Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
8 *
9 * Copyright (C) 2019, Microsoft, Inc.
10 *
11 * Author: Michael Kelley <mikelley@microsoft.com>
12 */
13
14#include <linux/percpu.h>
15#include <linux/cpumask.h>
16#include <linux/clockchips.h>
17#include <linux/clocksource.h>
18#include <linux/sched_clock.h>
19#include <linux/mm.h>
20#include <linux/cpuhotplug.h>
21#include <linux/interrupt.h>
22#include <linux/irq.h>
23#include <linux/acpi.h>
24#include <linux/hyperv.h>
25#include <clocksource/hyperv_timer.h>
26#include <asm/hyperv-tlfs.h>
27#include <asm/mshyperv.h>
28
29static struct clock_event_device __percpu *hv_clock_event;
30static u64 hv_sched_clock_offset __ro_after_init;
31
32/*
33 * If false, we're using the old mechanism for stimer0 interrupts
34 * where it sends a VMbus message when it expires. The old
35 * mechanism is used when running on older versions of Hyper-V
36 * that don't support Direct Mode. While Hyper-V provides
37 * four stimer's per CPU, Linux uses only stimer0.
38 *
39 * Because Direct Mode does not require processing a VMbus
40 * message, stimer interrupts can be enabled earlier in the
41 * process of booting a CPU, and consistent with when timer
42 * interrupts are enabled for other clocksource drivers.
43 * However, for legacy versions of Hyper-V when Direct Mode
44 * is not enabled, setting up stimer interrupts must be
45 * delayed until VMbus is initialized and can process the
46 * interrupt message.
47 */
48static bool direct_mode_enabled;
49
50static int stimer0_irq = -1;
51static int stimer0_message_sint;
52static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
53
54/*
55 * Common code for stimer0 interrupts coming via Direct Mode or
56 * as a VMbus message.
57 */
58void hv_stimer0_isr(void)
59{
60 struct clock_event_device *ce;
61
62 ce = this_cpu_ptr(hv_clock_event);
63 ce->event_handler(ce);
64}
65EXPORT_SYMBOL_GPL(hv_stimer0_isr);
66
67/*
68 * stimer0 interrupt handler for architectures that support
69 * per-cpu interrupts, which also implies Direct Mode.
70 */
71static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
72{
73 hv_stimer0_isr();
74 return IRQ_HANDLED;
75}
76
77static int hv_ce_set_next_event(unsigned long delta,
78 struct clock_event_device *evt)
79{
80 u64 current_tick;
81
82 current_tick = hv_read_reference_counter();
83 current_tick += delta;
84 hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
85 return 0;
86}
87
88static int hv_ce_shutdown(struct clock_event_device *evt)
89{
90 hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
91 hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
92 if (direct_mode_enabled && stimer0_irq >= 0)
93 disable_percpu_irq(stimer0_irq);
94
95 return 0;
96}
97
98static int hv_ce_set_oneshot(struct clock_event_device *evt)
99{
100 union hv_stimer_config timer_cfg;
101
102 timer_cfg.as_uint64 = 0;
103 timer_cfg.enable = 1;
104 timer_cfg.auto_enable = 1;
105 if (direct_mode_enabled) {
106 /*
107 * When it expires, the timer will directly interrupt
108 * on the specified hardware vector/IRQ.
109 */
110 timer_cfg.direct_mode = 1;
111 timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112 if (stimer0_irq >= 0)
113 enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114 } else {
115 /*
116 * When it expires, the timer will generate a VMbus message,
117 * to be handled by the normal VMbus interrupt handler.
