Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/*
  4 * Clocksource driver for the synthetic counter and timers
  5 * provided by the Hyper-V hypervisor to guest VMs, as described
  6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
  7 * is instruction set architecture independent.
  8 *
  9 * Copyright (C) 2019, Microsoft, Inc.
 10 *
 11 * Author:  Michael Kelley <mikelley@microsoft.com>
 12 */
 13
 14#include <linux/percpu.h>
 15#include <linux/cpumask.h>
 16#include <linux/clockchips.h>
 17#include <linux/clocksource.h>
 18#include <linux/sched_clock.h>
 19#include <linux/mm.h>
 20#include <linux/cpuhotplug.h>
 21#include <linux/interrupt.h>
 22#include <linux/irq.h>
 23#include <linux/acpi.h>
 24#include <linux/hyperv.h>
 25#include <clocksource/hyperv_timer.h>
 26#include <asm/hyperv-tlfs.h>
 27#include <asm/mshyperv.h>
 28
 29static struct clock_event_device __percpu *hv_clock_event;
 30static u64 hv_sched_clock_offset __ro_after_init;
 31
 32/*
 33 * If false, we're using the old mechanism for stimer0 interrupts
 34 * where it sends a VMbus message when it expires. The old
 35 * mechanism is used when running on older versions of Hyper-V
 36 * that don't support Direct Mode. While Hyper-V provides
 37 * four stimer's per CPU, Linux uses only stimer0.
 38 *
 39 * Because Direct Mode does not require processing a VMbus
 40 * message, stimer interrupts can be enabled earlier in the
 41 * process of booting a CPU, and consistent with when timer
 42 * interrupts are enabled for other clocksource drivers.
 43 * However, for legacy versions of Hyper-V when Direct Mode
 44 * is not enabled, setting up stimer interrupts must be
 45 * delayed until VMbus is initialized and can process the
 46 * interrupt message.
 47 */
 48static bool direct_mode_enabled;
 49
 50static int stimer0_irq = -1;
 51static int stimer0_message_sint;
 52static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
 53
 54/*
 55 * Common code for stimer0 interrupts coming via Direct Mode or
 56 * as a VMbus message.
 57 */
 58void hv_stimer0_isr(void)
 59{
 60	struct clock_event_device *ce;
 61
 62	ce = this_cpu_ptr(hv_clock_event);
 63	ce->event_handler(ce);
 64}
 65EXPORT_SYMBOL_GPL(hv_stimer0_isr);
 66
 67/*
 68 * stimer0 interrupt handler for architectures that support
 69 * per-cpu interrupts, which also implies Direct Mode.
 70 */
 71static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
 72{
 73	hv_stimer0_isr();
 74	return IRQ_HANDLED;
 75}
 76
 77static int hv_ce_set_next_event(unsigned long delta,
 78				struct clock_event_device *evt)
 79{
 80	u64 current_tick;
 81
 82	current_tick = hv_read_reference_counter();
 83	current_tick += delta;
 84	hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
 85	return 0;
 86}
 87
 88static int hv_ce_shutdown(struct clock_event_device *evt)
 89{
 90	hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
 91	hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
 92	if (direct_mode_enabled && stimer0_irq >= 0)
 93		disable_percpu_irq(stimer0_irq);
 94
 95	return 0;
 96}
 97
 98static int hv_ce_set_oneshot(struct clock_event_device *evt)
 99{
100	union hv_stimer_config timer_cfg;
101
102	timer_cfg.as_uint64 = 0;
103	timer_cfg.enable = 1;
104	timer_cfg.auto_enable = 1;
105	if (direct_mode_enabled) {
106		/*
107		 * When it expires, the timer will directly interrupt
108		 * on the specified hardware vector/IRQ.
109		 */
110		timer_cfg.direct_mode = 1;
111		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112		if (stimer0_irq >= 0)
113			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114	} else {
115		/*
116		 * When it expires, the timer will generate a VMbus message,
117		 * to be handled by the normal VMbus interrupt handler.
118		 */
119		timer_cfg.direct_mode = 0;
