Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * scan.c - support for transforming the ACPI namespace into individual objects
   4 */
   5
   6#define pr_fmt(fmt) "ACPI: " fmt
   7
   8#include <linux/module.h>
   9#include <linux/init.h>
  10#include <linux/slab.h>
  11#include <linux/kernel.h>
  12#include <linux/acpi.h>
  13#include <linux/acpi_iort.h>
  14#include <linux/acpi_viot.h>
  15#include <linux/iommu.h>
  16#include <linux/signal.h>
  17#include <linux/kthread.h>
  18#include <linux/dmi.h>
 
  19#include <linux/dma-map-ops.h>
  20#include <linux/platform_data/x86/apple.h>
  21#include <linux/pgtable.h>
  22#include <linux/crc32.h>
  23#include <linux/dma-direct.h>
  24
  25#include "internal.h"
  26#include "sleep.h"
 
  27
  28#define ACPI_BUS_CLASS			"system_bus"
  29#define ACPI_BUS_HID			"LNXSYBUS"
  30#define ACPI_BUS_DEVICE_NAME		"System Bus"
  31
  32#define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
 
 
  33
  34static const char *dummy_hid = "device";
  35
  36static LIST_HEAD(acpi_dep_list);
  37static DEFINE_MUTEX(acpi_dep_list_lock);
  38LIST_HEAD(acpi_bus_id_list);
  39static DEFINE_MUTEX(acpi_scan_lock);
  40static LIST_HEAD(acpi_scan_handlers_list);
  41DEFINE_MUTEX(acpi_device_lock);
  42LIST_HEAD(acpi_wakeup_device_list);
  43static DEFINE_MUTEX(acpi_hp_context_lock);
  44
  45/*
  46 * The UART device described by the SPCR table is the only object which needs
  47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
  48 * table.
  49 */
  50static u64 spcr_uart_addr;
  51
  52void acpi_scan_lock_acquire(void)
  53{
  54	mutex_lock(&acpi_scan_lock);
  55}
  56EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
  57
  58void acpi_scan_lock_release(void)
  59{
  60	mutex_unlock(&acpi_scan_lock);
  61}
  62EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
  63
  64void acpi_lock_hp_context(void)
  65{
  66	mutex_lock(&acpi_hp_context_lock);
  67}
  68
  69void acpi_unlock_hp_context(void)
  70{
  71	mutex_unlock(&acpi_hp_context_lock);
  72}
  73
  74void acpi_initialize_hp_context(struct acpi_device *adev,
  75				struct acpi_hotplug_context *hp,
  76				int (*notify)(struct acpi_device *, u32),
  77				void (*uevent)(struct acpi_device *, u32))
  78{
  79	acpi_lock_hp_context();
  80	hp->notify = notify;
  81	hp->uevent = uevent;
  82	acpi_set_hp_context(adev, hp);
  83	acpi_unlock_hp_context();
  84}
  85EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
  86
  87int acpi_scan_add_handler(struct acpi_scan_handler *handler)
  88{
  89	if (!handler)
  90		return -EINVAL;
  91
  92	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
  93	return 0;
  94}
  95
  96int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
  97				       const char *hotplug_profile_name)
  98{
  99	int error;
 100
 101	error = acpi_scan_add_handler(handler);
 102	if (error)
 103		return error;
 104
 105	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
 106	return 0;
 107}
 108
 109bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
 110{
 111	struct acpi_device_physical_node *pn;
 112	bool offline = true;
 113	char *envp[] = { "EVENT=offline", NULL };
 114
 115	/*
 116	 * acpi_container_offline() calls this for all of the container's
 117	 * children under the container's physical_node_lock lock.
 118	 */
 119	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
 120
 121	list_for_each_entry(pn, &adev->physical_node_list, node)
 122		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
 123			if (uevent)
 124				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
 125
 126			offline = false;
 127			break;
 128		}
 129
 130	mutex_unlock(&adev->physical_node_lock);
 131	return offline;
 132}
 133
 134static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
 135				    void **ret_p)
 136{
 137	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
 138	struct acpi_device_physical_node *pn;
 139	bool second_pass = (bool)data;
 140	acpi_status status = AE_OK;
 141
 142	if (!device)
 143		return AE_OK;
 144
 145	if (device->handler && !device->handler->hotplug.enabled) {
 146		*ret_p = &device->dev;
 147		return AE_SUPPORT;
 148	}
 149
 150	mutex_lock(&device->physical_node_lock);
 151
 152	list_for_each_entry(pn, &device->physical_node_list, node) {
 153		int ret;
 154
 155		if (second_pass) {
 156			/* Skip devices offlined by the first pass. */
 157			if (pn->put_online)
 158				continue;
 159		} else {
 160			pn->put_online = false;
 161		}
 162		ret = device_offline(pn->dev);
 163		if (ret >= 0) {
 164			pn->put_online = !ret;
 165		} else {
 166			*ret_p = pn->dev;
 167			if (second_pass) {
 168				status = AE_ERROR;
 169				break;
 170			}
 171		}
 172	}
 173
 174	mutex_unlock(&device->physical_node_lock);
 175
 176	return status;
 177}
 178
 179static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
 180				   void **ret_p)
 181{
 182	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
 183	struct acpi_device_physical_node *pn;
 184
 185	if (!device)
 186		return AE_OK;
 187
 188	mutex_lock(&device->physical_node_lock);
 189
 190	list_for_each_entry(pn, &device->physical_node_list, node)
 191		if (pn->put_online) {
 192			device_online(pn->dev);
 193			pn->put_online = false;
 194		}
 195
 196	mutex_unlock(&device->physical_node_lock);
 197
 198	return AE_OK;
 199}
 200
 201static int acpi_scan_try_to_offline(struct acpi_device *device)
 202{
 203	acpi_handle handle = device->handle;
 204	struct device *errdev = NULL;
 205	acpi_status status;
 206
 207	/*
 208	 * Carry out two passes here and ignore errors in the first pass,
 209	 * because if the devices in question are memory blocks and
 210	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
 211	 * that the other blocks depend on, but it is not known in advance which
 212	 * block holds them.
 213	 *
 214	 * If the first pass is successful, the second one isn't needed, though.
 215	 */
 216	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
 217				     NULL, acpi_bus_offline, (void *)false,
 218				     (void **)&errdev);
 219	if (status == AE_SUPPORT) {
 220		dev_warn(errdev, "Offline disabled.\n");
 221		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
 222				    acpi_bus_online, NULL, NULL, NULL);
 223		return -EPERM;
 224	}
 225	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
 226	if (errdev) {
 227		errdev = NULL;
 228		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
 229				    NULL, acpi_bus_offline, (void *)true,
 230				    (void **)&errdev);
 231		if (!errdev)
 232			acpi_bus_offline(handle, 0, (void *)true,
 233					 (void **)&errdev);
 234
 235		if (errdev) {
 236			dev_warn(errdev, "Offline failed.\n");
 237			acpi_bus_online(handle, 0, NULL, NULL);
 238			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
 239					    ACPI_UINT32_MAX, acpi_bus_online,
 240					    NULL, NULL, NULL);
 241			return -EBUSY;
 242		}
 243	}
 244	return 0;
 245}
 246
 247static int acpi_scan_hot_remove(struct acpi_device *device)
 248{
 249	acpi_handle handle = device->handle;
 250	unsigned long long sta;
 251	acpi_status status;
 252
 253	if (device->handler && device->handler->hotplug.demand_offline) {
 254		if (!acpi_scan_is_offline(device, true))
 255			return -EBUSY;
 256	} else {
 257		int error = acpi_scan_try_to_offline(device);
 258		if (error)
 259			return error;
 260	}
 261
 262	acpi_handle_debug(handle, "Ejecting\n");
 263
 264	acpi_bus_trim(device);
 265
 266	acpi_evaluate_lck(handle, 0);
 267	/*
 268	 * TBD: _EJD support.
 269	 */
 270	status = acpi_evaluate_ej0(handle);
 271	if (status == AE_NOT_FOUND)
 272		return -ENODEV;
 273	else if (ACPI_FAILURE(status))
 274		return -EIO;
 275
 276	/*
 277	 * Verify if eject was indeed successful.  If not, log an error
 278	 * message.  No need to call _OST since _EJ0 call was made OK.
 279	 */
 280	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
 281	if (ACPI_FAILURE(status)) {
 282		acpi_handle_warn(handle,
 283			"Status check after eject failed (0x%x)\n", status);
 284	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
 285		acpi_handle_warn(handle,
 286			"Eject incomplete - status 0x%llx\n", sta);
 287	}
 288
 289	return 0;
 290}
 291
 292static int acpi_scan_device_not_enumerated(struct acpi_device *adev)
 293{
 294	if (!acpi_device_enumerated(adev)) {
 295		dev_warn(&adev->dev, "Still not enumerated\n");
 296		return -EALREADY;
 297	}
 298	acpi_bus_trim(adev);
 299	return 0;
 300}
 301
 302static int acpi_scan_device_check(struct acpi_device *adev)
 303{
 304	int error;
 305
 306	acpi_bus_get_status(adev);
 307	if (acpi_device_is_present(adev)) {
 308		/*
 309		 * This function is only called for device objects for which
 310		 * matching scan handlers exist.  The only situation in which
 311		 * the scan handler is not attached to this device object yet
 312		 * is when the device has just appeared (either it wasn't
 313		 * present at all before or it was removed and then added
 314		 * again).
 315		 */
 316		if (adev->handler) {
 317			dev_warn(&adev->dev, "Already enumerated\n");
 318			return -EALREADY;
 319		}
 320		error = acpi_bus_scan(adev->handle);
 321		if (error) {
 322			dev_warn(&adev->dev, "Namespace scan failure\n");
 323			return error;
 324		}
 325		if (!adev->handler) {
 326			dev_warn(&adev->dev, "Enumeration failure\n");
 327			error = -ENODEV;
 328		}
 329	} else {
 330		error = acpi_scan_device_not_enumerated(adev);
 331	}
 332	return error;
 333}
 334
 335static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
 336{
 337	struct acpi_scan_handler *handler = adev->handler;
 
 338	int error;
 339
 340	acpi_bus_get_status(adev);
 341	if (!acpi_device_is_present(adev)) {
 342		acpi_scan_device_not_enumerated(adev);
 343		return 0;
 344	}
 345	if (handler && handler->hotplug.scan_dependent)
 346		return handler->hotplug.scan_dependent(adev);
 347
 348	error = acpi_bus_scan(adev->handle);
 349	if (error) {
 350		dev_warn(&adev->dev, "Namespace scan failure\n");
 351		return error;
 352	}
 353	return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
 
 
 
 
 
 354}
 355
 356static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
 357{
 358	switch (type) {
 359	case ACPI_NOTIFY_BUS_CHECK:
 360		return acpi_scan_bus_check(adev, NULL);
 361	case ACPI_NOTIFY_DEVICE_CHECK:
 362		return acpi_scan_device_check(adev);
 363	case ACPI_NOTIFY_EJECT_REQUEST:
 364	case ACPI_OST_EC_OSPM_EJECT:
 365		if (adev->handler && !adev->handler->hotplug.enabled) {
 366			dev_info(&adev->dev, "Eject disabled\n");
 367			return -EPERM;
 368		}
 369		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
 370				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
 371		return acpi_scan_hot_remove(adev);
 372	}
 373	return -EINVAL;
 374}
 375
 376void acpi_device_hotplug(struct acpi_device *adev, u32 src)
 377{
 378	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
 379	int error = -ENODEV;
 380
 381	lock_device_hotplug();
 382	mutex_lock(&acpi_scan_lock);
 383
 384	/*
 385	 * The device object's ACPI handle cannot become invalid as long as we
 386	 * are holding acpi_scan_lock, but it might have become invalid before
 387	 * that lock was acquired.
 388	 */
 389	if (adev->handle == INVALID_ACPI_HANDLE)
 390		goto err_out;
 391
 392	if (adev->flags.is_dock_station) {
 393		error = dock_notify(adev, src);
 394	} else if (adev->flags.hotplug_notify) {
 395		error = acpi_generic_hotplug_event(adev, src);
 396	} else {
 397		int (*notify)(struct acpi_device *, u32);
 398
 399		acpi_lock_hp_context();
 400		notify = adev->hp ? adev->hp->notify : NULL;
 401		acpi_unlock_hp_context();
 402		/*
 403		 * There may be additional notify handlers for device objects
 404		 * without the .event() callback, so ignore them here.
 405		 */
 406		if (notify)
 407			error = notify(adev, src);
 408		else
 409			goto out;
 410	}
 411	switch (error) {
 412	case 0:
 413		ost_code = ACPI_OST_SC_SUCCESS;
 414		break;
 415	case -EPERM:
 416		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
 417		break;
 418	case -EBUSY:
 419		ost_code = ACPI_OST_SC_DEVICE_BUSY;
 420		break;
 421	default:
 422		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
 423		break;
 424	}
 425
 426 err_out:
 427	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
 428
 429 out:
 430	acpi_put_acpi_dev(adev);
 431	mutex_unlock(&acpi_scan_lock);
 432	unlock_device_hotplug();
 433}
 434
 435static void acpi_free_power_resources_lists(struct acpi_device *device)
 436{
 437	int i;
 438
 439	if (device->wakeup.flags.valid)
 440		acpi_power_resources_list_free(&device->wakeup.resources);
 441
 442	if (!device->power.flags.power_resources)
 443		return;
 444
 445	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
 446		struct acpi_device_power_state *ps = &device->power.states[i];
 447		acpi_power_resources_list_free(&ps->resources);
 448	}
 449}
 450
 451static void acpi_device_release(struct device *dev)
 452{
 453	struct acpi_device *acpi_dev = to_acpi_device(dev);
 454
 455	acpi_free_properties(acpi_dev);
 456	acpi_free_pnp_ids(&acpi_dev->pnp);
 457	acpi_free_power_resources_lists(acpi_dev);
 458	kfree(acpi_dev);
 459}
 460
 461static void acpi_device_del(struct acpi_device *device)
 462{
 463	struct acpi_device_bus_id *acpi_device_bus_id;
 464
 465	mutex_lock(&acpi_device_lock);
 
 
 466
 467	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
 468		if (!strcmp(acpi_device_bus_id->bus_id,
 469			    acpi_device_hid(device))) {
 470			ida_free(&acpi_device_bus_id->instance_ida,
 471				 device->pnp.instance_no);
 472			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
 473				list_del(&acpi_device_bus_id->node);
 474				kfree_const(acpi_device_bus_id->bus_id);
 475				kfree(acpi_device_bus_id);
 476			}
 477			break;
 478		}
 479
 480	list_del(&device->wakeup_list);
 481
 482	mutex_unlock(&acpi_device_lock);
 483
 484	acpi_power_add_remove_device(device, false);
 485	acpi_device_remove_files(device);
 486	if (device->remove)
 487		device->remove(device);
 488
 489	device_del(&device->dev);
 490}
 491
 492static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
 493
 494static LIST_HEAD(acpi_device_del_list);
 495static DEFINE_MUTEX(acpi_device_del_lock);
 496
 497static void acpi_device_del_work_fn(struct work_struct *work_not_used)
 498{
 499	for (;;) {
 500		struct acpi_device *adev;
 501
 502		mutex_lock(&acpi_device_del_lock);
 503
 504		if (list_empty(&acpi_device_del_list)) {
 505			mutex_unlock(&acpi_device_del_lock);
 506			break;
 507		}
 508		adev = list_first_entry(&acpi_device_del_list,
 509					struct acpi_device, del_list);
 510		list_del(&adev->del_list);
 511
 512		mutex_unlock(&acpi_device_del_lock);
 513
 514		blocking_notifier_call_chain(&acpi_reconfig_chain,
 515					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
 516
 517		acpi_device_del(adev);
 518		/*
 519		 * Drop references to all power resources that might have been
 520		 * used by the device.
 521		 */
 522		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
 523		acpi_dev_put(adev);
 524	}
 525}
 526
 527/**
 528 * acpi_scan_drop_device - Drop an ACPI device object.
 529 * @handle: Handle of an ACPI namespace node, not used.
 530 * @context: Address of the ACPI device object to drop.
 531 *
 532 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
 533 * namespace node the device object pointed to by @context is attached to.
 534 *
 535 * The unregistration is carried out asynchronously to avoid running
 536 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
 537 * ensure the correct ordering (the device objects must be unregistered in the
 538 * same order in which the corresponding namespace nodes are deleted).
 539 */
 540static void acpi_scan_drop_device(acpi_handle handle, void *context)
 541{
 542	static DECLARE_WORK(work, acpi_device_del_work_fn);
 543	struct acpi_device *adev = context;
 544
 545	mutex_lock(&acpi_device_del_lock);
 546
 547	/*
 548	 * Use the ACPI hotplug workqueue which is ordered, so this work item
 549	 * won't run after any hotplug work items submitted subsequently.  That
 550	 * prevents attempts to register device objects identical to those being
 551	 * deleted from happening concurrently (such attempts result from
 552	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
 553	 * run after all of the work items submitted previously, which helps
 554	 * those work items to ensure that they are not accessing stale device
 555	 * objects.
 556	 */
 557	if (list_empty(&acpi_device_del_list))
 558		acpi_queue_hotplug_work(&work);
 559
 560	list_add_tail(&adev->del_list, &acpi_device_del_list);
 561	/* Make acpi_ns_validate_handle() return NULL for this handle. */
 562	adev->handle = INVALID_ACPI_HANDLE;
 563
 564	mutex_unlock(&acpi_device_del_lock);
 565}
 566
 567static struct acpi_device *handle_to_device(acpi_handle handle,
 568					    void (*callback)(void *))
 569{
 570	struct acpi_device *adev = NULL;
 571	acpi_status status;
 572
 573	status = acpi_get_data_full(handle, acpi_scan_drop_device,
 574				    (void **)&adev, callback);
 575	if (ACPI_FAILURE(status) || !adev) {
 576		acpi_handle_debug(handle, "No context!\n");
 577		return NULL;
 578	}
 579	return adev;
 580}
 581
 582/**
 583 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
 584 * @handle: ACPI handle associated with the requested ACPI device object.
 585 *
 586 * Return a pointer to the ACPI device object associated with @handle, if
 587 * present, or NULL otherwise.
 588 */
 589struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
 590{
 591	return handle_to_device(handle, NULL);
 
 
 
 
 
 
 
 592}
 593EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
 594
 595static void get_acpi_device(void *dev)
 596{
 597	acpi_dev_get(dev);
 598}
 599
 600/**
 601 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
 602 * @handle: ACPI handle associated with the requested ACPI device object.
 603 *
 604 * Return a pointer to the ACPI device object associated with @handle and bump
 605 * up that object's reference counter (under the ACPI Namespace lock), if
 606 * present, or return NULL otherwise.
 607 *
 608 * The ACPI device object reference acquired by this function needs to be
 609 * dropped via acpi_dev_put().
 610 */
 611struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
 612{
 613	return handle_to_device(handle, get_acpi_device);
 614}
 615EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
 616
 617static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
 618{
 619	struct acpi_device_bus_id *acpi_device_bus_id;
 620
 621	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
 622	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
 623		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
 624			return acpi_device_bus_id;
 625	}
 626	return NULL;
 627}
 628
 629static int acpi_device_set_name(struct acpi_device *device,
 630				struct acpi_device_bus_id *acpi_device_bus_id)
 631{
 632	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
 633	int result;
 634
 635	result = ida_alloc(instance_ida, GFP_KERNEL);
 636	if (result < 0)
 637		return result;
 638
 639	device->pnp.instance_no = result;
 640	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
 641	return 0;
 642}
 643
 644int acpi_tie_acpi_dev(struct acpi_device *adev)
 645{
 646	acpi_handle handle = adev->handle;
 647	acpi_status status;
 648
 649	if (!handle)
 650		return 0;
 651
 652	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
 653	if (ACPI_FAILURE(status)) {
 654		acpi_handle_err(handle, "Unable to attach device data\n");
 655		return -ENODEV;
 656	}
 657
 658	return 0;
 659}
 660
 661static void acpi_store_pld_crc(struct acpi_device *adev)
 662{
 663	struct acpi_pld_info *pld;
 664	acpi_status status;
 665
 666	status = acpi_get_physical_device_location(adev->handle, &pld);
 667	if (ACPI_FAILURE(status))
 668		return;
 669
 670	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
 671	ACPI_FREE(pld);
 672}
 673
 674int acpi_device_add(struct acpi_device *device)
 675{
 676	struct acpi_device_bus_id *acpi_device_bus_id;
 677	int result;
 678
 679	/*
 680	 * Linkage
 681	 * -------
 682	 * Link this device to its parent and siblings.
 683	 */
 
