Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73};
74
75const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80};
81EXPORT_SYMBOL_GPL(sata_port_ops);
82
83static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86static void ata_dev_xfermask(struct ata_device *dev);
87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89atomic_t ata_print_id = ATOMIC_INIT(0);
90
91#ifdef CONFIG_ATA_FORCE
92struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned int xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags_on;
100 u16 lflags_off;
101};
102
103struct ata_force_ent {
104 int port;
105 int device;
106 struct ata_force_param param;
107};
108
109static struct ata_force_ent *ata_force_tbl;
110static int ata_force_tbl_size;
111
112static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113/* param_buf is thrown away after initialization, disallow read */
114module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116#endif
117
118static int atapi_enabled = 1;
119module_param(atapi_enabled, int, 0444);
120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122static int atapi_dmadir = 0;
123module_param(atapi_dmadir, int, 0444);
124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126int atapi_passthru16 = 1;
127module_param(atapi_passthru16, int, 0444);
128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130int libata_fua = 0;
131module_param_named(fua, libata_fua, int, 0444);
132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134static int ata_ignore_hpa;
135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139module_param_named(dma, libata_dma_mask, int, 0444);
140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142static int ata_probe_timeout;
143module_param(ata_probe_timeout, int, 0444);
144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146int libata_noacpi = 0;
147module_param_named(noacpi, libata_noacpi, int, 0444);
148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150int libata_allow_tpm = 0;
151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154static int atapi_an;
155module_param(atapi_an, int, 0444);
156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158MODULE_AUTHOR("Jeff Garzik");
159MODULE_DESCRIPTION("Library module for ATA devices");
160MODULE_LICENSE("GPL");
161MODULE_VERSION(DRV_VERSION);
162
163static inline bool ata_dev_print_info(struct ata_device *dev)
164{
165 struct ata_eh_context *ehc = &dev->link->eh_context;
166
167 return ehc->i.flags & ATA_EHI_PRINTINFO;
168}
169
170static bool ata_sstatus_online(u32 sstatus)
171{
172 return (sstatus & 0xf) == 0x3;
173}
174
175/**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189{
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 fallthrough;
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 fallthrough;
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 fallthrough;
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232}
233EXPORT_SYMBOL_GPL(ata_link_next);
234
235/**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
247struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249{
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286}
287EXPORT_SYMBOL_GPL(ata_dev_next);
288
289/**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304{
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312}
313
314#ifdef CONFIG_ATA_FORCE
315/**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345}
346
347/**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
363static void ata_force_link_limits(struct ata_link *link)
364{
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags_on) {
391 link->flags |= fe->param.lflags_on;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags_on, link->flags);
395 }
396 if (fe->param.lflags_off) {
397 link->flags &= ~fe->param.lflags_off;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x cleared -> 0x%x\n",
400 fe->param.lflags_off, link->flags);
401 }
402 }
403}
404
405/**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
416static void ata_force_xfermask(struct ata_device *dev)
417{
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned int pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457}
458
459/**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
470static void ata_force_horkage(struct ata_device *dev)
471{
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500}
501#else
502static inline void ata_force_link_limits(struct ata_link *link) { }
503static inline void ata_force_xfermask(struct ata_device *dev) { }
504static inline void ata_force_horkage(struct ata_device *dev) { }
505#endif
506
507/**
508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 * @opcode: SCSI opcode
510 *
511 * Determine ATAPI command type from @opcode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
519int atapi_cmd_type(u8 opcode)
520{
521 switch (opcode) {
522 case GPCMD_READ_10:
523 case GPCMD_READ_12:
524 return ATAPI_READ;
525
526 case GPCMD_WRITE_10:
527 case GPCMD_WRITE_12:
528 case GPCMD_WRITE_AND_VERIFY_10:
529 return ATAPI_WRITE;
530
531 case GPCMD_READ_CD:
532 case GPCMD_READ_CD_MSF:
533 return ATAPI_READ_CD;
534
535 case ATA_16:
536 case ATA_12:
537 if (atapi_passthru16)
538 return ATAPI_PASS_THRU;
539 fallthrough;
540 default:
541 return ATAPI_MISC;
542 }
543}
544EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546static const u8 ata_rw_cmds[] = {
547 /* pio multi */
548 ATA_CMD_READ_MULTI,
549 ATA_CMD_WRITE_MULTI,
550 ATA_CMD_READ_MULTI_EXT,
551 ATA_CMD_WRITE_MULTI_EXT,
552 0,
553 0,
554 0,
555 0,
556 /* pio */
557 ATA_CMD_PIO_READ,
558 ATA_CMD_PIO_WRITE,
559 ATA_CMD_PIO_READ_EXT,
560 ATA_CMD_PIO_WRITE_EXT,
561 0,
562 0,
563 0,
564 0,
565 /* dma */
566 ATA_CMD_READ,
567 ATA_CMD_WRITE,
568 ATA_CMD_READ_EXT,
569 ATA_CMD_WRITE_EXT,
570 0,
571 0,
572 0,
573 ATA_CMD_WRITE_FUA_EXT
574};
575
576/**
577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578 * @dev: target device for the taskfile
579 * @tf: taskfile to examine and configure
580 *
581 * Examine the device configuration and tf->flags to determine
582 * the proper read/write command and protocol to use for @tf.
583 *
584 * LOCKING:
585 * caller.
586 */
587static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 struct ata_taskfile *tf)
589{
590 u8 cmd;
591
592 int index, fua, lba48, write;
593
594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597
598 if (dev->flags & ATA_DFLAG_PIO) {
599 tf->protocol = ATA_PROT_PIO;
600 index = dev->multi_count ? 0 : 8;
601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 /* Unable to use DMA due to host limitation */
603 tf->protocol = ATA_PROT_PIO;
604 index = dev->multi_count ? 0 : 8;
605 } else {
606 tf->protocol = ATA_PROT_DMA;
607 index = 16;
608 }
609
610 cmd = ata_rw_cmds[index + fua + lba48 + write];
611 if (!cmd)
612 return false;
613
614 tf->command = cmd;
615
616 return true;
617}
618
619/**
620 * ata_tf_read_block - Read block address from ATA taskfile
621 * @tf: ATA taskfile of interest
622 * @dev: ATA device @tf belongs to
623 *
624 * LOCKING:
625 * None.
626 *
627 * Read block address from @tf. This function can handle all
628 * three address formats - LBA, LBA48 and CHS. tf->protocol and
629 * flags select the address format to use.
630 *
631 * RETURNS:
632 * Block address read from @tf.
633 */
634u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635{
636 u64 block = 0;
637
638 if (tf->flags & ATA_TFLAG_LBA) {
639 if (tf->flags & ATA_TFLAG_LBA48) {
640 block |= (u64)tf->hob_lbah << 40;
641 block |= (u64)tf->hob_lbam << 32;
642 block |= (u64)tf->hob_lbal << 24;
643 } else
644 block |= (tf->device & 0xf) << 24;
645
646 block |= tf->lbah << 16;
647 block |= tf->lbam << 8;
648 block |= tf->lbal;
649 } else {
650 u32 cyl, head, sect;
651
652 cyl = tf->lbam | (tf->lbah << 8);
653 head = tf->device & 0xf;
654 sect = tf->lbal;
655
656 if (!sect) {
657 ata_dev_warn(dev,
658 "device reported invalid CHS sector 0\n");
659 return U64_MAX;
660 }
661
662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 }
664
665 return block;
666}
667
668/*
669 * Set a taskfile command duration limit index.
670 */
671static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672{
673 struct ata_taskfile *tf = &qc->tf;
674
675 if (tf->protocol == ATA_PROT_NCQ)
676 tf->auxiliary |= cdl;
677 else
678 tf->feature |= cdl;
679
680 /*
681 * Mark this command as having a CDL and request the result
682 * task file so that we can inspect the sense data available
683 * bit on completion.
684 */
685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686}
687
688/**
689 * ata_build_rw_tf - Build ATA taskfile for given read/write request
690 * @qc: Metadata associated with the taskfile to build
691 * @block: Block address
692 * @n_block: Number of blocks
693 * @tf_flags: RW/FUA etc...
694 * @cdl: Command duration limit index
695 * @class: IO priority class
696 *
697 * LOCKING:
698 * None.
699 *
700 * Build ATA taskfile for the command @qc for read/write request described
701 * by @block, @n_block, @tf_flags and @class.
702 *
703 * RETURNS:
704 *
705 * 0 on success, -ERANGE if the request is too large for @dev,
706 * -EINVAL if the request is invalid.
707 */
708int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709 unsigned int tf_flags, int cdl, int class)
710{
711 struct ata_taskfile *tf = &qc->tf;
712 struct ata_device *dev = qc->dev;
713
714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715 tf->flags |= tf_flags;
716
717 if (ata_ncq_enabled(dev)) {
718 /* yay, NCQ */
719 if (!lba_48_ok(block, n_block))
720 return -ERANGE;
721
722 tf->protocol = ATA_PROT_NCQ;
723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724
725 if (tf->flags & ATA_TFLAG_WRITE)
726 tf->command = ATA_CMD_FPDMA_WRITE;
727 else
728 tf->command = ATA_CMD_FPDMA_READ;
729
730 tf->nsect = qc->hw_tag << 3;
731 tf->hob_feature = (n_block >> 8) & 0xff;
732 tf->feature = n_block & 0xff;
733
734 tf->hob_lbah = (block >> 40) & 0xff;
735 tf->hob_lbam = (block >> 32) & 0xff;
736 tf->hob_lbal = (block >> 24) & 0xff;
737 tf->lbah = (block >> 16) & 0xff;
738 tf->lbam = (block >> 8) & 0xff;
739 tf->lbal = block & 0xff;
740
741 tf->device = ATA_LBA;
742 if (tf->flags & ATA_TFLAG_FUA)
743 tf->device |= 1 << 7;
744
745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746 class == IOPRIO_CLASS_RT)
747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748
749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750 ata_set_tf_cdl(qc, cdl);
751
752 } else if (dev->flags & ATA_DFLAG_LBA) {
753 tf->flags |= ATA_TFLAG_LBA;
754
755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756 ata_set_tf_cdl(qc, cdl);
757
758 /* Both FUA writes and a CDL index require 48-bit commands */
759 if (!(tf->flags & ATA_TFLAG_FUA) &&
760 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761 lba_28_ok(block, n_block)) {
762 /* use LBA28 */
763 tf->device |= (block >> 24) & 0xf;
764 } else if (lba_48_ok(block, n_block)) {
765 if (!(dev->flags & ATA_DFLAG_LBA48))
766 return -ERANGE;
767
768 /* use LBA48 */
769 tf->flags |= ATA_TFLAG_LBA48;
770
771 tf->hob_nsect = (n_block >> 8) & 0xff;
772
773 tf->hob_lbah = (block >> 40) & 0xff;
774 tf->hob_lbam = (block >> 32) & 0xff;
775 tf->hob_lbal = (block >> 24) & 0xff;
776 } else {
777 /* request too large even for LBA48 */
778 return -ERANGE;
779 }
780
781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782 return -EINVAL;
783
784 tf->nsect = n_block & 0xff;
785
786 tf->lbah = (block >> 16) & 0xff;
787 tf->lbam = (block >> 8) & 0xff;
788 tf->lbal = block & 0xff;
789
790 tf->device |= ATA_LBA;
791 } else {
792 /* CHS */
793 u32 sect, head, cyl, track;
794
795 /* The request -may- be too large for CHS addressing. */
796 if (!lba_28_ok(block, n_block))
797 return -ERANGE;
798
799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 return -EINVAL;
801
802 /* Convert LBA to CHS */
803 track = (u32)block / dev->sectors;
804 cyl = track / dev->heads;
805 head = track % dev->heads;
806 sect = (u32)block % dev->sectors + 1;
807
808 /* Check whether the converted CHS can fit.
809 Cylinder: 0-65535
810 Head: 0-15
811 Sector: 1-255*/
812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813 return -ERANGE;
814
815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816 tf->lbal = sect;
817 tf->lbam = cyl;
818 tf->lbah = cyl >> 8;
819 tf->device |= head;
820 }
821
822 return 0;
823}
824
825/**
826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827 * @pio_mask: pio_mask
828 * @mwdma_mask: mwdma_mask
829 * @udma_mask: udma_mask
830 *
831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832 * unsigned int xfer_mask.
833 *
834 * LOCKING:
835 * None.
836 *
837 * RETURNS:
838 * Packed xfer_mask.
839 */
840unsigned int ata_pack_xfermask(unsigned int pio_mask,
841 unsigned int mwdma_mask,
842 unsigned int udma_mask)
843{
844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847}
848EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849
850/**
851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852 * @xfer_mask: xfer_mask to unpack
853 * @pio_mask: resulting pio_mask
854 * @mwdma_mask: resulting mwdma_mask
855 * @udma_mask: resulting udma_mask
856 *
857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858 * Any NULL destination masks will be ignored.
859 */
860void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861 unsigned int *mwdma_mask, unsigned int *udma_mask)
862{
863 if (pio_mask)
864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865 if (mwdma_mask)
866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867 if (udma_mask)
868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869}
870
871static const struct ata_xfer_ent {
872 int shift, bits;
873 u8 base;
874} ata_xfer_tbl[] = {
875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878 { -1, },
879};
880
881/**
882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883 * @xfer_mask: xfer_mask of interest
884 *
885 * Return matching XFER_* value for @xfer_mask. Only the highest
886 * bit of @xfer_mask is considered.
887 *
888 * LOCKING:
889 * None.
890 *
891 * RETURNS:
892 * Matching XFER_* value, 0xff if no match found.
893 */
894u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895{
896 int highbit = fls(xfer_mask) - 1;
897 const struct ata_xfer_ent *ent;
898
899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901 return ent->base + highbit - ent->shift;
902 return 0xff;
903}
904EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905
906/**
907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908 * @xfer_mode: XFER_* of interest
909 *
910 * Return matching xfer_mask for @xfer_mode.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching xfer_mask, 0 if no match found.
917 */
918unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919{
920 const struct ata_xfer_ent *ent;
921
922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925 & ~((1 << ent->shift) - 1);
926 return 0;
927}
928EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929
930/**
931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932 * @xfer_mode: XFER_* of interest
933 *
934 * Return matching xfer_shift for @xfer_mode.
935 *
936 * LOCKING:
937 * None.
938 *
939 * RETURNS:
940 * Matching xfer_shift, -1 if no match found.
941 */
942int ata_xfer_mode2shift(u8 xfer_mode)
943{
944 const struct ata_xfer_ent *ent;
945
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ent->shift;
949 return -1;
950}
951EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952
953/**
954 * ata_mode_string - convert xfer_mask to string
955 * @xfer_mask: mask of bits supported; only highest bit counts.
956 *
957 * Determine string which represents the highest speed
958 * (highest bit in @modemask).
959 *
960 * LOCKING:
961 * None.
962 *
963 * RETURNS:
964 * Constant C string representing highest speed listed in
965 * @mode_mask, or the constant C string "<n/a>".
966 */
967const char *ata_mode_string(unsigned int xfer_mask)
968{
969 static const char * const xfer_mode_str[] = {
970 "PIO0",
971 "PIO1",
972 "PIO2",
973 "PIO3",
974 "PIO4",
975 "PIO5",
976 "PIO6",
977 "MWDMA0",
978 "MWDMA1",
979 "MWDMA2",
980 "MWDMA3",
981 "MWDMA4",
982 "UDMA/16",
983 "UDMA/25",
984 "UDMA/33",
985 "UDMA/44",
986 "UDMA/66",
987 "UDMA/100",
988 "UDMA/133",
989 "UDMA7",
990 };
991 int highbit;
992
993 highbit = fls(xfer_mask) - 1;
994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995 return xfer_mode_str[highbit];
996 return "<n/a>";
997}
998EXPORT_SYMBOL_GPL(ata_mode_string);
999
1000const char *sata_spd_string(unsigned int spd)
1001{
1002 static const char * const spd_str[] = {
1003 "1.5 Gbps",
1004 "3.0 Gbps",
1005 "6.0 Gbps",
1006 };
1007
1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009 return "<unknown>";
1010 return spd_str[spd - 1];
1011}
1012
1013/**
1014 * ata_dev_classify - determine device type based on ATA-spec signature
1015 * @tf: ATA taskfile register set for device to be identified
1016 *
1017 * Determine from taskfile register contents whether a device is
1018 * ATA or ATAPI, as per "Signature and persistence" section
1019 * of ATA/PI spec (volume 1, sect 5.14).
1020 *
1021 * LOCKING:
1022 * None.
1023 *
1024 * RETURNS:
1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027 */
1028unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029{
1030 /* Apple's open source Darwin code hints that some devices only
1031 * put a proper signature into the LBA mid/high registers,
1032 * So, we only check those. It's sufficient for uniqueness.
1033 *
1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035 * signatures for ATA and ATAPI devices attached on SerialATA,
1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1037 * spec has never mentioned about using different signatures
1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1039 * Multiplier specification began to use 0x69/0x96 to identify
1040 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042 * 0x69/0x96 shortly and described them as reserved for
1043 * SerialATA.
1044 *
1045 * We follow the current spec and consider that 0x69/0x96
1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048 * SEMB signature. This is worked around in
1049 * ata_dev_read_id().
1050 */
1051 if (tf->lbam == 0 && tf->lbah == 0)
1052 return ATA_DEV_ATA;
1053
1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055 return ATA_DEV_ATAPI;
1056
1057 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058 return ATA_DEV_PMP;
1059
1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061 return ATA_DEV_SEMB;
1062
1063 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064 return ATA_DEV_ZAC;
1065
1066 return ATA_DEV_UNKNOWN;
1067}
1068EXPORT_SYMBOL_GPL(ata_dev_classify);
1069
1070/**
1071 * ata_id_string - Convert IDENTIFY DEVICE page into string
1072 * @id: IDENTIFY DEVICE results we will examine
1073 * @s: string into which data is output
1074 * @ofs: offset into identify device page
1075 * @len: length of string to return. must be an even number.
1076 *
1077 * The strings in the IDENTIFY DEVICE page are broken up into
1078 * 16-bit chunks. Run through the string, and output each
1079 * 8-bit chunk linearly, regardless of platform.
1080 *
1081 * LOCKING:
1082 * caller.
1083 */
1084
1085void ata_id_string(const u16 *id, unsigned char *s,
1086 unsigned int ofs, unsigned int len)
1087{
1088 unsigned int c;
1089
1090 BUG_ON(len & 1);
1091
1092 while (len > 0) {
1093 c = id[ofs] >> 8;
1094 *s = c;
1095 s++;
1096
1097 c = id[ofs] & 0xff;
1098 *s = c;
1099 s++;
1100
1101 ofs++;
1102 len -= 2;
1103 }
1104}
1105EXPORT_SYMBOL_GPL(ata_id_string);
1106
1107/**
1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109 * @id: IDENTIFY DEVICE results we will examine
1110 * @s: string into which data is output
1111 * @ofs: offset into identify device page
1112 * @len: length of string to return. must be an odd number.
1113 *
1114 * This function is identical to ata_id_string except that it
1115 * trims trailing spaces and terminates the resulting string with
1116 * null. @len must be actual maximum length (even number) + 1.
1117 *
1118 * LOCKING:
1119 * caller.
1120 */
1121void ata_id_c_string(const u16 *id, unsigned char *s,
1122 unsigned int ofs, unsigned int len)
1123{
1124 unsigned char *p;
1125
1126 ata_id_string(id, s, ofs, len - 1);
1127
1128 p = s + strnlen(s, len - 1);
1129 while (p > s && p[-1] == ' ')
1130 p--;
1131 *p = '\0';
1132}
1133EXPORT_SYMBOL_GPL(ata_id_c_string);
1134
1135static u64 ata_id_n_sectors(const u16 *id)
1136{
1137 if (ata_id_has_lba(id)) {
1138 if (ata_id_has_lba48(id))
1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140
1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142 }
1143
1144 if (ata_id_current_chs_valid(id))
1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146 (u32)id[ATA_ID_CUR_SECTORS];
1147
1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149 (u32)id[ATA_ID_SECTORS];
1150}
1151
1152u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153{
1154 u64 sectors = 0;
1155
1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159 sectors |= (tf->lbah & 0xff) << 16;
1160 sectors |= (tf->lbam & 0xff) << 8;
1161 sectors |= (tf->lbal & 0xff);
1162
1163 return sectors;
1164}
1165
1166u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167{
1168 u64 sectors = 0;
1169
1170 sectors |= (tf->device & 0x0f) << 24;
1171 sectors |= (tf->lbah & 0xff) << 16;
1172 sectors |= (tf->lbam & 0xff) << 8;
1173 sectors |= (tf->lbal & 0xff);
1174
1175 return sectors;
1176}
1177
1178/**
1179 * ata_read_native_max_address - Read native max address
1180 * @dev: target device
1181 * @max_sectors: out parameter for the result native max address
1182 *
1183 * Perform an LBA48 or LBA28 native size query upon the device in
1184 * question.
1185 *
1186 * RETURNS:
1187 * 0 on success, -EACCES if command is aborted by the drive.
1188 * -EIO on other errors.
1189 */
1190static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191{
1192 unsigned int err_mask;
1193 struct ata_taskfile tf;
1194 int lba48 = ata_id_has_lba48(dev->id);
1195
1196 ata_tf_init(dev, &tf);
1197
1198 /* always clear all address registers */
1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200
1201 if (lba48) {
1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203 tf.flags |= ATA_TFLAG_LBA48;
1204 } else
1205 tf.command = ATA_CMD_READ_NATIVE_MAX;
1206
1207 tf.protocol = ATA_PROT_NODATA;
1208 tf.device |= ATA_LBA;
1209
1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211 if (err_mask) {
1212 ata_dev_warn(dev,
1213 "failed to read native max address (err_mask=0x%x)\n",
1214 err_mask);
1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216 return -EACCES;
1217 return -EIO;
1218 }
1219
1220 if (lba48)
1221 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1222 else
1223 *max_sectors = ata_tf_to_lba(&tf) + 1;
1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225 (*max_sectors)--;
1226 return 0;
1227}
1228
1229/**
1230 * ata_set_max_sectors - Set max sectors
1231 * @dev: target device
1232 * @new_sectors: new max sectors value to set for the device
1233 *
1234 * Set max sectors of @dev to @new_sectors.
1235 *
1236 * RETURNS:
1237 * 0 on success, -EACCES if command is aborted or denied (due to
1238 * previous non-volatile SET_MAX) by the drive. -EIO on other
1239 * errors.
1240 */
1241static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242{
1243 unsigned int err_mask;
1244 struct ata_taskfile tf;
1245 int lba48 = ata_id_has_lba48(dev->id);
1246
1247 new_sectors--;
1248
1249 ata_tf_init(dev, &tf);
1250
1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252
1253 if (lba48) {
1254 tf.command = ATA_CMD_SET_MAX_EXT;
1255 tf.flags |= ATA_TFLAG_LBA48;
1256
1257 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260 } else {
1261 tf.command = ATA_CMD_SET_MAX;
1262
1263 tf.device |= (new_sectors >> 24) & 0xf;
1264 }
1265
1266 tf.protocol = ATA_PROT_NODATA;
1267 tf.device |= ATA_LBA;
1268
1269 tf.lbal = (new_sectors >> 0) & 0xff;
1270 tf.lbam = (new_sectors >> 8) & 0xff;
1271 tf.lbah = (new_sectors >> 16) & 0xff;
1272
1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274 if (err_mask) {
1275 ata_dev_warn(dev,
1276 "failed to set max address (err_mask=0x%x)\n",
1277 err_mask);
1278 if (err_mask == AC_ERR_DEV &&
1279 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280 return -EACCES;
1281 return -EIO;
1282 }
1283
1284 return 0;
1285}
1286
1287/**
1288 * ata_hpa_resize - Resize a device with an HPA set
1289 * @dev: Device to resize
1290 *
1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292 * it if required to the full size of the media. The caller must check
1293 * the drive has the HPA feature set enabled.
1294 *
1295 * RETURNS:
1296 * 0 on success, -errno on failure.
1297 */
1298static int ata_hpa_resize(struct ata_device *dev)
1299{
1300 bool print_info = ata_dev_print_info(dev);
1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302 u64 sectors = ata_id_n_sectors(dev->id);
1303 u64 native_sectors;
1304 int rc;
1305
1306 /* do we need to do it? */
1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310 return 0;
1311
1312 /* read native max address */
1313 rc = ata_read_native_max_address(dev, &native_sectors);
1314 if (rc) {
1315 /* If device aborted the command or HPA isn't going to
1316 * be unlocked, skip HPA resizing.
1317 */
1318 if (rc == -EACCES || !unlock_hpa) {
1319 ata_dev_warn(dev,
1320 "HPA support seems broken, skipping HPA handling\n");
1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322
1323 /* we can continue if device aborted the command */
1324 if (rc == -EACCES)
1325 rc = 0;
1326 }
1327
1328 return rc;
1329 }
1330 dev->n_native_sectors = native_sectors;
1331
1332 /* nothing to do? */
1333 if (native_sectors <= sectors || !unlock_hpa) {
1334 if (!print_info || native_sectors == sectors)
1335 return 0;
1336
1337 if (native_sectors > sectors)
1338 ata_dev_info(dev,
1339 "HPA detected: current %llu, native %llu\n",
1340 (unsigned long long)sectors,
1341 (unsigned long long)native_sectors);
1342 else if (native_sectors < sectors)
1343 ata_dev_warn(dev,
1344 "native sectors (%llu) is smaller than sectors (%llu)\n",
1345 (unsigned long long)native_sectors,
1346 (unsigned long long)sectors);
1347 return 0;
1348 }
1349
1350 /* let's unlock HPA */
1351 rc = ata_set_max_sectors(dev, native_sectors);
1352 if (rc == -EACCES) {
1353 /* if device aborted the command, skip HPA resizing */
1354 ata_dev_warn(dev,
1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356 (unsigned long long)sectors,
1357 (unsigned long long)native_sectors);
1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359 return 0;
1360 } else if (rc)
1361 return rc;
1362
1363 /* re-read IDENTIFY data */
1364 rc = ata_dev_reread_id(dev, 0);
1365 if (rc) {
1366 ata_dev_err(dev,
1367 "failed to re-read IDENTIFY data after HPA resizing\n");
1368 return rc;
1369 }
1370
1371 if (print_info) {
1372 u64 new_sectors = ata_id_n_sectors(dev->id);
1373 ata_dev_info(dev,
1374 "HPA unlocked: %llu -> %llu, native %llu\n",
1375 (unsigned long long)sectors,
1376 (unsigned long long)new_sectors,
1377 (unsigned long long)native_sectors);
1378 }
1379
1380 return 0;
1381}
1382
1383/**
1384 * ata_dump_id - IDENTIFY DEVICE info debugging output
1385 * @dev: device from which the information is fetched
1386 * @id: IDENTIFY DEVICE page to dump
1387 *
1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1389 * page.
1390 *
1391 * LOCKING:
1392 * caller.
1393 */
1394
1395static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396{
1397 ata_dev_dbg(dev,
1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1400 "88==0x%04x 93==0x%04x\n",
1401 id[49], id[53], id[63], id[64], id[75], id[80],
1402 id[81], id[82], id[83], id[84], id[88], id[93]);
1403}
1404
1405/**
1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407 * @id: IDENTIFY data to compute xfer mask from
1408 *
1409 * Compute the xfermask for this device. This is not as trivial
1410 * as it seems if we must consider early devices correctly.
1411 *
1412 * FIXME: pre IDE drive timing (do we care ?).
1413 *
1414 * LOCKING:
1415 * None.
1416 *
1417 * RETURNS:
1418 * Computed xfermask
1419 */
1420unsigned int ata_id_xfermask(const u16 *id)
1421{
1422 unsigned int pio_mask, mwdma_mask, udma_mask;
1423
1424 /* Usual case. Word 53 indicates word 64 is valid */
1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427 pio_mask <<= 3;
1428 pio_mask |= 0x7;
1429 } else {
1430 /* If word 64 isn't valid then Word 51 high byte holds
1431 * the PIO timing number for the maximum. Turn it into
1432 * a mask.
1433 */
1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435 if (mode < 5) /* Valid PIO range */
1436 pio_mask = (2 << mode) - 1;
1437 else
1438 pio_mask = 1;
1439
1440 /* But wait.. there's more. Design your standards by
1441 * committee and you too can get a free iordy field to
1442 * process. However it is the speeds not the modes that
1443 * are supported... Note drivers using the timing API
1444 * will get this right anyway
1445 */
1446 }
1447
1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449
1450 if (ata_id_is_cfa(id)) {
1451 /*
1452 * Process compact flash extended modes
1453 */
1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456
1457 if (pio)
1458 pio_mask |= (1 << 5);
1459 if (pio > 1)
1460 pio_mask |= (1 << 6);
1461 if (dma)
1462 mwdma_mask |= (1 << 3);
1463 if (dma > 1)
1464 mwdma_mask |= (1 << 4);
1465 }
1466
1467 udma_mask = 0;
1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470
1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472}
1473EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474
1475static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476{
1477 struct completion *waiting = qc->private_data;
1478
1479 complete(waiting);
1480}
1481
1482/**
1483 * ata_exec_internal_sg - execute libata internal command
1484 * @dev: Device to which the command is sent
1485 * @tf: Taskfile registers for the command and the result
1486 * @cdb: CDB for packet command
1487 * @dma_dir: Data transfer direction of the command
1488 * @sgl: sg list for the data buffer of the command
1489 * @n_elem: Number of sg entries
1490 * @timeout: Timeout in msecs (0 for default)
1491 *
1492 * Executes libata internal command with timeout. @tf contains
1493 * command on entry and result on return. Timeout and error
1494 * conditions are reported via return value. No recovery action
1495 * is taken after a command times out. It's caller's duty to
1496 * clean up after timeout.
1497 *
1498 * LOCKING:
1499 * None. Should be called with kernel context, might sleep.
1500 *
1501 * RETURNS:
1502 * Zero on success, AC_ERR_* mask on failure
1503 */
1504static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505 struct ata_taskfile *tf, const u8 *cdb,
1506 int dma_dir, struct scatterlist *sgl,
1507 unsigned int n_elem, unsigned int timeout)
1508{
1509 struct ata_link *link = dev->link;
1510 struct ata_port *ap = link->ap;
1511 u8 command = tf->command;
1512 int auto_timeout = 0;
1513 struct ata_queued_cmd *qc;
1514 unsigned int preempted_tag;
1515 u32 preempted_sactive;
1516 u64 preempted_qc_active;
1517 int preempted_nr_active_links;
1518 DECLARE_COMPLETION_ONSTACK(wait);
1519 unsigned long flags;
1520 unsigned int err_mask;
1521 int rc;
1522
1523 spin_lock_irqsave(ap->lock, flags);
1524
1525 /* no internal command while frozen */
1526 if (ata_port_is_frozen(ap)) {
1527 spin_unlock_irqrestore(ap->lock, flags);
1528 return AC_ERR_SYSTEM;
1529 }
1530
1531 /* initialize internal qc */
1532 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1533
1534 qc->tag = ATA_TAG_INTERNAL;
1535 qc->hw_tag = 0;
1536 qc->scsicmd = NULL;
1537 qc->ap = ap;
1538 qc->dev = dev;
1539 ata_qc_reinit(qc);
1540
1541 preempted_tag = link->active_tag;
1542 preempted_sactive = link->sactive;
1543 preempted_qc_active = ap->qc_active;
1544 preempted_nr_active_links = ap->nr_active_links;
1545 link->active_tag = ATA_TAG_POISON;
1546 link->sactive = 0;
1547 ap->qc_active = 0;
1548 ap->nr_active_links = 0;
1549
1550 /* prepare & issue qc */
1551 qc->tf = *tf;
1552 if (cdb)
1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554
1555 /* some SATA bridges need us to indicate data xfer direction */
1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557 dma_dir == DMA_FROM_DEVICE)
1558 qc->tf.feature |= ATAPI_DMADIR;
1559
1560 qc->flags |= ATA_QCFLAG_RESULT_TF;
1561 qc->dma_dir = dma_dir;
1562 if (dma_dir != DMA_NONE) {
1563 unsigned int i, buflen = 0;
1564 struct scatterlist *sg;
1565
1566 for_each_sg(sgl, sg, n_elem, i)
1567 buflen += sg->length;
1568
1569 ata_sg_init(qc, sgl, n_elem);
1570 qc->nbytes = buflen;
1571 }
1572
1573 qc->private_data = &wait;
1574 qc->complete_fn = ata_qc_complete_internal;
1575
1576 ata_qc_issue(qc);
1577
1578 spin_unlock_irqrestore(ap->lock, flags);
1579
1580 if (!timeout) {
1581 if (ata_probe_timeout)
1582 timeout = ata_probe_timeout * 1000;
1583 else {
1584 timeout = ata_internal_cmd_timeout(dev, command);
1585 auto_timeout = 1;
1586 }
1587 }
1588
1589 ata_eh_release(ap);
1590
1591 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1592
1593 ata_eh_acquire(ap);
1594
1595 ata_sff_flush_pio_task(ap);
1596
1597 if (!rc) {
1598 spin_lock_irqsave(ap->lock, flags);
1599
1600 /* We're racing with irq here. If we lose, the
1601 * following test prevents us from completing the qc
1602 * twice. If we win, the port is frozen and will be
1603 * cleaned up by ->post_internal_cmd().
1604 */
1605 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1606 qc->err_mask |= AC_ERR_TIMEOUT;
1607
1608 ata_port_freeze(ap);
1609
1610 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1611 timeout, command);
1612 }
1613
1614 spin_unlock_irqrestore(ap->lock, flags);
1615 }
1616
1617 /* do post_internal_cmd */
1618 if (ap->ops->post_internal_cmd)
1619 ap->ops->post_internal_cmd(qc);
1620
1621 /* perform minimal error analysis */
1622 if (qc->flags & ATA_QCFLAG_EH) {
1623 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1624 qc->err_mask |= AC_ERR_DEV;
1625
1626 if (!qc->err_mask)
1627 qc->err_mask |= AC_ERR_OTHER;
1628
1629 if (qc->err_mask & ~AC_ERR_OTHER)
1630 qc->err_mask &= ~AC_ERR_OTHER;
1631 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1632 qc->result_tf.status |= ATA_SENSE;
1633 }
1634
1635 /* finish up */
1636 spin_lock_irqsave(ap->lock, flags);
1637
1638 *tf = qc->result_tf;
1639 err_mask = qc->err_mask;
1640
1641 ata_qc_free(qc);
1642 link->active_tag = preempted_tag;
1643 link->sactive = preempted_sactive;
1644 ap->qc_active = preempted_qc_active;
1645 ap->nr_active_links = preempted_nr_active_links;
1646
1647 spin_unlock_irqrestore(ap->lock, flags);
1648
1649 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1650 ata_internal_cmd_timed_out(dev, command);
1651
1652 return err_mask;
1653}
1654
1655/**
1656 * ata_exec_internal - execute libata internal command
1657 * @dev: Device to which the command is sent
1658 * @tf: Taskfile registers for the command and the result
1659 * @cdb: CDB for packet command
1660 * @dma_dir: Data transfer direction of the command
1661 * @buf: Data buffer of the command
1662 * @buflen: Length of data buffer
1663 * @timeout: Timeout in msecs (0 for default)
1664 *
1665 * Wrapper around ata_exec_internal_sg() which takes simple
1666 * buffer instead of sg list.
1667 *
1668 * LOCKING:
1669 * None. Should be called with kernel context, might sleep.
1670 *
1671 * RETURNS:
1672 * Zero on success, AC_ERR_* mask on failure
1673 */
1674unsigned ata_exec_internal(struct ata_device *dev,
1675 struct ata_taskfile *tf, const u8 *cdb,
1676 int dma_dir, void *buf, unsigned int buflen,
1677 unsigned int timeout)
1678{
1679 struct scatterlist *psg = NULL, sg;
1680 unsigned int n_elem = 0;
1681
1682 if (dma_dir != DMA_NONE) {
1683 WARN_ON(!buf);
1684 sg_init_one(&sg, buf, buflen);
1685 psg = &sg;
1686 n_elem++;
1687 }
1688
1689 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1690 timeout);
1691}
1692
1693/**
1694 * ata_pio_need_iordy - check if iordy needed
1695 * @adev: ATA device
1696 *
1697 * Check if the current speed of the device requires IORDY. Used
1698 * by various controllers for chip configuration.
1699 */
1700unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1701{
1702 /* Don't set IORDY if we're preparing for reset. IORDY may
1703 * lead to controller lock up on certain controllers if the
1704 * port is not occupied. See bko#11703 for details.
1705 */
1706 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1707 return 0;
1708 /* Controller doesn't support IORDY. Probably a pointless
1709 * check as the caller should know this.
1710 */
1711 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1712 return 0;
1713 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1714 if (ata_id_is_cfa(adev->id)
1715 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1716 return 0;
1717 /* PIO3 and higher it is mandatory */
1718 if (adev->pio_mode > XFER_PIO_2)
1719 return 1;
1720 /* We turn it on when possible */
1721 if (ata_id_has_iordy(adev->id))
1722 return 1;
1723 return 0;
1724}
1725EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1726
1727/**
1728 * ata_pio_mask_no_iordy - Return the non IORDY mask
1729 * @adev: ATA device
1730 *
1731 * Compute the highest mode possible if we are not using iordy. Return
1732 * -1 if no iordy mode is available.
1733 */
1734static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1735{
1736 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1738 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1739 /* Is the speed faster than the drive allows non IORDY ? */
1740 if (pio) {
1741 /* This is cycle times not frequency - watch the logic! */
1742 if (pio > 240) /* PIO2 is 240nS per cycle */
1743 return 3 << ATA_SHIFT_PIO;
1744 return 7 << ATA_SHIFT_PIO;
1745 }
1746 }
1747 return 3 << ATA_SHIFT_PIO;
1748}
1749
1750/**
1751 * ata_do_dev_read_id - default ID read method
1752 * @dev: device
1753 * @tf: proposed taskfile
1754 * @id: data buffer
1755 *
1756 * Issue the identify taskfile and hand back the buffer containing
1757 * identify data. For some RAID controllers and for pre ATA devices
1758 * this function is wrapped or replaced by the driver
1759 */
1760unsigned int ata_do_dev_read_id(struct ata_device *dev,
1761 struct ata_taskfile *tf, __le16 *id)
1762{
1763 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1764 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1765}
1766EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1767
1768/**
1769 * ata_dev_read_id - Read ID data from the specified device
1770 * @dev: target device
1771 * @p_class: pointer to class of the target device (may be changed)
1772 * @flags: ATA_READID_* flags
1773 * @id: buffer to read IDENTIFY data into
1774 *
1775 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1776 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1777 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1778 * for pre-ATA4 drives.
1779 *
1780 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1781 * now we abort if we hit that case.
1782 *
1783 * LOCKING:
1784 * Kernel thread context (may sleep)
1785 *
1786 * RETURNS:
1787 * 0 on success, -errno otherwise.
1788 */
1789int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1790 unsigned int flags, u16 *id)
1791{
1792 struct ata_port *ap = dev->link->ap;
1793 unsigned int class = *p_class;
1794 struct ata_taskfile tf;
1795 unsigned int err_mask = 0;
1796 const char *reason;
1797 bool is_semb = class == ATA_DEV_SEMB;
1798 int may_fallback = 1, tried_spinup = 0;
1799 int rc;
1800
1801retry:
1802 ata_tf_init(dev, &tf);
1803
1804 switch (class) {
1805 case ATA_DEV_SEMB:
1806 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1807 fallthrough;
1808 case ATA_DEV_ATA:
1809 case ATA_DEV_ZAC:
1810 tf.command = ATA_CMD_ID_ATA;
1811 break;
1812 case ATA_DEV_ATAPI:
1813 tf.command = ATA_CMD_ID_ATAPI;
1814 break;
1815 default:
1816 rc = -ENODEV;
1817 reason = "unsupported class";
1818 goto err_out;
1819 }
1820
1821 tf.protocol = ATA_PROT_PIO;
1822
1823 /* Some devices choke if TF registers contain garbage. Make
1824 * sure those are properly initialized.
1825 */
1826 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1827
1828 /* Device presence detection is unreliable on some
1829 * controllers. Always poll IDENTIFY if available.
1830 */
1831 tf.flags |= ATA_TFLAG_POLLING;
1832
1833 if (ap->ops->read_id)
1834 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1835 else
1836 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1837
1838 if (err_mask) {
1839 if (err_mask & AC_ERR_NODEV_HINT) {
1840 ata_dev_dbg(dev, "NODEV after polling detection\n");
1841 return -ENOENT;
1842 }
1843
1844 if (is_semb) {
1845 ata_dev_info(dev,
1846 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1847 /* SEMB is not supported yet */
1848 *p_class = ATA_DEV_SEMB_UNSUP;
1849 return 0;
1850 }
1851
1852 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1853 /* Device or controller might have reported
1854 * the wrong device class. Give a shot at the
1855 * other IDENTIFY if the current one is
1856 * aborted by the device.
1857 */
1858 if (may_fallback) {
1859 may_fallback = 0;
1860
1861 if (class == ATA_DEV_ATA)
1862 class = ATA_DEV_ATAPI;
1863 else
1864 class = ATA_DEV_ATA;
1865 goto retry;
1866 }
1867
1868 /* Control reaches here iff the device aborted
1869 * both flavors of IDENTIFYs which happens
1870 * sometimes with phantom devices.
1871 */
1872 ata_dev_dbg(dev,
1873 "both IDENTIFYs aborted, assuming NODEV\n");
1874 return -ENOENT;
1875 }
1876
1877 rc = -EIO;
1878 reason = "I/O error";
1879 goto err_out;
1880 }
1881
1882 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1883 ata_dev_info(dev, "dumping IDENTIFY data, "
1884 "class=%d may_fallback=%d tried_spinup=%d\n",
1885 class, may_fallback, tried_spinup);
1886 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1887 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1888 }
1889
1890 /* Falling back doesn't make sense if ID data was read
1891 * successfully at least once.
1892 */
1893 may_fallback = 0;
1894
1895 swap_buf_le16(id, ATA_ID_WORDS);
1896
1897 /* sanity check */
1898 rc = -EINVAL;
1899 reason = "device reports invalid type";
1900
1901 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1902 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1903 goto err_out;
1904 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1905 ata_id_is_ata(id)) {
1906 ata_dev_dbg(dev,
1907 "host indicates ignore ATA devices, ignored\n");
1908 return -ENOENT;
1909 }
1910 } else {
1911 if (ata_id_is_ata(id))
1912 goto err_out;
1913 }
1914
1915 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1916 tried_spinup = 1;
1917 /*
1918 * Drive powered-up in standby mode, and requires a specific
1919 * SET_FEATURES spin-up subcommand before it will accept
1920 * anything other than the original IDENTIFY command.
1921 */
1922 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1923 if (err_mask && id[2] != 0x738c) {
1924 rc = -EIO;
1925 reason = "SPINUP failed";
1926 goto err_out;
1927 }
1928 /*
1929 * If the drive initially returned incomplete IDENTIFY info,
1930 * we now must reissue the IDENTIFY command.
1931 */
1932 if (id[2] == 0x37c8)
1933 goto retry;
1934 }
1935
1936 if ((flags & ATA_READID_POSTRESET) &&
1937 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1938 /*
1939 * The exact sequence expected by certain pre-ATA4 drives is:
1940 * SRST RESET
1941 * IDENTIFY (optional in early ATA)
1942 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1943 * anything else..
1944 * Some drives were very specific about that exact sequence.
1945 *
1946 * Note that ATA4 says lba is mandatory so the second check
1947 * should never trigger.
1948 */
1949 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1950 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1951 if (err_mask) {
1952 rc = -EIO;
1953 reason = "INIT_DEV_PARAMS failed";
1954 goto err_out;
1955 }
1956
1957 /* current CHS translation info (id[53-58]) might be
1958 * changed. reread the identify device info.
1959 */
1960 flags &= ~ATA_READID_POSTRESET;
1961 goto retry;
1962 }
1963 }
1964
1965 *p_class = class;
1966
1967 return 0;
1968
1969 err_out:
1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 reason, err_mask);
1972 return rc;
1973}
1974
1975bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1976 bool set_active)
1977{
1978 /* Only applies to ATA and ZAC devices */
1979 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1980 return false;
1981
1982 ata_tf_init(dev, tf);
1983 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1984 tf->protocol = ATA_PROT_NODATA;
1985
1986 if (set_active) {
1987 /* VERIFY for 1 sector at lba=0 */
1988 tf->command = ATA_CMD_VERIFY;
1989 tf->nsect = 1;
1990 if (dev->flags & ATA_DFLAG_LBA) {
1991 tf->flags |= ATA_TFLAG_LBA;
1992 tf->device |= ATA_LBA;
1993 } else {
1994 /* CHS */
1995 tf->lbal = 0x1; /* sect */
1996 }
1997 } else {
1998 tf->command = ATA_CMD_STANDBYNOW1;
1999 }
2000
2001 return true;
2002}
2003
2004static bool ata_dev_power_is_active(struct ata_device *dev)
2005{
2006 struct ata_taskfile tf;
2007 unsigned int err_mask;
2008
2009 ata_tf_init(dev, &tf);
2010 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2011 tf.protocol = ATA_PROT_NODATA;
2012 tf.command = ATA_CMD_CHK_POWER;
2013
2014 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2015 if (err_mask) {
2016 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
2017 err_mask);
2018 /*
2019 * Assume we are in standby mode so that we always force a
2020 * spinup in ata_dev_power_set_active().
