Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/device.h>
  25#include <linux/export.h>
  26#include <linux/err.h>
  27#include <linux/fs.h>
  28#include <linux/file.h>
  29#include <linux/sched.h>
  30#include <linux/slab.h>
  31#include <linux/uaccess.h>
  32#include <linux/compat.h>
  33#include <uapi/linux/kfd_ioctl.h>
  34#include <linux/time.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/ptrace.h>
  38#include <linux/dma-buf.h>
  39#include <linux/fdtable.h>
  40#include <linux/processor.h>
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
 
  43#include "kfd_svm.h"
  44#include "amdgpu_amdkfd.h"
  45#include "kfd_smi_events.h"
  46#include "amdgpu_dma_buf.h"
  47#include "kfd_debug.h"
  48
  49static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  50static int kfd_open(struct inode *, struct file *);
  51static int kfd_release(struct inode *, struct file *);
  52static int kfd_mmap(struct file *, struct vm_area_struct *);
  53
  54static const char kfd_dev_name[] = "kfd";
  55
  56static const struct file_operations kfd_fops = {
  57	.owner = THIS_MODULE,
  58	.unlocked_ioctl = kfd_ioctl,
  59	.compat_ioctl = compat_ptr_ioctl,
  60	.open = kfd_open,
  61	.release = kfd_release,
  62	.mmap = kfd_mmap,
  63};
  64
  65static int kfd_char_dev_major = -1;
  66static struct class *kfd_class;
  67struct device *kfd_device;
  68
  69static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
  70{
  71	struct kfd_process_device *pdd;
  72
  73	mutex_lock(&p->mutex);
  74	pdd = kfd_process_device_data_by_id(p, gpu_id);
  75
  76	if (pdd)
  77		return pdd;
  78
  79	mutex_unlock(&p->mutex);
  80	return NULL;
  81}
  82
  83static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
  84{
  85	mutex_unlock(&pdd->process->mutex);
  86}
  87
  88int kfd_chardev_init(void)
  89{
  90	int err = 0;
  91
  92	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  93	err = kfd_char_dev_major;
  94	if (err < 0)
  95		goto err_register_chrdev;
  96
  97	kfd_class = class_create(kfd_dev_name);
  98	err = PTR_ERR(kfd_class);
  99	if (IS_ERR(kfd_class))
 100		goto err_class_create;
 101
 102	kfd_device = device_create(kfd_class, NULL,
 103					MKDEV(kfd_char_dev_major, 0),
 104					NULL, kfd_dev_name);
 105	err = PTR_ERR(kfd_device);
 106	if (IS_ERR(kfd_device))
 107		goto err_device_create;
 108
 109	return 0;
 110
 111err_device_create:
 112	class_destroy(kfd_class);
 113err_class_create:
 114	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 115err_register_chrdev:
 116	return err;
 117}
 118
 119void kfd_chardev_exit(void)
 120{
 121	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
 122	class_destroy(kfd_class);
 123	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 124	kfd_device = NULL;
 125}
 126
 
 
 
 
 
 127
 128static int kfd_open(struct inode *inode, struct file *filep)
 129{
 130	struct kfd_process *process;
 131	bool is_32bit_user_mode;
 132
 133	if (iminor(inode) != 0)
 134		return -ENODEV;
 135
 136	is_32bit_user_mode = in_compat_syscall();
 137
 138	if (is_32bit_user_mode) {
 139		dev_warn(kfd_device,
 140			"Process %d (32-bit) failed to open /dev/kfd\n"
 141			"32-bit processes are not supported by amdkfd\n",
 142			current->pid);
 143		return -EPERM;
 144	}
 145
 146	process = kfd_create_process(current);
 147	if (IS_ERR(process))
 148		return PTR_ERR(process);
 149
 150	if (kfd_process_init_cwsr_apu(process, filep)) {
 
 
 151		kfd_unref_process(process);
 152		return -EFAULT;
 153	}
 154
 155	/* filep now owns the reference returned by kfd_create_process */
 156	filep->private_data = process;
 157
 158	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 159		process->pasid, process->is_32bit_user_mode);
 160
 161	return 0;
 162}
 163
 164static int kfd_release(struct inode *inode, struct file *filep)
 165{
 166	struct kfd_process *process = filep->private_data;
 167
 168	if (process)
 169		kfd_unref_process(process);
 170
 171	return 0;
 172}
 173
 174static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 175					void *data)
 176{
 177	struct kfd_ioctl_get_version_args *args = data;
 178
 179	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 180	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 181
 182	return 0;
 183}
 184
 185static int set_queue_properties_from_user(struct queue_properties *q_properties,
 186				struct kfd_ioctl_create_queue_args *args)
 187{
 188	/*
 189	 * Repurpose queue percentage to accommodate new features:
 190	 * bit 0-7: queue percentage
 191	 * bit 8-15: pm4_target_xcc
 192	 */
 193	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 194		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 195		return -EINVAL;
 196	}
 197
 198	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 199		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 200		return -EINVAL;
 201	}
 202
 203	if ((args->ring_base_address) &&
 204		(!access_ok((const void __user *) args->ring_base_address,
 205			sizeof(uint64_t)))) {
 206		pr_err("Can't access ring base address\n");
 207		return -EFAULT;
 208	}
 209
 210	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 211		pr_err("Ring size must be a power of 2 or 0\n");
 212		return -EINVAL;
 213	}
 214
 215	if (!access_ok((const void __user *) args->read_pointer_address,
 216			sizeof(uint32_t))) {
 217		pr_err("Can't access read pointer\n");
 218		return -EFAULT;
 219	}
 220
 221	if (!access_ok((const void __user *) args->write_pointer_address,
 222			sizeof(uint32_t))) {
 223		pr_err("Can't access write pointer\n");
 224		return -EFAULT;
 225	}
 226
 227	if (args->eop_buffer_address &&
 228		!access_ok((const void __user *) args->eop_buffer_address,
 229			sizeof(uint32_t))) {
 230		pr_debug("Can't access eop buffer");
 231		return -EFAULT;
 232	}
 233
 234	if (args->ctx_save_restore_address &&
 235		!access_ok((const void __user *) args->ctx_save_restore_address,
 236			sizeof(uint32_t))) {
 237		pr_debug("Can't access ctx save restore buffer");
 238		return -EFAULT;
 239	}
 240
 241	q_properties->is_interop = false;
 242	q_properties->is_gws = false;
 243	q_properties->queue_percent = args->queue_percentage & 0xFF;
 244	/* bit 8-15 are repurposed to be PM4 target XCC */
 245	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 246	q_properties->priority = args->queue_priority;
 247	q_properties->queue_address = args->ring_base_address;
 248	q_properties->queue_size = args->ring_size;
 249	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 250	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 251	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 252	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 253	q_properties->ctx_save_restore_area_address =
 254			args->ctx_save_restore_address;
 255	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 256	q_properties->ctl_stack_size = args->ctl_stack_size;
 257	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 258		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 259		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 260	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 261		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 262	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
 263		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
 264	else
 265		return -ENOTSUPP;
 266
 267	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 268		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 269	else
 270		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 271
 272	pr_debug("Queue Percentage: %d, %d\n",
 273			q_properties->queue_percent, args->queue_percentage);
 274
 275	pr_debug("Queue Priority: %d, %d\n",
 276			q_properties->priority, args->queue_priority);
 277
 278	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
 279			q_properties->queue_address, args->ring_base_address);
 280
 281	pr_debug("Queue Size: 0x%llX, %u\n",
 282			q_properties->queue_size, args->ring_size);
 283
 284	pr_debug("Queue r/w Pointers: %px, %px\n",
 285			q_properties->read_ptr,
 286			q_properties->write_ptr);
 287
 288	pr_debug("Queue Format: %d\n", q_properties->format);
 289
 290	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
 291
 292	pr_debug("Queue CTX save area: 0x%llX\n",
 293			q_properties->ctx_save_restore_area_address);
 294
 295	return 0;
 296}
 297
 298static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 299					void *data)
 300{
 301	struct kfd_ioctl_create_queue_args *args = data;
 302	struct kfd_node *dev;
 303	int err = 0;
 304	unsigned int queue_id;
 305	struct kfd_process_device *pdd;
 306	struct queue_properties q_properties;
 307	uint32_t doorbell_offset_in_process = 0;
 308	struct amdgpu_bo *wptr_bo = NULL;
 309
 310	memset(&q_properties, 0, sizeof(struct queue_properties));
 311
 312	pr_debug("Creating queue ioctl\n");
 313
 314	err = set_queue_properties_from_user(&q_properties, args);
 315	if (err)
 316		return err;
 317
 318	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
 319
 320	mutex_lock(&p->mutex);
 321
 322	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 323	if (!pdd) {
 324		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 325		err = -EINVAL;
 326		goto err_pdd;
 327	}
 328	dev = pdd->dev;
 
 329
 330	pdd = kfd_bind_process_to_device(dev, p);
 331	if (IS_ERR(pdd)) {
 332		err = -ESRCH;
 333		goto err_bind_process;
 334	}
 335
 336	if (!pdd->qpd.proc_doorbells) {
 337		err = kfd_alloc_process_doorbells(dev->kfd, pdd);
 338		if (err) {
 339			pr_debug("failed to allocate process doorbells\n");
 340			goto err_bind_process;
 341		}
 342	}
 343
 344	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
 345	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
 346	 */
 347	if (dev->kfd->shared_resources.enable_mes &&
 348			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
 349			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
 350		struct amdgpu_bo_va_mapping *wptr_mapping;
 351		struct amdgpu_vm *wptr_vm;
 352
 353		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
 354		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
 355		if (err)
 356			goto err_wptr_map_gart;
 357
 358		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
 359				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
 360		amdgpu_bo_unreserve(wptr_vm->root.bo);
 361		if (!wptr_mapping) {
 362			pr_err("Failed to lookup wptr bo\n");
 363			err = -EINVAL;
 364			goto err_wptr_map_gart;
 365		}
 366
 367		wptr_bo = wptr_mapping->bo_va->base.bo;
 368		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
 369			pr_err("Requested GART mapping for wptr bo larger than one page\n");
 370			err = -EINVAL;
 371			goto err_wptr_map_gart;
 372		}
 373
 374		err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
 375		if (err) {
 376			pr_err("Failed to map wptr bo to GART\n");
 377			goto err_wptr_map_gart;
 378		}
 379	}
 380
 381	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
 382			p->pasid,
 383			dev->id);
 384
 385	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
 386			NULL, NULL, NULL, &doorbell_offset_in_process);
 387	if (err != 0)
 388		goto err_create_queue;
 389
 390	args->queue_id = queue_id;
 391
 392
 393	/* Return gpu_id as doorbell offset for mmap usage */
 394	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
 395	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
 396	if (KFD_IS_SOC15(dev))
 397		/* On SOC15 ASICs, include the doorbell offset within the
 398		 * process doorbell frame, which is 2 pages.
 399		 */
 400		args->doorbell_offset |= doorbell_offset_in_process;
 401
 402	mutex_unlock(&p->mutex);
 403
 404	pr_debug("Queue id %d was created successfully\n", args->queue_id);
 405
 406	pr_debug("Ring buffer address == 0x%016llX\n",
 407			args->ring_base_address);
 408
 409	pr_debug("Read ptr address    == 0x%016llX\n",
 410			args->read_pointer_address);
 411
 412	pr_debug("Write ptr address   == 0x%016llX\n",
 413			args->write_pointer_address);
 414
 415	kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
 416	return 0;
 417
 418err_create_queue:
 419	if (wptr_bo)
 420		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
 421err_wptr_map_gart:
 422err_bind_process:
 423err_pdd:
 424	mutex_unlock(&p->mutex);
 425	return err;
 426}
 427
 428static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 429					void *data)
 430{
 431	int retval;
 432	struct kfd_ioctl_destroy_queue_args *args = data;
 433
 434	pr_debug("Destroying queue id %d for pasid 0x%x\n",
 435				args->queue_id,
 436				p->pasid);
 437
 438	mutex_lock(&p->mutex);
 439
 440	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 441
 442	mutex_unlock(&p->mutex);
 443	return retval;
 444}
 445
 446static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 447					void *data)
 448{
 449	int retval;
 450	struct kfd_ioctl_update_queue_args *args = data;
 451	struct queue_properties properties;
 452
 453	/*
 454	 * Repurpose queue percentage to accommodate new features:
 455	 * bit 0-7: queue percentage
 456	 * bit 8-15: pm4_target_xcc
 457	 */
 458	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 459		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 460		return -EINVAL;
 461	}
 462
 463	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 464		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 465		return -EINVAL;
 466	}
 467
 468	if ((args->ring_base_address) &&
 469		(!access_ok((const void __user *) args->ring_base_address,
 470			sizeof(uint64_t)))) {
 471		pr_err("Can't access ring base address\n");
 472		return -EFAULT;
 473	}
 474
 475	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 476		pr_err("Ring size must be a power of 2 or 0\n");
 477		return -EINVAL;
 478	}
 479
 480	properties.queue_address = args->ring_base_address;
 481	properties.queue_size = args->ring_size;
 482	properties.queue_percent = args->queue_percentage & 0xFF;
 483	/* bit 8-15 are repurposed to be PM4 target XCC */
 484	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 485	properties.priority = args->queue_priority;
 486
 487	pr_debug("Updating queue id %d for pasid 0x%x\n",
 488			args->queue_id, p->pasid);
 489
 490	mutex_lock(&p->mutex);
 491
 492	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
 493
 494	mutex_unlock(&p->mutex);
 495
 496	return retval;
 497}
 498
 499static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
 500					void *data)
 501{
 502	int retval;
 503	const int max_num_cus = 1024;
 504	struct kfd_ioctl_set_cu_mask_args *args = data;
 505	struct mqd_update_info minfo = {0};
 506	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
 507	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
 508
 509	if ((args->num_cu_mask % 32) != 0) {
 510		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
 511				args->num_cu_mask);
 512		return -EINVAL;
 513	}
 514
 515	minfo.cu_mask.count = args->num_cu_mask;
 516	if (minfo.cu_mask.count == 0) {
 517		pr_debug("CU mask cannot be 0");
 518		return -EINVAL;
 519	}
 520
 521	/* To prevent an unreasonably large CU mask size, set an arbitrary
 522	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
 523	 * past max_num_cus bits and just use the first max_num_cus bits.
 524	 */
 525	if (minfo.cu_mask.count > max_num_cus) {
 526		pr_debug("CU mask cannot be greater than 1024 bits");
 527		minfo.cu_mask.count = max_num_cus;
 528		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
 529	}
 530
 531	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
 532	if (!minfo.cu_mask.ptr)
 533		return -ENOMEM;
 534
 535	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
 536	if (retval) {
 537		pr_debug("Could not copy CU mask from userspace");
 538		retval = -EFAULT;
 539		goto out;
 540	}
 541
 542	mutex_lock(&p->mutex);
 543
 544	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
 545
 546	mutex_unlock(&p->mutex);
 547
 548out:
 549	kfree(minfo.cu_mask.ptr);
 
 550	return retval;
 551}
 552
 553static int kfd_ioctl_get_queue_wave_state(struct file *filep,
 554					  struct kfd_process *p, void *data)
 555{
 556	struct kfd_ioctl_get_queue_wave_state_args *args = data;
 557	int r;
 558
 559	mutex_lock(&p->mutex);
 560
 561	r = pqm_get_wave_state(&p->pqm, args->queue_id,
 562			       (void __user *)args->ctl_stack_address,
 563			       &args->ctl_stack_used_size,
 564			       &args->save_area_used_size);
 565
 566	mutex_unlock(&p->mutex);
 567
 568	return r;
 569}
 570
 571static int kfd_ioctl_set_memory_policy(struct file *filep,
 572					struct kfd_process *p, void *data)
 573{
 574	struct kfd_ioctl_set_memory_policy_args *args = data;
 
 575	int err = 0;
 576	struct kfd_process_device *pdd;
 577	enum cache_policy default_policy, alternate_policy;
 578
 579	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 580	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 581		return -EINVAL;
 582	}
 583
 584	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 585	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 586		return -EINVAL;
 587	}
 588
 
 
 
 
 589	mutex_lock(&p->mutex);
 590	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 591	if (!pdd) {
 592		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 593		err = -EINVAL;
 594		goto err_pdd;
 595	}
 596
 597	pdd = kfd_bind_process_to_device(pdd->dev, p);
 598	if (IS_ERR(pdd)) {
 599		err = -ESRCH;
 600		goto out;
 601	}
 602
 603	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 604			 ? cache_policy_coherent : cache_policy_noncoherent;
 605
 606	alternate_policy =
 607		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 608		   ? cache_policy_coherent : cache_policy_noncoherent;
 609
 610	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
 611				&pdd->qpd,
 612				default_policy,
 613				alternate_policy,
 614				(void __user *)args->alternate_aperture_base,
 615				args->alternate_aperture_size))
 616		err = -EINVAL;
 617
 618out:
 619err_pdd:
 620	mutex_unlock(&p->mutex);
 621
 622	return err;
 623}
 624
 625static int kfd_ioctl_set_trap_handler(struct file *filep,
 626					struct kfd_process *p, void *data)
 627{
 628	struct kfd_ioctl_set_trap_handler_args *args = data;
 
 629	int err = 0;
 630	struct kfd_process_device *pdd;
 631
 632	mutex_lock(&p->mutex);
 
 
 633
 634	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 635	if (!pdd) {
 636		err = -EINVAL;
 637		goto err_pdd;
 638	}
 639
 640	pdd = kfd_bind_process_to_device(pdd->dev, p);
 641	if (IS_ERR(pdd)) {
 642		err = -ESRCH;
 643		goto out;
 644	}
 645
 646	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
 647
 648out:
 649err_pdd:
 650	mutex_unlock(&p->mutex);
 651
 652	return err;
 653}
 654
 655static int kfd_ioctl_dbg_register(struct file *filep,
 656				struct kfd_process *p, void *data)
 657{
 658	return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659}
 660
 661static int kfd_ioctl_dbg_unregister(struct file *filep,
 662				struct kfd_process *p, void *data)
 663{
 664	return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665}
 666
 
 
 
 
 
 
 
 
 
