goto out;
4277
4278		count--;
4279		if (!count) {
4280			pr_err_ratelimited("Unable to get SGI status\n");
4281			goto out;
4282		}
4283		cpu_relax();
4284		udelay(1);
4285	} while (count);
4286
4287out:
4288	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4289	vpe_to_cpuid_unlock(vpe, flags);
4290
4291	if (!count)
4292		return -ENXIO;
4293
4294	*val = !!(status & (1 << d->hwirq));
4295
4296	return 0;
4297}
4298
4299static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4300{
4301	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4302	struct its_cmd_info *info = vcpu_info;
4303
4304	switch (info->cmd_type) {
4305	case PROP_UPDATE_VSGI:
4306		vpe->sgi_config[d->hwirq].priority = info->priority;
4307		vpe->sgi_config[d->hwirq].group = info->group;
4308		its_configure_sgi(d, false);
4309		return 0;
4310
4311	default:
4312		return -EINVAL;
4313	}
4314}
4315
4316static struct irq_chip its_sgi_irq_chip = {
4317	.name			= "GICv4.1-sgi",
4318	.irq_mask		= its_sgi_mask_irq,
4319	.irq_unmask		= its_sgi_unmask_irq,
4320	.irq_set_affinity	= its_sgi_set_affinity,
4321	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4322	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4323	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4324};
4325
4326static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4327				    unsigned int virq, unsigned int nr_irqs,
4328				    void *args)
4329{
4330	struct its_vpe *vpe = args;
4331	int i;
4332
4333	/* Yes, we do want 16 SGIs */
4334	WARN_ON(nr_irqs != 16);
4335
4336	for (i = 0; i < 16; i++) {
4337		vpe->sgi_config[i].priority = 0;
4338		vpe->sgi_config[i].enabled = false;
4339		vpe->sgi_config[i].group = false;
4340
4341		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4342					      &its_sgi_irq_chip, vpe);
4343		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4344	}
4345
4346	return 0;
4347}
4348
4349static void its_sgi_irq_domain_free(struct irq_domain *domain,
4350				    unsigned int virq,
4351				    unsigned int nr_irqs)
4352{
4353	/* Nothing to do */
4354}
4355
4356static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4357				       struct irq_data *d, bool reserve)
4358{
4359	/* Write out the initial SGI configuration */
4360	its_configure_sgi(d, false);
4361	return 0;
4362}
4363
4364static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4365					  struct irq_data *d)
4366{
4367	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4368
4369	/*
4370	 * The VSGI command is awkward:
4371	 *
4372	 * - To change the configuration, CLEAR must be set to false,
4373	 *   leaving the pending bit unchanged.
4374	 * - To clear the pending bit, CLEAR must be set to true, leaving
4375	 *   the configuration unchanged.
4376	 *
4377	 * You just can't do both at once, hence the two commands below.
4378	 */
4379	vpe->sgi_config[d->hwirq].enabled = false;
4380	its_configure_sgi(d, false);
4381	its_configure_sgi(d, true);
4382}
4383
4384static const struct irq_domain_ops its_sgi_domain_ops = {
4385	.alloc		= its_sgi_irq_domain_alloc,
4386	.free		= its_sgi_irq_domain_free,
4387	.activate	= its_sgi_irq_domain_activate,
4388	.deactivate	= its_sgi_irq_domain_deactivate,
4389};
4390
4391static int its_vpe_id_alloc(void)