2021 */
2022 return false;
2023 }
2024
2025 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2026
2027 /* Active or idle */
2028 return tf.nsect == 0xff;
2029}
2030
2031/**
2032 * ata_dev_power_set_standby - Set a device power mode to standby
2033 * @dev: target device
2034 *
2035 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2036 * For an HDD device, this spins down the disks.
2037 *
2038 * LOCKING:
2039 * Kernel thread context (may sleep).
2040 */
2041void ata_dev_power_set_standby(struct ata_device *dev)
2042{
2043 unsigned long ap_flags = dev->link->ap->flags;
2044 struct ata_taskfile tf;
2045 unsigned int err_mask;
2046
2047 /* If the device is already sleeping or in standby, do nothing. */
2048 if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2049 !ata_dev_power_is_active(dev))
2050 return;
2051
2052 /*
2053 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2054 * causing some drives to spin up and down again. For these, do nothing
2055 * if we are being called on shutdown.
2056 */
2057 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2058 system_state == SYSTEM_POWER_OFF)
2059 return;
2060
2061 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2062 system_entering_hibernation())
2063 return;
2064
2065 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2066 if (!ata_dev_power_init_tf(dev, &tf, false))
2067 return;
2068
2069 ata_dev_notice(dev, "Entering standby power mode\n");
2070
2071 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2072 if (err_mask)
2073 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2074 err_mask);
2075}
2076
2077/**
2078 * ata_dev_power_set_active - Set a device power mode to active
2079 * @dev: target device
2080 *
2081 * Issue a VERIFY command to enter to ensure that the device is in the
2082 * active power mode. For a spun-down HDD (standby or idle power mode),
2083 * the VERIFY command will complete after the disk spins up.
2084 *
2085 * LOCKING:
2086 * Kernel thread context (may sleep).
2087 */
2088void ata_dev_power_set_active(struct ata_device *dev)
2089{
2090 struct ata_taskfile tf;
2091 unsigned int err_mask;
2092
2093 /*
2094 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2095 * if supported by the device.
2096 */
2097 if (!ata_dev_power_init_tf(dev, &tf, true))
2098 return;
2099
2100 /*
2101 * Check the device power state & condition and force a spinup with
2102 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2103 */
2104 if (ata_dev_power_is_active(dev))
2105 return;
2106
2107 ata_dev_notice(dev, "Entering active power mode\n");
2108
2109 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2110 if (err_mask)
2111 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2112 err_mask);
2113}
2114
2115/**
2116 * ata_read_log_page - read a specific log page
2117 * @dev: target device
2118 * @log: log to read
2119 * @page: page to read
2120 * @buf: buffer to store read page
2121 * @sectors: number of sectors to read
2122 *
2123 * Read log page using READ_LOG_EXT command.
2124 *
2125 * LOCKING:
2126 * Kernel thread context (may sleep).
2127 *
2128 * RETURNS:
2129 * 0 on success, AC_ERR_* mask otherwise.
2130 */
2131unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2132 u8 page, void *buf, unsigned int sectors)
2133{
2134 unsigned long ap_flags = dev->link->ap->flags;
2135 struct ata_taskfile tf;
2136 unsigned int err_mask;
2137 bool dma = false;
2138
2139 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2140
2141 /*
2142 * Return error without actually issuing the command on controllers
2143 * which e.g. lockup on a read log page.
2144 */
2145 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2146 return AC_ERR_DEV;
2147
2148retry:
2149 ata_tf_init(dev, &tf);
2150 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2151 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2152 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2153 tf.protocol = ATA_PROT_DMA;
2154 dma = true;
2155 } else {
2156 tf.command = ATA_CMD_READ_LOG_EXT;
2157 tf.protocol = ATA_PROT_PIO;
2158 dma = false;
2159 }
2160 tf.lbal = log;
2161 tf.lbam = page;
2162 tf.nsect = sectors;
2163 tf.hob_nsect = sectors >> 8;
2164 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2165
2166 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2167 buf, sectors * ATA_SECT_SIZE, 0);
2168
2169 if (err_mask) {
2170 if (dma) {
2171 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2172 if (!ata_port_is_frozen(dev->link->ap))
2173 goto retry;
2174 }
2175 ata_dev_err(dev,
2176 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2177 (unsigned int)log, (unsigned int)page, err_mask);
2178 }
2179
2180 return err_mask;
2181}
2182
2183static int ata_log_supported(struct ata_device *dev, u8 log)
2184{
2185 struct ata_port *ap = dev->link->ap;
2186
2187 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2188 return 0;
2189
2190 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2191 return 0;
2192 return get_unaligned_le16(&ap->sector_buf[log * 2]);
2193}
2194
2195static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2196{
2197 struct ata_port *ap = dev->link->ap;
2198 unsigned int err, i;
2199
2200 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2201 return false;
2202
2203 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2204 /*
2205 * IDENTIFY DEVICE data log is defined as mandatory starting
2206 * with ACS-3 (ATA version 10). Warn about the missing log
2207 * for drives which implement this ATA level or above.
2208 */
2209 if (ata_id_major_version(dev->id) >= 10)
2210 ata_dev_warn(dev,
2211 "ATA Identify Device Log not supported\n");
2212 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2213 return false;
2214 }
2215
2216 /*
2217 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2218 * supported.
2219 */
2220 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2221 1);
2222 if (err)
2223 return false;
2224
2225 for (i = 0; i < ap->sector_buf[8]; i++) {
2226 if (ap->sector_buf[9 + i] == page)
2227 return true;
2228 }
2229
2230 return false;
2231}
2232
2233static int ata_do_link_spd_horkage(struct ata_device *dev)
2234{
2235 struct ata_link *plink = ata_dev_phys_link(dev);
2236 u32 target, target_limit;
2237
2238 if (!sata_scr_valid(plink))
2239 return 0;
2240
2241 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2242 target = 1;
2243 else
2244 return 0;
2245
2246 target_limit = (1 << target) - 1;
2247
2248 /* if already on stricter limit, no need to push further */
2249 if (plink->sata_spd_limit <= target_limit)
2250 return 0;
2251
2252 plink->sata_spd_limit = target_limit;
2253
2254 /* Request another EH round by returning -EAGAIN if link is
2255 * going faster than the target speed. Forward progress is
2256 * guaranteed by setting sata_spd_limit to target_limit above.
2257 */
2258 if (plink->sata_spd > target) {
2259 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2260 sata_spd_string(target));
2261 return -EAGAIN;
2262 }
2263 return 0;
2264}
2265
2266static inline u8 ata_dev_knobble(struct ata_device *dev)
2267{
2268 struct ata_port *ap = dev->link->ap;
2269
2270 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2271 return 0;
2272
2273 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2274}
2275
2276static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2277{
2278 struct ata_port *ap = dev->link->ap;
2279 unsigned int err_mask;
2280
2281 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2282 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2283 return;
2284 }
2285 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2286 0, ap->sector_buf, 1);
2287 if (!err_mask) {
2288 u8 *cmds = dev->ncq_send_recv_cmds;
2289
2290 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2291 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2292
2293 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2294 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2295 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2296 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2297 }
2298 }
2299}
2300
2301static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2302{
2303 struct ata_port *ap = dev->link->ap;
2304 unsigned int err_mask;
2305
2306 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2307 ata_dev_warn(dev,
2308 "NCQ Send/Recv Log not supported\n");
2309 return;
2310 }
2311 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2312 0, ap->sector_buf, 1);
2313 if (!err_mask) {
2314 u8 *cmds = dev->ncq_non_data_cmds;
2315
2316 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2317 }
2318}
2319
2320static void ata_dev_config_ncq_prio(struct ata_device *dev)
2321{
2322 struct ata_port *ap = dev->link->ap;
2323 unsigned int err_mask;
2324
2325 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2326 return;
2327
2328 err_mask = ata_read_log_page(dev,
2329 ATA_LOG_IDENTIFY_DEVICE,
2330 ATA_LOG_SATA_SETTINGS,
2331 ap->sector_buf,
2332 1);
2333 if (err_mask)
2334 goto not_supported;
2335
2336 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2337 goto not_supported;
2338
2339 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2340
2341 return;
2342
2343not_supported:
2344 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2345 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2346}
2347
2348static bool ata_dev_check_adapter(struct ata_device *dev,
2349 unsigned short vendor_id)
2350{
2351 struct pci_dev *pcidev = NULL;
2352 struct device *parent_dev = NULL;
2353
2354 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2355 parent_dev = parent_dev->parent) {
2356 if (dev_is_pci(parent_dev)) {
2357 pcidev = to_pci_dev(parent_dev);
2358 if (pcidev->vendor == vendor_id)
2359 return true;
2360 break;
2361 }
2362 }
2363
2364 return false;
2365}
2366
2367static int ata_dev_config_ncq(struct ata_device *dev,
2368 char *desc, size_t desc_sz)
2369{
2370 struct ata_port *ap = dev->link->ap;
2371 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2372 unsigned int err_mask;
2373 char *aa_desc = "";
2374
2375 if (!ata_id_has_ncq(dev->id)) {
2376 desc[0] = '\0';
2377 return 0;
2378 }
2379 if (!IS_ENABLED(CONFIG_SATA_HOST))
2380 return 0;
2381 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2382 snprintf(desc, desc_sz, "NCQ (not used)");
2383 return 0;
2384 }
2385
2386 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2387 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2388 snprintf(desc, desc_sz, "NCQ (not used)");
2389 return 0;
2390 }
2391
2392 if (ap->flags & ATA_FLAG_NCQ) {
2393 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2394 dev->flags |= ATA_DFLAG_NCQ;
2395 }
2396
2397 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2398 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2399 ata_id_has_fpdma_aa(dev->id)) {
2400 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2401 SATA_FPDMA_AA);
2402 if (err_mask) {
2403 ata_dev_err(dev,
2404 "failed to enable AA (error_mask=0x%x)\n",
2405 err_mask);
2406 if (err_mask != AC_ERR_DEV) {
2407 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2408 return -EIO;
2409 }
2410 } else
2411 aa_desc = ", AA";
2412 }
2413
2414 if (hdepth >= ddepth)
2415 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2416 else
2417 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2418 ddepth, aa_desc);
2419
2420 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2421 if (ata_id_has_ncq_send_and_recv(dev->id))
2422 ata_dev_config_ncq_send_recv(dev);
2423 if (ata_id_has_ncq_non_data(dev->id))
2424 ata_dev_config_ncq_non_data(dev);
2425 if (ata_id_has_ncq_prio(dev->id))
2426 ata_dev_config_ncq_prio(dev);
2427 }
2428
2429 return 0;
2430}
2431
2432static void ata_dev_config_sense_reporting(struct ata_device *dev)
2433{
2434 unsigned int err_mask;
2435
2436 if (!ata_id_has_sense_reporting(dev->id))
2437 return;
2438
2439 if (ata_id_sense_reporting_enabled(dev->id))
2440 return;
2441
2442 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2443 if (err_mask) {
2444 ata_dev_dbg(dev,
2445 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2446 err_mask);
2447 }
2448}
2449
2450static void ata_dev_config_zac(struct ata_device *dev)
2451{
2452 struct ata_port *ap = dev->link->ap;
2453 unsigned int err_mask;
2454 u8 *identify_buf = ap->sector_buf;
2455
2456 dev->zac_zones_optimal_open = U32_MAX;
2457 dev->zac_zones_optimal_nonseq = U32_MAX;
2458 dev->zac_zones_max_open = U32_MAX;
2459
2460 /*
2461 * Always set the 'ZAC' flag for Host-managed devices.
2462 */
2463 if (dev->class == ATA_DEV_ZAC)
2464 dev->flags |= ATA_DFLAG_ZAC;
2465 else if (ata_id_zoned_cap(dev->id) == 0x01)
2466 /*
2467 * Check for host-aware devices.
2468 */
2469 dev->flags |= ATA_DFLAG_ZAC;
2470
2471 if (!(dev->flags & ATA_DFLAG_ZAC))
2472 return;
2473
2474 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2475 ata_dev_warn(dev,
2476 "ATA Zoned Information Log not supported\n");
2477 return;
2478 }
2479
2480 /*
2481 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2482 */
2483 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2484 ATA_LOG_ZONED_INFORMATION,
2485 identify_buf, 1);
2486 if (!err_mask) {
2487 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2488
2489 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2490 if ((zoned_cap >> 63))
2491 dev->zac_zoned_cap = (zoned_cap & 1);
2492 opt_open = get_unaligned_le64(&identify_buf[24]);
2493 if ((opt_open >> 63))
2494 dev->zac_zones_optimal_open = (u32)opt_open;
2495 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2496 if ((opt_nonseq >> 63))
2497 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2498 max_open = get_unaligned_le64(&identify_buf[40]);
2499 if ((max_open >> 63))
2500 dev->zac_zones_max_open = (u32)max_open;
2501 }
2502}
2503
2504static void ata_dev_config_trusted(struct ata_device *dev)
2505{
2506 struct ata_port *ap = dev->link->ap;
2507 u64 trusted_cap;
2508 unsigned int err;
2509
2510 if (!ata_id_has_trusted(dev->id))
2511 return;
2512
2513 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2514 ata_dev_warn(dev,
2515 "Security Log not supported\n");
2516 return;
2517 }
2518
2519 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2520 ap->sector_buf, 1);
2521 if (err)
2522 return;
2523
2524 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2525 if (!(trusted_cap & (1ULL << 63))) {
2526 ata_dev_dbg(dev,
2527 "Trusted Computing capability qword not valid!\n");
2528 return;
2529 }
2530
2531 if (trusted_cap & (1 << 0))
2532 dev->flags |= ATA_DFLAG_TRUSTED;
2533}
2534
2535static void ata_dev_config_cdl(struct ata_device *dev)
2536{
2537 struct ata_port *ap = dev->link->ap;
2538 unsigned int err_mask;
2539 bool cdl_enabled;
2540 u64 val;
2541
2542 if (ata_id_major_version(dev->id) < 12)
2543 goto not_supported;
2544
2545 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2546 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2547 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2548 goto not_supported;
2549
2550 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2551 ATA_LOG_SUPPORTED_CAPABILITIES,
2552 ap->sector_buf, 1);
2553 if (err_mask)
2554 goto not_supported;
2555
2556 /* Check Command Duration Limit Supported bits */
2557 val = get_unaligned_le64(&ap->sector_buf[168]);
2558 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2559 goto not_supported;
2560
2561 /* Warn the user if command duration guideline is not supported */
2562 if (!(val & BIT_ULL(1)))
2563 ata_dev_warn(dev,
2564 "Command duration guideline is not supported\n");
2565
2566 /*
2567 * We must have support for the sense data for successful NCQ commands
2568 * log indicated by the successful NCQ command sense data supported bit.
2569 */
2570 val = get_unaligned_le64(&ap->sector_buf[8]);
2571 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2572 ata_dev_warn(dev,
2573 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2574 goto not_supported;
2575 }
2576
2577 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2578 if (!ata_id_has_ncq_autosense(dev->id)) {
2579 ata_dev_warn(dev,
2580 "CDL supported but NCQ autosense is not supported\n");
2581 goto not_supported;
2582 }
2583
2584 /*
2585 * If CDL is marked as enabled, make sure the feature is enabled too.
2586 * Conversely, if CDL is disabled, make sure the feature is turned off.
2587 */
2588 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2589 ATA_LOG_CURRENT_SETTINGS,
2590 ap->sector_buf, 1);
2591 if (err_mask)
2592 goto not_supported;
2593
2594 val = get_unaligned_le64(&ap->sector_buf[8]);
2595 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2596 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2597 if (!cdl_enabled) {
2598 /* Enable CDL on the device */
2599 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2600 if (err_mask) {
2601 ata_dev_err(dev,
2602 "Enable CDL feature failed\n");
2603 goto not_supported;
2604 }
2605 }
2606 } else {
2607 if (cdl_enabled) {
2608 /* Disable CDL on the device */
2609 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2610 if (err_mask) {
2611 ata_dev_err(dev,
2612 "Disable CDL feature failed\n");
2613 goto not_supported;
2614 }
2615 }
2616 }
2617
2618 /*
2619 * While CDL itself has to be enabled using sysfs, CDL requires that
2620 * sense data for successful NCQ commands is enabled to work properly.
2621 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2622 * if supported.
2623 */
2624 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2625 err_mask = ata_dev_set_feature(dev,
2626 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2627 if (err_mask) {
2628 ata_dev_warn(dev,
2629 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2630 err_mask);
2631 goto not_supported;
2632 }
2633 }
2634
2635 /*
2636 * Allocate a buffer to handle reading the sense data for successful
2637 * NCQ Commands log page for commands using a CDL with one of the limit
2638 * policy set to 0xD (successful completion with sense data available
2639 * bit set).
2640 */
2641 if (!ap->ncq_sense_buf) {
2642 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2643 if (!ap->ncq_sense_buf)
2644 goto not_supported;
2645 }
2646
2647 /*
2648 * Command duration limits is supported: cache the CDL log page 18h
2649 * (command duration descriptors).
2650 */
2651 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2652 if (err_mask) {
2653 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2654 goto not_supported;
2655 }
2656
2657 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2658 dev->flags |= ATA_DFLAG_CDL;
2659
2660 return;
2661
2662not_supported:
2663 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2664 kfree(ap->ncq_sense_buf);
2665 ap->ncq_sense_buf = NULL;
2666}
2667
2668static int ata_dev_config_lba(struct ata_device *dev)
2669{
2670 const u16 *id = dev->id;
2671 const char *lba_desc;
2672 char ncq_desc[32];
2673 int ret;
2674
2675 dev->flags |= ATA_DFLAG_LBA;
2676
2677 if (ata_id_has_lba48(id)) {
2678 lba_desc = "LBA48";
2679 dev->flags |= ATA_DFLAG_LBA48;
2680 if (dev->n_sectors >= (1UL << 28) &&
2681 ata_id_has_flush_ext(id))
2682 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2683 } else {
2684 lba_desc = "LBA";
2685 }
2686
2687 /* config NCQ */
2688 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2689
2690 /* print device info to dmesg */
2691 if (ata_dev_print_info(dev))
2692 ata_dev_info(dev,
2693 "%llu sectors, multi %u: %s %s\n",
2694 (unsigned long long)dev->n_sectors,
2695 dev->multi_count, lba_desc, ncq_desc);
2696
2697 return ret;
2698}
2699
2700static void ata_dev_config_chs(struct ata_device *dev)
2701{
2702 const u16 *id = dev->id;
2703
2704 if (ata_id_current_chs_valid(id)) {
2705 /* Current CHS translation is valid. */
2706 dev->cylinders = id[54];
2707 dev->heads = id[55];
2708 dev->sectors = id[56];
2709 } else {
2710 /* Default translation */
2711 dev->cylinders = id[1];
2712 dev->heads = id[3];
2713 dev->sectors = id[6];
2714 }
2715
2716 /* print device info to dmesg */
2717 if (ata_dev_print_info(dev))
2718 ata_dev_info(dev,
2719 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2720 (unsigned long long)dev->n_sectors,
2721 dev->multi_count, dev->cylinders,
2722 dev->heads, dev->sectors);
2723}
2724
2725static void ata_dev_config_fua(struct ata_device *dev)
2726{
2727 /* Ignore FUA support if its use is disabled globally */
2728 if (!libata_fua)
2729 goto nofua;
2730
2731 /* Ignore devices without support for WRITE DMA FUA EXT */
2732 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2733 goto nofua;
2734
2735 /* Ignore known bad devices and devices that lack NCQ support */
2736 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2737 goto nofua;
2738
2739 dev->flags |= ATA_DFLAG_FUA;
2740
2741 return;
2742
2743nofua:
2744 dev->flags &= ~ATA_DFLAG_FUA;
2745}
2746
2747static void ata_dev_config_devslp(struct ata_device *dev)
2748{
2749 u8 *sata_setting = dev->link->ap->sector_buf;
2750 unsigned int err_mask;
2751 int i, j;
2752
2753 /*
2754 * Check device sleep capability. Get DevSlp timing variables
2755 * from SATA Settings page of Identify Device Data Log.
2756 */
2757 if (!ata_id_has_devslp(dev->id) ||
2758 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2759 return;
2760
2761 err_mask = ata_read_log_page(dev,
2762 ATA_LOG_IDENTIFY_DEVICE,
2763 ATA_LOG_SATA_SETTINGS,
2764 sata_setting, 1);
2765 if (err_mask)
2766 return;
2767
2768 dev->flags |= ATA_DFLAG_DEVSLP;
2769 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2770 j = ATA_LOG_DEVSLP_OFFSET + i;
2771 dev->devslp_timing[i] = sata_setting[j];
2772 }
2773}
2774
2775static void ata_dev_config_cpr(struct ata_device *dev)
2776{
2777 unsigned int err_mask;
2778 size_t buf_len;
2779 int i, nr_cpr = 0;
2780 struct ata_cpr_log *cpr_log = NULL;
2781 u8 *desc, *buf = NULL;
2782
2783 if (ata_id_major_version(dev->id) < 11)
2784 goto out;
2785
2786 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2787 if (buf_len == 0)
2788 goto out;
2789
2790 /*
2791 * Read the concurrent positioning ranges log (0x47). We can have at
2792 * most 255 32B range descriptors plus a 64B header. This log varies in
2793 * size, so use the size reported in the GPL directory. Reading beyond
2794 * the supported length will result in an error.
2795 */
2796 buf_len <<= 9;
2797 buf = kzalloc(buf_len, GFP_KERNEL);
2798 if (!buf)
2799 goto out;
2800
2801 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2802 0, buf, buf_len >> 9);
2803 if (err_mask)
2804 goto out;
2805
2806 nr_cpr = buf[0];
2807 if (!nr_cpr)
2808 goto out;
2809
2810 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2811 if (!cpr_log)
2812 goto out;
2813
2814 cpr_log->nr_cpr = nr_cpr;
2815 desc = &buf[64];
2816 for (i = 0; i < nr_cpr; i++, desc += 32) {
2817 cpr_log->cpr[i].num = desc[0];
2818 cpr_log->cpr[i].num_storage_elements = desc[1];
2819 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2820 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2821 }
2822
2823out:
2824 swap(dev->cpr_log, cpr_log);
2825 kfree(cpr_log);
2826 kfree(buf);
2827}
2828
2829static void ata_dev_print_features(struct ata_device *dev)
2830{
2831 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2832 return;
2833
2834 ata_dev_info(dev,
2835 "Features:%s%s%s%s%s%s%s%s\n",
2836 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2837 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2838 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2839 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2840 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2841 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2842 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2843 dev->cpr_log ? " CPR" : "");
2844}
2845
2846/**
2847 * ata_dev_configure - Configure the specified ATA/ATAPI device
2848 * @dev: Target device to configure
2849 *
2850 * Configure @dev according to @dev->id. Generic and low-level
2851 * driver specific fixups are also applied.
2852 *
2853 * LOCKING:
2854 * Kernel thread context (may sleep)
2855 *
2856 * RETURNS:
2857 * 0 on success, -errno otherwise
2858 */
2859int ata_dev_configure(struct ata_device *dev)
2860{
2861 struct ata_port *ap = dev->link->ap;
2862 bool print_info = ata_dev_print_info(dev);
2863 const u16 *id = dev->id;
2864 unsigned int xfer_mask;
2865 unsigned int err_mask;
2866 char revbuf[7]; /* XYZ-99\0 */
2867 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2868 char modelbuf[ATA_ID_PROD_LEN+1];
2869 int rc;
2870
2871 if (!ata_dev_enabled(dev)) {
2872 ata_dev_dbg(dev, "no device\n");
2873 return 0;
2874 }
2875
2876 /* set horkage */
2877 dev->horkage |= ata_dev_blacklisted(dev);
2878 ata_force_horkage(dev);
2879
2880 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2881 ata_dev_info(dev, "unsupported device, disabling\n");
2882 ata_dev_disable(dev);
2883 return 0;
2884 }
2885
2886 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2887 dev->class == ATA_DEV_ATAPI) {
2888 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2889 atapi_enabled ? "not supported with this driver"
2890 : "disabled");
2891 ata_dev_disable(dev);
2892 return 0;
2893 }
2894
2895 rc = ata_do_link_spd_horkage(dev);
2896 if (rc)
2897 return rc;
2898
2899 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2900 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2901 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2902 dev->horkage |= ATA_HORKAGE_NOLPM;
2903
2904 if (ap->flags & ATA_FLAG_NO_LPM)
2905 dev->horkage |= ATA_HORKAGE_NOLPM;
2906
2907 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2908 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2909 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2910 }
2911
2912 /* let ACPI work its magic */
2913 rc = ata_acpi_on_devcfg(dev);
2914 if (rc)
2915 return rc;
2916
2917 /* massage HPA, do it early as it might change IDENTIFY data */
2918 rc = ata_hpa_resize(dev);
2919 if (rc)
2920 return rc;
2921
2922 /* print device capabilities */
2923 ata_dev_dbg(dev,
2924 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2925 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2926 __func__,
2927 id[49], id[82], id[83], id[84],
2928 id[85], id[86], id[87], id[88]);
2929
2930 /* initialize to-be-configured parameters */
2931 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2932 dev->max_sectors = 0;
2933 dev->cdb_len = 0;
2934 dev->n_sectors = 0;
2935 dev->cylinders = 0;
2936 dev->heads = 0;
2937 dev->sectors = 0;
2938 dev->multi_count = 0;
2939
2940 /*
2941 * common ATA, ATAPI feature tests
2942 */
2943
2944 /* find max transfer mode; for printk only */
2945 xfer_mask = ata_id_xfermask(id);
2946
2947 ata_dump_id(dev, id);
2948
2949 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2950 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2951 sizeof(fwrevbuf));
2952
2953 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2954 sizeof(modelbuf));
2955
2956 /* ATA-specific feature tests */
2957 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2958 if (ata_id_is_cfa(id)) {
2959 /* CPRM may make this media unusable */
2960 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2961 ata_dev_warn(dev,
2962 "supports DRM functions and may not be fully accessible\n");
2963 snprintf(revbuf, 7, "CFA");
2964 } else {
2965 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2966 /* Warn the user if the device has TPM extensions */
2967 if (ata_id_has_tpm(id))
2968 ata_dev_warn(dev,
2969 "supports DRM functions and may not be fully accessible\n");
2970 }
2971
2972 dev->n_sectors = ata_id_n_sectors(id);
2973
2974 /* get current R/W Multiple count setting */
2975 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2976 unsigned int max = dev->id[47] & 0xff;
2977 unsigned int cnt = dev->id[59] & 0xff;
2978 /* only recognize/allow powers of two here */
2979 if (is_power_of_2(max) && is_power_of_2(cnt))
2980 if (cnt <= max)
2981 dev->multi_count = cnt;
2982 }
2983
2984 /* print device info to dmesg */
2985 if (print_info)
2986 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2987 revbuf, modelbuf, fwrevbuf,
2988 ata_mode_string(xfer_mask));
2989
2990 if (ata_id_has_lba(id)) {
2991 rc = ata_dev_config_lba(dev);
2992 if (rc)
2993 return rc;
2994 } else {
2995 ata_dev_config_chs(dev);
2996 }
2997
2998 ata_dev_config_fua(dev);
2999 ata_dev_config_devslp(dev);
3000 ata_dev_config_sense_reporting(dev);
3001 ata_dev_config_zac(dev);
3002 ata_dev_config_trusted(dev);
3003 ata_dev_config_cpr(dev);
3004 ata_dev_config_cdl(dev);
3005 dev->cdb_len = 32;
3006
3007 if (print_info)
3008 ata_dev_print_features(dev);
3009 }
3010
3011 /* ATAPI-specific feature tests */
3012 else if (dev->class == ATA_DEV_ATAPI) {
3013 const char *cdb_intr_string = "";
3014 const char *atapi_an_string = "";
3015 const char *dma_dir_string = "";
3016 u32 sntf;
3017
3018 rc = atapi_cdb_len(id);
3019 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3020 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3021 rc = -EINVAL;
3022 goto err_out_nosup;
3023 }
3024 dev->cdb_len = (unsigned int) rc;
3025
3026 /* Enable ATAPI AN if both the host and device have
3027 * the support. If PMP is attached, SNTF is required
3028 * to enable ATAPI AN to discern between PHY status
3029 * changed notifications and ATAPI ANs.
3030 */
3031 if (atapi_an &&
3032 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3033 (!sata_pmp_attached(ap) ||
3034 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3035 /* issue SET feature command to turn this on */
3036 err_mask = ata_dev_set_feature(dev,
3037 SETFEATURES_SATA_ENABLE, SATA_AN);
3038 if (err_mask)
3039 ata_dev_err(dev,
3040 "failed to enable ATAPI AN (err_mask=0x%x)\n",
3041 err_mask);
3042 else {
3043 dev->flags |= ATA_DFLAG_AN;
3044 atapi_an_string = ", ATAPI AN";
3045 }
3046 }
3047
3048 if (ata_id_cdb_intr(dev->id)) {
3049 dev->flags |= ATA_DFLAG_CDB_INTR;
3050 cdb_intr_string = ", CDB intr";
3051 }
3052
3053 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
3054 dev->flags |= ATA_DFLAG_DMADIR;
3055 dma_dir_string = ", DMADIR";
3056 }
3057
3058 if (ata_id_has_da(dev->id)) {
3059 dev->flags |= ATA_DFLAG_DA;
3060 zpodd_init(dev);
3061 }
3062
3063 /* print device info to dmesg */
3064 if (print_info)
3065 ata_dev_info(dev,
3066 "ATAPI: %s, %s, max %s%s%s%s\n",
3067 modelbuf, fwrevbuf,
3068 ata_mode_string(xfer_mask),
3069 cdb_intr_string, atapi_an_string,
3070 dma_dir_string);
3071 }
3072
3073 /* determine max_sectors */
3074 dev->max_sectors = ATA_MAX_SECTORS;
3075 if (dev->flags & ATA_DFLAG_LBA48)
3076 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3077
3078 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3079 200 sectors */
3080 if (ata_dev_knobble(dev)) {
3081 if (print_info)
3082 ata_dev_info(dev, "applying bridge limits\n");
3083 dev->udma_mask &= ATA_UDMA5;
3084 dev->max_sectors = ATA_MAX_SECTORS;
3085 }
3086
3087 if ((dev->class == ATA_DEV_ATAPI) &&
3088 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3089 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3090 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3091 }
3092
3093 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3094 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3095 dev->max_sectors);
3096
3097 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3098 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3099 dev->max_sectors);
3100
3101 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3102 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3103
3104 if (ap->ops->dev_config)
3105 ap->ops->dev_config(dev);
3106
3107 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3108 /* Let the user know. We don't want to disallow opens for
3109 rescue purposes, or in case the vendor is just a blithering
3110 idiot. Do this after the dev_config call as some controllers
3111 with buggy firmware may want to avoid reporting false device
3112 bugs */
3113
3114 if (print_info) {
3115 ata_dev_warn(dev,
3116"Drive reports diagnostics failure. This may indicate a drive\n");
3117 ata_dev_warn(dev,
3118"fault or invalid emulation. Contact drive vendor for information.\n");
3119 }
3120 }
3121
3122 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3123 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3124 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3125 }
3126
3127 return 0;
3128
3129err_out_nosup:
3130 return rc;
3131}
3132
3133/**
3134 * ata_cable_40wire - return 40 wire cable type
3135 * @ap: port
3136 *
3137 * Helper method for drivers which want to hardwire 40 wire cable
3138 * detection.
3139 */
3140
3141int ata_cable_40wire(struct ata_port *ap)
3142{
3143 return ATA_CBL_PATA40;
3144}
3145EXPORT_SYMBOL_GPL(ata_cable_40wire);
3146
3147/**
3148 * ata_cable_80wire - return 80 wire cable type
3149 * @ap: port
3150 *
3151 * Helper method for drivers which want to hardwire 80 wire cable
3152 * detection.
3153 */
3154
3155int ata_cable_80wire(struct ata_port *ap)
3156{
3157 return ATA_CBL_PATA80;
3158}
3159EXPORT_SYMBOL_GPL(ata_cable_80wire);
3160
3161/**
3162 * ata_cable_unknown - return unknown PATA cable.
3163 * @ap: port
3164 *
3165 * Helper method for drivers which have no PATA cable detection.
3166 */
3167
3168int ata_cable_unknown(struct ata_port *ap)
3169{
3170 return ATA_CBL_PATA_UNK;
3171}
3172EXPORT_SYMBOL_GPL(ata_cable_unknown);
3173
3174/**
3175 * ata_cable_ignore - return ignored PATA cable.
3176 * @ap: port
3177 *
3178 * Helper method for drivers which don't use cable type to limit
3179 * transfer mode.
3180 */
3181int ata_cable_ignore(struct ata_port *ap)
3182{
3183 return ATA_CBL_PATA_IGN;
3184}
3185EXPORT_SYMBOL_GPL(ata_cable_ignore);
3186
3187/**
3188 * ata_cable_sata - return SATA cable type
3189 * @ap: port
3190 *
3191 * Helper method for drivers which have SATA cables
3192 */
3193
3194int ata_cable_sata(struct ata_port *ap)
3195{
3196 return ATA_CBL_SATA;
3197}
3198EXPORT_SYMBOL_GPL(ata_cable_sata);
3199
3200/**
3201 * sata_print_link_status - Print SATA link status
3202 * @link: SATA link to printk link status about
3203 *
3204 * This function prints link speed and status of a SATA link.
3205 *
3206 * LOCKING:
3207 * None.
3208 */
3209static void sata_print_link_status(struct ata_link *link)
3210{
3211 u32 sstatus, scontrol, tmp;
3212
3213 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3214 return;
3215 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3216 return;
3217
3218 if (ata_phys_link_online(link)) {
3219 tmp = (sstatus >> 4) & 0xf;
3220 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3221 sata_spd_string(tmp), sstatus, scontrol);
3222 } else {
3223 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3224 sstatus, scontrol);
3225 }
3226}
3227
3228/**
3229 * ata_dev_pair - return other device on cable
3230 * @adev: device
3231 *
3232 * Obtain the other device on the same cable, or if none is
3233 * present NULL is returned
3234 */
3235
3236struct ata_device *ata_dev_pair(struct ata_device *adev)
3237{
3238 struct ata_link *link = adev->link;
3239 struct ata_device *pair = &link->device[1 - adev->devno];
3240 if (!ata_dev_enabled(pair))
3241 return NULL;
3242 return pair;
3243}
3244EXPORT_SYMBOL_GPL(ata_dev_pair);
3245
3246/**
3247 * sata_down_spd_limit - adjust SATA spd limit downward
3248 * @link: Link to adjust SATA spd limit for
3249 * @spd_limit: Additional limit
3250 *
3251 * Adjust SATA spd limit of @link downward. Note that this
3252 * function only adjusts the limit. The change must be applied
3253 * using sata_set_spd().
3254 *
3255 * If @spd_limit is non-zero, the speed is limited to equal to or
3256 * lower than @spd_limit if such speed is supported. If
3257 * @spd_limit is slower than any supported speed, only the lowest
3258 * supported speed is allowed.
3259 *
3260 * LOCKING:
3261 * Inherited from caller.
3262 *
3263 * RETURNS:
3264 * 0 on success, negative errno on failure
3265 */
3266int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3267{
3268 u32 sstatus, spd, mask;
3269 int rc, bit;
3270
3271 if (!sata_scr_valid(link))
3272 return -EOPNOTSUPP;
3273
3274 /* If SCR can be read, use it to determine the current SPD.
3275 * If not, use cached value in link->sata_spd.
3276 */
3277 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3278 if (rc == 0 && ata_sstatus_online(sstatus))
3279 spd = (sstatus >> 4) & 0xf;
3280 else
3281 spd = link->sata_spd;
3282
3283 mask = link->sata_spd_limit;
3284 if (mask <= 1)
3285 return -EINVAL;
3286
3287 /* unconditionally mask off the highest bit */
3288 bit = fls(mask) - 1;
3289 mask &= ~(1 << bit);
3290
3291 /*
3292 * Mask off all speeds higher than or equal to the current one. At
3293 * this point, if current SPD is not available and we previously
3294 * recorded the link speed from SStatus, the driver has already
3295 * masked off the highest bit so mask should already be 1 or 0.
3296 * Otherwise, we should not force 1.5Gbps on a link where we have
3297 * not previously recorded speed from SStatus. Just return in this
3298 * case.
3299 */
3300 if (spd > 1)
3301 mask &= (1 << (spd - 1)) - 1;
3302 else if (link->sata_spd)
3303 return -EINVAL;
3304
3305 /* were we already at the bottom? */
3306 if (!mask)
3307 return -EINVAL;
3308
3309 if (spd_limit) {
3310 if (mask & ((1 << spd_limit) - 1))
3311 mask &= (1 << spd_limit) - 1;
3312 else {
3313 bit = ffs(mask) - 1;
3314 mask = 1 << bit;
3315 }
3316 }
3317
3318 link->sata_spd_limit = mask;
3319
3320 ata_link_warn(link, "limiting SATA link speed to %s\n",
3321 sata_spd_string(fls(mask)));
3322
3323 return 0;
3324}
3325
3326#ifdef CONFIG_ATA_ACPI
3327/**
3328 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3329 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3330 * @cycle: cycle duration in ns
3331 *
3332 * Return matching xfer mode for @cycle. The returned mode is of
3333 * the transfer type specified by @xfer_shift. If @cycle is too
3334 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3335 * than the fastest known mode, the fasted mode is returned.
3336 *
3337 * LOCKING:
3338 * None.
3339 *
3340 * RETURNS:
3341 * Matching xfer_mode, 0xff if no match found.
3342 */
3343u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3344{
3345 u8 base_mode = 0xff, last_mode = 0xff;
3346 const struct ata_xfer_ent *ent;
3347 const struct ata_timing *t;
3348
3349 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3350 if (ent->shift == xfer_shift)
3351 base_mode = ent->base;
3352
3353 for (t = ata_timing_find_mode(base_mode);
3354 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3355 unsigned short this_cycle;
3356
3357 switch (xfer_shift) {
3358 case ATA_SHIFT_PIO:
3359 case ATA_SHIFT_MWDMA:
3360 this_cycle = t->cycle;
3361 break;
3362 case ATA_SHIFT_UDMA:
3363 this_cycle = t->udma;
3364 break;
3365 default:
3366 return 0xff;
3367 }
3368
3369 if (cycle > this_cycle)
3370 break;
3371
3372 last_mode = t->mode;
3373 }
3374
3375 return last_mode;
3376}
3377#endif
3378
3379/**
3380 * ata_down_xfermask_limit - adjust dev xfer masks downward
3381 * @dev: Device to adjust xfer masks
3382 * @sel: ATA_DNXFER_* selector
3383 *
3384 * Adjust xfer masks of @dev downward. Note that this function
3385 * does not apply the change. Invoking ata_set_mode() afterwards
3386 * will apply the limit.
3387 *
3388 * LOCKING:
3389 * Inherited from caller.
3390 *
3391 * RETURNS:
3392 * 0 on success, negative errno on failure
3393 */
3394int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3395{
3396 char buf[32];
3397 unsigned int orig_mask, xfer_mask;
3398 unsigned int pio_mask, mwdma_mask, udma_mask;
3399 int quiet, highbit;
3400
3401 quiet = !!(sel & ATA_DNXFER_QUIET);
3402 sel &= ~ATA_DNXFER_QUIET;
3403
3404 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3405 dev->mwdma_mask,
3406 dev->udma_mask);
3407 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3408
3409 switch (sel) {
3410 case ATA_DNXFER_PIO:
3411 highbit = fls(pio_mask) - 1;
3412 pio_mask &= ~(1 << highbit);
3413 break;
3414
3415 case ATA_DNXFER_DMA:
3416 if (udma_mask) {
3417 highbit = fls(udma_mask) - 1;
3418 udma_mask &= ~(1 << highbit);
3419 if (!udma_mask)
3420 return -ENOENT;
3421 } else if (mwdma_mask) {
3422 highbit = fls(mwdma_mask) - 1;
3423 mwdma_mask &= ~(1 << highbit);
3424 if (!mwdma_mask)
3425 return -ENOENT;
3426 }
3427 break;
3428
3429 case ATA_DNXFER_40C:
3430 udma_mask &= ATA_UDMA_MASK_40C;
3431 break;
3432
3433 case ATA_DNXFER_FORCE_PIO0:
3434 pio_mask &= 1;
3435 fallthrough;
3436 case ATA_DNXFER_FORCE_PIO:
3437 mwdma_mask = 0;
3438 udma_mask = 0;
3439 break;
3440
3441 default:
3442 BUG();
3443 }
3444
3445 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3446
3447 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3448 return -ENOENT;
3449
3450 if (!quiet) {
3451 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3452 snprintf(buf, sizeof(buf), "%s:%s",
3453 ata_mode_string(xfer_mask),
3454 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3455 else
3456 snprintf(buf, sizeof(buf), "%s",
3457 ata_mode_string(xfer_mask));
3458
3459 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3460 }
3461
3462 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3463 &dev->udma_mask);
3464
3465 return 0;
3466}
3467
3468static int ata_dev_set_mode(struct ata_device *dev)
3469{
3470 struct ata_port *ap = dev->link->ap;
3471 struct ata_eh_context *ehc = &dev->link->eh_context;
3472 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3473 const char *dev_err_whine = "";
3474 int ign_dev_err = 0;
3475 unsigned int err_mask = 0;
3476 int rc;
3477
3478 dev->flags &= ~ATA_DFLAG_PIO;
3479 if (dev->xfer_shift == ATA_SHIFT_PIO)
3480 dev->flags |= ATA_DFLAG_PIO;
3481
3482 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3483 dev_err_whine = " (SET_XFERMODE skipped)";
3484 else {
3485 if (nosetxfer)
3486 ata_dev_warn(dev,
3487 "NOSETXFER but PATA detected - can't "
3488 "skip SETXFER, might malfunction\n");
3489 err_mask = ata_dev_set_xfermode(dev);
3490 }
3491
3492 if (err_mask & ~AC_ERR_DEV)
3493 goto fail;
3494
3495 /* revalidate */
3496 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3497 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3498 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3499 if (rc)
3500 return rc;
3501
3502 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3503 /* Old CFA may refuse this command, which is just fine */
3504 if (ata_id_is_cfa(dev->id))
3505 ign_dev_err = 1;
3506 /* Catch several broken garbage emulations plus some pre
3507 ATA devices */
3508 if (ata_id_major_version(dev->id) == 0 &&
3509 dev->pio_mode <= XFER_PIO_2)
3510 ign_dev_err = 1;
3511 /* Some very old devices and some bad newer ones fail
3512 any kind of SET_XFERMODE request but support PIO0-2
3513 timings and no IORDY */
3514 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3515 ign_dev_err = 1;
3516 }
3517 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3518 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3519 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3520 dev->dma_mode == XFER_MW_DMA_0 &&
3521 (dev->id[63] >> 8) & 1)
3522 ign_dev_err = 1;
3523
3524 /* if the device is actually configured correctly, ignore dev err */
3525 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3526 ign_dev_err = 1;
3527
3528 if (err_mask & AC_ERR_DEV) {
3529 if (!ign_dev_err)
3530 goto fail;
3531 else
3532 dev_err_whine = " (device error ignored)";
3533 }
3534
3535 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3536 dev->xfer_shift, (int)dev->xfer_mode);
3537
3538 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3539 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3540 ata_dev_info(dev, "configured for %s%s\n",
3541 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3542 dev_err_whine);
3543
3544 return 0;
3545
3546 fail:
3547 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3548 return -EIO;
3549}
3550
3551/**
3552 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3553 * @link: link on which timings will be programmed
3554 * @r_failed_dev: out parameter for failed device
3555 *
3556 * Standard implementation of the function used to tune and set
3557 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3558 * ata_dev_set_mode() fails, pointer to the failing device is
3559 * returned in @r_failed_dev.
3560 *
3561 * LOCKING:
3562 * PCI/etc. bus probe sem.
3563 *
3564 * RETURNS:
3565 * 0 on success, negative errno otherwise
3566 */
3567
3568int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3569{
3570 struct ata_port *ap = link->ap;
3571 struct ata_device *dev;
3572 int rc = 0, used_dma = 0, found = 0;
3573
3574 /* step 1: calculate xfer_mask */
3575 ata_for_each_dev(dev, link, ENABLED) {
3576 unsigned int pio_mask, dma_mask;
3577 unsigned int mode_mask;
3578
3579 mode_mask = ATA_DMA_MASK_ATA;
3580 if (dev->class == ATA_DEV_ATAPI)
3581 mode_mask = ATA_DMA_MASK_ATAPI;
3582 else if (ata_id_is_cfa(dev->id))
3583 mode_mask = ATA_DMA_MASK_CFA;
3584
3585 ata_dev_xfermask(dev);
3586 ata_force_xfermask(dev);
3587
3588 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3589
3590 if (libata_dma_mask & mode_mask)
3591 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3592 dev->udma_mask);
3593 else
3594 dma_mask = 0;
3595
3596 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3597 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3598
3599 found = 1;
3600 if (ata_dma_enabled(dev))
3601 used_dma = 1;
3602 }
3603 if (!found)
3604 goto out;
3605
3606 /* step 2: always set host PIO timings */
3607 ata_for_each_dev(dev, link, ENABLED) {
3608 if (dev->pio_mode == 0xff) {
3609 ata_dev_warn(dev, "no PIO support\n");
3610 rc = -EINVAL;
3611 goto out;
3612 }
3613
3614 dev->xfer_mode = dev->pio_mode;
3615 dev->xfer_shift = ATA_SHIFT_PIO;
3616 if (ap->ops->set_piomode)
3617 ap->ops->set_piomode(ap, dev);
3618 }
3619
3620 /* step 3: set host DMA timings */
3621 ata_for_each_dev(dev, link, ENABLED) {
3622 if (!ata_dma_enabled(dev))
3623 continue;
3624
3625 dev->xfer_mode = dev->dma_mode;
3626 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3627 if (ap->ops->set_dmamode)
3628 ap->ops->set_dmamode(ap, dev);
3629 }
3630
3631 /* step 4: update devices' xfer mode */
3632 ata_for_each_dev(dev, link, ENABLED) {
3633 rc = ata_dev_set_mode(dev);
3634 if (rc)
3635 goto out;
3636 }
3637
3638 /* Record simplex status. If we selected DMA then the other
3639 * host channels are not permitted to do so.