118 */
119 timer_cfg.direct_mode = 0;
120 timer_cfg.sintx = stimer0_message_sint;
121 }
122 hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
123 return 0;
124}
125
126/*
127 * hv_stimer_init - Per-cpu initialization of the clockevent
128 */
129static int hv_stimer_init(unsigned int cpu)
130{
131 struct clock_event_device *ce;
132
133 if (!hv_clock_event)
134 return 0;
135
136 ce = per_cpu_ptr(hv_clock_event, cpu);
137 ce->name = "Hyper-V clockevent";
138 ce->features = CLOCK_EVT_FEAT_ONESHOT;
139 ce->cpumask = cpumask_of(cpu);
140 ce->rating = 1000;
141 ce->set_state_shutdown = hv_ce_shutdown;
142 ce->set_state_oneshot = hv_ce_set_oneshot;
143 ce->set_next_event = hv_ce_set_next_event;
144
145 clockevents_config_and_register(ce,
146 HV_CLOCK_HZ,
147 HV_MIN_DELTA_TICKS,
148 HV_MAX_MAX_DELTA_TICKS);
149 return 0;
150}
151
152/*
153 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
154 */
155int hv_stimer_cleanup(unsigned int cpu)
156{
157 struct clock_event_device *ce;
158
159 if (!hv_clock_event)
160 return 0;
161
162 /*
163 * In the legacy case where Direct Mode is not enabled
164 * (which can only be on x86/64), stimer cleanup happens
165 * relatively early in the CPU offlining process. We
166 * must unbind the stimer-based clockevent device so
167 * that the LAPIC timer can take over until clockevents
168 * are no longer needed in the offlining process. Note
169 * that clockevents_unbind_device() eventually calls
170 * hv_ce_shutdown().
171 *
172 * The unbind should not be done when Direct Mode is
173 * enabled because we may be on an architecture where
174 * there are no other clockevent devices to fallback to.
175 */
176 ce = per_cpu_ptr(hv_clock_event, cpu);
177 if (direct_mode_enabled)
178 hv_ce_shutdown(ce);
179 else
180 clockevents_unbind_device(ce, cpu);
181
182 return 0;
183}
184EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
185
186/*
187 * These placeholders are overridden by arch specific code on
188 * architectures that need special setup of the stimer0 IRQ because
189 * they don't support per-cpu IRQs (such as x86/x64).
190 */
191void __weak hv_setup_stimer0_handler(void (*handler)(void))
192{
193};
194
195void __weak hv_remove_stimer0_handler(void)
196{
197};
198
199#ifdef CONFIG_ACPI
200/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
201static int hv_setup_stimer0_irq(void)
202{
203 int ret;
204
205 ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
206 ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
207 if (ret < 0) {
208 pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
209 return ret;
210 }
211 stimer0_irq = ret;
212
213 ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
214 "Hyper-V stimer0", &stimer0_evt);
215 if (ret) {
216 pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
217 stimer0_irq, ret);
218 acpi_unregister_gsi(stimer0_irq);
219 stimer0_irq = -1;
220 }
221 return ret;
222}
223
224static void hv_remove_stimer0_irq(void)
225{
226 if (stimer0_irq == -1) {
227 hv_remove_stimer0_handler();
228 } else {
229 free_percpu_irq(stimer0_irq, &stimer0_evt);
230 acpi_unregister_gsi(stimer0_irq);
231 stimer0_irq = -1;
232 }
233}
234#else
235static int hv_setup_stimer0_irq(void)
236{
237 return 0;
238}
239
240static void hv_remove_stimer0_irq(void)
241{
242}
243#endif
244
245/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
246int hv_stimer_alloc(bool have_percpu_irqs)
247{
248 int ret;
249
250 /*
251 * Synthetic timers are always available except on old versions of
252 * Hyper-V on x86. In that case, return as error as Linux will use a
253 * clockevent based on emulated LAPIC timer hardware.
254 */
255 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
256 return -EINVAL;
257
258 hv_clock_event = alloc_percpu(struct clock_event_device);
259 if (!hv_clock_event)
260 return -ENOMEM;
261
262 direct_mode_enabled = ms_hyperv.misc_features &
263 HV_STIMER_DIRECT_MODE_AVAILABLE;
264
265 /*
266 * If Direct Mode isn't enabled, the remainder of the initialization
267 * is done later by hv_stimer_legacy_init()
268 */
269 if (!direct_mode_enabled)
270 return 0;
271
272 if (have_percpu_irqs) {
273 ret = hv_setup_stimer0_irq();
274 if (ret)
275 goto free_clock_event;
276 } else {
277 hv_setup_stimer0_handler(hv_stimer0_isr);
278 }
279
280 /*
281 * Since we are in Direct Mode, stimer initialization
282 * can be done now with a CPUHP value in the same range
283 * as other clockevent devices.