120		timer_cfg.sintx = stimer0_message_sint;
121	}
122	hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
123	return 0;
124}
125
126/*
127 * hv_stimer_init - Per-cpu initialization of the clockevent
128 */
129static int hv_stimer_init(unsigned int cpu)
130{
131	struct clock_event_device *ce;
132
133	if (!hv_clock_event)
134		return 0;
135
136	ce = per_cpu_ptr(hv_clock_event, cpu);
137	ce->name = "Hyper-V clockevent";
138	ce->features = CLOCK_EVT_FEAT_ONESHOT;
139	ce->cpumask = cpumask_of(cpu);
140	ce->rating = 1000;
141	ce->set_state_shutdown = hv_ce_shutdown;
142	ce->set_state_oneshot = hv_ce_set_oneshot;
143	ce->set_next_event = hv_ce_set_next_event;
144
145	clockevents_config_and_register(ce,
146					HV_CLOCK_HZ,
147					HV_MIN_DELTA_TICKS,
148					HV_MAX_MAX_DELTA_TICKS);
149	return 0;
150}
151
152/*
153 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
154 */
155int hv_stimer_cleanup(unsigned int cpu)
156{
157	struct clock_event_device *ce;
158
159	if (!hv_clock_event)
160		return 0;
161
162	/*
163	 * In the legacy case where Direct Mode is not enabled
164	 * (which can only be on x86/64), stimer cleanup happens
165	 * relatively early in the CPU offlining process. We
166	 * must unbind the stimer-based clockevent device so
167	 * that the LAPIC timer can take over until clockevents
168	 * are no longer needed in the offlining process. Note
169	 * that clockevents_unbind_device() eventually calls
170	 * hv_ce_shutdown().
171	 *
172	 * The unbind should not be done when Direct Mode is
173	 * enabled because we may be on an architecture where
174	 * there are no other clockevent devices to fallback to.
175	 */
176	ce = per_cpu_ptr(hv_clock_event, cpu);
177	if (direct_mode_enabled)
178		hv_ce_shutdown(ce);
179	else
180		clockevents_unbind_device(ce, cpu);
181
182	return 0;
183}
184EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
185
186/*
187 * These placeholders are overridden by arch specific code on
188 * architectures that need special setup of the stimer0 IRQ because
189 * they don't support per-cpu IRQs (such as x86/x64).
190 */
191void __weak hv_setup_stimer0_handler(void (*handler)(void))
192{
193};
194
195void __weak hv_remove_stimer0_handler(void)
196{
197};
198
199#ifdef CONFIG_ACPI
200/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
201static int hv_setup_stimer0_irq(void)
202{
203	int ret;
204
205	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
206			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
207	if (ret < 0) {
208		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
209		return ret;
210	}
211	stimer0_irq = ret;
212
213	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
214		"Hyper-V stimer0", &stimer0_evt);
215	if (ret) {
216		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
217			stimer0_irq, ret);
218		acpi_unregister_gsi(stimer0_irq);
219		stimer0_irq = -1;
220	}
221	return ret;
222}
223
224static void hv_remove_stimer0_irq(void)
225{
226	if (stimer0_irq == -1) {
227		hv_remove_stimer0_handler();
228	} else {
229		free_percpu_irq(stimer0_irq, &stimer0_evt);
230		acpi_unregister_gsi(stimer0_irq);
231		stimer0_irq = -1;
232	}
233}
234#else
235static int hv_setup_stimer0_irq(void)
236{
237	return 0;
238}
239
240static void hv_remove_stimer0_irq(void)
241{
242}
243#endif
244
245/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
246int hv_stimer_alloc(bool have_percpu_irqs)
247{
248	int ret;
249
250	/*
251	 * Synthetic timers are always available except on old versions of
252	 * Hyper-V on x86.  In that case, return as error as Linux will use a
253	 * clockevent based on emulated LAPIC timer hardware.
254	 */
255	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
256		return -EINVAL;
257
258	hv_clock_event = alloc_percpu(struct clock_event_device);
259	if (!hv_clock_event)
