Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-core.c - helper library for ATA
   4 *
   5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2004 Jeff Garzik
   7 *
   8 *  libata documentation is available via 'make {ps|pdf}docs',
   9 *  as Documentation/driver-api/libata.rst
  10 *
  11 *  Hardware documentation available from http://www.t13.org/ and
  12 *  http://www.sata-io.org/
  13 *
  14 *  Standards documents from:
  15 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  16 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  17 *	http://www.sata-io.org (SATA)
  18 *	http://www.compactflash.org (CF)
  19 *	http://www.qic.org (QIC157 - Tape and DSC)
  20 *	http://www.ce-ata.org (CE-ATA: not supported)
  21 *
  22 * libata is essentially a library of internal helper functions for
  23 * low-level ATA host controller drivers.  As such, the API/ABI is
  24 * likely to change as new drivers are added and updated.
  25 * Do not depend on ABI/API stability.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/pci.h>
  31#include <linux/init.h>
  32#include <linux/list.h>
  33#include <linux/mm.h>
  34#include <linux/spinlock.h>
  35#include <linux/blkdev.h>
  36#include <linux/delay.h>
  37#include <linux/timer.h>
  38#include <linux/time.h>
  39#include <linux/interrupt.h>
  40#include <linux/completion.h>
  41#include <linux/suspend.h>
  42#include <linux/workqueue.h>
  43#include <linux/scatterlist.h>
  44#include <linux/io.h>
  45#include <linux/log2.h>
  46#include <linux/slab.h>
  47#include <linux/glob.h>
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_host.h>
  51#include <linux/libata.h>
  52#include <asm/byteorder.h>
  53#include <asm/unaligned.h>
  54#include <linux/cdrom.h>
  55#include <linux/ratelimit.h>
  56#include <linux/leds.h>
  57#include <linux/pm_runtime.h>
  58#include <linux/platform_device.h>
  59#include <asm/setup.h>
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/libata.h>
  63
  64#include "libata.h"
  65#include "libata-transport.h"
  66
  67const struct ata_port_operations ata_base_port_ops = {
  68	.prereset		= ata_std_prereset,
  69	.postreset		= ata_std_postreset,
  70	.error_handler		= ata_std_error_handler,
  71	.sched_eh		= ata_std_sched_eh,
  72	.end_eh			= ata_std_end_eh,
  73};
  74
  75const struct ata_port_operations sata_port_ops = {
  76	.inherits		= &ata_base_port_ops,
  77
  78	.qc_defer		= ata_std_qc_defer,
  79	.hardreset		= sata_std_hardreset,
  80};
  81EXPORT_SYMBOL_GPL(sata_port_ops);
  82
  83static unsigned int ata_dev_init_params(struct ata_device *dev,
  84					u16 heads, u16 sectors);
  85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  86static void ata_dev_xfermask(struct ata_device *dev);
  87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  88
  89atomic_t ata_print_id = ATOMIC_INIT(0);
  90
  91#ifdef CONFIG_ATA_FORCE
  92struct ata_force_param {
  93	const char	*name;
  94	u8		cbl;
  95	u8		spd_limit;
  96	unsigned int	xfer_mask;
  97	unsigned int	horkage_on;
  98	unsigned int	horkage_off;
  99	u16		lflags_on;
 100	u16		lflags_off;
 101};
 102
 103struct ata_force_ent {
 104	int			port;
 105	int			device;
 106	struct ata_force_param	param;
 107};
 108
 109static struct ata_force_ent *ata_force_tbl;
 110static int ata_force_tbl_size;
 111
 112static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
 113/* param_buf is thrown away after initialization, disallow read */
 114module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 115MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 116#endif
 117
 118static int atapi_enabled = 1;
 119module_param(atapi_enabled, int, 0444);
 120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 121
 122static int atapi_dmadir = 0;
 123module_param(atapi_dmadir, int, 0444);
 124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 125
 126int atapi_passthru16 = 1;
 127module_param(atapi_passthru16, int, 0444);
 128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 129
 130int libata_fua = 0;
 131module_param_named(fua, libata_fua, int, 0444);
 132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 133
 134static int ata_ignore_hpa;
 135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 137
 138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 139module_param_named(dma, libata_dma_mask, int, 0444);
 140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 141
 142static int ata_probe_timeout;
 143module_param(ata_probe_timeout, int, 0444);
 144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 145
 146int libata_noacpi = 0;
 147module_param_named(noacpi, libata_noacpi, int, 0444);
 148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 149
 150int libata_allow_tpm = 0;
 151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 153
 154static int atapi_an;
 155module_param(atapi_an, int, 0444);
 156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 157
 158MODULE_AUTHOR("Jeff Garzik");
 159MODULE_DESCRIPTION("Library module for ATA devices");
 160MODULE_LICENSE("GPL");
 161MODULE_VERSION(DRV_VERSION);
 162
 163static inline bool ata_dev_print_info(struct ata_device *dev)
 164{
 165	struct ata_eh_context *ehc = &dev->link->eh_context;
 166
 167	return ehc->i.flags & ATA_EHI_PRINTINFO;
 168}
 169
 170static bool ata_sstatus_online(u32 sstatus)
 171{
 172	return (sstatus & 0xf) == 0x3;
 173}
 174
 175/**
 176 *	ata_link_next - link iteration helper
 177 *	@link: the previous link, NULL to start
 178 *	@ap: ATA port containing links to iterate
 179 *	@mode: iteration mode, one of ATA_LITER_*
 180 *
 181 *	LOCKING:
 182 *	Host lock or EH context.
 183 *
 184 *	RETURNS:
 185 *	Pointer to the next link.
 186 */
 187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 188			       enum ata_link_iter_mode mode)
 189{
 190	BUG_ON(mode != ATA_LITER_EDGE &&
 191	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 192
 193	/* NULL link indicates start of iteration */
 194	if (!link)
 195		switch (mode) {
 196		case ATA_LITER_EDGE:
 197		case ATA_LITER_PMP_FIRST:
 198			if (sata_pmp_attached(ap))
 199				return ap->pmp_link;
 200			fallthrough;
 201		case ATA_LITER_HOST_FIRST:
 202			return &ap->link;
 203		}
 204
 205	/* we just iterated over the host link, what's next? */
 206	if (link == &ap->link)
 207		switch (mode) {
 208		case ATA_LITER_HOST_FIRST:
 209			if (sata_pmp_attached(ap))
 210				return ap->pmp_link;
 211			fallthrough;
 212		case ATA_LITER_PMP_FIRST:
 213			if (unlikely(ap->slave_link))
 214				return ap->slave_link;
 215			fallthrough;
 216		case ATA_LITER_EDGE:
 217			return NULL;
 218		}
 219
 220	/* slave_link excludes PMP */
 221	if (unlikely(link == ap->slave_link))
 222		return NULL;
 223
 224	/* we were over a PMP link */
 225	if (++link < ap->pmp_link + ap->nr_pmp_links)
 226		return link;
 227
 228	if (mode == ATA_LITER_PMP_FIRST)
 229		return &ap->link;
 230
 231	return NULL;
 232}
 233EXPORT_SYMBOL_GPL(ata_link_next);
 234
 235/**
 236 *	ata_dev_next - device iteration helper
 237 *	@dev: the previous device, NULL to start
 238 *	@link: ATA link containing devices to iterate
 239 *	@mode: iteration mode, one of ATA_DITER_*
 240 *
 241 *	LOCKING:
 242 *	Host lock or EH context.
 243 *
 244 *	RETURNS:
 245 *	Pointer to the next device.
 246 */
 247struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 248				enum ata_dev_iter_mode mode)
 249{
 250	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 251	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 252
 253	/* NULL dev indicates start of iteration */
 254	if (!dev)
 255		switch (mode) {
 256		case ATA_DITER_ENABLED:
 257		case ATA_DITER_ALL:
 258			dev = link->device;
 259			goto check;
 260		case ATA_DITER_ENABLED_REVERSE:
 261		case ATA_DITER_ALL_REVERSE:
 262			dev = link->device + ata_link_max_devices(link) - 1;
 263			goto check;
 264		}
 265
 266 next:
 267	/* move to the next one */
 268	switch (mode) {
 269	case ATA_DITER_ENABLED:
 270	case ATA_DITER_ALL:
 271		if (++dev < link->device + ata_link_max_devices(link))
 272			goto check;
 273		return NULL;
 274	case ATA_DITER_ENABLED_REVERSE:
 275	case ATA_DITER_ALL_REVERSE:
 276		if (--dev >= link->device)
 277			goto check;
 278		return NULL;
 279	}
 280
 281 check:
 282	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 283	    !ata_dev_enabled(dev))
 284		goto next;
 285	return dev;
 286}
 287EXPORT_SYMBOL_GPL(ata_dev_next);
 288
 289/**
 290 *	ata_dev_phys_link - find physical link for a device
 291 *	@dev: ATA device to look up physical link for
 292 *
 293 *	Look up physical link which @dev is attached to.  Note that
 294 *	this is different from @dev->link only when @dev is on slave
 295 *	link.  For all other cases, it's the same as @dev->link.
 296 *
 297 *	LOCKING:
 298 *	Don't care.
 299 *
 300 *	RETURNS:
 301 *	Pointer to the found physical link.
 302 */
 303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 304{
 305	struct ata_port *ap = dev->link->ap;
 306
 307	if (!ap->slave_link)
 308		return dev->link;
 309	if (!dev->devno)
 310		return &ap->link;
 311	return ap->slave_link;
 312}
 313
 314#ifdef CONFIG_ATA_FORCE
 315/**
 316 *	ata_force_cbl - force cable type according to libata.force
 317 *	@ap: ATA port of interest
 318 *
 319 *	Force cable type according to libata.force and whine about it.
 320 *	The last entry which has matching port number is used, so it
 321 *	can be specified as part of device force parameters.  For
 322 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 323 *	same effect.
 324 *
 325 *	LOCKING:
 326 *	EH context.
 327 */
 328void ata_force_cbl(struct ata_port *ap)
 329{
 330	int i;
 331
 332	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 333		const struct ata_force_ent *fe = &ata_force_tbl[i];
 334
 335		if (fe->port != -1 && fe->port != ap->print_id)
 336			continue;
 337
 338		if (fe->param.cbl == ATA_CBL_NONE)
 339			continue;
 340
 341		ap->cbl = fe->param.cbl;
 342		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 343		return;
 344	}
 345}
 346
 347/**
 348 *	ata_force_link_limits - force link limits according to libata.force
 349 *	@link: ATA link of interest
 350 *
 351 *	Force link flags and SATA spd limit according to libata.force
 352 *	and whine about it.  When only the port part is specified
 353 *	(e.g. 1:), the limit applies to all links connected to both
 354 *	the host link and all fan-out ports connected via PMP.  If the
 355 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 356 *	first fan-out link not the host link.  Device number 15 always
 357 *	points to the host link whether PMP is attached or not.  If the
 358 *	controller has slave link, device number 16 points to it.
 359 *
 360 *	LOCKING:
 361 *	EH context.
 362 */
 363static void ata_force_link_limits(struct ata_link *link)
 364{
 365	bool did_spd = false;
 366	int linkno = link->pmp;
 367	int i;
 368
 369	if (ata_is_host_link(link))
 370		linkno += 15;
 371
 372	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 373		const struct ata_force_ent *fe = &ata_force_tbl[i];
 374
 375		if (fe->port != -1 && fe->port != link->ap->print_id)
 376			continue;
 377
 378		if (fe->device != -1 && fe->device != linkno)
 379			continue;
 380
 381		/* only honor the first spd limit */
 382		if (!did_spd && fe->param.spd_limit) {
 383			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 384			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 385					fe->param.name);
 386			did_spd = true;
 387		}
 388
 389		/* let lflags stack */
 390		if (fe->param.lflags_on) {
 391			link->flags |= fe->param.lflags_on;
 392			ata_link_notice(link,
 393					"FORCE: link flag 0x%x forced -> 0x%x\n",
 394					fe->param.lflags_on, link->flags);
 395		}
 396		if (fe->param.lflags_off) {
 397			link->flags &= ~fe->param.lflags_off;
 398			ata_link_notice(link,
 399				"FORCE: link flag 0x%x cleared -> 0x%x\n",
 400				fe->param.lflags_off, link->flags);
 401		}
 402	}
 403}
 404
 405/**
 406 *	ata_force_xfermask - force xfermask according to libata.force
 407 *	@dev: ATA device of interest
 408 *
 409 *	Force xfer_mask according to libata.force and whine about it.
 410 *	For consistency with link selection, device number 15 selects
 411 *	the first device connected to the host link.
 412 *
 413 *	LOCKING:
 414 *	EH context.
 415 */
 416static void ata_force_xfermask(struct ata_device *dev)
 417{
 418	int devno = dev->link->pmp + dev->devno;
 419	int alt_devno = devno;
 420	int i;
 421
 422	/* allow n.15/16 for devices attached to host port */
 423	if (ata_is_host_link(dev->link))
 424		alt_devno += 15;
 425
 426	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 427		const struct ata_force_ent *fe = &ata_force_tbl[i];
 428		unsigned int pio_mask, mwdma_mask, udma_mask;
 429
 430		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 431			continue;
 432
 433		if (fe->device != -1 && fe->device != devno &&
 434		    fe->device != alt_devno)
 435			continue;
 436
 437		if (!fe->param.xfer_mask)
 438			continue;
 439
 440		ata_unpack_xfermask(fe->param.xfer_mask,
 441				    &pio_mask, &mwdma_mask, &udma_mask);
 442		if (udma_mask)
 443			dev->udma_mask = udma_mask;
 444		else if (mwdma_mask) {
 445			dev->udma_mask = 0;
 446			dev->mwdma_mask = mwdma_mask;
 447		} else {
 448			dev->udma_mask = 0;
 449			dev->mwdma_mask = 0;
 450			dev->pio_mask = pio_mask;
 451		}
 452
 453		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 454			       fe->param.name);
 455		return;
 456	}
 457}
 458
 459/**
 460 *	ata_force_horkage - force horkage according to libata.force
 461 *	@dev: ATA device of interest
 462 *
 463 *	Force horkage according to libata.force and whine about it.
 464 *	For consistency with link selection, device number 15 selects
 465 *	the first device connected to the host link.
 466 *
 467 *	LOCKING:
 468 *	EH context.
 469 */
 470static void ata_force_horkage(struct ata_device *dev)
 471{
 472	int devno = dev->link->pmp + dev->devno;
 473	int alt_devno = devno;
 474	int i;
 475
 476	/* allow n.15/16 for devices attached to host port */
 477	if (ata_is_host_link(dev->link))
 478		alt_devno += 15;
 479
 480	for (i = 0; i < ata_force_tbl_size; i++) {
 481		const struct ata_force_ent *fe = &ata_force_tbl[i];
 482
 483		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 484			continue;
 485
 486		if (fe->device != -1 && fe->device != devno &&
 487		    fe->device != alt_devno)
 488			continue;
 489
 490		if (!(~dev->horkage & fe->param.horkage_on) &&
 491		    !(dev->horkage & fe->param.horkage_off))
 492			continue;
 493
 494		dev->horkage |= fe->param.horkage_on;
 495		dev->horkage &= ~fe->param.horkage_off;
 496
 497		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 498			       fe->param.name);
 499	}
 500}
 501#else
 502static inline void ata_force_link_limits(struct ata_link *link) { }
 503static inline void ata_force_xfermask(struct ata_device *dev) { }
 504static inline void ata_force_horkage(struct ata_device *dev) { }
 505#endif
 506
 507/**
 508 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 509 *	@opcode: SCSI opcode
 510 *
 511 *	Determine ATAPI command type from @opcode.
 512 *
 513 *	LOCKING:
 514 *	None.
 515 *
 516 *	RETURNS:
 517 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 518 */
 519int atapi_cmd_type(u8 opcode)
 520{
 521	switch (opcode) {
 522	case GPCMD_READ_10:
 523	case GPCMD_READ_12:
 524		return ATAPI_READ;
 525
 526	case GPCMD_WRITE_10:
 527	case GPCMD_WRITE_12:
 528	case GPCMD_WRITE_AND_VERIFY_10:
 529		return ATAPI_WRITE;
 530
 531	case GPCMD_READ_CD:
 532	case GPCMD_READ_CD_MSF:
 533		return ATAPI_READ_CD;
 534
 535	case ATA_16:
 536	case ATA_12:
 537		if (atapi_passthru16)
 538			return ATAPI_PASS_THRU;
 539		fallthrough;
 540	default:
 541		return ATAPI_MISC;
 542	}
 543}
 544EXPORT_SYMBOL_GPL(atapi_cmd_type);
 545
 546static const u8 ata_rw_cmds[] = {
 547	/* pio multi */
 548	ATA_CMD_READ_MULTI,
 549	ATA_CMD_WRITE_MULTI,
 550	ATA_CMD_READ_MULTI_EXT,
 551	ATA_CMD_WRITE_MULTI_EXT,
 552	0,
 553	0,
 554	0,
 555	0,
 556	/* pio */
 557	ATA_CMD_PIO_READ,
 558	ATA_CMD_PIO_WRITE,
 559	ATA_CMD_PIO_READ_EXT,
 560	ATA_CMD_PIO_WRITE_EXT,
 561	0,
 562	0,
 563	0,
 564	0,
 565	/* dma */
 566	ATA_CMD_READ,
 567	ATA_CMD_WRITE,
 568	ATA_CMD_READ_EXT,
 569	ATA_CMD_WRITE_EXT,
 570	0,
 571	0,
 572	0,
 573	ATA_CMD_WRITE_FUA_EXT
 574};
 575
 576/**
 577 *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
 578 *	@dev: target device for the taskfile
 579 *	@tf: taskfile to examine and configure
 580 *
 581 *	Examine the device configuration and tf->flags to determine
 582 *	the proper read/write command and protocol to use for @tf.
 583 *
 584 *	LOCKING:
 585 *	caller.
 586 */
 587static bool ata_set_rwcmd_protocol(struct ata_device *dev,
 588				   struct ata_taskfile *tf)
 589{
 590	u8 cmd;
 591
 592	int index, fua, lba48, write;
 593
 594	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 595	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 596	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 597
 598	if (dev->flags & ATA_DFLAG_PIO) {
 599		tf->protocol = ATA_PROT_PIO;
 600		index = dev->multi_count ? 0 : 8;
 601	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 602		/* Unable to use DMA due to host limitation */
 603		tf->protocol = ATA_PROT_PIO;
 604		index = dev->multi_count ? 0 : 8;
 605	} else {
 606		tf->protocol = ATA_PROT_DMA;
 607		index = 16;
 608	}
 609
 610	cmd = ata_rw_cmds[index + fua + lba48 + write];
 611	if (!cmd)
 612		return false;
 613
 614	tf->command = cmd;
 615
 616	return true;
 617}
 618
 619/**
 620 *	ata_tf_read_block - Read block address from ATA taskfile
 621 *	@tf: ATA taskfile of interest
 622 *	@dev: ATA device @tf belongs to
 623 *
 624 *	LOCKING:
 625 *	None.
 626 *
 627 *	Read block address from @tf.  This function can handle all
 628 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 629 *	flags select the address format to use.
 630 *
 631 *	RETURNS:
 632 *	Block address read from @tf.
 633 */
 634u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 635{
 636	u64 block = 0;
 637
 638	if (tf->flags & ATA_TFLAG_LBA) {
 639		if (tf->flags & ATA_TFLAG_LBA48) {
 640			block |= (u64)tf->hob_lbah << 40;
 641			block |= (u64)tf->hob_lbam << 32;
 642			block |= (u64)tf->hob_lbal << 24;
 643		} else
 644			block |= (tf->device & 0xf) << 24;
 645
 646		block |= tf->lbah << 16;
 647		block |= tf->lbam << 8;
 648		block |= tf->lbal;
 649	} else {
 650		u32 cyl, head, sect;
 651
 652		cyl = tf->lbam | (tf->lbah << 8);
 653		head = tf->device & 0xf;
 654		sect = tf->lbal;
 655
 656		if (!sect) {
 657			ata_dev_warn(dev,
 658				     "device reported invalid CHS sector 0\n");
 659			return U64_MAX;
 660		}
 661
 662		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 663	}
 664
 665	return block;
 666}
 667
 668/*
 669 * Set a taskfile command duration limit index.
 670 */
 671static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
 672{
 673	struct ata_taskfile *tf = &qc->tf;
 674
 675	if (tf->protocol == ATA_PROT_NCQ)
 676		tf->auxiliary |= cdl;
 677	else
 678		tf->feature |= cdl;
 679
 680	/*
 681	 * Mark this command as having a CDL and request the result
 682	 * task file so that we can inspect the sense data available
 683	 * bit on completion.
 684	 */
 685	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
 686}
 687
 688/**
 689 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 690 *	@qc: Metadata associated with the taskfile to build
 691 *	@block: Block address
 692 *	@n_block: Number of blocks
 693 *	@tf_flags: RW/FUA etc...
 694 *	@cdl: Command duration limit index
 695 *	@class: IO priority class
 696 *
 697 *	LOCKING:
 698 *	None.
 699 *
 700 *	Build ATA taskfile for the command @qc for read/write request described
 701 *	by @block, @n_block, @tf_flags and @class.
 702 *
 703 *	RETURNS:
 704 *
 705 *	0 on success, -ERANGE if the request is too large for @dev,
 706 *	-EINVAL if the request is invalid.
 707 */
 708int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
 709		    unsigned int tf_flags, int cdl, int class)
 710{
 711	struct ata_taskfile *tf = &qc->tf;
 712	struct ata_device *dev = qc->dev;
 713
 714	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 715	tf->flags |= tf_flags;
 716
 717	if (ata_ncq_enabled(dev)) {
 718		/* yay, NCQ */
 719		if (!lba_48_ok(block, n_block))
 720			return -ERANGE;
 721
 722		tf->protocol = ATA_PROT_NCQ;
 723		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 724
 725		if (tf->flags & ATA_TFLAG_WRITE)
 726			tf->command = ATA_CMD_FPDMA_WRITE;
 727		else
 728			tf->command = ATA_CMD_FPDMA_READ;
 729
 730		tf->nsect = qc->hw_tag << 3;
 731		tf->hob_feature = (n_block >> 8) & 0xff;
 732		tf->feature = n_block & 0xff;
 733
 734		tf->hob_lbah = (block >> 40) & 0xff;
 735		tf->hob_lbam = (block >> 32) & 0xff;
 736		tf->hob_lbal = (block >> 24) & 0xff;
 737		tf->lbah = (block >> 16) & 0xff;
 738		tf->lbam = (block >> 8) & 0xff;
 739		tf->lbal = block & 0xff;
 740
 741		tf->device = ATA_LBA;
 742		if (tf->flags & ATA_TFLAG_FUA)
 743			tf->device |= 1 << 7;
 744
 745		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
 746		    class == IOPRIO_CLASS_RT)
 747			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
 748
 749		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
 750			ata_set_tf_cdl(qc, cdl);
 751
 752	} else if (dev->flags & ATA_DFLAG_LBA) {
 753		tf->flags |= ATA_TFLAG_LBA;
 754
 755		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
 756			ata_set_tf_cdl(qc, cdl);
 757
 758		/* Both FUA writes and a CDL index require 48-bit commands */
 759		if (!(tf->flags & ATA_TFLAG_FUA) &&
 760		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
 761		    lba_28_ok(block, n_block)) {
 762			/* use LBA28 */
 763			tf->device |= (block >> 24) & 0xf;
 764		} else if (lba_48_ok(block, n_block)) {
 765			if (!(dev->flags & ATA_DFLAG_LBA48))
 766				return -ERANGE;
 767
 768			/* use LBA48 */
 769			tf->flags |= ATA_TFLAG_LBA48;
 770
 771			tf->hob_nsect = (n_block >> 8) & 0xff;
 772
 773			tf->hob_lbah = (block >> 40) & 0xff;
 774			tf->hob_lbam = (block >> 32) & 0xff;
 775			tf->hob_lbal = (block >> 24) & 0xff;
 776		} else {
 777			/* request too large even for LBA48 */
 778			return -ERANGE;
 779		}
 780
 781		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
 782			return -EINVAL;
 783
 784		tf->nsect = n_block & 0xff;
 785
 786		tf->lbah = (block >> 16) & 0xff;
 787		tf->lbam = (block >> 8) & 0xff;
 788		tf->lbal = block & 0xff;
 789
 790		tf->device |= ATA_LBA;
 791	} else {
 792		/* CHS */
 793		u32 sect, head, cyl, track;
 794
 795		/* The request -may- be too large for CHS addressing. */
 796		if (!lba_28_ok(block, n_block))
 797			return -ERANGE;
 798
 799		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
 800			return -EINVAL;
 801
 802		/* Convert LBA to CHS */
 803		track = (u32)block / dev->sectors;
 804		cyl   = track / dev->heads;
 805		head  = track % dev->heads;
 806		sect  = (u32)block % dev->sectors + 1;
 807
 808		/* Check whether the converted CHS can fit.
 809		   Cylinder: 0-65535
 810		   Head: 0-15
 811		   Sector: 1-255*/
 812		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 813			return -ERANGE;
 814
 815		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 816		tf->lbal = sect;
 817		tf->lbam = cyl;
 818		tf->lbah = cyl >> 8;
 819		tf->device |= head;
 820	}
 821
 822	return 0;
 823}
 824
 825/**
 826 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 827 *	@pio_mask: pio_mask
 828 *	@mwdma_mask: mwdma_mask
 829 *	@udma_mask: udma_mask
 830 *
 831 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 832 *	unsigned int xfer_mask.
 833 *
 834 *	LOCKING:
 835 *	None.
 836 *
 837 *	RETURNS:
 838 *	Packed xfer_mask.
 839 */
 840unsigned int ata_pack_xfermask(unsigned int pio_mask,
 841			       unsigned int mwdma_mask,
 842			       unsigned int udma_mask)
 843{
 844	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 845		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 846		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 847}
 848EXPORT_SYMBOL_GPL(ata_pack_xfermask);
 849
 850/**
 851 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 852 *	@xfer_mask: xfer_mask to unpack
 853 *	@pio_mask: resulting pio_mask
 854 *	@mwdma_mask: resulting mwdma_mask
 855 *	@udma_mask: resulting udma_mask
 856 *
 857 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 858 *	Any NULL destination masks will be ignored.
 859 */
 860void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
 861			 unsigned int *mwdma_mask, unsigned int *udma_mask)
 862{
 863	if (pio_mask)
 864		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 865	if (mwdma_mask)
 866		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 867	if (udma_mask)
 868		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 869}
 870
 871static const struct ata_xfer_ent {
 872	int shift, bits;
 873	u8 base;
 874} ata_xfer_tbl[] = {
 875	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 876	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 877	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 878	{ -1, },
 879};
 880
 881/**
 882 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 883 *	@xfer_mask: xfer_mask of interest
 884 *
 885 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 886 *	bit of @xfer_mask is considered.
 887 *
 888 *	LOCKING:
 889 *	None.
 890 *
 891 *	RETURNS:
 892 *	Matching XFER_* value, 0xff if no match found.
 893 */
 894u8 ata_xfer_mask2mode(unsigned int xfer_mask)
 895{
 896	int highbit = fls(xfer_mask) - 1;
 897	const struct ata_xfer_ent *ent;
 898
 899	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 900		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 901			return ent->base + highbit - ent->shift;
 902	return 0xff;
 903}
 904EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
 905
 906/**
 907 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 908 *	@xfer_mode: XFER_* of interest
 909 *
 910 *	Return matching xfer_mask for @xfer_mode.
 911 *
 912 *	LOCKING:
 913 *	None.
 914 *
 915 *	RETURNS:
 916 *	Matching xfer_mask, 0 if no match found.
 917 */
 918unsigned int ata_xfer_mode2mask(u8 xfer_mode)
 919{
 920	const struct ata_xfer_ent *ent;
 921
 922	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 923		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 924			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 925				& ~((1 << ent->shift) - 1);
 926	return 0;
 927}
 928EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
 929
 930/**
 931 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 932 *	@xfer_mode: XFER_* of interest
 933 *
 934 *	Return matching xfer_shift for @xfer_mode.
 935 *
 936 *	LOCKING:
 937 *	None.
 938 *
 939 *	RETURNS:
 940 *	Matching xfer_shift, -1 if no match found.
 941 */
 942int ata_xfer_mode2shift(u8 xfer_mode)
 943{
 944	const struct ata_xfer_ent *ent;
 945
 946	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 947		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 948			return ent->shift;
 949	return -1;
 950}
 951EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
 952
 953/**
 954 *	ata_mode_string - convert xfer_mask to string
 955 *	@xfer_mask: mask of bits supported; only highest bit counts.
 956 *
 957 *	Determine string which represents the highest speed
 958 *	(highest bit in @modemask).
 959 *
 960 *	LOCKING:
 961 *	None.
 962 *
 963 *	RETURNS:
 964 *	Constant C string representing highest speed listed in
 965 *	@mode_mask, or the constant C string "<n/a>".
 966 */
 967const char *ata_mode_string(unsigned int xfer_mask)
 968{
 969	static const char * const xfer_mode_str[] = {
 970		"PIO0",
 971		"PIO1",
 972		"PIO2",
 973		"PIO3",
 974		"PIO4",
 975		"PIO5",
 976		"PIO6",
 977		"MWDMA0",
 978		"MWDMA1",
 979		"MWDMA2",
 980		"MWDMA3",
 981		"MWDMA4",
 982		"UDMA/16",
 983		"UDMA/25",
 984		"UDMA/33",
 985		"UDMA/44",
 986		"UDMA/66",
 987		"UDMA/100",
 988		"UDMA/133",
 989		"UDMA7",
 990	};
 991	int highbit;
 992
 993	highbit = fls(xfer_mask) - 1;
 994	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
 995		return xfer_mode_str[highbit];
 996	return "<n/a>";
 997}
 998EXPORT_SYMBOL_GPL(ata_mode_string);
 999
1000const char *sata_spd_string(unsigned int spd)
1001{
1002	static const char * const spd_str[] = {
1003		"1.5 Gbps",
1004		"3.0 Gbps",
1005		"6.0 Gbps",
1006	};
1007
1008	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009		return "<unknown>";
1010	return spd_str[spd - 1];
1011}
1012
1013/**
1014 *	ata_dev_classify - determine device type based on ATA-spec signature
1015 *	@tf: ATA taskfile register set for device to be identified
1016 *
1017 *	Determine from taskfile register contents whether a device is
1018 *	ATA or ATAPI, as per "Signature and persistence" section
1019 *	of ATA/PI spec (volume 1, sect 5.14).
1020 *
1021 *	LOCKING:
1022 *	None.
1023 *
1024 *	RETURNS:
1025 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027 */
1028unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029{
1030	/* Apple's open source Darwin code hints that some devices only
1031	 * put a proper signature into the LBA mid/high registers,
1032	 * So, we only check those.  It's sufficient for uniqueness.
1033	 *
1034	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035	 * signatures for ATA and ATAPI devices attached on SerialATA,
1036	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1037	 * spec has never mentioned about using different signatures
1038	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1039	 * Multiplier specification began to use 0x69/0x96 to identify
1040	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042	 * 0x69/0x96 shortly and described them as reserved for
1043	 * SerialATA.
1044	 *
1045	 * We follow the current spec and consider that 0x69/0x96
1046	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048	 * SEMB signature.  This is worked around in
1049	 * ata_dev_read_id().
1050	 */
1051	if (tf->lbam == 0 && tf->lbah == 0)
1052		return ATA_DEV_ATA;
1053
1054	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055		return ATA_DEV_ATAPI;
1056
1057	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058		return ATA_DEV_PMP;
1059
1060	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061		return ATA_DEV_SEMB;
1062
1063	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064		return ATA_DEV_ZAC;
1065
1066	return ATA_DEV_UNKNOWN;
1067}
1068EXPORT_SYMBOL_GPL(ata_dev_classify);
1069
1070/**
1071 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1072 *	@id: IDENTIFY DEVICE results we will examine
1073 *	@s: string into which data is output
1074 *	@ofs: offset into identify device page
1075 *	@len: length of string to return. must be an even number.
1076 *
1077 *	The strings in the IDENTIFY DEVICE page are broken up into
1078 *	16-bit chunks.  Run through the string, and output each
1079 *	8-bit chunk linearly, regardless of platform.
1080 *
1081 *	LOCKING:
1082 *	caller.
1083 */
1084
1085void ata_id_string(const u16 *id, unsigned char *s,
1086		   unsigned int ofs, unsigned int len)
1087{
1088	unsigned int c;
1089
1090	BUG_ON(len & 1);
1091
1092	while (len > 0) {
1093		c = id[ofs] >> 8;
1094		*s = c;
1095		s++;
1096
1097		c = id[ofs] & 0xff;
1098		*s = c;
1099		s++;
1100
1101		ofs++;
1102		len -= 2;
1103	}
1104}
1105EXPORT_SYMBOL_GPL(ata_id_string);
1106
1107/**
1108 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109 *	@id: IDENTIFY DEVICE results we will examine
1110 *	@s: string into which data is output
1111 *	@ofs: offset into identify device page
1112 *	@len: length of string to return. must be an odd number.
1113 *
1114 *	This function is identical to ata_id_string except that it
1115 *	trims trailing spaces and terminates the resulting string with
1116 *	null.  @len must be actual maximum length (even number) + 1.
1117 *
1118 *	LOCKING:
1119 *	caller.
1120 */
1121void ata_id_c_string(const u16 *id, unsigned char *s,
1122		     unsigned int ofs, unsigned int len)
1123{
1124	unsigned char *p;
1125
1126	ata_id_string(id, s, ofs, len - 1);
1127
1128	p = s + strnlen(s, len - 1);
1129	while (p > s && p[-1] == ' ')
1130		p--;
1131	*p = '\0';
1132}
1133EXPORT_SYMBOL_GPL(ata_id_c_string);
1134
1135static u64 ata_id_n_sectors(const u16 *id)
1136{
1137	if (ata_id_has_lba(id)) {
1138		if (ata_id_has_lba48(id))
1139			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140
1141		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142	}
1143
1144	if (ata_id_current_chs_valid(id))
1145		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146		       (u32)id[ATA_ID_CUR_SECTORS];
1147
1148	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149	       (u32)id[ATA_ID_SECTORS];
1150}
1151
1152u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153{
1154	u64 sectors = 0;
1155
1156	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159	sectors |= (tf->lbah & 0xff) << 16;
1160	sectors |= (tf->lbam & 0xff) << 8;
1161	sectors |= (tf->lbal & 0xff);
1162
1163	return sectors;
1164}
1165
1166u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167{
1168	u64 sectors = 0;
1169
1170	sectors |= (tf->device & 0x0f) << 24;
1171	sectors |= (tf->lbah & 0xff) << 16;
1172	sectors |= (tf->lbam & 0xff) << 8;
1173	sectors |= (tf->lbal & 0xff);
1174
1175	return sectors;
1176}
1177
1178/**
1179 *	ata_read_native_max_address - Read native max address
1180 *	@dev: target device
1181 *	@max_sectors: out parameter for the result native max address
1182 *
1183 *	Perform an LBA48 or LBA28 native size query upon the device in
1184 *	question.
1185 *
1186 *	RETURNS:
1187 *	0 on success, -EACCES if command is aborted by the drive.
1188 *	-EIO on other errors.
1189 */
1190static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191{
1192	unsigned int err_mask;
1193	struct ata_taskfile tf;
1194	int lba48 = ata_id_has_lba48(dev->id);
1195
1196	ata_tf_init(dev, &tf);
1197
1198	/* always clear all address registers */
1199	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200
1201	if (lba48) {
1202		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203		tf.flags |= ATA_TFLAG_LBA48;
1204	} else
1205		tf.command = ATA_CMD_READ_NATIVE_MAX;
1206
1207	tf.protocol = ATA_PROT_NODATA;
1208	tf.device |= ATA_LBA;
1209
1210	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211	if (err_mask) {
1212		ata_dev_warn(dev,
1213			     "failed to read native max address (err_mask=0x%x)\n",
1214			     err_mask);
1215		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216			return -EACCES;
1217		return -EIO;
1218	}
1219
1220	if (lba48)
1221		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1222	else
1223		*max_sectors = ata_tf_to_lba(&tf) + 1;
1224	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225		(*max_sectors)--;
1226	return 0;
1227}
1228
1229/**
1230 *	ata_set_max_sectors - Set max sectors
1231 *	@dev: target device
1232 *	@new_sectors: new max sectors value to set for the device
1233 *
1234 *	Set max sectors of @dev to @new_sectors.
1235 *
1236 *	RETURNS:
1237 *	0 on success, -EACCES if command is aborted or denied (due to
1238 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1239 *	errors.
1240 */
1241static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242{
1243	unsigned int err_mask;
1244	struct ata_taskfile tf;
1245	int lba48 = ata_id_has_lba48(dev->id);
1246
1247	new_sectors--;
1248
1249	ata_tf_init(dev, &tf);
1250
1251	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252
1253	if (lba48) {
1254		tf.command = ATA_CMD_SET_MAX_EXT;
1255		tf.flags |= ATA_TFLAG_LBA48;
1256
1257		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260	} else {
1261		tf.command = ATA_CMD_SET_MAX;
1262
1263		tf.device |= (new_sectors >> 24) & 0xf;
1264	}
1265
1266	tf.protocol = ATA_PROT_NODATA;
1267	tf.device |= ATA_LBA;
1268
1269	tf.lbal = (new_sectors >> 0) & 0xff;
1270	tf.lbam = (new_sectors >> 8) & 0xff;
1271	tf.lbah = (new_sectors >> 16) & 0xff;
1272
1273	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274	if (err_mask) {
1275		ata_dev_warn(dev,
1276			     "failed to set max address (err_mask=0x%x)\n",
1277			     err_mask);
1278		if (err_mask == AC_ERR_DEV &&
1279		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280			return -EACCES;
1281		return -EIO;
1282	}
1283
1284	return 0;
1285}
1286
1287/**
1288 *	ata_hpa_resize		-	Resize a device with an HPA set
1289 *	@dev: Device to resize
1290 *
1291 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292 *	it if required to the full size of the media. The caller must check
1293 *	the drive has the HPA feature set enabled.
1294 *
1295 *	RETURNS:
1296 *	0 on success, -errno on failure.
1297 */
1298static int ata_hpa_resize(struct ata_device *dev)
1299{
1300	bool print_info = ata_dev_print_info(dev);
1301	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302	u64 sectors = ata_id_n_sectors(dev->id);
1303	u64 native_sectors;
1304	int rc;
1305
1306	/* do we need to do it? */
1307	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310		return 0;
1311
1312	/* read native max address */
1313	rc = ata_read_native_max_address(dev, &native_sectors);
1314	if (rc) {
1315		/* If device aborted the command or HPA isn't going to
1316		 * be unlocked, skip HPA resizing.
1317		 */
1318		if (rc == -EACCES || !unlock_hpa) {
1319			ata_dev_warn(dev,
1320				     "HPA support seems broken, skipping HPA handling\n");
1321			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322
1323			/* we can continue if device aborted the command */
1324			if (rc == -EACCES)
1325				rc = 0;
1326		}
1327
1328		return rc;
1329	}
1330	dev->n_native_sectors = native_sectors;
1331
1332	/* nothing to do? */
1333	if (native_sectors <= sectors || !unlock_hpa) {
1334		if (!print_info || native_sectors == sectors)
1335			return 0;
1336
1337		if (native_sectors > sectors)
1338			ata_dev_info(dev,
1339				"HPA detected: current %llu, native %llu\n",
1340				(unsigned long long)sectors,
1341				(unsigned long long)native_sectors);
1342		else if (native_sectors < sectors)
1343			ata_dev_warn(dev,
1344				"native sectors (%llu) is smaller than sectors (%llu)\n",
1345				(unsigned long long)native_sectors,
1346				(unsigned long long)sectors);
1347		return 0;
1348	}
1349
1350	/* let's unlock HPA */
1351	rc = ata_set_max_sectors(dev, native_sectors);
1352	if (rc == -EACCES) {
1353		/* if device aborted the command, skip HPA resizing */
1354		ata_dev_warn(dev,
1355			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356			     (unsigned long long)sectors,
1357			     (unsigned long long)native_sectors);
1358		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359		return 0;
1360	} else if (rc)
1361		return rc;
1362
1363	/* re-read IDENTIFY data */
1364	rc = ata_dev_reread_id(dev, 0);
1365	if (rc) {
1366		ata_dev_err(dev,
1367			    "failed to re-read IDENTIFY data after HPA resizing\n");
1368		return rc;
1369	}
1370
1371	if (print_info) {
1372		u64 new_sectors = ata_id_n_sectors(dev->id);
1373		ata_dev_info(dev,
1374			"HPA unlocked: %llu -> %llu, native %llu\n",
1375			(unsigned long long)sectors,
1376			(unsigned long long)new_sectors,
1377			(unsigned long long)native_sectors);
1378	}
1379
1380	return 0;
1381}
1382
1383/**
1384 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1385 *	@dev: device from which the information is fetched
1386 *	@id: IDENTIFY DEVICE page to dump
1387 *
1388 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1389 *	page.
1390 *
1391 *	LOCKING:
1392 *	caller.
1393 */
1394
1395static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396{
1397	ata_dev_dbg(dev,
1398		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1399		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1400		"88==0x%04x  93==0x%04x\n",
1401		id[49], id[53], id[63], id[64], id[75], id[80],
1402		id[81], id[82], id[83], id[84], id[88], id[93]);
1403}
1404
1405/**
1406 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407 *	@id: IDENTIFY data to compute xfer mask from
1408 *
1409 *	Compute the xfermask for this device. This is not as trivial
1410 *	as it seems if we must consider early devices correctly.
1411 *
1412 *	FIXME: pre IDE drive timing (do we care ?).
1413 *
1414 *	LOCKING:
1415 *	None.
1416 *
1417 *	RETURNS:
1418 *	Computed xfermask
1419 */
1420unsigned int ata_id_xfermask(const u16 *id)
1421{
1422	unsigned int pio_mask, mwdma_mask, udma_mask;
1423
1424	/* Usual case. Word 53 indicates word 64 is valid */
1425	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427		pio_mask <<= 3;
1428		pio_mask |= 0x7;
1429	} else {
1430		/* If word 64 isn't valid then Word 51 high byte holds
1431		 * the PIO timing number for the maximum. Turn it into
1432		 * a mask.
1433		 */
1434		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435		if (mode < 5)	/* Valid PIO range */
1436			pio_mask = (2 << mode) - 1;
1437		else
1438			pio_mask = 1;
1439
1440		/* But wait.. there's more. Design your standards by
1441		 * committee and you too can get a free iordy field to
1442		 * process. However it is the speeds not the modes that
1443		 * are supported... Note drivers using the timing API
1444		 * will get this right anyway
1445		 */
1446	}
1447
1448	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449
1450	if (ata_id_is_cfa(id)) {
1451		/*
1452		 *	Process compact flash extended modes
1453		 */
1454		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456
1457		if (pio)
1458			pio_mask |= (1 << 5);
1459		if (pio > 1)
1460			pio_mask |= (1 << 6);
1461		if (dma)
1462			mwdma_mask |= (1 << 3);
1463		if (dma > 1)
1464			mwdma_mask |= (1 << 4);
1465	}
1466
1467	udma_mask = 0;
1468	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470
1471	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472}
1473EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474
1475static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476{
1477	struct completion *waiting = qc->private_data;
1478
1479	complete(waiting);
1480}
1481
1482/**
1483 *	ata_exec_internal_sg - execute libata internal command
1484 *	@dev: Device to which the command is sent
1485 *	@tf: Taskfile registers for the command and the result
1486 *	@cdb: CDB for packet command
1487 *	@dma_dir: Data transfer direction of the command
1488 *	@sgl: sg list for the data buffer of the command
1489 *	@n_elem: Number of sg entries
1490 *	@timeout: Timeout in msecs (0 for default)
1491 *
1492 *	Executes libata internal command with timeout.  @tf contains
1493 *	command on entry and result on return.  Timeout and error
1494 *	conditions are reported via return value.  No recovery action
1495 *	is taken after a command times out.  It's caller's duty to
1496 *	clean up after timeout.
1497 *
1498 *	LOCKING:
1499 *	None.  Should be called with kernel context, might sleep.
1500 *
1501 *	RETURNS:
1502 *	Zero on success, AC_ERR_* mask on failure
1503 */
1504static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505				     struct ata_taskfile *tf, const u8 *cdb,
1506				     int dma_dir, struct scatterlist *sgl,
1507				     unsigned int n_elem, unsigned int timeout)
1508{
1509	struct ata_link *link = dev->link;
1510	struct ata_port *ap = link->ap;
1511	u8 command = tf->command;
1512	int auto_timeout = 0;
1513	struct ata_queued_cmd *qc;
 
1514	unsigned int preempted_tag;
1515	u32 preempted_sactive;
1516	u64 preempted_qc_active;
1517	int preempted_nr_active_links;
 
1518	DECLARE_COMPLETION_ONSTACK(wait);
1519	unsigned long flags;
1520	unsigned int err_mask;
1521	int rc;
1522
 
 
 
1523	spin_lock_irqsave(ap->lock, flags);
1524
1525	/* no internal command while frozen */
1526	if (ata_port_is_frozen(ap)) {
1527		spin_unlock_irqrestore(ap->lock, flags);
1528		return AC_ERR_SYSTEM;
1529	}
1530
1531	/* initialize internal qc */
1532	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1533
1534	qc->tag = ATA_TAG_INTERNAL;
1535	qc->hw_tag = 0;
1536	qc->scsicmd = NULL;
1537	qc->ap = ap;
1538	qc->dev = dev;
1539	ata_qc_reinit(qc);
1540
1541	preempted_tag = link->active_tag;
1542	preempted_sactive = link->sactive;
1543	preempted_qc_active = ap->qc_active;
1544	preempted_nr_active_links = ap->nr_active_links;
1545	link->active_tag = ATA_TAG_POISON;
1546	link->sactive = 0;
1547	ap->qc_active = 0;
1548	ap->nr_active_links = 0;
1549
1550	/* prepare & issue qc */
1551	qc->tf = *tf;
1552	if (cdb)
1553		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554
1555	/* some SATA bridges need us to indicate data xfer direction */
1556	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557	    dma_dir == DMA_FROM_DEVICE)
1558		qc->tf.feature |= ATAPI_DMADIR;
1559
1560	qc->flags |= ATA_QCFLAG_RESULT_TF;
1561	qc->dma_dir = dma_dir;
1562	if (dma_dir != DMA_NONE) {
1563		unsigned int i, buflen = 0;
1564		struct scatterlist *sg;
1565
1566		for_each_sg(sgl, sg, n_elem, i)
1567			buflen += sg->length;
1568
1569		ata_sg_init(qc, sgl, n_elem);
1570		qc->nbytes = buflen;
1571	}
1572
1573	qc->private_data = &wait;
1574	qc->complete_fn = ata_qc_complete_internal;
1575
1576	ata_qc_issue(qc);
1577
1578	spin_unlock_irqrestore(ap->lock, flags);
1579
1580	if (!timeout) {
1581		if (ata_probe_timeout)
1582			timeout = ata_probe_timeout * 1000;
1583		else {
1584			timeout = ata_internal_cmd_timeout(dev, command);
1585			auto_timeout = 1;
1586		}
1587	}
1588
1589	ata_eh_release(ap);
1590
1591	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1592
1593	ata_eh_acquire(ap);
1594
1595	ata_sff_flush_pio_task(ap);
1596
1597	if (!rc) {
1598		spin_lock_irqsave(ap->lock, flags);
1599
1600		/* We're racing with irq here.  If we lose, the
1601		 * following test prevents us from completing the qc
1602		 * twice.  If we win, the port is frozen and will be
1603		 * cleaned up by ->post_internal_cmd().
1604		 */
 
