Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/device.h>
  25#include <linux/export.h>
  26#include <linux/err.h>
  27#include <linux/fs.h>
  28#include <linux/file.h>
  29#include <linux/sched.h>
  30#include <linux/slab.h>
  31#include <linux/uaccess.h>
  32#include <linux/compat.h>
  33#include <uapi/linux/kfd_ioctl.h>
  34#include <linux/time.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/ptrace.h>
  38#include <linux/dma-buf.h>
  39#include <linux/fdtable.h>
  40#include <linux/processor.h>
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_svm.h"
  44#include "amdgpu_amdkfd.h"
  45#include "kfd_smi_events.h"
  46#include "amdgpu_dma_buf.h"
  47#include "kfd_debug.h"
  48
  49static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  50static int kfd_open(struct inode *, struct file *);
  51static int kfd_release(struct inode *, struct file *);
  52static int kfd_mmap(struct file *, struct vm_area_struct *);
  53
  54static const char kfd_dev_name[] = "kfd";
  55
  56static const struct file_operations kfd_fops = {
  57	.owner = THIS_MODULE,
  58	.unlocked_ioctl = kfd_ioctl,
  59	.compat_ioctl = compat_ptr_ioctl,
  60	.open = kfd_open,
  61	.release = kfd_release,
  62	.mmap = kfd_mmap,
  63};
  64
  65static int kfd_char_dev_major = -1;
  66static struct class *kfd_class;
  67struct device *kfd_device;
 
 
 
  68
  69static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
  70{
  71	struct kfd_process_device *pdd;
  72
  73	mutex_lock(&p->mutex);
  74	pdd = kfd_process_device_data_by_id(p, gpu_id);
  75
  76	if (pdd)
  77		return pdd;
  78
  79	mutex_unlock(&p->mutex);
  80	return NULL;
  81}
  82
  83static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
  84{
  85	mutex_unlock(&pdd->process->mutex);
  86}
  87
  88int kfd_chardev_init(void)
  89{
  90	int err = 0;
  91
  92	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  93	err = kfd_char_dev_major;
  94	if (err < 0)
  95		goto err_register_chrdev;
  96
  97	kfd_class = class_create(kfd_dev_name);
  98	err = PTR_ERR(kfd_class);
  99	if (IS_ERR(kfd_class))
 100		goto err_class_create;
 101
 102	kfd_device = device_create(kfd_class, NULL,
 103					MKDEV(kfd_char_dev_major, 0),
 104					NULL, kfd_dev_name);
 105	err = PTR_ERR(kfd_device);
 106	if (IS_ERR(kfd_device))
 107		goto err_device_create;
 108
 109	return 0;
 110
 111err_device_create:
 112	class_destroy(kfd_class);
 113err_class_create:
 114	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 115err_register_chrdev:
 116	return err;
 117}
 118
 119void kfd_chardev_exit(void)
 120{
 121	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
 122	class_destroy(kfd_class);
 123	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 124	kfd_device = NULL;
 125}
 126
 127
 128static int kfd_open(struct inode *inode, struct file *filep)
 129{
 130	struct kfd_process *process;
 131	bool is_32bit_user_mode;
 132
 133	if (iminor(inode) != 0)
 134		return -ENODEV;
 135
 136	is_32bit_user_mode = in_compat_syscall();
 137
 138	if (is_32bit_user_mode) {
 139		dev_warn(kfd_device,
 140			"Process %d (32-bit) failed to open /dev/kfd\n"
 141			"32-bit processes are not supported by amdkfd\n",
 142			current->pid);
 143		return -EPERM;
 144	}
 145
 146	process = kfd_create_process(current);
 147	if (IS_ERR(process))
 148		return PTR_ERR(process);
 149
 150	if (kfd_process_init_cwsr_apu(process, filep)) {
 151		kfd_unref_process(process);
 152		return -EFAULT;
 153	}
 154
 155	/* filep now owns the reference returned by kfd_create_process */
 156	filep->private_data = process;
 157
 158	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 159		process->pasid, process->is_32bit_user_mode);
 160
 161	return 0;
 162}
 163
 164static int kfd_release(struct inode *inode, struct file *filep)
 165{
 166	struct kfd_process *process = filep->private_data;
 167
 168	if (process)
 169		kfd_unref_process(process);
 170
 171	return 0;
 172}
 173
 174static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 175					void *data)
 176{
 177	struct kfd_ioctl_get_version_args *args = data;
 178
 179	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 180	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 181
 182	return 0;
 183}
 184
 185static int set_queue_properties_from_user(struct queue_properties *q_properties,
 186				struct kfd_ioctl_create_queue_args *args)
 187{
 188	/*
 189	 * Repurpose queue percentage to accommodate new features:
 190	 * bit 0-7: queue percentage
 191	 * bit 8-15: pm4_target_xcc
 192	 */
 193	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 194		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 195		return -EINVAL;
 196	}
 197
 198	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 199		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 200		return -EINVAL;
 201	}
 202
 203	if ((args->ring_base_address) &&
 204		(!access_ok((const void __user *) args->ring_base_address,
 205			sizeof(uint64_t)))) {
 206		pr_err("Can't access ring base address\n");
 207		return -EFAULT;
 208	}
 209
 210	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 211		pr_err("Ring size must be a power of 2 or 0\n");
 212		return -EINVAL;
 213	}
 214
 215	if (!access_ok((const void __user *) args->read_pointer_address,
 216			sizeof(uint32_t))) {
 217		pr_err("Can't access read pointer\n");
 218		return -EFAULT;
 219	}
 220
 221	if (!access_ok((const void __user *) args->write_pointer_address,
 222			sizeof(uint32_t))) {
 223		pr_err("Can't access write pointer\n");
 224		return -EFAULT;
 225	}
 226
 227	if (args->eop_buffer_address &&
 228		!access_ok((const void __user *) args->eop_buffer_address,
 229			sizeof(uint32_t))) {
 230		pr_debug("Can't access eop buffer");
 231		return -EFAULT;
 232	}
 233
 234	if (args->ctx_save_restore_address &&
 235		!access_ok((const void __user *) args->ctx_save_restore_address,
 236			sizeof(uint32_t))) {
 237		pr_debug("Can't access ctx save restore buffer");
 238		return -EFAULT;
 239	}
 240
 241	q_properties->is_interop = false;
 242	q_properties->is_gws = false;
 243	q_properties->queue_percent = args->queue_percentage & 0xFF;
 244	/* bit 8-15 are repurposed to be PM4 target XCC */
 245	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 246	q_properties->priority = args->queue_priority;
 247	q_properties->queue_address = args->ring_base_address;
 248	q_properties->queue_size = args->ring_size;
 249	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 250	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 251	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 252	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 253	q_properties->ctx_save_restore_area_address =
 254			args->ctx_save_restore_address;
 255	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 256	q_properties->ctl_stack_size = args->ctl_stack_size;
 257	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 258		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 259		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 260	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 261		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 262	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
 263		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
 264	else
 265		return -ENOTSUPP;
 266
 267	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 268		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 269	else
 270		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 271
 272	pr_debug("Queue Percentage: %d, %d\n",
 273			q_properties->queue_percent, args->queue_percentage);
 274
 275	pr_debug("Queue Priority: %d, %d\n",
 276			q_properties->priority, args->queue_priority);
 277
 278	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
 279			q_properties->queue_address, args->ring_base_address);
 280
 281	pr_debug("Queue Size: 0x%llX, %u\n",
 282			q_properties->queue_size, args->ring_size);
 283
 284	pr_debug("Queue r/w Pointers: %px, %px\n",
 285			q_properties->read_ptr,
 286			q_properties->write_ptr);
 287
 288	pr_debug("Queue Format: %d\n", q_properties->format);
 289
 290	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
 291
 292	pr_debug("Queue CTX save area: 0x%llX\n",
 293			q_properties->ctx_save_restore_area_address);
 294
 295	return 0;
 296}
 297
 298static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 299					void *data)
 300{
 301	struct kfd_ioctl_create_queue_args *args = data;
 302	struct kfd_node *dev;
 303	int err = 0;
 304	unsigned int queue_id;
 305	struct kfd_process_device *pdd;
 306	struct queue_properties q_properties;
 307	uint32_t doorbell_offset_in_process = 0;
 308	struct amdgpu_bo *wptr_bo = NULL;
 309
 310	memset(&q_properties, 0, sizeof(struct queue_properties));
 311
 312	pr_debug("Creating queue ioctl\n");
 313
 314	err = set_queue_properties_from_user(&q_properties, args);
 315	if (err)
 316		return err;
 317
 318	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
 319
 320	mutex_lock(&p->mutex);
 321
 322	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 323	if (!pdd) {
 324		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 325		err = -EINVAL;
 326		goto err_pdd;
 327	}
 328	dev = pdd->dev;
 329
 330	pdd = kfd_bind_process_to_device(dev, p);
 331	if (IS_ERR(pdd)) {
 332		err = -ESRCH;
 333		goto err_bind_process;
 334	}
 335
 336	if (!pdd->qpd.proc_doorbells) {
 337		err = kfd_alloc_process_doorbells(dev->kfd, pdd);
 338		if (err) {
 339			pr_debug("failed to allocate process doorbells\n");
 340			goto err_bind_process;
 341		}
 342	}
 343
 344	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
 345	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
 346	 */
 347	if (dev->kfd->shared_resources.enable_mes &&
 348			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
 349			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
 350		struct amdgpu_bo_va_mapping *wptr_mapping;
 351		struct amdgpu_vm *wptr_vm;
 352
 353		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
 354		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
 355		if (err)
 356			goto err_wptr_map_gart;
 357
 358		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
 359				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
 360		amdgpu_bo_unreserve(wptr_vm->root.bo);
 361		if (!wptr_mapping) {
 362			pr_err("Failed to lookup wptr bo\n");
 363			err = -EINVAL;
 364			goto err_wptr_map_gart;
 365		}
 366
 367		wptr_bo = wptr_mapping->bo_va->base.bo;
 368		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
 369			pr_err("Requested GART mapping for wptr bo larger than one page\n");
 370			err = -EINVAL;
 371			goto err_wptr_map_gart;
 372		}
 373
 374		err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
 375		if (err) {
 376			pr_err("Failed to map wptr bo to GART\n");
 377			goto err_wptr_map_gart;
 378		}
 379	}
 380
 381	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
 382			p->pasid,
 383			dev->id);
 384
 385	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
 386			NULL, NULL, NULL, &doorbell_offset_in_process);
 387	if (err != 0)
 388		goto err_create_queue;
 389
 390	args->queue_id = queue_id;
 391
 392
 393	/* Return gpu_id as doorbell offset for mmap usage */
 394	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
 395	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
 396	if (KFD_IS_SOC15(dev))
 397		/* On SOC15 ASICs, include the doorbell offset within the
 398		 * process doorbell frame, which is 2 pages.
 399		 */
 400		args->doorbell_offset |= doorbell_offset_in_process;
 401
 402	mutex_unlock(&p->mutex);
 403
 404	pr_debug("Queue id %d was created successfully\n", args->queue_id);
 405
 406	pr_debug("Ring buffer address == 0x%016llX\n",
 407			args->ring_base_address);
 408
 409	pr_debug("Read ptr address    == 0x%016llX\n",
 410			args->read_pointer_address);
 411
 412	pr_debug("Write ptr address   == 0x%016llX\n",
 413			args->write_pointer_address);
 414
 415	kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
 416	return 0;
 417
 418err_create_queue:
 419	if (wptr_bo)
 420		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
 421err_wptr_map_gart:
 422err_bind_process:
 423err_pdd:
 424	mutex_unlock(&p->mutex);
 425	return err;
 426}
 427
 428static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 429					void *data)
 430{
 431	int retval;
 432	struct kfd_ioctl_destroy_queue_args *args = data;
 433
 434	pr_debug("Destroying queue id %d for pasid 0x%x\n",
 435				args->queue_id,
 436				p->pasid);
 437
 438	mutex_lock(&p->mutex);
 439
 440	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 441
 442	mutex_unlock(&p->mutex);
 443	return retval;
 444}
 445
 446static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 447					void *data)
 448{
 449	int retval;
 450	struct kfd_ioctl_update_queue_args *args = data;
 451	struct queue_properties properties;
 452
 453	/*
 454	 * Repurpose queue percentage to accommodate new features:
 455	 * bit 0-7: queue percentage
 456	 * bit 8-15: pm4_target_xcc
 457	 */
 458	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 459		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 460		return -EINVAL;
 461	}
 462
 463	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 464		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 465		return -EINVAL;
 466	}
 467
 468	if ((args->ring_base_address) &&
 469		(!access_ok((const void __user *) args->ring_base_address,
 470			sizeof(uint64_t)))) {
 471		pr_err("Can't access ring base address\n");
 472		return -EFAULT;
 473	}
 474
 475	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 476		pr_err("Ring size must be a power of 2 or 0\n");
 477		return -EINVAL;
 478	}
 479
 480	properties.queue_address = args->ring_base_address;
 481	properties.queue_size = args->ring_size;
 482	properties.queue_percent = args->queue_percentage & 0xFF;
 483	/* bit 8-15 are repurposed to be PM4 target XCC */
 484	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 485	properties.priority = args->queue_priority;
 486
 487	pr_debug("Updating queue id %d for pasid 0x%x\n",
 488			args->queue_id, p->pasid);
 489
 490	mutex_lock(&p->mutex);
 491
 492	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
 493
 494	mutex_unlock(&p->mutex);
 495
 496	return retval;
 497}
 498
 499static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
 500					void *data)
 501{
 502	int retval;
 503	const int max_num_cus = 1024;
 504	struct kfd_ioctl_set_cu_mask_args *args = data;
 505	struct mqd_update_info minfo = {0};
 506	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
 507	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
 508
 509	if ((args->num_cu_mask % 32) != 0) {
 510		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
 511				args->num_cu_mask);
 512		return -EINVAL;
 513	}
 514
 515	minfo.cu_mask.count = args->num_cu_mask;
 516	if (minfo.cu_mask.count == 0) {
 517		pr_debug("CU mask cannot be 0");
 518		return -EINVAL;
 519	}
 520
 521	/* To prevent an unreasonably large CU mask size, set an arbitrary
 522	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
 523	 * past max_num_cus bits and just use the first max_num_cus bits.
 524	 */
 525	if (minfo.cu_mask.count > max_num_cus) {
 526		pr_debug("CU mask cannot be greater than 1024 bits");
 527		minfo.cu_mask.count = max_num_cus;
 528		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
 529	}
 530
 531	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
 532	if (!minfo.cu_mask.ptr)
 533		return -ENOMEM;
 534
 535	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
 536	if (retval) {
 537		pr_debug("Could not copy CU mask from userspace");
 538		retval = -EFAULT;
 539		goto out;
 540	}
 541
 542	mutex_lock(&p->mutex);
 543
 544	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
 545
 546	mutex_unlock(&p->mutex);
 547
 548out:
 549	kfree(minfo.cu_mask.ptr);
 550	return retval;
 551}
 552
 553static int kfd_ioctl_get_queue_wave_state(struct file *filep,
 554					  struct kfd_process *p, void *data)
 555{
 556	struct kfd_ioctl_get_queue_wave_state_args *args = data;
 557	int r;
 558
 559	mutex_lock(&p->mutex);
 560
 561	r = pqm_get_wave_state(&p->pqm, args->queue_id,
 562			       (void __user *)args->ctl_stack_address,
 563			       &args->ctl_stack_used_size,
 564			       &args->save_area_used_size);
 565
 566	mutex_unlock(&p->mutex);
 567
 568	return r;
 569}
 570
 571static int kfd_ioctl_set_memory_policy(struct file *filep,
 572					struct kfd_process *p, void *data)
 573{
 574	struct kfd_ioctl_set_memory_policy_args *args = data;
 575	int err = 0;
 576	struct kfd_process_device *pdd;
 577	enum cache_policy default_policy, alternate_policy;
 578
 579	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 580	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 581		return -EINVAL;
 582	}
 583
 584	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 585	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 586		return -EINVAL;
 587	}
 588
 589	mutex_lock(&p->mutex);
 590	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 591	if (!pdd) {
 592		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 593		err = -EINVAL;
 594		goto err_pdd;
 595	}
 596
 597	pdd = kfd_bind_process_to_device(pdd->dev, p);
 598	if (IS_ERR(pdd)) {
 599		err = -ESRCH;
 600		goto out;
 601	}
 602
 603	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 604			 ? cache_policy_coherent : cache_policy_noncoherent;
 605
 606	alternate_policy =
 607		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 608		   ? cache_policy_coherent : cache_policy_noncoherent;
 609
 610	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
 611				&pdd->qpd,
 612				default_policy,
 613				alternate_policy,
 614				(void __user *)args->alternate_aperture_base,
 615				args->alternate_aperture_size))
 616		err = -EINVAL;
 617
 618out:
 619err_pdd:
 620	mutex_unlock(&p->mutex);
 621
 622	return err;
 623}
 624
 625static int kfd_ioctl_set_trap_handler(struct file *filep,
 626					struct kfd_process *p, void *data)
 627{
 628	struct kfd_ioctl_set_trap_handler_args *args = data;
 629	int err = 0;
 630	struct kfd_process_device *pdd;
 631
 632	mutex_lock(&p->mutex);
 633
 634	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 635	if (!pdd) {
 636		err = -EINVAL;
 637		goto err_pdd;
 638	}
 639
 640	pdd = kfd_bind_process_to_device(pdd->dev, p);
 641	if (IS_ERR(pdd)) {
 642		err = -ESRCH;
 643		goto out;
 644	}
 645
 646	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
 647
 648out:
 649err_pdd:
 650	mutex_unlock(&p->mutex);
 651
 652	return err;
 653}
 654
 655static int kfd_ioctl_dbg_register(struct file *filep,
 656				struct kfd_process *p, void *data)
 657{
 658	return -EPERM;
 659}
 660
 661static int kfd_ioctl_dbg_unregister(struct file *filep,
 662				struct kfd_process *p, void *data)
 663{
 664	return -EPERM;
 665}
 666
 667static int kfd_ioctl_dbg_address_watch(struct file *filep,
 668					struct kfd_process *p, void *data)
 669{
 670	return -EPERM;
 671}
 672
 673/* Parse and generate fixed size data structure for wave control */
 674static int kfd_ioctl_dbg_wave_control(struct file *filep,
 675					struct kfd_process *p, void *data)
 676{
 677	return -EPERM;
 678}
 679
 680static int kfd_ioctl_get_clock_counters(struct file *filep,
 681				struct kfd_process *p, void *data)
 682{
 683	struct kfd_ioctl_get_clock_counters_args *args = data;
 684	struct kfd_process_device *pdd;
 685
 686	mutex_lock(&p->mutex);
 687	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 688	mutex_unlock(&p->mutex);
 689	if (pdd)
 690		/* Reading GPU clock counter from KGD */
 691		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
 692	else
 693		/* Node without GPU resource */
 694		args->gpu_clock_counter = 0;
 695
 696	/* No access to rdtsc. Using raw monotonic time */
 697	args->cpu_clock_counter = ktime_get_raw_ns();
 698	args->system_clock_counter = ktime_get_boottime_ns();
 699
 700	/* Since the counter is in nano-seconds we use 1GHz frequency */
 701	args->system_clock_freq = 1000000000;
 702
 703	return 0;
 704}
 705
 706
 707static int kfd_ioctl_get_process_apertures(struct file *filp,
 708				struct kfd_process *p, void *data)
 709{
 710	struct kfd_ioctl_get_process_apertures_args *args = data;
 711	struct kfd_process_device_apertures *pAperture;
 712	int i;
 713
 714	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 715
 716	args->num_of_nodes = 0;
 717
 718	mutex_lock(&p->mutex);
 719	/* Run over all pdd of the process */
 720	for (i = 0; i < p->n_pdds; i++) {
 721		struct kfd_process_device *pdd = p->pdds[i];
 722
 723		pAperture =
 724			&args->process_apertures[args->num_of_nodes];
 725		pAperture->gpu_id = pdd->dev->id;
 726		pAperture->lds_base = pdd->lds_base;
 727		pAperture->lds_limit = pdd->lds_limit;
 728		pAperture->gpuvm_base = pdd->gpuvm_base;
 729		pAperture->gpuvm_limit = pdd->gpuvm_limit;
 730		pAperture->scratch_base = pdd->scratch_base;
 731		pAperture->scratch_limit = pdd->scratch_limit;
 732
 733		dev_dbg(kfd_device,
 734			"node id %u\n", args->num_of_nodes);
 735		dev_dbg(kfd_device,
 736			"gpu id %u\n", pdd->dev->id);
 737		dev_dbg(kfd_device,
 738			"lds_base %llX\n", pdd->lds_base);
 739		dev_dbg(kfd_device,
 740			"lds_limit %llX\n", pdd->lds_limit);
 741		dev_dbg(kfd_device,
 742			"gpuvm_base %llX\n", pdd->gpuvm_base);
 743		dev_dbg(kfd_device,
 744			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 745		dev_dbg(kfd_device,
 746			"scratch_base %llX\n", pdd->scratch_base);
 747		dev_dbg(kfd_device,
 748			"scratch_limit %llX\n", pdd->scratch_limit);
 749
 750		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
 751			break;
 752	}
 753	mutex_unlock(&p->mutex);
 754
 755	return 0;
 756}
 757
 758static int kfd_ioctl_get_process_apertures_new(struct file *filp,
 759				struct kfd_process *p, void *data)
 760{
 761	struct kfd_ioctl_get_process_apertures_new_args *args = data;
 762	struct kfd_process_device_apertures *pa;
 763	int ret;
 764	int i;
 765
 766	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 767
 768	if (args->num_of_nodes == 0) {
 769		/* Return number of nodes, so that user space can alloacate
 770		 * sufficient memory
 771		 */
 772		mutex_lock(&p->mutex);
 773		args->num_of_nodes = p->n_pdds;
 774		goto out_unlock;
 775	}
 776
 777	/* Fill in process-aperture information for all available
 778	 * nodes, but not more than args->num_of_nodes as that is
 779	 * the amount of memory allocated by user
 780	 */
 781	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
 782				args->num_of_nodes), GFP_KERNEL);
 783	if (!pa)
 784		return -ENOMEM;
 785
 786	mutex_lock(&p->mutex);
 787
 788	if (!p->n_pdds) {
 789		args->num_of_nodes = 0;
 790		kfree(pa);
 791		goto out_unlock;
 792	}
 793
 794	/* Run over all pdd of the process */
 795	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
 796		struct kfd_process_device *pdd = p->pdds[i];
 797
 798		pa[i].gpu_id = pdd->dev->id;
 799		pa[i].lds_base = pdd->lds_base;
 800		pa[i].lds_limit = pdd->lds_limit;
 801		pa[i].gpuvm_base = pdd->gpuvm_base;
 802		pa[i].gpuvm_limit = pdd->gpuvm_limit;
 803		pa[i].scratch_base = pdd->scratch_base;
 804		pa[i].scratch_limit = pdd->scratch_limit;
 805
 806		dev_dbg(kfd_device,
 807			"gpu id %u\n", pdd->dev->id);
 808		dev_dbg(kfd_device,
 809			"lds_base %llX\n", pdd->lds_base);
 810		dev_dbg(kfd_device,
 811			"lds_limit %llX\n", pdd->lds_limit);
 812		dev_dbg(kfd_device,
 813			"gpuvm_base %llX\n", pdd->gpuvm_base);
 814		dev_dbg(kfd_device,
 815			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 816		dev_dbg(kfd_device,
 817			"scratch_base %llX\n", pdd->scratch_base);
 818		dev_dbg(kfd_device,
 819			"scratch_limit %llX\n", pdd->scratch_limit);
 820	}
 821	mutex_unlock(&p->mutex);
 822
 823	args->num_of_nodes = i;
 824	ret = copy_to_user(
 825			(void __user *)args->kfd_process_device_apertures_ptr,
 826			pa,
 827			(i * sizeof(struct kfd_process_device_apertures)));
 828	kfree(pa);
 829	return ret ? -EFAULT : 0;
 830
 831out_unlock:
 832	mutex_unlock(&p->mutex);
 833	return 0;
 834}
 835
 836static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 837					void *data)
 838{
 839	struct kfd_ioctl_create_event_args *args = data;
 840	int err;
 841
 842	/* For dGPUs the event page is allocated in user mode. The
 843	 * handle is passed to KFD with the first call to this IOCTL
 844	 * through the event_page_offset field.