260		return -ENOMEM;
261
262	direct_mode_enabled = ms_hyperv.misc_features &
263			HV_STIMER_DIRECT_MODE_AVAILABLE;
264
265	/*
266	 * If Direct Mode isn't enabled, the remainder of the initialization
267	 * is done later by hv_stimer_legacy_init()
268	 */
269	if (!direct_mode_enabled)
270		return 0;
271
272	if (have_percpu_irqs) {
273		ret = hv_setup_stimer0_irq();
274		if (ret)
275			goto free_clock_event;
276	} else {
277		hv_setup_stimer0_handler(hv_stimer0_isr);
278	}
279
280	/*
281	 * Since we are in Direct Mode, stimer initialization
282	 * can be done now with a CPUHP value in the same range
283	 * as other clockevent devices.
284	 */
285	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
286			"clockevents/hyperv/stimer:starting",
287			hv_stimer_init, hv_stimer_cleanup);
288	if (ret < 0) {
289		hv_remove_stimer0_irq();
290		goto free_clock_event;
291	}
292	return ret;
293
294free_clock_event:
295	free_percpu(hv_clock_event);
296	hv_clock_event = NULL;
297	return ret;
298}
299EXPORT_SYMBOL_GPL(hv_stimer_alloc);
300
301/*
302 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
303 * the case when Direct Mode is not enabled, and the stimer
304 * must be initialized late in the CPU onlining process.
305 *
306 */
307void hv_stimer_legacy_init(unsigned int cpu, int sint)
308{
309	if (direct_mode_enabled)
310		return;
311
312	/*
313	 * This function gets called by each vCPU, so setting the
314	 * global stimer_message_sint value each time is conceptually
315	 * not ideal, but the value passed in is always the same and
316	 * it avoids introducing yet another interface into this
317	 * clocksource driver just to set the sint in the legacy case.
318	 */
319	stimer0_message_sint = sint;
320	(void)hv_stimer_init(cpu);
321}
322EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
323
324/*
325 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
326 * handle the case when Direct Mode is not enabled, and the
327 * stimer must be cleaned up early in the CPU offlining
328 * process.
329 */
330void hv_stimer_legacy_cleanup(unsigned int cpu)
331{
332	if (direct_mode_enabled)
333		return;
334	(void)hv_stimer_cleanup(cpu);
335}
336EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
337
338/*
339 * Do a global cleanup of clockevents for the cases of kexec and
340 * vmbus exit
341 */
342void hv_stimer_global_cleanup(void)
343{
344	int	cpu;
345
346	/*
347	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
348	 * Mode is not enabled, and fallback to the LAPIC timer.
349	 */
350	for_each_present_cpu(cpu) {
351		hv_stimer_legacy_cleanup(cpu);
352	}
353
354	if (!hv_clock_event)
355		return;
356
357	if (direct_mode_enabled) {
358		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
359		hv_remove_stimer0_irq();
360		stimer0_irq = -1;
361	}
362	free_percpu(hv_clock_event);
363	hv_clock_event = NULL;
364
365}
366EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
367
368static __always_inline u64 read_hv_clock_msr(void)
369{
370	/*
371	 * Read the partition counter to get the current tick count. This count
372	 * is set to 0 when the partition is created and is incremented in 100
373	 * nanosecond units.
374	 *
375	 * Use hv_raw_get_register() because this function is used from
376	 * noinstr. Notable; while HV_REGISTER_TIME_REF_COUNT is a synthetic
377	 * register it doesn't need the GHCB path.
378	 */
379	return hv_raw_get_register(HV_REGISTER_TIME_REF_COUNT);
380}
381
382/*
383 * Code and definitions for the Hyper-V clocksources.  Two
384 * clocksources are defined: one that reads the Hyper-V defined MSR, and
385 * the other that uses the TSC reference page feature as defined in the
386 * TLFS.  The MSR version is for compatibility with old versions of
387 * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
388 */
389
 