4392{
4393	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4394}
4395
4396static void its_vpe_id_free(u16 id)
4397{
4398	ida_simple_remove(&its_vpeid_ida, id);
4399}
4400
4401static int its_vpe_init(struct its_vpe *vpe)
4402{
4403	struct page *vpt_page;
4404	int vpe_id;
4405
4406	/* Allocate vpe_id */
4407	vpe_id = its_vpe_id_alloc();
4408	if (vpe_id < 0)
4409		return vpe_id;
4410
4411	/* Allocate VPT */
4412	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4413	if (!vpt_page) {
4414		its_vpe_id_free(vpe_id);
4415		return -ENOMEM;
4416	}
4417
4418	if (!its_alloc_vpe_table(vpe_id)) {
4419		its_vpe_id_free(vpe_id);
4420		its_free_pending_table(vpt_page);
4421		return -ENOMEM;
4422	}
4423
4424	raw_spin_lock_init(&vpe->vpe_lock);
4425	vpe->vpe_id = vpe_id;
4426	vpe->vpt_page = vpt_page;
4427	if (gic_rdists->has_rvpeid)
4428		atomic_set(&vpe->vmapp_count, 0);
4429	else
4430		vpe->vpe_proxy_event = -1;
4431
4432	return 0;
4433}
4434
4435static void its_vpe_teardown(struct its_vpe *vpe)
4436{
4437	its_vpe_db_proxy_unmap(vpe);
4438	its_vpe_id_free(vpe->vpe_id);
4439	its_free_pending_table(vpe->vpt_page);
4440}
4441
4442static void its_vpe_irq_domain_free(struct irq_domain *domain,
4443				    unsigned int virq,
4444				    unsigned int nr_irqs)
4445{
4446	struct its_vm *vm = domain->host_data;
4447	int i;
4448
4449	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4450
4451	for (i = 0; i < nr_irqs; i++) {
4452		struct irq_data *data = irq_domain_get_irq_data(domain,
4453								virq + i);
4454		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4455
4456		BUG_ON(vm != vpe->its_vm);
4457
4458		clear_bit(data->hwirq, vm->db_bitmap);
4459		its_vpe_teardown(vpe);
4460		irq_domain_reset_irq_data(data);
4461	}
4462
4463	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4464		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4465		its_free_prop_table(vm->vprop_page);
4466	}
4467}
4468
4469static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4470				    unsigned int nr_irqs, void *args)
4471{
4472	struct irq_chip *irqchip = &its_vpe_irq_chip;
4473	struct its_vm *vm = args;
4474	unsigned long *bitmap;
4475	struct page *vprop_page;
4476	int base, nr_ids, i, err = 0;
4477
4478	BUG_ON(!vm);
4479
4480	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4481	if (!bitmap)
4482		return -ENOMEM;
4483
4484	if (nr_ids < nr_irqs) {
4485		its_lpi_free(bitmap, base, nr_ids);
4486		return -ENOMEM;
4487	}
4488
4489	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4490	if (!vprop_page) {
4491		its_lpi_free(bitmap, base, nr_ids);
4492		return -ENOMEM;
4493	}
4494
4495	vm->db_bitmap = bitmap;
4496	vm->db_lpi_base = base;
4497	vm->nr_db_lpis = nr_ids;
4498	vm->vprop_page = vprop_page;
4499
4500	if (gic_rdists->has_rvpeid)
4501		irqchip = &its_vpe_4_1_irq_chip;
4502
4503	for (i = 0; i < nr_irqs; i++) {
4504		vm->vpes[i]->vpe_db_lpi = base + i;
4505		err = its_vpe_init(vm->vpes[i]);
4506		if (err)
4507			break;
4508		err = its_irq_gic_domain_alloc(domain, virq + i,
4509					       vm->vpes[i]->vpe_db_lpi);
4510		if (err)
4511			break;
4512		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4513					      irqchip, vm->vpes[i]);
4514		set_bit(i, bitmap);
 
