Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26#include "sleep.h"
27
28#define ACPI_BUS_CLASS "system_bus"
29#define ACPI_BUS_HID "LNXSYBUS"
30#define ACPI_BUS_DEVICE_NAME "System Bus"
31
32#define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
33
34static const char *dummy_hid = "device";
35
36static LIST_HEAD(acpi_dep_list);
37static DEFINE_MUTEX(acpi_dep_list_lock);
38LIST_HEAD(acpi_bus_id_list);
39static DEFINE_MUTEX(acpi_scan_lock);
40static LIST_HEAD(acpi_scan_handlers_list);
41DEFINE_MUTEX(acpi_device_lock);
42LIST_HEAD(acpi_wakeup_device_list);
43static DEFINE_MUTEX(acpi_hp_context_lock);
44
45/*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50static u64 spcr_uart_addr;
51
52void acpi_scan_lock_acquire(void)
53{
54 mutex_lock(&acpi_scan_lock);
55}
56EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
58void acpi_scan_lock_release(void)
59{
60 mutex_unlock(&acpi_scan_lock);
61}
62EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
64void acpi_lock_hp_context(void)
65{
66 mutex_lock(&acpi_hp_context_lock);
67}
68
69void acpi_unlock_hp_context(void)
70{
71 mutex_unlock(&acpi_hp_context_lock);
72}
73
74void acpi_initialize_hp_context(struct acpi_device *adev,
75 struct acpi_hotplug_context *hp,
76 int (*notify)(struct acpi_device *, u32),
77 void (*uevent)(struct acpi_device *, u32))
78{
79 acpi_lock_hp_context();
80 hp->notify = notify;
81 hp->uevent = uevent;
82 acpi_set_hp_context(adev, hp);
83 acpi_unlock_hp_context();
84}
85EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86
87int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88{
89 if (!handler)
90 return -EINVAL;
91
92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 return 0;
94}
95
96int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 const char *hotplug_profile_name)
98{
99 int error;
100
101 error = acpi_scan_add_handler(handler);
102 if (error)
103 return error;
104
105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 return 0;
107}
108
109bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110{
111 struct acpi_device_physical_node *pn;
112 bool offline = true;
113 char *envp[] = { "EVENT=offline", NULL };
114
115 /*
116 * acpi_container_offline() calls this for all of the container's
117 * children under the container's physical_node_lock lock.
118 */
119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120
121 list_for_each_entry(pn, &adev->physical_node_list, node)
122 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 if (uevent)
124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125
126 offline = false;
127 break;
128 }
129
130 mutex_unlock(&adev->physical_node_lock);
131 return offline;
132}
133
134static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 void **ret_p)
136{
137 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 struct acpi_device_physical_node *pn;
139 bool second_pass = (bool)data;
140 acpi_status status = AE_OK;
141
142 if (!device)
143 return AE_OK;
144
145 if (device->handler && !device->handler->hotplug.enabled) {
146 *ret_p = &device->dev;
147 return AE_SUPPORT;
148 }
149
150 mutex_lock(&device->physical_node_lock);
151
152 list_for_each_entry(pn, &device->physical_node_list, node) {
153 int ret;
154
155 if (second_pass) {
156 /* Skip devices offlined by the first pass. */
157 if (pn->put_online)
158 continue;
159 } else {
160 pn->put_online = false;
161 }
162 ret = device_offline(pn->dev);
163 if (ret >= 0) {
164 pn->put_online = !ret;
165 } else {
166 *ret_p = pn->dev;
167 if (second_pass) {
168 status = AE_ERROR;
169 break;
170 }
171 }
172 }
173
174 mutex_unlock(&device->physical_node_lock);
175
176 return status;
177}
178
179static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 void **ret_p)
181{
182 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 struct acpi_device_physical_node *pn;
184
185 if (!device)
186 return AE_OK;
187
188 mutex_lock(&device->physical_node_lock);
189
190 list_for_each_entry(pn, &device->physical_node_list, node)
191 if (pn->put_online) {
192 device_online(pn->dev);
193 pn->put_online = false;
194 }
195
196 mutex_unlock(&device->physical_node_lock);
197
198 return AE_OK;
199}
200
201static int acpi_scan_try_to_offline(struct acpi_device *device)
202{
203 acpi_handle handle = device->handle;
204 struct device *errdev = NULL;
205 acpi_status status;
206
207 /*
208 * Carry out two passes here and ignore errors in the first pass,
209 * because if the devices in question are memory blocks and
210 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 * that the other blocks depend on, but it is not known in advance which
212 * block holds them.
213 *
214 * If the first pass is successful, the second one isn't needed, though.
215 */
216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 NULL, acpi_bus_offline, (void *)false,
218 (void **)&errdev);
219 if (status == AE_SUPPORT) {
220 dev_warn(errdev, "Offline disabled.\n");
221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 acpi_bus_online, NULL, NULL, NULL);
223 return -EPERM;
224 }
225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 if (errdev) {
227 errdev = NULL;
228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 NULL, acpi_bus_offline, (void *)true,
230 (void **)&errdev);
231 if (!errdev)
232 acpi_bus_offline(handle, 0, (void *)true,
233 (void **)&errdev);
234
235 if (errdev) {
236 dev_warn(errdev, "Offline failed.\n");
237 acpi_bus_online(handle, 0, NULL, NULL);
238 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 ACPI_UINT32_MAX, acpi_bus_online,
240 NULL, NULL, NULL);
241 return -EBUSY;
242 }
243 }
244 return 0;
245}
246
247static int acpi_scan_hot_remove(struct acpi_device *device)
248{
249 acpi_handle handle = device->handle;
250 unsigned long long sta;
251 acpi_status status;
252
253 if (device->handler && device->handler->hotplug.demand_offline) {
254 if (!acpi_scan_is_offline(device, true))
255 return -EBUSY;
256 } else {
257 int error = acpi_scan_try_to_offline(device);
258 if (error)
259 return error;
260 }
261
262 acpi_handle_debug(handle, "Ejecting\n");
263
264 acpi_bus_trim(device);
265
266 acpi_evaluate_lck(handle, 0);
267 /*
268 * TBD: _EJD support.
269 */
270 status = acpi_evaluate_ej0(handle);
271 if (status == AE_NOT_FOUND)
272 return -ENODEV;
273 else if (ACPI_FAILURE(status))
274 return -EIO;
275
276 /*
277 * Verify if eject was indeed successful. If not, log an error
278 * message. No need to call _OST since _EJ0 call was made OK.
279 */
280 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
281 if (ACPI_FAILURE(status)) {
282 acpi_handle_warn(handle,
283 "Status check after eject failed (0x%x)\n", status);
284 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
285 acpi_handle_warn(handle,
286 "Eject incomplete - status 0x%llx\n", sta);
287 }
288
289 return 0;
290}
291
292static int acpi_scan_device_not_enumerated(struct acpi_device *adev)
293{
294 if (!acpi_device_enumerated(adev)) {
295 dev_warn(&adev->dev, "Still not enumerated\n");
296 return -EALREADY;
297 }
298 acpi_bus_trim(adev);
299 return 0;
300}
301
302static int acpi_scan_device_check(struct acpi_device *adev)
303{
304 int error;
305
306 acpi_bus_get_status(adev);
307 if (acpi_device_is_present(adev)) {
308 /*
309 * This function is only called for device objects for which
310 * matching scan handlers exist. The only situation in which
311 * the scan handler is not attached to this device object yet
312 * is when the device has just appeared (either it wasn't
313 * present at all before or it was removed and then added
314 * again).
315 */
316 if (adev->handler) {
317 dev_warn(&adev->dev, "Already enumerated\n");
318 return -EALREADY;
319 }
320 error = acpi_bus_scan(adev->handle);
321 if (error) {
322 dev_warn(&adev->dev, "Namespace scan failure\n");
323 return error;
324 }
325 if (!adev->handler) {
326 dev_warn(&adev->dev, "Enumeration failure\n");
327 error = -ENODEV;
328 }
329 } else {
330 error = acpi_scan_device_not_enumerated(adev);
331 }
332 return error;
333}
334
335static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
336{
337 struct acpi_scan_handler *handler = adev->handler;
338 int error;
339
340 acpi_bus_get_status(adev);
341 if (!acpi_device_is_present(adev)) {
342 acpi_scan_device_not_enumerated(adev);
343 return 0;
344 }
345 if (handler && handler->hotplug.scan_dependent)
346 return handler->hotplug.scan_dependent(adev);
347
348 error = acpi_bus_scan(adev->handle);
349 if (error) {
350 dev_warn(&adev->dev, "Namespace scan failure\n");
351 return error;
352 }
353 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
354}
355
356static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
357{
358 switch (type) {
359 case ACPI_NOTIFY_BUS_CHECK:
360 return acpi_scan_bus_check(adev, NULL);
361 case ACPI_NOTIFY_DEVICE_CHECK:
362 return acpi_scan_device_check(adev);
363 case ACPI_NOTIFY_EJECT_REQUEST:
364 case ACPI_OST_EC_OSPM_EJECT:
365 if (adev->handler && !adev->handler->hotplug.enabled) {
366 dev_info(&adev->dev, "Eject disabled\n");
367 return -EPERM;
368 }
369 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
370 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
371 return acpi_scan_hot_remove(adev);
372 }
373 return -EINVAL;
374}
375
376void acpi_device_hotplug(struct acpi_device *adev, u32 src)
377{
378 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
379 int error = -ENODEV;
380
381 lock_device_hotplug();
382 mutex_lock(&acpi_scan_lock);
383
384 /*
385 * The device object's ACPI handle cannot become invalid as long as we
386 * are holding acpi_scan_lock, but it might have become invalid before
387 * that lock was acquired.
388 */
389 if (adev->handle == INVALID_ACPI_HANDLE)
390 goto err_out;
391
392 if (adev->flags.is_dock_station) {
393 error = dock_notify(adev, src);
394 } else if (adev->flags.hotplug_notify) {
395 error = acpi_generic_hotplug_event(adev, src);
396 } else {
397 int (*notify)(struct acpi_device *, u32);
398
399 acpi_lock_hp_context();
400 notify = adev->hp ? adev->hp->notify : NULL;
401 acpi_unlock_hp_context();
402 /*
403 * There may be additional notify handlers for device objects
404 * without the .event() callback, so ignore them here.
405 */
406 if (notify)
407 error = notify(adev, src);
408 else
409 goto out;
410 }
411 switch (error) {
412 case 0:
413 ost_code = ACPI_OST_SC_SUCCESS;
414 break;
415 case -EPERM:
416 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
417 break;
418 case -EBUSY:
419 ost_code = ACPI_OST_SC_DEVICE_BUSY;
420 break;
421 default:
422 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
423 break;
424 }
425
426 err_out:
427 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
428
429 out:
430 acpi_put_acpi_dev(adev);
431 mutex_unlock(&acpi_scan_lock);
432 unlock_device_hotplug();
433}
434
435static void acpi_free_power_resources_lists(struct acpi_device *device)
436{
437 int i;
438
439 if (device->wakeup.flags.valid)
440 acpi_power_resources_list_free(&device->wakeup.resources);
441
442 if (!device->power.flags.power_resources)
443 return;
444
445 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
446 struct acpi_device_power_state *ps = &device->power.states[i];
447 acpi_power_resources_list_free(&ps->resources);
448 }
449}
450
451static void acpi_device_release(struct device *dev)
452{
453 struct acpi_device *acpi_dev = to_acpi_device(dev);
454
455 acpi_free_properties(acpi_dev);
456 acpi_free_pnp_ids(&acpi_dev->pnp);
457 acpi_free_power_resources_lists(acpi_dev);
458 kfree(acpi_dev);
459}
460
461static void acpi_device_del(struct acpi_device *device)
462{
463 struct acpi_device_bus_id *acpi_device_bus_id;
464
465 mutex_lock(&acpi_device_lock);
466
467 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
468 if (!strcmp(acpi_device_bus_id->bus_id,
469 acpi_device_hid(device))) {
470 ida_free(&acpi_device_bus_id->instance_ida,
471 device->pnp.instance_no);
472 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
473 list_del(&acpi_device_bus_id->node);
474 kfree_const(acpi_device_bus_id->bus_id);
475 kfree(acpi_device_bus_id);
476 }
477 break;
478 }
479
480 list_del(&device->wakeup_list);
481
482 mutex_unlock(&acpi_device_lock);
483
484 acpi_power_add_remove_device(device, false);
485 acpi_device_remove_files(device);
486 if (device->remove)
487 device->remove(device);
488
489 device_del(&device->dev);
490}
491
492static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
493
494static LIST_HEAD(acpi_device_del_list);
495static DEFINE_MUTEX(acpi_device_del_lock);
496
497static void acpi_device_del_work_fn(struct work_struct *work_not_used)
498{
499 for (;;) {
500 struct acpi_device *adev;
501
502 mutex_lock(&acpi_device_del_lock);
503
504 if (list_empty(&acpi_device_del_list)) {
505 mutex_unlock(&acpi_device_del_lock);
506 break;
507 }
508 adev = list_first_entry(&acpi_device_del_list,
509 struct acpi_device, del_list);
510 list_del(&adev->del_list);
511
512 mutex_unlock(&acpi_device_del_lock);
513
514 blocking_notifier_call_chain(&acpi_reconfig_chain,
515 ACPI_RECONFIG_DEVICE_REMOVE, adev);
516
517 acpi_device_del(adev);
518 /*
519 * Drop references to all power resources that might have been
520 * used by the device.
521 */
522 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
523 acpi_dev_put(adev);
524 }
525}
526
527/**
528 * acpi_scan_drop_device - Drop an ACPI device object.
529 * @handle: Handle of an ACPI namespace node, not used.
530 * @context: Address of the ACPI device object to drop.
531 *
532 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
533 * namespace node the device object pointed to by @context is attached to.
534 *
535 * The unregistration is carried out asynchronously to avoid running
536 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
537 * ensure the correct ordering (the device objects must be unregistered in the
538 * same order in which the corresponding namespace nodes are deleted).
539 */
540static void acpi_scan_drop_device(acpi_handle handle, void *context)
541{
542 static DECLARE_WORK(work, acpi_device_del_work_fn);
543 struct acpi_device *adev = context;
544
545 mutex_lock(&acpi_device_del_lock);
546
547 /*
548 * Use the ACPI hotplug workqueue which is ordered, so this work item
549 * won't run after any hotplug work items submitted subsequently. That
550 * prevents attempts to register device objects identical to those being
551 * deleted from happening concurrently (such attempts result from
552 * hotplug events handled via the ACPI hotplug workqueue). It also will
553 * run after all of the work items submitted previously, which helps
554 * those work items to ensure that they are not accessing stale device
555 * objects.
556 */
557 if (list_empty(&acpi_device_del_list))
558 acpi_queue_hotplug_work(&work);
559
560 list_add_tail(&adev->del_list, &acpi_device_del_list);
561 /* Make acpi_ns_validate_handle() return NULL for this handle. */
562 adev->handle = INVALID_ACPI_HANDLE;
563
564 mutex_unlock(&acpi_device_del_lock);
565}
566
567static struct acpi_device *handle_to_device(acpi_handle handle,
568 void (*callback)(void *))
569{
570 struct acpi_device *adev = NULL;
571 acpi_status status;
572
573 status = acpi_get_data_full(handle, acpi_scan_drop_device,
574 (void **)&adev, callback);
575 if (ACPI_FAILURE(status) || !adev) {
576 acpi_handle_debug(handle, "No context!\n");
577 return NULL;
578 }
579 return adev;
580}
581
582/**
583 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
584 * @handle: ACPI handle associated with the requested ACPI device object.
585 *
586 * Return a pointer to the ACPI device object associated with @handle, if
587 * present, or NULL otherwise.
588 */
589struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
590{
591 return handle_to_device(handle, NULL);
592}
593EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
594
595static void get_acpi_device(void *dev)
596{
597 acpi_dev_get(dev);
598}
599
600/**
601 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
602 * @handle: ACPI handle associated with the requested ACPI device object.
603 *
604 * Return a pointer to the ACPI device object associated with @handle and bump
605 * up that object's reference counter (under the ACPI Namespace lock), if
606 * present, or return NULL otherwise.
607 *
608 * The ACPI device object reference acquired by this function needs to be
609 * dropped via acpi_dev_put().
610 */
611struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
612{
613 return handle_to_device(handle, get_acpi_device);
614}
615EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
616
617static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
618{
619 struct acpi_device_bus_id *acpi_device_bus_id;
620
621 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
622 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
623 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
624 return acpi_device_bus_id;
625 }
626 return NULL;
627}
628
629static int acpi_device_set_name(struct acpi_device *device,
630 struct acpi_device_bus_id *acpi_device_bus_id)
631{
632 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
633 int result;
634
635 result = ida_alloc(instance_ida, GFP_KERNEL);
636 if (result < 0)
637 return result;
638
639 device->pnp.instance_no = result;
640 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
641 return 0;
642}
643
644int acpi_tie_acpi_dev(struct acpi_device *adev)
645{
646 acpi_handle handle = adev->handle;
647 acpi_status status;
648
649 if (!handle)
650 return 0;
651
652 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
653 if (ACPI_FAILURE(status)) {
654 acpi_handle_err(handle, "Unable to attach device data\n");
655 return -ENODEV;
656 }
657
658 return 0;
659}
660
661static void acpi_store_pld_crc(struct acpi_device *adev)
662{
663 struct acpi_pld_info *pld;
664 acpi_status status;
665
666 status = acpi_get_physical_device_location(adev->handle, &pld);
667 if (ACPI_FAILURE(status))
668 return;
669
670 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
671 ACPI_FREE(pld);
672}
673
674int acpi_device_add(struct acpi_device *device)
675{
676 struct acpi_device_bus_id *acpi_device_bus_id;
677 int result;
678
679 /*
680 * Linkage
681 * -------
682 * Link this device to its parent and siblings.