 
 684	INIT_LIST_HEAD(&device->wakeup_list);
 685	INIT_LIST_HEAD(&device->physical_node_list);
 686	INIT_LIST_HEAD(&device->del_list);
 687	mutex_init(&device->physical_node_lock);
 688
 689	mutex_lock(&acpi_device_lock);
 690
 691	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
 692	if (acpi_device_bus_id) {
 693		result = acpi_device_set_name(device, acpi_device_bus_id);
 694		if (result)
 695			goto err_unlock;
 696	} else {
 697		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
 698					     GFP_KERNEL);
 699		if (!acpi_device_bus_id) {
 700			result = -ENOMEM;
 701			goto err_unlock;
 702		}
 703		acpi_device_bus_id->bus_id =
 704			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
 705		if (!acpi_device_bus_id->bus_id) {
 706			kfree(acpi_device_bus_id);
 707			result = -ENOMEM;
 708			goto err_unlock;
 709		}
 710
 711		ida_init(&acpi_device_bus_id->instance_ida);
 712
 713		result = acpi_device_set_name(device, acpi_device_bus_id);
 714		if (result) {
 715			kfree_const(acpi_device_bus_id->bus_id);
 716			kfree(acpi_device_bus_id);
 717			goto err_unlock;
 718		}
 719
 720		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
 721	}
 722
 
 
 
 723	if (device->wakeup.flags.valid)
 724		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
 725
 726	acpi_store_pld_crc(device);
 727
 728	mutex_unlock(&acpi_device_lock);
 729
 
 
 
 
 
 730	result = device_add(&device->dev);
 731	if (result) {
 732		dev_err(&device->dev, "Error registering device\n");
 733		goto err;
 734	}
 735
 736	result = acpi_device_setup_files(device);
 737	if (result)
 738		pr_err("Error creating sysfs interface for device %s\n",
 739		       dev_name(&device->dev));
 740
 741	return 0;
 742
 743err:
 744	mutex_lock(&acpi_device_lock);
 745
 
 
 
 746	list_del(&device->wakeup_list);
 747
 748err_unlock:
 749	mutex_unlock(&acpi_device_lock);
 750
 751	acpi_detach_data(device->handle, acpi_scan_drop_device);
 752
 753	return result;
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 756/* --------------------------------------------------------------------------
 757                                 Device Enumeration
 758   -------------------------------------------------------------------------- */
 759static bool acpi_info_matches_ids(struct acpi_device_info *info,
 760				  const char * const ids[])
 761{
 762	struct acpi_pnp_device_id_list *cid_list = NULL;
 763	int i, index;
 764
 765	if (!(info->valid & ACPI_VALID_HID))
 766		return false;
 767
 768	index = match_string(ids, -1, info->hardware_id.string);
 769	if (index >= 0)
 770		return true;
 771
 772	if (info->valid & ACPI_VALID_CID)
 773		cid_list = &info->compatible_id_list;
 774
 775	if (!cid_list)
 776		return false;
 777
 778	for (i = 0; i < cid_list->count; i++) {
 779		index = match_string(ids, -1, cid_list->ids[i].string);
 780		if (index >= 0)
 781			return true;
 782	}
 783
 784	return false;
 785}
 786
 787/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
 788static const char * const acpi_ignore_dep_ids[] = {
 789	"PNP0D80", /* Windows-compatible System Power Management Controller */
 790	"INT33BD", /* Intel Baytrail Mailbox Device */
 791	"LATT2021", /* Lattice FW Update Client Driver */
 792	NULL
 793};
 794
 795/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
 796static const char * const acpi_honor_dep_ids[] = {
 797	"INT3472", /* Camera sensor PMIC / clk and regulator info */
 798	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
 799	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
 800	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
 801	NULL
 802};
 803
 804static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
 805{
 806	struct acpi_device *adev;
 
 807
 808	/*
 809	 * Fixed hardware devices do not appear in the namespace and do not
 810	 * have handles, but we fabricate acpi_devices for them, so we have
 811	 * to deal with them specially.
 812	 */
 813	if (!handle)
 814		return acpi_root;
 815
 816	do {
 817		acpi_status status;
 818
 819		status = acpi_get_parent(handle, &handle);
 820		if (ACPI_FAILURE(status)) {
 821			if (status != AE_NULL_ENTRY)
 822				return acpi_root;
 823
 824			return NULL;
 825		}
 826		adev = acpi_fetch_acpi_dev(handle);
 827	} while (!adev);
 828	return adev;
 829}
 830
 831acpi_status
 832acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
 833{
 834	acpi_status status;
 835	acpi_handle tmp;
 836	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
 837	union acpi_object *obj;
 838
 839	status = acpi_get_handle(handle, "_EJD", &tmp);
 840	if (ACPI_FAILURE(status))
 841		return status;
 842
 843	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
 844	if (ACPI_SUCCESS(status)) {
 845		obj = buffer.pointer;
 846		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
 847					 ejd);
 848		kfree(buffer.pointer);
 849	}
 850	return status;
 851}
 852EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
 853
 854static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
 855{
 856	acpi_handle handle = dev->handle;
 857	struct acpi_device_wakeup *wakeup = &dev->wakeup;
 858	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 859	union acpi_object *package = NULL;
 860	union acpi_object *element = NULL;
 861	acpi_status status;
 862	int err = -ENODATA;
 863
 864	INIT_LIST_HEAD(&wakeup->resources);
 865
 866	/* _PRW */
 867	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
 868	if (ACPI_FAILURE(status)) {
 869		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
 870				 acpi_format_exception(status));
 871		return err;
 872	}
 873
 874	package = (union acpi_object *)buffer.pointer;
 875
 876	if (!package || package->package.count < 2)
 877		goto out;
 878
 879	element = &(package->package.elements[0]);
 880	if (!element)
 881		goto out;
 882
 883	if (element->type == ACPI_TYPE_PACKAGE) {
 884		if ((element->package.count < 2) ||
 885		    (element->package.elements[0].type !=
 886		     ACPI_TYPE_LOCAL_REFERENCE)
 887		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
 888			goto out;
 889
 890		wakeup->gpe_device =
 891		    element->package.elements[0].reference.handle;
 892		wakeup->gpe_number =
 893		    (u32) element->package.elements[1].integer.value;
 894	} else if (element->type == ACPI_TYPE_INTEGER) {
 895		wakeup->gpe_device = NULL;
 896		wakeup->gpe_number = element->integer.value;
 897	} else {
 898		goto out;
 899	}
 900
 901	element = &(package->package.elements[1]);
 902	if (element->type != ACPI_TYPE_INTEGER)
 903		goto out;
 904
 905	wakeup->sleep_state = element->integer.value;
 906
 907	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
 908	if (err)
 909		goto out;
 910
 911	if (!list_empty(&wakeup->resources)) {
 912		int sleep_state;
 913
 914		err = acpi_power_wakeup_list_init(&wakeup->resources,
 915						  &sleep_state);
 916		if (err) {
 917			acpi_handle_warn(handle, "Retrieving current states "
 918					 "of wakeup power resources failed\n");
 919			acpi_power_resources_list_free(&wakeup->resources);
 920			goto out;
 921		}
 922		if (sleep_state < wakeup->sleep_state) {
 923			acpi_handle_warn(handle, "Overriding _PRW sleep state "
 924					 "(S%d) by S%d from power resources\n",
 925					 (int)wakeup->sleep_state, sleep_state);
 926			wakeup->sleep_state = sleep_state;
 927		}
 928	}
 929
 930 out:
 931	kfree(buffer.pointer);
 932	return err;
 933}
 934
 935/* Do not use a button for S5 wakeup */
 936#define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
 937
 938static bool acpi_wakeup_gpe_init(struct acpi_device *device)
 939{
 940	static const struct acpi_device_id button_device_ids[] = {
 941		{"PNP0C0C", 0},				/* Power button */
 942		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
 943		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
 944		{"", 0},
 945	};
 946	struct acpi_device_wakeup *wakeup = &device->wakeup;
 947	const struct acpi_device_id *match;
 948	acpi_status status;
 949
 950	wakeup->flags.notifier_present = 0;
 951
 952	/* Power button, Lid switch always enable wakeup */
 953	match = acpi_match_acpi_device(button_device_ids, device);
 954	if (match) {
 955		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
 956		    wakeup->sleep_state == ACPI_STATE_S5)
 957			wakeup->sleep_state = ACPI_STATE_S4;
 
 958		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
 959		device_set_wakeup_capable(&device->dev, true);
 960		return true;
 961	}
 962
 963	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
 964					 wakeup->gpe_number);
 965	return ACPI_SUCCESS(status);
 966}
 967
 968static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
 969{
 970	int err;
 971
 972	/* Presence of _PRW indicates wake capable */
 973	if (!acpi_has_method(device->handle, "_PRW"))
 974		return;
 975
 976	err = acpi_bus_extract_wakeup_device_power_package(device);
 977	if (err) {
 978		dev_err(&device->dev, "Unable to extract wakeup power resources");
 979		return;
 980	}
 981
 982	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
 983	device->wakeup.prepare_count = 0;
 984	/*
 985	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
 986	 * system for the ACPI device with the _PRW object.
 987	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
 988	 * So it is necessary to call _DSW object first. Only when it is not
 989	 * present will the _PSW object used.
 990	 */
 991	err = acpi_device_sleep_wake(device, 0, 0, 0);
 992	if (err)
 993		pr_debug("error in _DSW or _PSW evaluation\n");
 994}
 995
 996static void acpi_bus_init_power_state(struct acpi_device *device, int state)
 997{
 998	struct acpi_device_power_state *ps = &device->power.states[state];
 999	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1000	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1001	acpi_status status;
1002
1003	INIT_LIST_HEAD(&ps->resources);
1004
1005	/* Evaluate "_PRx" to get referenced power resources */
1006	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1007	if (ACPI_SUCCESS(status)) {
1008		union acpi_object *package = buffer.pointer;
1009
1010		if (buffer.length && package
1011		    && package->type == ACPI_TYPE_PACKAGE
1012		    && package->package.count)
1013			acpi_extract_power_resources(package, 0, &ps->resources);
1014
1015		ACPI_FREE(buffer.pointer);
1016	}
1017
1018	/* Evaluate "_PSx" to see if we can do explicit sets */
1019	pathname[2] = 'S';
1020	if (acpi_has_method(device->handle, pathname))
1021		ps->flags.explicit_set = 1;
1022
1023	/* State is valid if there are means to put the device into it. */
1024	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1025		ps->flags.valid = 1;
1026
1027	ps->power = -1;		/* Unknown - driver assigned */
1028	ps->latency = -1;	/* Unknown - driver assigned */
1029}
1030
1031static void acpi_bus_get_power_flags(struct acpi_device *device)
1032{
1033	unsigned long long dsc = ACPI_STATE_D0;
1034	u32 i;
1035
1036	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1037	if (!acpi_has_method(device->handle, "_PS0") &&
1038	    !acpi_has_method(device->handle, "_PR0"))
1039		return;
1040
1041	device->flags.power_manageable = 1;
1042
1043	/*
1044	 * Power Management Flags
1045	 */
1046	if (acpi_has_method(device->handle, "_PSC"))
1047		device->power.flags.explicit_get = 1;
1048
1049	if (acpi_has_method(device->handle, "_IRC"))
1050		device->power.flags.inrush_current = 1;
1051
1052	if (acpi_has_method(device->handle, "_DSW"))
1053		device->power.flags.dsw_present = 1;
1054
1055	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1056	device->power.state_for_enumeration = dsc;
1057
1058	/*
1059	 * Enumerate supported power management states
1060	 */
1061	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1062		acpi_bus_init_power_state(device, i);
1063
1064	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1065
1066	/* Set the defaults for D0 and D3hot (always supported). */
1067	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1068	device->power.states[ACPI_STATE_D0].power = 100;
1069	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1070
1071	/*
1072	 * Use power resources only if the D0 list of them is populated, because
1073	 * some platforms may provide _PR3 only to indicate D3cold support and
1074	 * in those cases the power resources list returned by it may be bogus.
1075	 */
1076	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1077		device->power.flags.power_resources = 1;
1078		/*
1079		 * D3cold is supported if the D3hot list of power resources is
1080		 * not empty.
1081		 */
1082		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1083			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1084	}
1085
1086	if (acpi_bus_init_power(device))
1087		device->flags.power_manageable = 0;
1088}
1089
1090static void acpi_bus_get_flags(struct acpi_device *device)
1091{
1092	/* Presence of _STA indicates 'dynamic_status' */
1093	if (acpi_has_method(device->handle, "_STA"))
1094		device->flags.dynamic_status = 1;
1095
1096	/* Presence of _RMV indicates 'removable' */
1097	if (acpi_has_method(device->handle, "_RMV"))
1098		device->flags.removable = 1;
1099
1100	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1101	if (acpi_has_method(device->handle, "_EJD") ||
1102	    acpi_has_method(device->handle, "_EJ0"))
1103		device->flags.ejectable = 1;
1104}
1105
1106static void acpi_device_get_busid(struct acpi_device *device)
1107{
1108	char bus_id[5] = { '?', 0 };
1109	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1110	int i = 0;
1111
1112	/*
1113	 * Bus ID
1114	 * ------
1115	 * The device's Bus ID is simply the object name.
1116	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1117	 */
1118	if (!acpi_dev_parent(device)) {
1119		strcpy(device->pnp.bus_id, "ACPI");
1120		return;
1121	}
1122
1123	switch (device->device_type) {
1124	case ACPI_BUS_TYPE_POWER_BUTTON:
1125		strcpy(device->pnp.bus_id, "PWRF");
1126		break;
1127	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1128		strcpy(device->pnp.bus_id, "SLPF");
1129		break;
1130	case ACPI_BUS_TYPE_ECDT_EC:
1131		strcpy(device->pnp.bus_id, "ECDT");
1132		break;
1133	default:
1134		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1135		/* Clean up trailing underscores (if any) */
1136		for (i = 3; i > 1; i--) {
1137			if (bus_id[i] == '_')
1138				bus_id[i] = '\0';
1139			else
1140				break;
1141		}
1142		strcpy(device->pnp.bus_id, bus_id);
1143		break;
1144	}
1145}
1146
1147/*
1148 * acpi_ata_match - see if an acpi object is an ATA device
1149 *
1150 * If an acpi object has one of the ACPI ATA methods defined,
1151 * then we can safely call it an ATA device.
1152 */
1153bool acpi_ata_match(acpi_handle handle)
1154{
1155	return acpi_has_method(handle, "_GTF") ||
1156	       acpi_has_method(handle, "_GTM") ||
1157	       acpi_has_method(handle, "_STM") ||
1158	       acpi_has_method(handle, "_SDD");
1159}
1160
1161/*
1162 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1163 *
1164 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1165 * then we can safely call it an ejectable drive bay
1166 */
1167bool acpi_bay_match(acpi_handle handle)
1168{
1169	acpi_handle phandle;
1170
1171	if (!acpi_has_method(handle, "_EJ0"))
1172		return false;
1173	if (acpi_ata_match(handle))
1174		return true;
1175	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1176		return false;
1177
1178	return acpi_ata_match(phandle);
1179}
1180
1181bool acpi_device_is_battery(struct acpi_device *adev)
1182{
1183	struct acpi_hardware_id *hwid;
1184
1185	list_for_each_entry(hwid, &adev->pnp.ids, list)
1186		if (!strcmp("PNP0C0A", hwid->id))
1187			return true;
1188
1189	return false;
1190}
1191
1192static bool is_ejectable_bay(struct acpi_device *adev)
1193{
1194	acpi_handle handle = adev->handle;
1195
1196	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1197		return true;
1198
1199	return acpi_bay_match(handle);
1200}
1201
1202/*
1203 * acpi_dock_match - see if an acpi object has a _DCK method
1204 */
1205bool acpi_dock_match(acpi_handle handle)
1206{
1207	return acpi_has_method(handle, "_DCK");
1208}
1209
1210static acpi_status
1211acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1212			  void **return_value)
1213{
1214	long *cap = context;
1215
1216	if (acpi_has_method(handle, "_BCM") &&
1217	    acpi_has_method(handle, "_BCL")) {
1218		acpi_handle_debug(handle, "Found generic backlight support\n");
1219		*cap |= ACPI_VIDEO_BACKLIGHT;
1220		/* We have backlight support, no need to scan further */
1221		return AE_CTRL_TERMINATE;
1222	}
1223	return 0;
1224}
1225
1226/* Returns true if the ACPI object is a video device which can be
1227 * handled by video.ko.
1228 * The device will get a Linux specific CID added in scan.c to
1229 * identify the device as an ACPI graphics device
1230 * Be aware that the graphics device may not be physically present
1231 * Use acpi_video_get_capabilities() to detect general ACPI video
1232 * capabilities of present cards
1233 */
1234long acpi_is_video_device(acpi_handle handle)
1235{
1236	long video_caps = 0;
1237
1238	/* Is this device able to support video switching ? */
1239	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1240		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1241
1242	/* Is this device able to retrieve a video ROM ? */
1243	if (acpi_has_method(handle, "_ROM"))
1244		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1245
1246	/* Is this device able to configure which video head to be POSTed ? */
1247	if (acpi_has_method(handle, "_VPO") &&
1248	    acpi_has_method(handle, "_GPD") &&
1249	    acpi_has_method(handle, "_SPD"))
1250		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1251
1252	/* Only check for backlight functionality if one of the above hit. */
1253	if (video_caps)
1254		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1255				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1256				    &video_caps, NULL);
1257
1258	return video_caps;
1259}
1260EXPORT_SYMBOL(acpi_is_video_device);
1261
1262const char *acpi_device_hid(struct acpi_device *device)
1263{
1264	struct acpi_hardware_id *hid;
1265
1266	if (list_empty(&device->pnp.ids))
1267		return dummy_hid;
1268
1269	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1270	return hid->id;
1271}
1272EXPORT_SYMBOL(acpi_device_hid);
1273
1274static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1275{
1276	struct acpi_hardware_id *id;
1277
1278	id = kmalloc(sizeof(*id), GFP_KERNEL);
1279	if (!id)
1280		return;
1281
1282	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1283	if (!id->id) {
1284		kfree(id);
1285		return;
1286	}
1287
1288	list_add_tail(&id->list, &pnp->ids);
1289	pnp->type.hardware_id = 1;
1290}
1291
1292/*
1293 * Old IBM workstations have a DSDT bug wherein the SMBus object
1294 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1295 * prefix.  Work around this.
1296 */
1297static bool acpi_ibm_smbus_match(acpi_handle handle)
1298{
1299	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1300	struct acpi_buffer path = { sizeof(node_name), node_name };
1301
1302	if (!dmi_name_in_vendors("IBM"))
1303		return false;
1304
1305	/* Look for SMBS object */
1306	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1307	    strcmp("SMBS", path.pointer))
1308		return false;
1309
1310	/* Does it have the necessary (but misnamed) methods? */
1311	if (acpi_has_method(handle, "SBI") &&
1312	    acpi_has_method(handle, "SBR") &&
1313	    acpi_has_method(handle, "SBW"))
1314		return true;
1315
1316	return false;
1317}
1318
1319static bool acpi_object_is_system_bus(acpi_handle handle)
1320{
1321	acpi_handle tmp;
1322
1323	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1324	    tmp == handle)
1325		return true;
1326	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1327	    tmp == handle)
1328		return true;
1329
1330	return false;
1331}
1332
1333static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1334			     int device_type)
1335{
1336	struct acpi_device_info *info = NULL;
1337	struct acpi_pnp_device_id_list *cid_list;
1338	int i;
1339
1340	switch (device_type) {
1341	case ACPI_BUS_TYPE_DEVICE:
1342		if (handle == ACPI_ROOT_OBJECT) {
1343			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1344			break;
1345		}
1346
1347		acpi_get_object_info(handle, &info);
1348		if (!info) {
1349			pr_err("%s: Error reading device info\n", __func__);
1350			return;
1351		}
1352
1353		if (info->valid & ACPI_VALID_HID) {
1354			acpi_add_id(pnp, info->hardware_id.string);
1355			pnp->type.platform_id = 1;
1356		}
1357		if (info->valid & ACPI_VALID_CID) {
1358			cid_list = &info->compatible_id_list;
1359			for (i = 0; i < cid_list->count; i++)
1360				acpi_add_id(pnp, cid_list->ids[i].string);
1361		}
1362		if (info->valid & ACPI_VALID_ADR) {
1363			pnp->bus_address = info->address;
1364			pnp->type.bus_address = 1;
1365		}
1366		if (info->valid & ACPI_VALID_UID)
1367			pnp->unique_id = kstrdup(info->unique_id.string,
1368							GFP_KERNEL);
1369		if (info->valid & ACPI_VALID_CLS)
1370			acpi_add_id(pnp, info->class_code.string);
1371
1372		kfree(info);
1373
1374		/*
1375		 * Some devices don't reliably have _HIDs & _CIDs, so add
1376		 * synthetic HIDs to make sure drivers can find them.
1377		 */
1378		if (acpi_is_video_device(handle)) {
1379			acpi_add_id(pnp, ACPI_VIDEO_HID);
1380			pnp->type.backlight = 1;
1381			break;
1382		}
1383		if (acpi_bay_match(handle))
1384			acpi_add_id(pnp, ACPI_BAY_HID);
1385		else if (acpi_dock_match(handle))
1386			acpi_add_id(pnp, ACPI_DOCK_HID);
1387		else if (acpi_ibm_smbus_match(handle))
1388			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1389		else if (list_empty(&pnp->ids) &&
1390			 acpi_object_is_system_bus(handle)) {
1391			/* \_SB, \_TZ, LNXSYBUS */
1392			acpi_add_id(pnp, ACPI_BUS_HID);
1393			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1394			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1395		}
1396
1397		break;
1398	case ACPI_BUS_TYPE_POWER:
1399		acpi_add_id(pnp, ACPI_POWER_HID);
1400		break;
1401	case ACPI_BUS_TYPE_PROCESSOR:
1402		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1403		break;
1404	case ACPI_BUS_TYPE_THERMAL:
1405		acpi_add_id(pnp, ACPI_THERMAL_HID);
1406		break;
1407	case ACPI_BUS_TYPE_POWER_BUTTON:
1408		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1409		break;
1410	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1411		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1412		break;
1413	case ACPI_BUS_TYPE_ECDT_EC:
1414		acpi_add_id(pnp, ACPI_ECDT_HID);
1415		break;
1416	}
1417}
1418
1419void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1420{
1421	struct acpi_hardware_id *id, *tmp;
1422
1423	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1424		kfree_const(id->id);
1425		kfree(id);
1426	}
1427	kfree(pnp->unique_id);
1428}
1429
1430/**
1431 * acpi_dma_supported - Check DMA support for the specified device.
1432 * @adev: The pointer to acpi device
1433 *
1434 * Return false if DMA is not supported. Otherwise, return true
1435 */
1436bool acpi_dma_supported(const struct acpi_device *adev)
1437{
1438	if (!adev)
1439		return false;
1440
1441	if (adev->flags.cca_seen)
1442		return true;
1443
1444	/*
1445	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1446	* DMA on "Intel platforms".  Presumably that includes all x86 and
1447	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1448	*/
1449	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1450		return true;
1451
1452	return false;
1453}
1454
1455/**
1456 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1457 * @adev: The pointer to acpi device
1458 *
1459 * Return enum dev_dma_attr.
1460 */
1461enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1462{
1463	if (!acpi_dma_supported(adev))
1464		return DEV_DMA_NOT_SUPPORTED;
1465
1466	if (adev->flags.coherent_dma)
1467		return DEV_DMA_COHERENT;
1468	else
1469		return DEV_DMA_NON_COHERENT;
1470}
1471
1472/**
1473 * acpi_dma_get_range() - Get device DMA parameters.
1474 *
1475 * @dev: device to configure
1476 * @map: pointer to DMA ranges result
1477 *
1478 * Evaluate DMA regions and return pointer to DMA regions on
1479 * parsing success; it does not update the passed in values on failure.
 