1605		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1606			qc->err_mask |= AC_ERR_TIMEOUT;
1607
1608			ata_port_freeze(ap);
1609
1610			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1611				     timeout, command);
1612		}
1613
1614		spin_unlock_irqrestore(ap->lock, flags);
1615	}
1616
1617	/* do post_internal_cmd */
1618	if (ap->ops->post_internal_cmd)
1619		ap->ops->post_internal_cmd(qc);
1620
1621	/* perform minimal error analysis */
1622	if (qc->flags & ATA_QCFLAG_EH) {
1623		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1624			qc->err_mask |= AC_ERR_DEV;
1625
1626		if (!qc->err_mask)
1627			qc->err_mask |= AC_ERR_OTHER;
1628
1629		if (qc->err_mask & ~AC_ERR_OTHER)
1630			qc->err_mask &= ~AC_ERR_OTHER;
1631	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1632		qc->result_tf.status |= ATA_SENSE;
1633	}
1634
1635	/* finish up */
1636	spin_lock_irqsave(ap->lock, flags);
1637
1638	*tf = qc->result_tf;
1639	err_mask = qc->err_mask;
1640
1641	ata_qc_free(qc);
1642	link->active_tag = preempted_tag;
1643	link->sactive = preempted_sactive;
1644	ap->qc_active = preempted_qc_active;
1645	ap->nr_active_links = preempted_nr_active_links;
1646
1647	spin_unlock_irqrestore(ap->lock, flags);
1648
1649	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1650		ata_internal_cmd_timed_out(dev, command);
1651
1652	return err_mask;
1653}
1654
1655/**
1656 *	ata_exec_internal - execute libata internal command
1657 *	@dev: Device to which the command is sent
1658 *	@tf: Taskfile registers for the command and the result
1659 *	@cdb: CDB for packet command
1660 *	@dma_dir: Data transfer direction of the command
1661 *	@buf: Data buffer of the command
1662 *	@buflen: Length of data buffer
1663 *	@timeout: Timeout in msecs (0 for default)
1664 *
1665 *	Wrapper around ata_exec_internal_sg() which takes simple
1666 *	buffer instead of sg list.
1667 *
1668 *	LOCKING:
1669 *	None.  Should be called with kernel context, might sleep.
1670 *
1671 *	RETURNS:
1672 *	Zero on success, AC_ERR_* mask on failure
1673 */
1674unsigned ata_exec_internal(struct ata_device *dev,
1675			   struct ata_taskfile *tf, const u8 *cdb,
1676			   int dma_dir, void *buf, unsigned int buflen,
1677			   unsigned int timeout)
1678{
1679	struct scatterlist *psg = NULL, sg;
1680	unsigned int n_elem = 0;
1681
1682	if (dma_dir != DMA_NONE) {
1683		WARN_ON(!buf);
1684		sg_init_one(&sg, buf, buflen);
1685		psg = &sg;
1686		n_elem++;
1687	}
1688
1689	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1690				    timeout);
1691}
1692
1693/**
1694 *	ata_pio_need_iordy	-	check if iordy needed
1695 *	@adev: ATA device
1696 *
1697 *	Check if the current speed of the device requires IORDY. Used
1698 *	by various controllers for chip configuration.
1699 */
1700unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1701{
1702	/* Don't set IORDY if we're preparing for reset.  IORDY may
1703	 * lead to controller lock up on certain controllers if the
1704	 * port is not occupied.  See bko#11703 for details.
1705	 */
1706	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1707		return 0;
1708	/* Controller doesn't support IORDY.  Probably a pointless
1709	 * check as the caller should know this.
1710	 */
1711	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1712		return 0;
1713	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1714	if (ata_id_is_cfa(adev->id)
1715	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1716		return 0;
1717	/* PIO3 and higher it is mandatory */
1718	if (adev->pio_mode > XFER_PIO_2)
1719		return 1;
1720	/* We turn it on when possible */
1721	if (ata_id_has_iordy(adev->id))
1722		return 1;
1723	return 0;
1724}
1725EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1726
1727/**
1728 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1729 *	@adev: ATA device
1730 *
1731 *	Compute the highest mode possible if we are not using iordy. Return
1732 *	-1 if no iordy mode is available.
1733 */
1734static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1735{
1736	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1737	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1738		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1739		/* Is the speed faster than the drive allows non IORDY ? */
1740		if (pio) {
1741			/* This is cycle times not frequency - watch the logic! */
1742			if (pio > 240)	/* PIO2 is 240nS per cycle */
1743				return 3 << ATA_SHIFT_PIO;
1744			return 7 << ATA_SHIFT_PIO;
1745		}
1746	}
1747	return 3 << ATA_SHIFT_PIO;
1748}
1749
1750/**
1751 *	ata_do_dev_read_id		-	default ID read method
1752 *	@dev: device
1753 *	@tf: proposed taskfile
1754 *	@id: data buffer
1755 *
1756 *	Issue the identify taskfile and hand back the buffer containing
1757 *	identify data. For some RAID controllers and for pre ATA devices
1758 *	this function is wrapped or replaced by the driver
1759 */
1760unsigned int ata_do_dev_read_id(struct ata_device *dev,
1761				struct ata_taskfile *tf, __le16 *id)
1762{
1763	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1764				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1765}
1766EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1767
1768/**
1769 *	ata_dev_read_id - Read ID data from the specified device
1770 *	@dev: target device
1771 *	@p_class: pointer to class of the target device (may be changed)
1772 *	@flags: ATA_READID_* flags
1773 *	@id: buffer to read IDENTIFY data into
1774 *
1775 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1776 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1777 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1778 *	for pre-ATA4 drives.
1779 *
1780 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1781 *	now we abort if we hit that case.
1782 *
1783 *	LOCKING:
1784 *	Kernel thread context (may sleep)
1785 *
1786 *	RETURNS:
1787 *	0 on success, -errno otherwise.
1788 */
1789int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1790		    unsigned int flags, u16 *id)
1791{
1792	struct ata_port *ap = dev->link->ap;
1793	unsigned int class = *p_class;
1794	struct ata_taskfile tf;
1795	unsigned int err_mask = 0;
1796	const char *reason;
1797	bool is_semb = class == ATA_DEV_SEMB;
1798	int may_fallback = 1, tried_spinup = 0;
1799	int rc;
1800
1801retry:
1802	ata_tf_init(dev, &tf);
1803
1804	switch (class) {
1805	case ATA_DEV_SEMB:
1806		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1807		fallthrough;
1808	case ATA_DEV_ATA:
1809	case ATA_DEV_ZAC:
1810		tf.command = ATA_CMD_ID_ATA;
1811		break;
1812	case ATA_DEV_ATAPI:
1813		tf.command = ATA_CMD_ID_ATAPI;
1814		break;
1815	default:
1816		rc = -ENODEV;
1817		reason = "unsupported class";
1818		goto err_out;
1819	}
1820
1821	tf.protocol = ATA_PROT_PIO;
1822
1823	/* Some devices choke if TF registers contain garbage.  Make
1824	 * sure those are properly initialized.
1825	 */
1826	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1827
1828	/* Device presence detection is unreliable on some
1829	 * controllers.  Always poll IDENTIFY if available.
1830	 */
1831	tf.flags |= ATA_TFLAG_POLLING;
1832
1833	if (ap->ops->read_id)
1834		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1835	else
1836		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1837
1838	if (err_mask) {
1839		if (err_mask & AC_ERR_NODEV_HINT) {
1840			ata_dev_dbg(dev, "NODEV after polling detection\n");
1841			return -ENOENT;
1842		}
1843
1844		if (is_semb) {
1845			ata_dev_info(dev,
1846		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1847			/* SEMB is not supported yet */
1848			*p_class = ATA_DEV_SEMB_UNSUP;
1849			return 0;
1850		}
1851
1852		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1853			/* Device or controller might have reported
1854			 * the wrong device class.  Give a shot at the
1855			 * other IDENTIFY if the current one is
1856			 * aborted by the device.
1857			 */
1858			if (may_fallback) {
1859				may_fallback = 0;
1860
1861				if (class == ATA_DEV_ATA)
1862					class = ATA_DEV_ATAPI;
1863				else
1864					class = ATA_DEV_ATA;
1865				goto retry;
1866			}
1867
1868			/* Control reaches here iff the device aborted
1869			 * both flavors of IDENTIFYs which happens
1870			 * sometimes with phantom devices.
1871			 */
1872			ata_dev_dbg(dev,
1873				    "both IDENTIFYs aborted, assuming NODEV\n");
1874			return -ENOENT;
1875		}
1876
1877		rc = -EIO;
1878		reason = "I/O error";
1879		goto err_out;
1880	}
1881
1882	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1883		ata_dev_info(dev, "dumping IDENTIFY data, "
1884			    "class=%d may_fallback=%d tried_spinup=%d\n",
1885			    class, may_fallback, tried_spinup);
1886		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1887			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1888	}
1889
1890	/* Falling back doesn't make sense if ID data was read
1891	 * successfully at least once.
1892	 */
1893	may_fallback = 0;
1894
1895	swap_buf_le16(id, ATA_ID_WORDS);
1896
1897	/* sanity check */
1898	rc = -EINVAL;
1899	reason = "device reports invalid type";
1900
1901	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1902		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1903			goto err_out;
1904		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1905							ata_id_is_ata(id)) {
1906			ata_dev_dbg(dev,
1907				"host indicates ignore ATA devices, ignored\n");
1908			return -ENOENT;
1909		}
1910	} else {
1911		if (ata_id_is_ata(id))
1912			goto err_out;
1913	}
1914
1915	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1916		tried_spinup = 1;
1917		/*
1918		 * Drive powered-up in standby mode, and requires a specific
1919		 * SET_FEATURES spin-up subcommand before it will accept
1920		 * anything other than the original IDENTIFY command.
1921		 */
1922		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1923		if (err_mask && id[2] != 0x738c) {
1924			rc = -EIO;
1925			reason = "SPINUP failed";
1926			goto err_out;
1927		}
1928		/*
1929		 * If the drive initially returned incomplete IDENTIFY info,
1930		 * we now must reissue the IDENTIFY command.
1931		 */
1932		if (id[2] == 0x37c8)
1933			goto retry;
1934	}
1935
1936	if ((flags & ATA_READID_POSTRESET) &&
1937	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1938		/*
1939		 * The exact sequence expected by certain pre-ATA4 drives is:
1940		 * SRST RESET
1941		 * IDENTIFY (optional in early ATA)
1942		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1943		 * anything else..
1944		 * Some drives were very specific about that exact sequence.
1945		 *
1946		 * Note that ATA4 says lba is mandatory so the second check
1947		 * should never trigger.
1948		 */
1949		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1950			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1951			if (err_mask) {
1952				rc = -EIO;
1953				reason = "INIT_DEV_PARAMS failed";
1954				goto err_out;
1955			}
1956
1957			/* current CHS translation info (id[53-58]) might be
1958			 * changed. reread the identify device info.
1959			 */
1960			flags &= ~ATA_READID_POSTRESET;
1961			goto retry;
1962		}
1963	}
1964
1965	*p_class = class;
1966
1967	return 0;
1968
1969 err_out:
1970	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971		     reason, err_mask);
1972	return rc;
1973}
1974
1975bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1976			   bool set_active)
1977{
1978	/* Only applies to ATA and ZAC devices */
1979	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1980		return false;
1981
1982	ata_tf_init(dev, tf);
1983	tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1984	tf->protocol = ATA_PROT_NODATA;
1985
1986	if (set_active) {
1987		/* VERIFY for 1 sector at lba=0 */
1988		tf->command = ATA_CMD_VERIFY;
1989		tf->nsect = 1;
1990		if (dev->flags & ATA_DFLAG_LBA) {
1991			tf->flags |= ATA_TFLAG_LBA;
1992			tf->device |= ATA_LBA;
1993		} else {
1994			/* CHS */
1995			tf->lbal = 0x1; /* sect */
1996		}
1997	} else {
1998		tf->command = ATA_CMD_STANDBYNOW1;
1999	}
2000
2001	return true;
2002}
2003
2004static bool ata_dev_power_is_active(struct ata_device *dev)
2005{
2006	struct ata_taskfile tf;
2007	unsigned int err_mask;
2008
2009	ata_tf_init(dev, &tf);
2010	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2011	tf.protocol = ATA_PROT_NODATA;
2012	tf.command = ATA_CMD_CHK_POWER;
2013
2014	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2015	if (err_mask) {
2016		ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
2017			    err_mask);
2018		/*
2019		 * Assume we are in standby mode so that we always force a
2020		 * spinup in ata_dev_power_set_active().
2021		 */
2022		return false;
2023	}
2024
2025	ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2026
2027	/* Active or idle */
2028	return tf.nsect == 0xff;
2029}
2030
2031/**
2032 *	ata_dev_power_set_standby - Set a device power mode to standby
2033 *	@dev: target device
2034 *
2035 *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2036 *	For an HDD device, this spins down the disks.
2037 *
2038 *	LOCKING:
2039 *	Kernel thread context (may sleep).
2040 */
2041void ata_dev_power_set_standby(struct ata_device *dev)
2042{
2043	unsigned long ap_flags = dev->link->ap->flags;
2044	struct ata_taskfile tf;
2045	unsigned int err_mask;
2046
2047	/* If the device is already sleeping or in standby, do nothing. */
2048	if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2049	    !ata_dev_power_is_active(dev))
2050		return;
2051
2052	/*
2053	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2054	 * causing some drives to spin up and down again. For these, do nothing
2055	 * if we are being called on shutdown.
2056	 */
2057	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2058	    system_state == SYSTEM_POWER_OFF)
2059		return;
2060
2061	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2062	    system_entering_hibernation())
2063		return;
2064
2065	/* Issue STANDBY IMMEDIATE command only if supported by the device */
2066	if (!ata_dev_power_init_tf(dev, &tf, false))
2067		return;
2068
2069	ata_dev_notice(dev, "Entering standby power mode\n");
2070
2071	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2072	if (err_mask)
2073		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2074			    err_mask);
2075}
2076
2077/**
2078 *	ata_dev_power_set_active -  Set a device power mode to active
2079 *	@dev: target device
2080 *
2081 *	Issue a VERIFY command to enter to ensure that the device is in the
2082 *	active power mode. For a spun-down HDD (standby or idle power mode),
2083 *	the VERIFY command will complete after the disk spins up.
2084 *
2085 *	LOCKING:
2086 *	Kernel thread context (may sleep).
2087 */
2088void ata_dev_power_set_active(struct ata_device *dev)
2089{
2090	struct ata_taskfile tf;
2091	unsigned int err_mask;
2092
2093	/*
2094	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2095	 * if supported by the device.
2096	 */
2097	if (!ata_dev_power_init_tf(dev, &tf, true))
2098		return;
2099
2100	/*
2101	 * Check the device power state & condition and force a spinup with
2102	 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2103	 */
2104	if (ata_dev_power_is_active(dev))
2105		return;
2106
2107	ata_dev_notice(dev, "Entering active power mode\n");
2108
2109	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2110	if (err_mask)
2111		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2112			    err_mask);
2113}
2114
2115/**
2116 *	ata_read_log_page - read a specific log page
2117 *	@dev: target device
2118 *	@log: log to read
2119 *	@page: page to read
2120 *	@buf: buffer to store read page
2121 *	@sectors: number of sectors to read
2122 *
2123 *	Read log page using READ_LOG_EXT command.
2124 *
2125 *	LOCKING:
2126 *	Kernel thread context (may sleep).
2127 *
2128 *	RETURNS:
2129 *	0 on success, AC_ERR_* mask otherwise.
2130 */
2131unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2132			       u8 page, void *buf, unsigned int sectors)
2133{
2134	unsigned long ap_flags = dev->link->ap->flags;
2135	struct ata_taskfile tf;
2136	unsigned int err_mask;
2137	bool dma = false;
2138
2139	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2140
2141	/*
2142	 * Return error without actually issuing the command on controllers
2143	 * which e.g. lockup on a read log page.
2144	 */
2145	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2146		return AC_ERR_DEV;
2147
2148retry:
2149	ata_tf_init(dev, &tf);
2150	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2151	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2152		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2153		tf.protocol = ATA_PROT_DMA;
2154		dma = true;
2155	} else {
2156		tf.command = ATA_CMD_READ_LOG_EXT;
2157		tf.protocol = ATA_PROT_PIO;
2158		dma = false;
2159	}
2160	tf.lbal = log;
2161	tf.lbam = page;
2162	tf.nsect = sectors;
2163	tf.hob_nsect = sectors >> 8;
2164	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2165
2166	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2167				     buf, sectors * ATA_SECT_SIZE, 0);
2168
2169	if (err_mask) {
2170		if (dma) {
2171			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2172			if (!ata_port_is_frozen(dev->link->ap))
2173				goto retry;
2174		}
2175		ata_dev_err(dev,
2176			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2177			    (unsigned int)log, (unsigned int)page, err_mask);
2178	}
2179
2180	return err_mask;
2181}
2182
2183static int ata_log_supported(struct ata_device *dev, u8 log)
2184{
2185	struct ata_port *ap = dev->link->ap;
2186
2187	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2188		return 0;
2189
2190	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2191		return 0;
2192	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2193}
2194
2195static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2196{
2197	struct ata_port *ap = dev->link->ap;
2198	unsigned int err, i;
2199
2200	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2201		return false;
2202
2203	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2204		/*
2205		 * IDENTIFY DEVICE data log is defined as mandatory starting
2206		 * with ACS-3 (ATA version 10). Warn about the missing log
2207		 * for drives which implement this ATA level or above.
2208		 */
2209		if (ata_id_major_version(dev->id) >= 10)
2210			ata_dev_warn(dev,
2211				"ATA Identify Device Log not supported\n");
2212		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2213		return false;
2214	}
2215
2216	/*
2217	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2218	 * supported.
2219	 */
2220	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2221				1);
2222	if (err)
2223		return false;
2224
2225	for (i = 0; i < ap->sector_buf[8]; i++) {
2226		if (ap->sector_buf[9 + i] == page)
2227			return true;
2228	}
2229
2230	return false;
2231}
2232
2233static int ata_do_link_spd_horkage(struct ata_device *dev)
2234{
2235	struct ata_link *plink = ata_dev_phys_link(dev);
2236	u32 target, target_limit;
2237
2238	if (!sata_scr_valid(plink))
2239		return 0;
2240
2241	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2242		target = 1;
2243	else
2244		return 0;
2245
2246	target_limit = (1 << target) - 1;
2247
2248	/* if already on stricter limit, no need to push further */
2249	if (plink->sata_spd_limit <= target_limit)
2250		return 0;
2251
2252	plink->sata_spd_limit = target_limit;
2253
2254	/* Request another EH round by returning -EAGAIN if link is
2255	 * going faster than the target speed.  Forward progress is
2256	 * guaranteed by setting sata_spd_limit to target_limit above.
2257	 */
2258	if (plink->sata_spd > target) {
2259		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2260			     sata_spd_string(target));
2261		return -EAGAIN;
2262	}
2263	return 0;
2264}
2265
2266static inline u8 ata_dev_knobble(struct ata_device *dev)
2267{
2268	struct ata_port *ap = dev->link->ap;
2269
2270	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2271		return 0;
2272
2273	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2274}
2275
2276static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2277{
2278	struct ata_port *ap = dev->link->ap;
2279	unsigned int err_mask;
2280
2281	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2282		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2283		return;
2284	}
2285	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2286				     0, ap->sector_buf, 1);
2287	if (!err_mask) {
2288		u8 *cmds = dev->ncq_send_recv_cmds;
2289
2290		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2291		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2292
2293		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2294			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2295			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2296				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2297		}
2298	}
2299}
2300
2301static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2302{
2303	struct ata_port *ap = dev->link->ap;
2304	unsigned int err_mask;
2305
2306	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2307		ata_dev_warn(dev,
2308			     "NCQ Send/Recv Log not supported\n");
2309		return;
2310	}
2311	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2312				     0, ap->sector_buf, 1);
2313	if (!err_mask) {
2314		u8 *cmds = dev->ncq_non_data_cmds;
2315
2316		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2317	}
2318}
2319
2320static void ata_dev_config_ncq_prio(struct ata_device *dev)
2321{
2322	struct ata_port *ap = dev->link->ap;
2323	unsigned int err_mask;
2324
2325	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2326		return;
2327
2328	err_mask = ata_read_log_page(dev,
2329				     ATA_LOG_IDENTIFY_DEVICE,
2330				     ATA_LOG_SATA_SETTINGS,
2331				     ap->sector_buf,
2332				     1);
2333	if (err_mask)
2334		goto not_supported;
2335
2336	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2337		goto not_supported;
2338
2339	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2340
2341	return;
2342
2343not_supported:
2344	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2345	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2346}
2347
2348static bool ata_dev_check_adapter(struct ata_device *dev,
2349				  unsigned short vendor_id)
2350{
2351	struct pci_dev *pcidev = NULL;
2352	struct device *parent_dev = NULL;
2353
2354	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2355	     parent_dev = parent_dev->parent) {
2356		if (dev_is_pci(parent_dev)) {
2357			pcidev = to_pci_dev(parent_dev);
2358			if (pcidev->vendor == vendor_id)
2359				return true;
2360			break;
2361		}
2362	}
2363
2364	return false;
2365}
2366
2367static int ata_dev_config_ncq(struct ata_device *dev,
2368			       char *desc, size_t desc_sz)
2369{
2370	struct ata_port *ap = dev->link->ap;
2371	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2372	unsigned int err_mask;
2373	char *aa_desc = "";
2374
2375	if (!ata_id_has_ncq(dev->id)) {
2376		desc[0] = '\0';
2377		return 0;
2378	}
2379	if (!IS_ENABLED(CONFIG_SATA_HOST))
2380		return 0;
2381	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2382		snprintf(desc, desc_sz, "NCQ (not used)");
2383		return 0;
2384	}
2385
2386	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2387	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2388		snprintf(desc, desc_sz, "NCQ (not used)");
2389		return 0;
2390	}
2391
2392	if (ap->flags & ATA_FLAG_NCQ) {
2393		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2394		dev->flags |= ATA_DFLAG_NCQ;
2395	}
2396
2397	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2398		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2399		ata_id_has_fpdma_aa(dev->id)) {
2400		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2401			SATA_FPDMA_AA);
2402		if (err_mask) {
2403			ata_dev_err(dev,
2404				    "failed to enable AA (error_mask=0x%x)\n",
2405				    err_mask);
2406			if (err_mask != AC_ERR_DEV) {
2407				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2408				return -EIO;
2409			}
2410		} else
2411			aa_desc = ", AA";
2412	}
2413
2414	if (hdepth >= ddepth)
2415		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2416	else
2417		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2418			ddepth, aa_desc);
2419
2420	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2421		if (ata_id_has_ncq_send_and_recv(dev->id))
2422			ata_dev_config_ncq_send_recv(dev);
2423		if (ata_id_has_ncq_non_data(dev->id))
2424			ata_dev_config_ncq_non_data(dev);
2425		if (ata_id_has_ncq_prio(dev->id))
2426			ata_dev_config_ncq_prio(dev);
2427	}
2428
2429	return 0;
2430}
2431
2432static void ata_dev_config_sense_reporting(struct ata_device *dev)
2433{
2434	unsigned int err_mask;
2435
2436	if (!ata_id_has_sense_reporting(dev->id))
2437		return;
2438
2439	if (ata_id_sense_reporting_enabled(dev->id))
2440		return;
2441
2442	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2443	if (err_mask) {
2444		ata_dev_dbg(dev,
2445			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2446			    err_mask);
2447	}
2448}
2449
2450static void ata_dev_config_zac(struct ata_device *dev)
2451{
2452	struct ata_port *ap = dev->link->ap;
2453	unsigned int err_mask;
2454	u8 *identify_buf = ap->sector_buf;
2455
2456	dev->zac_zones_optimal_open = U32_MAX;
2457	dev->zac_zones_optimal_nonseq = U32_MAX;
2458	dev->zac_zones_max_open = U32_MAX;
2459
2460	/*
2461	 * Always set the 'ZAC' flag for Host-managed devices.
2462	 */
2463	if (dev->class == ATA_DEV_ZAC)
2464		dev->flags |= ATA_DFLAG_ZAC;
2465	else if (ata_id_zoned_cap(dev->id) == 0x01)
2466		/*
2467		 * Check for host-aware devices.
2468		 */
2469		dev->flags |= ATA_DFLAG_ZAC;
2470
2471	if (!(dev->flags & ATA_DFLAG_ZAC))
2472		return;
2473
2474	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2475		ata_dev_warn(dev,
2476			     "ATA Zoned Information Log not supported\n");
2477		return;
2478	}
2479
2480	/*
2481	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2482	 */
2483	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2484				     ATA_LOG_ZONED_INFORMATION,
2485				     identify_buf, 1);
2486	if (!err_mask) {
2487		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2488
2489		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2490		if ((zoned_cap >> 63))
2491			dev->zac_zoned_cap = (zoned_cap & 1);
2492		opt_open = get_unaligned_le64(&identify_buf[24]);
2493		if ((opt_open >> 63))
2494			dev->zac_zones_optimal_open = (u32)opt_open;
2495		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2496		if ((opt_nonseq >> 63))
2497			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2498		max_open = get_unaligned_le64(&identify_buf[40]);
2499		if ((max_open >> 63))
2500			dev->zac_zones_max_open = (u32)max_open;
2501	}
2502}
2503
2504static void ata_dev_config_trusted(struct ata_device *dev)
2505{
2506	struct ata_port *ap = dev->link->ap;
2507	u64 trusted_cap;
2508	unsigned int err;
2509
2510	if (!ata_id_has_trusted(dev->id))
2511		return;
2512
2513	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2514		ata_dev_warn(dev,
2515			     "Security Log not supported\n");
2516		return;
2517	}
2518
2519	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2520			ap->sector_buf, 1);
2521	if (err)
2522		return;
2523
2524	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2525	if (!(trusted_cap & (1ULL << 63))) {
2526		ata_dev_dbg(dev,
2527			    "Trusted Computing capability qword not valid!\n");
2528		return;
2529	}
2530
2531	if (trusted_cap & (1 << 0))
2532		dev->flags |= ATA_DFLAG_TRUSTED;
2533}
2534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2535static void ata_dev_config_cdl(struct ata_device *dev)
2536{
2537	struct ata_port *ap = dev->link->ap;
2538	unsigned int err_mask;
2539	bool cdl_enabled;
2540	u64 val;
 
2541
2542	if (ata_id_major_version(dev->id) < 12)
2543		goto not_supported;
2544
2545	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2546	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2547	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2548		goto not_supported;
2549
2550	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2551				     ATA_LOG_SUPPORTED_CAPABILITIES,
2552				     ap->sector_buf, 1);
2553	if (err_mask)
2554		goto not_supported;
2555
2556	/* Check Command Duration Limit Supported bits */
2557	val = get_unaligned_le64(&ap->sector_buf[168]);
2558	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2559		goto not_supported;
2560
2561	/* Warn the user if command duration guideline is not supported */
2562	if (!(val & BIT_ULL(1)))
2563		ata_dev_warn(dev,
2564			"Command duration guideline is not supported\n");
2565
2566	/*
2567	 * We must have support for the sense data for successful NCQ commands
2568	 * log indicated by the successful NCQ command sense data supported bit.
2569	 */
2570	val = get_unaligned_le64(&ap->sector_buf[8]);
2571	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2572		ata_dev_warn(dev,
2573			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2574		goto not_supported;
2575	}
2576
2577	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2578	if (!ata_id_has_ncq_autosense(dev->id)) {
2579		ata_dev_warn(dev,
2580			"CDL supported but NCQ autosense is not supported\n");
2581		goto not_supported;
2582	}
2583
2584	/*
2585	 * If CDL is marked as enabled, make sure the feature is enabled too.
2586	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2587	 */
2588	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2589				     ATA_LOG_CURRENT_SETTINGS,
2590				     ap->sector_buf, 1);
2591	if (err_mask)
2592		goto not_supported;
2593
2594	val = get_unaligned_le64(&ap->sector_buf[8]);
2595	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2596	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2597		if (!cdl_enabled) {
2598			/* Enable CDL on the device */
2599			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2600			if (err_mask) {
2601				ata_dev_err(dev,
2602					    "Enable CDL feature failed\n");
2603				goto not_supported;
2604			}
2605		}
2606	} else {
2607		if (cdl_enabled) {
2608			/* Disable CDL on the device */
2609			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2610			if (err_mask) {
2611				ata_dev_err(dev,
2612					    "Disable CDL feature failed\n");
2613				goto not_supported;
2614			}
2615		}
2616	}
2617
2618	/*
2619	 * While CDL itself has to be enabled using sysfs, CDL requires that
2620	 * sense data for successful NCQ commands is enabled to work properly.
2621	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2622	 * if supported.
2623	 */
2624	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2625		err_mask = ata_dev_set_feature(dev,
2626					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2627		if (err_mask) {
2628			ata_dev_warn(dev,
2629				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2630				     err_mask);
2631			goto not_supported;
2632		}
2633	}
2634
2635	/*
2636	 * Allocate a buffer to handle reading the sense data for successful
2637	 * NCQ Commands log page for commands using a CDL with one of the limit
2638	 * policy set to 0xD (successful completion with sense data available
2639	 * bit set).
2640	 */
2641	if (!ap->ncq_sense_buf) {
2642		ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2643		if (!ap->ncq_sense_buf)
2644			goto not_supported;
2645	}
2646
2647	/*
2648	 * Command duration limits is supported: cache the CDL log page 18h
2649	 * (command duration descriptors).
2650	 */
2651	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2652	if (err_mask) {
2653		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2654		goto not_supported;
2655	}
2656
2657	memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2658	dev->flags |= ATA_DFLAG_CDL;
2659
2660	return;
2661
2662not_supported:
2663	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2664	kfree(ap->ncq_sense_buf);
2665	ap->ncq_sense_buf = NULL;
2666}
2667
2668static int ata_dev_config_lba(struct ata_device *dev)
2669{
2670	const u16 *id = dev->id;
2671	const char *lba_desc;
2672	char ncq_desc[32];
2673	int ret;
2674
2675	dev->flags |= ATA_DFLAG_LBA;
2676
2677	if (ata_id_has_lba48(id)) {
2678		lba_desc = "LBA48";
2679		dev->flags |= ATA_DFLAG_LBA48;
2680		if (dev->n_sectors >= (1UL << 28) &&
2681		    ata_id_has_flush_ext(id))
2682			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2683	} else {
2684		lba_desc = "LBA";
2685	}
2686
2687	/* config NCQ */
2688	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2689
2690	/* print device info to dmesg */
2691	if (ata_dev_print_info(dev))
2692		ata_dev_info(dev,
2693			     "%llu sectors, multi %u: %s %s\n",
2694			     (unsigned long long)dev->n_sectors,
2695			     dev->multi_count, lba_desc, ncq_desc);
2696
2697	return ret;
2698}
2699
2700static void ata_dev_config_chs(struct ata_device *dev)
2701{
2702	const u16 *id = dev->id;
2703
2704	if (ata_id_current_chs_valid(id)) {
2705		/* Current CHS translation is valid. */
2706		dev->cylinders = id[54];
2707		dev->heads     = id[55];
2708		dev->sectors   = id[56];
2709	} else {
2710		/* Default translation */
2711		dev->cylinders	= id[1];
2712		dev->heads	= id[3];
2713		dev->sectors	= id[6];
2714	}
2715
2716	/* print device info to dmesg */
2717	if (ata_dev_print_info(dev))
2718		ata_dev_info(dev,
2719			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2720			     (unsigned long long)dev->n_sectors,
2721			     dev->multi_count, dev->cylinders,
2722			     dev->heads, dev->sectors);
2723}
2724
2725static void ata_dev_config_fua(struct ata_device *dev)
2726{
2727	/* Ignore FUA support if its use is disabled globally */
2728	if (!libata_fua)
2729		goto nofua;
2730
2731	/* Ignore devices without support for WRITE DMA FUA EXT */
2732	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2733		goto nofua;
2734
2735	/* Ignore known bad devices and devices that lack NCQ support */
2736	if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2737		goto nofua;
2738
2739	dev->flags |= ATA_DFLAG_FUA;
2740
2741	return;
2742
2743nofua:
2744	dev->flags &= ~ATA_DFLAG_FUA;
2745}
2746
2747static void ata_dev_config_devslp(struct ata_device *dev)
2748{
2749	u8 *sata_setting = dev->link->ap->sector_buf;
2750	unsigned int err_mask;
2751	int i, j;
2752
2753	/*
2754	 * Check device sleep capability. Get DevSlp timing variables
2755	 * from SATA Settings page of Identify Device Data Log.
2756	 */
2757	if (!ata_id_has_devslp(dev->id) ||
2758	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2759		return;
2760
2761	err_mask = ata_read_log_page(dev,
2762				     ATA_LOG_IDENTIFY_DEVICE,
2763				     ATA_LOG_SATA_SETTINGS,
2764				     sata_setting, 1);
2765	if (err_mask)
2766		return;
2767
2768	dev->flags |= ATA_DFLAG_DEVSLP;
2769	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2770		j = ATA_LOG_DEVSLP_OFFSET + i;
2771		dev->devslp_timing[i] = sata_setting[j];
2772	}
2773}
2774
2775static void ata_dev_config_cpr(struct ata_device *dev)
2776{
2777	unsigned int err_mask;
2778	size_t buf_len;
2779	int i, nr_cpr = 0;
2780	struct ata_cpr_log *cpr_log = NULL;
2781	u8 *desc, *buf = NULL;
2782
2783	if (ata_id_major_version(dev->id) < 11)
2784		goto out;
2785
2786	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2787	if (buf_len == 0)
2788		goto out;
2789
2790	/*
2791	 * Read the concurrent positioning ranges log (0x47). We can have at
2792	 * most 255 32B range descriptors plus a 64B header. This log varies in
2793	 * size, so use the size reported in the GPL directory. Reading beyond
2794	 * the supported length will result in an error.
2795	 */
2796	buf_len <<= 9;
2797	buf = kzalloc(buf_len, GFP_KERNEL);
2798	if (!buf)
2799		goto out;
2800
2801	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2802				     0, buf, buf_len >> 9);
2803	if (err_mask)
2804		goto out;
2805
2806	nr_cpr = buf[0];
2807	if (!nr_cpr)
2808		goto out;
2809
2810	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2811	if (!cpr_log)
2812		goto out;
2813
2814	cpr_log->nr_cpr = nr_cpr;
2815	desc = &buf[64];
2816	for (i = 0; i < nr_cpr; i++, desc += 32) {
2817		cpr_log->cpr[i].num = desc[0];
2818		cpr_log->cpr[i].num_storage_elements = desc[1];
2819		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2820		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2821	}
2822
2823out:
2824	swap(dev->cpr_log, cpr_log);
2825	kfree(cpr_log);
2826	kfree(buf);
2827}
2828
2829static void ata_dev_print_features(struct ata_device *dev)
2830{
2831	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2832		return;
2833
2834	ata_dev_info(dev,
2835		     "Features:%s%s%s%s%s%s%s%s\n",
2836		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2837		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2838		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2839		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2840		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2841		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2842		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2843		     dev->cpr_log ? " CPR" : "");
2844}
2845
2846/**
2847 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2848 *	@dev: Target device to configure
2849 *
2850 *	Configure @dev according to @dev->id.  Generic and low-level
2851 *	driver specific fixups are also applied.
2852 *
2853 *	LOCKING:
2854 *	Kernel thread context (may sleep)
2855 *
2856 *	RETURNS:
2857 *	0 on success, -errno otherwise
2858 */
2859int ata_dev_configure(struct ata_device *dev)
2860{
2861	struct ata_port *ap = dev->link->ap;
2862	bool print_info = ata_dev_print_info(dev);
2863	const u16 *id = dev->id;
2864	unsigned int xfer_mask;
2865	unsigned int err_mask;
2866	char revbuf[7];		/* XYZ-99\0 */
2867	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2868	char modelbuf[ATA_ID_PROD_LEN+1];
2869	int rc;
2870
2871	if (!ata_dev_enabled(dev)) {
2872		ata_dev_dbg(dev, "no device\n");
2873		return 0;
2874	}
2875
2876	/* set horkage */
2877	dev->horkage |= ata_dev_blacklisted(dev);
2878	ata_force_horkage(dev);
2879
2880	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2881		ata_dev_info(dev, "unsupported device, disabling\n");
2882		ata_dev_disable(dev);
2883		return 0;
2884	}
2885
2886	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2887	    dev->class == ATA_DEV_ATAPI) {
2888		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2889			     atapi_enabled ? "not supported with this driver"
2890			     : "disabled");
2891		ata_dev_disable(dev);
2892		return 0;
2893	}
2894
2895	rc = ata_do_link_spd_horkage(dev);
2896	if (rc)
2897		return rc;
2898
2899	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2900	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2901	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2902		dev->horkage |= ATA_HORKAGE_NOLPM;
2903
2904	if (ap->flags & ATA_FLAG_NO_LPM)
2905		dev->horkage |= ATA_HORKAGE_NOLPM;
2906
2907	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2908		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2909		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2910	}
2911
2912	/* let ACPI work its magic */
2913	rc = ata_acpi_on_devcfg(dev);
2914	if (rc)
2915		return rc;
2916
2917	/* massage HPA, do it early as it might change IDENTIFY data */
2918	rc = ata_hpa_resize(dev);
2919	if (rc)
2920		return rc;
2921
2922	/* print device capabilities */
2923	ata_dev_dbg(dev,
2924		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2925		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2926		    __func__,
2927		    id[49], id[82], id[83], id[84],
2928		    id[85], id[86], id[87], id[88]);
2929
2930	/* initialize to-be-configured parameters */
2931	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2932	dev->max_sectors = 0;
2933	dev->cdb_len = 0;
2934	dev->n_sectors = 0;
2935	dev->cylinders = 0;
2936	dev->heads = 0;
2937	dev->sectors = 0;
2938	dev->multi_count = 0;
2939
2940	/*
2941	 * common ATA, ATAPI feature tests
2942	 */
2943
2944	/* find max transfer mode; for printk only */
2945	xfer_mask = ata_id_xfermask(id);
2946
2947	ata_dump_id(dev, id);
2948
2949	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2950	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2951			sizeof(fwrevbuf));
2952
2953	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2954			sizeof(modelbuf));
2955
2956	/* ATA-specific feature tests */
2957	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2958		if (ata_id_is_cfa(id)) {
2959			/* CPRM may make this media unusable */
2960			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2961				ata_dev_warn(dev,
2962	"supports DRM functions and may not be fully accessible\n");
2963			snprintf(revbuf, 7, "CFA");
2964		} else {
2965			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2966			/* Warn the user if the device has TPM extensions */
2967			if (ata_id_has_tpm(id))
2968				ata_dev_warn(dev,
2969	"supports DRM functions and may not be fully accessible\n");
2970		}
2971
2972		dev->n_sectors = ata_id_n_sectors(id);
2973
2974		/* get current R/W Multiple count setting */
2975		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2976			unsigned int max = dev->id[47] & 0xff;
2977			unsigned int cnt = dev->id[59] & 0xff;
2978			/* only recognize/allow powers of two here */
2979			if (is_power_of_2(max) && is_power_of_2(cnt))
2980				if (cnt <= max)
2981					dev->multi_count = cnt;
2982		}
2983
2984		/* print device info to dmesg */
2985		if (print_info)
2986			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2987				     revbuf, modelbuf, fwrevbuf,
2988				     ata_mode_string(xfer_mask));
2989
2990		if (ata_id_has_lba(id)) {
2991			rc = ata_dev_config_lba(dev);
2992			if (rc)
2993				return rc;
2994		} else {
2995			ata_dev_config_chs(dev);
2996		}
2997
2998		ata_dev_config_fua(dev);
2999		ata_dev_config_devslp(dev);
3000		ata_dev_config_sense_reporting(dev);
3001		ata_dev_config_zac(dev);
3002		ata_dev_config_trusted(dev);
3003		ata_dev_config_cpr(dev);
3004		ata_dev_config_cdl(dev);
3005		dev->cdb_len = 32;
3006
3007		if (print_info)
3008			ata_dev_print_features(dev);
3009	}
3010
3011	/* ATAPI-specific feature tests */
3012	else if (dev->class == ATA_DEV_ATAPI) {
3013		const char *cdb_intr_string = "";
3014		const char *atapi_an_string = "";
3015		const char *dma_dir_string = "";
3016		u32 sntf;
3017
3018		rc = atapi_cdb_len(id);
3019		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3020			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3021			rc = -EINVAL;
3022			goto err_out_nosup;
3023		}
3024		dev->cdb_len = (unsigned int) rc;
3025
3026		/* Enable ATAPI AN if both the host and device have
3027		 * the support.  If PMP is attached, SNTF is required
3028		 * to enable ATAPI AN to discern between PHY status
3029		 * changed notifications and ATAPI ANs.
3030		 */
3031		if (atapi_an &&
3032		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3033		    (!sata_pmp_attached(ap) ||
3034		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3035			/* issue SET feature command to turn this on */
3036			err_mask = ata_dev_set_feature(dev,
3037					SETFEATURES_SATA_ENABLE, SATA_AN);
3038			if (err_mask)
3039				ata_dev_err(dev,
3040					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
3041					    err_mask);
3042			else {
3043				dev->flags |= ATA_DFLAG_AN;
3044				atapi_an_string = ", ATAPI AN";
3045			}
3046		}
3047
3048		if (ata_id_cdb_intr(dev->id)) {
3049			dev->flags |= ATA_DFLAG_CDB_INTR;
3050			cdb_intr_string = ", CDB intr";
3051		}
3052
3053		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
 