683 */
684 INIT_LIST_HEAD(&device->wakeup_list);
685 INIT_LIST_HEAD(&device->physical_node_list);
686 INIT_LIST_HEAD(&device->del_list);
687 mutex_init(&device->physical_node_lock);
688
689 mutex_lock(&acpi_device_lock);
690
691 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
692 if (acpi_device_bus_id) {
693 result = acpi_device_set_name(device, acpi_device_bus_id);
694 if (result)
695 goto err_unlock;
696 } else {
697 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
698 GFP_KERNEL);
699 if (!acpi_device_bus_id) {
700 result = -ENOMEM;
701 goto err_unlock;
702 }
703 acpi_device_bus_id->bus_id =
704 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
705 if (!acpi_device_bus_id->bus_id) {
706 kfree(acpi_device_bus_id);
707 result = -ENOMEM;
708 goto err_unlock;
709 }
710
711 ida_init(&acpi_device_bus_id->instance_ida);
712
713 result = acpi_device_set_name(device, acpi_device_bus_id);
714 if (result) {
715 kfree_const(acpi_device_bus_id->bus_id);
716 kfree(acpi_device_bus_id);
717 goto err_unlock;
718 }
719
720 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
721 }
722
723 if (device->wakeup.flags.valid)
724 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
725
726 acpi_store_pld_crc(device);
727
728 mutex_unlock(&acpi_device_lock);
729
730 result = device_add(&device->dev);
731 if (result) {
732 dev_err(&device->dev, "Error registering device\n");
733 goto err;
734 }
735
736 result = acpi_device_setup_files(device);
737 if (result)
738 pr_err("Error creating sysfs interface for device %s\n",
739 dev_name(&device->dev));
740
741 return 0;
742
743err:
744 mutex_lock(&acpi_device_lock);
745
746 list_del(&device->wakeup_list);
747
748err_unlock:
749 mutex_unlock(&acpi_device_lock);
750
751 acpi_detach_data(device->handle, acpi_scan_drop_device);
752
753 return result;
754}
755
756/* --------------------------------------------------------------------------
757 Device Enumeration
758 -------------------------------------------------------------------------- */
759static bool acpi_info_matches_ids(struct acpi_device_info *info,
760 const char * const ids[])
761{
762 struct acpi_pnp_device_id_list *cid_list = NULL;
763 int i, index;
764
765 if (!(info->valid & ACPI_VALID_HID))
766 return false;
767
768 index = match_string(ids, -1, info->hardware_id.string);
769 if (index >= 0)
770 return true;
771
772 if (info->valid & ACPI_VALID_CID)
773 cid_list = &info->compatible_id_list;
774
775 if (!cid_list)
776 return false;
777
778 for (i = 0; i < cid_list->count; i++) {
779 index = match_string(ids, -1, cid_list->ids[i].string);
780 if (index >= 0)
781 return true;
782 }
783
784 return false;
785}
786
787/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
788static const char * const acpi_ignore_dep_ids[] = {
789 "PNP0D80", /* Windows-compatible System Power Management Controller */
790 "INT33BD", /* Intel Baytrail Mailbox Device */
791 "LATT2021", /* Lattice FW Update Client Driver */
792 NULL
793};
794
795/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
796static const char * const acpi_honor_dep_ids[] = {
797 "INT3472", /* Camera sensor PMIC / clk and regulator info */
798 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
799 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
800 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
801 NULL
802};
803
804static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
805{
806 struct acpi_device *adev;
807
808 /*
809 * Fixed hardware devices do not appear in the namespace and do not
810 * have handles, but we fabricate acpi_devices for them, so we have
811 * to deal with them specially.
812 */
813 if (!handle)
814 return acpi_root;
815
816 do {
817 acpi_status status;
818
819 status = acpi_get_parent(handle, &handle);
820 if (ACPI_FAILURE(status)) {
821 if (status != AE_NULL_ENTRY)
822 return acpi_root;
823
824 return NULL;
825 }
826 adev = acpi_fetch_acpi_dev(handle);
827 } while (!adev);
828 return adev;
829}
830
831acpi_status
832acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
833{
834 acpi_status status;
835 acpi_handle tmp;
836 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
837 union acpi_object *obj;
838
839 status = acpi_get_handle(handle, "_EJD", &tmp);
840 if (ACPI_FAILURE(status))
841 return status;
842
843 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
844 if (ACPI_SUCCESS(status)) {
845 obj = buffer.pointer;
846 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
847 ejd);
848 kfree(buffer.pointer);
849 }
850 return status;
851}
852EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
853
854static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
855{
856 acpi_handle handle = dev->handle;
857 struct acpi_device_wakeup *wakeup = &dev->wakeup;
858 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
859 union acpi_object *package = NULL;
860 union acpi_object *element = NULL;
861 acpi_status status;
862 int err = -ENODATA;
863
864 INIT_LIST_HEAD(&wakeup->resources);
865
866 /* _PRW */
867 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
868 if (ACPI_FAILURE(status)) {
869 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
870 acpi_format_exception(status));
871 return err;
872 }
873
874 package = (union acpi_object *)buffer.pointer;
875
876 if (!package || package->package.count < 2)
877 goto out;
878
879 element = &(package->package.elements[0]);
880 if (!element)
881 goto out;
882
883 if (element->type == ACPI_TYPE_PACKAGE) {
884 if ((element->package.count < 2) ||
885 (element->package.elements[0].type !=
886 ACPI_TYPE_LOCAL_REFERENCE)
887 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
888 goto out;
889
890 wakeup->gpe_device =
891 element->package.elements[0].reference.handle;
892 wakeup->gpe_number =
893 (u32) element->package.elements[1].integer.value;
894 } else if (element->type == ACPI_TYPE_INTEGER) {
895 wakeup->gpe_device = NULL;
896 wakeup->gpe_number = element->integer.value;
897 } else {
898 goto out;
899 }
900
901 element = &(package->package.elements[1]);
902 if (element->type != ACPI_TYPE_INTEGER)
903 goto out;
904
905 wakeup->sleep_state = element->integer.value;
906
907 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
908 if (err)
909 goto out;
910
911 if (!list_empty(&wakeup->resources)) {
912 int sleep_state;
913
914 err = acpi_power_wakeup_list_init(&wakeup->resources,
915 &sleep_state);
916 if (err) {
917 acpi_handle_warn(handle, "Retrieving current states "
918 "of wakeup power resources failed\n");
919 acpi_power_resources_list_free(&wakeup->resources);
920 goto out;
921 }
922 if (sleep_state < wakeup->sleep_state) {
923 acpi_handle_warn(handle, "Overriding _PRW sleep state "
924 "(S%d) by S%d from power resources\n",
925 (int)wakeup->sleep_state, sleep_state);
926 wakeup->sleep_state = sleep_state;
927 }
928 }
929
930 out:
931 kfree(buffer.pointer);
932 return err;
933}
934
935/* Do not use a button for S5 wakeup */
936#define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
937
938static bool acpi_wakeup_gpe_init(struct acpi_device *device)
939{
940 static const struct acpi_device_id button_device_ids[] = {
941 {"PNP0C0C", 0}, /* Power button */
942 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
943 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
944 {"", 0},
945 };
946 struct acpi_device_wakeup *wakeup = &device->wakeup;
947 const struct acpi_device_id *match;
948 acpi_status status;
949
950 wakeup->flags.notifier_present = 0;
951
952 /* Power button, Lid switch always enable wakeup */
953 match = acpi_match_acpi_device(button_device_ids, device);
954 if (match) {
955 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
956 wakeup->sleep_state == ACPI_STATE_S5)
957 wakeup->sleep_state = ACPI_STATE_S4;
958 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
959 device_set_wakeup_capable(&device->dev, true);
960 return true;
961 }
962
963 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
964 wakeup->gpe_number);
965 return ACPI_SUCCESS(status);
966}
967
968static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
969{
970 int err;
971
972 /* Presence of _PRW indicates wake capable */
973 if (!acpi_has_method(device->handle, "_PRW"))
974 return;
975
976 err = acpi_bus_extract_wakeup_device_power_package(device);
977 if (err) {
978 dev_err(&device->dev, "Unable to extract wakeup power resources");
979 return;
980 }
981
982 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
983 device->wakeup.prepare_count = 0;
984 /*
985 * Call _PSW/_DSW object to disable its ability to wake the sleeping
986 * system for the ACPI device with the _PRW object.
987 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
988 * So it is necessary to call _DSW object first. Only when it is not
989 * present will the _PSW object used.
990 */
991 err = acpi_device_sleep_wake(device, 0, 0, 0);
992 if (err)
993 pr_debug("error in _DSW or _PSW evaluation\n");
994}
995
996static void acpi_bus_init_power_state(struct acpi_device *device, int state)
997{
998 struct acpi_device_power_state *ps = &device->power.states[state];
999 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1000 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1001 acpi_status status;
1002
1003 INIT_LIST_HEAD(&ps->resources);
1004
1005 /* Evaluate "_PRx" to get referenced power resources */
1006 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1007 if (ACPI_SUCCESS(status)) {
1008 union acpi_object *package = buffer.pointer;
1009
1010 if (buffer.length && package
1011 && package->type == ACPI_TYPE_PACKAGE
1012 && package->package.count)
1013 acpi_extract_power_resources(package, 0, &ps->resources);
1014
1015 ACPI_FREE(buffer.pointer);
1016 }
1017
1018 /* Evaluate "_PSx" to see if we can do explicit sets */
1019 pathname[2] = 'S';
1020 if (acpi_has_method(device->handle, pathname))
1021 ps->flags.explicit_set = 1;
1022
1023 /* State is valid if there are means to put the device into it. */
1024 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1025 ps->flags.valid = 1;
1026
1027 ps->power = -1; /* Unknown - driver assigned */
1028 ps->latency = -1; /* Unknown - driver assigned */
1029}
1030
1031static void acpi_bus_get_power_flags(struct acpi_device *device)
1032{
1033 unsigned long long dsc = ACPI_STATE_D0;
1034 u32 i;
1035
1036 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1037 if (!acpi_has_method(device->handle, "_PS0") &&
1038 !acpi_has_method(device->handle, "_PR0"))
1039 return;
1040
1041 device->flags.power_manageable = 1;
1042
1043 /*
1044 * Power Management Flags
1045 */
1046 if (acpi_has_method(device->handle, "_PSC"))
1047 device->power.flags.explicit_get = 1;
1048
1049 if (acpi_has_method(device->handle, "_IRC"))
1050 device->power.flags.inrush_current = 1;
1051
1052 if (acpi_has_method(device->handle, "_DSW"))
1053 device->power.flags.dsw_present = 1;
1054
1055 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1056 device->power.state_for_enumeration = dsc;
1057
1058 /*
1059 * Enumerate supported power management states
1060 */
1061 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1062 acpi_bus_init_power_state(device, i);
1063
1064 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1065
1066 /* Set the defaults for D0 and D3hot (always supported). */
1067 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1068 device->power.states[ACPI_STATE_D0].power = 100;
1069 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1070
1071 /*
1072 * Use power resources only if the D0 list of them is populated, because
1073 * some platforms may provide _PR3 only to indicate D3cold support and
1074 * in those cases the power resources list returned by it may be bogus.
1075 */
1076 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1077 device->power.flags.power_resources = 1;
1078 /*
1079 * D3cold is supported if the D3hot list of power resources is
1080 * not empty.
1081 */
1082 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1083 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1084 }
1085
1086 if (acpi_bus_init_power(device))
1087 device->flags.power_manageable = 0;
1088}
1089
1090static void acpi_bus_get_flags(struct acpi_device *device)
1091{
1092 /* Presence of _STA indicates 'dynamic_status' */
1093 if (acpi_has_method(device->handle, "_STA"))
1094 device->flags.dynamic_status = 1;
1095
1096 /* Presence of _RMV indicates 'removable' */
1097 if (acpi_has_method(device->handle, "_RMV"))
1098 device->flags.removable = 1;
1099
1100 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1101 if (acpi_has_method(device->handle, "_EJD") ||
1102 acpi_has_method(device->handle, "_EJ0"))
1103 device->flags.ejectable = 1;
1104}
1105
1106static void acpi_device_get_busid(struct acpi_device *device)
1107{
1108 char bus_id[5] = { '?', 0 };
1109 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1110 int i = 0;
1111
1112 /*
1113 * Bus ID
1114 * ------
1115 * The device's Bus ID is simply the object name.
1116 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1117 */
1118 if (!acpi_dev_parent(device)) {
1119 strcpy(device->pnp.bus_id, "ACPI");
1120 return;
1121 }
1122
1123 switch (device->device_type) {
1124 case ACPI_BUS_TYPE_POWER_BUTTON:
1125 strcpy(device->pnp.bus_id, "PWRF");
1126 break;
1127 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1128 strcpy(device->pnp.bus_id, "SLPF");
1129 break;
1130 case ACPI_BUS_TYPE_ECDT_EC:
1131 strcpy(device->pnp.bus_id, "ECDT");
1132 break;
1133 default:
1134 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1135 /* Clean up trailing underscores (if any) */
1136 for (i = 3; i > 1; i--) {
1137 if (bus_id[i] == '_')
1138 bus_id[i] = '\0';
1139 else
1140 break;
1141 }
1142 strcpy(device->pnp.bus_id, bus_id);
1143 break;
1144 }
1145}
1146
1147/*
1148 * acpi_ata_match - see if an acpi object is an ATA device
1149 *
1150 * If an acpi object has one of the ACPI ATA methods defined,
1151 * then we can safely call it an ATA device.
1152 */
1153bool acpi_ata_match(acpi_handle handle)
1154{
1155 return acpi_has_method(handle, "_GTF") ||
1156 acpi_has_method(handle, "_GTM") ||
1157 acpi_has_method(handle, "_STM") ||
1158 acpi_has_method(handle, "_SDD");
1159}
1160
1161/*
1162 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1163 *
1164 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1165 * then we can safely call it an ejectable drive bay
1166 */
1167bool acpi_bay_match(acpi_handle handle)
1168{
1169 acpi_handle phandle;
1170
1171 if (!acpi_has_method(handle, "_EJ0"))
1172 return false;
1173 if (acpi_ata_match(handle))
1174 return true;
1175 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1176 return false;
1177
1178 return acpi_ata_match(phandle);
1179}
1180
1181bool acpi_device_is_battery(struct acpi_device *adev)
1182{
1183 struct acpi_hardware_id *hwid;
1184
1185 list_for_each_entry(hwid, &adev->pnp.ids, list)
1186 if (!strcmp("PNP0C0A", hwid->id))
1187 return true;
1188
1189 return false;
1190}
1191
1192static bool is_ejectable_bay(struct acpi_device *adev)
1193{
1194 acpi_handle handle = adev->handle;
1195
1196 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1197 return true;
1198
1199 return acpi_bay_match(handle);
1200}
1201
1202/*
1203 * acpi_dock_match - see if an acpi object has a _DCK method
1204 */
1205bool acpi_dock_match(acpi_handle handle)
1206{
1207 return acpi_has_method(handle, "_DCK");
1208}
1209
1210static acpi_status
1211acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1212 void **return_value)
1213{
1214 long *cap = context;
1215
1216 if (acpi_has_method(handle, "_BCM") &&
1217 acpi_has_method(handle, "_BCL")) {
1218 acpi_handle_debug(handle, "Found generic backlight support\n");
1219 *cap |= ACPI_VIDEO_BACKLIGHT;
1220 /* We have backlight support, no need to scan further */
1221 return AE_CTRL_TERMINATE;
1222 }
1223 return 0;
1224}
1225
1226/* Returns true if the ACPI object is a video device which can be
1227 * handled by video.ko.
1228 * The device will get a Linux specific CID added in scan.c to
1229 * identify the device as an ACPI graphics device
1230 * Be aware that the graphics device may not be physically present
1231 * Use acpi_video_get_capabilities() to detect general ACPI video
1232 * capabilities of present cards
1233 */
1234long acpi_is_video_device(acpi_handle handle)
1235{
1236 long video_caps = 0;
1237
1238 /* Is this device able to support video switching ? */
1239 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1240 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1241
1242 /* Is this device able to retrieve a video ROM ? */
1243 if (acpi_has_method(handle, "_ROM"))
1244 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1245
1246 /* Is this device able to configure which video head to be POSTed ? */
1247 if (acpi_has_method(handle, "_VPO") &&
1248 acpi_has_method(handle, "_GPD") &&
1249 acpi_has_method(handle, "_SPD"))
1250 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1251
1252 /* Only check for backlight functionality if one of the above hit. */
1253 if (video_caps)
1254 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1255 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1256 &video_caps, NULL);
1257
1258 return video_caps;
1259}
1260EXPORT_SYMBOL(acpi_is_video_device);
1261
1262const char *acpi_device_hid(struct acpi_device *device)
1263{
1264 struct acpi_hardware_id *hid;
1265
1266 if (list_empty(&device->pnp.ids))
1267 return dummy_hid;
1268
1269 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1270 return hid->id;
1271}
1272EXPORT_SYMBOL(acpi_device_hid);
1273
1274static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1275{
1276 struct acpi_hardware_id *id;
1277
1278 id = kmalloc(sizeof(*id), GFP_KERNEL);
1279 if (!id)
1280 return;
1281
1282 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1283 if (!id->id) {
1284 kfree(id);
1285 return;
1286 }
1287
1288 list_add_tail(&id->list, &pnp->ids);
1289 pnp->type.hardware_id = 1;
1290}
1291
1292/*
1293 * Old IBM workstations have a DSDT bug wherein the SMBus object
1294 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1295 * prefix. Work around this.
1296 */
1297static bool acpi_ibm_smbus_match(acpi_handle handle)
1298{
1299 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1300 struct acpi_buffer path = { sizeof(node_name), node_name };
1301
1302 if (!dmi_name_in_vendors("IBM"))
1303 return false;
1304
1305 /* Look for SMBS object */
1306 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1307 strcmp("SMBS", path.pointer))
1308 return false;
1309
1310 /* Does it have the necessary (but misnamed) methods? */
1311 if (acpi_has_method(handle, "SBI") &&
1312 acpi_has_method(handle, "SBR") &&
1313 acpi_has_method(handle, "SBW"))
1314 return true;
1315
1316 return false;
1317}
1318
1319static bool acpi_object_is_system_bus(acpi_handle handle)
1320{
1321 acpi_handle tmp;
1322
1323 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1324 tmp == handle)
1325 return true;
1326 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1327 tmp == handle)
1328 return true;
1329
1330 return false;
1331}
1332
1333static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1334 int device_type)
1335{
1336 struct acpi_device_info *info = NULL;
1337 struct acpi_pnp_device_id_list *cid_list;
1338 int i;
1339
1340 switch (device_type) {
1341 case ACPI_BUS_TYPE_DEVICE:
1342 if (handle == ACPI_ROOT_OBJECT) {
1343 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1344 break;
1345 }
1346
1347 acpi_get_object_info(handle, &info);
1348 if (!info) {
1349 pr_err("%s: Error reading device info\n", __func__);
1350 return;
1351 }
1352
1353 if (info->valid & ACPI_VALID_HID) {
1354 acpi_add_id(pnp, info->hardware_id.string);
1355 pnp->type.platform_id = 1;
1356 }
1357 if (info->valid & ACPI_VALID_CID) {
1358 cid_list = &info->compatible_id_list;
1359 for (i = 0; i < cid_list->count; i++)
1360 acpi_add_id(pnp, cid_list->ids[i].string);
1361 }
1362 if (info->valid & ACPI_VALID_ADR) {
1363 pnp->bus_address = info->address;
1364 pnp->type.bus_address = 1;
1365 }
1366 if (info->valid & ACPI_VALID_UID)
1367 pnp->unique_id = kstrdup(info->unique_id.string,
1368 GFP_KERNEL);
1369 if (info->valid & ACPI_VALID_CLS)
1370 acpi_add_id(pnp, info->class_code.string);
1371
1372 kfree(info);
1373
1374 /*
1375 * Some devices don't reliably have _HIDs & _CIDs, so add
1376 * synthetic HIDs to make sure drivers can find them.
