Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
 
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/compaction.h>
  35#include <linux/syscalls.h>
  36#include <linux/compat.h>
  37#include <linux/hugetlb.h>
  38#include <linux/hugetlb_cgroup.h>
  39#include <linux/gfp.h>
 
  40#include <linux/pfn_t.h>
  41#include <linux/memremap.h>
  42#include <linux/userfaultfd_k.h>
  43#include <linux/balloon_compaction.h>
 
  44#include <linux/page_idle.h>
  45#include <linux/page_owner.h>
  46#include <linux/sched/mm.h>
  47#include <linux/ptrace.h>
  48#include <linux/oom.h>
  49#include <linux/memory.h>
  50#include <linux/random.h>
  51#include <linux/sched/sysctl.h>
  52#include <linux/memory-tiers.h>
  53
  54#include <asm/tlbflush.h>
  55
 
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60bool isolate_movable_page(struct page *page, isolate_mode_t mode)
  61{
  62	struct folio *folio = folio_get_nontail_page(page);
  63	const struct movable_operations *mops;
  64
  65	/*
  66	 * Avoid burning cycles with pages that are yet under __free_pages(),
  67	 * or just got freed under us.
  68	 *
  69	 * In case we 'win' a race for a movable page being freed under us and
  70	 * raise its refcount preventing __free_pages() from doing its job
  71	 * the put_page() at the end of this block will take care of
  72	 * release this page, thus avoiding a nasty leakage.
  73	 */
  74	if (!folio)
  75		goto out;
  76
  77	if (unlikely(folio_test_slab(folio)))
  78		goto out_putfolio;
  79	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
  80	smp_rmb();
  81	/*
  82	 * Check movable flag before taking the page lock because
  83	 * we use non-atomic bitops on newly allocated page flags so
  84	 * unconditionally grabbing the lock ruins page's owner side.
  85	 */
  86	if (unlikely(!__folio_test_movable(folio)))
  87		goto out_putfolio;
  88	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
  89	smp_rmb();
  90	if (unlikely(folio_test_slab(folio)))
  91		goto out_putfolio;
  92
  93	/*
  94	 * As movable pages are not isolated from LRU lists, concurrent
  95	 * compaction threads can race against page migration functions
  96	 * as well as race against the releasing a page.
  97	 *
  98	 * In order to avoid having an already isolated movable page
  99	 * being (wrongly) re-isolated while it is under migration,
 100	 * or to avoid attempting to isolate pages being released,
 101	 * lets be sure we have the page lock
 102	 * before proceeding with the movable page isolation steps.
 103	 */
 104	if (unlikely(!folio_trylock(folio)))
 105		goto out_putfolio;
 106
 107	if (!folio_test_movable(folio) || folio_test_isolated(folio))
 108		goto out_no_isolated;
 109
 110	mops = folio_movable_ops(folio);
 111	VM_BUG_ON_FOLIO(!mops, folio);
 112
 113	if (!mops->isolate_page(&folio->page, mode))
 114		goto out_no_isolated;
 115
 116	/* Driver shouldn't use PG_isolated bit of page->flags */
 117	WARN_ON_ONCE(folio_test_isolated(folio));
 118	folio_set_isolated(folio);
 119	folio_unlock(folio);
 120
 121	return true;
 122
 123out_no_isolated:
 124	folio_unlock(folio);
 125out_putfolio:
 126	folio_put(folio);
 127out:
 128	return false;
 129}
 130
 131static void putback_movable_folio(struct folio *folio)
 132{
 133	const struct movable_operations *mops = folio_movable_ops(folio);
 134
 135	mops->putback_page(&folio->page);
 136	folio_clear_isolated(folio);
 
 137}
 138
 139/*
 140 * Put previously isolated pages back onto the appropriate lists
 141 * from where they were once taken off for compaction/migration.
 142 *
 143 * This function shall be used whenever the isolated pageset has been
 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 145 * and isolate_hugetlb().
 146 */
 147void putback_movable_pages(struct list_head *l)
 148{
 149	struct folio *folio;
 150	struct folio *folio2;
 151
 152	list_for_each_entry_safe(folio, folio2, l, lru) {
 153		if (unlikely(folio_test_hugetlb(folio))) {
 154			folio_putback_active_hugetlb(folio);
 155			continue;
 156		}
 157		list_del(&folio->lru);
 158		/*
 159		 * We isolated non-lru movable folio so here we can use
 160		 * __folio_test_movable because LRU folio's mapping cannot
 161		 * have PAGE_MAPPING_MOVABLE.
 162		 */
 163		if (unlikely(__folio_test_movable(folio))) {
 164			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
 165			folio_lock(folio);
 166			if (folio_test_movable(folio))
 167				putback_movable_folio(folio);
 168			else
 169				folio_clear_isolated(folio);
 170			folio_unlock(folio);
 171			folio_put(folio);
 172		} else {
 173			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
 174					folio_is_file_lru(folio), -folio_nr_pages(folio));
 175			folio_putback_lru(folio);
 176		}
 177	}
 178}
 179
 180/*
 181 * Restore a potential migration pte to a working pte entry
 182 */
 183static bool remove_migration_pte(struct folio *folio,
 184		struct vm_area_struct *vma, unsigned long addr, void *old)
 185{
 186	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
 
 
 
 
 
 
 
 
 187
 
 188	while (page_vma_mapped_walk(&pvmw)) {
 189		rmap_t rmap_flags = RMAP_NONE;
 190		pte_t old_pte;
 191		pte_t pte;
 192		swp_entry_t entry;
 193		struct page *new;
 194		unsigned long idx = 0;
 195
 196		/* pgoff is invalid for ksm pages, but they are never large */
 197		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 198			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
 199		new = folio_page(folio, idx);
 200
 201#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 202		/* PMD-mapped THP migration entry */
 203		if (!pvmw.pte) {
 204			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
 205					!folio_test_pmd_mappable(folio), folio);
 206			remove_migration_pmd(&pvmw, new);
 207			continue;
 208		}
 209#endif
 210
 211		folio_get(folio);
 212		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
 213		old_pte = ptep_get(pvmw.pte);
 214		if (pte_swp_soft_dirty(old_pte))
 215			pte = pte_mksoft_dirty(pte);
 216
 217		entry = pte_to_swp_entry(old_pte);
 218		if (!is_migration_entry_young(entry))
 219			pte = pte_mkold(pte);
 220		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
 221			pte = pte_mkdirty(pte);
 222		if (is_writable_migration_entry(entry))
 223			pte = pte_mkwrite(pte, vma);
 224		else if (pte_swp_uffd_wp(old_pte))
 225			pte = pte_mkuffd_wp(pte);
 226
 227		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
 228			rmap_flags |= RMAP_EXCLUSIVE;
 229
 230		if (unlikely(is_device_private_page(new))) {
 231			if (pte_write(pte))
 232				entry = make_writable_device_private_entry(
 233							page_to_pfn(new));
 234			else
 235				entry = make_readable_device_private_entry(
 236							page_to_pfn(new));
 237			pte = swp_entry_to_pte(entry);
 238			if (pte_swp_soft_dirty(old_pte))
 239				pte = pte_swp_mksoft_dirty(pte);
 240			if (pte_swp_uffd_wp(old_pte))
 241				pte = pte_swp_mkuffd_wp(pte);
 242		}
 243
 244#ifdef CONFIG_HUGETLB_PAGE
 245		if (folio_test_hugetlb(folio)) {
 246			struct hstate *h = hstate_vma(vma);
 247			unsigned int shift = huge_page_shift(h);
 248			unsigned long psize = huge_page_size(h);
 249
 
 250			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 251			if (folio_test_anon(folio))
 252				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
 253						      rmap_flags);
 254			else
 255				hugetlb_add_file_rmap(folio);
 256			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
 257					psize);
 258		} else
 259#endif
 260		{
 261			if (folio_test_anon(folio))
 262				folio_add_anon_rmap_pte(folio, new, vma,
 263							pvmw.address, rmap_flags);
 264			else
 265				folio_add_file_rmap_pte(folio, new, vma);
 266			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 
 
 
 
 
 267		}
 268		if (vma->vm_flags & VM_LOCKED)
 269			mlock_drain_local();
 270
 271		trace_remove_migration_pte(pvmw.address, pte_val(pte),
 272					   compound_order(new));
 273
 274		/* No need to invalidate - it was non-present before */
 275		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 276	}
 277
 278	return true;
 279}
 280
 281/*
 282 * Get rid of all migration entries and replace them by
 283 * references to the indicated page.
 284 */
 285void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
 286{
 287	struct rmap_walk_control rwc = {
 288		.rmap_one = remove_migration_pte,
 289		.arg = src,
 290	};
 291
 292	if (locked)
 293		rmap_walk_locked(dst, &rwc);
 294	else
 295		rmap_walk(dst, &rwc);
 296}
 297
 298/*
 299 * Something used the pte of a page under migration. We need to
 300 * get to the page and wait until migration is finished.
 301 * When we return from this function the fault will be retried.
 302 */
 303void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 304			  unsigned long address)
 305{
 306	spinlock_t *ptl;
 307	pte_t *ptep;
 308	pte_t pte;
 309	swp_entry_t entry;
 
 310
 311	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 312	if (!ptep)
 313		return;
 314
 315	pte = ptep_get(ptep);
 316	pte_unmap(ptep);
 317
 318	if (!is_swap_pte(pte))
 319		goto out;
 320
 321	entry = pte_to_swp_entry(pte);
 322	if (!is_migration_entry(entry))
 323		goto out;
 324
 325	migration_entry_wait_on_locked(entry, ptl);
 
 
 
 
 
 
 
 
 
 
 
 326	return;
 327out:
 328	spin_unlock(ptl);
 329}
 330
 331#ifdef CONFIG_HUGETLB_PAGE
 332/*
 333 * The vma read lock must be held upon entry. Holding that lock prevents either
 334 * the pte or the ptl from being freed.
 335 *
 336 * This function will release the vma lock before returning.
 337 */
 338void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
 339{
 340	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
 341	pte_t pte;
 342
 343	hugetlb_vma_assert_locked(vma);
 344	spin_lock(ptl);
 345	pte = huge_ptep_get(ptep);
 346
 347	if (unlikely(!is_hugetlb_entry_migration(pte))) {
 348		spin_unlock(ptl);
 349		hugetlb_vma_unlock_read(vma);
 350	} else {
 351		/*
 352		 * If migration entry existed, safe to release vma lock
 353		 * here because the pgtable page won't be freed without the
 354		 * pgtable lock released.  See comment right above pgtable
 355		 * lock release in migration_entry_wait_on_locked().
 356		 */
 357		hugetlb_vma_unlock_read(vma);
 358		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
 359	}
 360}
 361#endif
 362
 363#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 364void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 365{
 366	spinlock_t *ptl;
 
 367
 368	ptl = pmd_lock(mm, pmd);
 369	if (!is_pmd_migration_entry(*pmd))
 370		goto unlock;
 371	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
 
 
 
 
 372	return;
 373unlock:
 374	spin_unlock(ptl);
 375}
 376#endif
 377
 378static int folio_expected_refs(struct address_space *mapping,
 379		struct folio *folio)
 380{
 381	int refs = 1;
 382	if (!mapping)
 383		return refs;
 384
 385	refs += folio_nr_pages(folio);
 386	if (folio_test_private(folio))
 387		refs++;
 
 
 388
 389	return refs;
 390}
 391
 392/*
 393 * Replace the page in the mapping.
 394 *
 395 * The number of remaining references must be:
 396 * 1 for anonymous pages without a mapping
 397 * 2 for pages with a mapping
 398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 399 */
 400int folio_migrate_mapping(struct address_space *mapping,
 401		struct folio *newfolio, struct folio *folio, int extra_count)
 402{
 403	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
 404	struct zone *oldzone, *newzone;
 405	int dirty;
 406	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
 407	long nr = folio_nr_pages(folio);
 408	long entries, i;
 409
 410	if (!mapping) {
 411		/* Anonymous page without mapping */
 412		if (folio_ref_count(folio) != expected_count)
 413			return -EAGAIN;
 414
 415		/* No turning back from here */
 416		newfolio->index = folio->index;
 417		newfolio->mapping = folio->mapping;
 418		if (folio_test_swapbacked(folio))
 419			__folio_set_swapbacked(newfolio);
 420
 421		return MIGRATEPAGE_SUCCESS;
 422	}
 423
 424	oldzone = folio_zone(folio);
 425	newzone = folio_zone(newfolio);
 426
 427	xas_lock_irq(&xas);
 428	if (!folio_ref_freeze(folio, expected_count)) {
 
 
 
 
 
 429		xas_unlock_irq(&xas);
 430		return -EAGAIN;
 431	}
 432
 433	/*
 434	 * Now we know that no one else is looking at the folio:
 435	 * no turning back from here.
 436	 */
 437	newfolio->index = folio->index;
 438	newfolio->mapping = folio->mapping;
 439	folio_ref_add(newfolio, nr); /* add cache reference */
 440	if (folio_test_swapbacked(folio)) {
 441		__folio_set_swapbacked(newfolio);
 442		if (folio_test_swapcache(folio)) {
 443			folio_set_swapcache(newfolio);
 444			newfolio->private = folio_get_private(folio);
 445		}
 446		entries = nr;
 447	} else {
 448		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
 449		entries = 1;
 450	}
 451
 452	/* Move dirty while page refs frozen and newpage not yet exposed */
 453	dirty = folio_test_dirty(folio);
 454	if (dirty) {
 455		folio_clear_dirty(folio);
 456		folio_set_dirty(newfolio);
 457	}
 458
 459	/* Swap cache still stores N entries instead of a high-order entry */
 460	for (i = 0; i < entries; i++) {
 461		xas_store(&xas, newfolio);
 462		xas_next(&xas);
 
 
 