 845	 */
 846	if (args->event_page_offset) {
 847		mutex_lock(&p->mutex);
 848		err = kfd_kmap_event_page(p, args->event_page_offset);
 849		mutex_unlock(&p->mutex);
 850		if (err)
 851			return err;
 852	}
 853
 854	err = kfd_event_create(filp, p, args->event_type,
 855				args->auto_reset != 0, args->node_id,
 856				&args->event_id, &args->event_trigger_data,
 857				&args->event_page_offset,
 858				&args->event_slot_index);
 859
 860	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
 861	return err;
 862}
 863
 864static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
 865					void *data)
 866{
 867	struct kfd_ioctl_destroy_event_args *args = data;
 868
 869	return kfd_event_destroy(p, args->event_id);
 870}
 871
 872static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
 873				void *data)
 874{
 875	struct kfd_ioctl_set_event_args *args = data;
 876
 877	return kfd_set_event(p, args->event_id);
 878}
 879
 880static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
 881				void *data)
 882{
 883	struct kfd_ioctl_reset_event_args *args = data;
 884
 885	return kfd_reset_event(p, args->event_id);
 886}
 887
 888static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
 889				void *data)
 890{
 891	struct kfd_ioctl_wait_events_args *args = data;
 892
 893	return kfd_wait_on_events(p, args->num_events,
 894			(void __user *)args->events_ptr,
 895			(args->wait_for_all != 0),
 896			&args->timeout, &args->wait_result);
 897}
 898static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
 899					struct kfd_process *p, void *data)
 900{
 901	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
 902	struct kfd_process_device *pdd;
 903	struct kfd_node *dev;
 904	long err;
 905
 906	mutex_lock(&p->mutex);
 907	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 908	if (!pdd) {
 909		err = -EINVAL;
 910		goto err_pdd;
 911	}
 912	dev = pdd->dev;
 913
 914	pdd = kfd_bind_process_to_device(dev, p);
 915	if (IS_ERR(pdd)) {
 916		err = PTR_ERR(pdd);
 917		goto bind_process_to_device_fail;
 918	}
 919
 920	pdd->qpd.sh_hidden_private_base = args->va_addr;
 921
 922	mutex_unlock(&p->mutex);
 923
 924	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
 925	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
 926		dev->kfd2kgd->set_scratch_backing_va(
 927			dev->adev, args->va_addr, pdd->qpd.vmid);
 928
 929	return 0;
 930
 931bind_process_to_device_fail:
 932err_pdd:
 933	mutex_unlock(&p->mutex);
 934	return err;
 935}
 936
 937static int kfd_ioctl_get_tile_config(struct file *filep,
 938		struct kfd_process *p, void *data)
 939{
 940	struct kfd_ioctl_get_tile_config_args *args = data;
 941	struct kfd_process_device *pdd;
 942	struct tile_config config;
 943	int err = 0;
 944
 945	mutex_lock(&p->mutex);
 946	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 947	mutex_unlock(&p->mutex);
 948	if (!pdd)
 949		return -EINVAL;
 950
 951	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
 952
 953	args->gb_addr_config = config.gb_addr_config;
 954	args->num_banks = config.num_banks;
 955	args->num_ranks = config.num_ranks;
 956
 957	if (args->num_tile_configs > config.num_tile_configs)
 958		args->num_tile_configs = config.num_tile_configs;
 959	err = copy_to_user((void __user *)args->tile_config_ptr,
 960			config.tile_config_ptr,
 961			args->num_tile_configs * sizeof(uint32_t));
 962	if (err) {
 963		args->num_tile_configs = 0;
 964		return -EFAULT;
 965	}
 966
 967	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
 968		args->num_macro_tile_configs =
 969				config.num_macro_tile_configs;
 970	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
 971			config.macro_tile_config_ptr,
 972			args->num_macro_tile_configs * sizeof(uint32_t));
 973	if (err) {
 974		args->num_macro_tile_configs = 0;
 975		return -EFAULT;
 976	}
 977
 978	return 0;
 979}
 980
 981static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
 982				void *data)
 983{
 984	struct kfd_ioctl_acquire_vm_args *args = data;
 985	struct kfd_process_device *pdd;
 986	struct file *drm_file;
 987	int ret;
 988
 989	drm_file = fget(args->drm_fd);
 990	if (!drm_file)
 991		return -EINVAL;
 992
 993	mutex_lock(&p->mutex);
 994	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 995	if (!pdd) {
 996		ret = -EINVAL;
 997		goto err_pdd;
 998	}
 999
1000	if (pdd->drm_file) {
1001		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1002		goto err_drm_file;
1003	}
1004
1005	ret = kfd_process_device_init_vm(pdd, drm_file);
1006	if (ret)
1007		goto err_unlock;
1008
1009	/* On success, the PDD keeps the drm_file reference */
1010	mutex_unlock(&p->mutex);
1011
1012	return 0;
1013
1014err_unlock:
1015err_pdd:
1016err_drm_file:
1017	mutex_unlock(&p->mutex);
1018	fput(drm_file);
1019	return ret;
1020}
1021
1022bool kfd_dev_is_large_bar(struct kfd_node *dev)
1023{
1024	if (dev->kfd->adev->debug_largebar) {
1025		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1026		return true;
1027	}
1028
1029	if (dev->local_mem_info.local_mem_size_private == 0 &&
1030	    dev->local_mem_info.local_mem_size_public > 0)
1031		return true;
1032
1033	if (dev->local_mem_info.local_mem_size_public == 0 &&
1034	    dev->kfd->adev->gmc.is_app_apu) {
1035		pr_debug("APP APU, Consider like a large bar system\n");
1036		return true;
1037	}
1038
1039	return false;
1040}
1041
1042static int kfd_ioctl_get_available_memory(struct file *filep,
1043					  struct kfd_process *p, void *data)
1044{
1045	struct kfd_ioctl_get_available_memory_args *args = data;
1046	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1047
1048	if (!pdd)
1049		return -EINVAL;
1050	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1051							pdd->dev->node_id);
1052	kfd_unlock_pdd(pdd);
1053	return 0;
1054}
1055
1056static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1057					struct kfd_process *p, void *data)
1058{
1059	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1060	struct kfd_process_device *pdd;
1061	void *mem;
1062	struct kfd_node *dev;
1063	int idr_handle;
1064	long err;
1065	uint64_t offset = args->mmap_offset;
1066	uint32_t flags = args->flags;
1067
1068	if (args->size == 0)
1069		return -EINVAL;
1070
1071#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1072	/* Flush pending deferred work to avoid racing with deferred actions
1073	 * from previous memory map changes (e.g. munmap).
1074	 */
1075	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1076	mutex_lock(&p->svms.lock);
1077	mmap_write_unlock(current->mm);
1078	if (interval_tree_iter_first(&p->svms.objects,
1079				     args->va_addr >> PAGE_SHIFT,
1080				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1081		pr_err("Address: 0x%llx already allocated by SVM\n",
1082			args->va_addr);
1083		mutex_unlock(&p->svms.lock);
1084		return -EADDRINUSE;
1085	}
1086
1087	/* When register user buffer check if it has been registered by svm by
1088	 * buffer cpu virtual address.
1089	 */
1090	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1091	    interval_tree_iter_first(&p->svms.objects,
1092				     args->mmap_offset >> PAGE_SHIFT,
1093				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1094		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1095			args->mmap_offset);
1096		mutex_unlock(&p->svms.lock);
1097		return -EADDRINUSE;
1098	}
1099
1100	mutex_unlock(&p->svms.lock);
1101#endif
1102	mutex_lock(&p->mutex);
1103	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1104	if (!pdd) {
1105		err = -EINVAL;
1106		goto err_pdd;
1107	}
1108
1109	dev = pdd->dev;
1110
1111	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1112		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1113		!kfd_dev_is_large_bar(dev)) {
1114		pr_err("Alloc host visible vram on small bar is not allowed\n");
1115		err = -EINVAL;
1116		goto err_large_bar;
1117	}
1118
1119	pdd = kfd_bind_process_to_device(dev, p);
1120	if (IS_ERR(pdd)) {
1121		err = PTR_ERR(pdd);
1122		goto err_unlock;
1123	}
1124
1125	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1126		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1127			err = -EINVAL;
1128			goto err_unlock;
1129		}
1130		offset = kfd_get_process_doorbells(pdd);
1131		if (!offset) {
1132			err = -ENOMEM;
1133			goto err_unlock;
1134		}
1135	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1136		if (args->size != PAGE_SIZE) {
1137			err = -EINVAL;
1138			goto err_unlock;
1139		}
1140		offset = dev->adev->rmmio_remap.bus_addr;
1141		if (!offset) {
1142			err = -ENOMEM;
1143			goto err_unlock;
1144		}
1145	}
1146
1147	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1148		dev->adev, args->va_addr, args->size,
1149		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1150		flags, false);
1151
1152	if (err)
1153		goto err_unlock;
1154
1155	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1156	if (idr_handle < 0) {
1157		err = -EFAULT;
1158		goto err_free;
1159	}
1160
1161	/* Update the VRAM usage count */
1162	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1163		uint64_t size = args->size;
1164
1165		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1166			size >>= 1;
1167		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1168	}
1169
1170	mutex_unlock(&p->mutex);
1171
1172	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1173	args->mmap_offset = offset;
1174
1175	/* MMIO is mapped through kfd device
1176	 * Generate a kfd mmap offset
1177	 */
1178	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1179		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1180					| KFD_MMAP_GPU_ID(args->gpu_id);
1181
1182	return 0;
1183
1184err_free:
1185	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1186					       pdd->drm_priv, NULL);
1187err_unlock:
1188err_pdd:
1189err_large_bar:
1190	mutex_unlock(&p->mutex);
1191	return err;
1192}
1193
1194static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1195					struct kfd_process *p, void *data)
1196{
1197	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1198	struct kfd_process_device *pdd;
1199	void *mem;
1200	int ret;
1201	uint64_t size = 0;
1202
1203	mutex_lock(&p->mutex);
1204	/*
1205	 * Safeguard to prevent user space from freeing signal BO.
1206	 * It will be freed at process termination.
1207	 */
1208	if (p->signal_handle && (p->signal_handle == args->handle)) {
1209		pr_err("Free signal BO is not allowed\n");
1210		ret = -EPERM;
1211		goto err_unlock;
1212	}
1213
1214	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1215	if (!pdd) {
1216		pr_err("Process device data doesn't exist\n");
1217		ret = -EINVAL;
1218		goto err_pdd;
1219	}
1220
1221	mem = kfd_process_device_translate_handle(
1222		pdd, GET_IDR_HANDLE(args->handle));
1223	if (!mem) {
1224		ret = -EINVAL;
1225		goto err_unlock;
1226	}
1227
1228	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1229				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1230
1231	/* If freeing the buffer failed, leave the handle in place for
1232	 * clean-up during process tear-down.
1233	 */
1234	if (!ret)
1235		kfd_process_device_remove_obj_handle(
1236			pdd, GET_IDR_HANDLE(args->handle));
1237
1238	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1239
1240err_unlock:
1241err_pdd:
1242	mutex_unlock(&p->mutex);
1243	return ret;
1244}
1245
1246static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1247					struct kfd_process *p, void *data)
1248{
1249	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1250	struct kfd_process_device *pdd, *peer_pdd;
1251	void *mem;
1252	struct kfd_node *dev;
1253	long err = 0;
1254	int i;
1255	uint32_t *devices_arr = NULL;
1256
1257	if (!args->n_devices) {
1258		pr_debug("Device IDs array empty\n");
1259		return -EINVAL;
1260	}
1261	if (args->n_success > args->n_devices) {
1262		pr_debug("n_success exceeds n_devices\n");
1263		return -EINVAL;
1264	}
1265
1266	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1267				    GFP_KERNEL);
1268	if (!devices_arr)
1269		return -ENOMEM;
1270
1271	err = copy_from_user(devices_arr,
1272			     (void __user *)args->device_ids_array_ptr,
1273			     args->n_devices * sizeof(*devices_arr));
1274	if (err != 0) {
1275		err = -EFAULT;
1276		goto copy_from_user_failed;
1277	}
1278
1279	mutex_lock(&p->mutex);
1280	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1281	if (!pdd) {
1282		err = -EINVAL;
1283		goto get_process_device_data_failed;
1284	}
1285	dev = pdd->dev;
1286
1287	pdd = kfd_bind_process_to_device(dev, p);
1288	if (IS_ERR(pdd)) {
1289		err = PTR_ERR(pdd);
1290		goto bind_process_to_device_failed;
1291	}
1292
1293	mem = kfd_process_device_translate_handle(pdd,
1294						GET_IDR_HANDLE(args->handle));
1295	if (!mem) {
1296		err = -ENOMEM;
1297		goto get_mem_obj_from_handle_failed;
1298	}
1299
1300	for (i = args->n_success; i < args->n_devices; i++) {
1301		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1302		if (!peer_pdd) {
1303			pr_debug("Getting device by id failed for 0x%x\n",
1304				 devices_arr[i]);
1305			err = -EINVAL;
1306			goto get_mem_obj_from_handle_failed;
1307		}
1308
1309		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1310		if (IS_ERR(peer_pdd)) {
1311			err = PTR_ERR(peer_pdd);
1312			goto get_mem_obj_from_handle_failed;
1313		}
1314
1315		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1316			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1317			peer_pdd->drm_priv);
1318		if (err) {
1319			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1320
1321			dev_err(dev->adev->dev,
1322			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1323			       pci_domain_nr(pdev->bus),
1324			       pdev->bus->number,
1325			       PCI_SLOT(pdev->devfn),
1326			       PCI_FUNC(pdev->devfn),
1327			       ((struct kgd_mem *)mem)->domain);
1328			goto map_memory_to_gpu_failed;
1329		}
1330		args->n_success = i+1;
1331	}
1332
1333	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1334	if (err) {
1335		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1336		goto sync_memory_failed;
1337	}
1338
1339	mutex_unlock(&p->mutex);
1340
1341	/* Flush TLBs after waiting for the page table updates to complete */
1342	for (i = 0; i < args->n_devices; i++) {
1343		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1344		if (WARN_ON_ONCE(!peer_pdd))
1345			continue;
1346		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1347	}
1348	kfree(devices_arr);
1349
1350	return err;
1351
1352get_process_device_data_failed:
1353bind_process_to_device_failed:
1354get_mem_obj_from_handle_failed:
1355map_memory_to_gpu_failed:
1356sync_memory_failed:
1357	mutex_unlock(&p->mutex);
1358copy_from_user_failed:
1359	kfree(devices_arr);
1360
1361	return err;
1362}
1363
1364static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1365					struct kfd_process *p, void *data)
1366{
1367	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1368	struct kfd_process_device *pdd, *peer_pdd;
1369	void *mem;
1370	long err = 0;
1371	uint32_t *devices_arr = NULL, i;
1372	bool flush_tlb;
1373
1374	if (!args->n_devices) {
1375		pr_debug("Device IDs array empty\n");
1376		return -EINVAL;
1377	}
1378	if (args->n_success > args->n_devices) {
1379		pr_debug("n_success exceeds n_devices\n");
1380		return -EINVAL;
1381	}
1382
1383	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1384				    GFP_KERNEL);
1385	if (!devices_arr)
1386		return -ENOMEM;
1387
1388	err = copy_from_user(devices_arr,
1389			     (void __user *)args->device_ids_array_ptr,
1390			     args->n_devices * sizeof(*devices_arr));
1391	if (err != 0) {
1392		err = -EFAULT;
1393		goto copy_from_user_failed;
1394	}
1395
1396	mutex_lock(&p->mutex);
1397	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1398	if (!pdd) {
1399		err = -EINVAL;
1400		goto bind_process_to_device_failed;
1401	}
1402
1403	mem = kfd_process_device_translate_handle(pdd,
1404						GET_IDR_HANDLE(args->handle));
1405	if (!mem) {
1406		err = -ENOMEM;
1407		goto get_mem_obj_from_handle_failed;
1408	}
1409
1410	for (i = args->n_success; i < args->n_devices; i++) {
1411		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1412		if (!peer_pdd) {
1413			err = -EINVAL;
1414			goto get_mem_obj_from_handle_failed;
1415		}
1416		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1417			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1418		if (err) {
1419			pr_err("Failed to unmap from gpu %d/%d\n",
1420			       i, args->n_devices);
1421			goto unmap_memory_from_gpu_failed;
1422		}
1423		args->n_success = i+1;
1424	}
1425
1426	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1427	if (flush_tlb) {
1428		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1429				(struct kgd_mem *) mem, true);
1430		if (err) {
1431			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1432			goto sync_memory_failed;
1433		}
1434	}
1435
1436	/* Flush TLBs after waiting for the page table updates to complete */
1437	for (i = 0; i < args->n_devices; i++) {
1438		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1439		if (WARN_ON_ONCE(!peer_pdd))
1440			continue;
1441		if (flush_tlb)
1442			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1443
1444		/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1445		err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1446		if (err)
1447			goto sync_memory_failed;
1448	}
1449
1450	mutex_unlock(&p->mutex);
1451
1452	kfree(devices_arr);
1453
1454	return 0;
1455
1456bind_process_to_device_failed:
1457get_mem_obj_from_handle_failed:
1458unmap_memory_from_gpu_failed:
1459sync_memory_failed:
1460	mutex_unlock(&p->mutex);
1461copy_from_user_failed:
1462	kfree(devices_arr);
1463	return err;
1464}
1465
1466static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1467		struct kfd_process *p, void *data)
1468{
1469	int retval;
1470	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1471	struct queue *q;
1472	struct kfd_node *dev;
1473
1474	mutex_lock(&p->mutex);
1475	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1476
1477	if (q) {
1478		dev = q->device;
1479	} else {
1480		retval = -EINVAL;
1481		goto out_unlock;
1482	}
1483
1484	if (!dev->gws) {
1485		retval = -ENODEV;
1486		goto out_unlock;
1487	}
1488
1489	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1490		retval = -ENODEV;
1491		goto out_unlock;
1492	}
1493
1494	if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1495				      kfd_dbg_has_cwsr_workaround(dev))) {
1496		retval = -EBUSY;
1497		goto out_unlock;
1498	}
1499
1500	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1501	mutex_unlock(&p->mutex);
1502
1503	args->first_gws = 0;
1504	return retval;
1505
1506out_unlock:
1507	mutex_unlock(&p->mutex);
1508	return retval;
1509}
1510
1511static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1512		struct kfd_process *p, void *data)
1513{
1514	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1515	struct kfd_node *dev = NULL;
1516	struct amdgpu_device *dmabuf_adev;
1517	void *metadata_buffer = NULL;
1518	uint32_t flags;
1519	int8_t xcp_id;
1520	unsigned int i;
1521	int r;
1522
1523	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1524	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1525		if (dev)
1526			break;
1527	if (!dev)
1528		return -EINVAL;
1529
1530	if (args->metadata_ptr) {
1531		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1532		if (!metadata_buffer)
1533			return -ENOMEM;
1534	}
1535
1536	/* Get dmabuf info from KGD */
1537	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1538					  &dmabuf_adev, &args->size,
1539					  metadata_buffer, args->metadata_size,
1540					  &args->metadata_size, &flags, &xcp_id);
1541	if (r)
1542		goto exit;
1543
1544	if (xcp_id >= 0)
1545		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1546	else
1547		args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
1548	args->flags = flags;
1549
1550	/* Copy metadata buffer to user mode */
1551	if (metadata_buffer) {
1552		r = copy_to_user((void __user *)args->metadata_ptr,
1553				 metadata_buffer, args->metadata_size);
1554		if (r != 0)
1555			r = -EFAULT;
1556	}
1557
1558exit:
1559	kfree(metadata_buffer);
1560
1561	return r;
1562}
1563
1564static int kfd_ioctl_import_dmabuf(struct file *filep,
1565				   struct kfd_process *p, void *data)
1566{
1567	struct kfd_ioctl_import_dmabuf_args *args = data;
1568	struct kfd_process_device *pdd;
1569	int idr_handle;
1570	uint64_t size;
1571	void *mem;
1572	int r;
1573
1574	mutex_lock(&p->mutex);
1575	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1576	if (!pdd) {
1577		r = -EINVAL;
1578		goto err_unlock;
1579	}
1580
1581	pdd = kfd_bind_process_to_device(pdd->dev, p);
1582	if (IS_ERR(pdd)) {
1583		r = PTR_ERR(pdd);
1584		goto err_unlock;
1585	}
1586
1587	r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1588						 args->va_addr, pdd->drm_priv,
1589						 (struct kgd_mem **)&mem, &size,
1590						 NULL);
1591	if (r)
1592		goto err_unlock;
1593
1594	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1595	if (idr_handle < 0) {
1596		r = -EFAULT;
1597		goto err_free;
1598	}
1599
1600	mutex_unlock(&p->mutex);
1601
1602	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1603
1604	return 0;
1605
1606err_free:
1607	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1608					       pdd->drm_priv, NULL);
1609err_unlock:
1610	mutex_unlock(&p->mutex);
1611	return r;
1612}
1613
1614static int kfd_ioctl_export_dmabuf(struct file *filep,
1615				   struct kfd_process *p, void *data)
1616{
1617	struct kfd_ioctl_export_dmabuf_args *args = data;
1618	struct kfd_process_device *pdd;
1619	struct dma_buf *dmabuf;
1620	struct kfd_node *dev;
1621	void *mem;
1622	int ret = 0;
1623
1624	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1625	if (!dev)
1626		return -EINVAL;
1627
1628	mutex_lock(&p->mutex);
1629
1630	pdd = kfd_get_process_device_data(dev, p);
1631	if (!pdd) {
1632		ret = -EINVAL;
1633		goto err_unlock;
1634	}
1635
1636	mem = kfd_process_device_translate_handle(pdd,
1637						GET_IDR_HANDLE(args->handle));
1638	if (!mem) {
1639		ret = -EINVAL;
1640		goto err_unlock;
1641	}
1642
1643	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1644	mutex_unlock(&p->mutex);
1645	if (ret)
1646		goto err_out;
1647
1648	ret = dma_buf_fd(dmabuf, args->flags);
1649	if (ret < 0) {
1650		dma_buf_put(dmabuf);
1651		goto err_out;
1652	}
1653	/* dma_buf_fd assigns the reference count to the fd, no need to
1654	 * put the reference here.