3640 */
3641 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3642 ap->host->simplex_claimed = ap;
3643
3644 out:
3645 if (rc)
3646 *r_failed_dev = dev;
3647 return rc;
3648}
3649EXPORT_SYMBOL_GPL(ata_do_set_mode);
3650
3651/**
3652 * ata_wait_ready - wait for link to become ready
3653 * @link: link to be waited on
3654 * @deadline: deadline jiffies for the operation
3655 * @check_ready: callback to check link readiness
3656 *
3657 * Wait for @link to become ready. @check_ready should return
3658 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3659 * link doesn't seem to be occupied, other errno for other error
3660 * conditions.
3661 *
3662 * Transient -ENODEV conditions are allowed for
3663 * ATA_TMOUT_FF_WAIT.
3664 *
3665 * LOCKING:
3666 * EH context.
3667 *
3668 * RETURNS:
3669 * 0 if @link is ready before @deadline; otherwise, -errno.
3670 */
3671int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3672 int (*check_ready)(struct ata_link *link))
3673{
3674 unsigned long start = jiffies;
3675 unsigned long nodev_deadline;
3676 int warned = 0;
3677
3678 /* choose which 0xff timeout to use, read comment in libata.h */
3679 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3680 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3681 else
3682 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3683
3684 /* Slave readiness can't be tested separately from master. On
3685 * M/S emulation configuration, this function should be called
3686 * only on the master and it will handle both master and slave.
3687 */
3688 WARN_ON(link == link->ap->slave_link);
3689
3690 if (time_after(nodev_deadline, deadline))
3691 nodev_deadline = deadline;
3692
3693 while (1) {
3694 unsigned long now = jiffies;
3695 int ready, tmp;
3696
3697 ready = tmp = check_ready(link);
3698 if (ready > 0)
3699 return 0;
3700
3701 /*
3702 * -ENODEV could be transient. Ignore -ENODEV if link
3703 * is online. Also, some SATA devices take a long
3704 * time to clear 0xff after reset. Wait for
3705 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3706 * offline.
3707 *
3708 * Note that some PATA controllers (pata_ali) explode
3709 * if status register is read more than once when
3710 * there's no device attached.
3711 */
3712 if (ready == -ENODEV) {
3713 if (ata_link_online(link))
3714 ready = 0;
3715 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3716 !ata_link_offline(link) &&
3717 time_before(now, nodev_deadline))
3718 ready = 0;
3719 }
3720
3721 if (ready)
3722 return ready;
3723 if (time_after(now, deadline))
3724 return -EBUSY;
3725
3726 if (!warned && time_after(now, start + 5 * HZ) &&
3727 (deadline - now > 3 * HZ)) {
3728 ata_link_warn(link,
3729 "link is slow to respond, please be patient "
3730 "(ready=%d)\n", tmp);
3731 warned = 1;
3732 }
3733
3734 ata_msleep(link->ap, 50);
3735 }
3736}
3737
3738/**
3739 * ata_wait_after_reset - wait for link to become ready after reset
3740 * @link: link to be waited on
3741 * @deadline: deadline jiffies for the operation
3742 * @check_ready: callback to check link readiness
3743 *
3744 * Wait for @link to become ready after reset.
3745 *
3746 * LOCKING:
3747 * EH context.
3748 *
3749 * RETURNS:
3750 * 0 if @link is ready before @deadline; otherwise, -errno.
3751 */
3752int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3753 int (*check_ready)(struct ata_link *link))
3754{
3755 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3756
3757 return ata_wait_ready(link, deadline, check_ready);
3758}
3759EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3760
3761/**
3762 * ata_std_prereset - prepare for reset
3763 * @link: ATA link to be reset
3764 * @deadline: deadline jiffies for the operation
3765 *
3766 * @link is about to be reset. Initialize it. Failure from
3767 * prereset makes libata abort whole reset sequence and give up
3768 * that port, so prereset should be best-effort. It does its
3769 * best to prepare for reset sequence but if things go wrong, it
3770 * should just whine, not fail.
3771 *
3772 * LOCKING:
3773 * Kernel thread context (may sleep)
3774 *
3775 * RETURNS:
3776 * Always 0.
3777 */
3778int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3779{
3780 struct ata_port *ap = link->ap;
3781 struct ata_eh_context *ehc = &link->eh_context;
3782 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3783 int rc;
3784
3785 /* if we're about to do hardreset, nothing more to do */
3786 if (ehc->i.action & ATA_EH_HARDRESET)
3787 return 0;
3788
3789 /* if SATA, resume link */
3790 if (ap->flags & ATA_FLAG_SATA) {
3791 rc = sata_link_resume(link, timing, deadline);
3792 /* whine about phy resume failure but proceed */
3793 if (rc && rc != -EOPNOTSUPP)
3794 ata_link_warn(link,
3795 "failed to resume link for reset (errno=%d)\n",
3796 rc);
3797 }
3798
3799 /* no point in trying softreset on offline link */
3800 if (ata_phys_link_offline(link))
3801 ehc->i.action &= ~ATA_EH_SOFTRESET;
3802
3803 return 0;
3804}
3805EXPORT_SYMBOL_GPL(ata_std_prereset);
3806
3807/**
3808 * sata_std_hardreset - COMRESET w/o waiting or classification
3809 * @link: link to reset
3810 * @class: resulting class of attached device
3811 * @deadline: deadline jiffies for the operation
3812 *
3813 * Standard SATA COMRESET w/o waiting or classification.
3814 *
3815 * LOCKING:
3816 * Kernel thread context (may sleep)
3817 *
3818 * RETURNS:
3819 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3820 */
3821int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3822 unsigned long deadline)
3823{
3824 const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3825 bool online;
3826 int rc;
3827
3828 /* do hardreset */
3829 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3830 return online ? -EAGAIN : rc;
3831}
3832EXPORT_SYMBOL_GPL(sata_std_hardreset);
3833
3834/**
3835 * ata_std_postreset - standard postreset callback
3836 * @link: the target ata_link
3837 * @classes: classes of attached devices
3838 *
3839 * This function is invoked after a successful reset. Note that
3840 * the device might have been reset more than once using
3841 * different reset methods before postreset is invoked.
3842 *
3843 * LOCKING:
3844 * Kernel thread context (may sleep)
3845 */
3846void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3847{
3848 u32 serror;
3849
3850 /* reset complete, clear SError */
3851 if (!sata_scr_read(link, SCR_ERROR, &serror))
3852 sata_scr_write(link, SCR_ERROR, serror);
3853
3854 /* print link status */
3855 sata_print_link_status(link);
3856}
3857EXPORT_SYMBOL_GPL(ata_std_postreset);
3858
3859/**
3860 * ata_dev_same_device - Determine whether new ID matches configured device
3861 * @dev: device to compare against
3862 * @new_class: class of the new device
3863 * @new_id: IDENTIFY page of the new device
3864 *
3865 * Compare @new_class and @new_id against @dev and determine
3866 * whether @dev is the device indicated by @new_class and
3867 * @new_id.
3868 *
3869 * LOCKING:
3870 * None.
3871 *
3872 * RETURNS:
3873 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3874 */
3875static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3876 const u16 *new_id)
3877{
3878 const u16 *old_id = dev->id;
3879 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3880 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3881
3882 if (dev->class != new_class) {
3883 ata_dev_info(dev, "class mismatch %d != %d\n",
3884 dev->class, new_class);
3885 return 0;
3886 }
3887
3888 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3889 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3890 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3891 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3892
3893 if (strcmp(model[0], model[1])) {
3894 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3895 model[0], model[1]);
3896 return 0;
3897 }
3898
3899 if (strcmp(serial[0], serial[1])) {
3900 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3901 serial[0], serial[1]);
3902 return 0;
3903 }
3904
3905 return 1;
3906}
3907
3908/**
3909 * ata_dev_reread_id - Re-read IDENTIFY data
3910 * @dev: target ATA device
3911 * @readid_flags: read ID flags
3912 *
3913 * Re-read IDENTIFY page and make sure @dev is still attached to
3914 * the port.
3915 *
3916 * LOCKING:
3917 * Kernel thread context (may sleep)
3918 *
3919 * RETURNS:
3920 * 0 on success, negative errno otherwise
3921 */
3922int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3923{
3924 unsigned int class = dev->class;
3925 u16 *id = (void *)dev->link->ap->sector_buf;
3926 int rc;
3927
3928 /* read ID data */
3929 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3930 if (rc)
3931 return rc;
3932
3933 /* is the device still there? */
3934 if (!ata_dev_same_device(dev, class, id))
3935 return -ENODEV;
3936
3937 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3938 return 0;
3939}
3940
3941/**
3942 * ata_dev_revalidate - Revalidate ATA device
3943 * @dev: device to revalidate
3944 * @new_class: new class code
3945 * @readid_flags: read ID flags
3946 *
3947 * Re-read IDENTIFY page, make sure @dev is still attached to the
3948 * port and reconfigure it according to the new IDENTIFY page.
3949 *
3950 * LOCKING:
3951 * Kernel thread context (may sleep)
3952 *
3953 * RETURNS:
3954 * 0 on success, negative errno otherwise
3955 */
3956int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3957 unsigned int readid_flags)
3958{
3959 u64 n_sectors = dev->n_sectors;
3960 u64 n_native_sectors = dev->n_native_sectors;
3961 int rc;
3962
3963 if (!ata_dev_enabled(dev))
3964 return -ENODEV;
3965
3966 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3967 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3968 ata_dev_info(dev, "class mismatch %u != %u\n",
3969 dev->class, new_class);
3970 rc = -ENODEV;
3971 goto fail;
3972 }
3973
3974 /* re-read ID */
3975 rc = ata_dev_reread_id(dev, readid_flags);
3976 if (rc)
3977 goto fail;
3978
3979 /* configure device according to the new ID */
3980 rc = ata_dev_configure(dev);
3981 if (rc)
3982 goto fail;
3983
3984 /* verify n_sectors hasn't changed */
3985 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3986 dev->n_sectors == n_sectors)
3987 return 0;
3988
3989 /* n_sectors has changed */
3990 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3991 (unsigned long long)n_sectors,
3992 (unsigned long long)dev->n_sectors);
3993
3994 /*
3995 * Something could have caused HPA to be unlocked
3996 * involuntarily. If n_native_sectors hasn't changed and the
3997 * new size matches it, keep the device.
3998 */
3999 if (dev->n_native_sectors == n_native_sectors &&
4000 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4001 ata_dev_warn(dev,
4002 "new n_sectors matches native, probably "
4003 "late HPA unlock, n_sectors updated\n");
4004 /* use the larger n_sectors */
4005 return 0;
4006 }
4007
4008 /*
4009 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4010 * unlocking HPA in those cases.
4011 *
4012 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4013 */
4014 if (dev->n_native_sectors == n_native_sectors &&
4015 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4016 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4017 ata_dev_warn(dev,
4018 "old n_sectors matches native, probably "
4019 "late HPA lock, will try to unlock HPA\n");
4020 /* try unlocking HPA */
4021 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4022 rc = -EIO;
4023 } else
4024 rc = -ENODEV;
4025
4026 /* restore original n_[native_]sectors and fail */
4027 dev->n_native_sectors = n_native_sectors;
4028 dev->n_sectors = n_sectors;
4029 fail:
4030 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4031 return rc;
4032}
4033
4034struct ata_blacklist_entry {
4035 const char *model_num;
4036 const char *model_rev;
4037 unsigned long horkage;
4038};
4039
4040static const struct ata_blacklist_entry ata_device_blacklist [] = {
4041 /* Devices with DMA related problems under Linux */
4042 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4043 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4044 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4045 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4046 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4047 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4048 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4049 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4050 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4051 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4052 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4053 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4054 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4055 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4056 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4057 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4058 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4059 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4060 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4061 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4062 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4063 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4064 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4065 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4066 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4067 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4068 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4069 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4070 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4071 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4072 /* Odd clown on sil3726/4726 PMPs */
4073 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4074 /* Similar story with ASMedia 1092 */
4075 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
4076
4077 /* Weird ATAPI devices */
4078 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4079 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4080 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4081 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4082
4083 /*
4084 * Causes silent data corruption with higher max sects.
4085 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4086 */
4087 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4088
4089 /*
4090 * These devices time out with higher max sects.
4091 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4092 */
4093 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4094 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4095
4096 /* Devices we expect to fail diagnostics */
4097
4098 /* Devices where NCQ should be avoided */
4099 /* NCQ is slow */
4100 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4101 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ },
4102 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4103 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4104 /* NCQ is broken */
4105 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4106 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4107 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4108 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4109 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4110
4111 /* Seagate NCQ + FLUSH CACHE firmware bug */
4112 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4113 ATA_HORKAGE_FIRMWARE_WARN },
4114
4115 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4116 ATA_HORKAGE_FIRMWARE_WARN },
4117
4118 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4119 ATA_HORKAGE_FIRMWARE_WARN },
4120
4121 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4122 ATA_HORKAGE_FIRMWARE_WARN },
4123
4124 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4125 the ST disks also have LPM issues */
4126 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
4127 ATA_HORKAGE_NOLPM },
4128 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4129
4130 /* Blacklist entries taken from Silicon Image 3124/3132
4131 Windows driver .inf file - also several Linux problem reports */
4132 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ },
4133 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ },
4134 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ },
4135
4136 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4137 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ },
4138
4139 /* Sandisk SD7/8/9s lock up hard on large trims */
4140 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M },
4141
4142 /* devices which puke on READ_NATIVE_MAX */
4143 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA },
4144 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4145 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4146 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4147
4148 /* this one allows HPA unlocking but fails IOs on the area */
4149 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4150
4151 /* Devices which report 1 sector over size HPA */
4152 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE },
4153 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE },
4154 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE },
4155
4156 /* Devices which get the IVB wrong */
4157 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4158 /* Maybe we should just blacklist TSSTcorp... */
4159 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB },
4160
4161 /* Devices that do not need bridging limits applied */
4162 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK },
4163 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK },
4164
4165 /* Devices which aren't very happy with higher link speeds */
4166 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS },
4167 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS },
4168
4169 /*
4170 * Devices which choke on SETXFER. Applies only if both the
4171 * device and controller are SATA.
4172 */
4173 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4174 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4175 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4176 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4177 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4178
4179 /* These specific Pioneer models have LPM issues */
4180 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
4181 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
4182
4183 /* Crucial BX100 SSD 500GB has broken LPM support */
4184 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4185
4186 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4187 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4188 ATA_HORKAGE_ZERO_AFTER_TRIM |
4189 ATA_HORKAGE_NOLPM },
4190 /* 512GB MX100 with newer firmware has only LPM issues */
4191 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4192 ATA_HORKAGE_NOLPM },
4193
4194 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4195 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4196 ATA_HORKAGE_ZERO_AFTER_TRIM |
4197 ATA_HORKAGE_NOLPM },
4198 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4199 ATA_HORKAGE_ZERO_AFTER_TRIM |
4200 ATA_HORKAGE_NOLPM },
4201
4202 /* These specific Samsung models/firmware-revs do not handle LPM well */
4203 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4204 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM },
4205 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM },
4206 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4207
4208 /* devices that don't properly handle queued TRIM commands */
4209 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4210 ATA_HORKAGE_ZERO_AFTER_TRIM },
4211 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4212 ATA_HORKAGE_ZERO_AFTER_TRIM },
4213 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4214 ATA_HORKAGE_ZERO_AFTER_TRIM },
4215 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4216 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4217 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4218 ATA_HORKAGE_ZERO_AFTER_TRIM },
4219 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4220 ATA_HORKAGE_ZERO_AFTER_TRIM },
4221 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4222 ATA_HORKAGE_ZERO_AFTER_TRIM },
4223 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4224 ATA_HORKAGE_NO_DMA_LOG |
4225 ATA_HORKAGE_ZERO_AFTER_TRIM },
4226 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4227 ATA_HORKAGE_ZERO_AFTER_TRIM },
4228 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4229 ATA_HORKAGE_ZERO_AFTER_TRIM },
4230 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4231 ATA_HORKAGE_ZERO_AFTER_TRIM |
4232 ATA_HORKAGE_NO_NCQ_ON_ATI },
4233 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4234 ATA_HORKAGE_ZERO_AFTER_TRIM |
4235 ATA_HORKAGE_NO_NCQ_ON_ATI },
4236 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4237 ATA_HORKAGE_ZERO_AFTER_TRIM |
4238 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4239 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4240 ATA_HORKAGE_ZERO_AFTER_TRIM },
4241
4242 /* devices that don't properly handle TRIM commands */
4243 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM },
4244 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM },
4245
4246 /*
4247 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4248 * (Return Zero After Trim) flags in the ATA Command Set are
4249 * unreliable in the sense that they only define what happens if
4250 * the device successfully executed the DSM TRIM command. TRIM
4251 * is only advisory, however, and the device is free to silently
4252 * ignore all or parts of the request.
4253 *
4254 * Whitelist drives that are known to reliably return zeroes
4255 * after TRIM.
4256 */
4257
4258 /*
4259 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4260 * that model before whitelisting all other intel SSDs.
4261 */
4262 { "INTEL*SSDSC2MH*", NULL, 0 },
4263
4264 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4265 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4266 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4267 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4268 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4269 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4270 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4271 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4272
4273 /*
4274 * Some WD SATA-I drives spin up and down erratically when the link
4275 * is put into the slumber mode. We don't have full list of the
4276 * affected devices. Disable LPM if the device matches one of the
4277 * known prefixes and is SATA-1. As a side effect LPM partial is
4278 * lost too.
4279 *
4280 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4281 */
4282 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4283 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4284 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4285 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4286 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4287 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4288 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4289
4290 /*
4291 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4292 * log page is accessed. Ensure we never ask for this log page with
4293 * these devices.
4294 */
4295 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR },
4296
4297 /* Buggy FUA */
4298 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA },
4299 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA },
4300 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA },
4301 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA },
4302
4303 /* End Marker */
4304 { }
4305};
4306
4307static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4308{
4309 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4310 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4311 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4312
4313 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4314 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4315
4316 while (ad->model_num) {
4317 if (glob_match(ad->model_num, model_num)) {
4318 if (ad->model_rev == NULL)
4319 return ad->horkage;
4320 if (glob_match(ad->model_rev, model_rev))
4321 return ad->horkage;
4322 }
4323 ad++;
4324 }
4325 return 0;
4326}
4327
4328static int ata_dma_blacklisted(const struct ata_device *dev)
4329{
4330 /* We don't support polling DMA.
4331 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4332 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4333 */
4334 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4335 (dev->flags & ATA_DFLAG_CDB_INTR))
4336 return 1;
4337 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4338}
4339
4340/**
4341 * ata_is_40wire - check drive side detection
4342 * @dev: device
4343 *
4344 * Perform drive side detection decoding, allowing for device vendors
4345 * who can't follow the documentation.
4346 */
4347
4348static int ata_is_40wire(struct ata_device *dev)
4349{
4350 if (dev->horkage & ATA_HORKAGE_IVB)
4351 return ata_drive_40wire_relaxed(dev->id);
4352 return ata_drive_40wire(dev->id);
4353}
4354
4355/**
4356 * cable_is_40wire - 40/80/SATA decider
4357 * @ap: port to consider
4358 *
4359 * This function encapsulates the policy for speed management
4360 * in one place. At the moment we don't cache the result but
4361 * there is a good case for setting ap->cbl to the result when
4362 * we are called with unknown cables (and figuring out if it
4363 * impacts hotplug at all).
4364 *
4365 * Return 1 if the cable appears to be 40 wire.
4366 */
4367
4368static int cable_is_40wire(struct ata_port *ap)
4369{
4370 struct ata_link *link;
4371 struct ata_device *dev;
4372
4373 /* If the controller thinks we are 40 wire, we are. */
4374 if (ap->cbl == ATA_CBL_PATA40)
4375 return 1;
4376
4377 /* If the controller thinks we are 80 wire, we are. */
4378 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4379 return 0;
4380
4381 /* If the system is known to be 40 wire short cable (eg
4382 * laptop), then we allow 80 wire modes even if the drive
4383 * isn't sure.
4384 */
4385 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4386 return 0;
4387
4388 /* If the controller doesn't know, we scan.
4389 *
4390 * Note: We look for all 40 wire detects at this point. Any
4391 * 80 wire detect is taken to be 80 wire cable because
4392 * - in many setups only the one drive (slave if present) will
4393 * give a valid detect
4394 * - if you have a non detect capable drive you don't want it
4395 * to colour the choice
4396 */
4397 ata_for_each_link(link, ap, EDGE) {
4398 ata_for_each_dev(dev, link, ENABLED) {
4399 if (!ata_is_40wire(dev))
4400 return 0;
4401 }
4402 }
4403 return 1;
4404}
4405
4406/**
4407 * ata_dev_xfermask - Compute supported xfermask of the given device
4408 * @dev: Device to compute xfermask for
4409 *
4410 * Compute supported xfermask of @dev and store it in
4411 * dev->*_mask. This function is responsible for applying all
4412 * known limits including host controller limits, device
4413 * blacklist, etc...
4414 *
4415 * LOCKING:
4416 * None.
4417 */
4418static void ata_dev_xfermask(struct ata_device *dev)
4419{
4420 struct ata_link *link = dev->link;
4421 struct ata_port *ap = link->ap;
4422 struct ata_host *host = ap->host;
4423 unsigned int xfer_mask;
4424
4425 /* controller modes available */
4426 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4427 ap->mwdma_mask, ap->udma_mask);
4428
4429 /* drive modes available */
4430 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4431 dev->mwdma_mask, dev->udma_mask);
4432 xfer_mask &= ata_id_xfermask(dev->id);
4433
4434 /*
4435 * CFA Advanced TrueIDE timings are not allowed on a shared
4436 * cable
4437 */
4438 if (ata_dev_pair(dev)) {
4439 /* No PIO5 or PIO6 */
4440 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4441 /* No MWDMA3 or MWDMA 4 */
4442 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4443 }
4444
4445 if (ata_dma_blacklisted(dev)) {
4446 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4447 ata_dev_warn(dev,
4448 "device is on DMA blacklist, disabling DMA\n");
4449 }
4450
4451 if ((host->flags & ATA_HOST_SIMPLEX) &&
4452 host->simplex_claimed && host->simplex_claimed != ap) {
4453 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4454 ata_dev_warn(dev,
4455 "simplex DMA is claimed by other device, disabling DMA\n");
4456 }
4457
4458 if (ap->flags & ATA_FLAG_NO_IORDY)
4459 xfer_mask &= ata_pio_mask_no_iordy(dev);
4460
4461 if (ap->ops->mode_filter)
4462 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4463
4464 /* Apply cable rule here. Don't apply it early because when
4465 * we handle hot plug the cable type can itself change.
4466 * Check this last so that we know if the transfer rate was
4467 * solely limited by the cable.
4468 * Unknown or 80 wire cables reported host side are checked
4469 * drive side as well. Cases where we know a 40wire cable
4470 * is used safely for 80 are not checked here.
4471 */
4472 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4473 /* UDMA/44 or higher would be available */
4474 if (cable_is_40wire(ap)) {
4475 ata_dev_warn(dev,
4476 "limited to UDMA/33 due to 40-wire cable\n");
4477 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4478 }
4479
4480 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4481 &dev->mwdma_mask, &dev->udma_mask);
4482}
4483
4484/**
4485 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4486 * @dev: Device to which command will be sent
4487 *
4488 * Issue SET FEATURES - XFER MODE command to device @dev
4489 * on port @ap.
4490 *
4491 * LOCKING:
4492 * PCI/etc. bus probe sem.
4493 *
4494 * RETURNS:
4495 * 0 on success, AC_ERR_* mask otherwise.
4496 */
4497
4498static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4499{
4500 struct ata_taskfile tf;
4501
4502 /* set up set-features taskfile */
4503 ata_dev_dbg(dev, "set features - xfer mode\n");
4504
4505 /* Some controllers and ATAPI devices show flaky interrupt
4506 * behavior after setting xfer mode. Use polling instead.
4507 */
4508 ata_tf_init(dev, &tf);
4509 tf.command = ATA_CMD_SET_FEATURES;
4510 tf.feature = SETFEATURES_XFER;
4511 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4512 tf.protocol = ATA_PROT_NODATA;
4513 /* If we are using IORDY we must send the mode setting command */
4514 if (ata_pio_need_iordy(dev))
4515 tf.nsect = dev->xfer_mode;
4516 /* If the device has IORDY and the controller does not - turn it off */
4517 else if (ata_id_has_iordy(dev->id))
4518 tf.nsect = 0x01;
4519 else /* In the ancient relic department - skip all of this */
4520 return 0;
4521
4522 /*
4523 * On some disks, this command causes spin-up, so we need longer
4524 * timeout.
4525 */
4526 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4527}
4528
4529/**
4530 * ata_dev_set_feature - Issue SET FEATURES
4531 * @dev: Device to which command will be sent
4532 * @subcmd: The SET FEATURES subcommand to be sent
4533 * @action: The sector count represents a subcommand specific action
4534 *
4535 * Issue SET FEATURES command to device @dev on port @ap with sector count
4536 *
4537 * LOCKING:
4538 * PCI/etc. bus probe sem.
4539 *
4540 * RETURNS:
4541 * 0 on success, AC_ERR_* mask otherwise.
4542 */
4543unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4544{
4545 struct ata_taskfile tf;
4546 unsigned int timeout = 0;
4547
4548 /* set up set-features taskfile */
4549 ata_dev_dbg(dev, "set features\n");
4550
4551 ata_tf_init(dev, &tf);
4552 tf.command = ATA_CMD_SET_FEATURES;
4553 tf.feature = subcmd;
4554 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4555 tf.protocol = ATA_PROT_NODATA;
4556 tf.nsect = action;
4557
4558 if (subcmd == SETFEATURES_SPINUP)
4559 timeout = ata_probe_timeout ?
4560 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4561
4562 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4563}
4564EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4565
4566/**
4567 * ata_dev_init_params - Issue INIT DEV PARAMS command
4568 * @dev: Device to which command will be sent
4569 * @heads: Number of heads (taskfile parameter)
4570 * @sectors: Number of sectors (taskfile parameter)
4571 *
4572 * LOCKING:
4573 * Kernel thread context (may sleep)
4574 *
4575 * RETURNS:
4576 * 0 on success, AC_ERR_* mask otherwise.
4577 */
4578static unsigned int ata_dev_init_params(struct ata_device *dev,
4579 u16 heads, u16 sectors)
4580{
4581 struct ata_taskfile tf;
4582 unsigned int err_mask;
4583
4584 /* Number of sectors per track 1-255. Number of heads 1-16 */
4585 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4586 return AC_ERR_INVALID;
4587
4588 /* set up init dev params taskfile */
4589 ata_dev_dbg(dev, "init dev params \n");
4590
4591 ata_tf_init(dev, &tf);
4592 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4593 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4594 tf.protocol = ATA_PROT_NODATA;
4595 tf.nsect = sectors;
4596 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4597
4598 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4599 /* A clean abort indicates an original or just out of spec drive
4600 and we should continue as we issue the setup based on the
4601 drive reported working geometry */
4602 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4603 err_mask = 0;
4604
4605 return err_mask;
4606}
4607
4608/**
4609 * atapi_check_dma - Check whether ATAPI DMA can be supported
4610 * @qc: Metadata associated with taskfile to check
4611 *
4612 * Allow low-level driver to filter ATA PACKET commands, returning
4613 * a status indicating whether or not it is OK to use DMA for the
4614 * supplied PACKET command.
4615 *
4616 * LOCKING:
4617 * spin_lock_irqsave(host lock)
4618 *
4619 * RETURNS: 0 when ATAPI DMA can be used
4620 * nonzero otherwise
4621 */
4622int atapi_check_dma(struct ata_queued_cmd *qc)
4623{
4624 struct ata_port *ap = qc->ap;
4625
4626 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4627 * few ATAPI devices choke on such DMA requests.
4628 */
4629 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4630 unlikely(qc->nbytes & 15))
4631 return 1;
4632
4633 if (ap->ops->check_atapi_dma)
4634 return ap->ops->check_atapi_dma(qc);
4635
4636 return 0;
4637}
4638
4639/**
4640 * ata_std_qc_defer - Check whether a qc needs to be deferred
4641 * @qc: ATA command in question
4642 *
4643 * Non-NCQ commands cannot run with any other command, NCQ or
4644 * not. As upper layer only knows the queue depth, we are
4645 * responsible for maintaining exclusion. This function checks
4646 * whether a new command @qc can be issued.
4647 *
4648 * LOCKING:
4649 * spin_lock_irqsave(host lock)
4650 *
4651 * RETURNS:
4652 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4653 */
4654int ata_std_qc_defer(struct ata_queued_cmd *qc)
4655{
4656 struct ata_link *link = qc->dev->link;
4657
4658 if (ata_is_ncq(qc->tf.protocol)) {
4659 if (!ata_tag_valid(link->active_tag))
4660 return 0;
4661 } else {
4662 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4663 return 0;
4664 }
4665
4666 return ATA_DEFER_LINK;
4667}
4668EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4669
4670enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4671{
4672 return AC_ERR_OK;
4673}
4674EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4675
4676/**
4677 * ata_sg_init - Associate command with scatter-gather table.
4678 * @qc: Command to be associated
4679 * @sg: Scatter-gather table.
4680 * @n_elem: Number of elements in s/g table.
4681 *
4682 * Initialize the data-related elements of queued_cmd @qc
4683 * to point to a scatter-gather table @sg, containing @n_elem
4684 * elements.
4685 *
4686 * LOCKING:
4687 * spin_lock_irqsave(host lock)
4688 */
4689void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4690 unsigned int n_elem)
4691{
4692 qc->sg = sg;
4693 qc->n_elem = n_elem;
4694 qc->cursg = qc->sg;
4695}
4696
4697#ifdef CONFIG_HAS_DMA
4698
4699/**
4700 * ata_sg_clean - Unmap DMA memory associated with command
4701 * @qc: Command containing DMA memory to be released
4702 *
4703 * Unmap all mapped DMA memory associated with this command.
4704 *
4705 * LOCKING:
4706 * spin_lock_irqsave(host lock)
4707 */
4708static void ata_sg_clean(struct ata_queued_cmd *qc)
4709{
4710 struct ata_port *ap = qc->ap;
4711 struct scatterlist *sg = qc->sg;
4712 int dir = qc->dma_dir;
4713
4714 WARN_ON_ONCE(sg == NULL);
4715
4716 if (qc->n_elem)
4717 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4718
4719 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4720 qc->sg = NULL;
4721}
4722
4723/**
4724 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4725 * @qc: Command with scatter-gather table to be mapped.
4726 *
4727 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4728 *
4729 * LOCKING:
4730 * spin_lock_irqsave(host lock)
4731 *
4732 * RETURNS:
4733 * Zero on success, negative on error.
4734 *
4735 */
4736static int ata_sg_setup(struct ata_queued_cmd *qc)
4737{
4738 struct ata_port *ap = qc->ap;
4739 unsigned int n_elem;
4740
4741 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4742 if (n_elem < 1)
4743 return -1;
4744
4745 qc->orig_n_elem = qc->n_elem;
4746 qc->n_elem = n_elem;
4747 qc->flags |= ATA_QCFLAG_DMAMAP;
4748
4749 return 0;
4750}
4751
4752#else /* !CONFIG_HAS_DMA */
4753
4754static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4755static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4756
4757#endif /* !CONFIG_HAS_DMA */
4758
4759/**
4760 * swap_buf_le16 - swap halves of 16-bit words in place
4761 * @buf: Buffer to swap
4762 * @buf_words: Number of 16-bit words in buffer.
4763 *
4764 * Swap halves of 16-bit words if needed to convert from
4765 * little-endian byte order to native cpu byte order, or
4766 * vice-versa.
4767 *
4768 * LOCKING:
4769 * Inherited from caller.
4770 */
4771void swap_buf_le16(u16 *buf, unsigned int buf_words)
4772{
4773#ifdef __BIG_ENDIAN
4774 unsigned int i;
4775
4776 for (i = 0; i < buf_words; i++)
4777 buf[i] = le16_to_cpu(buf[i]);
4778#endif /* __BIG_ENDIAN */
4779}
4780
4781/**
4782 * ata_qc_free - free unused ata_queued_cmd
4783 * @qc: Command to complete
4784 *
4785 * Designed to free unused ata_queued_cmd object
4786 * in case something prevents using it.
4787 *
4788 * LOCKING:
4789 * spin_lock_irqsave(host lock)
4790 */
4791void ata_qc_free(struct ata_queued_cmd *qc)
4792{
4793 qc->flags = 0;
4794 if (ata_tag_valid(qc->tag))
4795 qc->tag = ATA_TAG_POISON;
4796}
4797
4798void __ata_qc_complete(struct ata_queued_cmd *qc)
4799{
4800 struct ata_port *ap;
4801 struct ata_link *link;
4802
4803 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4804 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4805 ap = qc->ap;
4806 link = qc->dev->link;
4807
4808 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4809 ata_sg_clean(qc);
4810
4811 /* command should be marked inactive atomically with qc completion */
4812 if (ata_is_ncq(qc->tf.protocol)) {
4813 link->sactive &= ~(1 << qc->hw_tag);
4814 if (!link->sactive)
4815 ap->nr_active_links--;
4816 } else {
4817 link->active_tag = ATA_TAG_POISON;
4818 ap->nr_active_links--;
4819 }
4820
4821 /* clear exclusive status */
4822 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4823 ap->excl_link == link))
4824 ap->excl_link = NULL;
4825
4826 /* atapi: mark qc as inactive to prevent the interrupt handler
4827 * from completing the command twice later, before the error handler
4828 * is called. (when rc != 0 and atapi request sense is needed)
4829 */
4830 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4831 ap->qc_active &= ~(1ULL << qc->tag);
4832
4833 /* call completion callback */
4834 qc->complete_fn(qc);
4835}
4836
4837static void fill_result_tf(struct ata_queued_cmd *qc)
4838{
4839 struct ata_port *ap = qc->ap;
4840
4841 qc->result_tf.flags = qc->tf.flags;
4842 ap->ops->qc_fill_rtf(qc);
4843}
4844
4845static void ata_verify_xfer(struct ata_queued_cmd *qc)
4846{
4847 struct ata_device *dev = qc->dev;
4848
4849 if (!ata_is_data(qc->tf.protocol))
4850 return;
4851
4852 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4853 return;
4854
4855 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4856}
4857
4858/**
4859 * ata_qc_complete - Complete an active ATA command
4860 * @qc: Command to complete
4861 *
4862 * Indicate to the mid and upper layers that an ATA command has
4863 * completed, with either an ok or not-ok status.
4864 *
4865 * Refrain from calling this function multiple times when
4866 * successfully completing multiple NCQ commands.
4867 * ata_qc_complete_multiple() should be used instead, which will
4868 * properly update IRQ expect state.
4869 *
4870 * LOCKING:
4871 * spin_lock_irqsave(host lock)
4872 */
4873void ata_qc_complete(struct ata_queued_cmd *qc)
4874{
4875 struct ata_port *ap = qc->ap;
4876 struct ata_device *dev = qc->dev;
4877 struct ata_eh_info *ehi = &dev->link->eh_info;
4878
4879 /* Trigger the LED (if available) */
4880 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4881
4882 /*
4883 * In order to synchronize EH with the regular execution path, a qc that
4884 * is owned by EH is marked with ATA_QCFLAG_EH.
4885 *
4886 * The normal execution path is responsible for not accessing a qc owned
4887 * by EH. libata core enforces the rule by returning NULL from
4888 * ata_qc_from_tag() for qcs owned by EH.
4889 */
4890 if (unlikely(qc->err_mask))
4891 qc->flags |= ATA_QCFLAG_EH;
4892
4893 /*
4894 * Finish internal commands without any further processing and always
4895 * with the result TF filled.
4896 */
4897 if (unlikely(ata_tag_internal(qc->tag))) {
4898 fill_result_tf(qc);
4899 trace_ata_qc_complete_internal(qc);
4900 __ata_qc_complete(qc);
4901 return;
4902 }
4903
4904 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4905 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4906 fill_result_tf(qc);
4907 trace_ata_qc_complete_failed(qc);
4908 ata_qc_schedule_eh(qc);
4909 return;
4910 }
4911
4912 WARN_ON_ONCE(ata_port_is_frozen(ap));
4913
4914 /* read result TF if requested */
4915 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4916 fill_result_tf(qc);
4917
4918 trace_ata_qc_complete_done(qc);
4919
4920 /*
4921 * For CDL commands that completed without an error, check if we have
4922 * sense data (ATA_SENSE is set). If we do, then the command may have
4923 * been aborted by the device due to a limit timeout using the policy
4924 * 0xD. For these commands, invoke EH to get the command sense data.
4925 */
4926 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4927 qc->result_tf.status & ATA_SENSE) {
4928 /*
4929 * Tell SCSI EH to not overwrite scmd->result even if this
4930 * command is finished with result SAM_STAT_GOOD.
4931 */
4932 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4933 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4934 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4935
4936 /*
4937 * set pending so that ata_qc_schedule_eh() does not trigger
4938 * fast drain, and freeze the port.
4939 */
4940 ap->pflags |= ATA_PFLAG_EH_PENDING;
4941 ata_qc_schedule_eh(qc);
4942 return;
4943 }
4944
4945 /* Some commands need post-processing after successful completion. */
4946 switch (qc->tf.command) {
4947 case ATA_CMD_SET_FEATURES:
4948 if (qc->tf.feature != SETFEATURES_WC_ON &&
4949 qc->tf.feature != SETFEATURES_WC_OFF &&
4950 qc->tf.feature != SETFEATURES_RA_ON &&
4951 qc->tf.feature != SETFEATURES_RA_OFF)
4952 break;
4953 fallthrough;
4954 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4955 case ATA_CMD_SET_MULTI: /* multi_count changed */
4956 /* revalidate device */
4957 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4958 ata_port_schedule_eh(ap);
4959 break;
4960
4961 case ATA_CMD_SLEEP:
4962 dev->flags |= ATA_DFLAG_SLEEPING;
4963 break;
4964 }
4965
4966 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4967 ata_verify_xfer(qc);
4968
4969 __ata_qc_complete(qc);
4970}
4971EXPORT_SYMBOL_GPL(ata_qc_complete);
4972
4973/**
4974 * ata_qc_get_active - get bitmask of active qcs
4975 * @ap: port in question
4976 *
4977 * LOCKING:
4978 * spin_lock_irqsave(host lock)
4979 *
4980 * RETURNS:
4981 * Bitmask of active qcs
4982 */
4983u64 ata_qc_get_active(struct ata_port *ap)
4984{
4985 u64 qc_active = ap->qc_active;
4986
4987 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4988 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4989 qc_active |= (1 << 0);
4990 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4991 }
4992
4993 return qc_active;
4994}
4995EXPORT_SYMBOL_GPL(ata_qc_get_active);
4996
4997/**
4998 * ata_qc_issue - issue taskfile to device
4999 * @qc: command to issue to device
5000 *
5001 * Prepare an ATA command to submission to device.
5002 * This includes mapping the data into a DMA-able
5003 * area, filling in the S/G table, and finally
5004 * writing the taskfile to hardware, starting the command.
5005 *
5006 * LOCKING:
5007 * spin_lock_irqsave(host lock)
5008 */
5009void ata_qc_issue(struct ata_queued_cmd *qc)
5010{
5011 struct ata_port *ap = qc->ap;
5012 struct ata_link *link = qc->dev->link;
5013 u8 prot = qc->tf.protocol;
5014
5015 /* Make sure only one non-NCQ command is outstanding. */
5016 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5017
5018 if (ata_is_ncq(prot)) {
5019 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5020
5021 if (!link->sactive)
5022 ap->nr_active_links++;
5023 link->sactive |= 1 << qc->hw_tag;
5024 } else {
5025 WARN_ON_ONCE(link->sactive);
5026
5027 ap->nr_active_links++;
5028 link->active_tag = qc->tag;
5029 }
5030
5031 qc->flags |= ATA_QCFLAG_ACTIVE;
5032 ap->qc_active |= 1ULL << qc->tag;
5033
5034 /*
5035 * We guarantee to LLDs that they will have at least one
5036 * non-zero sg if the command is a data command.
5037 */
5038 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5039 goto sys_err;
5040
5041 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5042 (ap->flags & ATA_FLAG_PIO_DMA)))
5043 if (ata_sg_setup(qc))
5044 goto sys_err;
5045
5046 /* if device is sleeping, schedule reset and abort the link */
5047 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5048 link->eh_info.action |= ATA_EH_RESET;
5049 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5050 ata_link_abort(link);
5051 return;
5052 }
5053
5054 trace_ata_qc_prep(qc);
5055 qc->err_mask |= ap->ops->qc_prep(qc);
5056 if (unlikely(qc->err_mask))
5057 goto err;
5058 trace_ata_qc_issue(qc);
5059 qc->err_mask |= ap->ops->qc_issue(qc);
5060 if (unlikely(qc->err_mask))
5061 goto err;
5062 return;
5063
5064sys_err:
5065 qc->err_mask |= AC_ERR_SYSTEM;
5066err:
5067 ata_qc_complete(qc);
5068}
5069
5070/**
5071 * ata_phys_link_online - test whether the given link is online
5072 * @link: ATA link to test
5073 *
5074 * Test whether @link is online. Note that this function returns
5075 * 0 if online status of @link cannot be obtained, so
5076 * ata_link_online(link) != !ata_link_offline(link).
5077 *
5078 * LOCKING:
5079 * None.
5080 *
5081 * RETURNS:
5082 * True if the port online status is available and online.
5083 */
5084bool ata_phys_link_online(struct ata_link *link)
5085{
5086 u32 sstatus;
5087
5088 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5089 ata_sstatus_online(sstatus))
5090 return true;
5091 return false;
5092}
5093
5094/**
5095 * ata_phys_link_offline - test whether the given link is offline
5096 * @link: ATA link to test
5097 *
5098 * Test whether @link is offline. Note that this function
5099 * returns 0 if offline status of @link cannot be obtained, so
5100 * ata_link_online(link) != !ata_link_offline(link).
5101 *
5102 * LOCKING:
5103 * None.
5104 *
5105 * RETURNS:
5106 * True if the port offline status is available and offline.
5107 */
5108bool ata_phys_link_offline(struct ata_link *link)
5109{
5110 u32 sstatus;
5111
5112 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5113 !ata_sstatus_online(sstatus))
5114 return true;
5115 return false;
5116}
5117
5118/**
5119 * ata_link_online - test whether the given link is online
5120 * @link: ATA link to test
5121 *
5122 * Test whether @link is online. This is identical to
5123 * ata_phys_link_online() when there's no slave link. When
5124 * there's a slave link, this function should only be called on
5125 * the master link and will return true if any of M/S links is
5126 * online.
5127 *
5128 * LOCKING:
5129 * None.
5130 *
5131 * RETURNS:
5132 * True if the port online status is available and online.
5133 */
5134bool ata_link_online(struct ata_link *link)
5135{
5136 struct ata_link *slave = link->ap->slave_link;
5137
5138 WARN_ON(link == slave); /* shouldn't be called on slave link */
5139
5140 return ata_phys_link_online(link) ||
5141 (slave && ata_phys_link_online(slave));
5142}
5143EXPORT_SYMBOL_GPL(ata_link_online);
5144
5145/**
5146 * ata_link_offline - test whether the given link is offline
5147 * @link: ATA link to test
5148 *
5149 * Test whether @link is offline. This is identical to
5150 * ata_phys_link_offline() when there's no slave link. When
5151 * there's a slave link, this function should only be called on
5152 * the master link and will return true if both M/S links are
5153 * offline.
5154 *
5155 * LOCKING:
5156 * None.
5157 *
5158 * RETURNS:
5159 * True if the port offline status is available and offline.
5160 */
5161bool ata_link_offline(struct ata_link *link)
5162{
5163 struct ata_link *slave = link->ap->slave_link;
5164
5165 WARN_ON(link == slave); /* shouldn't be called on slave link */
5166
5167 return ata_phys_link_offline(link) &&
5168 (!slave || ata_phys_link_offline(slave));
5169}
5170EXPORT_SYMBOL_GPL(ata_link_offline);
5171
5172#ifdef CONFIG_PM
5173static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5174 unsigned int action, unsigned int ehi_flags,
5175 bool async)
5176{
5177 struct ata_link *link;
5178 unsigned long flags;
5179
5180 spin_lock_irqsave(ap->lock, flags);
5181
5182 /*
5183 * A previous PM operation might still be in progress. Wait for
5184 * ATA_PFLAG_PM_PENDING to clear.