 
 
390static union {
391	struct ms_hyperv_tsc_page page;
392	u8 reserved[PAGE_SIZE];
393} tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
394
395static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
396static unsigned long tsc_pfn;
397
398unsigned long hv_get_tsc_pfn(void)
399{
400	return tsc_pfn;
401}
402EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
403
404struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
405{
406	return tsc_page;
407}
408EXPORT_SYMBOL_GPL(hv_get_tsc_page);
409
410static __always_inline u64 read_hv_clock_tsc(void)
411{
412	u64 cur_tsc, time;
413
414	/*
415	 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
416	 * subsection Refererence Counter, guarantees that the TSC and MSR
417	 * times are in sync and monotonic. Therefore we can fall back
418	 * to the MSR in case the TSC page indicates unavailability.
419	 */
420	if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
421		time = read_hv_clock_msr();
422
423	return time;
424}
425
426static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
427{
428	return read_hv_clock_tsc();
429}
430
431static u64 noinstr read_hv_sched_clock_tsc(void)
432{
433	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
434		(NSEC_PER_SEC / HV_CLOCK_HZ);
435}
436
437static void suspend_hv_clock_tsc(struct clocksource *arg)
438{
439	union hv_reference_tsc_msr tsc_msr;
440
441	/* Disable the TSC page */
442	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
443	tsc_msr.enable = 0;
444	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
445}
446
447
448static void resume_hv_clock_tsc(struct clocksource *arg)
449{
450	union hv_reference_tsc_msr tsc_msr;
 