1655	 */
1656	args->dmabuf_fd = ret;
1657
1658	return 0;
1659
1660err_unlock:
1661	mutex_unlock(&p->mutex);
1662err_out:
1663	return ret;
1664}
1665
1666/* Handle requests for watching SMI events */
1667static int kfd_ioctl_smi_events(struct file *filep,
1668				struct kfd_process *p, void *data)
1669{
1670	struct kfd_ioctl_smi_events_args *args = data;
1671	struct kfd_process_device *pdd;
1672
1673	mutex_lock(&p->mutex);
1674
1675	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1676	mutex_unlock(&p->mutex);
1677	if (!pdd)
1678		return -EINVAL;
1679
1680	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1681}
1682
1683#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1684
1685static int kfd_ioctl_set_xnack_mode(struct file *filep,
1686				    struct kfd_process *p, void *data)
1687{
1688	struct kfd_ioctl_set_xnack_mode_args *args = data;
1689	int r = 0;
1690
1691	mutex_lock(&p->mutex);
1692	if (args->xnack_enabled >= 0) {
1693		if (!list_empty(&p->pqm.queues)) {
1694			pr_debug("Process has user queues running\n");
1695			r = -EBUSY;
1696			goto out_unlock;
1697		}
1698
1699		if (p->xnack_enabled == args->xnack_enabled)
1700			goto out_unlock;
1701
1702		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1703			r = -EPERM;
1704			goto out_unlock;
1705		}
1706
1707		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1708	} else {
1709		args->xnack_enabled = p->xnack_enabled;
1710	}
1711
1712out_unlock:
1713	mutex_unlock(&p->mutex);
1714
1715	return r;
1716}
1717
1718static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1719{
1720	struct kfd_ioctl_svm_args *args = data;
1721	int r = 0;
1722
1723	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1724		 args->start_addr, args->size, args->op, args->nattr);
1725
1726	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1727		return -EINVAL;
1728	if (!args->start_addr || !args->size)
1729		return -EINVAL;
1730
1731	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1732		      args->attrs);
1733
1734	return r;
1735}
1736#else
1737static int kfd_ioctl_set_xnack_mode(struct file *filep,
1738				    struct kfd_process *p, void *data)
1739{
1740	return -EPERM;
1741}
1742static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1743{
1744	return -EPERM;
1745}
1746#endif
1747
1748static int criu_checkpoint_process(struct kfd_process *p,
1749			     uint8_t __user *user_priv_data,
1750			     uint64_t *priv_offset)
1751{
1752	struct kfd_criu_process_priv_data process_priv;
1753	int ret;
1754
1755	memset(&process_priv, 0, sizeof(process_priv));
1756
1757	process_priv.version = KFD_CRIU_PRIV_VERSION;
1758	/* For CR, we don't consider negative xnack mode which is used for
1759	 * querying without changing it, here 0 simply means disabled and 1
1760	 * means enabled so retry for finding a valid PTE.
1761	 */
1762	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1763
1764	ret = copy_to_user(user_priv_data + *priv_offset,
1765				&process_priv, sizeof(process_priv));
1766
1767	if (ret) {
1768		pr_err("Failed to copy process information to user\n");
1769		ret = -EFAULT;
1770	}
1771
1772	*priv_offset += sizeof(process_priv);
1773	return ret;
1774}
1775
1776static int criu_checkpoint_devices(struct kfd_process *p,
1777			     uint32_t num_devices,
1778			     uint8_t __user *user_addr,
1779			     uint8_t __user *user_priv_data,
1780			     uint64_t *priv_offset)
1781{
1782	struct kfd_criu_device_priv_data *device_priv = NULL;
1783	struct kfd_criu_device_bucket *device_buckets = NULL;
1784	int ret = 0, i;
1785
1786	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1787	if (!device_buckets) {
1788		ret = -ENOMEM;
1789		goto exit;
1790	}
1791
1792	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1793	if (!device_priv) {
1794		ret = -ENOMEM;
1795		goto exit;
1796	}
1797
1798	for (i = 0; i < num_devices; i++) {
1799		struct kfd_process_device *pdd = p->pdds[i];
1800
1801		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1802		device_buckets[i].actual_gpu_id = pdd->dev->id;
1803
1804		/*
1805		 * priv_data does not contain useful information for now and is reserved for
1806		 * future use, so we do not set its contents.
1807		 */
1808	}
1809
1810	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1811	if (ret) {
1812		pr_err("Failed to copy device information to user\n");
1813		ret = -EFAULT;
1814		goto exit;
1815	}
1816
1817	ret = copy_to_user(user_priv_data + *priv_offset,
1818			   device_priv,
1819			   num_devices * sizeof(*device_priv));
1820	if (ret) {
1821		pr_err("Failed to copy device information to user\n");
1822		ret = -EFAULT;
1823	}
1824	*priv_offset += num_devices * sizeof(*device_priv);
1825
1826exit:
1827	kvfree(device_buckets);
1828	kvfree(device_priv);
1829	return ret;
1830}
1831
1832static uint32_t get_process_num_bos(struct kfd_process *p)
1833{
1834	uint32_t num_of_bos = 0;
1835	int i;
1836
1837	/* Run over all PDDs of the process */
1838	for (i = 0; i < p->n_pdds; i++) {
1839		struct kfd_process_device *pdd = p->pdds[i];
1840		void *mem;
1841		int id;
1842
1843		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1844			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1845
1846			if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1847				num_of_bos++;
1848		}
1849	}
1850	return num_of_bos;
1851}
1852
1853static int criu_get_prime_handle(struct kgd_mem *mem,
1854				 int flags, u32 *shared_fd)
1855{
1856	struct dma_buf *dmabuf;
1857	int ret;
1858
1859	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1860	if (ret) {
1861		pr_err("dmabuf export failed for the BO\n");
1862		return ret;
1863	}
1864
1865	ret = dma_buf_fd(dmabuf, flags);
1866	if (ret < 0) {
1867		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1868		goto out_free_dmabuf;
1869	}
1870
1871	*shared_fd = ret;
1872	return 0;
1873
1874out_free_dmabuf:
1875	dma_buf_put(dmabuf);
1876	return ret;
1877}
1878
1879static int criu_checkpoint_bos(struct kfd_process *p,
1880			       uint32_t num_bos,
1881			       uint8_t __user *user_bos,
1882			       uint8_t __user *user_priv_data,
1883			       uint64_t *priv_offset)
1884{
1885	struct kfd_criu_bo_bucket *bo_buckets;
1886	struct kfd_criu_bo_priv_data *bo_privs;
1887	int ret = 0, pdd_index, bo_index = 0, id;
1888	void *mem;
1889
1890	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1891	if (!bo_buckets)
1892		return -ENOMEM;
1893
1894	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1895	if (!bo_privs) {
1896		ret = -ENOMEM;
1897		goto exit;
1898	}
1899
1900	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1901		struct kfd_process_device *pdd = p->pdds[pdd_index];
1902		struct amdgpu_bo *dumper_bo;
1903		struct kgd_mem *kgd_mem;
1904
1905		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1906			struct kfd_criu_bo_bucket *bo_bucket;
1907			struct kfd_criu_bo_priv_data *bo_priv;
1908			int i, dev_idx = 0;
1909
1910			if (!mem) {
1911				ret = -ENOMEM;
1912				goto exit;
1913			}
1914
1915			kgd_mem = (struct kgd_mem *)mem;
1916			dumper_bo = kgd_mem->bo;
1917
1918			/* Skip checkpointing BOs that are used for Trap handler
1919			 * code and state. Currently, these BOs have a VA that
1920			 * is less GPUVM Base
1921			 */
1922			if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1923				continue;
1924
1925			bo_bucket = &bo_buckets[bo_index];
1926			bo_priv = &bo_privs[bo_index];
1927
1928			bo_bucket->gpu_id = pdd->user_gpu_id;
1929			bo_bucket->addr = (uint64_t)kgd_mem->va;
1930			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1931			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1932			bo_priv->idr_handle = id;
1933
1934			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1935				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1936								&bo_priv->user_addr);
1937				if (ret) {
1938					pr_err("Failed to obtain user address for user-pointer bo\n");
1939					goto exit;
1940				}
1941			}
1942			if (bo_bucket->alloc_flags
1943			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1944				ret = criu_get_prime_handle(kgd_mem,
1945						bo_bucket->alloc_flags &
1946						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1947						&bo_bucket->dmabuf_fd);
1948				if (ret)
1949					goto exit;
1950			} else {
1951				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1952			}
1953
1954			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1955				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1956					KFD_MMAP_GPU_ID(pdd->dev->id);
1957			else if (bo_bucket->alloc_flags &
1958				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1959				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1960					KFD_MMAP_GPU_ID(pdd->dev->id);
1961			else
1962				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1963
1964			for (i = 0; i < p->n_pdds; i++) {
1965				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1966					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1967			}
1968
1969			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1970					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1971					bo_bucket->size,
1972					bo_bucket->addr,
1973					bo_bucket->offset,
1974					bo_bucket->gpu_id,
1975					bo_bucket->alloc_flags,
1976					bo_priv->idr_handle);
1977			bo_index++;
1978		}
1979	}
1980
1981	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1982	if (ret) {
1983		pr_err("Failed to copy BO information to user\n");
1984		ret = -EFAULT;
1985		goto exit;
1986	}
1987
1988	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1989	if (ret) {
1990		pr_err("Failed to copy BO priv information to user\n");
1991		ret = -EFAULT;
1992		goto exit;
1993	}
1994
1995	*priv_offset += num_bos * sizeof(*bo_privs);
1996
1997exit:
1998	while (ret && bo_index--) {
1999		if (bo_buckets[bo_index].alloc_flags
2000		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2001			close_fd(bo_buckets[bo_index].dmabuf_fd);
2002	}
2003
2004	kvfree(bo_buckets);
2005	kvfree(bo_privs);
2006	return ret;
2007}
2008
2009static int criu_get_process_object_info(struct kfd_process *p,
2010					uint32_t *num_devices,
2011					uint32_t *num_bos,
2012					uint32_t *num_objects,
2013					uint64_t *objs_priv_size)
2014{
2015	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2016	uint32_t num_queues, num_events, num_svm_ranges;
2017	int ret;
2018
2019	*num_devices = p->n_pdds;
2020	*num_bos = get_process_num_bos(p);
2021
2022	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2023	if (ret)
2024		return ret;
2025
2026	num_events = kfd_get_num_events(p);
2027
2028	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2029	if (ret)
2030		return ret;
2031
2032	*num_objects = num_queues + num_events + num_svm_ranges;
2033
2034	if (objs_priv_size) {
2035		priv_size = sizeof(struct kfd_criu_process_priv_data);
2036		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2037		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2038		priv_size += queues_priv_data_size;
2039		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2040		priv_size += svm_priv_data_size;
2041		*objs_priv_size = priv_size;
2042	}
2043	return 0;
2044}
2045
2046static int criu_checkpoint(struct file *filep,
2047			   struct kfd_process *p,
2048			   struct kfd_ioctl_criu_args *args)
2049{
2050	int ret;
2051	uint32_t num_devices, num_bos, num_objects;
2052	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2053
2054	if (!args->devices || !args->bos || !args->priv_data)
2055		return -EINVAL;
2056
2057	mutex_lock(&p->mutex);
2058
2059	if (!p->n_pdds) {
2060		pr_err("No pdd for given process\n");
2061		ret = -ENODEV;
2062		goto exit_unlock;
2063	}
2064
2065	/* Confirm all process queues are evicted */
2066	if (!p->queues_paused) {
2067		pr_err("Cannot dump process when queues are not in evicted state\n");
2068		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2069		ret = -EINVAL;
2070		goto exit_unlock;
2071	}
2072
2073	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2074	if (ret)
2075		goto exit_unlock;
2076
2077	if (num_devices != args->num_devices ||
2078	    num_bos != args->num_bos ||
2079	    num_objects != args->num_objects ||
2080	    priv_size != args->priv_data_size) {
2081
2082		ret = -EINVAL;
2083		goto exit_unlock;
2084	}
2085
2086	/* each function will store private data inside priv_data and adjust priv_offset */
2087	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2088	if (ret)
2089		goto exit_unlock;
2090
2091	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2092				(uint8_t __user *)args->priv_data, &priv_offset);
2093	if (ret)
2094		goto exit_unlock;
2095
2096	/* Leave room for BOs in the private data. They need to be restored
2097	 * before events, but we checkpoint them last to simplify the error
2098	 * handling.
2099	 */
2100	bo_priv_offset = priv_offset;
2101	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2102
2103	if (num_objects) {
2104		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2105						 &priv_offset);
2106		if (ret)
2107			goto exit_unlock;
2108
2109		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2110						 &priv_offset);
2111		if (ret)
2112			goto exit_unlock;
2113
2114		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2115		if (ret)
2116			goto exit_unlock;
2117	}
2118
2119	/* This must be the last thing in this function that can fail.
2120	 * Otherwise we leak dmabuf file descriptors.
2121	 */
2122	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2123			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2124
2125exit_unlock:
2126	mutex_unlock(&p->mutex);
2127	if (ret)
2128		pr_err("Failed to dump CRIU ret:%d\n", ret);
2129	else
2130		pr_debug("CRIU dump ret:%d\n", ret);
2131
2132	return ret;
2133}
2134
2135static int criu_restore_process(struct kfd_process *p,
2136				struct kfd_ioctl_criu_args *args,
2137				uint64_t *priv_offset,
2138				uint64_t max_priv_data_size)
2139{
2140	int ret = 0;
2141	struct kfd_criu_process_priv_data process_priv;
2142
2143	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2144		return -EINVAL;
2145
2146	ret = copy_from_user(&process_priv,
2147				(void __user *)(args->priv_data + *priv_offset),
2148				sizeof(process_priv));
2149	if (ret) {
2150		pr_err("Failed to copy process private information from user\n");
2151		ret = -EFAULT;
2152		goto exit;
2153	}
2154	*priv_offset += sizeof(process_priv);
2155
2156	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2157		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2158			process_priv.version, KFD_CRIU_PRIV_VERSION);
2159		return -EINVAL;
2160	}
2161
2162	pr_debug("Setting XNACK mode\n");
2163	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2164		pr_err("xnack mode cannot be set\n");
2165		ret = -EPERM;
2166		goto exit;
2167	} else {
2168		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2169		p->xnack_enabled = process_priv.xnack_mode;
2170	}
2171
2172exit:
2173	return ret;
2174}
2175
2176static int criu_restore_devices(struct kfd_process *p,
2177				struct kfd_ioctl_criu_args *args,
2178				uint64_t *priv_offset,
2179				uint64_t max_priv_data_size)
2180{
2181	struct kfd_criu_device_bucket *device_buckets;
2182	struct kfd_criu_device_priv_data *device_privs;
2183	int ret = 0;
2184	uint32_t i;
2185
2186	if (args->num_devices != p->n_pdds)
2187		return -EINVAL;
2188
2189	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2190		return -EINVAL;
2191
2192	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2193	if (!device_buckets)
2194		return -ENOMEM;
2195
2196	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2197				args->num_devices * sizeof(*device_buckets));
2198	if (ret) {
2199		pr_err("Failed to copy devices buckets from user\n");
2200		ret = -EFAULT;
2201		goto exit;
2202	}
2203
2204	for (i = 0; i < args->num_devices; i++) {
2205		struct kfd_node *dev;
2206		struct kfd_process_device *pdd;
2207		struct file *drm_file;
2208
2209		/* device private data is not currently used */
2210
2211		if (!device_buckets[i].user_gpu_id) {
2212			pr_err("Invalid user gpu_id\n");
2213			ret = -EINVAL;
2214			goto exit;
2215		}
2216
2217		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2218		if (!dev) {
2219			pr_err("Failed to find device with gpu_id = %x\n",
2220				device_buckets[i].actual_gpu_id);
2221			ret = -EINVAL;
2222			goto exit;
2223		}
2224
2225		pdd = kfd_get_process_device_data(dev, p);
2226		if (!pdd) {
2227			pr_err("Failed to get pdd for gpu_id = %x\n",
2228					device_buckets[i].actual_gpu_id);
2229			ret = -EINVAL;
2230			goto exit;
2231		}
2232		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2233
2234		drm_file = fget(device_buckets[i].drm_fd);
2235		if (!drm_file) {
2236			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2237				device_buckets[i].drm_fd);
2238			ret = -EINVAL;
2239			goto exit;
2240		}
2241
2242		if (pdd->drm_file) {
2243			ret = -EINVAL;
2244			goto exit;
2245		}
2246
2247		/* create the vm using render nodes for kfd pdd */
2248		if (kfd_process_device_init_vm(pdd, drm_file)) {
2249			pr_err("could not init vm for given pdd\n");
2250			/* On success, the PDD keeps the drm_file reference */
2251			fput(drm_file);
2252			ret = -EINVAL;
2253			goto exit;
2254		}
2255		/*
2256		 * pdd now already has the vm bound to render node so below api won't create a new
2257		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2258		 * for iommu v2 binding  and runtime pm.
2259		 */
2260		pdd = kfd_bind_process_to_device(dev, p);
2261		if (IS_ERR(pdd)) {
2262			ret = PTR_ERR(pdd);
2263			goto exit;
2264		}
2265
2266		if (!pdd->qpd.proc_doorbells) {
2267			ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2268			if (ret)
2269				goto exit;
2270		}
2271	}
2272
2273	/*
2274	 * We are not copying device private data from user as we are not using the data for now,
2275	 * but we still adjust for its private data.
2276	 */
2277	*priv_offset += args->num_devices * sizeof(*device_privs);
2278
2279exit:
2280	kfree(device_buckets);
2281	return ret;
2282}
2283
2284static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2285				      struct kfd_criu_bo_bucket *bo_bucket,
2286				      struct kfd_criu_bo_priv_data *bo_priv,
2287				      struct kgd_mem **kgd_mem)
2288{
2289	int idr_handle;
2290	int ret;
2291	const bool criu_resume = true;
2292	u64 offset;
2293
2294	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2295		if (bo_bucket->size !=
2296				kfd_doorbell_process_slice(pdd->dev->kfd))
2297			return -EINVAL;
2298
2299		offset = kfd_get_process_doorbells(pdd);
2300		if (!offset)
2301			return -ENOMEM;
2302	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2303		/* MMIO BOs need remapped bus address */
2304		if (bo_bucket->size != PAGE_SIZE) {
2305			pr_err("Invalid page size\n");
2306			return -EINVAL;
2307		}
2308		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2309		if (!offset) {
2310			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2311			return -ENOMEM;
2312		}
2313	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2314		offset = bo_priv->user_addr;
2315	}
2316	/* Create the BO */
2317	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2318						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2319						      &offset, bo_bucket->alloc_flags, criu_resume);
2320	if (ret) {
2321		pr_err("Could not create the BO\n");
2322		return ret;
2323	}
2324	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2325		 bo_bucket->size, bo_bucket->addr, offset);
2326
2327	/* Restore previous IDR handle */
2328	pr_debug("Restoring old IDR handle for the BO");
2329	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2330			       bo_priv->idr_handle + 1, GFP_KERNEL);
2331
2332	if (idr_handle < 0) {
2333		pr_err("Could not allocate idr\n");
2334		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2335						       NULL);
2336		return -ENOMEM;
2337	}
2338
2339	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2340		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2341	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2342		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2343	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2344		bo_bucket->restored_offset = offset;
2345	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2346		bo_bucket->restored_offset = offset;
2347		/* Update the VRAM usage count */
2348		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2349	}
2350	return 0;
2351}
2352
2353static int criu_restore_bo(struct kfd_process *p,
2354			   struct kfd_criu_bo_bucket *bo_bucket,
2355			   struct kfd_criu_bo_priv_data *bo_priv)
2356{
2357	struct kfd_process_device *pdd;
2358	struct kgd_mem *kgd_mem;
2359	int ret;
2360	int j;
2361
2362	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2363		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2364		 bo_priv->idr_handle);
2365
2366	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2367	if (!pdd) {
2368		pr_err("Failed to get pdd\n");
2369		return -ENODEV;
2370	}
2371
2372	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2373	if (ret)
2374		return ret;
2375
2376	/* now map these BOs to GPU/s */
2377	for (j = 0; j < p->n_pdds; j++) {
2378		struct kfd_node *peer;
2379		struct kfd_process_device *peer_pdd;
2380
2381		if (!bo_priv->mapped_gpuids[j])
2382			break;
2383
2384		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2385		if (!peer_pdd)
2386			return -EINVAL;
2387
2388		peer = peer_pdd->dev;
2389
2390		peer_pdd = kfd_bind_process_to_device(peer, p);
2391		if (IS_ERR(peer_pdd))
2392			return PTR_ERR(peer_pdd);
2393
2394		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2395							    peer_pdd->drm_priv);
2396		if (ret) {
2397			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2398			return ret;
2399		}
2400	}
2401
2402	pr_debug("map memory was successful for the BO\n");
2403	/* create the dmabuf object and export the bo */
2404	if (bo_bucket->alloc_flags
2405	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2406		ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2407					    &bo_bucket->dmabuf_fd);
2408		if (ret)
2409			return ret;
2410	} else {
2411		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2412	}
2413
2414	return 0;
2415}
2416
2417static int criu_restore_bos(struct kfd_process *p,
2418			    struct kfd_ioctl_criu_args *args,
2419			    uint64_t *priv_offset,
2420			    uint64_t max_priv_data_size)
2421{
2422	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2423	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2424	int ret = 0;
2425	uint32_t i = 0;
2426
2427	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2428		return -EINVAL;
2429
2430	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2431	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2432
2433	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2434	if (!bo_buckets)
2435		return -ENOMEM;
2436
2437	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2438			     args->num_bos * sizeof(*bo_buckets));
2439	if (ret) {
2440		pr_err("Failed to copy BOs information from user\n");
2441		ret = -EFAULT;
2442		goto exit;
2443	}
2444
2445	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2446	if (!bo_privs) {
2447		ret = -ENOMEM;
2448		goto exit;
2449	}
2450
2451	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2452			     args->num_bos * sizeof(*bo_privs));
2453	if (ret) {
2454		pr_err("Failed to copy BOs information from user\n");
2455		ret = -EFAULT;
2456		goto exit;
2457	}
2458	*priv_offset += args->num_bos * sizeof(*bo_privs);
2459
2460	/* Create and map new BOs */
2461	for (; i < args->num_bos; i++) {
2462		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2463		if (ret) {
2464			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2465			goto exit;
2466		}
2467	} /* done */
2468
2469	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2470	ret = copy_to_user((void __user *)args->bos,
2471				bo_buckets,
2472				(args->num_bos * sizeof(*bo_buckets)));
2473	if (ret)
2474		ret = -EFAULT;
2475
2476exit:
2477	while (ret && i--) {
2478		if (bo_buckets[i].alloc_flags
2479		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2480			close_fd(bo_buckets[i].dmabuf_fd);
2481	}
2482	kvfree(bo_buckets);
2483	kvfree(bo_privs);
2484	return ret;
2485}
2486
2487static int criu_restore_objects(struct file *filep,
2488				struct kfd_process *p,
2489				struct kfd_ioctl_criu_args *args,
2490				uint64_t *priv_offset,
2491				uint64_t max_priv_data_size)
2492{
2493	int ret = 0;
2494	uint32_t i;
2495
2496	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2497	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2498	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2499
2500	for (i = 0; i < args->num_objects; i++) {
2501		uint32_t object_type;
2502
2503		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2504			pr_err("Invalid private data size\n");
2505			return -EINVAL;
2506		}
2507
2508		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2509		if (ret) {
2510			pr_err("Failed to copy private information from user\n");
2511			goto exit;
2512		}
2513
2514		switch (object_type) {
2515		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2516			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2517						     priv_offset, max_priv_data_size);
2518			if (ret)
2519				goto exit;
2520			break;
2521		case KFD_CRIU_OBJECT_TYPE_EVENT:
2522			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2523						     priv_offset, max_priv_data_size);
2524			if (ret)
2525				goto exit;
2526			break;
2527		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2528			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2529						     priv_offset, max_priv_data_size);
2530			if (ret)
2531				goto exit;
2532			break;
2533		default:
2534			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2535			ret = -EINVAL;
2536			goto exit;
2537		}
2538	}
2539exit:
2540	return ret;
2541}
2542
2543static int criu_restore(struct file *filep,
2544			struct kfd_process *p,
2545			struct kfd_ioctl_criu_args *args)
2546{
2547	uint64_t priv_offset = 0;
2548	int ret = 0;
2549
2550	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2551		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2552
2553	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2554	    !args->num_devices || !args->num_bos)
2555		return -EINVAL;
2556
2557	mutex_lock(&p->mutex);
2558
2559	/*
2560	 * Set the process to evicted state to avoid running any new queues before all the memory
2561	 * mappings are ready.