5185 */
5186 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5187 spin_unlock_irqrestore(ap->lock, flags);
5188 ata_port_wait_eh(ap);
5189 spin_lock_irqsave(ap->lock, flags);
5190 }
5191
5192 /* Request PM operation to EH */
5193 ap->pm_mesg = mesg;
5194 ap->pflags |= ATA_PFLAG_PM_PENDING;
5195 ata_for_each_link(link, ap, HOST_FIRST) {
5196 link->eh_info.action |= action;
5197 link->eh_info.flags |= ehi_flags;
5198 }
5199
5200 ata_port_schedule_eh(ap);
5201
5202 spin_unlock_irqrestore(ap->lock, flags);
5203
5204 if (!async)
5205 ata_port_wait_eh(ap);
5206}
5207
5208static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5209 bool async)
5210{
5211 /*
5212 * We are about to suspend the port, so we do not care about
5213 * scsi_rescan_device() calls scheduled by previous resume operations.
5214 * The next resume will schedule the rescan again. So cancel any rescan
5215 * that is not done yet.
5216 */
5217 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5218
5219 /*
5220 * On some hardware, device fails to respond after spun down for
5221 * suspend. As the device will not be used until being resumed, we
5222 * do not need to touch the device. Ask EH to skip the usual stuff
5223 * and proceed directly to suspend.
5224 *
5225 * http://thread.gmane.org/gmane.linux.ide/46764
5226 */
5227 ata_port_request_pm(ap, mesg, 0,
5228 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5229 ATA_EHI_NO_RECOVERY,
5230 async);
5231}
5232
5233static int ata_port_pm_suspend(struct device *dev)
5234{
5235 struct ata_port *ap = to_ata_port(dev);
5236
5237 if (pm_runtime_suspended(dev))
5238 return 0;
5239
5240 ata_port_suspend(ap, PMSG_SUSPEND, false);
5241 return 0;
5242}
5243
5244static int ata_port_pm_freeze(struct device *dev)
5245{
5246 struct ata_port *ap = to_ata_port(dev);
5247
5248 if (pm_runtime_suspended(dev))
5249 return 0;
5250
5251 ata_port_suspend(ap, PMSG_FREEZE, false);
5252 return 0;
5253}
5254
5255static int ata_port_pm_poweroff(struct device *dev)
5256{
5257 if (!pm_runtime_suspended(dev))
5258 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5259 return 0;
5260}
5261
5262static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5263 bool async)
5264{
5265 ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5266 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5267 async);
5268}
5269
5270static int ata_port_pm_resume(struct device *dev)
5271{
5272 if (!pm_runtime_suspended(dev))
5273 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5274 return 0;
5275}
5276
5277/*
5278 * For ODDs, the upper layer will poll for media change every few seconds,
5279 * which will make it enter and leave suspend state every few seconds. And
5280 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5281 * is very little and the ODD may malfunction after constantly being reset.
5282 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5283 * ODD is attached to the port.
5284 */
5285static int ata_port_runtime_idle(struct device *dev)
5286{
5287 struct ata_port *ap = to_ata_port(dev);
5288 struct ata_link *link;
5289 struct ata_device *adev;
5290
5291 ata_for_each_link(link, ap, HOST_FIRST) {
5292 ata_for_each_dev(adev, link, ENABLED)
5293 if (adev->class == ATA_DEV_ATAPI &&
5294 !zpodd_dev_enabled(adev))
5295 return -EBUSY;
5296 }
5297
5298 return 0;
5299}
5300
5301static int ata_port_runtime_suspend(struct device *dev)
5302{
5303 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5304 return 0;
5305}
5306
5307static int ata_port_runtime_resume(struct device *dev)
5308{
5309 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5310 return 0;
5311}
5312
5313static const struct dev_pm_ops ata_port_pm_ops = {
5314 .suspend = ata_port_pm_suspend,
5315 .resume = ata_port_pm_resume,
5316 .freeze = ata_port_pm_freeze,
5317 .thaw = ata_port_pm_resume,
5318 .poweroff = ata_port_pm_poweroff,
5319 .restore = ata_port_pm_resume,
5320
5321 .runtime_suspend = ata_port_runtime_suspend,
5322 .runtime_resume = ata_port_runtime_resume,
5323 .runtime_idle = ata_port_runtime_idle,
5324};
5325
5326/* sas ports don't participate in pm runtime management of ata_ports,
5327 * and need to resume ata devices at the domain level, not the per-port
5328 * level. sas suspend/resume is async to allow parallel port recovery
5329 * since sas has multiple ata_port instances per Scsi_Host.
5330 */
5331void ata_sas_port_suspend(struct ata_port *ap)
5332{
5333 ata_port_suspend(ap, PMSG_SUSPEND, true);
5334}
5335EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5336
5337void ata_sas_port_resume(struct ata_port *ap)
5338{
5339 ata_port_resume(ap, PMSG_RESUME, true);
5340}
5341EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5342
5343/**
5344 * ata_host_suspend - suspend host
5345 * @host: host to suspend
5346 * @mesg: PM message
5347 *
5348 * Suspend @host. Actual operation is performed by port suspend.
5349 */
5350void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5351{
5352 host->dev->power.power_state = mesg;
5353}
5354EXPORT_SYMBOL_GPL(ata_host_suspend);
5355
5356/**
5357 * ata_host_resume - resume host
5358 * @host: host to resume
5359 *
5360 * Resume @host. Actual operation is performed by port resume.
5361 */
5362void ata_host_resume(struct ata_host *host)
5363{
5364 host->dev->power.power_state = PMSG_ON;
5365}
5366EXPORT_SYMBOL_GPL(ata_host_resume);
5367#endif
5368
5369const struct device_type ata_port_type = {
5370 .name = ATA_PORT_TYPE_NAME,
5371#ifdef CONFIG_PM
5372 .pm = &ata_port_pm_ops,
5373#endif
5374};
5375
5376/**
5377 * ata_dev_init - Initialize an ata_device structure
5378 * @dev: Device structure to initialize
5379 *
5380 * Initialize @dev in preparation for probing.
5381 *
5382 * LOCKING:
5383 * Inherited from caller.
5384 */
5385void ata_dev_init(struct ata_device *dev)
5386{
5387 struct ata_link *link = ata_dev_phys_link(dev);
5388 struct ata_port *ap = link->ap;
5389 unsigned long flags;
5390
5391 /* SATA spd limit is bound to the attached device, reset together */
5392 link->sata_spd_limit = link->hw_sata_spd_limit;
5393 link->sata_spd = 0;
5394
5395 /* High bits of dev->flags are used to record warm plug
5396 * requests which occur asynchronously. Synchronize using
5397 * host lock.
5398 */
5399 spin_lock_irqsave(ap->lock, flags);
5400 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5401 dev->horkage = 0;
5402 spin_unlock_irqrestore(ap->lock, flags);
5403
5404 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5405 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5406 dev->pio_mask = UINT_MAX;
5407 dev->mwdma_mask = UINT_MAX;
5408 dev->udma_mask = UINT_MAX;
5409}
5410
5411/**
5412 * ata_link_init - Initialize an ata_link structure
5413 * @ap: ATA port link is attached to
5414 * @link: Link structure to initialize
5415 * @pmp: Port multiplier port number
5416 *
5417 * Initialize @link.
5418 *
5419 * LOCKING:
5420 * Kernel thread context (may sleep)
5421 */
5422void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5423{
5424 int i;
5425
5426 /* clear everything except for devices */
5427 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5428 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5429
5430 link->ap = ap;
5431 link->pmp = pmp;
5432 link->active_tag = ATA_TAG_POISON;
5433 link->hw_sata_spd_limit = UINT_MAX;
5434
5435 /* can't use iterator, ap isn't initialized yet */
5436 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5437 struct ata_device *dev = &link->device[i];
5438
5439 dev->link = link;
5440 dev->devno = dev - link->device;
5441#ifdef CONFIG_ATA_ACPI
5442 dev->gtf_filter = ata_acpi_gtf_filter;
5443#endif
5444 ata_dev_init(dev);
5445 }
5446}
5447
5448/**
5449 * sata_link_init_spd - Initialize link->sata_spd_limit
5450 * @link: Link to configure sata_spd_limit for
5451 *
5452 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5453 * configured value.
5454 *
5455 * LOCKING:
5456 * Kernel thread context (may sleep).
5457 *
5458 * RETURNS:
5459 * 0 on success, -errno on failure.
5460 */
5461int sata_link_init_spd(struct ata_link *link)
5462{
5463 u8 spd;
5464 int rc;
5465
5466 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5467 if (rc)
5468 return rc;
5469
5470 spd = (link->saved_scontrol >> 4) & 0xf;
5471 if (spd)
5472 link->hw_sata_spd_limit &= (1 << spd) - 1;
5473
5474 ata_force_link_limits(link);
5475
5476 link->sata_spd_limit = link->hw_sata_spd_limit;
5477
5478 return 0;
5479}
5480
5481/**
5482 * ata_port_alloc - allocate and initialize basic ATA port resources
5483 * @host: ATA host this allocated port belongs to
5484 *
5485 * Allocate and initialize basic ATA port resources.
5486 *
5487 * RETURNS:
5488 * Allocate ATA port on success, NULL on failure.
5489 *
5490 * LOCKING:
5491 * Inherited from calling layer (may sleep).
5492 */
5493struct ata_port *ata_port_alloc(struct ata_host *host)
5494{
5495 struct ata_port *ap;
5496
5497 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5498 if (!ap)
5499 return NULL;
5500
5501 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5502 ap->lock = &host->lock;
5503 ap->print_id = -1;
5504 ap->local_port_no = -1;
5505 ap->host = host;
5506 ap->dev = host->dev;
5507
5508 mutex_init(&ap->scsi_scan_mutex);
5509 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5510 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5511 INIT_LIST_HEAD(&ap->eh_done_q);
5512 init_waitqueue_head(&ap->eh_wait_q);
5513 init_completion(&ap->park_req_pending);
5514 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5515 TIMER_DEFERRABLE);
5516
5517 ap->cbl = ATA_CBL_NONE;
5518
5519 ata_link_init(ap, &ap->link, 0);
5520
5521#ifdef ATA_IRQ_TRAP
5522 ap->stats.unhandled_irq = 1;
5523 ap->stats.idle_irq = 1;
5524#endif
5525 ata_sff_port_init(ap);
5526
5527 return ap;
5528}
5529
5530static void ata_devres_release(struct device *gendev, void *res)
5531{
5532 struct ata_host *host = dev_get_drvdata(gendev);
5533 int i;
5534
5535 for (i = 0; i < host->n_ports; i++) {
5536 struct ata_port *ap = host->ports[i];
5537
5538 if (!ap)
5539 continue;
5540
5541 if (ap->scsi_host)
5542 scsi_host_put(ap->scsi_host);
5543
5544 }
5545
5546 dev_set_drvdata(gendev, NULL);
5547 ata_host_put(host);
5548}
5549
5550static void ata_host_release(struct kref *kref)
5551{
5552 struct ata_host *host = container_of(kref, struct ata_host, kref);
5553 int i;
5554
5555 for (i = 0; i < host->n_ports; i++) {
5556 struct ata_port *ap = host->ports[i];
5557
5558 kfree(ap->pmp_link);
5559 kfree(ap->slave_link);
5560 kfree(ap->ncq_sense_buf);
5561 kfree(ap);
5562 host->ports[i] = NULL;
5563 }
5564 kfree(host);
5565}
5566
5567void ata_host_get(struct ata_host *host)
5568{
5569 kref_get(&host->kref);
5570}
5571
5572void ata_host_put(struct ata_host *host)
5573{
5574 kref_put(&host->kref, ata_host_release);
5575}
5576EXPORT_SYMBOL_GPL(ata_host_put);
5577
5578/**
5579 * ata_host_alloc - allocate and init basic ATA host resources
5580 * @dev: generic device this host is associated with
5581 * @max_ports: maximum number of ATA ports associated with this host
5582 *
5583 * Allocate and initialize basic ATA host resources. LLD calls
5584 * this function to allocate a host, initializes it fully and
5585 * attaches it using ata_host_register().
5586 *
5587 * @max_ports ports are allocated and host->n_ports is
5588 * initialized to @max_ports. The caller is allowed to decrease
5589 * host->n_ports before calling ata_host_register(). The unused
5590 * ports will be automatically freed on registration.
5591 *
5592 * RETURNS:
5593 * Allocate ATA host on success, NULL on failure.
5594 *
5595 * LOCKING:
5596 * Inherited from calling layer (may sleep).
5597 */
5598struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5599{
5600 struct ata_host *host;
5601 size_t sz;
5602 int i;
5603 void *dr;
5604
5605 /* alloc a container for our list of ATA ports (buses) */
5606 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5607 host = kzalloc(sz, GFP_KERNEL);
5608 if (!host)
5609 return NULL;
5610
5611 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5612 goto err_free;
5613
5614 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5615 if (!dr)
5616 goto err_out;
5617
5618 devres_add(dev, dr);
5619 dev_set_drvdata(dev, host);
5620
5621 spin_lock_init(&host->lock);
5622 mutex_init(&host->eh_mutex);
5623 host->dev = dev;
5624 host->n_ports = max_ports;
5625 kref_init(&host->kref);
5626
5627 /* allocate ports bound to this host */
5628 for (i = 0; i < max_ports; i++) {
5629 struct ata_port *ap;
5630
5631 ap = ata_port_alloc(host);
5632 if (!ap)
5633 goto err_out;
5634
5635 ap->port_no = i;
5636 host->ports[i] = ap;
5637 }
5638
5639 devres_remove_group(dev, NULL);
5640 return host;
5641
5642 err_out:
5643 devres_release_group(dev, NULL);
5644 err_free:
5645 kfree(host);
5646 return NULL;
5647}
5648EXPORT_SYMBOL_GPL(ata_host_alloc);
5649
5650/**
5651 * ata_host_alloc_pinfo - alloc host and init with port_info array
5652 * @dev: generic device this host is associated with
5653 * @ppi: array of ATA port_info to initialize host with
5654 * @n_ports: number of ATA ports attached to this host
5655 *
5656 * Allocate ATA host and initialize with info from @ppi. If NULL
5657 * terminated, @ppi may contain fewer entries than @n_ports. The
5658 * last entry will be used for the remaining ports.
5659 *
5660 * RETURNS:
5661 * Allocate ATA host on success, NULL on failure.
5662 *
5663 * LOCKING:
5664 * Inherited from calling layer (may sleep).
5665 */
5666struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5667 const struct ata_port_info * const * ppi,
5668 int n_ports)
5669{
5670 const struct ata_port_info *pi = &ata_dummy_port_info;
5671 struct ata_host *host;
5672 int i, j;
5673
5674 host = ata_host_alloc(dev, n_ports);
5675 if (!host)
5676 return NULL;
5677
5678 for (i = 0, j = 0; i < host->n_ports; i++) {
5679 struct ata_port *ap = host->ports[i];
5680
5681 if (ppi[j])
5682 pi = ppi[j++];
5683
5684 ap->pio_mask = pi->pio_mask;
5685 ap->mwdma_mask = pi->mwdma_mask;
5686 ap->udma_mask = pi->udma_mask;
5687 ap->flags |= pi->flags;
5688 ap->link.flags |= pi->link_flags;
5689 ap->ops = pi->port_ops;
5690
5691 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5692 host->ops = pi->port_ops;
5693 }
5694
5695 return host;
5696}
5697EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5698
5699static void ata_host_stop(struct device *gendev, void *res)
5700{
5701 struct ata_host *host = dev_get_drvdata(gendev);
5702 int i;
5703
5704 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5705
5706 for (i = 0; i < host->n_ports; i++) {
5707 struct ata_port *ap = host->ports[i];
5708
5709 if (ap->ops->port_stop)
5710 ap->ops->port_stop(ap);
5711 }
5712
5713 if (host->ops->host_stop)
5714 host->ops->host_stop(host);
5715}
5716
5717/**
5718 * ata_finalize_port_ops - finalize ata_port_operations
5719 * @ops: ata_port_operations to finalize
5720 *
5721 * An ata_port_operations can inherit from another ops and that
5722 * ops can again inherit from another. This can go on as many
5723 * times as necessary as long as there is no loop in the
5724 * inheritance chain.
5725 *
5726 * Ops tables are finalized when the host is started. NULL or
5727 * unspecified entries are inherited from the closet ancestor
5728 * which has the method and the entry is populated with it.
5729 * After finalization, the ops table directly points to all the
5730 * methods and ->inherits is no longer necessary and cleared.
5731 *
5732 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5733 *
5734 * LOCKING:
5735 * None.
5736 */
5737static void ata_finalize_port_ops(struct ata_port_operations *ops)
5738{
5739 static DEFINE_SPINLOCK(lock);
5740 const struct ata_port_operations *cur;
5741 void **begin = (void **)ops;
5742 void **end = (void **)&ops->inherits;
5743 void **pp;
5744
5745 if (!ops || !ops->inherits)
5746 return;
5747
5748 spin_lock(&lock);
5749
5750 for (cur = ops->inherits; cur; cur = cur->inherits) {
5751 void **inherit = (void **)cur;
5752
5753 for (pp = begin; pp < end; pp++, inherit++)
5754 if (!*pp)
5755 *pp = *inherit;
5756 }
5757
5758 for (pp = begin; pp < end; pp++)
5759 if (IS_ERR(*pp))
5760 *pp = NULL;
5761
5762 ops->inherits = NULL;
5763
5764 spin_unlock(&lock);
5765}
5766
5767/**
5768 * ata_host_start - start and freeze ports of an ATA host
5769 * @host: ATA host to start ports for
5770 *
5771 * Start and then freeze ports of @host. Started status is
5772 * recorded in host->flags, so this function can be called
5773 * multiple times. Ports are guaranteed to get started only
5774 * once. If host->ops is not initialized yet, it is set to the
5775 * first non-dummy port ops.
5776 *
5777 * LOCKING:
5778 * Inherited from calling layer (may sleep).
5779 *
5780 * RETURNS:
5781 * 0 if all ports are started successfully, -errno otherwise.
5782 */
5783int ata_host_start(struct ata_host *host)
5784{
5785 int have_stop = 0;
5786 void *start_dr = NULL;
5787 int i, rc;
5788
5789 if (host->flags & ATA_HOST_STARTED)
5790 return 0;
5791
5792 ata_finalize_port_ops(host->ops);
5793
5794 for (i = 0; i < host->n_ports; i++) {
5795 struct ata_port *ap = host->ports[i];
5796
5797 ata_finalize_port_ops(ap->ops);
5798
5799 if (!host->ops && !ata_port_is_dummy(ap))
5800 host->ops = ap->ops;
5801
5802 if (ap->ops->port_stop)
5803 have_stop = 1;
5804 }
5805
5806 if (host->ops && host->ops->host_stop)
5807 have_stop = 1;
5808
5809 if (have_stop) {
5810 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5811 if (!start_dr)
5812 return -ENOMEM;
5813 }
5814
5815 for (i = 0; i < host->n_ports; i++) {
5816 struct ata_port *ap = host->ports[i];
5817
5818 if (ap->ops->port_start) {
5819 rc = ap->ops->port_start(ap);
5820 if (rc) {
5821 if (rc != -ENODEV)
5822 dev_err(host->dev,
5823 "failed to start port %d (errno=%d)\n",
5824 i, rc);
5825 goto err_out;
5826 }
5827 }
5828 ata_eh_freeze_port(ap);
5829 }
5830
5831 if (start_dr)
5832 devres_add(host->dev, start_dr);
5833 host->flags |= ATA_HOST_STARTED;
5834 return 0;
5835
5836 err_out:
5837 while (--i >= 0) {
5838 struct ata_port *ap = host->ports[i];
5839
5840 if (ap->ops->port_stop)
5841 ap->ops->port_stop(ap);
5842 }
5843 devres_free(start_dr);
5844 return rc;
5845}
5846EXPORT_SYMBOL_GPL(ata_host_start);
5847
5848/**
5849 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5850 * @host: host to initialize
5851 * @dev: device host is attached to
5852 * @ops: port_ops
5853 *
5854 */
5855void ata_host_init(struct ata_host *host, struct device *dev,
5856 struct ata_port_operations *ops)
5857{
5858 spin_lock_init(&host->lock);
5859 mutex_init(&host->eh_mutex);
5860 host->n_tags = ATA_MAX_QUEUE;
5861 host->dev = dev;
5862 host->ops = ops;
5863 kref_init(&host->kref);
5864}
5865EXPORT_SYMBOL_GPL(ata_host_init);
5866
5867void ata_port_probe(struct ata_port *ap)
5868{
5869 struct ata_eh_info *ehi = &ap->link.eh_info;
5870 unsigned long flags;
5871
5872 /* kick EH for boot probing */
5873 spin_lock_irqsave(ap->lock, flags);
5874
5875 ehi->probe_mask |= ATA_ALL_DEVICES;
5876 ehi->action |= ATA_EH_RESET;
5877 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5878
5879 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5880 ap->pflags |= ATA_PFLAG_LOADING;
5881 ata_port_schedule_eh(ap);
5882
5883 spin_unlock_irqrestore(ap->lock, flags);
5884}
5885EXPORT_SYMBOL_GPL(ata_port_probe);
5886
5887static void async_port_probe(void *data, async_cookie_t cookie)
5888{
5889 struct ata_port *ap = data;
5890
5891 /*
5892 * If we're not allowed to scan this host in parallel,
5893 * we need to wait until all previous scans have completed
5894 * before going further.
5895 * Jeff Garzik says this is only within a controller, so we
5896 * don't need to wait for port 0, only for later ports.
5897 */
5898 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5899 async_synchronize_cookie(cookie);
5900
5901 ata_port_probe(ap);
5902 ata_port_wait_eh(ap);
5903
5904 /* in order to keep device order, we need to synchronize at this point */
5905 async_synchronize_cookie(cookie);
5906
5907 ata_scsi_scan_host(ap, 1);
5908}
5909
5910/**
5911 * ata_host_register - register initialized ATA host
5912 * @host: ATA host to register
5913 * @sht: template for SCSI host
5914 *
5915 * Register initialized ATA host. @host is allocated using
5916 * ata_host_alloc() and fully initialized by LLD. This function
5917 * starts ports, registers @host with ATA and SCSI layers and
5918 * probe registered devices.
5919 *
5920 * LOCKING:
5921 * Inherited from calling layer (may sleep).
5922 *
5923 * RETURNS:
5924 * 0 on success, -errno otherwise.
5925 */
5926int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5927{
5928 int i, rc;
5929
5930 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5931
5932 /* host must have been started */
5933 if (!(host->flags & ATA_HOST_STARTED)) {
5934 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5935 WARN_ON(1);
5936 return -EINVAL;
5937 }
5938
5939 /* Blow away unused ports. This happens when LLD can't
5940 * determine the exact number of ports to allocate at
5941 * allocation time.
5942 */
5943 for (i = host->n_ports; host->ports[i]; i++)
5944 kfree(host->ports[i]);
5945
5946 /* give ports names and add SCSI hosts */
5947 for (i = 0; i < host->n_ports; i++) {
5948 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5949 host->ports[i]->local_port_no = i + 1;
5950 }
5951
5952 /* Create associated sysfs transport objects */
5953 for (i = 0; i < host->n_ports; i++) {
5954 rc = ata_tport_add(host->dev,host->ports[i]);
5955 if (rc) {
5956 goto err_tadd;
5957 }
5958 }
5959
5960 rc = ata_scsi_add_hosts(host, sht);
5961 if (rc)
5962 goto err_tadd;
5963
5964 /* set cable, sata_spd_limit and report */
5965 for (i = 0; i < host->n_ports; i++) {
5966 struct ata_port *ap = host->ports[i];
5967 unsigned int xfer_mask;
5968
5969 /* set SATA cable type if still unset */
5970 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5971 ap->cbl = ATA_CBL_SATA;
5972
5973 /* init sata_spd_limit to the current value */
5974 sata_link_init_spd(&ap->link);
5975 if (ap->slave_link)
5976 sata_link_init_spd(ap->slave_link);
5977
5978 /* print per-port info to dmesg */
5979 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5980 ap->udma_mask);
5981
5982 if (!ata_port_is_dummy(ap)) {
5983 ata_port_info(ap, "%cATA max %s %s\n",
5984 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5985 ata_mode_string(xfer_mask),
5986 ap->link.eh_info.desc);
5987 ata_ehi_clear_desc(&ap->link.eh_info);
5988 } else
5989 ata_port_info(ap, "DUMMY\n");
5990 }
5991
5992 /* perform each probe asynchronously */
5993 for (i = 0; i < host->n_ports; i++) {
5994 struct ata_port *ap = host->ports[i];
5995 ap->cookie = async_schedule(async_port_probe, ap);
5996 }
5997
5998 return 0;
5999
6000 err_tadd:
6001 while (--i >= 0) {
6002 ata_tport_delete(host->ports[i]);
6003 }
6004 return rc;
6005
6006}
6007EXPORT_SYMBOL_GPL(ata_host_register);
6008
6009/**
6010 * ata_host_activate - start host, request IRQ and register it
6011 * @host: target ATA host
6012 * @irq: IRQ to request
6013 * @irq_handler: irq_handler used when requesting IRQ
6014 * @irq_flags: irq_flags used when requesting IRQ
6015 * @sht: scsi_host_template to use when registering the host
6016 *
6017 * After allocating an ATA host and initializing it, most libata
6018 * LLDs perform three steps to activate the host - start host,
6019 * request IRQ and register it. This helper takes necessary
6020 * arguments and performs the three steps in one go.
6021 *
6022 * An invalid IRQ skips the IRQ registration and expects the host to
6023 * have set polling mode on the port. In this case, @irq_handler
6024 * should be NULL.
6025 *
6026 * LOCKING:
6027 * Inherited from calling layer (may sleep).
6028 *
6029 * RETURNS:
6030 * 0 on success, -errno otherwise.
6031 */
6032int ata_host_activate(struct ata_host *host, int irq,
6033 irq_handler_t irq_handler, unsigned long irq_flags,
6034 const struct scsi_host_template *sht)
6035{
6036 int i, rc;
6037 char *irq_desc;
6038
6039 rc = ata_host_start(host);
6040 if (rc)
6041 return rc;
6042
6043 /* Special case for polling mode */
6044 if (!irq) {
6045 WARN_ON(irq_handler);
6046 return ata_host_register(host, sht);
6047 }
6048
6049 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6050 dev_driver_string(host->dev),
6051 dev_name(host->dev));
6052 if (!irq_desc)
6053 return -ENOMEM;
6054
6055 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6056 irq_desc, host);
6057 if (rc)
6058 return rc;
6059
6060 for (i = 0; i < host->n_ports; i++)
6061 ata_port_desc_misc(host->ports[i], irq);
6062
6063 rc = ata_host_register(host, sht);
6064 /* if failed, just free the IRQ and leave ports alone */
6065 if (rc)
6066 devm_free_irq(host->dev, irq, host);
6067
6068 return rc;
6069}
6070EXPORT_SYMBOL_GPL(ata_host_activate);
6071
6072/**
6073 * ata_port_detach - Detach ATA port in preparation of device removal
6074 * @ap: ATA port to be detached
6075 *
6076 * Detach all ATA devices and the associated SCSI devices of @ap;
6077 * then, remove the associated SCSI host. @ap is guaranteed to
6078 * be quiescent on return from this function.
6079 *
6080 * LOCKING:
6081 * Kernel thread context (may sleep).
6082 */
6083static void ata_port_detach(struct ata_port *ap)
6084{
6085 unsigned long flags;
6086 struct ata_link *link;
6087 struct ata_device *dev;
6088
6089 /* Ensure ata_port probe has completed */
6090 async_synchronize_cookie(ap->cookie + 1);
6091
6092 /* Wait for any ongoing EH */
6093 ata_port_wait_eh(ap);
6094
6095 mutex_lock(&ap->scsi_scan_mutex);
6096 spin_lock_irqsave(ap->lock, flags);
6097
6098 /* Remove scsi devices */
6099 ata_for_each_link(link, ap, HOST_FIRST) {
6100 ata_for_each_dev(dev, link, ALL) {
6101 if (dev->sdev) {
6102 spin_unlock_irqrestore(ap->lock, flags);
6103 scsi_remove_device(dev->sdev);
6104 spin_lock_irqsave(ap->lock, flags);
6105 dev->sdev = NULL;
6106 }
6107 }
6108 }
6109
6110 /* Tell EH to disable all devices */
6111 ap->pflags |= ATA_PFLAG_UNLOADING;
6112 ata_port_schedule_eh(ap);
6113
6114 spin_unlock_irqrestore(ap->lock, flags);
6115 mutex_unlock(&ap->scsi_scan_mutex);
6116
6117 /* wait till EH commits suicide */
6118 ata_port_wait_eh(ap);
6119
6120 /* it better be dead now */
6121 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6122
6123 cancel_delayed_work_sync(&ap->hotplug_task);
6124 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6125
6126 /* clean up zpodd on port removal */
6127 ata_for_each_link(link, ap, HOST_FIRST) {
6128 ata_for_each_dev(dev, link, ALL) {
6129 if (zpodd_dev_enabled(dev))
6130 zpodd_exit(dev);
6131 }
6132 }
6133 if (ap->pmp_link) {
6134 int i;
6135 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6136 ata_tlink_delete(&ap->pmp_link[i]);
6137 }
6138 /* remove the associated SCSI host */
6139 scsi_remove_host(ap->scsi_host);
6140 ata_tport_delete(ap);
6141}
6142
6143/**
6144 * ata_host_detach - Detach all ports of an ATA host
6145 * @host: Host to detach
6146 *
6147 * Detach all ports of @host.
6148 *
6149 * LOCKING:
6150 * Kernel thread context (may sleep).
6151 */
6152void ata_host_detach(struct ata_host *host)
6153{
6154 int i;
6155
6156 for (i = 0; i < host->n_ports; i++)
6157 ata_port_detach(host->ports[i]);
6158
6159 /* the host is dead now, dissociate ACPI */
6160 ata_acpi_dissociate(host);
6161}
6162EXPORT_SYMBOL_GPL(ata_host_detach);
6163
6164#ifdef CONFIG_PCI
6165
6166/**
6167 * ata_pci_remove_one - PCI layer callback for device removal
6168 * @pdev: PCI device that was removed
6169 *
6170 * PCI layer indicates to libata via this hook that hot-unplug or
6171 * module unload event has occurred. Detach all ports. Resource
6172 * release is handled via devres.
6173 *
6174 * LOCKING:
6175 * Inherited from PCI layer (may sleep).
6176 */
6177void ata_pci_remove_one(struct pci_dev *pdev)
6178{
6179 struct ata_host *host = pci_get_drvdata(pdev);
6180
6181 ata_host_detach(host);
6182}
6183EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6184
6185void ata_pci_shutdown_one(struct pci_dev *pdev)
6186{
6187 struct ata_host *host = pci_get_drvdata(pdev);
6188 int i;
6189
6190 for (i = 0; i < host->n_ports; i++) {
6191 struct ata_port *ap = host->ports[i];
6192
6193 ap->pflags |= ATA_PFLAG_FROZEN;
6194
6195 /* Disable port interrupts */
6196 if (ap->ops->freeze)
6197 ap->ops->freeze(ap);
6198
6199 /* Stop the port DMA engines */
6200 if (ap->ops->port_stop)
6201 ap->ops->port_stop(ap);
6202 }
6203}
6204EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6205
6206/* move to PCI subsystem */
6207int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6208{
6209 unsigned long tmp = 0;
6210
6211 switch (bits->width) {
6212 case 1: {
6213 u8 tmp8 = 0;
6214 pci_read_config_byte(pdev, bits->reg, &tmp8);
6215 tmp = tmp8;
6216 break;
6217 }
6218 case 2: {
6219 u16 tmp16 = 0;
6220 pci_read_config_word(pdev, bits->reg, &tmp16);
6221 tmp = tmp16;
6222 break;
6223 }
6224 case 4: {
6225 u32 tmp32 = 0;
6226 pci_read_config_dword(pdev, bits->reg, &tmp32);
6227 tmp = tmp32;
6228 break;
6229 }
6230
6231 default:
6232 return -EINVAL;
6233 }
6234
6235 tmp &= bits->mask;
6236
6237 return (tmp == bits->val) ? 1 : 0;
6238}
6239EXPORT_SYMBOL_GPL(pci_test_config_bits);
6240
6241#ifdef CONFIG_PM
6242void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6243{
6244 pci_save_state(pdev);
6245 pci_disable_device(pdev);
6246
6247 if (mesg.event & PM_EVENT_SLEEP)
6248 pci_set_power_state(pdev, PCI_D3hot);
6249}
6250EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6251
6252int ata_pci_device_do_resume(struct pci_dev *pdev)
6253{
6254 int rc;
6255
6256 pci_set_power_state(pdev, PCI_D0);
6257 pci_restore_state(pdev);
6258
6259 rc = pcim_enable_device(pdev);
6260 if (rc) {
6261 dev_err(&pdev->dev,
6262 "failed to enable device after resume (%d)\n", rc);
6263 return rc;
6264 }
6265
6266 pci_set_master(pdev);
6267 return 0;
6268}
6269EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6270
6271int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6272{
6273 struct ata_host *host = pci_get_drvdata(pdev);
6274
6275 ata_host_suspend(host, mesg);
6276
6277 ata_pci_device_do_suspend(pdev, mesg);
6278
6279 return 0;
6280}
6281EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6282
6283int ata_pci_device_resume(struct pci_dev *pdev)
6284{
6285 struct ata_host *host = pci_get_drvdata(pdev);
6286 int rc;
6287
6288 rc = ata_pci_device_do_resume(pdev);
6289 if (rc == 0)
6290 ata_host_resume(host);
6291 return rc;
6292}
6293EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6294#endif /* CONFIG_PM */
6295#endif /* CONFIG_PCI */
6296
6297/**
6298 * ata_platform_remove_one - Platform layer callback for device removal
6299 * @pdev: Platform device that was removed
6300 *
6301 * Platform layer indicates to libata via this hook that hot-unplug or
6302 * module unload event has occurred. Detach all ports. Resource
6303 * release is handled via devres.
6304 *
6305 * LOCKING:
6306 * Inherited from platform layer (may sleep).
6307 */
6308void ata_platform_remove_one(struct platform_device *pdev)
6309{
6310 struct ata_host *host = platform_get_drvdata(pdev);
6311
6312 ata_host_detach(host);
6313}
6314EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6315
6316#ifdef CONFIG_ATA_FORCE
6317
6318#define force_cbl(name, flag) \
6319 { #name, .cbl = (flag) }
6320
6321#define force_spd_limit(spd, val) \
6322 { #spd, .spd_limit = (val) }
6323
6324#define force_xfer(mode, shift) \
6325 { #mode, .xfer_mask = (1UL << (shift)) }
6326
6327#define force_lflag_on(name, flags) \
6328 { #name, .lflags_on = (flags) }
6329
6330#define force_lflag_onoff(name, flags) \
6331 { "no" #name, .lflags_on = (flags) }, \
6332 { #name, .lflags_off = (flags) }
6333
6334#define force_horkage_on(name, flag) \
6335 { #name, .horkage_on = (flag) }
6336
6337#define force_horkage_onoff(name, flag) \
6338 { "no" #name, .horkage_on = (flag) }, \
6339 { #name, .horkage_off = (flag) }
6340
6341static const struct ata_force_param force_tbl[] __initconst = {
6342 force_cbl(40c, ATA_CBL_PATA40),
6343 force_cbl(80c, ATA_CBL_PATA80),
6344 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6345 force_cbl(unk, ATA_CBL_PATA_UNK),
6346 force_cbl(ign, ATA_CBL_PATA_IGN),
6347 force_cbl(sata, ATA_CBL_SATA),
6348
6349 force_spd_limit(1.5Gbps, 1),
6350 force_spd_limit(3.0Gbps, 2),
6351
6352 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6353 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6354 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6355 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6356 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6357 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6358 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6359 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6360 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6361 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6362 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6363 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6364 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6365 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6366 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6367 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6368 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6369 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6370 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6371 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6372 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6373 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6374 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6375 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6376 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6377 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6378 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6379 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6380 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6381 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6382 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6383 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6384 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6385 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6386
6387 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6388 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6389 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6390 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6391 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6392
6393 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ),
6394 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM),
6395 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI),
6396
6397 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM),
6398 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM),
6399 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6400
6401 force_horkage_onoff(dma, ATA_HORKAGE_NODMA),
6402 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR),
6403 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6404
6405 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG),
6406 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG),
6407 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR),
6408
6409 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128),
6410 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024),
6411 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48),
6412
6413 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM),
6414 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER),
6415 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID),
6416 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA),
6417
6418 force_horkage_on(disable, ATA_HORKAGE_DISABLE),
6419};
6420
6421static int __init ata_parse_force_one(char **cur,
6422 struct ata_force_ent *force_ent,
6423 const char **reason)
6424{
6425 char *start = *cur, *p = *cur;
6426 char *id, *val, *endp;
6427 const struct ata_force_param *match_fp = NULL;
6428 int nr_matches = 0, i;
6429
6430 /* find where this param ends and update *cur */
6431 while (*p != '\0' && *p != ',')
6432 p++;
6433
6434 if (*p == '\0')
6435 *cur = p;
6436 else
6437 *cur = p + 1;
6438
6439 *p = '\0';
6440
6441 /* parse */
6442 p = strchr(start, ':');
6443 if (!p) {
6444 val = strstrip(start);
6445 goto parse_val;
6446 }
6447 *p = '\0';
6448
6449 id = strstrip(start);
6450 val = strstrip(p + 1);
6451
6452 /* parse id */
6453 p = strchr(id, '.');
6454 if (p) {
6455 *p++ = '\0';
6456 force_ent->device = simple_strtoul(p, &endp, 10);
6457 if (p == endp || *endp != '\0') {
6458 *reason = "invalid device";
6459 return -EINVAL;
6460 }
6461 }
6462
6463 force_ent->port = simple_strtoul(id, &endp, 10);
6464 if (id == endp || *endp != '\0') {
6465 *reason = "invalid port/link";
6466 return -EINVAL;
6467 }
6468
6469 parse_val:
6470 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6471 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6472 const struct ata_force_param *fp = &force_tbl[i];
6473
6474 if (strncasecmp(val, fp->name, strlen(val)))
6475 continue;
6476
6477 nr_matches++;
6478 match_fp = fp;
6479
6480 if (strcasecmp(val, fp->name) == 0) {
6481 nr_matches = 1;
6482 break;
6483 }
6484 }
6485
6486 if (!nr_matches) {
6487 *reason = "unknown value";
6488 return -EINVAL;
6489 }
6490 if (nr_matches > 1) {
6491 *reason = "ambiguous value";
6492 return -EINVAL;
6493 }
6494
6495 force_ent->param = *match_fp;
6496
6497 return 0;
6498}
6499
6500static void __init ata_parse_force_param(void)
6501{
6502 int idx = 0, size = 1;
6503 int last_port = -1, last_device = -1;
6504 char *p, *cur, *next;
6505
6506 /* Calculate maximum number of params and allocate ata_force_tbl */
6507 for (p = ata_force_param_buf; *p; p++)
6508 if (*p == ',')
6509 size++;
6510
6511 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6512 if (!ata_force_tbl) {
6513 printk(KERN_WARNING "ata: failed to extend force table, "
6514 "libata.force ignored\n");
6515 return;
6516 }
6517
6518 /* parse and populate the table */
6519 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6520 const char *reason = "";
6521 struct ata_force_ent te = { .port = -1, .device = -1 };
6522
6523 next = cur;
6524 if (ata_parse_force_one(&next, &te, &reason)) {
6525 printk(KERN_WARNING "ata: failed to parse force "
6526 "parameter \"%s\" (%s)\n",
6527 cur, reason);
6528 continue;
6529 }
6530
6531 if (te.port == -1) {
6532 te.port = last_port;
6533 te.device = last_device;
6534 }
6535
6536 ata_force_tbl[idx++] = te;
6537
6538 last_port = te.port;
6539 last_device = te.device;
6540 }
6541
6542 ata_force_tbl_size = idx;
6543}
6544
6545static void ata_free_force_param(void)
6546{
6547 kfree(ata_force_tbl);
6548}
6549#else
6550static inline void ata_parse_force_param(void) { }
6551static inline void ata_free_force_param(void) { }
6552#endif
6553
6554static int __init ata_init(void)
6555{
6556 int rc;
6557
6558 ata_parse_force_param();
6559
6560 rc = ata_sff_init();
6561 if (rc) {
6562 ata_free_force_param();
6563 return rc;
6564 }
6565
6566 libata_transport_init();
6567 ata_scsi_transport_template = ata_attach_transport();
6568 if (!ata_scsi_transport_template) {
6569 ata_sff_exit();
6570 rc = -ENOMEM;
6571 goto err_out;
6572 }
6573
6574 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6575 return 0;
6576
6577err_out:
6578 return rc;
6579}
6580
6581static void __exit ata_exit(void)
6582{
6583 ata_release_transport(ata_scsi_transport_template);
6584 libata_transport_exit();
6585 ata_sff_exit();
6586 ata_free_force_param();
6587}
6588
6589subsys_initcall(ata_init);
6590module_exit(ata_exit);
6591
6592static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6593
6594int ata_ratelimit(void)
6595{
6596 return __ratelimit(&ratelimit);
6597}
6598EXPORT_SYMBOL_GPL(ata_ratelimit);
6599
6600/**
6601 * ata_msleep - ATA EH owner aware msleep
6602 * @ap: ATA port to attribute the sleep to
6603 * @msecs: duration to sleep in milliseconds
6604 *
6605 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6606 * ownership is released before going to sleep and reacquired
6607 * after the sleep is complete. IOW, other ports sharing the
6608 * @ap->host will be allowed to own the EH while this task is
6609 * sleeping.
6610 *
6611 * LOCKING:
6612 * Might sleep.
6613 */
6614void ata_msleep(struct ata_port *ap, unsigned int msecs)
6615{
6616 bool owns_eh = ap && ap->host->eh_owner == current;
6617
6618 if (owns_eh)
6619 ata_eh_release(ap);
6620
6621 if (msecs < 20) {
6622 unsigned long usecs = msecs * USEC_PER_MSEC;
6623 usleep_range(usecs, usecs + 50);
6624 } else {
6625 msleep(msecs);
6626 }
6627
6628 if (owns_eh)
6629 ata_eh_acquire(ap);
6630}
6631EXPORT_SYMBOL_GPL(ata_msleep);
6632
6633/**
6634 * ata_wait_register - wait until register value changes
6635 * @ap: ATA port to wait register for, can be NULL
6636 * @reg: IO-mapped register
6637 * @mask: Mask to apply to read register value
6638 * @val: Wait condition
6639 * @interval: polling interval in milliseconds
6640 * @timeout: timeout in milliseconds
6641 *
6642 * Waiting for some bits of register to change is a common
6643 * operation for ATA controllers. This function reads 32bit LE
6644 * IO-mapped register @reg and tests for the following condition.
6645 *
6646 * (*@reg & mask) != val
6647 *
6648 * If the condition is met, it returns; otherwise, the process is
6649 * repeated after @interval_msec until timeout.
6650 *
6651 * LOCKING:
6652 * Kernel thread context (may sleep)
6653 *
6654 * RETURNS:
6655 * The final register value.
6656 */
6657u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6658 unsigned int interval, unsigned int timeout)
6659{
6660 unsigned long deadline;
6661 u32 tmp;
6662
6663 tmp = ioread32(reg);
6664
6665 /* Calculate timeout _after_ the first read to make sure
6666 * preceding writes reach the controller before starting to
6667 * eat away the timeout.
6668 */
6669 deadline = ata_deadline(jiffies, timeout);
6670
6671 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6672 ata_msleep(ap, interval);
6673 tmp = ioread32(reg);
6674 }
6675
6676 return tmp;
6677}
6678EXPORT_SYMBOL_GPL(ata_wait_register);
6679
6680/*
6681 * Dummy port_ops
6682 */
6683static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6684{
6685 return AC_ERR_SYSTEM;
6686}
6687
6688static void ata_dummy_error_handler(struct ata_port *ap)
6689{
6690 /* truly dummy */
6691}
6692
6693struct ata_port_operations ata_dummy_port_ops = {
6694 .qc_prep = ata_noop_qc_prep,
6695 .qc_issue = ata_dummy_qc_issue,
6696 .error_handler = ata_dummy_error_handler,
6697 .sched_eh = ata_std_sched_eh,
6698 .end_eh = ata_std_end_eh,
6699};
6700EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6701
6702const struct ata_port_info ata_dummy_port_info = {
6703 .port_ops = &ata_dummy_port_ops,
6704};
6705EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6706
6707void ata_print_version(const struct device *dev, const char *version)
6708{
6709 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6710}
6711EXPORT_SYMBOL(ata_print_version);
6712
6713EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6714EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6715EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6716EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6717EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73};
74
75const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80};
81EXPORT_SYMBOL_GPL(sata_port_ops);
82
83static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86static void ata_dev_xfermask(struct ata_device *dev);
87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89atomic_t ata_print_id = ATOMIC_INIT(0);
90
91#ifdef CONFIG_ATA_FORCE
92struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned long xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags;
100};
101
102struct ata_force_ent {
103 int port;
104 int device;
105 struct ata_force_param param;
106};
107
108static struct ata_force_ent *ata_force_tbl;
109static int ata_force_tbl_size;
110
111static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112/* param_buf is thrown away after initialization, disallow read */
113module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115#endif
116
117static int atapi_enabled = 1;
118module_param(atapi_enabled, int, 0444);
119MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120
121static int atapi_dmadir = 0;
122module_param(atapi_dmadir, int, 0444);
123MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124
125int atapi_passthru16 = 1;
126module_param(atapi_passthru16, int, 0444);
127MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128
129int libata_fua = 0;
130module_param_named(fua, libata_fua, int, 0444);
131MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132
133static int ata_ignore_hpa;
134module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136
137static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138module_param_named(dma, libata_dma_mask, int, 0444);
139MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140
141static int ata_probe_timeout;
142module_param(ata_probe_timeout, int, 0444);
143MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144
145int libata_noacpi = 0;
146module_param_named(noacpi, libata_noacpi, int, 0444);
147MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148
149int libata_allow_tpm = 0;
150module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152
153static int atapi_an;
154module_param(atapi_an, int, 0444);
155MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156
157MODULE_AUTHOR("Jeff Garzik");
158MODULE_DESCRIPTION("Library module for ATA devices");
159MODULE_LICENSE("GPL");
160MODULE_VERSION(DRV_VERSION);
161
162
163static bool ata_sstatus_online(u32 sstatus)
164{
165 return (sstatus & 0xf) == 0x3;
166}
167
168/**
169 * ata_link_next - link iteration helper
170 * @link: the previous link, NULL to start
171 * @ap: ATA port containing links to iterate
172 * @mode: iteration mode, one of ATA_LITER_*
173 *
174 * LOCKING:
175 * Host lock or EH context.