3054			dev->flags |= ATA_DFLAG_DMADIR;
3055			dma_dir_string = ", DMADIR";
3056		}
3057
3058		if (ata_id_has_da(dev->id)) {
3059			dev->flags |= ATA_DFLAG_DA;
3060			zpodd_init(dev);
3061		}
3062
3063		/* print device info to dmesg */
3064		if (print_info)
3065			ata_dev_info(dev,
3066				     "ATAPI: %s, %s, max %s%s%s%s\n",
3067				     modelbuf, fwrevbuf,
3068				     ata_mode_string(xfer_mask),
3069				     cdb_intr_string, atapi_an_string,
3070				     dma_dir_string);
3071	}
3072
3073	/* determine max_sectors */
3074	dev->max_sectors = ATA_MAX_SECTORS;
3075	if (dev->flags & ATA_DFLAG_LBA48)
3076		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3077
3078	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3079	   200 sectors */
3080	if (ata_dev_knobble(dev)) {
3081		if (print_info)
3082			ata_dev_info(dev, "applying bridge limits\n");
3083		dev->udma_mask &= ATA_UDMA5;
3084		dev->max_sectors = ATA_MAX_SECTORS;
3085	}
3086
3087	if ((dev->class == ATA_DEV_ATAPI) &&
3088	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3089		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3090		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3091	}
3092
3093	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3094		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3095					 dev->max_sectors);
3096
3097	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3098		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3099					 dev->max_sectors);
3100
3101	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3102		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3103
3104	if (ap->ops->dev_config)
3105		ap->ops->dev_config(dev);
3106
3107	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3108		/* Let the user know. We don't want to disallow opens for
3109		   rescue purposes, or in case the vendor is just a blithering
3110		   idiot. Do this after the dev_config call as some controllers
3111		   with buggy firmware may want to avoid reporting false device
3112		   bugs */
3113
3114		if (print_info) {
3115			ata_dev_warn(dev,
3116"Drive reports diagnostics failure. This may indicate a drive\n");
3117			ata_dev_warn(dev,
3118"fault or invalid emulation. Contact drive vendor for information.\n");
3119		}
3120	}
3121
3122	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3123		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3124		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3125	}
3126
3127	return 0;
3128
3129err_out_nosup:
3130	return rc;
3131}
3132
3133/**
3134 *	ata_cable_40wire	-	return 40 wire cable type
3135 *	@ap: port
3136 *
3137 *	Helper method for drivers which want to hardwire 40 wire cable
3138 *	detection.
3139 */
3140
3141int ata_cable_40wire(struct ata_port *ap)
3142{
3143	return ATA_CBL_PATA40;
3144}
3145EXPORT_SYMBOL_GPL(ata_cable_40wire);
3146
3147/**
3148 *	ata_cable_80wire	-	return 80 wire cable type
3149 *	@ap: port
3150 *
3151 *	Helper method for drivers which want to hardwire 80 wire cable
3152 *	detection.
3153 */
3154
3155int ata_cable_80wire(struct ata_port *ap)
3156{
3157	return ATA_CBL_PATA80;
3158}
3159EXPORT_SYMBOL_GPL(ata_cable_80wire);
3160
3161/**
3162 *	ata_cable_unknown	-	return unknown PATA cable.
3163 *	@ap: port
3164 *
3165 *	Helper method for drivers which have no PATA cable detection.
3166 */
3167
3168int ata_cable_unknown(struct ata_port *ap)
3169{
3170	return ATA_CBL_PATA_UNK;
3171}
3172EXPORT_SYMBOL_GPL(ata_cable_unknown);
3173
3174/**
3175 *	ata_cable_ignore	-	return ignored PATA cable.
3176 *	@ap: port
3177 *
3178 *	Helper method for drivers which don't use cable type to limit
3179 *	transfer mode.
3180 */
3181int ata_cable_ignore(struct ata_port *ap)
3182{
3183	return ATA_CBL_PATA_IGN;
3184}
3185EXPORT_SYMBOL_GPL(ata_cable_ignore);
3186
3187/**
3188 *	ata_cable_sata	-	return SATA cable type
3189 *	@ap: port
3190 *
3191 *	Helper method for drivers which have SATA cables
3192 */
3193
3194int ata_cable_sata(struct ata_port *ap)
3195{
3196	return ATA_CBL_SATA;
3197}
3198EXPORT_SYMBOL_GPL(ata_cable_sata);
3199
3200/**
3201 *	sata_print_link_status - Print SATA link status
3202 *	@link: SATA link to printk link status about
3203 *
3204 *	This function prints link speed and status of a SATA link.
3205 *
3206 *	LOCKING:
3207 *	None.
3208 */
3209static void sata_print_link_status(struct ata_link *link)
3210{
3211	u32 sstatus, scontrol, tmp;
3212
3213	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3214		return;
3215	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3216		return;
3217
3218	if (ata_phys_link_online(link)) {
3219		tmp = (sstatus >> 4) & 0xf;
3220		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3221			      sata_spd_string(tmp), sstatus, scontrol);
3222	} else {
3223		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3224			      sstatus, scontrol);
3225	}
3226}
3227
3228/**
3229 *	ata_dev_pair		-	return other device on cable
3230 *	@adev: device
3231 *
3232 *	Obtain the other device on the same cable, or if none is
3233 *	present NULL is returned
3234 */
3235
3236struct ata_device *ata_dev_pair(struct ata_device *adev)
3237{
3238	struct ata_link *link = adev->link;
3239	struct ata_device *pair = &link->device[1 - adev->devno];
3240	if (!ata_dev_enabled(pair))
3241		return NULL;
3242	return pair;
3243}
3244EXPORT_SYMBOL_GPL(ata_dev_pair);
3245
3246/**
3247 *	sata_down_spd_limit - adjust SATA spd limit downward
3248 *	@link: Link to adjust SATA spd limit for
3249 *	@spd_limit: Additional limit
3250 *
3251 *	Adjust SATA spd limit of @link downward.  Note that this
3252 *	function only adjusts the limit.  The change must be applied
3253 *	using sata_set_spd().
3254 *
3255 *	If @spd_limit is non-zero, the speed is limited to equal to or
3256 *	lower than @spd_limit if such speed is supported.  If
3257 *	@spd_limit is slower than any supported speed, only the lowest
3258 *	supported speed is allowed.
3259 *
3260 *	LOCKING:
3261 *	Inherited from caller.
3262 *
3263 *	RETURNS:
3264 *	0 on success, negative errno on failure
3265 */
3266int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3267{
3268	u32 sstatus, spd, mask;
3269	int rc, bit;
3270
3271	if (!sata_scr_valid(link))
3272		return -EOPNOTSUPP;
3273
3274	/* If SCR can be read, use it to determine the current SPD.
3275	 * If not, use cached value in link->sata_spd.
3276	 */
3277	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3278	if (rc == 0 && ata_sstatus_online(sstatus))
3279		spd = (sstatus >> 4) & 0xf;
3280	else
3281		spd = link->sata_spd;
3282
3283	mask = link->sata_spd_limit;
3284	if (mask <= 1)
3285		return -EINVAL;
3286
3287	/* unconditionally mask off the highest bit */
3288	bit = fls(mask) - 1;
3289	mask &= ~(1 << bit);
3290
3291	/*
3292	 * Mask off all speeds higher than or equal to the current one.  At
3293	 * this point, if current SPD is not available and we previously
3294	 * recorded the link speed from SStatus, the driver has already
3295	 * masked off the highest bit so mask should already be 1 or 0.
3296	 * Otherwise, we should not force 1.5Gbps on a link where we have
3297	 * not previously recorded speed from SStatus.  Just return in this
3298	 * case.
3299	 */
3300	if (spd > 1)
3301		mask &= (1 << (spd - 1)) - 1;
3302	else if (link->sata_spd)
3303		return -EINVAL;
3304
3305	/* were we already at the bottom? */
3306	if (!mask)
3307		return -EINVAL;
3308
3309	if (spd_limit) {
3310		if (mask & ((1 << spd_limit) - 1))
3311			mask &= (1 << spd_limit) - 1;
3312		else {
3313			bit = ffs(mask) - 1;
3314			mask = 1 << bit;
3315		}
3316	}
3317
3318	link->sata_spd_limit = mask;
3319
3320	ata_link_warn(link, "limiting SATA link speed to %s\n",
3321		      sata_spd_string(fls(mask)));
3322
3323	return 0;
3324}
3325
3326#ifdef CONFIG_ATA_ACPI
3327/**
3328 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3329 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3330 *	@cycle: cycle duration in ns
3331 *
3332 *	Return matching xfer mode for @cycle.  The returned mode is of
3333 *	the transfer type specified by @xfer_shift.  If @cycle is too
3334 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3335 *	than the fastest known mode, the fasted mode is returned.
3336 *
3337 *	LOCKING:
3338 *	None.
3339 *
3340 *	RETURNS:
3341 *	Matching xfer_mode, 0xff if no match found.
3342 */
3343u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3344{
3345	u8 base_mode = 0xff, last_mode = 0xff;
3346	const struct ata_xfer_ent *ent;
3347	const struct ata_timing *t;
3348
3349	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3350		if (ent->shift == xfer_shift)
3351			base_mode = ent->base;
3352
3353	for (t = ata_timing_find_mode(base_mode);
3354	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3355		unsigned short this_cycle;
3356
3357		switch (xfer_shift) {
3358		case ATA_SHIFT_PIO:
3359		case ATA_SHIFT_MWDMA:
3360			this_cycle = t->cycle;
3361			break;
3362		case ATA_SHIFT_UDMA:
3363			this_cycle = t->udma;
3364			break;
3365		default:
3366			return 0xff;
3367		}
3368
3369		if (cycle > this_cycle)
3370			break;
3371
3372		last_mode = t->mode;
3373	}
3374
3375	return last_mode;
3376}
3377#endif
3378
3379/**
3380 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3381 *	@dev: Device to adjust xfer masks
3382 *	@sel: ATA_DNXFER_* selector
3383 *
3384 *	Adjust xfer masks of @dev downward.  Note that this function
3385 *	does not apply the change.  Invoking ata_set_mode() afterwards
3386 *	will apply the limit.
3387 *
3388 *	LOCKING:
3389 *	Inherited from caller.
3390 *
3391 *	RETURNS:
3392 *	0 on success, negative errno on failure
3393 */
3394int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3395{
3396	char buf[32];
3397	unsigned int orig_mask, xfer_mask;
3398	unsigned int pio_mask, mwdma_mask, udma_mask;
3399	int quiet, highbit;
3400
3401	quiet = !!(sel & ATA_DNXFER_QUIET);
3402	sel &= ~ATA_DNXFER_QUIET;
3403
3404	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3405						  dev->mwdma_mask,
3406						  dev->udma_mask);
3407	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3408
3409	switch (sel) {
3410	case ATA_DNXFER_PIO:
3411		highbit = fls(pio_mask) - 1;
3412		pio_mask &= ~(1 << highbit);
3413		break;
3414
3415	case ATA_DNXFER_DMA:
3416		if (udma_mask) {
3417			highbit = fls(udma_mask) - 1;
3418			udma_mask &= ~(1 << highbit);
3419			if (!udma_mask)
3420				return -ENOENT;
3421		} else if (mwdma_mask) {
3422			highbit = fls(mwdma_mask) - 1;
3423			mwdma_mask &= ~(1 << highbit);
3424			if (!mwdma_mask)
3425				return -ENOENT;
3426		}
3427		break;
3428
3429	case ATA_DNXFER_40C:
3430		udma_mask &= ATA_UDMA_MASK_40C;
3431		break;
3432
3433	case ATA_DNXFER_FORCE_PIO0:
3434		pio_mask &= 1;
3435		fallthrough;
3436	case ATA_DNXFER_FORCE_PIO:
3437		mwdma_mask = 0;
3438		udma_mask = 0;
3439		break;
3440
3441	default:
3442		BUG();
3443	}
3444
3445	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3446
3447	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3448		return -ENOENT;
3449
3450	if (!quiet) {
3451		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3452			snprintf(buf, sizeof(buf), "%s:%s",
3453				 ata_mode_string(xfer_mask),
3454				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3455		else
3456			snprintf(buf, sizeof(buf), "%s",
3457				 ata_mode_string(xfer_mask));
3458
3459		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3460	}
3461
3462	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3463			    &dev->udma_mask);
3464
3465	return 0;
3466}
3467
3468static int ata_dev_set_mode(struct ata_device *dev)
3469{
3470	struct ata_port *ap = dev->link->ap;
3471	struct ata_eh_context *ehc = &dev->link->eh_context;
3472	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3473	const char *dev_err_whine = "";
3474	int ign_dev_err = 0;
3475	unsigned int err_mask = 0;
3476	int rc;
3477
3478	dev->flags &= ~ATA_DFLAG_PIO;
3479	if (dev->xfer_shift == ATA_SHIFT_PIO)
3480		dev->flags |= ATA_DFLAG_PIO;
3481
3482	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3483		dev_err_whine = " (SET_XFERMODE skipped)";
3484	else {
3485		if (nosetxfer)
3486			ata_dev_warn(dev,
3487				     "NOSETXFER but PATA detected - can't "
3488				     "skip SETXFER, might malfunction\n");
3489		err_mask = ata_dev_set_xfermode(dev);
3490	}
3491
3492	if (err_mask & ~AC_ERR_DEV)
3493		goto fail;
3494
3495	/* revalidate */
3496	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3497	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3498	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3499	if (rc)
3500		return rc;
3501
3502	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3503		/* Old CFA may refuse this command, which is just fine */
3504		if (ata_id_is_cfa(dev->id))
3505			ign_dev_err = 1;
3506		/* Catch several broken garbage emulations plus some pre
3507		   ATA devices */
3508		if (ata_id_major_version(dev->id) == 0 &&
3509					dev->pio_mode <= XFER_PIO_2)
3510			ign_dev_err = 1;
3511		/* Some very old devices and some bad newer ones fail
3512		   any kind of SET_XFERMODE request but support PIO0-2
3513		   timings and no IORDY */
3514		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3515			ign_dev_err = 1;
3516	}
3517	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3518	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3519	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3520	    dev->dma_mode == XFER_MW_DMA_0 &&
3521	    (dev->id[63] >> 8) & 1)
3522		ign_dev_err = 1;
3523
3524	/* if the device is actually configured correctly, ignore dev err */
3525	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3526		ign_dev_err = 1;
3527
3528	if (err_mask & AC_ERR_DEV) {
3529		if (!ign_dev_err)
3530			goto fail;
3531		else
3532			dev_err_whine = " (device error ignored)";
3533	}
3534
3535	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3536		    dev->xfer_shift, (int)dev->xfer_mode);
3537
3538	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3539	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3540		ata_dev_info(dev, "configured for %s%s\n",
3541			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3542			     dev_err_whine);
3543
3544	return 0;
3545
3546 fail:
3547	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3548	return -EIO;
3549}
3550
3551/**
3552 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3553 *	@link: link on which timings will be programmed
3554 *	@r_failed_dev: out parameter for failed device
3555 *
3556 *	Standard implementation of the function used to tune and set
3557 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3558 *	ata_dev_set_mode() fails, pointer to the failing device is
3559 *	returned in @r_failed_dev.
3560 *
3561 *	LOCKING:
3562 *	PCI/etc. bus probe sem.
3563 *
3564 *	RETURNS:
3565 *	0 on success, negative errno otherwise
3566 */
3567
3568int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3569{
3570	struct ata_port *ap = link->ap;
3571	struct ata_device *dev;
3572	int rc = 0, used_dma = 0, found = 0;
3573
3574	/* step 1: calculate xfer_mask */
3575	ata_for_each_dev(dev, link, ENABLED) {
3576		unsigned int pio_mask, dma_mask;
3577		unsigned int mode_mask;
3578
3579		mode_mask = ATA_DMA_MASK_ATA;
3580		if (dev->class == ATA_DEV_ATAPI)
3581			mode_mask = ATA_DMA_MASK_ATAPI;
3582		else if (ata_id_is_cfa(dev->id))
3583			mode_mask = ATA_DMA_MASK_CFA;
3584
3585		ata_dev_xfermask(dev);
3586		ata_force_xfermask(dev);
3587
3588		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3589
3590		if (libata_dma_mask & mode_mask)
3591			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3592						     dev->udma_mask);
3593		else
3594			dma_mask = 0;
3595
3596		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3597		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3598
3599		found = 1;
3600		if (ata_dma_enabled(dev))
3601			used_dma = 1;
3602	}
3603	if (!found)
3604		goto out;
3605
3606	/* step 2: always set host PIO timings */
3607	ata_for_each_dev(dev, link, ENABLED) {
3608		if (dev->pio_mode == 0xff) {
3609			ata_dev_warn(dev, "no PIO support\n");
3610			rc = -EINVAL;
3611			goto out;
3612		}
3613
3614		dev->xfer_mode = dev->pio_mode;
3615		dev->xfer_shift = ATA_SHIFT_PIO;
3616		if (ap->ops->set_piomode)
3617			ap->ops->set_piomode(ap, dev);
3618	}
3619
3620	/* step 3: set host DMA timings */
3621	ata_for_each_dev(dev, link, ENABLED) {
3622		if (!ata_dma_enabled(dev))
3623			continue;
3624
3625		dev->xfer_mode = dev->dma_mode;
3626		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3627		if (ap->ops->set_dmamode)
3628			ap->ops->set_dmamode(ap, dev);
3629	}
3630
3631	/* step 4: update devices' xfer mode */
3632	ata_for_each_dev(dev, link, ENABLED) {
3633		rc = ata_dev_set_mode(dev);
3634		if (rc)
3635			goto out;
3636	}
3637
3638	/* Record simplex status. If we selected DMA then the other
3639	 * host channels are not permitted to do so.
3640	 */
3641	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3642		ap->host->simplex_claimed = ap;
3643
3644 out:
3645	if (rc)
3646		*r_failed_dev = dev;
3647	return rc;
3648}
3649EXPORT_SYMBOL_GPL(ata_do_set_mode);
3650
3651/**
3652 *	ata_wait_ready - wait for link to become ready
3653 *	@link: link to be waited on
3654 *	@deadline: deadline jiffies for the operation
3655 *	@check_ready: callback to check link readiness
3656 *
3657 *	Wait for @link to become ready.  @check_ready should return
3658 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3659 *	link doesn't seem to be occupied, other errno for other error
3660 *	conditions.
3661 *
3662 *	Transient -ENODEV conditions are allowed for
3663 *	ATA_TMOUT_FF_WAIT.
3664 *
3665 *	LOCKING:
3666 *	EH context.
3667 *
3668 *	RETURNS:
3669 *	0 if @link is ready before @deadline; otherwise, -errno.
3670 */
3671int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3672		   int (*check_ready)(struct ata_link *link))
3673{
3674	unsigned long start = jiffies;
3675	unsigned long nodev_deadline;
3676	int warned = 0;
3677
3678	/* choose which 0xff timeout to use, read comment in libata.h */
3679	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3680		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3681	else
3682		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3683
3684	/* Slave readiness can't be tested separately from master.  On
3685	 * M/S emulation configuration, this function should be called
3686	 * only on the master and it will handle both master and slave.
3687	 */
3688	WARN_ON(link == link->ap->slave_link);
3689
3690	if (time_after(nodev_deadline, deadline))
3691		nodev_deadline = deadline;
3692
3693	while (1) {
3694		unsigned long now = jiffies;
3695		int ready, tmp;
3696
3697		ready = tmp = check_ready(link);
3698		if (ready > 0)
3699			return 0;
3700
3701		/*
3702		 * -ENODEV could be transient.  Ignore -ENODEV if link
3703		 * is online.  Also, some SATA devices take a long
3704		 * time to clear 0xff after reset.  Wait for
3705		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3706		 * offline.
3707		 *
3708		 * Note that some PATA controllers (pata_ali) explode
3709		 * if status register is read more than once when
3710		 * there's no device attached.
3711		 */
3712		if (ready == -ENODEV) {
3713			if (ata_link_online(link))
3714				ready = 0;
3715			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3716				 !ata_link_offline(link) &&
3717				 time_before(now, nodev_deadline))
3718				ready = 0;
3719		}
3720
3721		if (ready)
3722			return ready;
3723		if (time_after(now, deadline))
3724			return -EBUSY;
3725
3726		if (!warned && time_after(now, start + 5 * HZ) &&
3727		    (deadline - now > 3 * HZ)) {
3728			ata_link_warn(link,
3729				"link is slow to respond, please be patient "
3730				"(ready=%d)\n", tmp);
3731			warned = 1;
3732		}
3733
3734		ata_msleep(link->ap, 50);
3735	}
3736}
3737
3738/**
3739 *	ata_wait_after_reset - wait for link to become ready after reset
3740 *	@link: link to be waited on
3741 *	@deadline: deadline jiffies for the operation
3742 *	@check_ready: callback to check link readiness
3743 *
3744 *	Wait for @link to become ready after reset.
3745 *
3746 *	LOCKING:
3747 *	EH context.
3748 *
3749 *	RETURNS:
3750 *	0 if @link is ready before @deadline; otherwise, -errno.
3751 */
3752int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3753				int (*check_ready)(struct ata_link *link))
3754{
3755	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3756
3757	return ata_wait_ready(link, deadline, check_ready);
3758}
3759EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3760
3761/**
3762 *	ata_std_prereset - prepare for reset
3763 *	@link: ATA link to be reset
3764 *	@deadline: deadline jiffies for the operation
3765 *
3766 *	@link is about to be reset.  Initialize it.  Failure from
3767 *	prereset makes libata abort whole reset sequence and give up
3768 *	that port, so prereset should be best-effort.  It does its
3769 *	best to prepare for reset sequence but if things go wrong, it
3770 *	should just whine, not fail.
3771 *
3772 *	LOCKING:
3773 *	Kernel thread context (may sleep)
3774 *
3775 *	RETURNS:
3776 *	Always 0.
3777 */
3778int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3779{
3780	struct ata_port *ap = link->ap;
3781	struct ata_eh_context *ehc = &link->eh_context;
3782	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3783	int rc;
3784
3785	/* if we're about to do hardreset, nothing more to do */
3786	if (ehc->i.action & ATA_EH_HARDRESET)
3787		return 0;
3788
3789	/* if SATA, resume link */
3790	if (ap->flags & ATA_FLAG_SATA) {
3791		rc = sata_link_resume(link, timing, deadline);
3792		/* whine about phy resume failure but proceed */
3793		if (rc && rc != -EOPNOTSUPP)
3794			ata_link_warn(link,
3795				      "failed to resume link for reset (errno=%d)\n",
3796				      rc);
3797	}
3798
3799	/* no point in trying softreset on offline link */
3800	if (ata_phys_link_offline(link))
3801		ehc->i.action &= ~ATA_EH_SOFTRESET;
3802
3803	return 0;
3804}
3805EXPORT_SYMBOL_GPL(ata_std_prereset);
3806
3807/**
3808 *	sata_std_hardreset - COMRESET w/o waiting or classification
3809 *	@link: link to reset
3810 *	@class: resulting class of attached device
3811 *	@deadline: deadline jiffies for the operation
3812 *
3813 *	Standard SATA COMRESET w/o waiting or classification.
3814 *
3815 *	LOCKING:
3816 *	Kernel thread context (may sleep)
3817 *
3818 *	RETURNS:
3819 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3820 */
3821int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3822		       unsigned long deadline)
3823{
3824	const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3825	bool online;
3826	int rc;
3827
3828	/* do hardreset */
3829	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3830	return online ? -EAGAIN : rc;
3831}
3832EXPORT_SYMBOL_GPL(sata_std_hardreset);
3833
3834/**
3835 *	ata_std_postreset - standard postreset callback
3836 *	@link: the target ata_link
3837 *	@classes: classes of attached devices
3838 *
3839 *	This function is invoked after a successful reset.  Note that
3840 *	the device might have been reset more than once using
3841 *	different reset methods before postreset is invoked.
3842 *
3843 *	LOCKING:
3844 *	Kernel thread context (may sleep)
3845 */
3846void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3847{
3848	u32 serror;
3849
3850	/* reset complete, clear SError */
3851	if (!sata_scr_read(link, SCR_ERROR, &serror))
3852		sata_scr_write(link, SCR_ERROR, serror);
3853
3854	/* print link status */
3855	sata_print_link_status(link);
3856}
3857EXPORT_SYMBOL_GPL(ata_std_postreset);
3858
3859/**
3860 *	ata_dev_same_device - Determine whether new ID matches configured device
3861 *	@dev: device to compare against
3862 *	@new_class: class of the new device
3863 *	@new_id: IDENTIFY page of the new device
3864 *
3865 *	Compare @new_class and @new_id against @dev and determine
3866 *	whether @dev is the device indicated by @new_class and
3867 *	@new_id.
3868 *
3869 *	LOCKING:
3870 *	None.
3871 *
3872 *	RETURNS:
3873 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3874 */
3875static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3876			       const u16 *new_id)
3877{
3878	const u16 *old_id = dev->id;
3879	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3880	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3881
3882	if (dev->class != new_class) {
3883		ata_dev_info(dev, "class mismatch %d != %d\n",
3884			     dev->class, new_class);
3885		return 0;
3886	}
3887
3888	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3889	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3890	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3891	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3892
3893	if (strcmp(model[0], model[1])) {
3894		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3895			     model[0], model[1]);
3896		return 0;
3897	}
3898
3899	if (strcmp(serial[0], serial[1])) {
3900		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3901			     serial[0], serial[1]);
3902		return 0;
3903	}
3904
3905	return 1;
3906}
3907
3908/**
3909 *	ata_dev_reread_id - Re-read IDENTIFY data
3910 *	@dev: target ATA device
3911 *	@readid_flags: read ID flags
3912 *
3913 *	Re-read IDENTIFY page and make sure @dev is still attached to
3914 *	the port.
3915 *
3916 *	LOCKING:
3917 *	Kernel thread context (may sleep)
3918 *
3919 *	RETURNS:
3920 *	0 on success, negative errno otherwise
3921 */
3922int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3923{
3924	unsigned int class = dev->class;
3925	u16 *id = (void *)dev->link->ap->sector_buf;
3926	int rc;
3927
3928	/* read ID data */
3929	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3930	if (rc)
3931		return rc;
3932
3933	/* is the device still there? */
3934	if (!ata_dev_same_device(dev, class, id))
3935		return -ENODEV;
3936
3937	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3938	return 0;
3939}
3940
3941/**
3942 *	ata_dev_revalidate - Revalidate ATA device
3943 *	@dev: device to revalidate
3944 *	@new_class: new class code
3945 *	@readid_flags: read ID flags
3946 *
3947 *	Re-read IDENTIFY page, make sure @dev is still attached to the
3948 *	port and reconfigure it according to the new IDENTIFY page.
3949 *
3950 *	LOCKING:
3951 *	Kernel thread context (may sleep)
3952 *
3953 *	RETURNS:
3954 *	0 on success, negative errno otherwise
3955 */
3956int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3957		       unsigned int readid_flags)
3958{
3959	u64 n_sectors = dev->n_sectors;
3960	u64 n_native_sectors = dev->n_native_sectors;
3961	int rc;
3962
3963	if (!ata_dev_enabled(dev))
3964		return -ENODEV;
3965
3966	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3967	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3968		ata_dev_info(dev, "class mismatch %u != %u\n",
3969			     dev->class, new_class);
3970		rc = -ENODEV;
3971		goto fail;
3972	}
3973
3974	/* re-read ID */
3975	rc = ata_dev_reread_id(dev, readid_flags);
3976	if (rc)
3977		goto fail;
3978
3979	/* configure device according to the new ID */
3980	rc = ata_dev_configure(dev);
3981	if (rc)
3982		goto fail;
3983
3984	/* verify n_sectors hasn't changed */
3985	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3986	    dev->n_sectors == n_sectors)
3987		return 0;
3988
3989	/* n_sectors has changed */
3990	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3991		     (unsigned long long)n_sectors,
3992		     (unsigned long long)dev->n_sectors);
3993
3994	/*
3995	 * Something could have caused HPA to be unlocked
3996	 * involuntarily.  If n_native_sectors hasn't changed and the
3997	 * new size matches it, keep the device.
3998	 */
3999	if (dev->n_native_sectors == n_native_sectors &&
4000	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4001		ata_dev_warn(dev,
4002			     "new n_sectors matches native, probably "
4003			     "late HPA unlock, n_sectors updated\n");
4004		/* use the larger n_sectors */
4005		return 0;
4006	}
4007
4008	/*
4009	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4010	 * unlocking HPA in those cases.
4011	 *
4012	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4013	 */
4014	if (dev->n_native_sectors == n_native_sectors &&
4015	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4016	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4017		ata_dev_warn(dev,
4018			     "old n_sectors matches native, probably "
4019			     "late HPA lock, will try to unlock HPA\n");
4020		/* try unlocking HPA */
4021		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4022		rc = -EIO;
4023	} else
4024		rc = -ENODEV;
4025
4026	/* restore original n_[native_]sectors and fail */
4027	dev->n_native_sectors = n_native_sectors;
4028	dev->n_sectors = n_sectors;
4029 fail:
4030	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4031	return rc;
4032}
4033
4034struct ata_blacklist_entry {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4035	const char *model_num;
4036	const char *model_rev;
4037	unsigned long horkage;
4038};
4039
4040static const struct ata_blacklist_entry ata_device_blacklist [] = {
4041	/* Devices with DMA related problems under Linux */
4042	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4043	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4044	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4045	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4046	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4047	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4048	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4049	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4050	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4051	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4052	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4053	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4054	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4055	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4056	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4057	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4058	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4059	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4060	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4061	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4062	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4063	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4064	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4065	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4066	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4067	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4068	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4069	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4070	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4071	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4072	/* Odd clown on sil3726/4726 PMPs */
4073	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4074	/* Similar story with ASMedia 1092 */
4075	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
4076
4077	/* Weird ATAPI devices */
4078	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4079	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4080	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4081	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4082
4083	/*
4084	 * Causes silent data corruption with higher max sects.
4085	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4086	 */
4087	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4088
4089	/*
4090	 * These devices time out with higher max sects.
4091	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4092	 */
4093	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4094	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4095
4096	/* Devices we expect to fail diagnostics */
4097
4098	/* Devices where NCQ should be avoided */
4099	/* NCQ is slow */
4100	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4101	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
4102	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4103	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4104	/* NCQ is broken */
4105	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4106	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4107	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4108	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4109	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4110
4111	/* Seagate NCQ + FLUSH CACHE firmware bug */
4112	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4113						ATA_HORKAGE_FIRMWARE_WARN },
4114
4115	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4116						ATA_HORKAGE_FIRMWARE_WARN },
4117
4118	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4119						ATA_HORKAGE_FIRMWARE_WARN },
4120
4121	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4122						ATA_HORKAGE_FIRMWARE_WARN },
4123
4124	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4125	   the ST disks also have LPM issues */
4126	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
4127						ATA_HORKAGE_NOLPM },
4128	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4129
4130	/* Blacklist entries taken from Silicon Image 3124/3132
4131	   Windows driver .inf file - also several Linux problem reports */
4132	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
4133	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
4134	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
4135
4136	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4137	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
4138
4139	/* Sandisk SD7/8/9s lock up hard on large trims */
4140	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
4141
4142	/* devices which puke on READ_NATIVE_MAX */
4143	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
4144	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4145	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4146	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4147
4148	/* this one allows HPA unlocking but fails IOs on the area */
4149	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4150
4151	/* Devices which report 1 sector over size HPA */
4152	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4153	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4154	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4155
4156	/* Devices which get the IVB wrong */
4157	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4158	/* Maybe we should just blacklist TSSTcorp... */
4159	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
4160
4161	/* Devices that do not need bridging limits applied */
4162	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4163	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4164
4165	/* Devices which aren't very happy with higher link speeds */
4166	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
4167	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
4168
4169	/*
4170	 * Devices which choke on SETXFER.  Applies only if both the
4171	 * device and controller are SATA.
4172	 */
4173	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4174	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4175	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4176	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4177	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4178
4179	/* These specific Pioneer models have LPM issues */
4180	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
4181	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
4182
4183	/* Crucial BX100 SSD 500GB has broken LPM support */
4184	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4185
4186	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4187	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4188						ATA_HORKAGE_ZERO_AFTER_TRIM |
4189						ATA_HORKAGE_NOLPM },
4190	/* 512GB MX100 with newer firmware has only LPM issues */
4191	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4192						ATA_HORKAGE_NOLPM },
4193
4194	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4195	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4196						ATA_HORKAGE_ZERO_AFTER_TRIM |
4197						ATA_HORKAGE_NOLPM },
4198	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4199						ATA_HORKAGE_ZERO_AFTER_TRIM |
4200						ATA_HORKAGE_NOLPM },
 
 
 
 
 
 
4201
4202	/* These specific Samsung models/firmware-revs do not handle LPM well */
4203	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4204	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4205	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4206	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4207
4208	/* devices that don't properly handle queued TRIM commands */
4209	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4210						ATA_HORKAGE_ZERO_AFTER_TRIM },
4211	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4212						ATA_HORKAGE_ZERO_AFTER_TRIM },
4213	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4214						ATA_HORKAGE_ZERO_AFTER_TRIM },
4215	{ "Micron_1100_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4216						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4217	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4218						ATA_HORKAGE_ZERO_AFTER_TRIM },
4219	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4220						ATA_HORKAGE_ZERO_AFTER_TRIM },
4221	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4222						ATA_HORKAGE_ZERO_AFTER_TRIM },
4223	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4224						ATA_HORKAGE_NO_DMA_LOG |
4225						ATA_HORKAGE_ZERO_AFTER_TRIM },
4226	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4227						ATA_HORKAGE_ZERO_AFTER_TRIM },
4228	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4229						ATA_HORKAGE_ZERO_AFTER_TRIM },
4230	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4231						ATA_HORKAGE_ZERO_AFTER_TRIM |
4232						ATA_HORKAGE_NO_NCQ_ON_ATI },
4233	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4234						ATA_HORKAGE_ZERO_AFTER_TRIM |
4235						ATA_HORKAGE_NO_NCQ_ON_ATI },
4236	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4237						ATA_HORKAGE_ZERO_AFTER_TRIM |
4238						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4239	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4240						ATA_HORKAGE_ZERO_AFTER_TRIM },
4241
4242	/* devices that don't properly handle TRIM commands */
4243	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4244	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4245
4246	/*
4247	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4248	 * (Return Zero After Trim) flags in the ATA Command Set are
4249	 * unreliable in the sense that they only define what happens if
4250	 * the device successfully executed the DSM TRIM command. TRIM
4251	 * is only advisory, however, and the device is free to silently
4252	 * ignore all or parts of the request.
4253	 *
4254	 * Whitelist drives that are known to reliably return zeroes
4255	 * after TRIM.
4256	 */
4257
4258	/*
4259	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4260	 * that model before whitelisting all other intel SSDs.
4261	 */
4262	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4263
4264	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4265	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4266	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4267	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4268	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4269	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4270	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4271	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4272
4273	/*
4274	 * Some WD SATA-I drives spin up and down erratically when the link
4275	 * is put into the slumber mode.  We don't have full list of the
4276	 * affected devices.  Disable LPM if the device matches one of the
4277	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4278	 * lost too.
4279	 *
4280	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4281	 */
4282	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4283	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4284	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4285	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4286	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4287	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4288	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4289
4290	/*
4291	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4292	 * log page is accessed. Ensure we never ask for this log page with
4293	 * these devices.
4294	 */
4295	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4296
4297	/* Buggy FUA */
4298	{ "Maxtor",		"BANC1G10",	ATA_HORKAGE_NO_FUA },
4299	{ "WDC*WD2500J*",	NULL,		ATA_HORKAGE_NO_FUA },
4300	{ "OCZ-VERTEX*",	NULL,		ATA_HORKAGE_NO_FUA },
4301	{ "INTEL*SSDSC2CT*",	NULL,		ATA_HORKAGE_NO_FUA },
4302
4303	/* End Marker */
4304	{ }
4305};
4306
4307static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4308{
4309	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4310	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4311	const struct ata_blacklist_entry *ad = ata_device_blacklist;
 
 
 
4312
4313	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4314	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4315
4316	while (ad->model_num) {
4317		if (glob_match(ad->model_num, model_num)) {
4318			if (ad->model_rev == NULL)
4319				return ad->horkage;
4320			if (glob_match(ad->model_rev, model_rev))
4321				return ad->horkage;
4322		}
4323		ad++;
4324	}
4325	return 0;
4326}
4327
4328static int ata_dma_blacklisted(const struct ata_device *dev)
4329{
4330	/* We don't support polling DMA.
4331	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4332	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
 
4333	 */
4334	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4335	    (dev->flags & ATA_DFLAG_CDB_INTR))
4336		return 1;
4337	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4338}
4339
4340/**
4341 *	ata_is_40wire		-	check drive side detection
4342 *	@dev: device
4343 *
4344 *	Perform drive side detection decoding, allowing for device vendors
4345 *	who can't follow the documentation.
4346 */
4347
4348static int ata_is_40wire(struct ata_device *dev)
4349{
4350	if (dev->horkage & ATA_HORKAGE_IVB)
4351		return ata_drive_40wire_relaxed(dev->id);
4352	return ata_drive_40wire(dev->id);
4353}
4354
4355/**
4356 *	cable_is_40wire		-	40/80/SATA decider
4357 *	@ap: port to consider
4358 *
4359 *	This function encapsulates the policy for speed management
4360 *	in one place. At the moment we don't cache the result but
4361 *	there is a good case for setting ap->cbl to the result when
4362 *	we are called with unknown cables (and figuring out if it
4363 *	impacts hotplug at all).
4364 *
4365 *	Return 1 if the cable appears to be 40 wire.
4366 */
4367
4368static int cable_is_40wire(struct ata_port *ap)
4369{
4370	struct ata_link *link;
4371	struct ata_device *dev;
4372
4373	/* If the controller thinks we are 40 wire, we are. */
4374	if (ap->cbl == ATA_CBL_PATA40)
4375		return 1;
4376
4377	/* If the controller thinks we are 80 wire, we are. */
4378	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4379		return 0;
4380
4381	/* If the system is known to be 40 wire short cable (eg
4382	 * laptop), then we allow 80 wire modes even if the drive
4383	 * isn't sure.
4384	 */
4385	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4386		return 0;
4387
4388	/* If the controller doesn't know, we scan.
4389	 *
4390	 * Note: We look for all 40 wire detects at this point.  Any
4391	 *       80 wire detect is taken to be 80 wire cable because
4392	 * - in many setups only the one drive (slave if present) will
4393	 *   give a valid detect
4394	 * - if you have a non detect capable drive you don't want it
4395	 *   to colour the choice
4396	 */
4397	ata_for_each_link(link, ap, EDGE) {
4398		ata_for_each_dev(dev, link, ENABLED) {
4399			if (!ata_is_40wire(dev))
4400				return 0;
4401		}
4402	}
4403	return 1;
4404}
4405
4406/**
4407 *	ata_dev_xfermask - Compute supported xfermask of the given device
4408 *	@dev: Device to compute xfermask for
4409 *
4410 *	Compute supported xfermask of @dev and store it in
4411 *	dev->*_mask.  This function is responsible for applying all
4412 *	known limits including host controller limits, device
4413 *	blacklist, etc...
4414 *
4415 *	LOCKING:
4416 *	None.
4417 */
4418static void ata_dev_xfermask(struct ata_device *dev)
4419{
4420	struct ata_link *link = dev->link;
4421	struct ata_port *ap = link->ap;
4422	struct ata_host *host = ap->host;
4423	unsigned int xfer_mask;
4424
4425	/* controller modes available */
4426	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4427				      ap->mwdma_mask, ap->udma_mask);
4428
4429	/* drive modes available */
4430	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4431				       dev->mwdma_mask, dev->udma_mask);
4432	xfer_mask &= ata_id_xfermask(dev->id);
4433
4434	/*
4435	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4436	 *	cable
4437	 */
4438	if (ata_dev_pair(dev)) {
4439		/* No PIO5 or PIO6 */
4440		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4441		/* No MWDMA3 or MWDMA 4 */
4442		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4443	}
4444
4445	if (ata_dma_blacklisted(dev)) {
4446		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4447		ata_dev_warn(dev,
4448			     "device is on DMA blacklist, disabling DMA\n");
4449	}
4450
4451	if ((host->flags & ATA_HOST_SIMPLEX) &&
4452	    host->simplex_claimed && host->simplex_claimed != ap) {
4453		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4454		ata_dev_warn(dev,
4455			     "simplex DMA is claimed by other device, disabling DMA\n");
4456	}
4457
4458	if (ap->flags & ATA_FLAG_NO_IORDY)
4459		xfer_mask &= ata_pio_mask_no_iordy(dev);
4460
4461	if (ap->ops->mode_filter)
4462		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4463
4464	/* Apply cable rule here.  Don't apply it early because when
4465	 * we handle hot plug the cable type can itself change.
4466	 * Check this last so that we know if the transfer rate was
4467	 * solely limited by the cable.
4468	 * Unknown or 80 wire cables reported host side are checked
4469	 * drive side as well. Cases where we know a 40wire cable
4470	 * is used safely for 80 are not checked here.
4471	 */
4472	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4473		/* UDMA/44 or higher would be available */
4474		if (cable_is_40wire(ap)) {
4475			ata_dev_warn(dev,
4476				     "limited to UDMA/33 due to 40-wire cable\n");
4477			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4478		}
4479
4480	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4481			    &dev->mwdma_mask, &dev->udma_mask);
4482}
4483
4484/**
4485 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4486 *	@dev: Device to which command will be sent
4487 *
4488 *	Issue SET FEATURES - XFER MODE command to device @dev
4489 *	on port @ap.
4490 *
4491 *	LOCKING:
4492 *	PCI/etc. bus probe sem.
4493 *
4494 *	RETURNS:
4495 *	0 on success, AC_ERR_* mask otherwise.
4496 */
4497
4498static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4499{
4500	struct ata_taskfile tf;
4501
4502	/* set up set-features taskfile */
4503	ata_dev_dbg(dev, "set features - xfer mode\n");
4504
4505	/* Some controllers and ATAPI devices show flaky interrupt
4506	 * behavior after setting xfer mode.  Use polling instead.
4507	 */
4508	ata_tf_init(dev, &tf);
4509	tf.command = ATA_CMD_SET_FEATURES;
4510	tf.feature = SETFEATURES_XFER;
4511	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4512	tf.protocol = ATA_PROT_NODATA;
4513	/* If we are using IORDY we must send the mode setting command */
4514	if (ata_pio_need_iordy(dev))
4515		tf.nsect = dev->xfer_mode;
4516	/* If the device has IORDY and the controller does not - turn it off */
4517 	else if (ata_id_has_iordy(dev->id))
4518		tf.nsect = 0x01;
4519	else /* In the ancient relic department - skip all of this */
4520		return 0;
4521
4522	/*
4523	 * On some disks, this command causes spin-up, so we need longer
4524	 * timeout.
4525	 */
4526	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4527}
4528
4529/**
4530 *	ata_dev_set_feature - Issue SET FEATURES
4531 *	@dev: Device to which command will be sent
4532 *	@subcmd: The SET FEATURES subcommand to be sent
4533 *	@action: The sector count represents a subcommand specific action
4534 *
4535 *	Issue SET FEATURES command to device @dev on port @ap with sector count
4536 *
4537 *	LOCKING:
4538 *	PCI/etc. bus probe sem.
4539 *
4540 *	RETURNS:
4541 *	0 on success, AC_ERR_* mask otherwise.
4542 */
4543unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4544{
4545	struct ata_taskfile tf;
4546	unsigned int timeout = 0;
4547
4548	/* set up set-features taskfile */
4549	ata_dev_dbg(dev, "set features\n");
4550
4551	ata_tf_init(dev, &tf);
4552	tf.command = ATA_CMD_SET_FEATURES;
4553	tf.feature = subcmd;
4554	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4555	tf.protocol = ATA_PROT_NODATA;
4556	tf.nsect = action;
4557
4558	if (subcmd == SETFEATURES_SPINUP)
4559		timeout = ata_probe_timeout ?
4560			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4561
4562	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4563}
4564EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4565
4566/**
4567 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4568 *	@dev: Device to which command will be sent
4569 *	@heads: Number of heads (taskfile parameter)
4570 *	@sectors: Number of sectors (taskfile parameter)
4571 *
4572 *	LOCKING:
4573 *	Kernel thread context (may sleep)
4574 *
4575 *	RETURNS:
4576 *	0 on success, AC_ERR_* mask otherwise.
4577 */
4578static unsigned int ata_dev_init_params(struct ata_device *dev,
4579					u16 heads, u16 sectors)
4580{
4581	struct ata_taskfile tf;
4582	unsigned int err_mask;
4583
4584	/* Number of sectors per track 1-255. Number of heads 1-16 */
4585	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4586		return AC_ERR_INVALID;
4587
4588	/* set up init dev params taskfile */
4589	ata_dev_dbg(dev, "init dev params \n");
4590
4591	ata_tf_init(dev, &tf);
4592	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4593	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4594	tf.protocol = ATA_PROT_NODATA;
4595	tf.nsect = sectors;
4596	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4597
4598	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4599	/* A clean abort indicates an original or just out of spec drive
4600	   and we should continue as we issue the setup based on the
4601	   drive reported working geometry */
4602	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4603		err_mask = 0;
4604
4605	return err_mask;
4606}
4607
4608/**
4609 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4610 *	@qc: Metadata associated with taskfile to check
4611 *
4612 *	Allow low-level driver to filter ATA PACKET commands, returning
4613 *	a status indicating whether or not it is OK to use DMA for the
4614 *	supplied PACKET command.
4615 *
4616 *	LOCKING:
4617 *	spin_lock_irqsave(host lock)
4618 *
4619 *	RETURNS: 0 when ATAPI DMA can be used
4620 *               nonzero otherwise
4621 */
4622int atapi_check_dma(struct ata_queued_cmd *qc)
4623{
4624	struct ata_port *ap = qc->ap;
4625
4626	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4627	 * few ATAPI devices choke on such DMA requests.
4628	 */
4629	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4630	    unlikely(qc->nbytes & 15))
4631		return 1;
4632
4633	if (ap->ops->check_atapi_dma)
4634		return ap->ops->check_atapi_dma(qc);
4635
4636	return 0;
4637}
4638
4639/**
4640 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4641 *	@qc: ATA command in question
4642 *
4643 *	Non-NCQ commands cannot run with any other command, NCQ or
4644 *	not.  As upper layer only knows the queue depth, we are
4645 *	responsible for maintaining exclusion.  This function checks
4646 *	whether a new command @qc can be issued.
4647 *
4648 *	LOCKING:
4649 *	spin_lock_irqsave(host lock)
4650 *
4651 *	RETURNS:
4652 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4653 */
4654int ata_std_qc_defer(struct ata_queued_cmd *qc)
4655{
4656	struct ata_link *link = qc->dev->link;
4657
4658	if (ata_is_ncq(qc->tf.protocol)) {
4659		if (!ata_tag_valid(link->active_tag))
4660			return 0;
4661	} else {
4662		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4663			return 0;
4664	}
4665
4666	return ATA_DEFER_LINK;
4667}
4668EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4669
4670enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4671{
4672	return AC_ERR_OK;
4673}
4674EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4675
4676/**
4677 *	ata_sg_init - Associate command with scatter-gather table.
4678 *	@qc: Command to be associated
4679 *	@sg: Scatter-gather table.
4680 *	@n_elem: Number of elements in s/g table.
4681 *
4682 *	Initialize the data-related elements of queued_cmd @qc
4683 *	to point to a scatter-gather table @sg, containing @n_elem
4684 *	elements.
4685 *
4686 *	LOCKING:
4687 *	spin_lock_irqsave(host lock)
4688 */
4689void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4690		 unsigned int n_elem)
4691{
4692	qc->sg = sg;
4693	qc->n_elem = n_elem;
4694	qc->cursg = qc->sg;
4695}
4696
4697#ifdef CONFIG_HAS_DMA
4698
4699/**
4700 *	ata_sg_clean - Unmap DMA memory associated with command
4701 *	@qc: Command containing DMA memory to be released
4702 *
4703 *	Unmap all mapped DMA memory associated with this command.
4704 *
4705 *	LOCKING:
4706 *	spin_lock_irqsave(host lock)
4707 */
4708static void ata_sg_clean(struct ata_queued_cmd *qc)
4709{
4710	struct ata_port *ap = qc->ap;
4711	struct scatterlist *sg = qc->sg;
4712	int dir = qc->dma_dir;
4713
4714	WARN_ON_ONCE(sg == NULL);
4715
4716	if (qc->n_elem)
4717		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4718
4719	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4720	qc->sg = NULL;
4721}
4722
4723/**
4724 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4725 *	@qc: Command with scatter-gather table to be mapped.
4726 *
4727 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4728 *
4729 *	LOCKING:
4730 *	spin_lock_irqsave(host lock)
4731 *
4732 *	RETURNS:
4733 *	Zero on success, negative on error.
4734 *
4735 */
4736static int ata_sg_setup(struct ata_queued_cmd *qc)
4737{
4738	struct ata_port *ap = qc->ap;
4739	unsigned int n_elem;
4740
4741	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4742	if (n_elem < 1)
4743		return -1;
4744
4745	qc->orig_n_elem = qc->n_elem;
4746	qc->n_elem = n_elem;
4747	qc->flags |= ATA_QCFLAG_DMAMAP;
4748
4749	return 0;
4750}
4751
4752#else /* !CONFIG_HAS_DMA */
4753
4754static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4755static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4756
4757#endif /* !CONFIG_HAS_DMA */
4758
4759/**
4760 *	swap_buf_le16 - swap halves of 16-bit words in place
4761 *	@buf:  Buffer to swap
4762 *	@buf_words:  Number of 16-bit words in buffer.
4763 *
4764 *	Swap halves of 16-bit words if needed to convert from
4765 *	little-endian byte order to native cpu byte order, or
4766 *	vice-versa.
4767 *
4768 *	LOCKING:
4769 *	Inherited from caller.
4770 */
4771void swap_buf_le16(u16 *buf, unsigned int buf_words)
4772{
4773#ifdef __BIG_ENDIAN
4774	unsigned int i;
4775
4776	for (i = 0; i < buf_words; i++)
4777		buf[i] = le16_to_cpu(buf[i]);
4778#endif /* __BIG_ENDIAN */
4779}
4780
4781/**
4782 *	ata_qc_free - free unused ata_queued_cmd
4783 *	@qc: Command to complete
4784 *
4785 *	Designed to free unused ata_queued_cmd object
4786 *	in case something prevents using it.
4787 *
4788 *	LOCKING:
4789 *	spin_lock_irqsave(host lock)
4790 */
4791void ata_qc_free(struct ata_queued_cmd *qc)
4792{
4793	qc->flags = 0;
4794	if (ata_tag_valid(qc->tag))
4795		qc->tag = ATA_TAG_POISON;
4796}
4797
4798void __ata_qc_complete(struct ata_queued_cmd *qc)
4799{
4800	struct ata_port *ap;
4801	struct ata_link *link;
4802
4803	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4804	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
 
4805	ap = qc->ap;
4806	link = qc->dev->link;
4807
4808	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4809		ata_sg_clean(qc);
4810
4811	/* command should be marked inactive atomically with qc completion */
4812	if (ata_is_ncq(qc->tf.protocol)) {
4813		link->sactive &= ~(1 << qc->hw_tag);
4814		if (!link->sactive)
4815			ap->nr_active_links--;
4816	} else {
4817		link->active_tag = ATA_TAG_POISON;
4818		ap->nr_active_links--;
4819	}
4820
4821	/* clear exclusive status */
4822	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4823		     ap->excl_link == link))
4824		ap->excl_link = NULL;
4825
4826	/* atapi: mark qc as inactive to prevent the interrupt handler
4827	 * from completing the command twice later, before the error handler
4828	 * is called. (when rc != 0 and atapi request sense is needed)
 
4829	 */
4830	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4831	ap->qc_active &= ~(1ULL << qc->tag);
4832
4833	/* call completion callback */
4834	qc->complete_fn(qc);
4835}
4836
4837static void fill_result_tf(struct ata_queued_cmd *qc)
4838{
4839	struct ata_port *ap = qc->ap;
4840
 
 
 
 
 
 
 
4841	qc->result_tf.flags = qc->tf.flags;
4842	ap->ops->qc_fill_rtf(qc);
 
4843}
4844
4845static void ata_verify_xfer(struct ata_queued_cmd *qc)
4846{
4847	struct ata_device *dev = qc->dev;
4848
4849	if (!ata_is_data(qc->tf.protocol))
4850		return;
4851
4852	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4853		return;
4854
4855	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4856}
4857
4858/**
4859 *	ata_qc_complete - Complete an active ATA command
4860 *	@qc: Command to complete
4861 *
4862 *	Indicate to the mid and upper layers that an ATA command has
4863 *	completed, with either an ok or not-ok status.
4864 *
4865 *	Refrain from calling this function multiple times when
4866 *	successfully completing multiple NCQ commands.
4867 *	ata_qc_complete_multiple() should be used instead, which will
4868 *	properly update IRQ expect state.
4869 *
4870 *	LOCKING:
4871 *	spin_lock_irqsave(host lock)
4872 */
4873void ata_qc_complete(struct ata_queued_cmd *qc)
4874{
4875	struct ata_port *ap = qc->ap;
4876	struct ata_device *dev = qc->dev;
4877	struct ata_eh_info *ehi = &dev->link->eh_info;
4878
4879	/* Trigger the LED (if available) */
4880	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4881
4882	/*
4883	 * In order to synchronize EH with the regular execution path, a qc that
4884	 * is owned by EH is marked with ATA_QCFLAG_EH.
4885	 *
4886	 * The normal execution path is responsible for not accessing a qc owned
4887	 * by EH.  libata core enforces the rule by returning NULL from
4888	 * ata_qc_from_tag() for qcs owned by EH.
4889	 */
4890	if (unlikely(qc->err_mask))
4891		qc->flags |= ATA_QCFLAG_EH;
4892
4893	/*
4894	 * Finish internal commands without any further processing and always
4895	 * with the result TF filled.
4896	 */
4897	if (unlikely(ata_tag_internal(qc->tag))) {
4898		fill_result_tf(qc);
4899		trace_ata_qc_complete_internal(qc);
4900		__ata_qc_complete(qc);
4901		return;
4902	}
4903
4904	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4905	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4906		fill_result_tf(qc);
4907		trace_ata_qc_complete_failed(qc);
4908		ata_qc_schedule_eh(qc);
4909		return;
4910	}
4911
4912	WARN_ON_ONCE(ata_port_is_frozen(ap));
4913
4914	/* read result TF if requested */
4915	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4916		fill_result_tf(qc);
4917
4918	trace_ata_qc_complete_done(qc);
4919
4920	/*
4921	 * For CDL commands that completed without an error, check if we have
4922	 * sense data (ATA_SENSE is set). If we do, then the command may have
4923	 * been aborted by the device due to a limit timeout using the policy
4924	 * 0xD. For these commands, invoke EH to get the command sense data.
4925	 */
4926	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4927	    qc->result_tf.status & ATA_SENSE) {
4928		/*
4929		 * Tell SCSI EH to not overwrite scmd->result even if this
4930		 * command is finished with result SAM_STAT_GOOD.
4931		 */
4932		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4933		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4934		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4935
4936		/*
4937		 * set pending so that ata_qc_schedule_eh() does not trigger
4938		 * fast drain, and freeze the port.
4939		 */
4940		ap->pflags |= ATA_PFLAG_EH_PENDING;
4941		ata_qc_schedule_eh(qc);
4942		return;
4943	}
4944
4945	/* Some commands need post-processing after successful completion. */
4946	switch (qc->tf.command) {
4947	case ATA_CMD_SET_FEATURES:
4948		if (qc->tf.feature != SETFEATURES_WC_ON &&
4949		    qc->tf.feature != SETFEATURES_WC_OFF &&
4950		    qc->tf.feature != SETFEATURES_RA_ON &&
4951		    qc->tf.feature != SETFEATURES_RA_OFF)
4952			break;
4953		fallthrough;
4954	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4955	case ATA_CMD_SET_MULTI: /* multi_count changed */
4956		/* revalidate device */
4957		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4958		ata_port_schedule_eh(ap);
4959		break;
4960
4961	case ATA_CMD_SLEEP:
4962		dev->flags |= ATA_DFLAG_SLEEPING;
4963		break;
4964	}
4965
4966	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4967		ata_verify_xfer(qc);
4968
4969	__ata_qc_complete(qc);
4970}
4971EXPORT_SYMBOL_GPL(ata_qc_complete);
4972
4973/**
4974 *	ata_qc_get_active - get bitmask of active qcs
4975 *	@ap: port in question
4976 *
4977 *	LOCKING:
4978 *	spin_lock_irqsave(host lock)
4979 *
4980 *	RETURNS:
4981 *	Bitmask of active qcs
4982 */
4983u64 ata_qc_get_active(struct ata_port *ap)
4984{
4985	u64 qc_active = ap->qc_active;
4986
4987	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4988	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4989		qc_active |= (1 << 0);
4990		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4991	}
4992
4993	return qc_active;
4994}
4995EXPORT_SYMBOL_GPL(ata_qc_get_active);
4996
4997/**
4998 *	ata_qc_issue - issue taskfile to device
4999 *	@qc: command to issue to device
5000 *
5001 *	Prepare an ATA command to submission to device.
5002 *	This includes mapping the data into a DMA-able
5003 *	area, filling in the S/G table, and finally
5004 *	writing the taskfile to hardware, starting the command.
5005 *
5006 *	LOCKING:
5007 *	spin_lock_irqsave(host lock)
5008 */
5009void ata_qc_issue(struct ata_queued_cmd *qc)
5010{
5011	struct ata_port *ap = qc->ap;
5012	struct ata_link *link = qc->dev->link;
5013	u8 prot = qc->tf.protocol;
5014
5015	/* Make sure only one non-NCQ command is outstanding. */
5016	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5017
5018	if (ata_is_ncq(prot)) {
5019		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5020
5021		if (!link->sactive)
5022			ap->nr_active_links++;
5023		link->sactive |= 1 << qc->hw_tag;
5024	} else {
5025		WARN_ON_ONCE(link->sactive);
5026
5027		ap->nr_active_links++;
5028		link->active_tag = qc->tag;
5029	}
5030
5031	qc->flags |= ATA_QCFLAG_ACTIVE;
5032	ap->qc_active |= 1ULL << qc->tag;
5033
5034	/*
5035	 * We guarantee to LLDs that they will have at least one
5036	 * non-zero sg if the command is a data command.
5037	 */
5038	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5039		goto sys_err;
5040
5041	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5042				 (ap->flags & ATA_FLAG_PIO_DMA)))
5043		if (ata_sg_setup(qc))
5044			goto sys_err;
5045
5046	/* if device is sleeping, schedule reset and abort the link */
5047	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5048		link->eh_info.action |= ATA_EH_RESET;
5049		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5050		ata_link_abort(link);
5051		return;
5052	}
5053
5054	trace_ata_qc_prep(qc);
5055	qc->err_mask |= ap->ops->qc_prep(qc);
5056	if (unlikely(qc->err_mask))
5057		goto err;
 
 
 