284 */
285 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
286 "clockevents/hyperv/stimer:starting",
287 hv_stimer_init, hv_stimer_cleanup);
288 if (ret < 0) {
289 hv_remove_stimer0_irq();
290 goto free_clock_event;
291 }
292 return ret;
293
294free_clock_event:
295 free_percpu(hv_clock_event);
296 hv_clock_event = NULL;
297 return ret;
298}
299EXPORT_SYMBOL_GPL(hv_stimer_alloc);
300
301/*
302 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
303 * the case when Direct Mode is not enabled, and the stimer
304 * must be initialized late in the CPU onlining process.
305 *
306 */
307void hv_stimer_legacy_init(unsigned int cpu, int sint)
308{
309 if (direct_mode_enabled)
310 return;
311
312 /*
313 * This function gets called by each vCPU, so setting the
314 * global stimer_message_sint value each time is conceptually
315 * not ideal, but the value passed in is always the same and
316 * it avoids introducing yet another interface into this
317 * clocksource driver just to set the sint in the legacy case.
318 */
319 stimer0_message_sint = sint;
320 (void)hv_stimer_init(cpu);
321}
322EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
323
324/*
325 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
326 * handle the case when Direct Mode is not enabled, and the
327 * stimer must be cleaned up early in the CPU offlining
328 * process.
329 */
330void hv_stimer_legacy_cleanup(unsigned int cpu)
331{
332 if (direct_mode_enabled)
333 return;
334 (void)hv_stimer_cleanup(cpu);
335}
336EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
337
338/*
339 * Do a global cleanup of clockevents for the cases of kexec and
340 * vmbus exit
341 */
342void hv_stimer_global_cleanup(void)
343{
344 int cpu;
345
346 /*
347 * hv_stime_legacy_cleanup() will stop the stimer if Direct
348 * Mode is not enabled, and fallback to the LAPIC timer.
349 */
350 for_each_present_cpu(cpu) {
351 hv_stimer_legacy_cleanup(cpu);
352 }
353
354 if (!hv_clock_event)
355 return;
356
357 if (direct_mode_enabled) {
358 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
359 hv_remove_stimer0_irq();
360 stimer0_irq = -1;
361 }
362 free_percpu(hv_clock_event);
363 hv_clock_event = NULL;
364
365}
366EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
367
368static __always_inline u64 read_hv_clock_msr(void)
369{
370 /*
371 * Read the partition counter to get the current tick count. This count
372 * is set to 0 when the partition is created and is incremented in 100
373 * nanosecond units.
374 *
375 * Use hv_raw_get_register() because this function is used from
376 * noinstr. Notable; while HV_REGISTER_TIME_REF_COUNT is a synthetic
377 * register it doesn't need the GHCB path.
378 */
379 return hv_raw_get_register(HV_REGISTER_TIME_REF_COUNT);
380}
381
382/*
383 * Code and definitions for the Hyper-V clocksources. Two
384 * clocksources are defined: one that reads the Hyper-V defined MSR, and
385 * the other that uses the TSC reference page feature as defined in the
386 * TLFS. The MSR version is for compatibility with old versions of
387 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
388 */
389
390static union {
391 struct ms_hyperv_tsc_page page;
392 u8 reserved[PAGE_SIZE];
393} tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
394
395static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
396static unsigned long tsc_pfn;
397
398unsigned long hv_get_tsc_pfn(void)
399{
400 return tsc_pfn;
401}
402EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
403
404struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
405{
406 return tsc_page;
407}
408EXPORT_SYMBOL_GPL(hv_get_tsc_page);
409
410static __always_inline u64 read_hv_clock_tsc(void)
411{
412 u64 cur_tsc, time;
413
414 /*
415 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
416 * subsection Refererence Counter, guarantees that the TSC and MSR
417 * times are in sync and monotonic. Therefore we can fall back
418 * to the MSR in case the TSC page indicates unavailability.