176 *
177 * RETURNS:
178 * Pointer to the next link.
179 */
180struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
181 enum ata_link_iter_mode mode)
182{
183 BUG_ON(mode != ATA_LITER_EDGE &&
184 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
185
186 /* NULL link indicates start of iteration */
187 if (!link)
188 switch (mode) {
189 case ATA_LITER_EDGE:
190 case ATA_LITER_PMP_FIRST:
191 if (sata_pmp_attached(ap))
192 return ap->pmp_link;
193 fallthrough;
194 case ATA_LITER_HOST_FIRST:
195 return &ap->link;
196 }
197
198 /* we just iterated over the host link, what's next? */
199 if (link == &ap->link)
200 switch (mode) {
201 case ATA_LITER_HOST_FIRST:
202 if (sata_pmp_attached(ap))
203 return ap->pmp_link;
204 fallthrough;
205 case ATA_LITER_PMP_FIRST:
206 if (unlikely(ap->slave_link))
207 return ap->slave_link;
208 fallthrough;
209 case ATA_LITER_EDGE:
210 return NULL;
211 }
212
213 /* slave_link excludes PMP */
214 if (unlikely(link == ap->slave_link))
215 return NULL;
216
217 /* we were over a PMP link */
218 if (++link < ap->pmp_link + ap->nr_pmp_links)
219 return link;
220
221 if (mode == ATA_LITER_PMP_FIRST)
222 return &ap->link;
223
224 return NULL;
225}
226EXPORT_SYMBOL_GPL(ata_link_next);
227
228/**
229 * ata_dev_next - device iteration helper
230 * @dev: the previous device, NULL to start
231 * @link: ATA link containing devices to iterate
232 * @mode: iteration mode, one of ATA_DITER_*
233 *
234 * LOCKING:
235 * Host lock or EH context.
236 *
237 * RETURNS:
238 * Pointer to the next device.
239 */
240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
241 enum ata_dev_iter_mode mode)
242{
243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
245
246 /* NULL dev indicates start of iteration */
247 if (!dev)
248 switch (mode) {
249 case ATA_DITER_ENABLED:
250 case ATA_DITER_ALL:
251 dev = link->device;
252 goto check;
253 case ATA_DITER_ENABLED_REVERSE:
254 case ATA_DITER_ALL_REVERSE:
255 dev = link->device + ata_link_max_devices(link) - 1;
256 goto check;
257 }
258
259 next:
260 /* move to the next one */
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 if (++dev < link->device + ata_link_max_devices(link))
265 goto check;
266 return NULL;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 if (--dev >= link->device)
270 goto check;
271 return NULL;
272 }
273
274 check:
275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
276 !ata_dev_enabled(dev))
277 goto next;
278 return dev;
279}
280EXPORT_SYMBOL_GPL(ata_dev_next);
281
282/**
283 * ata_dev_phys_link - find physical link for a device
284 * @dev: ATA device to look up physical link for
285 *
286 * Look up physical link which @dev is attached to. Note that
287 * this is different from @dev->link only when @dev is on slave
288 * link. For all other cases, it's the same as @dev->link.
289 *
290 * LOCKING:
291 * Don't care.
292 *
293 * RETURNS:
294 * Pointer to the found physical link.
295 */
296struct ata_link *ata_dev_phys_link(struct ata_device *dev)
297{
298 struct ata_port *ap = dev->link->ap;
299
300 if (!ap->slave_link)
301 return dev->link;
302 if (!dev->devno)
303 return &ap->link;
304 return ap->slave_link;
305}
306
307#ifdef CONFIG_ATA_FORCE
308/**
309 * ata_force_cbl - force cable type according to libata.force
310 * @ap: ATA port of interest
311 *
312 * Force cable type according to libata.force and whine about it.
313 * The last entry which has matching port number is used, so it
314 * can be specified as part of device force parameters. For
315 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
316 * same effect.
317 *
318 * LOCKING:
319 * EH context.
320 */
321void ata_force_cbl(struct ata_port *ap)
322{
323 int i;
324
325 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
326 const struct ata_force_ent *fe = &ata_force_tbl[i];
327
328 if (fe->port != -1 && fe->port != ap->print_id)
329 continue;
330
331 if (fe->param.cbl == ATA_CBL_NONE)
332 continue;
333
334 ap->cbl = fe->param.cbl;
335 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
336 return;
337 }
338}
339
340/**
341 * ata_force_link_limits - force link limits according to libata.force
342 * @link: ATA link of interest
343 *
344 * Force link flags and SATA spd limit according to libata.force
345 * and whine about it. When only the port part is specified
346 * (e.g. 1:), the limit applies to all links connected to both
347 * the host link and all fan-out ports connected via PMP. If the
348 * device part is specified as 0 (e.g. 1.00:), it specifies the
349 * first fan-out link not the host link. Device number 15 always
350 * points to the host link whether PMP is attached or not. If the
351 * controller has slave link, device number 16 points to it.
352 *
353 * LOCKING:
354 * EH context.
355 */
356static void ata_force_link_limits(struct ata_link *link)
357{
358 bool did_spd = false;
359 int linkno = link->pmp;
360 int i;
361
362 if (ata_is_host_link(link))
363 linkno += 15;
364
365 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
366 const struct ata_force_ent *fe = &ata_force_tbl[i];
367
368 if (fe->port != -1 && fe->port != link->ap->print_id)
369 continue;
370
371 if (fe->device != -1 && fe->device != linkno)
372 continue;
373
374 /* only honor the first spd limit */
375 if (!did_spd && fe->param.spd_limit) {
376 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
377 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
378 fe->param.name);
379 did_spd = true;
380 }
381
382 /* let lflags stack */
383 if (fe->param.lflags) {
384 link->flags |= fe->param.lflags;
385 ata_link_notice(link,
386 "FORCE: link flag 0x%x forced -> 0x%x\n",
387 fe->param.lflags, link->flags);
388 }
389 }
390}
391
392/**
393 * ata_force_xfermask - force xfermask according to libata.force
394 * @dev: ATA device of interest
395 *
396 * Force xfer_mask according to libata.force and whine about it.
397 * For consistency with link selection, device number 15 selects
398 * the first device connected to the host link.
399 *
400 * LOCKING:
401 * EH context.
402 */
403static void ata_force_xfermask(struct ata_device *dev)
404{
405 int devno = dev->link->pmp + dev->devno;
406 int alt_devno = devno;
407 int i;
408
409 /* allow n.15/16 for devices attached to host port */
410 if (ata_is_host_link(dev->link))
411 alt_devno += 15;
412
413 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
414 const struct ata_force_ent *fe = &ata_force_tbl[i];
415 unsigned long pio_mask, mwdma_mask, udma_mask;
416
417 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
418 continue;
419
420 if (fe->device != -1 && fe->device != devno &&
421 fe->device != alt_devno)
422 continue;
423
424 if (!fe->param.xfer_mask)
425 continue;
426
427 ata_unpack_xfermask(fe->param.xfer_mask,
428 &pio_mask, &mwdma_mask, &udma_mask);
429 if (udma_mask)
430 dev->udma_mask = udma_mask;
431 else if (mwdma_mask) {
432 dev->udma_mask = 0;
433 dev->mwdma_mask = mwdma_mask;
434 } else {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = 0;
437 dev->pio_mask = pio_mask;
438 }
439
440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
441 fe->param.name);
442 return;
443 }
444}
445
446/**
447 * ata_force_horkage - force horkage according to libata.force
448 * @dev: ATA device of interest
449 *
450 * Force horkage according to libata.force and whine about it.
451 * For consistency with link selection, device number 15 selects
452 * the first device connected to the host link.
453 *
454 * LOCKING:
455 * EH context.
456 */
457static void ata_force_horkage(struct ata_device *dev)
458{
459 int devno = dev->link->pmp + dev->devno;
460 int alt_devno = devno;
461 int i;
462
463 /* allow n.15/16 for devices attached to host port */
464 if (ata_is_host_link(dev->link))
465 alt_devno += 15;
466
467 for (i = 0; i < ata_force_tbl_size; i++) {
468 const struct ata_force_ent *fe = &ata_force_tbl[i];
469
470 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
471 continue;
472
473 if (fe->device != -1 && fe->device != devno &&
474 fe->device != alt_devno)
475 continue;
476
477 if (!(~dev->horkage & fe->param.horkage_on) &&
478 !(dev->horkage & fe->param.horkage_off))
479 continue;
480
481 dev->horkage |= fe->param.horkage_on;
482 dev->horkage &= ~fe->param.horkage_off;
483
484 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
485 fe->param.name);
486 }
487}
488#else
489static inline void ata_force_link_limits(struct ata_link *link) { }
490static inline void ata_force_xfermask(struct ata_device *dev) { }
491static inline void ata_force_horkage(struct ata_device *dev) { }
492#endif
493
494/**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
506int atapi_cmd_type(u8 opcode)
507{
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 fallthrough;
527 default:
528 return ATAPI_MISC;
529 }
530}
531EXPORT_SYMBOL_GPL(atapi_cmd_type);
532
533static const u8 ata_rw_cmds[] = {
534 /* pio multi */
535 ATA_CMD_READ_MULTI,
536 ATA_CMD_WRITE_MULTI,
537 ATA_CMD_READ_MULTI_EXT,
538 ATA_CMD_WRITE_MULTI_EXT,
539 0,
540 0,
541 0,
542 ATA_CMD_WRITE_MULTI_FUA_EXT,
543 /* pio */
544 ATA_CMD_PIO_READ,
545 ATA_CMD_PIO_WRITE,
546 ATA_CMD_PIO_READ_EXT,
547 ATA_CMD_PIO_WRITE_EXT,
548 0,
549 0,
550 0,
551 0,
552 /* dma */
553 ATA_CMD_READ,
554 ATA_CMD_WRITE,
555 ATA_CMD_READ_EXT,
556 ATA_CMD_WRITE_EXT,
557 0,
558 0,
559 0,
560 ATA_CMD_WRITE_FUA_EXT
561};
562
563/**
564 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
565 * @tf: command to examine and configure
566 * @dev: device tf belongs to
567 *
568 * Examine the device configuration and tf->flags to calculate
569 * the proper read/write commands and protocol to use.
570 *
571 * LOCKING:
572 * caller.
573 */
574static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
575{
576 u8 cmd;
577
578 int index, fua, lba48, write;
579
580 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
581 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
582 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
583
584 if (dev->flags & ATA_DFLAG_PIO) {
585 tf->protocol = ATA_PROT_PIO;
586 index = dev->multi_count ? 0 : 8;
587 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
588 /* Unable to use DMA due to host limitation */
589 tf->protocol = ATA_PROT_PIO;
590 index = dev->multi_count ? 0 : 8;
591 } else {
592 tf->protocol = ATA_PROT_DMA;
593 index = 16;
594 }
595
596 cmd = ata_rw_cmds[index + fua + lba48 + write];
597 if (cmd) {
598 tf->command = cmd;
599 return 0;
600 }
601 return -1;
602}
603
604/**
605 * ata_tf_read_block - Read block address from ATA taskfile
606 * @tf: ATA taskfile of interest
607 * @dev: ATA device @tf belongs to
608 *
609 * LOCKING:
610 * None.
611 *
612 * Read block address from @tf. This function can handle all
613 * three address formats - LBA, LBA48 and CHS. tf->protocol and
614 * flags select the address format to use.
615 *
616 * RETURNS:
617 * Block address read from @tf.
618 */
619u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
620{
621 u64 block = 0;
622
623 if (tf->flags & ATA_TFLAG_LBA) {
624 if (tf->flags & ATA_TFLAG_LBA48) {
625 block |= (u64)tf->hob_lbah << 40;
626 block |= (u64)tf->hob_lbam << 32;
627 block |= (u64)tf->hob_lbal << 24;
628 } else
629 block |= (tf->device & 0xf) << 24;
630
631 block |= tf->lbah << 16;
632 block |= tf->lbam << 8;
633 block |= tf->lbal;
634 } else {
635 u32 cyl, head, sect;
636
637 cyl = tf->lbam | (tf->lbah << 8);
638 head = tf->device & 0xf;
639 sect = tf->lbal;
640
641 if (!sect) {
642 ata_dev_warn(dev,
643 "device reported invalid CHS sector 0\n");
644 return U64_MAX;
645 }
646
647 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
648 }
649
650 return block;
651}
652
653/**
654 * ata_build_rw_tf - Build ATA taskfile for given read/write request
655 * @tf: Target ATA taskfile
656 * @dev: ATA device @tf belongs to
657 * @block: Block address
658 * @n_block: Number of blocks
659 * @tf_flags: RW/FUA etc...
660 * @tag: tag
661 * @class: IO priority class
662 *
663 * LOCKING:
664 * None.
665 *
666 * Build ATA taskfile @tf for read/write request described by
667 * @block, @n_block, @tf_flags and @tag on @dev.
668 *
669 * RETURNS:
670 *
671 * 0 on success, -ERANGE if the request is too large for @dev,
672 * -EINVAL if the request is invalid.
673 */
674int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
675 u64 block, u32 n_block, unsigned int tf_flags,
676 unsigned int tag, int class)
677{
678 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
679 tf->flags |= tf_flags;
680
681 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
682 /* yay, NCQ */
683 if (!lba_48_ok(block, n_block))
684 return -ERANGE;
685
686 tf->protocol = ATA_PROT_NCQ;
687 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
688
689 if (tf->flags & ATA_TFLAG_WRITE)
690 tf->command = ATA_CMD_FPDMA_WRITE;
691 else
692 tf->command = ATA_CMD_FPDMA_READ;
693
694 tf->nsect = tag << 3;
695 tf->hob_feature = (n_block >> 8) & 0xff;
696 tf->feature = n_block & 0xff;
697
698 tf->hob_lbah = (block >> 40) & 0xff;
699 tf->hob_lbam = (block >> 32) & 0xff;
700 tf->hob_lbal = (block >> 24) & 0xff;
701 tf->lbah = (block >> 16) & 0xff;
702 tf->lbam = (block >> 8) & 0xff;
703 tf->lbal = block & 0xff;
704
705 tf->device = ATA_LBA;
706 if (tf->flags & ATA_TFLAG_FUA)
707 tf->device |= 1 << 7;
708
709 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
710 if (class == IOPRIO_CLASS_RT)
711 tf->hob_nsect |= ATA_PRIO_HIGH <<
712 ATA_SHIFT_PRIO;
713 }
714 } else if (dev->flags & ATA_DFLAG_LBA) {
715 tf->flags |= ATA_TFLAG_LBA;
716
717 if (lba_28_ok(block, n_block)) {
718 /* use LBA28 */
719 tf->device |= (block >> 24) & 0xf;
720 } else if (lba_48_ok(block, n_block)) {
721 if (!(dev->flags & ATA_DFLAG_LBA48))
722 return -ERANGE;
723
724 /* use LBA48 */
725 tf->flags |= ATA_TFLAG_LBA48;
726
727 tf->hob_nsect = (n_block >> 8) & 0xff;
728
729 tf->hob_lbah = (block >> 40) & 0xff;
730 tf->hob_lbam = (block >> 32) & 0xff;
731 tf->hob_lbal = (block >> 24) & 0xff;
732 } else
733 /* request too large even for LBA48 */
734 return -ERANGE;
735
736 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
737 return -EINVAL;
738
739 tf->nsect = n_block & 0xff;
740
741 tf->lbah = (block >> 16) & 0xff;
742 tf->lbam = (block >> 8) & 0xff;
743 tf->lbal = block & 0xff;
744
745 tf->device |= ATA_LBA;
746 } else {
747 /* CHS */
748 u32 sect, head, cyl, track;
749
750 /* The request -may- be too large for CHS addressing. */
751 if (!lba_28_ok(block, n_block))
752 return -ERANGE;
753
754 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
755 return -EINVAL;
756
757 /* Convert LBA to CHS */
758 track = (u32)block / dev->sectors;
759 cyl = track / dev->heads;
760 head = track % dev->heads;
761 sect = (u32)block % dev->sectors + 1;
762
763 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
764 (u32)block, track, cyl, head, sect);
765
766 /* Check whether the converted CHS can fit.
767 Cylinder: 0-65535
768 Head: 0-15
769 Sector: 1-255*/
770 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
771 return -ERANGE;
772
773 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
774 tf->lbal = sect;
775 tf->lbam = cyl;
776 tf->lbah = cyl >> 8;
777 tf->device |= head;
778 }
779
780 return 0;
781}
782
783/**
784 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
785 * @pio_mask: pio_mask
786 * @mwdma_mask: mwdma_mask
787 * @udma_mask: udma_mask
788 *
789 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
790 * unsigned int xfer_mask.
791 *
792 * LOCKING:
793 * None.
794 *
795 * RETURNS:
796 * Packed xfer_mask.
797 */
798unsigned long ata_pack_xfermask(unsigned long pio_mask,
799 unsigned long mwdma_mask,
800 unsigned long udma_mask)
801{
802 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
803 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
804 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
805}
806EXPORT_SYMBOL_GPL(ata_pack_xfermask);
807
808/**
809 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
810 * @xfer_mask: xfer_mask to unpack
811 * @pio_mask: resulting pio_mask
812 * @mwdma_mask: resulting mwdma_mask
813 * @udma_mask: resulting udma_mask
814 *
815 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
816 * Any NULL destination masks will be ignored.
817 */
818void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
819 unsigned long *mwdma_mask, unsigned long *udma_mask)
820{
821 if (pio_mask)
822 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
823 if (mwdma_mask)
824 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
825 if (udma_mask)
826 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
827}
828
829static const struct ata_xfer_ent {
830 int shift, bits;
831 u8 base;
832} ata_xfer_tbl[] = {
833 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
834 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
835 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
836 { -1, },
837};
838
839/**
840 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
841 * @xfer_mask: xfer_mask of interest
842 *
843 * Return matching XFER_* value for @xfer_mask. Only the highest
844 * bit of @xfer_mask is considered.
845 *
846 * LOCKING:
847 * None.
848 *
849 * RETURNS:
850 * Matching XFER_* value, 0xff if no match found.
851 */
852u8 ata_xfer_mask2mode(unsigned long xfer_mask)
853{
854 int highbit = fls(xfer_mask) - 1;
855 const struct ata_xfer_ent *ent;
856
857 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
858 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
859 return ent->base + highbit - ent->shift;
860 return 0xff;
861}
862EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
863
864/**
865 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
866 * @xfer_mode: XFER_* of interest
867 *
868 * Return matching xfer_mask for @xfer_mode.
869 *
870 * LOCKING:
871 * None.
872 *
873 * RETURNS:
874 * Matching xfer_mask, 0 if no match found.
875 */
876unsigned long ata_xfer_mode2mask(u8 xfer_mode)
877{
878 const struct ata_xfer_ent *ent;
879
880 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
881 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
882 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
883 & ~((1 << ent->shift) - 1);
884 return 0;
885}
886EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
887
888/**
889 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
890 * @xfer_mode: XFER_* of interest
891 *
892 * Return matching xfer_shift for @xfer_mode.
893 *
894 * LOCKING:
895 * None.
896 *
897 * RETURNS:
898 * Matching xfer_shift, -1 if no match found.
899 */
900int ata_xfer_mode2shift(unsigned long xfer_mode)
901{
902 const struct ata_xfer_ent *ent;
903
904 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
905 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
906 return ent->shift;
907 return -1;
908}
909EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
910
911/**
912 * ata_mode_string - convert xfer_mask to string
913 * @xfer_mask: mask of bits supported; only highest bit counts.
914 *
915 * Determine string which represents the highest speed
916 * (highest bit in @modemask).
917 *
918 * LOCKING:
919 * None.
920 *
921 * RETURNS:
922 * Constant C string representing highest speed listed in
923 * @mode_mask, or the constant C string "<n/a>".
924 */
925const char *ata_mode_string(unsigned long xfer_mask)
926{
927 static const char * const xfer_mode_str[] = {
928 "PIO0",
929 "PIO1",
930 "PIO2",
931 "PIO3",
932 "PIO4",
933 "PIO5",
934 "PIO6",
935 "MWDMA0",
936 "MWDMA1",
937 "MWDMA2",
938 "MWDMA3",
939 "MWDMA4",
940 "UDMA/16",
941 "UDMA/25",
942 "UDMA/33",
943 "UDMA/44",
944 "UDMA/66",
945 "UDMA/100",
946 "UDMA/133",
947 "UDMA7",
948 };
949 int highbit;
950
951 highbit = fls(xfer_mask) - 1;
952 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
953 return xfer_mode_str[highbit];
954 return "<n/a>";
955}
956EXPORT_SYMBOL_GPL(ata_mode_string);
957
958const char *sata_spd_string(unsigned int spd)
959{
960 static const char * const spd_str[] = {
961 "1.5 Gbps",
962 "3.0 Gbps",
963 "6.0 Gbps",
964 };
965
966 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
967 return "<unknown>";
968 return spd_str[spd - 1];
969}
970
971/**
972 * ata_dev_classify - determine device type based on ATA-spec signature
973 * @tf: ATA taskfile register set for device to be identified
974 *
975 * Determine from taskfile register contents whether a device is
976 * ATA or ATAPI, as per "Signature and persistence" section
977 * of ATA/PI spec (volume 1, sect 5.14).
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
984 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
985 */
986unsigned int ata_dev_classify(const struct ata_taskfile *tf)
987{
988 /* Apple's open source Darwin code hints that some devices only
989 * put a proper signature into the LBA mid/high registers,
990 * So, we only check those. It's sufficient for uniqueness.
991 *
992 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
993 * signatures for ATA and ATAPI devices attached on SerialATA,
994 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
995 * spec has never mentioned about using different signatures
996 * for ATA/ATAPI devices. Then, Serial ATA II: Port
997 * Multiplier specification began to use 0x69/0x96 to identify
998 * port multpliers and 0x3c/0xc3 to identify SEMB device.
999 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1000 * 0x69/0x96 shortly and described them as reserved for
1001 * SerialATA.
1002 *
1003 * We follow the current spec and consider that 0x69/0x96
1004 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1005 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1006 * SEMB signature. This is worked around in
1007 * ata_dev_read_id().
1008 */
1009 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1010 DPRINTK("found ATA device by sig\n");
1011 return ATA_DEV_ATA;
1012 }
1013
1014 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1015 DPRINTK("found ATAPI device by sig\n");
1016 return ATA_DEV_ATAPI;
1017 }
1018
1019 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1020 DPRINTK("found PMP device by sig\n");
1021 return ATA_DEV_PMP;
1022 }
1023
1024 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1025 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1026 return ATA_DEV_SEMB;
1027 }
1028
1029 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1030 DPRINTK("found ZAC device by sig\n");
1031 return ATA_DEV_ZAC;
1032 }
1033
1034 DPRINTK("unknown device\n");
1035 return ATA_DEV_UNKNOWN;
1036}
1037EXPORT_SYMBOL_GPL(ata_dev_classify);
1038
1039/**
1040 * ata_id_string - Convert IDENTIFY DEVICE page into string
1041 * @id: IDENTIFY DEVICE results we will examine
1042 * @s: string into which data is output
1043 * @ofs: offset into identify device page
1044 * @len: length of string to return. must be an even number.
1045 *
1046 * The strings in the IDENTIFY DEVICE page are broken up into
1047 * 16-bit chunks. Run through the string, and output each
1048 * 8-bit chunk linearly, regardless of platform.
1049 *
1050 * LOCKING:
1051 * caller.
1052 */
1053
1054void ata_id_string(const u16 *id, unsigned char *s,
1055 unsigned int ofs, unsigned int len)
1056{
1057 unsigned int c;
1058
1059 BUG_ON(len & 1);
1060
1061 while (len > 0) {
1062 c = id[ofs] >> 8;
1063 *s = c;
1064 s++;
1065
1066 c = id[ofs] & 0xff;
1067 *s = c;
1068 s++;
1069
1070 ofs++;
1071 len -= 2;
1072 }
1073}
1074EXPORT_SYMBOL_GPL(ata_id_string);
1075
1076/**
1077 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1078 * @id: IDENTIFY DEVICE results we will examine
1079 * @s: string into which data is output
1080 * @ofs: offset into identify device page
1081 * @len: length of string to return. must be an odd number.
1082 *
1083 * This function is identical to ata_id_string except that it
1084 * trims trailing spaces and terminates the resulting string with
1085 * null. @len must be actual maximum length (even number) + 1.
1086 *
1087 * LOCKING:
1088 * caller.
1089 */
1090void ata_id_c_string(const u16 *id, unsigned char *s,
1091 unsigned int ofs, unsigned int len)
1092{
1093 unsigned char *p;
1094
1095 ata_id_string(id, s, ofs, len - 1);
1096
1097 p = s + strnlen(s, len - 1);
1098 while (p > s && p[-1] == ' ')
1099 p--;
1100 *p = '\0';
1101}
1102EXPORT_SYMBOL_GPL(ata_id_c_string);
1103
1104static u64 ata_id_n_sectors(const u16 *id)
1105{
1106 if (ata_id_has_lba(id)) {
1107 if (ata_id_has_lba48(id))
1108 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1109 else
1110 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1111 } else {
1112 if (ata_id_current_chs_valid(id))
1113 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1114 id[ATA_ID_CUR_SECTORS];
1115 else
1116 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1117 id[ATA_ID_SECTORS];
1118 }
1119}
1120
1121u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1122{
1123 u64 sectors = 0;
1124
1125 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1126 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1127 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1128 sectors |= (tf->lbah & 0xff) << 16;
1129 sectors |= (tf->lbam & 0xff) << 8;
1130 sectors |= (tf->lbal & 0xff);
1131
1132 return sectors;
1133}
1134
1135u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1136{
1137 u64 sectors = 0;
1138
1139 sectors |= (tf->device & 0x0f) << 24;
1140 sectors |= (tf->lbah & 0xff) << 16;
1141 sectors |= (tf->lbam & 0xff) << 8;
1142 sectors |= (tf->lbal & 0xff);
1143
1144 return sectors;
1145}
1146
1147/**
1148 * ata_read_native_max_address - Read native max address
1149 * @dev: target device
1150 * @max_sectors: out parameter for the result native max address
1151 *
1152 * Perform an LBA48 or LBA28 native size query upon the device in
1153 * question.
1154 *
1155 * RETURNS:
1156 * 0 on success, -EACCES if command is aborted by the drive.
1157 * -EIO on other errors.
1158 */
1159static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1160{
1161 unsigned int err_mask;
1162 struct ata_taskfile tf;
1163 int lba48 = ata_id_has_lba48(dev->id);
1164
1165 ata_tf_init(dev, &tf);
1166
1167 /* always clear all address registers */
1168 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1169
1170 if (lba48) {
1171 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1172 tf.flags |= ATA_TFLAG_LBA48;
1173 } else
1174 tf.command = ATA_CMD_READ_NATIVE_MAX;
1175
1176 tf.protocol = ATA_PROT_NODATA;
1177 tf.device |= ATA_LBA;
1178
1179 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1180 if (err_mask) {
1181 ata_dev_warn(dev,
1182 "failed to read native max address (err_mask=0x%x)\n",
1183 err_mask);
1184 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1185 return -EACCES;
1186 return -EIO;
1187 }
1188
1189 if (lba48)
1190 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1191 else
1192 *max_sectors = ata_tf_to_lba(&tf) + 1;
1193 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1194 (*max_sectors)--;
1195 return 0;
1196}
1197
1198/**
1199 * ata_set_max_sectors - Set max sectors
1200 * @dev: target device
1201 * @new_sectors: new max sectors value to set for the device
1202 *
1203 * Set max sectors of @dev to @new_sectors.
1204 *
1205 * RETURNS:
1206 * 0 on success, -EACCES if command is aborted or denied (due to
1207 * previous non-volatile SET_MAX) by the drive. -EIO on other
1208 * errors.
1209 */
1210static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1211{
1212 unsigned int err_mask;
1213 struct ata_taskfile tf;
1214 int lba48 = ata_id_has_lba48(dev->id);
1215
1216 new_sectors--;
1217
1218 ata_tf_init(dev, &tf);
1219
1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221
1222 if (lba48) {
1223 tf.command = ATA_CMD_SET_MAX_EXT;
1224 tf.flags |= ATA_TFLAG_LBA48;
1225
1226 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1227 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1228 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1229 } else {
1230 tf.command = ATA_CMD_SET_MAX;
1231
1232 tf.device |= (new_sectors >> 24) & 0xf;
1233 }
1234
1235 tf.protocol = ATA_PROT_NODATA;
1236 tf.device |= ATA_LBA;
1237
1238 tf.lbal = (new_sectors >> 0) & 0xff;
1239 tf.lbam = (new_sectors >> 8) & 0xff;
1240 tf.lbah = (new_sectors >> 16) & 0xff;
1241
1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243 if (err_mask) {
1244 ata_dev_warn(dev,
1245 "failed to set max address (err_mask=0x%x)\n",
1246 err_mask);
1247 if (err_mask == AC_ERR_DEV &&
1248 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1249 return -EACCES;
1250 return -EIO;
1251 }
1252
1253 return 0;
1254}
1255
1256/**
1257 * ata_hpa_resize - Resize a device with an HPA set
1258 * @dev: Device to resize
1259 *
1260 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1261 * it if required to the full size of the media. The caller must check
1262 * the drive has the HPA feature set enabled.
1263 *
1264 * RETURNS:
1265 * 0 on success, -errno on failure.
1266 */
1267static int ata_hpa_resize(struct ata_device *dev)
1268{
1269 struct ata_eh_context *ehc = &dev->link->eh_context;
1270 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1271 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1272 u64 sectors = ata_id_n_sectors(dev->id);
1273 u64 native_sectors;
1274 int rc;
1275
1276 /* do we need to do it? */
1277 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1278 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1279 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1280 return 0;
1281
1282 /* read native max address */
1283 rc = ata_read_native_max_address(dev, &native_sectors);
1284 if (rc) {
1285 /* If device aborted the command or HPA isn't going to
1286 * be unlocked, skip HPA resizing.
1287 */
1288 if (rc == -EACCES || !unlock_hpa) {
1289 ata_dev_warn(dev,
1290 "HPA support seems broken, skipping HPA handling\n");
1291 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1292
1293 /* we can continue if device aborted the command */
1294 if (rc == -EACCES)
1295 rc = 0;
1296 }
1297
1298 return rc;
1299 }
1300 dev->n_native_sectors = native_sectors;
1301
1302 /* nothing to do? */
1303 if (native_sectors <= sectors || !unlock_hpa) {
1304 if (!print_info || native_sectors == sectors)
1305 return 0;
1306
1307 if (native_sectors > sectors)
1308 ata_dev_info(dev,
1309 "HPA detected: current %llu, native %llu\n",
1310 (unsigned long long)sectors,
1311 (unsigned long long)native_sectors);
1312 else if (native_sectors < sectors)
1313 ata_dev_warn(dev,
1314 "native sectors (%llu) is smaller than sectors (%llu)\n",
1315 (unsigned long long)native_sectors,
1316 (unsigned long long)sectors);
1317 return 0;
1318 }
1319
1320 /* let's unlock HPA */
1321 rc = ata_set_max_sectors(dev, native_sectors);
1322 if (rc == -EACCES) {
1323 /* if device aborted the command, skip HPA resizing */
1324 ata_dev_warn(dev,
1325 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1326 (unsigned long long)sectors,
1327 (unsigned long long)native_sectors);
1328 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1329 return 0;
1330 } else if (rc)
1331 return rc;
1332
1333 /* re-read IDENTIFY data */
1334 rc = ata_dev_reread_id(dev, 0);
1335 if (rc) {
1336 ata_dev_err(dev,
1337 "failed to re-read IDENTIFY data after HPA resizing\n");
1338 return rc;
1339 }
1340
1341 if (print_info) {
1342 u64 new_sectors = ata_id_n_sectors(dev->id);
1343 ata_dev_info(dev,
1344 "HPA unlocked: %llu -> %llu, native %llu\n",
1345 (unsigned long long)sectors,
1346 (unsigned long long)new_sectors,
1347 (unsigned long long)native_sectors);
1348 }
1349
1350 return 0;
1351}
1352
1353/**
1354 * ata_dump_id - IDENTIFY DEVICE info debugging output
1355 * @id: IDENTIFY DEVICE page to dump
1356 *
1357 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1358 * page.
1359 *
1360 * LOCKING:
1361 * caller.
1362 */
1363
1364static inline void ata_dump_id(const u16 *id)
1365{
1366 DPRINTK("49==0x%04x "
1367 "53==0x%04x "
1368 "63==0x%04x "
1369 "64==0x%04x "
1370 "75==0x%04x \n",
1371 id[49],
1372 id[53],
1373 id[63],
1374 id[64],
1375 id[75]);
1376 DPRINTK("80==0x%04x "
1377 "81==0x%04x "
1378 "82==0x%04x "
1379 "83==0x%04x "
1380 "84==0x%04x \n",
1381 id[80],
1382 id[81],
1383 id[82],
1384 id[83],
1385 id[84]);
1386 DPRINTK("88==0x%04x "
1387 "93==0x%04x\n",
1388 id[88],
1389 id[93]);
1390}
1391
1392/**
1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394 * @id: IDENTIFY data to compute xfer mask from
1395 *
1396 * Compute the xfermask for this device. This is not as trivial
1397 * as it seems if we must consider early devices correctly.
1398 *
1399 * FIXME: pre IDE drive timing (do we care ?).
1400 *
1401 * LOCKING:
1402 * None.
1403 *
1404 * RETURNS:
1405 * Computed xfermask
1406 */
1407unsigned long ata_id_xfermask(const u16 *id)
1408{
1409 unsigned long pio_mask, mwdma_mask, udma_mask;
1410
1411 /* Usual case. Word 53 indicates word 64 is valid */
1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414 pio_mask <<= 3;
1415 pio_mask |= 0x7;
1416 } else {
1417 /* If word 64 isn't valid then Word 51 high byte holds
1418 * the PIO timing number for the maximum. Turn it into
1419 * a mask.
1420 */
1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422 if (mode < 5) /* Valid PIO range */
1423 pio_mask = (2 << mode) - 1;
1424 else
1425 pio_mask = 1;
1426
1427 /* But wait.. there's more. Design your standards by
1428 * committee and you too can get a free iordy field to
1429 * process. However its the speeds not the modes that
1430 * are supported... Note drivers using the timing API
1431 * will get this right anyway
1432 */
1433 }
1434
1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436
1437 if (ata_id_is_cfa(id)) {
1438 /*
1439 * Process compact flash extended modes
1440 */
1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443
1444 if (pio)
1445 pio_mask |= (1 << 5);
1446 if (pio > 1)
1447 pio_mask |= (1 << 6);
1448 if (dma)
1449 mwdma_mask |= (1 << 3);
1450 if (dma > 1)
1451 mwdma_mask |= (1 << 4);
1452 }
1453
1454 udma_mask = 0;
1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457
1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459}
1460EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461
1462static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463{
1464 struct completion *waiting = qc->private_data;
1465
1466 complete(waiting);
1467}
1468
1469/**
1470 * ata_exec_internal_sg - execute libata internal command
1471 * @dev: Device to which the command is sent
1472 * @tf: Taskfile registers for the command and the result
1473 * @cdb: CDB for packet command
1474 * @dma_dir: Data transfer direction of the command
1475 * @sgl: sg list for the data buffer of the command
1476 * @n_elem: Number of sg entries
1477 * @timeout: Timeout in msecs (0 for default)
1478 *
1479 * Executes libata internal command with timeout. @tf contains
1480 * command on entry and result on return. Timeout and error
1481 * conditions are reported via return value. No recovery action
1482 * is taken after a command times out. It's caller's duty to
1483 * clean up after timeout.
1484 *
1485 * LOCKING:
1486 * None. Should be called with kernel context, might sleep.
1487 *
1488 * RETURNS:
1489 * Zero on success, AC_ERR_* mask on failure
1490 */
1491unsigned ata_exec_internal_sg(struct ata_device *dev,
1492 struct ata_taskfile *tf, const u8 *cdb,
1493 int dma_dir, struct scatterlist *sgl,
1494 unsigned int n_elem, unsigned long timeout)
1495{
1496 struct ata_link *link = dev->link;
1497 struct ata_port *ap = link->ap;
1498 u8 command = tf->command;
1499 int auto_timeout = 0;
1500 struct ata_queued_cmd *qc;
1501 unsigned int preempted_tag;
1502 u32 preempted_sactive;
1503 u64 preempted_qc_active;
1504 int preempted_nr_active_links;
1505 DECLARE_COMPLETION_ONSTACK(wait);
1506 unsigned long flags;
1507 unsigned int err_mask;
1508 int rc;
1509
1510 spin_lock_irqsave(ap->lock, flags);
1511
1512 /* no internal command while frozen */
1513 if (ap->pflags & ATA_PFLAG_FROZEN) {
1514 spin_unlock_irqrestore(ap->lock, flags);
1515 return AC_ERR_SYSTEM;
1516 }
1517
1518 /* initialize internal qc */
1519 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1520
1521 qc->tag = ATA_TAG_INTERNAL;
1522 qc->hw_tag = 0;
1523 qc->scsicmd = NULL;
1524 qc->ap = ap;
1525 qc->dev = dev;
1526 ata_qc_reinit(qc);
1527
1528 preempted_tag = link->active_tag;
1529 preempted_sactive = link->sactive;
1530 preempted_qc_active = ap->qc_active;
1531 preempted_nr_active_links = ap->nr_active_links;
1532 link->active_tag = ATA_TAG_POISON;
1533 link->sactive = 0;
1534 ap->qc_active = 0;
1535 ap->nr_active_links = 0;
1536
1537 /* prepare & issue qc */
1538 qc->tf = *tf;
1539 if (cdb)
1540 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1541
1542 /* some SATA bridges need us to indicate data xfer direction */
1543 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1544 dma_dir == DMA_FROM_DEVICE)
1545 qc->tf.feature |= ATAPI_DMADIR;
1546
1547 qc->flags |= ATA_QCFLAG_RESULT_TF;
1548 qc->dma_dir = dma_dir;
1549 if (dma_dir != DMA_NONE) {
1550 unsigned int i, buflen = 0;
1551 struct scatterlist *sg;
1552
1553 for_each_sg(sgl, sg, n_elem, i)
1554 buflen += sg->length;
1555
1556 ata_sg_init(qc, sgl, n_elem);
1557 qc->nbytes = buflen;
1558 }
1559
1560 qc->private_data = &wait;
1561 qc->complete_fn = ata_qc_complete_internal;
1562
1563 ata_qc_issue(qc);
1564
1565 spin_unlock_irqrestore(ap->lock, flags);
1566
1567 if (!timeout) {
1568 if (ata_probe_timeout)
1569 timeout = ata_probe_timeout * 1000;
1570 else {
1571 timeout = ata_internal_cmd_timeout(dev, command);
1572 auto_timeout = 1;
1573 }
1574 }
1575
1576 if (ap->ops->error_handler)
1577 ata_eh_release(ap);
1578
1579 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1580
1581 if (ap->ops->error_handler)
1582 ata_eh_acquire(ap);
1583
1584 ata_sff_flush_pio_task(ap);
1585
1586 if (!rc) {
1587 spin_lock_irqsave(ap->lock, flags);
1588
1589 /* We're racing with irq here. If we lose, the
1590 * following test prevents us from completing the qc
1591 * twice. If we win, the port is frozen and will be
1592 * cleaned up by ->post_internal_cmd().
1593 */
1594 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1595 qc->err_mask |= AC_ERR_TIMEOUT;
1596
1597 if (ap->ops->error_handler)
1598 ata_port_freeze(ap);
1599 else
1600 ata_qc_complete(qc);
1601
1602 if (ata_msg_warn(ap))
1603 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1604 command);
1605 }
1606
1607 spin_unlock_irqrestore(ap->lock, flags);
1608 }
1609
1610 /* do post_internal_cmd */
1611 if (ap->ops->post_internal_cmd)
1612 ap->ops->post_internal_cmd(qc);
1613
1614 /* perform minimal error analysis */
1615 if (qc->flags & ATA_QCFLAG_FAILED) {
1616 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1617 qc->err_mask |= AC_ERR_DEV;
1618
1619 if (!qc->err_mask)
1620 qc->err_mask |= AC_ERR_OTHER;
1621
1622 if (qc->err_mask & ~AC_ERR_OTHER)
1623 qc->err_mask &= ~AC_ERR_OTHER;
1624 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1625 qc->result_tf.command |= ATA_SENSE;
1626 }
1627
1628 /* finish up */
1629 spin_lock_irqsave(ap->lock, flags);
1630
1631 *tf = qc->result_tf;
1632 err_mask = qc->err_mask;
1633
1634 ata_qc_free(qc);
1635 link->active_tag = preempted_tag;
1636 link->sactive = preempted_sactive;
1637 ap->qc_active = preempted_qc_active;
1638 ap->nr_active_links = preempted_nr_active_links;
1639
1640 spin_unlock_irqrestore(ap->lock, flags);
1641
1642 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1643 ata_internal_cmd_timed_out(dev, command);
1644
1645 return err_mask;
1646}
1647
1648/**
1649 * ata_exec_internal - execute libata internal command
1650 * @dev: Device to which the command is sent
1651 * @tf: Taskfile registers for the command and the result
1652 * @cdb: CDB for packet command
1653 * @dma_dir: Data transfer direction of the command
1654 * @buf: Data buffer of the command
1655 * @buflen: Length of data buffer
1656 * @timeout: Timeout in msecs (0 for default)
1657 *
1658 * Wrapper around ata_exec_internal_sg() which takes simple
1659 * buffer instead of sg list.
1660 *
1661 * LOCKING:
1662 * None. Should be called with kernel context, might sleep.
1663 *
1664 * RETURNS:
1665 * Zero on success, AC_ERR_* mask on failure
1666 */
1667unsigned ata_exec_internal(struct ata_device *dev,
1668 struct ata_taskfile *tf, const u8 *cdb,
1669 int dma_dir, void *buf, unsigned int buflen,
1670 unsigned long timeout)
1671{
1672 struct scatterlist *psg = NULL, sg;
1673 unsigned int n_elem = 0;
1674
1675 if (dma_dir != DMA_NONE) {
1676 WARN_ON(!buf);
1677 sg_init_one(&sg, buf, buflen);
1678 psg = &sg;
1679 n_elem++;
1680 }
1681
1682 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1683 timeout);
1684}
1685
1686/**
1687 * ata_pio_need_iordy - check if iordy needed
1688 * @adev: ATA device
1689 *
1690 * Check if the current speed of the device requires IORDY. Used
1691 * by various controllers for chip configuration.
1692 */
1693unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1694{
1695 /* Don't set IORDY if we're preparing for reset. IORDY may
1696 * lead to controller lock up on certain controllers if the
1697 * port is not occupied. See bko#11703 for details.
1698 */
1699 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1700 return 0;
1701 /* Controller doesn't support IORDY. Probably a pointless
1702 * check as the caller should know this.
1703 */
1704 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1705 return 0;
1706 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1707 if (ata_id_is_cfa(adev->id)
1708 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1709 return 0;
1710 /* PIO3 and higher it is mandatory */
1711 if (adev->pio_mode > XFER_PIO_2)
1712 return 1;
1713 /* We turn it on when possible */
1714 if (ata_id_has_iordy(adev->id))
1715 return 1;
1716 return 0;
1717}
1718EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1719
1720/**
1721 * ata_pio_mask_no_iordy - Return the non IORDY mask
1722 * @adev: ATA device
1723 *
1724 * Compute the highest mode possible if we are not using iordy. Return
1725 * -1 if no iordy mode is available.
1726 */
1727static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1728{
1729 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1730 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1731 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1732 /* Is the speed faster than the drive allows non IORDY ? */
1733 if (pio) {
1734 /* This is cycle times not frequency - watch the logic! */
1735 if (pio > 240) /* PIO2 is 240nS per cycle */
1736 return 3 << ATA_SHIFT_PIO;
1737 return 7 << ATA_SHIFT_PIO;
1738 }
1739 }
1740 return 3 << ATA_SHIFT_PIO;
1741}
1742
1743/**
1744 * ata_do_dev_read_id - default ID read method
1745 * @dev: device
1746 * @tf: proposed taskfile
1747 * @id: data buffer
1748 *
1749 * Issue the identify taskfile and hand back the buffer containing
1750 * identify data. For some RAID controllers and for pre ATA devices
1751 * this function is wrapped or replaced by the driver
1752 */
1753unsigned int ata_do_dev_read_id(struct ata_device *dev,
1754 struct ata_taskfile *tf, u16 *id)
1755{
1756 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1757 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1758}
1759EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1760
1761/**
1762 * ata_dev_read_id - Read ID data from the specified device
1763 * @dev: target device
1764 * @p_class: pointer to class of the target device (may be changed)
1765 * @flags: ATA_READID_* flags
1766 * @id: buffer to read IDENTIFY data into
1767 *
1768 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1769 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1770 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1771 * for pre-ATA4 drives.