5058	trace_ata_qc_issue(qc);
5059	qc->err_mask |= ap->ops->qc_issue(qc);
5060	if (unlikely(qc->err_mask))
5061		goto err;
5062	return;
5063
5064sys_err:
5065	qc->err_mask |= AC_ERR_SYSTEM;
5066err:
5067	ata_qc_complete(qc);
5068}
5069
5070/**
5071 *	ata_phys_link_online - test whether the given link is online
5072 *	@link: ATA link to test
5073 *
5074 *	Test whether @link is online.  Note that this function returns
5075 *	0 if online status of @link cannot be obtained, so
5076 *	ata_link_online(link) != !ata_link_offline(link).
5077 *
5078 *	LOCKING:
5079 *	None.
5080 *
5081 *	RETURNS:
5082 *	True if the port online status is available and online.
5083 */
5084bool ata_phys_link_online(struct ata_link *link)
5085{
5086	u32 sstatus;
5087
5088	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5089	    ata_sstatus_online(sstatus))
5090		return true;
5091	return false;
5092}
5093
5094/**
5095 *	ata_phys_link_offline - test whether the given link is offline
5096 *	@link: ATA link to test
5097 *
5098 *	Test whether @link is offline.  Note that this function
5099 *	returns 0 if offline status of @link cannot be obtained, so
5100 *	ata_link_online(link) != !ata_link_offline(link).
5101 *
5102 *	LOCKING:
5103 *	None.
5104 *
5105 *	RETURNS:
5106 *	True if the port offline status is available and offline.
5107 */
5108bool ata_phys_link_offline(struct ata_link *link)
5109{
5110	u32 sstatus;
5111
5112	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5113	    !ata_sstatus_online(sstatus))
5114		return true;
5115	return false;
5116}
5117
5118/**
5119 *	ata_link_online - test whether the given link is online
5120 *	@link: ATA link to test
5121 *
5122 *	Test whether @link is online.  This is identical to
5123 *	ata_phys_link_online() when there's no slave link.  When
5124 *	there's a slave link, this function should only be called on
5125 *	the master link and will return true if any of M/S links is
5126 *	online.
5127 *
5128 *	LOCKING:
5129 *	None.
5130 *
5131 *	RETURNS:
5132 *	True if the port online status is available and online.
5133 */
5134bool ata_link_online(struct ata_link *link)
5135{
5136	struct ata_link *slave = link->ap->slave_link;
5137
5138	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5139
5140	return ata_phys_link_online(link) ||
5141		(slave && ata_phys_link_online(slave));
5142}
5143EXPORT_SYMBOL_GPL(ata_link_online);
5144
5145/**
5146 *	ata_link_offline - test whether the given link is offline
5147 *	@link: ATA link to test
5148 *
5149 *	Test whether @link is offline.  This is identical to
5150 *	ata_phys_link_offline() when there's no slave link.  When
5151 *	there's a slave link, this function should only be called on
5152 *	the master link and will return true if both M/S links are
5153 *	offline.
5154 *
5155 *	LOCKING:
5156 *	None.
5157 *
5158 *	RETURNS:
5159 *	True if the port offline status is available and offline.
5160 */
5161bool ata_link_offline(struct ata_link *link)
5162{
5163	struct ata_link *slave = link->ap->slave_link;
5164
5165	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5166
5167	return ata_phys_link_offline(link) &&
5168		(!slave || ata_phys_link_offline(slave));
5169}
5170EXPORT_SYMBOL_GPL(ata_link_offline);
5171
5172#ifdef CONFIG_PM
5173static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5174				unsigned int action, unsigned int ehi_flags,
5175				bool async)
5176{
5177	struct ata_link *link;
5178	unsigned long flags;
5179
5180	spin_lock_irqsave(ap->lock, flags);
5181
5182	/*
5183	 * A previous PM operation might still be in progress. Wait for
5184	 * ATA_PFLAG_PM_PENDING to clear.
5185	 */
5186	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5187		spin_unlock_irqrestore(ap->lock, flags);
5188		ata_port_wait_eh(ap);
5189		spin_lock_irqsave(ap->lock, flags);
5190	}
5191
5192	/* Request PM operation to EH */
5193	ap->pm_mesg = mesg;
5194	ap->pflags |= ATA_PFLAG_PM_PENDING;
5195	ata_for_each_link(link, ap, HOST_FIRST) {
5196		link->eh_info.action |= action;
5197		link->eh_info.flags |= ehi_flags;
5198	}
5199
5200	ata_port_schedule_eh(ap);
5201
5202	spin_unlock_irqrestore(ap->lock, flags);
5203
5204	if (!async)
5205		ata_port_wait_eh(ap);
5206}
5207
5208static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5209			     bool async)
5210{
5211	/*
5212	 * We are about to suspend the port, so we do not care about
5213	 * scsi_rescan_device() calls scheduled by previous resume operations.
5214	 * The next resume will schedule the rescan again. So cancel any rescan
5215	 * that is not done yet.
5216	 */
5217	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5218
5219	/*
5220	 * On some hardware, device fails to respond after spun down for
5221	 * suspend. As the device will not be used until being resumed, we
5222	 * do not need to touch the device. Ask EH to skip the usual stuff
5223	 * and proceed directly to suspend.
5224	 *
5225	 * http://thread.gmane.org/gmane.linux.ide/46764
5226	 */
5227	ata_port_request_pm(ap, mesg, 0,
5228			    ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5229			    ATA_EHI_NO_RECOVERY,
5230			    async);
5231}
5232
5233static int ata_port_pm_suspend(struct device *dev)
5234{
5235	struct ata_port *ap = to_ata_port(dev);
5236
5237	if (pm_runtime_suspended(dev))
5238		return 0;
5239
5240	ata_port_suspend(ap, PMSG_SUSPEND, false);
5241	return 0;
5242}
5243
5244static int ata_port_pm_freeze(struct device *dev)
5245{
5246	struct ata_port *ap = to_ata_port(dev);
5247
5248	if (pm_runtime_suspended(dev))
5249		return 0;
5250
5251	ata_port_suspend(ap, PMSG_FREEZE, false);
5252	return 0;
5253}
5254
5255static int ata_port_pm_poweroff(struct device *dev)
5256{
5257	if (!pm_runtime_suspended(dev))
5258		ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5259	return 0;
5260}
5261
5262static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5263			    bool async)
5264{
5265	ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5266			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5267			    async);
5268}
5269
5270static int ata_port_pm_resume(struct device *dev)
5271{
5272	if (!pm_runtime_suspended(dev))
5273		ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5274	return 0;
5275}
5276
5277/*
5278 * For ODDs, the upper layer will poll for media change every few seconds,
5279 * which will make it enter and leave suspend state every few seconds. And
5280 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5281 * is very little and the ODD may malfunction after constantly being reset.
5282 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5283 * ODD is attached to the port.
5284 */
5285static int ata_port_runtime_idle(struct device *dev)
5286{
5287	struct ata_port *ap = to_ata_port(dev);
5288	struct ata_link *link;
5289	struct ata_device *adev;
5290
5291	ata_for_each_link(link, ap, HOST_FIRST) {
5292		ata_for_each_dev(adev, link, ENABLED)
5293			if (adev->class == ATA_DEV_ATAPI &&
5294			    !zpodd_dev_enabled(adev))
5295				return -EBUSY;
5296	}
5297
5298	return 0;
5299}
5300
5301static int ata_port_runtime_suspend(struct device *dev)
5302{
5303	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5304	return 0;
5305}
5306
5307static int ata_port_runtime_resume(struct device *dev)
5308{
5309	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5310	return 0;
5311}
5312
5313static const struct dev_pm_ops ata_port_pm_ops = {
5314	.suspend = ata_port_pm_suspend,
5315	.resume = ata_port_pm_resume,
5316	.freeze = ata_port_pm_freeze,
5317	.thaw = ata_port_pm_resume,
5318	.poweroff = ata_port_pm_poweroff,
5319	.restore = ata_port_pm_resume,
5320
5321	.runtime_suspend = ata_port_runtime_suspend,
5322	.runtime_resume = ata_port_runtime_resume,
5323	.runtime_idle = ata_port_runtime_idle,
5324};
5325
5326/* sas ports don't participate in pm runtime management of ata_ports,
5327 * and need to resume ata devices at the domain level, not the per-port
5328 * level. sas suspend/resume is async to allow parallel port recovery
5329 * since sas has multiple ata_port instances per Scsi_Host.
5330 */
5331void ata_sas_port_suspend(struct ata_port *ap)
5332{
5333	ata_port_suspend(ap, PMSG_SUSPEND, true);
5334}
5335EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5336
5337void ata_sas_port_resume(struct ata_port *ap)
5338{
5339	ata_port_resume(ap, PMSG_RESUME, true);
5340}
5341EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5342
5343/**
5344 *	ata_host_suspend - suspend host
5345 *	@host: host to suspend
5346 *	@mesg: PM message
5347 *
5348 *	Suspend @host.  Actual operation is performed by port suspend.
5349 */
5350void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5351{
5352	host->dev->power.power_state = mesg;
5353}
5354EXPORT_SYMBOL_GPL(ata_host_suspend);
5355
5356/**
5357 *	ata_host_resume - resume host
5358 *	@host: host to resume
5359 *
5360 *	Resume @host.  Actual operation is performed by port resume.
5361 */
5362void ata_host_resume(struct ata_host *host)
5363{
5364	host->dev->power.power_state = PMSG_ON;
5365}
5366EXPORT_SYMBOL_GPL(ata_host_resume);
5367#endif
5368
5369const struct device_type ata_port_type = {
5370	.name = ATA_PORT_TYPE_NAME,
5371#ifdef CONFIG_PM
5372	.pm = &ata_port_pm_ops,
5373#endif
5374};
5375
5376/**
5377 *	ata_dev_init - Initialize an ata_device structure
5378 *	@dev: Device structure to initialize
5379 *
5380 *	Initialize @dev in preparation for probing.
5381 *
5382 *	LOCKING:
5383 *	Inherited from caller.
5384 */
5385void ata_dev_init(struct ata_device *dev)
5386{
5387	struct ata_link *link = ata_dev_phys_link(dev);
5388	struct ata_port *ap = link->ap;
5389	unsigned long flags;
5390
5391	/* SATA spd limit is bound to the attached device, reset together */
5392	link->sata_spd_limit = link->hw_sata_spd_limit;
5393	link->sata_spd = 0;
5394
5395	/* High bits of dev->flags are used to record warm plug
5396	 * requests which occur asynchronously.  Synchronize using
5397	 * host lock.
5398	 */
5399	spin_lock_irqsave(ap->lock, flags);
5400	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5401	dev->horkage = 0;
5402	spin_unlock_irqrestore(ap->lock, flags);
5403
5404	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5405	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5406	dev->pio_mask = UINT_MAX;
5407	dev->mwdma_mask = UINT_MAX;
5408	dev->udma_mask = UINT_MAX;
5409}
5410
5411/**
5412 *	ata_link_init - Initialize an ata_link structure
5413 *	@ap: ATA port link is attached to
5414 *	@link: Link structure to initialize
5415 *	@pmp: Port multiplier port number
5416 *
5417 *	Initialize @link.
5418 *
5419 *	LOCKING:
5420 *	Kernel thread context (may sleep)
5421 */
5422void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5423{
5424	int i;
5425
5426	/* clear everything except for devices */
5427	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5428	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5429
5430	link->ap = ap;
5431	link->pmp = pmp;
5432	link->active_tag = ATA_TAG_POISON;
5433	link->hw_sata_spd_limit = UINT_MAX;
5434
5435	/* can't use iterator, ap isn't initialized yet */
5436	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5437		struct ata_device *dev = &link->device[i];
5438
5439		dev->link = link;
5440		dev->devno = dev - link->device;
5441#ifdef CONFIG_ATA_ACPI
5442		dev->gtf_filter = ata_acpi_gtf_filter;
5443#endif
5444		ata_dev_init(dev);
5445	}
5446}
5447
5448/**
5449 *	sata_link_init_spd - Initialize link->sata_spd_limit
5450 *	@link: Link to configure sata_spd_limit for
5451 *
5452 *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5453 *	configured value.
5454 *
5455 *	LOCKING:
5456 *	Kernel thread context (may sleep).
5457 *
5458 *	RETURNS:
5459 *	0 on success, -errno on failure.
5460 */
5461int sata_link_init_spd(struct ata_link *link)
5462{
5463	u8 spd;
5464	int rc;
5465
5466	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5467	if (rc)
5468		return rc;
5469
5470	spd = (link->saved_scontrol >> 4) & 0xf;
5471	if (spd)
5472		link->hw_sata_spd_limit &= (1 << spd) - 1;
5473
5474	ata_force_link_limits(link);
5475
5476	link->sata_spd_limit = link->hw_sata_spd_limit;
5477
5478	return 0;
5479}
5480
5481/**
5482 *	ata_port_alloc - allocate and initialize basic ATA port resources
5483 *	@host: ATA host this allocated port belongs to
5484 *
5485 *	Allocate and initialize basic ATA port resources.
5486 *
5487 *	RETURNS:
5488 *	Allocate ATA port on success, NULL on failure.
5489 *
5490 *	LOCKING:
5491 *	Inherited from calling layer (may sleep).
5492 */
5493struct ata_port *ata_port_alloc(struct ata_host *host)
5494{
5495	struct ata_port *ap;
 
5496
5497	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5498	if (!ap)
5499		return NULL;
5500
5501	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5502	ap->lock = &host->lock;
5503	ap->print_id = -1;
5504	ap->local_port_no = -1;
 
 
 
 
5505	ap->host = host;
5506	ap->dev = host->dev;
5507
5508	mutex_init(&ap->scsi_scan_mutex);
5509	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5510	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5511	INIT_LIST_HEAD(&ap->eh_done_q);
5512	init_waitqueue_head(&ap->eh_wait_q);
5513	init_completion(&ap->park_req_pending);
5514	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5515		    TIMER_DEFERRABLE);
5516
5517	ap->cbl = ATA_CBL_NONE;
5518
5519	ata_link_init(ap, &ap->link, 0);
5520
5521#ifdef ATA_IRQ_TRAP
5522	ap->stats.unhandled_irq = 1;
5523	ap->stats.idle_irq = 1;
5524#endif
5525	ata_sff_port_init(ap);
5526
5527	return ap;
5528}
 
 
 
 
 
 
 
 
 
 
 
 
 
5529
5530static void ata_devres_release(struct device *gendev, void *res)
5531{
5532	struct ata_host *host = dev_get_drvdata(gendev);
5533	int i;
5534
5535	for (i = 0; i < host->n_ports; i++) {
5536		struct ata_port *ap = host->ports[i];
5537
5538		if (!ap)
5539			continue;
5540
5541		if (ap->scsi_host)
5542			scsi_host_put(ap->scsi_host);
5543
5544	}
5545
5546	dev_set_drvdata(gendev, NULL);
5547	ata_host_put(host);
5548}
5549
5550static void ata_host_release(struct kref *kref)
5551{
5552	struct ata_host *host = container_of(kref, struct ata_host, kref);
5553	int i;
5554
5555	for (i = 0; i < host->n_ports; i++) {
5556		struct ata_port *ap = host->ports[i];
5557
5558		kfree(ap->pmp_link);
5559		kfree(ap->slave_link);
5560		kfree(ap->ncq_sense_buf);
5561		kfree(ap);
5562		host->ports[i] = NULL;
5563	}
5564	kfree(host);
5565}
5566
5567void ata_host_get(struct ata_host *host)
5568{
5569	kref_get(&host->kref);
5570}
5571
5572void ata_host_put(struct ata_host *host)
5573{
5574	kref_put(&host->kref, ata_host_release);
5575}
5576EXPORT_SYMBOL_GPL(ata_host_put);
5577
5578/**
5579 *	ata_host_alloc - allocate and init basic ATA host resources
5580 *	@dev: generic device this host is associated with
5581 *	@max_ports: maximum number of ATA ports associated with this host
5582 *
5583 *	Allocate and initialize basic ATA host resources.  LLD calls
5584 *	this function to allocate a host, initializes it fully and
5585 *	attaches it using ata_host_register().
5586 *
5587 *	@max_ports ports are allocated and host->n_ports is
5588 *	initialized to @max_ports.  The caller is allowed to decrease
5589 *	host->n_ports before calling ata_host_register().  The unused
5590 *	ports will be automatically freed on registration.
5591 *
5592 *	RETURNS:
5593 *	Allocate ATA host on success, NULL on failure.
5594 *
5595 *	LOCKING:
5596 *	Inherited from calling layer (may sleep).
5597 */
5598struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5599{
5600	struct ata_host *host;
5601	size_t sz;
5602	int i;
5603	void *dr;
5604
5605	/* alloc a container for our list of ATA ports (buses) */
5606	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5607	host = kzalloc(sz, GFP_KERNEL);
5608	if (!host)
5609		return NULL;
5610
5611	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5612		goto err_free;
 
 
5613
5614	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5615	if (!dr)
 
5616		goto err_out;
 
5617
5618	devres_add(dev, dr);
5619	dev_set_drvdata(dev, host);
5620
5621	spin_lock_init(&host->lock);
5622	mutex_init(&host->eh_mutex);
5623	host->dev = dev;
5624	host->n_ports = max_ports;
5625	kref_init(&host->kref);
5626
5627	/* allocate ports bound to this host */
5628	for (i = 0; i < max_ports; i++) {
5629		struct ata_port *ap;
5630
5631		ap = ata_port_alloc(host);
5632		if (!ap)
5633			goto err_out;
5634
5635		ap->port_no = i;
5636		host->ports[i] = ap;
5637	}
5638
5639	devres_remove_group(dev, NULL);
5640	return host;
5641
5642 err_out:
5643	devres_release_group(dev, NULL);
5644 err_free:
5645	kfree(host);
5646	return NULL;
5647}
5648EXPORT_SYMBOL_GPL(ata_host_alloc);
5649
5650/**
5651 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5652 *	@dev: generic device this host is associated with
5653 *	@ppi: array of ATA port_info to initialize host with
5654 *	@n_ports: number of ATA ports attached to this host
5655 *
5656 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5657 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5658 *	last entry will be used for the remaining ports.
5659 *
5660 *	RETURNS:
5661 *	Allocate ATA host on success, NULL on failure.
5662 *
5663 *	LOCKING:
5664 *	Inherited from calling layer (may sleep).
5665 */
5666struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5667				      const struct ata_port_info * const * ppi,
5668				      int n_ports)
5669{
5670	const struct ata_port_info *pi = &ata_dummy_port_info;
5671	struct ata_host *host;
5672	int i, j;
5673
5674	host = ata_host_alloc(dev, n_ports);
5675	if (!host)
5676		return NULL;
5677
5678	for (i = 0, j = 0; i < host->n_ports; i++) {
5679		struct ata_port *ap = host->ports[i];
5680
5681		if (ppi[j])
5682			pi = ppi[j++];
5683
5684		ap->pio_mask = pi->pio_mask;
5685		ap->mwdma_mask = pi->mwdma_mask;
5686		ap->udma_mask = pi->udma_mask;
5687		ap->flags |= pi->flags;
5688		ap->link.flags |= pi->link_flags;
5689		ap->ops = pi->port_ops;
5690
5691		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5692			host->ops = pi->port_ops;
5693	}
5694
5695	return host;
5696}
5697EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5698
5699static void ata_host_stop(struct device *gendev, void *res)
5700{
5701	struct ata_host *host = dev_get_drvdata(gendev);
5702	int i;
5703
5704	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5705
5706	for (i = 0; i < host->n_ports; i++) {
5707		struct ata_port *ap = host->ports[i];
5708
5709		if (ap->ops->port_stop)
5710			ap->ops->port_stop(ap);
5711	}
5712
5713	if (host->ops->host_stop)
5714		host->ops->host_stop(host);
5715}
5716
5717/**
5718 *	ata_finalize_port_ops - finalize ata_port_operations
5719 *	@ops: ata_port_operations to finalize
5720 *
5721 *	An ata_port_operations can inherit from another ops and that
5722 *	ops can again inherit from another.  This can go on as many
5723 *	times as necessary as long as there is no loop in the
5724 *	inheritance chain.
5725 *
5726 *	Ops tables are finalized when the host is started.  NULL or
5727 *	unspecified entries are inherited from the closet ancestor
5728 *	which has the method and the entry is populated with it.
5729 *	After finalization, the ops table directly points to all the
5730 *	methods and ->inherits is no longer necessary and cleared.
5731 *
5732 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5733 *
5734 *	LOCKING:
5735 *	None.
5736 */
5737static void ata_finalize_port_ops(struct ata_port_operations *ops)
5738{
5739	static DEFINE_SPINLOCK(lock);
5740	const struct ata_port_operations *cur;
5741	void **begin = (void **)ops;
5742	void **end = (void **)&ops->inherits;
5743	void **pp;
5744
5745	if (!ops || !ops->inherits)
5746		return;
5747
5748	spin_lock(&lock);
5749
5750	for (cur = ops->inherits; cur; cur = cur->inherits) {
5751		void **inherit = (void **)cur;
5752
5753		for (pp = begin; pp < end; pp++, inherit++)
5754			if (!*pp)
5755				*pp = *inherit;
5756	}
5757
5758	for (pp = begin; pp < end; pp++)
5759		if (IS_ERR(*pp))
5760			*pp = NULL;
5761
5762	ops->inherits = NULL;
5763
5764	spin_unlock(&lock);
5765}
5766
5767/**
5768 *	ata_host_start - start and freeze ports of an ATA host
5769 *	@host: ATA host to start ports for
5770 *
5771 *	Start and then freeze ports of @host.  Started status is
5772 *	recorded in host->flags, so this function can be called
5773 *	multiple times.  Ports are guaranteed to get started only
5774 *	once.  If host->ops is not initialized yet, it is set to the
5775 *	first non-dummy port ops.
5776 *
5777 *	LOCKING:
5778 *	Inherited from calling layer (may sleep).
5779 *
5780 *	RETURNS:
5781 *	0 if all ports are started successfully, -errno otherwise.
5782 */
5783int ata_host_start(struct ata_host *host)
5784{
5785	int have_stop = 0;
5786	void *start_dr = NULL;
5787	int i, rc;
5788
5789	if (host->flags & ATA_HOST_STARTED)
5790		return 0;
5791
5792	ata_finalize_port_ops(host->ops);
5793
5794	for (i = 0; i < host->n_ports; i++) {
5795		struct ata_port *ap = host->ports[i];
5796
5797		ata_finalize_port_ops(ap->ops);
5798
5799		if (!host->ops && !ata_port_is_dummy(ap))
5800			host->ops = ap->ops;
5801
5802		if (ap->ops->port_stop)
5803			have_stop = 1;
5804	}
5805
5806	if (host->ops && host->ops->host_stop)
5807		have_stop = 1;
5808
5809	if (have_stop) {
5810		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5811		if (!start_dr)
5812			return -ENOMEM;
5813	}
5814
5815	for (i = 0; i < host->n_ports; i++) {
5816		struct ata_port *ap = host->ports[i];
5817
5818		if (ap->ops->port_start) {
5819			rc = ap->ops->port_start(ap);
5820			if (rc) {
5821				if (rc != -ENODEV)
5822					dev_err(host->dev,
5823						"failed to start port %d (errno=%d)\n",
5824						i, rc);
5825				goto err_out;
5826			}
5827		}
5828		ata_eh_freeze_port(ap);
5829	}
5830
5831	if (start_dr)
5832		devres_add(host->dev, start_dr);
5833	host->flags |= ATA_HOST_STARTED;
5834	return 0;
5835
5836 err_out:
5837	while (--i >= 0) {
5838		struct ata_port *ap = host->ports[i];
5839
5840		if (ap->ops->port_stop)
5841			ap->ops->port_stop(ap);
5842	}
5843	devres_free(start_dr);
5844	return rc;
5845}
5846EXPORT_SYMBOL_GPL(ata_host_start);
5847
5848/**
5849 *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5850 *	@host:	host to initialize
5851 *	@dev:	device host is attached to
5852 *	@ops:	port_ops
5853 *
5854 */
5855void ata_host_init(struct ata_host *host, struct device *dev,
5856		   struct ata_port_operations *ops)
5857{
5858	spin_lock_init(&host->lock);
5859	mutex_init(&host->eh_mutex);
5860	host->n_tags = ATA_MAX_QUEUE;
5861	host->dev = dev;
5862	host->ops = ops;
5863	kref_init(&host->kref);
5864}
5865EXPORT_SYMBOL_GPL(ata_host_init);
5866
5867void ata_port_probe(struct ata_port *ap)
5868{
5869	struct ata_eh_info *ehi = &ap->link.eh_info;
5870	unsigned long flags;
5871
5872	/* kick EH for boot probing */
5873	spin_lock_irqsave(ap->lock, flags);
5874
5875	ehi->probe_mask |= ATA_ALL_DEVICES;
5876	ehi->action |= ATA_EH_RESET;
5877	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5878
5879	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5880	ap->pflags |= ATA_PFLAG_LOADING;
5881	ata_port_schedule_eh(ap);
5882
5883	spin_unlock_irqrestore(ap->lock, flags);
5884}
5885EXPORT_SYMBOL_GPL(ata_port_probe);
5886
5887static void async_port_probe(void *data, async_cookie_t cookie)
5888{
5889	struct ata_port *ap = data;
5890
5891	/*
5892	 * If we're not allowed to scan this host in parallel,
5893	 * we need to wait until all previous scans have completed
5894	 * before going further.
5895	 * Jeff Garzik says this is only within a controller, so we
5896	 * don't need to wait for port 0, only for later ports.
5897	 */
5898	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5899		async_synchronize_cookie(cookie);
5900
5901	ata_port_probe(ap);
5902	ata_port_wait_eh(ap);
5903
5904	/* in order to keep device order, we need to synchronize at this point */
5905	async_synchronize_cookie(cookie);
5906
5907	ata_scsi_scan_host(ap, 1);
5908}
5909
5910/**
5911 *	ata_host_register - register initialized ATA host
5912 *	@host: ATA host to register
5913 *	@sht: template for SCSI host
5914 *
5915 *	Register initialized ATA host.  @host is allocated using
5916 *	ata_host_alloc() and fully initialized by LLD.  This function
5917 *	starts ports, registers @host with ATA and SCSI layers and
5918 *	probe registered devices.
5919 *
5920 *	LOCKING:
5921 *	Inherited from calling layer (may sleep).
5922 *
5923 *	RETURNS:
5924 *	0 on success, -errno otherwise.
5925 */
5926int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5927{
5928	int i, rc;
5929
5930	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5931
5932	/* host must have been started */
5933	if (!(host->flags & ATA_HOST_STARTED)) {
5934		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5935		WARN_ON(1);
5936		return -EINVAL;
5937	}
5938
5939	/* Blow away unused ports.  This happens when LLD can't
5940	 * determine the exact number of ports to allocate at
5941	 * allocation time.
5942	 */
5943	for (i = host->n_ports; host->ports[i]; i++)
5944		kfree(host->ports[i]);
5945
5946	/* give ports names and add SCSI hosts */
5947	for (i = 0; i < host->n_ports; i++) {
5948		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5949		host->ports[i]->local_port_no = i + 1;
5950	}
5951
5952	/* Create associated sysfs transport objects  */
5953	for (i = 0; i < host->n_ports; i++) {
5954		rc = ata_tport_add(host->dev,host->ports[i]);
5955		if (rc) {
5956			goto err_tadd;
5957		}
5958	}
5959
5960	rc = ata_scsi_add_hosts(host, sht);
5961	if (rc)
5962		goto err_tadd;
5963
5964	/* set cable, sata_spd_limit and report */
5965	for (i = 0; i < host->n_ports; i++) {
5966		struct ata_port *ap = host->ports[i];
5967		unsigned int xfer_mask;
5968
5969		/* set SATA cable type if still unset */
5970		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5971			ap->cbl = ATA_CBL_SATA;
5972
5973		/* init sata_spd_limit to the current value */
5974		sata_link_init_spd(&ap->link);
5975		if (ap->slave_link)
5976			sata_link_init_spd(ap->slave_link);
5977
5978		/* print per-port info to dmesg */
5979		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5980					      ap->udma_mask);
5981
5982		if (!ata_port_is_dummy(ap)) {
5983			ata_port_info(ap, "%cATA max %s %s\n",
5984				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5985				      ata_mode_string(xfer_mask),
5986				      ap->link.eh_info.desc);
5987			ata_ehi_clear_desc(&ap->link.eh_info);
5988		} else
5989			ata_port_info(ap, "DUMMY\n");
5990	}
5991
5992	/* perform each probe asynchronously */
5993	for (i = 0; i < host->n_ports; i++) {
5994		struct ata_port *ap = host->ports[i];
5995		ap->cookie = async_schedule(async_port_probe, ap);
5996	}
5997
5998	return 0;
5999
6000 err_tadd:
6001	while (--i >= 0) {
6002		ata_tport_delete(host->ports[i]);
6003	}
6004	return rc;
6005
6006}
6007EXPORT_SYMBOL_GPL(ata_host_register);
6008
6009/**
6010 *	ata_host_activate - start host, request IRQ and register it
6011 *	@host: target ATA host
6012 *	@irq: IRQ to request
6013 *	@irq_handler: irq_handler used when requesting IRQ
6014 *	@irq_flags: irq_flags used when requesting IRQ
6015 *	@sht: scsi_host_template to use when registering the host
6016 *
6017 *	After allocating an ATA host and initializing it, most libata
6018 *	LLDs perform three steps to activate the host - start host,
6019 *	request IRQ and register it.  This helper takes necessary
6020 *	arguments and performs the three steps in one go.
6021 *
6022 *	An invalid IRQ skips the IRQ registration and expects the host to
6023 *	have set polling mode on the port. In this case, @irq_handler
6024 *	should be NULL.
6025 *
6026 *	LOCKING:
6027 *	Inherited from calling layer (may sleep).
6028 *
6029 *	RETURNS:
6030 *	0 on success, -errno otherwise.
6031 */
6032int ata_host_activate(struct ata_host *host, int irq,
6033		      irq_handler_t irq_handler, unsigned long irq_flags,
6034		      const struct scsi_host_template *sht)
6035{
6036	int i, rc;
6037	char *irq_desc;
6038
6039	rc = ata_host_start(host);
6040	if (rc)
6041		return rc;
6042
6043	/* Special case for polling mode */
6044	if (!irq) {
6045		WARN_ON(irq_handler);
6046		return ata_host_register(host, sht);
6047	}
6048
6049	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6050				  dev_driver_string(host->dev),
6051				  dev_name(host->dev));
6052	if (!irq_desc)
6053		return -ENOMEM;
6054
6055	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6056			      irq_desc, host);
6057	if (rc)
6058		return rc;
6059
6060	for (i = 0; i < host->n_ports; i++)
6061		ata_port_desc_misc(host->ports[i], irq);
6062
6063	rc = ata_host_register(host, sht);
6064	/* if failed, just free the IRQ and leave ports alone */
6065	if (rc)
6066		devm_free_irq(host->dev, irq, host);
6067
6068	return rc;
6069}
6070EXPORT_SYMBOL_GPL(ata_host_activate);
6071
6072/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6073 *	ata_port_detach - Detach ATA port in preparation of device removal
6074 *	@ap: ATA port to be detached
6075 *
6076 *	Detach all ATA devices and the associated SCSI devices of @ap;
6077 *	then, remove the associated SCSI host.  @ap is guaranteed to
6078 *	be quiescent on return from this function.
6079 *
6080 *	LOCKING:
6081 *	Kernel thread context (may sleep).
6082 */
6083static void ata_port_detach(struct ata_port *ap)
6084{
6085	unsigned long flags;
6086	struct ata_link *link;
6087	struct ata_device *dev;
6088
6089	/* Ensure ata_port probe has completed */
6090	async_synchronize_cookie(ap->cookie + 1);
6091
6092	/* Wait for any ongoing EH */
6093	ata_port_wait_eh(ap);
6094
6095	mutex_lock(&ap->scsi_scan_mutex);
6096	spin_lock_irqsave(ap->lock, flags);
6097
6098	/* Remove scsi devices */
6099	ata_for_each_link(link, ap, HOST_FIRST) {
6100		ata_for_each_dev(dev, link, ALL) {
6101			if (dev->sdev) {
6102				spin_unlock_irqrestore(ap->lock, flags);
6103				scsi_remove_device(dev->sdev);
6104				spin_lock_irqsave(ap->lock, flags);
6105				dev->sdev = NULL;
6106			}
6107		}
6108	}
6109
6110	/* Tell EH to disable all devices */
6111	ap->pflags |= ATA_PFLAG_UNLOADING;
6112	ata_port_schedule_eh(ap);
6113
6114	spin_unlock_irqrestore(ap->lock, flags);
6115	mutex_unlock(&ap->scsi_scan_mutex);
6116
6117	/* wait till EH commits suicide */
6118	ata_port_wait_eh(ap);
6119
6120	/* it better be dead now */
6121	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6122
6123	cancel_delayed_work_sync(&ap->hotplug_task);
6124	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6125
6126	/* clean up zpodd on port removal */
6127	ata_for_each_link(link, ap, HOST_FIRST) {
6128		ata_for_each_dev(dev, link, ALL) {
6129			if (zpodd_dev_enabled(dev))
6130				zpodd_exit(dev);
6131		}
6132	}
6133	if (ap->pmp_link) {
6134		int i;
 
6135		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6136			ata_tlink_delete(&ap->pmp_link[i]);
6137	}
6138	/* remove the associated SCSI host */
 
6139	scsi_remove_host(ap->scsi_host);
6140	ata_tport_delete(ap);
6141}
6142
6143/**
6144 *	ata_host_detach - Detach all ports of an ATA host
6145 *	@host: Host to detach
6146 *
6147 *	Detach all ports of @host.
6148 *
6149 *	LOCKING:
6150 *	Kernel thread context (may sleep).
6151 */
6152void ata_host_detach(struct ata_host *host)
6153{
6154	int i;
6155
6156	for (i = 0; i < host->n_ports; i++)
6157		ata_port_detach(host->ports[i]);
6158
6159	/* the host is dead now, dissociate ACPI */
6160	ata_acpi_dissociate(host);
6161}
6162EXPORT_SYMBOL_GPL(ata_host_detach);
6163
6164#ifdef CONFIG_PCI
6165
6166/**
6167 *	ata_pci_remove_one - PCI layer callback for device removal
6168 *	@pdev: PCI device that was removed
6169 *
6170 *	PCI layer indicates to libata via this hook that hot-unplug or
6171 *	module unload event has occurred.  Detach all ports.  Resource
6172 *	release is handled via devres.
6173 *
6174 *	LOCKING:
6175 *	Inherited from PCI layer (may sleep).
6176 */
6177void ata_pci_remove_one(struct pci_dev *pdev)
6178{
6179	struct ata_host *host = pci_get_drvdata(pdev);
6180
6181	ata_host_detach(host);
6182}
6183EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6184
6185void ata_pci_shutdown_one(struct pci_dev *pdev)
6186{
6187	struct ata_host *host = pci_get_drvdata(pdev);
6188	int i;
6189
6190	for (i = 0; i < host->n_ports; i++) {
6191		struct ata_port *ap = host->ports[i];
6192
6193		ap->pflags |= ATA_PFLAG_FROZEN;
6194
6195		/* Disable port interrupts */
6196		if (ap->ops->freeze)
6197			ap->ops->freeze(ap);
6198
6199		/* Stop the port DMA engines */
6200		if (ap->ops->port_stop)
6201			ap->ops->port_stop(ap);
6202	}
6203}
6204EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6205
6206/* move to PCI subsystem */
6207int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6208{
6209	unsigned long tmp = 0;
6210
6211	switch (bits->width) {
6212	case 1: {
6213		u8 tmp8 = 0;
6214		pci_read_config_byte(pdev, bits->reg, &tmp8);
6215		tmp = tmp8;
6216		break;
6217	}
6218	case 2: {
6219		u16 tmp16 = 0;
6220		pci_read_config_word(pdev, bits->reg, &tmp16);
6221		tmp = tmp16;
6222		break;
6223	}
6224	case 4: {
6225		u32 tmp32 = 0;
6226		pci_read_config_dword(pdev, bits->reg, &tmp32);
6227		tmp = tmp32;
6228		break;
6229	}
6230
6231	default:
6232		return -EINVAL;
6233	}
6234
6235	tmp &= bits->mask;
6236
6237	return (tmp == bits->val) ? 1 : 0;
6238}
6239EXPORT_SYMBOL_GPL(pci_test_config_bits);
6240
6241#ifdef CONFIG_PM
6242void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6243{
6244	pci_save_state(pdev);
6245	pci_disable_device(pdev);
6246
6247	if (mesg.event & PM_EVENT_SLEEP)
6248		pci_set_power_state(pdev, PCI_D3hot);
6249}
6250EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6251
6252int ata_pci_device_do_resume(struct pci_dev *pdev)
6253{
6254	int rc;
6255
6256	pci_set_power_state(pdev, PCI_D0);
6257	pci_restore_state(pdev);
6258
6259	rc = pcim_enable_device(pdev);
6260	if (rc) {
6261		dev_err(&pdev->dev,
6262			"failed to enable device after resume (%d)\n", rc);
6263		return rc;
6264	}
6265
6266	pci_set_master(pdev);
6267	return 0;
6268}
6269EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6270
6271int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6272{
6273	struct ata_host *host = pci_get_drvdata(pdev);
6274
6275	ata_host_suspend(host, mesg);
6276
6277	ata_pci_device_do_suspend(pdev, mesg);
6278
6279	return 0;
6280}
6281EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6282
6283int ata_pci_device_resume(struct pci_dev *pdev)
6284{
6285	struct ata_host *host = pci_get_drvdata(pdev);
6286	int rc;
6287
6288	rc = ata_pci_device_do_resume(pdev);
6289	if (rc == 0)
6290		ata_host_resume(host);
6291	return rc;
6292}
6293EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6294#endif /* CONFIG_PM */
6295#endif /* CONFIG_PCI */
6296
6297/**
6298 *	ata_platform_remove_one - Platform layer callback for device removal
6299 *	@pdev: Platform device that was removed
6300 *
6301 *	Platform layer indicates to libata via this hook that hot-unplug or
6302 *	module unload event has occurred.  Detach all ports.  Resource
6303 *	release is handled via devres.
6304 *
6305 *	LOCKING:
6306 *	Inherited from platform layer (may sleep).
6307 */
6308void ata_platform_remove_one(struct platform_device *pdev)
6309{
6310	struct ata_host *host = platform_get_drvdata(pdev);
6311
6312	ata_host_detach(host);
6313}
6314EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6315
6316#ifdef CONFIG_ATA_FORCE
6317
6318#define force_cbl(name, flag)				\
6319	{ #name,	.cbl		= (flag) }
6320
6321#define force_spd_limit(spd, val)			\
6322	{ #spd,	.spd_limit		= (val) }
6323
6324#define force_xfer(mode, shift)				\
6325	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6326
6327#define force_lflag_on(name, flags)			\
6328	{ #name,	.lflags_on	= (flags) }
6329
6330#define force_lflag_onoff(name, flags)			\
6331	{ "no" #name,	.lflags_on	= (flags) },	\
6332	{ #name,	.lflags_off	= (flags) }
6333
6334#define force_horkage_on(name, flag)			\
6335	{ #name,	.horkage_on	= (flag) }
6336
6337#define force_horkage_onoff(name, flag)			\
6338	{ "no" #name,	.horkage_on	= (flag) },	\
6339	{ #name,	.horkage_off	= (flag) }
6340
6341static const struct ata_force_param force_tbl[] __initconst = {
6342	force_cbl(40c,			ATA_CBL_PATA40),
6343	force_cbl(80c,			ATA_CBL_PATA80),
6344	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6345	force_cbl(unk,			ATA_CBL_PATA_UNK),
6346	force_cbl(ign,			ATA_CBL_PATA_IGN),
6347	force_cbl(sata,			ATA_CBL_SATA),
6348
6349	force_spd_limit(1.5Gbps,	1),
6350	force_spd_limit(3.0Gbps,	2),
6351
6352	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6353	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6354	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6355	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6356	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6357	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6358	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6359	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6360	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6361	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6362	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6363	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6364	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6365	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6366	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6367	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6368	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6369	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6370	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6371	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6372	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6373	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6374	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6375	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6376	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6377	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6378	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6379	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6380	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6381	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6382	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6383	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6384	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6385	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6386
6387	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6388	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6389	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6390	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6391	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6392
6393	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6394	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6395	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6396
6397	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6398	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6399	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6400
6401	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6402	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6403	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6404
6405	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6406	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6407	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6408
6409	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6410	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6411	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6412
6413	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6414	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6415	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6416	force_horkage_onoff(fua,	ATA_HORKAGE_NO_FUA),
6417
6418	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6419};
6420
6421static int __init ata_parse_force_one(char **cur,
6422				      struct ata_force_ent *force_ent,
6423				      const char **reason)
6424{
6425	char *start = *cur, *p = *cur;
6426	char *id, *val, *endp;
6427	const struct ata_force_param *match_fp = NULL;
6428	int nr_matches = 0, i;
6429
6430	/* find where this param ends and update *cur */
6431	while (*p != '\0' && *p != ',')
6432		p++;
6433
6434	if (*p == '\0')
6435		*cur = p;
6436	else
6437		*cur = p + 1;
6438
6439	*p = '\0';
6440
6441	/* parse */
6442	p = strchr(start, ':');
6443	if (!p) {
6444		val = strstrip(start);
6445		goto parse_val;
6446	}
6447	*p = '\0';
6448
6449	id = strstrip(start);
6450	val = strstrip(p + 1);
6451
6452	/* parse id */
6453	p = strchr(id, '.');
6454	if (p) {
6455		*p++ = '\0';
6456		force_ent->device = simple_strtoul(p, &endp, 10);
6457		if (p == endp || *endp != '\0') {
6458			*reason = "invalid device";
6459			return -EINVAL;
6460		}
6461	}
6462
6463	force_ent->port = simple_strtoul(id, &endp, 10);
6464	if (id == endp || *endp != '\0') {
6465		*reason = "invalid port/link";
6466		return -EINVAL;
6467	}
6468
6469 parse_val:
6470	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6471	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6472		const struct ata_force_param *fp = &force_tbl[i];
6473
6474		if (strncasecmp(val, fp->name, strlen(val)))
6475			continue;
6476
6477		nr_matches++;
6478		match_fp = fp;
6479
6480		if (strcasecmp(val, fp->name) == 0) {
6481			nr_matches = 1;
6482			break;
6483		}
6484	}
6485
6486	if (!nr_matches) {
6487		*reason = "unknown value";
6488		return -EINVAL;
6489	}
6490	if (nr_matches > 1) {
6491		*reason = "ambiguous value";
6492		return -EINVAL;
6493	}
6494
6495	force_ent->param = *match_fp;
6496
6497	return 0;
6498}
6499
6500static void __init ata_parse_force_param(void)
6501{
6502	int idx = 0, size = 1;
6503	int last_port = -1, last_device = -1;
6504	char *p, *cur, *next;
6505
6506	/* Calculate maximum number of params and allocate ata_force_tbl */
6507	for (p = ata_force_param_buf; *p; p++)
6508		if (*p == ',')
6509			size++;
6510
6511	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6512	if (!ata_force_tbl) {
6513		printk(KERN_WARNING "ata: failed to extend force table, "
6514		       "libata.force ignored\n");
6515		return;
6516	}
6517
6518	/* parse and populate the table */
6519	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6520		const char *reason = "";
6521		struct ata_force_ent te = { .port = -1, .device = -1 };
6522
6523		next = cur;
6524		if (ata_parse_force_one(&next, &te, &reason)) {
6525			printk(KERN_WARNING "ata: failed to parse force "
6526			       "parameter \"%s\" (%s)\n",
6527			       cur, reason);
6528			continue;
6529		}
6530
6531		if (te.port == -1) {
6532			te.port = last_port;
6533			te.device = last_device;
6534		}
6535
6536		ata_force_tbl[idx++] = te;
6537
6538		last_port = te.port;
6539		last_device = te.device;
6540	}
6541
6542	ata_force_tbl_size = idx;
6543}
6544
6545static void ata_free_force_param(void)
6546{
6547	kfree(ata_force_tbl);
6548}
6549#else
6550static inline void ata_parse_force_param(void) { }
6551static inline void ata_free_force_param(void) { }
6552#endif
6553
6554static int __init ata_init(void)
6555{
6556	int rc;
6557
6558	ata_parse_force_param();
6559
6560	rc = ata_sff_init();
6561	if (rc) {
6562		ata_free_force_param();
6563		return rc;
6564	}
6565
6566	libata_transport_init();
6567	ata_scsi_transport_template = ata_attach_transport();
6568	if (!ata_scsi_transport_template) {
6569		ata_sff_exit();
6570		rc = -ENOMEM;
6571		goto err_out;
6572	}
6573
6574	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6575	return 0;
6576
6577err_out:
6578	return rc;
6579}
6580
6581static void __exit ata_exit(void)
6582{
6583	ata_release_transport(ata_scsi_transport_template);
6584	libata_transport_exit();
6585	ata_sff_exit();
6586	ata_free_force_param();
6587}
6588
6589subsys_initcall(ata_init);
6590module_exit(ata_exit);
6591
6592static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6593
6594int ata_ratelimit(void)
6595{
6596	return __ratelimit(&ratelimit);
6597}
6598EXPORT_SYMBOL_GPL(ata_ratelimit);
6599
6600/**
6601 *	ata_msleep - ATA EH owner aware msleep
6602 *	@ap: ATA port to attribute the sleep to
6603 *	@msecs: duration to sleep in milliseconds
6604 *
6605 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6606 *	ownership is released before going to sleep and reacquired
6607 *	after the sleep is complete.  IOW, other ports sharing the
6608 *	@ap->host will be allowed to own the EH while this task is
6609 *	sleeping.
6610 *
6611 *	LOCKING:
6612 *	Might sleep.
6613 */
6614void ata_msleep(struct ata_port *ap, unsigned int msecs)
6615{
6616	bool owns_eh = ap && ap->host->eh_owner == current;
6617
6618	if (owns_eh)
6619		ata_eh_release(ap);
6620
6621	if (msecs < 20) {
6622		unsigned long usecs = msecs * USEC_PER_MSEC;
6623		usleep_range(usecs, usecs + 50);
6624	} else {
6625		msleep(msecs);
6626	}
6627
6628	if (owns_eh)
6629		ata_eh_acquire(ap);
6630}
6631EXPORT_SYMBOL_GPL(ata_msleep);
6632
6633/**
6634 *	ata_wait_register - wait until register value changes
6635 *	@ap: ATA port to wait register for, can be NULL
6636 *	@reg: IO-mapped register
6637 *	@mask: Mask to apply to read register value
6638 *	@val: Wait condition
6639 *	@interval: polling interval in milliseconds
6640 *	@timeout: timeout in milliseconds
6641 *
6642 *	Waiting for some bits of register to change is a common
6643 *	operation for ATA controllers.  This function reads 32bit LE
6644 *	IO-mapped register @reg and tests for the following condition.
6645 *
6646 *	(*@reg & mask) != val
6647 *
6648 *	If the condition is met, it returns; otherwise, the process is
6649 *	repeated after @interval_msec until timeout.
6650 *
6651 *	LOCKING:
6652 *	Kernel thread context (may sleep)
6653 *
6654 *	RETURNS:
6655 *	The final register value.
6656 */
6657u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6658		      unsigned int interval, unsigned int timeout)
6659{
6660	unsigned long deadline;
6661	u32 tmp;
6662
6663	tmp = ioread32(reg);
6664
6665	/* Calculate timeout _after_ the first read to make sure
6666	 * preceding writes reach the controller before starting to
6667	 * eat away the timeout.
6668	 */
6669	deadline = ata_deadline(jiffies, timeout);
6670
6671	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6672		ata_msleep(ap, interval);
6673		tmp = ioread32(reg);
6674	}
6675
6676	return tmp;
6677}
6678EXPORT_SYMBOL_GPL(ata_wait_register);
6679
6680/*
6681 * Dummy port_ops
6682 */
6683static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6684{
6685	return AC_ERR_SYSTEM;
6686}
6687
6688static void ata_dummy_error_handler(struct ata_port *ap)
6689{
6690	/* truly dummy */
6691}
6692
6693struct ata_port_operations ata_dummy_port_ops = {
6694	.qc_prep		= ata_noop_qc_prep,
6695	.qc_issue		= ata_dummy_qc_issue,
6696	.error_handler		= ata_dummy_error_handler,
6697	.sched_eh		= ata_std_sched_eh,
6698	.end_eh			= ata_std_end_eh,
6699};
6700EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6701
6702const struct ata_port_info ata_dummy_port_info = {
6703	.port_ops		= &ata_dummy_port_ops,
6704};
6705EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6706
6707void ata_print_version(const struct device *dev, const char *version)
6708{
6709	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6710}
6711EXPORT_SYMBOL(ata_print_version);
6712
6713EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6714EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6715EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6716EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6717EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-core.c - helper library for ATA
   4 *
   5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2004 Jeff Garzik
   7 *
   8 *  libata documentation is available via 'make {ps|pdf}docs',
   9 *  as Documentation/driver-api/libata.rst
  10 *
  11 *  Hardware documentation available from http://www.t13.org/ and
  12 *  http://www.sata-io.org/
  13 *
  14 *  Standards documents from:
  15 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  16 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  17 *	http://www.sata-io.org (SATA)
  18 *	http://www.compactflash.org (CF)
  19 *	http://www.qic.org (QIC157 - Tape and DSC)
  20 *	http://www.ce-ata.org (CE-ATA: not supported)
  21 *
  22 * libata is essentially a library of internal helper functions for
  23 * low-level ATA host controller drivers.  As such, the API/ABI is
  24 * likely to change as new drivers are added and updated.
  25 * Do not depend on ABI/API stability.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/pci.h>
  31#include <linux/init.h>
  32#include <linux/list.h>
  33#include <linux/mm.h>
  34#include <linux/spinlock.h>
  35#include <linux/blkdev.h>
  36#include <linux/delay.h>
  37#include <linux/timer.h>
  38#include <linux/time.h>
  39#include <linux/interrupt.h>
  40#include <linux/completion.h>
  41#include <linux/suspend.h>
  42#include <linux/workqueue.h>
  43#include <linux/scatterlist.h>
  44#include <linux/io.h>
  45#include <linux/log2.h>
  46#include <linux/slab.h>
  47#include <linux/glob.h>
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_host.h>
  51#include <linux/libata.h>
  52#include <asm/byteorder.h>
  53#include <linux/unaligned.h>
  54#include <linux/cdrom.h>
  55#include <linux/ratelimit.h>
  56#include <linux/leds.h>
  57#include <linux/pm_runtime.h>
  58#include <linux/platform_device.h>
  59#include <asm/setup.h>
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/libata.h>
  63
  64#include "libata.h"
  65#include "libata-transport.h"
  66
  67const struct ata_port_operations ata_base_port_ops = {
  68	.prereset		= ata_std_prereset,
  69	.postreset		= ata_std_postreset,
  70	.error_handler		= ata_std_error_handler,
  71	.sched_eh		= ata_std_sched_eh,
  72	.end_eh			= ata_std_end_eh,
  73};
  74
 
 
 
 
 
 
 
 
  75static unsigned int ata_dev_init_params(struct ata_device *dev,
  76					u16 heads, u16 sectors);
  77static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  78static void ata_dev_xfermask(struct ata_device *dev);
  79static unsigned int ata_dev_quirks(const struct ata_device *dev);
  80
  81static DEFINE_IDA(ata_ida);
  82
  83#ifdef CONFIG_ATA_FORCE
  84struct ata_force_param {
  85	const char	*name;
  86	u8		cbl;
  87	u8		spd_limit;
  88	unsigned int	xfer_mask;
  89	unsigned int	quirk_on;
  90	unsigned int	quirk_off;
  91	u16		lflags_on;
  92	u16		lflags_off;
  93};
  94
  95struct ata_force_ent {
  96	int			port;
  97	int			device;
  98	struct ata_force_param	param;
  99};
 100
 101static struct ata_force_ent *ata_force_tbl;
 102static int ata_force_tbl_size;
 103
 104static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
 105/* param_buf is thrown away after initialization, disallow read */
 106module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 107MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 108#endif
 109
 110static int atapi_enabled = 1;
 111module_param(atapi_enabled, int, 0444);
 112MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 113
 114static int atapi_dmadir = 0;
 115module_param(atapi_dmadir, int, 0444);
 116MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 117
 118int atapi_passthru16 = 1;
 119module_param(atapi_passthru16, int, 0444);
 120MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 121
 122int libata_fua = 0;
 123module_param_named(fua, libata_fua, int, 0444);
 124MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 125
 126static int ata_ignore_hpa;
 127module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 128MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 129
 130static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 131module_param_named(dma, libata_dma_mask, int, 0444);
 132MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 133
 134static int ata_probe_timeout;
 135module_param(ata_probe_timeout, int, 0444);
 136MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 137
 138int libata_noacpi = 0;
 139module_param_named(noacpi, libata_noacpi, int, 0444);
 140MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 141
 142int libata_allow_tpm = 0;
 143module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 144MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 145
 146static int atapi_an;
 147module_param(atapi_an, int, 0444);
 148MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 149
 150MODULE_AUTHOR("Jeff Garzik");
 151MODULE_DESCRIPTION("Library module for ATA devices");
 152MODULE_LICENSE("GPL");
 153MODULE_VERSION(DRV_VERSION);
 154
 155static inline bool ata_dev_print_info(const struct ata_device *dev)
 156{
 157	struct ata_eh_context *ehc = &dev->link->eh_context;
 158
 159	return ehc->i.flags & ATA_EHI_PRINTINFO;
 160}
 161
 