4515	}
4516
4517	if (err) {
4518		if (i > 0)
4519			its_vpe_irq_domain_free(domain, virq, i);
4520
4521		its_lpi_free(bitmap, base, nr_ids);
4522		its_free_prop_table(vprop_page);
4523	}
4524
4525	return err;
4526}
4527
4528static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4529				       struct irq_data *d, bool reserve)
4530{
4531	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4532	struct its_node *its;
4533
4534	/*
4535	 * If we use the list map, we issue VMAPP on demand... Unless
4536	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4537	 * so that VSGIs can work.
4538	 */
4539	if (!gic_requires_eager_mapping())
4540		return 0;
4541
4542	/* Map the VPE to the first possible CPU */
4543	vpe->col_idx = cpumask_first(cpu_online_mask);
4544
4545	list_for_each_entry(its, &its_nodes, entry) {
4546		if (!is_v4(its))
4547			continue;
4548
4549		its_send_vmapp(its, vpe, true);
4550		its_send_vinvall(its, vpe);
4551	}
4552
4553	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4554
4555	return 0;
4556}
4557
4558static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4559					  struct irq_data *d)
4560{
4561	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4562	struct its_node *its;
4563
4564	/*
4565	 * If we use the list map on GICv4.0, we unmap the VPE once no
4566	 * VLPIs are associated with the VM.
4567	 */
4568	if (!gic_requires_eager_mapping())
4569		return;
4570
4571	list_for_each_entry(its, &its_nodes, entry) {
4572		if (!is_v4(its))
4573			continue;
4574
4575		its_send_vmapp(its, vpe, false);
4576	}
4577
4578	/*
4579	 * There may be a direct read to the VPT after unmapping the
4580	 * vPE, to guarantee the validity of this, we make the VPT
4581	 * memory coherent with the CPU caches here.
4582	 */
4583	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4584		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4585					LPI_PENDBASE_SZ);
4586}
4587
4588static const struct irq_domain_ops its_vpe_domain_ops = {
4589	.alloc			= its_vpe_irq_domain_alloc,
4590	.free			= its_vpe_irq_domain_free,
4591	.activate		= its_vpe_irq_domain_activate,
4592	.deactivate		= its_vpe_irq_domain_deactivate,
4593};
4594
4595static int its_force_quiescent(void __iomem *base)
4596{
4597	u32 count = 1000000;	/* 1s */
4598	u32 val;
4599
4600	val = readl_relaxed(base + GITS_CTLR);
4601	/*
4602	 * GIC architecture specification requires the ITS to be both
4603	 * disabled and quiescent for writes to GITS_BASER<n> or
4604	 * GITS_CBASER to not have UNPREDICTABLE results.
4605	 */
4606	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4607		return 0;
4608
4609	/* Disable the generation of all interrupts to this ITS */
4610	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4611	writel_relaxed(val, base + GITS_CTLR);
4612
4613	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4614	while (1) {
4615		val = readl_relaxed(base + GITS_CTLR);
4616		if (val & GITS_CTLR_QUIESCENT)
4617			return 0;
4618
4619		count--;
4620		if (!count)
4621			return -EBUSY;
4622
4623		cpu_relax();
4624		udelay(1);
4625	}
4626}
4627
4628static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4629{
4630	struct its_node *its = data;
4631
4632	/* erratum 22375: only alloc 8MB table size (20 bits) */
4633	its->typer &= ~GITS_TYPER_DEVBITS;
4634	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4635	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4636
4637	return true;
4638}
4639
4640static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4641{
4642	struct its_node *its = data;
4643
4644	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4645
4646	return true;
4647}
4648
4649static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4650{
4651	struct its_node *its = data;
4652
4653	/* On QDF2400, the size of the ITE is 16Bytes */
4654	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4655	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4656
4657	return true;
4658}
4659
4660static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4661{
4662	struct its_node *its = its_dev->its;
4663
4664	/*
4665	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4666	 * which maps 32-bit writes targeted at a separate window of
4667	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4668	 * with device ID taken from bits [device_id_bits + 1:2] of
4669	 * the window offset.
4670	 */
4671	return its->pre_its_base + (its_dev->device_id << 2);
4672}
4673
4674static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4675{
4676	struct its_node *its = data;
4677	u32 pre_its_window[2];
4678	u32 ids;
4679
4680	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4681					   "socionext,synquacer-pre-its",
4682					   pre_its_window,
4683					   ARRAY_SIZE(pre_its_window))) {
4684
4685		its->pre_its_base = pre_its_window[0];
4686		its->get_msi_base = its_irq_get_msi_base_pre_its;
4687
4688		ids = ilog2(pre_its_window[1]) - 2;
4689		if (device_ids(its) > ids) {
4690			its->typer &= ~GITS_TYPER_DEVBITS;
4691			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4692		}
4693
4694		/* the pre-ITS breaks isolation, so disable MSI remapping */
4695		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4696		return true;
4697	}
4698	return false;
4699}
4700
4701static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4702{
4703	struct its_node *its = data;
4704
4705	/*
4706	 * Hip07 insists on using the wrong address for the VLPI
4707	 * page. Trick it into doing the right thing...
4708	 */
4709	its->vlpi_redist_offset = SZ_128K;
4710	return true;
4711}
4712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4713static const struct gic_quirk its_quirks[] = {
4714#ifdef CONFIG_CAVIUM_ERRATUM_22375
4715	{
4716		.desc	= "ITS: Cavium errata 22375, 24313",
4717		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4718		.mask	= 0xffff0fff,
4719		.init	= its_enable_quirk_cavium_22375,
4720	},
4721#endif
4722#ifdef CONFIG_CAVIUM_ERRATUM_23144
4723	{
4724		.desc	= "ITS: Cavium erratum 23144",
4725		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4726		.mask	= 0xffff0fff,
4727		.init	= its_enable_quirk_cavium_23144,
4728	},
4729#endif
4730#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4731	{
4732		.desc	= "ITS: QDF2400 erratum 0065",
4733		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4734		.mask	= 0xffffffff,
4735		.init	= its_enable_quirk_qdf2400_e0065,
4736	},
4737#endif
4738#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4739	{
4740		/*
4741		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4742		 * implementation, but with a 'pre-ITS' added that requires
4743		 * special handling in software.
4744		 */
4745		.desc	= "ITS: Socionext Synquacer pre-ITS",
4746		.iidr	= 0x0001143b,
4747		.mask	= 0xffffffff,
4748		.init	= its_enable_quirk_socionext_synquacer,
4749	},
4750#endif
4751#ifdef CONFIG_HISILICON_ERRATUM_161600802
4752	{
4753		.desc	= "ITS: Hip07 erratum 161600802",
4754		.iidr	= 0x00000004,
4755		.mask	= 0xffffffff,
4756		.init	= its_enable_quirk_hip07_161600802,
4757	},
4758#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
4759	{
4760	}
4761};
4762
4763static void its_enable_quirks(struct its_node *its)
4764{
4765	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4766
4767	gic_enable_quirks(iidr, its_quirks, its);
 