 667static int kfd_ioctl_dbg_address_watch(struct file *filep,
 668					struct kfd_process *p, void *data)
 669{
 670	return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673/* Parse and generate fixed size data structure for wave control */
 674static int kfd_ioctl_dbg_wave_control(struct file *filep,
 675					struct kfd_process *p, void *data)
 676{
 677	return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678}
 679
 680static int kfd_ioctl_get_clock_counters(struct file *filep,
 681				struct kfd_process *p, void *data)
 682{
 683	struct kfd_ioctl_get_clock_counters_args *args = data;
 684	struct kfd_process_device *pdd;
 685
 686	mutex_lock(&p->mutex);
 687	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 688	mutex_unlock(&p->mutex);
 689	if (pdd)
 690		/* Reading GPU clock counter from KGD */
 691		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
 692	else
 693		/* Node without GPU resource */
 694		args->gpu_clock_counter = 0;
 695
 696	/* No access to rdtsc. Using raw monotonic time */
 697	args->cpu_clock_counter = ktime_get_raw_ns();
 698	args->system_clock_counter = ktime_get_boottime_ns();
 699
 700	/* Since the counter is in nano-seconds we use 1GHz frequency */
 701	args->system_clock_freq = 1000000000;
 702
 703	return 0;
 704}
 705
 706
 707static int kfd_ioctl_get_process_apertures(struct file *filp,
 708				struct kfd_process *p, void *data)
 709{
 710	struct kfd_ioctl_get_process_apertures_args *args = data;
 711	struct kfd_process_device_apertures *pAperture;
 712	int i;
 713
 714	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 715
 716	args->num_of_nodes = 0;
 717
 718	mutex_lock(&p->mutex);
 719	/* Run over all pdd of the process */
 720	for (i = 0; i < p->n_pdds; i++) {
 721		struct kfd_process_device *pdd = p->pdds[i];
 722
 723		pAperture =
 724			&args->process_apertures[args->num_of_nodes];
 725		pAperture->gpu_id = pdd->dev->id;
 726		pAperture->lds_base = pdd->lds_base;
 727		pAperture->lds_limit = pdd->lds_limit;
 728		pAperture->gpuvm_base = pdd->gpuvm_base;
 729		pAperture->gpuvm_limit = pdd->gpuvm_limit;
 730		pAperture->scratch_base = pdd->scratch_base;
 731		pAperture->scratch_limit = pdd->scratch_limit;
 732
 733		dev_dbg(kfd_device,
 734			"node id %u\n", args->num_of_nodes);
 735		dev_dbg(kfd_device,
 736			"gpu id %u\n", pdd->dev->id);
 737		dev_dbg(kfd_device,
 738			"lds_base %llX\n", pdd->lds_base);
 739		dev_dbg(kfd_device,
 740			"lds_limit %llX\n", pdd->lds_limit);
 741		dev_dbg(kfd_device,
 742			"gpuvm_base %llX\n", pdd->gpuvm_base);
 743		dev_dbg(kfd_device,
 744			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 745		dev_dbg(kfd_device,
 746			"scratch_base %llX\n", pdd->scratch_base);
 747		dev_dbg(kfd_device,
 748			"scratch_limit %llX\n", pdd->scratch_limit);
 749
 750		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
 751			break;
 752	}
 753	mutex_unlock(&p->mutex);
 754
 755	return 0;
 756}
 757
 758static int kfd_ioctl_get_process_apertures_new(struct file *filp,
 759				struct kfd_process *p, void *data)
 760{
 761	struct kfd_ioctl_get_process_apertures_new_args *args = data;
 762	struct kfd_process_device_apertures *pa;
 763	int ret;
 764	int i;
 765
 766	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 767
 768	if (args->num_of_nodes == 0) {
 769		/* Return number of nodes, so that user space can alloacate
 770		 * sufficient memory
 771		 */
 772		mutex_lock(&p->mutex);
 773		args->num_of_nodes = p->n_pdds;
 774		goto out_unlock;
 775	}
 776
 777	/* Fill in process-aperture information for all available
 778	 * nodes, but not more than args->num_of_nodes as that is
 779	 * the amount of memory allocated by user
 780	 */
 781	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
 782				args->num_of_nodes), GFP_KERNEL);
 783	if (!pa)
 784		return -ENOMEM;
 785
 786	mutex_lock(&p->mutex);
 787
 788	if (!p->n_pdds) {
 789		args->num_of_nodes = 0;
 790		kfree(pa);
 791		goto out_unlock;
 792	}
 793
 794	/* Run over all pdd of the process */
 795	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
 796		struct kfd_process_device *pdd = p->pdds[i];
 797
 798		pa[i].gpu_id = pdd->dev->id;
 799		pa[i].lds_base = pdd->lds_base;
 800		pa[i].lds_limit = pdd->lds_limit;
 801		pa[i].gpuvm_base = pdd->gpuvm_base;
 802		pa[i].gpuvm_limit = pdd->gpuvm_limit;
 803		pa[i].scratch_base = pdd->scratch_base;
 804		pa[i].scratch_limit = pdd->scratch_limit;
 805
 806		dev_dbg(kfd_device,
 807			"gpu id %u\n", pdd->dev->id);
 808		dev_dbg(kfd_device,
 809			"lds_base %llX\n", pdd->lds_base);
 810		dev_dbg(kfd_device,
 811			"lds_limit %llX\n", pdd->lds_limit);
 812		dev_dbg(kfd_device,
 813			"gpuvm_base %llX\n", pdd->gpuvm_base);
 814		dev_dbg(kfd_device,
 815			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 816		dev_dbg(kfd_device,
 817			"scratch_base %llX\n", pdd->scratch_base);
 818		dev_dbg(kfd_device,
 819			"scratch_limit %llX\n", pdd->scratch_limit);
 820	}
 821	mutex_unlock(&p->mutex);
 822
 823	args->num_of_nodes = i;
 824	ret = copy_to_user(
 825			(void __user *)args->kfd_process_device_apertures_ptr,
 826			pa,
 827			(i * sizeof(struct kfd_process_device_apertures)));
 828	kfree(pa);
 829	return ret ? -EFAULT : 0;
 830
 831out_unlock:
 832	mutex_unlock(&p->mutex);
 833	return 0;
 834}
 835
 836static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 837					void *data)
 838{
 839	struct kfd_ioctl_create_event_args *args = data;
 840	int err;
 841
 842	/* For dGPUs the event page is allocated in user mode. The
 843	 * handle is passed to KFD with the first call to this IOCTL
 844	 * through the event_page_offset field.
 845	 */
 846	if (args->event_page_offset) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847		mutex_lock(&p->mutex);
 848		err = kfd_kmap_event_page(p, args->event_page_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 849		mutex_unlock(&p->mutex);
 850		if (err)
 
 
 
 
 
 
 
 
 
 
 851			return err;
 
 852	}
 853
 854	err = kfd_event_create(filp, p, args->event_type,
 855				args->auto_reset != 0, args->node_id,
 856				&args->event_id, &args->event_trigger_data,
 857				&args->event_page_offset,
 858				&args->event_slot_index);
 859
 860	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
 
 
 
 861	return err;
 862}
 863
 864static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
 865					void *data)
 866{
 867	struct kfd_ioctl_destroy_event_args *args = data;
 868
 869	return kfd_event_destroy(p, args->event_id);
 870}
 871
 872static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
 873				void *data)
 874{
 875	struct kfd_ioctl_set_event_args *args = data;
 876
 877	return kfd_set_event(p, args->event_id);
 878}
 879
 880static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
 881				void *data)
 882{
 883	struct kfd_ioctl_reset_event_args *args = data;
 884
 885	return kfd_reset_event(p, args->event_id);
 886}
 887
 888static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
 889				void *data)
 890{
 891	struct kfd_ioctl_wait_events_args *args = data;
 
 892
 893	return kfd_wait_on_events(p, args->num_events,
 894			(void __user *)args->events_ptr,
 895			(args->wait_for_all != 0),
 896			&args->timeout, &args->wait_result);
 
 
 897}
 898static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
 899					struct kfd_process *p, void *data)
 900{
 901	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
 902	struct kfd_process_device *pdd;
 903	struct kfd_node *dev;
 904	long err;
 905
 
 
 
 
 906	mutex_lock(&p->mutex);
 907	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 908	if (!pdd) {
 909		err = -EINVAL;
 910		goto err_pdd;
 911	}
 912	dev = pdd->dev;
 913
 914	pdd = kfd_bind_process_to_device(dev, p);
 915	if (IS_ERR(pdd)) {
 916		err = PTR_ERR(pdd);
 917		goto bind_process_to_device_fail;
 918	}
 919
 920	pdd->qpd.sh_hidden_private_base = args->va_addr;
 921
 922	mutex_unlock(&p->mutex);
 923
 924	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
 925	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
 926		dev->kfd2kgd->set_scratch_backing_va(
 927			dev->adev, args->va_addr, pdd->qpd.vmid);
 928
 929	return 0;
 930
 931bind_process_to_device_fail:
 932err_pdd:
 933	mutex_unlock(&p->mutex);
 934	return err;
 935}
 936
 937static int kfd_ioctl_get_tile_config(struct file *filep,
 938		struct kfd_process *p, void *data)
 939{
 940	struct kfd_ioctl_get_tile_config_args *args = data;
 941	struct kfd_process_device *pdd;
 942	struct tile_config config;
 943	int err = 0;
 944
 945	mutex_lock(&p->mutex);
 946	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 947	mutex_unlock(&p->mutex);
 948	if (!pdd)
 949		return -EINVAL;
 950
 951	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
 952
 953	args->gb_addr_config = config.gb_addr_config;
 954	args->num_banks = config.num_banks;
 955	args->num_ranks = config.num_ranks;
 956
 957	if (args->num_tile_configs > config.num_tile_configs)
 958		args->num_tile_configs = config.num_tile_configs;
 959	err = copy_to_user((void __user *)args->tile_config_ptr,
 960			config.tile_config_ptr,
 961			args->num_tile_configs * sizeof(uint32_t));
 962	if (err) {
 963		args->num_tile_configs = 0;
 964		return -EFAULT;
 965	}
 966
 967	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
 968		args->num_macro_tile_configs =
 969				config.num_macro_tile_configs;
 970	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
 971			config.macro_tile_config_ptr,
 972			args->num_macro_tile_configs * sizeof(uint32_t));
 973	if (err) {
 974		args->num_macro_tile_configs = 0;
 975		return -EFAULT;
 976	}
 977
 978	return 0;
 979}
 980
 981static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
 982				void *data)
 983{
 984	struct kfd_ioctl_acquire_vm_args *args = data;
 985	struct kfd_process_device *pdd;
 
 986	struct file *drm_file;
 987	int ret;
 988
 
 
 
 
 989	drm_file = fget(args->drm_fd);
 990	if (!drm_file)
 991		return -EINVAL;
 992
 993	mutex_lock(&p->mutex);
 994	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 
 995	if (!pdd) {
 996		ret = -EINVAL;
 997		goto err_pdd;
 998	}
 999
1000	if (pdd->drm_file) {
1001		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1002		goto err_drm_file;
1003	}
1004
1005	ret = kfd_process_device_init_vm(pdd, drm_file);
1006	if (ret)
1007		goto err_unlock;
1008
1009	/* On success, the PDD keeps the drm_file reference */
1010	mutex_unlock(&p->mutex);
1011
1012	return 0;
1013
1014err_unlock:
1015err_pdd:
1016err_drm_file:
1017	mutex_unlock(&p->mutex);
1018	fput(drm_file);
1019	return ret;
1020}
1021
1022bool kfd_dev_is_large_bar(struct kfd_node *dev)
1023{
1024	if (dev->kfd->adev->debug_largebar) {
 
 
1025		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1026		return true;
1027	}
1028
1029	if (dev->local_mem_info.local_mem_size_private == 0 &&
1030	    dev->local_mem_info.local_mem_size_public > 0)
1031		return true;
1032
1033	if (dev->local_mem_info.local_mem_size_public == 0 &&
1034	    dev->kfd->adev->gmc.is_app_apu) {
1035		pr_debug("APP APU, Consider like a large bar system\n");
1036		return true;
1037	}
1038
1039	return false;
1040}
1041
1042static int kfd_ioctl_get_available_memory(struct file *filep,
1043					  struct kfd_process *p, void *data)
1044{
1045	struct kfd_ioctl_get_available_memory_args *args = data;
1046	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1047
1048	if (!pdd)
1049		return -EINVAL;
1050	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1051							pdd->dev->node_id);
1052	kfd_unlock_pdd(pdd);
1053	return 0;
1054}
1055
1056static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1057					struct kfd_process *p, void *data)
1058{
1059	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1060	struct kfd_process_device *pdd;
1061	void *mem;
1062	struct kfd_node *dev;
1063	int idr_handle;
1064	long err;
1065	uint64_t offset = args->mmap_offset;
1066	uint32_t flags = args->flags;
1067
1068	if (args->size == 0)
1069		return -EINVAL;
1070
1071#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1072	/* Flush pending deferred work to avoid racing with deferred actions
1073	 * from previous memory map changes (e.g. munmap).
1074	 */
1075	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1076	mutex_lock(&p->svms.lock);
1077	mmap_write_unlock(current->mm);
1078	if (interval_tree_iter_first(&p->svms.objects,
1079				     args->va_addr >> PAGE_SHIFT,
1080				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1081		pr_err("Address: 0x%llx already allocated by SVM\n",
1082			args->va_addr);
1083		mutex_unlock(&p->svms.lock);
1084		return -EADDRINUSE;
1085	}
1086
1087	/* When register user buffer check if it has been registered by svm by
1088	 * buffer cpu virtual address.
1089	 */
1090	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1091	    interval_tree_iter_first(&p->svms.objects,
1092				     args->mmap_offset >> PAGE_SHIFT,
1093				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1094		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1095			args->mmap_offset);
1096		mutex_unlock(&p->svms.lock);
1097		return -EADDRINUSE;
1098	}
1099
1100	mutex_unlock(&p->svms.lock);
1101#endif
1102	mutex_lock(&p->mutex);
1103	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1104	if (!pdd) {
1105		err = -EINVAL;
1106		goto err_pdd;
1107	}
1108
1109	dev = pdd->dev;
1110
1111	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1112		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1113		!kfd_dev_is_large_bar(dev)) {
1114		pr_err("Alloc host visible vram on small bar is not allowed\n");
1115		err = -EINVAL;
1116		goto err_large_bar;
1117	}
1118
 
 
1119	pdd = kfd_bind_process_to_device(dev, p);
1120	if (IS_ERR(pdd)) {
1121		err = PTR_ERR(pdd);
1122		goto err_unlock;
1123	}
1124
1125	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1126		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1127			err = -EINVAL;
1128			goto err_unlock;
1129		}
1130		offset = kfd_get_process_doorbells(pdd);
1131		if (!offset) {
1132			err = -ENOMEM;
1133			goto err_unlock;
1134		}
1135	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1136		if (args->size != PAGE_SIZE) {
1137			err = -EINVAL;
1138			goto err_unlock;
1139		}
1140		offset = dev->adev->rmmio_remap.bus_addr;
1141		if (!offset) {
1142			err = -ENOMEM;
1143			goto err_unlock;
1144		}
1145	}
1146
1147	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1148		dev->adev, args->va_addr, args->size,
1149		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1150		flags, false);
1151
1152	if (err)
1153		goto err_unlock;
1154
1155	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1156	if (idr_handle < 0) {
1157		err = -EFAULT;
1158		goto err_free;
1159	}
1160
1161	/* Update the VRAM usage count */
1162	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1163		uint64_t size = args->size;
1164
1165		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1166			size >>= 1;
1167		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1168	}
1169
1170	mutex_unlock(&p->mutex);
1171
1172	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1173	args->mmap_offset = offset;
1174
1175	/* MMIO is mapped through kfd device
1176	 * Generate a kfd mmap offset
1177	 */
1178	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1179		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1180					| KFD_MMAP_GPU_ID(args->gpu_id);
1181
1182	return 0;
1183
1184err_free:
1185	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1186					       pdd->drm_priv, NULL);
1187err_unlock:
1188err_pdd:
1189err_large_bar:
1190	mutex_unlock(&p->mutex);
1191	return err;
1192}
1193
1194static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1195					struct kfd_process *p, void *data)
1196{
1197	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1198	struct kfd_process_device *pdd;
1199	void *mem;
 
1200	int ret;
1201	uint64_t size = 0;
1202
 
 
 
 
1203	mutex_lock(&p->mutex);
1204	/*
1205	 * Safeguard to prevent user space from freeing signal BO.
1206	 * It will be freed at process termination.
1207	 */
1208	if (p->signal_handle && (p->signal_handle == args->handle)) {
1209		pr_err("Free signal BO is not allowed\n");
1210		ret = -EPERM;
1211		goto err_unlock;
1212	}
1213
1214	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1215	if (!pdd) {
1216		pr_err("Process device data doesn't exist\n");
1217		ret = -EINVAL;
1218		goto err_pdd;
1219	}
1220
1221	mem = kfd_process_device_translate_handle(
1222		pdd, GET_IDR_HANDLE(args->handle));
1223	if (!mem) {
1224		ret = -EINVAL;
1225		goto err_unlock;
1226	}
1227
1228	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1229				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1230
1231	/* If freeing the buffer failed, leave the handle in place for
1232	 * clean-up during process tear-down.
1233	 */
1234	if (!ret)
1235		kfd_process_device_remove_obj_handle(
1236			pdd, GET_IDR_HANDLE(args->handle));
1237
1238	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1239
1240err_unlock:
1241err_pdd:
1242	mutex_unlock(&p->mutex);
1243	return ret;
1244}
1245
1246static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1247					struct kfd_process *p, void *data)
1248{
1249	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1250	struct kfd_process_device *pdd, *peer_pdd;
1251	void *mem;
1252	struct kfd_node *dev;
1253	long err = 0;
1254	int i;
1255	uint32_t *devices_arr = NULL;
1256
 
 
 
 
1257	if (!args->n_devices) {
1258		pr_debug("Device IDs array empty\n");
1259		return -EINVAL;
1260	}
1261	if (args->n_success > args->n_devices) {
1262		pr_debug("n_success exceeds n_devices\n");
1263		return -EINVAL;
1264	}
1265
1266	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1267				    GFP_KERNEL);
1268	if (!devices_arr)
1269		return -ENOMEM;
1270
1271	err = copy_from_user(devices_arr,
1272			     (void __user *)args->device_ids_array_ptr,
1273			     args->n_devices * sizeof(*devices_arr));
1274	if (err != 0) {
1275		err = -EFAULT;
1276		goto copy_from_user_failed;
1277	}
1278
1279	mutex_lock(&p->mutex);
1280	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1281	if (!pdd) {
1282		err = -EINVAL;
1283		goto get_process_device_data_failed;
1284	}
1285	dev = pdd->dev;
1286
1287	pdd = kfd_bind_process_to_device(dev, p);
1288	if (IS_ERR(pdd)) {
1289		err = PTR_ERR(pdd);
1290		goto bind_process_to_device_failed;
1291	}
1292
1293	mem = kfd_process_device_translate_handle(pdd,
1294						GET_IDR_HANDLE(args->handle));
1295	if (!mem) {
1296		err = -ENOMEM;
1297		goto get_mem_obj_from_handle_failed;
1298	}
1299
1300	for (i = args->n_success; i < args->n_devices; i++) {
1301		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1302		if (!peer_pdd) {
1303			pr_debug("Getting device by id failed for 0x%x\n",
1304				 devices_arr[i]);
1305			err = -EINVAL;
1306			goto get_mem_obj_from_handle_failed;
1307		}
1308
1309		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1310		if (IS_ERR(peer_pdd)) {
1311			err = PTR_ERR(peer_pdd);
1312			goto get_mem_obj_from_handle_failed;
1313		}
1314
1315		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1316			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1317			peer_pdd->drm_priv);
1318		if (err) {
1319			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1320
1321			dev_err(dev->adev->dev,
1322			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1323			       pci_domain_nr(pdev->bus),
1324			       pdev->bus->number,
1325			       PCI_SLOT(pdev->devfn),
1326			       PCI_FUNC(pdev->devfn),
1327			       ((struct kgd_mem *)mem)->domain);
1328			goto map_memory_to_gpu_failed;
1329		}
1330		args->n_success = i+1;
1331	}
1332
1333	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
 
 
1334	if (err) {
1335		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1336		goto sync_memory_failed;
1337	}
1338
1339	mutex_unlock(&p->mutex);
1340
1341	/* Flush TLBs after waiting for the page table updates to complete */
1342	for (i = 0; i < args->n_devices; i++) {
1343		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
 
 
 
1344		if (WARN_ON_ONCE(!peer_pdd))
1345			continue;
1346		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1347	}
 