 
 463	}
 464
 465	/*
 466	 * Drop cache reference from old page by unfreezing
 467	 * to one less reference.
 468	 * We know this isn't the last reference.
 469	 */
 470	folio_ref_unfreeze(folio, expected_count - nr);
 471
 472	xas_unlock(&xas);
 473	/* Leave irq disabled to prevent preemption while updating stats */
 474
 475	/*
 476	 * If moved to a different zone then also account
 477	 * the page for that zone. Other VM counters will be
 478	 * taken care of when we establish references to the
 479	 * new page and drop references to the old page.
 480	 *
 481	 * Note that anonymous pages are accounted for
 482	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 483	 * are mapped to swap space.
 484	 */
 485	if (newzone != oldzone) {
 486		struct lruvec *old_lruvec, *new_lruvec;
 487		struct mem_cgroup *memcg;
 488
 489		memcg = folio_memcg(folio);
 490		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 491		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 492
 493		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 494		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 495		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
 496			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 497			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 498
 499			if (folio_test_pmd_mappable(folio)) {
 500				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
 501				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
 502			}
 503		}
 504#ifdef CONFIG_SWAP
 505		if (folio_test_swapcache(folio)) {
 506			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 507			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 508		}
 509#endif
 510		if (dirty && mapping_can_writeback(mapping)) {
 511			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 512			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 513			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 514			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 515		}
 516	}
 517	local_irq_enable();
 518
 519	return MIGRATEPAGE_SUCCESS;
 520}
 521EXPORT_SYMBOL(folio_migrate_mapping);
 522
 523/*
 524 * The expected number of remaining references is the same as that
 525 * of folio_migrate_mapping().
 526 */
 527int migrate_huge_page_move_mapping(struct address_space *mapping,
 528				   struct folio *dst, struct folio *src)
 529{
 530	XA_STATE(xas, &mapping->i_pages, folio_index(src));
 531	int expected_count;
 532
 533	xas_lock_irq(&xas);
 534	expected_count = folio_expected_refs(mapping, src);
 535	if (!folio_ref_freeze(src, expected_count)) {
 536		xas_unlock_irq(&xas);
 537		return -EAGAIN;
 538	}
 539
 540	dst->index = src->index;
 541	dst->mapping = src->mapping;
 
 
 542
 543	folio_ref_add(dst, folio_nr_pages(dst));
 
 544
 545	xas_store(&xas, dst);
 546
 547	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
 
 
 548
 549	xas_unlock_irq(&xas);
 550
 551	return MIGRATEPAGE_SUCCESS;
 552}
 553
 554/*
 555 * Copy the flags and some other ancillary information
 556 */
 557void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
 558{
 559	int cpupid;
 560
 561	if (folio_test_error(folio))
 562		folio_set_error(newfolio);
 563	if (folio_test_referenced(folio))
 564		folio_set_referenced(newfolio);
 565	if (folio_test_uptodate(folio))
 566		folio_mark_uptodate(newfolio);
 567	if (folio_test_clear_active(folio)) {
 568		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
 569		folio_set_active(newfolio);
 570	} else if (folio_test_clear_unevictable(folio))
 571		folio_set_unevictable(newfolio);
 572	if (folio_test_workingset(folio))
 573		folio_set_workingset(newfolio);
 574	if (folio_test_checked(folio))
 575		folio_set_checked(newfolio);
 576	/*
 577	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
 578	 * migration entries. We can still have PG_anon_exclusive set on an
 579	 * effectively unmapped and unreferenced first sub-pages of an
 580	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
 581	 */
 582	if (folio_test_mappedtodisk(folio))
 583		folio_set_mappedtodisk(newfolio);
 584
 585	/* Move dirty on pages not done by folio_migrate_mapping() */
 586	if (folio_test_dirty(folio))
 587		folio_set_dirty(newfolio);
 588
 589	if (folio_test_young(folio))
 590		folio_set_young(newfolio);
 591	if (folio_test_idle(folio))
 592		folio_set_idle(newfolio);
 593
 594	/*
 595	 * Copy NUMA information to the new page, to prevent over-eager
 596	 * future migrations of this same page.
 597	 */
 598	cpupid = folio_xchg_last_cpupid(folio, -1);
 599	/*
 600	 * For memory tiering mode, when migrate between slow and fast
 601	 * memory node, reset cpupid, because that is used to record
 602	 * page access time in slow memory node.
 603	 */
 604	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
 605		bool f_toptier = node_is_toptier(folio_nid(folio));
 606		bool t_toptier = node_is_toptier(folio_nid(newfolio));
 607
 608		if (f_toptier != t_toptier)
 609			cpupid = -1;
 610	}
 611	folio_xchg_last_cpupid(newfolio, cpupid);
 612
 613	folio_migrate_ksm(newfolio, folio);
 614	/*
 615	 * Please do not reorder this without considering how mm/ksm.c's
 616	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 617	 */
 618	if (folio_test_swapcache(folio))
 619		folio_clear_swapcache(folio);
 620	folio_clear_private(folio);
 621
 622	/* page->private contains hugetlb specific flags */
 623	if (!folio_test_hugetlb(folio))
 624		folio->private = NULL;
 625
 626	/*
 627	 * If any waiters have accumulated on the new page then
 628	 * wake them up.
 629	 */
 630	if (folio_test_writeback(newfolio))
 631		folio_end_writeback(newfolio);
 632
 633	/*
 634	 * PG_readahead shares the same bit with PG_reclaim.  The above
 635	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 636	 * bit after that.
 637	 */
 638	if (folio_test_readahead(folio))
 639		folio_set_readahead(newfolio);
 640
 641	folio_copy_owner(newfolio, folio);
 642
 643	mem_cgroup_migrate(folio, newfolio);
 
 644}
 645EXPORT_SYMBOL(folio_migrate_flags);
 646
 647void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
 648{
 649	folio_copy(newfolio, folio);
 650	folio_migrate_flags(newfolio, folio);
 
 
 
 
 651}
 652EXPORT_SYMBOL(folio_migrate_copy);
 653
 654/************************************************************
 655 *                    Migration functions
 656 ***********************************************************/
 657
 658int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
 659		struct folio *src, enum migrate_mode mode, int extra_count)
 
 
 
 
 
 
 
 660{
 661	int rc;
 662
 663	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
 664
 665	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
 666
 667	if (rc != MIGRATEPAGE_SUCCESS)
 668		return rc;
 669
 670	if (mode != MIGRATE_SYNC_NO_COPY)
 671		folio_migrate_copy(dst, src);
 672	else
 673		folio_migrate_flags(dst, src);
 674	return MIGRATEPAGE_SUCCESS;
 675}
 
 676
 677/**
 678 * migrate_folio() - Simple folio migration.
 679 * @mapping: The address_space containing the folio.
 680 * @dst: The folio to migrate the data to.
 681 * @src: The folio containing the current data.
 682 * @mode: How to migrate the page.
 683 *
 684 * Common logic to directly migrate a single LRU folio suitable for
 685 * folios that do not use PagePrivate/PagePrivate2.
 686 *
 687 * Folios are locked upon entry and exit.
 688 */
 689int migrate_folio(struct address_space *mapping, struct folio *dst,
 690		struct folio *src, enum migrate_mode mode)
 691{
 692	return migrate_folio_extra(mapping, dst, src, mode, 0);
 693}
 694EXPORT_SYMBOL(migrate_folio);
 695
 696#ifdef CONFIG_BUFFER_HEAD
 697/* Returns true if all buffers are successfully locked */
 698static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 699							enum migrate_mode mode)
 700{
 701	struct buffer_head *bh = head;
 702	struct buffer_head *failed_bh;
 703
 
 
 
 
 
 
 
 
 
 
 
 
 704	do {
 705		if (!trylock_buffer(bh)) {
 706			if (mode == MIGRATE_ASYNC)
 707				goto unlock;
 708			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
 709				goto unlock;
 710			lock_buffer(bh);
 
 
 
 
 
 
 711		}
 712
 713		bh = bh->b_this_page;
 714	} while (bh != head);
 715
 716	return true;
 717
 718unlock:
 719	/* We failed to lock the buffer and cannot stall. */
 720	failed_bh = bh;
 721	bh = head;
 722	while (bh != failed_bh) {
 723		unlock_buffer(bh);
 724		bh = bh->b_this_page;
 725	}
 726
 727	return false;
 728}
 729
 730static int __buffer_migrate_folio(struct address_space *mapping,
 731		struct folio *dst, struct folio *src, enum migrate_mode mode,
 732		bool check_refs)
 733{
 734	struct buffer_head *bh, *head;
 735	int rc;
 736	int expected_count;
 737
 738	head = folio_buffers(src);
 739	if (!head)
 740		return migrate_folio(mapping, dst, src, mode);
 741
 742	/* Check whether page does not have extra refs before we do more work */
 743	expected_count = folio_expected_refs(mapping, src);
 744	if (folio_ref_count(src) != expected_count)
 745		return -EAGAIN;
 746
 
 747	if (!buffer_migrate_lock_buffers(head, mode))
 748		return -EAGAIN;
 749
 750	if (check_refs) {
 751		bool busy;
 752		bool invalidated = false;
 753
 754recheck_buffers:
 755		busy = false;
 756		spin_lock(&mapping->i_private_lock);
 757		bh = head;
 758		do {
 759			if (atomic_read(&bh->b_count)) {
 760				busy = true;
 761				break;
 762			}
 763			bh = bh->b_this_page;
 764		} while (bh != head);
 765		if (busy) {
 766			if (invalidated) {
 767				rc = -EAGAIN;
 768				goto unlock_buffers;
 769			}
 770			spin_unlock(&mapping->i_private_lock);
 771			invalidate_bh_lrus();
 772			invalidated = true;
 773			goto recheck_buffers;
 774		}
 775	}
 776
 777	rc = folio_migrate_mapping(mapping, dst, src, 0);
 778	if (rc != MIGRATEPAGE_SUCCESS)
 779		goto unlock_buffers;
 780
 781	folio_attach_private(dst, folio_detach_private(src));
 782
 783	bh = head;
 784	do {
 785		folio_set_bh(bh, dst, bh_offset(bh));
 786		bh = bh->b_this_page;
 
 787	} while (bh != head);
 788
 789	if (mode != MIGRATE_SYNC_NO_COPY)
 790		folio_migrate_copy(dst, src);
 791	else
 792		folio_migrate_flags(dst, src);
 793
 794	rc = MIGRATEPAGE_SUCCESS;
 795unlock_buffers:
 796	if (check_refs)
 797		spin_unlock(&mapping->i_private_lock);
 798	bh = head;
 799	do {
 800		unlock_buffer(bh);
 801		bh = bh->b_this_page;
 
 802	} while (bh != head);
 803
 804	return rc;
 805}
 806
 807/**
 808 * buffer_migrate_folio() - Migration function for folios with buffers.
 809 * @mapping: The address space containing @src.
 810 * @dst: The folio to migrate to.
 811 * @src: The folio to migrate from.
 812 * @mode: How to migrate the folio.
 813 *
 814 * This function can only be used if the underlying filesystem guarantees
 815 * that no other references to @src exist. For example attached buffer
 816 * heads are accessed only under the folio lock.  If your filesystem cannot
 817 * provide this guarantee, buffer_migrate_folio_norefs() may be more
 818 * appropriate.
 819 *
 820 * Return: 0 on success or a negative errno on failure.
 821 */
 822int buffer_migrate_folio(struct address_space *mapping,
 823		struct folio *dst, struct folio *src, enum migrate_mode mode)
 824{
 825	return __buffer_migrate_folio(mapping, dst, src, mode, false);
 826}
 827EXPORT_SYMBOL(buffer_migrate_folio);
 828
 829/**
 830 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
 831 * @mapping: The address space containing @src.
 832 * @dst: The folio to migrate to.
 833 * @src: The folio to migrate from.
 834 * @mode: How to migrate the folio.
 835 *
 836 * Like buffer_migrate_folio() except that this variant is more careful
 837 * and checks that there are also no buffer head references. This function
 838 * is the right one for mappings where buffer heads are directly looked
 839 * up and referenced (such as block device mappings).
 840 *
 841 * Return: 0 on success or a negative errno on failure.
 842 */
 843int buffer_migrate_folio_norefs(struct address_space *mapping,
 844		struct folio *dst, struct folio *src, enum migrate_mode mode)
 845{
 846	return __buffer_migrate_folio(mapping, dst, src, mode, true);
 847}
 848EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
 849#endif /* CONFIG_BUFFER_HEAD */
 850
 851int filemap_migrate_folio(struct address_space *mapping,
 852		struct folio *dst, struct folio *src, enum migrate_mode mode)
 853{
 854	int ret;
 855
 856	ret = folio_migrate_mapping(mapping, dst, src, 0);
 857	if (ret != MIGRATEPAGE_SUCCESS)
 858		return ret;
 859
 860	if (folio_get_private(src))
 861		folio_attach_private(dst, folio_detach_private(src));
 862
 863	if (mode != MIGRATE_SYNC_NO_COPY)
 864		folio_migrate_copy(dst, src);
 865	else
 866		folio_migrate_flags(dst, src);
 867	return MIGRATEPAGE_SUCCESS;
 868}
 869EXPORT_SYMBOL_GPL(filemap_migrate_folio);
 870
 871/*
 872 * Writeback a folio to clean the dirty state
 873 */
 874static int writeout(struct address_space *mapping, struct folio *folio)
 875{
 876	struct writeback_control wbc = {
 877		.sync_mode = WB_SYNC_NONE,
 878		.nr_to_write = 1,
 879		.range_start = 0,
 880		.range_end = LLONG_MAX,
 881		.for_reclaim = 1
 882	};
 883	int rc;
 884
 885	if (!mapping->a_ops->writepage)
 886		/* No write method for the address space */
 887		return -EINVAL;
 888
 889	if (!folio_clear_dirty_for_io(folio))
 890		/* Someone else already triggered a write */
 891		return -EAGAIN;
 892
 893	/*
 894	 * A dirty folio may imply that the underlying filesystem has
 895	 * the folio on some queue. So the folio must be clean for
 896	 * migration. Writeout may mean we lose the lock and the
 897	 * folio state is no longer what we checked for earlier.
 898	 * At this point we know that the migration attempt cannot
 899	 * be successful.
 900	 */
 901	remove_migration_ptes(folio, folio, false);
 902
 903	rc = mapping->a_ops->writepage(&folio->page, &wbc);
 904
 905	if (rc != AOP_WRITEPAGE_ACTIVATE)
 906		/* unlocked. Relock */
 907		folio_lock(folio);
 908
 909	return (rc < 0) ? -EIO : -EAGAIN;
 910}
 911
 912/*
 913 * Default handling if a filesystem does not provide a migration function.
 914 */
 915static int fallback_migrate_folio(struct address_space *mapping,
 916		struct folio *dst, struct folio *src, enum migrate_mode mode)
 917{
 918	if (folio_test_dirty(src)) {
 919		/* Only writeback folios in full synchronous migration */
 920		switch (mode) {
 921		case MIGRATE_SYNC:
 922		case MIGRATE_SYNC_NO_COPY:
 923			break;
 924		default:
 925			return -EBUSY;
 926		}
 927		return writeout(mapping, src);
 928	}
 929
 930	/*
 931	 * Buffers may be managed in a filesystem specific way.
 932	 * We must have no buffers or drop them.
 933	 */
 934	if (!filemap_release_folio(src, GFP_KERNEL))
 