1377 */
1378 if (acpi_is_video_device(handle)) {
1379 acpi_add_id(pnp, ACPI_VIDEO_HID);
1380 pnp->type.backlight = 1;
1381 break;
1382 }
1383 if (acpi_bay_match(handle))
1384 acpi_add_id(pnp, ACPI_BAY_HID);
1385 else if (acpi_dock_match(handle))
1386 acpi_add_id(pnp, ACPI_DOCK_HID);
1387 else if (acpi_ibm_smbus_match(handle))
1388 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1389 else if (list_empty(&pnp->ids) &&
1390 acpi_object_is_system_bus(handle)) {
1391 /* \_SB, \_TZ, LNXSYBUS */
1392 acpi_add_id(pnp, ACPI_BUS_HID);
1393 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1394 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1395 }
1396
1397 break;
1398 case ACPI_BUS_TYPE_POWER:
1399 acpi_add_id(pnp, ACPI_POWER_HID);
1400 break;
1401 case ACPI_BUS_TYPE_PROCESSOR:
1402 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1403 break;
1404 case ACPI_BUS_TYPE_THERMAL:
1405 acpi_add_id(pnp, ACPI_THERMAL_HID);
1406 break;
1407 case ACPI_BUS_TYPE_POWER_BUTTON:
1408 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1409 break;
1410 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1411 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1412 break;
1413 case ACPI_BUS_TYPE_ECDT_EC:
1414 acpi_add_id(pnp, ACPI_ECDT_HID);
1415 break;
1416 }
1417}
1418
1419void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1420{
1421 struct acpi_hardware_id *id, *tmp;
1422
1423 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1424 kfree_const(id->id);
1425 kfree(id);
1426 }
1427 kfree(pnp->unique_id);
1428}
1429
1430/**
1431 * acpi_dma_supported - Check DMA support for the specified device.
1432 * @adev: The pointer to acpi device
1433 *
1434 * Return false if DMA is not supported. Otherwise, return true
1435 */
1436bool acpi_dma_supported(const struct acpi_device *adev)
1437{
1438 if (!adev)
1439 return false;
1440
1441 if (adev->flags.cca_seen)
1442 return true;
1443
1444 /*
1445 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1446 * DMA on "Intel platforms". Presumably that includes all x86 and
1447 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1448 */
1449 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1450 return true;
1451
1452 return false;
1453}
1454
1455/**
1456 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1457 * @adev: The pointer to acpi device
1458 *
1459 * Return enum dev_dma_attr.
1460 */
1461enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1462{
1463 if (!acpi_dma_supported(adev))
1464 return DEV_DMA_NOT_SUPPORTED;
1465
1466 if (adev->flags.coherent_dma)
1467 return DEV_DMA_COHERENT;
1468 else
1469 return DEV_DMA_NON_COHERENT;
1470}
1471
1472/**
1473 * acpi_dma_get_range() - Get device DMA parameters.
1474 *
1475 * @dev: device to configure
1476 * @map: pointer to DMA ranges result
1477 *
1478 * Evaluate DMA regions and return pointer to DMA regions on
1479 * parsing success; it does not update the passed in values on failure.
1480 *
1481 * Return 0 on success, < 0 on failure.
1482 */
1483int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1484{
1485 struct acpi_device *adev;
1486 LIST_HEAD(list);
1487 struct resource_entry *rentry;
1488 int ret;
1489 struct device *dma_dev = dev;
1490 struct bus_dma_region *r;
1491
1492 /*
1493 * Walk the device tree chasing an ACPI companion with a _DMA
1494 * object while we go. Stop if we find a device with an ACPI
1495 * companion containing a _DMA method.
1496 */
1497 do {
1498 adev = ACPI_COMPANION(dma_dev);
1499 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1500 break;
1501
1502 dma_dev = dma_dev->parent;
1503 } while (dma_dev);
1504
1505 if (!dma_dev)
1506 return -ENODEV;
1507
1508 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1509 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1510 return -EINVAL;
1511 }
1512
1513 ret = acpi_dev_get_dma_resources(adev, &list);
1514 if (ret > 0) {
1515 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1516 if (!r) {
1517 ret = -ENOMEM;
1518 goto out;
1519 }
1520
1521 *map = r;
1522
1523 list_for_each_entry(rentry, &list, node) {
1524 if (rentry->res->start >= rentry->res->end) {
1525 kfree(*map);
1526 *map = NULL;
1527 ret = -EINVAL;
1528 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1529 goto out;
1530 }
1531
1532 r->cpu_start = rentry->res->start;
1533 r->dma_start = rentry->res->start - rentry->offset;
1534 r->size = resource_size(rentry->res);
1535 r++;
1536 }
1537 }
1538 out:
1539 acpi_dev_free_resource_list(&list);
1540
1541 return ret >= 0 ? 0 : ret;
1542}
1543
1544#ifdef CONFIG_IOMMU_API
1545int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1546 struct fwnode_handle *fwnode,
1547 const struct iommu_ops *ops)
1548{
1549 int ret = iommu_fwspec_init(dev, fwnode, ops);
1550
1551 if (!ret)
1552 ret = iommu_fwspec_add_ids(dev, &id, 1);
1553
1554 return ret;
1555}
1556
1557static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1558{
1559 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1560
1561 return fwspec ? fwspec->ops : NULL;
1562}
1563
1564static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1565{
1566 int err;
1567 const struct iommu_ops *ops;
1568
1569 /* Serialise to make dev->iommu stable under our potential fwspec */
1570 mutex_lock(&iommu_probe_device_lock);
1571 /*
1572 * If we already translated the fwspec there is nothing left to do,
1573 * return the iommu_ops.
1574 */
1575 ops = acpi_iommu_fwspec_ops(dev);
1576 if (ops) {
1577 mutex_unlock(&iommu_probe_device_lock);
1578 return 0;
1579 }
1580
1581 err = iort_iommu_configure_id(dev, id_in);
1582 if (err && err != -EPROBE_DEFER)
1583 err = viot_iommu_configure(dev);
1584 mutex_unlock(&iommu_probe_device_lock);
1585
1586 /*
1587 * If we have reason to believe the IOMMU driver missed the initial
1588 * iommu_probe_device() call for dev, replay it to get things in order.
1589 */
1590 if (!err && dev->bus)
1591 err = iommu_probe_device(dev);
1592
1593 /* Ignore all other errors apart from EPROBE_DEFER */
1594 if (err == -EPROBE_DEFER) {
1595 return err;
1596 } else if (err) {
1597 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1598 return -ENODEV;
1599 }
1600 if (!acpi_iommu_fwspec_ops(dev))
1601 return -ENODEV;
1602 return 0;
1603}
1604
1605#else /* !CONFIG_IOMMU_API */
1606
1607int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1608 struct fwnode_handle *fwnode,
1609 const struct iommu_ops *ops)
1610{
1611 return -ENODEV;
1612}
1613
1614static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1615{
1616 return -ENODEV;
1617}
1618
1619#endif /* !CONFIG_IOMMU_API */
1620
1621/**
1622 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1623 * @dev: The pointer to the device
1624 * @attr: device dma attributes
1625 * @input_id: input device id const value pointer
1626 */
1627int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1628 const u32 *input_id)
1629{
1630 int ret;
1631
1632 if (attr == DEV_DMA_NOT_SUPPORTED) {
1633 set_dma_ops(dev, &dma_dummy_ops);
1634 return 0;
1635 }
1636
1637 acpi_arch_dma_setup(dev);
1638
1639 ret = acpi_iommu_configure_id(dev, input_id);
1640 if (ret == -EPROBE_DEFER)
1641 return -EPROBE_DEFER;
1642
1643 /*
1644 * Historically this routine doesn't fail driver probing due to errors
1645 * in acpi_iommu_configure_id()
1646 */
1647
1648 arch_setup_dma_ops(dev, 0, U64_MAX, attr == DEV_DMA_COHERENT);
1649
1650 return 0;
1651}
1652EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1653
1654static void acpi_init_coherency(struct acpi_device *adev)
1655{
1656 unsigned long long cca = 0;
1657 acpi_status status;
1658 struct acpi_device *parent = acpi_dev_parent(adev);
1659
1660 if (parent && parent->flags.cca_seen) {
1661 /*
1662 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1663 * already saw one.
1664 */
1665 adev->flags.cca_seen = 1;
1666 cca = parent->flags.coherent_dma;
1667 } else {
1668 status = acpi_evaluate_integer(adev->handle, "_CCA",
1669 NULL, &cca);
1670 if (ACPI_SUCCESS(status))
1671 adev->flags.cca_seen = 1;
1672 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1673 /*
1674 * If architecture does not specify that _CCA is
1675 * required for DMA-able devices (e.g. x86),
1676 * we default to _CCA=1.
1677 */
1678 cca = 1;
1679 else
1680 acpi_handle_debug(adev->handle,
1681 "ACPI device is missing _CCA.\n");
1682 }
1683
1684 adev->flags.coherent_dma = cca;
1685}
1686
1687static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1688{
1689 bool *is_serial_bus_slave_p = data;
1690
1691 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1692 return 1;
1693
1694 *is_serial_bus_slave_p = true;
1695
1696 /* no need to do more checking */
1697 return -1;
1698}
1699
1700static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1701{
1702 struct acpi_device *parent = acpi_dev_parent(device);
1703 static const struct acpi_device_id indirect_io_hosts[] = {
1704 {"HISI0191", 0},
1705 {}
1706 };
1707
1708 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1709}
1710
1711static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1712{
1713 struct list_head resource_list;
1714 bool is_serial_bus_slave = false;
1715 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1716 /*
1717 * These devices have multiple SerialBus resources and a client
1718 * device must be instantiated for each of them, each with
1719 * its own device id.
1720 * Normally we only instantiate one client device for the first
1721 * resource, using the ACPI HID as id. These special cases are handled
1722 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1723 * knows which client device id to use for each resource.
1724 */
1725 {"BSG1160", },
1726 {"BSG2150", },
1727 {"CSC3551", },
1728 {"CSC3556", },
1729 {"INT33FE", },
1730 {"INT3515", },
1731 /* Non-conforming _HID for Cirrus Logic already released */
1732 {"CLSA0100", },
1733 {"CLSA0101", },
1734 /*
1735 * Some ACPI devs contain SerialBus resources even though they are not
1736 * attached to a serial bus at all.
1737 */
1738 {ACPI_VIDEO_HID, },
1739 {"MSHW0028", },
1740 /*
1741 * HIDs of device with an UartSerialBusV2 resource for which userspace
1742 * expects a regular tty cdev to be created (instead of the in kernel
1743 * serdev) and which have a kernel driver which expects a platform_dev
1744 * such as the rfkill-gpio driver.
1745 */
1746 {"BCM4752", },
1747 {"LNV4752", },
1748 {}
1749 };
1750
1751 if (acpi_is_indirect_io_slave(device))
1752 return true;
1753
1754 /* Macs use device properties in lieu of _CRS resources */
1755 if (x86_apple_machine &&
1756 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1757 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1758 fwnode_property_present(&device->fwnode, "baud")))
1759 return true;
1760
1761 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1762 return false;
1763
1764 INIT_LIST_HEAD(&resource_list);
1765 acpi_dev_get_resources(device, &resource_list,
1766 acpi_check_serial_bus_slave,
1767 &is_serial_bus_slave);
1768 acpi_dev_free_resource_list(&resource_list);
1769
1770 return is_serial_bus_slave;
1771}
1772
1773void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1774 int type, void (*release)(struct device *))
1775{
1776 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1777
1778 INIT_LIST_HEAD(&device->pnp.ids);
1779 device->device_type = type;
1780 device->handle = handle;
1781 device->dev.parent = parent ? &parent->dev : NULL;
1782 device->dev.release = release;
1783 device->dev.bus = &acpi_bus_type;
1784 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1785 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1786 acpi_device_get_busid(device);
1787 acpi_set_pnp_ids(handle, &device->pnp, type);
1788 acpi_init_properties(device);
1789 acpi_bus_get_flags(device);
1790 device->flags.match_driver = false;
1791 device->flags.initialized = true;
1792 device->flags.enumeration_by_parent =
1793 acpi_device_enumeration_by_parent(device);
1794 acpi_device_clear_enumerated(device);
1795 device_initialize(&device->dev);
1796 dev_set_uevent_suppress(&device->dev, true);
1797 acpi_init_coherency(device);
1798}
1799
1800static void acpi_scan_dep_init(struct acpi_device *adev)
1801{
1802 struct acpi_dep_data *dep;
1803
1804 list_for_each_entry(dep, &acpi_dep_list, node) {
1805 if (dep->consumer == adev->handle) {
1806 if (dep->honor_dep)
1807 adev->flags.honor_deps = 1;
1808
1809 adev->dep_unmet++;
1810 }
1811 }
1812}
1813
1814void acpi_device_add_finalize(struct acpi_device *device)
1815{
1816 dev_set_uevent_suppress(&device->dev, false);
1817 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1818}
1819
1820static void acpi_scan_init_status(struct acpi_device *adev)
1821{
1822 if (acpi_bus_get_status(adev))
1823 acpi_set_device_status(adev, 0);
1824}
1825
1826static int acpi_add_single_object(struct acpi_device **child,
1827 acpi_handle handle, int type, bool dep_init)
1828{
1829 struct acpi_device *device;
1830 bool release_dep_lock = false;
1831 int result;
1832
1833 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1834 if (!device)
1835 return -ENOMEM;
1836
1837 acpi_init_device_object(device, handle, type, acpi_device_release);
1838 /*
1839 * Getting the status is delayed till here so that we can call
1840 * acpi_bus_get_status() and use its quirk handling. Note that
1841 * this must be done before the get power-/wakeup_dev-flags calls.
1842 */
1843 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1844 if (dep_init) {
1845 mutex_lock(&acpi_dep_list_lock);
1846 /*
1847 * Hold the lock until the acpi_tie_acpi_dev() call
1848 * below to prevent concurrent acpi_scan_clear_dep()
1849 * from deleting a dependency list entry without
1850 * updating dep_unmet for the device.
1851 */
1852 release_dep_lock = true;
1853 acpi_scan_dep_init(device);
1854 }
1855 acpi_scan_init_status(device);
1856 }
1857
1858 acpi_bus_get_power_flags(device);
1859 acpi_bus_get_wakeup_device_flags(device);
1860
1861 result = acpi_tie_acpi_dev(device);
1862
1863 if (release_dep_lock)
1864 mutex_unlock(&acpi_dep_list_lock);
1865
1866 if (!result)
1867 result = acpi_device_add(device);
1868
1869 if (result) {
1870 acpi_device_release(&device->dev);
1871 return result;
1872 }
1873
1874 acpi_power_add_remove_device(device, true);
1875 acpi_device_add_finalize(device);
1876
1877 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1878 dev_name(&device->dev), device->dev.parent ?
1879 dev_name(device->dev.parent) : "(null)");
1880
1881 *child = device;
1882 return 0;
1883}
1884
1885static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1886 void *context)
1887{
1888 struct resource *res = context;
1889
1890 if (acpi_dev_resource_memory(ares, res))
1891 return AE_CTRL_TERMINATE;
1892
1893 return AE_OK;
1894}
1895
1896static bool acpi_device_should_be_hidden(acpi_handle handle)
1897{
1898 acpi_status status;
1899 struct resource res;
1900
1901 /* Check if it should ignore the UART device */
1902 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1903 return false;
1904
1905 /*
1906 * The UART device described in SPCR table is assumed to have only one
1907 * memory resource present. So we only look for the first one here.
1908 */
1909 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1910 acpi_get_resource_memory, &res);
1911 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1912 return false;
1913
1914 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1915 &res.start);
1916
1917 return true;
1918}
1919
1920bool acpi_device_is_present(const struct acpi_device *adev)
1921{
1922 return adev->status.present || adev->status.functional;
1923}
1924
1925static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1926 const char *idstr,
1927 const struct acpi_device_id **matchid)
1928{
1929 const struct acpi_device_id *devid;
1930
1931 if (handler->match)
1932 return handler->match(idstr, matchid);
1933
1934 for (devid = handler->ids; devid->id[0]; devid++)
1935 if (!strcmp((char *)devid->id, idstr)) {
1936 if (matchid)
1937 *matchid = devid;
1938
1939 return true;
1940 }
1941
1942 return false;
1943}
1944
1945static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1946 const struct acpi_device_id **matchid)
1947{
1948 struct acpi_scan_handler *handler;
1949
1950 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1951 if (acpi_scan_handler_matching(handler, idstr, matchid))
1952 return handler;
1953
1954 return NULL;
1955}
1956
1957void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1958{
1959 if (!!hotplug->enabled == !!val)
1960 return;
1961
1962 mutex_lock(&acpi_scan_lock);
1963
1964 hotplug->enabled = val;
1965
1966 mutex_unlock(&acpi_scan_lock);
1967}
1968
1969static void acpi_scan_init_hotplug(struct acpi_device *adev)
1970{
1971 struct acpi_hardware_id *hwid;
1972
1973 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1974 acpi_dock_add(adev);
1975 return;
1976 }
1977 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1978 struct acpi_scan_handler *handler;
1979
1980 handler = acpi_scan_match_handler(hwid->id, NULL);
1981 if (handler) {
1982 adev->flags.hotplug_notify = true;
1983 break;
1984 }
1985 }
1986}
1987
1988static u32 acpi_scan_check_dep(acpi_handle handle)
1989{
1990 struct acpi_handle_list dep_devices;
1991 u32 count;
1992 int i;
1993
1994 /*
1995 * Check for _HID here to avoid deferring the enumeration of:
1996 * 1. PCI devices.
1997 * 2. ACPI nodes describing USB ports.
1998 * Still, checking for _HID catches more then just these cases ...