1348	kfree(devices_arr);
1349
1350	return err;
1351
1352get_process_device_data_failed:
1353bind_process_to_device_failed:
1354get_mem_obj_from_handle_failed:
1355map_memory_to_gpu_failed:
1356sync_memory_failed:
1357	mutex_unlock(&p->mutex);
1358copy_from_user_failed:
 
1359	kfree(devices_arr);
1360
1361	return err;
1362}
1363
1364static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1365					struct kfd_process *p, void *data)
1366{
1367	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1368	struct kfd_process_device *pdd, *peer_pdd;
1369	void *mem;
 
1370	long err = 0;
1371	uint32_t *devices_arr = NULL, i;
1372	bool flush_tlb;
 
 
 
1373
1374	if (!args->n_devices) {
1375		pr_debug("Device IDs array empty\n");
1376		return -EINVAL;
1377	}
1378	if (args->n_success > args->n_devices) {
1379		pr_debug("n_success exceeds n_devices\n");
1380		return -EINVAL;
1381	}
1382
1383	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1384				    GFP_KERNEL);
1385	if (!devices_arr)
1386		return -ENOMEM;
1387
1388	err = copy_from_user(devices_arr,
1389			     (void __user *)args->device_ids_array_ptr,
1390			     args->n_devices * sizeof(*devices_arr));
1391	if (err != 0) {
1392		err = -EFAULT;
1393		goto copy_from_user_failed;
1394	}
1395
1396	mutex_lock(&p->mutex);
1397	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
 
1398	if (!pdd) {
1399		err = -EINVAL;
1400		goto bind_process_to_device_failed;
1401	}
1402
1403	mem = kfd_process_device_translate_handle(pdd,
1404						GET_IDR_HANDLE(args->handle));
1405	if (!mem) {
1406		err = -ENOMEM;
1407		goto get_mem_obj_from_handle_failed;
1408	}
1409
1410	for (i = args->n_success; i < args->n_devices; i++) {
1411		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1412		if (!peer_pdd) {
1413			err = -EINVAL;
1414			goto get_mem_obj_from_handle_failed;
1415		}
 
 
 
 
 
 
1416		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1417			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1418		if (err) {
1419			pr_err("Failed to unmap from gpu %d/%d\n",
1420			       i, args->n_devices);
1421			goto unmap_memory_from_gpu_failed;
1422		}
1423		args->n_success = i+1;
1424	}
1425
1426	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1427	if (flush_tlb) {
1428		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1429				(struct kgd_mem *) mem, true);
1430		if (err) {
1431			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1432			goto sync_memory_failed;
1433		}
1434	}
1435
1436	/* Flush TLBs after waiting for the page table updates to complete */
1437	for (i = 0; i < args->n_devices; i++) {
1438		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1439		if (WARN_ON_ONCE(!peer_pdd))
1440			continue;
1441		if (flush_tlb)
1442			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1443
1444		/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1445		err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1446		if (err)
1447			goto sync_memory_failed;
1448	}
1449
1450	mutex_unlock(&p->mutex);
1451
1452	kfree(devices_arr);
1453
1454	return 0;
1455
1456bind_process_to_device_failed:
1457get_mem_obj_from_handle_failed:
1458unmap_memory_from_gpu_failed:
1459sync_memory_failed:
1460	mutex_unlock(&p->mutex);
1461copy_from_user_failed:
1462	kfree(devices_arr);
1463	return err;
1464}
1465
1466static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1467		struct kfd_process *p, void *data)
1468{
1469	int retval;
1470	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1471	struct queue *q;
1472	struct kfd_node *dev;
1473
1474	mutex_lock(&p->mutex);
1475	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1476
1477	if (q) {
1478		dev = q->device;
1479	} else {
1480		retval = -EINVAL;
1481		goto out_unlock;
1482	}
1483
1484	if (!dev->gws) {
1485		retval = -ENODEV;
1486		goto out_unlock;
1487	}
1488
1489	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1490		retval = -ENODEV;
1491		goto out_unlock;
1492	}
1493
1494	if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1495				      kfd_dbg_has_cwsr_workaround(dev))) {
1496		retval = -EBUSY;
1497		goto out_unlock;
1498	}
1499
1500	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1501	mutex_unlock(&p->mutex);
1502
1503	args->first_gws = 0;
1504	return retval;
1505
1506out_unlock:
1507	mutex_unlock(&p->mutex);
1508	return retval;
1509}
1510
1511static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1512		struct kfd_process *p, void *data)
1513{
1514	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1515	struct kfd_node *dev = NULL;
1516	struct amdgpu_device *dmabuf_adev;
1517	void *metadata_buffer = NULL;
1518	uint32_t flags;
1519	int8_t xcp_id;
1520	unsigned int i;
1521	int r;
1522
1523	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1524	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1525		if (dev)
1526			break;
1527	if (!dev)
1528		return -EINVAL;
1529
1530	if (args->metadata_ptr) {
1531		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1532		if (!metadata_buffer)
1533			return -ENOMEM;
1534	}
1535
1536	/* Get dmabuf info from KGD */
1537	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1538					  &dmabuf_adev, &args->size,
1539					  metadata_buffer, args->metadata_size,
1540					  &args->metadata_size, &flags, &xcp_id);
1541	if (r)
1542		goto exit;
1543
1544	if (xcp_id >= 0)
1545		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1546	else
1547		args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
 
 
 
1548	args->flags = flags;
1549
1550	/* Copy metadata buffer to user mode */
1551	if (metadata_buffer) {
1552		r = copy_to_user((void __user *)args->metadata_ptr,
1553				 metadata_buffer, args->metadata_size);
1554		if (r != 0)
1555			r = -EFAULT;
1556	}
1557
1558exit:
1559	kfree(metadata_buffer);
1560
1561	return r;
1562}
1563
1564static int kfd_ioctl_import_dmabuf(struct file *filep,
1565				   struct kfd_process *p, void *data)
1566{
1567	struct kfd_ioctl_import_dmabuf_args *args = data;
1568	struct kfd_process_device *pdd;
 
 
1569	int idr_handle;
1570	uint64_t size;
1571	void *mem;
1572	int r;
1573
 
 
 
 
 
 
 
 
1574	mutex_lock(&p->mutex);
1575	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1576	if (!pdd) {
1577		r = -EINVAL;
1578		goto err_unlock;
1579	}
1580
1581	pdd = kfd_bind_process_to_device(pdd->dev, p);
1582	if (IS_ERR(pdd)) {
1583		r = PTR_ERR(pdd);
1584		goto err_unlock;
1585	}
1586
1587	r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1588						 args->va_addr, pdd->drm_priv,
1589						 (struct kgd_mem **)&mem, &size,
1590						 NULL);
1591	if (r)
1592		goto err_unlock;
1593
1594	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1595	if (idr_handle < 0) {
1596		r = -EFAULT;
1597		goto err_free;
1598	}
1599
1600	mutex_unlock(&p->mutex);
 
1601
1602	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1603
1604	return 0;
1605
1606err_free:
1607	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1608					       pdd->drm_priv, NULL);
1609err_unlock:
1610	mutex_unlock(&p->mutex);
 
1611	return r;
1612}
1613
1614static int kfd_ioctl_export_dmabuf(struct file *filep,
1615				   struct kfd_process *p, void *data)
1616{
1617	struct kfd_ioctl_export_dmabuf_args *args = data;
1618	struct kfd_process_device *pdd;
1619	struct dma_buf *dmabuf;
1620	struct kfd_node *dev;
1621	void *mem;
1622	int ret = 0;
1623
1624	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1625	if (!dev)
1626		return -EINVAL;
1627
1628	mutex_lock(&p->mutex);
1629
1630	pdd = kfd_get_process_device_data(dev, p);
1631	if (!pdd) {
1632		ret = -EINVAL;
1633		goto err_unlock;
1634	}
1635
1636	mem = kfd_process_device_translate_handle(pdd,
1637						GET_IDR_HANDLE(args->handle));
1638	if (!mem) {
1639		ret = -EINVAL;
1640		goto err_unlock;
1641	}
1642
1643	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1644	mutex_unlock(&p->mutex);
1645	if (ret)
1646		goto err_out;
1647
1648	ret = dma_buf_fd(dmabuf, args->flags);
1649	if (ret < 0) {
1650		dma_buf_put(dmabuf);
1651		goto err_out;
1652	}
1653	/* dma_buf_fd assigns the reference count to the fd, no need to
1654	 * put the reference here.
1655	 */
1656	args->dmabuf_fd = ret;
1657
1658	return 0;
1659
1660err_unlock:
1661	mutex_unlock(&p->mutex);
1662err_out:
1663	return ret;
1664}
1665
1666/* Handle requests for watching SMI events */
1667static int kfd_ioctl_smi_events(struct file *filep,
1668				struct kfd_process *p, void *data)
1669{
1670	struct kfd_ioctl_smi_events_args *args = data;
1671	struct kfd_process_device *pdd;
1672
1673	mutex_lock(&p->mutex);
1674
1675	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1676	mutex_unlock(&p->mutex);
1677	if (!pdd)
1678		return -EINVAL;
1679
1680	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1681}
1682
1683#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1684
1685static int kfd_ioctl_set_xnack_mode(struct file *filep,
1686				    struct kfd_process *p, void *data)
1687{
1688	struct kfd_ioctl_set_xnack_mode_args *args = data;
1689	int r = 0;
1690
1691	mutex_lock(&p->mutex);
1692	if (args->xnack_enabled >= 0) {
1693		if (!list_empty(&p->pqm.queues)) {
1694			pr_debug("Process has user queues running\n");
1695			r = -EBUSY;
1696			goto out_unlock;
1697		}
1698
1699		if (p->xnack_enabled == args->xnack_enabled)
1700			goto out_unlock;
1701
1702		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1703			r = -EPERM;
1704			goto out_unlock;
1705		}
1706
1707		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1708	} else {
1709		args->xnack_enabled = p->xnack_enabled;
1710	}
1711
1712out_unlock:
1713	mutex_unlock(&p->mutex);
1714
1715	return r;
1716}
1717
 
1718static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1719{
1720	struct kfd_ioctl_svm_args *args = data;
1721	int r = 0;
1722
1723	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1724		 args->start_addr, args->size, args->op, args->nattr);
1725
1726	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1727		return -EINVAL;
1728	if (!args->start_addr || !args->size)
1729		return -EINVAL;
1730
 
 
1731	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1732		      args->attrs);
1733
 