2562	 */
2563	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2564	if (ret)
2565		goto exit_unlock;
2566
2567	/* Each function will adjust priv_offset based on how many bytes they consumed */
2568	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2569	if (ret)
2570		goto exit_unlock;
2571
2572	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2573	if (ret)
2574		goto exit_unlock;
2575
2576	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2577	if (ret)
2578		goto exit_unlock;
2579
2580	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2581	if (ret)
2582		goto exit_unlock;
2583
2584	if (priv_offset != args->priv_data_size) {
2585		pr_err("Invalid private data size\n");
2586		ret = -EINVAL;
2587	}
2588
2589exit_unlock:
2590	mutex_unlock(&p->mutex);
2591	if (ret)
2592		pr_err("Failed to restore CRIU ret:%d\n", ret);
2593	else
2594		pr_debug("CRIU restore successful\n");
2595
2596	return ret;
2597}
2598
2599static int criu_unpause(struct file *filep,
2600			struct kfd_process *p,
2601			struct kfd_ioctl_criu_args *args)
2602{
2603	int ret;
2604
2605	mutex_lock(&p->mutex);
2606
2607	if (!p->queues_paused) {
2608		mutex_unlock(&p->mutex);
2609		return -EINVAL;
2610	}
2611
2612	ret = kfd_process_restore_queues(p);
2613	if (ret)
2614		pr_err("Failed to unpause queues ret:%d\n", ret);
2615	else
2616		p->queues_paused = false;
2617
2618	mutex_unlock(&p->mutex);
2619
2620	return ret;
2621}
2622
2623static int criu_resume(struct file *filep,
2624			struct kfd_process *p,
2625			struct kfd_ioctl_criu_args *args)
2626{
2627	struct kfd_process *target = NULL;
2628	struct pid *pid = NULL;
2629	int ret = 0;
2630
2631	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2632		 args->pid);
2633
2634	pid = find_get_pid(args->pid);
2635	if (!pid) {
2636		pr_err("Cannot find pid info for %i\n", args->pid);
2637		return -ESRCH;
2638	}
2639
2640	pr_debug("calling kfd_lookup_process_by_pid\n");
2641	target = kfd_lookup_process_by_pid(pid);
2642
2643	put_pid(pid);
2644
2645	if (!target) {
2646		pr_debug("Cannot find process info for %i\n", args->pid);
2647		return -ESRCH;
2648	}
2649
2650	mutex_lock(&target->mutex);
2651	ret = kfd_criu_resume_svm(target);
2652	if (ret) {
2653		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2654		goto exit;
2655	}
2656
2657	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2658	if (ret)
2659		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2660
2661exit:
2662	mutex_unlock(&target->mutex);
2663
2664	kfd_unref_process(target);
2665	return ret;
2666}
2667
2668static int criu_process_info(struct file *filep,
2669				struct kfd_process *p,
2670				struct kfd_ioctl_criu_args *args)
2671{
2672	int ret = 0;
2673
2674	mutex_lock(&p->mutex);
2675
2676	if (!p->n_pdds) {
2677		pr_err("No pdd for given process\n");
2678		ret = -ENODEV;
2679		goto err_unlock;
2680	}
2681
2682	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2683	if (ret)
2684		goto err_unlock;
2685
2686	p->queues_paused = true;
2687
2688	args->pid = task_pid_nr_ns(p->lead_thread,
2689					task_active_pid_ns(p->lead_thread));
2690
2691	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2692					   &args->num_objects, &args->priv_data_size);
2693	if (ret)
2694		goto err_unlock;
2695
2696	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2697				args->num_devices, args->num_bos, args->num_objects,
2698				args->priv_data_size);
2699
2700err_unlock:
2701	if (ret) {
2702		kfd_process_restore_queues(p);
2703		p->queues_paused = false;
2704	}
2705	mutex_unlock(&p->mutex);
2706	return ret;
2707}
2708
2709static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2710{
2711	struct kfd_ioctl_criu_args *args = data;
2712	int ret;
2713
2714	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2715	switch (args->op) {
2716	case KFD_CRIU_OP_PROCESS_INFO:
2717		ret = criu_process_info(filep, p, args);
2718		break;
2719	case KFD_CRIU_OP_CHECKPOINT:
2720		ret = criu_checkpoint(filep, p, args);
2721		break;
2722	case KFD_CRIU_OP_UNPAUSE:
2723		ret = criu_unpause(filep, p, args);
2724		break;
2725	case KFD_CRIU_OP_RESTORE:
2726		ret = criu_restore(filep, p, args);
2727		break;
2728	case KFD_CRIU_OP_RESUME:
2729		ret = criu_resume(filep, p, args);
2730		break;
2731	default:
2732		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2733		ret = -EINVAL;
2734		break;
2735	}
2736
2737	if (ret)
2738		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2739
2740	return ret;
2741}
2742
2743static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2744			bool enable_ttmp_setup)
2745{
2746	int i = 0, ret = 0;
2747
2748	if (p->is_runtime_retry)
2749		goto retry;
2750
2751	if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2752		return -EBUSY;
2753
2754	for (i = 0; i < p->n_pdds; i++) {
2755		struct kfd_process_device *pdd = p->pdds[i];
2756
2757		if (pdd->qpd.queue_count)
2758			return -EEXIST;
2759
2760		/*
2761		 * Setup TTMPs by default.
2762		 * Note that this call must remain here for MES ADD QUEUE to
2763		 * skip_process_ctx_clear unconditionally as the first call to
2764		 * SET_SHADER_DEBUGGER clears any stale process context data
2765		 * saved in MES.
2766		 */
2767		if (pdd->dev->kfd->shared_resources.enable_mes)
2768			kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2769	}
2770
2771	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2772	p->runtime_info.r_debug = r_debug;
2773	p->runtime_info.ttmp_setup = enable_ttmp_setup;
2774
2775	if (p->runtime_info.ttmp_setup) {
2776		for (i = 0; i < p->n_pdds; i++) {
2777			struct kfd_process_device *pdd = p->pdds[i];
2778
2779			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2780				amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2781				pdd->dev->kfd2kgd->enable_debug_trap(
2782						pdd->dev->adev,
2783						true,
2784						pdd->dev->vm_info.last_vmid_kfd);
2785			} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2786				pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2787						pdd->dev->adev,
2788						false,
2789						0);
2790			}
2791		}
2792	}
2793
2794retry:
2795	if (p->debug_trap_enabled) {
2796		if (!p->is_runtime_retry) {
2797			kfd_dbg_trap_activate(p);
2798			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2799					p, NULL, 0, false, NULL, 0);
2800		}
2801
2802		mutex_unlock(&p->mutex);
2803		ret = down_interruptible(&p->runtime_enable_sema);
2804		mutex_lock(&p->mutex);
2805
2806		p->is_runtime_retry = !!ret;
2807	}
2808
2809	return ret;
2810}
2811
2812static int runtime_disable(struct kfd_process *p)
2813{
2814	int i = 0, ret;
2815	bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2816
2817	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2818	p->runtime_info.r_debug = 0;
2819
2820	if (p->debug_trap_enabled) {
2821		if (was_enabled)
2822			kfd_dbg_trap_deactivate(p, false, 0);
2823
2824		if (!p->is_runtime_retry)
2825			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2826					p, NULL, 0, false, NULL, 0);
2827
2828		mutex_unlock(&p->mutex);
2829		ret = down_interruptible(&p->runtime_enable_sema);
2830		mutex_lock(&p->mutex);
2831
2832		p->is_runtime_retry = !!ret;
2833		if (ret)
2834			return ret;
2835	}
2836
2837	if (was_enabled && p->runtime_info.ttmp_setup) {
2838		for (i = 0; i < p->n_pdds; i++) {
2839			struct kfd_process_device *pdd = p->pdds[i];
2840
2841			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2842				amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2843		}
2844	}
2845
2846	p->runtime_info.ttmp_setup = false;
2847
2848	/* disable ttmp setup */
2849	for (i = 0; i < p->n_pdds; i++) {
2850		struct kfd_process_device *pdd = p->pdds[i];
2851
2852		if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2853			pdd->spi_dbg_override =
2854					pdd->dev->kfd2kgd->disable_debug_trap(
2855					pdd->dev->adev,
2856					false,
2857					pdd->dev->vm_info.last_vmid_kfd);
2858
2859			if (!pdd->dev->kfd->shared_resources.enable_mes)
2860				debug_refresh_runlist(pdd->dev->dqm);
2861			else
2862				kfd_dbg_set_mes_debug_mode(pdd,
2863							   !kfd_dbg_has_cwsr_workaround(pdd->dev));
2864		}
2865	}
2866
2867	return 0;
2868}
2869
2870static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2871{
2872	struct kfd_ioctl_runtime_enable_args *args = data;
2873	int r;
2874
2875	mutex_lock(&p->mutex);
2876
2877	if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2878		r = runtime_enable(p, args->r_debug,
2879				!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2880	else
2881		r = runtime_disable(p);
2882
2883	mutex_unlock(&p->mutex);
2884
2885	return r;
2886}
2887
2888static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2889{
2890	struct kfd_ioctl_dbg_trap_args *args = data;
2891	struct task_struct *thread = NULL;
2892	struct mm_struct *mm = NULL;
2893	struct pid *pid = NULL;
2894	struct kfd_process *target = NULL;
2895	struct kfd_process_device *pdd = NULL;
2896	int r = 0;
2897
2898	if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2899		pr_err("Debugging does not support sched_policy %i", sched_policy);
2900		return -EINVAL;
2901	}
2902
2903	pid = find_get_pid(args->pid);
2904	if (!pid) {
2905		pr_debug("Cannot find pid info for %i\n", args->pid);
2906		r = -ESRCH;
2907		goto out;
2908	}
2909
2910	thread = get_pid_task(pid, PIDTYPE_PID);
2911	if (!thread) {
2912		r = -ESRCH;
2913		goto out;
2914	}
2915
2916	mm = get_task_mm(thread);
2917	if (!mm) {
2918		r = -ESRCH;
2919		goto out;
2920	}
2921
2922	if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2923		bool create_process;
2924
2925		rcu_read_lock();
2926		create_process = thread && thread != current && ptrace_parent(thread) == current;
2927		rcu_read_unlock();
2928
2929		target = create_process ? kfd_create_process(thread) :
2930					kfd_lookup_process_by_pid(pid);
2931	} else {
2932		target = kfd_lookup_process_by_pid(pid);
2933	}
2934
2935	if (IS_ERR_OR_NULL(target)) {
2936		pr_debug("Cannot find process PID %i to debug\n", args->pid);
2937		r = target ? PTR_ERR(target) : -ESRCH;
 
2938		goto out;
2939	}
2940
2941	/* Check if target is still PTRACED. */
2942	rcu_read_lock();
2943	if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2944				&& ptrace_parent(target->lead_thread) != current) {
2945		pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2946		r = -EPERM;
2947	}
2948	rcu_read_unlock();
2949
2950	if (r)
2951		goto out;
2952
2953	mutex_lock(&target->mutex);
2954
2955	if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2956		pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2957		r = -EINVAL;
2958		goto unlock_out;
2959	}
2960
2961	if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2962			(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2963			 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2964			 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2965			 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2966			 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2967			 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2968			 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2969		r = -EPERM;
2970		goto unlock_out;
2971	}
2972
2973	if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2974	    args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2975		int user_gpu_id = kfd_process_get_user_gpu_id(target,
2976				args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2977					args->set_node_address_watch.gpu_id :
2978					args->clear_node_address_watch.gpu_id);
2979
2980		pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2981		if (user_gpu_id == -EINVAL || !pdd) {
2982			r = -ENODEV;
2983			goto unlock_out;
2984		}
2985	}
2986
2987	switch (args->op) {
2988	case KFD_IOC_DBG_TRAP_ENABLE:
2989		if (target != p)
2990			target->debugger_process = p;
2991
2992		r = kfd_dbg_trap_enable(target,
2993					args->enable.dbg_fd,
2994					(void __user *)args->enable.rinfo_ptr,
2995					&args->enable.rinfo_size);
2996		if (!r)
2997			target->exception_enable_mask = args->enable.exception_mask;
2998
2999		break;
3000	case KFD_IOC_DBG_TRAP_DISABLE:
3001		r = kfd_dbg_trap_disable(target);
3002		break;
3003	case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3004		r = kfd_dbg_send_exception_to_runtime(target,
3005				args->send_runtime_event.gpu_id,
3006				args->send_runtime_event.queue_id,
3007				args->send_runtime_event.exception_mask);
3008		break;
3009	case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3010		kfd_dbg_set_enabled_debug_exception_mask(target,
3011				args->set_exceptions_enabled.exception_mask);
3012		break;
3013	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3014		r = kfd_dbg_trap_set_wave_launch_override(target,
3015				args->launch_override.override_mode,
3016				args->launch_override.enable_mask,
3017				args->launch_override.support_request_mask,
3018				&args->launch_override.enable_mask,
3019				&args->launch_override.support_request_mask);
3020		break;
3021	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3022		r = kfd_dbg_trap_set_wave_launch_mode(target,
3023				args->launch_mode.launch_mode);
3024		break;
3025	case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3026		r = suspend_queues(target,
3027				args->suspend_queues.num_queues,
3028				args->suspend_queues.grace_period,
3029				args->suspend_queues.exception_mask,
3030				(uint32_t *)args->suspend_queues.queue_array_ptr);
3031
3032		break;
3033	case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3034		r = resume_queues(target, args->resume_queues.num_queues,
3035				(uint32_t *)args->resume_queues.queue_array_ptr);
3036		break;
3037	case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3038		r = kfd_dbg_trap_set_dev_address_watch(pdd,
3039				args->set_node_address_watch.address,
3040				args->set_node_address_watch.mask,
3041				&args->set_node_address_watch.id,
3042				args->set_node_address_watch.mode);
3043		break;
3044	case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3045		r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3046				args->clear_node_address_watch.id);
3047		break;
3048	case KFD_IOC_DBG_TRAP_SET_FLAGS:
3049		r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3050		break;
3051	case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3052		r = kfd_dbg_ev_query_debug_event(target,
3053				&args->query_debug_event.queue_id,
3054				&args->query_debug_event.gpu_id,
3055				args->query_debug_event.exception_mask,
3056				&args->query_debug_event.exception_mask);
3057		break;
3058	case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3059		r = kfd_dbg_trap_query_exception_info(target,
3060				args->query_exception_info.source_id,
3061				args->query_exception_info.exception_code,
3062				args->query_exception_info.clear_exception,
3063				(void __user *)args->query_exception_info.info_ptr,
3064				&args->query_exception_info.info_size);
3065		break;
3066	case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3067		r = pqm_get_queue_snapshot(&target->pqm,
3068				args->queue_snapshot.exception_mask,
3069				(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3070				&args->queue_snapshot.num_queues,
3071				&args->queue_snapshot.entry_size);
3072		break;
3073	case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3074		r = kfd_dbg_trap_device_snapshot(target,
3075				args->device_snapshot.exception_mask,
3076				(void __user *)args->device_snapshot.snapshot_buf_ptr,
3077				&args->device_snapshot.num_devices,
3078				&args->device_snapshot.entry_size);
3079		break;
3080	default:
3081		pr_err("Invalid option: %i\n", args->op);
3082		r = -EINVAL;
3083	}
3084
3085unlock_out:
3086	mutex_unlock(&target->mutex);
3087
3088out:
3089	if (thread)
3090		put_task_struct(thread);
3091
3092	if (mm)
3093		mmput(mm);
3094
3095	if (pid)
3096		put_pid(pid);
3097
3098	if (target)
3099		kfd_unref_process(target);
3100
3101	return r;
3102}
3103
3104#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3105	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3106			    .cmd_drv = 0, .name = #ioctl}
3107
3108/** Ioctl table */
3109static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3110	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3111			kfd_ioctl_get_version, 0),
3112
3113	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3114			kfd_ioctl_create_queue, 0),
3115
3116	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3117			kfd_ioctl_destroy_queue, 0),
3118
3119	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3120			kfd_ioctl_set_memory_policy, 0),
3121
3122	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3123			kfd_ioctl_get_clock_counters, 0),
3124
3125	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3126			kfd_ioctl_get_process_apertures, 0),
3127
3128	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3129			kfd_ioctl_update_queue, 0),
3130
3131	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3132			kfd_ioctl_create_event, 0),
3133
3134	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3135			kfd_ioctl_destroy_event, 0),
3136
3137	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3138			kfd_ioctl_set_event, 0),
3139
3140	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3141			kfd_ioctl_reset_event, 0),
3142
3143	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3144			kfd_ioctl_wait_events, 0),
3145
3146	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3147			kfd_ioctl_dbg_register, 0),
3148
3149	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3150			kfd_ioctl_dbg_unregister, 0),
3151
3152	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3153			kfd_ioctl_dbg_address_watch, 0),
3154
3155	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3156			kfd_ioctl_dbg_wave_control, 0),
3157
3158	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3159			kfd_ioctl_set_scratch_backing_va, 0),
3160
3161	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3162			kfd_ioctl_get_tile_config, 0),
3163
3164	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3165			kfd_ioctl_set_trap_handler, 0),
3166
3167	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3168			kfd_ioctl_get_process_apertures_new, 0),
3169
3170	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3171			kfd_ioctl_acquire_vm, 0),
3172
3173	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3174			kfd_ioctl_alloc_memory_of_gpu, 0),
3175
3176	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3177			kfd_ioctl_free_memory_of_gpu, 0),
3178
3179	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3180			kfd_ioctl_map_memory_to_gpu, 0),
3181
3182	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3183			kfd_ioctl_unmap_memory_from_gpu, 0),
3184
3185	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3186			kfd_ioctl_set_cu_mask, 0),
3187
3188	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3189			kfd_ioctl_get_queue_wave_state, 0),
3190
3191	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3192				kfd_ioctl_get_dmabuf_info, 0),
3193
3194	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3195				kfd_ioctl_import_dmabuf, 0),
3196
3197	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3198			kfd_ioctl_alloc_queue_gws, 0),
3199
3200	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3201			kfd_ioctl_smi_events, 0),
3202
3203	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3204
3205	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3206			kfd_ioctl_set_xnack_mode, 0),
3207
3208	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3209			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3210
3211	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3212			kfd_ioctl_get_available_memory, 0),
3213
3214	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3215				kfd_ioctl_export_dmabuf, 0),
3216
3217	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3218			kfd_ioctl_runtime_enable, 0),
3219
3220	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3221			kfd_ioctl_set_debug_trap, 0),
3222};
3223
3224#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
3225
3226static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3227{
3228	struct kfd_process *process;
3229	amdkfd_ioctl_t *func;
3230	const struct amdkfd_ioctl_desc *ioctl = NULL;
3231	unsigned int nr = _IOC_NR(cmd);
3232	char stack_kdata[128];
3233	char *kdata = NULL;
3234	unsigned int usize, asize;
3235	int retcode = -EINVAL;
3236	bool ptrace_attached = false;
3237
3238	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3239		goto err_i1;
3240
3241	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3242		u32 amdkfd_size;
3243
3244		ioctl = &amdkfd_ioctls[nr];
3245
3246		amdkfd_size = _IOC_SIZE(ioctl->cmd);
3247		usize = asize = _IOC_SIZE(cmd);
3248		if (amdkfd_size > asize)
3249			asize = amdkfd_size;
3250
3251		cmd = ioctl->cmd;
3252	} else
3253		goto err_i1;
3254
3255	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3256
3257	/* Get the process struct from the filep. Only the process
3258	 * that opened /dev/kfd can use the file descriptor. Child
3259	 * processes need to create their own KFD device context.
3260	 */
3261	process = filep->private_data;
3262
3263	rcu_read_lock();
3264	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3265	    ptrace_parent(process->lead_thread) == current)
3266		ptrace_attached = true;
3267	rcu_read_unlock();
3268
3269	if (process->lead_thread != current->group_leader
3270	    && !ptrace_attached) {
3271		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3272		retcode = -EBADF;
3273		goto err_i1;
3274	}
3275
3276	/* Do not trust userspace, use our own definition */
3277	func = ioctl->func;
3278
3279	if (unlikely(!func)) {
3280		dev_dbg(kfd_device, "no function\n");
3281		retcode = -EINVAL;
3282		goto err_i1;
3283	}
3284
3285	/*
3286	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3287	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3288	 * more priviledged access.