1772 *
1773 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1774 * now we abort if we hit that case.
1775 *
1776 * LOCKING:
1777 * Kernel thread context (may sleep)
1778 *
1779 * RETURNS:
1780 * 0 on success, -errno otherwise.
1781 */
1782int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1783 unsigned int flags, u16 *id)
1784{
1785 struct ata_port *ap = dev->link->ap;
1786 unsigned int class = *p_class;
1787 struct ata_taskfile tf;
1788 unsigned int err_mask = 0;
1789 const char *reason;
1790 bool is_semb = class == ATA_DEV_SEMB;
1791 int may_fallback = 1, tried_spinup = 0;
1792 int rc;
1793
1794 if (ata_msg_ctl(ap))
1795 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1796
1797retry:
1798 ata_tf_init(dev, &tf);
1799
1800 switch (class) {
1801 case ATA_DEV_SEMB:
1802 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1803 fallthrough;
1804 case ATA_DEV_ATA:
1805 case ATA_DEV_ZAC:
1806 tf.command = ATA_CMD_ID_ATA;
1807 break;
1808 case ATA_DEV_ATAPI:
1809 tf.command = ATA_CMD_ID_ATAPI;
1810 break;
1811 default:
1812 rc = -ENODEV;
1813 reason = "unsupported class";
1814 goto err_out;
1815 }
1816
1817 tf.protocol = ATA_PROT_PIO;
1818
1819 /* Some devices choke if TF registers contain garbage. Make
1820 * sure those are properly initialized.
1821 */
1822 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1823
1824 /* Device presence detection is unreliable on some
1825 * controllers. Always poll IDENTIFY if available.
1826 */
1827 tf.flags |= ATA_TFLAG_POLLING;
1828
1829 if (ap->ops->read_id)
1830 err_mask = ap->ops->read_id(dev, &tf, id);
1831 else
1832 err_mask = ata_do_dev_read_id(dev, &tf, id);
1833
1834 if (err_mask) {
1835 if (err_mask & AC_ERR_NODEV_HINT) {
1836 ata_dev_dbg(dev, "NODEV after polling detection\n");
1837 return -ENOENT;
1838 }
1839
1840 if (is_semb) {
1841 ata_dev_info(dev,
1842 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1843 /* SEMB is not supported yet */
1844 *p_class = ATA_DEV_SEMB_UNSUP;
1845 return 0;
1846 }
1847
1848 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1849 /* Device or controller might have reported
1850 * the wrong device class. Give a shot at the
1851 * other IDENTIFY if the current one is
1852 * aborted by the device.
1853 */
1854 if (may_fallback) {
1855 may_fallback = 0;
1856
1857 if (class == ATA_DEV_ATA)
1858 class = ATA_DEV_ATAPI;
1859 else
1860 class = ATA_DEV_ATA;
1861 goto retry;
1862 }
1863
1864 /* Control reaches here iff the device aborted
1865 * both flavors of IDENTIFYs which happens
1866 * sometimes with phantom devices.
1867 */
1868 ata_dev_dbg(dev,
1869 "both IDENTIFYs aborted, assuming NODEV\n");
1870 return -ENOENT;
1871 }
1872
1873 rc = -EIO;
1874 reason = "I/O error";
1875 goto err_out;
1876 }
1877
1878 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1879 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1880 "class=%d may_fallback=%d tried_spinup=%d\n",
1881 class, may_fallback, tried_spinup);
1882 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1883 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1884 }
1885
1886 /* Falling back doesn't make sense if ID data was read
1887 * successfully at least once.
1888 */
1889 may_fallback = 0;
1890
1891 swap_buf_le16(id, ATA_ID_WORDS);
1892
1893 /* sanity check */
1894 rc = -EINVAL;
1895 reason = "device reports invalid type";
1896
1897 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1898 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1899 goto err_out;
1900 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1901 ata_id_is_ata(id)) {
1902 ata_dev_dbg(dev,
1903 "host indicates ignore ATA devices, ignored\n");
1904 return -ENOENT;
1905 }
1906 } else {
1907 if (ata_id_is_ata(id))
1908 goto err_out;
1909 }
1910
1911 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1912 tried_spinup = 1;
1913 /*
1914 * Drive powered-up in standby mode, and requires a specific
1915 * SET_FEATURES spin-up subcommand before it will accept
1916 * anything other than the original IDENTIFY command.
1917 */
1918 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1919 if (err_mask && id[2] != 0x738c) {
1920 rc = -EIO;
1921 reason = "SPINUP failed";
1922 goto err_out;
1923 }
1924 /*
1925 * If the drive initially returned incomplete IDENTIFY info,
1926 * we now must reissue the IDENTIFY command.
1927 */
1928 if (id[2] == 0x37c8)
1929 goto retry;
1930 }
1931
1932 if ((flags & ATA_READID_POSTRESET) &&
1933 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1934 /*
1935 * The exact sequence expected by certain pre-ATA4 drives is:
1936 * SRST RESET
1937 * IDENTIFY (optional in early ATA)
1938 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1939 * anything else..
1940 * Some drives were very specific about that exact sequence.
1941 *
1942 * Note that ATA4 says lba is mandatory so the second check
1943 * should never trigger.
1944 */
1945 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1946 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1947 if (err_mask) {
1948 rc = -EIO;
1949 reason = "INIT_DEV_PARAMS failed";
1950 goto err_out;
1951 }
1952
1953 /* current CHS translation info (id[53-58]) might be
1954 * changed. reread the identify device info.
1955 */
1956 flags &= ~ATA_READID_POSTRESET;
1957 goto retry;
1958 }
1959 }
1960
1961 *p_class = class;
1962
1963 return 0;
1964
1965 err_out:
1966 if (ata_msg_warn(ap))
1967 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1968 reason, err_mask);
1969 return rc;
1970}
1971
1972/**
1973 * ata_read_log_page - read a specific log page
1974 * @dev: target device
1975 * @log: log to read
1976 * @page: page to read
1977 * @buf: buffer to store read page
1978 * @sectors: number of sectors to read
1979 *
1980 * Read log page using READ_LOG_EXT command.
1981 *
1982 * LOCKING:
1983 * Kernel thread context (may sleep).
1984 *
1985 * RETURNS:
1986 * 0 on success, AC_ERR_* mask otherwise.
1987 */
1988unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1989 u8 page, void *buf, unsigned int sectors)
1990{
1991 unsigned long ap_flags = dev->link->ap->flags;
1992 struct ata_taskfile tf;
1993 unsigned int err_mask;
1994 bool dma = false;
1995
1996 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
1997
1998 /*
1999 * Return error without actually issuing the command on controllers
2000 * which e.g. lockup on a read log page.
2001 */
2002 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2003 return AC_ERR_DEV;
2004
2005retry:
2006 ata_tf_init(dev, &tf);
2007 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2008 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2009 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2010 tf.protocol = ATA_PROT_DMA;
2011 dma = true;
2012 } else {
2013 tf.command = ATA_CMD_READ_LOG_EXT;
2014 tf.protocol = ATA_PROT_PIO;
2015 dma = false;
2016 }
2017 tf.lbal = log;
2018 tf.lbam = page;
2019 tf.nsect = sectors;
2020 tf.hob_nsect = sectors >> 8;
2021 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2022
2023 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2024 buf, sectors * ATA_SECT_SIZE, 0);
2025
2026 if (err_mask && dma) {
2027 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2028 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2029 goto retry;
2030 }
2031
2032 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2033 return err_mask;
2034}
2035
2036static bool ata_log_supported(struct ata_device *dev, u8 log)
2037{
2038 struct ata_port *ap = dev->link->ap;
2039
2040 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2041 return false;
2042 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2043}
2044
2045static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2046{
2047 struct ata_port *ap = dev->link->ap;
2048 unsigned int err, i;
2049
2050 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2051 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2052 return false;
2053 }
2054
2055 /*
2056 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2057 * supported.
2058 */
2059 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2060 1);
2061 if (err) {
2062 ata_dev_info(dev,
2063 "failed to get Device Identify Log Emask 0x%x\n",
2064 err);
2065 return false;
2066 }
2067
2068 for (i = 0; i < ap->sector_buf[8]; i++) {
2069 if (ap->sector_buf[9 + i] == page)
2070 return true;
2071 }
2072
2073 return false;
2074}
2075
2076static int ata_do_link_spd_horkage(struct ata_device *dev)
2077{
2078 struct ata_link *plink = ata_dev_phys_link(dev);
2079 u32 target, target_limit;
2080
2081 if (!sata_scr_valid(plink))
2082 return 0;
2083
2084 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2085 target = 1;
2086 else
2087 return 0;
2088
2089 target_limit = (1 << target) - 1;
2090
2091 /* if already on stricter limit, no need to push further */
2092 if (plink->sata_spd_limit <= target_limit)
2093 return 0;
2094
2095 plink->sata_spd_limit = target_limit;
2096
2097 /* Request another EH round by returning -EAGAIN if link is
2098 * going faster than the target speed. Forward progress is
2099 * guaranteed by setting sata_spd_limit to target_limit above.
2100 */
2101 if (plink->sata_spd > target) {
2102 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2103 sata_spd_string(target));
2104 return -EAGAIN;
2105 }
2106 return 0;
2107}
2108
2109static inline u8 ata_dev_knobble(struct ata_device *dev)
2110{
2111 struct ata_port *ap = dev->link->ap;
2112
2113 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2114 return 0;
2115
2116 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2117}
2118
2119static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2120{
2121 struct ata_port *ap = dev->link->ap;
2122 unsigned int err_mask;
2123
2124 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2125 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2126 return;
2127 }
2128 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129 0, ap->sector_buf, 1);
2130 if (err_mask) {
2131 ata_dev_dbg(dev,
2132 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133 err_mask);
2134 } else {
2135 u8 *cmds = dev->ncq_send_recv_cmds;
2136
2137 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139
2140 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144 }
2145 }
2146}
2147
2148static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2149{
2150 struct ata_port *ap = dev->link->ap;
2151 unsigned int err_mask;
2152
2153 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2154 ata_dev_warn(dev,
2155 "NCQ Send/Recv Log not supported\n");
2156 return;
2157 }
2158 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2159 0, ap->sector_buf, 1);
2160 if (err_mask) {
2161 ata_dev_dbg(dev,
2162 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2163 err_mask);
2164 } else {
2165 u8 *cmds = dev->ncq_non_data_cmds;
2166
2167 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2168 }
2169}
2170
2171static void ata_dev_config_ncq_prio(struct ata_device *dev)
2172{
2173 struct ata_port *ap = dev->link->ap;
2174 unsigned int err_mask;
2175
2176 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2177 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2178 return;
2179 }
2180
2181 err_mask = ata_read_log_page(dev,
2182 ATA_LOG_IDENTIFY_DEVICE,
2183 ATA_LOG_SATA_SETTINGS,
2184 ap->sector_buf,
2185 1);
2186 if (err_mask) {
2187 ata_dev_dbg(dev,
2188 "failed to get Identify Device data, Emask 0x%x\n",
2189 err_mask);
2190 return;
2191 }
2192
2193 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2194 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2195 } else {
2196 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2197 ata_dev_dbg(dev, "SATA page does not support priority\n");
2198 }
2199
2200}
2201
2202static bool ata_dev_check_adapter(struct ata_device *dev,
2203 unsigned short vendor_id)
2204{
2205 struct pci_dev *pcidev = NULL;
2206 struct device *parent_dev = NULL;
2207
2208 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2209 parent_dev = parent_dev->parent) {
2210 if (dev_is_pci(parent_dev)) {
2211 pcidev = to_pci_dev(parent_dev);
2212 if (pcidev->vendor == vendor_id)
2213 return true;
2214 break;
2215 }
2216 }
2217
2218 return false;
2219}
2220
2221static int ata_dev_config_ncq(struct ata_device *dev,
2222 char *desc, size_t desc_sz)
2223{
2224 struct ata_port *ap = dev->link->ap;
2225 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2226 unsigned int err_mask;
2227 char *aa_desc = "";
2228
2229 if (!ata_id_has_ncq(dev->id)) {
2230 desc[0] = '\0';
2231 return 0;
2232 }
2233 if (!IS_ENABLED(CONFIG_SATA_HOST))
2234 return 0;
2235 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2236 snprintf(desc, desc_sz, "NCQ (not used)");
2237 return 0;
2238 }
2239
2240 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2241 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2242 snprintf(desc, desc_sz, "NCQ (not used)");
2243 return 0;
2244 }
2245
2246 if (ap->flags & ATA_FLAG_NCQ) {
2247 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2248 dev->flags |= ATA_DFLAG_NCQ;
2249 }
2250
2251 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2252 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2253 ata_id_has_fpdma_aa(dev->id)) {
2254 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2255 SATA_FPDMA_AA);
2256 if (err_mask) {
2257 ata_dev_err(dev,
2258 "failed to enable AA (error_mask=0x%x)\n",
2259 err_mask);
2260 if (err_mask != AC_ERR_DEV) {
2261 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2262 return -EIO;
2263 }
2264 } else
2265 aa_desc = ", AA";
2266 }
2267
2268 if (hdepth >= ddepth)
2269 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2270 else
2271 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2272 ddepth, aa_desc);
2273
2274 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2275 if (ata_id_has_ncq_send_and_recv(dev->id))
2276 ata_dev_config_ncq_send_recv(dev);
2277 if (ata_id_has_ncq_non_data(dev->id))
2278 ata_dev_config_ncq_non_data(dev);
2279 if (ata_id_has_ncq_prio(dev->id))
2280 ata_dev_config_ncq_prio(dev);
2281 }
2282
2283 return 0;
2284}
2285
2286static void ata_dev_config_sense_reporting(struct ata_device *dev)
2287{
2288 unsigned int err_mask;
2289
2290 if (!ata_id_has_sense_reporting(dev->id))
2291 return;
2292
2293 if (ata_id_sense_reporting_enabled(dev->id))
2294 return;
2295
2296 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2297 if (err_mask) {
2298 ata_dev_dbg(dev,
2299 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2300 err_mask);
2301 }
2302}
2303
2304static void ata_dev_config_zac(struct ata_device *dev)
2305{
2306 struct ata_port *ap = dev->link->ap;
2307 unsigned int err_mask;
2308 u8 *identify_buf = ap->sector_buf;
2309
2310 dev->zac_zones_optimal_open = U32_MAX;
2311 dev->zac_zones_optimal_nonseq = U32_MAX;
2312 dev->zac_zones_max_open = U32_MAX;
2313
2314 /*
2315 * Always set the 'ZAC' flag for Host-managed devices.
2316 */
2317 if (dev->class == ATA_DEV_ZAC)
2318 dev->flags |= ATA_DFLAG_ZAC;
2319 else if (ata_id_zoned_cap(dev->id) == 0x01)
2320 /*
2321 * Check for host-aware devices.
2322 */
2323 dev->flags |= ATA_DFLAG_ZAC;
2324
2325 if (!(dev->flags & ATA_DFLAG_ZAC))
2326 return;
2327
2328 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2329 ata_dev_warn(dev,
2330 "ATA Zoned Information Log not supported\n");
2331 return;
2332 }
2333
2334 /*
2335 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2336 */
2337 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2338 ATA_LOG_ZONED_INFORMATION,
2339 identify_buf, 1);
2340 if (!err_mask) {
2341 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2342
2343 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2344 if ((zoned_cap >> 63))
2345 dev->zac_zoned_cap = (zoned_cap & 1);
2346 opt_open = get_unaligned_le64(&identify_buf[24]);
2347 if ((opt_open >> 63))
2348 dev->zac_zones_optimal_open = (u32)opt_open;
2349 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2350 if ((opt_nonseq >> 63))
2351 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2352 max_open = get_unaligned_le64(&identify_buf[40]);
2353 if ((max_open >> 63))
2354 dev->zac_zones_max_open = (u32)max_open;
2355 }
2356}
2357
2358static void ata_dev_config_trusted(struct ata_device *dev)
2359{
2360 struct ata_port *ap = dev->link->ap;
2361 u64 trusted_cap;
2362 unsigned int err;
2363
2364 if (!ata_id_has_trusted(dev->id))
2365 return;
2366
2367 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2368 ata_dev_warn(dev,
2369 "Security Log not supported\n");
2370 return;
2371 }
2372
2373 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2374 ap->sector_buf, 1);
2375 if (err) {
2376 ata_dev_dbg(dev,
2377 "failed to read Security Log, Emask 0x%x\n", err);
2378 return;
2379 }
2380
2381 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2382 if (!(trusted_cap & (1ULL << 63))) {
2383 ata_dev_dbg(dev,
2384 "Trusted Computing capability qword not valid!\n");
2385 return;
2386 }
2387
2388 if (trusted_cap & (1 << 0))
2389 dev->flags |= ATA_DFLAG_TRUSTED;
2390}
2391
2392/**
2393 * ata_dev_configure - Configure the specified ATA/ATAPI device
2394 * @dev: Target device to configure
2395 *
2396 * Configure @dev according to @dev->id. Generic and low-level
2397 * driver specific fixups are also applied.
2398 *
2399 * LOCKING:
2400 * Kernel thread context (may sleep)
2401 *
2402 * RETURNS:
2403 * 0 on success, -errno otherwise
2404 */
2405int ata_dev_configure(struct ata_device *dev)
2406{
2407 struct ata_port *ap = dev->link->ap;
2408 struct ata_eh_context *ehc = &dev->link->eh_context;
2409 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2410 const u16 *id = dev->id;
2411 unsigned long xfer_mask;
2412 unsigned int err_mask;
2413 char revbuf[7]; /* XYZ-99\0 */
2414 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2415 char modelbuf[ATA_ID_PROD_LEN+1];
2416 int rc;
2417
2418 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2419 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2420 return 0;
2421 }
2422
2423 if (ata_msg_probe(ap))
2424 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2425
2426 /* set horkage */
2427 dev->horkage |= ata_dev_blacklisted(dev);
2428 ata_force_horkage(dev);
2429
2430 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2431 ata_dev_info(dev, "unsupported device, disabling\n");
2432 ata_dev_disable(dev);
2433 return 0;
2434 }
2435
2436 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2437 dev->class == ATA_DEV_ATAPI) {
2438 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2439 atapi_enabled ? "not supported with this driver"
2440 : "disabled");
2441 ata_dev_disable(dev);
2442 return 0;
2443 }
2444
2445 rc = ata_do_link_spd_horkage(dev);
2446 if (rc)
2447 return rc;
2448
2449 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2450 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2451 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2452 dev->horkage |= ATA_HORKAGE_NOLPM;
2453
2454 if (ap->flags & ATA_FLAG_NO_LPM)
2455 dev->horkage |= ATA_HORKAGE_NOLPM;
2456
2457 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2458 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2459 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2460 }
2461
2462 /* let ACPI work its magic */
2463 rc = ata_acpi_on_devcfg(dev);
2464 if (rc)
2465 return rc;
2466
2467 /* massage HPA, do it early as it might change IDENTIFY data */
2468 rc = ata_hpa_resize(dev);
2469 if (rc)
2470 return rc;
2471
2472 /* print device capabilities */
2473 if (ata_msg_probe(ap))
2474 ata_dev_dbg(dev,
2475 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2476 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2477 __func__,
2478 id[49], id[82], id[83], id[84],
2479 id[85], id[86], id[87], id[88]);
2480
2481 /* initialize to-be-configured parameters */
2482 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2483 dev->max_sectors = 0;
2484 dev->cdb_len = 0;
2485 dev->n_sectors = 0;
2486 dev->cylinders = 0;
2487 dev->heads = 0;
2488 dev->sectors = 0;
2489 dev->multi_count = 0;
2490
2491 /*
2492 * common ATA, ATAPI feature tests
2493 */
2494
2495 /* find max transfer mode; for printk only */
2496 xfer_mask = ata_id_xfermask(id);
2497
2498 if (ata_msg_probe(ap))
2499 ata_dump_id(id);
2500
2501 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2502 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2503 sizeof(fwrevbuf));
2504
2505 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2506 sizeof(modelbuf));
2507
2508 /* ATA-specific feature tests */
2509 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2510 if (ata_id_is_cfa(id)) {
2511 /* CPRM may make this media unusable */
2512 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2513 ata_dev_warn(dev,
2514 "supports DRM functions and may not be fully accessible\n");
2515 snprintf(revbuf, 7, "CFA");
2516 } else {
2517 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2518 /* Warn the user if the device has TPM extensions */
2519 if (ata_id_has_tpm(id))
2520 ata_dev_warn(dev,
2521 "supports DRM functions and may not be fully accessible\n");
2522 }
2523
2524 dev->n_sectors = ata_id_n_sectors(id);
2525
2526 /* get current R/W Multiple count setting */
2527 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2528 unsigned int max = dev->id[47] & 0xff;
2529 unsigned int cnt = dev->id[59] & 0xff;
2530 /* only recognize/allow powers of two here */
2531 if (is_power_of_2(max) && is_power_of_2(cnt))
2532 if (cnt <= max)
2533 dev->multi_count = cnt;
2534 }
2535
2536 if (ata_id_has_lba(id)) {
2537 const char *lba_desc;
2538 char ncq_desc[24];
2539
2540 lba_desc = "LBA";
2541 dev->flags |= ATA_DFLAG_LBA;
2542 if (ata_id_has_lba48(id)) {
2543 dev->flags |= ATA_DFLAG_LBA48;
2544 lba_desc = "LBA48";
2545
2546 if (dev->n_sectors >= (1UL << 28) &&
2547 ata_id_has_flush_ext(id))
2548 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2549 }
2550
2551 /* config NCQ */
2552 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2553 if (rc)
2554 return rc;
2555
2556 /* print device info to dmesg */
2557 if (ata_msg_drv(ap) && print_info) {
2558 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2559 revbuf, modelbuf, fwrevbuf,
2560 ata_mode_string(xfer_mask));
2561 ata_dev_info(dev,
2562 "%llu sectors, multi %u: %s %s\n",
2563 (unsigned long long)dev->n_sectors,
2564 dev->multi_count, lba_desc, ncq_desc);
2565 }
2566 } else {
2567 /* CHS */
2568
2569 /* Default translation */
2570 dev->cylinders = id[1];
2571 dev->heads = id[3];
2572 dev->sectors = id[6];
2573
2574 if (ata_id_current_chs_valid(id)) {
2575 /* Current CHS translation is valid. */
2576 dev->cylinders = id[54];
2577 dev->heads = id[55];
2578 dev->sectors = id[56];
2579 }
2580
2581 /* print device info to dmesg */
2582 if (ata_msg_drv(ap) && print_info) {
2583 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2584 revbuf, modelbuf, fwrevbuf,
2585 ata_mode_string(xfer_mask));
2586 ata_dev_info(dev,
2587 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2588 (unsigned long long)dev->n_sectors,
2589 dev->multi_count, dev->cylinders,
2590 dev->heads, dev->sectors);
2591 }
2592 }
2593
2594 /* Check and mark DevSlp capability. Get DevSlp timing variables
2595 * from SATA Settings page of Identify Device Data Log.
2596 */
2597 if (ata_id_has_devslp(dev->id)) {
2598 u8 *sata_setting = ap->sector_buf;
2599 int i, j;
2600
2601 dev->flags |= ATA_DFLAG_DEVSLP;
2602 err_mask = ata_read_log_page(dev,
2603 ATA_LOG_IDENTIFY_DEVICE,
2604 ATA_LOG_SATA_SETTINGS,
2605 sata_setting,
2606 1);
2607 if (err_mask)
2608 ata_dev_dbg(dev,
2609 "failed to get Identify Device Data, Emask 0x%x\n",
2610 err_mask);
2611 else
2612 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2613 j = ATA_LOG_DEVSLP_OFFSET + i;
2614 dev->devslp_timing[i] = sata_setting[j];
2615 }
2616 }
2617 ata_dev_config_sense_reporting(dev);
2618 ata_dev_config_zac(dev);
2619 ata_dev_config_trusted(dev);
2620 dev->cdb_len = 32;
2621 }
2622
2623 /* ATAPI-specific feature tests */
2624 else if (dev->class == ATA_DEV_ATAPI) {
2625 const char *cdb_intr_string = "";
2626 const char *atapi_an_string = "";
2627 const char *dma_dir_string = "";
2628 u32 sntf;
2629
2630 rc = atapi_cdb_len(id);
2631 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2632 if (ata_msg_warn(ap))
2633 ata_dev_warn(dev, "unsupported CDB len\n");
2634 rc = -EINVAL;
2635 goto err_out_nosup;
2636 }
2637 dev->cdb_len = (unsigned int) rc;
2638
2639 /* Enable ATAPI AN if both the host and device have
2640 * the support. If PMP is attached, SNTF is required
2641 * to enable ATAPI AN to discern between PHY status
2642 * changed notifications and ATAPI ANs.
2643 */
2644 if (atapi_an &&
2645 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2646 (!sata_pmp_attached(ap) ||
2647 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2648 /* issue SET feature command to turn this on */
2649 err_mask = ata_dev_set_feature(dev,
2650 SETFEATURES_SATA_ENABLE, SATA_AN);
2651 if (err_mask)
2652 ata_dev_err(dev,
2653 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2654 err_mask);
2655 else {
2656 dev->flags |= ATA_DFLAG_AN;
2657 atapi_an_string = ", ATAPI AN";
2658 }
2659 }
2660
2661 if (ata_id_cdb_intr(dev->id)) {
2662 dev->flags |= ATA_DFLAG_CDB_INTR;
2663 cdb_intr_string = ", CDB intr";
2664 }
2665
2666 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2667 dev->flags |= ATA_DFLAG_DMADIR;
2668 dma_dir_string = ", DMADIR";
2669 }
2670
2671 if (ata_id_has_da(dev->id)) {
2672 dev->flags |= ATA_DFLAG_DA;
2673 zpodd_init(dev);
2674 }
2675
2676 /* print device info to dmesg */
2677 if (ata_msg_drv(ap) && print_info)
2678 ata_dev_info(dev,
2679 "ATAPI: %s, %s, max %s%s%s%s\n",
2680 modelbuf, fwrevbuf,
2681 ata_mode_string(xfer_mask),
2682 cdb_intr_string, atapi_an_string,
2683 dma_dir_string);
2684 }
2685
2686 /* determine max_sectors */
2687 dev->max_sectors = ATA_MAX_SECTORS;
2688 if (dev->flags & ATA_DFLAG_LBA48)
2689 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2690
2691 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2692 200 sectors */
2693 if (ata_dev_knobble(dev)) {
2694 if (ata_msg_drv(ap) && print_info)
2695 ata_dev_info(dev, "applying bridge limits\n");
2696 dev->udma_mask &= ATA_UDMA5;
2697 dev->max_sectors = ATA_MAX_SECTORS;
2698 }
2699
2700 if ((dev->class == ATA_DEV_ATAPI) &&
2701 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2702 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2703 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2704 }
2705
2706 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2707 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2708 dev->max_sectors);
2709
2710 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2711 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2712 dev->max_sectors);
2713
2714 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2715 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717 if (ap->ops->dev_config)
2718 ap->ops->dev_config(dev);
2719
2720 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2721 /* Let the user know. We don't want to disallow opens for
2722 rescue purposes, or in case the vendor is just a blithering
2723 idiot. Do this after the dev_config call as some controllers
2724 with buggy firmware may want to avoid reporting false device
2725 bugs */
2726
2727 if (print_info) {
2728 ata_dev_warn(dev,
2729"Drive reports diagnostics failure. This may indicate a drive\n");
2730 ata_dev_warn(dev,
2731"fault or invalid emulation. Contact drive vendor for information.\n");
2732 }
2733 }
2734
2735 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2736 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2737 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2738 }
2739
2740 return 0;
2741
2742err_out_nosup:
2743 if (ata_msg_probe(ap))
2744 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2745 return rc;
2746}
2747
2748/**
2749 * ata_cable_40wire - return 40 wire cable type
2750 * @ap: port
2751 *
2752 * Helper method for drivers which want to hardwire 40 wire cable
2753 * detection.
2754 */
2755
2756int ata_cable_40wire(struct ata_port *ap)
2757{
2758 return ATA_CBL_PATA40;
2759}
2760EXPORT_SYMBOL_GPL(ata_cable_40wire);
2761
2762/**
2763 * ata_cable_80wire - return 80 wire cable type
2764 * @ap: port
2765 *
2766 * Helper method for drivers which want to hardwire 80 wire cable
2767 * detection.
2768 */
2769
2770int ata_cable_80wire(struct ata_port *ap)
2771{
2772 return ATA_CBL_PATA80;
2773}
2774EXPORT_SYMBOL_GPL(ata_cable_80wire);
2775
2776/**
2777 * ata_cable_unknown - return unknown PATA cable.
2778 * @ap: port
2779 *
2780 * Helper method for drivers which have no PATA cable detection.
2781 */
2782
2783int ata_cable_unknown(struct ata_port *ap)
2784{
2785 return ATA_CBL_PATA_UNK;
2786}
2787EXPORT_SYMBOL_GPL(ata_cable_unknown);
2788
2789/**
2790 * ata_cable_ignore - return ignored PATA cable.
2791 * @ap: port
2792 *
2793 * Helper method for drivers which don't use cable type to limit
2794 * transfer mode.
2795 */
2796int ata_cable_ignore(struct ata_port *ap)
2797{
2798 return ATA_CBL_PATA_IGN;
2799}
2800EXPORT_SYMBOL_GPL(ata_cable_ignore);
2801
2802/**
2803 * ata_cable_sata - return SATA cable type
2804 * @ap: port
2805 *
2806 * Helper method for drivers which have SATA cables
2807 */
2808
2809int ata_cable_sata(struct ata_port *ap)
2810{
2811 return ATA_CBL_SATA;
2812}
2813EXPORT_SYMBOL_GPL(ata_cable_sata);
2814
2815/**
2816 * ata_bus_probe - Reset and probe ATA bus
2817 * @ap: Bus to probe
2818 *
2819 * Master ATA bus probing function. Initiates a hardware-dependent
2820 * bus reset, then attempts to identify any devices found on
2821 * the bus.
2822 *
2823 * LOCKING:
2824 * PCI/etc. bus probe sem.
2825 *
2826 * RETURNS:
2827 * Zero on success, negative errno otherwise.
2828 */
2829
2830int ata_bus_probe(struct ata_port *ap)
2831{
2832 unsigned int classes[ATA_MAX_DEVICES];
2833 int tries[ATA_MAX_DEVICES];
2834 int rc;
2835 struct ata_device *dev;
2836
2837 ata_for_each_dev(dev, &ap->link, ALL)
2838 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2839
2840 retry:
2841 ata_for_each_dev(dev, &ap->link, ALL) {
2842 /* If we issue an SRST then an ATA drive (not ATAPI)
2843 * may change configuration and be in PIO0 timing. If
2844 * we do a hard reset (or are coming from power on)
2845 * this is true for ATA or ATAPI. Until we've set a
2846 * suitable controller mode we should not touch the
2847 * bus as we may be talking too fast.
2848 */
2849 dev->pio_mode = XFER_PIO_0;
2850 dev->dma_mode = 0xff;
2851
2852 /* If the controller has a pio mode setup function
2853 * then use it to set the chipset to rights. Don't
2854 * touch the DMA setup as that will be dealt with when
2855 * configuring devices.
2856 */
2857 if (ap->ops->set_piomode)
2858 ap->ops->set_piomode(ap, dev);
2859 }
2860
2861 /* reset and determine device classes */
2862 ap->ops->phy_reset(ap);
2863
2864 ata_for_each_dev(dev, &ap->link, ALL) {
2865 if (dev->class != ATA_DEV_UNKNOWN)
2866 classes[dev->devno] = dev->class;
2867 else
2868 classes[dev->devno] = ATA_DEV_NONE;
2869
2870 dev->class = ATA_DEV_UNKNOWN;
2871 }
2872
2873 /* read IDENTIFY page and configure devices. We have to do the identify
2874 specific sequence bass-ackwards so that PDIAG- is released by
2875 the slave device */
2876
2877 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2878 if (tries[dev->devno])
2879 dev->class = classes[dev->devno];
2880
2881 if (!ata_dev_enabled(dev))
2882 continue;
2883
2884 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2885 dev->id);
2886 if (rc)
2887 goto fail;
2888 }
2889
2890 /* Now ask for the cable type as PDIAG- should have been released */
2891 if (ap->ops->cable_detect)
2892 ap->cbl = ap->ops->cable_detect(ap);
2893
2894 /* We may have SATA bridge glue hiding here irrespective of
2895 * the reported cable types and sensed types. When SATA
2896 * drives indicate we have a bridge, we don't know which end
2897 * of the link the bridge is which is a problem.
2898 */
2899 ata_for_each_dev(dev, &ap->link, ENABLED)
2900 if (ata_id_is_sata(dev->id))
2901 ap->cbl = ATA_CBL_SATA;
2902
2903 /* After the identify sequence we can now set up the devices. We do
2904 this in the normal order so that the user doesn't get confused */
2905
2906 ata_for_each_dev(dev, &ap->link, ENABLED) {
2907 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2908 rc = ata_dev_configure(dev);
2909 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2910 if (rc)
2911 goto fail;
2912 }
2913
2914 /* configure transfer mode */
2915 rc = ata_set_mode(&ap->link, &dev);
2916 if (rc)
2917 goto fail;
2918
2919 ata_for_each_dev(dev, &ap->link, ENABLED)
2920 return 0;
2921
2922 return -ENODEV;
2923
2924 fail:
2925 tries[dev->devno]--;
2926
2927 switch (rc) {
2928 case -EINVAL:
2929 /* eeek, something went very wrong, give up */
2930 tries[dev->devno] = 0;
2931 break;
2932
2933 case -ENODEV:
2934 /* give it just one more chance */
2935 tries[dev->devno] = min(tries[dev->devno], 1);
2936 fallthrough;
2937 case -EIO:
2938 if (tries[dev->devno] == 1) {
2939 /* This is the last chance, better to slow
2940 * down than lose it.
2941 */
2942 sata_down_spd_limit(&ap->link, 0);
2943 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2944 }
2945 }
2946
2947 if (!tries[dev->devno])
2948 ata_dev_disable(dev);
2949
2950 goto retry;
2951}
2952
2953/**
2954 * sata_print_link_status - Print SATA link status
2955 * @link: SATA link to printk link status about
2956 *
2957 * This function prints link speed and status of a SATA link.
2958 *
2959 * LOCKING:
2960 * None.
2961 */
2962static void sata_print_link_status(struct ata_link *link)
2963{
2964 u32 sstatus, scontrol, tmp;
2965
2966 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2967 return;
2968 sata_scr_read(link, SCR_CONTROL, &scontrol);
2969
2970 if (ata_phys_link_online(link)) {
2971 tmp = (sstatus >> 4) & 0xf;
2972 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2973 sata_spd_string(tmp), sstatus, scontrol);
2974 } else {
2975 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2976 sstatus, scontrol);
2977 }
2978}
2979
2980/**
2981 * ata_dev_pair - return other device on cable
2982 * @adev: device
2983 *
2984 * Obtain the other device on the same cable, or if none is
2985 * present NULL is returned
2986 */
2987
2988struct ata_device *ata_dev_pair(struct ata_device *adev)
2989{
2990 struct ata_link *link = adev->link;
2991 struct ata_device *pair = &link->device[1 - adev->devno];
2992 if (!ata_dev_enabled(pair))
2993 return NULL;
2994 return pair;
2995}
2996EXPORT_SYMBOL_GPL(ata_dev_pair);
2997
2998/**
2999 * sata_down_spd_limit - adjust SATA spd limit downward
3000 * @link: Link to adjust SATA spd limit for
3001 * @spd_limit: Additional limit
3002 *
3003 * Adjust SATA spd limit of @link downward. Note that this
3004 * function only adjusts the limit. The change must be applied
3005 * using sata_set_spd().
3006 *
3007 * If @spd_limit is non-zero, the speed is limited to equal to or
3008 * lower than @spd_limit if such speed is supported. If
3009 * @spd_limit is slower than any supported speed, only the lowest
3010 * supported speed is allowed.
3011 *
3012 * LOCKING:
3013 * Inherited from caller.
3014 *
3015 * RETURNS:
3016 * 0 on success, negative errno on failure
3017 */
3018int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3019{
3020 u32 sstatus, spd, mask;
3021 int rc, bit;
3022
3023 if (!sata_scr_valid(link))
3024 return -EOPNOTSUPP;
3025
3026 /* If SCR can be read, use it to determine the current SPD.
3027 * If not, use cached value in link->sata_spd.
3028 */
3029 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3030 if (rc == 0 && ata_sstatus_online(sstatus))
3031 spd = (sstatus >> 4) & 0xf;
3032 else
3033 spd = link->sata_spd;
3034
3035 mask = link->sata_spd_limit;
3036 if (mask <= 1)
3037 return -EINVAL;
3038
3039 /* unconditionally mask off the highest bit */
3040 bit = fls(mask) - 1;
3041 mask &= ~(1 << bit);
3042
3043 /*
3044 * Mask off all speeds higher than or equal to the current one. At
3045 * this point, if current SPD is not available and we previously
3046 * recorded the link speed from SStatus, the driver has already
3047 * masked off the highest bit so mask should already be 1 or 0.
3048 * Otherwise, we should not force 1.5Gbps on a link where we have
3049 * not previously recorded speed from SStatus. Just return in this
3050 * case.
3051 */
3052 if (spd > 1)
3053 mask &= (1 << (spd - 1)) - 1;
3054 else
3055 return -EINVAL;
3056
3057 /* were we already at the bottom? */
3058 if (!mask)
3059 return -EINVAL;
3060
3061 if (spd_limit) {
3062 if (mask & ((1 << spd_limit) - 1))
3063 mask &= (1 << spd_limit) - 1;
3064 else {
3065 bit = ffs(mask) - 1;
3066 mask = 1 << bit;
3067 }
3068 }
3069
3070 link->sata_spd_limit = mask;
3071
3072 ata_link_warn(link, "limiting SATA link speed to %s\n",
3073 sata_spd_string(fls(mask)));
3074
3075 return 0;
3076}
3077
3078#ifdef CONFIG_ATA_ACPI
3079/**
3080 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3081 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3082 * @cycle: cycle duration in ns
3083 *
3084 * Return matching xfer mode for @cycle. The returned mode is of
3085 * the transfer type specified by @xfer_shift. If @cycle is too
3086 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3087 * than the fastest known mode, the fasted mode is returned.
3088 *
3089 * LOCKING:
3090 * None.
3091 *
3092 * RETURNS:
3093 * Matching xfer_mode, 0xff if no match found.
3094 */
3095u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3096{
3097 u8 base_mode = 0xff, last_mode = 0xff;
3098 const struct ata_xfer_ent *ent;
3099 const struct ata_timing *t;
3100
3101 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3102 if (ent->shift == xfer_shift)
3103 base_mode = ent->base;
3104
3105 for (t = ata_timing_find_mode(base_mode);
3106 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3107 unsigned short this_cycle;
3108
3109 switch (xfer_shift) {
3110 case ATA_SHIFT_PIO:
3111 case ATA_SHIFT_MWDMA:
3112 this_cycle = t->cycle;
3113 break;
3114 case ATA_SHIFT_UDMA:
3115 this_cycle = t->udma;
3116 break;
3117 default:
3118 return 0xff;
3119 }
3120
3121 if (cycle > this_cycle)
3122 break;
3123
3124 last_mode = t->mode;
3125 }
3126
3127 return last_mode;
3128}
3129#endif
3130
3131/**
3132 * ata_down_xfermask_limit - adjust dev xfer masks downward
3133 * @dev: Device to adjust xfer masks
3134 * @sel: ATA_DNXFER_* selector
3135 *
3136 * Adjust xfer masks of @dev downward. Note that this function
3137 * does not apply the change. Invoking ata_set_mode() afterwards
3138 * will apply the limit.
3139 *
3140 * LOCKING:
3141 * Inherited from caller.
3142 *
3143 * RETURNS:
3144 * 0 on success, negative errno on failure
3145 */
3146int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3147{
3148 char buf[32];
3149 unsigned long orig_mask, xfer_mask;
3150 unsigned long pio_mask, mwdma_mask, udma_mask;
3151 int quiet, highbit;
3152
3153 quiet = !!(sel & ATA_DNXFER_QUIET);
3154 sel &= ~ATA_DNXFER_QUIET;
3155
3156 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3157 dev->mwdma_mask,
3158 dev->udma_mask);
3159 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3160
3161 switch (sel) {
3162 case ATA_DNXFER_PIO:
3163 highbit = fls(pio_mask) - 1;
3164 pio_mask &= ~(1 << highbit);
3165 break;
3166
3167 case ATA_DNXFER_DMA:
3168 if (udma_mask) {
3169 highbit = fls(udma_mask) - 1;
3170 udma_mask &= ~(1 << highbit);
3171 if (!udma_mask)
3172 return -ENOENT;
3173 } else if (mwdma_mask) {
3174 highbit = fls(mwdma_mask) - 1;
3175 mwdma_mask &= ~(1 << highbit);
3176 if (!mwdma_mask)
3177 return -ENOENT;
3178 }
3179 break;
3180
3181 case ATA_DNXFER_40C:
3182 udma_mask &= ATA_UDMA_MASK_40C;
3183 break;
3184
3185 case ATA_DNXFER_FORCE_PIO0:
3186 pio_mask &= 1;
3187 fallthrough;
3188 case ATA_DNXFER_FORCE_PIO:
3189 mwdma_mask = 0;
3190 udma_mask = 0;
3191 break;
3192
3193 default:
3194 BUG();
3195 }
3196
3197 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3198
3199 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3200 return -ENOENT;
3201
3202 if (!quiet) {
3203 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3204 snprintf(buf, sizeof(buf), "%s:%s",
3205 ata_mode_string(xfer_mask),
3206 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3207 else
3208 snprintf(buf, sizeof(buf), "%s",
3209 ata_mode_string(xfer_mask));
3210
3211 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3212 }
3213
3214 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3215 &dev->udma_mask);
3216
3217 return 0;
3218}
3219
3220static int ata_dev_set_mode(struct ata_device *dev)
3221{
3222 struct ata_port *ap = dev->link->ap;
3223 struct ata_eh_context *ehc = &dev->link->eh_context;
3224 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3225 const char *dev_err_whine = "";
3226 int ign_dev_err = 0;
3227 unsigned int err_mask = 0;
3228 int rc;
3229
3230 dev->flags &= ~ATA_DFLAG_PIO;
3231 if (dev->xfer_shift == ATA_SHIFT_PIO)
3232 dev->flags |= ATA_DFLAG_PIO;
3233
3234 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3235 dev_err_whine = " (SET_XFERMODE skipped)";
3236 else {
3237 if (nosetxfer)
3238 ata_dev_warn(dev,
3239 "NOSETXFER but PATA detected - can't "
3240 "skip SETXFER, might malfunction\n");
3241 err_mask = ata_dev_set_xfermode(dev);
3242 }
3243
3244 if (err_mask & ~AC_ERR_DEV)
3245 goto fail;
3246
3247 /* revalidate */
3248 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3249 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3250 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3251 if (rc)
3252 return rc;
3253
3254 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3255 /* Old CFA may refuse this command, which is just fine */
3256 if (ata_id_is_cfa(dev->id))
3257 ign_dev_err = 1;
3258 /* Catch several broken garbage emulations plus some pre
3259 ATA devices */
3260 if (ata_id_major_version(dev->id) == 0 &&
3261 dev->pio_mode <= XFER_PIO_2)
3262 ign_dev_err = 1;
3263 /* Some very old devices and some bad newer ones fail
3264 any kind of SET_XFERMODE request but support PIO0-2
3265 timings and no IORDY */
3266 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3267 ign_dev_err = 1;
3268 }
3269 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3270 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3271 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3272 dev->dma_mode == XFER_MW_DMA_0 &&
3273 (dev->id[63] >> 8) & 1)
3274 ign_dev_err = 1;
3275
3276 /* if the device is actually configured correctly, ignore dev err */
3277 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3278 ign_dev_err = 1;
3279
3280 if (err_mask & AC_ERR_DEV) {
3281 if (!ign_dev_err)
3282 goto fail;
3283 else
3284 dev_err_whine = " (device error ignored)";
3285 }
3286
3287 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3288 dev->xfer_shift, (int)dev->xfer_mode);
3289
3290 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3291 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3292 ata_dev_info(dev, "configured for %s%s\n",
3293 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3294 dev_err_whine);
3295
3296 return 0;
3297
3298 fail:
3299 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3300 return -EIO;
3301}
3302
3303/**
3304 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3305 * @link: link on which timings will be programmed
3306 * @r_failed_dev: out parameter for failed device
3307 *
3308 * Standard implementation of the function used to tune and set
3309 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3310 * ata_dev_set_mode() fails, pointer to the failing device is
3311 * returned in @r_failed_dev.
3312 *
3313 * LOCKING:
3314 * PCI/etc. bus probe sem.