 
1734	return r;
1735}
1736#else
1737static int kfd_ioctl_set_xnack_mode(struct file *filep,
1738				    struct kfd_process *p, void *data)
1739{
1740	return -EPERM;
1741}
1742static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1743{
1744	return -EPERM;
1745}
1746#endif
1747
1748static int criu_checkpoint_process(struct kfd_process *p,
1749			     uint8_t __user *user_priv_data,
1750			     uint64_t *priv_offset)
1751{
1752	struct kfd_criu_process_priv_data process_priv;
1753	int ret;
1754
1755	memset(&process_priv, 0, sizeof(process_priv));
1756
1757	process_priv.version = KFD_CRIU_PRIV_VERSION;
1758	/* For CR, we don't consider negative xnack mode which is used for
1759	 * querying without changing it, here 0 simply means disabled and 1
1760	 * means enabled so retry for finding a valid PTE.
1761	 */
1762	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1763
1764	ret = copy_to_user(user_priv_data + *priv_offset,
1765				&process_priv, sizeof(process_priv));
1766
1767	if (ret) {
1768		pr_err("Failed to copy process information to user\n");
1769		ret = -EFAULT;
1770	}
1771
1772	*priv_offset += sizeof(process_priv);
1773	return ret;
1774}
1775
1776static int criu_checkpoint_devices(struct kfd_process *p,
1777			     uint32_t num_devices,
1778			     uint8_t __user *user_addr,
1779			     uint8_t __user *user_priv_data,
1780			     uint64_t *priv_offset)
1781{
1782	struct kfd_criu_device_priv_data *device_priv = NULL;
1783	struct kfd_criu_device_bucket *device_buckets = NULL;
1784	int ret = 0, i;
1785
1786	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1787	if (!device_buckets) {
1788		ret = -ENOMEM;
1789		goto exit;
1790	}
1791
1792	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1793	if (!device_priv) {
1794		ret = -ENOMEM;
1795		goto exit;
1796	}
1797
1798	for (i = 0; i < num_devices; i++) {
1799		struct kfd_process_device *pdd = p->pdds[i];
1800
1801		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1802		device_buckets[i].actual_gpu_id = pdd->dev->id;
1803
1804		/*
1805		 * priv_data does not contain useful information for now and is reserved for
1806		 * future use, so we do not set its contents.
1807		 */
1808	}
1809
1810	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1811	if (ret) {
1812		pr_err("Failed to copy device information to user\n");
1813		ret = -EFAULT;
1814		goto exit;
1815	}
1816
1817	ret = copy_to_user(user_priv_data + *priv_offset,
1818			   device_priv,
1819			   num_devices * sizeof(*device_priv));
1820	if (ret) {
1821		pr_err("Failed to copy device information to user\n");
1822		ret = -EFAULT;
1823	}
1824	*priv_offset += num_devices * sizeof(*device_priv);
1825
1826exit:
1827	kvfree(device_buckets);
1828	kvfree(device_priv);
1829	return ret;
1830}
1831
1832static uint32_t get_process_num_bos(struct kfd_process *p)
1833{
1834	uint32_t num_of_bos = 0;
1835	int i;
1836
1837	/* Run over all PDDs of the process */
1838	for (i = 0; i < p->n_pdds; i++) {
1839		struct kfd_process_device *pdd = p->pdds[i];
1840		void *mem;
1841		int id;
1842
1843		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1844			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1845
1846			if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1847				num_of_bos++;
1848		}
1849	}
1850	return num_of_bos;
1851}
1852
1853static int criu_get_prime_handle(struct kgd_mem *mem,
1854				 int flags, u32 *shared_fd)
1855{
1856	struct dma_buf *dmabuf;
1857	int ret;
1858
1859	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1860	if (ret) {
1861		pr_err("dmabuf export failed for the BO\n");
1862		return ret;
1863	}
1864
1865	ret = dma_buf_fd(dmabuf, flags);
1866	if (ret < 0) {
1867		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1868		goto out_free_dmabuf;
1869	}
1870
1871	*shared_fd = ret;
1872	return 0;
1873
1874out_free_dmabuf:
1875	dma_buf_put(dmabuf);
1876	return ret;
1877}
1878
1879static int criu_checkpoint_bos(struct kfd_process *p,
1880			       uint32_t num_bos,
1881			       uint8_t __user *user_bos,
1882			       uint8_t __user *user_priv_data,
1883			       uint64_t *priv_offset)
1884{
1885	struct kfd_criu_bo_bucket *bo_buckets;
1886	struct kfd_criu_bo_priv_data *bo_privs;
1887	int ret = 0, pdd_index, bo_index = 0, id;
1888	void *mem;
1889
1890	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1891	if (!bo_buckets)
1892		return -ENOMEM;
1893
1894	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1895	if (!bo_privs) {
1896		ret = -ENOMEM;
1897		goto exit;
1898	}
1899
1900	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1901		struct kfd_process_device *pdd = p->pdds[pdd_index];
1902		struct amdgpu_bo *dumper_bo;
1903		struct kgd_mem *kgd_mem;
1904
1905		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1906			struct kfd_criu_bo_bucket *bo_bucket;
1907			struct kfd_criu_bo_priv_data *bo_priv;
1908			int i, dev_idx = 0;
1909
1910			if (!mem) {
1911				ret = -ENOMEM;
1912				goto exit;
1913			}
1914
1915			kgd_mem = (struct kgd_mem *)mem;
1916			dumper_bo = kgd_mem->bo;
1917
1918			/* Skip checkpointing BOs that are used for Trap handler
1919			 * code and state. Currently, these BOs have a VA that
1920			 * is less GPUVM Base
1921			 */
1922			if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1923				continue;
1924
1925			bo_bucket = &bo_buckets[bo_index];
1926			bo_priv = &bo_privs[bo_index];
1927
1928			bo_bucket->gpu_id = pdd->user_gpu_id;
1929			bo_bucket->addr = (uint64_t)kgd_mem->va;
1930			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1931			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1932			bo_priv->idr_handle = id;
1933
1934			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1935				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1936								&bo_priv->user_addr);
1937				if (ret) {
1938					pr_err("Failed to obtain user address for user-pointer bo\n");
1939					goto exit;
1940				}
1941			}
1942			if (bo_bucket->alloc_flags
1943			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1944				ret = criu_get_prime_handle(kgd_mem,
1945						bo_bucket->alloc_flags &
1946						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1947						&bo_bucket->dmabuf_fd);
1948				if (ret)
1949					goto exit;
1950			} else {
1951				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1952			}
1953
1954			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1955				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1956					KFD_MMAP_GPU_ID(pdd->dev->id);
1957			else if (bo_bucket->alloc_flags &
1958				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1959				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1960					KFD_MMAP_GPU_ID(pdd->dev->id);
1961			else
1962				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1963
1964			for (i = 0; i < p->n_pdds; i++) {
1965				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1966					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1967			}
1968
1969			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1970					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1971					bo_bucket->size,
1972					bo_bucket->addr,
1973					bo_bucket->offset,
1974					bo_bucket->gpu_id,
1975					bo_bucket->alloc_flags,
1976					bo_priv->idr_handle);
1977			bo_index++;
1978		}
1979	}
1980
1981	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1982	if (ret) {
1983		pr_err("Failed to copy BO information to user\n");
1984		ret = -EFAULT;
1985		goto exit;
1986	}
1987
1988	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1989	if (ret) {
1990		pr_err("Failed to copy BO priv information to user\n");
1991		ret = -EFAULT;
1992		goto exit;
1993	}
1994
1995	*priv_offset += num_bos * sizeof(*bo_privs);
1996
1997exit:
1998	while (ret && bo_index--) {
1999		if (bo_buckets[bo_index].alloc_flags
2000		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2001			close_fd(bo_buckets[bo_index].dmabuf_fd);
2002	}
2003
2004	kvfree(bo_buckets);
2005	kvfree(bo_privs);
2006	return ret;
2007}
2008
2009static int criu_get_process_object_info(struct kfd_process *p,
2010					uint32_t *num_devices,
2011					uint32_t *num_bos,
2012					uint32_t *num_objects,
2013					uint64_t *objs_priv_size)
2014{
2015	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2016	uint32_t num_queues, num_events, num_svm_ranges;
2017	int ret;
2018
2019	*num_devices = p->n_pdds;
2020	*num_bos = get_process_num_bos(p);
2021
2022	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2023	if (ret)
2024		return ret;
2025
2026	num_events = kfd_get_num_events(p);
2027
2028	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2029	if (ret)
2030		return ret;
2031
2032	*num_objects = num_queues + num_events + num_svm_ranges;
2033
2034	if (objs_priv_size) {
2035		priv_size = sizeof(struct kfd_criu_process_priv_data);
2036		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2037		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2038		priv_size += queues_priv_data_size;
2039		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2040		priv_size += svm_priv_data_size;
2041		*objs_priv_size = priv_size;
2042	}
2043	return 0;
2044}
2045
2046static int criu_checkpoint(struct file *filep,
2047			   struct kfd_process *p,
2048			   struct kfd_ioctl_criu_args *args)
2049{
2050	int ret;
2051	uint32_t num_devices, num_bos, num_objects;
2052	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2053
2054	if (!args->devices || !args->bos || !args->priv_data)
2055		return -EINVAL;
2056
2057	mutex_lock(&p->mutex);
2058
2059	if (!p->n_pdds) {
2060		pr_err("No pdd for given process\n");
2061		ret = -ENODEV;
2062		goto exit_unlock;
2063	}
2064
2065	/* Confirm all process queues are evicted */
2066	if (!p->queues_paused) {
2067		pr_err("Cannot dump process when queues are not in evicted state\n");
2068		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2069		ret = -EINVAL;
2070		goto exit_unlock;
2071	}
2072
2073	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2074	if (ret)
2075		goto exit_unlock;
2076
2077	if (num_devices != args->num_devices ||
2078	    num_bos != args->num_bos ||
2079	    num_objects != args->num_objects ||
2080	    priv_size != args->priv_data_size) {
2081
2082		ret = -EINVAL;
2083		goto exit_unlock;
2084	}
2085
2086	/* each function will store private data inside priv_data and adjust priv_offset */
2087	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2088	if (ret)
2089		goto exit_unlock;
2090
2091	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2092				(uint8_t __user *)args->priv_data, &priv_offset);
2093	if (ret)
2094		goto exit_unlock;
2095
2096	/* Leave room for BOs in the private data. They need to be restored
2097	 * before events, but we checkpoint them last to simplify the error
2098	 * handling.
2099	 */
2100	bo_priv_offset = priv_offset;
2101	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2102
2103	if (num_objects) {
2104		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2105						 &priv_offset);
2106		if (ret)
2107			goto exit_unlock;
2108
2109		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2110						 &priv_offset);
2111		if (ret)
2112			goto exit_unlock;
2113
2114		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2115		if (ret)
2116			goto exit_unlock;
2117	}
2118
2119	/* This must be the last thing in this function that can fail.
2120	 * Otherwise we leak dmabuf file descriptors.
2121	 */
2122	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2123			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2124
2125exit_unlock:
2126	mutex_unlock(&p->mutex);
2127	if (ret)
2128		pr_err("Failed to dump CRIU ret:%d\n", ret);
2129	else
2130		pr_debug("CRIU dump ret:%d\n", ret);
2131
2132	return ret;
2133}
2134
2135static int criu_restore_process(struct kfd_process *p,
2136				struct kfd_ioctl_criu_args *args,
2137				uint64_t *priv_offset,
2138				uint64_t max_priv_data_size)
2139{
2140	int ret = 0;
2141	struct kfd_criu_process_priv_data process_priv;
2142
2143	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2144		return -EINVAL;
2145
2146	ret = copy_from_user(&process_priv,
2147				(void __user *)(args->priv_data + *priv_offset),
2148				sizeof(process_priv));
2149	if (ret) {
2150		pr_err("Failed to copy process private information from user\n");
2151		ret = -EFAULT;
2152		goto exit;
2153	}
2154	*priv_offset += sizeof(process_priv);
2155
2156	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2157		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2158			process_priv.version, KFD_CRIU_PRIV_VERSION);
2159		return -EINVAL;
2160	}
2161
2162	pr_debug("Setting XNACK mode\n");
2163	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2164		pr_err("xnack mode cannot be set\n");
2165		ret = -EPERM;
2166		goto exit;
2167	} else {
2168		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2169		p->xnack_enabled = process_priv.xnack_mode;
2170	}
2171
2172exit:
2173	return ret;
2174}
2175
2176static int criu_restore_devices(struct kfd_process *p,
2177				struct kfd_ioctl_criu_args *args,
2178				uint64_t *priv_offset,
2179				uint64_t max_priv_data_size)
2180{
2181	struct kfd_criu_device_bucket *device_buckets;
2182	struct kfd_criu_device_priv_data *device_privs;
2183	int ret = 0;
2184	uint32_t i;
2185
2186	if (args->num_devices != p->n_pdds)
2187		return -EINVAL;
2188
2189	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2190		return -EINVAL;
2191
2192	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2193	if (!device_buckets)
2194		return -ENOMEM;
2195
2196	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2197				args->num_devices * sizeof(*device_buckets));
2198	if (ret) {
2199		pr_err("Failed to copy devices buckets from user\n");
2200		ret = -EFAULT;
2201		goto exit;
2202	}
2203
2204	for (i = 0; i < args->num_devices; i++) {
2205		struct kfd_node *dev;
2206		struct kfd_process_device *pdd;
2207		struct file *drm_file;
2208
2209		/* device private data is not currently used */
2210
2211		if (!device_buckets[i].user_gpu_id) {
2212			pr_err("Invalid user gpu_id\n");
2213			ret = -EINVAL;
2214			goto exit;
2215		}
2216
2217		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2218		if (!dev) {
2219			pr_err("Failed to find device with gpu_id = %x\n",
2220				device_buckets[i].actual_gpu_id);
2221			ret = -EINVAL;
2222			goto exit;
2223		}
2224
2225		pdd = kfd_get_process_device_data(dev, p);
2226		if (!pdd) {
2227			pr_err("Failed to get pdd for gpu_id = %x\n",
2228					device_buckets[i].actual_gpu_id);
2229			ret = -EINVAL;
2230			goto exit;
2231		}
2232		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2233
2234		drm_file = fget(device_buckets[i].drm_fd);
2235		if (!drm_file) {
2236			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2237				device_buckets[i].drm_fd);
2238			ret = -EINVAL;
2239			goto exit;
2240		}
2241
2242		if (pdd->drm_file) {
2243			ret = -EINVAL;
2244			goto exit;
2245		}
2246
2247		/* create the vm using render nodes for kfd pdd */
2248		if (kfd_process_device_init_vm(pdd, drm_file)) {
2249			pr_err("could not init vm for given pdd\n");
2250			/* On success, the PDD keeps the drm_file reference */
2251			fput(drm_file);
2252			ret = -EINVAL;
2253			goto exit;
2254		}
2255		/*
2256		 * pdd now already has the vm bound to render node so below api won't create a new
2257		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2258		 * for iommu v2 binding  and runtime pm.
2259		 */
2260		pdd = kfd_bind_process_to_device(dev, p);
2261		if (IS_ERR(pdd)) {
2262			ret = PTR_ERR(pdd);
2263			goto exit;
2264		}
2265
2266		if (!pdd->qpd.proc_doorbells) {
2267			ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2268			if (ret)
2269				goto exit;
2270		}
2271	}
2272
2273	/*
2274	 * We are not copying device private data from user as we are not using the data for now,
2275	 * but we still adjust for its private data.
2276	 */
2277	*priv_offset += args->num_devices * sizeof(*device_privs);
2278
2279exit:
2280	kfree(device_buckets);
2281	return ret;
2282}
2283
2284static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2285				      struct kfd_criu_bo_bucket *bo_bucket,
2286				      struct kfd_criu_bo_priv_data *bo_priv,
2287				      struct kgd_mem **kgd_mem)
2288{
2289	int idr_handle;
2290	int ret;
2291	const bool criu_resume = true;
2292	u64 offset;
2293
2294	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2295		if (bo_bucket->size !=
2296				kfd_doorbell_process_slice(pdd->dev->kfd))
2297			return -EINVAL;
2298
2299		offset = kfd_get_process_doorbells(pdd);
2300		if (!offset)
2301			return -ENOMEM;
2302	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2303		/* MMIO BOs need remapped bus address */
2304		if (bo_bucket->size != PAGE_SIZE) {
2305			pr_err("Invalid page size\n");
2306			return -EINVAL;
2307		}
2308		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2309		if (!offset) {
2310			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2311			return -ENOMEM;
2312		}
2313	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2314		offset = bo_priv->user_addr;
2315	}
2316	/* Create the BO */
2317	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2318						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2319						      &offset, bo_bucket->alloc_flags, criu_resume);
2320	if (ret) {
2321		pr_err("Could not create the BO\n");
2322		return ret;
2323	}
2324	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2325		 bo_bucket->size, bo_bucket->addr, offset);
2326
2327	/* Restore previous IDR handle */
2328	pr_debug("Restoring old IDR handle for the BO");
2329	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2330			       bo_priv->idr_handle + 1, GFP_KERNEL);
2331
2332	if (idr_handle < 0) {
2333		pr_err("Could not allocate idr\n");
2334		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2335						       NULL);
2336		return -ENOMEM;
2337	}
2338
2339	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2340		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2341	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2342		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2343	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2344		bo_bucket->restored_offset = offset;
2345	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2346		bo_bucket->restored_offset = offset;
2347		/* Update the VRAM usage count */
2348		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2349	}
2350	return 0;
2351}
2352
2353static int criu_restore_bo(struct kfd_process *p,
2354			   struct kfd_criu_bo_bucket *bo_bucket,
2355			   struct kfd_criu_bo_priv_data *bo_priv)
2356{
2357	struct kfd_process_device *pdd;
2358	struct kgd_mem *kgd_mem;
2359	int ret;
2360	int j;
2361
2362	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2363		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2364		 bo_priv->idr_handle);
2365
2366	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2367	if (!pdd) {
2368		pr_err("Failed to get pdd\n");
2369		return -ENODEV;
2370	}
2371
2372	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2373	if (ret)
2374		return ret;
2375
2376	/* now map these BOs to GPU/s */
2377	for (j = 0; j < p->n_pdds; j++) {
2378		struct kfd_node *peer;
2379		struct kfd_process_device *peer_pdd;
2380
2381		if (!bo_priv->mapped_gpuids[j])
2382			break;
2383
2384		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2385		if (!peer_pdd)
2386			return -EINVAL;
2387
2388		peer = peer_pdd->dev;
2389
2390		peer_pdd = kfd_bind_process_to_device(peer, p);
2391		if (IS_ERR(peer_pdd))
2392			return PTR_ERR(peer_pdd);
2393
2394		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2395							    peer_pdd->drm_priv);
2396		if (ret) {
2397			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2398			return ret;
2399		}
2400	}
2401
2402	pr_debug("map memory was successful for the BO\n");
2403	/* create the dmabuf object and export the bo */
2404	if (bo_bucket->alloc_flags
2405	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2406		ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2407					    &bo_bucket->dmabuf_fd);
2408		if (ret)
2409			return ret;
2410	} else {
2411		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2412	}
2413
2414	return 0;
2415}
2416
2417static int criu_restore_bos(struct kfd_process *p,
2418			    struct kfd_ioctl_criu_args *args,
2419			    uint64_t *priv_offset,
2420			    uint64_t max_priv_data_size)
2421{
2422	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2423	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2424	int ret = 0;
2425	uint32_t i = 0;
2426
2427	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2428		return -EINVAL;
2429
2430	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2431	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2432
2433	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2434	if (!bo_buckets)
2435		return -ENOMEM;
2436
2437	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2438			     args->num_bos * sizeof(*bo_buckets));
2439	if (ret) {
2440		pr_err("Failed to copy BOs information from user\n");
2441		ret = -EFAULT;
2442		goto exit;
2443	}
2444
2445	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2446	if (!bo_privs) {
2447		ret = -ENOMEM;
2448		goto exit;
2449	}
2450
2451	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2452			     args->num_bos * sizeof(*bo_privs));
2453	if (ret) {
2454		pr_err("Failed to copy BOs information from user\n");
2455		ret = -EFAULT;
2456		goto exit;
2457	}
2458	*priv_offset += args->num_bos * sizeof(*bo_privs);
2459
2460	/* Create and map new BOs */
2461	for (; i < args->num_bos; i++) {
2462		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2463		if (ret) {
2464			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2465			goto exit;
2466		}
2467	} /* done */
2468
2469	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2470	ret = copy_to_user((void __user *)args->bos,
2471				bo_buckets,
2472				(args->num_bos * sizeof(*bo_buckets)));
2473	if (ret)
2474		ret = -EFAULT;
2475
2476exit:
2477	while (ret && i--) {
2478		if (bo_buckets[i].alloc_flags
2479		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2480			close_fd(bo_buckets[i].dmabuf_fd);
2481	}
2482	kvfree(bo_buckets);
2483	kvfree(bo_privs);
2484	return ret;
2485}
2486
2487static int criu_restore_objects(struct file *filep,
2488				struct kfd_process *p,
2489				struct kfd_ioctl_criu_args *args,
2490				uint64_t *priv_offset,
2491				uint64_t max_priv_data_size)
2492{
2493	int ret = 0;
2494	uint32_t i;
2495
2496	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2497	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2498	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2499
2500	for (i = 0; i < args->num_objects; i++) {
2501		uint32_t object_type;
2502
2503		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2504			pr_err("Invalid private data size\n");
2505			return -EINVAL;
2506		}
2507
2508		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2509		if (ret) {
2510			pr_err("Failed to copy private information from user\n");
2511			goto exit;
2512		}
2513
2514		switch (object_type) {
2515		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2516			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2517						     priv_offset, max_priv_data_size);
2518			if (ret)
2519				goto exit;
2520			break;
2521		case KFD_CRIU_OBJECT_TYPE_EVENT:
2522			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2523						     priv_offset, max_priv_data_size);
2524			if (ret)
2525				goto exit;
2526			break;
2527		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2528			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2529						     priv_offset, max_priv_data_size);
2530			if (ret)
2531				goto exit;
2532			break;
2533		default:
2534			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2535			ret = -EINVAL;
2536			goto exit;
2537		}
2538	}
2539exit:
2540	return ret;
2541}
2542
2543static int criu_restore(struct file *filep,
2544			struct kfd_process *p,
2545			struct kfd_ioctl_criu_args *args)
2546{
2547	uint64_t priv_offset = 0;
2548	int ret = 0;
2549
2550	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2551		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2552
2553	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2554	    !args->num_devices || !args->num_bos)
2555		return -EINVAL;
2556
2557	mutex_lock(&p->mutex);
2558
2559	/*
2560	 * Set the process to evicted state to avoid running any new queues before all the memory
2561	 * mappings are ready.
2562	 */
2563	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2564	if (ret)
2565		goto exit_unlock;
2566
2567	/* Each function will adjust priv_offset based on how many bytes they consumed */
2568	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2569	if (ret)
2570		goto exit_unlock;
2571
2572	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2573	if (ret)
2574		goto exit_unlock;
2575
2576	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2577	if (ret)
2578		goto exit_unlock;
2579
2580	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2581	if (ret)
2582		goto exit_unlock;
2583
2584	if (priv_offset != args->priv_data_size) {
2585		pr_err("Invalid private data size\n");
2586		ret = -EINVAL;
2587	}
2588
2589exit_unlock:
2590	mutex_unlock(&p->mutex);
2591	if (ret)
2592		pr_err("Failed to restore CRIU ret:%d\n", ret);
2593	else
2594		pr_debug("CRIU restore successful\n");
2595
2596	return ret;
2597}
2598
2599static int criu_unpause(struct file *filep,
2600			struct kfd_process *p,
2601			struct kfd_ioctl_criu_args *args)
2602{
2603	int ret;
2604
2605	mutex_lock(&p->mutex);
2606
2607	if (!p->queues_paused) {
2608		mutex_unlock(&p->mutex);
2609		return -EINVAL;
2610	}
2611
2612	ret = kfd_process_restore_queues(p);
2613	if (ret)
2614		pr_err("Failed to unpause queues ret:%d\n", ret);
2615	else
2616		p->queues_paused = false;
2617
2618	mutex_unlock(&p->mutex);
2619
2620	return ret;
2621}
2622
2623static int criu_resume(struct file *filep,
2624			struct kfd_process *p,
2625			struct kfd_ioctl_criu_args *args)
2626{
2627	struct kfd_process *target = NULL;
2628	struct pid *pid = NULL;
2629	int ret = 0;
2630
2631	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2632		 args->pid);
2633
2634	pid = find_get_pid(args->pid);
2635	if (!pid) {
2636		pr_err("Cannot find pid info for %i\n", args->pid);
2637		return -ESRCH;
2638	}
2639
2640	pr_debug("calling kfd_lookup_process_by_pid\n");
2641	target = kfd_lookup_process_by_pid(pid);
2642
2643	put_pid(pid);
2644
2645	if (!target) {
2646		pr_debug("Cannot find process info for %i\n", args->pid);
2647		return -ESRCH;
2648	}
2649
2650	mutex_lock(&target->mutex);
2651	ret = kfd_criu_resume_svm(target);
2652	if (ret) {
2653		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2654		goto exit;
2655	}
2656
2657	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2658	if (ret)
2659		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2660
2661exit:
2662	mutex_unlock(&target->mutex);
2663
2664	kfd_unref_process(target);
2665	return ret;
2666}
2667
2668static int criu_process_info(struct file *filep,
2669				struct kfd_process *p,
2670				struct kfd_ioctl_criu_args *args)
2671{
2672	int ret = 0;
2673
2674	mutex_lock(&p->mutex);
2675
2676	if (!p->n_pdds) {
2677		pr_err("No pdd for given process\n");
2678		ret = -ENODEV;
2679		goto err_unlock;
2680	}
2681
2682	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2683	if (ret)
2684		goto err_unlock;
2685
2686	p->queues_paused = true;
2687
2688	args->pid = task_pid_nr_ns(p->lead_thread,
2689					task_active_pid_ns(p->lead_thread));
2690
2691	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2692					   &args->num_objects, &args->priv_data_size);
2693	if (ret)
2694		goto err_unlock;
2695
2696	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2697				args->num_devices, args->num_bos, args->num_objects,
2698				args->priv_data_size);
2699
2700err_unlock:
2701	if (ret) {
2702		kfd_process_restore_queues(p);
2703		p->queues_paused = false;
2704	}
2705	mutex_unlock(&p->mutex);
2706	return ret;
2707}
2708
2709static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2710{
2711	struct kfd_ioctl_criu_args *args = data;
2712	int ret;
2713
2714	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2715	switch (args->op) {
2716	case KFD_CRIU_OP_PROCESS_INFO:
2717		ret = criu_process_info(filep, p, args);
2718		break;
2719	case KFD_CRIU_OP_CHECKPOINT:
2720		ret = criu_checkpoint(filep, p, args);
2721		break;
2722	case KFD_CRIU_OP_UNPAUSE:
2723		ret = criu_unpause(filep, p, args);
2724		break;
2725	case KFD_CRIU_OP_RESTORE:
2726		ret = criu_restore(filep, p, args);
2727		break;
2728	case KFD_CRIU_OP_RESUME:
2729		ret = criu_resume(filep, p, args);
2730		break;
2731	default:
2732		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2733		ret = -EINVAL;
2734		break;
2735	}
2736
2737	if (ret)
2738		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2739
2740	return ret;
2741}
2742
2743static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2744			bool enable_ttmp_setup)
2745{
2746	int i = 0, ret = 0;
2747
2748	if (p->is_runtime_retry)
2749		goto retry;
2750
2751	if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2752		return -EBUSY;
2753
2754	for (i = 0; i < p->n_pdds; i++) {
2755		struct kfd_process_device *pdd = p->pdds[i];
2756
2757		if (pdd->qpd.queue_count)
2758			return -EEXIST;
2759
2760		/*
2761		 * Setup TTMPs by default.
2762		 * Note that this call must remain here for MES ADD QUEUE to
2763		 * skip_process_ctx_clear unconditionally as the first call to
2764		 * SET_SHADER_DEBUGGER clears any stale process context data
2765		 * saved in MES.
2766		 */
2767		if (pdd->dev->kfd->shared_resources.enable_mes)
2768			kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2769	}
2770
2771	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2772	p->runtime_info.r_debug = r_debug;
2773	p->runtime_info.ttmp_setup = enable_ttmp_setup;
2774
2775	if (p->runtime_info.ttmp_setup) {
2776		for (i = 0; i < p->n_pdds; i++) {
2777			struct kfd_process_device *pdd = p->pdds[i];
2778
2779			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2780				amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2781				pdd->dev->kfd2kgd->enable_debug_trap(
2782						pdd->dev->adev,
2783						true,
2784						pdd->dev->vm_info.last_vmid_kfd);
2785			} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2786				pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2787						pdd->dev->adev,
2788						false,
2789						0);
2790			}
2791		}
2792	}
2793
2794retry:
2795	if (p->debug_trap_enabled) {
2796		if (!p->is_runtime_retry) {
2797			kfd_dbg_trap_activate(p);
2798			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2799					p, NULL, 0, false, NULL, 0);
2800		}
2801
2802		mutex_unlock(&p->mutex);
2803		ret = down_interruptible(&p->runtime_enable_sema);
2804		mutex_lock(&p->mutex);
2805
2806		p->is_runtime_retry = !!ret;
2807	}
2808
2809	return ret;
2810}
2811
2812static int runtime_disable(struct kfd_process *p)
2813{
2814	int i = 0, ret;
2815	bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2816
2817	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2818	p->runtime_info.r_debug = 0;
2819
2820	if (p->debug_trap_enabled) {
2821		if (was_enabled)
2822			kfd_dbg_trap_deactivate(p, false, 0);
2823
2824		if (!p->is_runtime_retry)
2825			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2826					p, NULL, 0, false, NULL, 0);
2827
2828		mutex_unlock(&p->mutex);
2829		ret = down_interruptible(&p->runtime_enable_sema);
2830		mutex_lock(&p->mutex);
2831
2832		p->is_runtime_retry = !!ret;
2833		if (ret)
2834			return ret;
2835	}
2836
2837	if (was_enabled && p->runtime_info.ttmp_setup) {
2838		for (i = 0; i < p->n_pdds; i++) {
2839			struct kfd_process_device *pdd = p->pdds[i];
2840
2841			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2842				amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2843		}
2844	}
2845
2846	p->runtime_info.ttmp_setup = false;
2847
2848	/* disable ttmp setup */
2849	for (i = 0; i < p->n_pdds; i++) {
2850		struct kfd_process_device *pdd = p->pdds[i];
2851
2852		if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2853			pdd->spi_dbg_override =
2854					pdd->dev->kfd2kgd->disable_debug_trap(
2855					pdd->dev->adev,
2856					false,
2857					pdd->dev->vm_info.last_vmid_kfd);
2858
2859			if (!pdd->dev->kfd->shared_resources.enable_mes)
2860				debug_refresh_runlist(pdd->dev->dqm);
2861			else
2862				kfd_dbg_set_mes_debug_mode(pdd,
2863							   !kfd_dbg_has_cwsr_workaround(pdd->dev));
2864		}
2865	}
2866
2867	return 0;
2868}
2869
2870static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2871{
2872	struct kfd_ioctl_runtime_enable_args *args = data;
2873	int r;
2874
2875	mutex_lock(&p->mutex);
2876
2877	if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2878		r = runtime_enable(p, args->r_debug,
2879				!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2880	else
2881		r = runtime_disable(p);
2882
2883	mutex_unlock(&p->mutex);
2884
2885	return r;
2886}
2887
2888static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2889{
2890	struct kfd_ioctl_dbg_trap_args *args = data;
2891	struct task_struct *thread = NULL;
2892	struct mm_struct *mm = NULL;
2893	struct pid *pid = NULL;
2894	struct kfd_process *target = NULL;
2895	struct kfd_process_device *pdd = NULL;
2896	int r = 0;
2897
2898	if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2899		pr_err("Debugging does not support sched_policy %i", sched_policy);
2900		return -EINVAL;
2901	}
2902
2903	pid = find_get_pid(args->pid);
2904	if (!pid) {
2905		pr_debug("Cannot find pid info for %i\n", args->pid);
2906		r = -ESRCH;
2907		goto out;
2908	}
2909
2910	thread = get_pid_task(pid, PIDTYPE_PID);
2911	if (!thread) {
2912		r = -ESRCH;
2913		goto out;
2914	}
2915
2916	mm = get_task_mm(thread);
2917	if (!mm) {
2918		r = -ESRCH;
2919		goto out;
2920	}
2921
2922	if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2923		bool create_process;
2924
2925		rcu_read_lock();
2926		create_process = thread && thread != current && ptrace_parent(thread) == current;
2927		rcu_read_unlock();
2928
2929		target = create_process ? kfd_create_process(thread) :
2930					kfd_lookup_process_by_pid(pid);
2931	} else {
2932		target = kfd_lookup_process_by_pid(pid);
2933	}
2934
2935	if (IS_ERR_OR_NULL(target)) {
2936		pr_debug("Cannot find process PID %i to debug\n", args->pid);
2937		r = target ? PTR_ERR(target) : -ESRCH;
2938		goto out;
2939	}
2940
2941	/* Check if target is still PTRACED. */
2942	rcu_read_lock();
2943	if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2944				&& ptrace_parent(target->lead_thread) != current) {
2945		pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2946		r = -EPERM;
2947	}
2948	rcu_read_unlock();
2949
2950	if (r)
2951		goto out;
2952
2953	mutex_lock(&target->mutex);
2954
2955	if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2956		pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2957		r = -EINVAL;
2958		goto unlock_out;
2959	}
2960
2961	if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2962			(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2963			 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2964			 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2965			 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2966			 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2967			 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2968			 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2969		r = -EPERM;
2970		goto unlock_out;
2971	}
2972
2973	if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2974	    args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2975		int user_gpu_id = kfd_process_get_user_gpu_id(target,
2976				args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2977					args->set_node_address_watch.gpu_id :
2978					args->clear_node_address_watch.gpu_id);
2979
2980		pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2981		if (user_gpu_id == -EINVAL || !pdd) {
2982			r = -ENODEV;
2983			goto unlock_out;
2984		}
2985	}
2986
2987	switch (args->op) {
2988	case KFD_IOC_DBG_TRAP_ENABLE:
2989		if (target != p)
2990			target->debugger_process = p;
2991
2992		r = kfd_dbg_trap_enable(target,
2993					args->enable.dbg_fd,
2994					(void __user *)args->enable.rinfo_ptr,
2995					&args->enable.rinfo_size);
2996		if (!r)
2997			target->exception_enable_mask = args->enable.exception_mask;
2998
2999		break;
3000	case KFD_IOC_DBG_TRAP_DISABLE:
3001		r = kfd_dbg_trap_disable(target);
3002		break;
3003	case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3004		r = kfd_dbg_send_exception_to_runtime(target,
3005				args->send_runtime_event.gpu_id,
3006				args->send_runtime_event.queue_id,
3007				args->send_runtime_event.exception_mask);
3008		break;
3009	case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3010		kfd_dbg_set_enabled_debug_exception_mask(target,
3011				args->set_exceptions_enabled.exception_mask);
3012		break;
3013	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3014		r = kfd_dbg_trap_set_wave_launch_override(target,
3015				args->launch_override.override_mode,
3016				args->launch_override.enable_mask,
3017				args->launch_override.support_request_mask,
3018				&args->launch_override.enable_mask,
3019				&args->launch_override.support_request_mask);
3020		break;
3021	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3022		r = kfd_dbg_trap_set_wave_launch_mode(target,
3023				args->launch_mode.launch_mode);
3024		break;
3025	case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3026		r = suspend_queues(target,
3027				args->suspend_queues.num_queues,
3028				args->suspend_queues.grace_period,
3029				args->suspend_queues.exception_mask,
3030				(uint32_t *)args->suspend_queues.queue_array_ptr);
3031
3032		break;
3033	case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3034		r = resume_queues(target, args->resume_queues.num_queues,
3035				(uint32_t *)args->resume_queues.queue_array_ptr);
3036		break;
3037	case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3038		r = kfd_dbg_trap_set_dev_address_watch(pdd,
3039				args->set_node_address_watch.address,
3040				args->set_node_address_watch.mask,
3041				&args->set_node_address_watch.id,
3042				args->set_node_address_watch.mode);
3043		break;
3044	case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3045		r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3046				args->clear_node_address_watch.id);
3047		break;
3048	case KFD_IOC_DBG_TRAP_SET_FLAGS:
3049		r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3050		break;
3051	case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3052		r = kfd_dbg_ev_query_debug_event(target,
3053				&args->query_debug_event.queue_id,
3054				&args->query_debug_event.gpu_id,
3055				args->query_debug_event.exception_mask,
3056				&args->query_debug_event.exception_mask);
3057		break;
3058	case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3059		r = kfd_dbg_trap_query_exception_info(target,
3060				args->query_exception_info.source_id,
3061				args->query_exception_info.exception_code,
3062				args->query_exception_info.clear_exception,
3063				(void __user *)args->query_exception_info.info_ptr,
3064				&args->query_exception_info.info_size);
3065		break;
3066	case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3067		r = pqm_get_queue_snapshot(&target->pqm,
3068				args->queue_snapshot.exception_mask,
3069				(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3070				&args->queue_snapshot.num_queues,
3071				&args->queue_snapshot.entry_size);
3072		break;
3073	case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3074		r = kfd_dbg_trap_device_snapshot(target,
3075				args->device_snapshot.exception_mask,
3076				(void __user *)args->device_snapshot.snapshot_buf_ptr,
3077				&args->device_snapshot.num_devices,
3078				&args->device_snapshot.entry_size);
3079		break;
3080	default:
3081		pr_err("Invalid option: %i\n", args->op);
3082		r = -EINVAL;
3083	}
3084
3085unlock_out:
3086	mutex_unlock(&target->mutex);
3087
3088out:
3089	if (thread)
3090		put_task_struct(thread);
3091
3092	if (mm)
3093		mmput(mm);
3094
3095	if (pid)
3096		put_pid(pid);
3097
3098	if (target)
3099		kfd_unref_process(target);
3100
3101	return r;
3102}
3103
3104#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3105	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3106			    .cmd_drv = 0, .name = #ioctl}
3107
3108/** Ioctl table */
3109static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3110	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3111			kfd_ioctl_get_version, 0),
3112
3113	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3114			kfd_ioctl_create_queue, 0),
3115
3116	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3117			kfd_ioctl_destroy_queue, 0),
3118
3119	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3120			kfd_ioctl_set_memory_policy, 0),
3121
3122	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3123			kfd_ioctl_get_clock_counters, 0),
3124
3125	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3126			kfd_ioctl_get_process_apertures, 0),
3127
3128	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3129			kfd_ioctl_update_queue, 0),
3130
3131	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3132			kfd_ioctl_create_event, 0),
3133
3134	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3135			kfd_ioctl_destroy_event, 0),
3136
3137	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3138			kfd_ioctl_set_event, 0),
3139
3140	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3141			kfd_ioctl_reset_event, 0),
3142
3143	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3144			kfd_ioctl_wait_events, 0),
3145
3146	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3147			kfd_ioctl_dbg_register, 0),
3148
3149	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3150			kfd_ioctl_dbg_unregister, 0),
3151
3152	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3153			kfd_ioctl_dbg_address_watch, 0),
3154
3155	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3156			kfd_ioctl_dbg_wave_control, 0),
3157
3158	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3159			kfd_ioctl_set_scratch_backing_va, 0),
3160
3161	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3162			kfd_ioctl_get_tile_config, 0),
3163
3164	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3165			kfd_ioctl_set_trap_handler, 0),
3166
3167	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3168			kfd_ioctl_get_process_apertures_new, 0),
3169
3170	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3171			kfd_ioctl_acquire_vm, 0),
3172
3173	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3174			kfd_ioctl_alloc_memory_of_gpu, 0),
3175
3176	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3177			kfd_ioctl_free_memory_of_gpu, 0),
3178
3179	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3180			kfd_ioctl_map_memory_to_gpu, 0),
3181
3182	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3183			kfd_ioctl_unmap_memory_from_gpu, 0),
3184
3185	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3186			kfd_ioctl_set_cu_mask, 0),
3187
3188	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3189			kfd_ioctl_get_queue_wave_state, 0),
3190
3191	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3192				kfd_ioctl_get_dmabuf_info, 0),
3193
3194	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3195				kfd_ioctl_import_dmabuf, 0),
3196
3197	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3198			kfd_ioctl_alloc_queue_gws, 0),
3199
3200	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3201			kfd_ioctl_smi_events, 0),
3202
3203	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3204
3205	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3206			kfd_ioctl_set_xnack_mode, 0),
3207
3208	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3209			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3210
3211	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3212			kfd_ioctl_get_available_memory, 0),
3213
3214	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3215				kfd_ioctl_export_dmabuf, 0),
3216
3217	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3218			kfd_ioctl_runtime_enable, 0),
3219
3220	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3221			kfd_ioctl_set_debug_trap, 0),
3222};
3223
3224#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
3225
3226static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3227{
3228	struct kfd_process *process;
3229	amdkfd_ioctl_t *func;
3230	const struct amdkfd_ioctl_desc *ioctl = NULL;
3231	unsigned int nr = _IOC_NR(cmd);
3232	char stack_kdata[128];
3233	char *kdata = NULL;
3234	unsigned int usize, asize;
3235	int retcode = -EINVAL;
3236	bool ptrace_attached = false;
3237
3238	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3239		goto err_i1;
3240
3241	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3242		u32 amdkfd_size;
3243
3244		ioctl = &amdkfd_ioctls[nr];
3245
3246		amdkfd_size = _IOC_SIZE(ioctl->cmd);
3247		usize = asize = _IOC_SIZE(cmd);
3248		if (amdkfd_size > asize)
3249			asize = amdkfd_size;
3250
3251		cmd = ioctl->cmd;
3252	} else
3253		goto err_i1;
3254
3255	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3256
3257	/* Get the process struct from the filep. Only the process
3258	 * that opened /dev/kfd can use the file descriptor. Child
3259	 * processes need to create their own KFD device context.
3260	 */
3261	process = filep->private_data;
3262
3263	rcu_read_lock();
3264	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3265	    ptrace_parent(process->lead_thread) == current)
3266		ptrace_attached = true;
3267	rcu_read_unlock();
3268
3269	if (process->lead_thread != current->group_leader
3270	    && !ptrace_attached) {
3271		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3272		retcode = -EBADF;
3273		goto err_i1;
3274	}
3275
3276	/* Do not trust userspace, use our own definition */
3277	func = ioctl->func;
3278
3279	if (unlikely(!func)) {
3280		dev_dbg(kfd_device, "no function\n");
3281		retcode = -EINVAL;
3282		goto err_i1;
3283	}
3284
3285	/*
3286	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3287	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3288	 * more priviledged access.
3289	 */
3290	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3291		if (!capable(CAP_CHECKPOINT_RESTORE) &&
3292						!capable(CAP_SYS_ADMIN)) {
3293			retcode = -EACCES;
3294			goto err_i1;
3295		}
3296	}
3297
3298	if (cmd & (IOC_IN | IOC_OUT)) {
3299		if (asize <= sizeof(stack_kdata)) {
3300			kdata = stack_kdata;
3301		} else {
3302			kdata = kmalloc(asize, GFP_KERNEL);
3303			if (!kdata) {
3304				retcode = -ENOMEM;
3305				goto err_i1;
3306			}
3307		}
3308		if (asize > usize)
3309			memset(kdata + usize, 0, asize - usize);
3310	}
3311
3312	if (cmd & IOC_IN) {
3313		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3314			retcode = -EFAULT;
3315			goto err_i1;
3316		}
3317	} else if (cmd & IOC_OUT) {
3318		memset(kdata, 0, usize);
3319	}
3320
3321	retcode = func(filep, process, kdata);
3322
3323	if (cmd & IOC_OUT)
3324		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3325			retcode = -EFAULT;
3326
3327err_i1:
3328	if (!ioctl)
3329		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3330			  task_pid_nr(current), cmd, nr);
3331
3332	if (kdata != stack_kdata)
3333		kfree(kdata);
3334
3335	if (retcode)
3336		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3337				nr, arg, retcode);
3338
3339	return retcode;
3340}
3341
3342static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3343		      struct vm_area_struct *vma)
3344{
3345	phys_addr_t address;
 