451
452	/* Re-enable the TSC page */
453	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
454	tsc_msr.enable = 1;
455	tsc_msr.pfn = tsc_pfn;
456	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
457}
458
459#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
460static int hv_cs_enable(struct clocksource *cs)
461{
462	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
463	return 0;
464}
465#endif
466
467static struct clocksource hyperv_cs_tsc = {
468	.name	= "hyperv_clocksource_tsc_page",
469	.rating	= 500,
470	.read	= read_hv_clock_tsc_cs,
471	.mask	= CLOCKSOURCE_MASK(64),
472	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
473	.suspend= suspend_hv_clock_tsc,
474	.resume	= resume_hv_clock_tsc,
475#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
476	.enable = hv_cs_enable,
477	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
478#else
479	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
480#endif
481};
482
 
 
 
 
 
 
 
 
 
 
483static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
484{
485	return read_hv_clock_msr();
486}
487
 
 
 
 
 
 
488static struct clocksource hyperv_cs_msr = {
489	.name	= "hyperv_clocksource_msr",
490	.rating	= 495,
491	.read	= read_hv_clock_msr_cs,
492	.mask	= CLOCKSOURCE_MASK(64),
493	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
494};
495
496/*
497 * Reference to pv_ops must be inline so objtool
498 * detection of noinstr violations can work correctly.
499 */
500#ifdef CONFIG_GENERIC_SCHED_CLOCK
501static __always_inline void hv_setup_sched_clock(void *sched_clock)
502{
503	/*
504	 * We're on an architecture with generic sched clock (not x86/x64).
505	 * The Hyper-V sched clock read function returns nanoseconds, not
506	 * the normal 100ns units of the Hyper-V synthetic clock.
507	 */
508	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
509}
510#elif defined CONFIG_PARAVIRT
511static __always_inline void hv_setup_sched_clock(void *sched_clock)
512{
513	/* We're on x86/x64 *and* using PV ops */
514	paravirt_set_sched_clock(sched_clock);
515}
516#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
517static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
518#endif /* CONFIG_GENERIC_SCHED_CLOCK */
519
520static void __init hv_init_tsc_clocksource(void)
521{
522	union hv_reference_tsc_msr tsc_msr;
 
 
 
 
 
 
 
523
524	/*
525	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
526	 * handles frequency and offset changes due to live migration,
527	 * pause/resume, and other VM management operations.  So lower the
528	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
529	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
530	 * TSC will be preferred over the virtualized ARM64 arch counter.
 
 
 
531	 */
532	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
533		hyperv_cs_tsc.rating = 250;
534		hyperv_cs_msr.rating = 245;
535	}
536
537	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
538		return;
539
540	hv_read_reference_counter = read_hv_clock_tsc;
 
541
542	/*
543	 * TSC page mapping works differently in root compared to guest.
544	 * - In guest partition the guest PFN has to be passed to the
545	 *   hypervisor.
546	 * - In root partition it's other way around: it has to map the PFN
547	 *   provided by the hypervisor.
548	 *   But it can't be mapped right here as it's too early and MMU isn't
549	 *   ready yet. So, we only set the enable bit here and will remap the
550	 *   page later in hv_remap_tsc_clocksource().
551	 *
552	 * It worth mentioning, that TSC clocksource read function
553	 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
554	 * TSC page is zeroed (which is the case until the PFN is remapped) and
555	 * thus TSC clocksource will work even without the real TSC page
556	 * mapped.
557	 */
558	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
559	if (hv_root_partition)
560		tsc_pfn = tsc_msr.pfn;
561	else
562		tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
563	tsc_msr.enable = 1;
564	tsc_msr.pfn = tsc_pfn;
565	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
566
567	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
568
569	/*
570	 * If TSC is invariant, then let it stay as the sched clock since it
571	 * will be faster than reading the TSC page. But if not invariant, use
572	 * the TSC page so that live migrations across hosts with different
573	 * frequencies is handled correctly.
574	 */
575	if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
576		hv_sched_clock_offset = hv_read_reference_counter();
577		hv_setup_sched_clock(read_hv_sched_clock_tsc);
578	}
579}
580
581void __init hv_init_clocksource(void)
582{
583	/*
584	 * Try to set up the TSC page clocksource, then the MSR clocksource.
585	 * At least one of these will always be available except on very old
586	 * versions of Hyper-V on x86.  In that case we won't have a Hyper-V
 