3289	 */
3290	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3291		if (!capable(CAP_CHECKPOINT_RESTORE) &&
3292						!capable(CAP_SYS_ADMIN)) {
3293			retcode = -EACCES;
3294			goto err_i1;
3295		}
3296	}
3297
3298	if (cmd & (IOC_IN | IOC_OUT)) {
3299		if (asize <= sizeof(stack_kdata)) {
3300			kdata = stack_kdata;
3301		} else {
3302			kdata = kmalloc(asize, GFP_KERNEL);
3303			if (!kdata) {
3304				retcode = -ENOMEM;
3305				goto err_i1;
3306			}
3307		}
3308		if (asize > usize)
3309			memset(kdata + usize, 0, asize - usize);
3310	}
3311
3312	if (cmd & IOC_IN) {
3313		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3314			retcode = -EFAULT;
3315			goto err_i1;
3316		}
3317	} else if (cmd & IOC_OUT) {
3318		memset(kdata, 0, usize);
3319	}
3320
3321	retcode = func(filep, process, kdata);
3322
3323	if (cmd & IOC_OUT)
3324		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3325			retcode = -EFAULT;
3326
3327err_i1:
3328	if (!ioctl)
3329		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3330			  task_pid_nr(current), cmd, nr);
3331
3332	if (kdata != stack_kdata)
3333		kfree(kdata);
3334
3335	if (retcode)
3336		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3337				nr, arg, retcode);
3338
3339	return retcode;
3340}
3341
3342static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3343		      struct vm_area_struct *vma)
3344{
3345	phys_addr_t address;
3346
3347	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
 
 
 
3348		return -EINVAL;
3349
3350	address = dev->adev->rmmio_remap.bus_addr;
3351
3352	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3353				VM_DONTDUMP | VM_PFNMAP);
3354
3355	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3356
3357	pr_debug("pasid 0x%x mapping mmio page\n"
3358		 "     target user address == 0x%08llX\n"
3359		 "     physical address    == 0x%08llX\n"
3360		 "     vm_flags            == 0x%04lX\n"
3361		 "     size                == 0x%04lX\n",
3362		 process->pasid, (unsigned long long) vma->vm_start,
3363		 address, vma->vm_flags, PAGE_SIZE);
3364
3365	return io_remap_pfn_range(vma,
3366				vma->vm_start,
3367				address >> PAGE_SHIFT,
3368				PAGE_SIZE,
3369				vma->vm_page_prot);
3370}
3371
3372
3373static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3374{
3375	struct kfd_process *process;
3376	struct kfd_node *dev = NULL;
3377	unsigned long mmap_offset;
3378	unsigned int gpu_id;
3379
3380	process = kfd_get_process(current);
3381	if (IS_ERR(process))
3382		return PTR_ERR(process);
3383
3384	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3385	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3386	if (gpu_id)
3387		dev = kfd_device_by_id(gpu_id);
3388
3389	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3390	case KFD_MMAP_TYPE_DOORBELL:
3391		if (!dev)
3392			return -ENODEV;
3393		return kfd_doorbell_mmap(dev, process, vma);
3394
3395	case KFD_MMAP_TYPE_EVENTS:
3396		return kfd_event_mmap(process, vma);
3397
3398	case KFD_MMAP_TYPE_RESERVED_MEM:
3399		if (!dev)
3400			return -ENODEV;
3401		return kfd_reserved_mem_mmap(dev, process, vma);
3402	case KFD_MMAP_TYPE_MMIO:
3403		if (!dev)
3404			return -ENODEV;
3405		return kfd_mmio_mmap(dev, process, vma);
3406	}
3407
3408	return -EFAULT;
3409}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/device.h>
  25#include <linux/export.h>
  26#include <linux/err.h>
  27#include <linux/fs.h>
  28#include <linux/file.h>
  29#include <linux/sched.h>
  30#include <linux/slab.h>
  31#include <linux/uaccess.h>
  32#include <linux/compat.h>
  33#include <uapi/linux/kfd_ioctl.h>
  34#include <linux/time.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/ptrace.h>
  38#include <linux/dma-buf.h>
  39#include <linux/fdtable.h>
  40#include <linux/processor.h>
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_svm.h"
  44#include "amdgpu_amdkfd.h"
  45#include "kfd_smi_events.h"
  46#include "amdgpu_dma_buf.h"
  47#include "kfd_debug.h"
  48
  49static long kfd_ioctl(struct file *, unsigned int, unsigned long);
  50static int kfd_open(struct inode *, struct file *);
  51static int kfd_release(struct inode *, struct file *);
  52static int kfd_mmap(struct file *, struct vm_area_struct *);
  53
  54static const char kfd_dev_name[] = "kfd";
  55
  56static const struct file_operations kfd_fops = {
  57	.owner = THIS_MODULE,
  58	.unlocked_ioctl = kfd_ioctl,
  59	.compat_ioctl = compat_ptr_ioctl,
  60	.open = kfd_open,
  61	.release = kfd_release,
  62	.mmap = kfd_mmap,
  63};
  64
  65static int kfd_char_dev_major = -1;
 
  66struct device *kfd_device;
  67static const struct class kfd_class = {
  68	.name = kfd_dev_name,
  69};
  70
  71static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
  72{
  73	struct kfd_process_device *pdd;
  74
  75	mutex_lock(&p->mutex);
  76	pdd = kfd_process_device_data_by_id(p, gpu_id);
  77
  78	if (pdd)
  79		return pdd;
  80
  81	mutex_unlock(&p->mutex);
  82	return NULL;
  83}
  84
  85static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
  86{
  87	mutex_unlock(&pdd->process->mutex);
  88}
  89
  90int kfd_chardev_init(void)
  91{
  92	int err = 0;
  93
  94	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
  95	err = kfd_char_dev_major;
  96	if (err < 0)
  97		goto err_register_chrdev;
  98
  99	err = class_register(&kfd_class);
 100	if (err)
 
 101		goto err_class_create;
 102
 103	kfd_device = device_create(&kfd_class, NULL,
 104				   MKDEV(kfd_char_dev_major, 0),
 105				   NULL, kfd_dev_name);
 106	err = PTR_ERR(kfd_device);
 107	if (IS_ERR(kfd_device))
 108		goto err_device_create;
 109
 110	return 0;
 111
 112err_device_create:
 113	class_unregister(&kfd_class);
 114err_class_create:
 115	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 116err_register_chrdev:
 117	return err;
 118}
 119
 120void kfd_chardev_exit(void)
 121{
 122	device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
 123	class_unregister(&kfd_class);
 124	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
 125	kfd_device = NULL;
 126}
 127
 128
 129static int kfd_open(struct inode *inode, struct file *filep)
 130{
 131	struct kfd_process *process;
 132	bool is_32bit_user_mode;
 133
 134	if (iminor(inode) != 0)
 135		return -ENODEV;
 136
 137	is_32bit_user_mode = in_compat_syscall();
 138
 139	if (is_32bit_user_mode) {
 140		dev_warn(kfd_device,
 141			"Process %d (32-bit) failed to open /dev/kfd\n"
 142			"32-bit processes are not supported by amdkfd\n",
 143			current->pid);
 144		return -EPERM;
 145	}
 146
 147	process = kfd_create_process(current);
 148	if (IS_ERR(process))
 149		return PTR_ERR(process);
 150
 151	if (kfd_process_init_cwsr_apu(process, filep)) {
 152		kfd_unref_process(process);
 153		return -EFAULT;
 154	}
 155
 156	/* filep now owns the reference returned by kfd_create_process */
 157	filep->private_data = process;
 158
 159	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
 160		process->pasid, process->is_32bit_user_mode);
 161
 162	return 0;
 163}
 164
 165static int kfd_release(struct inode *inode, struct file *filep)
 166{
 167	struct kfd_process *process = filep->private_data;
 168
 169	if (process)
 170		kfd_unref_process(process);
 171
 172	return 0;
 173}
 174
 175static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
 176					void *data)
 177{
 178	struct kfd_ioctl_get_version_args *args = data;
 179
 180	args->major_version = KFD_IOCTL_MAJOR_VERSION;
 181	args->minor_version = KFD_IOCTL_MINOR_VERSION;
 182
 183	return 0;
 184}
 185
 186static int set_queue_properties_from_user(struct queue_properties *q_properties,
 187				struct kfd_ioctl_create_queue_args *args)
 188{
 189	/*
 190	 * Repurpose queue percentage to accommodate new features:
 191	 * bit 0-7: queue percentage
 192	 * bit 8-15: pm4_target_xcc
 193	 */
 194	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 195		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 196		return -EINVAL;
 197	}
 198
 199	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 200		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 201		return -EINVAL;
 202	}
 203
 204	if ((args->ring_base_address) &&
 205		(!access_ok((const void __user *) args->ring_base_address,
 206			sizeof(uint64_t)))) {
 207		pr_err("Can't access ring base address\n");
 208		return -EFAULT;
 209	}
 210
 211	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 212		pr_err("Ring size must be a power of 2 or 0\n");
 213		return -EINVAL;
 214	}
 215
 216	if (!access_ok((const void __user *) args->read_pointer_address,
 217			sizeof(uint32_t))) {
 218		pr_err("Can't access read pointer\n");
 219		return -EFAULT;
 220	}
 221
 222	if (!access_ok((const void __user *) args->write_pointer_address,
 223			sizeof(uint32_t))) {
 224		pr_err("Can't access write pointer\n");
 225		return -EFAULT;
 226	}
 227
 228	if (args->eop_buffer_address &&
 229		!access_ok((const void __user *) args->eop_buffer_address,
 230			sizeof(uint32_t))) {
 231		pr_debug("Can't access eop buffer");
 232		return -EFAULT;
 233	}
 234
 235	if (args->ctx_save_restore_address &&
 236		!access_ok((const void __user *) args->ctx_save_restore_address,
 237			sizeof(uint32_t))) {
 238		pr_debug("Can't access ctx save restore buffer");
 239		return -EFAULT;
 240	}
 241
 242	q_properties->is_interop = false;
 243	q_properties->is_gws = false;
 244	q_properties->queue_percent = args->queue_percentage & 0xFF;
 245	/* bit 8-15 are repurposed to be PM4 target XCC */
 246	q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 247	q_properties->priority = args->queue_priority;
 248	q_properties->queue_address = args->ring_base_address;
 249	q_properties->queue_size = args->ring_size;
 250	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
 251	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
 252	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
 253	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
 254	q_properties->ctx_save_restore_area_address =
 255			args->ctx_save_restore_address;
 256	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
 257	q_properties->ctl_stack_size = args->ctl_stack_size;
 258	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
 259		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 260		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
 261	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
 262		q_properties->type = KFD_QUEUE_TYPE_SDMA;
 263	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
 264		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
 265	else
 266		return -ENOTSUPP;
 267
 268	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
 269		q_properties->format = KFD_QUEUE_FORMAT_AQL;
 270	else
 271		q_properties->format = KFD_QUEUE_FORMAT_PM4;
 272
 273	pr_debug("Queue Percentage: %d, %d\n",
 274			q_properties->queue_percent, args->queue_percentage);
 275
 276	pr_debug("Queue Priority: %d, %d\n",
 277			q_properties->priority, args->queue_priority);
 278
 279	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
 280			q_properties->queue_address, args->ring_base_address);
 281
 282	pr_debug("Queue Size: 0x%llX, %u\n",
 283			q_properties->queue_size, args->ring_size);
 284
 285	pr_debug("Queue r/w Pointers: %px, %px\n",
 286			q_properties->read_ptr,
 287			q_properties->write_ptr);
 288
 289	pr_debug("Queue Format: %d\n", q_properties->format);
 290
 291	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
 292
 293	pr_debug("Queue CTX save area: 0x%llX\n",
 294			q_properties->ctx_save_restore_area_address);
 295
 296	return 0;
 297}
 298
 299static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
 300					void *data)
 301{
 302	struct kfd_ioctl_create_queue_args *args = data;
 303	struct kfd_node *dev;
 304	int err = 0;
 305	unsigned int queue_id;
 306	struct kfd_process_device *pdd;
 307	struct queue_properties q_properties;
 308	uint32_t doorbell_offset_in_process = 0;
 309	struct amdgpu_bo *wptr_bo = NULL;
 310
 311	memset(&q_properties, 0, sizeof(struct queue_properties));
 312
 313	pr_debug("Creating queue ioctl\n");
 314
 315	err = set_queue_properties_from_user(&q_properties, args);
 316	if (err)
 317		return err;
 318
 319	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
 320
 321	mutex_lock(&p->mutex);
 322
 323	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 324	if (!pdd) {
 325		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 326		err = -EINVAL;
 327		goto err_pdd;
 328	}
 329	dev = pdd->dev;
 330
 331	pdd = kfd_bind_process_to_device(dev, p);
 332	if (IS_ERR(pdd)) {
 333		err = -ESRCH;
 334		goto err_bind_process;
 335	}
 336
 337	if (!pdd->qpd.proc_doorbells) {
 338		err = kfd_alloc_process_doorbells(dev->kfd, pdd);
 339		if (err) {
 340			pr_debug("failed to allocate process doorbells\n");
 341			goto err_bind_process;
 342		}
 343	}
 344
 345	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
 346	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
 347	 */
 348	if (dev->kfd->shared_resources.enable_mes &&
 349			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
 350			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
 351		struct amdgpu_bo_va_mapping *wptr_mapping;
 352		struct amdgpu_vm *wptr_vm;
 353
 354		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
 355		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
 356		if (err)
 357			goto err_wptr_map_gart;
 358
 359		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
 360				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
 361		amdgpu_bo_unreserve(wptr_vm->root.bo);
 362		if (!wptr_mapping) {
 363			pr_err("Failed to lookup wptr bo\n");
 364			err = -EINVAL;
 365			goto err_wptr_map_gart;
 366		}
 367
 368		wptr_bo = wptr_mapping->bo_va->base.bo;
 369		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
 370			pr_err("Requested GART mapping for wptr bo larger than one page\n");
 371			err = -EINVAL;
 372			goto err_wptr_map_gart;
 373		}
 374
 375		err = amdgpu_amdkfd_map_gtt_bo_to_gart(wptr_bo);
 376		if (err) {
 377			pr_err("Failed to map wptr bo to GART\n");
 378			goto err_wptr_map_gart;
 379		}
 380	}
 381
 382	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
 383			p->pasid,
 384			dev->id);
 385
 386	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
 387			NULL, NULL, NULL, &doorbell_offset_in_process);
 388	if (err != 0)
 389		goto err_create_queue;
 390
 391	args->queue_id = queue_id;
 392
 393
 394	/* Return gpu_id as doorbell offset for mmap usage */
 395	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
 396	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
 397	if (KFD_IS_SOC15(dev))
 398		/* On SOC15 ASICs, include the doorbell offset within the
 399		 * process doorbell frame, which is 2 pages.
 400		 */
 401		args->doorbell_offset |= doorbell_offset_in_process;
 402
 403	mutex_unlock(&p->mutex);
 404
 405	pr_debug("Queue id %d was created successfully\n", args->queue_id);
 406
 407	pr_debug("Ring buffer address == 0x%016llX\n",
 408			args->ring_base_address);
 409
 410	pr_debug("Read ptr address    == 0x%016llX\n",
 411			args->read_pointer_address);
 412
 413	pr_debug("Write ptr address   == 0x%016llX\n",
 414			args->write_pointer_address);
 415
 416	kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
 417	return 0;
 418
 419err_create_queue:
 420	if (wptr_bo)
 421		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
 422err_wptr_map_gart:
 423err_bind_process:
 424err_pdd:
 425	mutex_unlock(&p->mutex);
 426	return err;
 427}
 428
 429static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
 430					void *data)
 431{
 432	int retval;
 433	struct kfd_ioctl_destroy_queue_args *args = data;
 434
 435	pr_debug("Destroying queue id %d for pasid 0x%x\n",
 436				args->queue_id,
 437				p->pasid);
 438
 439	mutex_lock(&p->mutex);
 440
 441	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
 442
 443	mutex_unlock(&p->mutex);
 444	return retval;
 445}
 446
 447static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
 448					void *data)
 449{
 450	int retval;
 451	struct kfd_ioctl_update_queue_args *args = data;
 452	struct queue_properties properties;
 453
 454	/*
 455	 * Repurpose queue percentage to accommodate new features:
 456	 * bit 0-7: queue percentage
 457	 * bit 8-15: pm4_target_xcc
 458	 */
 459	if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
 460		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
 461		return -EINVAL;
 462	}
 463
 464	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
 465		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
 466		return -EINVAL;
 467	}
 468
 469	if ((args->ring_base_address) &&
 470		(!access_ok((const void __user *) args->ring_base_address,
 471			sizeof(uint64_t)))) {
 472		pr_err("Can't access ring base address\n");
 473		return -EFAULT;
 474	}
 475
 476	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
 477		pr_err("Ring size must be a power of 2 or 0\n");
 478		return -EINVAL;
 479	}
 480
 481	properties.queue_address = args->ring_base_address;
 482	properties.queue_size = args->ring_size;
 483	properties.queue_percent = args->queue_percentage & 0xFF;
 484	/* bit 8-15 are repurposed to be PM4 target XCC */
 485	properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
 486	properties.priority = args->queue_priority;
 487
 488	pr_debug("Updating queue id %d for pasid 0x%x\n",
 489			args->queue_id, p->pasid);
 490
 491	mutex_lock(&p->mutex);
 492
 493	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
 494
 495	mutex_unlock(&p->mutex);
 496
 497	return retval;
 498}
 499
 500static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
 501					void *data)
 502{
 503	int retval;
 504	const int max_num_cus = 1024;
 505	struct kfd_ioctl_set_cu_mask_args *args = data;
 506	struct mqd_update_info minfo = {0};
 507	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
 508	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
 509
 510	if ((args->num_cu_mask % 32) != 0) {
 511		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
 512				args->num_cu_mask);
 513		return -EINVAL;
 514	}
 515
 516	minfo.cu_mask.count = args->num_cu_mask;
 517	if (minfo.cu_mask.count == 0) {
 518		pr_debug("CU mask cannot be 0");
 519		return -EINVAL;
 520	}
 521
 522	/* To prevent an unreasonably large CU mask size, set an arbitrary
 523	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
 524	 * past max_num_cus bits and just use the first max_num_cus bits.
 525	 */
 526	if (minfo.cu_mask.count > max_num_cus) {
 527		pr_debug("CU mask cannot be greater than 1024 bits");
 528		minfo.cu_mask.count = max_num_cus;
 529		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
 530	}
 531
 532	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
 533	if (!minfo.cu_mask.ptr)
 534		return -ENOMEM;
 535
 536	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
 537	if (retval) {
 538		pr_debug("Could not copy CU mask from userspace");
 539		retval = -EFAULT;
 540		goto out;
 541	}
 542
 543	mutex_lock(&p->mutex);
 544
 545	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
 546
 547	mutex_unlock(&p->mutex);
 548
 549out:
 550	kfree(minfo.cu_mask.ptr);
 551	return retval;
 552}
 553
 554static int kfd_ioctl_get_queue_wave_state(struct file *filep,
 555					  struct kfd_process *p, void *data)
 556{
 557	struct kfd_ioctl_get_queue_wave_state_args *args = data;
 558	int r;
 559
 560	mutex_lock(&p->mutex);
 561
 562	r = pqm_get_wave_state(&p->pqm, args->queue_id,
 563			       (void __user *)args->ctl_stack_address,
 564			       &args->ctl_stack_used_size,
 565			       &args->save_area_used_size);
 566
 567	mutex_unlock(&p->mutex);
 568
 569	return r;
 570}
 571
 572static int kfd_ioctl_set_memory_policy(struct file *filep,
 573					struct kfd_process *p, void *data)
 574{
 575	struct kfd_ioctl_set_memory_policy_args *args = data;
 576	int err = 0;
 577	struct kfd_process_device *pdd;
 578	enum cache_policy default_policy, alternate_policy;
 579
 580	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
 581	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 582		return -EINVAL;
 583	}
 584
 585	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
 586	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
 587		return -EINVAL;
 588	}
 589
 590	mutex_lock(&p->mutex);
 591	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 592	if (!pdd) {
 593		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
 594		err = -EINVAL;
 595		goto err_pdd;
 596	}
 597
 598	pdd = kfd_bind_process_to_device(pdd->dev, p);
 599	if (IS_ERR(pdd)) {
 600		err = -ESRCH;
 601		goto out;
 602	}
 603
 604	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 605			 ? cache_policy_coherent : cache_policy_noncoherent;
 606
 607	alternate_policy =
 608		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
 609		   ? cache_policy_coherent : cache_policy_noncoherent;
 610
 611	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
 612				&pdd->qpd,
 613				default_policy,
 614				alternate_policy,
 615				(void __user *)args->alternate_aperture_base,
 616				args->alternate_aperture_size))
 617		err = -EINVAL;
 618
 619out:
 620err_pdd:
 621	mutex_unlock(&p->mutex);
 622
 623	return err;
 624}
 625
 626static int kfd_ioctl_set_trap_handler(struct file *filep,
 627					struct kfd_process *p, void *data)
 628{
 629	struct kfd_ioctl_set_trap_handler_args *args = data;
 630	int err = 0;
 631	struct kfd_process_device *pdd;
 632
 633	mutex_lock(&p->mutex);
 634
 635	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 636	if (!pdd) {
 637		err = -EINVAL;
 638		goto err_pdd;
 639	}
 640
 641	pdd = kfd_bind_process_to_device(pdd->dev, p);
 642	if (IS_ERR(pdd)) {
 643		err = -ESRCH;
 644		goto out;
 645	}
 646
 647	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
 648
 649out:
 650err_pdd:
 651	mutex_unlock(&p->mutex);
 652
 653	return err;
 654}
 655
 656static int kfd_ioctl_dbg_register(struct file *filep,
 657				struct kfd_process *p, void *data)
 658{
 659	return -EPERM;
 660}
 661
 662static int kfd_ioctl_dbg_unregister(struct file *filep,
 663				struct kfd_process *p, void *data)
 664{
 665	return -EPERM;
 666}
 667
 668static int kfd_ioctl_dbg_address_watch(struct file *filep,
 669					struct kfd_process *p, void *data)
 670{
 671	return -EPERM;
 672}
 673
 674/* Parse and generate fixed size data structure for wave control */
 675static int kfd_ioctl_dbg_wave_control(struct file *filep,
 676					struct kfd_process *p, void *data)
 677{
 678	return -EPERM;
 679}
 680
 681static int kfd_ioctl_get_clock_counters(struct file *filep,
 682				struct kfd_process *p, void *data)
 683{
 684	struct kfd_ioctl_get_clock_counters_args *args = data;
 685	struct kfd_process_device *pdd;
 686
 687	mutex_lock(&p->mutex);
 688	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 689	mutex_unlock(&p->mutex);
 690	if (pdd)
 691		/* Reading GPU clock counter from KGD */
 692		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
 693	else
 694		/* Node without GPU resource */
 695		args->gpu_clock_counter = 0;
 696
 697	/* No access to rdtsc. Using raw monotonic time */
 698	args->cpu_clock_counter = ktime_get_raw_ns();
 699	args->system_clock_counter = ktime_get_boottime_ns();
 700
 701	/* Since the counter is in nano-seconds we use 1GHz frequency */
 702	args->system_clock_freq = 1000000000;
 703
 704	return 0;
 705}
 706
 707
 708static int kfd_ioctl_get_process_apertures(struct file *filp,
 709				struct kfd_process *p, void *data)
 710{
 711	struct kfd_ioctl_get_process_apertures_args *args = data;
 712	struct kfd_process_device_apertures *pAperture;
 713	int i;
 714
 715	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 716
 717	args->num_of_nodes = 0;
 718
 719	mutex_lock(&p->mutex);
 720	/* Run over all pdd of the process */
 721	for (i = 0; i < p->n_pdds; i++) {
 722		struct kfd_process_device *pdd = p->pdds[i];
 723
 724		pAperture =
 725			&args->process_apertures[args->num_of_nodes];
 726		pAperture->gpu_id = pdd->dev->id;
 727		pAperture->lds_base = pdd->lds_base;
 728		pAperture->lds_limit = pdd->lds_limit;
 729		pAperture->gpuvm_base = pdd->gpuvm_base;
 730		pAperture->gpuvm_limit = pdd->gpuvm_limit;
 731		pAperture->scratch_base = pdd->scratch_base;
 732		pAperture->scratch_limit = pdd->scratch_limit;
 733
 734		dev_dbg(kfd_device,
 735			"node id %u\n", args->num_of_nodes);
 736		dev_dbg(kfd_device,
 737			"gpu id %u\n", pdd->dev->id);
 738		dev_dbg(kfd_device,
 739			"lds_base %llX\n", pdd->lds_base);
 740		dev_dbg(kfd_device,
 741			"lds_limit %llX\n", pdd->lds_limit);
 742		dev_dbg(kfd_device,
 743			"gpuvm_base %llX\n", pdd->gpuvm_base);
 744		dev_dbg(kfd_device,
 745			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 746		dev_dbg(kfd_device,
 747			"scratch_base %llX\n", pdd->scratch_base);
 748		dev_dbg(kfd_device,
 749			"scratch_limit %llX\n", pdd->scratch_limit);
 750
 751		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
 752			break;
 753	}
 754	mutex_unlock(&p->mutex);
 755
 756	return 0;
 757}
 758
 759static int kfd_ioctl_get_process_apertures_new(struct file *filp,
 760				struct kfd_process *p, void *data)
 761{
 762	struct kfd_ioctl_get_process_apertures_new_args *args = data;
 763	struct kfd_process_device_apertures *pa;
 764	int ret;
 765	int i;
 766
 767	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
 768
 769	if (args->num_of_nodes == 0) {
 770		/* Return number of nodes, so that user space can alloacate
 771		 * sufficient memory
 772		 */
 773		mutex_lock(&p->mutex);
 774		args->num_of_nodes = p->n_pdds;
 775		goto out_unlock;
 776	}
 777
 778	/* Fill in process-aperture information for all available
 779	 * nodes, but not more than args->num_of_nodes as that is
 780	 * the amount of memory allocated by user
 781	 */
 782	pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
 783		     GFP_KERNEL);
 784	if (!pa)
 785		return -ENOMEM;
 786
 787	mutex_lock(&p->mutex);
 788
 789	if (!p->n_pdds) {
 790		args->num_of_nodes = 0;
 791		kfree(pa);
 792		goto out_unlock;
 793	}
 794
 795	/* Run over all pdd of the process */
 796	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
 797		struct kfd_process_device *pdd = p->pdds[i];
 798
 799		pa[i].gpu_id = pdd->dev->id;
 800		pa[i].lds_base = pdd->lds_base;
 801		pa[i].lds_limit = pdd->lds_limit;
 802		pa[i].gpuvm_base = pdd->gpuvm_base;
 803		pa[i].gpuvm_limit = pdd->gpuvm_limit;
 804		pa[i].scratch_base = pdd->scratch_base;
 805		pa[i].scratch_limit = pdd->scratch_limit;
 806
 807		dev_dbg(kfd_device,
 808			"gpu id %u\n", pdd->dev->id);
 809		dev_dbg(kfd_device,
 810			"lds_base %llX\n", pdd->lds_base);
 811		dev_dbg(kfd_device,
 812			"lds_limit %llX\n", pdd->lds_limit);
 813		dev_dbg(kfd_device,
 814			"gpuvm_base %llX\n", pdd->gpuvm_base);
 815		dev_dbg(kfd_device,
 816			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
 817		dev_dbg(kfd_device,
 818			"scratch_base %llX\n", pdd->scratch_base);
 819		dev_dbg(kfd_device,
 820			"scratch_limit %llX\n", pdd->scratch_limit);
 821	}
 822	mutex_unlock(&p->mutex);
 823
 824	args->num_of_nodes = i;
 825	ret = copy_to_user(
 826			(void __user *)args->kfd_process_device_apertures_ptr,
 827			pa,
 828			(i * sizeof(struct kfd_process_device_apertures)));
 829	kfree(pa);
 830	return ret ? -EFAULT : 0;
 831
 832out_unlock:
 833	mutex_unlock(&p->mutex);
 834	return 0;
 835}
 836
 837static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
 838					void *data)
 839{
 840	struct kfd_ioctl_create_event_args *args = data;
 841	int err;
 842
 843	/* For dGPUs the event page is allocated in user mode. The
 844	 * handle is passed to KFD with the first call to this IOCTL
 845	 * through the event_page_offset field.