3346
3347	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3348		return -EINVAL;
3349
3350	address = dev->adev->rmmio_remap.bus_addr;
3351
3352	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3353				VM_DONTDUMP | VM_PFNMAP);
3354
3355	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3356
3357	pr_debug("pasid 0x%x mapping mmio page\n"
3358		 "     target user address == 0x%08llX\n"
3359		 "     physical address    == 0x%08llX\n"
3360		 "     vm_flags            == 0x%04lX\n"
3361		 "     size                == 0x%04lX\n",
3362		 process->pasid, (unsigned long long) vma->vm_start,
3363		 address, vma->vm_flags, PAGE_SIZE);
3364
3365	return io_remap_pfn_range(vma,
3366				vma->vm_start,
3367				address >> PAGE_SHIFT,
3368				PAGE_SIZE,
3369				vma->vm_page_prot);
 
3370}
3371
3372
3373static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3374{
3375	struct kfd_process *process;
3376	struct kfd_node *dev = NULL;
3377	unsigned long mmap_offset;
3378	unsigned int gpu_id;
3379
3380	process = kfd_get_process(current);
3381	if (IS_ERR(process))
3382		return PTR_ERR(process);
3383
3384	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3385	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3386	if (gpu_id)
3387		dev = kfd_device_by_id(gpu_id);
3388
3389	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3390	case KFD_MMAP_TYPE_DOORBELL:
3391		if (!dev)
3392			return -ENODEV;
3393		return kfd_doorbell_mmap(dev, process, vma);
3394
3395	case KFD_MMAP_TYPE_EVENTS:
3396		return kfd_event_mmap(process, vma);
3397
3398	case KFD_MMAP_TYPE_RESERVED_MEM:
3399		if (!dev)
3400			return -ENODEV;
3401		return kfd_reserved_mem_mmap(dev, process, vma);
3402	case KFD_MMAP_TYPE_MMIO:
3403		if (!dev)
3404			return -ENODEV;
3405		return kfd_mmio_mmap(dev, process, vma);
3406	}
3407
3408	return -EFAULT;
3409}
v5.14.15
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/device.h>
  24#include <linux/export.h>
  25#include <linux/err.h>
  26#include <linux/fs.h>
  27#include <linux/file.h>
  28#include <linux/sched.h>
  29#include <linux/slab.h>
  30#include <linux/uaccess.h>
  31#include <linux/compat.h>
  32#include <uapi/linux/kfd_ioctl.h>
  33#include <linux/time.h>
  34#include <linux/mm.h>
  35#include <linux/mman.h>
 
  36#include <linux/dma-buf.h>
  37#include <asm/processor.h>
 
  38#include "kfd_priv.h"
  39#include "kfd_device_queue_manager.h"
  40#include "kfd_dbgmgr.h"
  41#include "kfd_svm.h"
  42#include "amdgpu_amdkfd.h"
  43#include "kfd_smi_events.h"
 