 
 
1480 *
1481 * Return 0 on success, < 0 on failure.
1482 */
1483int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
 
1484{
1485	struct acpi_device *adev;
1486	LIST_HEAD(list);
1487	struct resource_entry *rentry;
1488	int ret;
1489	struct device *dma_dev = dev;
1490	struct bus_dma_region *r;
1491
1492	/*
1493	 * Walk the device tree chasing an ACPI companion with a _DMA
1494	 * object while we go. Stop if we find a device with an ACPI
1495	 * companion containing a _DMA method.
1496	 */
1497	do {
1498		adev = ACPI_COMPANION(dma_dev);
1499		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1500			break;
1501
1502		dma_dev = dma_dev->parent;
1503	} while (dma_dev);
1504
1505	if (!dma_dev)
1506		return -ENODEV;
1507
1508	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1509		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1510		return -EINVAL;
1511	}
1512
1513	ret = acpi_dev_get_dma_resources(adev, &list);
1514	if (ret > 0) {
1515		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1516		if (!r) {
1517			ret = -ENOMEM;
1518			goto out;
1519		}
1520
1521		*map = r;
1522
1523		list_for_each_entry(rentry, &list, node) {
1524			if (rentry->res->start >= rentry->res->end) {
1525				kfree(*map);
1526				*map = NULL;
1527				ret = -EINVAL;
1528				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1529				goto out;
1530			}
 
1531
1532			r->cpu_start = rentry->res->start;
1533			r->dma_start = rentry->res->start - rentry->offset;
1534			r->size = resource_size(rentry->res);
1535			r++;
 
1536		}
 
 
 
 
 
 
 
 
 
 
 
1537	}
1538 out:
1539	acpi_dev_free_resource_list(&list);
1540
1541	return ret >= 0 ? 0 : ret;
1542}
1543
1544#ifdef CONFIG_IOMMU_API
1545int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1546			   struct fwnode_handle *fwnode,
1547			   const struct iommu_ops *ops)
1548{
1549	int ret = iommu_fwspec_init(dev, fwnode, ops);
1550
1551	if (!ret)
1552		ret = iommu_fwspec_add_ids(dev, &id, 1);
1553
1554	return ret;
1555}
1556
1557static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1558{
1559	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1560
1561	return fwspec ? fwspec->ops : NULL;
1562}
1563
1564static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
 
1565{
1566	int err;
1567	const struct iommu_ops *ops;
1568
1569	/* Serialise to make dev->iommu stable under our potential fwspec */
1570	mutex_lock(&iommu_probe_device_lock);
1571	/*
1572	 * If we already translated the fwspec there is nothing left to do,
1573	 * return the iommu_ops.
1574	 */
1575	ops = acpi_iommu_fwspec_ops(dev);
1576	if (ops) {
1577		mutex_unlock(&iommu_probe_device_lock);
1578		return 0;
1579	}
1580
1581	err = iort_iommu_configure_id(dev, id_in);
1582	if (err && err != -EPROBE_DEFER)
1583		err = viot_iommu_configure(dev);
1584	mutex_unlock(&iommu_probe_device_lock);
1585
1586	/*
1587	 * If we have reason to believe the IOMMU driver missed the initial
1588	 * iommu_probe_device() call for dev, replay it to get things in order.
1589	 */
1590	if (!err && dev->bus)
1591		err = iommu_probe_device(dev);
1592
1593	/* Ignore all other errors apart from EPROBE_DEFER */
1594	if (err == -EPROBE_DEFER) {
1595		return err;
1596	} else if (err) {
1597		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1598		return -ENODEV;
1599	}
1600	if (!acpi_iommu_fwspec_ops(dev))
1601		return -ENODEV;
1602	return 0;
1603}
1604
1605#else /* !CONFIG_IOMMU_API */
1606
1607int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1608			   struct fwnode_handle *fwnode,
1609			   const struct iommu_ops *ops)
1610{
1611	return -ENODEV;
1612}
1613
1614static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
 
1615{
1616	return -ENODEV;
1617}
1618
1619#endif /* !CONFIG_IOMMU_API */
1620
1621/**
1622 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1623 * @dev: The pointer to the device
1624 * @attr: device dma attributes
1625 * @input_id: input device id const value pointer
1626 */
1627int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1628			  const u32 *input_id)
1629{
1630	int ret;
 
1631
1632	if (attr == DEV_DMA_NOT_SUPPORTED) {
1633		set_dma_ops(dev, &dma_dummy_ops);
1634		return 0;
1635	}
1636
1637	acpi_arch_dma_setup(dev);
1638
1639	ret = acpi_iommu_configure_id(dev, input_id);
1640	if (ret == -EPROBE_DEFER)
1641		return -EPROBE_DEFER;
1642
1643	/*
1644	 * Historically this routine doesn't fail driver probing due to errors
1645	 * in acpi_iommu_configure_id()
1646	 */
1647
1648	arch_setup_dma_ops(dev, 0, U64_MAX, attr == DEV_DMA_COHERENT);
1649
1650	return 0;
1651}
1652EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1653
1654static void acpi_init_coherency(struct acpi_device *adev)
1655{
1656	unsigned long long cca = 0;
1657	acpi_status status;
1658	struct acpi_device *parent = acpi_dev_parent(adev);
1659
1660	if (parent && parent->flags.cca_seen) {
1661		/*
1662		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1663		 * already saw one.
1664		 */
1665		adev->flags.cca_seen = 1;
1666		cca = parent->flags.coherent_dma;
1667	} else {
1668		status = acpi_evaluate_integer(adev->handle, "_CCA",
1669					       NULL, &cca);
1670		if (ACPI_SUCCESS(status))
1671			adev->flags.cca_seen = 1;
1672		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1673			/*
1674			 * If architecture does not specify that _CCA is
1675			 * required for DMA-able devices (e.g. x86),
1676			 * we default to _CCA=1.
1677			 */
1678			cca = 1;
1679		else
1680			acpi_handle_debug(adev->handle,
1681					  "ACPI device is missing _CCA.\n");
1682	}
1683
1684	adev->flags.coherent_dma = cca;
1685}
1686
1687static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1688{
1689	bool *is_serial_bus_slave_p = data;
1690
1691	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1692		return 1;
1693
1694	*is_serial_bus_slave_p = true;
1695
1696	 /* no need to do more checking */
1697	return -1;
1698}
1699
1700static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1701{
1702	struct acpi_device *parent = acpi_dev_parent(device);
1703	static const struct acpi_device_id indirect_io_hosts[] = {
1704		{"HISI0191", 0},
1705		{}
1706	};
1707
1708	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1709}
1710
1711static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1712{
1713	struct list_head resource_list;
1714	bool is_serial_bus_slave = false;
1715	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1716	/*
1717	 * These devices have multiple SerialBus resources and a client
1718	 * device must be instantiated for each of them, each with
1719	 * its own device id.
1720	 * Normally we only instantiate one client device for the first
1721	 * resource, using the ACPI HID as id. These special cases are handled
1722	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1723	 * knows which client device id to use for each resource.
1724	 */
 
1725		{"BSG1160", },
1726		{"BSG2150", },
1727		{"CSC3551", },
1728		{"CSC3556", },
1729		{"INT33FE", },
1730		{"INT3515", },
1731		/* Non-conforming _HID for Cirrus Logic already released */
1732		{"CLSA0100", },
1733		{"CLSA0101", },
1734	/*
1735	 * Some ACPI devs contain SerialBus resources even though they are not
1736	 * attached to a serial bus at all.
1737	 */
1738		{ACPI_VIDEO_HID, },
1739		{"MSHW0028", },
1740	/*
1741	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1742	 * expects a regular tty cdev to be created (instead of the in kernel
1743	 * serdev) and which have a kernel driver which expects a platform_dev
1744	 * such as the rfkill-gpio driver.
1745	 */
1746		{"BCM4752", },
1747		{"LNV4752", },
1748		{}
1749	};
1750
1751	if (acpi_is_indirect_io_slave(device))
1752		return true;
1753
1754	/* Macs use device properties in lieu of _CRS resources */
1755	if (x86_apple_machine &&
1756	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1757	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1758	     fwnode_property_present(&device->fwnode, "baud")))
1759		return true;
1760
1761	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
 
1762		return false;
1763
1764	INIT_LIST_HEAD(&resource_list);
1765	acpi_dev_get_resources(device, &resource_list,
1766			       acpi_check_serial_bus_slave,
1767			       &is_serial_bus_slave);
1768	acpi_dev_free_resource_list(&resource_list);
1769
1770	return is_serial_bus_slave;
1771}
1772
1773void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1774			     int type, void (*release)(struct device *))
1775{
1776	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1777
1778	INIT_LIST_HEAD(&device->pnp.ids);
1779	device->device_type = type;
1780	device->handle = handle;
1781	device->dev.parent = parent ? &parent->dev : NULL;
1782	device->dev.release = release;
1783	device->dev.bus = &acpi_bus_type;
1784	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1785	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1786	acpi_device_get_busid(device);
1787	acpi_set_pnp_ids(handle, &device->pnp, type);
1788	acpi_init_properties(device);
1789	acpi_bus_get_flags(device);
1790	device->flags.match_driver = false;
1791	device->flags.initialized = true;
1792	device->flags.enumeration_by_parent =
1793		acpi_device_enumeration_by_parent(device);
1794	acpi_device_clear_enumerated(device);
1795	device_initialize(&device->dev);
1796	dev_set_uevent_suppress(&device->dev, true);
1797	acpi_init_coherency(device);
1798}
1799
1800static void acpi_scan_dep_init(struct acpi_device *adev)
1801{
1802	struct acpi_dep_data *dep;
1803
1804	list_for_each_entry(dep, &acpi_dep_list, node) {
1805		if (dep->consumer == adev->handle) {
1806			if (dep->honor_dep)
1807				adev->flags.honor_deps = 1;
1808
1809			adev->dep_unmet++;
1810		}
1811	}
1812}
1813
1814void acpi_device_add_finalize(struct acpi_device *device)
1815{
1816	dev_set_uevent_suppress(&device->dev, false);
1817	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1818}
1819
1820static void acpi_scan_init_status(struct acpi_device *adev)
1821{
1822	if (acpi_bus_get_status(adev))
1823		acpi_set_device_status(adev, 0);
1824}
1825
1826static int acpi_add_single_object(struct acpi_device **child,
1827				  acpi_handle handle, int type, bool dep_init)
1828{
1829	struct acpi_device *device;
1830	bool release_dep_lock = false;
1831	int result;
1832
1833	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1834	if (!device)
1835		return -ENOMEM;
1836
1837	acpi_init_device_object(device, handle, type, acpi_device_release);
1838	/*
1839	 * Getting the status is delayed till here so that we can call
1840	 * acpi_bus_get_status() and use its quirk handling.  Note that
1841	 * this must be done before the get power-/wakeup_dev-flags calls.
1842	 */
1843	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1844		if (dep_init) {
1845			mutex_lock(&acpi_dep_list_lock);
1846			/*
1847			 * Hold the lock until the acpi_tie_acpi_dev() call
1848			 * below to prevent concurrent acpi_scan_clear_dep()
1849			 * from deleting a dependency list entry without
1850			 * updating dep_unmet for the device.
1851			 */
1852			release_dep_lock = true;
1853			acpi_scan_dep_init(device);
1854		}
1855		acpi_scan_init_status(device);
1856	}
1857
1858	acpi_bus_get_power_flags(device);
1859	acpi_bus_get_wakeup_device_flags(device);
1860
1861	result = acpi_tie_acpi_dev(device);
1862
1863	if (release_dep_lock)
1864		mutex_unlock(&acpi_dep_list_lock);
1865
1866	if (!result)
1867		result = acpi_device_add(device);
1868
1869	if (result) {
1870		acpi_device_release(&device->dev);
1871		return result;
1872	}
1873
1874	acpi_power_add_remove_device(device, true);
1875	acpi_device_add_finalize(device);
1876
1877	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1878			  dev_name(&device->dev), device->dev.parent ?
1879				dev_name(device->dev.parent) : "(null)");
1880
1881	*child = device;
1882	return 0;
1883}
1884
1885static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1886					    void *context)
1887{
1888	struct resource *res = context;
1889
1890	if (acpi_dev_resource_memory(ares, res))
1891		return AE_CTRL_TERMINATE;
1892
1893	return AE_OK;
1894}
1895
1896static bool acpi_device_should_be_hidden(acpi_handle handle)
1897{
1898	acpi_status status;
1899	struct resource res;
1900
1901	/* Check if it should ignore the UART device */
1902	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1903		return false;
1904
1905	/*
1906	 * The UART device described in SPCR table is assumed to have only one
1907	 * memory resource present. So we only look for the first one here.
1908	 */
1909	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1910				     acpi_get_resource_memory, &res);
1911	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1912		return false;
1913
1914	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1915			 &res.start);
1916
1917	return true;
1918}
1919
1920bool acpi_device_is_present(const struct acpi_device *adev)
1921{
1922	return adev->status.present || adev->status.functional;
1923}
1924
1925static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1926				       const char *idstr,
1927				       const struct acpi_device_id **matchid)
1928{
1929	const struct acpi_device_id *devid;
1930
1931	if (handler->match)
1932		return handler->match(idstr, matchid);
1933
1934	for (devid = handler->ids; devid->id[0]; devid++)
1935		if (!strcmp((char *)devid->id, idstr)) {
1936			if (matchid)
1937				*matchid = devid;
1938
1939			return true;
1940		}
1941
1942	return false;
1943}
1944
1945static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1946					const struct acpi_device_id **matchid)
1947{
1948	struct acpi_scan_handler *handler;
1949
1950	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1951		if (acpi_scan_handler_matching(handler, idstr, matchid))
1952			return handler;
1953
1954	return NULL;
1955}
1956
1957void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1958{
1959	if (!!hotplug->enabled == !!val)
1960		return;
1961
1962	mutex_lock(&acpi_scan_lock);
1963
1964	hotplug->enabled = val;
1965
1966	mutex_unlock(&acpi_scan_lock);
1967}
1968
1969static void acpi_scan_init_hotplug(struct acpi_device *adev)
1970{
1971	struct acpi_hardware_id *hwid;
1972
1973	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1974		acpi_dock_add(adev);
1975		return;
1976	}
1977	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1978		struct acpi_scan_handler *handler;
1979
1980		handler = acpi_scan_match_handler(hwid->id, NULL);
1981		if (handler) {
1982			adev->flags.hotplug_notify = true;
1983			break;
1984		}
1985	}
1986}
1987
1988static u32 acpi_scan_check_dep(acpi_handle handle)
1989{
1990	struct acpi_handle_list dep_devices;
 
1991	u32 count;
1992	int i;
1993
1994	/*
1995	 * Check for _HID here to avoid deferring the enumeration of:
1996	 * 1. PCI devices.
1997	 * 2. ACPI nodes describing USB ports.
1998	 * Still, checking for _HID catches more then just these cases ...
1999	 */
2000	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
 
2001		return 0;
2002
2003	if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
 