419 */
420 if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
421 time = read_hv_clock_msr();
422
423 return time;
424}
425
426static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
427{
428 return read_hv_clock_tsc();
429}
430
431static u64 noinstr read_hv_sched_clock_tsc(void)
432{
433 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
434 (NSEC_PER_SEC / HV_CLOCK_HZ);
435}
436
437static void suspend_hv_clock_tsc(struct clocksource *arg)
438{
439 union hv_reference_tsc_msr tsc_msr;
440
441 /* Disable the TSC page */
442 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
443 tsc_msr.enable = 0;
444 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
445}
446
447
448static void resume_hv_clock_tsc(struct clocksource *arg)
449{
450 union hv_reference_tsc_msr tsc_msr;
451
452 /* Re-enable the TSC page */
453 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
454 tsc_msr.enable = 1;
455 tsc_msr.pfn = tsc_pfn;
456 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
457}
458
459#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
460static int hv_cs_enable(struct clocksource *cs)
461{
462 vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
463 return 0;
464}
465#endif
466
467static struct clocksource hyperv_cs_tsc = {
468 .name = "hyperv_clocksource_tsc_page",
469 .rating = 500,
470 .read = read_hv_clock_tsc_cs,
471 .mask = CLOCKSOURCE_MASK(64),
472 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
473 .suspend= suspend_hv_clock_tsc,
474 .resume = resume_hv_clock_tsc,
475#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
476 .enable = hv_cs_enable,
477 .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
478#else
479 .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
480#endif
481};
482
483static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
484{
485 return read_hv_clock_msr();
486}
487
488static struct clocksource hyperv_cs_msr = {
489 .name = "hyperv_clocksource_msr",
490 .rating = 495,
491 .read = read_hv_clock_msr_cs,
492 .mask = CLOCKSOURCE_MASK(64),
493 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
494};
495
496/*
497 * Reference to pv_ops must be inline so objtool
498 * detection of noinstr violations can work correctly.
499 */
500#ifdef CONFIG_GENERIC_SCHED_CLOCK
501static __always_inline void hv_setup_sched_clock(void *sched_clock)
502{
503 /*
504 * We're on an architecture with generic sched clock (not x86/x64).
505 * The Hyper-V sched clock read function returns nanoseconds, not
506 * the normal 100ns units of the Hyper-V synthetic clock.
507 */
508 sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
509}
510#elif defined CONFIG_PARAVIRT
511static __always_inline void hv_setup_sched_clock(void *sched_clock)
512{
513 /* We're on x86/x64 *and* using PV ops */
514 paravirt_set_sched_clock(sched_clock);
515}
516#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
517static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
518#endif /* CONFIG_GENERIC_SCHED_CLOCK */
519
520static void __init hv_init_tsc_clocksource(void)
521{
522 union hv_reference_tsc_msr tsc_msr;
523
524 /*
525 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
526 * handles frequency and offset changes due to live migration,
527 * pause/resume, and other VM management operations. So lower the
528 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
529 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
530 * TSC will be preferred over the virtualized ARM64 arch counter.
531 */
532 if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
533 hyperv_cs_tsc.rating = 250;
534 hyperv_cs_msr.rating = 245;
535 }
536
537 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
538 return;
539
540 hv_read_reference_counter = read_hv_clock_tsc;
541
542 /*
543 * TSC page mapping works differently in root compared to guest.
544 * - In guest partition the guest PFN has to be passed to the
545 * hypervisor.
546 * - In root partition it's other way around: it has to map the PFN
547 * provided by the hypervisor.
548 * But it can't be mapped right here as it's too early and MMU isn't
549 * ready yet. So, we only set the enable bit here and will remap the
550 * page later in hv_remap_tsc_clocksource().
551 *
552 * It worth mentioning, that TSC clocksource read function
553 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
554 * TSC page is zeroed (which is the case until the PFN is remapped) and
555 * thus TSC clocksource will work even without the real TSC page
556 * mapped.
557 */
558 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
559 if (hv_root_partition)
560 tsc_pfn = tsc_msr.pfn;
561 else
562 tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
563 tsc_msr.enable = 1;
564 tsc_msr.pfn = tsc_pfn;
565 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
566
567 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
568
569 /*
570 * If TSC is invariant, then let it stay as the sched clock since it
571 * will be faster than reading the TSC page. But if not invariant, use
572 * the TSC page so that live migrations across hosts with different
573 * frequencies is handled correctly.