 
  44
  45static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  46static int kfd_open(struct inode *, struct file *);
  47static int kfd_release(struct inode *, struct file *);
  48static int kfd_mmap(struct file *, struct vm_area_struct *);
  49
  50static const char kfd_dev_name[] = "kfd";
  51
  52static const struct file_operations kfd_fops = {
  53	.owner = THIS_MODULE,
  54	.unlocked_ioctl = kfd_ioctl,
  55	.compat_ioctl = compat_ptr_ioctl,
  56	.open = kfd_open,
  57	.release = kfd_release,
  58	.mmap = kfd_mmap,
  59};
  60
  61static int kfd_char_dev_major = -1;
  62static struct class *kfd_class;
  63struct device *kfd_device;
  64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65int kfd_chardev_init(void)
  66{
  67	int err = 0;
  68
  69	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  70	err = kfd_char_dev_major;
  71	if (err < 0)
  72		goto err_register_chrdev;
  73
  74	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
  75	err = PTR_ERR(kfd_class);
  76	if (IS_ERR(kfd_class))
  77		goto err_class_create;
  78
  79	kfd_device = device_create(kfd_class, NULL,
  80					MKDEV(kfd_char_dev_major, 0),
  81					NULL, kfd_dev_name);
  82	err = PTR_ERR(kfd_device);
  83	if (IS_ERR(kfd_device))
  84		goto err_device_create;
  85
  86	return 0;
  87
  88err_device_create:
  89	class_destroy(kfd_class);
  90err_class_create:
  91	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
  92err_register_chrdev:
  93	return err;
  94}
  95
  96void kfd_chardev_exit(void)
  97{
  98	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
  99	class_destroy(kfd_class);
 100	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 101	kfd_device = NULL;
 102}
 103
 104struct device *kfd_chardev(void)
 105{
 106	return kfd_device;
 107}
 108
 109
 110static int kfd_open(struct inode *inode, struct file *filep)
 111{
 112	struct kfd_process *process;
 113	bool is_32bit_user_mode;
 114
 115	if (iminor(inode) != 0)
 116		return -ENODEV;
 117
 118	is_32bit_user_mode = in_compat_syscall();
 119
 120	if (is_32bit_user_mode) {
 121		dev_warn(kfd_device,
 122			"Process %d (32-bit) failed to open /dev/kfd\n"
 123			"32-bit processes are not supported by amdkfd\n",
 124			current->pid);
 125		return -EPERM;
 126	}
 127
 128	process = kfd_create_process(filep);
 129	if (IS_ERR(process))
 130		return PTR_ERR(process);
 131
 132	if (kfd_is_locked()) {
 133		dev_dbg(kfd_device, "kfd is locked!\n"
 134				"process %d unreferenced", process->pasid);
 135		kfd_unref_process(process);
 136		return -EAGAIN;
 137	}
 138
 139	/* filep now owns the reference returned by kfd_create_process */
 140	filep->private_data = process;
 141
 142	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 143		process->pasid, process->is_32bit_user_mode);
 144
 145	return 0;
 146}
 147
 148static int kfd_release(struct inode *inode, struct file *filep)
 149{
 150	struct kfd_process *process = filep->private_data;
 151
 152	if (process)
 153		kfd_unref_process(process);
 154
 155	return 0;
 156}
 157
 158static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 159					void *data)
 160{
 161	struct kfd_ioctl_get_version_args *args = data;
 162
 163	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 164	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 165
 166	return 0;
 167}
 168
 169static int set_queue_properties_from_user(struct queue_properties *q_properties,
 170				struct kfd_ioctl_create_queue_args *args)
 171{
 172	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
 
 
 
 
 
 173		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 174		return -EINVAL;
 175	}
 176
 177	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 178		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 179		return -EINVAL;
 180	}
 181
 182	if ((args->ring_base_address) &&
 183		(!access_ok((const void __user *) args->ring_base_address,
 184			sizeof(uint64_t)))) {
 185		pr_err("Can't access ring base address\n");
 186		return -EFAULT;
 187	}
 188
 189	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 190		pr_err("Ring size must be a power of 2 or 0\n");
 191		return -EINVAL;
 192	}
 193
 194	if (!access_ok((const void __user *) args->read_pointer_address,
 195			sizeof(uint32_t))) {
 196		pr_err("Can't access read pointer\n");
 197		return -EFAULT;
 198	}
 199
 200	if (!access_ok((const void __user *) args->write_pointer_address,
 201			sizeof(uint32_t))) {
 202		pr_err("Can't access write pointer\n");
 203		return -EFAULT;
 204	}
 205
 206	if (args->eop_buffer_address &&
 207		!access_ok((const void __user *) args->eop_buffer_address,
 208			sizeof(uint32_t))) {
 209		pr_debug("Can't access eop buffer");
 210		return -EFAULT;
 211	}
 212
 213	if (args->ctx_save_restore_address &&
 214		!access_ok((const void __user *) args->ctx_save_restore_address,
 215			sizeof(uint32_t))) {
 216		pr_debug("Can't access ctx save restore buffer");
 217		return -EFAULT;
 218	}
 219
 220	q_properties->is_interop = false;
 221	q_properties->is_gws = false;
 222	q_properties->queue_percent = args->queue_percentage;
 
 
 223	q_properties->priority = args->queue_priority;
 224	q_properties->queue_address = args->ring_base_address;
 225	q_properties->queue_size = args->ring_size;
 226	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 227	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 228	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 229	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 230	q_properties->ctx_save_restore_area_address =
 231			args->ctx_save_restore_address;
 232	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 233	q_properties->ctl_stack_size = args->ctl_stack_size;
 234	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 235		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 236		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 237	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 238		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 239	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
 240		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
 241	else
 242		return -ENOTSUPP;
 243
 244	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 245		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 246	else
 247		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 248
 249	pr_debug("Queue Percentage: %d, %d\n",
 250			q_properties->queue_percent, args->queue_percentage);
 251
 252	pr_debug("Queue Priority: %d, %d\n",
 253			q_properties->priority, args->queue_priority);
 254
 255	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
 256			q_properties->queue_address, args->ring_base_address);
 257
 258	pr_debug("Queue Size: 0x%llX, %u\n",
 259			q_properties->queue_size, args->ring_size);
 260
 261	pr_debug("Queue r/w Pointers: %px, %px\n",
 262			q_properties->read_ptr,
 263			q_properties->write_ptr);
 264
 265	pr_debug("Queue Format: %d\n", q_properties->format);
 266
 267	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
 268
 269	pr_debug("Queue CTX save area: 0x%llX\n",
 270			q_properties->ctx_save_restore_area_address);
 271
 272	return 0;
 273}
 274
 275static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 276					void *data)
 277{
 278	struct kfd_ioctl_create_queue_args *args = data;
 279	struct kfd_dev *dev;
 280	int err = 0;
 281	unsigned int queue_id;
 282	struct kfd_process_device *pdd;
 283	struct queue_properties q_properties;
 284	uint32_t doorbell_offset_in_process = 0;
 
 285
 286	memset(&q_properties, 0, sizeof(struct queue_properties));
 287
 288	pr_debug("Creating queue ioctl\n");
 289
 290	err = set_queue_properties_from_user(&q_properties, args);
 291	if (err)
 292		return err;
 293
 294	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
 295	dev = kfd_device_by_id(args->gpu_id);
 296	if (!dev) {
 
 
 
 297		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 298		return -EINVAL;
 
 299	}
 300
 301	mutex_lock(&p->mutex);
 302
 303	pdd = kfd_bind_process_to_device(dev, p);
 304	if (IS_ERR(pdd)) {
 305		err = -ESRCH;
 306		goto err_bind_process;
 307	}
 308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
 310			p->pasid,
 311			dev->id);
 312
 313	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
 314			&doorbell_offset_in_process);
 315	if (err != 0)
 316		goto err_create_queue;
 317
 318	args->queue_id = queue_id;
 319
 320
 321	/* Return gpu_id as doorbell offset for mmap usage */
 322	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
 323	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
 324	if (KFD_IS_SOC15(dev->device_info->asic_family))
 325		/* On SOC15 ASICs, include the doorbell offset within the
 326		 * process doorbell frame, which is 2 pages.
 327		 */
 328		args->doorbell_offset |= doorbell_offset_in_process;
 329
 330	mutex_unlock(&p->mutex);
 331
 332	pr_debug("Queue id %d was created successfully\n", args->queue_id);
 333
 334	pr_debug("Ring buffer address == 0x%016llX\n",
 335			args->ring_base_address);
 336
 337	pr_debug("Read ptr address    == 0x%016llX\n",
 338			args->read_pointer_address);
 339
 340	pr_debug("Write ptr address   == 0x%016llX\n",
 341			args->write_pointer_address);
 342
 
 343	return 0;
 344
 345err_create_queue:
 
 
 
 346err_bind_process:
 
 347	mutex_unlock(&p->mutex);
 348	return err;
 349}
 350
 351static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 352					void *data)
 353{
 354	int retval;
 355	struct kfd_ioctl_destroy_queue_args *args = data;
 356
 357	pr_debug("Destroying queue id %d for pasid 0x%x\n",
 358				args->queue_id,
 359				p->pasid);
 360
 361	mutex_lock(&p->mutex);
 362
 363	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 364
 365	mutex_unlock(&p->mutex);
 366	return retval;
 367}
 368
 369static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 370					void *data)
 371{
 372	int retval;
 373	struct kfd_ioctl_update_queue_args *args = data;
 374	struct queue_properties properties;
 375
 376	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
 
 
 
 
 
 377		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 378		return -EINVAL;
 379	}
 380
 381	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 382		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 383		return -EINVAL;
 384	}
 385
 386	if ((args->ring_base_address) &&
 387		(!access_ok((const void __user *) args->ring_base_address,
 388			sizeof(uint64_t)))) {
 389		pr_err("Can't access ring base address\n");
 390		return -EFAULT;
 391	}
 392
 393	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 394		pr_err("Ring size must be a power of 2 or 0\n");
 395		return -EINVAL;
 396	}
 397
 398	properties.queue_address = args->ring_base_address;
 399	properties.queue_size = args->ring_size;
 400	properties.queue_percent = args->queue_percentage;
 
 
 401	properties.priority = args->queue_priority;
 402
 403	pr_debug("Updating queue id %d for pasid 0x%x\n",
 404			args->queue_id, p->pasid);
 405
 406	mutex_lock(&p->mutex);
 407
 408	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
 409
 410	mutex_unlock(&p->mutex);
 411
 412	return retval;
 413}
 414
 415static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
 416					void *data)
 417{
 418	int retval;
 419	const int max_num_cus = 1024;
 420	struct kfd_ioctl_set_cu_mask_args *args = data;
 421	struct queue_properties properties;
 422	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
 423	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
 424
 425	if ((args->num_cu_mask % 32) != 0) {
 426		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
 427				args->num_cu_mask);
 428		return -EINVAL;
 429	}
 430
 431	properties.cu_mask_count = args->num_cu_mask;
 432	if (properties.cu_mask_count == 0) {
 433		pr_debug("CU mask cannot be 0");
 434		return -EINVAL;
 435	}
 436
 437	/* To prevent an unreasonably large CU mask size, set an arbitrary
 438	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
 439	 * past max_num_cus bits and just use the first max_num_cus bits.
 440	 */
 441	if (properties.cu_mask_count > max_num_cus) {
 442		pr_debug("CU mask cannot be greater than 1024 bits");
 443		properties.cu_mask_count = max_num_cus;
 444		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
 445	}
 446
 447	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
 448	if (!properties.cu_mask)
 449		return -ENOMEM;
 450
 451	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
 452	if (retval) {
 453		pr_debug("Could not copy CU mask from userspace");
 454		kfree(properties.cu_mask);
 455		return -EFAULT;
 456	}
 457
 458	mutex_lock(&p->mutex);
 459
 460	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
 461
 462	mutex_unlock(&p->mutex);
 463
 464	if (retval)
 465		kfree(properties.cu_mask);
 466
 467	return retval;
 468}
 469
 470static int kfd_ioctl_get_queue_wave_state(struct file *filep,
 471					  struct kfd_process *p, void *data)
 472{
 473	struct kfd_ioctl_get_queue_wave_state_args *args = data;
 474	int r;
 475
 476	mutex_lock(&p->mutex);
 477
 478	r = pqm_get_wave_state(&p->pqm, args->queue_id,
 479			       (void __user *)args->ctl_stack_address,
 480			       &args->ctl_stack_used_size,
 481			       &args->save_area_used_size);
 482
 483	mutex_unlock(&p->mutex);
 484
 485	return r;
 486}
 487
 488static int kfd_ioctl_set_memory_policy(struct file *filep,
 489					struct kfd_process *p, void *data)
 490{
 491	struct kfd_ioctl_set_memory_policy_args *args = data;
 492	struct kfd_dev *dev;
 493	int err = 0;
 494	struct kfd_process_device *pdd;
 495	enum cache_policy default_policy, alternate_policy;
 496
 497	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 498	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 499		return -EINVAL;
 500	}
 501
 502	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 503	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 504		return -EINVAL;
 505	}
 506
 507	dev = kfd_device_by_id(args->gpu_id);
 508	if (!dev)
 509		return -EINVAL;
 510
 511	mutex_lock(&p->mutex);
 
 
 
 
 
 
 512
 513	pdd = kfd_bind_process_to_device(dev, p);
 514	if (IS_ERR(pdd)) {
 515		err = -ESRCH;
 516		goto out;
 517	}
 518
 519	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 520			 ? cache_policy_coherent : cache_policy_noncoherent;
 521
 522	alternate_policy =
 523		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 524		   ? cache_policy_coherent : cache_policy_noncoherent;
 525
 526	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
 527				&pdd->qpd,
 528				default_policy,
 529				alternate_policy,
 530				(void __user *)args->alternate_aperture_base,
 531				args->alternate_aperture_size))
 532		err = -EINVAL;
 533
 534out:
 
 535	mutex_unlock(&p->mutex);
 536
 537	return err;
 538}
 539
 540static int kfd_ioctl_set_trap_handler(struct file *filep,
 541					struct kfd_process *p, void *data)
 542{
 543	struct kfd_ioctl_set_trap_handler_args *args = data;
 544	struct kfd_dev *dev;
 545	int err = 0;
 546	struct kfd_process_device *pdd;
 547
 548	dev = kfd_device_by_id(args->gpu_id);
 549	if (!dev)
 550		return -EINVAL;
 551
 552	mutex_lock(&p->mutex);
 
 
 
 
 553
 554	pdd = kfd_bind_process_to_device(dev, p);
 555	if (IS_ERR(pdd)) {
 556		err = -ESRCH;
 557		goto out;
 558	}
 559
 560	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
 561
 562out:
 
 563	mutex_unlock(&p->mutex);
 564
 565	return err;
 566}
 567
 568static int kfd_ioctl_dbg_register(struct file *filep,
 569				struct kfd_process *p, void *data)
 570{
 571	struct kfd_ioctl_dbg_register_args *args = data;
 572	struct kfd_dev *dev;
 573	struct kfd_dbgmgr *dbgmgr_ptr;
 574	struct kfd_process_device *pdd;
 575	bool create_ok;
 576	long status = 0;
 577
 578	dev = kfd_device_by_id(args->gpu_id);
 579	if (!dev)
 580		return -EINVAL;
 581
 582	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 583		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
 584		return -EINVAL;
 585	}
 586
 587	mutex_lock(&p->mutex);
 588	mutex_lock(kfd_get_dbgmgr_mutex());
 589
 590	/*
 591	 * make sure that we have pdd, if this the first queue created for
 592	 * this process
 593	 */
 594	pdd = kfd_bind_process_to_device(dev, p);
 595	if (IS_ERR(pdd)) {
 596		status = PTR_ERR(pdd);
 597		goto out;
 598	}
 599
 600	if (!dev->dbgmgr) {
 601		/* In case of a legal call, we have no dbgmgr yet */
 602		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
 603		if (create_ok) {
 604			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
 605			if (status != 0)
 606				kfd_dbgmgr_destroy(dbgmgr_ptr);
 607			else
 608				dev->dbgmgr = dbgmgr_ptr;
 609		}
 610	} else {
 611		pr_debug("debugger already registered\n");
 612		status = -EINVAL;
 613	}
 614
 615out:
 616	mutex_unlock(kfd_get_dbgmgr_mutex());
 617	mutex_unlock(&p->mutex);
 618
 619	return status;
 620}
 621
 622static int kfd_ioctl_dbg_unregister(struct file *filep,
 623				struct kfd_process *p, void *data)
 624{
 625	struct kfd_ioctl_dbg_unregister_args *args = data;
 626	struct kfd_dev *dev;
 627	long status;
 628
 629	dev = kfd_device_by_id(args->gpu_id);
 630	if (!dev || !dev->dbgmgr)
 631		return -EINVAL;
 632
 633	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 634		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
 635		return -EINVAL;
 636	}
 637
 638	mutex_lock(kfd_get_dbgmgr_mutex());
 639
 640	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
 641	if (!status) {
 642		kfd_dbgmgr_destroy(dev->dbgmgr);
 643		dev->dbgmgr = NULL;
 644	}
 645
 646	mutex_unlock(kfd_get_dbgmgr_mutex());
 647
 648	return status;
 649}
 650
 651/*
 652 * Parse and generate variable size data structure for address watch.
 653 * Total size of the buffer and # watch points is limited in order
 654 * to prevent kernel abuse. (no bearing to the much smaller HW limitation
 655 * which is enforced by dbgdev module)
 656 * please also note that the watch address itself are not "copied from user",
 657 * since it be set into the HW in user mode values.
 658 *
 659 */
 660static int kfd_ioctl_dbg_address_watch(struct file *filep,
 661					struct kfd_process *p, void *data)
 662{
 663	struct kfd_ioctl_dbg_address_watch_args *args = data;
 664	struct kfd_dev *dev;
 665	struct dbg_address_watch_info aw_info;
 666	unsigned char *args_buff;
 667	long status;
 668	void __user *cmd_from_user;
 669	uint64_t watch_mask_value = 0;
 670	unsigned int args_idx = 0;
 671
 672	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
 673
 674	dev = kfd_device_by_id(args->gpu_id);
 675	if (!dev)
 676		return -EINVAL;
 677
 678	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 679		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
 680		return -EINVAL;
 681	}
 682
 683	cmd_from_user = (void __user *) args->content_ptr;
 684
 685	/* Validate arguments */
 686
 687	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
 688		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
 689		(cmd_from_user == NULL))
 690		return -EINVAL;
 691
 692	/* this is the actual buffer to work with */
 693	args_buff = memdup_user(cmd_from_user,
 694				args->buf_size_in_bytes - sizeof(*args));
 695	if (IS_ERR(args_buff))
 696		return PTR_ERR(args_buff);
 697
 698	aw_info.process = p;
 699
 700	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
 701	args_idx += sizeof(aw_info.num_watch_points);
 702
 703	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
 704	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
 705
 706	/*
 707	 * set watch address base pointer to point on the array base
 708	 * within args_buff
 709	 */
 710	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
 711
 712	/* skip over the addresses buffer */
 713	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
 714
 715	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
 716		status = -EINVAL;
 717		goto out;
 718	}
 719
 720	watch_mask_value = (uint64_t) args_buff[args_idx];
 721
 722	if (watch_mask_value > 0) {
 723		/*
 724		 * There is an array of masks.
 725		 * set watch mask base pointer to point on the array base
 726		 * within args_buff
 727		 */
 728		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
 729
 730		/* skip over the masks buffer */
 731		args_idx += sizeof(aw_info.watch_mask) *
 732				aw_info.num_watch_points;
 733	} else {
 734		/* just the NULL mask, set to NULL and skip over it */
 735		aw_info.watch_mask = NULL;
 736		args_idx += sizeof(aw_info.watch_mask);
 737	}
 738
 739	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
 740		status = -EINVAL;
 741		goto out;
 742	}
 743
 744	/* Currently HSA Event is not supported for DBG */
 745	aw_info.watch_event = NULL;
 746
 747	mutex_lock(kfd_get_dbgmgr_mutex());
 748
 749	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
 750
 751	mutex_unlock(kfd_get_dbgmgr_mutex());
 752
 753out:
 754	kfree(args_buff);
 755
 756	return status;
 757}
 758
 759/* Parse and generate fixed size data structure for wave control */
 760static int kfd_ioctl_dbg_wave_control(struct file *filep,
 761					struct kfd_process *p, void *data)
 762{
 763	struct kfd_ioctl_dbg_wave_control_args *args = data;
 764	struct kfd_dev *dev;
 765	struct dbg_wave_control_info wac_info;
 766	unsigned char *args_buff;
 767	uint32_t computed_buff_size;
 768	long status;
 769	void __user *cmd_from_user;
 770	unsigned int args_idx = 0;
 771
 772	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
 773
 774	/* we use compact form, independent of the packing attribute value */
 775	computed_buff_size = sizeof(*args) +
 776				sizeof(wac_info.mode) +
 777				sizeof(wac_info.operand) +
 778				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
 779				sizeof(wac_info.dbgWave_msg.MemoryVA) +
 780				sizeof(wac_info.trapId);
 781
 782	dev = kfd_device_by_id(args->gpu_id);
 783	if (!dev)
 784		return -EINVAL;
 785
 786	if (dev->device_info->asic_family == CHIP_CARRIZO) {
 787		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
 788		return -EINVAL;
 789	}
 790
 791	/* input size must match the computed "compact" size */
 792	if (args->buf_size_in_bytes != computed_buff_size) {
 793		pr_debug("size mismatch, computed : actual %u : %u\n",
 794				args->buf_size_in_bytes, computed_buff_size);
 795		return -EINVAL;
 796	}
 797
 798	cmd_from_user = (void __user *) args->content_ptr;
 799
 800	if (cmd_from_user == NULL)
 801		return -EINVAL;
 802
 803	/* copy the entire buffer from user */
 804
 805	args_buff = memdup_user(cmd_from_user,
 806				args->buf_size_in_bytes - sizeof(*args));
 807	if (IS_ERR(args_buff))
 808		return PTR_ERR(args_buff);
 809
 810	/* move ptr to the start of the "pay-load" area */
 811	wac_info.process = p;
 812
 813	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
 814	args_idx += sizeof(wac_info.operand);
 815
 816	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
 817	args_idx += sizeof(wac_info.mode);
 818
 819	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
 820	args_idx += sizeof(wac_info.trapId);
 821
 822	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
 823					*((uint32_t *)(&args_buff[args_idx]));
 824	wac_info.dbgWave_msg.MemoryVA = NULL;
 825
 826	mutex_lock(kfd_get_dbgmgr_mutex());
 827
 828	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
 829			wac_info.process, wac_info.operand,
 830			wac_info.mode, wac_info.trapId,
 831			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
 832
 833	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
 834
 835	pr_debug("Returned status of dbg manager is %ld\n", status);
 836
 837	mutex_unlock(kfd_get_dbgmgr_mutex());
 838
 839	kfree(args_buff);
 840
 841	return status;
 842}
 843
 844static int kfd_ioctl_get_clock_counters(struct file *filep,
 845				struct kfd_process *p, void *data)
 846{
 847	struct kfd_ioctl_get_clock_counters_args *args = data;
 848	struct kfd_dev *dev;
 849
 850	dev = kfd_device_by_id(args->gpu_id);
 851	if (dev)
 