2004		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2005		return 0;
2006	}
2007
2008	for (count = 0, i = 0; i < dep_devices.count; i++) {
2009		struct acpi_device_info *info;
2010		struct acpi_dep_data *dep;
2011		bool skip, honor_dep;
2012		acpi_status status;
2013
2014		status = acpi_get_object_info(dep_devices.handles[i], &info);
2015		if (ACPI_FAILURE(status)) {
2016			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2017			continue;
2018		}
2019
2020		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2021		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2022		kfree(info);
2023
2024		if (skip)
2025			continue;
2026
2027		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2028		if (!dep)
2029			continue;
2030
2031		count++;
2032
2033		dep->supplier = dep_devices.handles[i];
2034		dep->consumer = handle;
2035		dep->honor_dep = honor_dep;
2036
2037		mutex_lock(&acpi_dep_list_lock);
2038		list_add_tail(&dep->node , &acpi_dep_list);
2039		mutex_unlock(&acpi_dep_list_lock);
2040	}
2041
2042	acpi_handle_list_free(&dep_devices);
2043	return count;
2044}
2045
2046static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2047{
2048	acpi_mipi_check_crs_csi2(handle);
2049	return AE_OK;
2050}
2051
2052static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2053				      struct acpi_device **adev_p)
2054{
2055	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2056	acpi_object_type acpi_type;
2057	int type;
2058
 
2059	if (device)
2060		goto out;
2061
2062	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2063		return AE_OK;
2064
2065	switch (acpi_type) {
2066	case ACPI_TYPE_DEVICE:
2067		if (acpi_device_should_be_hidden(handle))
2068			return AE_OK;
2069
2070		if (first_pass) {
2071			acpi_mipi_check_crs_csi2(handle);
2072
2073			/* Bail out if there are dependencies. */
2074			if (acpi_scan_check_dep(handle) > 0) {
2075				/*
2076				 * The entire CSI-2 connection graph needs to be
2077				 * extracted before any drivers or scan handlers
2078				 * are bound to struct device objects, so scan
2079				 * _CRS CSI-2 resource descriptors for all
2080				 * devices below the current handle.
2081				 */
2082				acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2083						    ACPI_UINT32_MAX,
2084						    acpi_scan_check_crs_csi2_cb,
2085						    NULL, NULL, NULL);
2086				return AE_CTRL_DEPTH;
2087			}
2088		}
2089
2090		fallthrough;
2091	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2092		type = ACPI_BUS_TYPE_DEVICE;
2093		break;
2094
2095	case ACPI_TYPE_PROCESSOR:
2096		type = ACPI_BUS_TYPE_PROCESSOR;
2097		break;
2098
2099	case ACPI_TYPE_THERMAL:
2100		type = ACPI_BUS_TYPE_THERMAL;
2101		break;
2102
2103	case ACPI_TYPE_POWER:
2104		acpi_add_power_resource(handle);
2105		fallthrough;
2106	default:
2107		return AE_OK;
2108	}
2109
2110	/*
2111	 * If first_pass is true at this point, the device has no dependencies,
2112	 * or the creation of the device object would have been postponed above.
2113	 */
2114	acpi_add_single_object(&device, handle, type, !first_pass);
2115	if (!device)
2116		return AE_CTRL_DEPTH;
2117
2118	acpi_scan_init_hotplug(device);
2119
2120out:
2121	if (!*adev_p)
2122		*adev_p = device;
2123
2124	return AE_OK;
2125}
2126
2127static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2128					void *not_used, void **ret_p)
2129{
2130	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2131}
2132
2133static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2134					void *not_used, void **ret_p)
2135{
2136	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2137}
2138
2139static void acpi_default_enumeration(struct acpi_device *device)
2140{
2141	/*
2142	 * Do not enumerate devices with enumeration_by_parent flag set as
2143	 * they will be enumerated by their respective parents.
2144	 */
2145	if (!device->flags.enumeration_by_parent) {
2146		acpi_create_platform_device(device, NULL);
2147		acpi_device_set_enumerated(device);
2148	} else {
2149		blocking_notifier_call_chain(&acpi_reconfig_chain,
2150					     ACPI_RECONFIG_DEVICE_ADD, device);
2151	}
2152}
2153
2154static const struct acpi_device_id generic_device_ids[] = {
2155	{ACPI_DT_NAMESPACE_HID, },
2156	{"", },
2157};
2158
2159static int acpi_generic_device_attach(struct acpi_device *adev,
2160				      const struct acpi_device_id *not_used)
2161{
2162	/*
2163	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2164	 * below can be unconditional.
2165	 */
2166	if (adev->data.of_compatible)
2167		acpi_default_enumeration(adev);
2168
2169	return 1;
2170}
2171
2172static struct acpi_scan_handler generic_device_handler = {
2173	.ids = generic_device_ids,
2174	.attach = acpi_generic_device_attach,
2175};
2176
2177static int acpi_scan_attach_handler(struct acpi_device *device)
2178{
2179	struct acpi_hardware_id *hwid;
2180	int ret = 0;
2181
2182	list_for_each_entry(hwid, &device->pnp.ids, list) {
2183		const struct acpi_device_id *devid;
2184		struct acpi_scan_handler *handler;
2185
2186		handler = acpi_scan_match_handler(hwid->id, &devid);
2187		if (handler) {
2188			if (!handler->attach) {
2189				device->pnp.type.platform_id = 0;
2190				continue;
2191			}
2192			device->handler = handler;
2193			ret = handler->attach(device, devid);
2194			if (ret > 0)
2195				break;
2196
2197			device->handler = NULL;
2198			if (ret < 0)
2199				break;
2200		}
2201	}
2202
2203	return ret;
2204}
2205
2206static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2207{
 
2208	bool skip = !first_pass && device->flags.visited;
2209	acpi_handle ejd;
2210	int ret;
2211
2212	if (skip)
2213		goto ok;
2214
2215	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2216		register_dock_dependent_device(device, ejd);
2217
2218	acpi_bus_get_status(device);
2219	/* Skip devices that are not ready for enumeration (e.g. not present) */
2220	if (!acpi_dev_ready_for_enumeration(device)) {
2221		device->flags.initialized = false;
2222		acpi_device_clear_enumerated(device);
2223		device->flags.power_manageable = 0;
2224		return 0;
2225	}
2226	if (device->handler)
2227		goto ok;
2228
2229	if (!device->flags.initialized) {
2230		device->flags.power_manageable =
2231			device->power.states[ACPI_STATE_D0].flags.valid;
2232		if (acpi_bus_init_power(device))
2233			device->flags.power_manageable = 0;
2234
2235		device->flags.initialized = true;
2236	} else if (device->flags.visited) {
2237		goto ok;
2238	}
2239
2240	ret = acpi_scan_attach_handler(device);
2241	if (ret < 0)
2242		return 0;
2243
2244	device->flags.match_driver = true;
2245	if (ret > 0 && !device->flags.enumeration_by_parent) {
2246		acpi_device_set_enumerated(device);
2247		goto ok;
2248	}
2249
2250	ret = device_attach(&device->dev);
2251	if (ret < 0)
2252		return 0;
2253
2254	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2255		acpi_default_enumeration(device);
2256	else
2257		acpi_device_set_enumerated(device);
2258
2259ok:
2260	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
 
2261
2262	if (!skip && device->handler && device->handler->hotplug.notify_online)
2263		device->handler->hotplug.notify_online(device);
2264
2265	return 0;
2266}
2267
2268static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2269{
2270	struct acpi_device **adev_p = data;
2271	struct acpi_device *adev = *adev_p;
2272
2273	/*
2274	 * If we're passed a 'previous' consumer device then we need to skip
2275	 * any consumers until we meet the previous one, and then NULL @data
2276	 * so the next one can be returned.
2277	 */
2278	if (adev) {
2279		if (dep->consumer == adev->handle)
2280			*adev_p = NULL;
2281
2282		return 0;
2283	}
2284
2285	adev = acpi_get_acpi_dev(dep->consumer);
2286	if (adev) {
2287		*(struct acpi_device **)data = adev;
2288		return 1;
2289	}
2290	/* Continue parsing if the device object is not present. */
2291	return 0;
2292}
2293
2294struct acpi_scan_clear_dep_work {
2295	struct work_struct work;
2296	struct acpi_device *adev;
2297};
2298
2299static void acpi_scan_clear_dep_fn(struct work_struct *work)
2300{
2301	struct acpi_scan_clear_dep_work *cdw;
2302
2303	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2304
2305	acpi_scan_lock_acquire();
2306	acpi_bus_attach(cdw->adev, (void *)true);
2307	acpi_scan_lock_release();
2308
2309	acpi_dev_put(cdw->adev);
2310	kfree(cdw);
2311}
2312
2313static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2314{
2315	struct acpi_scan_clear_dep_work *cdw;
2316
2317	if (adev->dep_unmet)
2318		return false;
2319
2320	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2321	if (!cdw)
2322		return false;
2323
2324	cdw->adev = adev;
2325	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2326	/*
2327	 * Since the work function may block on the lock until the entire
2328	 * initial enumeration of devices is complete, put it into the unbound
2329	 * workqueue.
2330	 */
2331	queue_work(system_unbound_wq, &cdw->work);
2332
2333	return true;
2334}
2335
2336static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2337{
2338	list_del(&dep->node);
2339	kfree(dep);
2340}
2341
2342static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2343{
2344	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2345
2346	if (adev) {
2347		adev->dep_unmet--;
2348		if (!acpi_scan_clear_dep_queue(adev))
2349			acpi_dev_put(adev);
2350	}
2351
2352	if (dep->free_when_met)
2353		acpi_scan_delete_dep_data(dep);
2354	else
2355		dep->met = true;
2356
2357	return 0;
2358}
2359
2360/**
2361 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2362 * @handle:	The ACPI handle of the supplier device
2363 * @callback:	Pointer to the callback function to apply
2364 * @data:	Pointer to some data to pass to the callback
2365 *
2366 * The return value of the callback determines this function's behaviour. If 0
2367 * is returned we continue to iterate over acpi_dep_list. If a positive value
2368 * is returned then the loop is broken but this function returns 0. If a
2369 * negative value is returned by the callback then the loop is broken and that
2370 * value is returned as the final error.
2371 */
2372static int acpi_walk_dep_device_list(acpi_handle handle,
2373				int (*callback)(struct acpi_dep_data *, void *),
2374				void *data)
2375{
2376	struct acpi_dep_data *dep, *tmp;
2377	int ret = 0;
2378
2379	mutex_lock(&acpi_dep_list_lock);
2380	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2381		if (dep->supplier == handle) {
2382			ret = callback(dep, data);
2383			if (ret)
2384				break;
2385		}
2386	}
2387	mutex_unlock(&acpi_dep_list_lock);
2388
2389	return ret > 0 ? 0 : ret;
2390}
2391
2392/**
2393 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2394 * @supplier: Pointer to the supplier &struct acpi_device
2395 *
2396 * Clear dependencies on the given device.
2397 */
2398void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2399{
2400	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2401}
2402EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2403
2404/**
2405 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2406 * @device: Pointer to the &struct acpi_device to check
2407 *
2408 * Check if the device is present and has no unmet dependencies.
2409 *
2410 * Return true if the device is ready for enumeratino. Otherwise, return false.
2411 */
2412bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2413{
2414	if (device->flags.honor_deps && device->dep_unmet)
2415		return false;
2416
2417	return acpi_device_is_present(device);
2418}
2419EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2420
2421/**
2422 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2423 * @supplier: Pointer to the dependee device
2424 * @start: Pointer to the current dependent device
2425 *
2426 * Returns the next &struct acpi_device which declares itself dependent on
2427 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2428 *
2429 * If the returned adev is not passed as @start to this function, the caller is
2430 * responsible for putting the reference to adev when it is no longer needed.
2431 */
2432struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2433						   struct acpi_device *start)
2434{
2435	struct acpi_device *adev = start;
2436
2437	acpi_walk_dep_device_list(supplier->handle,
2438				  acpi_dev_get_next_consumer_dev_cb, &adev);
2439
2440	acpi_dev_put(start);
2441
2442	if (adev == start)
2443		return NULL;
2444
2445	return adev;
2446}
2447EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2448
2449static void acpi_scan_postponed_branch(acpi_handle handle)
2450{
2451	struct acpi_device *adev = NULL;
2452
2453	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2454		return;
2455
2456	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2457			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2458
2459	/*
2460	 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2461	 * have been added above.
2462	 */
2463	acpi_mipi_init_crs_csi2_swnodes();
2464
2465	acpi_bus_attach(adev, NULL);
2466}
2467
2468static void acpi_scan_postponed(void)
2469{
2470	struct acpi_dep_data *dep, *tmp;
2471
2472	mutex_lock(&acpi_dep_list_lock);
2473
2474	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2475		acpi_handle handle = dep->consumer;
2476
2477		/*
2478		 * In case there are multiple acpi_dep_list entries with the
2479		 * same consumer, skip the current entry if the consumer device
2480		 * object corresponding to it is present already.
2481		 */
2482		if (!acpi_fetch_acpi_dev(handle)) {
2483			/*
2484			 * Even though the lock is released here, tmp is
2485			 * guaranteed to be valid, because none of the list
2486			 * entries following dep is marked as "free when met"
2487			 * and so they cannot be deleted.
2488			 */
2489			mutex_unlock(&acpi_dep_list_lock);
2490
2491			acpi_scan_postponed_branch(handle);
2492
2493			mutex_lock(&acpi_dep_list_lock);
2494		}
2495
2496		if (dep->met)
2497			acpi_scan_delete_dep_data(dep);
2498		else
2499			dep->free_when_met = true;
2500	}
2501
2502	mutex_unlock(&acpi_dep_list_lock);
2503}
2504
2505/**
2506 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2507 * @handle: Root of the namespace scope to scan.
2508 *
2509 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2510 * found devices.
2511 *
2512 * If no devices were found, -ENODEV is returned, but it does not mean that
2513 * there has been a real error.  There just have been no suitable ACPI objects
2514 * in the table trunk from which the kernel could create a device and add an
2515 * appropriate driver.
2516 *
2517 * Must be called under acpi_scan_lock.
2518 */
2519int acpi_bus_scan(acpi_handle handle)
2520{
2521	struct acpi_device *device = NULL;
2522
 
 
2523	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2524
2525	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2526		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2527				    acpi_bus_check_add_1, NULL, NULL,
2528				    (void **)&device);
2529
2530	if (!device)
2531		return -ENODEV;
2532
2533	/*
2534	 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2535	 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2536	 * walk above and MIPI DisCo for Imaging device properties.
2537	 */
2538	acpi_mipi_scan_crs_csi2();
2539	acpi_mipi_init_crs_csi2_swnodes();
2540
2541	acpi_bus_attach(device, (void *)true);
 
2542
2543	/* Pass 2: Enumerate all of the remaining devices. */
2544
2545	acpi_scan_postponed();
2546
2547	acpi_mipi_crs_csi2_cleanup();
 
 
 
 
 
2548
2549	return 0;
2550}
2551EXPORT_SYMBOL(acpi_bus_scan);
2552
2553static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
 
 
 
 
 
 
2554{
2555	struct acpi_scan_handler *handler = adev->handler;
 
2556
2557	acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
 
2558
2559	adev->flags.match_driver = false;
2560	if (handler) {
2561		if (handler->detach)
2562			handler->detach(adev);
2563
2564		adev->handler = NULL;
2565	} else {
2566		device_release_driver(&adev->dev);
2567	}
2568	/*
2569	 * Most likely, the device is going away, so put it into D3cold before
2570	 * that.
2571	 */
2572	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2573	adev->flags.initialized = false;
2574	acpi_device_clear_enumerated(adev);
2575
2576	return 0;
2577}
2578
2579/**
2580 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2581 * @adev: Root of the ACPI namespace scope to walk.
2582 *
2583 * Must be called under acpi_scan_lock.
2584 */
2585void acpi_bus_trim(struct acpi_device *adev)
2586{
2587	acpi_bus_trim_one(adev, NULL);
2588}
2589EXPORT_SYMBOL_GPL(acpi_bus_trim);
2590
2591int acpi_bus_register_early_device(int type)
2592{
2593	struct acpi_device *device = NULL;
2594	int result;
2595
2596	result = acpi_add_single_object(&device, NULL, type, false);
2597	if (result)
2598		return result;
2599
2600	device->flags.match_driver = true;
2601	return device_attach(&device->dev);
2602}
2603EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2604
2605static void acpi_bus_scan_fixed(void)
2606{
 
 
 
 
 
2607	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2608		struct acpi_device *adev = NULL;
2609
2610		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2611				       false);
2612		if (adev) {
2613			adev->flags.match_driver = true;
2614			if (device_attach(&adev->dev) >= 0)
2615				device_init_wakeup(&adev->dev, true);
2616			else
2617				dev_dbg(&adev->dev, "No driver\n");
2618		}
 
 
2619	}
2620
2621	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2622		struct acpi_device *adev = NULL;
2623
2624		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2625				       false);
2626		if (adev) {
2627			adev->flags.match_driver = true;
2628			if (device_attach(&adev->dev) < 0)
2629				dev_dbg(&adev->dev, "No driver\n");
2630		}
2631	}
 
 
2632}
2633
2634static void __init acpi_get_spcr_uart_addr(void)
2635{
2636	acpi_status status;
2637	struct acpi_table_spcr *spcr_ptr;
2638
2639	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2640				(struct acpi_table_header **)&spcr_ptr);
2641	if (ACPI_FAILURE(status)) {
2642		pr_warn("STAO table present, but SPCR is missing\n");
2643		return;
2644	}
2645
2646	spcr_uart_addr = spcr_ptr->serial_port.address;
2647	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2648}
2649
2650static bool acpi_scan_initialized;
2651
2652void __init acpi_scan_init(void)
2653{
 
2654	acpi_status status;
2655	struct acpi_table_stao *stao_ptr;
2656
2657	acpi_pci_root_init();
2658	acpi_pci_link_init();
2659	acpi_processor_init();
2660	acpi_platform_init();
2661	acpi_lpss_init();
2662	acpi_apd_init();
2663	acpi_cmos_rtc_init();
2664	acpi_container_init();
2665	acpi_memory_hotplug_init();
2666	acpi_watchdog_init();
2667	acpi_pnp_init();
2668	acpi_int340x_thermal_init();
 
2669	acpi_init_lpit();
2670
2671	acpi_scan_add_handler(&generic_device_handler);
2672
2673	/*
2674	 * If there is STAO table, check whether it needs to ignore the UART
2675	 * device in SPCR table.
2676	 */
2677	status = acpi_get_table(ACPI_SIG_STAO, 0,
2678				(struct acpi_table_header **)&stao_ptr);
2679	if (ACPI_SUCCESS(status)) {
2680		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2681			pr_info("STAO Name List not yet supported.\n");
2682
2683		if (stao_ptr->ignore_uart)
2684			acpi_get_spcr_uart_addr();
2685
2686		acpi_put_table((struct acpi_table_header *)stao_ptr);
2687	}
2688
2689	acpi_gpe_apply_masked_gpes();
2690	acpi_update_all_gpes();
2691
2692	/*
2693	 * Although we call __add_memory() that is documented to require the
2694	 * device_hotplug_lock, it is not necessary here because this is an
2695	 * early code when userspace or any other code path cannot trigger
2696	 * hotplug/hotunplug operations.
2697	 */
2698	mutex_lock(&acpi_scan_lock);
2699	/*
2700	 * Enumerate devices in the ACPI namespace.
2701	 */
2702	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2703		goto unlock;
 
2704
2705	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2706	if (!acpi_root)
2707		goto unlock;
2708
2709	/* Fixed feature devices do not exist on HW-reduced platform */
2710	if (!acpi_gbl_reduced_hardware)
2711		acpi_bus_scan_fixed();
 
 
 
 
 
 
 
 
2712
2713	acpi_turn_off_unused_power_resources();
2714
2715	acpi_scan_initialized = true;
2716
2717unlock:
2718	mutex_unlock(&acpi_scan_lock);
 