 935		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 936
 937	return migrate_folio(mapping, dst, src, mode);
 938}
 939
 940/*
 941 * Move a page to a newly allocated page
 942 * The page is locked and all ptes have been successfully removed.
 943 *
 944 * The new page will have replaced the old page if this function
 945 * is successful.
 946 *
 947 * Return value:
 948 *   < 0 - error code
 949 *  MIGRATEPAGE_SUCCESS - success
 950 */
 951static int move_to_new_folio(struct folio *dst, struct folio *src,
 952				enum migrate_mode mode)
 953{
 
 954	int rc = -EAGAIN;
 955	bool is_lru = !__folio_test_movable(src);
 956
 957	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
 958	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
 959
 960	if (likely(is_lru)) {
 961		struct address_space *mapping = folio_mapping(src);
 962
 
 963		if (!mapping)
 964			rc = migrate_folio(mapping, dst, src, mode);
 965		else if (mapping_unmovable(mapping))
 966			rc = -EOPNOTSUPP;
 967		else if (mapping->a_ops->migrate_folio)
 968			/*
 969			 * Most folios have a mapping and most filesystems
 970			 * provide a migrate_folio callback. Anonymous folios
 971			 * are part of swap space which also has its own
 972			 * migrate_folio callback. This is the most common path
 973			 * for page migration.
 974			 */
 975			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
 976								mode);
 977		else
 978			rc = fallback_migrate_folio(mapping, dst, src, mode);
 
 979	} else {
 980		const struct movable_operations *mops;
 981
 982		/*
 983		 * In case of non-lru page, it could be released after
 984		 * isolation step. In that case, we shouldn't try migration.
 985		 */
 986		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
 987		if (!folio_test_movable(src)) {
 988			rc = MIGRATEPAGE_SUCCESS;
 989			folio_clear_isolated(src);
 990			goto out;
 991		}
 992
 993		mops = folio_movable_ops(src);
 994		rc = mops->migrate_page(&dst->page, &src->page, mode);
 995		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 996				!folio_test_isolated(src));
 997	}
 998
 999	/*
1000	 * When successful, old pagecache src->mapping must be cleared before
1001	 * src is freed; but stats require that PageAnon be left as PageAnon.
1002	 */
1003	if (rc == MIGRATEPAGE_SUCCESS) {
1004		if (__folio_test_movable(src)) {
1005			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1006
1007			/*
1008			 * We clear PG_movable under page_lock so any compactor
1009			 * cannot try to migrate this page.
1010			 */
1011			folio_clear_isolated(src);
1012		}
1013
1014		/*
1015		 * Anonymous and movable src->mapping will be cleared by
1016		 * free_pages_prepare so don't reset it here for keeping
1017		 * the type to work PageAnon, for example.
1018		 */
1019		if (!folio_mapping_flags(src))
1020			src->mapping = NULL;
 
 
 
1021
1022		if (likely(!folio_is_zone_device(dst)))
1023			flush_dcache_folio(dst);
1024	}
1025out:
1026	return rc;
1027}
1028
1029/*
1030 * To record some information during migration, we use unused private
1031 * field of struct folio of the newly allocated destination folio.
1032 * This is safe because nobody is using it except us.
1033 */
1034enum {
1035	PAGE_WAS_MAPPED = BIT(0),
1036	PAGE_WAS_MLOCKED = BIT(1),
1037	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1038};
1039
1040static void __migrate_folio_record(struct folio *dst,
1041				   int old_page_state,
1042				   struct anon_vma *anon_vma)
1043{
1044	dst->private = (void *)anon_vma + old_page_state;
1045}
1046
1047static void __migrate_folio_extract(struct folio *dst,
1048				   int *old_page_state,
1049				   struct anon_vma **anon_vmap)
1050{
1051	unsigned long private = (unsigned long)dst->private;
1052
1053	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1054	*old_page_state = private & PAGE_OLD_STATES;
1055	dst->private = NULL;
1056}
1057
1058/* Restore the source folio to the original state upon failure */
1059static void migrate_folio_undo_src(struct folio *src,
1060				   int page_was_mapped,
1061				   struct anon_vma *anon_vma,
1062				   bool locked,
1063				   struct list_head *ret)
1064{
1065	if (page_was_mapped)
1066		remove_migration_ptes(src, src, false);
1067	/* Drop an anon_vma reference if we took one */
1068	if (anon_vma)
1069		put_anon_vma(anon_vma);
1070	if (locked)
1071		folio_unlock(src);
1072	if (ret)
1073		list_move_tail(&src->lru, ret);
1074}
1075
1076/* Restore the destination folio to the original state upon failure */
1077static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1078		free_folio_t put_new_folio, unsigned long private)
1079{
1080	if (locked)
1081		folio_unlock(dst);
1082	if (put_new_folio)
1083		put_new_folio(dst, private);
1084	else
1085		folio_put(dst);
1086}
1087
1088/* Cleanup src folio upon migration success */
1089static void migrate_folio_done(struct folio *src,
1090			       enum migrate_reason reason)
1091{
1092	/*
1093	 * Compaction can migrate also non-LRU pages which are
1094	 * not accounted to NR_ISOLATED_*. They can be recognized
1095	 * as __folio_test_movable
1096	 */
1097	if (likely(!__folio_test_movable(src)))
1098		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1099				    folio_is_file_lru(src), -folio_nr_pages(src));
1100
1101	if (reason != MR_MEMORY_FAILURE)
1102		/* We release the page in page_handle_poison. */
1103		folio_put(src);
1104}
1105
1106/* Obtain the lock on page, remove all ptes. */
1107static int migrate_folio_unmap(new_folio_t get_new_folio,
1108		free_folio_t put_new_folio, unsigned long private,
1109		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1110		enum migrate_reason reason, struct list_head *ret)
1111{
1112	struct folio *dst;
1113	int rc = -EAGAIN;
1114	int old_page_state = 0;
1115	struct anon_vma *anon_vma = NULL;
1116	bool is_lru = !__folio_test_movable(src);
1117	bool locked = false;
1118	bool dst_locked = false;
1119
1120	if (folio_ref_count(src) == 1) {
1121		/* Folio was freed from under us. So we are done. */
1122		folio_clear_active(src);
1123		folio_clear_unevictable(src);
1124		/* free_pages_prepare() will clear PG_isolated. */
1125		list_del(&src->lru);
1126		migrate_folio_done(src, reason);
1127		return MIGRATEPAGE_SUCCESS;
1128	}
1129
1130	dst = get_new_folio(src, private);
1131	if (!dst)
1132		return -ENOMEM;
1133	*dstp = dst;
1134
1135	dst->private = NULL;
1136
1137	if (!folio_trylock(src)) {
1138		if (mode == MIGRATE_ASYNC)
1139			goto out;
1140
1141		/*
1142		 * It's not safe for direct compaction to call lock_page.
1143		 * For example, during page readahead pages are added locked
1144		 * to the LRU. Later, when the IO completes the pages are
1145		 * marked uptodate and unlocked. However, the queueing
1146		 * could be merging multiple pages for one bio (e.g.
1147		 * mpage_readahead). If an allocation happens for the
1148		 * second or third page, the process can end up locking
1149		 * the same page twice and deadlocking. Rather than
1150		 * trying to be clever about what pages can be locked,
1151		 * avoid the use of lock_page for direct compaction
1152		 * altogether.
1153		 */
1154		if (current->flags & PF_MEMALLOC)
1155			goto out;
1156
1157		/*
1158		 * In "light" mode, we can wait for transient locks (eg
1159		 * inserting a page into the page table), but it's not
1160		 * worth waiting for I/O.
1161		 */
1162		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1163			goto out;
1164
1165		folio_lock(src);
1166	}
1167	locked = true;
1168	if (folio_test_mlocked(src))
1169		old_page_state |= PAGE_WAS_MLOCKED;
1170
1171	if (folio_test_writeback(src)) {
1172		/*
1173		 * Only in the case of a full synchronous migration is it
1174		 * necessary to wait for PageWriteback. In the async case,
1175		 * the retry loop is too short and in the sync-light case,
1176		 * the overhead of stalling is too much
1177		 */
1178		switch (mode) {
1179		case MIGRATE_SYNC:
1180		case MIGRATE_SYNC_NO_COPY:
1181			break;
1182		default:
1183			rc = -EBUSY;
1184			goto out;
1185		}
1186		folio_wait_writeback(src);
 
 
1187	}
1188
1189	/*
1190	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1191	 * we cannot notice that anon_vma is freed while we migrate a page.
1192	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1193	 * of migration. File cache pages are no problem because of page_lock()
1194	 * File Caches may use write_page() or lock_page() in migration, then,
1195	 * just care Anon page here.
1196	 *
1197	 * Only folio_get_anon_vma() understands the subtleties of
1198	 * getting a hold on an anon_vma from outside one of its mms.
1199	 * But if we cannot get anon_vma, then we won't need it anyway,
1200	 * because that implies that the anon page is no longer mapped
1201	 * (and cannot be remapped so long as we hold the page lock).
1202	 */
1203	if (folio_test_anon(src) && !folio_test_ksm(src))
1204		anon_vma = folio_get_anon_vma(src);
1205
1206	/*
1207	 * Block others from accessing the new page when we get around to
1208	 * establishing additional references. We are usually the only one
1209	 * holding a reference to dst at this point. We used to have a BUG
1210	 * here if folio_trylock(dst) fails, but would like to allow for
1211	 * cases where there might be a race with the previous use of dst.
1212	 * This is much like races on refcount of oldpage: just don't BUG().
1213	 */
1214	if (unlikely(!folio_trylock(dst)))
1215		goto out;
1216	dst_locked = true;
1217
1218	if (unlikely(!is_lru)) {
1219		__migrate_folio_record(dst, old_page_state, anon_vma);
1220		return MIGRATEPAGE_UNMAP;
1221	}
1222
1223	/*
1224	 * Corner case handling:
1225	 * 1. When a new swap-cache page is read into, it is added to the LRU
1226	 * and treated as swapcache but it has no rmap yet.
1227	 * Calling try_to_unmap() against a src->mapping==NULL page will
1228	 * trigger a BUG.  So handle it here.
1229	 * 2. An orphaned page (see truncate_cleanup_page) might have
1230	 * fs-private metadata. The page can be picked up due to memory
1231	 * offlining.  Everywhere else except page reclaim, the page is
1232	 * invisible to the vm, so the page can not be migrated.  So try to
1233	 * free the metadata, so the page can be freed.
1234	 */
1235	if (!src->mapping) {
1236		if (folio_test_private(src)) {
1237			try_to_free_buffers(src);
1238			goto out;
 
1239		}
1240	} else if (folio_mapped(src)) {
1241		/* Establish migration ptes */
1242		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1243			       !folio_test_ksm(src) && !anon_vma, src);
1244		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1245		old_page_state |= PAGE_WAS_MAPPED;
1246	}
1247
1248	if (!folio_mapped(src)) {
1249		__migrate_folio_record(dst, old_page_state, anon_vma);
1250		return MIGRATEPAGE_UNMAP;
1251	}
 
 
1252
 
 
 
 
 
 
 
1253out:
1254	/*
1255	 * A folio that has not been unmapped will be restored to
1256	 * right list unless we want to retry.
 
 
 
 
 
1257	 */
1258	if (rc == -EAGAIN)
1259		ret = NULL;
1260
1261	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1262			       anon_vma, locked, ret);
1263	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1264
1265	return rc;
1266}
1267
1268/* Migrate the folio to the newly allocated folio in dst. */
1269static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1270			      struct folio *src, struct folio *dst,
1271			      enum migrate_mode mode, enum migrate_reason reason,
1272			      struct list_head *ret)
 
 
 
 
 
1273{
1274	int rc;
1275	int old_page_state = 0;
1276	struct anon_vma *anon_vma = NULL;
1277	bool is_lru = !__folio_test_movable(src);
1278	struct list_head *prev;
1279
1280	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1281	prev = dst->lru.prev;
1282	list_del(&dst->lru);
1283
1284	rc = move_to_new_folio(dst, src, mode);
1285	if (rc)
 
 
 
 
 
 
 
 
1286		goto out;
 
1287
1288	if (unlikely(!is_lru))
1289		goto out_unlock_both;
 
1290
1291	/*
1292	 * When successful, push dst to LRU immediately: so that if it
1293	 * turns out to be an mlocked page, remove_migration_ptes() will
1294	 * automatically build up the correct dst->mlock_count for it.
1295	 *
1296	 * We would like to do something similar for the old page, when
1297	 * unsuccessful, and other cases when a page has been temporarily
1298	 * isolated from the unevictable LRU: but this case is the easiest.
1299	 */
1300	folio_add_lru(dst);
1301	if (old_page_state & PAGE_WAS_MLOCKED)
1302		lru_add_drain();
1303
1304	if (old_page_state & PAGE_WAS_MAPPED)
1305		remove_migration_ptes(src, dst, false);
 
 
 
 
 
 
 
1306
1307out_unlock_both:
1308	folio_unlock(dst);
1309	set_page_owner_migrate_reason(&dst->page, reason);
1310	/*
1311	 * If migration is successful, decrease refcount of dst,
1312	 * which will not free the page because new page owner increased
1313	 * refcounter.
1314	 */
1315	folio_put(dst);
 
 
 
 
 
 
 