 
 
 
 
 162/**
 163 *	ata_link_next - link iteration helper
 164 *	@link: the previous link, NULL to start
 165 *	@ap: ATA port containing links to iterate
 166 *	@mode: iteration mode, one of ATA_LITER_*
 167 *
 168 *	LOCKING:
 169 *	Host lock or EH context.
 170 *
 171 *	RETURNS:
 172 *	Pointer to the next link.
 173 */
 174struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 175			       enum ata_link_iter_mode mode)
 176{
 177	BUG_ON(mode != ATA_LITER_EDGE &&
 178	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 179
 180	/* NULL link indicates start of iteration */
 181	if (!link)
 182		switch (mode) {
 183		case ATA_LITER_EDGE:
 184		case ATA_LITER_PMP_FIRST:
 185			if (sata_pmp_attached(ap))
 186				return ap->pmp_link;
 187			fallthrough;
 188		case ATA_LITER_HOST_FIRST:
 189			return &ap->link;
 190		}
 191
 192	/* we just iterated over the host link, what's next? */
 193	if (link == &ap->link)
 194		switch (mode) {
 195		case ATA_LITER_HOST_FIRST:
 196			if (sata_pmp_attached(ap))
 197				return ap->pmp_link;
 198			fallthrough;
 199		case ATA_LITER_PMP_FIRST:
 200			if (unlikely(ap->slave_link))
 201				return ap->slave_link;
 202			fallthrough;
 203		case ATA_LITER_EDGE:
 204			return NULL;
 205		}
 206
 207	/* slave_link excludes PMP */
 208	if (unlikely(link == ap->slave_link))
 209		return NULL;
 210
 211	/* we were over a PMP link */
 212	if (++link < ap->pmp_link + ap->nr_pmp_links)
 213		return link;
 214
 215	if (mode == ATA_LITER_PMP_FIRST)
 216		return &ap->link;
 217
 218	return NULL;
 219}
 220EXPORT_SYMBOL_GPL(ata_link_next);
 221
 222/**
 223 *	ata_dev_next - device iteration helper
 224 *	@dev: the previous device, NULL to start
 225 *	@link: ATA link containing devices to iterate
 226 *	@mode: iteration mode, one of ATA_DITER_*
 227 *
 228 *	LOCKING:
 229 *	Host lock or EH context.
 230 *
 231 *	RETURNS:
 232 *	Pointer to the next device.
 233 */
 234struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 235				enum ata_dev_iter_mode mode)
 236{
 237	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 238	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 239
 240	/* NULL dev indicates start of iteration */
 241	if (!dev)
 242		switch (mode) {
 243		case ATA_DITER_ENABLED:
 244		case ATA_DITER_ALL:
 245			dev = link->device;
 246			goto check;
 247		case ATA_DITER_ENABLED_REVERSE:
 248		case ATA_DITER_ALL_REVERSE:
 249			dev = link->device + ata_link_max_devices(link) - 1;
 250			goto check;
 251		}
 252
 253 next:
 254	/* move to the next one */
 255	switch (mode) {
 256	case ATA_DITER_ENABLED:
 257	case ATA_DITER_ALL:
 258		if (++dev < link->device + ata_link_max_devices(link))
 259			goto check;
 260		return NULL;
 261	case ATA_DITER_ENABLED_REVERSE:
 262	case ATA_DITER_ALL_REVERSE:
 263		if (--dev >= link->device)
 264			goto check;
 265		return NULL;
 266	}
 267
 268 check:
 269	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 270	    !ata_dev_enabled(dev))
 271		goto next;
 272	return dev;
 273}
 274EXPORT_SYMBOL_GPL(ata_dev_next);
 275
 276/**
 277 *	ata_dev_phys_link - find physical link for a device
 278 *	@dev: ATA device to look up physical link for
 279 *
 280 *	Look up physical link which @dev is attached to.  Note that
 281 *	this is different from @dev->link only when @dev is on slave
 282 *	link.  For all other cases, it's the same as @dev->link.
 283 *
 284 *	LOCKING:
 285 *	Don't care.
 286 *
 287 *	RETURNS:
 288 *	Pointer to the found physical link.
 289 */
 290struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 291{
 292	struct ata_port *ap = dev->link->ap;
 293
 294	if (!ap->slave_link)
 295		return dev->link;
 296	if (!dev->devno)
 297		return &ap->link;
 298	return ap->slave_link;
 299}
 300
 301#ifdef CONFIG_ATA_FORCE
 302/**
 303 *	ata_force_cbl - force cable type according to libata.force
 304 *	@ap: ATA port of interest
 305 *
 306 *	Force cable type according to libata.force and whine about it.
 307 *	The last entry which has matching port number is used, so it
 308 *	can be specified as part of device force parameters.  For
 309 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 310 *	same effect.
 311 *
 312 *	LOCKING:
 313 *	EH context.
 314 */
 315void ata_force_cbl(struct ata_port *ap)
 316{
 317	int i;
 318
 319	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 320		const struct ata_force_ent *fe = &ata_force_tbl[i];
 321
 322		if (fe->port != -1 && fe->port != ap->print_id)
 323			continue;
 324
 325		if (fe->param.cbl == ATA_CBL_NONE)
 326			continue;
 327
 328		ap->cbl = fe->param.cbl;
 329		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 330		return;
 331	}
 332}
 333
 334/**
 335 *	ata_force_link_limits - force link limits according to libata.force
 336 *	@link: ATA link of interest
 337 *
 338 *	Force link flags and SATA spd limit according to libata.force
 339 *	and whine about it.  When only the port part is specified
 340 *	(e.g. 1:), the limit applies to all links connected to both
 341 *	the host link and all fan-out ports connected via PMP.  If the
 342 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 343 *	first fan-out link not the host link.  Device number 15 always
 344 *	points to the host link whether PMP is attached or not.  If the
 345 *	controller has slave link, device number 16 points to it.
 346 *
 347 *	LOCKING:
 348 *	EH context.
 349 */
 350static void ata_force_link_limits(struct ata_link *link)
 351{
 352	bool did_spd = false;
 353	int linkno = link->pmp;
 354	int i;
 355
 356	if (ata_is_host_link(link))
 357		linkno += 15;
 358
 359	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 360		const struct ata_force_ent *fe = &ata_force_tbl[i];
 361
 362		if (fe->port != -1 && fe->port != link->ap->print_id)
 363			continue;
 364
 365		if (fe->device != -1 && fe->device != linkno)
 366			continue;
 367
 368		/* only honor the first spd limit */
 369		if (!did_spd && fe->param.spd_limit) {
 370			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 371			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 372					fe->param.name);
 373			did_spd = true;
 374		}
 375
 376		/* let lflags stack */
 377		if (fe->param.lflags_on) {
 378			link->flags |= fe->param.lflags_on;
 379			ata_link_notice(link,
 380					"FORCE: link flag 0x%x forced -> 0x%x\n",
 381					fe->param.lflags_on, link->flags);
 382		}
 383		if (fe->param.lflags_off) {
 384			link->flags &= ~fe->param.lflags_off;
 385			ata_link_notice(link,
 386				"FORCE: link flag 0x%x cleared -> 0x%x\n",
 387				fe->param.lflags_off, link->flags);
 388		}
 389	}
 390}
 391
 392/**
 393 *	ata_force_xfermask - force xfermask according to libata.force
 394 *	@dev: ATA device of interest
 395 *
 396 *	Force xfer_mask according to libata.force and whine about it.
 397 *	For consistency with link selection, device number 15 selects
 398 *	the first device connected to the host link.
 399 *
 400 *	LOCKING:
 401 *	EH context.
 402 */
 403static void ata_force_xfermask(struct ata_device *dev)
 404{
 405	int devno = dev->link->pmp + dev->devno;
 406	int alt_devno = devno;
 407	int i;
 408
 409	/* allow n.15/16 for devices attached to host port */
 410	if (ata_is_host_link(dev->link))
 411		alt_devno += 15;
 412
 413	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 414		const struct ata_force_ent *fe = &ata_force_tbl[i];
 415		unsigned int pio_mask, mwdma_mask, udma_mask;
 416
 417		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 418			continue;
 419
 420		if (fe->device != -1 && fe->device != devno &&
 421		    fe->device != alt_devno)
 422			continue;
 423
 424		if (!fe->param.xfer_mask)
 425			continue;
 426
 427		ata_unpack_xfermask(fe->param.xfer_mask,
 428				    &pio_mask, &mwdma_mask, &udma_mask);
 429		if (udma_mask)
 430			dev->udma_mask = udma_mask;
 431		else if (mwdma_mask) {
 432			dev->udma_mask = 0;
 433			dev->mwdma_mask = mwdma_mask;
 434		} else {
 435			dev->udma_mask = 0;
 436			dev->mwdma_mask = 0;
 437			dev->pio_mask = pio_mask;
 438		}
 439
 440		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 441			       fe->param.name);
 442		return;
 443	}
 444}
 445
 446/**
 447 *	ata_force_quirks - force quirks according to libata.force
 448 *	@dev: ATA device of interest
 449 *
 450 *	Force quirks according to libata.force and whine about it.
 451 *	For consistency with link selection, device number 15 selects
 452 *	the first device connected to the host link.
 453 *
 454 *	LOCKING:
 455 *	EH context.
 456 */
 457static void ata_force_quirks(struct ata_device *dev)
 458{
 459	int devno = dev->link->pmp + dev->devno;
 460	int alt_devno = devno;
 461	int i;
 462
 463	/* allow n.15/16 for devices attached to host port */
 464	if (ata_is_host_link(dev->link))
 465		alt_devno += 15;
 466
 467	for (i = 0; i < ata_force_tbl_size; i++) {
 468		const struct ata_force_ent *fe = &ata_force_tbl[i];
 469
 470		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 471			continue;
 472
 473		if (fe->device != -1 && fe->device != devno &&
 474		    fe->device != alt_devno)
 475			continue;
 476
 477		if (!(~dev->quirks & fe->param.quirk_on) &&
 478		    !(dev->quirks & fe->param.quirk_off))
 479			continue;
 480
 481		dev->quirks |= fe->param.quirk_on;
 482		dev->quirks &= ~fe->param.quirk_off;
 483
 484		ata_dev_notice(dev, "FORCE: modified (%s)\n",
 485			       fe->param.name);
 486	}
 487}
 488#else
 489static inline void ata_force_link_limits(struct ata_link *link) { }
 490static inline void ata_force_xfermask(struct ata_device *dev) { }
 491static inline void ata_force_quirks(struct ata_device *dev) { }
 492#endif
 493
 494/**
 495 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 496 *	@opcode: SCSI opcode
 497 *
 498 *	Determine ATAPI command type from @opcode.
 499 *
 500 *	LOCKING:
 501 *	None.
 502 *
 503 *	RETURNS:
 504 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 505 */
 506int atapi_cmd_type(u8 opcode)
 507{
 508	switch (opcode) {
 509	case GPCMD_READ_10:
 510	case GPCMD_READ_12:
 511		return ATAPI_READ;
 512
 513	case GPCMD_WRITE_10:
 514	case GPCMD_WRITE_12:
 515	case GPCMD_WRITE_AND_VERIFY_10:
 516		return ATAPI_WRITE;
 517
 518	case GPCMD_READ_CD:
 519	case GPCMD_READ_CD_MSF:
 520		return ATAPI_READ_CD;
 521
 522	case ATA_16:
 523	case ATA_12:
 524		if (atapi_passthru16)
 525			return ATAPI_PASS_THRU;
 526		fallthrough;
 527	default:
 528		return ATAPI_MISC;
 529	}
 530}
 531EXPORT_SYMBOL_GPL(atapi_cmd_type);
 532
 533static const u8 ata_rw_cmds[] = {
 534	/* pio multi */
 535	ATA_CMD_READ_MULTI,
 536	ATA_CMD_WRITE_MULTI,
 537	ATA_CMD_READ_MULTI_EXT,
 538	ATA_CMD_WRITE_MULTI_EXT,
 539	0,
 540	0,
 541	0,
 542	0,
 543	/* pio */
 544	ATA_CMD_PIO_READ,
 545	ATA_CMD_PIO_WRITE,
 546	ATA_CMD_PIO_READ_EXT,
 547	ATA_CMD_PIO_WRITE_EXT,
 548	0,
 549	0,
 550	0,
 551	0,
 552	/* dma */
 553	ATA_CMD_READ,
 554	ATA_CMD_WRITE,
 555	ATA_CMD_READ_EXT,
 556	ATA_CMD_WRITE_EXT,
 557	0,
 558	0,
 559	0,
 560	ATA_CMD_WRITE_FUA_EXT
 561};
 562
 563/**
 564 *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
 565 *	@dev: target device for the taskfile
 566 *	@tf: taskfile to examine and configure
 567 *
 568 *	Examine the device configuration and tf->flags to determine
 569 *	the proper read/write command and protocol to use for @tf.
 570 *
 571 *	LOCKING:
 572 *	caller.
 573 */
 574static bool ata_set_rwcmd_protocol(struct ata_device *dev,
 575				   struct ata_taskfile *tf)
 576{
 577	u8 cmd;
 578
 579	int index, fua, lba48, write;
 580
 581	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 582	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 583	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 584
 585	if (dev->flags & ATA_DFLAG_PIO) {
 586		tf->protocol = ATA_PROT_PIO;
 587		index = dev->multi_count ? 0 : 8;
 588	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 589		/* Unable to use DMA due to host limitation */
 590		tf->protocol = ATA_PROT_PIO;
 591		index = dev->multi_count ? 0 : 8;
 592	} else {
 593		tf->protocol = ATA_PROT_DMA;
 594		index = 16;
 595	}
 596
 597	cmd = ata_rw_cmds[index + fua + lba48 + write];
 598	if (!cmd)
 599		return false;
 600
 601	tf->command = cmd;
 602
 603	return true;
 604}
 605
 606/**
 607 *	ata_tf_read_block - Read block address from ATA taskfile
 608 *	@tf: ATA taskfile of interest
 609 *	@dev: ATA device @tf belongs to
 610 *
 611 *	LOCKING:
 612 *	None.
 613 *
 614 *	Read block address from @tf.  This function can handle all
 615 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 616 *	flags select the address format to use.
 617 *
 618 *	RETURNS:
 619 *	Block address read from @tf.
 620 */
 621u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 622{
 623	u64 block = 0;
 624
 625	if (tf->flags & ATA_TFLAG_LBA) {
 626		if (tf->flags & ATA_TFLAG_LBA48) {
 627			block |= (u64)tf->hob_lbah << 40;
 628			block |= (u64)tf->hob_lbam << 32;
 629			block |= (u64)tf->hob_lbal << 24;
 630		} else
 631			block |= (tf->device & 0xf) << 24;
 632
 633		block |= tf->lbah << 16;
 634		block |= tf->lbam << 8;
 635		block |= tf->lbal;
 636	} else {
 637		u32 cyl, head, sect;
 638
 639		cyl = tf->lbam | (tf->lbah << 8);
 640		head = tf->device & 0xf;
 641		sect = tf->lbal;
 642
 643		if (!sect) {
 644			ata_dev_warn(dev,
 645				     "device reported invalid CHS sector 0\n");
 646			return U64_MAX;
 647		}
 648
 649		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 650	}
 651
 652	return block;
 653}
 654
 655/*
 656 * Set a taskfile command duration limit index.
 657 */
 658static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
 659{
 660	struct ata_taskfile *tf = &qc->tf;
 661
 662	if (tf->protocol == ATA_PROT_NCQ)
 663		tf->auxiliary |= cdl;
 664	else
 665		tf->feature |= cdl;
 666
 667	/*
 668	 * Mark this command as having a CDL and request the result
 669	 * task file so that we can inspect the sense data available
 670	 * bit on completion.
 671	 */
 672	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
 673}
 674
 675/**
 676 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 677 *	@qc: Metadata associated with the taskfile to build
 678 *	@block: Block address
 679 *	@n_block: Number of blocks
 680 *	@tf_flags: RW/FUA etc...
 681 *	@cdl: Command duration limit index
 682 *	@class: IO priority class
 683 *
 684 *	LOCKING:
 685 *	None.
 686 *
 687 *	Build ATA taskfile for the command @qc for read/write request described
 688 *	by @block, @n_block, @tf_flags and @class.
 689 *
 690 *	RETURNS:
 691 *
 692 *	0 on success, -ERANGE if the request is too large for @dev,
 693 *	-EINVAL if the request is invalid.
 694 */
 695int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
 696		    unsigned int tf_flags, int cdl, int class)
 697{
 698	struct ata_taskfile *tf = &qc->tf;
 699	struct ata_device *dev = qc->dev;
 700
 701	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 702	tf->flags |= tf_flags;
 703
 704	if (ata_ncq_enabled(dev)) {
 705		/* yay, NCQ */
 706		if (!lba_48_ok(block, n_block))
 707			return -ERANGE;
 708
 709		tf->protocol = ATA_PROT_NCQ;
 710		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 711
 712		if (tf->flags & ATA_TFLAG_WRITE)
 713			tf->command = ATA_CMD_FPDMA_WRITE;
 714		else
 715			tf->command = ATA_CMD_FPDMA_READ;
 716
 717		tf->nsect = qc->hw_tag << 3;
 718		tf->hob_feature = (n_block >> 8) & 0xff;
 719		tf->feature = n_block & 0xff;
 720
 721		tf->hob_lbah = (block >> 40) & 0xff;
 722		tf->hob_lbam = (block >> 32) & 0xff;
 723		tf->hob_lbal = (block >> 24) & 0xff;
 724		tf->lbah = (block >> 16) & 0xff;
 725		tf->lbam = (block >> 8) & 0xff;
 726		tf->lbal = block & 0xff;
 727
 728		tf->device = ATA_LBA;
 729		if (tf->flags & ATA_TFLAG_FUA)
 730			tf->device |= 1 << 7;
 731
 732		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
 733		    class == IOPRIO_CLASS_RT)
 734			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
 735
 736		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
 737			ata_set_tf_cdl(qc, cdl);
 738
 739	} else if (dev->flags & ATA_DFLAG_LBA) {
 740		tf->flags |= ATA_TFLAG_LBA;
 741
 742		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
 743			ata_set_tf_cdl(qc, cdl);
 744
 745		/* Both FUA writes and a CDL index require 48-bit commands */
 746		if (!(tf->flags & ATA_TFLAG_FUA) &&
 747		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
 748		    lba_28_ok(block, n_block)) {
 749			/* use LBA28 */
 750			tf->device |= (block >> 24) & 0xf;
 751		} else if (lba_48_ok(block, n_block)) {
 752			if (!(dev->flags & ATA_DFLAG_LBA48))
 753				return -ERANGE;
 754
 755			/* use LBA48 */
 756			tf->flags |= ATA_TFLAG_LBA48;
 757
 758			tf->hob_nsect = (n_block >> 8) & 0xff;
 759
 760			tf->hob_lbah = (block >> 40) & 0xff;
 761			tf->hob_lbam = (block >> 32) & 0xff;
 762			tf->hob_lbal = (block >> 24) & 0xff;
 763		} else {
 764			/* request too large even for LBA48 */
 765			return -ERANGE;
 766		}
 767
 768		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
 769			return -EINVAL;
 770
 771		tf->nsect = n_block & 0xff;
 772
 773		tf->lbah = (block >> 16) & 0xff;
 774		tf->lbam = (block >> 8) & 0xff;
 775		tf->lbal = block & 0xff;
 776
 777		tf->device |= ATA_LBA;
 778	} else {
 779		/* CHS */
 780		u32 sect, head, cyl, track;
 781
 782		/* The request -may- be too large for CHS addressing. */
 783		if (!lba_28_ok(block, n_block))
 784			return -ERANGE;
 785
 786		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
 787			return -EINVAL;
 788
 789		/* Convert LBA to CHS */
 790		track = (u32)block / dev->sectors;
 791		cyl   = track / dev->heads;
 792		head  = track % dev->heads;
 793		sect  = (u32)block % dev->sectors + 1;
 794
 795		/* Check whether the converted CHS can fit.
 796		   Cylinder: 0-65535
 797		   Head: 0-15
 798		   Sector: 1-255*/
 799		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 800			return -ERANGE;
 801
 802		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 803		tf->lbal = sect;
 804		tf->lbam = cyl;
 805		tf->lbah = cyl >> 8;
 806		tf->device |= head;
 807	}
 808
 809	return 0;
 810}
 811
 812/**
 813 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 814 *	@pio_mask: pio_mask
 815 *	@mwdma_mask: mwdma_mask
 816 *	@udma_mask: udma_mask
 817 *
 818 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 819 *	unsigned int xfer_mask.
 820 *
 821 *	LOCKING:
 822 *	None.
 823 *
 824 *	RETURNS:
 825 *	Packed xfer_mask.
 826 */
 827unsigned int ata_pack_xfermask(unsigned int pio_mask,
 828			       unsigned int mwdma_mask,
 829			       unsigned int udma_mask)
 830{
 831	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 832		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 833		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 834}
 835EXPORT_SYMBOL_GPL(ata_pack_xfermask);
 836
 837/**
 838 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 839 *	@xfer_mask: xfer_mask to unpack
 840 *	@pio_mask: resulting pio_mask
 841 *	@mwdma_mask: resulting mwdma_mask
 842 *	@udma_mask: resulting udma_mask
 843 *
 844 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 845 *	Any NULL destination masks will be ignored.
 846 */
 847void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
 848			 unsigned int *mwdma_mask, unsigned int *udma_mask)
 849{
 850	if (pio_mask)
 851		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 852	if (mwdma_mask)
 853		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 854	if (udma_mask)
 855		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 856}
 857
 858static const struct ata_xfer_ent {
 859	int shift, bits;
 860	u8 base;
 861} ata_xfer_tbl[] = {
 862	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 863	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 864	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 865	{ -1, },
 866};
 867
 868/**
 869 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 870 *	@xfer_mask: xfer_mask of interest
 871 *
 872 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 873 *	bit of @xfer_mask is considered.
 874 *
 875 *	LOCKING:
 876 *	None.
 877 *
 878 *	RETURNS:
 879 *	Matching XFER_* value, 0xff if no match found.
 880 */
 881u8 ata_xfer_mask2mode(unsigned int xfer_mask)
 882{
 883	int highbit = fls(xfer_mask) - 1;
 884	const struct ata_xfer_ent *ent;
 885
 886	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 887		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 888			return ent->base + highbit - ent->shift;
 889	return 0xff;
 890}
 891EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
 892
 893/**
 894 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 895 *	@xfer_mode: XFER_* of interest
 896 *
 897 *	Return matching xfer_mask for @xfer_mode.
 898 *
 899 *	LOCKING:
 900 *	None.
 901 *
 902 *	RETURNS:
 903 *	Matching xfer_mask, 0 if no match found.
 904 */
 905unsigned int ata_xfer_mode2mask(u8 xfer_mode)
 906{
 907	const struct ata_xfer_ent *ent;
 908
 909	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 910		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 911			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 912				& ~((1 << ent->shift) - 1);
 913	return 0;
 914}
 915EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
 916
 917/**
 918 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 919 *	@xfer_mode: XFER_* of interest
 920 *
 921 *	Return matching xfer_shift for @xfer_mode.
 922 *
 923 *	LOCKING:
 924 *	None.
 925 *
 926 *	RETURNS:
 927 *	Matching xfer_shift, -1 if no match found.
 928 */
 929int ata_xfer_mode2shift(u8 xfer_mode)
 930{
 931	const struct ata_xfer_ent *ent;
 932
 933	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 934		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 935			return ent->shift;
 936	return -1;
 937}
 938EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
 939
 940/**
 941 *	ata_mode_string - convert xfer_mask to string
 942 *	@xfer_mask: mask of bits supported; only highest bit counts.
 943 *
 944 *	Determine string which represents the highest speed
 945 *	(highest bit in @modemask).
 946 *
 947 *	LOCKING:
 948 *	None.
 949 *
 950 *	RETURNS:
 951 *	Constant C string representing highest speed listed in
 952 *	@mode_mask, or the constant C string "<n/a>".
 953 */
 954const char *ata_mode_string(unsigned int xfer_mask)
 955{
 956	static const char * const xfer_mode_str[] = {
 957		"PIO0",
 958		"PIO1",
 959		"PIO2",
 960		"PIO3",
 961		"PIO4",
 962		"PIO5",
 963		"PIO6",
 964		"MWDMA0",
 965		"MWDMA1",
 966		"MWDMA2",
 967		"MWDMA3",
 968		"MWDMA4",
 969		"UDMA/16",
 970		"UDMA/25",
 971		"UDMA/33",
 972		"UDMA/44",
 973		"UDMA/66",
 974		"UDMA/100",
 975		"UDMA/133",
 976		"UDMA7",
 977	};
 978	int highbit;
 979
 980	highbit = fls(xfer_mask) - 1;
 981	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
 982		return xfer_mode_str[highbit];
 983	return "<n/a>";
 984}
 985EXPORT_SYMBOL_GPL(ata_mode_string);
 986
 987const char *sata_spd_string(unsigned int spd)
 988{
 989	static const char * const spd_str[] = {
 990		"1.5 Gbps",
 991		"3.0 Gbps",
 992		"6.0 Gbps",
 993	};
 994
 995	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
 996		return "<unknown>";
 997	return spd_str[spd - 1];
 998}
 999
1000/**
1001 *	ata_dev_classify - determine device type based on ATA-spec signature
1002 *	@tf: ATA taskfile register set for device to be identified
1003 *
1004 *	Determine from taskfile register contents whether a device is
1005 *	ATA or ATAPI, as per "Signature and persistence" section
1006 *	of ATA/PI spec (volume 1, sect 5.14).
1007 *
1008 *	LOCKING:
1009 *	None.
1010 *
1011 *	RETURNS:
1012 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1013 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1014 */
1015unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1016{
1017	/* Apple's open source Darwin code hints that some devices only
1018	 * put a proper signature into the LBA mid/high registers,
1019	 * So, we only check those.  It's sufficient for uniqueness.
1020	 *
1021	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1022	 * signatures for ATA and ATAPI devices attached on SerialATA,
1023	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1024	 * spec has never mentioned about using different signatures
1025	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1026	 * Multiplier specification began to use 0x69/0x96 to identify
1027	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1028	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1029	 * 0x69/0x96 shortly and described them as reserved for
1030	 * SerialATA.
1031	 *
1032	 * We follow the current spec and consider that 0x69/0x96
1033	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1034	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1035	 * SEMB signature.  This is worked around in
1036	 * ata_dev_read_id().
1037	 */
1038	if (tf->lbam == 0 && tf->lbah == 0)
1039		return ATA_DEV_ATA;
1040
1041	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1042		return ATA_DEV_ATAPI;
1043
1044	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1045		return ATA_DEV_PMP;
1046
1047	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1048		return ATA_DEV_SEMB;
1049
1050	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1051		return ATA_DEV_ZAC;
1052
1053	return ATA_DEV_UNKNOWN;
1054}
1055EXPORT_SYMBOL_GPL(ata_dev_classify);
1056
1057/**
1058 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1059 *	@id: IDENTIFY DEVICE results we will examine
1060 *	@s: string into which data is output
1061 *	@ofs: offset into identify device page
1062 *	@len: length of string to return. must be an even number.
1063 *
1064 *	The strings in the IDENTIFY DEVICE page are broken up into
1065 *	16-bit chunks.  Run through the string, and output each
1066 *	8-bit chunk linearly, regardless of platform.
1067 *
1068 *	LOCKING:
1069 *	caller.
1070 */
1071
1072void ata_id_string(const u16 *id, unsigned char *s,
1073		   unsigned int ofs, unsigned int len)
1074{
1075	unsigned int c;
1076
1077	BUG_ON(len & 1);
1078
1079	while (len > 0) {
1080		c = id[ofs] >> 8;
1081		*s = c;
1082		s++;
1083
1084		c = id[ofs] & 0xff;
1085		*s = c;
1086		s++;
1087
1088		ofs++;
1089		len -= 2;
1090	}
1091}
1092EXPORT_SYMBOL_GPL(ata_id_string);
1093
1094/**
1095 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1096 *	@id: IDENTIFY DEVICE results we will examine
1097 *	@s: string into which data is output
1098 *	@ofs: offset into identify device page
1099 *	@len: length of string to return. must be an odd number.
1100 *
1101 *	This function is identical to ata_id_string except that it
1102 *	trims trailing spaces and terminates the resulting string with
1103 *	null.  @len must be actual maximum length (even number) + 1.
1104 *
1105 *	LOCKING:
1106 *	caller.
1107 */
1108void ata_id_c_string(const u16 *id, unsigned char *s,
1109		     unsigned int ofs, unsigned int len)
1110{
1111	unsigned char *p;
1112
1113	ata_id_string(id, s, ofs, len - 1);
1114
1115	p = s + strnlen(s, len - 1);
1116	while (p > s && p[-1] == ' ')
1117		p--;
1118	*p = '\0';
1119}
1120EXPORT_SYMBOL_GPL(ata_id_c_string);
1121
1122static u64 ata_id_n_sectors(const u16 *id)
1123{
1124	if (ata_id_has_lba(id)) {
1125		if (ata_id_has_lba48(id))
1126			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1127
1128		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1129	}
1130
1131	if (ata_id_current_chs_valid(id))
1132		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1133		       (u32)id[ATA_ID_CUR_SECTORS];
1134
1135	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1136	       (u32)id[ATA_ID_SECTORS];
1137}
1138
1139u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1140{
1141	u64 sectors = 0;
1142
1143	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1144	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1145	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1146	sectors |= (tf->lbah & 0xff) << 16;
1147	sectors |= (tf->lbam & 0xff) << 8;
1148	sectors |= (tf->lbal & 0xff);
1149
1150	return sectors;
1151}
1152
1153u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1154{
1155	u64 sectors = 0;
1156
1157	sectors |= (tf->device & 0x0f) << 24;
1158	sectors |= (tf->lbah & 0xff) << 16;
1159	sectors |= (tf->lbam & 0xff) << 8;
1160	sectors |= (tf->lbal & 0xff);
1161
1162	return sectors;
1163}
1164
1165/**
1166 *	ata_read_native_max_address - Read native max address
1167 *	@dev: target device
1168 *	@max_sectors: out parameter for the result native max address
1169 *
1170 *	Perform an LBA48 or LBA28 native size query upon the device in
1171 *	question.
1172 *
1173 *	RETURNS:
1174 *	0 on success, -EACCES if command is aborted by the drive.
1175 *	-EIO on other errors.
1176 */
1177static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1178{
1179	unsigned int err_mask;
1180	struct ata_taskfile tf;
1181	int lba48 = ata_id_has_lba48(dev->id);
1182
1183	ata_tf_init(dev, &tf);
1184
1185	/* always clear all address registers */
1186	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1187
1188	if (lba48) {
1189		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1190		tf.flags |= ATA_TFLAG_LBA48;
1191	} else
1192		tf.command = ATA_CMD_READ_NATIVE_MAX;
1193
1194	tf.protocol = ATA_PROT_NODATA;
1195	tf.device |= ATA_LBA;
1196
1197	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1198	if (err_mask) {
1199		ata_dev_warn(dev,
1200			     "failed to read native max address (err_mask=0x%x)\n",
1201			     err_mask);
1202		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1203			return -EACCES;
1204		return -EIO;
1205	}
1206
1207	if (lba48)
1208		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1209	else
1210		*max_sectors = ata_tf_to_lba(&tf) + 1;
1211	if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1212		(*max_sectors)--;
1213	return 0;
1214}
1215
1216/**
1217 *	ata_set_max_sectors - Set max sectors
1218 *	@dev: target device
1219 *	@new_sectors: new max sectors value to set for the device
1220 *
1221 *	Set max sectors of @dev to @new_sectors.
1222 *
1223 *	RETURNS:
1224 *	0 on success, -EACCES if command is aborted or denied (due to
1225 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1226 *	errors.
1227 */
1228static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1229{
1230	unsigned int err_mask;
1231	struct ata_taskfile tf;
1232	int lba48 = ata_id_has_lba48(dev->id);
1233
1234	new_sectors--;
1235
1236	ata_tf_init(dev, &tf);
1237
1238	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1239
1240	if (lba48) {
1241		tf.command = ATA_CMD_SET_MAX_EXT;
1242		tf.flags |= ATA_TFLAG_LBA48;
1243
1244		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1245		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1246		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1247	} else {
1248		tf.command = ATA_CMD_SET_MAX;
1249
1250		tf.device |= (new_sectors >> 24) & 0xf;
1251	}
1252
1253	tf.protocol = ATA_PROT_NODATA;
1254	tf.device |= ATA_LBA;
1255
1256	tf.lbal = (new_sectors >> 0) & 0xff;
1257	tf.lbam = (new_sectors >> 8) & 0xff;
1258	tf.lbah = (new_sectors >> 16) & 0xff;
1259
1260	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1261	if (err_mask) {
1262		ata_dev_warn(dev,
1263			     "failed to set max address (err_mask=0x%x)\n",
1264			     err_mask);
1265		if (err_mask == AC_ERR_DEV &&
1266		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1267			return -EACCES;
1268		return -EIO;
1269	}
1270
1271	return 0;
1272}
1273
1274/**
1275 *	ata_hpa_resize		-	Resize a device with an HPA set
1276 *	@dev: Device to resize
1277 *
1278 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1279 *	it if required to the full size of the media. The caller must check
1280 *	the drive has the HPA feature set enabled.
1281 *
1282 *	RETURNS:
1283 *	0 on success, -errno on failure.
1284 */
1285static int ata_hpa_resize(struct ata_device *dev)
1286{
1287	bool print_info = ata_dev_print_info(dev);
1288	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1289	u64 sectors = ata_id_n_sectors(dev->id);
1290	u64 native_sectors;
1291	int rc;
1292
1293	/* do we need to do it? */
1294	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1295	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1296	    (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1297		return 0;
1298
1299	/* read native max address */
1300	rc = ata_read_native_max_address(dev, &native_sectors);
1301	if (rc) {
1302		/* If device aborted the command or HPA isn't going to
1303		 * be unlocked, skip HPA resizing.
1304		 */
1305		if (rc == -EACCES || !unlock_hpa) {
1306			ata_dev_warn(dev,
1307				     "HPA support seems broken, skipping HPA handling\n");
1308			dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1309
1310			/* we can continue if device aborted the command */
1311			if (rc == -EACCES)
1312				rc = 0;
1313		}
1314
1315		return rc;
1316	}
1317	dev->n_native_sectors = native_sectors;
1318
1319	/* nothing to do? */
1320	if (native_sectors <= sectors || !unlock_hpa) {
1321		if (!print_info || native_sectors == sectors)
1322			return 0;
1323
1324		if (native_sectors > sectors)
1325			ata_dev_info(dev,
1326				"HPA detected: current %llu, native %llu\n",
1327				(unsigned long long)sectors,
1328				(unsigned long long)native_sectors);
1329		else if (native_sectors < sectors)
1330			ata_dev_warn(dev,
1331				"native sectors (%llu) is smaller than sectors (%llu)\n",
1332				(unsigned long long)native_sectors,
1333				(unsigned long long)sectors);
1334		return 0;
1335	}
1336
1337	/* let's unlock HPA */
1338	rc = ata_set_max_sectors(dev, native_sectors);
1339	if (rc == -EACCES) {
1340		/* if device aborted the command, skip HPA resizing */
1341		ata_dev_warn(dev,
1342			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1343			     (unsigned long long)sectors,
1344			     (unsigned long long)native_sectors);
1345		dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1346		return 0;
1347	} else if (rc)
1348		return rc;
1349
1350	/* re-read IDENTIFY data */
1351	rc = ata_dev_reread_id(dev, 0);
1352	if (rc) {
1353		ata_dev_err(dev,
1354			    "failed to re-read IDENTIFY data after HPA resizing\n");
1355		return rc;
1356	}
1357
1358	if (print_info) {
1359		u64 new_sectors = ata_id_n_sectors(dev->id);
1360		ata_dev_info(dev,
1361			"HPA unlocked: %llu -> %llu, native %llu\n",
1362			(unsigned long long)sectors,
1363			(unsigned long long)new_sectors,
1364			(unsigned long long)native_sectors);
1365	}
1366
1367	return 0;
1368}
1369
1370/**
1371 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1372 *	@dev: device from which the information is fetched
1373 *	@id: IDENTIFY DEVICE page to dump
1374 *
1375 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1376 *	page.
1377 *
1378 *	LOCKING:
1379 *	caller.
1380 */
1381
1382static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1383{
1384	ata_dev_dbg(dev,
1385		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1386		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1387		"88==0x%04x  93==0x%04x\n",
1388		id[49], id[53], id[63], id[64], id[75], id[80],
1389		id[81], id[82], id[83], id[84], id[88], id[93]);
1390}
1391
1392/**
1393 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394 *	@id: IDENTIFY data to compute xfer mask from
1395 *
1396 *	Compute the xfermask for this device. This is not as trivial
1397 *	as it seems if we must consider early devices correctly.
1398 *
1399 *	FIXME: pre IDE drive timing (do we care ?).
1400 *
1401 *	LOCKING:
1402 *	None.
1403 *
1404 *	RETURNS:
1405 *	Computed xfermask
1406 */
1407unsigned int ata_id_xfermask(const u16 *id)
1408{
1409	unsigned int pio_mask, mwdma_mask, udma_mask;
1410
1411	/* Usual case. Word 53 indicates word 64 is valid */
1412	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414		pio_mask <<= 3;
1415		pio_mask |= 0x7;
1416	} else {
1417		/* If word 64 isn't valid then Word 51 high byte holds
1418		 * the PIO timing number for the maximum. Turn it into
1419		 * a mask.
1420		 */
1421		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422		if (mode < 5)	/* Valid PIO range */
1423			pio_mask = (2 << mode) - 1;
1424		else
1425			pio_mask = 1;
1426
1427		/* But wait.. there's more. Design your standards by
1428		 * committee and you too can get a free iordy field to
1429		 * process. However it is the speeds not the modes that
1430		 * are supported... Note drivers using the timing API
1431		 * will get this right anyway
1432		 */
1433	}
1434
1435	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436
1437	if (ata_id_is_cfa(id)) {
1438		/*
1439		 *	Process compact flash extended modes
1440		 */
1441		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443
1444		if (pio)
1445			pio_mask |= (1 << 5);
1446		if (pio > 1)
1447			pio_mask |= (1 << 6);
1448		if (dma)
1449			mwdma_mask |= (1 << 3);
1450		if (dma > 1)
1451			mwdma_mask |= (1 << 4);
1452	}
1453
1454	udma_mask = 0;
1455	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457
1458	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459}
1460EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461
1462static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463{
1464	struct completion *waiting = qc->private_data;
1465
1466	complete(waiting);
1467}
1468
1469/**
1470 *	ata_exec_internal - execute libata internal command
1471 *	@dev: Device to which the command is sent
1472 *	@tf: Taskfile registers for the command and the result
1473 *	@cdb: CDB for packet command
1474 *	@dma_dir: Data transfer direction of the command
1475 *	@buf: Data buffer of the command
1476 *	@buflen: Length of data buffer
1477 *	@timeout: Timeout in msecs (0 for default)
1478 *
1479 *	Executes libata internal command with timeout. @tf contains
1480 *	the command on entry and the result on return. Timeout and error
1481 *	conditions are reported via the return value. No recovery action
1482 *	is taken after a command times out. It is the caller's duty to
1483 *	clean up after timeout.
1484 *
1485 *	LOCKING:
1486 *	None.  Should be called with kernel context, might sleep.
1487 *
1488 *	RETURNS:
1489 *	Zero on success, AC_ERR_* mask on failure
1490 */
1491unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1492			       const u8 *cdb, enum dma_data_direction dma_dir,
1493			       void *buf, unsigned int buflen,
1494			       unsigned int timeout)
1495{
1496	struct ata_link *link = dev->link;
1497	struct ata_port *ap = link->ap;
1498	u8 command = tf->command;
 
1499	struct ata_queued_cmd *qc;
1500	struct scatterlist sgl;
1501	unsigned int preempted_tag;
1502	u32 preempted_sactive;
1503	u64 preempted_qc_active;
1504	int preempted_nr_active_links;
1505	bool auto_timeout = false;
1506	DECLARE_COMPLETION_ONSTACK(wait);
1507	unsigned long flags;
1508	unsigned int err_mask;
1509	int rc;
1510
1511	if (WARN_ON(dma_dir != DMA_NONE && !buf))
1512		return AC_ERR_INVALID;
1513
1514	spin_lock_irqsave(ap->lock, flags);
1515
1516	/* No internal command while frozen */
1517	if (ata_port_is_frozen(ap)) {
1518		spin_unlock_irqrestore(ap->lock, flags);
1519		return AC_ERR_SYSTEM;
1520	}
1521
1522	/* Initialize internal qc */
1523	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1524
1525	qc->tag = ATA_TAG_INTERNAL;
1526	qc->hw_tag = 0;
1527	qc->scsicmd = NULL;
1528	qc->ap = ap;
1529	qc->dev = dev;
1530	ata_qc_reinit(qc);
1531
1532	preempted_tag = link->active_tag;
1533	preempted_sactive = link->sactive;
1534	preempted_qc_active = ap->qc_active;
1535	preempted_nr_active_links = ap->nr_active_links;
1536	link->active_tag = ATA_TAG_POISON;
1537	link->sactive = 0;
1538	ap->qc_active = 0;
1539	ap->nr_active_links = 0;
1540
1541	/* Prepare and issue qc */
1542	qc->tf = *tf;
1543	if (cdb)
1544		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1545
1546	/* Some SATA bridges need us to indicate data xfer direction */
1547	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1548	    dma_dir == DMA_FROM_DEVICE)
1549		qc->tf.feature |= ATAPI_DMADIR;
1550
1551	qc->flags |= ATA_QCFLAG_RESULT_TF;
1552	qc->dma_dir = dma_dir;
1553	if (dma_dir != DMA_NONE) {
1554		sg_init_one(&sgl, buf, buflen);
1555		ata_sg_init(qc, &sgl, 1);
 
 
 
 
 
1556		qc->nbytes = buflen;
1557	}
1558
1559	qc->private_data = &wait;
1560	qc->complete_fn = ata_qc_complete_internal;
1561
1562	ata_qc_issue(qc);
1563
1564	spin_unlock_irqrestore(ap->lock, flags);
1565
1566	if (!timeout) {
1567		if (ata_probe_timeout) {
1568			timeout = ata_probe_timeout * 1000;
1569		} else {
1570			timeout = ata_internal_cmd_timeout(dev, command);
1571			auto_timeout = true;
1572		}
1573	}
1574
1575	ata_eh_release(ap);
1576
1577	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1578
1579	ata_eh_acquire(ap);
1580
1581	ata_sff_flush_pio_task(ap);
1582
1583	if (!rc) {
1584		/*
1585		 * We are racing with irq here. If we lose, the following test
1586		 * prevents us from completing the qc twice. If we win, the port
1587		 * is frozen and will be cleaned up by ->post_internal_cmd().
 