574 */
575 if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
576 hv_sched_clock_offset = hv_read_reference_counter();
577 hv_setup_sched_clock(read_hv_sched_clock_tsc);
578 }
579}
580
581void __init hv_init_clocksource(void)
582{
583 /*
584 * Try to set up the TSC page clocksource, then the MSR clocksource.
585 * At least one of these will always be available except on very old
586 * versions of Hyper-V on x86. In that case we won't have a Hyper-V
587 * clocksource, but Linux will still run with a clocksource based
588 * on the emulated PIT or LAPIC timer.
589 *
590 * Never use the MSR clocksource as sched clock. It's too slow.
591 * Better to use the native sched clock as the fallback.
592 */
593 hv_init_tsc_clocksource();
594
595 if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
596 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
597}
598
599void __init hv_remap_tsc_clocksource(void)
600{
601 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
602 return;
603
604 if (!hv_root_partition) {
605 WARN(1, "%s: attempt to remap TSC page in guest partition\n",
606 __func__);
607 return;
608 }
609
610 tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
611 MEMREMAP_WB);
612 if (!tsc_page)
613 pr_err("Failed to remap Hyper-V TSC page.\n");
614}
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
8 *
9 * Copyright (C) 2019, Microsoft, Inc.
10 *
11 * Author: Michael Kelley <mikelley@microsoft.com>
12 */
13
14#include <linux/percpu.h>
15#include <linux/cpumask.h>
16#include <linux/clockchips.h>
17#include <linux/clocksource.h>
18#include <linux/sched_clock.h>
19#include <linux/mm.h>
20#include <linux/cpuhotplug.h>
21#include <clocksource/hyperv_timer.h>
22#include <asm/hyperv-tlfs.h>
23#include <asm/mshyperv.h>
24
25static struct clock_event_device __percpu *hv_clock_event;
26static u64 hv_sched_clock_offset __ro_after_init;
27
28/*
29 * If false, we're using the old mechanism for stimer0 interrupts
30 * where it sends a VMbus message when it expires. The old
31 * mechanism is used when running on older versions of Hyper-V
32 * that don't support Direct Mode. While Hyper-V provides
33 * four stimer's per CPU, Linux uses only stimer0.
34 *
35 * Because Direct Mode does not require processing a VMbus
36 * message, stimer interrupts can be enabled earlier in the
37 * process of booting a CPU, and consistent with when timer
38 * interrupts are enabled for other clocksource drivers.
39 * However, for legacy versions of Hyper-V when Direct Mode
40 * is not enabled, setting up stimer interrupts must be
41 * delayed until VMbus is initialized and can process the
42 * interrupt message.
43 */
44static bool direct_mode_enabled;
45
46static int stimer0_irq;
47static int stimer0_vector;
48static int stimer0_message_sint;
49
50/*
51 * ISR for when stimer0 is operating in Direct Mode. Direct Mode
52 * does not use VMbus or any VMbus messages, so process here and not
53 * in the VMbus driver code.
54 */
55void hv_stimer0_isr(void)
56{
57 struct clock_event_device *ce;
58
59 ce = this_cpu_ptr(hv_clock_event);
60 ce->event_handler(ce);
61}
62EXPORT_SYMBOL_GPL(hv_stimer0_isr);
63
64static int hv_ce_set_next_event(unsigned long delta,
65 struct clock_event_device *evt)
66{
67 u64 current_tick;
68
69 current_tick = hv_read_reference_counter();
70 current_tick += delta;
71 hv_init_timer(0, current_tick);
72 return 0;
73}
74
75static int hv_ce_shutdown(struct clock_event_device *evt)
76{
77 hv_init_timer(0, 0);
78 hv_init_timer_config(0, 0);
79 if (direct_mode_enabled)
80 hv_disable_stimer0_percpu_irq(stimer0_irq);
81
82 return 0;
83}
84
85static int hv_ce_set_oneshot(struct clock_event_device *evt)
86{
87 union hv_stimer_config timer_cfg;
88
89 timer_cfg.as_uint64 = 0;
90 timer_cfg.enable = 1;
91 timer_cfg.auto_enable = 1;
92 if (direct_mode_enabled) {
93 /*
94 * When it expires, the timer will directly interrupt
95 * on the specified hardware vector/IRQ.