 
 852		/* Reading GPU clock counter from KGD */
 853		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
 854	else
 855		/* Node without GPU resource */
 856		args->gpu_clock_counter = 0;
 857
 858	/* No access to rdtsc. Using raw monotonic time */
 859	args->cpu_clock_counter = ktime_get_raw_ns();
 860	args->system_clock_counter = ktime_get_boottime_ns();
 861
 862	/* Since the counter is in nano-seconds we use 1GHz frequency */
 863	args->system_clock_freq = 1000000000;
 864
 865	return 0;
 866}
 867
 868
 869static int kfd_ioctl_get_process_apertures(struct file *filp,
 870				struct kfd_process *p, void *data)
 871{
 872	struct kfd_ioctl_get_process_apertures_args *args = data;
 873	struct kfd_process_device_apertures *pAperture;
 874	int i;
 875
 876	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 877
 878	args->num_of_nodes = 0;
 879
 880	mutex_lock(&p->mutex);
 881	/* Run over all pdd of the process */
 882	for (i = 0; i < p->n_pdds; i++) {
 883		struct kfd_process_device *pdd = p->pdds[i];
 884
 885		pAperture =
 886			&args->process_apertures[args->num_of_nodes];
 887		pAperture->gpu_id = pdd->dev->id;
 888		pAperture->lds_base = pdd->lds_base;
 889		pAperture->lds_limit = pdd->lds_limit;
 890		pAperture->gpuvm_base = pdd->gpuvm_base;
 891		pAperture->gpuvm_limit = pdd->gpuvm_limit;
 892		pAperture->scratch_base = pdd->scratch_base;
 893		pAperture->scratch_limit = pdd->scratch_limit;
 894
 895		dev_dbg(kfd_device,
 896			"node id %u\n", args->num_of_nodes);
 897		dev_dbg(kfd_device,
 898			"gpu id %u\n", pdd->dev->id);
 899		dev_dbg(kfd_device,
 900			"lds_base %llX\n", pdd->lds_base);
 901		dev_dbg(kfd_device,
 902			"lds_limit %llX\n", pdd->lds_limit);
 903		dev_dbg(kfd_device,
 904			"gpuvm_base %llX\n", pdd->gpuvm_base);
 905		dev_dbg(kfd_device,
 906			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 907		dev_dbg(kfd_device,
 908			"scratch_base %llX\n", pdd->scratch_base);
 909		dev_dbg(kfd_device,
 910			"scratch_limit %llX\n", pdd->scratch_limit);
 911
 912		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
 913			break;
 914	}
 915	mutex_unlock(&p->mutex);
 916
 917	return 0;
 918}
 919
 920static int kfd_ioctl_get_process_apertures_new(struct file *filp,
 921				struct kfd_process *p, void *data)
 922{
 923	struct kfd_ioctl_get_process_apertures_new_args *args = data;
 924	struct kfd_process_device_apertures *pa;
 925	int ret;
 926	int i;
 927
 928	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 929
 930	if (args->num_of_nodes == 0) {
 931		/* Return number of nodes, so that user space can alloacate
 932		 * sufficient memory
 933		 */
 934		mutex_lock(&p->mutex);
 935		args->num_of_nodes = p->n_pdds;
 936		goto out_unlock;
 937	}
 938
 939	/* Fill in process-aperture information for all available
 940	 * nodes, but not more than args->num_of_nodes as that is
 941	 * the amount of memory allocated by user
 942	 */
 943	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
 944				args->num_of_nodes), GFP_KERNEL);
 945	if (!pa)
 946		return -ENOMEM;
 947
 948	mutex_lock(&p->mutex);
 949
 950	if (!p->n_pdds) {
 951		args->num_of_nodes = 0;
 952		kfree(pa);
 953		goto out_unlock;
 954	}
 955
 956	/* Run over all pdd of the process */
 957	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
 958		struct kfd_process_device *pdd = p->pdds[i];
 959
 960		pa[i].gpu_id = pdd->dev->id;
 961		pa[i].lds_base = pdd->lds_base;
 962		pa[i].lds_limit = pdd->lds_limit;
 963		pa[i].gpuvm_base = pdd->gpuvm_base;
 964		pa[i].gpuvm_limit = pdd->gpuvm_limit;
 965		pa[i].scratch_base = pdd->scratch_base;
 966		pa[i].scratch_limit = pdd->scratch_limit;
 967
 968		dev_dbg(kfd_device,
 969			"gpu id %u\n", pdd->dev->id);
 970		dev_dbg(kfd_device,
 971			"lds_base %llX\n", pdd->lds_base);
 972		dev_dbg(kfd_device,
 973			"lds_limit %llX\n", pdd->lds_limit);
 974		dev_dbg(kfd_device,
 975			"gpuvm_base %llX\n", pdd->gpuvm_base);
 976		dev_dbg(kfd_device,
 977			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 978		dev_dbg(kfd_device,
 979			"scratch_base %llX\n", pdd->scratch_base);
 980		dev_dbg(kfd_device,
 981			"scratch_limit %llX\n", pdd->scratch_limit);
 982	}
 983	mutex_unlock(&p->mutex);
 984
 985	args->num_of_nodes = i;
 986	ret = copy_to_user(
 987			(void __user *)args->kfd_process_device_apertures_ptr,
 988			pa,
 989			(i * sizeof(struct kfd_process_device_apertures)));
 990	kfree(pa);
 991	return ret ? -EFAULT : 0;
 992
 993out_unlock:
 994	mutex_unlock(&p->mutex);
 995	return 0;
 996}
 997
 998static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 999					void *data)
1000{
1001	struct kfd_ioctl_create_event_args *args = data;
1002	int err;
1003
1004	/* For dGPUs the event page is allocated in user mode. The
1005	 * handle is passed to KFD with the first call to this IOCTL
1006	 * through the event_page_offset field.
1007	 */
1008	if (args->event_page_offset) {
1009		struct kfd_dev *kfd;
1010		struct kfd_process_device *pdd;
1011		void *mem, *kern_addr;
1012		uint64_t size;
1013
1014		if (p->signal_page) {
1015			pr_err("Event page is already set\n");
1016			return -EINVAL;
1017		}
1018
1019		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1020		if (!kfd) {
1021			pr_err("Getting device by id failed in %s\n", __func__);
1022			return -EINVAL;
1023		}
1024
1025		mutex_lock(&p->mutex);
1026		pdd = kfd_bind_process_to_device(kfd, p);
1027		if (IS_ERR(pdd)) {
1028			err = PTR_ERR(pdd);
1029			goto out_unlock;
1030		}
1031
1032		mem = kfd_process_device_translate_handle(pdd,
1033				GET_IDR_HANDLE(args->event_page_offset));
1034		if (!mem) {
1035			pr_err("Can't find BO, offset is 0x%llx\n",
1036			       args->event_page_offset);
1037			err = -EINVAL;
1038			goto out_unlock;
1039		}
1040		mutex_unlock(&p->mutex);
1041
1042		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1043						mem, &kern_addr, &size);
1044		if (err) {
1045			pr_err("Failed to map event page to kernel\n");
1046			return err;
1047		}
1048
1049		err = kfd_event_page_set(p, kern_addr, size);
1050		if (err) {
1051			pr_err("Failed to set event page\n");
1052			return err;
1053		}
1054	}
1055
1056	err = kfd_event_create(filp, p, args->event_type,
1057				args->auto_reset != 0, args->node_id,
1058				&args->event_id, &args->event_trigger_data,
1059				&args->event_page_offset,
1060				&args->event_slot_index);
1061
1062	return err;
1063
1064out_unlock:
1065	mutex_unlock(&p->mutex);
1066	return err;
1067}
1068
1069static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1070					void *data)
1071{
1072	struct kfd_ioctl_destroy_event_args *args = data;
1073
1074	return kfd_event_destroy(p, args->event_id);
1075}
1076
1077static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1078				void *data)
1079{
1080	struct kfd_ioctl_set_event_args *args = data;
1081
1082	return kfd_set_event(p, args->event_id);
1083}
1084
1085static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1086				void *data)
1087{
1088	struct kfd_ioctl_reset_event_args *args = data;
1089
1090	return kfd_reset_event(p, args->event_id);
1091}
1092
1093static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1094				void *data)
1095{
1096	struct kfd_ioctl_wait_events_args *args = data;
1097	int err;
1098
1099	err = kfd_wait_on_events(p, args->num_events,
1100			(void __user *)args->events_ptr,
1101			(args->wait_for_all != 0),
1102			args->timeout, &args->wait_result);
1103
1104	return err;
1105}
1106static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1107					struct kfd_process *p, void *data)
1108{
1109	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1110	struct kfd_process_device *pdd;
1111	struct kfd_dev *dev;
1112	long err;
1113
1114	dev = kfd_device_by_id(args->gpu_id);
1115	if (!dev)
1116		return -EINVAL;
1117
1118	mutex_lock(&p->mutex);
 
 
 
 
 
 
1119
1120	pdd = kfd_bind_process_to_device(dev, p);
1121	if (IS_ERR(pdd)) {
1122		err = PTR_ERR(pdd);
1123		goto bind_process_to_device_fail;
1124	}
1125
1126	pdd->qpd.sh_hidden_private_base = args->va_addr;
1127
1128	mutex_unlock(&p->mutex);
1129
1130	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1131	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
1132		dev->kfd2kgd->set_scratch_backing_va(
1133			dev->kgd, args->va_addr, pdd->qpd.vmid);
1134
1135	return 0;
1136
1137bind_process_to_device_fail:
 
1138	mutex_unlock(&p->mutex);
1139	return err;
1140}
1141
1142static int kfd_ioctl_get_tile_config(struct file *filep,
1143		struct kfd_process *p, void *data)
1144{
1145	struct kfd_ioctl_get_tile_config_args *args = data;
1146	struct kfd_dev *dev;
1147	struct tile_config config;
1148	int err = 0;
1149
1150	dev = kfd_device_by_id(args->gpu_id);
1151	if (!dev)
 
 
1152		return -EINVAL;
1153
1154	amdgpu_amdkfd_get_tile_config(dev->kgd, &config);
1155
1156	args->gb_addr_config = config.gb_addr_config;
1157	args->num_banks = config.num_banks;
1158	args->num_ranks = config.num_ranks;
1159
1160	if (args->num_tile_configs > config.num_tile_configs)
1161		args->num_tile_configs = config.num_tile_configs;
1162	err = copy_to_user((void __user *)args->tile_config_ptr,
1163			config.tile_config_ptr,
1164			args->num_tile_configs * sizeof(uint32_t));
1165	if (err) {
1166		args->num_tile_configs = 0;
1167		return -EFAULT;
1168	}
1169
1170	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1171		args->num_macro_tile_configs =
1172				config.num_macro_tile_configs;
1173	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1174			config.macro_tile_config_ptr,
1175			args->num_macro_tile_configs * sizeof(uint32_t));
1176	if (err) {
1177		args->num_macro_tile_configs = 0;
1178		return -EFAULT;
1179	}
1180
1181	return 0;
1182}
1183
1184static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1185				void *data)
1186{
1187	struct kfd_ioctl_acquire_vm_args *args = data;
1188	struct kfd_process_device *pdd;
1189	struct kfd_dev *dev;
1190	struct file *drm_file;
1191	int ret;
1192
1193	dev = kfd_device_by_id(args->gpu_id);
1194	if (!dev)
1195		return -EINVAL;
1196
1197	drm_file = fget(args->drm_fd);
1198	if (!drm_file)
1199		return -EINVAL;
1200
1201	mutex_lock(&p->mutex);
1202
1203	pdd = kfd_get_process_device_data(dev, p);
1204	if (!pdd) {
1205		ret = -EINVAL;
1206		goto err_unlock;
1207	}
1208
1209	if (pdd->drm_file) {
1210		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1211		goto err_unlock;
1212	}
1213
1214	ret = kfd_process_device_init_vm(pdd, drm_file);
1215	if (ret)
1216		goto err_unlock;
 
1217	/* On success, the PDD keeps the drm_file reference */
1218	mutex_unlock(&p->mutex);
1219
1220	return 0;
1221
1222err_unlock:
 
 
1223	mutex_unlock(&p->mutex);
1224	fput(drm_file);
1225	return ret;
1226}
1227
1228bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1229{
1230	struct kfd_local_mem_info mem_info;
1231
1232	if (debug_largebar) {
1233		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1234		return true;
1235	}
1236
1237	if (dev->use_iommu_v2)
1238		return false;
 
1239
1240	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1241	if (mem_info.local_mem_size_private == 0 &&
1242			mem_info.local_mem_size_public > 0)
1243		return true;
 
 
1244	return false;
1245}
1246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1248					struct kfd_process *p, void *data)
1249{
1250	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1251	struct kfd_process_device *pdd;
1252	void *mem;
1253	struct kfd_dev *dev;
1254	int idr_handle;
1255	long err;
1256	uint64_t offset = args->mmap_offset;
1257	uint32_t flags = args->flags;
1258
1259	if (args->size == 0)
1260		return -EINVAL;
1261
1262	dev = kfd_device_by_id(args->gpu_id);
1263	if (!dev)
1264		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265
1266	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1267		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1268		!kfd_dev_is_large_bar(dev)) {
1269		pr_err("Alloc host visible vram on small bar is not allowed\n");
1270		return -EINVAL;
 
1271	}
1272
1273	mutex_lock(&p->mutex);
1274
1275	pdd = kfd_bind_process_to_device(dev, p);
1276	if (IS_ERR(pdd)) {
1277		err = PTR_ERR(pdd);
1278		goto err_unlock;
1279	}
1280
1281	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1282		if (args->size != kfd_doorbell_process_slice(dev)) {
1283			err = -EINVAL;
1284			goto err_unlock;
1285		}
1286		offset = kfd_get_process_doorbells(pdd);
 
 
 
 
1287	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1288		if (args->size != PAGE_SIZE) {
1289			err = -EINVAL;
1290			goto err_unlock;
1291		}
1292		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1293		if (!offset) {
1294			err = -ENOMEM;
1295			goto err_unlock;
1296		}
1297	}
1298
1299	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1300		dev->kgd, args->va_addr, args->size,
1301		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1302		flags);
1303
1304	if (err)
1305		goto err_unlock;
1306
1307	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1308	if (idr_handle < 0) {
1309		err = -EFAULT;
1310		goto err_free;
1311	}
1312
1313	/* Update the VRAM usage count */
1314	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1315		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
 
 
 
 
 
1316
1317	mutex_unlock(&p->mutex);
1318
1319	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1320	args->mmap_offset = offset;
1321
1322	/* MMIO is mapped through kfd device
1323	 * Generate a kfd mmap offset
1324	 */
1325	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1326		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1327					| KFD_MMAP_GPU_ID(args->gpu_id);
1328
1329	return 0;
1330
1331err_free:
1332	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem,
1333					       pdd->drm_priv, NULL);
1334err_unlock:
 
 
1335	mutex_unlock(&p->mutex);
1336	return err;
1337}
1338
1339static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1340					struct kfd_process *p, void *data)
1341{
1342	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1343	struct kfd_process_device *pdd;
1344	void *mem;
1345	struct kfd_dev *dev;
1346	int ret;
1347	uint64_t size = 0;
1348
1349	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1350	if (!dev)
1351		return -EINVAL;
1352
1353	mutex_lock(&p->mutex);
 
 
 
 
 
 
 
 
 
1354
1355	pdd = kfd_get_process_device_data(dev, p);
1356	if (!pdd) {
1357		pr_err("Process device data doesn't exist\n");
1358		ret = -EINVAL;
1359		goto err_unlock;
1360	}
1361
1362	mem = kfd_process_device_translate_handle(
1363		pdd, GET_IDR_HANDLE(args->handle));
1364	if (!mem) {
1365		ret = -EINVAL;
1366		goto err_unlock;
1367	}
1368
1369	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1370				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1371
1372	/* If freeing the buffer failed, leave the handle in place for
1373	 * clean-up during process tear-down.
1374	 */
1375	if (!ret)
1376		kfd_process_device_remove_obj_handle(
1377			pdd, GET_IDR_HANDLE(args->handle));
1378
1379	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1380
1381err_unlock:
 