 846	 */
 847	if (args->event_page_offset) {
 848		mutex_lock(&p->mutex);
 849		err = kfd_kmap_event_page(p, args->event_page_offset);
 850		mutex_unlock(&p->mutex);
 851		if (err)
 852			return err;
 853	}
 854
 855	err = kfd_event_create(filp, p, args->event_type,
 856				args->auto_reset != 0, args->node_id,
 857				&args->event_id, &args->event_trigger_data,
 858				&args->event_page_offset,
 859				&args->event_slot_index);
 860
 861	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
 862	return err;
 863}
 864
 865static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
 866					void *data)
 867{
 868	struct kfd_ioctl_destroy_event_args *args = data;
 869
 870	return kfd_event_destroy(p, args->event_id);
 871}
 872
 873static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
 874				void *data)
 875{
 876	struct kfd_ioctl_set_event_args *args = data;
 877
 878	return kfd_set_event(p, args->event_id);
 879}
 880
 881static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
 882				void *data)
 883{
 884	struct kfd_ioctl_reset_event_args *args = data;
 885
 886	return kfd_reset_event(p, args->event_id);
 887}
 888
 889static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
 890				void *data)
 891{
 892	struct kfd_ioctl_wait_events_args *args = data;
 893
 894	return kfd_wait_on_events(p, args->num_events,
 895			(void __user *)args->events_ptr,
 896			(args->wait_for_all != 0),
 897			&args->timeout, &args->wait_result);
 898}
 899static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
 900					struct kfd_process *p, void *data)
 901{
 902	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
 903	struct kfd_process_device *pdd;
 904	struct kfd_node *dev;
 905	long err;
 906
 907	mutex_lock(&p->mutex);
 908	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 909	if (!pdd) {
 910		err = -EINVAL;
 911		goto err_pdd;
 912	}
 913	dev = pdd->dev;
 914
 915	pdd = kfd_bind_process_to_device(dev, p);
 916	if (IS_ERR(pdd)) {
 917		err = PTR_ERR(pdd);
 918		goto bind_process_to_device_fail;
 919	}
 920
 921	pdd->qpd.sh_hidden_private_base = args->va_addr;
 922
 923	mutex_unlock(&p->mutex);
 924
 925	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
 926	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
 927		dev->kfd2kgd->set_scratch_backing_va(
 928			dev->adev, args->va_addr, pdd->qpd.vmid);
 929
 930	return 0;
 931
 932bind_process_to_device_fail:
 933err_pdd:
 934	mutex_unlock(&p->mutex);
 935	return err;
 936}
 937
 938static int kfd_ioctl_get_tile_config(struct file *filep,
 939		struct kfd_process *p, void *data)
 940{
 941	struct kfd_ioctl_get_tile_config_args *args = data;
 942	struct kfd_process_device *pdd;
 943	struct tile_config config;
 944	int err = 0;
 945
 946	mutex_lock(&p->mutex);
 947	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 948	mutex_unlock(&p->mutex);
 949	if (!pdd)
 950		return -EINVAL;
 951
 952	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
 953
 954	args->gb_addr_config = config.gb_addr_config;
 955	args->num_banks = config.num_banks;
 956	args->num_ranks = config.num_ranks;
 957
 958	if (args->num_tile_configs > config.num_tile_configs)
 959		args->num_tile_configs = config.num_tile_configs;
 960	err = copy_to_user((void __user *)args->tile_config_ptr,
 961			config.tile_config_ptr,
 962			args->num_tile_configs * sizeof(uint32_t));
 963	if (err) {
 964		args->num_tile_configs = 0;
 965		return -EFAULT;
 966	}
 967
 968	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
 969		args->num_macro_tile_configs =
 970				config.num_macro_tile_configs;
 971	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
 972			config.macro_tile_config_ptr,
 973			args->num_macro_tile_configs * sizeof(uint32_t));
 974	if (err) {
 975		args->num_macro_tile_configs = 0;
 976		return -EFAULT;
 977	}
 978
 979	return 0;
 980}
 981
 982static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
 983				void *data)
 984{
 985	struct kfd_ioctl_acquire_vm_args *args = data;
 986	struct kfd_process_device *pdd;
 987	struct file *drm_file;
 988	int ret;
 989
 990	drm_file = fget(args->drm_fd);
 991	if (!drm_file)
 992		return -EINVAL;
 993
 994	mutex_lock(&p->mutex);
 995	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
 996	if (!pdd) {
 997		ret = -EINVAL;
 998		goto err_pdd;
 999	}
1000
1001	if (pdd->drm_file) {
1002		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1003		goto err_drm_file;
1004	}
1005
1006	ret = kfd_process_device_init_vm(pdd, drm_file);
1007	if (ret)
1008		goto err_unlock;
1009
1010	/* On success, the PDD keeps the drm_file reference */
1011	mutex_unlock(&p->mutex);
1012
1013	return 0;
1014
1015err_unlock:
1016err_pdd:
1017err_drm_file:
1018	mutex_unlock(&p->mutex);
1019	fput(drm_file);
1020	return ret;
1021}
1022
1023bool kfd_dev_is_large_bar(struct kfd_node *dev)
1024{
1025	if (dev->kfd->adev->debug_largebar) {
1026		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1027		return true;
1028	}
1029
1030	if (dev->local_mem_info.local_mem_size_private == 0 &&
1031	    dev->local_mem_info.local_mem_size_public > 0)
1032		return true;
1033
1034	if (dev->local_mem_info.local_mem_size_public == 0 &&
1035	    dev->kfd->adev->gmc.is_app_apu) {
1036		pr_debug("APP APU, Consider like a large bar system\n");
1037		return true;
1038	}
1039
1040	return false;
1041}
1042
1043static int kfd_ioctl_get_available_memory(struct file *filep,
1044					  struct kfd_process *p, void *data)
1045{
1046	struct kfd_ioctl_get_available_memory_args *args = data;
1047	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1048
1049	if (!pdd)
1050		return -EINVAL;
1051	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1052							pdd->dev->node_id);
1053	kfd_unlock_pdd(pdd);
1054	return 0;
1055}
1056
1057static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1058					struct kfd_process *p, void *data)
1059{
1060	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1061	struct kfd_process_device *pdd;
1062	void *mem;
1063	struct kfd_node *dev;
1064	int idr_handle;
1065	long err;
1066	uint64_t offset = args->mmap_offset;
1067	uint32_t flags = args->flags;
1068
1069	if (args->size == 0)
1070		return -EINVAL;
1071
1072#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1073	/* Flush pending deferred work to avoid racing with deferred actions
1074	 * from previous memory map changes (e.g. munmap).
1075	 */
1076	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1077	mutex_lock(&p->svms.lock);
1078	mmap_write_unlock(current->mm);
1079	if (interval_tree_iter_first(&p->svms.objects,
1080				     args->va_addr >> PAGE_SHIFT,
1081				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1082		pr_err("Address: 0x%llx already allocated by SVM\n",
1083			args->va_addr);
1084		mutex_unlock(&p->svms.lock);
1085		return -EADDRINUSE;
1086	}
1087
1088	/* When register user buffer check if it has been registered by svm by
1089	 * buffer cpu virtual address.
1090	 */
1091	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1092	    interval_tree_iter_first(&p->svms.objects,
1093				     args->mmap_offset >> PAGE_SHIFT,
1094				     (args->mmap_offset  + args->size - 1) >> PAGE_SHIFT)) {
1095		pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1096			args->mmap_offset);
1097		mutex_unlock(&p->svms.lock);
1098		return -EADDRINUSE;
1099	}
1100
1101	mutex_unlock(&p->svms.lock);
1102#endif
1103	mutex_lock(&p->mutex);
1104	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1105	if (!pdd) {
1106		err = -EINVAL;
1107		goto err_pdd;
1108	}
1109
1110	dev = pdd->dev;
1111
1112	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1113		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1114		!kfd_dev_is_large_bar(dev)) {
1115		pr_err("Alloc host visible vram on small bar is not allowed\n");
1116		err = -EINVAL;
1117		goto err_large_bar;
1118	}
1119
1120	pdd = kfd_bind_process_to_device(dev, p);
1121	if (IS_ERR(pdd)) {
1122		err = PTR_ERR(pdd);
1123		goto err_unlock;
1124	}
1125
1126	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1127		if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1128			err = -EINVAL;
1129			goto err_unlock;
1130		}
1131		offset = kfd_get_process_doorbells(pdd);
1132		if (!offset) {
1133			err = -ENOMEM;
1134			goto err_unlock;
1135		}
1136	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1137		if (args->size != PAGE_SIZE) {
1138			err = -EINVAL;
1139			goto err_unlock;
1140		}
1141		offset = dev->adev->rmmio_remap.bus_addr;
1142		if (!offset || (PAGE_SIZE > 4096)) {
1143			err = -ENOMEM;
1144			goto err_unlock;
1145		}
1146	}
1147
1148	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1149		dev->adev, args->va_addr, args->size,
1150		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1151		flags, false);
1152
1153	if (err)
1154		goto err_unlock;
1155
1156	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1157	if (idr_handle < 0) {
1158		err = -EFAULT;
1159		goto err_free;
1160	}
1161
1162	/* Update the VRAM usage count */
1163	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1164		uint64_t size = args->size;
1165
1166		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1167			size >>= 1;
1168		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1169	}
1170
1171	mutex_unlock(&p->mutex);
1172
1173	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1174	args->mmap_offset = offset;
1175
1176	/* MMIO is mapped through kfd device
1177	 * Generate a kfd mmap offset
1178	 */
1179	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1180		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1181					| KFD_MMAP_GPU_ID(args->gpu_id);
1182
1183	return 0;
1184
1185err_free:
1186	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1187					       pdd->drm_priv, NULL);
1188err_unlock:
1189err_pdd:
1190err_large_bar:
1191	mutex_unlock(&p->mutex);
1192	return err;
1193}
1194
1195static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1196					struct kfd_process *p, void *data)
1197{
1198	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1199	struct kfd_process_device *pdd;
1200	void *mem;
1201	int ret;
1202	uint64_t size = 0;
1203
1204	mutex_lock(&p->mutex);
1205	/*
1206	 * Safeguard to prevent user space from freeing signal BO.
1207	 * It will be freed at process termination.
1208	 */
1209	if (p->signal_handle && (p->signal_handle == args->handle)) {
1210		pr_err("Free signal BO is not allowed\n");
1211		ret = -EPERM;
1212		goto err_unlock;
1213	}
1214
1215	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1216	if (!pdd) {
1217		pr_err("Process device data doesn't exist\n");
1218		ret = -EINVAL;
1219		goto err_pdd;
1220	}
1221
1222	mem = kfd_process_device_translate_handle(
1223		pdd, GET_IDR_HANDLE(args->handle));
1224	if (!mem) {
1225		ret = -EINVAL;
1226		goto err_unlock;
1227	}
1228
1229	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1230				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1231
1232	/* If freeing the buffer failed, leave the handle in place for
1233	 * clean-up during process tear-down.
1234	 */
1235	if (!ret)
1236		kfd_process_device_remove_obj_handle(
1237			pdd, GET_IDR_HANDLE(args->handle));
1238
1239	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1240
1241err_unlock:
1242err_pdd:
1243	mutex_unlock(&p->mutex);
1244	return ret;
1245}
1246
1247static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1248					struct kfd_process *p, void *data)
1249{
1250	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1251	struct kfd_process_device *pdd, *peer_pdd;
1252	void *mem;
1253	struct kfd_node *dev;
1254	long err = 0;
1255	int i;
1256	uint32_t *devices_arr = NULL;
1257
1258	if (!args->n_devices) {
1259		pr_debug("Device IDs array empty\n");
1260		return -EINVAL;
1261	}
1262	if (args->n_success > args->n_devices) {
1263		pr_debug("n_success exceeds n_devices\n");
1264		return -EINVAL;
1265	}
1266
1267	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1268				    GFP_KERNEL);
1269	if (!devices_arr)
1270		return -ENOMEM;
1271
1272	err = copy_from_user(devices_arr,
1273			     (void __user *)args->device_ids_array_ptr,
1274			     args->n_devices * sizeof(*devices_arr));
1275	if (err != 0) {
1276		err = -EFAULT;
1277		goto copy_from_user_failed;
1278	}
1279
1280	mutex_lock(&p->mutex);
1281	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1282	if (!pdd) {
1283		err = -EINVAL;
1284		goto get_process_device_data_failed;
1285	}
1286	dev = pdd->dev;
1287
1288	pdd = kfd_bind_process_to_device(dev, p);
1289	if (IS_ERR(pdd)) {
1290		err = PTR_ERR(pdd);
1291		goto bind_process_to_device_failed;
1292	}
1293
1294	mem = kfd_process_device_translate_handle(pdd,
1295						GET_IDR_HANDLE(args->handle));
1296	if (!mem) {
1297		err = -ENOMEM;
1298		goto get_mem_obj_from_handle_failed;
1299	}
1300
1301	for (i = args->n_success; i < args->n_devices; i++) {
1302		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1303		if (!peer_pdd) {
1304			pr_debug("Getting device by id failed for 0x%x\n",
1305				 devices_arr[i]);
1306			err = -EINVAL;
1307			goto get_mem_obj_from_handle_failed;
1308		}
1309
1310		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1311		if (IS_ERR(peer_pdd)) {
1312			err = PTR_ERR(peer_pdd);
1313			goto get_mem_obj_from_handle_failed;
1314		}
1315
1316		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1317			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1318			peer_pdd->drm_priv);
1319		if (err) {
1320			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1321
1322			dev_err(dev->adev->dev,
1323			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1324			       pci_domain_nr(pdev->bus),
1325			       pdev->bus->number,
1326			       PCI_SLOT(pdev->devfn),
1327			       PCI_FUNC(pdev->devfn),
1328			       ((struct kgd_mem *)mem)->domain);
1329			goto map_memory_to_gpu_failed;
1330		}
1331		args->n_success = i+1;
1332	}
1333
1334	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1335	if (err) {
1336		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1337		goto sync_memory_failed;
1338	}
1339
1340	mutex_unlock(&p->mutex);
1341
1342	/* Flush TLBs after waiting for the page table updates to complete */
1343	for (i = 0; i < args->n_devices; i++) {
1344		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1345		if (WARN_ON_ONCE(!peer_pdd))
1346			continue;
1347		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1348	}
1349	kfree(devices_arr);
1350
1351	return err;
1352
1353get_process_device_data_failed:
1354bind_process_to_device_failed:
1355get_mem_obj_from_handle_failed:
1356map_memory_to_gpu_failed:
1357sync_memory_failed:
1358	mutex_unlock(&p->mutex);
1359copy_from_user_failed:
1360	kfree(devices_arr);
1361
1362	return err;
1363}
1364
1365static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1366					struct kfd_process *p, void *data)
1367{
1368	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1369	struct kfd_process_device *pdd, *peer_pdd;
1370	void *mem;
1371	long err = 0;
1372	uint32_t *devices_arr = NULL, i;
1373	bool flush_tlb;
1374
1375	if (!args->n_devices) {
1376		pr_debug("Device IDs array empty\n");
1377		return -EINVAL;
1378	}
1379	if (args->n_success > args->n_devices) {
1380		pr_debug("n_success exceeds n_devices\n");
1381		return -EINVAL;
1382	}
1383
1384	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1385				    GFP_KERNEL);
1386	if (!devices_arr)
1387		return -ENOMEM;
1388
1389	err = copy_from_user(devices_arr,
1390			     (void __user *)args->device_ids_array_ptr,
1391			     args->n_devices * sizeof(*devices_arr));
1392	if (err != 0) {
1393		err = -EFAULT;
1394		goto copy_from_user_failed;
1395	}
1396
1397	mutex_lock(&p->mutex);
1398	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1399	if (!pdd) {
1400		err = -EINVAL;
1401		goto bind_process_to_device_failed;
1402	}
1403
1404	mem = kfd_process_device_translate_handle(pdd,
1405						GET_IDR_HANDLE(args->handle));
1406	if (!mem) {
1407		err = -ENOMEM;
1408		goto get_mem_obj_from_handle_failed;
1409	}
1410
1411	for (i = args->n_success; i < args->n_devices; i++) {
1412		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1413		if (!peer_pdd) {
1414			err = -EINVAL;
1415			goto get_mem_obj_from_handle_failed;
1416		}
1417		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1418			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1419		if (err) {
1420			pr_err("Failed to unmap from gpu %d/%d\n",
1421			       i, args->n_devices);
1422			goto unmap_memory_from_gpu_failed;
1423		}
1424		args->n_success = i+1;
1425	}
1426
1427	flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1428	if (flush_tlb) {
1429		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1430				(struct kgd_mem *) mem, true);
1431		if (err) {
1432			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1433			goto sync_memory_failed;
1434		}
1435	}
1436
1437	/* Flush TLBs after waiting for the page table updates to complete */
1438	for (i = 0; i < args->n_devices; i++) {
1439		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1440		if (WARN_ON_ONCE(!peer_pdd))
1441			continue;
1442		if (flush_tlb)
1443			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1444
1445		/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1446		err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1447		if (err)
1448			goto sync_memory_failed;
1449	}
1450
1451	mutex_unlock(&p->mutex);
1452
1453	kfree(devices_arr);
1454
1455	return 0;
1456
1457bind_process_to_device_failed:
1458get_mem_obj_from_handle_failed:
1459unmap_memory_from_gpu_failed:
1460sync_memory_failed:
1461	mutex_unlock(&p->mutex);
1462copy_from_user_failed:
1463	kfree(devices_arr);
1464	return err;
1465}
1466
1467static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1468		struct kfd_process *p, void *data)
1469{
1470	int retval;
1471	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1472	struct queue *q;
1473	struct kfd_node *dev;
1474
1475	mutex_lock(&p->mutex);
1476	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1477
1478	if (q) {
1479		dev = q->device;
1480	} else {
1481		retval = -EINVAL;
1482		goto out_unlock;
1483	}
1484
1485	if (!dev->gws) {
1486		retval = -ENODEV;
1487		goto out_unlock;
1488	}
1489
1490	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1491		retval = -ENODEV;
1492		goto out_unlock;
1493	}
1494
1495	if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1496				      kfd_dbg_has_cwsr_workaround(dev))) {
1497		retval = -EBUSY;
1498		goto out_unlock;
1499	}
1500
1501	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1502	mutex_unlock(&p->mutex);
1503
1504	args->first_gws = 0;
1505	return retval;
1506
1507out_unlock:
1508	mutex_unlock(&p->mutex);
1509	return retval;
1510}
1511
1512static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1513		struct kfd_process *p, void *data)
1514{
1515	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1516	struct kfd_node *dev = NULL;
1517	struct amdgpu_device *dmabuf_adev;
1518	void *metadata_buffer = NULL;
1519	uint32_t flags;
1520	int8_t xcp_id;
1521	unsigned int i;
1522	int r;
1523
1524	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1525	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1526		if (dev && !kfd_devcgroup_check_permission(dev))
1527			break;
1528	if (!dev)
1529		return -EINVAL;
1530
1531	if (args->metadata_ptr) {
1532		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1533		if (!metadata_buffer)
1534			return -ENOMEM;
1535	}
1536
1537	/* Get dmabuf info from KGD */
1538	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1539					  &dmabuf_adev, &args->size,
1540					  metadata_buffer, args->metadata_size,
1541					  &args->metadata_size, &flags, &xcp_id);
1542	if (r)
1543		goto exit;
1544
1545	if (xcp_id >= 0)
1546		args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1547	else
1548		args->gpu_id = dev->id;
1549	args->flags = flags;
1550
1551	/* Copy metadata buffer to user mode */
1552	if (metadata_buffer) {
1553		r = copy_to_user((void __user *)args->metadata_ptr,
1554				 metadata_buffer, args->metadata_size);
1555		if (r != 0)
1556			r = -EFAULT;
1557	}
1558
1559exit:
1560	kfree(metadata_buffer);
1561
1562	return r;
1563}
1564
1565static int kfd_ioctl_import_dmabuf(struct file *filep,
1566				   struct kfd_process *p, void *data)
1567{
1568	struct kfd_ioctl_import_dmabuf_args *args = data;
1569	struct kfd_process_device *pdd;
1570	int idr_handle;
1571	uint64_t size;
1572	void *mem;
1573	int r;
1574
1575	mutex_lock(&p->mutex);
1576	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1577	if (!pdd) {
1578		r = -EINVAL;
1579		goto err_unlock;
1580	}
1581
1582	pdd = kfd_bind_process_to_device(pdd->dev, p);
1583	if (IS_ERR(pdd)) {
1584		r = PTR_ERR(pdd);
1585		goto err_unlock;
1586	}
1587
1588	r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1589						 args->va_addr, pdd->drm_priv,
1590						 (struct kgd_mem **)&mem, &size,
1591						 NULL);
1592	if (r)
1593		goto err_unlock;
1594
1595	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1596	if (idr_handle < 0) {
1597		r = -EFAULT;
1598		goto err_free;
1599	}
1600
1601	mutex_unlock(&p->mutex);
1602
1603	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1604
1605	return 0;
1606
1607err_free:
1608	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1609					       pdd->drm_priv, NULL);
1610err_unlock:
1611	mutex_unlock(&p->mutex);
1612	return r;
1613}
1614
1615static int kfd_ioctl_export_dmabuf(struct file *filep,
1616				   struct kfd_process *p, void *data)
1617{
1618	struct kfd_ioctl_export_dmabuf_args *args = data;
1619	struct kfd_process_device *pdd;
1620	struct dma_buf *dmabuf;
1621	struct kfd_node *dev;
1622	void *mem;
1623	int ret = 0;
1624
1625	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1626	if (!dev)
1627		return -EINVAL;
1628
1629	mutex_lock(&p->mutex);
1630
1631	pdd = kfd_get_process_device_data(dev, p);
1632	if (!pdd) {
1633		ret = -EINVAL;
1634		goto err_unlock;
1635	}
1636
1637	mem = kfd_process_device_translate_handle(pdd,
1638						GET_IDR_HANDLE(args->handle));
1639	if (!mem) {
1640		ret = -EINVAL;
1641		goto err_unlock;
1642	}
1643
1644	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1645	mutex_unlock(&p->mutex);
1646	if (ret)
1647		goto err_out;
1648
1649	ret = dma_buf_fd(dmabuf, args->flags);
1650	if (ret < 0) {
1651		dma_buf_put(dmabuf);
1652		goto err_out;
1653	}
1654	/* dma_buf_fd assigns the reference count to the fd, no need to
1655	 * put the reference here.