1999 */
2000 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2001 return 0;
2002
2003 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2004 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2005 return 0;
2006 }
2007
2008 for (count = 0, i = 0; i < dep_devices.count; i++) {
2009 struct acpi_device_info *info;
2010 struct acpi_dep_data *dep;
2011 bool skip, honor_dep;
2012 acpi_status status;
2013
2014 status = acpi_get_object_info(dep_devices.handles[i], &info);
2015 if (ACPI_FAILURE(status)) {
2016 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2017 continue;
2018 }
2019
2020 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2021 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2022 kfree(info);
2023
2024 if (skip)
2025 continue;
2026
2027 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2028 if (!dep)
2029 continue;
2030
2031 count++;
2032
2033 dep->supplier = dep_devices.handles[i];
2034 dep->consumer = handle;
2035 dep->honor_dep = honor_dep;
2036
2037 mutex_lock(&acpi_dep_list_lock);
2038 list_add_tail(&dep->node , &acpi_dep_list);
2039 mutex_unlock(&acpi_dep_list_lock);
2040 }
2041
2042 acpi_handle_list_free(&dep_devices);
2043 return count;
2044}
2045
2046static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2047{
2048 acpi_mipi_check_crs_csi2(handle);
2049 return AE_OK;
2050}
2051
2052static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2053 struct acpi_device **adev_p)
2054{
2055 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2056 acpi_object_type acpi_type;
2057 int type;
2058
2059 if (device)
2060 goto out;
2061
2062 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2063 return AE_OK;
2064
2065 switch (acpi_type) {
2066 case ACPI_TYPE_DEVICE:
2067 if (acpi_device_should_be_hidden(handle))
2068 return AE_OK;
2069
2070 if (first_pass) {
2071 acpi_mipi_check_crs_csi2(handle);
2072
2073 /* Bail out if there are dependencies. */
2074 if (acpi_scan_check_dep(handle) > 0) {
2075 /*
2076 * The entire CSI-2 connection graph needs to be
2077 * extracted before any drivers or scan handlers
2078 * are bound to struct device objects, so scan
2079 * _CRS CSI-2 resource descriptors for all
2080 * devices below the current handle.
2081 */
2082 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2083 ACPI_UINT32_MAX,
2084 acpi_scan_check_crs_csi2_cb,
2085 NULL, NULL, NULL);
2086 return AE_CTRL_DEPTH;
2087 }
2088 }
2089
2090 fallthrough;
2091 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2092 type = ACPI_BUS_TYPE_DEVICE;
2093 break;
2094
2095 case ACPI_TYPE_PROCESSOR:
2096 type = ACPI_BUS_TYPE_PROCESSOR;
2097 break;
2098
2099 case ACPI_TYPE_THERMAL:
2100 type = ACPI_BUS_TYPE_THERMAL;
2101 break;
2102
2103 case ACPI_TYPE_POWER:
2104 acpi_add_power_resource(handle);
2105 fallthrough;
2106 default:
2107 return AE_OK;
2108 }
2109
2110 /*
2111 * If first_pass is true at this point, the device has no dependencies,
2112 * or the creation of the device object would have been postponed above.
2113 */
2114 acpi_add_single_object(&device, handle, type, !first_pass);
2115 if (!device)
2116 return AE_CTRL_DEPTH;
2117
2118 acpi_scan_init_hotplug(device);
2119
2120out:
2121 if (!*adev_p)
2122 *adev_p = device;
2123
2124 return AE_OK;
2125}
2126
2127static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2128 void *not_used, void **ret_p)
2129{
2130 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2131}
2132
2133static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2134 void *not_used, void **ret_p)
2135{
2136 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2137}
2138
2139static void acpi_default_enumeration(struct acpi_device *device)
2140{
2141 /*
2142 * Do not enumerate devices with enumeration_by_parent flag set as
2143 * they will be enumerated by their respective parents.
2144 */
2145 if (!device->flags.enumeration_by_parent) {
2146 acpi_create_platform_device(device, NULL);
2147 acpi_device_set_enumerated(device);
2148 } else {
2149 blocking_notifier_call_chain(&acpi_reconfig_chain,
2150 ACPI_RECONFIG_DEVICE_ADD, device);
2151 }
2152}
2153
2154static const struct acpi_device_id generic_device_ids[] = {
2155 {ACPI_DT_NAMESPACE_HID, },
2156 {"", },
2157};
2158
2159static int acpi_generic_device_attach(struct acpi_device *adev,
2160 const struct acpi_device_id *not_used)
2161{
2162 /*
2163 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2164 * below can be unconditional.
2165 */
2166 if (adev->data.of_compatible)
2167 acpi_default_enumeration(adev);
2168
2169 return 1;
2170}
2171
2172static struct acpi_scan_handler generic_device_handler = {
2173 .ids = generic_device_ids,
2174 .attach = acpi_generic_device_attach,
2175};
2176
2177static int acpi_scan_attach_handler(struct acpi_device *device)
2178{
2179 struct acpi_hardware_id *hwid;
2180 int ret = 0;
2181
2182 list_for_each_entry(hwid, &device->pnp.ids, list) {
2183 const struct acpi_device_id *devid;
2184 struct acpi_scan_handler *handler;
2185
2186 handler = acpi_scan_match_handler(hwid->id, &devid);
2187 if (handler) {
2188 if (!handler->attach) {
2189 device->pnp.type.platform_id = 0;
2190 continue;
2191 }
2192 device->handler = handler;
2193 ret = handler->attach(device, devid);
2194 if (ret > 0)
2195 break;
2196
2197 device->handler = NULL;
2198 if (ret < 0)
2199 break;
2200 }
2201 }
2202
2203 return ret;
2204}
2205
2206static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2207{
2208 bool skip = !first_pass && device->flags.visited;
2209 acpi_handle ejd;
2210 int ret;
2211
2212 if (skip)
2213 goto ok;
2214
2215 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2216 register_dock_dependent_device(device, ejd);
2217
2218 acpi_bus_get_status(device);
2219 /* Skip devices that are not ready for enumeration (e.g. not present) */
2220 if (!acpi_dev_ready_for_enumeration(device)) {
2221 device->flags.initialized = false;
2222 acpi_device_clear_enumerated(device);
2223 device->flags.power_manageable = 0;
2224 return 0;
2225 }
2226 if (device->handler)
2227 goto ok;
2228
2229 if (!device->flags.initialized) {
2230 device->flags.power_manageable =
2231 device->power.states[ACPI_STATE_D0].flags.valid;
2232 if (acpi_bus_init_power(device))
2233 device->flags.power_manageable = 0;
2234
2235 device->flags.initialized = true;
2236 } else if (device->flags.visited) {
2237 goto ok;
2238 }
2239
2240 ret = acpi_scan_attach_handler(device);
2241 if (ret < 0)
2242 return 0;
2243
2244 device->flags.match_driver = true;
2245 if (ret > 0 && !device->flags.enumeration_by_parent) {
2246 acpi_device_set_enumerated(device);
2247 goto ok;
2248 }
2249
2250 ret = device_attach(&device->dev);
2251 if (ret < 0)
2252 return 0;
2253
2254 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2255 acpi_default_enumeration(device);
2256 else
2257 acpi_device_set_enumerated(device);
2258
2259ok:
2260 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2261
2262 if (!skip && device->handler && device->handler->hotplug.notify_online)
2263 device->handler->hotplug.notify_online(device);
2264
2265 return 0;
2266}
2267
2268static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2269{
2270 struct acpi_device **adev_p = data;
2271 struct acpi_device *adev = *adev_p;
2272
2273 /*
2274 * If we're passed a 'previous' consumer device then we need to skip
2275 * any consumers until we meet the previous one, and then NULL @data
2276 * so the next one can be returned.
2277 */
2278 if (adev) {
2279 if (dep->consumer == adev->handle)
2280 *adev_p = NULL;
2281
2282 return 0;
2283 }
2284
2285 adev = acpi_get_acpi_dev(dep->consumer);
2286 if (adev) {
2287 *(struct acpi_device **)data = adev;
2288 return 1;
2289 }
2290 /* Continue parsing if the device object is not present. */
2291 return 0;
2292}
2293
2294struct acpi_scan_clear_dep_work {
2295 struct work_struct work;
2296 struct acpi_device *adev;
2297};
2298
2299static void acpi_scan_clear_dep_fn(struct work_struct *work)
2300{
2301 struct acpi_scan_clear_dep_work *cdw;
2302
2303 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2304
2305 acpi_scan_lock_acquire();
2306 acpi_bus_attach(cdw->adev, (void *)true);
2307 acpi_scan_lock_release();
2308
2309 acpi_dev_put(cdw->adev);
2310 kfree(cdw);
2311}
2312
2313static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2314{
2315 struct acpi_scan_clear_dep_work *cdw;
2316
2317 if (adev->dep_unmet)
2318 return false;
2319
2320 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2321 if (!cdw)
2322 return false;
2323
2324 cdw->adev = adev;
2325 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2326 /*
2327 * Since the work function may block on the lock until the entire
2328 * initial enumeration of devices is complete, put it into the unbound
2329 * workqueue.
2330 */
2331 queue_work(system_unbound_wq, &cdw->work);
2332
2333 return true;
2334}
2335
2336static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2337{
2338 list_del(&dep->node);
2339 kfree(dep);
2340}
2341
2342static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2343{
2344 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2345
2346 if (adev) {
2347 adev->dep_unmet--;
2348 if (!acpi_scan_clear_dep_queue(adev))
2349 acpi_dev_put(adev);
2350 }
2351
2352 if (dep->free_when_met)
2353 acpi_scan_delete_dep_data(dep);
2354 else
2355 dep->met = true;
2356
2357 return 0;
2358}
2359
2360/**
2361 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2362 * @handle: The ACPI handle of the supplier device
2363 * @callback: Pointer to the callback function to apply
2364 * @data: Pointer to some data to pass to the callback
2365 *
2366 * The return value of the callback determines this function's behaviour. If 0
2367 * is returned we continue to iterate over acpi_dep_list. If a positive value
2368 * is returned then the loop is broken but this function returns 0. If a
2369 * negative value is returned by the callback then the loop is broken and that
2370 * value is returned as the final error.
2371 */
2372static int acpi_walk_dep_device_list(acpi_handle handle,
2373 int (*callback)(struct acpi_dep_data *, void *),
2374 void *data)
2375{
2376 struct acpi_dep_data *dep, *tmp;
2377 int ret = 0;
2378
2379 mutex_lock(&acpi_dep_list_lock);
2380 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2381 if (dep->supplier == handle) {
2382 ret = callback(dep, data);
2383 if (ret)
2384 break;
2385 }
2386 }
2387 mutex_unlock(&acpi_dep_list_lock);
2388
2389 return ret > 0 ? 0 : ret;
2390}
2391
2392/**
2393 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2394 * @supplier: Pointer to the supplier &struct acpi_device
2395 *
2396 * Clear dependencies on the given device.
2397 */
2398void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2399{
2400 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2401}
2402EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2403
2404/**
2405 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2406 * @device: Pointer to the &struct acpi_device to check
2407 *
2408 * Check if the device is present and has no unmet dependencies.
2409 *
2410 * Return true if the device is ready for enumeratino. Otherwise, return false.
2411 */
2412bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2413{
2414 if (device->flags.honor_deps && device->dep_unmet)
2415 return false;
2416
2417 return acpi_device_is_present(device);
2418}
2419EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2420
2421/**
2422 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2423 * @supplier: Pointer to the dependee device
2424 * @start: Pointer to the current dependent device
2425 *
2426 * Returns the next &struct acpi_device which declares itself dependent on
2427 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2428 *
2429 * If the returned adev is not passed as @start to this function, the caller is
2430 * responsible for putting the reference to adev when it is no longer needed.
2431 */
2432struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2433 struct acpi_device *start)
2434{
2435 struct acpi_device *adev = start;
2436
2437 acpi_walk_dep_device_list(supplier->handle,
2438 acpi_dev_get_next_consumer_dev_cb, &adev);
2439
2440 acpi_dev_put(start);
2441
2442 if (adev == start)
2443 return NULL;
2444
2445 return adev;
2446}
2447EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2448
2449static void acpi_scan_postponed_branch(acpi_handle handle)
2450{
2451 struct acpi_device *adev = NULL;
2452
2453 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2454 return;
2455
2456 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2457 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2458
2459 /*
2460 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2461 * have been added above.
2462 */
2463 acpi_mipi_init_crs_csi2_swnodes();
2464
2465 acpi_bus_attach(adev, NULL);
2466}
2467
2468static void acpi_scan_postponed(void)
2469{
2470 struct acpi_dep_data *dep, *tmp;
2471
2472 mutex_lock(&acpi_dep_list_lock);
2473
2474 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2475 acpi_handle handle = dep->consumer;
2476
2477 /*
2478 * In case there are multiple acpi_dep_list entries with the
2479 * same consumer, skip the current entry if the consumer device
2480 * object corresponding to it is present already.
2481 */
2482 if (!acpi_fetch_acpi_dev(handle)) {
2483 /*
2484 * Even though the lock is released here, tmp is
2485 * guaranteed to be valid, because none of the list
2486 * entries following dep is marked as "free when met"
2487 * and so they cannot be deleted.
2488 */
2489 mutex_unlock(&acpi_dep_list_lock);
2490
2491 acpi_scan_postponed_branch(handle);
2492
2493 mutex_lock(&acpi_dep_list_lock);
2494 }
2495
2496 if (dep->met)
2497 acpi_scan_delete_dep_data(dep);
2498 else
2499 dep->free_when_met = true;
2500 }
2501
2502 mutex_unlock(&acpi_dep_list_lock);
2503}
2504
2505/**
2506 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2507 * @handle: Root of the namespace scope to scan.
2508 *
2509 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2510 * found devices.
2511 *
2512 * If no devices were found, -ENODEV is returned, but it does not mean that
2513 * there has been a real error. There just have been no suitable ACPI objects
2514 * in the table trunk from which the kernel could create a device and add an
2515 * appropriate driver.
2516 *
2517 * Must be called under acpi_scan_lock.
2518 */
2519int acpi_bus_scan(acpi_handle handle)
2520{
2521 struct acpi_device *device = NULL;
2522
2523 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2524
2525 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2526 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2527 acpi_bus_check_add_1, NULL, NULL,
2528 (void **)&device);
2529
2530 if (!device)
2531 return -ENODEV;
2532
2533 /*
2534 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2535 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2536 * walk above and MIPI DisCo for Imaging device properties.
2537 */
2538 acpi_mipi_scan_crs_csi2();
2539 acpi_mipi_init_crs_csi2_swnodes();
2540
2541 acpi_bus_attach(device, (void *)true);
2542
2543 /* Pass 2: Enumerate all of the remaining devices. */
2544
2545 acpi_scan_postponed();
2546
2547 acpi_mipi_crs_csi2_cleanup();
2548
2549 return 0;
2550}
2551EXPORT_SYMBOL(acpi_bus_scan);
2552
2553static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2554{
2555 struct acpi_scan_handler *handler = adev->handler;
2556
2557 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2558
2559 adev->flags.match_driver = false;
2560 if (handler) {
2561 if (handler->detach)
2562 handler->detach(adev);
2563
2564 adev->handler = NULL;
2565 } else {
2566 device_release_driver(&adev->dev);
2567 }
2568 /*
2569 * Most likely, the device is going away, so put it into D3cold before
2570 * that.
2571 */
2572 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2573 adev->flags.initialized = false;
2574 acpi_device_clear_enumerated(adev);
2575
2576 return 0;
2577}
2578
2579/**
2580 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2581 * @adev: Root of the ACPI namespace scope to walk.
2582 *
2583 * Must be called under acpi_scan_lock.
2584 */
2585void acpi_bus_trim(struct acpi_device *adev)
2586{
2587 acpi_bus_trim_one(adev, NULL);
2588}
2589EXPORT_SYMBOL_GPL(acpi_bus_trim);
2590
2591int acpi_bus_register_early_device(int type)
2592{
2593 struct acpi_device *device = NULL;
2594 int result;
2595
2596 result = acpi_add_single_object(&device, NULL, type, false);
2597 if (result)
2598 return result;
2599
2600 device->flags.match_driver = true;
2601 return device_attach(&device->dev);
2602}
2603EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2604
2605static void acpi_bus_scan_fixed(void)
2606{
2607 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2608 struct acpi_device *adev = NULL;
2609
2610 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2611 false);
2612 if (adev) {
2613 adev->flags.match_driver = true;
2614 if (device_attach(&adev->dev) >= 0)
2615 device_init_wakeup(&adev->dev, true);
2616 else
2617 dev_dbg(&adev->dev, "No driver\n");
2618 }
2619 }
2620
2621 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2622 struct acpi_device *adev = NULL;
2623
2624 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2625 false);
2626 if (adev) {
2627 adev->flags.match_driver = true;
2628 if (device_attach(&adev->dev) < 0)
2629 dev_dbg(&adev->dev, "No driver\n");
2630 }
2631 }
2632}
2633
2634static void __init acpi_get_spcr_uart_addr(void)
2635{
2636 acpi_status status;
2637 struct acpi_table_spcr *spcr_ptr;
2638
2639 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2640 (struct acpi_table_header **)&spcr_ptr);
2641 if (ACPI_FAILURE(status)) {
2642 pr_warn("STAO table present, but SPCR is missing\n");
2643 return;
2644 }
2645
2646 spcr_uart_addr = spcr_ptr->serial_port.address;
2647 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2648}
2649
2650static bool acpi_scan_initialized;
2651
2652void __init acpi_scan_init(void)
2653{
2654 acpi_status status;
2655 struct acpi_table_stao *stao_ptr;
2656
2657 acpi_pci_root_init();
2658 acpi_pci_link_init();
2659 acpi_processor_init();
2660 acpi_platform_init();
2661 acpi_lpss_init();
2662 acpi_apd_init();
2663 acpi_cmos_rtc_init();
2664 acpi_container_init();
2665 acpi_memory_hotplug_init();
2666 acpi_watchdog_init();
2667 acpi_pnp_init();
2668 acpi_int340x_thermal_init();
2669 acpi_init_lpit();
2670
2671 acpi_scan_add_handler(&generic_device_handler);
2672
2673 /*
2674 * If there is STAO table, check whether it needs to ignore the UART
2675 * device in SPCR table.
2676 */
2677 status = acpi_get_table(ACPI_SIG_STAO, 0,
2678 (struct acpi_table_header **)&stao_ptr);
2679 if (ACPI_SUCCESS(status)) {
2680 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2681 pr_info("STAO Name List not yet supported.\n");
2682
2683 if (stao_ptr->ignore_uart)
2684 acpi_get_spcr_uart_addr();
2685
2686 acpi_put_table((struct acpi_table_header *)stao_ptr);
2687 }
2688
2689 acpi_gpe_apply_masked_gpes();
2690 acpi_update_all_gpes();
2691
2692 /*
2693 * Although we call __add_memory() that is documented to require the
2694 * device_hotplug_lock, it is not necessary here because this is an
2695 * early code when userspace or any other code path cannot trigger
2696 * hotplug/hotunplug operations.
2697 */
2698 mutex_lock(&acpi_scan_lock);
2699 /*
2700 * Enumerate devices in the ACPI namespace.