 
1316
1317	/*
1318	 * A folio that has been migrated has all references removed
1319	 * and will be freed.
1320	 */
1321	list_del(&src->lru);
1322	/* Drop an anon_vma reference if we took one */
1323	if (anon_vma)
1324		put_anon_vma(anon_vma);
1325	folio_unlock(src);
1326	migrate_folio_done(src, reason);
1327
1328	return rc;
1329out:
1330	/*
1331	 * A folio that has not been migrated will be restored to
1332	 * right list unless we want to retry.
1333	 */
1334	if (rc == -EAGAIN) {
1335		list_add(&dst->lru, prev);
1336		__migrate_folio_record(dst, old_page_state, anon_vma);
1337		return rc;
1338	}
1339
1340	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1341			       anon_vma, true, ret);
1342	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1343
1344	return rc;
1345}
1346
1347/*
1348 * Counterpart of unmap_and_move_page() for hugepage migration.
1349 *
1350 * This function doesn't wait the completion of hugepage I/O
1351 * because there is no race between I/O and migration for hugepage.
1352 * Note that currently hugepage I/O occurs only in direct I/O
1353 * where no lock is held and PG_writeback is irrelevant,
1354 * and writeback status of all subpages are counted in the reference
1355 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1356 * under direct I/O, the reference of the head page is 512 and a bit more.)
1357 * This means that when we try to migrate hugepage whose subpages are
1358 * doing direct I/O, some references remain after try_to_unmap() and
1359 * hugepage migration fails without data corruption.
1360 *
1361 * There is also no race when direct I/O is issued on the page under migration,
1362 * because then pte is replaced with migration swap entry and direct I/O code
1363 * will wait in the page fault for migration to complete.
1364 */
1365static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1366		free_folio_t put_new_folio, unsigned long private,
1367		struct folio *src, int force, enum migrate_mode mode,
1368		int reason, struct list_head *ret)
 
1369{
1370	struct folio *dst;
1371	int rc = -EAGAIN;
1372	int page_was_mapped = 0;
 
1373	struct anon_vma *anon_vma = NULL;
1374	struct address_space *mapping = NULL;
1375
1376	if (folio_ref_count(src) == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
1377		/* page was freed from under us. So we are done. */
1378		folio_putback_active_hugetlb(src);
1379		return MIGRATEPAGE_SUCCESS;
1380	}
1381
1382	dst = get_new_folio(src, private);
1383	if (!dst)
1384		return -ENOMEM;
1385
1386	if (!folio_trylock(src)) {
1387		if (!force)
1388			goto out;
1389		switch (mode) {
1390		case MIGRATE_SYNC:
1391		case MIGRATE_SYNC_NO_COPY:
1392			break;
1393		default:
1394			goto out;
1395		}
1396		folio_lock(src);
1397	}
1398
1399	/*
1400	 * Check for pages which are in the process of being freed.  Without
1401	 * folio_mapping() set, hugetlbfs specific move page routine will not
1402	 * be called and we could leak usage counts for subpools.
1403	 */
1404	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1405		rc = -EBUSY;
1406		goto out_unlock;
1407	}
1408
1409	if (folio_test_anon(src))
1410		anon_vma = folio_get_anon_vma(src);
1411
1412	if (unlikely(!folio_trylock(dst)))
1413		goto put_anon;
1414
1415	if (folio_mapped(src)) {
 
1416		enum ttu_flags ttu = 0;
1417
1418		if (!folio_test_anon(src)) {
1419			/*
1420			 * In shared mappings, try_to_unmap could potentially
1421			 * call huge_pmd_unshare.  Because of this, take
1422			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1423			 * to let lower levels know we have taken the lock.
1424			 */
1425			mapping = hugetlb_page_mapping_lock_write(&src->page);
1426			if (unlikely(!mapping))
1427				goto unlock_put_anon;
1428
1429			ttu = TTU_RMAP_LOCKED;
 
1430		}
1431
1432		try_to_migrate(src, ttu);
1433		page_was_mapped = 1;
1434
1435		if (ttu & TTU_RMAP_LOCKED)
1436			i_mmap_unlock_write(mapping);
1437	}
1438
1439	if (!folio_mapped(src))
1440		rc = move_to_new_folio(dst, src, mode);
1441
1442	if (page_was_mapped)
1443		remove_migration_ptes(src,
1444			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1445
1446unlock_put_anon:
1447	folio_unlock(dst);
1448
1449put_anon:
1450	if (anon_vma)
1451		put_anon_vma(anon_vma);
1452
1453	if (rc == MIGRATEPAGE_SUCCESS) {
1454		move_hugetlb_state(src, dst, reason);
1455		put_new_folio = NULL;
1456	}
1457
1458out_unlock:
1459	folio_unlock(src);
1460out:
1461	if (rc == MIGRATEPAGE_SUCCESS)
1462		folio_putback_active_hugetlb(src);
1463	else if (rc != -EAGAIN)
1464		list_move_tail(&src->lru, ret);
1465
1466	/*
1467	 * If migration was not successful and there's a freeing callback, use
1468	 * it.  Otherwise, put_page() will drop the reference grabbed during
1469	 * isolation.
1470	 */
1471	if (put_new_folio)
1472		put_new_folio(dst, private);
1473	else
1474		folio_putback_active_hugetlb(dst);
1475
1476	return rc;
1477}
1478
1479static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
 
1480{
1481	int rc;
1482
1483	folio_lock(folio);
1484	rc = split_folio_to_list(folio, split_folios);
1485	folio_unlock(folio);
1486	if (!rc)
1487		list_move_tail(&folio->lru, split_folios);
1488
1489	return rc;
1490}
1491
1492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1493#define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1494#else
1495#define NR_MAX_BATCHED_MIGRATION	512
1496#endif
1497#define NR_MAX_MIGRATE_PAGES_RETRY	10
1498#define NR_MAX_MIGRATE_ASYNC_RETRY	3
1499#define NR_MAX_MIGRATE_SYNC_RETRY					\
1500	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1501
1502struct migrate_pages_stats {
1503	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1504				   units of base pages */
1505	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1506				   units of base pages.  Untried folios aren't counted */
1507	int nr_thp_succeeded;	/* THP migrated successfully */
1508	int nr_thp_failed;	/* THP failed to be migrated */
1509	int nr_thp_split;	/* THP split before migrating */
1510	int nr_split;	/* Large folio (include THP) split before migrating */
1511};
1512
1513/*
1514 * Returns the number of hugetlb folios that were not migrated, or an error code
1515 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1516 * any more because the list has become empty or no retryable hugetlb folios
1517 * exist any more. It is caller's responsibility to call putback_movable_pages()
1518 * only if ret != 0.
1519 */
1520static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1521			    free_folio_t put_new_folio, unsigned long private,
1522			    enum migrate_mode mode, int reason,
1523			    struct migrate_pages_stats *stats,
1524			    struct list_head *ret_folios)
1525{
1526	int retry = 1;
1527	int nr_failed = 0;
1528	int nr_retry_pages = 0;
1529	int pass = 0;
1530	struct folio *folio, *folio2;
1531	int rc, nr_pages;
1532
1533	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1534		retry = 0;
1535		nr_retry_pages = 0;
1536
1537		list_for_each_entry_safe(folio, folio2, from, lru) {
1538			if (!folio_test_hugetlb(folio))
1539				continue;
1540
1541			nr_pages = folio_nr_pages(folio);
1542
1543			cond_resched();
1544
1545			/*
1546			 * Migratability of hugepages depends on architectures and
1547			 * their size.  This check is necessary because some callers
1548			 * of hugepage migration like soft offline and memory
1549			 * hotremove don't walk through page tables or check whether
1550			 * the hugepage is pmd-based or not before kicking migration.
1551			 */
1552			if (!hugepage_migration_supported(folio_hstate(folio))) {
1553				nr_failed++;
1554				stats->nr_failed_pages += nr_pages;
1555				list_move_tail(&folio->lru, ret_folios);
1556				continue;
1557			}
1558
1559			rc = unmap_and_move_huge_page(get_new_folio,
1560						      put_new_folio, private,
1561						      folio, pass > 2, mode,
1562						      reason, ret_folios);
1563			/*
1564			 * The rules are:
1565			 *	Success: hugetlb folio will be put back
1566			 *	-EAGAIN: stay on the from list
1567			 *	-ENOMEM: stay on the from list
1568			 *	Other errno: put on ret_folios list
1569			 */
1570			switch(rc) {
1571			case -ENOMEM:
1572				/*
1573				 * When memory is low, don't bother to try to migrate
1574				 * other folios, just exit.
1575				 */
1576				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1577				return -ENOMEM;
1578			case -EAGAIN:
1579				retry++;
1580				nr_retry_pages += nr_pages;
1581				break;
1582			case MIGRATEPAGE_SUCCESS:
1583				stats->nr_succeeded += nr_pages;
1584				break;
1585			default:
1586				/*
1587				 * Permanent failure (-EBUSY, etc.):
1588				 * unlike -EAGAIN case, the failed folio is
1589				 * removed from migration folio list and not
1590				 * retried in the next outer loop.
1591				 */
1592				nr_failed++;
1593				stats->nr_failed_pages += nr_pages;
1594				break;
1595			}
1596		}
1597	}
1598	/*
1599	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1600	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1601	 * folios as failed.
1602	 */
1603	nr_failed += retry;
1604	stats->nr_failed_pages += nr_retry_pages;
1605
1606	return nr_failed;
1607}
1608
1609/*
1610 * migrate_pages_batch() first unmaps folios in the from list as many as
1611 * possible, then move the unmapped folios.
1612 *
1613 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1614 * lock or bit when we have locked more than one folio.  Which may cause
1615 * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1616 * length of the from list must be <= 1.
1617 */
1618static int migrate_pages_batch(struct list_head *from,
1619		new_folio_t get_new_folio, free_folio_t put_new_folio,
1620		unsigned long private, enum migrate_mode mode, int reason,
1621		struct list_head *ret_folios, struct list_head *split_folios,
1622		struct migrate_pages_stats *stats, int nr_pass)
1623{
1624	int retry = 1;
1625	int thp_retry = 1;
1626	int nr_failed = 0;
1627	int nr_retry_pages = 0;
 
 
 
1628	int pass = 0;
1629	bool is_thp = false;
1630	bool is_large = false;
1631	struct folio *folio, *folio2, *dst = NULL, *dst2;
1632	int rc, rc_saved = 0, nr_pages;
1633	LIST_HEAD(unmap_folios);
1634	LIST_HEAD(dst_folios);
1635	bool nosplit = (reason == MR_NUMA_MISPLACED);
1636
1637	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1638			!list_empty(from) && !list_is_singular(from));
 
 
1639
1640	for (pass = 0; pass < nr_pass && retry; pass++) {
1641		retry = 0;
1642		thp_retry = 0;
1643		nr_retry_pages = 0;
1644
1645		list_for_each_entry_safe(folio, folio2, from, lru) {
1646			is_large = folio_test_large(folio);
1647			is_thp = is_large && folio_test_pmd_mappable(folio);
1648			nr_pages = folio_nr_pages(folio);
1649
1650			cond_resched();
1651
 
 
1652			/*
1653			 * Large folio migration might be unsupported or
1654			 * the allocation might be failed so we should retry
1655			 * on the same folio with the large folio split
1656			 * to normal folios.
1657			 *
1658			 * Split folios are put in split_folios, and
1659			 * we will migrate them after the rest of the
1660			 * list is processed.
1661			 */
1662			if (!thp_migration_supported() && is_thp) {
1663				nr_failed++;
1664				stats->nr_thp_failed++;
1665				if (!try_split_folio(folio, split_folios)) {
1666					stats->nr_thp_split++;
1667					stats->nr_split++;
1668					continue;
1669				}
1670				stats->nr_failed_pages += nr_pages;
1671				list_move_tail(&folio->lru, ret_folios);
1672				continue;
1673			}
1674
1675			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1676					private, folio, &dst, mode, reason,
1677					ret_folios);
 
 
 
 
 
 
1678			/*
1679			 * The rules are:
1680			 *	Success: folio will be freed
1681			 *	Unmap: folio will be put on unmap_folios list,
1682			 *	       dst folio put on dst_folios list
1683			 *	-EAGAIN: stay on the from list
1684			 *	-ENOMEM: stay on the from list
1685			 *	Other errno: put on ret_folios list
 
1686			 */
1687			switch(rc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688			case -ENOMEM:
1689				/*
1690				 * When memory is low, don't bother to try to migrate
1691				 * other folios, move unmapped folios, then exit.
 