1656	 */
1657	args->dmabuf_fd = ret;
1658
1659	return 0;
1660
1661err_unlock:
1662	mutex_unlock(&p->mutex);
1663err_out:
1664	return ret;
1665}
1666
1667/* Handle requests for watching SMI events */
1668static int kfd_ioctl_smi_events(struct file *filep,
1669				struct kfd_process *p, void *data)
1670{
1671	struct kfd_ioctl_smi_events_args *args = data;
1672	struct kfd_process_device *pdd;
1673
1674	mutex_lock(&p->mutex);
1675
1676	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1677	mutex_unlock(&p->mutex);
1678	if (!pdd)
1679		return -EINVAL;
1680
1681	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1682}
1683
1684#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1685
1686static int kfd_ioctl_set_xnack_mode(struct file *filep,
1687				    struct kfd_process *p, void *data)
1688{
1689	struct kfd_ioctl_set_xnack_mode_args *args = data;
1690	int r = 0;
1691
1692	mutex_lock(&p->mutex);
1693	if (args->xnack_enabled >= 0) {
1694		if (!list_empty(&p->pqm.queues)) {
1695			pr_debug("Process has user queues running\n");
1696			r = -EBUSY;
1697			goto out_unlock;
1698		}
1699
1700		if (p->xnack_enabled == args->xnack_enabled)
1701			goto out_unlock;
1702
1703		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1704			r = -EPERM;
1705			goto out_unlock;
1706		}
1707
1708		r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1709	} else {
1710		args->xnack_enabled = p->xnack_enabled;
1711	}
1712
1713out_unlock:
1714	mutex_unlock(&p->mutex);
1715
1716	return r;
1717}
1718
1719static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1720{
1721	struct kfd_ioctl_svm_args *args = data;
1722	int r = 0;
1723
1724	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1725		 args->start_addr, args->size, args->op, args->nattr);
1726
1727	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1728		return -EINVAL;
1729	if (!args->start_addr || !args->size)
1730		return -EINVAL;
1731
1732	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1733		      args->attrs);
1734
1735	return r;
1736}
1737#else
1738static int kfd_ioctl_set_xnack_mode(struct file *filep,
1739				    struct kfd_process *p, void *data)
1740{
1741	return -EPERM;
1742}
1743static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1744{
1745	return -EPERM;
1746}
1747#endif
1748
1749static int criu_checkpoint_process(struct kfd_process *p,
1750			     uint8_t __user *user_priv_data,
1751			     uint64_t *priv_offset)
1752{
1753	struct kfd_criu_process_priv_data process_priv;
1754	int ret;
1755
1756	memset(&process_priv, 0, sizeof(process_priv));
1757
1758	process_priv.version = KFD_CRIU_PRIV_VERSION;
1759	/* For CR, we don't consider negative xnack mode which is used for
1760	 * querying without changing it, here 0 simply means disabled and 1
1761	 * means enabled so retry for finding a valid PTE.
1762	 */
1763	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1764
1765	ret = copy_to_user(user_priv_data + *priv_offset,
1766				&process_priv, sizeof(process_priv));
1767
1768	if (ret) {
1769		pr_err("Failed to copy process information to user\n");
1770		ret = -EFAULT;
1771	}
1772
1773	*priv_offset += sizeof(process_priv);
1774	return ret;
1775}
1776
1777static int criu_checkpoint_devices(struct kfd_process *p,
1778			     uint32_t num_devices,
1779			     uint8_t __user *user_addr,
1780			     uint8_t __user *user_priv_data,
1781			     uint64_t *priv_offset)
1782{
1783	struct kfd_criu_device_priv_data *device_priv = NULL;
1784	struct kfd_criu_device_bucket *device_buckets = NULL;
1785	int ret = 0, i;
1786
1787	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1788	if (!device_buckets) {
1789		ret = -ENOMEM;
1790		goto exit;
1791	}
1792
1793	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1794	if (!device_priv) {
1795		ret = -ENOMEM;
1796		goto exit;
1797	}
1798
1799	for (i = 0; i < num_devices; i++) {
1800		struct kfd_process_device *pdd = p->pdds[i];
1801
1802		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1803		device_buckets[i].actual_gpu_id = pdd->dev->id;
1804
1805		/*
1806		 * priv_data does not contain useful information for now and is reserved for
1807		 * future use, so we do not set its contents.
1808		 */
1809	}
1810
1811	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1812	if (ret) {
1813		pr_err("Failed to copy device information to user\n");
1814		ret = -EFAULT;
1815		goto exit;
1816	}
1817
1818	ret = copy_to_user(user_priv_data + *priv_offset,
1819			   device_priv,
1820			   num_devices * sizeof(*device_priv));
1821	if (ret) {
1822		pr_err("Failed to copy device information to user\n");
1823		ret = -EFAULT;
1824	}
1825	*priv_offset += num_devices * sizeof(*device_priv);
1826
1827exit:
1828	kvfree(device_buckets);
1829	kvfree(device_priv);
1830	return ret;
1831}
1832
1833static uint32_t get_process_num_bos(struct kfd_process *p)
1834{
1835	uint32_t num_of_bos = 0;
1836	int i;
1837
1838	/* Run over all PDDs of the process */
1839	for (i = 0; i < p->n_pdds; i++) {
1840		struct kfd_process_device *pdd = p->pdds[i];
1841		void *mem;
1842		int id;
1843
1844		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1845			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1846
1847			if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1848				num_of_bos++;
1849		}
1850	}
1851	return num_of_bos;
1852}
1853
1854static int criu_get_prime_handle(struct kgd_mem *mem,
1855				 int flags, u32 *shared_fd)
1856{
1857	struct dma_buf *dmabuf;
1858	int ret;
1859
1860	ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1861	if (ret) {
1862		pr_err("dmabuf export failed for the BO\n");
1863		return ret;
1864	}
1865
1866	ret = dma_buf_fd(dmabuf, flags);
1867	if (ret < 0) {
1868		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1869		goto out_free_dmabuf;
1870	}
1871
1872	*shared_fd = ret;
1873	return 0;
1874
1875out_free_dmabuf:
1876	dma_buf_put(dmabuf);
1877	return ret;
1878}
1879
1880static int criu_checkpoint_bos(struct kfd_process *p,
1881			       uint32_t num_bos,
1882			       uint8_t __user *user_bos,
1883			       uint8_t __user *user_priv_data,
1884			       uint64_t *priv_offset)
1885{
1886	struct kfd_criu_bo_bucket *bo_buckets;
1887	struct kfd_criu_bo_priv_data *bo_privs;
1888	int ret = 0, pdd_index, bo_index = 0, id;
1889	void *mem;
1890
1891	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1892	if (!bo_buckets)
1893		return -ENOMEM;
1894
1895	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1896	if (!bo_privs) {
1897		ret = -ENOMEM;
1898		goto exit;
1899	}
1900
1901	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1902		struct kfd_process_device *pdd = p->pdds[pdd_index];
1903		struct amdgpu_bo *dumper_bo;
1904		struct kgd_mem *kgd_mem;
1905
1906		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1907			struct kfd_criu_bo_bucket *bo_bucket;
1908			struct kfd_criu_bo_priv_data *bo_priv;
1909			int i, dev_idx = 0;
1910
1911			if (!mem) {
1912				ret = -ENOMEM;
1913				goto exit;
1914			}
1915
1916			kgd_mem = (struct kgd_mem *)mem;
1917			dumper_bo = kgd_mem->bo;
1918
1919			/* Skip checkpointing BOs that are used for Trap handler
1920			 * code and state. Currently, these BOs have a VA that
1921			 * is less GPUVM Base
1922			 */
1923			if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1924				continue;
1925
1926			bo_bucket = &bo_buckets[bo_index];
1927			bo_priv = &bo_privs[bo_index];
1928
1929			bo_bucket->gpu_id = pdd->user_gpu_id;
1930			bo_bucket->addr = (uint64_t)kgd_mem->va;
1931			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1932			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1933			bo_priv->idr_handle = id;
1934
1935			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1936				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1937								&bo_priv->user_addr);
1938				if (ret) {
1939					pr_err("Failed to obtain user address for user-pointer bo\n");
1940					goto exit;
1941				}
1942			}
1943			if (bo_bucket->alloc_flags
1944			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1945				ret = criu_get_prime_handle(kgd_mem,
1946						bo_bucket->alloc_flags &
1947						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1948						&bo_bucket->dmabuf_fd);
1949				if (ret)
1950					goto exit;
1951			} else {
1952				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1953			}
1954
1955			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1956				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1957					KFD_MMAP_GPU_ID(pdd->dev->id);
1958			else if (bo_bucket->alloc_flags &
1959				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1960				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1961					KFD_MMAP_GPU_ID(pdd->dev->id);
1962			else
1963				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1964
1965			for (i = 0; i < p->n_pdds; i++) {
1966				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1967					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1968			}
1969
1970			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1971					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1972					bo_bucket->size,
1973					bo_bucket->addr,
1974					bo_bucket->offset,
1975					bo_bucket->gpu_id,
1976					bo_bucket->alloc_flags,
1977					bo_priv->idr_handle);
1978			bo_index++;
1979		}
1980	}
1981
1982	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1983	if (ret) {
1984		pr_err("Failed to copy BO information to user\n");
1985		ret = -EFAULT;
1986		goto exit;
1987	}
1988
1989	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1990	if (ret) {
1991		pr_err("Failed to copy BO priv information to user\n");
1992		ret = -EFAULT;
1993		goto exit;
1994	}
1995
1996	*priv_offset += num_bos * sizeof(*bo_privs);
1997
1998exit:
1999	while (ret && bo_index--) {
2000		if (bo_buckets[bo_index].alloc_flags
2001		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2002			close_fd(bo_buckets[bo_index].dmabuf_fd);
2003	}
2004
2005	kvfree(bo_buckets);
2006	kvfree(bo_privs);
2007	return ret;
2008}
2009
2010static int criu_get_process_object_info(struct kfd_process *p,
2011					uint32_t *num_devices,
2012					uint32_t *num_bos,
2013					uint32_t *num_objects,
2014					uint64_t *objs_priv_size)
2015{
2016	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2017	uint32_t num_queues, num_events, num_svm_ranges;
2018	int ret;
2019
2020	*num_devices = p->n_pdds;
2021	*num_bos = get_process_num_bos(p);
2022
2023	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2024	if (ret)
2025		return ret;
2026
2027	num_events = kfd_get_num_events(p);
2028
2029	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2030	if (ret)
2031		return ret;
2032
2033	*num_objects = num_queues + num_events + num_svm_ranges;
2034
2035	if (objs_priv_size) {
2036		priv_size = sizeof(struct kfd_criu_process_priv_data);
2037		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2038		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2039		priv_size += queues_priv_data_size;
2040		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2041		priv_size += svm_priv_data_size;
2042		*objs_priv_size = priv_size;
2043	}
2044	return 0;
2045}
2046
2047static int criu_checkpoint(struct file *filep,
2048			   struct kfd_process *p,
2049			   struct kfd_ioctl_criu_args *args)
2050{
2051	int ret;
2052	uint32_t num_devices, num_bos, num_objects;
2053	uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2054
2055	if (!args->devices || !args->bos || !args->priv_data)
2056		return -EINVAL;
2057
2058	mutex_lock(&p->mutex);
2059
2060	if (!p->n_pdds) {
2061		pr_err("No pdd for given process\n");
2062		ret = -ENODEV;
2063		goto exit_unlock;
2064	}
2065
2066	/* Confirm all process queues are evicted */
2067	if (!p->queues_paused) {
2068		pr_err("Cannot dump process when queues are not in evicted state\n");
2069		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2070		ret = -EINVAL;
2071		goto exit_unlock;
2072	}
2073
2074	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2075	if (ret)
2076		goto exit_unlock;
2077
2078	if (num_devices != args->num_devices ||
2079	    num_bos != args->num_bos ||
2080	    num_objects != args->num_objects ||
2081	    priv_size != args->priv_data_size) {
2082
2083		ret = -EINVAL;
2084		goto exit_unlock;
2085	}
2086
2087	/* each function will store private data inside priv_data and adjust priv_offset */
2088	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2089	if (ret)
2090		goto exit_unlock;
2091
2092	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2093				(uint8_t __user *)args->priv_data, &priv_offset);
2094	if (ret)
2095		goto exit_unlock;
2096
2097	/* Leave room for BOs in the private data. They need to be restored
2098	 * before events, but we checkpoint them last to simplify the error
2099	 * handling.
2100	 */
2101	bo_priv_offset = priv_offset;
2102	priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2103
2104	if (num_objects) {
2105		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2106						 &priv_offset);
2107		if (ret)
2108			goto exit_unlock;
2109
2110		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2111						 &priv_offset);
2112		if (ret)
2113			goto exit_unlock;
2114
2115		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2116		if (ret)
2117			goto exit_unlock;
2118	}
2119
2120	/* This must be the last thing in this function that can fail.
2121	 * Otherwise we leak dmabuf file descriptors.
2122	 */
2123	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2124			   (uint8_t __user *)args->priv_data, &bo_priv_offset);
2125
2126exit_unlock:
2127	mutex_unlock(&p->mutex);
2128	if (ret)
2129		pr_err("Failed to dump CRIU ret:%d\n", ret);
2130	else
2131		pr_debug("CRIU dump ret:%d\n", ret);
2132
2133	return ret;
2134}
2135
2136static int criu_restore_process(struct kfd_process *p,
2137				struct kfd_ioctl_criu_args *args,
2138				uint64_t *priv_offset,
2139				uint64_t max_priv_data_size)
2140{
2141	int ret = 0;
2142	struct kfd_criu_process_priv_data process_priv;
2143
2144	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2145		return -EINVAL;
2146
2147	ret = copy_from_user(&process_priv,
2148				(void __user *)(args->priv_data + *priv_offset),
2149				sizeof(process_priv));
2150	if (ret) {
2151		pr_err("Failed to copy process private information from user\n");
2152		ret = -EFAULT;
2153		goto exit;
2154	}
2155	*priv_offset += sizeof(process_priv);
2156
2157	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2158		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2159			process_priv.version, KFD_CRIU_PRIV_VERSION);
2160		return -EINVAL;
2161	}
2162
2163	pr_debug("Setting XNACK mode\n");
2164	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2165		pr_err("xnack mode cannot be set\n");
2166		ret = -EPERM;
2167		goto exit;
2168	} else {
2169		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2170		p->xnack_enabled = process_priv.xnack_mode;
2171	}
2172
2173exit:
2174	return ret;
2175}
2176
2177static int criu_restore_devices(struct kfd_process *p,
2178				struct kfd_ioctl_criu_args *args,
2179				uint64_t *priv_offset,
2180				uint64_t max_priv_data_size)
2181{
2182	struct kfd_criu_device_bucket *device_buckets;
2183	struct kfd_criu_device_priv_data *device_privs;
2184	int ret = 0;
2185	uint32_t i;
2186
2187	if (args->num_devices != p->n_pdds)
2188		return -EINVAL;
2189
2190	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2191		return -EINVAL;
2192
2193	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2194	if (!device_buckets)
2195		return -ENOMEM;
2196
2197	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2198				args->num_devices * sizeof(*device_buckets));
2199	if (ret) {
2200		pr_err("Failed to copy devices buckets from user\n");
2201		ret = -EFAULT;
2202		goto exit;
2203	}
2204
2205	for (i = 0; i < args->num_devices; i++) {
2206		struct kfd_node *dev;
2207		struct kfd_process_device *pdd;
2208		struct file *drm_file;
2209
2210		/* device private data is not currently used */
2211
2212		if (!device_buckets[i].user_gpu_id) {
2213			pr_err("Invalid user gpu_id\n");
2214			ret = -EINVAL;
2215			goto exit;
2216		}
2217
2218		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2219		if (!dev) {
2220			pr_err("Failed to find device with gpu_id = %x\n",
2221				device_buckets[i].actual_gpu_id);
2222			ret = -EINVAL;
2223			goto exit;
2224		}
2225
2226		pdd = kfd_get_process_device_data(dev, p);
2227		if (!pdd) {
2228			pr_err("Failed to get pdd for gpu_id = %x\n",
2229					device_buckets[i].actual_gpu_id);
2230			ret = -EINVAL;
2231			goto exit;
2232		}
2233		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2234
2235		drm_file = fget(device_buckets[i].drm_fd);
2236		if (!drm_file) {
2237			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2238				device_buckets[i].drm_fd);
2239			ret = -EINVAL;
2240			goto exit;
2241		}
2242
2243		if (pdd->drm_file) {
2244			ret = -EINVAL;
2245			goto exit;
2246		}
2247
2248		/* create the vm using render nodes for kfd pdd */
2249		if (kfd_process_device_init_vm(pdd, drm_file)) {
2250			pr_err("could not init vm for given pdd\n");
2251			/* On success, the PDD keeps the drm_file reference */
2252			fput(drm_file);
2253			ret = -EINVAL;
2254			goto exit;
2255		}
2256		/*
2257		 * pdd now already has the vm bound to render node so below api won't create a new
2258		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2259		 * for iommu v2 binding  and runtime pm.
2260		 */
2261		pdd = kfd_bind_process_to_device(dev, p);
2262		if (IS_ERR(pdd)) {
2263			ret = PTR_ERR(pdd);
2264			goto exit;
2265		}
2266
2267		if (!pdd->qpd.proc_doorbells) {
2268			ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2269			if (ret)
2270				goto exit;
2271		}
2272	}
2273
2274	/*
2275	 * We are not copying device private data from user as we are not using the data for now,
2276	 * but we still adjust for its private data.
2277	 */
2278	*priv_offset += args->num_devices * sizeof(*device_privs);
2279
2280exit:
2281	kfree(device_buckets);
2282	return ret;
2283}
2284
2285static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2286				      struct kfd_criu_bo_bucket *bo_bucket,
2287				      struct kfd_criu_bo_priv_data *bo_priv,
2288				      struct kgd_mem **kgd_mem)
2289{
2290	int idr_handle;
2291	int ret;
2292	const bool criu_resume = true;
2293	u64 offset;
2294
2295	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2296		if (bo_bucket->size !=
2297				kfd_doorbell_process_slice(pdd->dev->kfd))
2298			return -EINVAL;
2299
2300		offset = kfd_get_process_doorbells(pdd);
2301		if (!offset)
2302			return -ENOMEM;
2303	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2304		/* MMIO BOs need remapped bus address */
2305		if (bo_bucket->size != PAGE_SIZE) {
2306			pr_err("Invalid page size\n");
2307			return -EINVAL;
2308		}
2309		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2310		if (!offset || (PAGE_SIZE > 4096)) {
2311			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2312			return -ENOMEM;
2313		}
2314	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2315		offset = bo_priv->user_addr;
2316	}
2317	/* Create the BO */
2318	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2319						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2320						      &offset, bo_bucket->alloc_flags, criu_resume);
2321	if (ret) {
2322		pr_err("Could not create the BO\n");
2323		return ret;
2324	}
2325	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2326		 bo_bucket->size, bo_bucket->addr, offset);
2327
2328	/* Restore previous IDR handle */
2329	pr_debug("Restoring old IDR handle for the BO");
2330	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2331			       bo_priv->idr_handle + 1, GFP_KERNEL);
2332
2333	if (idr_handle < 0) {
2334		pr_err("Could not allocate idr\n");
2335		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2336						       NULL);
2337		return -ENOMEM;
2338	}
2339
2340	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2341		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2342	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2343		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2344	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2345		bo_bucket->restored_offset = offset;
2346	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2347		bo_bucket->restored_offset = offset;
2348		/* Update the VRAM usage count */
2349		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2350	}
2351	return 0;
2352}
2353
2354static int criu_restore_bo(struct kfd_process *p,
2355			   struct kfd_criu_bo_bucket *bo_bucket,
2356			   struct kfd_criu_bo_priv_data *bo_priv)
2357{
2358	struct kfd_process_device *pdd;
2359	struct kgd_mem *kgd_mem;
2360	int ret;
2361	int j;
2362
2363	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2364		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2365		 bo_priv->idr_handle);
2366
2367	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2368	if (!pdd) {
2369		pr_err("Failed to get pdd\n");
2370		return -ENODEV;
2371	}
2372
2373	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2374	if (ret)
2375		return ret;
2376
2377	/* now map these BOs to GPU/s */
2378	for (j = 0; j < p->n_pdds; j++) {
2379		struct kfd_node *peer;
2380		struct kfd_process_device *peer_pdd;
2381
2382		if (!bo_priv->mapped_gpuids[j])
2383			break;
2384
2385		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2386		if (!peer_pdd)
2387			return -EINVAL;
2388
2389		peer = peer_pdd->dev;
2390
2391		peer_pdd = kfd_bind_process_to_device(peer, p);
2392		if (IS_ERR(peer_pdd))
2393			return PTR_ERR(peer_pdd);
2394
2395		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2396							    peer_pdd->drm_priv);
2397		if (ret) {
2398			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2399			return ret;
2400		}
2401	}
2402
2403	pr_debug("map memory was successful for the BO\n");
2404	/* create the dmabuf object and export the bo */
2405	if (bo_bucket->alloc_flags
2406	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2407		ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2408					    &bo_bucket->dmabuf_fd);
2409		if (ret)
2410			return ret;
2411	} else {
2412		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2413	}
2414
2415	return 0;
2416}
2417
2418static int criu_restore_bos(struct kfd_process *p,
2419			    struct kfd_ioctl_criu_args *args,
2420			    uint64_t *priv_offset,
2421			    uint64_t max_priv_data_size)
2422{
2423	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2424	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2425	int ret = 0;
2426	uint32_t i = 0;
2427
2428	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2429		return -EINVAL;
2430
2431	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2432	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2433
2434	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2435	if (!bo_buckets)
2436		return -ENOMEM;
2437
2438	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2439			     args->num_bos * sizeof(*bo_buckets));
2440	if (ret) {
2441		pr_err("Failed to copy BOs information from user\n");
2442		ret = -EFAULT;
2443		goto exit;
2444	}
2445
2446	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2447	if (!bo_privs) {
2448		ret = -ENOMEM;
2449		goto exit;
2450	}
2451
2452	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2453			     args->num_bos * sizeof(*bo_privs));
2454	if (ret) {
2455		pr_err("Failed to copy BOs information from user\n");
2456		ret = -EFAULT;
2457		goto exit;
2458	}
2459	*priv_offset += args->num_bos * sizeof(*bo_privs);
2460
2461	/* Create and map new BOs */
2462	for (; i < args->num_bos; i++) {
2463		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2464		if (ret) {
2465			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2466			goto exit;
2467		}
2468	} /* done */
2469
2470	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2471	ret = copy_to_user((void __user *)args->bos,
2472				bo_buckets,
2473				(args->num_bos * sizeof(*bo_buckets)));
2474	if (ret)
2475		ret = -EFAULT;
2476
2477exit:
2478	while (ret && i--) {
2479		if (bo_buckets[i].alloc_flags
2480		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2481			close_fd(bo_buckets[i].dmabuf_fd);
2482	}
2483	kvfree(bo_buckets);
2484	kvfree(bo_privs);
2485	return ret;
2486}
2487
2488static int criu_restore_objects(struct file *filep,
2489				struct kfd_process *p,
2490				struct kfd_ioctl_criu_args *args,
2491				uint64_t *priv_offset,
2492				uint64_t max_priv_data_size)
2493{
2494	int ret = 0;
2495	uint32_t i;
2496
2497	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2498	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2499	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2500
2501	for (i = 0; i < args->num_objects; i++) {
2502		uint32_t object_type;
2503
2504		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2505			pr_err("Invalid private data size\n");
2506			return -EINVAL;
2507		}
2508
2509		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2510		if (ret) {
2511			pr_err("Failed to copy private information from user\n");
2512			goto exit;
2513		}
2514
2515		switch (object_type) {
2516		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2517			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2518						     priv_offset, max_priv_data_size);
2519			if (ret)
2520				goto exit;
2521			break;
2522		case KFD_CRIU_OBJECT_TYPE_EVENT:
2523			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2524						     priv_offset, max_priv_data_size);
2525			if (ret)
2526				goto exit;
2527			break;
2528		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2529			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2530						     priv_offset, max_priv_data_size);
2531			if (ret)
2532				goto exit;
2533			break;
2534		default:
2535			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2536			ret = -EINVAL;
2537			goto exit;
2538		}
2539	}
2540exit:
2541	return ret;
2542}
2543
2544static int criu_restore(struct file *filep,
2545			struct kfd_process *p,
2546			struct kfd_ioctl_criu_args *args)
2547{
2548	uint64_t priv_offset = 0;
2549	int ret = 0;
2550
2551	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2552		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2553
2554	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2555	    !args->num_devices || !args->num_bos)
2556		return -EINVAL;
2557
2558	mutex_lock(&p->mutex);
2559
2560	/*
2561	 * Set the process to evicted state to avoid running any new queues before all the memory
2562	 * mappings are ready.