3315 *
3316 * RETURNS:
3317 * 0 on success, negative errno otherwise
3318 */
3319
3320int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3321{
3322 struct ata_port *ap = link->ap;
3323 struct ata_device *dev;
3324 int rc = 0, used_dma = 0, found = 0;
3325
3326 /* step 1: calculate xfer_mask */
3327 ata_for_each_dev(dev, link, ENABLED) {
3328 unsigned long pio_mask, dma_mask;
3329 unsigned int mode_mask;
3330
3331 mode_mask = ATA_DMA_MASK_ATA;
3332 if (dev->class == ATA_DEV_ATAPI)
3333 mode_mask = ATA_DMA_MASK_ATAPI;
3334 else if (ata_id_is_cfa(dev->id))
3335 mode_mask = ATA_DMA_MASK_CFA;
3336
3337 ata_dev_xfermask(dev);
3338 ata_force_xfermask(dev);
3339
3340 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3341
3342 if (libata_dma_mask & mode_mask)
3343 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3344 dev->udma_mask);
3345 else
3346 dma_mask = 0;
3347
3348 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3349 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3350
3351 found = 1;
3352 if (ata_dma_enabled(dev))
3353 used_dma = 1;
3354 }
3355 if (!found)
3356 goto out;
3357
3358 /* step 2: always set host PIO timings */
3359 ata_for_each_dev(dev, link, ENABLED) {
3360 if (dev->pio_mode == 0xff) {
3361 ata_dev_warn(dev, "no PIO support\n");
3362 rc = -EINVAL;
3363 goto out;
3364 }
3365
3366 dev->xfer_mode = dev->pio_mode;
3367 dev->xfer_shift = ATA_SHIFT_PIO;
3368 if (ap->ops->set_piomode)
3369 ap->ops->set_piomode(ap, dev);
3370 }
3371
3372 /* step 3: set host DMA timings */
3373 ata_for_each_dev(dev, link, ENABLED) {
3374 if (!ata_dma_enabled(dev))
3375 continue;
3376
3377 dev->xfer_mode = dev->dma_mode;
3378 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3379 if (ap->ops->set_dmamode)
3380 ap->ops->set_dmamode(ap, dev);
3381 }
3382
3383 /* step 4: update devices' xfer mode */
3384 ata_for_each_dev(dev, link, ENABLED) {
3385 rc = ata_dev_set_mode(dev);
3386 if (rc)
3387 goto out;
3388 }
3389
3390 /* Record simplex status. If we selected DMA then the other
3391 * host channels are not permitted to do so.
3392 */
3393 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3394 ap->host->simplex_claimed = ap;
3395
3396 out:
3397 if (rc)
3398 *r_failed_dev = dev;
3399 return rc;
3400}
3401EXPORT_SYMBOL_GPL(ata_do_set_mode);
3402
3403/**
3404 * ata_wait_ready - wait for link to become ready
3405 * @link: link to be waited on
3406 * @deadline: deadline jiffies for the operation
3407 * @check_ready: callback to check link readiness
3408 *
3409 * Wait for @link to become ready. @check_ready should return
3410 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3411 * link doesn't seem to be occupied, other errno for other error
3412 * conditions.
3413 *
3414 * Transient -ENODEV conditions are allowed for
3415 * ATA_TMOUT_FF_WAIT.
3416 *
3417 * LOCKING:
3418 * EH context.
3419 *
3420 * RETURNS:
3421 * 0 if @link is ready before @deadline; otherwise, -errno.
3422 */
3423int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3424 int (*check_ready)(struct ata_link *link))
3425{
3426 unsigned long start = jiffies;
3427 unsigned long nodev_deadline;
3428 int warned = 0;
3429
3430 /* choose which 0xff timeout to use, read comment in libata.h */
3431 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3432 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3433 else
3434 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3435
3436 /* Slave readiness can't be tested separately from master. On
3437 * M/S emulation configuration, this function should be called
3438 * only on the master and it will handle both master and slave.
3439 */
3440 WARN_ON(link == link->ap->slave_link);
3441
3442 if (time_after(nodev_deadline, deadline))
3443 nodev_deadline = deadline;
3444
3445 while (1) {
3446 unsigned long now = jiffies;
3447 int ready, tmp;
3448
3449 ready = tmp = check_ready(link);
3450 if (ready > 0)
3451 return 0;
3452
3453 /*
3454 * -ENODEV could be transient. Ignore -ENODEV if link
3455 * is online. Also, some SATA devices take a long
3456 * time to clear 0xff after reset. Wait for
3457 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3458 * offline.
3459 *
3460 * Note that some PATA controllers (pata_ali) explode
3461 * if status register is read more than once when
3462 * there's no device attached.
3463 */
3464 if (ready == -ENODEV) {
3465 if (ata_link_online(link))
3466 ready = 0;
3467 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3468 !ata_link_offline(link) &&
3469 time_before(now, nodev_deadline))
3470 ready = 0;
3471 }
3472
3473 if (ready)
3474 return ready;
3475 if (time_after(now, deadline))
3476 return -EBUSY;
3477
3478 if (!warned && time_after(now, start + 5 * HZ) &&
3479 (deadline - now > 3 * HZ)) {
3480 ata_link_warn(link,
3481 "link is slow to respond, please be patient "
3482 "(ready=%d)\n", tmp);
3483 warned = 1;
3484 }
3485
3486 ata_msleep(link->ap, 50);
3487 }
3488}
3489
3490/**
3491 * ata_wait_after_reset - wait for link to become ready after reset
3492 * @link: link to be waited on
3493 * @deadline: deadline jiffies for the operation
3494 * @check_ready: callback to check link readiness
3495 *
3496 * Wait for @link to become ready after reset.
3497 *
3498 * LOCKING:
3499 * EH context.
3500 *
3501 * RETURNS:
3502 * 0 if @link is ready before @deadline; otherwise, -errno.
3503 */
3504int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3505 int (*check_ready)(struct ata_link *link))
3506{
3507 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3508
3509 return ata_wait_ready(link, deadline, check_ready);
3510}
3511EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3512
3513/**
3514 * ata_std_prereset - prepare for reset
3515 * @link: ATA link to be reset
3516 * @deadline: deadline jiffies for the operation
3517 *
3518 * @link is about to be reset. Initialize it. Failure from
3519 * prereset makes libata abort whole reset sequence and give up
3520 * that port, so prereset should be best-effort. It does its
3521 * best to prepare for reset sequence but if things go wrong, it
3522 * should just whine, not fail.
3523 *
3524 * LOCKING:
3525 * Kernel thread context (may sleep)
3526 *
3527 * RETURNS:
3528 * 0 on success, -errno otherwise.
3529 */
3530int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3531{
3532 struct ata_port *ap = link->ap;
3533 struct ata_eh_context *ehc = &link->eh_context;
3534 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3535 int rc;
3536
3537 /* if we're about to do hardreset, nothing more to do */
3538 if (ehc->i.action & ATA_EH_HARDRESET)
3539 return 0;
3540
3541 /* if SATA, resume link */
3542 if (ap->flags & ATA_FLAG_SATA) {
3543 rc = sata_link_resume(link, timing, deadline);
3544 /* whine about phy resume failure but proceed */
3545 if (rc && rc != -EOPNOTSUPP)
3546 ata_link_warn(link,
3547 "failed to resume link for reset (errno=%d)\n",
3548 rc);
3549 }
3550
3551 /* no point in trying softreset on offline link */
3552 if (ata_phys_link_offline(link))
3553 ehc->i.action &= ~ATA_EH_SOFTRESET;
3554
3555 return 0;
3556}
3557EXPORT_SYMBOL_GPL(ata_std_prereset);
3558
3559/**
3560 * sata_std_hardreset - COMRESET w/o waiting or classification
3561 * @link: link to reset
3562 * @class: resulting class of attached device
3563 * @deadline: deadline jiffies for the operation
3564 *
3565 * Standard SATA COMRESET w/o waiting or classification.
3566 *
3567 * LOCKING:
3568 * Kernel thread context (may sleep)
3569 *
3570 * RETURNS:
3571 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3572 */
3573int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3574 unsigned long deadline)
3575{
3576 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3577 bool online;
3578 int rc;
3579
3580 /* do hardreset */
3581 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3582 return online ? -EAGAIN : rc;
3583}
3584EXPORT_SYMBOL_GPL(sata_std_hardreset);
3585
3586/**
3587 * ata_std_postreset - standard postreset callback
3588 * @link: the target ata_link
3589 * @classes: classes of attached devices
3590 *
3591 * This function is invoked after a successful reset. Note that
3592 * the device might have been reset more than once using
3593 * different reset methods before postreset is invoked.
3594 *
3595 * LOCKING:
3596 * Kernel thread context (may sleep)
3597 */
3598void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3599{
3600 u32 serror;
3601
3602 DPRINTK("ENTER\n");
3603
3604 /* reset complete, clear SError */
3605 if (!sata_scr_read(link, SCR_ERROR, &serror))
3606 sata_scr_write(link, SCR_ERROR, serror);
3607
3608 /* print link status */
3609 sata_print_link_status(link);
3610
3611 DPRINTK("EXIT\n");
3612}
3613EXPORT_SYMBOL_GPL(ata_std_postreset);
3614
3615/**
3616 * ata_dev_same_device - Determine whether new ID matches configured device
3617 * @dev: device to compare against
3618 * @new_class: class of the new device
3619 * @new_id: IDENTIFY page of the new device
3620 *
3621 * Compare @new_class and @new_id against @dev and determine
3622 * whether @dev is the device indicated by @new_class and
3623 * @new_id.
3624 *
3625 * LOCKING:
3626 * None.
3627 *
3628 * RETURNS:
3629 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3630 */
3631static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3632 const u16 *new_id)
3633{
3634 const u16 *old_id = dev->id;
3635 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3636 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3637
3638 if (dev->class != new_class) {
3639 ata_dev_info(dev, "class mismatch %d != %d\n",
3640 dev->class, new_class);
3641 return 0;
3642 }
3643
3644 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3645 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3646 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3647 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3648
3649 if (strcmp(model[0], model[1])) {
3650 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3651 model[0], model[1]);
3652 return 0;
3653 }
3654
3655 if (strcmp(serial[0], serial[1])) {
3656 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3657 serial[0], serial[1]);
3658 return 0;
3659 }
3660
3661 return 1;
3662}
3663
3664/**
3665 * ata_dev_reread_id - Re-read IDENTIFY data
3666 * @dev: target ATA device
3667 * @readid_flags: read ID flags
3668 *
3669 * Re-read IDENTIFY page and make sure @dev is still attached to
3670 * the port.
3671 *
3672 * LOCKING:
3673 * Kernel thread context (may sleep)
3674 *
3675 * RETURNS:
3676 * 0 on success, negative errno otherwise
3677 */
3678int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3679{
3680 unsigned int class = dev->class;
3681 u16 *id = (void *)dev->link->ap->sector_buf;
3682 int rc;
3683
3684 /* read ID data */
3685 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3686 if (rc)
3687 return rc;
3688
3689 /* is the device still there? */
3690 if (!ata_dev_same_device(dev, class, id))
3691 return -ENODEV;
3692
3693 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3694 return 0;
3695}
3696
3697/**
3698 * ata_dev_revalidate - Revalidate ATA device
3699 * @dev: device to revalidate
3700 * @new_class: new class code
3701 * @readid_flags: read ID flags
3702 *
3703 * Re-read IDENTIFY page, make sure @dev is still attached to the
3704 * port and reconfigure it according to the new IDENTIFY page.
3705 *
3706 * LOCKING:
3707 * Kernel thread context (may sleep)
3708 *
3709 * RETURNS:
3710 * 0 on success, negative errno otherwise
3711 */
3712int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3713 unsigned int readid_flags)
3714{
3715 u64 n_sectors = dev->n_sectors;
3716 u64 n_native_sectors = dev->n_native_sectors;
3717 int rc;
3718
3719 if (!ata_dev_enabled(dev))
3720 return -ENODEV;
3721
3722 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3723 if (ata_class_enabled(new_class) &&
3724 new_class != ATA_DEV_ATA &&
3725 new_class != ATA_DEV_ATAPI &&
3726 new_class != ATA_DEV_ZAC &&
3727 new_class != ATA_DEV_SEMB) {
3728 ata_dev_info(dev, "class mismatch %u != %u\n",
3729 dev->class, new_class);
3730 rc = -ENODEV;
3731 goto fail;
3732 }
3733
3734 /* re-read ID */
3735 rc = ata_dev_reread_id(dev, readid_flags);
3736 if (rc)
3737 goto fail;
3738
3739 /* configure device according to the new ID */
3740 rc = ata_dev_configure(dev);
3741 if (rc)
3742 goto fail;
3743
3744 /* verify n_sectors hasn't changed */
3745 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3746 dev->n_sectors == n_sectors)
3747 return 0;
3748
3749 /* n_sectors has changed */
3750 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3751 (unsigned long long)n_sectors,
3752 (unsigned long long)dev->n_sectors);
3753
3754 /*
3755 * Something could have caused HPA to be unlocked
3756 * involuntarily. If n_native_sectors hasn't changed and the
3757 * new size matches it, keep the device.
3758 */
3759 if (dev->n_native_sectors == n_native_sectors &&
3760 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3761 ata_dev_warn(dev,
3762 "new n_sectors matches native, probably "
3763 "late HPA unlock, n_sectors updated\n");
3764 /* use the larger n_sectors */
3765 return 0;
3766 }
3767
3768 /*
3769 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3770 * unlocking HPA in those cases.
3771 *
3772 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3773 */
3774 if (dev->n_native_sectors == n_native_sectors &&
3775 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3776 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3777 ata_dev_warn(dev,
3778 "old n_sectors matches native, probably "
3779 "late HPA lock, will try to unlock HPA\n");
3780 /* try unlocking HPA */
3781 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3782 rc = -EIO;
3783 } else
3784 rc = -ENODEV;
3785
3786 /* restore original n_[native_]sectors and fail */
3787 dev->n_native_sectors = n_native_sectors;
3788 dev->n_sectors = n_sectors;
3789 fail:
3790 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3791 return rc;
3792}
3793
3794struct ata_blacklist_entry {
3795 const char *model_num;
3796 const char *model_rev;
3797 unsigned long horkage;
3798};
3799
3800static const struct ata_blacklist_entry ata_device_blacklist [] = {
3801 /* Devices with DMA related problems under Linux */
3802 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3803 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3804 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3805 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3806 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3807 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3808 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3809 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3810 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3811 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3812 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3813 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3814 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3815 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3816 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3817 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3818 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3819 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3820 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3821 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3822 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3823 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3824 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3825 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3826 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3827 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3828 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3829 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3830 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3831 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3832 /* Odd clown on sil3726/4726 PMPs */
3833 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3834
3835 /* Weird ATAPI devices */
3836 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3837 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3838 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3839 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3840
3841 /*
3842 * Causes silent data corruption with higher max sects.
3843 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3844 */
3845 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3846
3847 /*
3848 * These devices time out with higher max sects.
3849 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3850 */
3851 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3852 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3853
3854 /* Devices we expect to fail diagnostics */
3855
3856 /* Devices where NCQ should be avoided */
3857 /* NCQ is slow */
3858 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3859 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3860 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3861 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3862 /* NCQ is broken */
3863 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3864 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3865 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3866 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3867 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
3868
3869 /* Seagate NCQ + FLUSH CACHE firmware bug */
3870 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3871 ATA_HORKAGE_FIRMWARE_WARN },
3872
3873 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3874 ATA_HORKAGE_FIRMWARE_WARN },
3875
3876 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3877 ATA_HORKAGE_FIRMWARE_WARN },
3878
3879 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3880 ATA_HORKAGE_FIRMWARE_WARN },
3881
3882 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3883 the ST disks also have LPM issues */
3884 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
3885 ATA_HORKAGE_NOLPM, },
3886 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
3887
3888 /* Blacklist entries taken from Silicon Image 3124/3132
3889 Windows driver .inf file - also several Linux problem reports */
3890 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3891 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3892 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3893
3894 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3895 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
3896
3897 /* Sandisk SD7/8/9s lock up hard on large trims */
3898 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, },
3899
3900 /* devices which puke on READ_NATIVE_MAX */
3901 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3902 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3903 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3904 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3905
3906 /* this one allows HPA unlocking but fails IOs on the area */
3907 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
3908
3909 /* Devices which report 1 sector over size HPA */
3910 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3911 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3912 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3913
3914 /* Devices which get the IVB wrong */
3915 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3916 /* Maybe we should just blacklist TSSTcorp... */
3917 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
3918
3919 /* Devices that do not need bridging limits applied */
3920 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
3921 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
3922
3923 /* Devices which aren't very happy with higher link speeds */
3924 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
3925 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
3926
3927 /*
3928 * Devices which choke on SETXFER. Applies only if both the
3929 * device and controller are SATA.
3930 */
3931 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3932 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
3933 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
3934 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
3935 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
3936
3937 /* Crucial BX100 SSD 500GB has broken LPM support */
3938 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
3939
3940 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3941 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3942 ATA_HORKAGE_ZERO_AFTER_TRIM |
3943 ATA_HORKAGE_NOLPM, },
3944 /* 512GB MX100 with newer firmware has only LPM issues */
3945 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
3946 ATA_HORKAGE_NOLPM, },
3947
3948 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3949 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3950 ATA_HORKAGE_ZERO_AFTER_TRIM |
3951 ATA_HORKAGE_NOLPM, },
3952 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3953 ATA_HORKAGE_ZERO_AFTER_TRIM |
3954 ATA_HORKAGE_NOLPM, },
3955
3956 /* These specific Samsung models/firmware-revs do not handle LPM well */
3957 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3958 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3959 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
3960 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3961
3962 /* devices that don't properly handle queued TRIM commands */
3963 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3964 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3965 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3966 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3967 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3968 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3969 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3970 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3971 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3972 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3973 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3974 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3975 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3976 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3977 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3978 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3979 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3980 ATA_HORKAGE_ZERO_AFTER_TRIM |
3981 ATA_HORKAGE_NO_NCQ_ON_ATI, },
3982 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3983 ATA_HORKAGE_ZERO_AFTER_TRIM |
3984 ATA_HORKAGE_NO_NCQ_ON_ATI, },
3985 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3986 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3987
3988 /* devices that don't properly handle TRIM commands */
3989 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
3990
3991 /*
3992 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
3993 * (Return Zero After Trim) flags in the ATA Command Set are
3994 * unreliable in the sense that they only define what happens if
3995 * the device successfully executed the DSM TRIM command. TRIM
3996 * is only advisory, however, and the device is free to silently
3997 * ignore all or parts of the request.
3998 *
3999 * Whitelist drives that are known to reliably return zeroes
4000 * after TRIM.
4001 */
4002
4003 /*
4004 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4005 * that model before whitelisting all other intel SSDs.
4006 */
4007 { "INTEL*SSDSC2MH*", NULL, 0, },
4008
4009 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4010 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4011 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4012 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4013 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4014 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4015 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4016 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4017
4018 /*
4019 * Some WD SATA-I drives spin up and down erratically when the link
4020 * is put into the slumber mode. We don't have full list of the
4021 * affected devices. Disable LPM if the device matches one of the
4022 * known prefixes and is SATA-1. As a side effect LPM partial is
4023 * lost too.
4024 *
4025 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4026 */
4027 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4028 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4029 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4030 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4031 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4032 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4033 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4034
4035 /* End Marker */
4036 { }
4037};
4038
4039static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4040{
4041 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4042 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4043 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4044
4045 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4046 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4047
4048 while (ad->model_num) {
4049 if (glob_match(ad->model_num, model_num)) {
4050 if (ad->model_rev == NULL)
4051 return ad->horkage;
4052 if (glob_match(ad->model_rev, model_rev))
4053 return ad->horkage;
4054 }
4055 ad++;
4056 }
4057 return 0;
4058}
4059
4060static int ata_dma_blacklisted(const struct ata_device *dev)
4061{
4062 /* We don't support polling DMA.
4063 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4064 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4065 */
4066 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4067 (dev->flags & ATA_DFLAG_CDB_INTR))
4068 return 1;
4069 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4070}
4071
4072/**
4073 * ata_is_40wire - check drive side detection
4074 * @dev: device
4075 *
4076 * Perform drive side detection decoding, allowing for device vendors
4077 * who can't follow the documentation.
4078 */
4079
4080static int ata_is_40wire(struct ata_device *dev)
4081{
4082 if (dev->horkage & ATA_HORKAGE_IVB)
4083 return ata_drive_40wire_relaxed(dev->id);
4084 return ata_drive_40wire(dev->id);
4085}
4086
4087/**
4088 * cable_is_40wire - 40/80/SATA decider
4089 * @ap: port to consider
4090 *
4091 * This function encapsulates the policy for speed management
4092 * in one place. At the moment we don't cache the result but
4093 * there is a good case for setting ap->cbl to the result when
4094 * we are called with unknown cables (and figuring out if it
4095 * impacts hotplug at all).
4096 *
4097 * Return 1 if the cable appears to be 40 wire.
4098 */
4099
4100static int cable_is_40wire(struct ata_port *ap)
4101{
4102 struct ata_link *link;
4103 struct ata_device *dev;
4104
4105 /* If the controller thinks we are 40 wire, we are. */
4106 if (ap->cbl == ATA_CBL_PATA40)
4107 return 1;
4108
4109 /* If the controller thinks we are 80 wire, we are. */
4110 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4111 return 0;
4112
4113 /* If the system is known to be 40 wire short cable (eg
4114 * laptop), then we allow 80 wire modes even if the drive
4115 * isn't sure.
4116 */
4117 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4118 return 0;
4119
4120 /* If the controller doesn't know, we scan.
4121 *
4122 * Note: We look for all 40 wire detects at this point. Any
4123 * 80 wire detect is taken to be 80 wire cable because
4124 * - in many setups only the one drive (slave if present) will
4125 * give a valid detect
4126 * - if you have a non detect capable drive you don't want it
4127 * to colour the choice
4128 */
4129 ata_for_each_link(link, ap, EDGE) {
4130 ata_for_each_dev(dev, link, ENABLED) {
4131 if (!ata_is_40wire(dev))
4132 return 0;
4133 }
4134 }
4135 return 1;
4136}
4137
4138/**
4139 * ata_dev_xfermask - Compute supported xfermask of the given device
4140 * @dev: Device to compute xfermask for
4141 *
4142 * Compute supported xfermask of @dev and store it in
4143 * dev->*_mask. This function is responsible for applying all
4144 * known limits including host controller limits, device
4145 * blacklist, etc...
4146 *
4147 * LOCKING:
4148 * None.
4149 */
4150static void ata_dev_xfermask(struct ata_device *dev)
4151{
4152 struct ata_link *link = dev->link;
4153 struct ata_port *ap = link->ap;
4154 struct ata_host *host = ap->host;
4155 unsigned long xfer_mask;
4156
4157 /* controller modes available */
4158 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4159 ap->mwdma_mask, ap->udma_mask);
4160
4161 /* drive modes available */
4162 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4163 dev->mwdma_mask, dev->udma_mask);
4164 xfer_mask &= ata_id_xfermask(dev->id);
4165
4166 /*
4167 * CFA Advanced TrueIDE timings are not allowed on a shared
4168 * cable
4169 */
4170 if (ata_dev_pair(dev)) {
4171 /* No PIO5 or PIO6 */
4172 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4173 /* No MWDMA3 or MWDMA 4 */
4174 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4175 }
4176
4177 if (ata_dma_blacklisted(dev)) {
4178 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4179 ata_dev_warn(dev,
4180 "device is on DMA blacklist, disabling DMA\n");
4181 }
4182
4183 if ((host->flags & ATA_HOST_SIMPLEX) &&
4184 host->simplex_claimed && host->simplex_claimed != ap) {
4185 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4186 ata_dev_warn(dev,
4187 "simplex DMA is claimed by other device, disabling DMA\n");
4188 }
4189
4190 if (ap->flags & ATA_FLAG_NO_IORDY)
4191 xfer_mask &= ata_pio_mask_no_iordy(dev);
4192
4193 if (ap->ops->mode_filter)
4194 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4195
4196 /* Apply cable rule here. Don't apply it early because when
4197 * we handle hot plug the cable type can itself change.
4198 * Check this last so that we know if the transfer rate was
4199 * solely limited by the cable.
4200 * Unknown or 80 wire cables reported host side are checked
4201 * drive side as well. Cases where we know a 40wire cable
4202 * is used safely for 80 are not checked here.
4203 */
4204 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4205 /* UDMA/44 or higher would be available */
4206 if (cable_is_40wire(ap)) {
4207 ata_dev_warn(dev,
4208 "limited to UDMA/33 due to 40-wire cable\n");
4209 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4210 }
4211
4212 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4213 &dev->mwdma_mask, &dev->udma_mask);
4214}
4215
4216/**
4217 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4218 * @dev: Device to which command will be sent
4219 *
4220 * Issue SET FEATURES - XFER MODE command to device @dev
4221 * on port @ap.
4222 *
4223 * LOCKING:
4224 * PCI/etc. bus probe sem.
4225 *
4226 * RETURNS:
4227 * 0 on success, AC_ERR_* mask otherwise.
4228 */
4229
4230static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4231{
4232 struct ata_taskfile tf;
4233 unsigned int err_mask;
4234
4235 /* set up set-features taskfile */
4236 DPRINTK("set features - xfer mode\n");
4237
4238 /* Some controllers and ATAPI devices show flaky interrupt
4239 * behavior after setting xfer mode. Use polling instead.
4240 */
4241 ata_tf_init(dev, &tf);
4242 tf.command = ATA_CMD_SET_FEATURES;
4243 tf.feature = SETFEATURES_XFER;
4244 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4245 tf.protocol = ATA_PROT_NODATA;
4246 /* If we are using IORDY we must send the mode setting command */
4247 if (ata_pio_need_iordy(dev))
4248 tf.nsect = dev->xfer_mode;
4249 /* If the device has IORDY and the controller does not - turn it off */
4250 else if (ata_id_has_iordy(dev->id))
4251 tf.nsect = 0x01;
4252 else /* In the ancient relic department - skip all of this */
4253 return 0;
4254
4255 /* On some disks, this command causes spin-up, so we need longer timeout */
4256 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4257
4258 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4259 return err_mask;
4260}
4261
4262/**
4263 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4264 * @dev: Device to which command will be sent
4265 * @enable: Whether to enable or disable the feature
4266 * @feature: The sector count represents the feature to set
4267 *
4268 * Issue SET FEATURES - SATA FEATURES command to device @dev
4269 * on port @ap with sector count
4270 *
4271 * LOCKING:
4272 * PCI/etc. bus probe sem.
4273 *
4274 * RETURNS:
4275 * 0 on success, AC_ERR_* mask otherwise.
4276 */
4277unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4278{
4279 struct ata_taskfile tf;
4280 unsigned int err_mask;
4281 unsigned long timeout = 0;
4282
4283 /* set up set-features taskfile */
4284 DPRINTK("set features - SATA features\n");
4285
4286 ata_tf_init(dev, &tf);
4287 tf.command = ATA_CMD_SET_FEATURES;
4288 tf.feature = enable;
4289 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4290 tf.protocol = ATA_PROT_NODATA;
4291 tf.nsect = feature;
4292
4293 if (enable == SETFEATURES_SPINUP)
4294 timeout = ata_probe_timeout ?
4295 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4297
4298 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4299 return err_mask;
4300}
4301EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4302
4303/**
4304 * ata_dev_init_params - Issue INIT DEV PARAMS command
4305 * @dev: Device to which command will be sent
4306 * @heads: Number of heads (taskfile parameter)
4307 * @sectors: Number of sectors (taskfile parameter)
4308 *
4309 * LOCKING:
4310 * Kernel thread context (may sleep)
4311 *
4312 * RETURNS:
4313 * 0 on success, AC_ERR_* mask otherwise.
4314 */
4315static unsigned int ata_dev_init_params(struct ata_device *dev,
4316 u16 heads, u16 sectors)
4317{
4318 struct ata_taskfile tf;
4319 unsigned int err_mask;
4320
4321 /* Number of sectors per track 1-255. Number of heads 1-16 */
4322 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4323 return AC_ERR_INVALID;
4324
4325 /* set up init dev params taskfile */
4326 DPRINTK("init dev params \n");
4327
4328 ata_tf_init(dev, &tf);
4329 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4330 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4331 tf.protocol = ATA_PROT_NODATA;
4332 tf.nsect = sectors;
4333 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4334
4335 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4336 /* A clean abort indicates an original or just out of spec drive
4337 and we should continue as we issue the setup based on the
4338 drive reported working geometry */
4339 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4340 err_mask = 0;
4341
4342 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4343 return err_mask;
4344}
4345
4346/**
4347 * atapi_check_dma - Check whether ATAPI DMA can be supported
4348 * @qc: Metadata associated with taskfile to check
4349 *
4350 * Allow low-level driver to filter ATA PACKET commands, returning
4351 * a status indicating whether or not it is OK to use DMA for the
4352 * supplied PACKET command.
4353 *
4354 * LOCKING:
4355 * spin_lock_irqsave(host lock)
4356 *
4357 * RETURNS: 0 when ATAPI DMA can be used
4358 * nonzero otherwise
4359 */
4360int atapi_check_dma(struct ata_queued_cmd *qc)
4361{
4362 struct ata_port *ap = qc->ap;
4363
4364 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4365 * few ATAPI devices choke on such DMA requests.
4366 */
4367 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4368 unlikely(qc->nbytes & 15))
4369 return 1;
4370
4371 if (ap->ops->check_atapi_dma)
4372 return ap->ops->check_atapi_dma(qc);
4373
4374 return 0;
4375}
4376
4377/**
4378 * ata_std_qc_defer - Check whether a qc needs to be deferred
4379 * @qc: ATA command in question
4380 *
4381 * Non-NCQ commands cannot run with any other command, NCQ or
4382 * not. As upper layer only knows the queue depth, we are
4383 * responsible for maintaining exclusion. This function checks
4384 * whether a new command @qc can be issued.
4385 *
4386 * LOCKING:
4387 * spin_lock_irqsave(host lock)
4388 *
4389 * RETURNS:
4390 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4391 */
4392int ata_std_qc_defer(struct ata_queued_cmd *qc)
4393{
4394 struct ata_link *link = qc->dev->link;
4395
4396 if (ata_is_ncq(qc->tf.protocol)) {
4397 if (!ata_tag_valid(link->active_tag))
4398 return 0;
4399 } else {
4400 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4401 return 0;
4402 }
4403
4404 return ATA_DEFER_LINK;
4405}
4406EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4407
4408enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4409{
4410 return AC_ERR_OK;
4411}
4412EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4413
4414/**
4415 * ata_sg_init - Associate command with scatter-gather table.
4416 * @qc: Command to be associated
4417 * @sg: Scatter-gather table.
4418 * @n_elem: Number of elements in s/g table.
4419 *
4420 * Initialize the data-related elements of queued_cmd @qc
4421 * to point to a scatter-gather table @sg, containing @n_elem
4422 * elements.
4423 *
4424 * LOCKING:
4425 * spin_lock_irqsave(host lock)
4426 */
4427void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4428 unsigned int n_elem)
4429{
4430 qc->sg = sg;
4431 qc->n_elem = n_elem;
4432 qc->cursg = qc->sg;
4433}
4434
4435#ifdef CONFIG_HAS_DMA
4436
4437/**
4438 * ata_sg_clean - Unmap DMA memory associated with command
4439 * @qc: Command containing DMA memory to be released
4440 *
4441 * Unmap all mapped DMA memory associated with this command.
4442 *
4443 * LOCKING:
4444 * spin_lock_irqsave(host lock)
4445 */
4446static void ata_sg_clean(struct ata_queued_cmd *qc)
4447{
4448 struct ata_port *ap = qc->ap;
4449 struct scatterlist *sg = qc->sg;
4450 int dir = qc->dma_dir;
4451
4452 WARN_ON_ONCE(sg == NULL);
4453
4454 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4455
4456 if (qc->n_elem)
4457 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4458
4459 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4460 qc->sg = NULL;
4461}
4462
4463/**
4464 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4465 * @qc: Command with scatter-gather table to be mapped.
4466 *
4467 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4468 *
4469 * LOCKING:
4470 * spin_lock_irqsave(host lock)
4471 *
4472 * RETURNS:
4473 * Zero on success, negative on error.
4474 *
4475 */
4476static int ata_sg_setup(struct ata_queued_cmd *qc)
4477{
4478 struct ata_port *ap = qc->ap;
4479 unsigned int n_elem;
4480
4481 VPRINTK("ENTER, ata%u\n", ap->print_id);
4482
4483 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4484 if (n_elem < 1)
4485 return -1;
4486
4487 VPRINTK("%d sg elements mapped\n", n_elem);
4488 qc->orig_n_elem = qc->n_elem;
4489 qc->n_elem = n_elem;
4490 qc->flags |= ATA_QCFLAG_DMAMAP;
4491
4492 return 0;
4493}
4494
4495#else /* !CONFIG_HAS_DMA */
4496
4497static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4498static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4499
4500#endif /* !CONFIG_HAS_DMA */
4501
4502/**
4503 * swap_buf_le16 - swap halves of 16-bit words in place
4504 * @buf: Buffer to swap
4505 * @buf_words: Number of 16-bit words in buffer.
4506 *
4507 * Swap halves of 16-bit words if needed to convert from
4508 * little-endian byte order to native cpu byte order, or
4509 * vice-versa.
4510 *
4511 * LOCKING:
4512 * Inherited from caller.
4513 */
4514void swap_buf_le16(u16 *buf, unsigned int buf_words)
4515{
4516#ifdef __BIG_ENDIAN
4517 unsigned int i;
4518
4519 for (i = 0; i < buf_words; i++)
4520 buf[i] = le16_to_cpu(buf[i]);
4521#endif /* __BIG_ENDIAN */
4522}
4523
4524/**
4525 * ata_qc_new_init - Request an available ATA command, and initialize it
4526 * @dev: Device from whom we request an available command structure
4527 * @tag: tag
4528 *
4529 * LOCKING:
4530 * None.
4531 */
4532
4533struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4534{
4535 struct ata_port *ap = dev->link->ap;
4536 struct ata_queued_cmd *qc;
4537
4538 /* no command while frozen */
4539 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4540 return NULL;
4541
4542 /* libsas case */
4543 if (ap->flags & ATA_FLAG_SAS_HOST) {
4544 tag = ata_sas_allocate_tag(ap);
4545 if (tag < 0)
4546 return NULL;
4547 }
4548
4549 qc = __ata_qc_from_tag(ap, tag);
4550 qc->tag = qc->hw_tag = tag;
4551 qc->scsicmd = NULL;
4552 qc->ap = ap;
4553 qc->dev = dev;
4554
4555 ata_qc_reinit(qc);
4556
4557 return qc;
4558}
4559
4560/**
4561 * ata_qc_free - free unused ata_queued_cmd
4562 * @qc: Command to complete
4563 *
4564 * Designed to free unused ata_queued_cmd object
4565 * in case something prevents using it.
4566 *
4567 * LOCKING:
4568 * spin_lock_irqsave(host lock)
4569 */
4570void ata_qc_free(struct ata_queued_cmd *qc)
4571{
4572 struct ata_port *ap;
4573 unsigned int tag;
4574
4575 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4576 ap = qc->ap;
4577
4578 qc->flags = 0;
4579 tag = qc->tag;
4580 if (ata_tag_valid(tag)) {
4581 qc->tag = ATA_TAG_POISON;
4582 if (ap->flags & ATA_FLAG_SAS_HOST)
4583 ata_sas_free_tag(tag, ap);
4584 }
4585}
4586
4587void __ata_qc_complete(struct ata_queued_cmd *qc)
4588{
4589 struct ata_port *ap;
4590 struct ata_link *link;
4591
4592 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4593 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4594 ap = qc->ap;
4595 link = qc->dev->link;
4596
4597 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4598 ata_sg_clean(qc);
4599
4600 /* command should be marked inactive atomically with qc completion */
4601 if (ata_is_ncq(qc->tf.protocol)) {
4602 link->sactive &= ~(1 << qc->hw_tag);
4603 if (!link->sactive)
4604 ap->nr_active_links--;
4605 } else {
4606 link->active_tag = ATA_TAG_POISON;
4607 ap->nr_active_links--;
4608 }
4609
4610 /* clear exclusive status */
4611 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4612 ap->excl_link == link))
4613 ap->excl_link = NULL;
4614
4615 /* atapi: mark qc as inactive to prevent the interrupt handler
4616 * from completing the command twice later, before the error handler
4617 * is called. (when rc != 0 and atapi request sense is needed)
4618 */
4619 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4620 ap->qc_active &= ~(1ULL << qc->tag);
4621
4622 /* call completion callback */
4623 qc->complete_fn(qc);
4624}
4625
4626static void fill_result_tf(struct ata_queued_cmd *qc)
4627{
4628 struct ata_port *ap = qc->ap;
4629
4630 qc->result_tf.flags = qc->tf.flags;
4631 ap->ops->qc_fill_rtf(qc);
4632}
4633
4634static void ata_verify_xfer(struct ata_queued_cmd *qc)
4635{
4636 struct ata_device *dev = qc->dev;
4637
4638 if (!ata_is_data(qc->tf.protocol))
4639 return;
4640
4641 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4642 return;
4643
4644 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4645}
4646
4647/**
4648 * ata_qc_complete - Complete an active ATA command
4649 * @qc: Command to complete
4650 *
4651 * Indicate to the mid and upper layers that an ATA command has
4652 * completed, with either an ok or not-ok status.
4653 *
4654 * Refrain from calling this function multiple times when
4655 * successfully completing multiple NCQ commands.
4656 * ata_qc_complete_multiple() should be used instead, which will
4657 * properly update IRQ expect state.
4658 *
4659 * LOCKING:
4660 * spin_lock_irqsave(host lock)
4661 */
4662void ata_qc_complete(struct ata_queued_cmd *qc)
4663{
4664 struct ata_port *ap = qc->ap;
4665
4666 /* Trigger the LED (if available) */
4667 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4668
4669 /* XXX: New EH and old EH use different mechanisms to
4670 * synchronize EH with regular execution path.
4671 *
4672 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4673 * Normal execution path is responsible for not accessing a
4674 * failed qc. libata core enforces the rule by returning NULL
4675 * from ata_qc_from_tag() for failed qcs.
4676 *
4677 * Old EH depends on ata_qc_complete() nullifying completion
4678 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4679 * not synchronize with interrupt handler. Only PIO task is
4680 * taken care of.
4681 */
4682 if (ap->ops->error_handler) {
4683 struct ata_device *dev = qc->dev;
4684 struct ata_eh_info *ehi = &dev->link->eh_info;
4685
4686 if (unlikely(qc->err_mask))
4687 qc->flags |= ATA_QCFLAG_FAILED;
4688
4689 /*
4690 * Finish internal commands without any further processing
4691 * and always with the result TF filled.
4692 */
4693 if (unlikely(ata_tag_internal(qc->tag))) {
4694 fill_result_tf(qc);
4695 trace_ata_qc_complete_internal(qc);
4696 __ata_qc_complete(qc);
4697 return;
4698 }
4699
4700 /*
4701 * Non-internal qc has failed. Fill the result TF and
4702 * summon EH.
4703 */
4704 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4705 fill_result_tf(qc);
4706 trace_ata_qc_complete_failed(qc);
4707 ata_qc_schedule_eh(qc);
4708 return;
4709 }
4710
4711 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4712
4713 /* read result TF if requested */
4714 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4715 fill_result_tf(qc);
4716
4717 trace_ata_qc_complete_done(qc);
4718 /* Some commands need post-processing after successful
4719 * completion.
4720 */
4721 switch (qc->tf.command) {
4722 case ATA_CMD_SET_FEATURES:
4723 if (qc->tf.feature != SETFEATURES_WC_ON &&
4724 qc->tf.feature != SETFEATURES_WC_OFF &&
4725 qc->tf.feature != SETFEATURES_RA_ON &&
4726 qc->tf.feature != SETFEATURES_RA_OFF)
4727 break;
4728 fallthrough;
4729 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4730 case ATA_CMD_SET_MULTI: /* multi_count changed */
4731 /* revalidate device */
4732 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4733 ata_port_schedule_eh(ap);
4734 break;
4735
4736 case ATA_CMD_SLEEP:
4737 dev->flags |= ATA_DFLAG_SLEEPING;
4738 break;
4739 }
4740
4741 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4742 ata_verify_xfer(qc);
4743
4744 __ata_qc_complete(qc);
4745 } else {
4746 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4747 return;
4748
4749 /* read result TF if failed or requested */
4750 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4751 fill_result_tf(qc);
4752
4753 __ata_qc_complete(qc);
4754 }
4755}
4756EXPORT_SYMBOL_GPL(ata_qc_complete);
4757
4758/**
4759 * ata_qc_get_active - get bitmask of active qcs
4760 * @ap: port in question
4761 *
4762 * LOCKING:
4763 * spin_lock_irqsave(host lock)
4764 *
4765 * RETURNS:
4766 * Bitmask of active qcs
4767 */
4768u64 ata_qc_get_active(struct ata_port *ap)
4769{
4770 u64 qc_active = ap->qc_active;
4771
4772 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4773 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4774 qc_active |= (1 << 0);
4775 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4776 }
4777
4778 return qc_active;
4779}
4780EXPORT_SYMBOL_GPL(ata_qc_get_active);
4781
4782/**
4783 * ata_qc_issue - issue taskfile to device
4784 * @qc: command to issue to device
4785 *
4786 * Prepare an ATA command to submission to device.
4787 * This includes mapping the data into a DMA-able
4788 * area, filling in the S/G table, and finally
4789 * writing the taskfile to hardware, starting the command.
4790 *
4791 * LOCKING:
4792 * spin_lock_irqsave(host lock)
4793 */
4794void ata_qc_issue(struct ata_queued_cmd *qc)
4795{
4796 struct ata_port *ap = qc->ap;
4797 struct ata_link *link = qc->dev->link;
4798 u8 prot = qc->tf.protocol;
4799
4800 /* Make sure only one non-NCQ command is outstanding. The
4801 * check is skipped for old EH because it reuses active qc to
4802 * request ATAPI sense.
4803 */
4804 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4805
4806 if (ata_is_ncq(prot)) {
4807 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4808
4809 if (!link->sactive)
4810 ap->nr_active_links++;
4811 link->sactive |= 1 << qc->hw_tag;
4812 } else {
4813 WARN_ON_ONCE(link->sactive);
4814
4815 ap->nr_active_links++;
4816 link->active_tag = qc->tag;
4817 }
4818
4819 qc->flags |= ATA_QCFLAG_ACTIVE;
4820 ap->qc_active |= 1ULL << qc->tag;
4821
4822 /*
4823 * We guarantee to LLDs that they will have at least one
4824 * non-zero sg if the command is a data command.
4825 */
4826 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4827 goto sys_err;
4828
4829 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4830 (ap->flags & ATA_FLAG_PIO_DMA)))
4831 if (ata_sg_setup(qc))
4832 goto sys_err;
4833
4834 /* if device is sleeping, schedule reset and abort the link */
4835 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4836 link->eh_info.action |= ATA_EH_RESET;
4837 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4838 ata_link_abort(link);
4839 return;
4840 }
4841
4842 qc->err_mask |= ap->ops->qc_prep(qc);
4843 if (unlikely(qc->err_mask))
4844 goto err;
4845 trace_ata_qc_issue(qc);
4846 qc->err_mask |= ap->ops->qc_issue(qc);
4847 if (unlikely(qc->err_mask))
4848 goto err;
4849 return;
4850
4851sys_err:
4852 qc->err_mask |= AC_ERR_SYSTEM;
4853err:
4854 ata_qc_complete(qc);
4855}
4856
4857/**
4858 * ata_phys_link_online - test whether the given link is online
4859 * @link: ATA link to test
4860 *
4861 * Test whether @link is online. Note that this function returns
4862 * 0 if online status of @link cannot be obtained, so
4863 * ata_link_online(link) != !ata_link_offline(link).
4864 *
4865 * LOCKING:
4866 * None.
4867 *
4868 * RETURNS:
4869 * True if the port online status is available and online.
4870 */
4871bool ata_phys_link_online(struct ata_link *link)
4872{
4873 u32 sstatus;
4874
4875 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4876 ata_sstatus_online(sstatus))
4877 return true;
4878 return false;
4879}
4880
4881/**
4882 * ata_phys_link_offline - test whether the given link is offline
4883 * @link: ATA link to test
4884 *
4885 * Test whether @link is offline. Note that this function
4886 * returns 0 if offline status of @link cannot be obtained, so
4887 * ata_link_online(link) != !ata_link_offline(link).
4888 *
4889 * LOCKING:
4890 * None.
4891 *
4892 * RETURNS:
4893 * True if the port offline status is available and offline.
4894 */
4895bool ata_phys_link_offline(struct ata_link *link)
4896{
4897 u32 sstatus;
4898
4899 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4900 !ata_sstatus_online(sstatus))
4901 return true;
4902 return false;
4903}
4904
4905/**
4906 * ata_link_online - test whether the given link is online
4907 * @link: ATA link to test
4908 *
4909 * Test whether @link is online. This is identical to
4910 * ata_phys_link_online() when there's no slave link. When
4911 * there's a slave link, this function should only be called on
4912 * the master link and will return true if any of M/S links is
4913 * online.
4914 *
4915 * LOCKING:
4916 * None.
4917 *
4918 * RETURNS:
4919 * True if the port online status is available and online.
4920 */
4921bool ata_link_online(struct ata_link *link)
4922{
4923 struct ata_link *slave = link->ap->slave_link;
4924
4925 WARN_ON(link == slave); /* shouldn't be called on slave link */
4926
4927 return ata_phys_link_online(link) ||
4928 (slave && ata_phys_link_online(slave));
4929}
4930EXPORT_SYMBOL_GPL(ata_link_online);
4931
4932/**
4933 * ata_link_offline - test whether the given link is offline
4934 * @link: ATA link to test
4935 *
4936 * Test whether @link is offline. This is identical to
4937 * ata_phys_link_offline() when there's no slave link. When
4938 * there's a slave link, this function should only be called on
4939 * the master link and will return true if both M/S links are
4940 * offline.
4941 *
4942 * LOCKING:
4943 * None.