2719}
2720
2721static struct acpi_probe_entry *ape;
2722static int acpi_probe_count;
2723static DEFINE_MUTEX(acpi_probe_mutex);
2724
2725static int __init acpi_match_madt(union acpi_subtable_headers *header,
2726				  const unsigned long end)
2727{
2728	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2729		if (!ape->probe_subtbl(header, end))
2730			acpi_probe_count++;
2731
2732	return 0;
2733}
2734
2735int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2736{
2737	int count = 0;
2738
2739	if (acpi_disabled)
2740		return 0;
2741
2742	mutex_lock(&acpi_probe_mutex);
2743	for (ape = ap_head; nr; ape++, nr--) {
2744		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2745			acpi_probe_count = 0;
2746			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2747			count += acpi_probe_count;
2748		} else {
2749			int res;
2750			res = acpi_table_parse(ape->id, ape->probe_table);
2751			if (!res)
2752				count++;
2753		}
2754	}
2755	mutex_unlock(&acpi_probe_mutex);
2756
2757	return count;
2758}
2759
2760static void acpi_table_events_fn(struct work_struct *work)
2761{
2762	acpi_scan_lock_acquire();
2763	acpi_bus_scan(ACPI_ROOT_OBJECT);
2764	acpi_scan_lock_release();
2765
2766	kfree(work);
2767}
2768
2769void acpi_scan_table_notify(void)
2770{
2771	struct work_struct *work;
2772
2773	if (!acpi_scan_initialized)
2774		return;
2775
2776	work = kmalloc(sizeof(*work), GFP_KERNEL);
2777	if (!work)
2778		return;
2779
2780	INIT_WORK(work, acpi_table_events_fn);
2781	schedule_work(work);
2782}
2783
2784int acpi_reconfig_notifier_register(struct notifier_block *nb)
2785{
2786	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2787}
2788EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2789
2790int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2791{
2792	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2793}
2794EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * scan.c - support for transforming the ACPI namespace into individual objects
   4 */
   5
   6#define pr_fmt(fmt) "ACPI: " fmt
   7
   8#include <linux/module.h>
   9#include <linux/init.h>
  10#include <linux/slab.h>
  11#include <linux/kernel.h>
  12#include <linux/acpi.h>
  13#include <linux/acpi_iort.h>
  14#include <linux/acpi_viot.h>
  15#include <linux/iommu.h>
  16#include <linux/signal.h>
  17#include <linux/kthread.h>
  18#include <linux/dmi.h>
  19#include <linux/nls.h>
  20#include <linux/dma-map-ops.h>
  21#include <linux/platform_data/x86/apple.h>
  22#include <linux/pgtable.h>
 
 
  23
  24#include "internal.h"
  25
  26extern struct acpi_device *acpi_root;
  27
  28#define ACPI_BUS_CLASS			"system_bus"
  29#define ACPI_BUS_HID			"LNXSYBUS"
  30#define ACPI_BUS_DEVICE_NAME		"System Bus"
  31
  32#define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
  33
  34#define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
  35
  36static const char *dummy_hid = "device";
  37
  38static LIST_HEAD(acpi_dep_list);
  39static DEFINE_MUTEX(acpi_dep_list_lock);
  40LIST_HEAD(acpi_bus_id_list);
  41static DEFINE_MUTEX(acpi_scan_lock);
  42static LIST_HEAD(acpi_scan_handlers_list);
  43DEFINE_MUTEX(acpi_device_lock);
  44LIST_HEAD(acpi_wakeup_device_list);
  45static DEFINE_MUTEX(acpi_hp_context_lock);
  46
  47/*
  48 * The UART device described by the SPCR table is the only object which needs
  49 * special-casing. Everything else is covered by ACPI namespace paths in STAO
  50 * table.
  51 */
  52static u64 spcr_uart_addr;
  53
  54void acpi_scan_lock_acquire(void)
  55{
  56	mutex_lock(&acpi_scan_lock);
  57}
  58EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
  59
  60void acpi_scan_lock_release(void)
  61{
  62	mutex_unlock(&acpi_scan_lock);
  63}
  64EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
  65
  66void acpi_lock_hp_context(void)
  67{
  68	mutex_lock(&acpi_hp_context_lock);
  69}
  70
  71void acpi_unlock_hp_context(void)
  72{
  73	mutex_unlock(&acpi_hp_context_lock);
  74}
  75
  76void acpi_initialize_hp_context(struct acpi_device *adev,
  77				struct acpi_hotplug_context *hp,
  78				int (*notify)(struct acpi_device *, u32),
  79				void (*uevent)(struct acpi_device *, u32))
  80{
  81	acpi_lock_hp_context();
  82	hp->notify = notify;
  83	hp->uevent = uevent;
  84	acpi_set_hp_context(adev, hp);
  85	acpi_unlock_hp_context();
  86}
  87EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
  88
  89int acpi_scan_add_handler(struct acpi_scan_handler *handler)
  90{
  91	if (!handler)
  92		return -EINVAL;
  93
  94	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
  95	return 0;
  96}
  97
  98int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
  99				       const char *hotplug_profile_name)
 100{
 101	int error;
 102
 103	error = acpi_scan_add_handler(handler);
 104	if (error)
 105		return error;
 106
 107	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
 108	return 0;
 109}
 110
 111bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
 112{
 113	struct acpi_device_physical_node *pn;
 114	bool offline = true;
 115	char *envp[] = { "EVENT=offline", NULL };
 116
 117	/*
 118	 * acpi_container_offline() calls this for all of the container's
 119	 * children under the container's physical_node_lock lock.
 120	 */
 121	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
 122
 123	list_for_each_entry(pn, &adev->physical_node_list, node)
 124		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
 125			if (uevent)
 126				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
 127
 128			offline = false;
 129			break;
 130		}
 131
 132	mutex_unlock(&adev->physical_node_lock);
 133	return offline;
 134}
 135
 136static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
 137				    void **ret_p)
 138{
 139	struct acpi_device *device = NULL;
 140	struct acpi_device_physical_node *pn;
 141	bool second_pass = (bool)data;
 142	acpi_status status = AE_OK;
 143
 144	if (acpi_bus_get_device(handle, &device))
 145		return AE_OK;
 146
 147	if (device->handler && !device->handler->hotplug.enabled) {
 148		*ret_p = &device->dev;
 149		return AE_SUPPORT;
 150	}
 151
 152	mutex_lock(&device->physical_node_lock);
 153
 154	list_for_each_entry(pn, &device->physical_node_list, node) {
 155		int ret;
 156
 157		if (second_pass) {
 158			/* Skip devices offlined by the first pass. */
 159			if (pn->put_online)
 160				continue;
 161		} else {
 162			pn->put_online = false;
 163		}
 164		ret = device_offline(pn->dev);
 165		if (ret >= 0) {
 166			pn->put_online = !ret;
 167		} else {
 168			*ret_p = pn->dev;
 169			if (second_pass) {
 170				status = AE_ERROR;
 171				break;
 172			}
 173		}
 174	}
 175
 176	mutex_unlock(&device->physical_node_lock);
 177
 178	return status;
 179}
 180
 181static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
 182				   void **ret_p)
 183{
 184	struct acpi_device *device = NULL;
 185	struct acpi_device_physical_node *pn;
 186
 187	if (acpi_bus_get_device(handle, &device))
 188		return AE_OK;
 189
 190	mutex_lock(&device->physical_node_lock);
 191
 192	list_for_each_entry(pn, &device->physical_node_list, node)
 193		if (pn->put_online) {
 194			device_online(pn->dev);
 195			pn->put_online = false;
 196		}
 197
 198	mutex_unlock(&device->physical_node_lock);
 199
 200	return AE_OK;
 201}
 202
 203static int acpi_scan_try_to_offline(struct acpi_device *device)
 204{
 205	acpi_handle handle = device->handle;
 206	struct device *errdev = NULL;
 207	acpi_status status;
 208
 209	/*
 210	 * Carry out two passes here and ignore errors in the first pass,
 211	 * because if the devices in question are memory blocks and
 212	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
 213	 * that the other blocks depend on, but it is not known in advance which
 214	 * block holds them.
 215	 *
 216	 * If the first pass is successful, the second one isn't needed, though.
 217	 */
 218	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
 219				     NULL, acpi_bus_offline, (void *)false,
 220				     (void **)&errdev);
 221	if (status == AE_SUPPORT) {
 222		dev_warn(errdev, "Offline disabled.\n");
 223		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
 224				    acpi_bus_online, NULL, NULL, NULL);
 225		return -EPERM;
 226	}
 227	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
 228	if (errdev) {
 229		errdev = NULL;
 230		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
 231				    NULL, acpi_bus_offline, (void *)true,
 232				    (void **)&errdev);
 233		if (!errdev)
 234			acpi_bus_offline(handle, 0, (void *)true,
 235					 (void **)&errdev);
 236
 237		if (errdev) {
 238			dev_warn(errdev, "Offline failed.\n");
 239			acpi_bus_online(handle, 0, NULL, NULL);
 240			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
 241					    ACPI_UINT32_MAX, acpi_bus_online,
 242					    NULL, NULL, NULL);
 243			return -EBUSY;
 244		}
 245	}
 246	return 0;
 247}
 248
 249static int acpi_scan_hot_remove(struct acpi_device *device)
 250{
 251	acpi_handle handle = device->handle;
 252	unsigned long long sta;
 253	acpi_status status;
 254
 255	if (device->handler && device->handler->hotplug.demand_offline) {
 256		if (!acpi_scan_is_offline(device, true))
 257			return -EBUSY;
 258	} else {
 259		int error = acpi_scan_try_to_offline(device);
 260		if (error)
 261			return error;
 262	}
 263
 264	acpi_handle_debug(handle, "Ejecting\n");
 265
 266	acpi_bus_trim(device);
 267
 268	acpi_evaluate_lck(handle, 0);
 269	/*
 270	 * TBD: _EJD support.
 271	 */
 272	status = acpi_evaluate_ej0(handle);
 273	if (status == AE_NOT_FOUND)
 274		return -ENODEV;
 275	else if (ACPI_FAILURE(status))
 276		return -EIO;
 277
 278	/*
 279	 * Verify if eject was indeed successful.  If not, log an error
 280	 * message.  No need to call _OST since _EJ0 call was made OK.
 281	 */
 282	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
 283	if (ACPI_FAILURE(status)) {
 284		acpi_handle_warn(handle,
 285			"Status check after eject failed (0x%x)\n", status);
 286	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
 287		acpi_handle_warn(handle,
 288			"Eject incomplete - status 0x%llx\n", sta);
 289	}
 290
 291	return 0;
 292}
 293
 294static int acpi_scan_device_not_present(struct acpi_device *adev)
 295{
 296	if (!acpi_device_enumerated(adev)) {
 297		dev_warn(&adev->dev, "Still not present\n");
 298		return -EALREADY;
 299	}
 300	acpi_bus_trim(adev);
 301	return 0;
 302}
 303
 304static int acpi_scan_device_check(struct acpi_device *adev)
 305{
 306	int error;
 307
 308	acpi_bus_get_status(adev);
 309	if (adev->status.present || adev->status.functional) {
 310		/*
 311		 * This function is only called for device objects for which
 312		 * matching scan handlers exist.  The only situation in which
 313		 * the scan handler is not attached to this device object yet
 314		 * is when the device has just appeared (either it wasn't
 315		 * present at all before or it was removed and then added
 316		 * again).
 317		 */
 318		if (adev->handler) {
 319			dev_warn(&adev->dev, "Already enumerated\n");
 320			return -EALREADY;
 321		}
 322		error = acpi_bus_scan(adev->handle);
 323		if (error) {
 324			dev_warn(&adev->dev, "Namespace scan failure\n");
 325			return error;
 326		}
 327		if (!adev->handler) {
 328			dev_warn(&adev->dev, "Enumeration failure\n");
 329			error = -ENODEV;
 330		}
 331	} else {
 332		error = acpi_scan_device_not_present(adev);
 333	}
 334	return error;
 335}
 336
 337static int acpi_scan_bus_check(struct acpi_device *adev)
 338{
 339	struct acpi_scan_handler *handler = adev->handler;
 340	struct acpi_device *child;
 341	int error;
 342
 343	acpi_bus_get_status(adev);
 344	if (!(adev->status.present || adev->status.functional)) {
 345		acpi_scan_device_not_present(adev);
 346		return 0;
 347	}
 348	if (handler && handler->hotplug.scan_dependent)
 349		return handler->hotplug.scan_dependent(adev);
 350
 351	error = acpi_bus_scan(adev->handle);
 352	if (error) {
 353		dev_warn(&adev->dev, "Namespace scan failure\n");
 354		return error;
 355	}
 356	list_for_each_entry(child, &adev->children, node) {
 357		error = acpi_scan_bus_check(child);
 358		if (error)
 359			return error;
 360	}
 361	return 0;
 362}
 363
 364static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
 365{
 366	switch (type) {
 367	case ACPI_NOTIFY_BUS_CHECK:
 368		return acpi_scan_bus_check(adev);
 369	case ACPI_NOTIFY_DEVICE_CHECK:
 370		return acpi_scan_device_check(adev);
 371	case ACPI_NOTIFY_EJECT_REQUEST:
 372	case ACPI_OST_EC_OSPM_EJECT:
 373		if (adev->handler && !adev->handler->hotplug.enabled) {
 374			dev_info(&adev->dev, "Eject disabled\n");
 375			return -EPERM;
 376		}
 377		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
 378				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
 379		return acpi_scan_hot_remove(adev);
 380	}
 381	return -EINVAL;
 382}
 383
 384void acpi_device_hotplug(struct acpi_device *adev, u32 src)
 385{
 386	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
 387	int error = -ENODEV;
 388
 389	lock_device_hotplug();
 390	mutex_lock(&acpi_scan_lock);
 391
 392	/*
 393	 * The device object's ACPI handle cannot become invalid as long as we
 394	 * are holding acpi_scan_lock, but it might have become invalid before
 395	 * that lock was acquired.
 396	 */
 397	if (adev->handle == INVALID_ACPI_HANDLE)
 398		goto err_out;
 399
 400	if (adev->flags.is_dock_station) {
 401		error = dock_notify(adev, src);
 402	} else if (adev->flags.hotplug_notify) {
 403		error = acpi_generic_hotplug_event(adev, src);
 404	} else {
 405		int (*notify)(struct acpi_device *, u32);
 406
 407		acpi_lock_hp_context();
 408		notify = adev->hp ? adev->hp->notify : NULL;
 409		acpi_unlock_hp_context();
 410		/*
 411		 * There may be additional notify handlers for device objects
 412		 * without the .event() callback, so ignore them here.
 413		 */
 414		if (notify)
 415			error = notify(adev, src);
 416		else
 417			goto out;
 418	}
 419	switch (error) {
 420	case 0:
 421		ost_code = ACPI_OST_SC_SUCCESS;
 422		break;
 423	case -EPERM:
 424		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
 425		break;
 426	case -EBUSY:
 427		ost_code = ACPI_OST_SC_DEVICE_BUSY;
 428		break;
 429	default:
 430		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
 431		break;
 432	}
 433
 434 err_out:
 435	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
 436
 437 out:
 438	acpi_bus_put_acpi_device(adev);
 439	mutex_unlock(&acpi_scan_lock);
 440	unlock_device_hotplug();
 441}
 442
 443static void acpi_free_power_resources_lists(struct acpi_device *device)
 444{
 445	int i;
 446
 447	if (device->wakeup.flags.valid)
 448		acpi_power_resources_list_free(&device->wakeup.resources);
 449
 450	if (!device->power.flags.power_resources)
 451		return;
 452
 453	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
 454		struct acpi_device_power_state *ps = &device->power.states[i];
 455		acpi_power_resources_list_free(&ps->resources);
 456	}
 457}
 458
 459static void acpi_device_release(struct device *dev)
 460{
 461	struct acpi_device *acpi_dev = to_acpi_device(dev);
 462
 463	acpi_free_properties(acpi_dev);
 464	acpi_free_pnp_ids(&acpi_dev->pnp);
 465	acpi_free_power_resources_lists(acpi_dev);
 466	kfree(acpi_dev);
 467}
 468
 469static void acpi_device_del(struct acpi_device *device)
 470{
 471	struct acpi_device_bus_id *acpi_device_bus_id;
 472
 473	mutex_lock(&acpi_device_lock);
 474	if (device->parent)
 475		list_del(&device->node);
 476
 477	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
 478		if (!strcmp(acpi_device_bus_id->bus_id,
 479			    acpi_device_hid(device))) {
 480			ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
 
 481			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
 482				list_del(&acpi_device_bus_id->node);
 483				kfree_const(acpi_device_bus_id->bus_id);
 484				kfree(acpi_device_bus_id);
 485			}
 486			break;
 487		}
 488
 489	list_del(&device->wakeup_list);
 
 490	mutex_unlock(&acpi_device_lock);
 491
 492	acpi_power_add_remove_device(device, false);
 493	acpi_device_remove_files(device);
 494	if (device->remove)
 495		device->remove(device);
 496
 497	device_del(&device->dev);
 498}
 499
 500static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
 501
 502static LIST_HEAD(acpi_device_del_list);
 503static DEFINE_MUTEX(acpi_device_del_lock);
 504
 505static void acpi_device_del_work_fn(struct work_struct *work_not_used)
 506{
 507	for (;;) {
 508		struct acpi_device *adev;
 509
 510		mutex_lock(&acpi_device_del_lock);
 511
 512		if (list_empty(&acpi_device_del_list)) {
 513			mutex_unlock(&acpi_device_del_lock);
 514			break;
 515		}
 516		adev = list_first_entry(&acpi_device_del_list,
 517					struct acpi_device, del_list);
 518		list_del(&adev->del_list);
 519
 520		mutex_unlock(&acpi_device_del_lock);
 521
 522		blocking_notifier_call_chain(&acpi_reconfig_chain,
 523					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
 524
 525		acpi_device_del(adev);
 526		/*
 527		 * Drop references to all power resources that might have been
 528		 * used by the device.
 529		 */
 530		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
 531		acpi_dev_put(adev);
 532	}
 533}
 534
 535/**
 536 * acpi_scan_drop_device - Drop an ACPI device object.
 537 * @handle: Handle of an ACPI namespace node, not used.
 538 * @context: Address of the ACPI device object to drop.
 539 *
 540 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
 541 * namespace node the device object pointed to by @context is attached to.
 542 *
 543 * The unregistration is carried out asynchronously to avoid running
 544 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
 545 * ensure the correct ordering (the device objects must be unregistered in the
 546 * same order in which the corresponding namespace nodes are deleted).
 547 */
 548static void acpi_scan_drop_device(acpi_handle handle, void *context)
 549{
 550	static DECLARE_WORK(work, acpi_device_del_work_fn);
 551	struct acpi_device *adev = context;
 552
 553	mutex_lock(&acpi_device_del_lock);
 554
 555	/*
 556	 * Use the ACPI hotplug workqueue which is ordered, so this work item
 557	 * won't run after any hotplug work items submitted subsequently.  That
 558	 * prevents attempts to register device objects identical to those being
 559	 * deleted from happening concurrently (such attempts result from
 560	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
 561	 * run after all of the work items submitted previously, which helps
 562	 * those work items to ensure that they are not accessing stale device
 563	 * objects.
 564	 */
 565	if (list_empty(&acpi_device_del_list))
 566		acpi_queue_hotplug_work(&work);
 567
 568	list_add_tail(&adev->del_list, &acpi_device_del_list);
 569	/* Make acpi_ns_validate_handle() return NULL for this handle. */
 570	adev->handle = INVALID_ACPI_HANDLE;
 571
 572	mutex_unlock(&acpi_device_del_lock);
 573}
 574
 575static struct acpi_device *handle_to_device(acpi_handle handle,
 576					    void (*callback)(void *))
 577{
 578	struct acpi_device *adev = NULL;
 579	acpi_status status;
 580
 581	status = acpi_get_data_full(handle, acpi_scan_drop_device,
 582				    (void **)&adev, callback);
 583	if (ACPI_FAILURE(status) || !adev) {
 584		acpi_handle_debug(handle, "No context!\n");
 585		return NULL;
 586	}
 587	return adev;
 588}
 589
 590int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
 