587	 * clocksource, but Linux will still run with a clocksource based
588	 * on the emulated PIT or LAPIC timer.
589	 *
590	 * Never use the MSR clocksource as sched clock.  It's too slow.
591	 * Better to use the native sched clock as the fallback.
592	 */
593	hv_init_tsc_clocksource();
594
595	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
596		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
597}
598
599void __init hv_remap_tsc_clocksource(void)
600{
601	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
602		return;
603
604	if (!hv_root_partition) {
605		WARN(1, "%s: attempt to remap TSC page in guest partition\n",
606		     __func__);
607		return;
608	}
609
610	tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
611			    MEMREMAP_WB);
612	if (!tsc_page)
613		pr_err("Failed to remap Hyper-V TSC page.\n");
 
614}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/*
  4 * Clocksource driver for the synthetic counter and timers
  5 * provided by the Hyper-V hypervisor to guest VMs, as described
  6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
  7 * is instruction set architecture independent.
  8 *
  9 * Copyright (C) 2019, Microsoft, Inc.
 10 *
 11 * Author:  Michael Kelley <mikelley@microsoft.com>
 12 */
 13
 14#include <linux/percpu.h>
 15#include <linux/cpumask.h>
 16#include <linux/clockchips.h>
 17#include <linux/clocksource.h>
 18#include <linux/sched_clock.h>
 19#include <linux/mm.h>
 20#include <linux/cpuhotplug.h>
 21#include <linux/interrupt.h>
 22#include <linux/irq.h>
 23#include <linux/acpi.h>
 
 24#include <clocksource/hyperv_timer.h>
 25#include <asm/hyperv-tlfs.h>
 26#include <asm/mshyperv.h>
 27
 28static struct clock_event_device __percpu *hv_clock_event;
 29static u64 hv_sched_clock_offset __ro_after_init;
 30
 31/*
 32 * If false, we're using the old mechanism for stimer0 interrupts
 33 * where it sends a VMbus message when it expires. The old
 34 * mechanism is used when running on older versions of Hyper-V
 35 * that don't support Direct Mode. While Hyper-V provides
 36 * four stimer's per CPU, Linux uses only stimer0.
 37 *
 38 * Because Direct Mode does not require processing a VMbus
 39 * message, stimer interrupts can be enabled earlier in the
 40 * process of booting a CPU, and consistent with when timer
 41 * interrupts are enabled for other clocksource drivers.
 42 * However, for legacy versions of Hyper-V when Direct Mode
 43 * is not enabled, setting up stimer interrupts must be
 44 * delayed until VMbus is initialized and can process the
 45 * interrupt message.
 46 */
 47static bool direct_mode_enabled;
 48
 49static int stimer0_irq = -1;
 50static int stimer0_message_sint;
 51static DEFINE_PER_CPU(long, stimer0_evt);
 52
 53/*
 54 * Common code for stimer0 interrupts coming via Direct Mode or
 55 * as a VMbus message.
 56 */
 57void hv_stimer0_isr(void)
 58{
 59	struct clock_event_device *ce;
 60
 61	ce = this_cpu_ptr(hv_clock_event);
 62	ce->event_handler(ce);
 63}
 64EXPORT_SYMBOL_GPL(hv_stimer0_isr);
 65
 66/*
 67 * stimer0 interrupt handler for architectures that support
 68 * per-cpu interrupts, which also implies Direct Mode.
 69 */
 70static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
 71{
 72	hv_stimer0_isr();
 73	return IRQ_HANDLED;
 74}
 75
 76static int hv_ce_set_next_event(unsigned long delta,
 77				struct clock_event_device *evt)
 78{
 79	u64 current_tick;
 80
 81	current_tick = hv_read_reference_counter();
 82	current_tick += delta;
 83	hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
 84	return 0;
 85}
 86
 87static int hv_ce_shutdown(struct clock_event_device *evt)
 88{
 89	hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
 90	hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
 91	if (direct_mode_enabled && stimer0_irq >= 0)
 92		disable_percpu_irq(stimer0_irq);
 93
 94	return 0;
 95}
 96
 97static int hv_ce_set_oneshot(struct clock_event_device *evt)
 98{
 99	union hv_stimer_config timer_cfg;
100
101	timer_cfg.as_uint64 = 0;
102	timer_cfg.enable = 1;
103	timer_cfg.auto_enable = 1;
104	if (direct_mode_enabled) {
105		/*
106		 * When it expires, the timer will directly interrupt
107		 * on the specified hardware vector/IRQ.
108		 */
109		timer_cfg.direct_mode = 1;
110		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
111		if (stimer0_irq >= 0)
112			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
113	} else {
114		/*
115		 * When it expires, the timer will generate a VMbus message,
116		 * to be handled by the normal VMbus interrupt handler.
117		 */
118		timer_cfg.direct_mode = 0;
119		timer_cfg.sintx = stimer0_message_sint;
120	}
121	hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
122	return 0;
123}
124
125/*
126 * hv_stimer_init - Per-cpu initialization of the clockevent
127 */
128static int hv_stimer_init(unsigned int cpu)
129{
130	struct clock_event_device *ce;
131
132	if (!hv_clock_event)
133		return 0;
134
135	ce = per_cpu_ptr(hv_clock_event, cpu);
136	ce->name = "Hyper-V clockevent";
137	ce->features = CLOCK_EVT_FEAT_ONESHOT;
138	ce->cpumask = cpumask_of(cpu);
139	ce->rating = 1000;
140	ce->set_state_shutdown = hv_ce_shutdown;
141	ce->set_state_oneshot = hv_ce_set_oneshot;
142	ce->set_next_event = hv_ce_set_next_event;
143
144	clockevents_config_and_register(ce,
145					HV_CLOCK_HZ,
146					HV_MIN_DELTA_TICKS,
147					HV_MAX_MAX_DELTA_TICKS);
148	return 0;
149}
150
151/*
152 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
153 */
154int hv_stimer_cleanup(unsigned int cpu)
155{
156	struct clock_event_device *ce;
157
158	if (!hv_clock_event)
159		return 0;
160
161	/*
162	 * In the legacy case where Direct Mode is not enabled
163	 * (which can only be on x86/64), stimer cleanup happens
164	 * relatively early in the CPU offlining process. We
165	 * must unbind the stimer-based clockevent device so
166	 * that the LAPIC timer can take over until clockevents
167	 * are no longer needed in the offlining process. Note
168	 * that clockevents_unbind_device() eventually calls
169	 * hv_ce_shutdown().
170	 *
171	 * The unbind should not be done when Direct Mode is
172	 * enabled because we may be on an architecture where
173	 * there are no other clockevent devices to fallback to.
174	 */
175	ce = per_cpu_ptr(hv_clock_event, cpu);
176	if (direct_mode_enabled)
177		hv_ce_shutdown(ce);
178	else
179		clockevents_unbind_device(ce, cpu);
180
181	return 0;
182}
183EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
184
185/*
186 * These placeholders are overridden by arch specific code on
187 * architectures that need special setup of the stimer0 IRQ because
188 * they don't support per-cpu IRQs (such as x86/x64).
189 */
190void __weak hv_setup_stimer0_handler(void (*handler)(void))
191{
192};
193
194void __weak hv_remove_stimer0_handler(void)
195{
196};
197
 