 
 
 
4768}
4769
4770static int its_save_disable(void)
4771{
4772	struct its_node *its;
4773	int err = 0;
4774
4775	raw_spin_lock(&its_lock);
4776	list_for_each_entry(its, &its_nodes, entry) {
4777		void __iomem *base;
4778
4779		base = its->base;
4780		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4781		err = its_force_quiescent(base);
4782		if (err) {
4783			pr_err("ITS@%pa: failed to quiesce: %d\n",
4784			       &its->phys_base, err);
4785			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4786			goto err;
4787		}
4788
4789		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4790	}
4791
4792err:
4793	if (err) {
4794		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4795			void __iomem *base;
4796
4797			base = its->base;
4798			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4799		}
4800	}
4801	raw_spin_unlock(&its_lock);
4802
4803	return err;
4804}
4805
4806static void its_restore_enable(void)
4807{
4808	struct its_node *its;
4809	int ret;
4810
4811	raw_spin_lock(&its_lock);
4812	list_for_each_entry(its, &its_nodes, entry) {
4813		void __iomem *base;
4814		int i;
4815
4816		base = its->base;
4817
4818		/*
4819		 * Make sure that the ITS is disabled. If it fails to quiesce,
4820		 * don't restore it since writing to CBASER or BASER<n>
4821		 * registers is undefined according to the GIC v3 ITS
4822		 * Specification.
4823		 *
4824		 * Firmware resuming with the ITS enabled is terminally broken.
4825		 */
4826		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4827		ret = its_force_quiescent(base);
4828		if (ret) {
4829			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4830			       &its->phys_base, ret);
4831			continue;
4832		}
4833
4834		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4835
4836		/*
4837		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4838		 * cmd_write line up with it.
4839		 */
4840		its->cmd_write = its->cmd_base;
4841		gits_write_cwriter(0, base + GITS_CWRITER);
4842
4843		/* Restore GITS_BASER from the value cache. */
4844		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4845			struct its_baser *baser = &its->tables[i];
4846
4847			if (!(baser->val & GITS_BASER_VALID))
4848				continue;
4849
4850			its_write_baser(its, baser, baser->val);
4851		}
4852		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4853
4854		/*
4855		 * Reinit the collection if it's stored in the ITS. This is
4856		 * indicated by the col_id being less than the HCC field.
4857		 * CID < HCC as specified in the GIC v3 Documentation.
4858		 */
4859		if (its->collections[smp_processor_id()].col_id <
4860		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4861			its_cpu_init_collection(its);
4862	}
4863	raw_spin_unlock(&its_lock);
4864}
4865
4866static struct syscore_ops its_syscore_ops = {
4867	.suspend = its_save_disable,
4868	.resume = its_restore_enable,
4869};
4870
4871static void __init __iomem *its_map_one(struct resource *res, int *err)
4872{
4873	void __iomem *its_base;
4874	u32 val;
4875
4876	its_base = ioremap(res->start, SZ_64K);
4877	if (!its_base) {
4878		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4879		*err = -ENOMEM;
4880		return NULL;
4881	}
4882
4883	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4884	if (val != 0x30 && val != 0x40) {
4885		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4886		*err = -ENODEV;
4887		goto out_unmap;
4888	}
4889
4890	*err = its_force_quiescent(its_base);
4891	if (*err) {
4892		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4893		goto out_unmap;
4894	}
4895
4896	return its_base;
4897
4898out_unmap:
4899	iounmap(its_base);
4900	return NULL;
4901}
4902
4903static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4904{
4905	struct irq_domain *inner_domain;
4906	struct msi_domain_info *info;
4907
4908	info = kzalloc(sizeof(*info), GFP_KERNEL);
4909	if (!info)
4910		return -ENOMEM;
4911
4912	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
 
 
 
 
 