 
 
 
 
 
 
 591{
 592	if (!device)
 593		return -EINVAL;
 594
 595	*device = handle_to_device(handle, NULL);
 596	if (!*device)
 597		return -ENODEV;
 598
 599	return 0;
 600}
 601EXPORT_SYMBOL(acpi_bus_get_device);
 602
 603static void get_acpi_device(void *dev)
 604{
 605	acpi_dev_get(dev);
 606}
 607
 608struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
 
 
 
 
 
 
 
 
 
 
 
 609{
 610	return handle_to_device(handle, get_acpi_device);
 611}
 
 612
 613static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
 614{
 615	struct acpi_device_bus_id *acpi_device_bus_id;
 616
 617	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
 618	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
 619		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
 620			return acpi_device_bus_id;
 621	}
 622	return NULL;
 623}
 624
 625static int acpi_device_set_name(struct acpi_device *device,
 626				struct acpi_device_bus_id *acpi_device_bus_id)
 627{
 628	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
 629	int result;
 630
 631	result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
 632	if (result < 0)
 633		return result;
 634
 635	device->pnp.instance_no = result;
 636	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
 637	return 0;
 638}
 639
 640static int acpi_tie_acpi_dev(struct acpi_device *adev)
 641{
 642	acpi_handle handle = adev->handle;
 643	acpi_status status;
 644
 645	if (!handle)
 646		return 0;
 647
 648	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
 649	if (ACPI_FAILURE(status)) {
 650		acpi_handle_err(handle, "Unable to attach device data\n");
 651		return -ENODEV;
 652	}
 653
 654	return 0;
 655}
 656
 657static int __acpi_device_add(struct acpi_device *device,
 658			     void (*release)(struct device *))
 
 
 
 
 
 
 
 
 
 
 
 
 659{
 660	struct acpi_device_bus_id *acpi_device_bus_id;
 661	int result;
 662
 663	/*
 664	 * Linkage
 665	 * -------
 666	 * Link this device to its parent and siblings.
 667	 */
 668	INIT_LIST_HEAD(&device->children);
 669	INIT_LIST_HEAD(&device->node);
 670	INIT_LIST_HEAD(&device->wakeup_list);
 671	INIT_LIST_HEAD(&device->physical_node_list);
 672	INIT_LIST_HEAD(&device->del_list);
 673	mutex_init(&device->physical_node_lock);
 674
 675	mutex_lock(&acpi_device_lock);
 676
 677	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
 678	if (acpi_device_bus_id) {
 679		result = acpi_device_set_name(device, acpi_device_bus_id);
 680		if (result)
 681			goto err_unlock;
 682	} else {
 683		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
 684					     GFP_KERNEL);
 685		if (!acpi_device_bus_id) {
 686			result = -ENOMEM;
 687			goto err_unlock;
 688		}
 689		acpi_device_bus_id->bus_id =
 690			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
 691		if (!acpi_device_bus_id->bus_id) {
 692			kfree(acpi_device_bus_id);
 693			result = -ENOMEM;
 694			goto err_unlock;
 695		}
 696
 697		ida_init(&acpi_device_bus_id->instance_ida);
 698
 699		result = acpi_device_set_name(device, acpi_device_bus_id);
 700		if (result) {
 701			kfree_const(acpi_device_bus_id->bus_id);
 702			kfree(acpi_device_bus_id);
 703			goto err_unlock;
 704		}
 705
 706		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
 707	}
 708
 709	if (device->parent)
 710		list_add_tail(&device->node, &device->parent->children);
 711
 712	if (device->wakeup.flags.valid)
 713		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
 714
 
 
 715	mutex_unlock(&acpi_device_lock);
 716
 717	if (device->parent)
 718		device->dev.parent = &device->parent->dev;
 719
 720	device->dev.bus = &acpi_bus_type;
 721	device->dev.release = release;
 722	result = device_add(&device->dev);
 723	if (result) {
 724		dev_err(&device->dev, "Error registering device\n");
 725		goto err;
 726	}
 727
 728	result = acpi_device_setup_files(device);
 729	if (result)
 730		pr_err("Error creating sysfs interface for device %s\n",
 731		       dev_name(&device->dev));
 732
 733	return 0;
 734
 735err:
 736	mutex_lock(&acpi_device_lock);
 737
 738	if (device->parent)
 739		list_del(&device->node);
 740
 741	list_del(&device->wakeup_list);
 742
 743err_unlock:
 744	mutex_unlock(&acpi_device_lock);
 745
 746	acpi_detach_data(device->handle, acpi_scan_drop_device);
 747
 748	return result;
 749}
 750
 751int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
 752{
 753	int ret;
 754
 755	ret = acpi_tie_acpi_dev(adev);
 756	if (ret)
 757		return ret;
 758
 759	return __acpi_device_add(adev, release);
 760}
 761
 762/* --------------------------------------------------------------------------
 763                                 Device Enumeration
 764   -------------------------------------------------------------------------- */
 765static bool acpi_info_matches_ids(struct acpi_device_info *info,
 766				  const char * const ids[])
 767{
 768	struct acpi_pnp_device_id_list *cid_list = NULL;
 769	int i, index;
 770
 771	if (!(info->valid & ACPI_VALID_HID))
 772		return false;
 773
 774	index = match_string(ids, -1, info->hardware_id.string);
 775	if (index >= 0)
 776		return true;
 777
 778	if (info->valid & ACPI_VALID_CID)
 779		cid_list = &info->compatible_id_list;
 780
 781	if (!cid_list)
 782		return false;
 783
 784	for (i = 0; i < cid_list->count; i++) {
 785		index = match_string(ids, -1, cid_list->ids[i].string);
 786		if (index >= 0)
 787			return true;
 788	}
 789
 790	return false;
 791}
 792
 793/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
 794static const char * const acpi_ignore_dep_ids[] = {
 795	"PNP0D80", /* Windows-compatible System Power Management Controller */
 796	"INT33BD", /* Intel Baytrail Mailbox Device */
 
 797	NULL
 798};
 799
 800static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
 
 
 
 
 
 
 
 
 
 801{
 802	struct acpi_device *device = NULL;
 803	acpi_status status;
 804
 805	/*
 806	 * Fixed hardware devices do not appear in the namespace and do not
 807	 * have handles, but we fabricate acpi_devices for them, so we have
 808	 * to deal with them specially.
 809	 */
 810	if (!handle)
 811		return acpi_root;
 812
 813	do {
 
 
 814		status = acpi_get_parent(handle, &handle);
 815		if (ACPI_FAILURE(status))
 816			return status == AE_NULL_ENTRY ? NULL : acpi_root;
 817	} while (acpi_bus_get_device(handle, &device));
 818	return device;
 
 
 
 
 
 819}
 820
 821acpi_status
 822acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
 823{
 824	acpi_status status;
 825	acpi_handle tmp;
 826	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
 827	union acpi_object *obj;
 828
 829	status = acpi_get_handle(handle, "_EJD", &tmp);
 830	if (ACPI_FAILURE(status))
 831		return status;
 832
 833	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
 834	if (ACPI_SUCCESS(status)) {
 835		obj = buffer.pointer;
 836		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
 837					 ejd);
 838		kfree(buffer.pointer);
 839	}
 840	return status;
 841}
 842EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
 843
 844static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
 845{
 846	acpi_handle handle = dev->handle;
 847	struct acpi_device_wakeup *wakeup = &dev->wakeup;
 848	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 849	union acpi_object *package = NULL;
 850	union acpi_object *element = NULL;
 851	acpi_status status;
 852	int err = -ENODATA;
 853
 854	INIT_LIST_HEAD(&wakeup->resources);
 855
 856	/* _PRW */
 857	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
 858	if (ACPI_FAILURE(status)) {
 859		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
 860				 acpi_format_exception(status));
 861		return err;
 862	}
 863
 864	package = (union acpi_object *)buffer.pointer;
 865
 866	if (!package || package->package.count < 2)
 867		goto out;
 868
 869	element = &(package->package.elements[0]);
 870	if (!element)
 871		goto out;
 872
 873	if (element->type == ACPI_TYPE_PACKAGE) {
 874		if ((element->package.count < 2) ||
 875		    (element->package.elements[0].type !=
 876		     ACPI_TYPE_LOCAL_REFERENCE)
 877		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
 878			goto out;
 879
 880		wakeup->gpe_device =
 881		    element->package.elements[0].reference.handle;
 882		wakeup->gpe_number =
 883		    (u32) element->package.elements[1].integer.value;
 884	} else if (element->type == ACPI_TYPE_INTEGER) {
 885		wakeup->gpe_device = NULL;
 886		wakeup->gpe_number = element->integer.value;
 887	} else {
 888		goto out;
 889	}
 890
 891	element = &(package->package.elements[1]);
 892	if (element->type != ACPI_TYPE_INTEGER)
 893		goto out;
 894
 895	wakeup->sleep_state = element->integer.value;
 896
 897	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
 898	if (err)
 899		goto out;
 900
 901	if (!list_empty(&wakeup->resources)) {
 902		int sleep_state;
 903
 904		err = acpi_power_wakeup_list_init(&wakeup->resources,
 905						  &sleep_state);
 906		if (err) {
 907			acpi_handle_warn(handle, "Retrieving current states "
 908					 "of wakeup power resources failed\n");
 909			acpi_power_resources_list_free(&wakeup->resources);
 910			goto out;
 911		}
 912		if (sleep_state < wakeup->sleep_state) {
 913			acpi_handle_warn(handle, "Overriding _PRW sleep state "
 914					 "(S%d) by S%d from power resources\n",
 915					 (int)wakeup->sleep_state, sleep_state);
 916			wakeup->sleep_state = sleep_state;
 917		}
 918	}
 919
 920 out:
 921	kfree(buffer.pointer);
 922	return err;
 923}
 924
 
 
 
 925static bool acpi_wakeup_gpe_init(struct acpi_device *device)
 926{
 927	static const struct acpi_device_id button_device_ids[] = {
 928		{"PNP0C0C", 0},		/* Power button */
 929		{"PNP0C0D", 0},		/* Lid */
 930		{"PNP0C0E", 0},		/* Sleep button */
 931		{"", 0},
 932	};
 933	struct acpi_device_wakeup *wakeup = &device->wakeup;
 
 934	acpi_status status;
 935
 936	wakeup->flags.notifier_present = 0;
 937
 938	/* Power button, Lid switch always enable wakeup */
 939	if (!acpi_match_device_ids(device, button_device_ids)) {
 940		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
 941			/* Do not use Lid/sleep button for S5 wakeup */
 942			if (wakeup->sleep_state == ACPI_STATE_S5)
 943				wakeup->sleep_state = ACPI_STATE_S4;
 944		}
 945		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
 946		device_set_wakeup_capable(&device->dev, true);
 947		return true;
 948	}
 949
 950	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
 951					 wakeup->gpe_number);
 952	return ACPI_SUCCESS(status);
 953}
 954
 955static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
 956{
 957	int err;
 958
 959	/* Presence of _PRW indicates wake capable */
 960	if (!acpi_has_method(device->handle, "_PRW"))
 961		return;
 962
 963	err = acpi_bus_extract_wakeup_device_power_package(device);
 964	if (err) {
 965		dev_err(&device->dev, "Unable to extract wakeup power resources");
 966		return;
 967	}
 968
 969	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
 970	device->wakeup.prepare_count = 0;
 971	/*
 972	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
 973	 * system for the ACPI device with the _PRW object.
 974	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
 975	 * So it is necessary to call _DSW object first. Only when it is not
 976	 * present will the _PSW object used.
 977	 */
 978	err = acpi_device_sleep_wake(device, 0, 0, 0);
 979	if (err)
 980		pr_debug("error in _DSW or _PSW evaluation\n");
 981}
 982
 983static void acpi_bus_init_power_state(struct acpi_device *device, int state)
 984{
 985	struct acpi_device_power_state *ps = &device->power.states[state];
 986	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
 987	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 988	acpi_status status;
 989
 990	INIT_LIST_HEAD(&ps->resources);
 991
 992	/* Evaluate "_PRx" to get referenced power resources */
 993	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
 994	if (ACPI_SUCCESS(status)) {
 995		union acpi_object *package = buffer.pointer;
 996
 997		if (buffer.length && package
 998		    && package->type == ACPI_TYPE_PACKAGE
 999		    && package->package.count)
1000			acpi_extract_power_resources(package, 0, &ps->resources);
1001
1002		ACPI_FREE(buffer.pointer);
1003	}
1004
1005	/* Evaluate "_PSx" to see if we can do explicit sets */
1006	pathname[2] = 'S';
1007	if (acpi_has_method(device->handle, pathname))
1008		ps->flags.explicit_set = 1;
1009
1010	/* State is valid if there are means to put the device into it. */
1011	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012		ps->flags.valid = 1;
1013
1014	ps->power = -1;		/* Unknown - driver assigned */
1015	ps->latency = -1;	/* Unknown - driver assigned */
1016}
1017
1018static void acpi_bus_get_power_flags(struct acpi_device *device)
1019{
 
1020	u32 i;
1021
1022	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1023	if (!acpi_has_method(device->handle, "_PS0") &&
1024	    !acpi_has_method(device->handle, "_PR0"))
1025		return;
1026
1027	device->flags.power_manageable = 1;
1028
1029	/*
1030	 * Power Management Flags
1031	 */
1032	if (acpi_has_method(device->handle, "_PSC"))
1033		device->power.flags.explicit_get = 1;
1034
1035	if (acpi_has_method(device->handle, "_IRC"))
1036		device->power.flags.inrush_current = 1;
1037
1038	if (acpi_has_method(device->handle, "_DSW"))
1039		device->power.flags.dsw_present = 1;
1040
 
 
 
1041	/*
1042	 * Enumerate supported power management states
1043	 */
1044	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1045		acpi_bus_init_power_state(device, i);
1046
1047	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1048
1049	/* Set the defaults for D0 and D3hot (always supported). */
1050	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1051	device->power.states[ACPI_STATE_D0].power = 100;
1052	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1053
1054	/*
1055	 * Use power resources only if the D0 list of them is populated, because
1056	 * some platforms may provide _PR3 only to indicate D3cold support and
1057	 * in those cases the power resources list returned by it may be bogus.
1058	 */
1059	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1060		device->power.flags.power_resources = 1;
1061		/*
1062		 * D3cold is supported if the D3hot list of power resources is
1063		 * not empty.
1064		 */
1065		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1066			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1067	}
1068
1069	if (acpi_bus_init_power(device))
1070		device->flags.power_manageable = 0;
1071}
1072
1073static void acpi_bus_get_flags(struct acpi_device *device)
1074{
1075	/* Presence of _STA indicates 'dynamic_status' */
1076	if (acpi_has_method(device->handle, "_STA"))
1077		device->flags.dynamic_status = 1;
1078
1079	/* Presence of _RMV indicates 'removable' */
1080	if (acpi_has_method(device->handle, "_RMV"))
1081		device->flags.removable = 1;
1082
1083	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1084	if (acpi_has_method(device->handle, "_EJD") ||
1085	    acpi_has_method(device->handle, "_EJ0"))
1086		device->flags.ejectable = 1;
1087}
1088
1089static void acpi_device_get_busid(struct acpi_device *device)
1090{
1091	char bus_id[5] = { '?', 0 };
1092	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1093	int i = 0;
1094
1095	/*
1096	 * Bus ID
1097	 * ------
1098	 * The device's Bus ID is simply the object name.
1099	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1100	 */
1101	if (ACPI_IS_ROOT_DEVICE(device)) {
1102		strcpy(device->pnp.bus_id, "ACPI");
1103		return;
1104	}
1105
1106	switch (device->device_type) {
1107	case ACPI_BUS_TYPE_POWER_BUTTON:
1108		strcpy(device->pnp.bus_id, "PWRF");
1109		break;
1110	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1111		strcpy(device->pnp.bus_id, "SLPF");
1112		break;
1113	case ACPI_BUS_TYPE_ECDT_EC:
1114		strcpy(device->pnp.bus_id, "ECDT");
1115		break;
1116	default:
1117		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1118		/* Clean up trailing underscores (if any) */
1119		for (i = 3; i > 1; i--) {
1120			if (bus_id[i] == '_')
1121				bus_id[i] = '\0';
1122			else
1123				break;
1124		}
1125		strcpy(device->pnp.bus_id, bus_id);
1126		break;
1127	}
1128}
1129
1130/*
1131 * acpi_ata_match - see if an acpi object is an ATA device
1132 *
1133 * If an acpi object has one of the ACPI ATA methods defined,
1134 * then we can safely call it an ATA device.
1135 */
1136bool acpi_ata_match(acpi_handle handle)
1137{
1138	return acpi_has_method(handle, "_GTF") ||
1139	       acpi_has_method(handle, "_GTM") ||
1140	       acpi_has_method(handle, "_STM") ||
1141	       acpi_has_method(handle, "_SDD");
1142}
1143
1144/*
1145 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1146 *
1147 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1148 * then we can safely call it an ejectable drive bay
1149 */
1150bool acpi_bay_match(acpi_handle handle)
1151{
1152	acpi_handle phandle;
1153
1154	if (!acpi_has_method(handle, "_EJ0"))
1155		return false;
1156	if (acpi_ata_match(handle))
1157		return true;
1158	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1159		return false;
1160
1161	return acpi_ata_match(phandle);
1162}
1163
1164bool acpi_device_is_battery(struct acpi_device *adev)
1165{
1166	struct acpi_hardware_id *hwid;
1167
1168	list_for_each_entry(hwid, &adev->pnp.ids, list)
1169		if (!strcmp("PNP0C0A", hwid->id))
1170			return true;
1171
1172	return false;
1173}
1174
1175static bool is_ejectable_bay(struct acpi_device *adev)
1176{
1177	acpi_handle handle = adev->handle;
1178
1179	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1180		return true;
1181
1182	return acpi_bay_match(handle);
1183}
1184
1185/*
1186 * acpi_dock_match - see if an acpi object has a _DCK method
1187 */
1188bool acpi_dock_match(acpi_handle handle)
1189{
1190	return acpi_has_method(handle, "_DCK");
1191}
1192
1193static acpi_status
1194acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1195			  void **return_value)
1196{
1197	long *cap = context;
1198
1199	if (acpi_has_method(handle, "_BCM") &&
1200	    acpi_has_method(handle, "_BCL")) {
1201		acpi_handle_debug(handle, "Found generic backlight support\n");
1202		*cap |= ACPI_VIDEO_BACKLIGHT;
1203		/* We have backlight support, no need to scan further */
1204		return AE_CTRL_TERMINATE;
1205	}
1206	return 0;
1207}
1208
1209/* Returns true if the ACPI object is a video device which can be
1210 * handled by video.ko.
1211 * The device will get a Linux specific CID added in scan.c to
1212 * identify the device as an ACPI graphics device
1213 * Be aware that the graphics device may not be physically present
1214 * Use acpi_video_get_capabilities() to detect general ACPI video
1215 * capabilities of present cards
1216 */
1217long acpi_is_video_device(acpi_handle handle)
1218{
1219	long video_caps = 0;
1220
1221	/* Is this device able to support video switching ? */
1222	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1223		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1224
1225	/* Is this device able to retrieve a video ROM ? */
1226	if (acpi_has_method(handle, "_ROM"))
1227		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1228
1229	/* Is this device able to configure which video head to be POSTed ? */
1230	if (acpi_has_method(handle, "_VPO") &&
1231	    acpi_has_method(handle, "_GPD") &&
1232	    acpi_has_method(handle, "_SPD"))
1233		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1234
1235	/* Only check for backlight functionality if one of the above hit. */
1236	if (video_caps)
1237		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1238				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1239				    &video_caps, NULL);
1240
1241	return video_caps;
1242}
1243EXPORT_SYMBOL(acpi_is_video_device);
1244
1245const char *acpi_device_hid(struct acpi_device *device)
1246{
1247	struct acpi_hardware_id *hid;
1248
1249	if (list_empty(&device->pnp.ids))
1250		return dummy_hid;
1251
1252	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1253	return hid->id;
1254}
1255EXPORT_SYMBOL(acpi_device_hid);
1256
1257static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1258{
1259	struct acpi_hardware_id *id;
1260
1261	id = kmalloc(sizeof(*id), GFP_KERNEL);
1262	if (!id)
1263		return;
1264
1265	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1266	if (!id->id) {
1267		kfree(id);
1268		return;
1269	}
1270
1271	list_add_tail(&id->list, &pnp->ids);
1272	pnp->type.hardware_id = 1;
1273}
1274
1275/*
1276 * Old IBM workstations have a DSDT bug wherein the SMBus object
1277 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1278 * prefix.  Work around this.
1279 */
1280static bool acpi_ibm_smbus_match(acpi_handle handle)
1281{
1282	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1283	struct acpi_buffer path = { sizeof(node_name), node_name };
1284
1285	if (!dmi_name_in_vendors("IBM"))
1286		return false;
1287
1288	/* Look for SMBS object */
1289	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1290	    strcmp("SMBS", path.pointer))
1291		return false;
1292
1293	/* Does it have the necessary (but misnamed) methods? */
1294	if (acpi_has_method(handle, "SBI") &&
1295	    acpi_has_method(handle, "SBR") &&
1296	    acpi_has_method(handle, "SBW"))
1297		return true;
1298
1299	return false;
1300}
1301
1302static bool acpi_object_is_system_bus(acpi_handle handle)
1303{
1304	acpi_handle tmp;
1305
1306	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1307	    tmp == handle)
1308		return true;
1309	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1310	    tmp == handle)
1311		return true;
1312
1313	return false;
1314}
1315
1316static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1317			     int device_type)
1318{
1319	struct acpi_device_info *info = NULL;
1320	struct acpi_pnp_device_id_list *cid_list;
1321	int i;
1322
1323	switch (device_type) {
1324	case ACPI_BUS_TYPE_DEVICE:
1325		if (handle == ACPI_ROOT_OBJECT) {
1326			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1327			break;
1328		}
1329
1330		acpi_get_object_info(handle, &info);
1331		if (!info) {
1332			pr_err("%s: Error reading device info\n", __func__);
1333			return;
1334		}
1335
1336		if (info->valid & ACPI_VALID_HID) {
1337			acpi_add_id(pnp, info->hardware_id.string);
1338			pnp->type.platform_id = 1;
1339		}
1340		if (info->valid & ACPI_VALID_CID) {
1341			cid_list = &info->compatible_id_list;
1342			for (i = 0; i < cid_list->count; i++)
1343				acpi_add_id(pnp, cid_list->ids[i].string);
1344		}
1345		if (info->valid & ACPI_VALID_ADR) {
1346			pnp->bus_address = info->address;
1347			pnp->type.bus_address = 1;
1348		}
1349		if (info->valid & ACPI_VALID_UID)
1350			pnp->unique_id = kstrdup(info->unique_id.string,
1351							GFP_KERNEL);
1352		if (info->valid & ACPI_VALID_CLS)
1353			acpi_add_id(pnp, info->class_code.string);
1354
1355		kfree(info);
1356
1357		/*
1358		 * Some devices don't reliably have _HIDs & _CIDs, so add
1359		 * synthetic HIDs to make sure drivers can find them.
1360		 */
1361		if (acpi_is_video_device(handle))
1362			acpi_add_id(pnp, ACPI_VIDEO_HID);
1363		else if (acpi_bay_match(handle))
 