4944 *
4945 * RETURNS:
4946 * True if the port offline status is available and offline.
4947 */
4948bool ata_link_offline(struct ata_link *link)
4949{
4950 struct ata_link *slave = link->ap->slave_link;
4951
4952 WARN_ON(link == slave); /* shouldn't be called on slave link */
4953
4954 return ata_phys_link_offline(link) &&
4955 (!slave || ata_phys_link_offline(slave));
4956}
4957EXPORT_SYMBOL_GPL(ata_link_offline);
4958
4959#ifdef CONFIG_PM
4960static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4961 unsigned int action, unsigned int ehi_flags,
4962 bool async)
4963{
4964 struct ata_link *link;
4965 unsigned long flags;
4966
4967 /* Previous resume operation might still be in
4968 * progress. Wait for PM_PENDING to clear.
4969 */
4970 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4971 ata_port_wait_eh(ap);
4972 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4973 }
4974
4975 /* request PM ops to EH */
4976 spin_lock_irqsave(ap->lock, flags);
4977
4978 ap->pm_mesg = mesg;
4979 ap->pflags |= ATA_PFLAG_PM_PENDING;
4980 ata_for_each_link(link, ap, HOST_FIRST) {
4981 link->eh_info.action |= action;
4982 link->eh_info.flags |= ehi_flags;
4983 }
4984
4985 ata_port_schedule_eh(ap);
4986
4987 spin_unlock_irqrestore(ap->lock, flags);
4988
4989 if (!async) {
4990 ata_port_wait_eh(ap);
4991 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4992 }
4993}
4994
4995/*
4996 * On some hardware, device fails to respond after spun down for suspend. As
4997 * the device won't be used before being resumed, we don't need to touch the
4998 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
4999 *
5000 * http://thread.gmane.org/gmane.linux.ide/46764
5001 */
5002static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5003 | ATA_EHI_NO_AUTOPSY
5004 | ATA_EHI_NO_RECOVERY;
5005
5006static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5007{
5008 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5009}
5010
5011static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5012{
5013 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5014}
5015
5016static int ata_port_pm_suspend(struct device *dev)
5017{
5018 struct ata_port *ap = to_ata_port(dev);
5019
5020 if (pm_runtime_suspended(dev))
5021 return 0;
5022
5023 ata_port_suspend(ap, PMSG_SUSPEND);
5024 return 0;
5025}
5026
5027static int ata_port_pm_freeze(struct device *dev)
5028{
5029 struct ata_port *ap = to_ata_port(dev);
5030
5031 if (pm_runtime_suspended(dev))
5032 return 0;
5033
5034 ata_port_suspend(ap, PMSG_FREEZE);
5035 return 0;
5036}
5037
5038static int ata_port_pm_poweroff(struct device *dev)
5039{
5040 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5041 return 0;
5042}
5043
5044static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5045 | ATA_EHI_QUIET;
5046
5047static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5048{
5049 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5050}
5051
5052static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5053{
5054 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5055}
5056
5057static int ata_port_pm_resume(struct device *dev)
5058{
5059 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5060 pm_runtime_disable(dev);
5061 pm_runtime_set_active(dev);
5062 pm_runtime_enable(dev);
5063 return 0;
5064}
5065
5066/*
5067 * For ODDs, the upper layer will poll for media change every few seconds,
5068 * which will make it enter and leave suspend state every few seconds. And
5069 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5070 * is very little and the ODD may malfunction after constantly being reset.
5071 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5072 * ODD is attached to the port.
5073 */
5074static int ata_port_runtime_idle(struct device *dev)
5075{
5076 struct ata_port *ap = to_ata_port(dev);
5077 struct ata_link *link;
5078 struct ata_device *adev;
5079
5080 ata_for_each_link(link, ap, HOST_FIRST) {
5081 ata_for_each_dev(adev, link, ENABLED)
5082 if (adev->class == ATA_DEV_ATAPI &&
5083 !zpodd_dev_enabled(adev))
5084 return -EBUSY;
5085 }
5086
5087 return 0;
5088}
5089
5090static int ata_port_runtime_suspend(struct device *dev)
5091{
5092 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5093 return 0;
5094}
5095
5096static int ata_port_runtime_resume(struct device *dev)
5097{
5098 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5099 return 0;
5100}
5101
5102static const struct dev_pm_ops ata_port_pm_ops = {
5103 .suspend = ata_port_pm_suspend,
5104 .resume = ata_port_pm_resume,
5105 .freeze = ata_port_pm_freeze,
5106 .thaw = ata_port_pm_resume,
5107 .poweroff = ata_port_pm_poweroff,
5108 .restore = ata_port_pm_resume,
5109
5110 .runtime_suspend = ata_port_runtime_suspend,
5111 .runtime_resume = ata_port_runtime_resume,
5112 .runtime_idle = ata_port_runtime_idle,
5113};
5114
5115/* sas ports don't participate in pm runtime management of ata_ports,
5116 * and need to resume ata devices at the domain level, not the per-port
5117 * level. sas suspend/resume is async to allow parallel port recovery
5118 * since sas has multiple ata_port instances per Scsi_Host.
5119 */
5120void ata_sas_port_suspend(struct ata_port *ap)
5121{
5122 ata_port_suspend_async(ap, PMSG_SUSPEND);
5123}
5124EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5125
5126void ata_sas_port_resume(struct ata_port *ap)
5127{
5128 ata_port_resume_async(ap, PMSG_RESUME);
5129}
5130EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5131
5132/**
5133 * ata_host_suspend - suspend host
5134 * @host: host to suspend
5135 * @mesg: PM message
5136 *
5137 * Suspend @host. Actual operation is performed by port suspend.
5138 */
5139int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5140{
5141 host->dev->power.power_state = mesg;
5142 return 0;
5143}
5144EXPORT_SYMBOL_GPL(ata_host_suspend);
5145
5146/**
5147 * ata_host_resume - resume host
5148 * @host: host to resume
5149 *
5150 * Resume @host. Actual operation is performed by port resume.
5151 */
5152void ata_host_resume(struct ata_host *host)
5153{
5154 host->dev->power.power_state = PMSG_ON;
5155}
5156EXPORT_SYMBOL_GPL(ata_host_resume);
5157#endif
5158
5159const struct device_type ata_port_type = {
5160 .name = "ata_port",
5161#ifdef CONFIG_PM
5162 .pm = &ata_port_pm_ops,
5163#endif
5164};
5165
5166/**
5167 * ata_dev_init - Initialize an ata_device structure
5168 * @dev: Device structure to initialize
5169 *
5170 * Initialize @dev in preparation for probing.
5171 *
5172 * LOCKING:
5173 * Inherited from caller.
5174 */
5175void ata_dev_init(struct ata_device *dev)
5176{
5177 struct ata_link *link = ata_dev_phys_link(dev);
5178 struct ata_port *ap = link->ap;
5179 unsigned long flags;
5180
5181 /* SATA spd limit is bound to the attached device, reset together */
5182 link->sata_spd_limit = link->hw_sata_spd_limit;
5183 link->sata_spd = 0;
5184
5185 /* High bits of dev->flags are used to record warm plug
5186 * requests which occur asynchronously. Synchronize using
5187 * host lock.
5188 */
5189 spin_lock_irqsave(ap->lock, flags);
5190 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5191 dev->horkage = 0;
5192 spin_unlock_irqrestore(ap->lock, flags);
5193
5194 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5195 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5196 dev->pio_mask = UINT_MAX;
5197 dev->mwdma_mask = UINT_MAX;
5198 dev->udma_mask = UINT_MAX;
5199}
5200
5201/**
5202 * ata_link_init - Initialize an ata_link structure
5203 * @ap: ATA port link is attached to
5204 * @link: Link structure to initialize
5205 * @pmp: Port multiplier port number
5206 *
5207 * Initialize @link.
5208 *
5209 * LOCKING:
5210 * Kernel thread context (may sleep)
5211 */
5212void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5213{
5214 int i;
5215
5216 /* clear everything except for devices */
5217 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5218 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5219
5220 link->ap = ap;
5221 link->pmp = pmp;
5222 link->active_tag = ATA_TAG_POISON;
5223 link->hw_sata_spd_limit = UINT_MAX;
5224
5225 /* can't use iterator, ap isn't initialized yet */
5226 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5227 struct ata_device *dev = &link->device[i];
5228
5229 dev->link = link;
5230 dev->devno = dev - link->device;
5231#ifdef CONFIG_ATA_ACPI
5232 dev->gtf_filter = ata_acpi_gtf_filter;
5233#endif
5234 ata_dev_init(dev);
5235 }
5236}
5237
5238/**
5239 * sata_link_init_spd - Initialize link->sata_spd_limit
5240 * @link: Link to configure sata_spd_limit for
5241 *
5242 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5243 * configured value.
5244 *
5245 * LOCKING:
5246 * Kernel thread context (may sleep).
5247 *
5248 * RETURNS:
5249 * 0 on success, -errno on failure.
5250 */
5251int sata_link_init_spd(struct ata_link *link)
5252{
5253 u8 spd;
5254 int rc;
5255
5256 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5257 if (rc)
5258 return rc;
5259
5260 spd = (link->saved_scontrol >> 4) & 0xf;
5261 if (spd)
5262 link->hw_sata_spd_limit &= (1 << spd) - 1;
5263
5264 ata_force_link_limits(link);
5265
5266 link->sata_spd_limit = link->hw_sata_spd_limit;
5267
5268 return 0;
5269}
5270
5271/**
5272 * ata_port_alloc - allocate and initialize basic ATA port resources
5273 * @host: ATA host this allocated port belongs to
5274 *
5275 * Allocate and initialize basic ATA port resources.
5276 *
5277 * RETURNS:
5278 * Allocate ATA port on success, NULL on failure.
5279 *
5280 * LOCKING:
5281 * Inherited from calling layer (may sleep).
5282 */
5283struct ata_port *ata_port_alloc(struct ata_host *host)
5284{
5285 struct ata_port *ap;
5286
5287 DPRINTK("ENTER\n");
5288
5289 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5290 if (!ap)
5291 return NULL;
5292
5293 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5294 ap->lock = &host->lock;
5295 ap->print_id = -1;
5296 ap->local_port_no = -1;
5297 ap->host = host;
5298 ap->dev = host->dev;
5299
5300#if defined(ATA_VERBOSE_DEBUG)
5301 /* turn on all debugging levels */
5302 ap->msg_enable = 0x00FF;
5303#elif defined(ATA_DEBUG)
5304 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5305#else
5306 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5307#endif
5308
5309 mutex_init(&ap->scsi_scan_mutex);
5310 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5311 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5312 INIT_LIST_HEAD(&ap->eh_done_q);
5313 init_waitqueue_head(&ap->eh_wait_q);
5314 init_completion(&ap->park_req_pending);
5315 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5316 TIMER_DEFERRABLE);
5317
5318 ap->cbl = ATA_CBL_NONE;
5319
5320 ata_link_init(ap, &ap->link, 0);
5321
5322#ifdef ATA_IRQ_TRAP
5323 ap->stats.unhandled_irq = 1;
5324 ap->stats.idle_irq = 1;
5325#endif
5326 ata_sff_port_init(ap);
5327
5328 return ap;
5329}
5330
5331static void ata_devres_release(struct device *gendev, void *res)
5332{
5333 struct ata_host *host = dev_get_drvdata(gendev);
5334 int i;
5335
5336 for (i = 0; i < host->n_ports; i++) {
5337 struct ata_port *ap = host->ports[i];
5338
5339 if (!ap)
5340 continue;
5341
5342 if (ap->scsi_host)
5343 scsi_host_put(ap->scsi_host);
5344
5345 }
5346
5347 dev_set_drvdata(gendev, NULL);
5348 ata_host_put(host);
5349}
5350
5351static void ata_host_release(struct kref *kref)
5352{
5353 struct ata_host *host = container_of(kref, struct ata_host, kref);
5354 int i;
5355
5356 for (i = 0; i < host->n_ports; i++) {
5357 struct ata_port *ap = host->ports[i];
5358
5359 kfree(ap->pmp_link);
5360 kfree(ap->slave_link);
5361 kfree(ap);
5362 host->ports[i] = NULL;
5363 }
5364 kfree(host);
5365}
5366
5367void ata_host_get(struct ata_host *host)
5368{
5369 kref_get(&host->kref);
5370}
5371
5372void ata_host_put(struct ata_host *host)
5373{
5374 kref_put(&host->kref, ata_host_release);
5375}
5376EXPORT_SYMBOL_GPL(ata_host_put);
5377
5378/**
5379 * ata_host_alloc - allocate and init basic ATA host resources
5380 * @dev: generic device this host is associated with
5381 * @max_ports: maximum number of ATA ports associated with this host
5382 *
5383 * Allocate and initialize basic ATA host resources. LLD calls
5384 * this function to allocate a host, initializes it fully and
5385 * attaches it using ata_host_register().
5386 *
5387 * @max_ports ports are allocated and host->n_ports is
5388 * initialized to @max_ports. The caller is allowed to decrease
5389 * host->n_ports before calling ata_host_register(). The unused
5390 * ports will be automatically freed on registration.
5391 *
5392 * RETURNS:
5393 * Allocate ATA host on success, NULL on failure.
5394 *
5395 * LOCKING:
5396 * Inherited from calling layer (may sleep).
5397 */
5398struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5399{
5400 struct ata_host *host;
5401 size_t sz;
5402 int i;
5403 void *dr;
5404
5405 DPRINTK("ENTER\n");
5406
5407 /* alloc a container for our list of ATA ports (buses) */
5408 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5409 host = kzalloc(sz, GFP_KERNEL);
5410 if (!host)
5411 return NULL;
5412
5413 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5414 goto err_free;
5415
5416 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5417 if (!dr)
5418 goto err_out;
5419
5420 devres_add(dev, dr);
5421 dev_set_drvdata(dev, host);
5422
5423 spin_lock_init(&host->lock);
5424 mutex_init(&host->eh_mutex);
5425 host->dev = dev;
5426 host->n_ports = max_ports;
5427 kref_init(&host->kref);
5428
5429 /* allocate ports bound to this host */
5430 for (i = 0; i < max_ports; i++) {
5431 struct ata_port *ap;
5432
5433 ap = ata_port_alloc(host);
5434 if (!ap)
5435 goto err_out;
5436
5437 ap->port_no = i;
5438 host->ports[i] = ap;
5439 }
5440
5441 devres_remove_group(dev, NULL);
5442 return host;
5443
5444 err_out:
5445 devres_release_group(dev, NULL);
5446 err_free:
5447 kfree(host);
5448 return NULL;
5449}
5450EXPORT_SYMBOL_GPL(ata_host_alloc);
5451
5452/**
5453 * ata_host_alloc_pinfo - alloc host and init with port_info array
5454 * @dev: generic device this host is associated with
5455 * @ppi: array of ATA port_info to initialize host with
5456 * @n_ports: number of ATA ports attached to this host
5457 *
5458 * Allocate ATA host and initialize with info from @ppi. If NULL
5459 * terminated, @ppi may contain fewer entries than @n_ports. The
5460 * last entry will be used for the remaining ports.
5461 *
5462 * RETURNS:
5463 * Allocate ATA host on success, NULL on failure.
5464 *
5465 * LOCKING:
5466 * Inherited from calling layer (may sleep).
5467 */
5468struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5469 const struct ata_port_info * const * ppi,
5470 int n_ports)
5471{
5472 const struct ata_port_info *pi;
5473 struct ata_host *host;
5474 int i, j;
5475
5476 host = ata_host_alloc(dev, n_ports);
5477 if (!host)
5478 return NULL;
5479
5480 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5481 struct ata_port *ap = host->ports[i];
5482
5483 if (ppi[j])
5484 pi = ppi[j++];
5485
5486 ap->pio_mask = pi->pio_mask;
5487 ap->mwdma_mask = pi->mwdma_mask;
5488 ap->udma_mask = pi->udma_mask;
5489 ap->flags |= pi->flags;
5490 ap->link.flags |= pi->link_flags;
5491 ap->ops = pi->port_ops;
5492
5493 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5494 host->ops = pi->port_ops;
5495 }
5496
5497 return host;
5498}
5499EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5500
5501static void ata_host_stop(struct device *gendev, void *res)
5502{
5503 struct ata_host *host = dev_get_drvdata(gendev);
5504 int i;
5505
5506 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5507
5508 for (i = 0; i < host->n_ports; i++) {
5509 struct ata_port *ap = host->ports[i];
5510
5511 if (ap->ops->port_stop)
5512 ap->ops->port_stop(ap);
5513 }
5514
5515 if (host->ops->host_stop)
5516 host->ops->host_stop(host);
5517}
5518
5519/**
5520 * ata_finalize_port_ops - finalize ata_port_operations
5521 * @ops: ata_port_operations to finalize
5522 *
5523 * An ata_port_operations can inherit from another ops and that
5524 * ops can again inherit from another. This can go on as many
5525 * times as necessary as long as there is no loop in the
5526 * inheritance chain.
5527 *
5528 * Ops tables are finalized when the host is started. NULL or
5529 * unspecified entries are inherited from the closet ancestor
5530 * which has the method and the entry is populated with it.
5531 * After finalization, the ops table directly points to all the
5532 * methods and ->inherits is no longer necessary and cleared.
5533 *
5534 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5535 *
5536 * LOCKING:
5537 * None.
5538 */
5539static void ata_finalize_port_ops(struct ata_port_operations *ops)
5540{
5541 static DEFINE_SPINLOCK(lock);
5542 const struct ata_port_operations *cur;
5543 void **begin = (void **)ops;
5544 void **end = (void **)&ops->inherits;
5545 void **pp;
5546
5547 if (!ops || !ops->inherits)
5548 return;
5549
5550 spin_lock(&lock);
5551
5552 for (cur = ops->inherits; cur; cur = cur->inherits) {
5553 void **inherit = (void **)cur;
5554
5555 for (pp = begin; pp < end; pp++, inherit++)
5556 if (!*pp)
5557 *pp = *inherit;
5558 }
5559
5560 for (pp = begin; pp < end; pp++)
5561 if (IS_ERR(*pp))
5562 *pp = NULL;
5563
5564 ops->inherits = NULL;
5565
5566 spin_unlock(&lock);
5567}
5568
5569/**
5570 * ata_host_start - start and freeze ports of an ATA host
5571 * @host: ATA host to start ports for
5572 *
5573 * Start and then freeze ports of @host. Started status is
5574 * recorded in host->flags, so this function can be called
5575 * multiple times. Ports are guaranteed to get started only
5576 * once. If host->ops isn't initialized yet, its set to the
5577 * first non-dummy port ops.
5578 *
5579 * LOCKING:
5580 * Inherited from calling layer (may sleep).
5581 *
5582 * RETURNS:
5583 * 0 if all ports are started successfully, -errno otherwise.
5584 */
5585int ata_host_start(struct ata_host *host)
5586{
5587 int have_stop = 0;
5588 void *start_dr = NULL;
5589 int i, rc;
5590
5591 if (host->flags & ATA_HOST_STARTED)
5592 return 0;
5593
5594 ata_finalize_port_ops(host->ops);
5595
5596 for (i = 0; i < host->n_ports; i++) {
5597 struct ata_port *ap = host->ports[i];
5598
5599 ata_finalize_port_ops(ap->ops);
5600
5601 if (!host->ops && !ata_port_is_dummy(ap))
5602 host->ops = ap->ops;
5603
5604 if (ap->ops->port_stop)
5605 have_stop = 1;
5606 }
5607
5608 if (host->ops && host->ops->host_stop)
5609 have_stop = 1;
5610
5611 if (have_stop) {
5612 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5613 if (!start_dr)
5614 return -ENOMEM;
5615 }
5616
5617 for (i = 0; i < host->n_ports; i++) {
5618 struct ata_port *ap = host->ports[i];
5619
5620 if (ap->ops->port_start) {
5621 rc = ap->ops->port_start(ap);
5622 if (rc) {
5623 if (rc != -ENODEV)
5624 dev_err(host->dev,
5625 "failed to start port %d (errno=%d)\n",
5626 i, rc);
5627 goto err_out;
5628 }
5629 }
5630 ata_eh_freeze_port(ap);
5631 }
5632
5633 if (start_dr)
5634 devres_add(host->dev, start_dr);
5635 host->flags |= ATA_HOST_STARTED;
5636 return 0;
5637
5638 err_out:
5639 while (--i >= 0) {
5640 struct ata_port *ap = host->ports[i];
5641
5642 if (ap->ops->port_stop)
5643 ap->ops->port_stop(ap);
5644 }
5645 devres_free(start_dr);
5646 return rc;
5647}
5648EXPORT_SYMBOL_GPL(ata_host_start);
5649
5650/**
5651 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5652 * @host: host to initialize
5653 * @dev: device host is attached to
5654 * @ops: port_ops
5655 *
5656 */
5657void ata_host_init(struct ata_host *host, struct device *dev,
5658 struct ata_port_operations *ops)
5659{
5660 spin_lock_init(&host->lock);
5661 mutex_init(&host->eh_mutex);
5662 host->n_tags = ATA_MAX_QUEUE;
5663 host->dev = dev;
5664 host->ops = ops;
5665 kref_init(&host->kref);
5666}
5667EXPORT_SYMBOL_GPL(ata_host_init);
5668
5669void __ata_port_probe(struct ata_port *ap)
5670{
5671 struct ata_eh_info *ehi = &ap->link.eh_info;
5672 unsigned long flags;
5673
5674 /* kick EH for boot probing */
5675 spin_lock_irqsave(ap->lock, flags);
5676
5677 ehi->probe_mask |= ATA_ALL_DEVICES;
5678 ehi->action |= ATA_EH_RESET;
5679 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5680
5681 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5682 ap->pflags |= ATA_PFLAG_LOADING;
5683 ata_port_schedule_eh(ap);
5684
5685 spin_unlock_irqrestore(ap->lock, flags);
5686}
5687
5688int ata_port_probe(struct ata_port *ap)
5689{
5690 int rc = 0;
5691
5692 if (ap->ops->error_handler) {
5693 __ata_port_probe(ap);
5694 ata_port_wait_eh(ap);
5695 } else {
5696 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5697 rc = ata_bus_probe(ap);
5698 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5699 }
5700 return rc;
5701}
5702
5703
5704static void async_port_probe(void *data, async_cookie_t cookie)
5705{
5706 struct ata_port *ap = data;
5707
5708 /*
5709 * If we're not allowed to scan this host in parallel,
5710 * we need to wait until all previous scans have completed
5711 * before going further.
5712 * Jeff Garzik says this is only within a controller, so we
5713 * don't need to wait for port 0, only for later ports.
5714 */
5715 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5716 async_synchronize_cookie(cookie);
5717
5718 (void)ata_port_probe(ap);
5719
5720 /* in order to keep device order, we need to synchronize at this point */
5721 async_synchronize_cookie(cookie);
5722
5723 ata_scsi_scan_host(ap, 1);
5724}
5725
5726/**
5727 * ata_host_register - register initialized ATA host
5728 * @host: ATA host to register
5729 * @sht: template for SCSI host
5730 *
5731 * Register initialized ATA host. @host is allocated using
5732 * ata_host_alloc() and fully initialized by LLD. This function
5733 * starts ports, registers @host with ATA and SCSI layers and
5734 * probe registered devices.
5735 *
5736 * LOCKING:
5737 * Inherited from calling layer (may sleep).
5738 *
5739 * RETURNS:
5740 * 0 on success, -errno otherwise.
5741 */
5742int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5743{
5744 int i, rc;
5745
5746 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5747
5748 /* host must have been started */
5749 if (!(host->flags & ATA_HOST_STARTED)) {
5750 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5751 WARN_ON(1);
5752 return -EINVAL;
5753 }
5754
5755 /* Blow away unused ports. This happens when LLD can't
5756 * determine the exact number of ports to allocate at
5757 * allocation time.
5758 */
5759 for (i = host->n_ports; host->ports[i]; i++)
5760 kfree(host->ports[i]);
5761
5762 /* give ports names and add SCSI hosts */
5763 for (i = 0; i < host->n_ports; i++) {
5764 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5765 host->ports[i]->local_port_no = i + 1;
5766 }
5767
5768 /* Create associated sysfs transport objects */
5769 for (i = 0; i < host->n_ports; i++) {
5770 rc = ata_tport_add(host->dev,host->ports[i]);
5771 if (rc) {
5772 goto err_tadd;
5773 }
5774 }
5775
5776 rc = ata_scsi_add_hosts(host, sht);
5777 if (rc)
5778 goto err_tadd;
5779
5780 /* set cable, sata_spd_limit and report */
5781 for (i = 0; i < host->n_ports; i++) {
5782 struct ata_port *ap = host->ports[i];
5783 unsigned long xfer_mask;
5784
5785 /* set SATA cable type if still unset */
5786 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5787 ap->cbl = ATA_CBL_SATA;
5788
5789 /* init sata_spd_limit to the current value */
5790 sata_link_init_spd(&ap->link);
5791 if (ap->slave_link)
5792 sata_link_init_spd(ap->slave_link);
5793
5794 /* print per-port info to dmesg */
5795 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5796 ap->udma_mask);
5797
5798 if (!ata_port_is_dummy(ap)) {
5799 ata_port_info(ap, "%cATA max %s %s\n",
5800 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5801 ata_mode_string(xfer_mask),
5802 ap->link.eh_info.desc);
5803 ata_ehi_clear_desc(&ap->link.eh_info);
5804 } else
5805 ata_port_info(ap, "DUMMY\n");
5806 }
5807
5808 /* perform each probe asynchronously */
5809 for (i = 0; i < host->n_ports; i++) {
5810 struct ata_port *ap = host->ports[i];
5811 ap->cookie = async_schedule(async_port_probe, ap);
5812 }
5813
5814 return 0;
5815
5816 err_tadd:
5817 while (--i >= 0) {
5818 ata_tport_delete(host->ports[i]);
5819 }
5820 return rc;
5821
5822}
5823EXPORT_SYMBOL_GPL(ata_host_register);
5824
5825/**
5826 * ata_host_activate - start host, request IRQ and register it
5827 * @host: target ATA host
5828 * @irq: IRQ to request
5829 * @irq_handler: irq_handler used when requesting IRQ
5830 * @irq_flags: irq_flags used when requesting IRQ
5831 * @sht: scsi_host_template to use when registering the host
5832 *
5833 * After allocating an ATA host and initializing it, most libata
5834 * LLDs perform three steps to activate the host - start host,
5835 * request IRQ and register it. This helper takes necessary
5836 * arguments and performs the three steps in one go.
5837 *
5838 * An invalid IRQ skips the IRQ registration and expects the host to
5839 * have set polling mode on the port. In this case, @irq_handler
5840 * should be NULL.
5841 *
5842 * LOCKING:
5843 * Inherited from calling layer (may sleep).
5844 *
5845 * RETURNS:
5846 * 0 on success, -errno otherwise.
5847 */
5848int ata_host_activate(struct ata_host *host, int irq,
5849 irq_handler_t irq_handler, unsigned long irq_flags,
5850 struct scsi_host_template *sht)
5851{
5852 int i, rc;
5853 char *irq_desc;
5854
5855 rc = ata_host_start(host);
5856 if (rc)
5857 return rc;
5858
5859 /* Special case for polling mode */
5860 if (!irq) {
5861 WARN_ON(irq_handler);
5862 return ata_host_register(host, sht);
5863 }
5864
5865 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5866 dev_driver_string(host->dev),
5867 dev_name(host->dev));
5868 if (!irq_desc)
5869 return -ENOMEM;
5870
5871 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5872 irq_desc, host);
5873 if (rc)
5874 return rc;
5875
5876 for (i = 0; i < host->n_ports; i++)
5877 ata_port_desc(host->ports[i], "irq %d", irq);
5878
5879 rc = ata_host_register(host, sht);
5880 /* if failed, just free the IRQ and leave ports alone */
5881 if (rc)
5882 devm_free_irq(host->dev, irq, host);
5883
5884 return rc;
5885}
5886EXPORT_SYMBOL_GPL(ata_host_activate);
5887
5888/**
5889 * ata_port_detach - Detach ATA port in preparation of device removal
5890 * @ap: ATA port to be detached
5891 *
5892 * Detach all ATA devices and the associated SCSI devices of @ap;
5893 * then, remove the associated SCSI host. @ap is guaranteed to
5894 * be quiescent on return from this function.
5895 *
5896 * LOCKING:
5897 * Kernel thread context (may sleep).
5898 */
5899static void ata_port_detach(struct ata_port *ap)
5900{
5901 unsigned long flags;
5902 struct ata_link *link;
5903 struct ata_device *dev;
5904
5905 if (!ap->ops->error_handler)
5906 goto skip_eh;
5907
5908 /* tell EH we're leaving & flush EH */
5909 spin_lock_irqsave(ap->lock, flags);
5910 ap->pflags |= ATA_PFLAG_UNLOADING;
5911 ata_port_schedule_eh(ap);
5912 spin_unlock_irqrestore(ap->lock, flags);
5913
5914 /* wait till EH commits suicide */
5915 ata_port_wait_eh(ap);
5916
5917 /* it better be dead now */
5918 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5919
5920 cancel_delayed_work_sync(&ap->hotplug_task);
5921
5922 skip_eh:
5923 /* clean up zpodd on port removal */
5924 ata_for_each_link(link, ap, HOST_FIRST) {
5925 ata_for_each_dev(dev, link, ALL) {
5926 if (zpodd_dev_enabled(dev))
5927 zpodd_exit(dev);
5928 }
5929 }
5930 if (ap->pmp_link) {
5931 int i;
5932 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5933 ata_tlink_delete(&ap->pmp_link[i]);
5934 }
5935 /* remove the associated SCSI host */
5936 scsi_remove_host(ap->scsi_host);
5937 ata_tport_delete(ap);
5938}
5939
5940/**
5941 * ata_host_detach - Detach all ports of an ATA host
5942 * @host: Host to detach
5943 *
5944 * Detach all ports of @host.
5945 *
5946 * LOCKING:
5947 * Kernel thread context (may sleep).
5948 */
5949void ata_host_detach(struct ata_host *host)
5950{
5951 int i;
5952
5953 for (i = 0; i < host->n_ports; i++) {
5954 /* Ensure ata_port probe has completed */
5955 async_synchronize_cookie(host->ports[i]->cookie + 1);
5956 ata_port_detach(host->ports[i]);
5957 }
5958
5959 /* the host is dead now, dissociate ACPI */
5960 ata_acpi_dissociate(host);
5961}
5962EXPORT_SYMBOL_GPL(ata_host_detach);
5963
5964#ifdef CONFIG_PCI
5965
5966/**
5967 * ata_pci_remove_one - PCI layer callback for device removal
5968 * @pdev: PCI device that was removed
5969 *
5970 * PCI layer indicates to libata via this hook that hot-unplug or
5971 * module unload event has occurred. Detach all ports. Resource
5972 * release is handled via devres.
5973 *
5974 * LOCKING:
5975 * Inherited from PCI layer (may sleep).
5976 */
5977void ata_pci_remove_one(struct pci_dev *pdev)
5978{
5979 struct ata_host *host = pci_get_drvdata(pdev);
5980
5981 ata_host_detach(host);
5982}
5983EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5984
5985void ata_pci_shutdown_one(struct pci_dev *pdev)
5986{
5987 struct ata_host *host = pci_get_drvdata(pdev);
5988 int i;
5989
5990 for (i = 0; i < host->n_ports; i++) {
5991 struct ata_port *ap = host->ports[i];
5992
5993 ap->pflags |= ATA_PFLAG_FROZEN;
5994
5995 /* Disable port interrupts */
5996 if (ap->ops->freeze)
5997 ap->ops->freeze(ap);
5998
5999 /* Stop the port DMA engines */
6000 if (ap->ops->port_stop)
6001 ap->ops->port_stop(ap);
6002 }
6003}
6004EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6005
6006/* move to PCI subsystem */
6007int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6008{
6009 unsigned long tmp = 0;
6010
6011 switch (bits->width) {
6012 case 1: {
6013 u8 tmp8 = 0;
6014 pci_read_config_byte(pdev, bits->reg, &tmp8);
6015 tmp = tmp8;
6016 break;
6017 }
6018 case 2: {
6019 u16 tmp16 = 0;
6020 pci_read_config_word(pdev, bits->reg, &tmp16);
6021 tmp = tmp16;
6022 break;
6023 }
6024 case 4: {
6025 u32 tmp32 = 0;
6026 pci_read_config_dword(pdev, bits->reg, &tmp32);
6027 tmp = tmp32;
6028 break;
6029 }
6030
6031 default:
6032 return -EINVAL;
6033 }
6034
6035 tmp &= bits->mask;
6036
6037 return (tmp == bits->val) ? 1 : 0;
6038}
6039EXPORT_SYMBOL_GPL(pci_test_config_bits);
6040
6041#ifdef CONFIG_PM
6042void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6043{
6044 pci_save_state(pdev);
6045 pci_disable_device(pdev);
6046
6047 if (mesg.event & PM_EVENT_SLEEP)
6048 pci_set_power_state(pdev, PCI_D3hot);
6049}
6050EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6051
6052int ata_pci_device_do_resume(struct pci_dev *pdev)
6053{
6054 int rc;
6055
6056 pci_set_power_state(pdev, PCI_D0);
6057 pci_restore_state(pdev);
6058
6059 rc = pcim_enable_device(pdev);
6060 if (rc) {
6061 dev_err(&pdev->dev,
6062 "failed to enable device after resume (%d)\n", rc);
6063 return rc;
6064 }
6065
6066 pci_set_master(pdev);
6067 return 0;
6068}
6069EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6070
6071int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6072{
6073 struct ata_host *host = pci_get_drvdata(pdev);
6074 int rc = 0;
6075
6076 rc = ata_host_suspend(host, mesg);
6077 if (rc)
6078 return rc;
6079
6080 ata_pci_device_do_suspend(pdev, mesg);
6081
6082 return 0;
6083}
6084EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6085
6086int ata_pci_device_resume(struct pci_dev *pdev)
6087{
6088 struct ata_host *host = pci_get_drvdata(pdev);
6089 int rc;
6090
6091 rc = ata_pci_device_do_resume(pdev);
6092 if (rc == 0)
6093 ata_host_resume(host);
6094 return rc;
6095}
6096EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6097#endif /* CONFIG_PM */
6098#endif /* CONFIG_PCI */
6099
6100/**
6101 * ata_platform_remove_one - Platform layer callback for device removal
6102 * @pdev: Platform device that was removed
6103 *
6104 * Platform layer indicates to libata via this hook that hot-unplug or
6105 * module unload event has occurred. Detach all ports. Resource
6106 * release is handled via devres.
6107 *
6108 * LOCKING:
6109 * Inherited from platform layer (may sleep).
6110 */
6111int ata_platform_remove_one(struct platform_device *pdev)
6112{
6113 struct ata_host *host = platform_get_drvdata(pdev);
6114
6115 ata_host_detach(host);
6116
6117 return 0;
6118}
6119EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6120
6121#ifdef CONFIG_ATA_FORCE
6122static int __init ata_parse_force_one(char **cur,
6123 struct ata_force_ent *force_ent,
6124 const char **reason)
6125{
6126 static const struct ata_force_param force_tbl[] __initconst = {
6127 { "40c", .cbl = ATA_CBL_PATA40 },
6128 { "80c", .cbl = ATA_CBL_PATA80 },
6129 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6130 { "unk", .cbl = ATA_CBL_PATA_UNK },
6131 { "ign", .cbl = ATA_CBL_PATA_IGN },
6132 { "sata", .cbl = ATA_CBL_SATA },
6133 { "1.5Gbps", .spd_limit = 1 },
6134 { "3.0Gbps", .spd_limit = 2 },
6135 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6136 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6137 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6138 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6139 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI },
6140 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI },
6141 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6142 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6143 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6144 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6145 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6146 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6147 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6148 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6149 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6150 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6151 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6152 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6153 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6154 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6155 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6156 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6157 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6158 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6159 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6160 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6161 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6162 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6163 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6164 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6165 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6166 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6167 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6168 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6169 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6170 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6171 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6172 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6173 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6174 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6175 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6176 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6177 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6178 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6179 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6180 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6181 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6182 };
6183 char *start = *cur, *p = *cur;
6184 char *id, *val, *endp;
6185 const struct ata_force_param *match_fp = NULL;
6186 int nr_matches = 0, i;
6187
6188 /* find where this param ends and update *cur */
6189 while (*p != '\0' && *p != ',')
6190 p++;
6191
6192 if (*p == '\0')
6193 *cur = p;
6194 else
6195 *cur = p + 1;
6196
6197 *p = '\0';
6198
6199 /* parse */
6200 p = strchr(start, ':');
6201 if (!p) {
6202 val = strstrip(start);
6203 goto parse_val;
6204 }
6205 *p = '\0';
6206
6207 id = strstrip(start);
6208 val = strstrip(p + 1);
6209
6210 /* parse id */
6211 p = strchr(id, '.');
6212 if (p) {
6213 *p++ = '\0';
6214 force_ent->device = simple_strtoul(p, &endp, 10);
6215 if (p == endp || *endp != '\0') {
6216 *reason = "invalid device";
6217 return -EINVAL;
6218 }
6219 }
6220
6221 force_ent->port = simple_strtoul(id, &endp, 10);
6222 if (id == endp || *endp != '\0') {
6223 *reason = "invalid port/link";
6224 return -EINVAL;
6225 }
6226
6227 parse_val:
6228 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6229 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6230 const struct ata_force_param *fp = &force_tbl[i];
6231
6232 if (strncasecmp(val, fp->name, strlen(val)))
6233 continue;
6234
6235 nr_matches++;
6236 match_fp = fp;
6237
6238 if (strcasecmp(val, fp->name) == 0) {
6239 nr_matches = 1;
6240 break;
6241 }
6242 }
6243
6244 if (!nr_matches) {
6245 *reason = "unknown value";
6246 return -EINVAL;
6247 }
6248 if (nr_matches > 1) {
6249 *reason = "ambiguous value";
6250 return -EINVAL;
6251 }
6252
6253 force_ent->param = *match_fp;
6254
6255 return 0;
6256}
6257
6258static void __init ata_parse_force_param(void)
6259{
6260 int idx = 0, size = 1;
6261 int last_port = -1, last_device = -1;
6262 char *p, *cur, *next;
6263
6264 /* calculate maximum number of params and allocate force_tbl */
6265 for (p = ata_force_param_buf; *p; p++)
6266 if (*p == ',')
6267 size++;
6268
6269 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6270 if (!ata_force_tbl) {
6271 printk(KERN_WARNING "ata: failed to extend force table, "
6272 "libata.force ignored\n");
6273 return;
6274 }
6275
6276 /* parse and populate the table */
6277 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6278 const char *reason = "";
6279 struct ata_force_ent te = { .port = -1, .device = -1 };
6280
6281 next = cur;
6282 if (ata_parse_force_one(&next, &te, &reason)) {
6283 printk(KERN_WARNING "ata: failed to parse force "
6284 "parameter \"%s\" (%s)\n",
6285 cur, reason);
6286 continue;
6287 }
6288
6289 if (te.port == -1) {
6290 te.port = last_port;
6291 te.device = last_device;
6292 }
6293
6294 ata_force_tbl[idx++] = te;
6295
6296 last_port = te.port;
6297 last_device = te.device;
6298 }
6299
6300 ata_force_tbl_size = idx;
6301}
6302
6303static void ata_free_force_param(void)
6304{
6305 kfree(ata_force_tbl);
6306}
6307#else
6308static inline void ata_parse_force_param(void) { }
6309static inline void ata_free_force_param(void) { }
6310#endif
6311
6312static int __init ata_init(void)
6313{
6314 int rc;
6315
6316 ata_parse_force_param();
6317
6318 rc = ata_sff_init();
6319 if (rc) {
6320 ata_free_force_param();
6321 return rc;
6322 }
6323
6324 libata_transport_init();
6325 ata_scsi_transport_template = ata_attach_transport();
6326 if (!ata_scsi_transport_template) {
6327 ata_sff_exit();
6328 rc = -ENOMEM;
6329 goto err_out;
6330 }
6331
6332 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6333 return 0;
6334
6335err_out:
6336 return rc;
6337}
6338
6339static void __exit ata_exit(void)
6340{
6341 ata_release_transport(ata_scsi_transport_template);
6342 libata_transport_exit();
6343 ata_sff_exit();
6344 ata_free_force_param();
6345}
6346
6347subsys_initcall(ata_init);
6348module_exit(ata_exit);
6349
6350static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6351
6352int ata_ratelimit(void)
6353{
6354 return __ratelimit(&ratelimit);
6355}
6356EXPORT_SYMBOL_GPL(ata_ratelimit);
6357
6358/**
6359 * ata_msleep - ATA EH owner aware msleep
6360 * @ap: ATA port to attribute the sleep to
6361 * @msecs: duration to sleep in milliseconds
6362 *
6363 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6364 * ownership is released before going to sleep and reacquired
6365 * after the sleep is complete. IOW, other ports sharing the
6366 * @ap->host will be allowed to own the EH while this task is
6367 * sleeping.
6368 *
6369 * LOCKING:
6370 * Might sleep.
6371 */
6372void ata_msleep(struct ata_port *ap, unsigned int msecs)
6373{
6374 bool owns_eh = ap && ap->host->eh_owner == current;
6375
6376 if (owns_eh)
6377 ata_eh_release(ap);
6378
6379 if (msecs < 20) {
6380 unsigned long usecs = msecs * USEC_PER_MSEC;
6381 usleep_range(usecs, usecs + 50);
6382 } else {
6383 msleep(msecs);
6384 }
6385
6386 if (owns_eh)
6387 ata_eh_acquire(ap);
6388}
6389EXPORT_SYMBOL_GPL(ata_msleep);
6390
6391/**
6392 * ata_wait_register - wait until register value changes
6393 * @ap: ATA port to wait register for, can be NULL
6394 * @reg: IO-mapped register
6395 * @mask: Mask to apply to read register value
6396 * @val: Wait condition
6397 * @interval: polling interval in milliseconds
6398 * @timeout: timeout in milliseconds
6399 *
6400 * Waiting for some bits of register to change is a common
6401 * operation for ATA controllers. This function reads 32bit LE
6402 * IO-mapped register @reg and tests for the following condition.
6403 *
6404 * (*@reg & mask) != val
6405 *
6406 * If the condition is met, it returns; otherwise, the process is
6407 * repeated after @interval_msec until timeout.
6408 *
6409 * LOCKING:
6410 * Kernel thread context (may sleep)
6411 *
6412 * RETURNS:
6413 * The final register value.
6414 */
6415u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6416 unsigned long interval, unsigned long timeout)
6417{
6418 unsigned long deadline;
6419 u32 tmp;
6420
6421 tmp = ioread32(reg);
6422
6423 /* Calculate timeout _after_ the first read to make sure
6424 * preceding writes reach the controller before starting to
6425 * eat away the timeout.
6426 */
6427 deadline = ata_deadline(jiffies, timeout);
6428
6429 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6430 ata_msleep(ap, interval);
6431 tmp = ioread32(reg);
6432 }
6433
6434 return tmp;
6435}
6436EXPORT_SYMBOL_GPL(ata_wait_register);
6437
6438/*
6439 * Dummy port_ops
6440 */
6441static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6442{
6443 return AC_ERR_SYSTEM;
6444}
6445
6446static void ata_dummy_error_handler(struct ata_port *ap)
6447{
6448 /* truly dummy */
6449}
6450
6451struct ata_port_operations ata_dummy_port_ops = {
6452 .qc_prep = ata_noop_qc_prep,
6453 .qc_issue = ata_dummy_qc_issue,
6454 .error_handler = ata_dummy_error_handler,
6455 .sched_eh = ata_std_sched_eh,
6456 .end_eh = ata_std_end_eh,
6457};
6458EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6459
6460const struct ata_port_info ata_dummy_port_info = {
6461 .port_ops = &ata_dummy_port_ops,
6462};
6463EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6464
6465/*
6466 * Utility print functions
6467 */
6468void ata_port_printk(const struct ata_port *ap, const char *level,
6469 const char *fmt, ...)
6470{
6471 struct va_format vaf;
6472 va_list args;
6473
6474 va_start(args, fmt);
6475
6476 vaf.fmt = fmt;
6477 vaf.va = &args;
6478
6479 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6480
6481 va_end(args);
6482}
6483EXPORT_SYMBOL(ata_port_printk);
6484
6485void ata_link_printk(const struct ata_link *link, const char *level,
6486 const char *fmt, ...)
6487{
6488 struct va_format vaf;
6489 va_list args;
6490
6491 va_start(args, fmt);
6492
6493 vaf.fmt = fmt;
6494 vaf.va = &args;
6495
6496 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6497 printk("%sata%u.%02u: %pV",
6498 level, link->ap->print_id, link->pmp, &vaf);
6499 else
6500 printk("%sata%u: %pV",
6501 level, link->ap->print_id, &vaf);
6502
6503 va_end(args);
6504}
6505EXPORT_SYMBOL(ata_link_printk);
6506
6507void ata_dev_printk(const struct ata_device *dev, const char *level,
6508 const char *fmt, ...)
6509{
6510 struct va_format vaf;
6511 va_list args;
6512
6513 va_start(args, fmt);
6514
6515 vaf.fmt = fmt;
6516 vaf.va = &args;
6517
6518 printk("%sata%u.%02u: %pV",
6519 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6520 &vaf);
6521
6522 va_end(args);
6523}
6524EXPORT_SYMBOL(ata_dev_printk);
6525
6526void ata_print_version(const struct device *dev, const char *version)
6527{
6528 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6529}
6530EXPORT_SYMBOL(ata_print_version);