2701 */
2702 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2703 goto unlock;
2704
2705 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2706 if (!acpi_root)
2707 goto unlock;
2708
2709 /* Fixed feature devices do not exist on HW-reduced platform */
2710 if (!acpi_gbl_reduced_hardware)
2711 acpi_bus_scan_fixed();
2712
2713 acpi_turn_off_unused_power_resources();
2714
2715 acpi_scan_initialized = true;
2716
2717unlock:
2718 mutex_unlock(&acpi_scan_lock);
2719}
2720
2721static struct acpi_probe_entry *ape;
2722static int acpi_probe_count;
2723static DEFINE_MUTEX(acpi_probe_mutex);
2724
2725static int __init acpi_match_madt(union acpi_subtable_headers *header,
2726 const unsigned long end)
2727{
2728 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2729 if (!ape->probe_subtbl(header, end))
2730 acpi_probe_count++;
2731
2732 return 0;
2733}
2734
2735int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2736{
2737 int count = 0;
2738
2739 if (acpi_disabled)
2740 return 0;
2741
2742 mutex_lock(&acpi_probe_mutex);
2743 for (ape = ap_head; nr; ape++, nr--) {
2744 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2745 acpi_probe_count = 0;
2746 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2747 count += acpi_probe_count;
2748 } else {
2749 int res;
2750 res = acpi_table_parse(ape->id, ape->probe_table);
2751 if (!res)
2752 count++;
2753 }
2754 }
2755 mutex_unlock(&acpi_probe_mutex);
2756
2757 return count;
2758}
2759
2760static void acpi_table_events_fn(struct work_struct *work)
2761{
2762 acpi_scan_lock_acquire();
2763 acpi_bus_scan(ACPI_ROOT_OBJECT);
2764 acpi_scan_lock_release();
2765
2766 kfree(work);
2767}
2768
2769void acpi_scan_table_notify(void)
2770{
2771 struct work_struct *work;
2772
2773 if (!acpi_scan_initialized)
2774 return;
2775
2776 work = kmalloc(sizeof(*work), GFP_KERNEL);
2777 if (!work)
2778 return;
2779
2780 INIT_WORK(work, acpi_table_events_fn);
2781 schedule_work(work);
2782}
2783
2784int acpi_reconfig_notifier_register(struct notifier_block *nb)
2785{
2786 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2787}
2788EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2789
2790int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2791{
2792 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2793}
2794EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/nls.h>
20#include <linux/dma-map-ops.h>
21#include <linux/platform_data/x86/apple.h>
22#include <linux/pgtable.h>
23
24#include "internal.h"
25
26extern struct acpi_device *acpi_root;
27
28#define ACPI_BUS_CLASS "system_bus"
29#define ACPI_BUS_HID "LNXSYBUS"
30#define ACPI_BUS_DEVICE_NAME "System Bus"
31
32#define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent)
33
34#define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
35
36static const char *dummy_hid = "device";
37
38static LIST_HEAD(acpi_dep_list);
39static DEFINE_MUTEX(acpi_dep_list_lock);
40LIST_HEAD(acpi_bus_id_list);
41static DEFINE_MUTEX(acpi_scan_lock);
42static LIST_HEAD(acpi_scan_handlers_list);
43DEFINE_MUTEX(acpi_device_lock);
44LIST_HEAD(acpi_wakeup_device_list);
45static DEFINE_MUTEX(acpi_hp_context_lock);
46
47/*
48 * The UART device described by the SPCR table is the only object which needs
49 * special-casing. Everything else is covered by ACPI namespace paths in STAO
50 * table.
51 */
52static u64 spcr_uart_addr;
53
54void acpi_scan_lock_acquire(void)
55{
56 mutex_lock(&acpi_scan_lock);
57}
58EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
59
60void acpi_scan_lock_release(void)
61{
62 mutex_unlock(&acpi_scan_lock);
63}
64EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
65
66void acpi_lock_hp_context(void)
67{
68 mutex_lock(&acpi_hp_context_lock);
69}
70
71void acpi_unlock_hp_context(void)
72{
73 mutex_unlock(&acpi_hp_context_lock);
74}
75
76void acpi_initialize_hp_context(struct acpi_device *adev,
77 struct acpi_hotplug_context *hp,
78 int (*notify)(struct acpi_device *, u32),
79 void (*uevent)(struct acpi_device *, u32))
80{
81 acpi_lock_hp_context();
82 hp->notify = notify;
83 hp->uevent = uevent;
84 acpi_set_hp_context(adev, hp);
85 acpi_unlock_hp_context();
86}
87EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88
89int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90{
91 if (!handler)
92 return -EINVAL;
93
94 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95 return 0;
96}
97
98int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99 const char *hotplug_profile_name)
100{
101 int error;
102
103 error = acpi_scan_add_handler(handler);
104 if (error)
105 return error;
106
107 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108 return 0;
109}
110
111bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112{
113 struct acpi_device_physical_node *pn;
114 bool offline = true;
115 char *envp[] = { "EVENT=offline", NULL };
116
117 /*
118 * acpi_container_offline() calls this for all of the container's
119 * children under the container's physical_node_lock lock.
120 */
121 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122
123 list_for_each_entry(pn, &adev->physical_node_list, node)
124 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125 if (uevent)
126 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127
128 offline = false;
129 break;
130 }
131
132 mutex_unlock(&adev->physical_node_lock);
133 return offline;
134}
135
136static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137 void **ret_p)
138{
139 struct acpi_device *device = NULL;
140 struct acpi_device_physical_node *pn;
141 bool second_pass = (bool)data;
142 acpi_status status = AE_OK;
143
144 if (acpi_bus_get_device(handle, &device))
145 return AE_OK;
146
147 if (device->handler && !device->handler->hotplug.enabled) {
148 *ret_p = &device->dev;
149 return AE_SUPPORT;
150 }
151
152 mutex_lock(&device->physical_node_lock);
153
154 list_for_each_entry(pn, &device->physical_node_list, node) {
155 int ret;
156
157 if (second_pass) {
158 /* Skip devices offlined by the first pass. */
159 if (pn->put_online)
160 continue;
161 } else {
162 pn->put_online = false;
163 }
164 ret = device_offline(pn->dev);
165 if (ret >= 0) {
166 pn->put_online = !ret;
167 } else {
168 *ret_p = pn->dev;
169 if (second_pass) {
170 status = AE_ERROR;
171 break;
172 }
173 }
174 }
175
176 mutex_unlock(&device->physical_node_lock);
177
178 return status;
179}
180
181static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182 void **ret_p)
183{
184 struct acpi_device *device = NULL;
185 struct acpi_device_physical_node *pn;
186
187 if (acpi_bus_get_device(handle, &device))
188 return AE_OK;
189
190 mutex_lock(&device->physical_node_lock);
191
192 list_for_each_entry(pn, &device->physical_node_list, node)
193 if (pn->put_online) {
194 device_online(pn->dev);
195 pn->put_online = false;
196 }
197
198 mutex_unlock(&device->physical_node_lock);
199
200 return AE_OK;
201}
202
203static int acpi_scan_try_to_offline(struct acpi_device *device)
204{
205 acpi_handle handle = device->handle;
206 struct device *errdev = NULL;
207 acpi_status status;
208
209 /*
210 * Carry out two passes here and ignore errors in the first pass,
211 * because if the devices in question are memory blocks and
212 * CONFIG_MEMCG is set, one of the blocks may hold data structures
213 * that the other blocks depend on, but it is not known in advance which
214 * block holds them.
215 *
216 * If the first pass is successful, the second one isn't needed, though.
217 */
218 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219 NULL, acpi_bus_offline, (void *)false,
220 (void **)&errdev);
221 if (status == AE_SUPPORT) {
222 dev_warn(errdev, "Offline disabled.\n");
223 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224 acpi_bus_online, NULL, NULL, NULL);
225 return -EPERM;
226 }
227 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228 if (errdev) {
229 errdev = NULL;
230 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231 NULL, acpi_bus_offline, (void *)true,
232 (void **)&errdev);
233 if (!errdev)
234 acpi_bus_offline(handle, 0, (void *)true,
235 (void **)&errdev);
236
237 if (errdev) {
238 dev_warn(errdev, "Offline failed.\n");
239 acpi_bus_online(handle, 0, NULL, NULL);
240 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241 ACPI_UINT32_MAX, acpi_bus_online,
242 NULL, NULL, NULL);
243 return -EBUSY;
244 }
245 }
246 return 0;
247}
248
249static int acpi_scan_hot_remove(struct acpi_device *device)
250{
251 acpi_handle handle = device->handle;
252 unsigned long long sta;
253 acpi_status status;
254
255 if (device->handler && device->handler->hotplug.demand_offline) {
256 if (!acpi_scan_is_offline(device, true))
257 return -EBUSY;
258 } else {
259 int error = acpi_scan_try_to_offline(device);
260 if (error)
261 return error;
262 }
263
264 acpi_handle_debug(handle, "Ejecting\n");
265
266 acpi_bus_trim(device);
267
268 acpi_evaluate_lck(handle, 0);
269 /*
270 * TBD: _EJD support.
271 */
272 status = acpi_evaluate_ej0(handle);
273 if (status == AE_NOT_FOUND)
274 return -ENODEV;
275 else if (ACPI_FAILURE(status))
276 return -EIO;
277
278 /*
279 * Verify if eject was indeed successful. If not, log an error
280 * message. No need to call _OST since _EJ0 call was made OK.
281 */
282 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
283 if (ACPI_FAILURE(status)) {
284 acpi_handle_warn(handle,
285 "Status check after eject failed (0x%x)\n", status);
286 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
287 acpi_handle_warn(handle,
288 "Eject incomplete - status 0x%llx\n", sta);
289 }
290
291 return 0;
292}
293
294static int acpi_scan_device_not_present(struct acpi_device *adev)
295{
296 if (!acpi_device_enumerated(adev)) {
297 dev_warn(&adev->dev, "Still not present\n");
298 return -EALREADY;
299 }
300 acpi_bus_trim(adev);
301 return 0;
302}
303
304static int acpi_scan_device_check(struct acpi_device *adev)
305{
306 int error;
307
308 acpi_bus_get_status(adev);
309 if (adev->status.present || adev->status.functional) {
310 /*
311 * This function is only called for device objects for which
312 * matching scan handlers exist. The only situation in which
313 * the scan handler is not attached to this device object yet
314 * is when the device has just appeared (either it wasn't
315 * present at all before or it was removed and then added
316 * again).
317 */
318 if (adev->handler) {
319 dev_warn(&adev->dev, "Already enumerated\n");
320 return -EALREADY;
321 }
322 error = acpi_bus_scan(adev->handle);
323 if (error) {
324 dev_warn(&adev->dev, "Namespace scan failure\n");
325 return error;
326 }
327 if (!adev->handler) {
328 dev_warn(&adev->dev, "Enumeration failure\n");
329 error = -ENODEV;
330 }
331 } else {
332 error = acpi_scan_device_not_present(adev);
333 }
334 return error;
335}
336
337static int acpi_scan_bus_check(struct acpi_device *adev)
338{
339 struct acpi_scan_handler *handler = adev->handler;
340 struct acpi_device *child;
341 int error;
342
343 acpi_bus_get_status(adev);
344 if (!(adev->status.present || adev->status.functional)) {
345 acpi_scan_device_not_present(adev);
346 return 0;
347 }
348 if (handler && handler->hotplug.scan_dependent)
349 return handler->hotplug.scan_dependent(adev);
350
351 error = acpi_bus_scan(adev->handle);
352 if (error) {
353 dev_warn(&adev->dev, "Namespace scan failure\n");
354 return error;
355 }
356 list_for_each_entry(child, &adev->children, node) {
357 error = acpi_scan_bus_check(child);
358 if (error)
359 return error;
360 }
361 return 0;
362}
363
364static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
365{
366 switch (type) {
367 case ACPI_NOTIFY_BUS_CHECK:
368 return acpi_scan_bus_check(adev);
369 case ACPI_NOTIFY_DEVICE_CHECK:
370 return acpi_scan_device_check(adev);
371 case ACPI_NOTIFY_EJECT_REQUEST:
372 case ACPI_OST_EC_OSPM_EJECT:
373 if (adev->handler && !adev->handler->hotplug.enabled) {
374 dev_info(&adev->dev, "Eject disabled\n");
375 return -EPERM;
376 }
377 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
378 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
379 return acpi_scan_hot_remove(adev);
380 }
381 return -EINVAL;
382}
383
384void acpi_device_hotplug(struct acpi_device *adev, u32 src)
385{
386 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
387 int error = -ENODEV;
388
389 lock_device_hotplug();
390 mutex_lock(&acpi_scan_lock);
391
392 /*
393 * The device object's ACPI handle cannot become invalid as long as we
394 * are holding acpi_scan_lock, but it might have become invalid before
395 * that lock was acquired.
396 */
397 if (adev->handle == INVALID_ACPI_HANDLE)
398 goto err_out;
399
400 if (adev->flags.is_dock_station) {
401 error = dock_notify(adev, src);
402 } else if (adev->flags.hotplug_notify) {
403 error = acpi_generic_hotplug_event(adev, src);
404 } else {
405 int (*notify)(struct acpi_device *, u32);
406
407 acpi_lock_hp_context();
408 notify = adev->hp ? adev->hp->notify : NULL;
409 acpi_unlock_hp_context();
410 /*
411 * There may be additional notify handlers for device objects
412 * without the .event() callback, so ignore them here.
413 */
414 if (notify)
415 error = notify(adev, src);
416 else
417 goto out;
418 }
419 switch (error) {
420 case 0:
421 ost_code = ACPI_OST_SC_SUCCESS;
422 break;
423 case -EPERM:
424 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
425 break;
426 case -EBUSY:
427 ost_code = ACPI_OST_SC_DEVICE_BUSY;
428 break;
429 default:
430 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
431 break;
432 }
433
434 err_out:
435 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
436
437 out:
438 acpi_bus_put_acpi_device(adev);
439 mutex_unlock(&acpi_scan_lock);
440 unlock_device_hotplug();
441}
442
443static void acpi_free_power_resources_lists(struct acpi_device *device)
444{
445 int i;
446
447 if (device->wakeup.flags.valid)
448 acpi_power_resources_list_free(&device->wakeup.resources);
449
450 if (!device->power.flags.power_resources)
451 return;
452
453 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
454 struct acpi_device_power_state *ps = &device->power.states[i];
455 acpi_power_resources_list_free(&ps->resources);
456 }
457}
458
459static void acpi_device_release(struct device *dev)
460{
461 struct acpi_device *acpi_dev = to_acpi_device(dev);
462
463 acpi_free_properties(acpi_dev);
464 acpi_free_pnp_ids(&acpi_dev->pnp);
465 acpi_free_power_resources_lists(acpi_dev);
466 kfree(acpi_dev);
467}
468
469static void acpi_device_del(struct acpi_device *device)
470{
471 struct acpi_device_bus_id *acpi_device_bus_id;
472
473 mutex_lock(&acpi_device_lock);
474 if (device->parent)
475 list_del(&device->node);
476
477 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
478 if (!strcmp(acpi_device_bus_id->bus_id,
479 acpi_device_hid(device))) {
480 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
481 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
482 list_del(&acpi_device_bus_id->node);
483 kfree_const(acpi_device_bus_id->bus_id);
484 kfree(acpi_device_bus_id);
485 }
486 break;
487 }
488
489 list_del(&device->wakeup_list);
490 mutex_unlock(&acpi_device_lock);
491
492 acpi_power_add_remove_device(device, false);
493 acpi_device_remove_files(device);
494 if (device->remove)
495 device->remove(device);
496
497 device_del(&device->dev);
498}
499
500static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
501
502static LIST_HEAD(acpi_device_del_list);
503static DEFINE_MUTEX(acpi_device_del_lock);
504
505static void acpi_device_del_work_fn(struct work_struct *work_not_used)
506{
507 for (;;) {
508 struct acpi_device *adev;
509
510 mutex_lock(&acpi_device_del_lock);
511
512 if (list_empty(&acpi_device_del_list)) {
513 mutex_unlock(&acpi_device_del_lock);
514 break;
515 }
516 adev = list_first_entry(&acpi_device_del_list,
517 struct acpi_device, del_list);
518 list_del(&adev->del_list);
519
520 mutex_unlock(&acpi_device_del_lock);
521
522 blocking_notifier_call_chain(&acpi_reconfig_chain,
523 ACPI_RECONFIG_DEVICE_REMOVE, adev);
524
525 acpi_device_del(adev);
526 /*
527 * Drop references to all power resources that might have been
528 * used by the device.
529 */
530 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
531 acpi_dev_put(adev);
532 }
533}
534
535/**
536 * acpi_scan_drop_device - Drop an ACPI device object.
537 * @handle: Handle of an ACPI namespace node, not used.
538 * @context: Address of the ACPI device object to drop.
539 *
540 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
541 * namespace node the device object pointed to by @context is attached to.
542 *
543 * The unregistration is carried out asynchronously to avoid running
544 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
545 * ensure the correct ordering (the device objects must be unregistered in the
546 * same order in which the corresponding namespace nodes are deleted).
547 */
548static void acpi_scan_drop_device(acpi_handle handle, void *context)
549{
550 static DECLARE_WORK(work, acpi_device_del_work_fn);
551 struct acpi_device *adev = context;
552
553 mutex_lock(&acpi_device_del_lock);
554
555 /*
556 * Use the ACPI hotplug workqueue which is ordered, so this work item
557 * won't run after any hotplug work items submitted subsequently. That
558 * prevents attempts to register device objects identical to those being
559 * deleted from happening concurrently (such attempts result from
560 * hotplug events handled via the ACPI hotplug workqueue). It also will
561 * run after all of the work items submitted previously, which helps
562 * those work items to ensure that they are not accessing stale device
563 * objects.
564 */
565 if (list_empty(&acpi_device_del_list))
566 acpi_queue_hotplug_work(&work);
567
568 list_add_tail(&adev->del_list, &acpi_device_del_list);
569 /* Make acpi_ns_validate_handle() return NULL for this handle. */
570 adev->handle = INVALID_ACPI_HANDLE;
571
572 mutex_unlock(&acpi_device_del_lock);
573}
574
575static struct acpi_device *handle_to_device(acpi_handle handle,
576 void (*callback)(void *))
577{
578 struct acpi_device *adev = NULL;
579 acpi_status status;
580
581 status = acpi_get_data_full(handle, acpi_scan_drop_device,
582 (void **)&adev, callback);
583 if (ACPI_FAILURE(status) || !adev) {
584 acpi_handle_debug(handle, "No context!\n");
585 return NULL;
586 }
587 return adev;
588}
589
590int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
591{
592 if (!device)
593 return -EINVAL;
594
595 *device = handle_to_device(handle, NULL);
596 if (!*device)
597 return -ENODEV;
598
599 return 0;
600}
601EXPORT_SYMBOL(acpi_bus_get_device);
602
603static void get_acpi_device(void *dev)
604{
605 acpi_dev_get(dev);
606}
607
608struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
609{
610 return handle_to_device(handle, get_acpi_device);
611}
612
613static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
614{
615 struct acpi_device_bus_id *acpi_device_bus_id;
616
617 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
618 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
619 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
620 return acpi_device_bus_id;
621 }
622 return NULL;
623}
624
625static int acpi_device_set_name(struct acpi_device *device,
626 struct acpi_device_bus_id *acpi_device_bus_id)
627{
628 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
629 int result;
630
631 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
632 if (result < 0)
633 return result;
634
635 device->pnp.instance_no = result;
636 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
637 return 0;
638}
639
640static int acpi_tie_acpi_dev(struct acpi_device *adev)
641{
642 acpi_handle handle = adev->handle;
643 acpi_status status;
644
645 if (!handle)
646 return 0;
647
648 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
649 if (ACPI_FAILURE(status)) {
650 acpi_handle_err(handle, "Unable to attach device data\n");
651 return -ENODEV;
652 }
653
654 return 0;
655}
656
657static int __acpi_device_add(struct acpi_device *device,
658 void (*release)(struct device *))
659{
660 struct acpi_device_bus_id *acpi_device_bus_id;
661 int result;
662
663 /*
664 * Linkage
665 * -------
666 * Link this device to its parent and siblings.