 
 
1364			acpi_add_id(pnp, ACPI_BAY_HID);
1365		else if (acpi_dock_match(handle))
1366			acpi_add_id(pnp, ACPI_DOCK_HID);
1367		else if (acpi_ibm_smbus_match(handle))
1368			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1369		else if (list_empty(&pnp->ids) &&
1370			 acpi_object_is_system_bus(handle)) {
1371			/* \_SB, \_TZ, LNXSYBUS */
1372			acpi_add_id(pnp, ACPI_BUS_HID);
1373			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1374			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1375		}
1376
1377		break;
1378	case ACPI_BUS_TYPE_POWER:
1379		acpi_add_id(pnp, ACPI_POWER_HID);
1380		break;
1381	case ACPI_BUS_TYPE_PROCESSOR:
1382		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1383		break;
1384	case ACPI_BUS_TYPE_THERMAL:
1385		acpi_add_id(pnp, ACPI_THERMAL_HID);
1386		break;
1387	case ACPI_BUS_TYPE_POWER_BUTTON:
1388		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1389		break;
1390	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1391		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1392		break;
1393	case ACPI_BUS_TYPE_ECDT_EC:
1394		acpi_add_id(pnp, ACPI_ECDT_HID);
1395		break;
1396	}
1397}
1398
1399void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1400{
1401	struct acpi_hardware_id *id, *tmp;
1402
1403	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1404		kfree_const(id->id);
1405		kfree(id);
1406	}
1407	kfree(pnp->unique_id);
1408}
1409
1410/**
1411 * acpi_dma_supported - Check DMA support for the specified device.
1412 * @adev: The pointer to acpi device
1413 *
1414 * Return false if DMA is not supported. Otherwise, return true
1415 */
1416bool acpi_dma_supported(const struct acpi_device *adev)
1417{
1418	if (!adev)
1419		return false;
1420
1421	if (adev->flags.cca_seen)
1422		return true;
1423
1424	/*
1425	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1426	* DMA on "Intel platforms".  Presumably that includes all x86 and
1427	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1428	*/
1429	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1430		return true;
1431
1432	return false;
1433}
1434
1435/**
1436 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1437 * @adev: The pointer to acpi device
1438 *
1439 * Return enum dev_dma_attr.
1440 */
1441enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1442{
1443	if (!acpi_dma_supported(adev))
1444		return DEV_DMA_NOT_SUPPORTED;
1445
1446	if (adev->flags.coherent_dma)
1447		return DEV_DMA_COHERENT;
1448	else
1449		return DEV_DMA_NON_COHERENT;
1450}
1451
1452/**
1453 * acpi_dma_get_range() - Get device DMA parameters.
1454 *
1455 * @dev: device to configure
1456 * @dma_addr: pointer device DMA address result
1457 * @offset: pointer to the DMA offset result
1458 * @size: pointer to DMA range size result
1459 *
1460 * Evaluate DMA regions and return respectively DMA region start, offset
1461 * and size in dma_addr, offset and size on parsing success; it does not
1462 * update the passed in values on failure.
1463 *
1464 * Return 0 on success, < 0 on failure.
1465 */
1466int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1467		       u64 *size)
1468{
1469	struct acpi_device *adev;
1470	LIST_HEAD(list);
1471	struct resource_entry *rentry;
1472	int ret;
1473	struct device *dma_dev = dev;
1474	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1475
1476	/*
1477	 * Walk the device tree chasing an ACPI companion with a _DMA
1478	 * object while we go. Stop if we find a device with an ACPI
1479	 * companion containing a _DMA method.
1480	 */
1481	do {
1482		adev = ACPI_COMPANION(dma_dev);
1483		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1484			break;
1485
1486		dma_dev = dma_dev->parent;
1487	} while (dma_dev);
1488
1489	if (!dma_dev)
1490		return -ENODEV;
1491
1492	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1493		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1494		return -EINVAL;
1495	}
1496
1497	ret = acpi_dev_get_dma_resources(adev, &list);
1498	if (ret > 0) {
 
 
 
 
 
 
 
 
1499		list_for_each_entry(rentry, &list, node) {
1500			if (dma_offset && rentry->offset != dma_offset) {
 
 
1501				ret = -EINVAL;
1502				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1503				goto out;
1504			}
1505			dma_offset = rentry->offset;
1506
1507			/* Take lower and upper limits */
1508			if (rentry->res->start < dma_start)
1509				dma_start = rentry->res->start;
1510			if (rentry->res->end > dma_end)
1511				dma_end = rentry->res->end;
1512		}
1513
1514		if (dma_start >= dma_end) {
1515			ret = -EINVAL;
1516			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1517			goto out;
1518		}
1519
1520		*dma_addr = dma_start - dma_offset;
1521		len = dma_end - dma_start;
1522		*size = max(len, len + 1);
1523		*offset = dma_offset;
1524	}
1525 out:
1526	acpi_dev_free_resource_list(&list);
1527
1528	return ret >= 0 ? 0 : ret;
1529}
1530
1531#ifdef CONFIG_IOMMU_API
1532int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1533			   struct fwnode_handle *fwnode,
1534			   const struct iommu_ops *ops)
1535{
1536	int ret = iommu_fwspec_init(dev, fwnode, ops);
1537
1538	if (!ret)
1539		ret = iommu_fwspec_add_ids(dev, &id, 1);
1540
1541	return ret;
1542}
1543
1544static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1545{
1546	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1547
1548	return fwspec ? fwspec->ops : NULL;
1549}
1550
1551static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1552						       const u32 *id_in)
1553{
1554	int err;
1555	const struct iommu_ops *ops;
1556
 
 
1557	/*
1558	 * If we already translated the fwspec there is nothing left to do,
1559	 * return the iommu_ops.
1560	 */
1561	ops = acpi_iommu_fwspec_ops(dev);
1562	if (ops)
1563		return ops;
 
 
1564
1565	err = iort_iommu_configure_id(dev, id_in);
1566	if (err && err != -EPROBE_DEFER)
1567		err = viot_iommu_configure(dev);
 
1568
1569	/*
1570	 * If we have reason to believe the IOMMU driver missed the initial
1571	 * iommu_probe_device() call for dev, replay it to get things in order.
1572	 */
1573	if (!err && dev->bus && !device_iommu_mapped(dev))
1574		err = iommu_probe_device(dev);
1575
1576	/* Ignore all other errors apart from EPROBE_DEFER */
1577	if (err == -EPROBE_DEFER) {
1578		return ERR_PTR(err);
1579	} else if (err) {
1580		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1581		return NULL;
1582	}
1583	return acpi_iommu_fwspec_ops(dev);
 
 
1584}
1585
1586#else /* !CONFIG_IOMMU_API */
1587
1588int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1589			   struct fwnode_handle *fwnode,
1590			   const struct iommu_ops *ops)
1591{
1592	return -ENODEV;
1593}
1594
1595static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1596						       const u32 *id_in)
1597{
1598	return NULL;
1599}
1600
1601#endif /* !CONFIG_IOMMU_API */
1602
1603/**
1604 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1605 * @dev: The pointer to the device
1606 * @attr: device dma attributes
1607 * @input_id: input device id const value pointer
1608 */
1609int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1610			  const u32 *input_id)
1611{
1612	const struct iommu_ops *iommu;
1613	u64 dma_addr = 0, size = 0;
1614
1615	if (attr == DEV_DMA_NOT_SUPPORTED) {
1616		set_dma_ops(dev, &dma_dummy_ops);
1617		return 0;
1618	}
1619
1620	acpi_arch_dma_setup(dev, &dma_addr, &size);
1621
1622	iommu = acpi_iommu_configure_id(dev, input_id);
1623	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1624		return -EPROBE_DEFER;
1625
1626	arch_setup_dma_ops(dev, dma_addr, size,
1627				iommu, attr == DEV_DMA_COHERENT);
 
 
 
 
1628
1629	return 0;
1630}
1631EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1632
1633static void acpi_init_coherency(struct acpi_device *adev)
1634{
1635	unsigned long long cca = 0;
1636	acpi_status status;
1637	struct acpi_device *parent = adev->parent;
1638
1639	if (parent && parent->flags.cca_seen) {
1640		/*
1641		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1642		 * already saw one.
1643		 */
1644		adev->flags.cca_seen = 1;
1645		cca = parent->flags.coherent_dma;
1646	} else {
1647		status = acpi_evaluate_integer(adev->handle, "_CCA",
1648					       NULL, &cca);
1649		if (ACPI_SUCCESS(status))
1650			adev->flags.cca_seen = 1;
1651		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1652			/*
1653			 * If architecture does not specify that _CCA is
1654			 * required for DMA-able devices (e.g. x86),
1655			 * we default to _CCA=1.
1656			 */
1657			cca = 1;
1658		else
1659			acpi_handle_debug(adev->handle,
1660					  "ACPI device is missing _CCA.\n");
1661	}
1662
1663	adev->flags.coherent_dma = cca;
1664}
1665
1666static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1667{
1668	bool *is_serial_bus_slave_p = data;
1669
1670	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1671		return 1;
1672
1673	*is_serial_bus_slave_p = true;
1674
1675	 /* no need to do more checking */
1676	return -1;
1677}
1678
1679static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1680{
1681	struct acpi_device *parent = device->parent;
1682	static const struct acpi_device_id indirect_io_hosts[] = {
1683		{"HISI0191", 0},
1684		{}
1685	};
1686
1687	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1688}
1689
1690static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1691{
1692	struct list_head resource_list;
1693	bool is_serial_bus_slave = false;
 
1694	/*
1695	 * These devices have multiple I2cSerialBus resources and an i2c-client
1696	 * must be instantiated for each, each with its own i2c_device_id.
1697	 * Normally we only instantiate an i2c-client for the first resource,
1698	 * using the ACPI HID as id. These special cases are handled by the
1699	 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1700	 * which i2c_device_id to use for each resource.
 
1701	 */
1702	static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1703		{"BSG1160", },
1704		{"BSG2150", },
 
 
1705		{"INT33FE", },
1706		{"INT3515", },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707		{}
1708	};
1709
1710	if (acpi_is_indirect_io_slave(device))
1711		return true;
1712
1713	/* Macs use device properties in lieu of _CRS resources */
1714	if (x86_apple_machine &&
1715	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1716	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1717	     fwnode_property_present(&device->fwnode, "baud")))
1718		return true;
1719
1720	/* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1721	if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1722		return false;
1723
1724	INIT_LIST_HEAD(&resource_list);
1725	acpi_dev_get_resources(device, &resource_list,
1726			       acpi_check_serial_bus_slave,
1727			       &is_serial_bus_slave);
1728	acpi_dev_free_resource_list(&resource_list);
1729
1730	return is_serial_bus_slave;
1731}
1732
1733void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1734			     int type)
1735{
 
 
1736	INIT_LIST_HEAD(&device->pnp.ids);
1737	device->device_type = type;
1738	device->handle = handle;
1739	device->parent = acpi_bus_get_parent(handle);
 
 
1740	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1741	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1742	acpi_device_get_busid(device);
1743	acpi_set_pnp_ids(handle, &device->pnp, type);
1744	acpi_init_properties(device);
1745	acpi_bus_get_flags(device);
1746	device->flags.match_driver = false;
1747	device->flags.initialized = true;
1748	device->flags.enumeration_by_parent =
1749		acpi_device_enumeration_by_parent(device);
1750	acpi_device_clear_enumerated(device);
1751	device_initialize(&device->dev);
1752	dev_set_uevent_suppress(&device->dev, true);
1753	acpi_init_coherency(device);
1754}
1755
1756static void acpi_scan_dep_init(struct acpi_device *adev)
1757{
1758	struct acpi_dep_data *dep;
1759
1760	list_for_each_entry(dep, &acpi_dep_list, node) {
1761		if (dep->consumer == adev->handle)
 
 
 
1762			adev->dep_unmet++;
 
1763	}
1764}
1765
1766void acpi_device_add_finalize(struct acpi_device *device)
1767{
1768	dev_set_uevent_suppress(&device->dev, false);
1769	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1770}
1771
1772static void acpi_scan_init_status(struct acpi_device *adev)
1773{
1774	if (acpi_bus_get_status(adev))
1775		acpi_set_device_status(adev, 0);
1776}
1777
1778static int acpi_add_single_object(struct acpi_device **child,
1779				  acpi_handle handle, int type, bool dep_init)
1780{
1781	struct acpi_device *device;
1782	bool release_dep_lock = false;
1783	int result;
1784
1785	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1786	if (!device)
1787		return -ENOMEM;
1788
1789	acpi_init_device_object(device, handle, type);
1790	/*
1791	 * Getting the status is delayed till here so that we can call
1792	 * acpi_bus_get_status() and use its quirk handling.  Note that
1793	 * this must be done before the get power-/wakeup_dev-flags calls.
1794	 */
1795	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1796		if (dep_init) {
1797			mutex_lock(&acpi_dep_list_lock);
1798			/*
1799			 * Hold the lock until the acpi_tie_acpi_dev() call
1800			 * below to prevent concurrent acpi_scan_clear_dep()
1801			 * from deleting a dependency list entry without
1802			 * updating dep_unmet for the device.
1803			 */
1804			release_dep_lock = true;
1805			acpi_scan_dep_init(device);
1806		}
1807		acpi_scan_init_status(device);
1808	}
1809
1810	acpi_bus_get_power_flags(device);
1811	acpi_bus_get_wakeup_device_flags(device);
1812
1813	result = acpi_tie_acpi_dev(device);
1814
1815	if (release_dep_lock)
1816		mutex_unlock(&acpi_dep_list_lock);
1817
1818	if (!result)
1819		result = __acpi_device_add(device, acpi_device_release);
1820
1821	if (result) {
1822		acpi_device_release(&device->dev);
1823		return result;
1824	}
1825
1826	acpi_power_add_remove_device(device, true);
1827	acpi_device_add_finalize(device);
1828
1829	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1830			  dev_name(&device->dev), device->parent ?
1831				dev_name(&device->parent->dev) : "(null)");
1832
1833	*child = device;
1834	return 0;
1835}
1836
1837static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1838					    void *context)
1839{
1840	struct resource *res = context;
1841
1842	if (acpi_dev_resource_memory(ares, res))
1843		return AE_CTRL_TERMINATE;
1844
1845	return AE_OK;
1846}
1847
1848static bool acpi_device_should_be_hidden(acpi_handle handle)
1849{
1850	acpi_status status;
1851	struct resource res;
1852
1853	/* Check if it should ignore the UART device */
1854	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1855		return false;
1856
1857	/*
1858	 * The UART device described in SPCR table is assumed to have only one
1859	 * memory resource present. So we only look for the first one here.
1860	 */
1861	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1862				     acpi_get_resource_memory, &res);
1863	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1864		return false;
1865
1866	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1867			 &res.start);
1868
1869	return true;
1870}
1871
1872bool acpi_device_is_present(const struct acpi_device *adev)
1873{
1874	return adev->status.present || adev->status.functional;
1875}
1876
1877static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1878				       const char *idstr,
1879				       const struct acpi_device_id **matchid)
1880{
1881	const struct acpi_device_id *devid;
1882
1883	if (handler->match)
1884		return handler->match(idstr, matchid);
1885
1886	for (devid = handler->ids; devid->id[0]; devid++)
1887		if (!strcmp((char *)devid->id, idstr)) {
1888			if (matchid)
1889				*matchid = devid;
1890
1891			return true;
1892		}
1893
1894	return false;
1895}
1896
1897static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1898					const struct acpi_device_id **matchid)
1899{
1900	struct acpi_scan_handler *handler;
1901
1902	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1903		if (acpi_scan_handler_matching(handler, idstr, matchid))
1904			return handler;
1905
1906	return NULL;
1907}
1908
1909void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1910{
1911	if (!!hotplug->enabled == !!val)
1912		return;
1913
1914	mutex_lock(&acpi_scan_lock);
1915
1916	hotplug->enabled = val;
1917
1918	mutex_unlock(&acpi_scan_lock);
1919}
1920
1921static void acpi_scan_init_hotplug(struct acpi_device *adev)
1922{
1923	struct acpi_hardware_id *hwid;
1924
1925	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1926		acpi_dock_add(adev);
1927		return;
1928	}
1929	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1930		struct acpi_scan_handler *handler;
1931
1932		handler = acpi_scan_match_handler(hwid->id, NULL);
1933		if (handler) {
1934			adev->flags.hotplug_notify = true;
1935			break;
1936		}
1937	}
1938}
1939
1940static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1941{
1942	struct acpi_handle_list dep_devices;
1943	acpi_status status;
1944	u32 count;
1945	int i;
1946
1947	/*
1948	 * Check for _HID here to avoid deferring the enumeration of:
1949	 * 1. PCI devices.
1950	 * 2. ACPI nodes describing USB ports.
1951	 * Still, checking for _HID catches more then just these cases ...
1952	 */
1953	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1954	    !acpi_has_method(handle, "_HID"))
1955		return 0;
1956
1957	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1958	if (ACPI_FAILURE(status)) {
1959		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1960		return 0;
1961	}
1962
1963	for (count = 0, i = 0; i < dep_devices.count; i++) {
1964		struct acpi_device_info *info;
1965		struct acpi_dep_data *dep;
1966		bool skip;
 