 
1588		 */
1589		spin_lock_irqsave(ap->lock, flags);
1590		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1591			qc->err_mask |= AC_ERR_TIMEOUT;
 
1592			ata_port_freeze(ap);
 
1593			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1594				     timeout, command);
1595		}
 
1596		spin_unlock_irqrestore(ap->lock, flags);
1597	}
1598
 
1599	if (ap->ops->post_internal_cmd)
1600		ap->ops->post_internal_cmd(qc);
1601
1602	/* Perform minimal error analysis */
1603	if (qc->flags & ATA_QCFLAG_EH) {
1604		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1605			qc->err_mask |= AC_ERR_DEV;
1606
1607		if (!qc->err_mask)
1608			qc->err_mask |= AC_ERR_OTHER;
1609
1610		if (qc->err_mask & ~AC_ERR_OTHER)
1611			qc->err_mask &= ~AC_ERR_OTHER;
1612	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1613		qc->result_tf.status |= ATA_SENSE;
1614	}
1615
1616	/* Finish up */
1617	spin_lock_irqsave(ap->lock, flags);
1618
1619	*tf = qc->result_tf;
1620	err_mask = qc->err_mask;
1621
1622	ata_qc_free(qc);
1623	link->active_tag = preempted_tag;
1624	link->sactive = preempted_sactive;
1625	ap->qc_active = preempted_qc_active;
1626	ap->nr_active_links = preempted_nr_active_links;
1627
1628	spin_unlock_irqrestore(ap->lock, flags);
1629
1630	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1631		ata_internal_cmd_timed_out(dev, command);
1632
1633	return err_mask;
1634}
1635
1636/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1637 *	ata_pio_need_iordy	-	check if iordy needed
1638 *	@adev: ATA device
1639 *
1640 *	Check if the current speed of the device requires IORDY. Used
1641 *	by various controllers for chip configuration.
1642 */
1643unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1644{
1645	/* Don't set IORDY if we're preparing for reset.  IORDY may
1646	 * lead to controller lock up on certain controllers if the
1647	 * port is not occupied.  See bko#11703 for details.
1648	 */
1649	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1650		return 0;
1651	/* Controller doesn't support IORDY.  Probably a pointless
1652	 * check as the caller should know this.
1653	 */
1654	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1655		return 0;
1656	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1657	if (ata_id_is_cfa(adev->id)
1658	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1659		return 0;
1660	/* PIO3 and higher it is mandatory */
1661	if (adev->pio_mode > XFER_PIO_2)
1662		return 1;
1663	/* We turn it on when possible */
1664	if (ata_id_has_iordy(adev->id))
1665		return 1;
1666	return 0;
1667}
1668EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1669
1670/**
1671 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1672 *	@adev: ATA device
1673 *
1674 *	Compute the highest mode possible if we are not using iordy. Return
1675 *	-1 if no iordy mode is available.
1676 */
1677static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1678{
1679	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1680	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1681		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1682		/* Is the speed faster than the drive allows non IORDY ? */
1683		if (pio) {
1684			/* This is cycle times not frequency - watch the logic! */
1685			if (pio > 240)	/* PIO2 is 240nS per cycle */
1686				return 3 << ATA_SHIFT_PIO;
1687			return 7 << ATA_SHIFT_PIO;
1688		}
1689	}
1690	return 3 << ATA_SHIFT_PIO;
1691}
1692
1693/**
1694 *	ata_do_dev_read_id		-	default ID read method
1695 *	@dev: device
1696 *	@tf: proposed taskfile
1697 *	@id: data buffer
1698 *
1699 *	Issue the identify taskfile and hand back the buffer containing
1700 *	identify data. For some RAID controllers and for pre ATA devices
1701 *	this function is wrapped or replaced by the driver
1702 */
1703unsigned int ata_do_dev_read_id(struct ata_device *dev,
1704				struct ata_taskfile *tf, __le16 *id)
1705{
1706	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1707				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1708}
1709EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1710
1711/**
1712 *	ata_dev_read_id - Read ID data from the specified device
1713 *	@dev: target device
1714 *	@p_class: pointer to class of the target device (may be changed)
1715 *	@flags: ATA_READID_* flags
1716 *	@id: buffer to read IDENTIFY data into
1717 *
1718 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1719 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1720 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1721 *	for pre-ATA4 drives.
1722 *
1723 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1724 *	now we abort if we hit that case.
1725 *
1726 *	LOCKING:
1727 *	Kernel thread context (may sleep)
1728 *
1729 *	RETURNS:
1730 *	0 on success, -errno otherwise.
1731 */
1732int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1733		    unsigned int flags, u16 *id)
1734{
1735	struct ata_port *ap = dev->link->ap;
1736	unsigned int class = *p_class;
1737	struct ata_taskfile tf;
1738	unsigned int err_mask = 0;
1739	const char *reason;
1740	bool is_semb = class == ATA_DEV_SEMB;
1741	int may_fallback = 1, tried_spinup = 0;
1742	int rc;
1743
1744retry:
1745	ata_tf_init(dev, &tf);
1746
1747	switch (class) {
1748	case ATA_DEV_SEMB:
1749		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1750		fallthrough;
1751	case ATA_DEV_ATA:
1752	case ATA_DEV_ZAC:
1753		tf.command = ATA_CMD_ID_ATA;
1754		break;
1755	case ATA_DEV_ATAPI:
1756		tf.command = ATA_CMD_ID_ATAPI;
1757		break;
1758	default:
1759		rc = -ENODEV;
1760		reason = "unsupported class";
1761		goto err_out;
1762	}
1763
1764	tf.protocol = ATA_PROT_PIO;
1765
1766	/* Some devices choke if TF registers contain garbage.  Make
1767	 * sure those are properly initialized.
1768	 */
1769	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1770
1771	/* Device presence detection is unreliable on some
1772	 * controllers.  Always poll IDENTIFY if available.
1773	 */
1774	tf.flags |= ATA_TFLAG_POLLING;
1775
1776	if (ap->ops->read_id)
1777		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1778	else
1779		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1780
1781	if (err_mask) {
1782		if (err_mask & AC_ERR_NODEV_HINT) {
1783			ata_dev_dbg(dev, "NODEV after polling detection\n");
1784			return -ENOENT;
1785		}
1786
1787		if (is_semb) {
1788			ata_dev_info(dev,
1789		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1790			/* SEMB is not supported yet */
1791			*p_class = ATA_DEV_SEMB_UNSUP;
1792			return 0;
1793		}
1794
1795		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1796			/* Device or controller might have reported
1797			 * the wrong device class.  Give a shot at the
1798			 * other IDENTIFY if the current one is
1799			 * aborted by the device.
1800			 */
1801			if (may_fallback) {
1802				may_fallback = 0;
1803
1804				if (class == ATA_DEV_ATA)
1805					class = ATA_DEV_ATAPI;
1806				else
1807					class = ATA_DEV_ATA;
1808				goto retry;
1809			}
1810
1811			/* Control reaches here iff the device aborted
1812			 * both flavors of IDENTIFYs which happens
1813			 * sometimes with phantom devices.
1814			 */
1815			ata_dev_dbg(dev,
1816				    "both IDENTIFYs aborted, assuming NODEV\n");
1817			return -ENOENT;
1818		}
1819
1820		rc = -EIO;
1821		reason = "I/O error";
1822		goto err_out;
1823	}
1824
1825	if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1826		ata_dev_info(dev, "dumping IDENTIFY data, "
1827			    "class=%d may_fallback=%d tried_spinup=%d\n",
1828			    class, may_fallback, tried_spinup);
1829		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1830			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1831	}
1832
1833	/* Falling back doesn't make sense if ID data was read
1834	 * successfully at least once.
1835	 */
1836	may_fallback = 0;
1837
1838	swap_buf_le16(id, ATA_ID_WORDS);
1839
1840	/* sanity check */
1841	rc = -EINVAL;
1842	reason = "device reports invalid type";
1843
1844	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1845		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1846			goto err_out;
1847		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1848							ata_id_is_ata(id)) {
1849			ata_dev_dbg(dev,
1850				"host indicates ignore ATA devices, ignored\n");
1851			return -ENOENT;
1852		}
1853	} else {
1854		if (ata_id_is_ata(id))
1855			goto err_out;
1856	}
1857
1858	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1859		tried_spinup = 1;
1860		/*
1861		 * Drive powered-up in standby mode, and requires a specific
1862		 * SET_FEATURES spin-up subcommand before it will accept
1863		 * anything other than the original IDENTIFY command.
1864		 */
1865		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1866		if (err_mask && id[2] != 0x738c) {
1867			rc = -EIO;
1868			reason = "SPINUP failed";
1869			goto err_out;
1870		}
1871		/*
1872		 * If the drive initially returned incomplete IDENTIFY info,
1873		 * we now must reissue the IDENTIFY command.
1874		 */
1875		if (id[2] == 0x37c8)
1876			goto retry;
1877	}
1878
1879	if ((flags & ATA_READID_POSTRESET) &&
1880	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1881		/*
1882		 * The exact sequence expected by certain pre-ATA4 drives is:
1883		 * SRST RESET
1884		 * IDENTIFY (optional in early ATA)
1885		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1886		 * anything else..
1887		 * Some drives were very specific about that exact sequence.
1888		 *
1889		 * Note that ATA4 says lba is mandatory so the second check
1890		 * should never trigger.
1891		 */
1892		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1893			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1894			if (err_mask) {
1895				rc = -EIO;
1896				reason = "INIT_DEV_PARAMS failed";
1897				goto err_out;
1898			}
1899
1900			/* current CHS translation info (id[53-58]) might be
1901			 * changed. reread the identify device info.
1902			 */
1903			flags &= ~ATA_READID_POSTRESET;
1904			goto retry;
1905		}
1906	}
1907
1908	*p_class = class;
1909
1910	return 0;
1911
1912 err_out:
1913	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1914		     reason, err_mask);
1915	return rc;
1916}
1917
1918bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1919			   bool set_active)
1920{
1921	/* Only applies to ATA and ZAC devices */
1922	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1923		return false;
1924
1925	ata_tf_init(dev, tf);
1926	tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1927	tf->protocol = ATA_PROT_NODATA;
1928
1929	if (set_active) {
1930		/* VERIFY for 1 sector at lba=0 */
1931		tf->command = ATA_CMD_VERIFY;
1932		tf->nsect = 1;
1933		if (dev->flags & ATA_DFLAG_LBA) {
1934			tf->flags |= ATA_TFLAG_LBA;
1935			tf->device |= ATA_LBA;
1936		} else {
1937			/* CHS */
1938			tf->lbal = 0x1; /* sect */
1939		}
1940	} else {
1941		tf->command = ATA_CMD_STANDBYNOW1;
1942	}
1943
1944	return true;
1945}
1946
1947static bool ata_dev_power_is_active(struct ata_device *dev)
1948{
1949	struct ata_taskfile tf;
1950	unsigned int err_mask;
1951
1952	ata_tf_init(dev, &tf);
1953	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1954	tf.protocol = ATA_PROT_NODATA;
1955	tf.command = ATA_CMD_CHK_POWER;
1956
1957	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1958	if (err_mask) {
1959		ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1960			    err_mask);
1961		/*
1962		 * Assume we are in standby mode so that we always force a
1963		 * spinup in ata_dev_power_set_active().
1964		 */
1965		return false;
1966	}
1967
1968	ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
1969
1970	/* Active or idle */
1971	return tf.nsect == 0xff;
1972}
1973
1974/**
1975 *	ata_dev_power_set_standby - Set a device power mode to standby
1976 *	@dev: target device
1977 *
1978 *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1979 *	For an HDD device, this spins down the disks.
1980 *
1981 *	LOCKING:
1982 *	Kernel thread context (may sleep).
1983 */
1984void ata_dev_power_set_standby(struct ata_device *dev)
1985{
1986	unsigned long ap_flags = dev->link->ap->flags;
1987	struct ata_taskfile tf;
1988	unsigned int err_mask;
1989
1990	/* If the device is already sleeping or in standby, do nothing. */
1991	if ((dev->flags & ATA_DFLAG_SLEEPING) ||
1992	    !ata_dev_power_is_active(dev))
1993		return;
1994
1995	/*
1996	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1997	 * causing some drives to spin up and down again. For these, do nothing
1998	 * if we are being called on shutdown.
1999	 */
2000	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2001	    system_state == SYSTEM_POWER_OFF)
2002		return;
2003
2004	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2005	    system_entering_hibernation())
2006		return;
2007
2008	/* Issue STANDBY IMMEDIATE command only if supported by the device */
2009	if (!ata_dev_power_init_tf(dev, &tf, false))
2010		return;
2011
2012	ata_dev_notice(dev, "Entering standby power mode\n");
2013
2014	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2015	if (err_mask)
2016		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2017			    err_mask);
2018}
2019
2020/**
2021 *	ata_dev_power_set_active -  Set a device power mode to active
2022 *	@dev: target device
2023 *
2024 *	Issue a VERIFY command to enter to ensure that the device is in the
2025 *	active power mode. For a spun-down HDD (standby or idle power mode),
2026 *	the VERIFY command will complete after the disk spins up.
2027 *
2028 *	LOCKING:
2029 *	Kernel thread context (may sleep).
2030 */
2031void ata_dev_power_set_active(struct ata_device *dev)
2032{
2033	struct ata_taskfile tf;
2034	unsigned int err_mask;
2035
2036	/*
2037	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2038	 * if supported by the device.
2039	 */
2040	if (!ata_dev_power_init_tf(dev, &tf, true))
2041		return;
2042
2043	/*
2044	 * Check the device power state & condition and force a spinup with
2045	 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2046	 */
2047	if (ata_dev_power_is_active(dev))
2048		return;
2049
2050	ata_dev_notice(dev, "Entering active power mode\n");
2051
2052	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2053	if (err_mask)
2054		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2055			    err_mask);
2056}
2057
2058/**
2059 *	ata_read_log_page - read a specific log page
2060 *	@dev: target device
2061 *	@log: log to read
2062 *	@page: page to read
2063 *	@buf: buffer to store read page
2064 *	@sectors: number of sectors to read
2065 *
2066 *	Read log page using READ_LOG_EXT command.
2067 *
2068 *	LOCKING:
2069 *	Kernel thread context (may sleep).
2070 *
2071 *	RETURNS:
2072 *	0 on success, AC_ERR_* mask otherwise.
2073 */
2074unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2075			       u8 page, void *buf, unsigned int sectors)
2076{
2077	unsigned long ap_flags = dev->link->ap->flags;
2078	struct ata_taskfile tf;
2079	unsigned int err_mask;
2080	bool dma = false;
2081
2082	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2083
2084	/*
2085	 * Return error without actually issuing the command on controllers
2086	 * which e.g. lockup on a read log page.
2087	 */
2088	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2089		return AC_ERR_DEV;
2090
2091retry:
2092	ata_tf_init(dev, &tf);
2093	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2094	    !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2095		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2096		tf.protocol = ATA_PROT_DMA;
2097		dma = true;
2098	} else {
2099		tf.command = ATA_CMD_READ_LOG_EXT;
2100		tf.protocol = ATA_PROT_PIO;
2101		dma = false;
2102	}
2103	tf.lbal = log;
2104	tf.lbam = page;
2105	tf.nsect = sectors;
2106	tf.hob_nsect = sectors >> 8;
2107	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2108
2109	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2110				     buf, sectors * ATA_SECT_SIZE, 0);
2111
2112	if (err_mask) {
2113		if (dma) {
2114			dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2115			if (!ata_port_is_frozen(dev->link->ap))
2116				goto retry;
2117		}
2118		ata_dev_err(dev,
2119			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2120			    (unsigned int)log, (unsigned int)page, err_mask);
2121	}
2122
2123	return err_mask;
2124}
2125
2126static int ata_log_supported(struct ata_device *dev, u8 log)
2127{
2128	if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
 
 
2129		return 0;
2130
2131	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1))
2132		return 0;
2133	return get_unaligned_le16(&dev->sector_buf[log * 2]);
2134}
2135
2136static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2137{
 
2138	unsigned int err, i;
2139
2140	if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2141		return false;
2142
2143	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2144		/*
2145		 * IDENTIFY DEVICE data log is defined as mandatory starting
2146		 * with ACS-3 (ATA version 10). Warn about the missing log
2147		 * for drives which implement this ATA level or above.
2148		 */
2149		if (ata_id_major_version(dev->id) >= 10)
2150			ata_dev_warn(dev,
2151				"ATA Identify Device Log not supported\n");
2152		dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2153		return false;
2154	}
2155
2156	/*
2157	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2158	 * supported.
2159	 */
2160	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2161				dev->sector_buf, 1);
2162	if (err)
2163		return false;
2164
2165	for (i = 0; i < dev->sector_buf[8]; i++) {
2166		if (dev->sector_buf[9 + i] == page)
2167			return true;
2168	}
2169
2170	return false;
2171}
2172
2173static int ata_do_link_spd_quirk(struct ata_device *dev)
2174{
2175	struct ata_link *plink = ata_dev_phys_link(dev);
2176	u32 target, target_limit;
2177
2178	if (!sata_scr_valid(plink))
2179		return 0;
2180
2181	if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2182		target = 1;
2183	else
2184		return 0;
2185
2186	target_limit = (1 << target) - 1;
2187
2188	/* if already on stricter limit, no need to push further */
2189	if (plink->sata_spd_limit <= target_limit)
2190		return 0;
2191
2192	plink->sata_spd_limit = target_limit;
2193
2194	/* Request another EH round by returning -EAGAIN if link is
2195	 * going faster than the target speed.  Forward progress is
2196	 * guaranteed by setting sata_spd_limit to target_limit above.
2197	 */
2198	if (plink->sata_spd > target) {
2199		ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2200			     sata_spd_string(target));
2201		return -EAGAIN;
2202	}
2203	return 0;
2204}
2205
2206static inline bool ata_dev_knobble(struct ata_device *dev)
2207{
2208	struct ata_port *ap = dev->link->ap;
2209
2210	if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2211		return false;
2212
2213	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2214}
2215
2216static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2217{
 
2218	unsigned int err_mask;
2219
2220	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2221		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2222		return;
2223	}
2224	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2225				     0, dev->sector_buf, 1);
2226	if (!err_mask) {
2227		u8 *cmds = dev->ncq_send_recv_cmds;
2228
2229		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2230		memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2231
2232		if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2233			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2234			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2235				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2236		}
2237	}
2238}
2239
2240static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2241{
 
2242	unsigned int err_mask;
2243
2244	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2245		ata_dev_warn(dev,
2246			     "NCQ Send/Recv Log not supported\n");
2247		return;
2248	}
2249	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2250				     0, dev->sector_buf, 1);
2251	if (!err_mask)
2252		memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2253		       ATA_LOG_NCQ_NON_DATA_SIZE);
 
 
2254}
2255
2256static void ata_dev_config_ncq_prio(struct ata_device *dev)
2257{
 
2258	unsigned int err_mask;
2259
2260	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2261		return;
2262
2263	err_mask = ata_read_log_page(dev,
2264				     ATA_LOG_IDENTIFY_DEVICE,
2265				     ATA_LOG_SATA_SETTINGS,
2266				     dev->sector_buf, 1);
 
2267	if (err_mask)
2268		goto not_supported;
2269
2270	if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2271		goto not_supported;
2272
2273	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274
2275	return;
2276
2277not_supported:
2278	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2279	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2280}
2281
2282static bool ata_dev_check_adapter(struct ata_device *dev,
2283				  unsigned short vendor_id)
2284{
2285	struct pci_dev *pcidev = NULL;
2286	struct device *parent_dev = NULL;
2287
2288	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2289	     parent_dev = parent_dev->parent) {
2290		if (dev_is_pci(parent_dev)) {
2291			pcidev = to_pci_dev(parent_dev);
2292			if (pcidev->vendor == vendor_id)
2293				return true;
2294			break;
2295		}
2296	}
2297
2298	return false;
2299}
2300
2301static int ata_dev_config_ncq(struct ata_device *dev,
2302			       char *desc, size_t desc_sz)
2303{
2304	struct ata_port *ap = dev->link->ap;
2305	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2306	unsigned int err_mask;
2307	char *aa_desc = "";
2308
2309	if (!ata_id_has_ncq(dev->id)) {
2310		desc[0] = '\0';
2311		return 0;
2312	}
2313	if (!IS_ENABLED(CONFIG_SATA_HOST))
2314		return 0;
2315	if (dev->quirks & ATA_QUIRK_NONCQ) {
2316		snprintf(desc, desc_sz, "NCQ (not used)");
2317		return 0;
2318	}
2319
2320	if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2321	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2322		snprintf(desc, desc_sz, "NCQ (not used)");
2323		return 0;
2324	}
2325
2326	if (ap->flags & ATA_FLAG_NCQ) {
2327		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2328		dev->flags |= ATA_DFLAG_NCQ;
2329	}
2330
2331	if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2332		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2333		ata_id_has_fpdma_aa(dev->id)) {
2334		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2335			SATA_FPDMA_AA);
2336		if (err_mask) {
2337			ata_dev_err(dev,
2338				    "failed to enable AA (error_mask=0x%x)\n",
2339				    err_mask);
2340			if (err_mask != AC_ERR_DEV) {
2341				dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2342				return -EIO;
2343			}
2344		} else
2345			aa_desc = ", AA";
2346	}
2347
2348	if (hdepth >= ddepth)
2349		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2350	else
2351		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2352			ddepth, aa_desc);
2353
2354	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2355		if (ata_id_has_ncq_send_and_recv(dev->id))
2356			ata_dev_config_ncq_send_recv(dev);
2357		if (ata_id_has_ncq_non_data(dev->id))
2358			ata_dev_config_ncq_non_data(dev);
2359		if (ata_id_has_ncq_prio(dev->id))
2360			ata_dev_config_ncq_prio(dev);
2361	}
2362
2363	return 0;
2364}
2365
2366static void ata_dev_config_sense_reporting(struct ata_device *dev)
2367{
2368	unsigned int err_mask;
2369
2370	if (!ata_id_has_sense_reporting(dev->id))
2371		return;
2372
2373	if (ata_id_sense_reporting_enabled(dev->id))
2374		return;
2375
2376	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2377	if (err_mask) {
2378		ata_dev_dbg(dev,
2379			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2380			    err_mask);
2381	}
2382}
2383
2384static void ata_dev_config_zac(struct ata_device *dev)
2385{
 
2386	unsigned int err_mask;
2387	u8 *identify_buf = dev->sector_buf;
2388
2389	dev->zac_zones_optimal_open = U32_MAX;
2390	dev->zac_zones_optimal_nonseq = U32_MAX;
2391	dev->zac_zones_max_open = U32_MAX;
2392
2393	/*
2394	 * Always set the 'ZAC' flag for Host-managed devices.
2395	 */
2396	if (dev->class == ATA_DEV_ZAC)
2397		dev->flags |= ATA_DFLAG_ZAC;
2398	else if (ata_id_zoned_cap(dev->id) == 0x01)
2399		/*
2400		 * Check for host-aware devices.
2401		 */
2402		dev->flags |= ATA_DFLAG_ZAC;
2403
2404	if (!(dev->flags & ATA_DFLAG_ZAC))
2405		return;
2406
2407	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2408		ata_dev_warn(dev,
2409			     "ATA Zoned Information Log not supported\n");
2410		return;
2411	}
2412
2413	/*
2414	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2415	 */
2416	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2417				     ATA_LOG_ZONED_INFORMATION,
2418				     identify_buf, 1);
2419	if (!err_mask) {
2420		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2421
2422		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2423		if ((zoned_cap >> 63))
2424			dev->zac_zoned_cap = (zoned_cap & 1);
2425		opt_open = get_unaligned_le64(&identify_buf[24]);
2426		if ((opt_open >> 63))
2427			dev->zac_zones_optimal_open = (u32)opt_open;
2428		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2429		if ((opt_nonseq >> 63))
2430			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2431		max_open = get_unaligned_le64(&identify_buf[40]);
2432		if ((max_open >> 63))
2433			dev->zac_zones_max_open = (u32)max_open;
2434	}
2435}
2436
2437static void ata_dev_config_trusted(struct ata_device *dev)
2438{
 
2439	u64 trusted_cap;
2440	unsigned int err;
2441
2442	if (!ata_id_has_trusted(dev->id))
2443		return;
2444
2445	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2446		ata_dev_warn(dev,
2447			     "Security Log not supported\n");
2448		return;
2449	}
2450
2451	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2452				dev->sector_buf, 1);
2453	if (err)
2454		return;
2455
2456	trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2457	if (!(trusted_cap & (1ULL << 63))) {
2458		ata_dev_dbg(dev,
2459			    "Trusted Computing capability qword not valid!\n");
2460		return;
2461	}
2462
2463	if (trusted_cap & (1 << 0))
2464		dev->flags |= ATA_DFLAG_TRUSTED;
2465}
2466
2467void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2468{
2469	kfree(dev->cdl);
2470	dev->cdl = NULL;
2471}
2472
2473static int ata_dev_init_cdl_resources(struct ata_device *dev)
2474{
2475	struct ata_cdl *cdl = dev->cdl;
2476	unsigned int err_mask;
2477
2478	if (!cdl) {
2479		cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2480		if (!cdl)
2481			return -ENOMEM;
2482		dev->cdl = cdl;
2483	}
2484
2485	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2486				     ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2487	if (err_mask) {
2488		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2489		ata_dev_cleanup_cdl_resources(dev);
2490		return -EIO;
2491	}
2492
2493	return 0;
2494}
2495
2496static void ata_dev_config_cdl(struct ata_device *dev)
2497{
 
2498	unsigned int err_mask;
2499	bool cdl_enabled;
2500	u64 val;
2501	int ret;
2502
2503	if (ata_id_major_version(dev->id) < 11)
2504		goto not_supported;
2505
2506	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2507	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2508	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2509		goto not_supported;
2510
2511	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2512				     ATA_LOG_SUPPORTED_CAPABILITIES,
2513				     dev->sector_buf, 1);
2514	if (err_mask)
2515		goto not_supported;
2516
2517	/* Check Command Duration Limit Supported bits */
2518	val = get_unaligned_le64(&dev->sector_buf[168]);
2519	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2520		goto not_supported;
2521
2522	/* Warn the user if command duration guideline is not supported */
2523	if (!(val & BIT_ULL(1)))
2524		ata_dev_warn(dev,
2525			"Command duration guideline is not supported\n");
2526
2527	/*
2528	 * We must have support for the sense data for successful NCQ commands
2529	 * log indicated by the successful NCQ command sense data supported bit.
2530	 */
2531	val = get_unaligned_le64(&dev->sector_buf[8]);
2532	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2533		ata_dev_warn(dev,
2534			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2535		goto not_supported;
2536	}
2537
2538	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2539	if (!ata_id_has_ncq_autosense(dev->id)) {
2540		ata_dev_warn(dev,
2541			"CDL supported but NCQ autosense is not supported\n");
2542		goto not_supported;
2543	}
2544
2545	/*
2546	 * If CDL is marked as enabled, make sure the feature is enabled too.
2547	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2548	 */
2549	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2550				     ATA_LOG_CURRENT_SETTINGS,
2551				     dev->sector_buf, 1);
2552	if (err_mask)
2553		goto not_supported;
2554
2555	val = get_unaligned_le64(&dev->sector_buf[8]);
2556	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2557	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2558		if (!cdl_enabled) {
2559			/* Enable CDL on the device */
2560			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2561			if (err_mask) {
2562				ata_dev_err(dev,
2563					    "Enable CDL feature failed\n");
2564				goto not_supported;
2565			}
2566		}
2567	} else {
2568		if (cdl_enabled) {
2569			/* Disable CDL on the device */
2570			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2571			if (err_mask) {
2572				ata_dev_err(dev,
2573					    "Disable CDL feature failed\n");
2574				goto not_supported;
2575			}
2576		}
2577	}
2578
2579	/*
2580	 * While CDL itself has to be enabled using sysfs, CDL requires that
2581	 * sense data for successful NCQ commands is enabled to work properly.
2582	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2583	 * if supported.
2584	 */
2585	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2586		err_mask = ata_dev_set_feature(dev,
2587					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2588		if (err_mask) {
2589			ata_dev_warn(dev,
2590				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2591				     err_mask);
2592			goto not_supported;
2593		}
2594	}
2595
2596	/* CDL is supported: allocate and initialize needed resources. */
2597	ret = ata_dev_init_cdl_resources(dev);
2598	if (ret) {
2599		ata_dev_warn(dev, "Initialize CDL resources failed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600		goto not_supported;
2601	}
2602
 
2603	dev->flags |= ATA_DFLAG_CDL;
2604
2605	return;
2606
2607not_supported:
2608	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2609	ata_dev_cleanup_cdl_resources(dev);
 