667 */
668 INIT_LIST_HEAD(&device->children);
669 INIT_LIST_HEAD(&device->node);
670 INIT_LIST_HEAD(&device->wakeup_list);
671 INIT_LIST_HEAD(&device->physical_node_list);
672 INIT_LIST_HEAD(&device->del_list);
673 mutex_init(&device->physical_node_lock);
674
675 mutex_lock(&acpi_device_lock);
676
677 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
678 if (acpi_device_bus_id) {
679 result = acpi_device_set_name(device, acpi_device_bus_id);
680 if (result)
681 goto err_unlock;
682 } else {
683 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
684 GFP_KERNEL);
685 if (!acpi_device_bus_id) {
686 result = -ENOMEM;
687 goto err_unlock;
688 }
689 acpi_device_bus_id->bus_id =
690 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
691 if (!acpi_device_bus_id->bus_id) {
692 kfree(acpi_device_bus_id);
693 result = -ENOMEM;
694 goto err_unlock;
695 }
696
697 ida_init(&acpi_device_bus_id->instance_ida);
698
699 result = acpi_device_set_name(device, acpi_device_bus_id);
700 if (result) {
701 kfree_const(acpi_device_bus_id->bus_id);
702 kfree(acpi_device_bus_id);
703 goto err_unlock;
704 }
705
706 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
707 }
708
709 if (device->parent)
710 list_add_tail(&device->node, &device->parent->children);
711
712 if (device->wakeup.flags.valid)
713 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
714
715 mutex_unlock(&acpi_device_lock);
716
717 if (device->parent)
718 device->dev.parent = &device->parent->dev;
719
720 device->dev.bus = &acpi_bus_type;
721 device->dev.release = release;
722 result = device_add(&device->dev);
723 if (result) {
724 dev_err(&device->dev, "Error registering device\n");
725 goto err;
726 }
727
728 result = acpi_device_setup_files(device);
729 if (result)
730 pr_err("Error creating sysfs interface for device %s\n",
731 dev_name(&device->dev));
732
733 return 0;
734
735err:
736 mutex_lock(&acpi_device_lock);
737
738 if (device->parent)
739 list_del(&device->node);
740
741 list_del(&device->wakeup_list);
742
743err_unlock:
744 mutex_unlock(&acpi_device_lock);
745
746 acpi_detach_data(device->handle, acpi_scan_drop_device);
747
748 return result;
749}
750
751int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
752{
753 int ret;
754
755 ret = acpi_tie_acpi_dev(adev);
756 if (ret)
757 return ret;
758
759 return __acpi_device_add(adev, release);
760}
761
762/* --------------------------------------------------------------------------
763 Device Enumeration
764 -------------------------------------------------------------------------- */
765static bool acpi_info_matches_ids(struct acpi_device_info *info,
766 const char * const ids[])
767{
768 struct acpi_pnp_device_id_list *cid_list = NULL;
769 int i, index;
770
771 if (!(info->valid & ACPI_VALID_HID))
772 return false;
773
774 index = match_string(ids, -1, info->hardware_id.string);
775 if (index >= 0)
776 return true;
777
778 if (info->valid & ACPI_VALID_CID)
779 cid_list = &info->compatible_id_list;
780
781 if (!cid_list)
782 return false;
783
784 for (i = 0; i < cid_list->count; i++) {
785 index = match_string(ids, -1, cid_list->ids[i].string);
786 if (index >= 0)
787 return true;
788 }
789
790 return false;
791}
792
793/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
794static const char * const acpi_ignore_dep_ids[] = {
795 "PNP0D80", /* Windows-compatible System Power Management Controller */
796 "INT33BD", /* Intel Baytrail Mailbox Device */
797 NULL
798};
799
800static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
801{
802 struct acpi_device *device = NULL;
803 acpi_status status;
804
805 /*
806 * Fixed hardware devices do not appear in the namespace and do not
807 * have handles, but we fabricate acpi_devices for them, so we have
808 * to deal with them specially.
809 */
810 if (!handle)
811 return acpi_root;
812
813 do {
814 status = acpi_get_parent(handle, &handle);
815 if (ACPI_FAILURE(status))
816 return status == AE_NULL_ENTRY ? NULL : acpi_root;
817 } while (acpi_bus_get_device(handle, &device));
818 return device;
819}
820
821acpi_status
822acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
823{
824 acpi_status status;
825 acpi_handle tmp;
826 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
827 union acpi_object *obj;
828
829 status = acpi_get_handle(handle, "_EJD", &tmp);
830 if (ACPI_FAILURE(status))
831 return status;
832
833 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
834 if (ACPI_SUCCESS(status)) {
835 obj = buffer.pointer;
836 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
837 ejd);
838 kfree(buffer.pointer);
839 }
840 return status;
841}
842EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
843
844static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
845{
846 acpi_handle handle = dev->handle;
847 struct acpi_device_wakeup *wakeup = &dev->wakeup;
848 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
849 union acpi_object *package = NULL;
850 union acpi_object *element = NULL;
851 acpi_status status;
852 int err = -ENODATA;
853
854 INIT_LIST_HEAD(&wakeup->resources);
855
856 /* _PRW */
857 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
858 if (ACPI_FAILURE(status)) {
859 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
860 acpi_format_exception(status));
861 return err;
862 }
863
864 package = (union acpi_object *)buffer.pointer;
865
866 if (!package || package->package.count < 2)
867 goto out;
868
869 element = &(package->package.elements[0]);
870 if (!element)
871 goto out;
872
873 if (element->type == ACPI_TYPE_PACKAGE) {
874 if ((element->package.count < 2) ||
875 (element->package.elements[0].type !=
876 ACPI_TYPE_LOCAL_REFERENCE)
877 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
878 goto out;
879
880 wakeup->gpe_device =
881 element->package.elements[0].reference.handle;
882 wakeup->gpe_number =
883 (u32) element->package.elements[1].integer.value;
884 } else if (element->type == ACPI_TYPE_INTEGER) {
885 wakeup->gpe_device = NULL;
886 wakeup->gpe_number = element->integer.value;
887 } else {
888 goto out;
889 }
890
891 element = &(package->package.elements[1]);
892 if (element->type != ACPI_TYPE_INTEGER)
893 goto out;
894
895 wakeup->sleep_state = element->integer.value;
896
897 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
898 if (err)
899 goto out;
900
901 if (!list_empty(&wakeup->resources)) {
902 int sleep_state;
903
904 err = acpi_power_wakeup_list_init(&wakeup->resources,
905 &sleep_state);
906 if (err) {
907 acpi_handle_warn(handle, "Retrieving current states "
908 "of wakeup power resources failed\n");
909 acpi_power_resources_list_free(&wakeup->resources);
910 goto out;
911 }
912 if (sleep_state < wakeup->sleep_state) {
913 acpi_handle_warn(handle, "Overriding _PRW sleep state "
914 "(S%d) by S%d from power resources\n",
915 (int)wakeup->sleep_state, sleep_state);
916 wakeup->sleep_state = sleep_state;
917 }
918 }
919
920 out:
921 kfree(buffer.pointer);
922 return err;
923}
924
925static bool acpi_wakeup_gpe_init(struct acpi_device *device)
926{
927 static const struct acpi_device_id button_device_ids[] = {
928 {"PNP0C0C", 0}, /* Power button */
929 {"PNP0C0D", 0}, /* Lid */
930 {"PNP0C0E", 0}, /* Sleep button */
931 {"", 0},
932 };
933 struct acpi_device_wakeup *wakeup = &device->wakeup;
934 acpi_status status;
935
936 wakeup->flags.notifier_present = 0;
937
938 /* Power button, Lid switch always enable wakeup */
939 if (!acpi_match_device_ids(device, button_device_ids)) {
940 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
941 /* Do not use Lid/sleep button for S5 wakeup */
942 if (wakeup->sleep_state == ACPI_STATE_S5)
943 wakeup->sleep_state = ACPI_STATE_S4;
944 }
945 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
946 device_set_wakeup_capable(&device->dev, true);
947 return true;
948 }
949
950 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
951 wakeup->gpe_number);
952 return ACPI_SUCCESS(status);
953}
954
955static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
956{
957 int err;
958
959 /* Presence of _PRW indicates wake capable */
960 if (!acpi_has_method(device->handle, "_PRW"))
961 return;
962
963 err = acpi_bus_extract_wakeup_device_power_package(device);
964 if (err) {
965 dev_err(&device->dev, "Unable to extract wakeup power resources");
966 return;
967 }
968
969 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
970 device->wakeup.prepare_count = 0;
971 /*
972 * Call _PSW/_DSW object to disable its ability to wake the sleeping
973 * system for the ACPI device with the _PRW object.
974 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
975 * So it is necessary to call _DSW object first. Only when it is not
976 * present will the _PSW object used.
977 */
978 err = acpi_device_sleep_wake(device, 0, 0, 0);
979 if (err)
980 pr_debug("error in _DSW or _PSW evaluation\n");
981}
982
983static void acpi_bus_init_power_state(struct acpi_device *device, int state)
984{
985 struct acpi_device_power_state *ps = &device->power.states[state];
986 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
987 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
988 acpi_status status;
989
990 INIT_LIST_HEAD(&ps->resources);
991
992 /* Evaluate "_PRx" to get referenced power resources */
993 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
994 if (ACPI_SUCCESS(status)) {
995 union acpi_object *package = buffer.pointer;
996
997 if (buffer.length && package
998 && package->type == ACPI_TYPE_PACKAGE
999 && package->package.count)
1000 acpi_extract_power_resources(package, 0, &ps->resources);
1001
1002 ACPI_FREE(buffer.pointer);
1003 }
1004
1005 /* Evaluate "_PSx" to see if we can do explicit sets */
1006 pathname[2] = 'S';
1007 if (acpi_has_method(device->handle, pathname))
1008 ps->flags.explicit_set = 1;
1009
1010 /* State is valid if there are means to put the device into it. */
1011 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012 ps->flags.valid = 1;
1013
1014 ps->power = -1; /* Unknown - driver assigned */
1015 ps->latency = -1; /* Unknown - driver assigned */
1016}
1017
1018static void acpi_bus_get_power_flags(struct acpi_device *device)
1019{
1020 u32 i;
1021
1022 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1023 if (!acpi_has_method(device->handle, "_PS0") &&
1024 !acpi_has_method(device->handle, "_PR0"))
1025 return;
1026
1027 device->flags.power_manageable = 1;
1028
1029 /*
1030 * Power Management Flags
1031 */
1032 if (acpi_has_method(device->handle, "_PSC"))
1033 device->power.flags.explicit_get = 1;
1034
1035 if (acpi_has_method(device->handle, "_IRC"))
1036 device->power.flags.inrush_current = 1;
1037
1038 if (acpi_has_method(device->handle, "_DSW"))
1039 device->power.flags.dsw_present = 1;
1040
1041 /*
1042 * Enumerate supported power management states
1043 */
1044 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1045 acpi_bus_init_power_state(device, i);
1046
1047 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1048
1049 /* Set the defaults for D0 and D3hot (always supported). */
1050 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1051 device->power.states[ACPI_STATE_D0].power = 100;
1052 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1053
1054 /*
1055 * Use power resources only if the D0 list of them is populated, because
1056 * some platforms may provide _PR3 only to indicate D3cold support and
1057 * in those cases the power resources list returned by it may be bogus.
1058 */
1059 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1060 device->power.flags.power_resources = 1;
1061 /*
1062 * D3cold is supported if the D3hot list of power resources is
1063 * not empty.
1064 */
1065 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1066 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1067 }
1068
1069 if (acpi_bus_init_power(device))
1070 device->flags.power_manageable = 0;
1071}
1072
1073static void acpi_bus_get_flags(struct acpi_device *device)
1074{
1075 /* Presence of _STA indicates 'dynamic_status' */
1076 if (acpi_has_method(device->handle, "_STA"))
1077 device->flags.dynamic_status = 1;
1078
1079 /* Presence of _RMV indicates 'removable' */
1080 if (acpi_has_method(device->handle, "_RMV"))
1081 device->flags.removable = 1;
1082
1083 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1084 if (acpi_has_method(device->handle, "_EJD") ||
1085 acpi_has_method(device->handle, "_EJ0"))
1086 device->flags.ejectable = 1;
1087}
1088
1089static void acpi_device_get_busid(struct acpi_device *device)
1090{
1091 char bus_id[5] = { '?', 0 };
1092 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1093 int i = 0;
1094
1095 /*
1096 * Bus ID
1097 * ------
1098 * The device's Bus ID is simply the object name.
1099 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1100 */
1101 if (ACPI_IS_ROOT_DEVICE(device)) {
1102 strcpy(device->pnp.bus_id, "ACPI");
1103 return;
1104 }
1105
1106 switch (device->device_type) {
1107 case ACPI_BUS_TYPE_POWER_BUTTON:
1108 strcpy(device->pnp.bus_id, "PWRF");
1109 break;
1110 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1111 strcpy(device->pnp.bus_id, "SLPF");
1112 break;
1113 case ACPI_BUS_TYPE_ECDT_EC:
1114 strcpy(device->pnp.bus_id, "ECDT");
1115 break;
1116 default:
1117 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1118 /* Clean up trailing underscores (if any) */
1119 for (i = 3; i > 1; i--) {
1120 if (bus_id[i] == '_')
1121 bus_id[i] = '\0';
1122 else
1123 break;
1124 }
1125 strcpy(device->pnp.bus_id, bus_id);
1126 break;
1127 }
1128}
1129
1130/*
1131 * acpi_ata_match - see if an acpi object is an ATA device
1132 *
1133 * If an acpi object has one of the ACPI ATA methods defined,
1134 * then we can safely call it an ATA device.
1135 */
1136bool acpi_ata_match(acpi_handle handle)
1137{
1138 return acpi_has_method(handle, "_GTF") ||
1139 acpi_has_method(handle, "_GTM") ||
1140 acpi_has_method(handle, "_STM") ||
1141 acpi_has_method(handle, "_SDD");
1142}
1143
1144/*
1145 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1146 *
1147 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1148 * then we can safely call it an ejectable drive bay
1149 */
1150bool acpi_bay_match(acpi_handle handle)
1151{
1152 acpi_handle phandle;
1153
1154 if (!acpi_has_method(handle, "_EJ0"))
1155 return false;
1156 if (acpi_ata_match(handle))
1157 return true;
1158 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1159 return false;
1160
1161 return acpi_ata_match(phandle);
1162}
1163
1164bool acpi_device_is_battery(struct acpi_device *adev)
1165{
1166 struct acpi_hardware_id *hwid;
1167
1168 list_for_each_entry(hwid, &adev->pnp.ids, list)
1169 if (!strcmp("PNP0C0A", hwid->id))
1170 return true;
1171
1172 return false;
1173}
1174
1175static bool is_ejectable_bay(struct acpi_device *adev)
1176{
1177 acpi_handle handle = adev->handle;
1178
1179 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1180 return true;
1181
1182 return acpi_bay_match(handle);
1183}
1184
1185/*
1186 * acpi_dock_match - see if an acpi object has a _DCK method
1187 */
1188bool acpi_dock_match(acpi_handle handle)
1189{
1190 return acpi_has_method(handle, "_DCK");
1191}
1192
1193static acpi_status
1194acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1195 void **return_value)
1196{
1197 long *cap = context;
1198
1199 if (acpi_has_method(handle, "_BCM") &&
1200 acpi_has_method(handle, "_BCL")) {
1201 acpi_handle_debug(handle, "Found generic backlight support\n");
1202 *cap |= ACPI_VIDEO_BACKLIGHT;
1203 /* We have backlight support, no need to scan further */
1204 return AE_CTRL_TERMINATE;
1205 }
1206 return 0;
1207}
1208
1209/* Returns true if the ACPI object is a video device which can be
1210 * handled by video.ko.
1211 * The device will get a Linux specific CID added in scan.c to
1212 * identify the device as an ACPI graphics device
1213 * Be aware that the graphics device may not be physically present
1214 * Use acpi_video_get_capabilities() to detect general ACPI video
1215 * capabilities of present cards
1216 */
1217long acpi_is_video_device(acpi_handle handle)
1218{
1219 long video_caps = 0;
1220
1221 /* Is this device able to support video switching ? */
1222 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1223 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1224
1225 /* Is this device able to retrieve a video ROM ? */
1226 if (acpi_has_method(handle, "_ROM"))
1227 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1228
1229 /* Is this device able to configure which video head to be POSTed ? */
1230 if (acpi_has_method(handle, "_VPO") &&
1231 acpi_has_method(handle, "_GPD") &&
1232 acpi_has_method(handle, "_SPD"))
1233 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1234
1235 /* Only check for backlight functionality if one of the above hit. */
1236 if (video_caps)
1237 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1238 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1239 &video_caps, NULL);
1240
1241 return video_caps;
1242}
1243EXPORT_SYMBOL(acpi_is_video_device);
1244
1245const char *acpi_device_hid(struct acpi_device *device)
1246{
1247 struct acpi_hardware_id *hid;
1248
1249 if (list_empty(&device->pnp.ids))
1250 return dummy_hid;
1251
1252 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1253 return hid->id;
1254}
1255EXPORT_SYMBOL(acpi_device_hid);
1256
1257static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1258{
1259 struct acpi_hardware_id *id;
1260
1261 id = kmalloc(sizeof(*id), GFP_KERNEL);
1262 if (!id)
1263 return;
1264
1265 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1266 if (!id->id) {
1267 kfree(id);
1268 return;
1269 }
1270
1271 list_add_tail(&id->list, &pnp->ids);
1272 pnp->type.hardware_id = 1;
1273}
1274
1275/*
1276 * Old IBM workstations have a DSDT bug wherein the SMBus object
1277 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1278 * prefix. Work around this.