1692				 */
1693				nr_failed++;
1694				stats->nr_thp_failed += is_thp;
1695				/* Large folio NUMA faulting doesn't split to retry. */
1696				if (is_large && !nosplit) {
1697					int ret = try_split_folio(folio, split_folios);
1698
1699					if (!ret) {
1700						stats->nr_thp_split += is_thp;
1701						stats->nr_split++;
1702						break;
1703					} else if (reason == MR_LONGTERM_PIN &&
1704						   ret == -EAGAIN) {
1705						/*
1706						 * Try again to split large folio to
1707						 * mitigate the failure of longterm pinning.
1708						 */
1709						retry++;
1710						thp_retry += is_thp;
1711						nr_retry_pages += nr_pages;
1712						/* Undo duplicated failure counting. */
1713						nr_failed--;
1714						stats->nr_thp_failed -= is_thp;
1715						break;
1716					}
1717				}
1718
1719				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1720				/* nr_failed isn't updated for not used */
1721				stats->nr_thp_failed += thp_retry;
1722				rc_saved = rc;
1723				if (list_empty(&unmap_folios))
1724					goto out;
1725				else
1726					goto move;
 
1727			case -EAGAIN:
 
 
 
 
1728				retry++;
1729				thp_retry += is_thp;
1730				nr_retry_pages += nr_pages;
1731				break;
1732			case MIGRATEPAGE_SUCCESS:
1733				stats->nr_succeeded += nr_pages;
1734				stats->nr_thp_succeeded += is_thp;
1735				break;
1736			case MIGRATEPAGE_UNMAP:
1737				list_move_tail(&folio->lru, &unmap_folios);
1738				list_add_tail(&dst->lru, &dst_folios);
1739				break;
1740			default:
1741				/*
1742				 * Permanent failure (-EBUSY, etc.):
1743				 * unlike -EAGAIN case, the failed folio is
1744				 * removed from migration folio list and not
1745				 * retried in the next outer loop.
1746				 */
 
 
 
 
 
1747				nr_failed++;
1748				stats->nr_thp_failed += is_thp;
1749				stats->nr_failed_pages += nr_pages;
1750				break;
1751			}
1752		}
1753	}
1754	nr_failed += retry;
1755	stats->nr_thp_failed += thp_retry;
1756	stats->nr_failed_pages += nr_retry_pages;
1757move:
1758	/* Flush TLBs for all unmapped folios */
1759	try_to_unmap_flush();
1760
1761	retry = 1;
1762	for (pass = 0; pass < nr_pass && retry; pass++) {
1763		retry = 0;
1764		thp_retry = 0;
1765		nr_retry_pages = 0;
1766
1767		dst = list_first_entry(&dst_folios, struct folio, lru);
1768		dst2 = list_next_entry(dst, lru);
1769		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1770			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1771			nr_pages = folio_nr_pages(folio);
1772
1773			cond_resched();
1774
1775			rc = migrate_folio_move(put_new_folio, private,
1776						folio, dst, mode,
1777						reason, ret_folios);
1778			/*
1779			 * The rules are:
1780			 *	Success: folio will be freed
1781			 *	-EAGAIN: stay on the unmap_folios list
1782			 *	Other errno: put on ret_folios list
1783			 */
1784			switch(rc) {
1785			case -EAGAIN:
1786				retry++;
1787				thp_retry += is_thp;
1788				nr_retry_pages += nr_pages;
1789				break;
1790			case MIGRATEPAGE_SUCCESS:
1791				stats->nr_succeeded += nr_pages;
1792				stats->nr_thp_succeeded += is_thp;
1793				break;
1794			default:
1795				nr_failed++;
1796				stats->nr_thp_failed += is_thp;
1797				stats->nr_failed_pages += nr_pages;
1798				break;
1799			}
1800			dst = dst2;
1801			dst2 = list_next_entry(dst, lru);
1802		}
1803	}
1804	nr_failed += retry;
1805	stats->nr_thp_failed += thp_retry;
1806	stats->nr_failed_pages += nr_retry_pages;
1807
1808	rc = rc_saved ? : nr_failed;
1809out:
1810	/* Cleanup remaining folios */
1811	dst = list_first_entry(&dst_folios, struct folio, lru);
1812	dst2 = list_next_entry(dst, lru);
1813	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1814		int old_page_state = 0;
1815		struct anon_vma *anon_vma = NULL;
1816
1817		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1818		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1819				       anon_vma, true, ret_folios);
1820		list_del(&dst->lru);
1821		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1822		dst = dst2;
1823		dst2 = list_next_entry(dst, lru);
1824	}
1825
1826	return rc;
1827}
1828
1829static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1830		free_folio_t put_new_folio, unsigned long private,
1831		enum migrate_mode mode, int reason,
1832		struct list_head *ret_folios, struct list_head *split_folios,
1833		struct migrate_pages_stats *stats)
1834{
1835	int rc, nr_failed = 0;
1836	LIST_HEAD(folios);
1837	struct migrate_pages_stats astats;
1838
1839	memset(&astats, 0, sizeof(astats));
1840	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1841	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1842				 reason, &folios, split_folios, &astats,
1843				 NR_MAX_MIGRATE_ASYNC_RETRY);
1844	stats->nr_succeeded += astats.nr_succeeded;
1845	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1846	stats->nr_thp_split += astats.nr_thp_split;
1847	stats->nr_split += astats.nr_split;
1848	if (rc < 0) {
1849		stats->nr_failed_pages += astats.nr_failed_pages;
1850		stats->nr_thp_failed += astats.nr_thp_failed;
1851		list_splice_tail(&folios, ret_folios);
1852		return rc;
1853	}
1854	stats->nr_thp_failed += astats.nr_thp_split;
1855	/*
1856	 * Do not count rc, as pages will be retried below.
1857	 * Count nr_split only, since it includes nr_thp_split.
1858	 */
1859	nr_failed += astats.nr_split;
1860	/*
1861	 * Fall back to migrate all failed folios one by one synchronously. All
1862	 * failed folios except split THPs will be retried, so their failure
1863	 * isn't counted
1864	 */
1865	list_splice_tail_init(&folios, from);
1866	while (!list_empty(from)) {
1867		list_move(from->next, &folios);
1868		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1869					 private, mode, reason, ret_folios,
1870					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1871		list_splice_tail_init(&folios, ret_folios);
1872		if (rc < 0)
1873			return rc;
1874		nr_failed += rc;
1875	}
1876
1877	return nr_failed;
1878}
1879
1880/*
1881 * migrate_pages - migrate the folios specified in a list, to the free folios
1882 *		   supplied as the target for the page migration
1883 *
1884 * @from:		The list of folios to be migrated.
1885 * @get_new_folio:	The function used to allocate free folios to be used
1886 *			as the target of the folio migration.
1887 * @put_new_folio:	The function used to free target folios if migration
1888 *			fails, or NULL if no special handling is necessary.
1889 * @private:		Private data to be passed on to get_new_folio()
1890 * @mode:		The migration mode that specifies the constraints for
1891 *			folio migration, if any.
1892 * @reason:		The reason for folio migration.
1893 * @ret_succeeded:	Set to the number of folios migrated successfully if
1894 *			the caller passes a non-NULL pointer.
1895 *
1896 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1897 * are movable any more because the list has become empty or no retryable folios
1898 * exist any more. It is caller's responsibility to call putback_movable_pages()
1899 * only if ret != 0.
1900 *
1901 * Returns the number of {normal folio, large folio, hugetlb} that were not
1902 * migrated, or an error code. The number of large folio splits will be
1903 * considered as the number of non-migrated large folio, no matter how many
1904 * split folios of the large folio are migrated successfully.
1905 */
1906int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1907		free_folio_t put_new_folio, unsigned long private,
1908		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1909{
1910	int rc, rc_gather;
1911	int nr_pages;
1912	struct folio *folio, *folio2;
1913	LIST_HEAD(folios);
1914	LIST_HEAD(ret_folios);
1915	LIST_HEAD(split_folios);
1916	struct migrate_pages_stats stats;
1917
1918	trace_mm_migrate_pages_start(mode, reason);
1919
1920	memset(&stats, 0, sizeof(stats));
1921
1922	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1923				     mode, reason, &stats, &ret_folios);
1924	if (rc_gather < 0)
1925		goto out;
1926
1927again:
1928	nr_pages = 0;
1929	list_for_each_entry_safe(folio, folio2, from, lru) {
1930		/* Retried hugetlb folios will be kept in list  */
1931		if (folio_test_hugetlb(folio)) {
1932			list_move_tail(&folio->lru, &ret_folios);
1933			continue;
1934		}
1935
1936		nr_pages += folio_nr_pages(folio);
1937		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1938			break;
1939	}
1940	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1941		list_cut_before(&folios, from, &folio2->lru);
1942	else
1943		list_splice_init(from, &folios);
1944	if (mode == MIGRATE_ASYNC)
1945		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1946				private, mode, reason, &ret_folios,
1947				&split_folios, &stats,
1948				NR_MAX_MIGRATE_PAGES_RETRY);
1949	else
1950		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1951				private, mode, reason, &ret_folios,
1952				&split_folios, &stats);
1953	list_splice_tail_init(&folios, &ret_folios);
1954	if (rc < 0) {
1955		rc_gather = rc;
1956		list_splice_tail(&split_folios, &ret_folios);
1957		goto out;
1958	}
1959	if (!list_empty(&split_folios)) {
1960		/*
1961		 * Failure isn't counted since all split folios of a large folio
1962		 * is counted as 1 failure already.  And, we only try to migrate
1963		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1964		 */
1965		migrate_pages_batch(&split_folios, get_new_folio,
1966				put_new_folio, private, MIGRATE_ASYNC, reason,
1967				&ret_folios, NULL, &stats, 1);
1968		list_splice_tail_init(&split_folios, &ret_folios);
1969	}
1970	rc_gather += rc;
1971	if (!list_empty(from))
1972		goto again;
1973out:
1974	/*
1975	 * Put the permanent failure folio back to migration list, they
1976	 * will be put back to the right list by the caller.
1977	 */
1978	list_splice(&ret_folios, from);
1979
1980	/*
1981	 * Return 0 in case all split folios of fail-to-migrate large folios
1982	 * are migrated successfully.
1983	 */
1984	if (list_empty(from))
1985		rc_gather = 0;
1986
1987	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1988	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1989	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1990	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1991	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1992	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1993			       stats.nr_thp_succeeded, stats.nr_thp_failed,
1994			       stats.nr_thp_split, stats.nr_split, mode,
1995			       reason);
1996
1997	if (ret_succeeded)
1998		*ret_succeeded = stats.nr_succeeded;
1999
2000	return rc_gather;
2001}
2002
2003struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2004{
2005	struct migration_target_control *mtc;
2006	gfp_t gfp_mask;
2007	unsigned int order = 0;
 
2008	int nid;
2009	int zidx;
2010
2011	mtc = (struct migration_target_control *)private;
2012	gfp_mask = mtc->gfp_mask;
2013	nid = mtc->nid;
2014	if (nid == NUMA_NO_NODE)
2015		nid = folio_nid(src);
2016
2017	if (folio_test_hugetlb(src)) {
2018		struct hstate *h = folio_hstate(src);
2019
2020		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2021		return alloc_hugetlb_folio_nodemask(h, nid,
2022						mtc->nmask, gfp_mask);
2023	}
2024
2025	if (folio_test_large(src)) {
2026		/*
2027		 * clear __GFP_RECLAIM to make the migration callback
2028		 * consistent with regular THP allocations.
2029		 */
2030		gfp_mask &= ~__GFP_RECLAIM;
2031		gfp_mask |= GFP_TRANSHUGE;
2032		order = folio_order(src);
2033	}
2034	zidx = zone_idx(folio_zone(src));
2035	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2036		gfp_mask |= __GFP_HIGHMEM;
2037
2038	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
 
 
 
 
 
2039}
2040
2041#ifdef CONFIG_NUMA
2042
2043static int store_status(int __user *status, int start, int value, int nr)
2044{
2045	while (nr-- > 0) {
2046		if (put_user(value, status + start))
2047			return -EFAULT;
2048		start++;
2049	}
2050
2051	return 0;
2052}
2053
2054static int do_move_pages_to_node(struct list_head *pagelist, int node)
 
2055{
2056	int err;
2057	struct migration_target_control mtc = {
2058		.nid = node,
2059		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2060	};
2061
2062	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2063		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2064	if (err)
2065		putback_movable_pages(pagelist);
2066	return err;
2067}
2068
2069/*
2070 * Resolves the given address to a struct page, isolates it from the LRU and
2071 * puts it to the given pagelist.
2072 * Returns:
2073 *     errno - if the page cannot be found/isolated
2074 *     0 - when it doesn't have to be migrated because it is already on the
2075 *         target node
2076 *     1 - when it has been queued
2077 */
2078static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2079		int node, struct list_head *pagelist, bool migrate_all)
2080{
2081	struct vm_area_struct *vma;
2082	unsigned long addr;
2083	struct page *page;
2084	struct folio *folio;
2085	int err;
2086
2087	mmap_read_lock(mm);
2088	addr = (unsigned long)untagged_addr_remote(mm, p);
2089
2090	err = -EFAULT;
2091	vma = vma_lookup(mm, addr);
2092	if (!vma || !vma_migratable(vma))
2093		goto out;
2094
2095	/* FOLL_DUMP to ignore special (like zero) pages */
2096	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 
2097
2098	err = PTR_ERR(page);
2099	if (IS_ERR(page))
2100		goto out;
2101
2102	err = -ENOENT;
2103	if (!page)
2104		goto out;
2105
2106	folio = page_folio(page);
2107	if (folio_is_zone_device(folio))
2108		goto out_putfolio;
2109
2110	err = 0;
2111	if (folio_nid(folio) == node)
2112		goto out_putfolio;
2113
2114	err = -EACCES;
2115	if (page_mapcount(page) > 1 && !migrate_all)
2116		goto out_putfolio;
2117
2118	err = -EBUSY;
2119	if (folio_test_hugetlb(folio)) {
2120		if (isolate_hugetlb(folio, pagelist))
2121			err = 1;
 
2122	} else {
2123		if (!folio_isolate_lru(folio))
2124			goto out_putfolio;
 
 
 
 
2125
2126		err = 1;
2127		list_add_tail(&folio->lru, pagelist);
2128		node_stat_mod_folio(folio,
2129			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2130			folio_nr_pages(folio));
2131	}
2132out_putfolio:
2133	/*
2134	 * Either remove the duplicate refcount from folio_isolate_lru()
2135	 * or drop the folio ref if it was not isolated.
 