96 */
97 timer_cfg.direct_mode = 1;
98 timer_cfg.apic_vector = stimer0_vector;
99 hv_enable_stimer0_percpu_irq(stimer0_irq);
100 } else {
101 /*
102 * When it expires, the timer will generate a VMbus message,
103 * to be handled by the normal VMbus interrupt handler.
104 */
105 timer_cfg.direct_mode = 0;
106 timer_cfg.sintx = stimer0_message_sint;
107 }
108 hv_init_timer_config(0, timer_cfg.as_uint64);
109 return 0;
110}
111
112/*
113 * hv_stimer_init - Per-cpu initialization of the clockevent
114 */
115static int hv_stimer_init(unsigned int cpu)
116{
117 struct clock_event_device *ce;
118
119 if (!hv_clock_event)
120 return 0;
121
122 ce = per_cpu_ptr(hv_clock_event, cpu);
123 ce->name = "Hyper-V clockevent";
124 ce->features = CLOCK_EVT_FEAT_ONESHOT;
125 ce->cpumask = cpumask_of(cpu);
126 ce->rating = 1000;
127 ce->set_state_shutdown = hv_ce_shutdown;
128 ce->set_state_oneshot = hv_ce_set_oneshot;
129 ce->set_next_event = hv_ce_set_next_event;
130
131 clockevents_config_and_register(ce,
132 HV_CLOCK_HZ,
133 HV_MIN_DELTA_TICKS,
134 HV_MAX_MAX_DELTA_TICKS);
135 return 0;
136}
137
138/*
139 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
140 */
141int hv_stimer_cleanup(unsigned int cpu)
142{
143 struct clock_event_device *ce;
144
145 if (!hv_clock_event)
146 return 0;
147
148 /*
149 * In the legacy case where Direct Mode is not enabled
150 * (which can only be on x86/64), stimer cleanup happens
151 * relatively early in the CPU offlining process. We
152 * must unbind the stimer-based clockevent device so
153 * that the LAPIC timer can take over until clockevents
154 * are no longer needed in the offlining process. Note
155 * that clockevents_unbind_device() eventually calls
156 * hv_ce_shutdown().
157 *
158 * The unbind should not be done when Direct Mode is
159 * enabled because we may be on an architecture where
160 * there are no other clockevent devices to fallback to.
161 */
162 ce = per_cpu_ptr(hv_clock_event, cpu);
163 if (direct_mode_enabled)
164 hv_ce_shutdown(ce);
165 else
166 clockevents_unbind_device(ce, cpu);
167
168 return 0;
169}
170EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
171
172/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
173int hv_stimer_alloc(void)
174{
175 int ret = 0;
176
177 /*
178 * Synthetic timers are always available except on old versions of
179 * Hyper-V on x86. In that case, return as error as Linux will use a
180 * clockevent based on emulated LAPIC timer hardware.
181 */
182 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
183 return -EINVAL;
184
185 hv_clock_event = alloc_percpu(struct clock_event_device);
186 if (!hv_clock_event)
187 return -ENOMEM;
188
189 direct_mode_enabled = ms_hyperv.misc_features &
190 HV_STIMER_DIRECT_MODE_AVAILABLE;
191 if (direct_mode_enabled) {
192 ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
193 hv_stimer0_isr);
194 if (ret)
195 goto free_percpu;
196
197 /*
198 * Since we are in Direct Mode, stimer initialization
199 * can be done now with a CPUHP value in the same range
200 * as other clockevent devices.