 
4913	if (!inner_domain) {
4914		kfree(info);
4915		return -ENOMEM;
4916	}
4917
4918	inner_domain->parent = its_parent;
4919	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4920	inner_domain->flags |= its->msi_domain_flags;
4921	info->ops = &its_msi_domain_ops;
4922	info->data = its;
4923	inner_domain->host_data = info;
4924
4925	return 0;
4926}
4927
4928static int its_init_vpe_domain(void)
4929{
4930	struct its_node *its;
4931	u32 devid;
4932	int entries;
4933
4934	if (gic_rdists->has_direct_lpi) {
4935		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4936		return 0;
4937	}
4938
4939	/* Any ITS will do, even if not v4 */
4940	its = list_first_entry(&its_nodes, struct its_node, entry);
4941
4942	entries = roundup_pow_of_two(nr_cpu_ids);
4943	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4944				 GFP_KERNEL);
4945	if (!vpe_proxy.vpes)
4946		return -ENOMEM;
4947
4948	/* Use the last possible DevID */
4949	devid = GENMASK(device_ids(its) - 1, 0);
4950	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4951	if (!vpe_proxy.dev) {
4952		kfree(vpe_proxy.vpes);
4953		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4954		return -ENOMEM;
4955	}
4956
4957	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4958
4959	raw_spin_lock_init(&vpe_proxy.lock);
4960	vpe_proxy.next_victim = 0;
4961	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4962		devid, vpe_proxy.dev->nr_ites);
4963
4964	return 0;
4965}
4966
4967static int __init its_compute_its_list_map(struct resource *res,
4968					   void __iomem *its_base)
4969{
4970	int its_number;
4971	u32 ctlr;
4972
4973	/*
4974	 * This is assumed to be done early enough that we're
4975	 * guaranteed to be single-threaded, hence no
4976	 * locking. Should this change, we should address
4977	 * this.
4978	 */
4979	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4980	if (its_number >= GICv4_ITS_LIST_MAX) {
4981		pr_err("ITS@%pa: No ITSList entry available!\n",
4982		       &res->start);
4983		return -EINVAL;
4984	}
4985
4986	ctlr = readl_relaxed(its_base + GITS_CTLR);
4987	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4988	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4989	writel_relaxed(ctlr, its_base + GITS_CTLR);
4990	ctlr = readl_relaxed(its_base + GITS_CTLR);
4991	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4992		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4993		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4994	}
4995
4996	if (test_and_set_bit(its_number, &its_list_map)) {
4997		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4998		       &res->start, its_number);
4999		return -EINVAL;
5000	}
5001
5002	return its_number;
5003}
5004
5005static int __init its_probe_one(struct resource *res,
5006				struct fwnode_handle *handle, int numa_node)
5007{
5008	struct its_node *its;
5009	void __iomem *its_base;
5010	u64 baser, tmp, typer;
5011	struct page *page;
5012	u32 ctlr;
5013	int err;
5014
5015	its_base = its_map_one(res, &err);
5016	if (!its_base)
5017		return err;
5018
5019	pr_info("ITS %pR\n", res);
5020
5021	its = kzalloc(sizeof(*its), GFP_KERNEL);
5022	if (!its) {
5023		err = -ENOMEM;
5024		goto out_unmap;
5025	}
5026
5027	raw_spin_lock_init(&its->lock);
5028	mutex_init(&its->dev_alloc_lock);
5029	INIT_LIST_HEAD(&its->entry);
5030	INIT_LIST_HEAD(&its->its_device_list);
5031	typer = gic_read_typer(its_base + GITS_TYPER);
5032	its->typer = typer;
5033	its->base = its_base;
5034	its->phys_base = res->start;
5035	if (is_v4(its)) {
5036		if (!(typer & GITS_TYPER_VMOVP)) {
5037			err = its_compute_its_list_map(res, its_base);
5038			if (err < 0)
5039				goto out_free_its;
5040
5041			its->list_nr = err;
5042
5043			pr_info("ITS@%pa: Using ITS number %d\n",
5044				&res->start, err);
5045		} else {
5046			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5047		}
5048
5049		if (is_v4_1(its)) {
5050			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5051
5052			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5053			if (!its->sgir_base) {
5054				err = -ENOMEM;
5055				goto out_free_its;
5056			}
5057
5058			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5059
5060			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5061				&res->start, its->mpidr, svpet);
5062		}
5063	}
5064
5065	its->numa_node = numa_node;
5066
5067	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5068				get_order(ITS_CMD_QUEUE_SZ));
5069	if (!page) {
5070		err = -ENOMEM;
5071		goto out_unmap_sgir;
5072	}
5073	its->cmd_base = (void *)page_address(page);
5074	its->cmd_write = its->cmd_base;
5075	its->fwnode_handle = handle;
5076	its->get_msi_base = its_irq_get_msi_base;
5077	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5078
5079	its_enable_quirks(its);
5080
5081	err = its_alloc_tables(its);
5082	if (err)
5083		goto out_free_cmd;
5084
5085	err = its_alloc_collections(its);
5086	if (err)
5087		goto out_free_tables;
5088
5089	baser = (virt_to_phys(its->cmd_base)	|
5090		 GITS_CBASER_RaWaWb		|
5091		 GITS_CBASER_InnerShareable	|
5092		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5093		 GITS_CBASER_VALID);
5094
5095	gits_write_cbaser(baser, its->base + GITS_CBASER);
5096	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5097
 
 
 