1382	mutex_unlock(&p->mutex);
1383	return ret;
1384}
1385
1386static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1387					struct kfd_process *p, void *data)
1388{
1389	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1390	struct kfd_process_device *pdd, *peer_pdd;
1391	void *mem;
1392	struct kfd_dev *dev, *peer;
1393	long err = 0;
1394	int i;
1395	uint32_t *devices_arr = NULL;
1396
1397	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1398	if (!dev)
1399		return -EINVAL;
1400
1401	if (!args->n_devices) {
1402		pr_debug("Device IDs array empty\n");
1403		return -EINVAL;
1404	}
1405	if (args->n_success > args->n_devices) {
1406		pr_debug("n_success exceeds n_devices\n");
1407		return -EINVAL;
1408	}
1409
1410	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1411				    GFP_KERNEL);
1412	if (!devices_arr)
1413		return -ENOMEM;
1414
1415	err = copy_from_user(devices_arr,
1416			     (void __user *)args->device_ids_array_ptr,
1417			     args->n_devices * sizeof(*devices_arr));
1418	if (err != 0) {
1419		err = -EFAULT;
1420		goto copy_from_user_failed;
1421	}
1422
1423	mutex_lock(&p->mutex);
 
 
 
 
 
 
1424
1425	pdd = kfd_bind_process_to_device(dev, p);
1426	if (IS_ERR(pdd)) {
1427		err = PTR_ERR(pdd);
1428		goto bind_process_to_device_failed;
1429	}
1430
1431	mem = kfd_process_device_translate_handle(pdd,
1432						GET_IDR_HANDLE(args->handle));
1433	if (!mem) {
1434		err = -ENOMEM;
1435		goto get_mem_obj_from_handle_failed;
1436	}
1437
1438	for (i = args->n_success; i < args->n_devices; i++) {
1439		peer = kfd_device_by_id(devices_arr[i]);
1440		if (!peer) {
1441			pr_debug("Getting device by id failed for 0x%x\n",
1442				 devices_arr[i]);
1443			err = -EINVAL;
1444			goto get_mem_obj_from_handle_failed;
1445		}
1446
1447		peer_pdd = kfd_bind_process_to_device(peer, p);
1448		if (IS_ERR(peer_pdd)) {
1449			err = PTR_ERR(peer_pdd);
1450			goto get_mem_obj_from_handle_failed;
1451		}
 
1452		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1453			peer->kgd, (struct kgd_mem *)mem, peer_pdd->drm_priv);
 
1454		if (err) {
1455			pr_err("Failed to map to gpu %d/%d\n",
1456			       i, args->n_devices);
 
 
 
 
 
 
 
1457			goto map_memory_to_gpu_failed;
1458		}
1459		args->n_success = i+1;
1460	}
1461
1462	mutex_unlock(&p->mutex);
1463
1464	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1465	if (err) {
1466		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1467		goto sync_memory_failed;
1468	}
1469
 
 
1470	/* Flush TLBs after waiting for the page table updates to complete */
1471	for (i = 0; i < args->n_devices; i++) {
1472		peer = kfd_device_by_id(devices_arr[i]);
1473		if (WARN_ON_ONCE(!peer))
1474			continue;
1475		peer_pdd = kfd_get_process_device_data(peer, p);
1476		if (WARN_ON_ONCE(!peer_pdd))
1477			continue;
1478		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1479	}
1480
1481	kfree(devices_arr);
1482
1483	return err;
1484
 
1485bind_process_to_device_failed:
1486get_mem_obj_from_handle_failed:
1487map_memory_to_gpu_failed:
 
1488	mutex_unlock(&p->mutex);
1489copy_from_user_failed:
1490sync_memory_failed:
1491	kfree(devices_arr);
1492
1493	return err;
1494}
1495
1496static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1497					struct kfd_process *p, void *data)
1498{
1499	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1500	struct kfd_process_device *pdd, *peer_pdd;
1501	void *mem;
1502	struct kfd_dev *dev, *peer;
1503	long err = 0;
1504	uint32_t *devices_arr = NULL, i;
1505
1506	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1507	if (!dev)
1508		return -EINVAL;
1509
1510	if (!args->n_devices) {
1511		pr_debug("Device IDs array empty\n");
1512		return -EINVAL;
1513	}
1514	if (args->n_success > args->n_devices) {
1515		pr_debug("n_success exceeds n_devices\n");
1516		return -EINVAL;
1517	}
1518
1519	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1520				    GFP_KERNEL);
1521	if (!devices_arr)
1522		return -ENOMEM;
1523
1524	err = copy_from_user(devices_arr,
1525			     (void __user *)args->device_ids_array_ptr,
1526			     args->n_devices * sizeof(*devices_arr));
1527	if (err != 0) {
1528		err = -EFAULT;
1529		goto copy_from_user_failed;
1530	}
1531
1532	mutex_lock(&p->mutex);
1533
1534	pdd = kfd_get_process_device_data(dev, p);
1535	if (!pdd) {
1536		err = -EINVAL;
1537		goto bind_process_to_device_failed;
1538	}
1539
1540	mem = kfd_process_device_translate_handle(pdd,
1541						GET_IDR_HANDLE(args->handle));
1542	if (!mem) {
1543		err = -ENOMEM;
1544		goto get_mem_obj_from_handle_failed;
1545	}
1546
1547	for (i = args->n_success; i < args->n_devices; i++) {
1548		peer = kfd_device_by_id(devices_arr[i]);
1549		if (!peer) {
1550			err = -EINVAL;
1551			goto get_mem_obj_from_handle_failed;
1552		}
1553
1554		peer_pdd = kfd_get_process_device_data(peer, p);
1555		if (!peer_pdd) {
1556			err = -ENODEV;
1557			goto get_mem_obj_from_handle_failed;
1558		}
1559		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1560			peer->kgd, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1561		if (err) {
1562			pr_err("Failed to unmap from gpu %d/%d\n",
1563			       i, args->n_devices);
1564			goto unmap_memory_from_gpu_failed;
1565		}
1566		args->n_success = i+1;
1567	}
1568	kfree(devices_arr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569
1570	mutex_unlock(&p->mutex);
1571
 
 
1572	return 0;
1573
1574bind_process_to_device_failed:
1575get_mem_obj_from_handle_failed:
1576unmap_memory_from_gpu_failed:
 
1577	mutex_unlock(&p->mutex);
1578copy_from_user_failed:
1579	kfree(devices_arr);
1580	return err;
1581}
1582
1583static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1584		struct kfd_process *p, void *data)
1585{
1586	int retval;
1587	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1588	struct queue *q;
1589	struct kfd_dev *dev;
1590
1591	mutex_lock(&p->mutex);
1592	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1593
1594	if (q) {
1595		dev = q->device;
1596	} else {
1597		retval = -EINVAL;
1598		goto out_unlock;
1599	}
1600
1601	if (!dev->gws) {
1602		retval = -ENODEV;
1603		goto out_unlock;
1604	}
1605
1606	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1607		retval = -ENODEV;
1608		goto out_unlock;
1609	}
1610
 
 
 
 
 
 
1611	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1612	mutex_unlock(&p->mutex);
1613
1614	args->first_gws = 0;
1615	return retval;
1616
1617out_unlock:
1618	mutex_unlock(&p->mutex);
1619	return retval;
1620}
1621
1622static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1623		struct kfd_process *p, void *data)
1624{
1625	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1626	struct kfd_dev *dev = NULL;
1627	struct kgd_dev *dma_buf_kgd;
1628	void *metadata_buffer = NULL;
1629	uint32_t flags;
 
1630	unsigned int i;
1631	int r;
1632
1633	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1634	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1635		if (dev)
1636			break;
1637	if (!dev)
1638		return -EINVAL;
1639
1640	if (args->metadata_ptr) {
1641		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1642		if (!metadata_buffer)
1643			return -ENOMEM;
1644	}
1645
1646	/* Get dmabuf info from KGD */
1647	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1648					  &dma_buf_kgd, &args->size,
1649					  metadata_buffer, args->metadata_size,
1650					  &args->metadata_size, &flags);
1651	if (r)
1652		goto exit;
1653
1654	/* Reverse-lookup gpu_id from kgd pointer */
1655	dev = kfd_device_by_kgd(dma_buf_kgd);
1656	if (!dev) {
1657		r = -EINVAL;
1658		goto exit;
1659	}
1660	args->gpu_id = dev->id;
1661	args->flags = flags;
1662
1663	/* Copy metadata buffer to user mode */
1664	if (metadata_buffer) {
1665		r = copy_to_user((void __user *)args->metadata_ptr,
1666				 metadata_buffer, args->metadata_size);
1667		if (r != 0)
1668			r = -EFAULT;
1669	}
1670
1671exit:
1672	kfree(metadata_buffer);
1673
1674	return r;
1675}
1676
1677static int kfd_ioctl_import_dmabuf(struct file *filep,
1678				   struct kfd_process *p, void *data)
1679{
1680	struct kfd_ioctl_import_dmabuf_args *args = data;
1681	struct kfd_process_device *pdd;
1682	struct dma_buf *dmabuf;
1683	struct kfd_dev *dev;
1684	int idr_handle;
1685	uint64_t size;
1686	void *mem;
1687	int r;
1688
1689	dev = kfd_device_by_id(args->gpu_id);
1690	if (!dev)
1691		return -EINVAL;
1692
1693	dmabuf = dma_buf_get(args->dmabuf_fd);
1694	if (IS_ERR(dmabuf))
1695		return PTR_ERR(dmabuf);
1696
1697	mutex_lock(&p->mutex);
 
 
 
 
 
1698
1699	pdd = kfd_bind_process_to_device(dev, p);
1700	if (IS_ERR(pdd)) {
1701		r = PTR_ERR(pdd);
1702		goto err_unlock;
1703	}
1704
1705	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1706					      args->va_addr, pdd->drm_priv,
1707					      (struct kgd_mem **)&mem, &size,
1708					      NULL);
1709	if (r)
1710		goto err_unlock;
1711
1712	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1713	if (idr_handle < 0) {
1714		r = -EFAULT;
1715		goto err_free;
1716	}
1717
1718	mutex_unlock(&p->mutex);
1719	dma_buf_put(dmabuf);
1720
1721	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1722
1723	return 0;
1724
1725err_free:
1726	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem,
1727					       pdd->drm_priv, NULL);
1728err_unlock:
1729	mutex_unlock(&p->mutex);
1730	dma_buf_put(dmabuf);
1731	return r;
1732}
1733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734/* Handle requests for watching SMI events */
1735static int kfd_ioctl_smi_events(struct file *filep,
1736				struct kfd_process *p, void *data)
1737{
1738	struct kfd_ioctl_smi_events_args *args = data;
1739	struct kfd_dev *dev;
1740
1741	dev = kfd_device_by_id(args->gpuid);
1742	if (!dev)
 
 
 
1743		return -EINVAL;
1744
1745	return kfd_smi_event_open(dev, &args->anon_fd);
1746}
1747
 
 
1748static int kfd_ioctl_set_xnack_mode(struct file *filep,
1749				    struct kfd_process *p, void *data)
1750{
1751	struct kfd_ioctl_set_xnack_mode_args *args = data;
1752	int r = 0;
1753
1754	mutex_lock(&p->mutex);
1755	if (args->xnack_enabled >= 0) {
1756		if (!list_empty(&p->pqm.queues)) {
1757			pr_debug("Process has user queues running\n");
1758			mutex_unlock(&p->mutex);
1759			return -EBUSY;
1760		}
1761		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true))
 
 
 
 
1762			r = -EPERM;
1763		else
1764			p->xnack_enabled = args->xnack_enabled;
 
 
1765	} else {
1766		args->xnack_enabled = p->xnack_enabled;
1767	}
 
 
1768	mutex_unlock(&p->mutex);
1769
1770	return r;
1771}
1772
1773#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1774static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1775{
1776	struct kfd_ioctl_svm_args *args = data;
1777	int r = 0;
1778
1779	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1780		 args->start_addr, args->size, args->op, args->nattr);
1781
1782	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1783		return -EINVAL;
1784	if (!args->start_addr || !args->size)
1785		return -EINVAL;
1786
1787	mutex_lock(&p->mutex);
1788
1789	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1790		      args->attrs);
1791
1792	mutex_unlock(&p->mutex);
1793
1794	return r;
1795}
1796#else
 
 
 
 
 
1797static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1798{
1799	return -EPERM;
1800}
1801#endif
1802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1804	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1805			    .cmd_drv = 0, .name = #ioctl}
1806
1807/** Ioctl table */
1808static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1809	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1810			kfd_ioctl_get_version, 0),
1811
1812	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1813			kfd_ioctl_create_queue, 0),
1814
1815	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1816			kfd_ioctl_destroy_queue, 0),
1817
1818	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1819			kfd_ioctl_set_memory_policy, 0),
1820
1821	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1822			kfd_ioctl_get_clock_counters, 0),
1823
1824	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1825			kfd_ioctl_get_process_apertures, 0),
1826
1827	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1828			kfd_ioctl_update_queue, 0),
1829
1830	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1831			kfd_ioctl_create_event, 0),
1832
1833	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1834			kfd_ioctl_destroy_event, 0),
1835
1836	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1837			kfd_ioctl_set_event, 0),
1838
1839	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1840			kfd_ioctl_reset_event, 0),
1841
1842	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1843			kfd_ioctl_wait_events, 0),
1844
1845	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1846			kfd_ioctl_dbg_register, 0),
1847
1848	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1849			kfd_ioctl_dbg_unregister, 0),
1850
1851	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1852			kfd_ioctl_dbg_address_watch, 0),
1853
1854	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1855			kfd_ioctl_dbg_wave_control, 0),
1856
1857	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1858			kfd_ioctl_set_scratch_backing_va, 0),
1859
1860	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1861			kfd_ioctl_get_tile_config, 0),
1862
1863	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1864			kfd_ioctl_set_trap_handler, 0),
1865
1866	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1867			kfd_ioctl_get_process_apertures_new, 0),
1868
1869	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1870			kfd_ioctl_acquire_vm, 0),
1871
1872	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1873			kfd_ioctl_alloc_memory_of_gpu, 0),
1874
1875	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1876			kfd_ioctl_free_memory_of_gpu, 0),
1877
1878	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1879			kfd_ioctl_map_memory_to_gpu, 0),
1880
1881	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1882			kfd_ioctl_unmap_memory_from_gpu, 0),
1883
1884	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1885			kfd_ioctl_set_cu_mask, 0),
1886
1887	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1888			kfd_ioctl_get_queue_wave_state, 0),
1889
1890	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1891				kfd_ioctl_get_dmabuf_info, 0),
1892
1893	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1894				kfd_ioctl_import_dmabuf, 0),
1895
1896	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
1897			kfd_ioctl_alloc_queue_gws, 0),
1898
1899	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
1900			kfd_ioctl_smi_events, 0),
1901
1902	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
1903
1904	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
1905			kfd_ioctl_set_xnack_mode, 0),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906};
1907
1908#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
1909
1910static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1911{
1912	struct kfd_process *process;
1913	amdkfd_ioctl_t *func;
1914	const struct amdkfd_ioctl_desc *ioctl = NULL;
1915	unsigned int nr = _IOC_NR(cmd);
1916	char stack_kdata[128];
1917	char *kdata = NULL;
1918	unsigned int usize, asize;
1919	int retcode = -EINVAL;
 
1920
1921	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1922		goto err_i1;
1923
1924	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1925		u32 amdkfd_size;
1926
1927		ioctl = &amdkfd_ioctls[nr];
1928
1929		amdkfd_size = _IOC_SIZE(ioctl->cmd);
1930		usize = asize = _IOC_SIZE(cmd);
1931		if (amdkfd_size > asize)
1932			asize = amdkfd_size;
1933
1934		cmd = ioctl->cmd;
1935	} else
1936		goto err_i1;
1937
1938	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
1939
1940	/* Get the process struct from the filep. Only the process
1941	 * that opened /dev/kfd can use the file descriptor. Child
1942	 * processes need to create their own KFD device context.
1943	 */
1944	process = filep->private_data;
1945	if (process->lead_thread != current->group_leader) {
 
 
 
 
 
 
 
 
1946		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
1947		retcode = -EBADF;
1948		goto err_i1;
1949	}
1950
1951	/* Do not trust userspace, use our own definition */
1952	func = ioctl->func;
1953
1954	if (unlikely(!func)) {
1955		dev_dbg(kfd_device, "no function\n");
1956		retcode = -EINVAL;
1957		goto err_i1;
1958	}
1959
 
 
 
 
 
 
 
 
 
 
 
 
 
1960	if (cmd & (IOC_IN | IOC_OUT)) {
1961		if (asize <= sizeof(stack_kdata)) {
1962			kdata = stack_kdata;
1963		} else {
1964			kdata = kmalloc(asize, GFP_KERNEL);
1965			if (!kdata) {
1966				retcode = -ENOMEM;
1967				goto err_i1;
1968			}
1969		}
1970		if (asize > usize)
1971			memset(kdata + usize, 0, asize - usize);
1972	}
1973
1974	if (cmd & IOC_IN) {
1975		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1976			retcode = -EFAULT;
1977			goto err_i1;
1978		}
1979	} else if (cmd & IOC_OUT) {
1980		memset(kdata, 0, usize);
1981	}
1982
1983	retcode = func(filep, process, kdata);
1984
1985	if (cmd & IOC_OUT)
1986		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1987			retcode = -EFAULT;
1988
1989err_i1:
1990	if (!ioctl)
1991		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1992			  task_pid_nr(current), cmd, nr);
1993
1994	if (kdata != stack_kdata)
1995		kfree(kdata);
1996
1997	if (retcode)
1998		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
1999				nr, arg, retcode);
2000
2001	return retcode;
2002}
2003
2004static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2005		      struct vm_area_struct *vma)
2006{
2007	phys_addr_t address;
2008	int ret;
2009
2010	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2011		return -EINVAL;
2012
2013	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
2014
2015	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2016				VM_DONTDUMP | VM_PFNMAP;
2017
2018	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2019
2020	pr_debug("pasid 0x%x mapping mmio page\n"
2021		 "     target user address == 0x%08llX\n"
2022		 "     physical address    == 0x%08llX\n"
2023		 "     vm_flags            == 0x%04lX\n"
2024		 "     size                == 0x%04lX\n",
2025		 process->pasid, (unsigned long long) vma->vm_start,
2026		 address, vma->vm_flags, PAGE_SIZE);
2027
2028	ret = io_remap_pfn_range(vma,
2029				vma->vm_start,
2030				address >> PAGE_SHIFT,
2031				PAGE_SIZE,
2032				vma->vm_page_prot);
2033	return ret;
2034}
2035
2036
2037static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2038{
2039	struct kfd_process *process;
2040	struct kfd_dev *dev = NULL;
2041	unsigned long mmap_offset;
2042	unsigned int gpu_id;
2043
2044	process = kfd_get_process(current);
2045	if (IS_ERR(process))
2046		return PTR_ERR(process);
2047
2048	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2049	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2050	if (gpu_id)
2051		dev = kfd_device_by_id(gpu_id);
2052
2053	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2054	case KFD_MMAP_TYPE_DOORBELL:
2055		if (!dev)
2056			return -ENODEV;
2057		return kfd_doorbell_mmap(dev, process, vma);
2058
2059	case KFD_MMAP_TYPE_EVENTS:
2060		return kfd_event_mmap(process, vma);
2061
2062	case KFD_MMAP_TYPE_RESERVED_MEM:
2063		if (!dev)
2064			return -ENODEV;
2065		return kfd_reserved_mem_mmap(dev, process, vma);
2066	case KFD_MMAP_TYPE_MMIO:
2067		if (!dev)
2068			return -ENODEV;
2069		return kfd_mmio_mmap(dev, process, vma);
2070	}
2071
2072	return -EFAULT;
2073}