1279 */
1280static bool acpi_ibm_smbus_match(acpi_handle handle)
1281{
1282 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1283 struct acpi_buffer path = { sizeof(node_name), node_name };
1284
1285 if (!dmi_name_in_vendors("IBM"))
1286 return false;
1287
1288 /* Look for SMBS object */
1289 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1290 strcmp("SMBS", path.pointer))
1291 return false;
1292
1293 /* Does it have the necessary (but misnamed) methods? */
1294 if (acpi_has_method(handle, "SBI") &&
1295 acpi_has_method(handle, "SBR") &&
1296 acpi_has_method(handle, "SBW"))
1297 return true;
1298
1299 return false;
1300}
1301
1302static bool acpi_object_is_system_bus(acpi_handle handle)
1303{
1304 acpi_handle tmp;
1305
1306 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1307 tmp == handle)
1308 return true;
1309 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1310 tmp == handle)
1311 return true;
1312
1313 return false;
1314}
1315
1316static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1317 int device_type)
1318{
1319 struct acpi_device_info *info = NULL;
1320 struct acpi_pnp_device_id_list *cid_list;
1321 int i;
1322
1323 switch (device_type) {
1324 case ACPI_BUS_TYPE_DEVICE:
1325 if (handle == ACPI_ROOT_OBJECT) {
1326 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1327 break;
1328 }
1329
1330 acpi_get_object_info(handle, &info);
1331 if (!info) {
1332 pr_err("%s: Error reading device info\n", __func__);
1333 return;
1334 }
1335
1336 if (info->valid & ACPI_VALID_HID) {
1337 acpi_add_id(pnp, info->hardware_id.string);
1338 pnp->type.platform_id = 1;
1339 }
1340 if (info->valid & ACPI_VALID_CID) {
1341 cid_list = &info->compatible_id_list;
1342 for (i = 0; i < cid_list->count; i++)
1343 acpi_add_id(pnp, cid_list->ids[i].string);
1344 }
1345 if (info->valid & ACPI_VALID_ADR) {
1346 pnp->bus_address = info->address;
1347 pnp->type.bus_address = 1;
1348 }
1349 if (info->valid & ACPI_VALID_UID)
1350 pnp->unique_id = kstrdup(info->unique_id.string,
1351 GFP_KERNEL);
1352 if (info->valid & ACPI_VALID_CLS)
1353 acpi_add_id(pnp, info->class_code.string);
1354
1355 kfree(info);
1356
1357 /*
1358 * Some devices don't reliably have _HIDs & _CIDs, so add
1359 * synthetic HIDs to make sure drivers can find them.
1360 */
1361 if (acpi_is_video_device(handle))
1362 acpi_add_id(pnp, ACPI_VIDEO_HID);
1363 else if (acpi_bay_match(handle))
1364 acpi_add_id(pnp, ACPI_BAY_HID);
1365 else if (acpi_dock_match(handle))
1366 acpi_add_id(pnp, ACPI_DOCK_HID);
1367 else if (acpi_ibm_smbus_match(handle))
1368 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1369 else if (list_empty(&pnp->ids) &&
1370 acpi_object_is_system_bus(handle)) {
1371 /* \_SB, \_TZ, LNXSYBUS */
1372 acpi_add_id(pnp, ACPI_BUS_HID);
1373 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1374 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1375 }
1376
1377 break;
1378 case ACPI_BUS_TYPE_POWER:
1379 acpi_add_id(pnp, ACPI_POWER_HID);
1380 break;
1381 case ACPI_BUS_TYPE_PROCESSOR:
1382 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1383 break;
1384 case ACPI_BUS_TYPE_THERMAL:
1385 acpi_add_id(pnp, ACPI_THERMAL_HID);
1386 break;
1387 case ACPI_BUS_TYPE_POWER_BUTTON:
1388 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1389 break;
1390 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1391 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1392 break;
1393 case ACPI_BUS_TYPE_ECDT_EC:
1394 acpi_add_id(pnp, ACPI_ECDT_HID);
1395 break;
1396 }
1397}
1398
1399void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1400{
1401 struct acpi_hardware_id *id, *tmp;
1402
1403 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1404 kfree_const(id->id);
1405 kfree(id);
1406 }
1407 kfree(pnp->unique_id);
1408}
1409
1410/**
1411 * acpi_dma_supported - Check DMA support for the specified device.
1412 * @adev: The pointer to acpi device
1413 *
1414 * Return false if DMA is not supported. Otherwise, return true
1415 */
1416bool acpi_dma_supported(const struct acpi_device *adev)
1417{
1418 if (!adev)
1419 return false;
1420
1421 if (adev->flags.cca_seen)
1422 return true;
1423
1424 /*
1425 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1426 * DMA on "Intel platforms". Presumably that includes all x86 and
1427 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1428 */
1429 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1430 return true;
1431
1432 return false;
1433}
1434
1435/**
1436 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1437 * @adev: The pointer to acpi device
1438 *
1439 * Return enum dev_dma_attr.
1440 */
1441enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1442{
1443 if (!acpi_dma_supported(adev))
1444 return DEV_DMA_NOT_SUPPORTED;
1445
1446 if (adev->flags.coherent_dma)
1447 return DEV_DMA_COHERENT;
1448 else
1449 return DEV_DMA_NON_COHERENT;
1450}
1451
1452/**
1453 * acpi_dma_get_range() - Get device DMA parameters.
1454 *
1455 * @dev: device to configure
1456 * @dma_addr: pointer device DMA address result
1457 * @offset: pointer to the DMA offset result
1458 * @size: pointer to DMA range size result
1459 *
1460 * Evaluate DMA regions and return respectively DMA region start, offset
1461 * and size in dma_addr, offset and size on parsing success; it does not
1462 * update the passed in values on failure.
1463 *
1464 * Return 0 on success, < 0 on failure.
1465 */
1466int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1467 u64 *size)
1468{
1469 struct acpi_device *adev;
1470 LIST_HEAD(list);
1471 struct resource_entry *rentry;
1472 int ret;
1473 struct device *dma_dev = dev;
1474 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1475
1476 /*
1477 * Walk the device tree chasing an ACPI companion with a _DMA
1478 * object while we go. Stop if we find a device with an ACPI
1479 * companion containing a _DMA method.
1480 */
1481 do {
1482 adev = ACPI_COMPANION(dma_dev);
1483 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1484 break;
1485
1486 dma_dev = dma_dev->parent;
1487 } while (dma_dev);
1488
1489 if (!dma_dev)
1490 return -ENODEV;
1491
1492 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1493 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1494 return -EINVAL;
1495 }
1496
1497 ret = acpi_dev_get_dma_resources(adev, &list);
1498 if (ret > 0) {
1499 list_for_each_entry(rentry, &list, node) {
1500 if (dma_offset && rentry->offset != dma_offset) {
1501 ret = -EINVAL;
1502 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1503 goto out;
1504 }
1505 dma_offset = rentry->offset;
1506
1507 /* Take lower and upper limits */
1508 if (rentry->res->start < dma_start)
1509 dma_start = rentry->res->start;
1510 if (rentry->res->end > dma_end)
1511 dma_end = rentry->res->end;
1512 }
1513
1514 if (dma_start >= dma_end) {
1515 ret = -EINVAL;
1516 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1517 goto out;
1518 }
1519
1520 *dma_addr = dma_start - dma_offset;
1521 len = dma_end - dma_start;
1522 *size = max(len, len + 1);
1523 *offset = dma_offset;
1524 }
1525 out:
1526 acpi_dev_free_resource_list(&list);
1527
1528 return ret >= 0 ? 0 : ret;
1529}
1530
1531#ifdef CONFIG_IOMMU_API
1532int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1533 struct fwnode_handle *fwnode,
1534 const struct iommu_ops *ops)
1535{
1536 int ret = iommu_fwspec_init(dev, fwnode, ops);
1537
1538 if (!ret)
1539 ret = iommu_fwspec_add_ids(dev, &id, 1);
1540
1541 return ret;
1542}
1543
1544static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1545{
1546 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1547
1548 return fwspec ? fwspec->ops : NULL;
1549}
1550
1551static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1552 const u32 *id_in)
1553{
1554 int err;
1555 const struct iommu_ops *ops;
1556
1557 /*
1558 * If we already translated the fwspec there is nothing left to do,
1559 * return the iommu_ops.
1560 */
1561 ops = acpi_iommu_fwspec_ops(dev);
1562 if (ops)
1563 return ops;
1564
1565 err = iort_iommu_configure_id(dev, id_in);
1566 if (err && err != -EPROBE_DEFER)
1567 err = viot_iommu_configure(dev);
1568
1569 /*
1570 * If we have reason to believe the IOMMU driver missed the initial
1571 * iommu_probe_device() call for dev, replay it to get things in order.
1572 */
1573 if (!err && dev->bus && !device_iommu_mapped(dev))
1574 err = iommu_probe_device(dev);
1575
1576 /* Ignore all other errors apart from EPROBE_DEFER */
1577 if (err == -EPROBE_DEFER) {
1578 return ERR_PTR(err);
1579 } else if (err) {
1580 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1581 return NULL;
1582 }
1583 return acpi_iommu_fwspec_ops(dev);
1584}
1585
1586#else /* !CONFIG_IOMMU_API */
1587
1588int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1589 struct fwnode_handle *fwnode,
1590 const struct iommu_ops *ops)
1591{
1592 return -ENODEV;
1593}
1594
1595static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1596 const u32 *id_in)
1597{
1598 return NULL;
1599}
1600
1601#endif /* !CONFIG_IOMMU_API */
1602
1603/**
1604 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1605 * @dev: The pointer to the device
1606 * @attr: device dma attributes
1607 * @input_id: input device id const value pointer
1608 */
1609int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1610 const u32 *input_id)
1611{
1612 const struct iommu_ops *iommu;
1613 u64 dma_addr = 0, size = 0;
1614
1615 if (attr == DEV_DMA_NOT_SUPPORTED) {
1616 set_dma_ops(dev, &dma_dummy_ops);
1617 return 0;
1618 }
1619
1620 acpi_arch_dma_setup(dev, &dma_addr, &size);
1621
1622 iommu = acpi_iommu_configure_id(dev, input_id);
1623 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1624 return -EPROBE_DEFER;
1625
1626 arch_setup_dma_ops(dev, dma_addr, size,
1627 iommu, attr == DEV_DMA_COHERENT);
1628
1629 return 0;
1630}
1631EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1632
1633static void acpi_init_coherency(struct acpi_device *adev)
1634{
1635 unsigned long long cca = 0;
1636 acpi_status status;
1637 struct acpi_device *parent = adev->parent;
1638
1639 if (parent && parent->flags.cca_seen) {
1640 /*
1641 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1642 * already saw one.
1643 */
1644 adev->flags.cca_seen = 1;
1645 cca = parent->flags.coherent_dma;
1646 } else {
1647 status = acpi_evaluate_integer(adev->handle, "_CCA",
1648 NULL, &cca);
1649 if (ACPI_SUCCESS(status))
1650 adev->flags.cca_seen = 1;
1651 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1652 /*
1653 * If architecture does not specify that _CCA is
1654 * required for DMA-able devices (e.g. x86),
1655 * we default to _CCA=1.
1656 */
1657 cca = 1;
1658 else
1659 acpi_handle_debug(adev->handle,
1660 "ACPI device is missing _CCA.\n");
1661 }
1662
1663 adev->flags.coherent_dma = cca;
1664}
1665
1666static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1667{
1668 bool *is_serial_bus_slave_p = data;
1669
1670 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1671 return 1;
1672
1673 *is_serial_bus_slave_p = true;
1674
1675 /* no need to do more checking */
1676 return -1;
1677}
1678
1679static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1680{
1681 struct acpi_device *parent = device->parent;
1682 static const struct acpi_device_id indirect_io_hosts[] = {
1683 {"HISI0191", 0},
1684 {}
1685 };
1686
1687 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1688}
1689
1690static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1691{
1692 struct list_head resource_list;
1693 bool is_serial_bus_slave = false;
1694 /*
1695 * These devices have multiple I2cSerialBus resources and an i2c-client
1696 * must be instantiated for each, each with its own i2c_device_id.
1697 * Normally we only instantiate an i2c-client for the first resource,
1698 * using the ACPI HID as id. These special cases are handled by the
1699 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1700 * which i2c_device_id to use for each resource.
1701 */
1702 static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1703 {"BSG1160", },
1704 {"BSG2150", },
1705 {"INT33FE", },
1706 {"INT3515", },
1707 {}
1708 };
1709
1710 if (acpi_is_indirect_io_slave(device))
1711 return true;
1712
1713 /* Macs use device properties in lieu of _CRS resources */
1714 if (x86_apple_machine &&
1715 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1716 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1717 fwnode_property_present(&device->fwnode, "baud")))
1718 return true;
1719
1720 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1721 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1722 return false;
1723
1724 INIT_LIST_HEAD(&resource_list);
1725 acpi_dev_get_resources(device, &resource_list,
1726 acpi_check_serial_bus_slave,
1727 &is_serial_bus_slave);
1728 acpi_dev_free_resource_list(&resource_list);
1729
1730 return is_serial_bus_slave;
1731}
1732
1733void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1734 int type)
1735{
1736 INIT_LIST_HEAD(&device->pnp.ids);
1737 device->device_type = type;
1738 device->handle = handle;
1739 device->parent = acpi_bus_get_parent(handle);
1740 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1741 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1742 acpi_device_get_busid(device);
1743 acpi_set_pnp_ids(handle, &device->pnp, type);
1744 acpi_init_properties(device);
1745 acpi_bus_get_flags(device);
1746 device->flags.match_driver = false;
1747 device->flags.initialized = true;
1748 device->flags.enumeration_by_parent =
1749 acpi_device_enumeration_by_parent(device);
1750 acpi_device_clear_enumerated(device);
1751 device_initialize(&device->dev);
1752 dev_set_uevent_suppress(&device->dev, true);
1753 acpi_init_coherency(device);
1754}
1755
1756static void acpi_scan_dep_init(struct acpi_device *adev)
1757{
1758 struct acpi_dep_data *dep;
1759
1760 list_for_each_entry(dep, &acpi_dep_list, node) {
1761 if (dep->consumer == adev->handle)
1762 adev->dep_unmet++;
1763 }
1764}
1765
1766void acpi_device_add_finalize(struct acpi_device *device)
1767{
1768 dev_set_uevent_suppress(&device->dev, false);
1769 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1770}
1771
1772static void acpi_scan_init_status(struct acpi_device *adev)
1773{
1774 if (acpi_bus_get_status(adev))
1775 acpi_set_device_status(adev, 0);
1776}
1777
1778static int acpi_add_single_object(struct acpi_device **child,
1779 acpi_handle handle, int type, bool dep_init)
1780{
1781 struct acpi_device *device;
1782 bool release_dep_lock = false;
1783 int result;
1784
1785 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1786 if (!device)
1787 return -ENOMEM;
1788
1789 acpi_init_device_object(device, handle, type);
1790 /*
1791 * Getting the status is delayed till here so that we can call
1792 * acpi_bus_get_status() and use its quirk handling. Note that
1793 * this must be done before the get power-/wakeup_dev-flags calls.
1794 */
1795 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1796 if (dep_init) {
1797 mutex_lock(&acpi_dep_list_lock);
1798 /*
1799 * Hold the lock until the acpi_tie_acpi_dev() call
1800 * below to prevent concurrent acpi_scan_clear_dep()
1801 * from deleting a dependency list entry without
1802 * updating dep_unmet for the device.
1803 */
1804 release_dep_lock = true;
1805 acpi_scan_dep_init(device);
1806 }
1807 acpi_scan_init_status(device);
1808 }
1809
1810 acpi_bus_get_power_flags(device);
1811 acpi_bus_get_wakeup_device_flags(device);
1812
1813 result = acpi_tie_acpi_dev(device);
1814
1815 if (release_dep_lock)
1816 mutex_unlock(&acpi_dep_list_lock);
1817
1818 if (!result)
1819 result = __acpi_device_add(device, acpi_device_release);
1820
1821 if (result) {
1822 acpi_device_release(&device->dev);
1823 return result;
1824 }
1825
1826 acpi_power_add_remove_device(device, true);
1827 acpi_device_add_finalize(device);
1828
1829 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1830 dev_name(&device->dev), device->parent ?
1831 dev_name(&device->parent->dev) : "(null)");
1832
1833 *child = device;
1834 return 0;
1835}
1836
1837static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1838 void *context)
1839{
1840 struct resource *res = context;
1841
1842 if (acpi_dev_resource_memory(ares, res))
1843 return AE_CTRL_TERMINATE;
1844
1845 return AE_OK;
1846}
1847
1848static bool acpi_device_should_be_hidden(acpi_handle handle)
1849{
1850 acpi_status status;
1851 struct resource res;
1852
1853 /* Check if it should ignore the UART device */
1854 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1855 return false;
1856
1857 /*
1858 * The UART device described in SPCR table is assumed to have only one
1859 * memory resource present. So we only look for the first one here.
1860 */
1861 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1862 acpi_get_resource_memory, &res);
1863 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1864 return false;
1865
1866 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1867 &res.start);
1868
1869 return true;
1870}
1871
1872bool acpi_device_is_present(const struct acpi_device *adev)
1873{
1874 return adev->status.present || adev->status.functional;
1875}
1876
1877static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1878 const char *idstr,
1879 const struct acpi_device_id **matchid)
1880{
1881 const struct acpi_device_id *devid;
1882
1883 if (handler->match)
1884 return handler->match(idstr, matchid);
1885
1886 for (devid = handler->ids; devid->id[0]; devid++)
1887 if (!strcmp((char *)devid->id, idstr)) {
1888 if (matchid)
1889 *matchid = devid;
1890
1891 return true;
1892 }
1893
1894 return false;
1895}
1896
1897static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1898 const struct acpi_device_id **matchid)
1899{
1900 struct acpi_scan_handler *handler;
1901
1902 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1903 if (acpi_scan_handler_matching(handler, idstr, matchid))
1904 return handler;
1905
1906 return NULL;
1907}
1908
1909void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1910{
1911 if (!!hotplug->enabled == !!val)
1912 return;
1913
1914 mutex_lock(&acpi_scan_lock);
1915
1916 hotplug->enabled = val;
1917
1918 mutex_unlock(&acpi_scan_lock);
1919}
1920
1921static void acpi_scan_init_hotplug(struct acpi_device *adev)
1922{
1923 struct acpi_hardware_id *hwid;
1924
1925 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1926 acpi_dock_add(adev);
1927 return;
1928 }
1929 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1930 struct acpi_scan_handler *handler;
1931
1932 handler = acpi_scan_match_handler(hwid->id, NULL);
1933 if (handler) {
1934 adev->flags.hotplug_notify = true;
1935 break;
1936 }
1937 }
1938}
1939
1940static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1941{
1942 struct acpi_handle_list dep_devices;
1943 acpi_status status;
1944 u32 count;
1945 int i;
1946
1947 /*
1948 * Check for _HID here to avoid deferring the enumeration of:
1949 * 1. PCI devices.
1950 * 2. ACPI nodes describing USB ports.
1951 * Still, checking for _HID catches more then just these cases ...