5098	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5099		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5100			/*
5101			 * The HW reports non-shareable, we must
5102			 * remove the cacheability attributes as
5103			 * well.
5104			 */
5105			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5106				   GITS_CBASER_CACHEABILITY_MASK);
5107			baser |= GITS_CBASER_nC;
5108			gits_write_cbaser(baser, its->base + GITS_CBASER);
5109		}
5110		pr_info("ITS: using cache flushing for cmd queue\n");
5111		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5112	}
5113
5114	gits_write_cwriter(0, its->base + GITS_CWRITER);
5115	ctlr = readl_relaxed(its->base + GITS_CTLR);
5116	ctlr |= GITS_CTLR_ENABLE;
5117	if (is_v4(its))
5118		ctlr |= GITS_CTLR_ImDe;
5119	writel_relaxed(ctlr, its->base + GITS_CTLR);
5120
5121	err = its_init_domain(handle, its);
5122	if (err)
5123		goto out_free_tables;
5124
5125	raw_spin_lock(&its_lock);
5126	list_add(&its->entry, &its_nodes);
5127	raw_spin_unlock(&its_lock);
5128
5129	return 0;
5130
5131out_free_tables:
5132	its_free_tables(its);
5133out_free_cmd:
5134	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5135out_unmap_sgir:
5136	if (its->sgir_base)
5137		iounmap(its->sgir_base);
5138out_free_its:
5139	kfree(its);
5140out_unmap:
5141	iounmap(its_base);
5142	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5143	return err;
5144}
5145
5146static bool gic_rdists_supports_plpis(void)
5147{
5148	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5149}
5150
5151static int redist_disable_lpis(void)
5152{
5153	void __iomem *rbase = gic_data_rdist_rd_base();
5154	u64 timeout = USEC_PER_SEC;
5155	u64 val;
5156
5157	if (!gic_rdists_supports_plpis()) {
5158		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5159		return -ENXIO;
5160	}
5161
5162	val = readl_relaxed(rbase + GICR_CTLR);
5163	if (!(val & GICR_CTLR_ENABLE_LPIS))
5164		return 0;
5165
5166	/*
5167	 * If coming via a CPU hotplug event, we don't need to disable
5168	 * LPIs before trying to re-enable them. They are already
5169	 * configured and all is well in the world.
5170	 *
5171	 * If running with preallocated tables, there is nothing to do.
5172	 */
5173	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5174	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5175		return 0;
5176
5177	/*
5178	 * From that point on, we only try to do some damage control.
5179	 */
5180	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5181		smp_processor_id());
5182	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5183
5184	/* Disable LPIs */
5185	val &= ~GICR_CTLR_ENABLE_LPIS;
5186	writel_relaxed(val, rbase + GICR_CTLR);
5187
5188	/* Make sure any change to GICR_CTLR is observable by the GIC */
5189	dsb(sy);
5190
5191	/*
5192	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5193	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5194	 * Error out if we time out waiting for RWP to clear.
5195	 */
5196	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5197		if (!timeout) {
5198			pr_err("CPU%d: Timeout while disabling LPIs\n",
5199			       smp_processor_id());
5200			return -ETIMEDOUT;
5201		}
5202		udelay(1);
5203		timeout--;
5204	}
5205
5206	/*
5207	 * After it has been written to 1, it is IMPLEMENTATION
5208	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5209	 * cleared to 0. Error out if clearing the bit failed.
5210	 */
5211	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5212		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5213		return -EBUSY;
5214	}
5215
5216	return 0;
5217}
5218
5219int its_cpu_init(void)
5220{
5221	if (!list_empty(&its_nodes)) {
5222		int ret;
5223
5224		ret = redist_disable_lpis();
5225		if (ret)
5226			return ret;
5227
5228		its_cpu_init_lpis();
5229		its_cpu_init_collections();
5230	}
5231
5232	return 0;
5233}
5234
5235static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5236{
5237	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5238	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5239}
5240
5241static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5242		    rdist_memreserve_cpuhp_cleanup_workfn);
5243
5244static int its_cpu_memreserve_lpi(unsigned int cpu)
5245{
5246	struct page *pend_page;
5247	int ret = 0;
5248
5249	/* This gets to run exactly once per CPU */
5250	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5251		return 0;
5252
5253	pend_page = gic_data_rdist()->pend_page;
5254	if (WARN_ON(!pend_page)) {
5255		ret = -ENOMEM;
5256		goto out;
5257	}
5258	/*
5259	 * If the pending table was pre-programmed, free the memory we
5260	 * preemptively allocated. Otherwise, reserve that memory for
5261	 * later kexecs.
5262	 */
5263	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5264		its_free_pending_table(pend_page);
5265		gic_data_rdist()->pend_page = NULL;
5266	} else {
5267		phys_addr_t paddr = page_to_phys(pend_page);
5268		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5269	}
5270
5271out:
5272	/* Last CPU being brought up gets to issue the cleanup */
5273	if (!IS_ENABLED(CONFIG_SMP) ||
5274	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5275		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5276
5277	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5278	return ret;
5279}
5280
5281/* Mark all the BASER registers as invalid before they get reprogrammed */
5282static int __init its_reset_one(struct resource *res)
5283{
5284	void __iomem *its_base;
5285	int err, i;
5286
5287	its_base = its_map_one(res, &err);
5288	if (!its_base)
5289		return err;
5290
5291	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5292		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5293
5294	iounmap(its_base);
5295	return 0;
5296}
5297
5298static const struct of_device_id its_device_id[] = {
5299	{	.compatible	= "arm,gic-v3-its",	},
5300	{},
5301};
5302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5303static int __init its_of_probe(struct device_node *node)
5304{
5305	struct device_node *np;
5306	struct resource res;
 