2136	 */
2137	folio_put(folio);
2138out:
2139	mmap_read_unlock(mm);
2140	return err;
2141}
2142
2143static int move_pages_and_store_status(int node,
2144		struct list_head *pagelist, int __user *status,
2145		int start, int i, unsigned long nr_pages)
2146{
2147	int err;
2148
2149	if (list_empty(pagelist))
2150		return 0;
2151
2152	err = do_move_pages_to_node(pagelist, node);
2153	if (err) {
2154		/*
2155		 * Positive err means the number of failed
2156		 * pages to migrate.  Since we are going to
2157		 * abort and return the number of non-migrated
2158		 * pages, so need to include the rest of the
2159		 * nr_pages that have not been attempted as
2160		 * well.
2161		 */
2162		if (err > 0)
2163			err += nr_pages - i;
2164		return err;
2165	}
2166	return store_status(status, start, node, i - start);
2167}
2168
2169/*
2170 * Migrate an array of page address onto an array of nodes and fill
2171 * the corresponding array of status.
2172 */
2173static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2174			 unsigned long nr_pages,
2175			 const void __user * __user *pages,
2176			 const int __user *nodes,
2177			 int __user *status, int flags)
2178{
2179	compat_uptr_t __user *compat_pages = (void __user *)pages;
2180	int current_node = NUMA_NO_NODE;
2181	LIST_HEAD(pagelist);
2182	int start, i;
2183	int err = 0, err1;
2184
2185	lru_cache_disable();
2186
2187	for (i = start = 0; i < nr_pages; i++) {
2188		const void __user *p;
 
2189		int node;
2190
2191		err = -EFAULT;
2192		if (in_compat_syscall()) {
2193			compat_uptr_t cp;
2194
2195			if (get_user(cp, compat_pages + i))
2196				goto out_flush;
2197
2198			p = compat_ptr(cp);
2199		} else {
2200			if (get_user(p, pages + i))
2201				goto out_flush;
2202		}
2203		if (get_user(node, nodes + i))
2204			goto out_flush;
 
2205
2206		err = -ENODEV;
2207		if (node < 0 || node >= MAX_NUMNODES)
2208			goto out_flush;
2209		if (!node_state(node, N_MEMORY))
2210			goto out_flush;
2211
2212		err = -EACCES;
2213		if (!node_isset(node, task_nodes))
2214			goto out_flush;
2215
2216		if (current_node == NUMA_NO_NODE) {
2217			current_node = node;
2218			start = i;
2219		} else if (node != current_node) {
2220			err = move_pages_and_store_status(current_node,
2221					&pagelist, status, start, i, nr_pages);
2222			if (err)
2223				goto out;
2224			start = i;
2225			current_node = node;
2226		}
2227
2228		/*
2229		 * Errors in the page lookup or isolation are not fatal and we simply
2230		 * report them via status
2231		 */
2232		err = add_page_for_migration(mm, p, current_node, &pagelist,
2233					     flags & MPOL_MF_MOVE_ALL);
2234
2235		if (err > 0) {
2236			/* The page is successfully queued for migration */
2237			continue;
2238		}
2239
2240		/*
2241		 * The move_pages() man page does not have an -EEXIST choice, so
2242		 * use -EFAULT instead.
2243		 */
2244		if (err == -EEXIST)
2245			err = -EFAULT;
2246
2247		/*
2248		 * If the page is already on the target node (!err), store the
2249		 * node, otherwise, store the err.
2250		 */
2251		err = store_status(status, i, err ? : current_node, 1);
2252		if (err)
2253			goto out_flush;
2254
2255		err = move_pages_and_store_status(current_node, &pagelist,
2256				status, start, i, nr_pages);
2257		if (err) {
2258			/* We have accounted for page i */
2259			if (err > 0)
2260				err--;
2261			goto out;
2262		}
2263		current_node = NUMA_NO_NODE;
2264	}
2265out_flush:
2266	/* Make sure we do not overwrite the existing error */
2267	err1 = move_pages_and_store_status(current_node, &pagelist,
2268				status, start, i, nr_pages);
2269	if (err >= 0)
2270		err = err1;
2271out:
2272	lru_cache_enable();
2273	return err;
2274}
2275
2276/*
2277 * Determine the nodes of an array of pages and store it in an array of status.
2278 */
2279static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2280				const void __user **pages, int *status)
2281{
2282	unsigned long i;
2283
2284	mmap_read_lock(mm);
2285
2286	for (i = 0; i < nr_pages; i++) {
2287		unsigned long addr = (unsigned long)(*pages);
2288		struct vm_area_struct *vma;
2289		struct page *page;
2290		int err = -EFAULT;
2291
2292		vma = vma_lookup(mm, addr);
2293		if (!vma)
2294			goto set_status;
2295
2296		/* FOLL_DUMP to ignore special (like zero) pages */
2297		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2298
2299		err = PTR_ERR(page);
2300		if (IS_ERR(page))
2301			goto set_status;
2302
2303		err = -ENOENT;
2304		if (!page)
2305			goto set_status;
2306
2307		if (!is_zone_device_page(page))
2308			err = page_to_nid(page);
2309
2310		put_page(page);
2311set_status:
2312		*status = err;
2313
2314		pages++;
2315		status++;
2316	}
2317
2318	mmap_read_unlock(mm);
2319}
2320
2321static int get_compat_pages_array(const void __user *chunk_pages[],
2322				  const void __user * __user *pages,
2323				  unsigned long chunk_nr)
2324{
2325	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2326	compat_uptr_t p;
2327	int i;
2328
2329	for (i = 0; i < chunk_nr; i++) {
2330		if (get_user(p, pages32 + i))
2331			return -EFAULT;
2332		chunk_pages[i] = compat_ptr(p);
2333	}
2334
2335	return 0;
2336}
2337
2338/*
2339 * Determine the nodes of a user array of pages and store it in
2340 * a user array of status.
2341 */
2342static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2343			 const void __user * __user *pages,
2344			 int __user *status)
2345{
2346#define DO_PAGES_STAT_CHUNK_NR 16UL
2347	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2348	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2349
2350	while (nr_pages) {
2351		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2352
2353		if (in_compat_syscall()) {
2354			if (get_compat_pages_array(chunk_pages, pages,
2355						   chunk_nr))
2356				break;
2357		} else {
2358			if (copy_from_user(chunk_pages, pages,
2359				      chunk_nr * sizeof(*chunk_pages)))
2360				break;
2361		}
2362
2363		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2364
2365		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2366			break;
2367
2368		pages += chunk_nr;
2369		status += chunk_nr;
2370		nr_pages -= chunk_nr;
2371	}
2372	return nr_pages ? -EFAULT : 0;
2373}
2374
2375static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2376{
2377	struct task_struct *task;
2378	struct mm_struct *mm;
2379
2380	/*
2381	 * There is no need to check if current process has the right to modify
2382	 * the specified process when they are same.
2383	 */
2384	if (!pid) {
2385		mmget(current->mm);
2386		*mem_nodes = cpuset_mems_allowed(current);
2387		return current->mm;
2388	}
2389
2390	/* Find the mm_struct */
2391	rcu_read_lock();
2392	task = find_task_by_vpid(pid);
2393	if (!task) {
2394		rcu_read_unlock();
2395		return ERR_PTR(-ESRCH);
2396	}
2397	get_task_struct(task);
2398
2399	/*
2400	 * Check if this process has the right to modify the specified
2401	 * process. Use the regular "ptrace_may_access()" checks.
2402	 */
2403	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2404		rcu_read_unlock();
2405		mm = ERR_PTR(-EPERM);
2406		goto out;
2407	}
2408	rcu_read_unlock();
2409
2410	mm = ERR_PTR(security_task_movememory(task));
2411	if (IS_ERR(mm))
2412		goto out;
2413	*mem_nodes = cpuset_mems_allowed(task);
2414	mm = get_task_mm(task);
2415out:
2416	put_task_struct(task);
2417	if (!mm)
2418		mm = ERR_PTR(-EINVAL);
2419	return mm;
2420}
2421
2422/*
2423 * Move a list of pages in the address space of the currently executing
2424 * process.
2425 */
2426static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2427			     const void __user * __user *pages,
2428			     const int __user *nodes,
2429			     int __user *status, int flags)
2430{
2431	struct mm_struct *mm;
2432	int err;
2433	nodemask_t task_nodes;
2434
2435	/* Check flags */
2436	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2437		return -EINVAL;
2438
2439	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2440		return -EPERM;
2441
2442	mm = find_mm_struct(pid, &task_nodes);
2443	if (IS_ERR(mm))
2444		return PTR_ERR(mm);
2445
2446	if (nodes)
2447		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2448				    nodes, status, flags);
2449	else
2450		err = do_pages_stat(mm, nr_pages, pages, status);
2451
2452	mmput(mm);
2453	return err;
2454}
2455
2456SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2457		const void __user * __user *, pages,
2458		const int __user *, nodes,
2459		int __user *, status, int, flags)
2460{
2461	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2462}
2463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464#ifdef CONFIG_NUMA_BALANCING
2465/*
2466 * Returns true if this is a safe migration target node for misplaced NUMA
2467 * pages. Currently it only checks the watermarks which is crude.
2468 */
2469static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2470				   unsigned long nr_migrate_pages)
2471{
2472	int z;
2473
2474	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2475		struct zone *zone = pgdat->node_zones + z;
2476
2477		if (!managed_zone(zone))
2478			continue;
2479
2480		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2481		if (!zone_watermark_ok(zone, 0,
2482				       high_wmark_pages(zone) +
2483				       nr_migrate_pages,
2484				       ZONE_MOVABLE, 0))
2485			continue;
2486		return true;
2487	}
2488	return false;
2489}
2490
2491static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2492					   unsigned long data)
2493{
2494	int nid = (int) data;
2495	int order = folio_order(src);
2496	gfp_t gfp = __GFP_THISNODE;
2497
2498	if (order > 0)
2499		gfp |= GFP_TRANSHUGE_LIGHT;
2500	else {
2501		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2502			__GFP_NOWARN;
2503		gfp &= ~__GFP_RECLAIM;
2504	}
2505	return __folio_alloc_node(gfp, order, nid);
2506}
2507
2508static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio)
 
2509{
2510	int nr_pages = folio_nr_pages(folio);
 
2511
2512	/* Avoid migrating to a node that is nearly full */
2513	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2514		int z;
 
2515
2516		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2517			return 0;
2518		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2519			if (managed_zone(pgdat->node_zones + z))
2520				break;
2521		}
2522
2523		/*
2524		 * If there are no managed zones, it should not proceed
2525		 * further.
2526		 */
2527		if (z < 0)
2528			return 0;
 
 
 
2529
2530		wakeup_kswapd(pgdat->node_zones + z, 0,
2531			      folio_order(folio), ZONE_MOVABLE);
2532		return 0;
2533	}
2534
2535	if (!folio_isolate_lru(folio))
 
 
 
 
2536		return 0;
2537
2538	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2539			    nr_pages);
 
2540
2541	/*
2542	 * Isolating the folio has taken another reference, so the
2543	 * caller's reference can be safely dropped without the folio
2544	 * disappearing underneath us during migration.
2545	 */
2546	folio_put(folio);
2547	return 1;
2548}
2549
2550/*
2551 * Attempt to migrate a misplaced folio to the specified destination
2552 * node. Caller is expected to have an elevated reference count on
2553 * the folio that will be dropped by this function before returning.
2554 */
2555int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2556			    int node)
2557{
2558	pg_data_t *pgdat = NODE_DATA(node);
2559	int isolated;
2560	int nr_remaining;
2561	unsigned int nr_succeeded;
2562	LIST_HEAD(migratepages);
2563	int nr_pages = folio_nr_pages(folio);
 
 
2564
2565	/*
2566	 * Don't migrate file folios that are mapped in multiple processes
 
 
 
 
 
 
 
 
 
 
 
 
2567	 * with execute permissions as they are probably shared libraries.
2568	 * To check if the folio is shared, ideally we want to make sure
2569	 * every page is mapped to the same process. Doing that is very
2570	 * expensive, so check the estimated mapcount of the folio instead.
2571	 */
2572	if (folio_estimated_sharers(folio) != 1 && folio_is_file_lru(folio) &&
2573	    (vma->vm_flags & VM_EXEC))
2574		goto out;
2575
2576	/*
2577	 * Also do not migrate dirty folios as not all filesystems can move
2578	 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles.
2579	 */
2580	if (folio_is_file_lru(folio) && folio_test_dirty(folio))
2581		goto out;
2582
2583	isolated = numamigrate_isolate_folio(pgdat, folio);
2584	if (!isolated)
2585		goto out;
2586
2587	list_add(&folio->lru, &migratepages);
2588	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2589				     NULL, node, MIGRATE_ASYNC,
2590				     MR_NUMA_MISPLACED, &nr_succeeded);
2591	if (nr_remaining) {
2592		if (!list_empty(&migratepages)) {
2593			list_del(&folio->lru);
2594			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
2595					folio_is_file_lru(folio), -nr_pages);
2596			folio_putback_lru(folio);
2597		}
2598		isolated = 0;
2599	}
2600	if (nr_succeeded) {
2601		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2602		if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node))
2603			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2604					    nr_succeeded);
2605	}
2606	BUG_ON(!list_empty(&migratepages));
2607	return isolated;
2608
2609out:
2610	folio_put(folio);
2611	return 0;
2612}
2613#endif /* CONFIG_NUMA_BALANCING */
2614#endif /* CONFIG_NUMA */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
 
 
 
 
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60int isolate_movable_page(struct page *page, isolate_mode_t mode)
  61{
  62	struct address_space *mapping;
 
  63
  64	/*
  65	 * Avoid burning cycles with pages that are yet under __free_pages(),
  66	 * or just got freed under us.
  67	 *
  68	 * In case we 'win' a race for a movable page being freed under us and
  69	 * raise its refcount preventing __free_pages() from doing its job
  70	 * the put_page() at the end of this block will take care of
  71	 * release this page, thus avoiding a nasty leakage.
  72	 */
  73	if (unlikely(!get_page_unless_zero(page)))
  74		goto out;
  75
  76	/*
  77	 * Check PageMovable before holding a PG_lock because page's owner
  78	 * assumes anybody doesn't touch PG_lock of newly allocated page
  79	 * so unconditionally grabbing the lock ruins page's owner side.
  80	 */
  81	if (unlikely(!__PageMovable(page)))
  82		goto out_putpage;
 
 
 
 
 
 
 
 
 