198/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
199static int hv_setup_stimer0_irq(void)
200{
201	int ret;
202
203	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
204			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
205	if (ret < 0) {
206		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
207		return ret;
208	}
209	stimer0_irq = ret;
210
211	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
212		"Hyper-V stimer0", &stimer0_evt);
213	if (ret) {
214		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
215			stimer0_irq, ret);
216		acpi_unregister_gsi(stimer0_irq);
217		stimer0_irq = -1;
218	}
219	return ret;
220}
221
222static void hv_remove_stimer0_irq(void)
223{
224	if (stimer0_irq == -1) {
225		hv_remove_stimer0_handler();
226	} else {
227		free_percpu_irq(stimer0_irq, &stimer0_evt);
228		acpi_unregister_gsi(stimer0_irq);
229		stimer0_irq = -1;
230	}
231}
 
 
 
 
 
 
 
 
 
 
232
233/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
234int hv_stimer_alloc(bool have_percpu_irqs)
235{
236	int ret;
237
238	/*
239	 * Synthetic timers are always available except on old versions of
240	 * Hyper-V on x86.  In that case, return as error as Linux will use a
241	 * clockevent based on emulated LAPIC timer hardware.
242	 */
243	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
244		return -EINVAL;
245
246	hv_clock_event = alloc_percpu(struct clock_event_device);
247	if (!hv_clock_event)
248		return -ENOMEM;
249
250	direct_mode_enabled = ms_hyperv.misc_features &
251			HV_STIMER_DIRECT_MODE_AVAILABLE;
252
253	/*
254	 * If Direct Mode isn't enabled, the remainder of the initialization
255	 * is done later by hv_stimer_legacy_init()
256	 */
257	if (!direct_mode_enabled)
258		return 0;
259
260	if (have_percpu_irqs) {
261		ret = hv_setup_stimer0_irq();
262		if (ret)
263			goto free_clock_event;
264	} else {
265		hv_setup_stimer0_handler(hv_stimer0_isr);
266	}
267
268	/*
269	 * Since we are in Direct Mode, stimer initialization
270	 * can be done now with a CPUHP value in the same range
271	 * as other clockevent devices.
272	 */
273	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
274			"clockevents/hyperv/stimer:starting",
275			hv_stimer_init, hv_stimer_cleanup);
276	if (ret < 0) {
277		hv_remove_stimer0_irq();
278		goto free_clock_event;
279	}
280	return ret;
281
282free_clock_event:
283	free_percpu(hv_clock_event);
284	hv_clock_event = NULL;
285	return ret;
286}
287EXPORT_SYMBOL_GPL(hv_stimer_alloc);
288
289/*
290 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
291 * the case when Direct Mode is not enabled, and the stimer
292 * must be initialized late in the CPU onlining process.
293 *
294 */
295void hv_stimer_legacy_init(unsigned int cpu, int sint)
296{
297	if (direct_mode_enabled)
298		return;
299
300	/*
301	 * This function gets called by each vCPU, so setting the
302	 * global stimer_message_sint value each time is conceptually
303	 * not ideal, but the value passed in is always the same and
304	 * it avoids introducing yet another interface into this
305	 * clocksource driver just to set the sint in the legacy case.
306	 */
307	stimer0_message_sint = sint;
308	(void)hv_stimer_init(cpu);
309}
310EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
311
312/*
313 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
314 * handle the case when Direct Mode is not enabled, and the
315 * stimer must be cleaned up early in the CPU offlining
316 * process.
317 */
318void hv_stimer_legacy_cleanup(unsigned int cpu)
319{
320	if (direct_mode_enabled)
321		return;
322	(void)hv_stimer_cleanup(cpu);
323}
324EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
325
326/*
327 * Do a global cleanup of clockevents for the cases of kexec and
328 * vmbus exit
329 */
330void hv_stimer_global_cleanup(void)
331{
332	int	cpu;
333
334	/*
335	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
336	 * Mode is not enabled, and fallback to the LAPIC timer.
337	 */
338	for_each_present_cpu(cpu) {
339		hv_stimer_legacy_cleanup(cpu);
340	}
341
342	if (!hv_clock_event)
343		return;
344
345	if (direct_mode_enabled) {
346		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
347		hv_remove_stimer0_irq();
348		stimer0_irq = -1;
349	}
350	free_percpu(hv_clock_event);
351	hv_clock_event = NULL;
352
353}
354EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356/*
357 * Code and definitions for the Hyper-V clocksources.  Two
358 * clocksources are defined: one that reads the Hyper-V defined MSR, and
359 * the other that uses the TSC reference page feature as defined in the
360 * TLFS.  The MSR version is for compatibility with old versions of
361 * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
362 */
363
364u64 (*hv_read_reference_counter)(void);
365EXPORT_SYMBOL_GPL(hv_read_reference_counter);
366
367static union {
368	struct ms_hyperv_tsc_page page;
369	u8 reserved[PAGE_SIZE];
370} tsc_pg __aligned(PAGE_SIZE);
 
 
 
 
 
 
 
 
 
371
372struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
373{
374	return &tsc_pg.page;
375}
376EXPORT_SYMBOL_GPL(hv_get_tsc_page);
377
378static u64 notrace read_hv_clock_tsc(void)
379{
380	u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
381
382	if (current_tick == U64_MAX)
383		current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
 
 
 
 
 