5307
5308	/*
5309	 * Make sure *all* the ITS are reset before we probe any, as
5310	 * they may be sharing memory. If any of the ITS fails to
5311	 * reset, don't even try to go any further, as this could
5312	 * result in something even worse.
5313	 */
5314	for (np = of_find_matching_node(node, its_device_id); np;
5315	     np = of_find_matching_node(np, its_device_id)) {
5316		int err;
5317
5318		if (!of_device_is_available(np) ||
5319		    !of_property_read_bool(np, "msi-controller") ||
5320		    of_address_to_resource(np, 0, &res))
5321			continue;
5322
5323		err = its_reset_one(&res);
5324		if (err)
5325			return err;
5326	}
5327
5328	for (np = of_find_matching_node(node, its_device_id); np;
5329	     np = of_find_matching_node(np, its_device_id)) {
 
 
5330		if (!of_device_is_available(np))
5331			continue;
5332		if (!of_property_read_bool(np, "msi-controller")) {
5333			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5334				np);
5335			continue;
5336		}
5337
5338		if (of_address_to_resource(np, 0, &res)) {
5339			pr_warn("%pOF: no regs?\n", np);
5340			continue;
5341		}
5342
5343		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
 
 
 
 
 
 
 
 
 
5344	}
5345	return 0;
5346}
5347
5348#ifdef CONFIG_ACPI
5349
5350#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5351
5352#ifdef CONFIG_ACPI_NUMA
5353struct its_srat_map {
5354	/* numa node id */
5355	u32	numa_node;
5356	/* GIC ITS ID */
5357	u32	its_id;
5358};
5359
5360static struct its_srat_map *its_srat_maps __initdata;
5361static int its_in_srat __initdata;
5362
5363static int __init acpi_get_its_numa_node(u32 its_id)
5364{
5365	int i;
5366
5367	for (i = 0; i < its_in_srat; i++) {
5368		if (its_id == its_srat_maps[i].its_id)
5369			return its_srat_maps[i].numa_node;
5370	}
5371	return NUMA_NO_NODE;
5372}
5373
5374static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5375					  const unsigned long end)
5376{
5377	return 0;
5378}
5379
5380static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5381			 const unsigned long end)
5382{
5383	int node;
5384	struct acpi_srat_gic_its_affinity *its_affinity;
5385
5386	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5387	if (!its_affinity)
5388		return -EINVAL;
5389
5390	if (its_affinity->header.length < sizeof(*its_affinity)) {
5391		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5392			its_affinity->header.length);
5393		return -EINVAL;
5394	}
5395
5396	/*
5397	 * Note that in theory a new proximity node could be created by this
5398	 * entry as it is an SRAT resource allocation structure.
5399	 * We do not currently support doing so.
5400	 */
5401	node = pxm_to_node(its_affinity->proximity_domain);
5402
5403	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5404		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5405		return 0;
5406	}
5407
5408	its_srat_maps[its_in_srat].numa_node = node;
5409	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5410	its_in_srat++;
5411	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5412		its_affinity->proximity_domain, its_affinity->its_id, node);
5413
5414	return 0;
5415}
5416
5417static void __init acpi_table_parse_srat_its(void)
5418{
5419	int count;
5420
5421	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5422			sizeof(struct acpi_table_srat),
5423			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5424			gic_acpi_match_srat_its, 0);
5425	if (count <= 0)
5426		return;
5427
5428	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5429				      GFP_KERNEL);
5430	if (!its_srat_maps)
5431		return;
5432
5433	acpi_table_parse_entries(ACPI_SIG_SRAT,
5434			sizeof(struct acpi_table_srat),
5435			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5436			gic_acpi_parse_srat_its, 0);
5437}
5438
5439/* free the its_srat_maps after ITS probing */
5440static void __init acpi_its_srat_maps_free(void)
5441{
5442	kfree(its_srat_maps);
5443}
5444#else
5445static void __init acpi_table_parse_srat_its(void)	{ }
5446static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5447static void __init acpi_its_srat_maps_free(void) { }
5448#endif
5449
5450static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5451					  const unsigned long end)
5452{
5453	struct acpi_madt_generic_translator *its_entry;
5454	struct fwnode_handle *dom_handle;
 