1967
1968		status = acpi_get_object_info(dep_devices.handles[i], &info);
1969		if (ACPI_FAILURE(status)) {
1970			acpi_handle_debug(handle, "Error reading _DEP device info\n");
1971			continue;
1972		}
1973
1974		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
 
1975		kfree(info);
1976
1977		if (skip)
1978			continue;
1979
1980		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1981		if (!dep)
1982			continue;
1983
1984		count++;
1985
1986		dep->supplier = dep_devices.handles[i];
1987		dep->consumer = handle;
 
1988
1989		mutex_lock(&acpi_dep_list_lock);
1990		list_add_tail(&dep->node , &acpi_dep_list);
1991		mutex_unlock(&acpi_dep_list_lock);
1992	}
1993
 
1994	return count;
1995}
1996
1997static bool acpi_bus_scan_second_pass;
 
 
 
 
1998
1999static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2000				      struct acpi_device **adev_p)
2001{
2002	struct acpi_device *device = NULL;
2003	acpi_object_type acpi_type;
2004	int type;
2005
2006	acpi_bus_get_device(handle, &device);
2007	if (device)
2008		goto out;
2009
2010	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2011		return AE_OK;
2012
2013	switch (acpi_type) {
2014	case ACPI_TYPE_DEVICE:
2015		if (acpi_device_should_be_hidden(handle))
2016			return AE_OK;
2017
2018		/* Bail out if there are dependencies. */
2019		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2020			acpi_bus_scan_second_pass = true;
2021			return AE_CTRL_DEPTH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022		}
2023
2024		fallthrough;
2025	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2026		type = ACPI_BUS_TYPE_DEVICE;
2027		break;
2028
2029	case ACPI_TYPE_PROCESSOR:
2030		type = ACPI_BUS_TYPE_PROCESSOR;
2031		break;
2032
2033	case ACPI_TYPE_THERMAL:
2034		type = ACPI_BUS_TYPE_THERMAL;
2035		break;
2036
2037	case ACPI_TYPE_POWER:
2038		acpi_add_power_resource(handle);
2039		fallthrough;
2040	default:
2041		return AE_OK;
2042	}
2043
2044	/*
2045	 * If check_dep is true at this point, the device has no dependencies,
2046	 * or the creation of the device object would have been postponed above.
2047	 */
2048	acpi_add_single_object(&device, handle, type, !check_dep);
2049	if (!device)
2050		return AE_CTRL_DEPTH;
2051
2052	acpi_scan_init_hotplug(device);
2053
2054out:
2055	if (!*adev_p)
2056		*adev_p = device;
2057
2058	return AE_OK;
2059}
2060
2061static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2062					void *not_used, void **ret_p)
2063{
2064	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2065}
2066
2067static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2068					void *not_used, void **ret_p)
2069{
2070	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2071}
2072
2073static void acpi_default_enumeration(struct acpi_device *device)
2074{
2075	/*
2076	 * Do not enumerate devices with enumeration_by_parent flag set as
2077	 * they will be enumerated by their respective parents.
2078	 */
2079	if (!device->flags.enumeration_by_parent) {
2080		acpi_create_platform_device(device, NULL);
2081		acpi_device_set_enumerated(device);
2082	} else {
2083		blocking_notifier_call_chain(&acpi_reconfig_chain,
2084					     ACPI_RECONFIG_DEVICE_ADD, device);
2085	}
2086}
2087
2088static const struct acpi_device_id generic_device_ids[] = {
2089	{ACPI_DT_NAMESPACE_HID, },
2090	{"", },
2091};
2092
2093static int acpi_generic_device_attach(struct acpi_device *adev,
2094				      const struct acpi_device_id *not_used)
2095{
2096	/*
2097	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2098	 * below can be unconditional.
2099	 */
2100	if (adev->data.of_compatible)
2101		acpi_default_enumeration(adev);
2102
2103	return 1;
2104}
2105
2106static struct acpi_scan_handler generic_device_handler = {
2107	.ids = generic_device_ids,
2108	.attach = acpi_generic_device_attach,
2109};
2110
2111static int acpi_scan_attach_handler(struct acpi_device *device)
2112{
2113	struct acpi_hardware_id *hwid;
2114	int ret = 0;
2115
2116	list_for_each_entry(hwid, &device->pnp.ids, list) {
2117		const struct acpi_device_id *devid;
2118		struct acpi_scan_handler *handler;
2119
2120		handler = acpi_scan_match_handler(hwid->id, &devid);
2121		if (handler) {
2122			if (!handler->attach) {
2123				device->pnp.type.platform_id = 0;
2124				continue;
2125			}
2126			device->handler = handler;
2127			ret = handler->attach(device, devid);
2128			if (ret > 0)
2129				break;
2130
2131			device->handler = NULL;
2132			if (ret < 0)
2133				break;
2134		}
2135	}
2136
2137	return ret;
2138}
2139
2140static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2141{
2142	struct acpi_device *child;
2143	bool skip = !first_pass && device->flags.visited;
2144	acpi_handle ejd;
2145	int ret;
2146
2147	if (skip)
2148		goto ok;
2149
2150	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2151		register_dock_dependent_device(device, ejd);
2152
2153	acpi_bus_get_status(device);
2154	/* Skip devices that are not present. */
2155	if (!acpi_device_is_present(device)) {
2156		device->flags.initialized = false;
2157		acpi_device_clear_enumerated(device);
2158		device->flags.power_manageable = 0;
2159		return;
2160	}
2161	if (device->handler)
2162		goto ok;
2163
2164	if (!device->flags.initialized) {
2165		device->flags.power_manageable =
2166			device->power.states[ACPI_STATE_D0].flags.valid;
2167		if (acpi_bus_init_power(device))
2168			device->flags.power_manageable = 0;
2169
2170		device->flags.initialized = true;
2171	} else if (device->flags.visited) {
2172		goto ok;
2173	}
2174
2175	ret = acpi_scan_attach_handler(device);
2176	if (ret < 0)
2177		return;
2178
2179	device->flags.match_driver = true;
2180	if (ret > 0 && !device->flags.enumeration_by_parent) {
2181		acpi_device_set_enumerated(device);
2182		goto ok;
2183	}
2184
2185	ret = device_attach(&device->dev);
2186	if (ret < 0)
2187		return;
2188
2189	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2190		acpi_default_enumeration(device);
2191	else
2192		acpi_device_set_enumerated(device);
2193
2194 ok:
2195	list_for_each_entry(child, &device->children, node)
2196		acpi_bus_attach(child, first_pass);
2197
2198	if (!skip && device->handler && device->handler->hotplug.notify_online)
2199		device->handler->hotplug.notify_online(device);
 
 
2200}
2201
2202static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2203{
2204	struct acpi_device *adev;
 
 
 
 
 
 
 
 
 
 
 
 
 
2205
2206	adev = acpi_bus_get_acpi_device(dep->consumer);
2207	if (adev) {
2208		*(struct acpi_device **)data = adev;
2209		return 1;
2210	}
2211	/* Continue parsing if the device object is not present. */
2212	return 0;
2213}
2214
2215struct acpi_scan_clear_dep_work {
2216	struct work_struct work;
2217	struct acpi_device *adev;
2218};
2219
2220static void acpi_scan_clear_dep_fn(struct work_struct *work)
2221{
2222	struct acpi_scan_clear_dep_work *cdw;
2223
2224	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2225
2226	acpi_scan_lock_acquire();
2227	acpi_bus_attach(cdw->adev, true);
2228	acpi_scan_lock_release();
2229
2230	acpi_dev_put(cdw->adev);
2231	kfree(cdw);
2232}
2233
2234static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2235{
2236	struct acpi_scan_clear_dep_work *cdw;
2237
2238	if (adev->dep_unmet)
2239		return false;
2240
2241	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2242	if (!cdw)
2243		return false;
2244
2245	cdw->adev = adev;
2246	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2247	/*
2248	 * Since the work function may block on the lock until the entire
2249	 * initial enumeration of devices is complete, put it into the unbound
2250	 * workqueue.
2251	 */
2252	queue_work(system_unbound_wq, &cdw->work);
2253
2254	return true;
2255}
2256
 
 
 
 
 
 
2257static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2258{
2259	struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2260
2261	if (adev) {
2262		adev->dep_unmet--;
2263		if (!acpi_scan_clear_dep_queue(adev))
2264			acpi_dev_put(adev);
2265	}
2266
2267	list_del(&dep->node);
2268	kfree(dep);
 
 
2269
2270	return 0;
2271}
2272
2273/**
2274 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2275 * @handle:	The ACPI handle of the supplier device
2276 * @callback:	Pointer to the callback function to apply
2277 * @data:	Pointer to some data to pass to the callback
2278 *
2279 * The return value of the callback determines this function's behaviour. If 0
2280 * is returned we continue to iterate over acpi_dep_list. If a positive value
2281 * is returned then the loop is broken but this function returns 0. If a
2282 * negative value is returned by the callback then the loop is broken and that
2283 * value is returned as the final error.
2284 */
2285static int acpi_walk_dep_device_list(acpi_handle handle,
2286				int (*callback)(struct acpi_dep_data *, void *),
2287				void *data)
2288{
2289	struct acpi_dep_data *dep, *tmp;
2290	int ret = 0;
2291
2292	mutex_lock(&acpi_dep_list_lock);
2293	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2294		if (dep->supplier == handle) {
2295			ret = callback(dep, data);
2296			if (ret)
2297				break;
2298		}
2299	}
2300	mutex_unlock(&acpi_dep_list_lock);
2301
2302	return ret > 0 ? 0 : ret;
2303}
2304
2305/**
2306 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2307 * @supplier: Pointer to the supplier &struct acpi_device
2308 *
2309 * Clear dependencies on the given device.
2310 */
2311void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2312{
2313	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2314}
2315EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2316
2317/**
2318 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319 * @supplier: Pointer to the dependee device
 
2320 *
2321 * Returns the first &struct acpi_device which declares itself dependent on
2322 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2323 *
2324 * The caller is responsible for putting the reference to adev when it is no
2325 * longer needed.
2326 */
2327struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
 
2328{
2329	struct acpi_device *adev = NULL;
2330
2331	acpi_walk_dep_device_list(supplier->handle,
2332				  acpi_dev_get_first_consumer_dev_cb, &adev);
 
 
 
 
 
2333
2334	return adev;
2335}
2336EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337
2338/**
2339 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2340 * @handle: Root of the namespace scope to scan.
2341 *
2342 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2343 * found devices.
2344 *
2345 * If no devices were found, -ENODEV is returned, but it does not mean that
2346 * there has been a real error.  There just have been no suitable ACPI objects
2347 * in the table trunk from which the kernel could create a device and add an
2348 * appropriate driver.
2349 *
2350 * Must be called under acpi_scan_lock.
2351 */
2352int acpi_bus_scan(acpi_handle handle)
2353{
2354	struct acpi_device *device = NULL;
2355
2356	acpi_bus_scan_second_pass = false;
2357
2358	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2359
2360	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2361		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2362				    acpi_bus_check_add_1, NULL, NULL,
2363				    (void **)&device);
2364
2365	if (!device)
2366		return -ENODEV;
2367
2368	acpi_bus_attach(device, true);
 
 
 
 
 
 
2369
2370	if (!acpi_bus_scan_second_pass)
2371		return 0;
2372
2373	/* Pass 2: Enumerate all of the remaining devices. */
2374
2375	device = NULL;
2376
2377	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2378		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2379				    acpi_bus_check_add_2, NULL, NULL,
2380				    (void **)&device);
2381
2382	acpi_bus_attach(device, false);
2383
2384	return 0;
2385}
2386EXPORT_SYMBOL(acpi_bus_scan);
2387
2388/**
2389 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2390 * @adev: Root of the ACPI namespace scope to walk.
2391 *
2392 * Must be called under acpi_scan_lock.
2393 */
2394void acpi_bus_trim(struct acpi_device *adev)
2395{
2396	struct acpi_scan_handler *handler = adev->handler;
2397	struct acpi_device *child;
2398
2399	list_for_each_entry_reverse(child, &adev->children, node)
2400		acpi_bus_trim(child);
2401
2402	adev->flags.match_driver = false;
2403	if (handler) {
2404		if (handler->detach)
2405			handler->detach(adev);
2406
2407		adev->handler = NULL;
2408	} else {
2409		device_release_driver(&adev->dev);
2410	}
2411	/*
2412	 * Most likely, the device is going away, so put it into D3cold before
2413	 * that.
2414	 */
2415	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2416	adev->flags.initialized = false;
2417	acpi_device_clear_enumerated(adev);
 
 
 
 
 
 
 
 
 
 
 
 
 
2418}
2419EXPORT_SYMBOL_GPL(acpi_bus_trim);
2420
2421int acpi_bus_register_early_device(int type)
2422{
2423	struct acpi_device *device = NULL;
2424	int result;
2425
2426	result = acpi_add_single_object(&device, NULL, type, false);
2427	if (result)
2428		return result;
2429
2430	device->flags.match_driver = true;
2431	return device_attach(&device->dev);
2432}
2433EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2434
2435static int acpi_bus_scan_fixed(void)
2436{
2437	int result = 0;
2438
2439	/*
2440	 * Enumerate all fixed-feature devices.
2441	 */
2442	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2443		struct acpi_device *device = NULL;
2444
2445		result = acpi_add_single_object(&device, NULL,
2446						ACPI_BUS_TYPE_POWER_BUTTON, false);
2447		if (result)
2448			return result;
2449
2450		device->flags.match_driver = true;
2451		result = device_attach(&device->dev);
2452		if (result < 0)
2453			return result;
2454
2455		device_init_wakeup(&device->dev, true);
2456	}
2457
2458	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2459		struct acpi_device *device = NULL;
2460
2461		result = acpi_add_single_object(&device, NULL,
2462						ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2463		if (result)
2464			return result;
2465
2466		device->flags.match_driver = true;
2467		result = device_attach(&device->dev);
2468	}
2469
2470	return result < 0 ? result : 0;
2471}
2472
2473static void __init acpi_get_spcr_uart_addr(void)
2474{
2475	acpi_status status;
2476	struct acpi_table_spcr *spcr_ptr;
2477
2478	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2479				(struct acpi_table_header **)&spcr_ptr);
2480	if (ACPI_FAILURE(status)) {
2481		pr_warn("STAO table present, but SPCR is missing\n");
2482		return;
2483	}
2484
2485	spcr_uart_addr = spcr_ptr->serial_port.address;
2486	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2487}
2488
2489static bool acpi_scan_initialized;
2490
2491int __init acpi_scan_init(void)
2492{
2493	int result;
2494	acpi_status status;
2495	struct acpi_table_stao *stao_ptr;
2496
2497	acpi_pci_root_init();
2498	acpi_pci_link_init();
2499	acpi_processor_init();
2500	acpi_platform_init();
2501	acpi_lpss_init();
2502	acpi_apd_init();
2503	acpi_cmos_rtc_init();
2504	acpi_container_init();
2505	acpi_memory_hotplug_init();
2506	acpi_watchdog_init();
2507	acpi_pnp_init();
2508	acpi_int340x_thermal_init();
2509	acpi_amba_init();
2510	acpi_init_lpit();
2511
2512	acpi_scan_add_handler(&generic_device_handler);
2513
2514	/*
2515	 * If there is STAO table, check whether it needs to ignore the UART
2516	 * device in SPCR table.
2517	 */
2518	status = acpi_get_table(ACPI_SIG_STAO, 0,
2519				(struct acpi_table_header **)&stao_ptr);
2520	if (ACPI_SUCCESS(status)) {
2521		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2522			pr_info("STAO Name List not yet supported.\n");
2523
2524		if (stao_ptr->ignore_uart)
2525			acpi_get_spcr_uart_addr();
2526
2527		acpi_put_table((struct acpi_table_header *)stao_ptr);
2528	}
2529
2530	acpi_gpe_apply_masked_gpes();
2531	acpi_update_all_gpes();
2532
2533	/*
2534	 * Although we call __add_memory() that is documented to require the
2535	 * device_hotplug_lock, it is not necessary here because this is an
2536	 * early code when userspace or any other code path cannot trigger
2537	 * hotplug/hotunplug operations.
2538	 */
2539	mutex_lock(&acpi_scan_lock);
2540	/*
2541	 * Enumerate devices in the ACPI namespace.
2542	 */
2543	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2544	if (result)
2545		goto out;
2546
2547	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2548	if (result)
2549		goto out;
2550
2551	/* Fixed feature devices do not exist on HW-reduced platform */
2552	if (!acpi_gbl_reduced_hardware) {
2553		result = acpi_bus_scan_fixed();
2554		if (result) {
2555			acpi_detach_data(acpi_root->handle,
2556					 acpi_scan_drop_device);
2557			acpi_device_del(acpi_root);
2558			acpi_bus_put_acpi_device(acpi_root);
2559			goto out;
2560		}
2561	}
2562
2563	acpi_turn_off_unused_power_resources();
2564
2565	acpi_scan_initialized = true;
2566
2567 out:
2568	mutex_unlock(&acpi_scan_lock);
2569	return result;
2570}
2571
2572static struct acpi_probe_entry *ape;
2573static int acpi_probe_count;
2574static DEFINE_MUTEX(acpi_probe_mutex);
2575
2576static int __init acpi_match_madt(union acpi_subtable_headers *header,
2577				  const unsigned long end)
2578{
2579	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2580		if (!ape->probe_subtbl(header, end))
2581			acpi_probe_count++;
2582
2583	return 0;
2584}
2585
2586int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2587{
2588	int count = 0;
2589
2590	if (acpi_disabled)
2591		return 0;
2592
2593	mutex_lock(&acpi_probe_mutex);
2594	for (ape = ap_head; nr; ape++, nr--) {
2595		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2596			acpi_probe_count = 0;
2597			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2598			count += acpi_probe_count;
2599		} else {
2600			int res;
2601			res = acpi_table_parse(ape->id, ape->probe_table);
2602			if (!res)
2603				count++;
2604		}
2605	}
2606	mutex_unlock(&acpi_probe_mutex);
2607
2608	return count;
2609}
2610
2611static void acpi_table_events_fn(struct work_struct *work)
2612{
2613	acpi_scan_lock_acquire();
2614	acpi_bus_scan(ACPI_ROOT_OBJECT);
2615	acpi_scan_lock_release();
2616
2617	kfree(work);
2618}
2619
2620void acpi_scan_table_notify(void)
2621{
2622	struct work_struct *work;
2623
2624	if (!acpi_scan_initialized)
2625		return;
2626
2627	work = kmalloc(sizeof(*work), GFP_KERNEL);
2628	if (!work)
2629		return;
2630
2631	INIT_WORK(work, acpi_table_events_fn);
2632	schedule_work(work);
2633}
2634
2635int acpi_reconfig_notifier_register(struct notifier_block *nb)
2636{
2637	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2638}
2639EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2640
2641int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2642{
2643	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2644}
2645EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);