1952 */
1953 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1954 !acpi_has_method(handle, "_HID"))
1955 return 0;
1956
1957 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1958 if (ACPI_FAILURE(status)) {
1959 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1960 return 0;
1961 }
1962
1963 for (count = 0, i = 0; i < dep_devices.count; i++) {
1964 struct acpi_device_info *info;
1965 struct acpi_dep_data *dep;
1966 bool skip;
1967
1968 status = acpi_get_object_info(dep_devices.handles[i], &info);
1969 if (ACPI_FAILURE(status)) {
1970 acpi_handle_debug(handle, "Error reading _DEP device info\n");
1971 continue;
1972 }
1973
1974 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1975 kfree(info);
1976
1977 if (skip)
1978 continue;
1979
1980 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1981 if (!dep)
1982 continue;
1983
1984 count++;
1985
1986 dep->supplier = dep_devices.handles[i];
1987 dep->consumer = handle;
1988
1989 mutex_lock(&acpi_dep_list_lock);
1990 list_add_tail(&dep->node , &acpi_dep_list);
1991 mutex_unlock(&acpi_dep_list_lock);
1992 }
1993
1994 return count;
1995}
1996
1997static bool acpi_bus_scan_second_pass;
1998
1999static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2000 struct acpi_device **adev_p)
2001{
2002 struct acpi_device *device = NULL;
2003 acpi_object_type acpi_type;
2004 int type;
2005
2006 acpi_bus_get_device(handle, &device);
2007 if (device)
2008 goto out;
2009
2010 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2011 return AE_OK;
2012
2013 switch (acpi_type) {
2014 case ACPI_TYPE_DEVICE:
2015 if (acpi_device_should_be_hidden(handle))
2016 return AE_OK;
2017
2018 /* Bail out if there are dependencies. */
2019 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2020 acpi_bus_scan_second_pass = true;
2021 return AE_CTRL_DEPTH;
2022 }
2023
2024 fallthrough;
2025 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2026 type = ACPI_BUS_TYPE_DEVICE;
2027 break;
2028
2029 case ACPI_TYPE_PROCESSOR:
2030 type = ACPI_BUS_TYPE_PROCESSOR;
2031 break;
2032
2033 case ACPI_TYPE_THERMAL:
2034 type = ACPI_BUS_TYPE_THERMAL;
2035 break;
2036
2037 case ACPI_TYPE_POWER:
2038 acpi_add_power_resource(handle);
2039 fallthrough;
2040 default:
2041 return AE_OK;
2042 }
2043
2044 /*
2045 * If check_dep is true at this point, the device has no dependencies,
2046 * or the creation of the device object would have been postponed above.
2047 */
2048 acpi_add_single_object(&device, handle, type, !check_dep);
2049 if (!device)
2050 return AE_CTRL_DEPTH;
2051
2052 acpi_scan_init_hotplug(device);
2053
2054out:
2055 if (!*adev_p)
2056 *adev_p = device;
2057
2058 return AE_OK;
2059}
2060
2061static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2062 void *not_used, void **ret_p)
2063{
2064 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2065}
2066
2067static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2068 void *not_used, void **ret_p)
2069{
2070 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2071}
2072
2073static void acpi_default_enumeration(struct acpi_device *device)
2074{
2075 /*
2076 * Do not enumerate devices with enumeration_by_parent flag set as
2077 * they will be enumerated by their respective parents.
2078 */
2079 if (!device->flags.enumeration_by_parent) {
2080 acpi_create_platform_device(device, NULL);
2081 acpi_device_set_enumerated(device);
2082 } else {
2083 blocking_notifier_call_chain(&acpi_reconfig_chain,
2084 ACPI_RECONFIG_DEVICE_ADD, device);
2085 }
2086}
2087
2088static const struct acpi_device_id generic_device_ids[] = {
2089 {ACPI_DT_NAMESPACE_HID, },
2090 {"", },
2091};
2092
2093static int acpi_generic_device_attach(struct acpi_device *adev,
2094 const struct acpi_device_id *not_used)
2095{
2096 /*
2097 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2098 * below can be unconditional.
2099 */
2100 if (adev->data.of_compatible)
2101 acpi_default_enumeration(adev);
2102
2103 return 1;
2104}
2105
2106static struct acpi_scan_handler generic_device_handler = {
2107 .ids = generic_device_ids,
2108 .attach = acpi_generic_device_attach,
2109};
2110
2111static int acpi_scan_attach_handler(struct acpi_device *device)
2112{
2113 struct acpi_hardware_id *hwid;
2114 int ret = 0;
2115
2116 list_for_each_entry(hwid, &device->pnp.ids, list) {
2117 const struct acpi_device_id *devid;
2118 struct acpi_scan_handler *handler;
2119
2120 handler = acpi_scan_match_handler(hwid->id, &devid);
2121 if (handler) {
2122 if (!handler->attach) {
2123 device->pnp.type.platform_id = 0;
2124 continue;
2125 }
2126 device->handler = handler;
2127 ret = handler->attach(device, devid);
2128 if (ret > 0)
2129 break;
2130
2131 device->handler = NULL;
2132 if (ret < 0)
2133 break;
2134 }
2135 }
2136
2137 return ret;
2138}
2139
2140static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2141{
2142 struct acpi_device *child;
2143 bool skip = !first_pass && device->flags.visited;
2144 acpi_handle ejd;
2145 int ret;
2146
2147 if (skip)
2148 goto ok;
2149
2150 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2151 register_dock_dependent_device(device, ejd);
2152
2153 acpi_bus_get_status(device);
2154 /* Skip devices that are not present. */
2155 if (!acpi_device_is_present(device)) {
2156 device->flags.initialized = false;
2157 acpi_device_clear_enumerated(device);
2158 device->flags.power_manageable = 0;
2159 return;
2160 }
2161 if (device->handler)
2162 goto ok;
2163
2164 if (!device->flags.initialized) {
2165 device->flags.power_manageable =
2166 device->power.states[ACPI_STATE_D0].flags.valid;
2167 if (acpi_bus_init_power(device))
2168 device->flags.power_manageable = 0;
2169
2170 device->flags.initialized = true;
2171 } else if (device->flags.visited) {
2172 goto ok;
2173 }
2174
2175 ret = acpi_scan_attach_handler(device);
2176 if (ret < 0)
2177 return;
2178
2179 device->flags.match_driver = true;
2180 if (ret > 0 && !device->flags.enumeration_by_parent) {
2181 acpi_device_set_enumerated(device);
2182 goto ok;
2183 }
2184
2185 ret = device_attach(&device->dev);
2186 if (ret < 0)
2187 return;
2188
2189 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2190 acpi_default_enumeration(device);
2191 else
2192 acpi_device_set_enumerated(device);
2193
2194 ok:
2195 list_for_each_entry(child, &device->children, node)
2196 acpi_bus_attach(child, first_pass);
2197
2198 if (!skip && device->handler && device->handler->hotplug.notify_online)
2199 device->handler->hotplug.notify_online(device);
2200}
2201
2202static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2203{
2204 struct acpi_device *adev;
2205
2206 adev = acpi_bus_get_acpi_device(dep->consumer);
2207 if (adev) {
2208 *(struct acpi_device **)data = adev;
2209 return 1;
2210 }
2211 /* Continue parsing if the device object is not present. */
2212 return 0;
2213}
2214
2215struct acpi_scan_clear_dep_work {
2216 struct work_struct work;
2217 struct acpi_device *adev;
2218};
2219
2220static void acpi_scan_clear_dep_fn(struct work_struct *work)
2221{
2222 struct acpi_scan_clear_dep_work *cdw;
2223
2224 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2225
2226 acpi_scan_lock_acquire();
2227 acpi_bus_attach(cdw->adev, true);
2228 acpi_scan_lock_release();
2229
2230 acpi_dev_put(cdw->adev);
2231 kfree(cdw);
2232}
2233
2234static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2235{
2236 struct acpi_scan_clear_dep_work *cdw;
2237
2238 if (adev->dep_unmet)
2239 return false;
2240
2241 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2242 if (!cdw)
2243 return false;
2244
2245 cdw->adev = adev;
2246 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2247 /*
2248 * Since the work function may block on the lock until the entire
2249 * initial enumeration of devices is complete, put it into the unbound
2250 * workqueue.
2251 */
2252 queue_work(system_unbound_wq, &cdw->work);
2253
2254 return true;
2255}
2256
2257static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2258{
2259 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2260
2261 if (adev) {
2262 adev->dep_unmet--;
2263 if (!acpi_scan_clear_dep_queue(adev))
2264 acpi_dev_put(adev);
2265 }
2266
2267 list_del(&dep->node);
2268 kfree(dep);
2269
2270 return 0;
2271}
2272
2273/**
2274 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2275 * @handle: The ACPI handle of the supplier device
2276 * @callback: Pointer to the callback function to apply
2277 * @data: Pointer to some data to pass to the callback
2278 *
2279 * The return value of the callback determines this function's behaviour. If 0
2280 * is returned we continue to iterate over acpi_dep_list. If a positive value
2281 * is returned then the loop is broken but this function returns 0. If a
2282 * negative value is returned by the callback then the loop is broken and that
2283 * value is returned as the final error.
2284 */
2285static int acpi_walk_dep_device_list(acpi_handle handle,
2286 int (*callback)(struct acpi_dep_data *, void *),
2287 void *data)
2288{
2289 struct acpi_dep_data *dep, *tmp;
2290 int ret = 0;
2291
2292 mutex_lock(&acpi_dep_list_lock);
2293 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2294 if (dep->supplier == handle) {
2295 ret = callback(dep, data);
2296 if (ret)
2297 break;
2298 }
2299 }
2300 mutex_unlock(&acpi_dep_list_lock);
2301
2302 return ret > 0 ? 0 : ret;
2303}
2304
2305/**
2306 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2307 * @supplier: Pointer to the supplier &struct acpi_device
2308 *
2309 * Clear dependencies on the given device.
2310 */
2311void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2312{
2313 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2314}
2315EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2316
2317/**
2318 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2319 * @supplier: Pointer to the dependee device
2320 *
2321 * Returns the first &struct acpi_device which declares itself dependent on
2322 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2323 *
2324 * The caller is responsible for putting the reference to adev when it is no
2325 * longer needed.
2326 */
2327struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2328{
2329 struct acpi_device *adev = NULL;
2330
2331 acpi_walk_dep_device_list(supplier->handle,
2332 acpi_dev_get_first_consumer_dev_cb, &adev);
2333
2334 return adev;
2335}
2336EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2337
2338/**
2339 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2340 * @handle: Root of the namespace scope to scan.
2341 *
2342 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2343 * found devices.
2344 *
2345 * If no devices were found, -ENODEV is returned, but it does not mean that
2346 * there has been a real error. There just have been no suitable ACPI objects
2347 * in the table trunk from which the kernel could create a device and add an
2348 * appropriate driver.
2349 *
2350 * Must be called under acpi_scan_lock.
2351 */
2352int acpi_bus_scan(acpi_handle handle)
2353{
2354 struct acpi_device *device = NULL;
2355
2356 acpi_bus_scan_second_pass = false;
2357
2358 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2359
2360 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2361 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2362 acpi_bus_check_add_1, NULL, NULL,
2363 (void **)&device);
2364
2365 if (!device)
2366 return -ENODEV;
2367
2368 acpi_bus_attach(device, true);
2369
2370 if (!acpi_bus_scan_second_pass)
2371 return 0;
2372
2373 /* Pass 2: Enumerate all of the remaining devices. */
2374
2375 device = NULL;
2376
2377 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2378 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2379 acpi_bus_check_add_2, NULL, NULL,
2380 (void **)&device);
2381
2382 acpi_bus_attach(device, false);
2383
2384 return 0;
2385}
2386EXPORT_SYMBOL(acpi_bus_scan);
2387
2388/**
2389 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2390 * @adev: Root of the ACPI namespace scope to walk.
2391 *
2392 * Must be called under acpi_scan_lock.
2393 */
2394void acpi_bus_trim(struct acpi_device *adev)
2395{
2396 struct acpi_scan_handler *handler = adev->handler;
2397 struct acpi_device *child;
2398
2399 list_for_each_entry_reverse(child, &adev->children, node)
2400 acpi_bus_trim(child);
2401
2402 adev->flags.match_driver = false;
2403 if (handler) {
2404 if (handler->detach)
2405 handler->detach(adev);
2406
2407 adev->handler = NULL;
2408 } else {
2409 device_release_driver(&adev->dev);
2410 }
2411 /*
2412 * Most likely, the device is going away, so put it into D3cold before
2413 * that.
2414 */
2415 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2416 adev->flags.initialized = false;
2417 acpi_device_clear_enumerated(adev);
2418}
2419EXPORT_SYMBOL_GPL(acpi_bus_trim);
2420
2421int acpi_bus_register_early_device(int type)
2422{
2423 struct acpi_device *device = NULL;
2424 int result;
2425
2426 result = acpi_add_single_object(&device, NULL, type, false);
2427 if (result)
2428 return result;
2429
2430 device->flags.match_driver = true;
2431 return device_attach(&device->dev);
2432}
2433EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2434
2435static int acpi_bus_scan_fixed(void)
2436{
2437 int result = 0;
2438
2439 /*
2440 * Enumerate all fixed-feature devices.
2441 */
2442 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2443 struct acpi_device *device = NULL;
2444
2445 result = acpi_add_single_object(&device, NULL,
2446 ACPI_BUS_TYPE_POWER_BUTTON, false);
2447 if (result)
2448 return result;
2449
2450 device->flags.match_driver = true;
2451 result = device_attach(&device->dev);
2452 if (result < 0)
2453 return result;
2454
2455 device_init_wakeup(&device->dev, true);
2456 }
2457
2458 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2459 struct acpi_device *device = NULL;
2460
2461 result = acpi_add_single_object(&device, NULL,
2462 ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2463 if (result)
2464 return result;
2465
2466 device->flags.match_driver = true;
2467 result = device_attach(&device->dev);
2468 }
2469
2470 return result < 0 ? result : 0;
2471}
2472
2473static void __init acpi_get_spcr_uart_addr(void)
2474{
2475 acpi_status status;
2476 struct acpi_table_spcr *spcr_ptr;
2477
2478 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2479 (struct acpi_table_header **)&spcr_ptr);
2480 if (ACPI_FAILURE(status)) {
2481 pr_warn("STAO table present, but SPCR is missing\n");
2482 return;
2483 }
2484
2485 spcr_uart_addr = spcr_ptr->serial_port.address;
2486 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2487}
2488
2489static bool acpi_scan_initialized;
2490
2491int __init acpi_scan_init(void)
2492{
2493 int result;
2494 acpi_status status;
2495 struct acpi_table_stao *stao_ptr;
2496
2497 acpi_pci_root_init();
2498 acpi_pci_link_init();
2499 acpi_processor_init();
2500 acpi_platform_init();
2501 acpi_lpss_init();
2502 acpi_apd_init();
2503 acpi_cmos_rtc_init();
2504 acpi_container_init();
2505 acpi_memory_hotplug_init();
2506 acpi_watchdog_init();
2507 acpi_pnp_init();
2508 acpi_int340x_thermal_init();
2509 acpi_amba_init();
2510 acpi_init_lpit();
2511
2512 acpi_scan_add_handler(&generic_device_handler);
2513
2514 /*
2515 * If there is STAO table, check whether it needs to ignore the UART
2516 * device in SPCR table.
2517 */
2518 status = acpi_get_table(ACPI_SIG_STAO, 0,
2519 (struct acpi_table_header **)&stao_ptr);
2520 if (ACPI_SUCCESS(status)) {
2521 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2522 pr_info("STAO Name List not yet supported.\n");
2523
2524 if (stao_ptr->ignore_uart)
2525 acpi_get_spcr_uart_addr();
2526
2527 acpi_put_table((struct acpi_table_header *)stao_ptr);
2528 }
2529
2530 acpi_gpe_apply_masked_gpes();
2531 acpi_update_all_gpes();
2532
2533 /*
2534 * Although we call __add_memory() that is documented to require the
2535 * device_hotplug_lock, it is not necessary here because this is an
2536 * early code when userspace or any other code path cannot trigger
2537 * hotplug/hotunplug operations.
2538 */
2539 mutex_lock(&acpi_scan_lock);
2540 /*
2541 * Enumerate devices in the ACPI namespace.
2542 */
2543 result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2544 if (result)
2545 goto out;
2546
2547 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2548 if (result)
2549 goto out;
2550
2551 /* Fixed feature devices do not exist on HW-reduced platform */
2552 if (!acpi_gbl_reduced_hardware) {
2553 result = acpi_bus_scan_fixed();
2554 if (result) {
2555 acpi_detach_data(acpi_root->handle,
2556 acpi_scan_drop_device);
2557 acpi_device_del(acpi_root);
2558 acpi_bus_put_acpi_device(acpi_root);
2559 goto out;
2560 }
2561 }
2562
2563 acpi_turn_off_unused_power_resources();
2564
2565 acpi_scan_initialized = true;
2566
2567 out:
2568 mutex_unlock(&acpi_scan_lock);
2569 return result;
2570}
2571
2572static struct acpi_probe_entry *ape;
2573static int acpi_probe_count;
2574static DEFINE_MUTEX(acpi_probe_mutex);
2575
2576static int __init acpi_match_madt(union acpi_subtable_headers *header,
2577 const unsigned long end)
2578{
2579 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2580 if (!ape->probe_subtbl(header, end))
2581 acpi_probe_count++;
2582
2583 return 0;
2584}
2585
2586int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2587{
2588 int count = 0;
2589
2590 if (acpi_disabled)
2591 return 0;
2592
2593 mutex_lock(&acpi_probe_mutex);
2594 for (ape = ap_head; nr; ape++, nr--) {
2595 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2596 acpi_probe_count = 0;
2597 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2598 count += acpi_probe_count;
2599 } else {
2600 int res;
2601 res = acpi_table_parse(ape->id, ape->probe_table);
2602 if (!res)
2603 count++;
2604 }
2605 }
2606 mutex_unlock(&acpi_probe_mutex);
2607
2608 return count;
2609}
2610
2611static void acpi_table_events_fn(struct work_struct *work)
2612{
2613 acpi_scan_lock_acquire();
2614 acpi_bus_scan(ACPI_ROOT_OBJECT);
2615 acpi_scan_lock_release();
2616
2617 kfree(work);
2618}
2619
2620void acpi_scan_table_notify(void)
2621{
2622 struct work_struct *work;
2623
2624 if (!acpi_scan_initialized)
2625 return;
2626
2627 work = kmalloc(sizeof(*work), GFP_KERNEL);
2628 if (!work)
2629 return;
2630
2631 INIT_WORK(work, acpi_table_events_fn);
2632 schedule_work(work);
2633}
2634
2635int acpi_reconfig_notifier_register(struct notifier_block *nb)
2636{
2637 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2638}
2639EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2640
2641int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2642{
2643 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2644}
2645EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);