5455	struct resource res;
5456	int err;
5457
5458	its_entry = (struct acpi_madt_generic_translator *)header;
5459	memset(&res, 0, sizeof(res));
5460	res.start = its_entry->base_address;
5461	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5462	res.flags = IORESOURCE_MEM;
5463
5464	dom_handle = irq_domain_alloc_fwnode(&res.start);
5465	if (!dom_handle) {
5466		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5467		       &res.start);
5468		return -ENOMEM;
5469	}
5470
5471	err = iort_register_domain_token(its_entry->translation_id, res.start,
5472					 dom_handle);
5473	if (err) {
5474		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5475		       &res.start, its_entry->translation_id);
5476		goto dom_err;
5477	}
5478
5479	err = its_probe_one(&res, dom_handle,
5480			acpi_get_its_numa_node(its_entry->translation_id));
 
 
 
 
 
 
5481	if (!err)
5482		return 0;
5483
 
5484	iort_deregister_domain_token(its_entry->translation_id);
5485dom_err:
5486	irq_domain_free_fwnode(dom_handle);
5487	return err;
5488}
5489
5490static int __init its_acpi_reset(union acpi_subtable_headers *header,
5491				 const unsigned long end)
5492{
5493	struct acpi_madt_generic_translator *its_entry;
5494	struct resource res;
5495
5496	its_entry = (struct acpi_madt_generic_translator *)header;
5497	res = (struct resource) {
5498		.start	= its_entry->base_address,
5499		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5500		.flags	= IORESOURCE_MEM,
5501	};
5502
5503	return its_reset_one(&res);
5504}
5505
5506static void __init its_acpi_probe(void)
5507{
5508	acpi_table_parse_srat_its();
5509	/*
5510	 * Make sure *all* the ITS are reset before we probe any, as
5511	 * they may be sharing memory. If any of the ITS fails to
5512	 * reset, don't even try to go any further, as this could
5513	 * result in something even worse.
5514	 */
5515	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5516				  its_acpi_reset, 0) > 0)
5517		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5518				      gic_acpi_parse_madt_its, 0);
5519	acpi_its_srat_maps_free();
5520}
5521#else
5522static void __init its_acpi_probe(void) { }
5523#endif
5524
5525int __init its_lpi_memreserve_init(void)
5526{
5527	int state;
5528
5529	if (!efi_enabled(EFI_CONFIG_TABLES))
5530		return 0;
5531
5532	if (list_empty(&its_nodes))
5533		return 0;
5534
5535	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5536	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5537				  "irqchip/arm/gicv3/memreserve:online",
5538				  its_cpu_memreserve_lpi,
5539				  NULL);
5540	if (state < 0)
5541		return state;
5542
5543	gic_rdists->cpuhp_memreserve_state = state;
5544
5545	return 0;
5546}
5547
5548int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5549		    struct irq_domain *parent_domain)
5550{
5551	struct device_node *of_node;
5552	struct its_node *its;
5553	bool has_v4 = false;
5554	bool has_v4_1 = false;
5555	int err;
5556
5557	gic_rdists = rdists;
5558
5559	its_parent = parent_domain;
5560	of_node = to_of_node(handle);
5561	if (of_node)
5562		its_of_probe(of_node);
5563	else
5564		its_acpi_probe();
5565
5566	if (list_empty(&its_nodes)) {
5567		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5568		return -ENXIO;
5569	}
5570
5571	err = allocate_lpi_tables();
5572	if (err)
5573		return err;
5574
5575	list_for_each_entry(its, &its_nodes, entry) {
5576		has_v4 |= is_v4(its);
5577		has_v4_1 |= is_v4_1(its);
5578	}
5579
5580	/* Don't bother with inconsistent systems */
5581	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5582		rdists->has_rvpeid = false;
5583
5584	if (has_v4 & rdists->has_vlpis) {
5585		const struct irq_domain_ops *sgi_ops;
5586
5587		if (has_v4_1)
5588			sgi_ops = &its_sgi_domain_ops;
5589		else
5590			sgi_ops = NULL;
5591
5592		if (its_init_vpe_domain() ||
5593		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5594			rdists->has_vlpis = false;
5595			pr_err("ITS: Disabling GICv4 support\n");
5596		}
5597	}
5598
5599	register_syscore_ops(&its_syscore_ops);
5600
5601	return 0;
5602}