2610}
2611
2612static int ata_dev_config_lba(struct ata_device *dev)
2613{
2614	const u16 *id = dev->id;
2615	const char *lba_desc;
2616	char ncq_desc[32];
2617	int ret;
2618
2619	dev->flags |= ATA_DFLAG_LBA;
2620
2621	if (ata_id_has_lba48(id)) {
2622		lba_desc = "LBA48";
2623		dev->flags |= ATA_DFLAG_LBA48;
2624		if (dev->n_sectors >= (1UL << 28) &&
2625		    ata_id_has_flush_ext(id))
2626			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2627	} else {
2628		lba_desc = "LBA";
2629	}
2630
2631	/* config NCQ */
2632	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2633
2634	/* print device info to dmesg */
2635	if (ata_dev_print_info(dev))
2636		ata_dev_info(dev,
2637			     "%llu sectors, multi %u: %s %s\n",
2638			     (unsigned long long)dev->n_sectors,
2639			     dev->multi_count, lba_desc, ncq_desc);
2640
2641	return ret;
2642}
2643
2644static void ata_dev_config_chs(struct ata_device *dev)
2645{
2646	const u16 *id = dev->id;
2647
2648	if (ata_id_current_chs_valid(id)) {
2649		/* Current CHS translation is valid. */
2650		dev->cylinders = id[54];
2651		dev->heads     = id[55];
2652		dev->sectors   = id[56];
2653	} else {
2654		/* Default translation */
2655		dev->cylinders	= id[1];
2656		dev->heads	= id[3];
2657		dev->sectors	= id[6];
2658	}
2659
2660	/* print device info to dmesg */
2661	if (ata_dev_print_info(dev))
2662		ata_dev_info(dev,
2663			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2664			     (unsigned long long)dev->n_sectors,
2665			     dev->multi_count, dev->cylinders,
2666			     dev->heads, dev->sectors);
2667}
2668
2669static void ata_dev_config_fua(struct ata_device *dev)
2670{
2671	/* Ignore FUA support if its use is disabled globally */
2672	if (!libata_fua)
2673		goto nofua;
2674
2675	/* Ignore devices without support for WRITE DMA FUA EXT */
2676	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2677		goto nofua;
2678
2679	/* Ignore known bad devices and devices that lack NCQ support */
2680	if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2681		goto nofua;
2682
2683	dev->flags |= ATA_DFLAG_FUA;
2684
2685	return;
2686
2687nofua:
2688	dev->flags &= ~ATA_DFLAG_FUA;
2689}
2690
2691static void ata_dev_config_devslp(struct ata_device *dev)
2692{
2693	u8 *sata_setting = dev->sector_buf;
2694	unsigned int err_mask;
2695	int i, j;
2696
2697	/*
2698	 * Check device sleep capability. Get DevSlp timing variables
2699	 * from SATA Settings page of Identify Device Data Log.
2700	 */
2701	if (!ata_id_has_devslp(dev->id) ||
2702	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2703		return;
2704
2705	err_mask = ata_read_log_page(dev,
2706				     ATA_LOG_IDENTIFY_DEVICE,
2707				     ATA_LOG_SATA_SETTINGS,
2708				     sata_setting, 1);
2709	if (err_mask)
2710		return;
2711
2712	dev->flags |= ATA_DFLAG_DEVSLP;
2713	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2714		j = ATA_LOG_DEVSLP_OFFSET + i;
2715		dev->devslp_timing[i] = sata_setting[j];
2716	}
2717}
2718
2719static void ata_dev_config_cpr(struct ata_device *dev)
2720{
2721	unsigned int err_mask;
2722	size_t buf_len;
2723	int i, nr_cpr = 0;
2724	struct ata_cpr_log *cpr_log = NULL;
2725	u8 *desc, *buf = NULL;
2726
2727	if (ata_id_major_version(dev->id) < 11)
2728		goto out;
2729
2730	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2731	if (buf_len == 0)
2732		goto out;
2733
2734	/*
2735	 * Read the concurrent positioning ranges log (0x47). We can have at
2736	 * most 255 32B range descriptors plus a 64B header. This log varies in
2737	 * size, so use the size reported in the GPL directory. Reading beyond
2738	 * the supported length will result in an error.
2739	 */
2740	buf_len <<= 9;
2741	buf = kzalloc(buf_len, GFP_KERNEL);
2742	if (!buf)
2743		goto out;
2744
2745	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2746				     0, buf, buf_len >> 9);
2747	if (err_mask)
2748		goto out;
2749
2750	nr_cpr = buf[0];
2751	if (!nr_cpr)
2752		goto out;
2753
2754	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2755	if (!cpr_log)
2756		goto out;
2757
2758	cpr_log->nr_cpr = nr_cpr;
2759	desc = &buf[64];
2760	for (i = 0; i < nr_cpr; i++, desc += 32) {
2761		cpr_log->cpr[i].num = desc[0];
2762		cpr_log->cpr[i].num_storage_elements = desc[1];
2763		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2764		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2765	}
2766
2767out:
2768	swap(dev->cpr_log, cpr_log);
2769	kfree(cpr_log);
2770	kfree(buf);
2771}
2772
2773static void ata_dev_print_features(struct ata_device *dev)
2774{
2775	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2776		return;
2777
2778	ata_dev_info(dev,
2779		     "Features:%s%s%s%s%s%s%s%s\n",
2780		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2781		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2782		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2783		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2784		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2785		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2786		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2787		     dev->cpr_log ? " CPR" : "");
2788}
2789
2790/**
2791 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2792 *	@dev: Target device to configure
2793 *
2794 *	Configure @dev according to @dev->id.  Generic and low-level
2795 *	driver specific fixups are also applied.
2796 *
2797 *	LOCKING:
2798 *	Kernel thread context (may sleep)
2799 *
2800 *	RETURNS:
2801 *	0 on success, -errno otherwise
2802 */
2803int ata_dev_configure(struct ata_device *dev)
2804{
2805	struct ata_port *ap = dev->link->ap;
2806	bool print_info = ata_dev_print_info(dev);
2807	const u16 *id = dev->id;
2808	unsigned int xfer_mask;
2809	unsigned int err_mask;
2810	char revbuf[7];		/* XYZ-99\0 */
2811	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2812	char modelbuf[ATA_ID_PROD_LEN+1];
2813	int rc;
2814
2815	if (!ata_dev_enabled(dev)) {
2816		ata_dev_dbg(dev, "no device\n");
2817		return 0;
2818	}
2819
2820	/* Set quirks */
2821	dev->quirks |= ata_dev_quirks(dev);
2822	ata_force_quirks(dev);
2823
2824	if (dev->quirks & ATA_QUIRK_DISABLE) {
2825		ata_dev_info(dev, "unsupported device, disabling\n");
2826		ata_dev_disable(dev);
2827		return 0;
2828	}
2829
2830	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2831	    dev->class == ATA_DEV_ATAPI) {
2832		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2833			     atapi_enabled ? "not supported with this driver"
2834			     : "disabled");
2835		ata_dev_disable(dev);
2836		return 0;
2837	}
2838
2839	rc = ata_do_link_spd_quirk(dev);
2840	if (rc)
2841		return rc;
2842
2843	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2844	if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2845	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2846		dev->quirks |= ATA_QUIRK_NOLPM;
2847
2848	if (ap->flags & ATA_FLAG_NO_LPM)
2849		dev->quirks |= ATA_QUIRK_NOLPM;
2850
2851	if (dev->quirks & ATA_QUIRK_NOLPM) {
2852		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2853		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2854	}
2855
2856	/* let ACPI work its magic */
2857	rc = ata_acpi_on_devcfg(dev);
2858	if (rc)
2859		return rc;
2860
2861	/* massage HPA, do it early as it might change IDENTIFY data */
2862	rc = ata_hpa_resize(dev);
2863	if (rc)
2864		return rc;
2865
2866	/* print device capabilities */
2867	ata_dev_dbg(dev,
2868		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2869		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2870		    __func__,
2871		    id[49], id[82], id[83], id[84],
2872		    id[85], id[86], id[87], id[88]);
2873
2874	/* initialize to-be-configured parameters */
2875	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2876	dev->max_sectors = 0;
2877	dev->cdb_len = 0;
2878	dev->n_sectors = 0;
2879	dev->cylinders = 0;
2880	dev->heads = 0;
2881	dev->sectors = 0;
2882	dev->multi_count = 0;
2883
2884	/*
2885	 * common ATA, ATAPI feature tests
2886	 */
2887
2888	/* find max transfer mode; for printk only */
2889	xfer_mask = ata_id_xfermask(id);
2890
2891	ata_dump_id(dev, id);
2892
2893	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2894	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2895			sizeof(fwrevbuf));
2896
2897	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2898			sizeof(modelbuf));
2899
2900	/* ATA-specific feature tests */
2901	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2902		if (ata_id_is_cfa(id)) {
2903			/* CPRM may make this media unusable */
2904			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2905				ata_dev_warn(dev,
2906	"supports DRM functions and may not be fully accessible\n");
2907			snprintf(revbuf, 7, "CFA");
2908		} else {
2909			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2910			/* Warn the user if the device has TPM extensions */
2911			if (ata_id_has_tpm(id))
2912				ata_dev_warn(dev,
2913	"supports DRM functions and may not be fully accessible\n");
2914		}
2915
2916		dev->n_sectors = ata_id_n_sectors(id);
2917
2918		/* get current R/W Multiple count setting */
2919		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2920			unsigned int max = dev->id[47] & 0xff;
2921			unsigned int cnt = dev->id[59] & 0xff;
2922			/* only recognize/allow powers of two here */
2923			if (is_power_of_2(max) && is_power_of_2(cnt))
2924				if (cnt <= max)
2925					dev->multi_count = cnt;
2926		}
2927
2928		/* print device info to dmesg */
2929		if (print_info)
2930			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2931				     revbuf, modelbuf, fwrevbuf,
2932				     ata_mode_string(xfer_mask));
2933
2934		if (ata_id_has_lba(id)) {
2935			rc = ata_dev_config_lba(dev);
2936			if (rc)
2937				return rc;
2938		} else {
2939			ata_dev_config_chs(dev);
2940		}
2941
2942		ata_dev_config_fua(dev);
2943		ata_dev_config_devslp(dev);
2944		ata_dev_config_sense_reporting(dev);
2945		ata_dev_config_zac(dev);
2946		ata_dev_config_trusted(dev);
2947		ata_dev_config_cpr(dev);
2948		ata_dev_config_cdl(dev);
2949		dev->cdb_len = 32;
2950
2951		if (print_info)
2952			ata_dev_print_features(dev);
2953	}
2954
2955	/* ATAPI-specific feature tests */
2956	else if (dev->class == ATA_DEV_ATAPI) {
2957		const char *cdb_intr_string = "";
2958		const char *atapi_an_string = "";
2959		const char *dma_dir_string = "";
2960		u32 sntf;
2961
2962		rc = atapi_cdb_len(id);
2963		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2964			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2965			rc = -EINVAL;
2966			goto err_out_nosup;
2967		}
2968		dev->cdb_len = (unsigned int) rc;
2969
2970		/* Enable ATAPI AN if both the host and device have
2971		 * the support.  If PMP is attached, SNTF is required
2972		 * to enable ATAPI AN to discern between PHY status
2973		 * changed notifications and ATAPI ANs.
2974		 */
2975		if (atapi_an &&
2976		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2977		    (!sata_pmp_attached(ap) ||
2978		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2979			/* issue SET feature command to turn this on */
2980			err_mask = ata_dev_set_feature(dev,
2981					SETFEATURES_SATA_ENABLE, SATA_AN);
2982			if (err_mask)
2983				ata_dev_err(dev,
2984					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2985					    err_mask);
2986			else {
2987				dev->flags |= ATA_DFLAG_AN;
2988				atapi_an_string = ", ATAPI AN";
2989			}
2990		}
2991
2992		if (ata_id_cdb_intr(dev->id)) {
2993			dev->flags |= ATA_DFLAG_CDB_INTR;
2994			cdb_intr_string = ", CDB intr";
2995		}
2996
2997		if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
2998		    atapi_id_dmadir(dev->id)) {
2999			dev->flags |= ATA_DFLAG_DMADIR;
3000			dma_dir_string = ", DMADIR";
3001		}
3002
3003		if (ata_id_has_da(dev->id)) {
3004			dev->flags |= ATA_DFLAG_DA;
3005			zpodd_init(dev);
3006		}
3007
3008		/* print device info to dmesg */
3009		if (print_info)
3010			ata_dev_info(dev,
3011				     "ATAPI: %s, %s, max %s%s%s%s\n",
3012				     modelbuf, fwrevbuf,
3013				     ata_mode_string(xfer_mask),
3014				     cdb_intr_string, atapi_an_string,
3015				     dma_dir_string);
3016	}
3017
3018	/* determine max_sectors */
3019	dev->max_sectors = ATA_MAX_SECTORS;
3020	if (dev->flags & ATA_DFLAG_LBA48)
3021		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3022
3023	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3024	   200 sectors */
3025	if (ata_dev_knobble(dev)) {
3026		if (print_info)
3027			ata_dev_info(dev, "applying bridge limits\n");
3028		dev->udma_mask &= ATA_UDMA5;
3029		dev->max_sectors = ATA_MAX_SECTORS;
3030	}
3031
3032	if ((dev->class == ATA_DEV_ATAPI) &&
3033	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3034		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3035		dev->quirks |= ATA_QUIRK_STUCK_ERR;
3036	}
3037
3038	if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3039		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3040					 dev->max_sectors);
3041
3042	if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3043		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3044					 dev->max_sectors);
3045
3046	if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3047		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3048
3049	if (ap->ops->dev_config)
3050		ap->ops->dev_config(dev);
3051
3052	if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3053		/* Let the user know. We don't want to disallow opens for
3054		   rescue purposes, or in case the vendor is just a blithering
3055		   idiot. Do this after the dev_config call as some controllers
3056		   with buggy firmware may want to avoid reporting false device
3057		   bugs */
3058
3059		if (print_info) {
3060			ata_dev_warn(dev,
3061"Drive reports diagnostics failure. This may indicate a drive\n");
3062			ata_dev_warn(dev,
3063"fault or invalid emulation. Contact drive vendor for information.\n");
3064		}
3065	}
3066
3067	if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3068		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3069		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3070	}
3071
3072	return 0;
3073
3074err_out_nosup:
3075	return rc;
3076}
3077
3078/**
3079 *	ata_cable_40wire	-	return 40 wire cable type
3080 *	@ap: port
3081 *
3082 *	Helper method for drivers which want to hardwire 40 wire cable
3083 *	detection.
3084 */
3085
3086int ata_cable_40wire(struct ata_port *ap)
3087{
3088	return ATA_CBL_PATA40;
3089}
3090EXPORT_SYMBOL_GPL(ata_cable_40wire);
3091
3092/**
3093 *	ata_cable_80wire	-	return 80 wire cable type
3094 *	@ap: port
3095 *
3096 *	Helper method for drivers which want to hardwire 80 wire cable
3097 *	detection.
3098 */
3099
3100int ata_cable_80wire(struct ata_port *ap)
3101{
3102	return ATA_CBL_PATA80;
3103}
3104EXPORT_SYMBOL_GPL(ata_cable_80wire);
3105
3106/**
3107 *	ata_cable_unknown	-	return unknown PATA cable.
3108 *	@ap: port
3109 *
3110 *	Helper method for drivers which have no PATA cable detection.
3111 */
3112
3113int ata_cable_unknown(struct ata_port *ap)
3114{
3115	return ATA_CBL_PATA_UNK;
3116}
3117EXPORT_SYMBOL_GPL(ata_cable_unknown);
3118
3119/**
3120 *	ata_cable_ignore	-	return ignored PATA cable.
3121 *	@ap: port
3122 *
3123 *	Helper method for drivers which don't use cable type to limit
3124 *	transfer mode.
3125 */
3126int ata_cable_ignore(struct ata_port *ap)
3127{
3128	return ATA_CBL_PATA_IGN;
3129}
3130EXPORT_SYMBOL_GPL(ata_cable_ignore);
3131
3132/**
3133 *	ata_cable_sata	-	return SATA cable type
3134 *	@ap: port
3135 *
3136 *	Helper method for drivers which have SATA cables
3137 */
3138
3139int ata_cable_sata(struct ata_port *ap)
3140{
3141	return ATA_CBL_SATA;
3142}
3143EXPORT_SYMBOL_GPL(ata_cable_sata);
3144
3145/**
3146 *	sata_print_link_status - Print SATA link status
3147 *	@link: SATA link to printk link status about
3148 *
3149 *	This function prints link speed and status of a SATA link.
3150 *
3151 *	LOCKING:
3152 *	None.
3153 */
3154static void sata_print_link_status(struct ata_link *link)
3155{
3156	u32 sstatus, scontrol, tmp;
3157
3158	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3159		return;
3160	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3161		return;
3162
3163	if (ata_phys_link_online(link)) {
3164		tmp = (sstatus >> 4) & 0xf;
3165		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3166			      sata_spd_string(tmp), sstatus, scontrol);
3167	} else {
3168		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3169			      sstatus, scontrol);
3170	}
3171}
3172
3173/**
3174 *	ata_dev_pair		-	return other device on cable
3175 *	@adev: device
3176 *
3177 *	Obtain the other device on the same cable, or if none is
3178 *	present NULL is returned
3179 */
3180
3181struct ata_device *ata_dev_pair(struct ata_device *adev)
3182{
3183	struct ata_link *link = adev->link;
3184	struct ata_device *pair = &link->device[1 - adev->devno];
3185	if (!ata_dev_enabled(pair))
3186		return NULL;
3187	return pair;
3188}
3189EXPORT_SYMBOL_GPL(ata_dev_pair);
3190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3191#ifdef CONFIG_ATA_ACPI
3192/**
3193 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3194 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3195 *	@cycle: cycle duration in ns
3196 *
3197 *	Return matching xfer mode for @cycle.  The returned mode is of
3198 *	the transfer type specified by @xfer_shift.  If @cycle is too
3199 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3200 *	than the fastest known mode, the fasted mode is returned.
3201 *
3202 *	LOCKING:
3203 *	None.
3204 *
3205 *	RETURNS:
3206 *	Matching xfer_mode, 0xff if no match found.
3207 */
3208u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3209{
3210	u8 base_mode = 0xff, last_mode = 0xff;
3211	const struct ata_xfer_ent *ent;
3212	const struct ata_timing *t;
3213
3214	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3215		if (ent->shift == xfer_shift)
3216			base_mode = ent->base;
3217
3218	for (t = ata_timing_find_mode(base_mode);
3219	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3220		unsigned short this_cycle;
3221
3222		switch (xfer_shift) {
3223		case ATA_SHIFT_PIO:
3224		case ATA_SHIFT_MWDMA:
3225			this_cycle = t->cycle;
3226			break;
3227		case ATA_SHIFT_UDMA:
3228			this_cycle = t->udma;
3229			break;
3230		default:
3231			return 0xff;
3232		}
3233
3234		if (cycle > this_cycle)
3235			break;
3236
3237		last_mode = t->mode;
3238	}
3239
3240	return last_mode;
3241}
3242#endif
3243
3244/**
3245 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3246 *	@dev: Device to adjust xfer masks
3247 *	@sel: ATA_DNXFER_* selector
3248 *
3249 *	Adjust xfer masks of @dev downward.  Note that this function
3250 *	does not apply the change.  Invoking ata_set_mode() afterwards
3251 *	will apply the limit.
3252 *
3253 *	LOCKING:
3254 *	Inherited from caller.
3255 *
3256 *	RETURNS:
3257 *	0 on success, negative errno on failure
3258 */
3259int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3260{
3261	char buf[32];
3262	unsigned int orig_mask, xfer_mask;
3263	unsigned int pio_mask, mwdma_mask, udma_mask;
3264	int quiet, highbit;
3265
3266	quiet = !!(sel & ATA_DNXFER_QUIET);
3267	sel &= ~ATA_DNXFER_QUIET;
3268
3269	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3270						  dev->mwdma_mask,
3271						  dev->udma_mask);
3272	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3273
3274	switch (sel) {
3275	case ATA_DNXFER_PIO:
3276		highbit = fls(pio_mask) - 1;
3277		pio_mask &= ~(1 << highbit);
3278		break;
3279
3280	case ATA_DNXFER_DMA:
3281		if (udma_mask) {
3282			highbit = fls(udma_mask) - 1;
3283			udma_mask &= ~(1 << highbit);
3284			if (!udma_mask)
3285				return -ENOENT;
3286		} else if (mwdma_mask) {
3287			highbit = fls(mwdma_mask) - 1;
3288			mwdma_mask &= ~(1 << highbit);
3289			if (!mwdma_mask)
3290				return -ENOENT;
3291		}
3292		break;
3293
3294	case ATA_DNXFER_40C:
3295		udma_mask &= ATA_UDMA_MASK_40C;
3296		break;
3297
3298	case ATA_DNXFER_FORCE_PIO0:
3299		pio_mask &= 1;
3300		fallthrough;
3301	case ATA_DNXFER_FORCE_PIO:
3302		mwdma_mask = 0;
3303		udma_mask = 0;
3304		break;
3305
3306	default:
3307		BUG();
3308	}
3309
3310	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3311
3312	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3313		return -ENOENT;
3314
3315	if (!quiet) {
3316		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3317			snprintf(buf, sizeof(buf), "%s:%s",
3318				 ata_mode_string(xfer_mask),
3319				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3320		else
3321			snprintf(buf, sizeof(buf), "%s",
3322				 ata_mode_string(xfer_mask));
3323
3324		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3325	}
3326
3327	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3328			    &dev->udma_mask);
3329
3330	return 0;
3331}
3332
3333static int ata_dev_set_mode(struct ata_device *dev)
3334{
3335	struct ata_port *ap = dev->link->ap;
3336	struct ata_eh_context *ehc = &dev->link->eh_context;
3337	const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3338	const char *dev_err_whine = "";
3339	int ign_dev_err = 0;
3340	unsigned int err_mask = 0;
3341	int rc;
3342
3343	dev->flags &= ~ATA_DFLAG_PIO;
3344	if (dev->xfer_shift == ATA_SHIFT_PIO)
3345		dev->flags |= ATA_DFLAG_PIO;
3346
3347	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3348		dev_err_whine = " (SET_XFERMODE skipped)";
3349	else {
3350		if (nosetxfer)
3351			ata_dev_warn(dev,
3352				     "NOSETXFER but PATA detected - can't "
3353				     "skip SETXFER, might malfunction\n");
3354		err_mask = ata_dev_set_xfermode(dev);
3355	}
3356
3357	if (err_mask & ~AC_ERR_DEV)
3358		goto fail;
3359
3360	/* revalidate */
3361	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3362	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3363	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3364	if (rc)
3365		return rc;
3366
3367	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3368		/* Old CFA may refuse this command, which is just fine */
3369		if (ata_id_is_cfa(dev->id))
3370			ign_dev_err = 1;
3371		/* Catch several broken garbage emulations plus some pre
3372		   ATA devices */
3373		if (ata_id_major_version(dev->id) == 0 &&
3374					dev->pio_mode <= XFER_PIO_2)
3375			ign_dev_err = 1;
3376		/* Some very old devices and some bad newer ones fail
3377		   any kind of SET_XFERMODE request but support PIO0-2
3378		   timings and no IORDY */
3379		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3380			ign_dev_err = 1;
3381	}
3382	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3383	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3384	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3385	    dev->dma_mode == XFER_MW_DMA_0 &&
3386	    (dev->id[63] >> 8) & 1)
3387		ign_dev_err = 1;
3388
3389	/* if the device is actually configured correctly, ignore dev err */
3390	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3391		ign_dev_err = 1;
3392
3393	if (err_mask & AC_ERR_DEV) {
3394		if (!ign_dev_err)
3395			goto fail;
3396		else
3397			dev_err_whine = " (device error ignored)";
3398	}
3399
3400	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3401		    dev->xfer_shift, (int)dev->xfer_mode);
3402
3403	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3404	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3405		ata_dev_info(dev, "configured for %s%s\n",
3406			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3407			     dev_err_whine);
3408
3409	return 0;
3410
3411 fail:
3412	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3413	return -EIO;
3414}
3415
3416/**
3417 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3418 *	@link: link on which timings will be programmed
3419 *	@r_failed_dev: out parameter for failed device
3420 *
3421 *	Standard implementation of the function used to tune and set
3422 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3423 *	ata_dev_set_mode() fails, pointer to the failing device is
3424 *	returned in @r_failed_dev.
3425 *
3426 *	LOCKING:
3427 *	PCI/etc. bus probe sem.
3428 *
3429 *	RETURNS:
3430 *	0 on success, negative errno otherwise
3431 */
3432
3433int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3434{
3435	struct ata_port *ap = link->ap;
3436	struct ata_device *dev;
3437	int rc = 0, used_dma = 0, found = 0;
3438
3439	/* step 1: calculate xfer_mask */
3440	ata_for_each_dev(dev, link, ENABLED) {
3441		unsigned int pio_mask, dma_mask;
3442		unsigned int mode_mask;
3443
3444		mode_mask = ATA_DMA_MASK_ATA;
3445		if (dev->class == ATA_DEV_ATAPI)
3446			mode_mask = ATA_DMA_MASK_ATAPI;
3447		else if (ata_id_is_cfa(dev->id))
3448			mode_mask = ATA_DMA_MASK_CFA;
3449
3450		ata_dev_xfermask(dev);
3451		ata_force_xfermask(dev);
3452
3453		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3454
3455		if (libata_dma_mask & mode_mask)
3456			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3457						     dev->udma_mask);
3458		else
3459			dma_mask = 0;
3460
3461		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3462		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3463
3464		found = 1;
3465		if (ata_dma_enabled(dev))
3466			used_dma = 1;
3467	}
3468	if (!found)
3469		goto out;
3470
3471	/* step 2: always set host PIO timings */
3472	ata_for_each_dev(dev, link, ENABLED) {
3473		if (dev->pio_mode == 0xff) {
3474			ata_dev_warn(dev, "no PIO support\n");
3475			rc = -EINVAL;
3476			goto out;
3477		}
3478
3479		dev->xfer_mode = dev->pio_mode;
3480		dev->xfer_shift = ATA_SHIFT_PIO;
3481		if (ap->ops->set_piomode)
3482			ap->ops->set_piomode(ap, dev);
3483	}
3484
3485	/* step 3: set host DMA timings */
3486	ata_for_each_dev(dev, link, ENABLED) {
3487		if (!ata_dma_enabled(dev))
3488			continue;
3489
3490		dev->xfer_mode = dev->dma_mode;
3491		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3492		if (ap->ops->set_dmamode)
3493			ap->ops->set_dmamode(ap, dev);
3494	}
3495
3496	/* step 4: update devices' xfer mode */
3497	ata_for_each_dev(dev, link, ENABLED) {
3498		rc = ata_dev_set_mode(dev);
3499		if (rc)
3500			goto out;
3501	}
3502
3503	/* Record simplex status. If we selected DMA then the other
3504	 * host channels are not permitted to do so.
3505	 */
3506	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3507		ap->host->simplex_claimed = ap;
3508
3509 out:
3510	if (rc)
3511		*r_failed_dev = dev;
3512	return rc;
3513}
3514EXPORT_SYMBOL_GPL(ata_do_set_mode);
3515
3516/**
3517 *	ata_wait_ready - wait for link to become ready
3518 *	@link: link to be waited on
3519 *	@deadline: deadline jiffies for the operation
3520 *	@check_ready: callback to check link readiness
3521 *
3522 *	Wait for @link to become ready.  @check_ready should return
3523 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3524 *	link doesn't seem to be occupied, other errno for other error
3525 *	conditions.
3526 *
3527 *	Transient -ENODEV conditions are allowed for
3528 *	ATA_TMOUT_FF_WAIT.
3529 *
3530 *	LOCKING:
3531 *	EH context.
3532 *
3533 *	RETURNS:
3534 *	0 if @link is ready before @deadline; otherwise, -errno.
3535 */
3536int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3537		   int (*check_ready)(struct ata_link *link))
3538{
3539	unsigned long start = jiffies;
3540	unsigned long nodev_deadline;
3541	int warned = 0;
3542
3543	/* choose which 0xff timeout to use, read comment in libata.h */
3544	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3545		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3546	else
3547		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3548
3549	/* Slave readiness can't be tested separately from master.  On
3550	 * M/S emulation configuration, this function should be called
3551	 * only on the master and it will handle both master and slave.
3552	 */
3553	WARN_ON(link == link->ap->slave_link);
3554
3555	if (time_after(nodev_deadline, deadline))
3556		nodev_deadline = deadline;
3557
3558	while (1) {
3559		unsigned long now = jiffies;
3560		int ready, tmp;
3561
3562		ready = tmp = check_ready(link);
3563		if (ready > 0)
3564			return 0;
3565
3566		/*
3567		 * -ENODEV could be transient.  Ignore -ENODEV if link
3568		 * is online.  Also, some SATA devices take a long
3569		 * time to clear 0xff after reset.  Wait for
3570		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3571		 * offline.
3572		 *
3573		 * Note that some PATA controllers (pata_ali) explode
3574		 * if status register is read more than once when
3575		 * there's no device attached.
3576		 */
3577		if (ready == -ENODEV) {
3578			if (ata_link_online(link))
3579				ready = 0;
3580			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3581				 !ata_link_offline(link) &&
3582				 time_before(now, nodev_deadline))
3583				ready = 0;
3584		}
3585
3586		if (ready)
3587			return ready;
3588		if (time_after(now, deadline))
3589			return -EBUSY;
3590
3591		if (!warned && time_after(now, start + 5 * HZ) &&
3592		    (deadline - now > 3 * HZ)) {
3593			ata_link_warn(link,
3594				"link is slow to respond, please be patient "
3595				"(ready=%d)\n", tmp);
3596			warned = 1;
3597		}
3598
3599		ata_msleep(link->ap, 50);
3600	}
3601}
3602
3603/**
3604 *	ata_wait_after_reset - wait for link to become ready after reset
3605 *	@link: link to be waited on
3606 *	@deadline: deadline jiffies for the operation
3607 *	@check_ready: callback to check link readiness
3608 *
3609 *	Wait for @link to become ready after reset.
3610 *
3611 *	LOCKING:
3612 *	EH context.
3613 *
3614 *	RETURNS:
3615 *	0 if @link is ready before @deadline; otherwise, -errno.
3616 */
3617int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3618				int (*check_ready)(struct ata_link *link))
3619{
3620	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3621
3622	return ata_wait_ready(link, deadline, check_ready);
3623}
3624EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3625
3626/**
3627 *	ata_std_prereset - prepare for reset
3628 *	@link: ATA link to be reset
3629 *	@deadline: deadline jiffies for the operation
3630 *
3631 *	@link is about to be reset.  Initialize it.  Failure from
3632 *	prereset makes libata abort whole reset sequence and give up
3633 *	that port, so prereset should be best-effort.  It does its
3634 *	best to prepare for reset sequence but if things go wrong, it
3635 *	should just whine, not fail.
3636 *
3637 *	LOCKING:
3638 *	Kernel thread context (may sleep)
3639 *
3640 *	RETURNS:
3641 *	Always 0.
3642 */
3643int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3644{
3645	struct ata_port *ap = link->ap;
3646	struct ata_eh_context *ehc = &link->eh_context;
3647	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3648	int rc;
3649
3650	/* if we're about to do hardreset, nothing more to do */
3651	if (ehc->i.action & ATA_EH_HARDRESET)
3652		return 0;
3653
3654	/* if SATA, resume link */
3655	if (ap->flags & ATA_FLAG_SATA) {
3656		rc = sata_link_resume(link, timing, deadline);
3657		/* whine about phy resume failure but proceed */
3658		if (rc && rc != -EOPNOTSUPP)
3659			ata_link_warn(link,
3660				      "failed to resume link for reset (errno=%d)\n",
3661				      rc);
3662	}
3663
3664	/* no point in trying softreset on offline link */
3665	if (ata_phys_link_offline(link))
3666		ehc->i.action &= ~ATA_EH_SOFTRESET;
3667
3668	return 0;
3669}
3670EXPORT_SYMBOL_GPL(ata_std_prereset);
3671
3672/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3673 *	ata_std_postreset - standard postreset callback
3674 *	@link: the target ata_link
3675 *	@classes: classes of attached devices
3676 *
3677 *	This function is invoked after a successful reset.  Note that
3678 *	the device might have been reset more than once using
3679 *	different reset methods before postreset is invoked.
3680 *
3681 *	LOCKING:
3682 *	Kernel thread context (may sleep)
3683 */
3684void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3685{
3686	u32 serror;
3687
3688	/* reset complete, clear SError */
3689	if (!sata_scr_read(link, SCR_ERROR, &serror))
3690		sata_scr_write(link, SCR_ERROR, serror);
3691
3692	/* print link status */
3693	sata_print_link_status(link);
3694}
3695EXPORT_SYMBOL_GPL(ata_std_postreset);
3696
3697/**
3698 *	ata_dev_same_device - Determine whether new ID matches configured device
3699 *	@dev: device to compare against
3700 *	@new_class: class of the new device
3701 *	@new_id: IDENTIFY page of the new device
3702 *
3703 *	Compare @new_class and @new_id against @dev and determine
3704 *	whether @dev is the device indicated by @new_class and
3705 *	@new_id.
3706 *
3707 *	LOCKING:
3708 *	None.
3709 *
3710 *	RETURNS:
3711 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3712 */
3713static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3714			       const u16 *new_id)
3715{
3716	const u16 *old_id = dev->id;
3717	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3718	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3719
3720	if (dev->class != new_class) {
3721		ata_dev_info(dev, "class mismatch %d != %d\n",
3722			     dev->class, new_class);
3723		return 0;
3724	}
3725
3726	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3727	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3728	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3729	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3730
3731	if (strcmp(model[0], model[1])) {
3732		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3733			     model[0], model[1]);
3734		return 0;
3735	}
3736
3737	if (strcmp(serial[0], serial[1])) {
3738		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3739			     serial[0], serial[1]);
3740		return 0;
3741	}
3742
3743	return 1;
3744}
3745
3746/**
3747 *	ata_dev_reread_id - Re-read IDENTIFY data
3748 *	@dev: target ATA device
3749 *	@readid_flags: read ID flags
3750 *
3751 *	Re-read IDENTIFY page and make sure @dev is still attached to
3752 *	the port.
3753 *
3754 *	LOCKING:
3755 *	Kernel thread context (may sleep)
3756 *
3757 *	RETURNS:
3758 *	0 on success, negative errno otherwise
3759 */
3760int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3761{
3762	unsigned int class = dev->class;
3763	u16 *id = (void *)dev->sector_buf;
3764	int rc;
3765
3766	/* read ID data */
3767	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3768	if (rc)
3769		return rc;
3770
3771	/* is the device still there? */
3772	if (!ata_dev_same_device(dev, class, id))
3773		return -ENODEV;
3774
3775	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3776	return 0;
3777}
3778
3779/**
3780 *	ata_dev_revalidate - Revalidate ATA device
3781 *	@dev: device to revalidate
3782 *	@new_class: new class code
3783 *	@readid_flags: read ID flags
3784 *
3785 *	Re-read IDENTIFY page, make sure @dev is still attached to the
3786 *	port and reconfigure it according to the new IDENTIFY page.
3787 *
3788 *	LOCKING:
3789 *	Kernel thread context (may sleep)
3790 *
3791 *	RETURNS:
3792 *	0 on success, negative errno otherwise
3793 */
3794int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3795		       unsigned int readid_flags)
3796{
3797	u64 n_sectors = dev->n_sectors;
3798	u64 n_native_sectors = dev->n_native_sectors;
3799	int rc;
3800
3801	if (!ata_dev_enabled(dev))
3802		return -ENODEV;
3803
3804	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3805	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3806		ata_dev_info(dev, "class mismatch %u != %u\n",
3807			     dev->class, new_class);
3808		rc = -ENODEV;
3809		goto fail;
3810	}
3811
3812	/* re-read ID */
3813	rc = ata_dev_reread_id(dev, readid_flags);
3814	if (rc)
3815		goto fail;
3816
3817	/* configure device according to the new ID */
3818	rc = ata_dev_configure(dev);
3819	if (rc)
3820		goto fail;
3821
3822	/* verify n_sectors hasn't changed */
3823	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3824	    dev->n_sectors == n_sectors)
3825		return 0;
3826
3827	/* n_sectors has changed */
3828	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3829		     (unsigned long long)n_sectors,
3830		     (unsigned long long)dev->n_sectors);
3831
3832	/*
3833	 * Something could have caused HPA to be unlocked
3834	 * involuntarily.  If n_native_sectors hasn't changed and the
3835	 * new size matches it, keep the device.
3836	 */
3837	if (dev->n_native_sectors == n_native_sectors &&
3838	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3839		ata_dev_warn(dev,
3840			     "new n_sectors matches native, probably "
3841			     "late HPA unlock, n_sectors updated\n");
3842		/* use the larger n_sectors */
3843		return 0;
3844	}
3845
3846	/*
3847	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3848	 * unlocking HPA in those cases.
3849	 *
3850	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3851	 */
3852	if (dev->n_native_sectors == n_native_sectors &&
3853	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3854	    !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3855		ata_dev_warn(dev,
3856			     "old n_sectors matches native, probably "
3857			     "late HPA lock, will try to unlock HPA\n");
3858		/* try unlocking HPA */
3859		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3860		rc = -EIO;
3861	} else
3862		rc = -ENODEV;
3863
3864	/* restore original n_[native_]sectors and fail */
3865	dev->n_native_sectors = n_native_sectors;
3866	dev->n_sectors = n_sectors;
3867 fail:
3868	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3869	return rc;
3870}
3871
3872static const char * const ata_quirk_names[] = {
3873	[__ATA_QUIRK_DIAGNOSTIC]	= "diagnostic",
3874	[__ATA_QUIRK_NODMA]		= "nodma",
3875	[__ATA_QUIRK_NONCQ]		= "noncq",
3876	[__ATA_QUIRK_MAX_SEC_128]	= "maxsec128",
3877	[__ATA_QUIRK_BROKEN_HPA]	= "brokenhpa",
3878	[__ATA_QUIRK_DISABLE]		= "disable",
3879	[__ATA_QUIRK_HPA_SIZE]		= "hpasize",
3880	[__ATA_QUIRK_IVB]		= "ivb",
3881	[__ATA_QUIRK_STUCK_ERR]		= "stuckerr",
3882	[__ATA_QUIRK_BRIDGE_OK]		= "bridgeok",
3883	[__ATA_QUIRK_ATAPI_MOD16_DMA]	= "atapimod16dma",
3884	[__ATA_QUIRK_FIRMWARE_WARN]	= "firmwarewarn",
3885	[__ATA_QUIRK_1_5_GBPS]		= "1.5gbps",
3886	[__ATA_QUIRK_NOSETXFER]		= "nosetxfer",
3887	[__ATA_QUIRK_BROKEN_FPDMA_AA]	= "brokenfpdmaaa",
3888	[__ATA_QUIRK_DUMP_ID]		= "dumpid",
3889	[__ATA_QUIRK_MAX_SEC_LBA48]	= "maxseclba48",
3890	[__ATA_QUIRK_ATAPI_DMADIR]	= "atapidmadir",
3891	[__ATA_QUIRK_NO_NCQ_TRIM]	= "noncqtrim",
3892	[__ATA_QUIRK_NOLPM]		= "nolpm",
3893	[__ATA_QUIRK_WD_BROKEN_LPM]	= "wdbrokenlpm",
3894	[__ATA_QUIRK_ZERO_AFTER_TRIM]	= "zeroaftertrim",
3895	[__ATA_QUIRK_NO_DMA_LOG]	= "nodmalog",
3896	[__ATA_QUIRK_NOTRIM]		= "notrim",
3897	[__ATA_QUIRK_MAX_SEC_1024]	= "maxsec1024",
3898	[__ATA_QUIRK_MAX_TRIM_128M]	= "maxtrim128m",
3899	[__ATA_QUIRK_NO_NCQ_ON_ATI]	= "noncqonati",
3900	[__ATA_QUIRK_NO_ID_DEV_LOG]	= "noiddevlog",
3901	[__ATA_QUIRK_NO_LOG_DIR]	= "nologdir",
3902	[__ATA_QUIRK_NO_FUA]		= "nofua",
3903};
3904
3905static void ata_dev_print_quirks(const struct ata_device *dev,
3906				 const char *model, const char *rev,
3907				 unsigned int quirks)
3908{
3909	struct ata_eh_context *ehc = &dev->link->eh_context;
3910	int n = 0, i;
3911	size_t sz;
3912	char *str;
3913
3914	if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
3915		return;
3916
3917	ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
3918
3919	if (!quirks)
3920		return;
3921
3922	sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
3923	str = kmalloc(sz, GFP_KERNEL);
3924	if (!str)
3925		return;
3926
3927	n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
3928		     model, rev);
3929
3930	for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
3931		if (quirks & (1U << i))
3932			n += snprintf(str + n, sz - n,
3933				      " %s", ata_quirk_names[i]);
3934	}
3935
3936	ata_dev_warn(dev, "%s\n", str);
3937
3938	kfree(str);
3939}
3940
3941struct ata_dev_quirks_entry {
3942	const char *model_num;
3943	const char *model_rev;
3944	unsigned int quirks;
3945};
3946
3947static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
3948	/* Devices with DMA related problems under Linux */
3949	{ "WDC AC11000H",	NULL,		ATA_QUIRK_NODMA },
3950	{ "WDC AC22100H",	NULL,		ATA_QUIRK_NODMA },
3951	{ "WDC AC32500H",	NULL,		ATA_QUIRK_NODMA },
3952	{ "WDC AC33100H",	NULL,		ATA_QUIRK_NODMA },
3953	{ "WDC AC31600H",	NULL,		ATA_QUIRK_NODMA },
3954	{ "WDC AC32100H",	"24.09P07",	ATA_QUIRK_NODMA },
3955	{ "WDC AC23200L",	"21.10N21",	ATA_QUIRK_NODMA },
3956	{ "Compaq CRD-8241B",	NULL,		ATA_QUIRK_NODMA },
3957	{ "CRD-8400B",		NULL,		ATA_QUIRK_NODMA },
3958	{ "CRD-848[02]B",	NULL,		ATA_QUIRK_NODMA },
3959	{ "CRD-84",		NULL,		ATA_QUIRK_NODMA },
3960	{ "SanDisk SDP3B",	NULL,		ATA_QUIRK_NODMA },
3961	{ "SanDisk SDP3B-64",	NULL,		ATA_QUIRK_NODMA },
3962	{ "SANYO CD-ROM CRD",	NULL,		ATA_QUIRK_NODMA },
3963	{ "HITACHI CDR-8",	NULL,		ATA_QUIRK_NODMA },
3964	{ "HITACHI CDR-8[34]35", NULL,		ATA_QUIRK_NODMA },
3965	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_QUIRK_NODMA },
3966	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_QUIRK_NODMA },
3967	{ "CD-532E-A",		NULL,		ATA_QUIRK_NODMA },
3968	{ "E-IDE CD-ROM CR-840", NULL,		ATA_QUIRK_NODMA },
3969	{ "CD-ROM Drive/F5A",	NULL,		ATA_QUIRK_NODMA },
3970	{ "WPI CDD-820",	NULL,		ATA_QUIRK_NODMA },
3971	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_QUIRK_NODMA },
3972	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_QUIRK_NODMA },
3973	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
3974	{ "_NEC DV5800A",	NULL,		ATA_QUIRK_NODMA },
3975	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_QUIRK_NODMA },
3976	{ "Seagate STT20000A", NULL,		ATA_QUIRK_NODMA },
3977	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_QUIRK_NODMA },
3978	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_QUIRK_NODMA },
3979	/* Odd clown on sil3726/4726 PMPs */
3980	{ "Config  Disk",	NULL,		ATA_QUIRK_DISABLE },
3981	/* Similar story with ASMedia 1092 */
3982	{ "ASMT109x- Config",	NULL,		ATA_QUIRK_DISABLE },
3983
3984	/* Weird ATAPI devices */
3985	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_QUIRK_MAX_SEC_128 },
3986	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_QUIRK_ATAPI_MOD16_DMA },
3987	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
3988	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
3989
3990	/*
3991	 * Causes silent data corruption with higher max sects.
3992	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3993	 */
3994	{ "ST380013AS",		"3.20",		ATA_QUIRK_MAX_SEC_1024 },
3995
3996	/*
3997	 * These devices time out with higher max sects.
3998	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3999	 */
4000	{ "LITEON CX1-JB*-HP",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4001	{ "LITEON EP1-*",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4002
4003	/* Devices we expect to fail diagnostics */
4004
4005	/* Devices where NCQ should be avoided */
4006	/* NCQ is slow */
4007	{ "WDC WD740ADFD-00",	NULL,		ATA_QUIRK_NONCQ },
4008	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_QUIRK_NONCQ },
4009	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4010	{ "FUJITSU MHT2060BH",	NULL,		ATA_QUIRK_NONCQ },
4011	/* NCQ is broken */
4012	{ "Maxtor *",		"BANC*",	ATA_QUIRK_NONCQ },
4013	{ "Maxtor 7V300F0",	"VA111630",	ATA_QUIRK_NONCQ },
4014	{ "ST380817AS",		"3.42",		ATA_QUIRK_NONCQ },
4015	{ "ST3160023AS",	"3.42",		ATA_QUIRK_NONCQ },
4016	{ "OCZ CORE_SSD",	"02.10104",	ATA_QUIRK_NONCQ },
4017
4018	/* Seagate NCQ + FLUSH CACHE firmware bug */
4019	{ "ST31500341AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4020						ATA_QUIRK_FIRMWARE_WARN },
4021
4022	{ "ST31000333AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4023						ATA_QUIRK_FIRMWARE_WARN },
4024
4025	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4026						ATA_QUIRK_FIRMWARE_WARN },
4027
4028	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4029						ATA_QUIRK_FIRMWARE_WARN },
4030
4031	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4032	   the ST disks also have LPM issues */
4033	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_QUIRK_BROKEN_FPDMA_AA |
4034						ATA_QUIRK_NOLPM },
4035	{ "VB0250EAVER",	"HPG7",		ATA_QUIRK_BROKEN_FPDMA_AA },
4036
4037	/* Blacklist entries taken from Silicon Image 3124/3132
4038	   Windows driver .inf file - also several Linux problem reports */
4039	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_QUIRK_NONCQ },
4040	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_QUIRK_NONCQ },
4041	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_QUIRK_NONCQ },
4042
4043	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4044	{ "C300-CTFDDAC128MAG",	"0001",		ATA_QUIRK_NONCQ },
4045
4046	/* Sandisk SD7/8/9s lock up hard on large trims */
4047	{ "SanDisk SD[789]*",	NULL,		ATA_QUIRK_MAX_TRIM_128M },
4048
4049	/* devices which puke on READ_NATIVE_MAX */
4050	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_QUIRK_BROKEN_HPA },
4051	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4052	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4053	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_QUIRK_BROKEN_HPA },
4054
4055	/* this one allows HPA unlocking but fails IOs on the area */
4056	{ "OCZ-VERTEX",		    "1.30",	ATA_QUIRK_BROKEN_HPA },
4057
4058	/* Devices which report 1 sector over size HPA */
4059	{ "ST340823A",		NULL,		ATA_QUIRK_HPA_SIZE },
4060	{ "ST320413A",		NULL,		ATA_QUIRK_HPA_SIZE },
4061	{ "ST310211A",		NULL,		ATA_QUIRK_HPA_SIZE },
4062
4063	/* Devices which get the IVB wrong */
4064	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4065	/* Maybe we should just add all TSSTcorp devices... */
4066	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_QUIRK_IVB },
4067
4068	/* Devices that do not need bridging limits applied */
4069	{ "MTRON MSP-SATA*",		NULL,	ATA_QUIRK_BRIDGE_OK },
4070	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_QUIRK_BRIDGE_OK },
4071
4072	/* Devices which aren't very happy with higher link speeds */
4073	{ "WD My Book",			NULL,	ATA_QUIRK_1_5_GBPS },
4074	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_QUIRK_1_5_GBPS },
4075
4076	/*
4077	 * Devices which choke on SETXFER.  Applies only if both the
4078	 * device and controller are SATA.
4079	 */
4080	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_QUIRK_NOSETXFER },
4081	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_QUIRK_NOSETXFER },
4082	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_QUIRK_NOSETXFER },
4083	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_QUIRK_NOSETXFER },
4084	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_QUIRK_NOSETXFER },
4085
4086	/* These specific Pioneer models have LPM issues */
4087	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_QUIRK_NOLPM },
4088	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_QUIRK_NOLPM },
4089
4090	/* Crucial devices with broken LPM support */
4091	{ "CT*0BX*00SSD1",		NULL,	ATA_QUIRK_NOLPM },
4092
4093	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4094	{ "Crucial_CT512MX100*",	"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4095						ATA_QUIRK_ZERO_AFTER_TRIM |
4096						ATA_QUIRK_NOLPM },
4097	/* 512GB MX100 with newer firmware has only LPM issues */
4098	{ "Crucial_CT512MX100*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM |
4099						ATA_QUIRK_NOLPM },
4100
4101	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4102	{ "Crucial_CT480M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4103						ATA_QUIRK_ZERO_AFTER_TRIM |
4104						ATA_QUIRK_NOLPM },
4105	{ "Crucial_CT960M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4106						ATA_QUIRK_ZERO_AFTER_TRIM |
4107						ATA_QUIRK_NOLPM },
4108
4109	/* AMD Radeon devices with broken LPM support */
4110	{ "R3SL240G",			NULL,	ATA_QUIRK_NOLPM },
4111
4112	/* Apacer models with LPM issues */
4113	{ "Apacer AS340*",		NULL,	ATA_QUIRK_NOLPM },
4114
4115	/* These specific Samsung models/firmware-revs do not handle LPM well */
4116	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4117	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_QUIRK_NOLPM },
4118	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_QUIRK_NOLPM },
4119	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4120
4121	/* devices that don't properly handle queued TRIM commands */
4122	{ "Micron_M500IT_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4123						ATA_QUIRK_ZERO_AFTER_TRIM },
4124	{ "Micron_M500_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4125						ATA_QUIRK_ZERO_AFTER_TRIM },
4126	{ "Micron_M5[15]0_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4127						ATA_QUIRK_ZERO_AFTER_TRIM },
4128	{ "Micron_1100_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4129						ATA_QUIRK_ZERO_AFTER_TRIM, },
4130	{ "Crucial_CT*M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4131						ATA_QUIRK_ZERO_AFTER_TRIM },
4132	{ "Crucial_CT*M550*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4133						ATA_QUIRK_ZERO_AFTER_TRIM },
4134	{ "Crucial_CT*MX100*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4135						ATA_QUIRK_ZERO_AFTER_TRIM },
4136	{ "Samsung SSD 840 EVO*",	NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4137						ATA_QUIRK_NO_DMA_LOG |
4138						ATA_QUIRK_ZERO_AFTER_TRIM },
4139	{ "Samsung SSD 840*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4140						ATA_QUIRK_ZERO_AFTER_TRIM },
4141	{ "Samsung SSD 850*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4142						ATA_QUIRK_ZERO_AFTER_TRIM },
4143	{ "Samsung SSD 860*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4144						ATA_QUIRK_ZERO_AFTER_TRIM |
4145						ATA_QUIRK_NO_NCQ_ON_ATI },
4146	{ "Samsung SSD 870*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4147						ATA_QUIRK_ZERO_AFTER_TRIM |
4148						ATA_QUIRK_NO_NCQ_ON_ATI },
4149	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4150						ATA_QUIRK_ZERO_AFTER_TRIM |
4151						ATA_QUIRK_NO_NCQ_ON_ATI, },
4152	{ "FCCT*M500*",			NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4153						ATA_QUIRK_ZERO_AFTER_TRIM },
4154
4155	/* devices that don't properly handle TRIM commands */
4156	{ "SuperSSpeed S238*",		NULL,	ATA_QUIRK_NOTRIM },
4157	{ "M88V29*",			NULL,	ATA_QUIRK_NOTRIM },
4158
4159	/*
4160	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4161	 * (Return Zero After Trim) flags in the ATA Command Set are
4162	 * unreliable in the sense that they only define what happens if
4163	 * the device successfully executed the DSM TRIM command. TRIM
4164	 * is only advisory, however, and the device is free to silently
4165	 * ignore all or parts of the request.
4166	 *
4167	 * Whitelist drives that are known to reliably return zeroes
4168	 * after TRIM.
4169	 */
4170
4171	/*
4172	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4173	 * that model before whitelisting all other intel SSDs.
4174	 */
4175	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4176
4177	{ "Micron*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4178	{ "Crucial*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4179	{ "INTEL*SSD*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4180	{ "SSD*INTEL*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4181	{ "Samsung*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4182	{ "SAMSUNG*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4183	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4184	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4185
4186	/*
4187	 * Some WD SATA-I drives spin up and down erratically when the link
4188	 * is put into the slumber mode.  We don't have full list of the
4189	 * affected devices.  Disable LPM if the device matches one of the
4190	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4191	 * lost too.
4192	 *
4193	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4194	 */
4195	{ "WDC WD800JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4196	{ "WDC WD1200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4197	{ "WDC WD1600JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4198	{ "WDC WD2000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4199	{ "WDC WD2500JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4200	{ "WDC WD3000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4201	{ "WDC WD3200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4202
4203	/*
4204	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4205	 * log page is accessed. Ensure we never ask for this log page with
4206	 * these devices.
4207	 */
4208	{ "SATADOM-ML 3ME",		NULL,	ATA_QUIRK_NO_LOG_DIR },
4209
4210	/* Buggy FUA */
4211	{ "Maxtor",		"BANC1G10",	ATA_QUIRK_NO_FUA },
4212	{ "WDC*WD2500J*",	NULL,		ATA_QUIRK_NO_FUA },
4213	{ "OCZ-VERTEX*",	NULL,		ATA_QUIRK_NO_FUA },
4214	{ "INTEL*SSDSC2CT*",	NULL,		ATA_QUIRK_NO_FUA },
4215
4216	/* End Marker */
4217	{ }
4218};
4219
4220static unsigned int ata_dev_quirks(const struct ata_device *dev)
4221{
4222	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4223	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4224	const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4225
4226	/* dev->quirks is an unsigned int. */
4227	BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4228
4229	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4230	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4231
4232	while (ad->model_num) {
4233		if (glob_match(ad->model_num, model_num) &&
4234		    (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4235			ata_dev_print_quirks(dev, model_num, model_rev,
4236					     ad->quirks);
4237			return ad->quirks;
4238		}
4239		ad++;
4240	}
4241	return 0;
4242}
4243
4244static bool ata_dev_nodma(const struct ata_device *dev)
4245{
4246	/*
4247	 * We do not support polling DMA. Deny DMA for those ATAPI devices
4248	 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4249	 * the HSM_ST_LAST state.
4250	 */
4251	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4252	    (dev->flags & ATA_DFLAG_CDB_INTR))
4253		return true;
4254	return dev->quirks & ATA_QUIRK_NODMA;
4255}
4256
4257/**
4258 *	ata_is_40wire		-	check drive side detection
4259 *	@dev: device
4260 *
4261 *	Perform drive side detection decoding, allowing for device vendors
4262 *	who can't follow the documentation.
4263 */
4264
4265static int ata_is_40wire(struct ata_device *dev)
4266{
4267	if (dev->quirks & ATA_QUIRK_IVB)
4268		return ata_drive_40wire_relaxed(dev->id);
4269	return ata_drive_40wire(dev->id);
4270}
4271
4272/**
4273 *	cable_is_40wire		-	40/80/SATA decider
4274 *	@ap: port to consider
4275 *
4276 *	This function encapsulates the policy for speed management
4277 *	in one place. At the moment we don't cache the result but
4278 *	there is a good case for setting ap->cbl to the result when
4279 *	we are called with unknown cables (and figuring out if it
4280 *	impacts hotplug at all).
4281 *
4282 *	Return 1 if the cable appears to be 40 wire.
4283 */
4284
4285static int cable_is_40wire(struct ata_port *ap)
4286{
4287	struct ata_link *link;
4288	struct ata_device *dev;
4289
4290	/* If the controller thinks we are 40 wire, we are. */
4291	if (ap->cbl == ATA_CBL_PATA40)
4292		return 1;
4293
4294	/* If the controller thinks we are 80 wire, we are. */
4295	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4296		return 0;
4297
4298	/* If the system is known to be 40 wire short cable (eg
4299	 * laptop), then we allow 80 wire modes even if the drive
4300	 * isn't sure.
4301	 */
4302	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4303		return 0;
4304
4305	/* If the controller doesn't know, we scan.
4306	 *
4307	 * Note: We look for all 40 wire detects at this point.  Any
4308	 *       80 wire detect is taken to be 80 wire cable because
4309	 * - in many setups only the one drive (slave if present) will
4310	 *   give a valid detect
4311	 * - if you have a non detect capable drive you don't want it
4312	 *   to colour the choice
4313	 */
4314	ata_for_each_link(link, ap, EDGE) {
4315		ata_for_each_dev(dev, link, ENABLED) {
4316			if (!ata_is_40wire(dev))
4317				return 0;
4318		}
4319	}
4320	return 1;
4321}
4322
4323/**
4324 *	ata_dev_xfermask - Compute supported xfermask of the given device
4325 *	@dev: Device to compute xfermask for
4326 *
4327 *	Compute supported xfermask of @dev and store it in
4328 *	dev->*_mask.  This function is responsible for applying all
4329 *	known limits including host controller limits, device quirks, etc...
 
4330 *
4331 *	LOCKING:
4332 *	None.
4333 */
4334static void ata_dev_xfermask(struct ata_device *dev)
4335{
4336	struct ata_link *link = dev->link;
4337	struct ata_port *ap = link->ap;
4338	struct ata_host *host = ap->host;
4339	unsigned int xfer_mask;
4340
4341	/* controller modes available */
4342	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4343				      ap->mwdma_mask, ap->udma_mask);
4344
4345	/* drive modes available */
4346	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4347				       dev->mwdma_mask, dev->udma_mask);
4348	xfer_mask &= ata_id_xfermask(dev->id);
4349
4350	/*
4351	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4352	 *	cable
4353	 */
4354	if (ata_dev_pair(dev)) {
4355		/* No PIO5 or PIO6 */
4356		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4357		/* No MWDMA3 or MWDMA 4 */
4358		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4359	}
4360
4361	if (ata_dev_nodma(dev)) {
4362		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4363		ata_dev_warn(dev,
4364			     "device does not support DMA, disabling DMA\n");
4365	}
4366
4367	if ((host->flags & ATA_HOST_SIMPLEX) &&
4368	    host->simplex_claimed && host->simplex_claimed != ap) {
4369		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4370		ata_dev_warn(dev,
4371			     "simplex DMA is claimed by other device, disabling DMA\n");
4372	}
4373
4374	if (ap->flags & ATA_FLAG_NO_IORDY)
4375		xfer_mask &= ata_pio_mask_no_iordy(dev);
4376
4377	if (ap->ops->mode_filter)
4378		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4379
4380	/* Apply cable rule here.  Don't apply it early because when
4381	 * we handle hot plug the cable type can itself change.
4382	 * Check this last so that we know if the transfer rate was
4383	 * solely limited by the cable.
4384	 * Unknown or 80 wire cables reported host side are checked
4385	 * drive side as well. Cases where we know a 40wire cable
4386	 * is used safely for 80 are not checked here.
4387	 */
4388	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4389		/* UDMA/44 or higher would be available */
4390		if (cable_is_40wire(ap)) {
4391			ata_dev_warn(dev,
4392				     "limited to UDMA/33 due to 40-wire cable\n");
4393			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4394		}
4395
4396	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4397			    &dev->mwdma_mask, &dev->udma_mask);
4398}
4399
4400/**
4401 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4402 *	@dev: Device to which command will be sent
4403 *
4404 *	Issue SET FEATURES - XFER MODE command to device @dev
4405 *	on port @ap.
4406 *
4407 *	LOCKING:
4408 *	PCI/etc. bus probe sem.
4409 *
4410 *	RETURNS:
4411 *	0 on success, AC_ERR_* mask otherwise.
4412 */
4413
4414static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4415{
4416	struct ata_taskfile tf;
4417
4418	/* set up set-features taskfile */
4419	ata_dev_dbg(dev, "set features - xfer mode\n");
4420
4421	/* Some controllers and ATAPI devices show flaky interrupt
4422	 * behavior after setting xfer mode.  Use polling instead.
4423	 */
4424	ata_tf_init(dev, &tf);
4425	tf.command = ATA_CMD_SET_FEATURES;
4426	tf.feature = SETFEATURES_XFER;
4427	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4428	tf.protocol = ATA_PROT_NODATA;
4429	/* If we are using IORDY we must send the mode setting command */
4430	if (ata_pio_need_iordy(dev))
4431		tf.nsect = dev->xfer_mode;
4432	/* If the device has IORDY and the controller does not - turn it off */
4433 	else if (ata_id_has_iordy(dev->id))
4434		tf.nsect = 0x01;
4435	else /* In the ancient relic department - skip all of this */
4436		return 0;
4437
4438	/*
4439	 * On some disks, this command causes spin-up, so we need longer
4440	 * timeout.
4441	 */
4442	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4443}
4444
4445/**
4446 *	ata_dev_set_feature - Issue SET FEATURES
4447 *	@dev: Device to which command will be sent
4448 *	@subcmd: The SET FEATURES subcommand to be sent
4449 *	@action: The sector count represents a subcommand specific action
4450 *
4451 *	Issue SET FEATURES command to device @dev on port @ap with sector count
4452 *
4453 *	LOCKING:
4454 *	PCI/etc. bus probe sem.
4455 *
4456 *	RETURNS:
4457 *	0 on success, AC_ERR_* mask otherwise.
4458 */
4459unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4460{
4461	struct ata_taskfile tf;
4462	unsigned int timeout = 0;
4463
4464	/* set up set-features taskfile */
4465	ata_dev_dbg(dev, "set features\n");
4466
4467	ata_tf_init(dev, &tf);
4468	tf.command = ATA_CMD_SET_FEATURES;
4469	tf.feature = subcmd;
4470	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4471	tf.protocol = ATA_PROT_NODATA;
4472	tf.nsect = action;
4473
4474	if (subcmd == SETFEATURES_SPINUP)
4475		timeout = ata_probe_timeout ?
4476			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4477
4478	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4479}
4480EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4481
4482/**
4483 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4484 *	@dev: Device to which command will be sent
4485 *	@heads: Number of heads (taskfile parameter)
4486 *	@sectors: Number of sectors (taskfile parameter)
4487 *
4488 *	LOCKING:
4489 *	Kernel thread context (may sleep)
4490 *
4491 *	RETURNS:
4492 *	0 on success, AC_ERR_* mask otherwise.
4493 */
4494static unsigned int ata_dev_init_params(struct ata_device *dev,
4495					u16 heads, u16 sectors)
4496{
4497	struct ata_taskfile tf;
4498	unsigned int err_mask;
4499
4500	/* Number of sectors per track 1-255. Number of heads 1-16 */
4501	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4502		return AC_ERR_INVALID;
4503
4504	/* set up init dev params taskfile */
4505	ata_dev_dbg(dev, "init dev params \n");
4506
4507	ata_tf_init(dev, &tf);
4508	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4509	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4510	tf.protocol = ATA_PROT_NODATA;
4511	tf.nsect = sectors;
4512	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4513
4514	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4515	/* A clean abort indicates an original or just out of spec drive
4516	   and we should continue as we issue the setup based on the
4517	   drive reported working geometry */
4518	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4519		err_mask = 0;
4520
4521	return err_mask;
4522}
4523
4524/**
4525 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4526 *	@qc: Metadata associated with taskfile to check
4527 *
4528 *	Allow low-level driver to filter ATA PACKET commands, returning
4529 *	a status indicating whether or not it is OK to use DMA for the
4530 *	supplied PACKET command.
4531 *
4532 *	LOCKING:
4533 *	spin_lock_irqsave(host lock)
4534 *
4535 *	RETURNS: 0 when ATAPI DMA can be used
4536 *               nonzero otherwise
4537 */
4538int atapi_check_dma(struct ata_queued_cmd *qc)
4539{
4540	struct ata_port *ap = qc->ap;
4541
4542	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4543	 * few ATAPI devices choke on such DMA requests.
4544	 */
4545	if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4546	    unlikely(qc->nbytes & 15))
4547		return 1;
4548
4549	if (ap->ops->check_atapi_dma)
4550		return ap->ops->check_atapi_dma(qc);
4551
4552	return 0;
4553}
4554
4555/**
4556 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4557 *	@qc: ATA command in question
4558 *
4559 *	Non-NCQ commands cannot run with any other command, NCQ or
4560 *	not.  As upper layer only knows the queue depth, we are
4561 *	responsible for maintaining exclusion.  This function checks
4562 *	whether a new command @qc can be issued.
4563 *
4564 *	LOCKING:
4565 *	spin_lock_irqsave(host lock)
4566 *
4567 *	RETURNS:
4568 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4569 */
4570int ata_std_qc_defer(struct ata_queued_cmd *qc)
4571{
4572	struct ata_link *link = qc->dev->link;
4573
4574	if (ata_is_ncq(qc->tf.protocol)) {
4575		if (!ata_tag_valid(link->active_tag))
4576			return 0;
4577	} else {
4578		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4579			return 0;
4580	}
4581
4582	return ATA_DEFER_LINK;
4583}
4584EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4585
 
 
 
 
 