201 */
202 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
203 "clockevents/hyperv/stimer:starting",
204 hv_stimer_init, hv_stimer_cleanup);
205 if (ret < 0)
206 goto free_stimer0_irq;
207 }
208 return ret;
209
210free_stimer0_irq:
211 hv_remove_stimer0_irq(stimer0_irq);
212 stimer0_irq = 0;
213free_percpu:
214 free_percpu(hv_clock_event);
215 hv_clock_event = NULL;
216 return ret;
217}
218EXPORT_SYMBOL_GPL(hv_stimer_alloc);
219
220/*
221 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
222 * the case when Direct Mode is not enabled, and the stimer
223 * must be initialized late in the CPU onlining process.
224 *
225 */
226void hv_stimer_legacy_init(unsigned int cpu, int sint)
227{
228 if (direct_mode_enabled)
229 return;
230
231 /*
232 * This function gets called by each vCPU, so setting the
233 * global stimer_message_sint value each time is conceptually
234 * not ideal, but the value passed in is always the same and
235 * it avoids introducing yet another interface into this
236 * clocksource driver just to set the sint in the legacy case.
237 */
238 stimer0_message_sint = sint;
239 (void)hv_stimer_init(cpu);
240}
241EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
242
243/*
244 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
245 * handle the case when Direct Mode is not enabled, and the
246 * stimer must be cleaned up early in the CPU offlining
247 * process.
248 */
249void hv_stimer_legacy_cleanup(unsigned int cpu)
250{
251 if (direct_mode_enabled)
252 return;
253 (void)hv_stimer_cleanup(cpu);
254}
255EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
256
257
258/* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */
259void hv_stimer_free(void)
260{
261 if (!hv_clock_event)
262 return;
263
264 if (direct_mode_enabled) {
265 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
266 hv_remove_stimer0_irq(stimer0_irq);
267 stimer0_irq = 0;
268 }
269 free_percpu(hv_clock_event);
270 hv_clock_event = NULL;
271}
272EXPORT_SYMBOL_GPL(hv_stimer_free);
273
274/*
275 * Do a global cleanup of clockevents for the cases of kexec and
276 * vmbus exit
277 */
278void hv_stimer_global_cleanup(void)
279{
280 int cpu;
281
282 /*
283 * hv_stime_legacy_cleanup() will stop the stimer if Direct
284 * Mode is not enabled, and fallback to the LAPIC timer.
285 */
286 for_each_present_cpu(cpu) {
287 hv_stimer_legacy_cleanup(cpu);
288 }
289
290 /*
291 * If Direct Mode is enabled, the cpuhp teardown callback
292 * (hv_stimer_cleanup) will be run on all CPUs to stop the
293 * stimers.
294 */
295 hv_stimer_free();
296}
297EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
298
299/*
300 * Code and definitions for the Hyper-V clocksources. Two
301 * clocksources are defined: one that reads the Hyper-V defined MSR, and
302 * the other that uses the TSC reference page feature as defined in the
303 * TLFS. The MSR version is for compatibility with old versions of
304 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
305 *
306 * The Hyper-V clocksource ratings of 250 are chosen to be below the
307 * TSC clocksource rating of 300. In configurations where Hyper-V offers
308 * an InvariantTSC, the TSC is not marked "unstable", so the TSC clocksource
309 * is available and preferred. With the higher rating, it will be the
310 * default. On older hardware and Hyper-V versions, the TSC is marked
311 * "unstable", so no TSC clocksource is created and the selected Hyper-V
312 * clocksource will be the default.