2563	 */
2564	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2565	if (ret)
2566		goto exit_unlock;
2567
2568	/* Each function will adjust priv_offset based on how many bytes they consumed */
2569	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2570	if (ret)
2571		goto exit_unlock;
2572
2573	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2574	if (ret)
2575		goto exit_unlock;
2576
2577	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2578	if (ret)
2579		goto exit_unlock;
2580
2581	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2582	if (ret)
2583		goto exit_unlock;
2584
2585	if (priv_offset != args->priv_data_size) {
2586		pr_err("Invalid private data size\n");
2587		ret = -EINVAL;
2588	}
2589
2590exit_unlock:
2591	mutex_unlock(&p->mutex);
2592	if (ret)
2593		pr_err("Failed to restore CRIU ret:%d\n", ret);
2594	else
2595		pr_debug("CRIU restore successful\n");
2596
2597	return ret;
2598}
2599
2600static int criu_unpause(struct file *filep,
2601			struct kfd_process *p,
2602			struct kfd_ioctl_criu_args *args)
2603{
2604	int ret;
2605
2606	mutex_lock(&p->mutex);
2607
2608	if (!p->queues_paused) {
2609		mutex_unlock(&p->mutex);
2610		return -EINVAL;
2611	}
2612
2613	ret = kfd_process_restore_queues(p);
2614	if (ret)
2615		pr_err("Failed to unpause queues ret:%d\n", ret);
2616	else
2617		p->queues_paused = false;
2618
2619	mutex_unlock(&p->mutex);
2620
2621	return ret;
2622}
2623
2624static int criu_resume(struct file *filep,
2625			struct kfd_process *p,
2626			struct kfd_ioctl_criu_args *args)
2627{
2628	struct kfd_process *target = NULL;
2629	struct pid *pid = NULL;
2630	int ret = 0;
2631
2632	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2633		 args->pid);
2634
2635	pid = find_get_pid(args->pid);
2636	if (!pid) {
2637		pr_err("Cannot find pid info for %i\n", args->pid);
2638		return -ESRCH;
2639	}
2640
2641	pr_debug("calling kfd_lookup_process_by_pid\n");
2642	target = kfd_lookup_process_by_pid(pid);
2643
2644	put_pid(pid);
2645
2646	if (!target) {
2647		pr_debug("Cannot find process info for %i\n", args->pid);
2648		return -ESRCH;
2649	}
2650
2651	mutex_lock(&target->mutex);
2652	ret = kfd_criu_resume_svm(target);
2653	if (ret) {
2654		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2655		goto exit;
2656	}
2657
2658	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2659	if (ret)
2660		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2661
2662exit:
2663	mutex_unlock(&target->mutex);
2664
2665	kfd_unref_process(target);
2666	return ret;
2667}
2668
2669static int criu_process_info(struct file *filep,
2670				struct kfd_process *p,
2671				struct kfd_ioctl_criu_args *args)
2672{
2673	int ret = 0;
2674
2675	mutex_lock(&p->mutex);
2676
2677	if (!p->n_pdds) {
2678		pr_err("No pdd for given process\n");
2679		ret = -ENODEV;
2680		goto err_unlock;
2681	}
2682
2683	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2684	if (ret)
2685		goto err_unlock;
2686
2687	p->queues_paused = true;
2688
2689	args->pid = task_pid_nr_ns(p->lead_thread,
2690					task_active_pid_ns(p->lead_thread));
2691
2692	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2693					   &args->num_objects, &args->priv_data_size);
2694	if (ret)
2695		goto err_unlock;
2696
2697	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2698				args->num_devices, args->num_bos, args->num_objects,
2699				args->priv_data_size);
2700
2701err_unlock:
2702	if (ret) {
2703		kfd_process_restore_queues(p);
2704		p->queues_paused = false;
2705	}
2706	mutex_unlock(&p->mutex);
2707	return ret;
2708}
2709
2710static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2711{
2712	struct kfd_ioctl_criu_args *args = data;
2713	int ret;
2714
2715	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2716	switch (args->op) {
2717	case KFD_CRIU_OP_PROCESS_INFO:
2718		ret = criu_process_info(filep, p, args);
2719		break;
2720	case KFD_CRIU_OP_CHECKPOINT:
2721		ret = criu_checkpoint(filep, p, args);
2722		break;
2723	case KFD_CRIU_OP_UNPAUSE:
2724		ret = criu_unpause(filep, p, args);
2725		break;
2726	case KFD_CRIU_OP_RESTORE:
2727		ret = criu_restore(filep, p, args);
2728		break;
2729	case KFD_CRIU_OP_RESUME:
2730		ret = criu_resume(filep, p, args);
2731		break;
2732	default:
2733		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2734		ret = -EINVAL;
2735		break;
2736	}
2737
2738	if (ret)
2739		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2740
2741	return ret;
2742}
2743
2744static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2745			bool enable_ttmp_setup)
2746{
2747	int i = 0, ret = 0;
2748
2749	if (p->is_runtime_retry)
2750		goto retry;
2751
2752	if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2753		return -EBUSY;
2754
2755	for (i = 0; i < p->n_pdds; i++) {
2756		struct kfd_process_device *pdd = p->pdds[i];
2757
2758		if (pdd->qpd.queue_count)
2759			return -EEXIST;
2760
2761		/*
2762		 * Setup TTMPs by default.
2763		 * Note that this call must remain here for MES ADD QUEUE to
2764		 * skip_process_ctx_clear unconditionally as the first call to
2765		 * SET_SHADER_DEBUGGER clears any stale process context data
2766		 * saved in MES.
2767		 */
2768		if (pdd->dev->kfd->shared_resources.enable_mes)
2769			kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2770	}
2771
2772	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2773	p->runtime_info.r_debug = r_debug;
2774	p->runtime_info.ttmp_setup = enable_ttmp_setup;
2775
2776	if (p->runtime_info.ttmp_setup) {
2777		for (i = 0; i < p->n_pdds; i++) {
2778			struct kfd_process_device *pdd = p->pdds[i];
2779
2780			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2781				amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2782				pdd->dev->kfd2kgd->enable_debug_trap(
2783						pdd->dev->adev,
2784						true,
2785						pdd->dev->vm_info.last_vmid_kfd);
2786			} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2787				pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2788						pdd->dev->adev,
2789						false,
2790						0);
2791			}
2792		}
2793	}
2794
2795retry:
2796	if (p->debug_trap_enabled) {
2797		if (!p->is_runtime_retry) {
2798			kfd_dbg_trap_activate(p);
2799			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2800					p, NULL, 0, false, NULL, 0);
2801		}
2802
2803		mutex_unlock(&p->mutex);
2804		ret = down_interruptible(&p->runtime_enable_sema);
2805		mutex_lock(&p->mutex);
2806
2807		p->is_runtime_retry = !!ret;
2808	}
2809
2810	return ret;
2811}
2812
2813static int runtime_disable(struct kfd_process *p)
2814{
2815	int i = 0, ret;
2816	bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2817
2818	p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2819	p->runtime_info.r_debug = 0;
2820
2821	if (p->debug_trap_enabled) {
2822		if (was_enabled)
2823			kfd_dbg_trap_deactivate(p, false, 0);
2824
2825		if (!p->is_runtime_retry)
2826			kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2827					p, NULL, 0, false, NULL, 0);
2828
2829		mutex_unlock(&p->mutex);
2830		ret = down_interruptible(&p->runtime_enable_sema);
2831		mutex_lock(&p->mutex);
2832
2833		p->is_runtime_retry = !!ret;
2834		if (ret)
2835			return ret;
2836	}
2837
2838	if (was_enabled && p->runtime_info.ttmp_setup) {
2839		for (i = 0; i < p->n_pdds; i++) {
2840			struct kfd_process_device *pdd = p->pdds[i];
2841
2842			if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2843				amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2844		}
2845	}
2846
2847	p->runtime_info.ttmp_setup = false;
2848
2849	/* disable ttmp setup */
2850	for (i = 0; i < p->n_pdds; i++) {
2851		struct kfd_process_device *pdd = p->pdds[i];
2852
2853		if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2854			pdd->spi_dbg_override =
2855					pdd->dev->kfd2kgd->disable_debug_trap(
2856					pdd->dev->adev,
2857					false,
2858					pdd->dev->vm_info.last_vmid_kfd);
2859
2860			if (!pdd->dev->kfd->shared_resources.enable_mes)
2861				debug_refresh_runlist(pdd->dev->dqm);
2862			else
2863				kfd_dbg_set_mes_debug_mode(pdd,
2864							   !kfd_dbg_has_cwsr_workaround(pdd->dev));
2865		}
2866	}
2867
2868	return 0;
2869}
2870
2871static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2872{
2873	struct kfd_ioctl_runtime_enable_args *args = data;
2874	int r;
2875
2876	mutex_lock(&p->mutex);
2877
2878	if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2879		r = runtime_enable(p, args->r_debug,
2880				!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2881	else
2882		r = runtime_disable(p);
2883
2884	mutex_unlock(&p->mutex);
2885
2886	return r;
2887}
2888
2889static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2890{
2891	struct kfd_ioctl_dbg_trap_args *args = data;
2892	struct task_struct *thread = NULL;
2893	struct mm_struct *mm = NULL;
2894	struct pid *pid = NULL;
2895	struct kfd_process *target = NULL;
2896	struct kfd_process_device *pdd = NULL;
2897	int r = 0;
2898
2899	if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2900		pr_err("Debugging does not support sched_policy %i", sched_policy);
2901		return -EINVAL;
2902	}
2903
2904	pid = find_get_pid(args->pid);
2905	if (!pid) {
2906		pr_debug("Cannot find pid info for %i\n", args->pid);
2907		r = -ESRCH;
2908		goto out;
2909	}
2910
2911	thread = get_pid_task(pid, PIDTYPE_PID);
2912	if (!thread) {
2913		r = -ESRCH;
2914		goto out;
2915	}
2916
2917	mm = get_task_mm(thread);
2918	if (!mm) {
2919		r = -ESRCH;
2920		goto out;
2921	}
2922
2923	if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2924		bool create_process;
2925
2926		rcu_read_lock();
2927		create_process = thread && thread != current && ptrace_parent(thread) == current;
2928		rcu_read_unlock();
2929
2930		target = create_process ? kfd_create_process(thread) :
2931					kfd_lookup_process_by_pid(pid);
2932	} else {
2933		target = kfd_lookup_process_by_pid(pid);
2934	}
2935
2936	if (IS_ERR_OR_NULL(target)) {
2937		pr_debug("Cannot find process PID %i to debug\n", args->pid);
2938		r = target ? PTR_ERR(target) : -ESRCH;
2939		target = NULL;
2940		goto out;
2941	}
2942
2943	/* Check if target is still PTRACED. */
2944	rcu_read_lock();
2945	if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2946				&& ptrace_parent(target->lead_thread) != current) {
2947		pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2948		r = -EPERM;
2949	}
2950	rcu_read_unlock();
2951
2952	if (r)
2953		goto out;
2954
2955	mutex_lock(&target->mutex);
2956
2957	if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2958		pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2959		r = -EINVAL;
2960		goto unlock_out;
2961	}
2962
2963	if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2964			(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2965			 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2966			 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2967			 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2968			 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2969			 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2970			 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2971		r = -EPERM;
2972		goto unlock_out;
2973	}
2974
2975	if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2976	    args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2977		int user_gpu_id = kfd_process_get_user_gpu_id(target,
2978				args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2979					args->set_node_address_watch.gpu_id :
2980					args->clear_node_address_watch.gpu_id);
2981
2982		pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2983		if (user_gpu_id == -EINVAL || !pdd) {
2984			r = -ENODEV;
2985			goto unlock_out;
2986		}
2987	}
2988
2989	switch (args->op) {
2990	case KFD_IOC_DBG_TRAP_ENABLE:
2991		if (target != p)
2992			target->debugger_process = p;
2993
2994		r = kfd_dbg_trap_enable(target,
2995					args->enable.dbg_fd,
2996					(void __user *)args->enable.rinfo_ptr,
2997					&args->enable.rinfo_size);
2998		if (!r)
2999			target->exception_enable_mask = args->enable.exception_mask;
3000
3001		break;
3002	case KFD_IOC_DBG_TRAP_DISABLE:
3003		r = kfd_dbg_trap_disable(target);
3004		break;
3005	case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3006		r = kfd_dbg_send_exception_to_runtime(target,
3007				args->send_runtime_event.gpu_id,
3008				args->send_runtime_event.queue_id,
3009				args->send_runtime_event.exception_mask);
3010		break;
3011	case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3012		kfd_dbg_set_enabled_debug_exception_mask(target,
3013				args->set_exceptions_enabled.exception_mask);
3014		break;
3015	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3016		r = kfd_dbg_trap_set_wave_launch_override(target,
3017				args->launch_override.override_mode,
3018				args->launch_override.enable_mask,
3019				args->launch_override.support_request_mask,
3020				&args->launch_override.enable_mask,
3021				&args->launch_override.support_request_mask);
3022		break;
3023	case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3024		r = kfd_dbg_trap_set_wave_launch_mode(target,
3025				args->launch_mode.launch_mode);
3026		break;
3027	case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3028		r = suspend_queues(target,
3029				args->suspend_queues.num_queues,
3030				args->suspend_queues.grace_period,
3031				args->suspend_queues.exception_mask,
3032				(uint32_t *)args->suspend_queues.queue_array_ptr);
3033
3034		break;
3035	case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3036		r = resume_queues(target, args->resume_queues.num_queues,
3037				(uint32_t *)args->resume_queues.queue_array_ptr);
3038		break;
3039	case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3040		r = kfd_dbg_trap_set_dev_address_watch(pdd,
3041				args->set_node_address_watch.address,
3042				args->set_node_address_watch.mask,
3043				&args->set_node_address_watch.id,
3044				args->set_node_address_watch.mode);
3045		break;
3046	case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3047		r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3048				args->clear_node_address_watch.id);
3049		break;
3050	case KFD_IOC_DBG_TRAP_SET_FLAGS:
3051		r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3052		break;
3053	case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3054		r = kfd_dbg_ev_query_debug_event(target,
3055				&args->query_debug_event.queue_id,
3056				&args->query_debug_event.gpu_id,
3057				args->query_debug_event.exception_mask,
3058				&args->query_debug_event.exception_mask);
3059		break;
3060	case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3061		r = kfd_dbg_trap_query_exception_info(target,
3062				args->query_exception_info.source_id,
3063				args->query_exception_info.exception_code,
3064				args->query_exception_info.clear_exception,
3065				(void __user *)args->query_exception_info.info_ptr,
3066				&args->query_exception_info.info_size);
3067		break;
3068	case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3069		r = pqm_get_queue_snapshot(&target->pqm,
3070				args->queue_snapshot.exception_mask,
3071				(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3072				&args->queue_snapshot.num_queues,
3073				&args->queue_snapshot.entry_size);
3074		break;
3075	case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3076		r = kfd_dbg_trap_device_snapshot(target,
3077				args->device_snapshot.exception_mask,
3078				(void __user *)args->device_snapshot.snapshot_buf_ptr,
3079				&args->device_snapshot.num_devices,
3080				&args->device_snapshot.entry_size);
3081		break;
3082	default:
3083		pr_err("Invalid option: %i\n", args->op);
3084		r = -EINVAL;
3085	}
3086
3087unlock_out:
3088	mutex_unlock(&target->mutex);
3089
3090out:
3091	if (thread)
3092		put_task_struct(thread);
3093
3094	if (mm)
3095		mmput(mm);
3096
3097	if (pid)
3098		put_pid(pid);
3099
3100	if (target)
3101		kfd_unref_process(target);
3102
3103	return r;
3104}
3105
3106#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3107	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3108			    .cmd_drv = 0, .name = #ioctl}
3109
3110/** Ioctl table */
3111static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3112	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3113			kfd_ioctl_get_version, 0),
3114
3115	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3116			kfd_ioctl_create_queue, 0),
3117
3118	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3119			kfd_ioctl_destroy_queue, 0),
3120
3121	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3122			kfd_ioctl_set_memory_policy, 0),
3123
3124	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3125			kfd_ioctl_get_clock_counters, 0),
3126
3127	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3128			kfd_ioctl_get_process_apertures, 0),
3129
3130	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3131			kfd_ioctl_update_queue, 0),
3132
3133	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3134			kfd_ioctl_create_event, 0),
3135
3136	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3137			kfd_ioctl_destroy_event, 0),
3138
3139	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3140			kfd_ioctl_set_event, 0),
3141
3142	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3143			kfd_ioctl_reset_event, 0),
3144
3145	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3146			kfd_ioctl_wait_events, 0),
3147
3148	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3149			kfd_ioctl_dbg_register, 0),
3150
3151	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3152			kfd_ioctl_dbg_unregister, 0),
3153
3154	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3155			kfd_ioctl_dbg_address_watch, 0),
3156
3157	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3158			kfd_ioctl_dbg_wave_control, 0),
3159
3160	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3161			kfd_ioctl_set_scratch_backing_va, 0),
3162
3163	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3164			kfd_ioctl_get_tile_config, 0),
3165
3166	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3167			kfd_ioctl_set_trap_handler, 0),
3168
3169	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3170			kfd_ioctl_get_process_apertures_new, 0),
3171
3172	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3173			kfd_ioctl_acquire_vm, 0),
3174
3175	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3176			kfd_ioctl_alloc_memory_of_gpu, 0),
3177
3178	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3179			kfd_ioctl_free_memory_of_gpu, 0),
3180
3181	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3182			kfd_ioctl_map_memory_to_gpu, 0),
3183
3184	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3185			kfd_ioctl_unmap_memory_from_gpu, 0),
3186
3187	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3188			kfd_ioctl_set_cu_mask, 0),
3189
3190	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3191			kfd_ioctl_get_queue_wave_state, 0),
3192
3193	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3194				kfd_ioctl_get_dmabuf_info, 0),
3195
3196	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3197				kfd_ioctl_import_dmabuf, 0),
3198
3199	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3200			kfd_ioctl_alloc_queue_gws, 0),
3201
3202	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3203			kfd_ioctl_smi_events, 0),
3204
3205	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3206
3207	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3208			kfd_ioctl_set_xnack_mode, 0),
3209
3210	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3211			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3212
3213	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3214			kfd_ioctl_get_available_memory, 0),
3215
3216	AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3217				kfd_ioctl_export_dmabuf, 0),
3218
3219	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3220			kfd_ioctl_runtime_enable, 0),
3221
3222	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3223			kfd_ioctl_set_debug_trap, 0),
3224};
3225
3226#define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
3227
3228static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3229{
3230	struct kfd_process *process;
3231	amdkfd_ioctl_t *func;
3232	const struct amdkfd_ioctl_desc *ioctl = NULL;
3233	unsigned int nr = _IOC_NR(cmd);
3234	char stack_kdata[128];
3235	char *kdata = NULL;
3236	unsigned int usize, asize;
3237	int retcode = -EINVAL;
3238	bool ptrace_attached = false;
3239
3240	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3241		goto err_i1;
3242
3243	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3244		u32 amdkfd_size;
3245
3246		ioctl = &amdkfd_ioctls[nr];
3247
3248		amdkfd_size = _IOC_SIZE(ioctl->cmd);
3249		usize = asize = _IOC_SIZE(cmd);
3250		if (amdkfd_size > asize)
3251			asize = amdkfd_size;
3252
3253		cmd = ioctl->cmd;
3254	} else
3255		goto err_i1;
3256
3257	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3258
3259	/* Get the process struct from the filep. Only the process
3260	 * that opened /dev/kfd can use the file descriptor. Child
3261	 * processes need to create their own KFD device context.
3262	 */
3263	process = filep->private_data;
3264
3265	rcu_read_lock();
3266	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3267	    ptrace_parent(process->lead_thread) == current)
3268		ptrace_attached = true;
3269	rcu_read_unlock();
3270
3271	if (process->lead_thread != current->group_leader
3272	    && !ptrace_attached) {
3273		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3274		retcode = -EBADF;
3275		goto err_i1;
3276	}
3277
3278	/* Do not trust userspace, use our own definition */
3279	func = ioctl->func;
3280
3281	if (unlikely(!func)) {
3282		dev_dbg(kfd_device, "no function\n");
3283		retcode = -EINVAL;
3284		goto err_i1;
3285	}
3286
3287	/*
3288	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3289	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3290	 * more priviledged access.
3291	 */
3292	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3293		if (!capable(CAP_CHECKPOINT_RESTORE) &&
3294						!capable(CAP_SYS_ADMIN)) {
3295			retcode = -EACCES;
3296			goto err_i1;
3297		}
3298	}
3299
3300	if (cmd & (IOC_IN | IOC_OUT)) {
3301		if (asize <= sizeof(stack_kdata)) {
3302			kdata = stack_kdata;
3303		} else {
3304			kdata = kmalloc(asize, GFP_KERNEL);
3305			if (!kdata) {
3306				retcode = -ENOMEM;
3307				goto err_i1;
3308			}
3309		}
3310		if (asize > usize)
3311			memset(kdata + usize, 0, asize - usize);
3312	}
3313
3314	if (cmd & IOC_IN) {
3315		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3316			retcode = -EFAULT;
3317			goto err_i1;
3318		}
3319	} else if (cmd & IOC_OUT) {
3320		memset(kdata, 0, usize);
3321	}
3322
3323	retcode = func(filep, process, kdata);
3324
3325	if (cmd & IOC_OUT)
3326		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3327			retcode = -EFAULT;
3328
3329err_i1:
3330	if (!ioctl)
3331		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3332			  task_pid_nr(current), cmd, nr);
3333
3334	if (kdata != stack_kdata)
3335		kfree(kdata);
3336
3337	if (retcode)
3338		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3339				nr, arg, retcode);
3340
3341	return retcode;
3342}
3343
3344static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3345		      struct vm_area_struct *vma)
3346{
3347	phys_addr_t address;
3348
3349	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3350		return -EINVAL;
3351
3352	if (PAGE_SIZE > 4096)
3353		return -EINVAL;
3354
3355	address = dev->adev->rmmio_remap.bus_addr;
3356
3357	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3358				VM_DONTDUMP | VM_PFNMAP);
3359
3360	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3361
3362	pr_debug("pasid 0x%x mapping mmio page\n"
3363		 "     target user address == 0x%08llX\n"
3364		 "     physical address    == 0x%08llX\n"
3365		 "     vm_flags            == 0x%04lX\n"
3366		 "     size                == 0x%04lX\n",
3367		 process->pasid, (unsigned long long) vma->vm_start,
3368		 address, vma->vm_flags, PAGE_SIZE);
3369
3370	return io_remap_pfn_range(vma,
3371				vma->vm_start,
3372				address >> PAGE_SHIFT,
3373				PAGE_SIZE,
3374				vma->vm_page_prot);
3375}
3376
3377
3378static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3379{
3380	struct kfd_process *process;
3381	struct kfd_node *dev = NULL;
3382	unsigned long mmap_offset;
3383	unsigned int gpu_id;
3384
3385	process = kfd_get_process(current);
3386	if (IS_ERR(process))
3387		return PTR_ERR(process);
3388
3389	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3390	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3391	if (gpu_id)
3392		dev = kfd_device_by_id(gpu_id);
3393
3394	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3395	case KFD_MMAP_TYPE_DOORBELL:
3396		if (!dev)
3397			return -ENODEV;
3398		return kfd_doorbell_mmap(dev, process, vma);
3399
3400	case KFD_MMAP_TYPE_EVENTS:
3401		return kfd_event_mmap(process, vma);
3402
3403	case KFD_MMAP_TYPE_RESERVED_MEM:
3404		if (!dev)
3405			return -ENODEV;
3406		return kfd_reserved_mem_mmap(dev, process, vma);
3407	case KFD_MMAP_TYPE_MMIO:
3408		if (!dev)
3409			return -ENODEV;
3410		return kfd_mmio_mmap(dev, process, vma);
3411	}
3412
3413	return -EFAULT;
3414}