  83	/*
  84	 * As movable pages are not isolated from LRU lists, concurrent
  85	 * compaction threads can race against page migration functions
  86	 * as well as race against the releasing a page.
  87	 *
  88	 * In order to avoid having an already isolated movable page
  89	 * being (wrongly) re-isolated while it is under migration,
  90	 * or to avoid attempting to isolate pages being released,
  91	 * lets be sure we have the page lock
  92	 * before proceeding with the movable page isolation steps.
  93	 */
  94	if (unlikely(!trylock_page(page)))
  95		goto out_putpage;
  96
  97	if (!PageMovable(page) || PageIsolated(page))
  98		goto out_no_isolated;
  99
 100	mapping = page_mapping(page);
 101	VM_BUG_ON_PAGE(!mapping, page);
 102
 103	if (!mapping->a_ops->isolate_page(page, mode))
 104		goto out_no_isolated;
 105
 106	/* Driver shouldn't use PG_isolated bit of page->flags */
 107	WARN_ON_ONCE(PageIsolated(page));
 108	__SetPageIsolated(page);
 109	unlock_page(page);
 110
 111	return 0;
 112
 113out_no_isolated:
 114	unlock_page(page);
 115out_putpage:
 116	put_page(page);
 117out:
 118	return -EBUSY;
 119}
 120
 121static void putback_movable_page(struct page *page)
 122{
 123	struct address_space *mapping;
 124
 125	mapping = page_mapping(page);
 126	mapping->a_ops->putback_page(page);
 127	__ClearPageIsolated(page);
 128}
 129
 130/*
 131 * Put previously isolated pages back onto the appropriate lists
 132 * from where they were once taken off for compaction/migration.
 133 *
 134 * This function shall be used whenever the isolated pageset has been
 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 136 * and isolate_huge_page().
 137 */
 138void putback_movable_pages(struct list_head *l)
 139{
 140	struct page *page;
 141	struct page *page2;
 142
 143	list_for_each_entry_safe(page, page2, l, lru) {
 144		if (unlikely(PageHuge(page))) {
 145			putback_active_hugepage(page);
 146			continue;
 147		}
 148		list_del(&page->lru);
 149		/*
 150		 * We isolated non-lru movable page so here we can use
 151		 * __PageMovable because LRU page's mapping cannot have
 152		 * PAGE_MAPPING_MOVABLE.
 153		 */
 154		if (unlikely(__PageMovable(page))) {
 155			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 156			lock_page(page);
 157			if (PageMovable(page))
 158				putback_movable_page(page);
 159			else
 160				__ClearPageIsolated(page);
 161			unlock_page(page);
 162			put_page(page);
 163		} else {
 164			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 165					page_is_file_lru(page), -thp_nr_pages(page));
 166			putback_lru_page(page);
 167		}
 168	}
 169}
 170
 171/*
 172 * Restore a potential migration pte to a working pte entry
 173 */
 174static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 175				 unsigned long addr, void *old)
 176{
 177	struct page_vma_mapped_walk pvmw = {
 178		.page = old,
 179		.vma = vma,
 180		.address = addr,
 181		.flags = PVMW_SYNC | PVMW_MIGRATION,
 182	};
 183	struct page *new;
 184	pte_t pte;
 185	swp_entry_t entry;
 186
 187	VM_BUG_ON_PAGE(PageTail(page), page);
 188	while (page_vma_mapped_walk(&pvmw)) {
 189		if (PageKsm(page))
 190			new = page;
 191		else
 192			new = page - pvmw.page->index +
 193				linear_page_index(vma, pvmw.address);
 
 
 
 
 
 
 194
 195#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 196		/* PMD-mapped THP migration entry */
 197		if (!pvmw.pte) {
 198			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 
 199			remove_migration_pmd(&pvmw, new);
 200			continue;
 201		}
 202#endif
 203
 204		get_page(new);
 205		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 206		if (pte_swp_soft_dirty(*pvmw.pte))
 
 207			pte = pte_mksoft_dirty(pte);
 208
 209		/*
 210		 * Recheck VMA as permissions can change since migration started
 211		 */
 212		entry = pte_to_swp_entry(*pvmw.pte);
 
 213		if (is_writable_migration_entry(entry))
 214			pte = maybe_mkwrite(pte, vma);
 215		else if (pte_swp_uffd_wp(*pvmw.pte))
 216			pte = pte_mkuffd_wp(pte);
 217
 
 
 
 218		if (unlikely(is_device_private_page(new))) {
 219			if (pte_write(pte))
 220				entry = make_writable_device_private_entry(
 221							page_to_pfn(new));
 222			else
 223				entry = make_readable_device_private_entry(
 224							page_to_pfn(new));
 225			pte = swp_entry_to_pte(entry);
 226			if (pte_swp_soft_dirty(*pvmw.pte))
 227				pte = pte_swp_mksoft_dirty(pte);
 228			if (pte_swp_uffd_wp(*pvmw.pte))
 229				pte = pte_swp_mkuffd_wp(pte);
 230		}
 231
 232#ifdef CONFIG_HUGETLB_PAGE
 233		if (PageHuge(new)) {
 234			unsigned int shift = huge_page_shift(hstate_vma(vma));
 
 
 235
 236			pte = pte_mkhuge(pte);
 237			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 238			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 239			if (PageAnon(new))
 240				hugepage_add_anon_rmap(new, vma, pvmw.address);
 241			else
 242				page_dup_rmap(new, true);
 
 
 243		} else
 244#endif
 245		{
 
 
 
 
 
 246			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 247
 248			if (PageAnon(new))
 249				page_add_anon_rmap(new, vma, pvmw.address, false);
 250			else
 251				page_add_file_rmap(new, false);
 252		}
 253		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 254			mlock_vma_page(new);
 255
 256		if (PageTransHuge(page) && PageMlocked(page))
 257			clear_page_mlock(page);
 258
 259		/* No need to invalidate - it was non-present before */
 260		update_mmu_cache(vma, pvmw.address, pvmw.pte);
 261	}
 262
 263	return true;
 264}
 265
 266/*
 267 * Get rid of all migration entries and replace them by
 268 * references to the indicated page.
 269 */
 270void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 271{
 272	struct rmap_walk_control rwc = {
 273		.rmap_one = remove_migration_pte,
 274		.arg = old,
 275	};
 276
 277	if (locked)
 278		rmap_walk_locked(new, &rwc);
 279	else
 280		rmap_walk(new, &rwc);
 281}
 282
 283/*
 284 * Something used the pte of a page under migration. We need to
 285 * get to the page and wait until migration is finished.
 286 * When we return from this function the fault will be retried.
 287 */
 288void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 289				spinlock_t *ptl)
 290{
 
 
 291	pte_t pte;
 292	swp_entry_t entry;
 293	struct page *page;
 294
 295	spin_lock(ptl);
 296	pte = *ptep;
 
 
 
 
 
 297	if (!is_swap_pte(pte))
 298		goto out;
 299
 300	entry = pte_to_swp_entry(pte);
 301	if (!is_migration_entry(entry))
 302		goto out;
 303
 304	page = pfn_swap_entry_to_page(entry);
 305	page = compound_head(page);
 306
 307	/*
 308	 * Once page cache replacement of page migration started, page_count
 309	 * is zero; but we must not call put_and_wait_on_page_locked() without
 310	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 311	 */
 312	if (!get_page_unless_zero(page))
 313		goto out;
 314	pte_unmap_unlock(ptep, ptl);
 315	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
 316	return;
 317out:
 318	pte_unmap_unlock(ptep, ptl);
 319}
 320
 321void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 322				unsigned long address)
 
 
 
 
 
 
 323{
 324	spinlock_t *ptl = pte_lockptr(mm, pmd);
 325	pte_t *ptep = pte_offset_map(pmd, address);
 326	__migration_entry_wait(mm, ptep, ptl);
 327}
 
 
 328
 329void migration_entry_wait_huge(struct vm_area_struct *vma,
 330		struct mm_struct *mm, pte_t *pte)
 331{
 332	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 333	__migration_entry_wait(mm, pte, ptl);
 
 
 
 
 
 
 
 
 334}
 
 335
 336#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 337void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 338{
 339	spinlock_t *ptl;
 340	struct page *page;
 341
 342	ptl = pmd_lock(mm, pmd);
 343	if (!is_pmd_migration_entry(*pmd))
 344		goto unlock;
 345	page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
 346	if (!get_page_unless_zero(page))
 347		goto unlock;
 348	spin_unlock(ptl);
 349	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
 350	return;
 351unlock:
 352	spin_unlock(ptl);
 353}
 354#endif
 355
 356static int expected_page_refs(struct address_space *mapping, struct page *page)
 
 357{
 358	int expected_count = 1;
 359
 360	/*
 361	 * Device private pages have an extra refcount as they are
 362	 * ZONE_DEVICE pages.
 363	 */
 364	expected_count += is_device_private_page(page);
 365	if (mapping)
 366		expected_count += thp_nr_pages(page) + page_has_private(page);
 367
 368	return expected_count;
 369}
 370
 371/*
 372 * Replace the page in the mapping.
 373 *
 374 * The number of remaining references must be:
 375 * 1 for anonymous pages without a mapping
 376 * 2 for pages with a mapping
 377 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 378 */
 379int migrate_page_move_mapping(struct address_space *mapping,
 380		struct page *newpage, struct page *page, int extra_count)
 381{
 382	XA_STATE(xas, &mapping->i_pages, page_index(page));
 383	struct zone *oldzone, *newzone;
 384	int dirty;
 385	int expected_count = expected_page_refs(mapping, page) + extra_count;
 386	int nr = thp_nr_pages(page);
 
 387
 388	if (!mapping) {
 389		/* Anonymous page without mapping */
 390		if (page_count(page) != expected_count)
 391			return -EAGAIN;
 392
 393		/* No turning back from here */
 394		newpage->index = page->index;
 395		newpage->mapping = page->mapping;
 396		if (PageSwapBacked(page))
 397			__SetPageSwapBacked(newpage);
 398
 399		return MIGRATEPAGE_SUCCESS;
 400	}
 401
 402	oldzone = page_zone(page);
 403	newzone = page_zone(newpage);
 404
 405	xas_lock_irq(&xas);
 406	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 407		xas_unlock_irq(&xas);
 408		return -EAGAIN;
 409	}
 410
 411	if (!page_ref_freeze(page, expected_count)) {
 412		xas_unlock_irq(&xas);
 413		return -EAGAIN;
 414	}
 415
 416	/*
 417	 * Now we know that no one else is looking at the page:
 418	 * no turning back from here.
 419	 */
 420	newpage->index = page->index;
 421	newpage->mapping = page->mapping;
 422	page_ref_add(newpage, nr); /* add cache reference */
 423	if (PageSwapBacked(page)) {
 424		__SetPageSwapBacked(newpage);
 425		if (PageSwapCache(page)) {
 426			SetPageSwapCache(newpage);
 427			set_page_private(newpage, page_private(page));
 428		}
 
 429	} else {
 430		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 
 431	}
 432
 433	/* Move dirty while page refs frozen and newpage not yet exposed */
 434	dirty = PageDirty(page);
 435	if (dirty) {
 436		ClearPageDirty(page);
 437		SetPageDirty(newpage);
 438	}
 439
 440	xas_store(&xas, newpage);
 441	if (PageTransHuge(page)) {
 442		int i;
 443
 444		for (i = 1; i < nr; i++) {
 445			xas_next(&xas);
 446			xas_store(&xas, newpage);
 447		}
 448	}
 449
 450	/*
 451	 * Drop cache reference from old page by unfreezing
 452	 * to one less reference.
 453	 * We know this isn't the last reference.
 454	 */
 455	page_ref_unfreeze(page, expected_count - nr);
 456
 457	xas_unlock(&xas);
 458	/* Leave irq disabled to prevent preemption while updating stats */
 459
 460	/*
 461	 * If moved to a different zone then also account
 462	 * the page for that zone. Other VM counters will be
 463	 * taken care of when we establish references to the
 464	 * new page and drop references to the old page.
 465	 *
 466	 * Note that anonymous pages are accounted for
 467	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 468	 * are mapped to swap space.
 469	 */
 470	if (newzone != oldzone) {
 471		struct lruvec *old_lruvec, *new_lruvec;
 472		struct mem_cgroup *memcg;
 473
 474		memcg = page_memcg(page);
 475		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 476		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 477
 478		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 479		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 480		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 481			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 482			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 
 
 
 
 
 483		}
 484#ifdef CONFIG_SWAP
 485		if (PageSwapCache(page)) {
 486			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 487			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 488		}
 489#endif
 490		if (dirty && mapping_can_writeback(mapping)) {
 491			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 492			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 493			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 494			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 495		}
 496	}
 497	local_irq_enable();
 498
 499	return MIGRATEPAGE_SUCCESS;
 500}
 501EXPORT_SYMBOL(migrate_page_move_mapping);
 502
 503/*
 504 * The expected number of remaining references is the same as that
 505 * of migrate_page_move_mapping().
 506 */
 507int migrate_huge_page_move_mapping(struct address_space *mapping,
 508				   struct page *newpage, struct page *page)
 509{
 510	XA_STATE(xas, &mapping->i_pages, page_index(page));
 511	int expected_count;
 512
 513	xas_lock_irq(&xas);
 514	expected_count = 2 + page_has_private(page);
 515	if (page_count(page) != expected_count || xas_load(&xas) != page) {
 516		xas_unlock_irq(&xas);
 517		return -EAGAIN;
 518	}
 519
 520	if (!page_ref_freeze(page, expected_count)) {
 521		xas_unlock_irq(&xas);
 522		return -EAGAIN;
 523	}
 524
 525	newpage->index = page->index;
 526	newpage->mapping = page->mapping;
 527
 528	get_page(newpage);
 529
 530	xas_store(&xas, newpage);
 531
 532	page_ref_unfreeze(page, expected_count - 1);
 533
 534	xas_unlock_irq(&xas);
 535
 536	return MIGRATEPAGE_SUCCESS;
 537}
 538
 539/*
 540 * Copy the page to its new location
 541 */
 542void migrate_page_states(struct page *newpage, struct page *page)
 543{
 544	int cpupid;
 545
 546	if (PageError(page))
 547		SetPageError(newpage);
 548	if (PageReferenced(page))
 549		SetPageReferenced(newpage);
 550	if (PageUptodate(page))
 551		SetPageUptodate(newpage);
 552	if (TestClearPageActive(page)) {
 553		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 554		SetPageActive(newpage);
 555	} else if (TestClearPageUnevictable(page))
 556		SetPageUnevictable(newpage);
 557	if (PageWorkingset(page))
 558		SetPageWorkingset(newpage);
 559	if (PageChecked(page))
 560		SetPageChecked(newpage);
 561	if (PageMappedToDisk(page))
 562		SetPageMappedToDisk(newpage);
 563
 564	/* Move dirty on pages not done by migrate_page_move_mapping() */
 565	if (PageDirty(page))
 566		SetPageDirty(newpage);
 567
 568	if (page_is_young(page))
 569		set_page_young(newpage);
 570	if (page_is_idle(page))
 571		set_page_idle(newpage);
 
 
 
 
 
 
 572
 573	/*
 574	 * Copy NUMA information to the new page, to prevent over-eager
 575	 * future migrations of this same page.
 576	 */
 577	cpupid = page_cpupid_xchg_last(page, -1);
 578	page_cpupid_xchg_last(newpage, cpupid);
 
 
 
 
 
 
 
 
 
 
 