313 */
314
315u64 (*hv_read_reference_counter)(void);
316EXPORT_SYMBOL_GPL(hv_read_reference_counter);
317
318static union {
319 struct ms_hyperv_tsc_page page;
320 u8 reserved[PAGE_SIZE];
321} tsc_pg __aligned(PAGE_SIZE);
322
323struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
324{
325 return &tsc_pg.page;
326}
327EXPORT_SYMBOL_GPL(hv_get_tsc_page);
328
329static u64 notrace read_hv_clock_tsc(void)
330{
331 u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
332
333 if (current_tick == U64_MAX)
334 hv_get_time_ref_count(current_tick);
335
336 return current_tick;
337}
338
339static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
340{
341 return read_hv_clock_tsc();
342}
343
344static u64 read_hv_sched_clock_tsc(void)
345{
346 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
347 (NSEC_PER_SEC / HV_CLOCK_HZ);
348}
349
350static void suspend_hv_clock_tsc(struct clocksource *arg)
351{
352 u64 tsc_msr;
353
354 /* Disable the TSC page */
355 hv_get_reference_tsc(tsc_msr);
356 tsc_msr &= ~BIT_ULL(0);
357 hv_set_reference_tsc(tsc_msr);
358}
359
360
361static void resume_hv_clock_tsc(struct clocksource *arg)
362{
363 phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
364 u64 tsc_msr;
365
366 /* Re-enable the TSC page */
367 hv_get_reference_tsc(tsc_msr);
368 tsc_msr &= GENMASK_ULL(11, 0);
369 tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
370 hv_set_reference_tsc(tsc_msr);
371}
372
373static int hv_cs_enable(struct clocksource *cs)
374{
375 hv_enable_vdso_clocksource();
376 return 0;
377}
378
379static struct clocksource hyperv_cs_tsc = {
380 .name = "hyperv_clocksource_tsc_page",
381 .rating = 250,
382 .read = read_hv_clock_tsc_cs,
383 .mask = CLOCKSOURCE_MASK(64),
384 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
385 .suspend= suspend_hv_clock_tsc,
386 .resume = resume_hv_clock_tsc,
387 .enable = hv_cs_enable,
388};
389
390static u64 notrace read_hv_clock_msr(void)
391{
392 u64 current_tick;
393 /*
394 * Read the partition counter to get the current tick count. This count
395 * is set to 0 when the partition is created and is incremented in
396 * 100 nanosecond units.
397 */
398 hv_get_time_ref_count(current_tick);
399 return current_tick;
400}
401
402static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
403{
404 return read_hv_clock_msr();
405}
406
407static u64 read_hv_sched_clock_msr(void)
408{
409 return (read_hv_clock_msr() - hv_sched_clock_offset) *
410 (NSEC_PER_SEC / HV_CLOCK_HZ);
411}
412
413static struct clocksource hyperv_cs_msr = {
414 .name = "hyperv_clocksource_msr",
415 .rating = 250,
416 .read = read_hv_clock_msr_cs,
417 .mask = CLOCKSOURCE_MASK(64),
418 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
419};
420
421static bool __init hv_init_tsc_clocksource(void)
422{
423 u64 tsc_msr;
424 phys_addr_t phys_addr;
425
426 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
427 return false;
428
429 hv_read_reference_counter = read_hv_clock_tsc;
430 phys_addr = virt_to_phys(hv_get_tsc_page());
431
432 /*
433 * The Hyper-V TLFS specifies to preserve the value of reserved
434 * bits in registers. So read the existing value, preserve the
435 * low order 12 bits, and add in the guest physical address
436 * (which already has at least the low 12 bits set to zero since
437 * it is page aligned). Also set the "enable" bit, which is bit 0.
438 */
439 hv_get_reference_tsc(tsc_msr);
440 tsc_msr &= GENMASK_ULL(11, 0);
441 tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
442 hv_set_reference_tsc(tsc_msr);
443
444 hv_set_clocksource_vdso(hyperv_cs_tsc);
445 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
446
447 hv_sched_clock_offset = hv_read_reference_counter();
448 hv_setup_sched_clock(read_hv_sched_clock_tsc);
449
450 return true;
451}
452
453void __init hv_init_clocksource(void)
454{
455 /*
456 * Try to set up the TSC page clocksource. If it succeeds, we're
457 * done. Otherwise, set up the MSR clocksoruce. At least one of
458 * these will always be available except on very old versions of
459 * Hyper-V on x86. In that case we won't have a Hyper-V
460 * clocksource, but Linux will still run with a clocksource based
461 * on the emulated PIT or LAPIC timer.
462 */
463 if (hv_init_tsc_clocksource())
464 return;
465
466 if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
467 return;
468
469 hv_read_reference_counter = read_hv_clock_msr;
470 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
471
472 hv_sched_clock_offset = hv_read_reference_counter();
473 hv_setup_sched_clock(read_hv_sched_clock_msr);
474}
475EXPORT_SYMBOL_GPL(hv_init_clocksource);