 
384
385	return current_tick;
386}
387
388static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
389{
390	return read_hv_clock_tsc();
391}
392
393static u64 notrace read_hv_sched_clock_tsc(void)
394{
395	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
396		(NSEC_PER_SEC / HV_CLOCK_HZ);
397}
398
399static void suspend_hv_clock_tsc(struct clocksource *arg)
400{
401	u64 tsc_msr;
402
403	/* Disable the TSC page */
404	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
405	tsc_msr &= ~BIT_ULL(0);
406	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
407}
408
409
410static void resume_hv_clock_tsc(struct clocksource *arg)
411{
412	phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
413	u64 tsc_msr;
414
415	/* Re-enable the TSC page */
416	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
417	tsc_msr &= GENMASK_ULL(11, 0);
418	tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
419	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
420}
421
422#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
423static int hv_cs_enable(struct clocksource *cs)
424{
425	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
426	return 0;
427}
428#endif
429
430static struct clocksource hyperv_cs_tsc = {
431	.name	= "hyperv_clocksource_tsc_page",
432	.rating	= 500,
433	.read	= read_hv_clock_tsc_cs,
434	.mask	= CLOCKSOURCE_MASK(64),
435	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
436	.suspend= suspend_hv_clock_tsc,
437	.resume	= resume_hv_clock_tsc,
438#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
439	.enable = hv_cs_enable,
440	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
441#else
442	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
443#endif
444};
445
446static u64 notrace read_hv_clock_msr(void)
447{
448	/*
449	 * Read the partition counter to get the current tick count. This count
450	 * is set to 0 when the partition is created and is incremented in
451	 * 100 nanosecond units.
452	 */
453	return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
454}
455
456static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
457{
458	return read_hv_clock_msr();
459}
460
461static u64 notrace read_hv_sched_clock_msr(void)
462{
463	return (read_hv_clock_msr() - hv_sched_clock_offset) *
464		(NSEC_PER_SEC / HV_CLOCK_HZ);
465}
466
467static struct clocksource hyperv_cs_msr = {
468	.name	= "hyperv_clocksource_msr",
469	.rating	= 500,
470	.read	= read_hv_clock_msr_cs,
471	.mask	= CLOCKSOURCE_MASK(64),
472	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
473};
474
475/*
476 * Reference to pv_ops must be inline so objtool
477 * detection of noinstr violations can work correctly.
478 */
479#ifdef CONFIG_GENERIC_SCHED_CLOCK
480static __always_inline void hv_setup_sched_clock(void *sched_clock)
481{
482	/*
483	 * We're on an architecture with generic sched clock (not x86/x64).
484	 * The Hyper-V sched clock read function returns nanoseconds, not
485	 * the normal 100ns units of the Hyper-V synthetic clock.
486	 */
487	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
488}
489#elif defined CONFIG_PARAVIRT
490static __always_inline void hv_setup_sched_clock(void *sched_clock)
491{
492	/* We're on x86/x64 *and* using PV ops */
493	paravirt_set_sched_clock(sched_clock);
494}
495#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
496static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
497#endif /* CONFIG_GENERIC_SCHED_CLOCK */
498
499static bool __init hv_init_tsc_clocksource(void)
500{
501	u64		tsc_msr;
502	phys_addr_t	phys_addr;
503
504	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
505		return false;
506
507	if (hv_root_partition)
508		return false;
509
510	/*
511	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
512	 * handles frequency and offset changes due to live migration,
513	 * pause/resume, and other VM management operations.  So lower the
514	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
515	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
516	 * TSC will be preferred over the virtualized ARM64 arch counter.
517	 * While the Hyper-V MSR clocksource won't be used since the
518	 * Reference TSC clocksource is present, change its rating as
519	 * well for consistency.
520	 */
521	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
522		hyperv_cs_tsc.rating = 250;
523		hyperv_cs_msr.rating = 250;
524	}
525
 
 
 
526	hv_read_reference_counter = read_hv_clock_tsc;
527	phys_addr = virt_to_phys(hv_get_tsc_page());
528
529	/*
530	 * The Hyper-V TLFS specifies to preserve the value of reserved
531	 * bits in registers. So read the existing value, preserve the
532	 * low order 12 bits, and add in the guest physical address
533	 * (which already has at least the low 12 bits set to zero since
534	 * it is page aligned). Also set the "enable" bit, which is bit 0.
535	 */
536	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
537	tsc_msr &= GENMASK_ULL(11, 0);
538	tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
539	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
 
 
 
 
 
 
 
 
 
 
 
 
 
540
541	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
542
543	hv_sched_clock_offset = hv_read_reference_counter();
544	hv_setup_sched_clock(read_hv_sched_clock_tsc);
545
546	return true;
 
 
 
 
 
 
547}
548
549void __init hv_init_clocksource(void)
550{
551	/*
552	 * Try to set up the TSC page clocksource. If it succeeds, we're
553	 * done. Otherwise, set up the MSR clocksource.  At least one of
554	 * these will always be available except on very old versions of
555	 * Hyper-V on x86.  In that case we won't have a Hyper-V
556	 * clocksource, but Linux will still run with a clocksource based
557	 * on the emulated PIT or LAPIC timer.
 
 
 
558	 */
559	if (hv_init_tsc_clocksource())
 
 
 
 
 
 
 
 
560		return;
561
562	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
 
 
563		return;
 
564
565	hv_read_reference_counter = read_hv_clock_msr;
566	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
567
568	hv_sched_clock_offset = hv_read_reference_counter();
569	hv_setup_sched_clock(read_hv_sched_clock_msr);
570}
571EXPORT_SYMBOL_GPL(hv_init_clocksource);