 
4586/**
4587 *	ata_sg_init - Associate command with scatter-gather table.
4588 *	@qc: Command to be associated
4589 *	@sg: Scatter-gather table.
4590 *	@n_elem: Number of elements in s/g table.
4591 *
4592 *	Initialize the data-related elements of queued_cmd @qc
4593 *	to point to a scatter-gather table @sg, containing @n_elem
4594 *	elements.
4595 *
4596 *	LOCKING:
4597 *	spin_lock_irqsave(host lock)
4598 */
4599void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4600		 unsigned int n_elem)
4601{
4602	qc->sg = sg;
4603	qc->n_elem = n_elem;
4604	qc->cursg = qc->sg;
4605}
4606
4607#ifdef CONFIG_HAS_DMA
4608
4609/**
4610 *	ata_sg_clean - Unmap DMA memory associated with command
4611 *	@qc: Command containing DMA memory to be released
4612 *
4613 *	Unmap all mapped DMA memory associated with this command.
4614 *
4615 *	LOCKING:
4616 *	spin_lock_irqsave(host lock)
4617 */
4618static void ata_sg_clean(struct ata_queued_cmd *qc)
4619{
4620	struct ata_port *ap = qc->ap;
4621	struct scatterlist *sg = qc->sg;
4622	int dir = qc->dma_dir;
4623
4624	WARN_ON_ONCE(sg == NULL);
4625
4626	if (qc->n_elem)
4627		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4628
4629	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4630	qc->sg = NULL;
4631}
4632
4633/**
4634 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4635 *	@qc: Command with scatter-gather table to be mapped.
4636 *
4637 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4638 *
4639 *	LOCKING:
4640 *	spin_lock_irqsave(host lock)
4641 *
4642 *	RETURNS:
4643 *	Zero on success, negative on error.
4644 *
4645 */
4646static int ata_sg_setup(struct ata_queued_cmd *qc)
4647{
4648	struct ata_port *ap = qc->ap;
4649	unsigned int n_elem;
4650
4651	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4652	if (n_elem < 1)
4653		return -1;
4654
4655	qc->orig_n_elem = qc->n_elem;
4656	qc->n_elem = n_elem;
4657	qc->flags |= ATA_QCFLAG_DMAMAP;
4658
4659	return 0;
4660}
4661
4662#else /* !CONFIG_HAS_DMA */
4663
4664static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4665static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4666
4667#endif /* !CONFIG_HAS_DMA */
4668
4669/**
4670 *	swap_buf_le16 - swap halves of 16-bit words in place
4671 *	@buf:  Buffer to swap
4672 *	@buf_words:  Number of 16-bit words in buffer.
4673 *
4674 *	Swap halves of 16-bit words if needed to convert from
4675 *	little-endian byte order to native cpu byte order, or
4676 *	vice-versa.
4677 *
4678 *	LOCKING:
4679 *	Inherited from caller.
4680 */
4681void swap_buf_le16(u16 *buf, unsigned int buf_words)
4682{
4683#ifdef __BIG_ENDIAN
4684	unsigned int i;
4685
4686	for (i = 0; i < buf_words; i++)
4687		buf[i] = le16_to_cpu(buf[i]);
4688#endif /* __BIG_ENDIAN */
4689}
4690
4691/**
4692 *	ata_qc_free - free unused ata_queued_cmd
4693 *	@qc: Command to complete
4694 *
4695 *	Designed to free unused ata_queued_cmd object
4696 *	in case something prevents using it.
4697 *
4698 *	LOCKING:
4699 *	spin_lock_irqsave(host lock)
4700 */
4701void ata_qc_free(struct ata_queued_cmd *qc)
4702{
4703	qc->flags = 0;
4704	if (ata_tag_valid(qc->tag))
4705		qc->tag = ATA_TAG_POISON;
4706}
4707
4708void __ata_qc_complete(struct ata_queued_cmd *qc)
4709{
4710	struct ata_port *ap;
4711	struct ata_link *link;
4712
4713	if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4714		return;
4715
4716	ap = qc->ap;
4717	link = qc->dev->link;
4718
4719	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4720		ata_sg_clean(qc);
4721
4722	/* command should be marked inactive atomically with qc completion */
4723	if (ata_is_ncq(qc->tf.protocol)) {
4724		link->sactive &= ~(1 << qc->hw_tag);
4725		if (!link->sactive)
4726			ap->nr_active_links--;
4727	} else {
4728		link->active_tag = ATA_TAG_POISON;
4729		ap->nr_active_links--;
4730	}
4731
4732	/* clear exclusive status */
4733	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4734		     ap->excl_link == link))
4735		ap->excl_link = NULL;
4736
4737	/*
4738	 * Mark qc as inactive to prevent the port interrupt handler from
4739	 * completing the command twice later, before the error handler is
4740	 * called.
4741	 */
4742	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4743	ap->qc_active &= ~(1ULL << qc->tag);
4744
4745	/* call completion callback */
4746	qc->complete_fn(qc);
4747}
4748
4749static void fill_result_tf(struct ata_queued_cmd *qc)
4750{
4751	struct ata_port *ap = qc->ap;
4752
4753	/*
4754	 * rtf may already be filled (e.g. for successful NCQ commands).
4755	 * If that is the case, we have nothing to do.
4756	 */
4757	if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4758		return;
4759
4760	qc->result_tf.flags = qc->tf.flags;
4761	ap->ops->qc_fill_rtf(qc);
4762	qc->flags |= ATA_QCFLAG_RTF_FILLED;
4763}
4764
4765static void ata_verify_xfer(struct ata_queued_cmd *qc)
4766{
4767	struct ata_device *dev = qc->dev;
4768
4769	if (!ata_is_data(qc->tf.protocol))
4770		return;
4771
4772	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4773		return;
4774
4775	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4776}
4777
4778/**
4779 *	ata_qc_complete - Complete an active ATA command
4780 *	@qc: Command to complete
4781 *
4782 *	Indicate to the mid and upper layers that an ATA command has
4783 *	completed, with either an ok or not-ok status.
4784 *
4785 *	Refrain from calling this function multiple times when
4786 *	successfully completing multiple NCQ commands.
4787 *	ata_qc_complete_multiple() should be used instead, which will
4788 *	properly update IRQ expect state.
4789 *
4790 *	LOCKING:
4791 *	spin_lock_irqsave(host lock)
4792 */
4793void ata_qc_complete(struct ata_queued_cmd *qc)
4794{
4795	struct ata_port *ap = qc->ap;
4796	struct ata_device *dev = qc->dev;
4797	struct ata_eh_info *ehi = &dev->link->eh_info;
4798
4799	/* Trigger the LED (if available) */
4800	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4801
4802	/*
4803	 * In order to synchronize EH with the regular execution path, a qc that
4804	 * is owned by EH is marked with ATA_QCFLAG_EH.
4805	 *
4806	 * The normal execution path is responsible for not accessing a qc owned
4807	 * by EH.  libata core enforces the rule by returning NULL from
4808	 * ata_qc_from_tag() for qcs owned by EH.
4809	 */
4810	if (unlikely(qc->err_mask))
4811		qc->flags |= ATA_QCFLAG_EH;
4812
4813	/*
4814	 * Finish internal commands without any further processing and always
4815	 * with the result TF filled.
4816	 */
4817	if (unlikely(ata_tag_internal(qc->tag))) {
4818		fill_result_tf(qc);
4819		trace_ata_qc_complete_internal(qc);
4820		__ata_qc_complete(qc);
4821		return;
4822	}
4823
4824	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4825	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4826		fill_result_tf(qc);
4827		trace_ata_qc_complete_failed(qc);
4828		ata_qc_schedule_eh(qc);
4829		return;
4830	}
4831
4832	WARN_ON_ONCE(ata_port_is_frozen(ap));
4833
4834	/* read result TF if requested */
4835	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4836		fill_result_tf(qc);
4837
4838	trace_ata_qc_complete_done(qc);
4839
4840	/*
4841	 * For CDL commands that completed without an error, check if we have
4842	 * sense data (ATA_SENSE is set). If we do, then the command may have
4843	 * been aborted by the device due to a limit timeout using the policy
4844	 * 0xD. For these commands, invoke EH to get the command sense data.
4845	 */
4846	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4847	    qc->result_tf.status & ATA_SENSE) {
4848		/*
4849		 * Tell SCSI EH to not overwrite scmd->result even if this
4850		 * command is finished with result SAM_STAT_GOOD.
4851		 */
4852		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4853		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4854		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4855
4856		/*
4857		 * set pending so that ata_qc_schedule_eh() does not trigger
4858		 * fast drain, and freeze the port.
4859		 */
4860		ap->pflags |= ATA_PFLAG_EH_PENDING;
4861		ata_qc_schedule_eh(qc);
4862		return;
4863	}
4864
4865	/* Some commands need post-processing after successful completion. */
4866	switch (qc->tf.command) {
4867	case ATA_CMD_SET_FEATURES:
4868		if (qc->tf.feature != SETFEATURES_WC_ON &&
4869		    qc->tf.feature != SETFEATURES_WC_OFF &&
4870		    qc->tf.feature != SETFEATURES_RA_ON &&
4871		    qc->tf.feature != SETFEATURES_RA_OFF)
4872			break;
4873		fallthrough;
4874	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4875	case ATA_CMD_SET_MULTI: /* multi_count changed */
4876		/* revalidate device */
4877		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4878		ata_port_schedule_eh(ap);
4879		break;
4880
4881	case ATA_CMD_SLEEP:
4882		dev->flags |= ATA_DFLAG_SLEEPING;
4883		break;
4884	}
4885
4886	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4887		ata_verify_xfer(qc);
4888
4889	__ata_qc_complete(qc);
4890}
4891EXPORT_SYMBOL_GPL(ata_qc_complete);
4892
4893/**
4894 *	ata_qc_get_active - get bitmask of active qcs
4895 *	@ap: port in question
4896 *
4897 *	LOCKING:
4898 *	spin_lock_irqsave(host lock)
4899 *
4900 *	RETURNS:
4901 *	Bitmask of active qcs
4902 */
4903u64 ata_qc_get_active(struct ata_port *ap)
4904{
4905	u64 qc_active = ap->qc_active;
4906
4907	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4908	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4909		qc_active |= (1 << 0);
4910		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4911	}
4912
4913	return qc_active;
4914}
4915EXPORT_SYMBOL_GPL(ata_qc_get_active);
4916
4917/**
4918 *	ata_qc_issue - issue taskfile to device
4919 *	@qc: command to issue to device
4920 *
4921 *	Prepare an ATA command to submission to device.
4922 *	This includes mapping the data into a DMA-able
4923 *	area, filling in the S/G table, and finally
4924 *	writing the taskfile to hardware, starting the command.
4925 *
4926 *	LOCKING:
4927 *	spin_lock_irqsave(host lock)
4928 */
4929void ata_qc_issue(struct ata_queued_cmd *qc)
4930{
4931	struct ata_port *ap = qc->ap;
4932	struct ata_link *link = qc->dev->link;
4933	u8 prot = qc->tf.protocol;
4934
4935	/* Make sure only one non-NCQ command is outstanding. */
4936	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4937
4938	if (ata_is_ncq(prot)) {
4939		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4940
4941		if (!link->sactive)
4942			ap->nr_active_links++;
4943		link->sactive |= 1 << qc->hw_tag;
4944	} else {
4945		WARN_ON_ONCE(link->sactive);
4946
4947		ap->nr_active_links++;
4948		link->active_tag = qc->tag;
4949	}
4950
4951	qc->flags |= ATA_QCFLAG_ACTIVE;
4952	ap->qc_active |= 1ULL << qc->tag;
4953
4954	/*
4955	 * We guarantee to LLDs that they will have at least one
4956	 * non-zero sg if the command is a data command.
4957	 */
4958	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4959		goto sys_err;
4960
4961	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4962				 (ap->flags & ATA_FLAG_PIO_DMA)))
4963		if (ata_sg_setup(qc))
4964			goto sys_err;
4965
4966	/* if device is sleeping, schedule reset and abort the link */
4967	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4968		link->eh_info.action |= ATA_EH_RESET;
4969		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4970		ata_link_abort(link);
4971		return;
4972	}
4973
4974	if (ap->ops->qc_prep) {
4975		trace_ata_qc_prep(qc);
4976		qc->err_mask |= ap->ops->qc_prep(qc);
4977		if (unlikely(qc->err_mask))
4978			goto err;
4979	}
4980
4981	trace_ata_qc_issue(qc);
4982	qc->err_mask |= ap->ops->qc_issue(qc);
4983	if (unlikely(qc->err_mask))
4984		goto err;
4985	return;
4986
4987sys_err:
4988	qc->err_mask |= AC_ERR_SYSTEM;
4989err:
4990	ata_qc_complete(qc);
4991}
4992
4993/**
4994 *	ata_phys_link_online - test whether the given link is online
4995 *	@link: ATA link to test
4996 *
4997 *	Test whether @link is online.  Note that this function returns
4998 *	0 if online status of @link cannot be obtained, so
4999 *	ata_link_online(link) != !ata_link_offline(link).
5000 *
5001 *	LOCKING:
5002 *	None.
5003 *
5004 *	RETURNS:
5005 *	True if the port online status is available and online.
5006 */
5007bool ata_phys_link_online(struct ata_link *link)
5008{
5009	u32 sstatus;
5010
5011	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5012	    ata_sstatus_online(sstatus))
5013		return true;
5014	return false;
5015}
5016
5017/**
5018 *	ata_phys_link_offline - test whether the given link is offline
5019 *	@link: ATA link to test
5020 *
5021 *	Test whether @link is offline.  Note that this function
5022 *	returns 0 if offline status of @link cannot be obtained, so
5023 *	ata_link_online(link) != !ata_link_offline(link).
5024 *
5025 *	LOCKING:
5026 *	None.
5027 *
5028 *	RETURNS:
5029 *	True if the port offline status is available and offline.
5030 */
5031bool ata_phys_link_offline(struct ata_link *link)
5032{
5033	u32 sstatus;
5034
5035	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5036	    !ata_sstatus_online(sstatus))
5037		return true;
5038	return false;
5039}
5040
5041/**
5042 *	ata_link_online - test whether the given link is online
5043 *	@link: ATA link to test
5044 *
5045 *	Test whether @link is online.  This is identical to
5046 *	ata_phys_link_online() when there's no slave link.  When
5047 *	there's a slave link, this function should only be called on
5048 *	the master link and will return true if any of M/S links is
5049 *	online.
5050 *
5051 *	LOCKING:
5052 *	None.
5053 *
5054 *	RETURNS:
5055 *	True if the port online status is available and online.
5056 */
5057bool ata_link_online(struct ata_link *link)
5058{
5059	struct ata_link *slave = link->ap->slave_link;
5060
5061	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5062
5063	return ata_phys_link_online(link) ||
5064		(slave && ata_phys_link_online(slave));
5065}
5066EXPORT_SYMBOL_GPL(ata_link_online);
5067
5068/**
5069 *	ata_link_offline - test whether the given link is offline
5070 *	@link: ATA link to test
5071 *
5072 *	Test whether @link is offline.  This is identical to
5073 *	ata_phys_link_offline() when there's no slave link.  When
5074 *	there's a slave link, this function should only be called on
5075 *	the master link and will return true if both M/S links are
5076 *	offline.
5077 *
5078 *	LOCKING:
5079 *	None.
5080 *
5081 *	RETURNS:
5082 *	True if the port offline status is available and offline.
5083 */
5084bool ata_link_offline(struct ata_link *link)
5085{
5086	struct ata_link *slave = link->ap->slave_link;
5087
5088	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5089
5090	return ata_phys_link_offline(link) &&
5091		(!slave || ata_phys_link_offline(slave));
5092}
5093EXPORT_SYMBOL_GPL(ata_link_offline);
5094
5095#ifdef CONFIG_PM
5096static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5097				unsigned int action, unsigned int ehi_flags,
5098				bool async)
5099{
5100	struct ata_link *link;
5101	unsigned long flags;
5102
5103	spin_lock_irqsave(ap->lock, flags);
5104
5105	/*
5106	 * A previous PM operation might still be in progress. Wait for
5107	 * ATA_PFLAG_PM_PENDING to clear.
5108	 */
5109	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5110		spin_unlock_irqrestore(ap->lock, flags);
5111		ata_port_wait_eh(ap);
5112		spin_lock_irqsave(ap->lock, flags);
5113	}
5114
5115	/* Request PM operation to EH */
5116	ap->pm_mesg = mesg;
5117	ap->pflags |= ATA_PFLAG_PM_PENDING;
5118	ata_for_each_link(link, ap, HOST_FIRST) {
5119		link->eh_info.action |= action;
5120		link->eh_info.flags |= ehi_flags;
5121	}
5122
5123	ata_port_schedule_eh(ap);
5124
5125	spin_unlock_irqrestore(ap->lock, flags);
5126
5127	if (!async)
5128		ata_port_wait_eh(ap);
5129}
5130
5131static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5132			     bool async)
5133{
5134	/*
5135	 * We are about to suspend the port, so we do not care about
5136	 * scsi_rescan_device() calls scheduled by previous resume operations.
5137	 * The next resume will schedule the rescan again. So cancel any rescan
5138	 * that is not done yet.
5139	 */
5140	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5141
5142	/*
5143	 * On some hardware, device fails to respond after spun down for
5144	 * suspend. As the device will not be used until being resumed, we
5145	 * do not need to touch the device. Ask EH to skip the usual stuff
5146	 * and proceed directly to suspend.
5147	 *
5148	 * http://thread.gmane.org/gmane.linux.ide/46764
5149	 */
5150	ata_port_request_pm(ap, mesg, 0,
5151			    ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5152			    ATA_EHI_NO_RECOVERY,
5153			    async);
5154}
5155
5156static int ata_port_pm_suspend(struct device *dev)
5157{
5158	struct ata_port *ap = to_ata_port(dev);
5159
5160	if (pm_runtime_suspended(dev))
5161		return 0;
5162
5163	ata_port_suspend(ap, PMSG_SUSPEND, false);
5164	return 0;
5165}
5166
5167static int ata_port_pm_freeze(struct device *dev)
5168{
5169	struct ata_port *ap = to_ata_port(dev);
5170
5171	if (pm_runtime_suspended(dev))
5172		return 0;
5173
5174	ata_port_suspend(ap, PMSG_FREEZE, false);
5175	return 0;
5176}
5177
5178static int ata_port_pm_poweroff(struct device *dev)
5179{
5180	if (!pm_runtime_suspended(dev))
5181		ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5182	return 0;
5183}
5184
5185static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5186			    bool async)
5187{
5188	ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5189			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5190			    async);
5191}
5192
5193static int ata_port_pm_resume(struct device *dev)
5194{
5195	if (!pm_runtime_suspended(dev))
5196		ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5197	return 0;
5198}
5199
5200/*
5201 * For ODDs, the upper layer will poll for media change every few seconds,
5202 * which will make it enter and leave suspend state every few seconds. And
5203 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5204 * is very little and the ODD may malfunction after constantly being reset.
5205 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5206 * ODD is attached to the port.
5207 */
5208static int ata_port_runtime_idle(struct device *dev)
5209{
5210	struct ata_port *ap = to_ata_port(dev);
5211	struct ata_link *link;
5212	struct ata_device *adev;
5213
5214	ata_for_each_link(link, ap, HOST_FIRST) {
5215		ata_for_each_dev(adev, link, ENABLED)
5216			if (adev->class == ATA_DEV_ATAPI &&
5217			    !zpodd_dev_enabled(adev))
5218				return -EBUSY;
5219	}
5220
5221	return 0;
5222}
5223
5224static int ata_port_runtime_suspend(struct device *dev)
5225{
5226	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5227	return 0;
5228}
5229
5230static int ata_port_runtime_resume(struct device *dev)
5231{
5232	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5233	return 0;
5234}
5235
5236static const struct dev_pm_ops ata_port_pm_ops = {
5237	.suspend = ata_port_pm_suspend,
5238	.resume = ata_port_pm_resume,
5239	.freeze = ata_port_pm_freeze,
5240	.thaw = ata_port_pm_resume,
5241	.poweroff = ata_port_pm_poweroff,
5242	.restore = ata_port_pm_resume,
5243
5244	.runtime_suspend = ata_port_runtime_suspend,
5245	.runtime_resume = ata_port_runtime_resume,
5246	.runtime_idle = ata_port_runtime_idle,
5247};
5248
5249/* sas ports don't participate in pm runtime management of ata_ports,
5250 * and need to resume ata devices at the domain level, not the per-port
5251 * level. sas suspend/resume is async to allow parallel port recovery
5252 * since sas has multiple ata_port instances per Scsi_Host.
5253 */
5254void ata_sas_port_suspend(struct ata_port *ap)
5255{
5256	ata_port_suspend(ap, PMSG_SUSPEND, true);
5257}
5258EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5259
5260void ata_sas_port_resume(struct ata_port *ap)
5261{
5262	ata_port_resume(ap, PMSG_RESUME, true);
5263}
5264EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5265
5266/**
5267 *	ata_host_suspend - suspend host
5268 *	@host: host to suspend
5269 *	@mesg: PM message
5270 *
5271 *	Suspend @host.  Actual operation is performed by port suspend.
5272 */
5273void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5274{
5275	host->dev->power.power_state = mesg;
5276}
5277EXPORT_SYMBOL_GPL(ata_host_suspend);
5278
5279/**
5280 *	ata_host_resume - resume host
5281 *	@host: host to resume
5282 *
5283 *	Resume @host.  Actual operation is performed by port resume.
5284 */
5285void ata_host_resume(struct ata_host *host)
5286{
5287	host->dev->power.power_state = PMSG_ON;
5288}
5289EXPORT_SYMBOL_GPL(ata_host_resume);
5290#endif
5291
5292const struct device_type ata_port_type = {
5293	.name = ATA_PORT_TYPE_NAME,
5294#ifdef CONFIG_PM
5295	.pm = &ata_port_pm_ops,
5296#endif
5297};
5298
5299/**
5300 *	ata_dev_init - Initialize an ata_device structure
5301 *	@dev: Device structure to initialize
5302 *
5303 *	Initialize @dev in preparation for probing.
5304 *
5305 *	LOCKING:
5306 *	Inherited from caller.
5307 */
5308void ata_dev_init(struct ata_device *dev)
5309{
5310	struct ata_link *link = ata_dev_phys_link(dev);
5311	struct ata_port *ap = link->ap;
5312	unsigned long flags;
5313
5314	/* SATA spd limit is bound to the attached device, reset together */
5315	link->sata_spd_limit = link->hw_sata_spd_limit;
5316	link->sata_spd = 0;
5317
5318	/* High bits of dev->flags are used to record warm plug
5319	 * requests which occur asynchronously.  Synchronize using
5320	 * host lock.
5321	 */
5322	spin_lock_irqsave(ap->lock, flags);
5323	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5324	dev->quirks = 0;
5325	spin_unlock_irqrestore(ap->lock, flags);
5326
5327	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5328	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5329	dev->pio_mask = UINT_MAX;
5330	dev->mwdma_mask = UINT_MAX;
5331	dev->udma_mask = UINT_MAX;
5332}
5333
5334/**
5335 *	ata_link_init - Initialize an ata_link structure
5336 *	@ap: ATA port link is attached to
5337 *	@link: Link structure to initialize
5338 *	@pmp: Port multiplier port number
5339 *
5340 *	Initialize @link.
5341 *
5342 *	LOCKING:
5343 *	Kernel thread context (may sleep)
5344 */
5345void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5346{
5347	int i;
5348
5349	/* clear everything except for devices */
5350	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5351	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5352
5353	link->ap = ap;
5354	link->pmp = pmp;
5355	link->active_tag = ATA_TAG_POISON;
5356	link->hw_sata_spd_limit = UINT_MAX;
5357
5358	/* can't use iterator, ap isn't initialized yet */
5359	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5360		struct ata_device *dev = &link->device[i];
5361
5362		dev->link = link;
5363		dev->devno = dev - link->device;
5364#ifdef CONFIG_ATA_ACPI
5365		dev->gtf_filter = ata_acpi_gtf_filter;
5366#endif
5367		ata_dev_init(dev);
5368	}
5369}
5370
5371/**
5372 *	sata_link_init_spd - Initialize link->sata_spd_limit
5373 *	@link: Link to configure sata_spd_limit for
5374 *
5375 *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5376 *	configured value.
5377 *
5378 *	LOCKING:
5379 *	Kernel thread context (may sleep).
5380 *
5381 *	RETURNS:
5382 *	0 on success, -errno on failure.
5383 */
5384int sata_link_init_spd(struct ata_link *link)
5385{
5386	u8 spd;
5387	int rc;
5388
5389	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5390	if (rc)
5391		return rc;
5392
5393	spd = (link->saved_scontrol >> 4) & 0xf;
5394	if (spd)
5395		link->hw_sata_spd_limit &= (1 << spd) - 1;
5396
5397	ata_force_link_limits(link);
5398
5399	link->sata_spd_limit = link->hw_sata_spd_limit;
5400
5401	return 0;
5402}
5403
5404/**
5405 *	ata_port_alloc - allocate and initialize basic ATA port resources
5406 *	@host: ATA host this allocated port belongs to
5407 *
5408 *	Allocate and initialize basic ATA port resources.
5409 *
5410 *	RETURNS:
5411 *	Allocate ATA port on success, NULL on failure.
5412 *
5413 *	LOCKING:
5414 *	Inherited from calling layer (may sleep).
5415 */
5416struct ata_port *ata_port_alloc(struct ata_host *host)
5417{
5418	struct ata_port *ap;
5419	int id;
5420
5421	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5422	if (!ap)
5423		return NULL;
5424
5425	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5426	ap->lock = &host->lock;
5427	id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5428	if (id < 0) {
5429		kfree(ap);
5430		return NULL;
5431	}
5432	ap->print_id = id;
5433	ap->host = host;
5434	ap->dev = host->dev;
5435
5436	mutex_init(&ap->scsi_scan_mutex);
5437	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5438	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5439	INIT_LIST_HEAD(&ap->eh_done_q);
5440	init_waitqueue_head(&ap->eh_wait_q);
5441	init_completion(&ap->park_req_pending);
5442	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5443		    TIMER_DEFERRABLE);
5444
5445	ap->cbl = ATA_CBL_NONE;
5446
5447	ata_link_init(ap, &ap->link, 0);
5448
5449#ifdef ATA_IRQ_TRAP
5450	ap->stats.unhandled_irq = 1;
5451	ap->stats.idle_irq = 1;
5452#endif
5453	ata_sff_port_init(ap);
5454
5455	return ap;
5456}
5457EXPORT_SYMBOL_GPL(ata_port_alloc);
5458
5459void ata_port_free(struct ata_port *ap)
5460{
5461	if (!ap)
5462		return;
5463
5464	kfree(ap->pmp_link);
5465	kfree(ap->slave_link);
5466	ida_free(&ata_ida, ap->print_id);
5467	kfree(ap);
5468}
5469EXPORT_SYMBOL_GPL(ata_port_free);
5470
5471static void ata_devres_release(struct device *gendev, void *res)
5472{
5473	struct ata_host *host = dev_get_drvdata(gendev);
5474	int i;
5475
5476	for (i = 0; i < host->n_ports; i++) {
5477		struct ata_port *ap = host->ports[i];
5478
5479		if (!ap)
5480			continue;
5481
5482		if (ap->scsi_host)
5483			scsi_host_put(ap->scsi_host);
5484
5485	}
5486
5487	dev_set_drvdata(gendev, NULL);
5488	ata_host_put(host);
5489}
5490
5491static void ata_host_release(struct kref *kref)
5492{
5493	struct ata_host *host = container_of(kref, struct ata_host, kref);
5494	int i;
5495
5496	for (i = 0; i < host->n_ports; i++) {
5497		ata_port_free(host->ports[i]);
 
 
 
 
 
5498		host->ports[i] = NULL;
5499	}
5500	kfree(host);
5501}
5502
5503void ata_host_get(struct ata_host *host)
5504{
5505	kref_get(&host->kref);
5506}
5507
5508void ata_host_put(struct ata_host *host)
5509{
5510	kref_put(&host->kref, ata_host_release);
5511}
5512EXPORT_SYMBOL_GPL(ata_host_put);
5513
5514/**
5515 *	ata_host_alloc - allocate and init basic ATA host resources
5516 *	@dev: generic device this host is associated with
5517 *	@n_ports: the number of ATA ports associated with this host
5518 *
5519 *	Allocate and initialize basic ATA host resources.  LLD calls
5520 *	this function to allocate a host, initializes it fully and
5521 *	attaches it using ata_host_register().
5522 *
 
 
 
 
 
5523 *	RETURNS:
5524 *	Allocate ATA host on success, NULL on failure.
5525 *
5526 *	LOCKING:
5527 *	Inherited from calling layer (may sleep).
5528 */
5529struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5530{
5531	struct ata_host *host;
5532	size_t sz;
5533	int i;
5534	void *dr;
5535
5536	/* alloc a container for our list of ATA ports (buses) */
5537	sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5538	host = kzalloc(sz, GFP_KERNEL);
5539	if (!host)
5540		return NULL;
5541
5542	if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5543		kfree(host);
5544		return NULL;
5545	}
5546
5547	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5548	if (!dr) {
5549		kfree(host);
5550		goto err_out;
5551	}
5552
5553	devres_add(dev, dr);
5554	dev_set_drvdata(dev, host);
5555
5556	spin_lock_init(&host->lock);
5557	mutex_init(&host->eh_mutex);
5558	host->dev = dev;
5559	host->n_ports = n_ports;
5560	kref_init(&host->kref);
5561
5562	/* allocate ports bound to this host */
5563	for (i = 0; i < n_ports; i++) {
5564		struct ata_port *ap;
5565
5566		ap = ata_port_alloc(host);
5567		if (!ap)
5568			goto err_out;
5569
5570		ap->port_no = i;
5571		host->ports[i] = ap;
5572	}
5573
5574	devres_remove_group(dev, NULL);
5575	return host;
5576
5577 err_out:
5578	devres_release_group(dev, NULL);
 
 
5579	return NULL;
5580}
5581EXPORT_SYMBOL_GPL(ata_host_alloc);
5582
5583/**
5584 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5585 *	@dev: generic device this host is associated with
5586 *	@ppi: array of ATA port_info to initialize host with
5587 *	@n_ports: number of ATA ports attached to this host
5588 *
5589 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5590 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5591 *	last entry will be used for the remaining ports.
5592 *
5593 *	RETURNS:
5594 *	Allocate ATA host on success, NULL on failure.
5595 *
5596 *	LOCKING:
5597 *	Inherited from calling layer (may sleep).
5598 */
5599struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5600				      const struct ata_port_info * const * ppi,
5601				      int n_ports)
5602{
5603	const struct ata_port_info *pi = &ata_dummy_port_info;
5604	struct ata_host *host;
5605	int i, j;
5606
5607	host = ata_host_alloc(dev, n_ports);
5608	if (!host)
5609		return NULL;
5610
5611	for (i = 0, j = 0; i < host->n_ports; i++) {
5612		struct ata_port *ap = host->ports[i];
5613
5614		if (ppi[j])
5615			pi = ppi[j++];
5616
5617		ap->pio_mask = pi->pio_mask;
5618		ap->mwdma_mask = pi->mwdma_mask;
5619		ap->udma_mask = pi->udma_mask;
5620		ap->flags |= pi->flags;
5621		ap->link.flags |= pi->link_flags;
5622		ap->ops = pi->port_ops;
5623
5624		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5625			host->ops = pi->port_ops;
5626	}
5627
5628	return host;
5629}
5630EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5631
5632static void ata_host_stop(struct device *gendev, void *res)
5633{
5634	struct ata_host *host = dev_get_drvdata(gendev);
5635	int i;
5636
5637	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5638
5639	for (i = 0; i < host->n_ports; i++) {
5640		struct ata_port *ap = host->ports[i];
5641
5642		if (ap->ops->port_stop)
5643			ap->ops->port_stop(ap);
5644	}
5645
5646	if (host->ops->host_stop)
5647		host->ops->host_stop(host);
5648}
5649
5650/**
5651 *	ata_finalize_port_ops - finalize ata_port_operations
5652 *	@ops: ata_port_operations to finalize
5653 *
5654 *	An ata_port_operations can inherit from another ops and that
5655 *	ops can again inherit from another.  This can go on as many
5656 *	times as necessary as long as there is no loop in the
5657 *	inheritance chain.
5658 *
5659 *	Ops tables are finalized when the host is started.  NULL or
5660 *	unspecified entries are inherited from the closet ancestor
5661 *	which has the method and the entry is populated with it.
5662 *	After finalization, the ops table directly points to all the
5663 *	methods and ->inherits is no longer necessary and cleared.
5664 *
5665 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5666 *
5667 *	LOCKING:
5668 *	None.
5669 */
5670static void ata_finalize_port_ops(struct ata_port_operations *ops)
5671{
5672	static DEFINE_SPINLOCK(lock);
5673	const struct ata_port_operations *cur;
5674	void **begin = (void **)ops;
5675	void **end = (void **)&ops->inherits;
5676	void **pp;
5677
5678	if (!ops || !ops->inherits)
5679		return;
5680
5681	spin_lock(&lock);
5682
5683	for (cur = ops->inherits; cur; cur = cur->inherits) {
5684		void **inherit = (void **)cur;
5685
5686		for (pp = begin; pp < end; pp++, inherit++)
5687			if (!*pp)
5688				*pp = *inherit;
5689	}
5690
5691	for (pp = begin; pp < end; pp++)
5692		if (IS_ERR(*pp))
5693			*pp = NULL;
5694
5695	ops->inherits = NULL;
5696
5697	spin_unlock(&lock);
5698}
5699
5700/**
5701 *	ata_host_start - start and freeze ports of an ATA host
5702 *	@host: ATA host to start ports for
5703 *
5704 *	Start and then freeze ports of @host.  Started status is
5705 *	recorded in host->flags, so this function can be called
5706 *	multiple times.  Ports are guaranteed to get started only
5707 *	once.  If host->ops is not initialized yet, it is set to the
5708 *	first non-dummy port ops.
5709 *
5710 *	LOCKING:
5711 *	Inherited from calling layer (may sleep).
5712 *
5713 *	RETURNS:
5714 *	0 if all ports are started successfully, -errno otherwise.
5715 */
5716int ata_host_start(struct ata_host *host)
5717{
5718	int have_stop = 0;
5719	void *start_dr = NULL;
5720	int i, rc;
5721
5722	if (host->flags & ATA_HOST_STARTED)
5723		return 0;
5724
5725	ata_finalize_port_ops(host->ops);
5726
5727	for (i = 0; i < host->n_ports; i++) {
5728		struct ata_port *ap = host->ports[i];
5729
5730		ata_finalize_port_ops(ap->ops);
5731
5732		if (!host->ops && !ata_port_is_dummy(ap))
5733			host->ops = ap->ops;
5734
5735		if (ap->ops->port_stop)
5736			have_stop = 1;
5737	}
5738
5739	if (host->ops && host->ops->host_stop)
5740		have_stop = 1;
5741
5742	if (have_stop) {
5743		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5744		if (!start_dr)
5745			return -ENOMEM;
5746	}
5747
5748	for (i = 0; i < host->n_ports; i++) {
5749		struct ata_port *ap = host->ports[i];
5750
5751		if (ap->ops->port_start) {
5752			rc = ap->ops->port_start(ap);
5753			if (rc) {
5754				if (rc != -ENODEV)
5755					dev_err(host->dev,
5756						"failed to start port %d (errno=%d)\n",
5757						i, rc);
5758				goto err_out;
5759			}
5760		}
5761		ata_eh_freeze_port(ap);
5762	}
5763
5764	if (start_dr)
5765		devres_add(host->dev, start_dr);
5766	host->flags |= ATA_HOST_STARTED;
5767	return 0;
5768
5769 err_out:
5770	while (--i >= 0) {
5771		struct ata_port *ap = host->ports[i];
5772
5773		if (ap->ops->port_stop)
5774			ap->ops->port_stop(ap);
5775	}
5776	devres_free(start_dr);
5777	return rc;
5778}
5779EXPORT_SYMBOL_GPL(ata_host_start);
5780
5781/**
5782 *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5783 *	@host:	host to initialize
5784 *	@dev:	device host is attached to
5785 *	@ops:	port_ops
5786 *
5787 */
5788void ata_host_init(struct ata_host *host, struct device *dev,
5789		   struct ata_port_operations *ops)
5790{
5791	spin_lock_init(&host->lock);
5792	mutex_init(&host->eh_mutex);
5793	host->n_tags = ATA_MAX_QUEUE;
5794	host->dev = dev;
5795	host->ops = ops;
5796	kref_init(&host->kref);
5797}
5798EXPORT_SYMBOL_GPL(ata_host_init);
5799
5800void ata_port_probe(struct ata_port *ap)
5801{
5802	struct ata_eh_info *ehi = &ap->link.eh_info;
5803	unsigned long flags;
5804
5805	/* kick EH for boot probing */
5806	spin_lock_irqsave(ap->lock, flags);
5807
5808	ehi->probe_mask |= ATA_ALL_DEVICES;
5809	ehi->action |= ATA_EH_RESET;
5810	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5811
5812	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5813	ap->pflags |= ATA_PFLAG_LOADING;
5814	ata_port_schedule_eh(ap);
5815
5816	spin_unlock_irqrestore(ap->lock, flags);
5817}
5818EXPORT_SYMBOL_GPL(ata_port_probe);
5819
5820static void async_port_probe(void *data, async_cookie_t cookie)
5821{
5822	struct ata_port *ap = data;
5823
5824	/*
5825	 * If we're not allowed to scan this host in parallel,
5826	 * we need to wait until all previous scans have completed
5827	 * before going further.
5828	 * Jeff Garzik says this is only within a controller, so we
5829	 * don't need to wait for port 0, only for later ports.
5830	 */
5831	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5832		async_synchronize_cookie(cookie);
5833
5834	ata_port_probe(ap);
5835	ata_port_wait_eh(ap);
5836
5837	/* in order to keep device order, we need to synchronize at this point */
5838	async_synchronize_cookie(cookie);
5839
5840	ata_scsi_scan_host(ap, 1);
5841}
5842
5843/**
5844 *	ata_host_register - register initialized ATA host
5845 *	@host: ATA host to register
5846 *	@sht: template for SCSI host
5847 *
5848 *	Register initialized ATA host.  @host is allocated using
5849 *	ata_host_alloc() and fully initialized by LLD.  This function
5850 *	starts ports, registers @host with ATA and SCSI layers and
5851 *	probe registered devices.
5852 *
5853 *	LOCKING:
5854 *	Inherited from calling layer (may sleep).
5855 *
5856 *	RETURNS:
5857 *	0 on success, -errno otherwise.
5858 */
5859int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5860{
5861	int i, rc;
5862
5863	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5864
5865	/* host must have been started */
5866	if (!(host->flags & ATA_HOST_STARTED)) {
5867		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5868		WARN_ON(1);
5869		return -EINVAL;
5870	}
5871
 
 
 
 
 
 
 
 
 
 
 
 
 
5872	/* Create associated sysfs transport objects  */
5873	for (i = 0; i < host->n_ports; i++) {
5874		rc = ata_tport_add(host->dev,host->ports[i]);
5875		if (rc) {
5876			goto err_tadd;
5877		}
5878	}
5879
5880	rc = ata_scsi_add_hosts(host, sht);
5881	if (rc)
5882		goto err_tadd;
5883
5884	/* set cable, sata_spd_limit and report */
5885	for (i = 0; i < host->n_ports; i++) {
5886		struct ata_port *ap = host->ports[i];
5887		unsigned int xfer_mask;
5888
5889		/* set SATA cable type if still unset */
5890		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5891			ap->cbl = ATA_CBL_SATA;
5892
5893		/* init sata_spd_limit to the current value */
5894		sata_link_init_spd(&ap->link);
5895		if (ap->slave_link)
5896			sata_link_init_spd(ap->slave_link);
5897
5898		/* print per-port info to dmesg */
5899		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5900					      ap->udma_mask);
5901
5902		if (!ata_port_is_dummy(ap)) {
5903			ata_port_info(ap, "%cATA max %s %s\n",
5904				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5905				      ata_mode_string(xfer_mask),
5906				      ap->link.eh_info.desc);
5907			ata_ehi_clear_desc(&ap->link.eh_info);
5908		} else
5909			ata_port_info(ap, "DUMMY\n");
5910	}
5911
5912	/* perform each probe asynchronously */
5913	for (i = 0; i < host->n_ports; i++) {
5914		struct ata_port *ap = host->ports[i];
5915		ap->cookie = async_schedule(async_port_probe, ap);
5916	}
5917
5918	return 0;
5919
5920 err_tadd:
5921	while (--i >= 0) {
5922		ata_tport_delete(host->ports[i]);
5923	}
5924	return rc;
5925
5926}
5927EXPORT_SYMBOL_GPL(ata_host_register);
5928
5929/**
5930 *	ata_host_activate - start host, request IRQ and register it
5931 *	@host: target ATA host
5932 *	@irq: IRQ to request
5933 *	@irq_handler: irq_handler used when requesting IRQ
5934 *	@irq_flags: irq_flags used when requesting IRQ
5935 *	@sht: scsi_host_template to use when registering the host
5936 *
5937 *	After allocating an ATA host and initializing it, most libata
5938 *	LLDs perform three steps to activate the host - start host,
5939 *	request IRQ and register it.  This helper takes necessary
5940 *	arguments and performs the three steps in one go.
5941 *
5942 *	An invalid IRQ skips the IRQ registration and expects the host to
5943 *	have set polling mode on the port. In this case, @irq_handler
5944 *	should be NULL.
5945 *
5946 *	LOCKING:
5947 *	Inherited from calling layer (may sleep).
5948 *
5949 *	RETURNS:
5950 *	0 on success, -errno otherwise.
5951 */
5952int ata_host_activate(struct ata_host *host, int irq,
5953		      irq_handler_t irq_handler, unsigned long irq_flags,
5954		      const struct scsi_host_template *sht)
5955{
5956	int i, rc;
5957	char *irq_desc;
5958
5959	rc = ata_host_start(host);
5960	if (rc)
5961		return rc;
5962
5963	/* Special case for polling mode */
5964	if (!irq) {
5965		WARN_ON(irq_handler);
5966		return ata_host_register(host, sht);
5967	}
5968
5969	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5970				  dev_driver_string(host->dev),
5971				  dev_name(host->dev));
5972	if (!irq_desc)
5973		return -ENOMEM;
5974
5975	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5976			      irq_desc, host);
5977	if (rc)
5978		return rc;
5979
5980	for (i = 0; i < host->n_ports; i++)
5981		ata_port_desc_misc(host->ports[i], irq);
5982
5983	rc = ata_host_register(host, sht);
5984	/* if failed, just free the IRQ and leave ports alone */
5985	if (rc)
5986		devm_free_irq(host->dev, irq, host);
5987
5988	return rc;
5989}
5990EXPORT_SYMBOL_GPL(ata_host_activate);
5991
5992/**
5993 *	ata_dev_free_resources - Free a device resources
5994 *	@dev: Target ATA device
5995 *
5996 *	Free resources allocated to support a device features.
5997 *
5998 *	LOCKING:
5999 *	Kernel thread context (may sleep).
6000 */
6001void ata_dev_free_resources(struct ata_device *dev)
6002{
6003	if (zpodd_dev_enabled(dev))
6004		zpodd_exit(dev);
6005
6006	ata_dev_cleanup_cdl_resources(dev);
6007}
6008
6009/**
6010 *	ata_port_detach - Detach ATA port in preparation of device removal
6011 *	@ap: ATA port to be detached
6012 *
6013 *	Detach all ATA devices and the associated SCSI devices of @ap;
6014 *	then, remove the associated SCSI host.  @ap is guaranteed to
6015 *	be quiescent on return from this function.
6016 *
6017 *	LOCKING:
6018 *	Kernel thread context (may sleep).
6019 */
6020static void ata_port_detach(struct ata_port *ap)
6021{
6022	unsigned long flags;
6023	struct ata_link *link;
6024	struct ata_device *dev;
6025
6026	/* Ensure ata_port probe has completed */
6027	async_synchronize_cookie(ap->cookie + 1);
6028
6029	/* Wait for any ongoing EH */
6030	ata_port_wait_eh(ap);
6031
6032	mutex_lock(&ap->scsi_scan_mutex);
6033	spin_lock_irqsave(ap->lock, flags);
6034
6035	/* Remove scsi devices */
6036	ata_for_each_link(link, ap, HOST_FIRST) {
6037		ata_for_each_dev(dev, link, ALL) {
6038			if (dev->sdev) {
6039				spin_unlock_irqrestore(ap->lock, flags);
6040				scsi_remove_device(dev->sdev);
6041				spin_lock_irqsave(ap->lock, flags);
6042				dev->sdev = NULL;
6043			}
6044		}
6045	}
6046
6047	/* Tell EH to disable all devices */
6048	ap->pflags |= ATA_PFLAG_UNLOADING;
6049	ata_port_schedule_eh(ap);
6050
6051	spin_unlock_irqrestore(ap->lock, flags);
6052	mutex_unlock(&ap->scsi_scan_mutex);
6053
6054	/* wait till EH commits suicide */
6055	ata_port_wait_eh(ap);
6056
6057	/* it better be dead now */
6058	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6059
6060	cancel_delayed_work_sync(&ap->hotplug_task);
6061	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6062
6063	/* Delete port multiplier link transport devices */
 
 
 
 
 
 
6064	if (ap->pmp_link) {
6065		int i;
6066
6067		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6068			ata_tlink_delete(&ap->pmp_link[i]);
6069	}
6070
6071	/* Remove the associated SCSI host */
6072	scsi_remove_host(ap->scsi_host);
6073	ata_tport_delete(ap);
6074}
6075
6076/**
6077 *	ata_host_detach - Detach all ports of an ATA host
6078 *	@host: Host to detach
6079 *
6080 *	Detach all ports of @host.
6081 *
6082 *	LOCKING:
6083 *	Kernel thread context (may sleep).
6084 */
6085void ata_host_detach(struct ata_host *host)
6086{
6087	int i;
6088
6089	for (i = 0; i < host->n_ports; i++)
6090		ata_port_detach(host->ports[i]);
6091
6092	/* the host is dead now, dissociate ACPI */
6093	ata_acpi_dissociate(host);
6094}
6095EXPORT_SYMBOL_GPL(ata_host_detach);
6096
6097#ifdef CONFIG_PCI
6098
6099/**
6100 *	ata_pci_remove_one - PCI layer callback for device removal
6101 *	@pdev: PCI device that was removed
6102 *
6103 *	PCI layer indicates to libata via this hook that hot-unplug or
6104 *	module unload event has occurred.  Detach all ports.  Resource
6105 *	release is handled via devres.
6106 *
6107 *	LOCKING:
6108 *	Inherited from PCI layer (may sleep).
6109 */
6110void ata_pci_remove_one(struct pci_dev *pdev)
6111{
6112	struct ata_host *host = pci_get_drvdata(pdev);
6113
6114	ata_host_detach(host);
6115}
6116EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6117
6118void ata_pci_shutdown_one(struct pci_dev *pdev)
6119{
6120	struct ata_host *host = pci_get_drvdata(pdev);
6121	int i;
6122
6123	for (i = 0; i < host->n_ports; i++) {
6124		struct ata_port *ap = host->ports[i];
6125
6126		ap->pflags |= ATA_PFLAG_FROZEN;
6127
6128		/* Disable port interrupts */
6129		if (ap->ops->freeze)
6130			ap->ops->freeze(ap);
6131
6132		/* Stop the port DMA engines */
6133		if (ap->ops->port_stop)
6134			ap->ops->port_stop(ap);
6135	}
6136}
6137EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6138
6139/* move to PCI subsystem */
6140int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6141{
6142	unsigned long tmp = 0;
6143
6144	switch (bits->width) {
6145	case 1: {
6146		u8 tmp8 = 0;
6147		pci_read_config_byte(pdev, bits->reg, &tmp8);
6148		tmp = tmp8;
6149		break;
6150	}
6151	case 2: {
6152		u16 tmp16 = 0;
6153		pci_read_config_word(pdev, bits->reg, &tmp16);
6154		tmp = tmp16;
6155		break;
6156	}
6157	case 4: {
6158		u32 tmp32 = 0;
6159		pci_read_config_dword(pdev, bits->reg, &tmp32);
6160		tmp = tmp32;
6161		break;
6162	}
6163
6164	default:
6165		return -EINVAL;
6166	}
6167
6168	tmp &= bits->mask;
6169
6170	return (tmp == bits->val) ? 1 : 0;
6171}
6172EXPORT_SYMBOL_GPL(pci_test_config_bits);
6173
6174#ifdef CONFIG_PM
6175void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6176{
6177	pci_save_state(pdev);
6178	pci_disable_device(pdev);
6179
6180	if (mesg.event & PM_EVENT_SLEEP)
6181		pci_set_power_state(pdev, PCI_D3hot);
6182}
6183EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6184
6185int ata_pci_device_do_resume(struct pci_dev *pdev)
6186{
6187	int rc;
6188
6189	pci_set_power_state(pdev, PCI_D0);
6190	pci_restore_state(pdev);
6191
6192	rc = pcim_enable_device(pdev);
6193	if (rc) {
6194		dev_err(&pdev->dev,
6195			"failed to enable device after resume (%d)\n", rc);
6196		return rc;
6197	}
6198
6199	pci_set_master(pdev);
6200	return 0;
6201}
6202EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6203
6204int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6205{
6206	struct ata_host *host = pci_get_drvdata(pdev);
6207
6208	ata_host_suspend(host, mesg);
6209
6210	ata_pci_device_do_suspend(pdev, mesg);
6211
6212	return 0;
6213}
6214EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6215
6216int ata_pci_device_resume(struct pci_dev *pdev)
6217{
6218	struct ata_host *host = pci_get_drvdata(pdev);
6219	int rc;
6220
6221	rc = ata_pci_device_do_resume(pdev);
6222	if (rc == 0)
6223		ata_host_resume(host);
6224	return rc;
6225}
6226EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6227#endif /* CONFIG_PM */
6228#endif /* CONFIG_PCI */
6229
6230/**
6231 *	ata_platform_remove_one - Platform layer callback for device removal
6232 *	@pdev: Platform device that was removed
6233 *
6234 *	Platform layer indicates to libata via this hook that hot-unplug or
6235 *	module unload event has occurred.  Detach all ports.  Resource
6236 *	release is handled via devres.
6237 *
6238 *	LOCKING:
6239 *	Inherited from platform layer (may sleep).
6240 */
6241void ata_platform_remove_one(struct platform_device *pdev)
6242{
6243	struct ata_host *host = platform_get_drvdata(pdev);
6244
6245	ata_host_detach(host);
6246}
6247EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6248
6249#ifdef CONFIG_ATA_FORCE
6250
6251#define force_cbl(name, flag)				\
6252	{ #name,	.cbl		= (flag) }
6253
6254#define force_spd_limit(spd, val)			\
6255	{ #spd,	.spd_limit		= (val) }
6256
6257#define force_xfer(mode, shift)				\
6258	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6259
6260#define force_lflag_on(name, flags)			\
6261	{ #name,	.lflags_on	= (flags) }
6262
6263#define force_lflag_onoff(name, flags)			\
6264	{ "no" #name,	.lflags_on	= (flags) },	\
6265	{ #name,	.lflags_off	= (flags) }
6266
6267#define force_quirk_on(name, flag)			\
6268	{ #name,	.quirk_on	= (flag) }
6269
6270#define force_quirk_onoff(name, flag)			\
6271	{ "no" #name,	.quirk_on	= (flag) },	\
6272	{ #name,	.quirk_off	= (flag) }
6273
6274static const struct ata_force_param force_tbl[] __initconst = {
6275	force_cbl(40c,			ATA_CBL_PATA40),
6276	force_cbl(80c,			ATA_CBL_PATA80),
6277	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6278	force_cbl(unk,			ATA_CBL_PATA_UNK),
6279	force_cbl(ign,			ATA_CBL_PATA_IGN),
6280	force_cbl(sata,			ATA_CBL_SATA),
6281
6282	force_spd_limit(1.5Gbps,	1),
6283	force_spd_limit(3.0Gbps,	2),
6284
6285	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6286	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6287	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6288	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6289	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6290	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6291	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6292	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6293	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6294	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6295	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6296	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6297	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6298	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6299	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6300	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6301	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6302	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6303	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6304	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6305	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6306	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6307	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6308	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6309	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6310	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6311	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6312	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6313	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6314	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6315	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6316	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6317	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6318	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6319
6320	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6321	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6322	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6323	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6324	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6325
6326	force_quirk_onoff(ncq,		ATA_QUIRK_NONCQ),
6327	force_quirk_onoff(ncqtrim,	ATA_QUIRK_NO_NCQ_TRIM),
6328	force_quirk_onoff(ncqati,	ATA_QUIRK_NO_NCQ_ON_ATI),
6329
6330	force_quirk_onoff(trim,		ATA_QUIRK_NOTRIM),
6331	force_quirk_on(trim_zero,	ATA_QUIRK_ZERO_AFTER_TRIM),
6332	force_quirk_on(max_trim_128m,	ATA_QUIRK_MAX_TRIM_128M),
6333
6334	force_quirk_onoff(dma,		ATA_QUIRK_NODMA),
6335	force_quirk_on(atapi_dmadir,	ATA_QUIRK_ATAPI_DMADIR),
6336	force_quirk_on(atapi_mod16_dma,	ATA_QUIRK_ATAPI_MOD16_DMA),
6337
6338	force_quirk_onoff(dmalog,	ATA_QUIRK_NO_DMA_LOG),
6339	force_quirk_onoff(iddevlog,	ATA_QUIRK_NO_ID_DEV_LOG),
6340	force_quirk_onoff(logdir,	ATA_QUIRK_NO_LOG_DIR),
6341
6342	force_quirk_on(max_sec_128,	ATA_QUIRK_MAX_SEC_128),
6343	force_quirk_on(max_sec_1024,	ATA_QUIRK_MAX_SEC_1024),
6344	force_quirk_on(max_sec_lba48,	ATA_QUIRK_MAX_SEC_LBA48),
6345
6346	force_quirk_onoff(lpm,		ATA_QUIRK_NOLPM),
6347	force_quirk_onoff(setxfer,	ATA_QUIRK_NOSETXFER),
6348	force_quirk_on(dump_id,		ATA_QUIRK_DUMP_ID),
6349	force_quirk_onoff(fua,		ATA_QUIRK_NO_FUA),
6350
6351	force_quirk_on(disable,		ATA_QUIRK_DISABLE),
6352};
6353
6354static int __init ata_parse_force_one(char **cur,
6355				      struct ata_force_ent *force_ent,
6356				      const char **reason)
6357{
6358	char *start = *cur, *p = *cur;
6359	char *id, *val, *endp;
6360	const struct ata_force_param *match_fp = NULL;
6361	int nr_matches = 0, i;
6362
6363	/* find where this param ends and update *cur */
6364	while (*p != '\0' && *p != ',')
6365		p++;
6366
6367	if (*p == '\0')
6368		*cur = p;
6369	else
6370		*cur = p + 1;
6371
6372	*p = '\0';
6373
6374	/* parse */
6375	p = strchr(start, ':');
6376	if (!p) {
6377		val = strstrip(start);
6378		goto parse_val;
6379	}
6380	*p = '\0';
6381
6382	id = strstrip(start);
6383	val = strstrip(p + 1);
6384
6385	/* parse id */
6386	p = strchr(id, '.');
6387	if (p) {
6388		*p++ = '\0';
6389		force_ent->device = simple_strtoul(p, &endp, 10);
6390		if (p == endp || *endp != '\0') {
6391			*reason = "invalid device";
6392			return -EINVAL;
6393		}
6394	}
6395
6396	force_ent->port = simple_strtoul(id, &endp, 10);
6397	if (id == endp || *endp != '\0') {
6398		*reason = "invalid port/link";
6399		return -EINVAL;
6400	}
6401
6402 parse_val:
6403	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6404	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6405		const struct ata_force_param *fp = &force_tbl[i];
6406
6407		if (strncasecmp(val, fp->name, strlen(val)))
6408			continue;
6409
6410		nr_matches++;
6411		match_fp = fp;
6412
6413		if (strcasecmp(val, fp->name) == 0) {
6414			nr_matches = 1;
6415			break;
6416		}
6417	}
6418
6419	if (!nr_matches) {
6420		*reason = "unknown value";
6421		return -EINVAL;
6422	}
6423	if (nr_matches > 1) {
6424		*reason = "ambiguous value";
6425		return -EINVAL;
6426	}
6427
6428	force_ent->param = *match_fp;
6429
6430	return 0;
6431}
6432
6433static void __init ata_parse_force_param(void)
6434{
6435	int idx = 0, size = 1;
6436	int last_port = -1, last_device = -1;
6437	char *p, *cur, *next;
6438
6439	/* Calculate maximum number of params and allocate ata_force_tbl */
6440	for (p = ata_force_param_buf; *p; p++)
6441		if (*p == ',')
6442			size++;
6443
6444	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6445	if (!ata_force_tbl) {
6446		printk(KERN_WARNING "ata: failed to extend force table, "
6447		       "libata.force ignored\n");
6448		return;
6449	}
6450
6451	/* parse and populate the table */
6452	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6453		const char *reason = "";
6454		struct ata_force_ent te = { .port = -1, .device = -1 };
6455
6456		next = cur;
6457		if (ata_parse_force_one(&next, &te, &reason)) {
6458			printk(KERN_WARNING "ata: failed to parse force "
6459			       "parameter \"%s\" (%s)\n",
6460			       cur, reason);
6461			continue;
6462		}
6463
6464		if (te.port == -1) {
6465			te.port = last_port;
6466			te.device = last_device;
6467		}
6468
6469		ata_force_tbl[idx++] = te;
6470
6471		last_port = te.port;
6472		last_device = te.device;
6473	}
6474
6475	ata_force_tbl_size = idx;
6476}
6477
6478static void ata_free_force_param(void)
6479{
6480	kfree(ata_force_tbl);
6481}
6482#else
6483static inline void ata_parse_force_param(void) { }
6484static inline void ata_free_force_param(void) { }
6485#endif
6486
6487static int __init ata_init(void)
6488{
6489	int rc;
6490
6491	ata_parse_force_param();
6492
6493	rc = ata_sff_init();
6494	if (rc) {
6495		ata_free_force_param();
6496		return rc;
6497	}
6498
6499	libata_transport_init();
6500	ata_scsi_transport_template = ata_attach_transport();
6501	if (!ata_scsi_transport_template) {
6502		ata_sff_exit();
6503		rc = -ENOMEM;
6504		goto err_out;
6505	}
6506
6507	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6508	return 0;
6509
6510err_out:
6511	return rc;
6512}
6513
6514static void __exit ata_exit(void)
6515{
6516	ata_release_transport(ata_scsi_transport_template);
6517	libata_transport_exit();
6518	ata_sff_exit();
6519	ata_free_force_param();
6520}
6521
6522subsys_initcall(ata_init);
6523module_exit(ata_exit);
6524
6525static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6526
6527int ata_ratelimit(void)
6528{
6529	return __ratelimit(&ratelimit);
6530}
6531EXPORT_SYMBOL_GPL(ata_ratelimit);
6532
6533/**
6534 *	ata_msleep - ATA EH owner aware msleep
6535 *	@ap: ATA port to attribute the sleep to
6536 *	@msecs: duration to sleep in milliseconds
6537 *
6538 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6539 *	ownership is released before going to sleep and reacquired
6540 *	after the sleep is complete.  IOW, other ports sharing the
6541 *	@ap->host will be allowed to own the EH while this task is
6542 *	sleeping.
6543 *
6544 *	LOCKING:
6545 *	Might sleep.
6546 */
6547void ata_msleep(struct ata_port *ap, unsigned int msecs)
6548{
6549	bool owns_eh = ap && ap->host->eh_owner == current;
6550
6551	if (owns_eh)
6552		ata_eh_release(ap);
6553
6554	if (msecs < 20) {
6555		unsigned long usecs = msecs * USEC_PER_MSEC;
6556		usleep_range(usecs, usecs + 50);
6557	} else {
6558		msleep(msecs);
6559	}
6560
6561	if (owns_eh)
6562		ata_eh_acquire(ap);
6563}
6564EXPORT_SYMBOL_GPL(ata_msleep);
6565
6566/**
6567 *	ata_wait_register - wait until register value changes
6568 *	@ap: ATA port to wait register for, can be NULL
6569 *	@reg: IO-mapped register
6570 *	@mask: Mask to apply to read register value
6571 *	@val: Wait condition
6572 *	@interval: polling interval in milliseconds
6573 *	@timeout: timeout in milliseconds
6574 *
6575 *	Waiting for some bits of register to change is a common
6576 *	operation for ATA controllers.  This function reads 32bit LE
6577 *	IO-mapped register @reg and tests for the following condition.
6578 *
6579 *	(*@reg & mask) != val
6580 *
6581 *	If the condition is met, it returns; otherwise, the process is
6582 *	repeated after @interval_msec until timeout.
6583 *
6584 *	LOCKING:
6585 *	Kernel thread context (may sleep)
6586 *
6587 *	RETURNS:
6588 *	The final register value.
6589 */
6590u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6591		      unsigned int interval, unsigned int timeout)
6592{
6593	unsigned long deadline;
6594	u32 tmp;
6595
6596	tmp = ioread32(reg);
6597
6598	/* Calculate timeout _after_ the first read to make sure
6599	 * preceding writes reach the controller before starting to
6600	 * eat away the timeout.
6601	 */
6602	deadline = ata_deadline(jiffies, timeout);
6603
6604	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6605		ata_msleep(ap, interval);
6606		tmp = ioread32(reg);
6607	}
6608
6609	return tmp;
6610}
6611EXPORT_SYMBOL_GPL(ata_wait_register);
6612
6613/*
6614 * Dummy port_ops
6615 */
6616static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6617{
6618	return AC_ERR_SYSTEM;
6619}
6620
6621static void ata_dummy_error_handler(struct ata_port *ap)
6622{
6623	/* truly dummy */
6624}
6625
6626struct ata_port_operations ata_dummy_port_ops = {
 
6627	.qc_issue		= ata_dummy_qc_issue,
6628	.error_handler		= ata_dummy_error_handler,
6629	.sched_eh		= ata_std_sched_eh,
6630	.end_eh			= ata_std_end_eh,
6631};
6632EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6633
6634const struct ata_port_info ata_dummy_port_info = {
6635	.port_ops		= &ata_dummy_port_ops,
6636};
6637EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6638
6639void ata_print_version(const struct device *dev, const char *version)
6640{
6641	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6642}
6643EXPORT_SYMBOL(ata_print_version);
6644
6645EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6646EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6647EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6648EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6649EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);