 
 579
 580	ksm_migrate_page(newpage, page);
 581	/*
 582	 * Please do not reorder this without considering how mm/ksm.c's
 583	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 584	 */
 585	if (PageSwapCache(page))
 586		ClearPageSwapCache(page);
 587	ClearPagePrivate(page);
 588
 589	/* page->private contains hugetlb specific flags */
 590	if (!PageHuge(page))
 591		set_page_private(page, 0);
 592
 593	/*
 594	 * If any waiters have accumulated on the new page then
 595	 * wake them up.
 596	 */
 597	if (PageWriteback(newpage))
 598		end_page_writeback(newpage);
 599
 600	/*
 601	 * PG_readahead shares the same bit with PG_reclaim.  The above
 602	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
 603	 * bit after that.
 604	 */
 605	if (PageReadahead(page))
 606		SetPageReadahead(newpage);
 607
 608	copy_page_owner(page, newpage);
 609
 610	if (!PageHuge(page))
 611		mem_cgroup_migrate(page, newpage);
 612}
 613EXPORT_SYMBOL(migrate_page_states);
 614
 615void migrate_page_copy(struct page *newpage, struct page *page)
 616{
 617	if (PageHuge(page) || PageTransHuge(page))
 618		copy_huge_page(newpage, page);
 619	else
 620		copy_highpage(newpage, page);
 621
 622	migrate_page_states(newpage, page);
 623}
 624EXPORT_SYMBOL(migrate_page_copy);
 625
 626/************************************************************
 627 *                    Migration functions
 628 ***********************************************************/
 629
 630/*
 631 * Common logic to directly migrate a single LRU page suitable for
 632 * pages that do not use PagePrivate/PagePrivate2.
 633 *
 634 * Pages are locked upon entry and exit.
 635 */
 636int migrate_page(struct address_space *mapping,
 637		struct page *newpage, struct page *page,
 638		enum migrate_mode mode)
 639{
 640	int rc;
 641
 642	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 643
 644	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 645
 646	if (rc != MIGRATEPAGE_SUCCESS)
 647		return rc;
 648
 649	if (mode != MIGRATE_SYNC_NO_COPY)
 650		migrate_page_copy(newpage, page);
 651	else
 652		migrate_page_states(newpage, page);
 653	return MIGRATEPAGE_SUCCESS;
 654}
 655EXPORT_SYMBOL(migrate_page);
 656
 657#ifdef CONFIG_BLOCK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658/* Returns true if all buffers are successfully locked */
 659static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 660							enum migrate_mode mode)
 661{
 662	struct buffer_head *bh = head;
 
 663
 664	/* Simple case, sync compaction */
 665	if (mode != MIGRATE_ASYNC) {
 666		do {
 667			lock_buffer(bh);
 668			bh = bh->b_this_page;
 669
 670		} while (bh != head);
 671
 672		return true;
 673	}
 674
 675	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 676	do {
 677		if (!trylock_buffer(bh)) {
 678			/*
 679			 * We failed to lock the buffer and cannot stall in
 680			 * async migration. Release the taken locks
 681			 */
 682			struct buffer_head *failed_bh = bh;
 683			bh = head;
 684			while (bh != failed_bh) {
 685				unlock_buffer(bh);
 686				bh = bh->b_this_page;
 687			}
 688			return false;
 689		}
 690
 691		bh = bh->b_this_page;
 692	} while (bh != head);
 
 693	return true;
 
 
 
 
 
 
 
 
 
 
 
 694}
 695
 696static int __buffer_migrate_page(struct address_space *mapping,
 697		struct page *newpage, struct page *page, enum migrate_mode mode,
 698		bool check_refs)
 699{
 700	struct buffer_head *bh, *head;
 701	int rc;
 702	int expected_count;
 703
 704	if (!page_has_buffers(page))
 705		return migrate_page(mapping, newpage, page, mode);
 
 706
 707	/* Check whether page does not have extra refs before we do more work */
 708	expected_count = expected_page_refs(mapping, page);
 709	if (page_count(page) != expected_count)
 710		return -EAGAIN;
 711
 712	head = page_buffers(page);
 713	if (!buffer_migrate_lock_buffers(head, mode))
 714		return -EAGAIN;
 715
 716	if (check_refs) {
 717		bool busy;
 718		bool invalidated = false;
 719
 720recheck_buffers:
 721		busy = false;
 722		spin_lock(&mapping->private_lock);
 723		bh = head;
 724		do {
 725			if (atomic_read(&bh->b_count)) {
 726				busy = true;
 727				break;
 728			}
 729			bh = bh->b_this_page;
 730		} while (bh != head);
 731		if (busy) {
 732			if (invalidated) {
 733				rc = -EAGAIN;
 734				goto unlock_buffers;
 735			}
 736			spin_unlock(&mapping->private_lock);
 737			invalidate_bh_lrus();
 738			invalidated = true;
 739			goto recheck_buffers;
 740		}
 741	}
 742
 743	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 744	if (rc != MIGRATEPAGE_SUCCESS)
 745		goto unlock_buffers;
 746
 747	attach_page_private(newpage, detach_page_private(page));
 748
 749	bh = head;
 750	do {
 751		set_bh_page(bh, newpage, bh_offset(bh));
 752		bh = bh->b_this_page;
 753
 754	} while (bh != head);
 755
 756	if (mode != MIGRATE_SYNC_NO_COPY)
 757		migrate_page_copy(newpage, page);
 758	else
 759		migrate_page_states(newpage, page);
 760
 761	rc = MIGRATEPAGE_SUCCESS;
 762unlock_buffers:
 763	if (check_refs)
 764		spin_unlock(&mapping->private_lock);
 765	bh = head;
 766	do {
 767		unlock_buffer(bh);
 768		bh = bh->b_this_page;
 769
 770	} while (bh != head);
 771
 772	return rc;
 773}
 774
 775/*
 776 * Migration function for pages with buffers. This function can only be used
 777 * if the underlying filesystem guarantees that no other references to "page"
 778 * exist. For example attached buffer heads are accessed only under page lock.
 
 
 
 
 
 
 
 
 
 
 779 */
 780int buffer_migrate_page(struct address_space *mapping,
 781		struct page *newpage, struct page *page, enum migrate_mode mode)
 782{
 783	return __buffer_migrate_page(mapping, newpage, page, mode, false);
 784}
 785EXPORT_SYMBOL(buffer_migrate_page);
 786
 787/*
 788 * Same as above except that this variant is more careful and checks that there
 789 * are also no buffer head references. This function is the right one for
 790 * mappings where buffer heads are directly looked up and referenced (such as
 791 * block device mappings).
 
 
 
 
 
 
 
 
 792 */
 793int buffer_migrate_page_norefs(struct address_space *mapping,
 794		struct page *newpage, struct page *page, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 795{
 796	return __buffer_migrate_page(mapping, newpage, page, mode, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 797}
 798#endif
 799
 800/*
 801 * Writeback a page to clean the dirty state
 802 */
 803static int writeout(struct address_space *mapping, struct page *page)
 804{
 805	struct writeback_control wbc = {
 806		.sync_mode = WB_SYNC_NONE,
 807		.nr_to_write = 1,
 808		.range_start = 0,
 809		.range_end = LLONG_MAX,
 810		.for_reclaim = 1
 811	};
 812	int rc;
 813
 814	if (!mapping->a_ops->writepage)
 815		/* No write method for the address space */
 816		return -EINVAL;
 817
 818	if (!clear_page_dirty_for_io(page))
 819		/* Someone else already triggered a write */
 820		return -EAGAIN;
 821
 822	/*
 823	 * A dirty page may imply that the underlying filesystem has
 824	 * the page on some queue. So the page must be clean for
 825	 * migration. Writeout may mean we loose the lock and the
 826	 * page state is no longer what we checked for earlier.
 827	 * At this point we know that the migration attempt cannot
 828	 * be successful.
 829	 */
 830	remove_migration_ptes(page, page, false);
 831
 832	rc = mapping->a_ops->writepage(page, &wbc);
 833
 834	if (rc != AOP_WRITEPAGE_ACTIVATE)
 835		/* unlocked. Relock */
 836		lock_page(page);
 837
 838	return (rc < 0) ? -EIO : -EAGAIN;
 839}
 840
 841/*
 842 * Default handling if a filesystem does not provide a migration function.
 843 */
 844static int fallback_migrate_page(struct address_space *mapping,
 845	struct page *newpage, struct page *page, enum migrate_mode mode)
 846{
 847	if (PageDirty(page)) {
 848		/* Only writeback pages in full synchronous migration */
 849		switch (mode) {
 850		case MIGRATE_SYNC:
 851		case MIGRATE_SYNC_NO_COPY:
 852			break;
 853		default:
 854			return -EBUSY;
 855		}
 856		return writeout(mapping, page);
 857	}
 858
 859	/*
 860	 * Buffers may be managed in a filesystem specific way.
 861	 * We must have no buffers or drop them.
 862	 */
 863	if (page_has_private(page) &&
 864	    !try_to_release_page(page, GFP_KERNEL))
 865		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 866
 867	return migrate_page(mapping, newpage, page, mode);
 868}
 869
 870/*
 871 * Move a page to a newly allocated page
 872 * The page is locked and all ptes have been successfully removed.
 873 *
 874 * The new page will have replaced the old page if this function
 875 * is successful.
 876 *
 877 * Return value:
 878 *   < 0 - error code
 879 *  MIGRATEPAGE_SUCCESS - success
 880 */
 881static int move_to_new_page(struct page *newpage, struct page *page,
 882				enum migrate_mode mode)
 883{
 884	struct address_space *mapping;
 885	int rc = -EAGAIN;
 886	bool is_lru = !__PageMovable(page);
 887
 888	VM_BUG_ON_PAGE(!PageLocked(page), page);
 889	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 890
 891	mapping = page_mapping(page);
 
 892
 893	if (likely(is_lru)) {
 894		if (!mapping)
 895			rc = migrate_page(mapping, newpage, page, mode);
 896		else if (mapping->a_ops->migratepage)
 
 
 897			/*
 898			 * Most pages have a mapping and most filesystems
 899			 * provide a migratepage callback. Anonymous pages
 900			 * are part of swap space which also has its own
 901			 * migratepage callback. This is the most common path
 902			 * for page migration.
 903			 */
 904			rc = mapping->a_ops->migratepage(mapping, newpage,
 905							page, mode);
 906		else
 907			rc = fallback_migrate_page(mapping, newpage,
 908							page, mode);
 909	} else {
 
 
 910		/*
 911		 * In case of non-lru page, it could be released after
 912		 * isolation step. In that case, we shouldn't try migration.
 913		 */
 914		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 915		if (!PageMovable(page)) {
 916			rc = MIGRATEPAGE_SUCCESS;
 917			__ClearPageIsolated(page);
 918			goto out;
 919		}
 920
 921		rc = mapping->a_ops->migratepage(mapping, newpage,
 922						page, mode);
 923		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 924			!PageIsolated(page));
 925	}
 926
 927	/*
 928	 * When successful, old pagecache page->mapping must be cleared before
 929	 * page is freed; but stats require that PageAnon be left as PageAnon.
 930	 */
 931	if (rc == MIGRATEPAGE_SUCCESS) {
 932		if (__PageMovable(page)) {
 933			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 934
 935			/*
 936			 * We clear PG_movable under page_lock so any compactor
 937			 * cannot try to migrate this page.
 938			 */
 939			__ClearPageIsolated(page);
 940		}
 941
 942		/*
 943		 * Anonymous and movable page->mapping will be cleared by
 944		 * free_pages_prepare so don't reset it here for keeping
 945		 * the type to work PageAnon, for example.
 946		 */
 947		if (!PageMappingFlags(page))
 948			page->mapping = NULL;
 949
 950		if (likely(!is_zone_device_page(newpage)))
 951			flush_dcache_page(newpage);
 952
 
 
 953	}
 954out:
 955	return rc;
 956}
 957
 958static int __unmap_and_move(struct page *page, struct page *newpage,
 959				int force, enum migrate_mode mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961	int rc = -EAGAIN;
 962	int page_was_mapped = 0;
 963	struct anon_vma *anon_vma = NULL;
 964	bool is_lru = !__PageMovable(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965
 966	if (!trylock_page(page)) {
 967		if (!force || mode == MIGRATE_ASYNC)
 
 
 968			goto out;
 969
 970		/*
 971		 * It's not safe for direct compaction to call lock_page.
 972		 * For example, during page readahead pages are added locked
 973		 * to the LRU. Later, when the IO completes the pages are
 974		 * marked uptodate and unlocked. However, the queueing
 975		 * could be merging multiple pages for one bio (e.g.
 976		 * mpage_readahead). If an allocation happens for the
 977		 * second or third page, the process can end up locking
 978		 * the same page twice and deadlocking. Rather than
 979		 * trying to be clever about what pages can be locked,
 980		 * avoid the use of lock_page for direct compaction
 981		 * altogether.
 982		 */
 983		if (current->flags & PF_MEMALLOC)
 984			goto out;
 985
 986		lock_page(page);
 
 
 
 
 
 
 
 
 987	}
 
 
 
 988
 989	if (PageWriteback(page)) {
 990		/*
 991		 * Only in the case of a full synchronous migration is it
 992		 * necessary to wait for PageWriteback. In the async case,
 993		 * the retry loop is too short and in the sync-light case,
 994		 * the overhead of stalling is too much
 995		 */
 996		switch (mode) {
 997		case MIGRATE_SYNC:
 998		case MIGRATE_SYNC_NO_COPY:
 999			break;
1000		default:
1001			rc = -EBUSY;
1002			goto out_unlock;
1003		}
1004		if (!force)
1005			goto out_unlock;
1006		wait_on_page_writeback(page);
1007	}
1008
1009	/*
1010	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1011	 * we cannot notice that anon_vma is freed while we migrates a page.
1012	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1013	 * of migration. File cache pages are no problem because of page_lock()
1014	 * File Caches may use write_page() or lock_page() in migration, then,
1015	 * just care Anon page here.
1016	 *
1017	 * Only page_get_anon_vma() understands the subtleties of
1018	 * getting a hold on an anon_vma from outside one of its mms.
1019	 * But if we cannot get anon_vma, then we won't need it anyway,
1020	 * because that implies that the anon page is no longer mapped
1021	 * (and cannot be remapped so long as we hold the page lock).
1022	 */
1023	if (PageAnon(page) && !PageKsm(page))
1024		anon_vma = page_get_anon_vma(page);
1025
1026	/*
1027	 * Block others from accessing the new page when we get around to
1028	 * establishing additional references. We are usually the only one
1029	 * holding a reference to newpage at this point. We used to have a BUG
1030	 * here if trylock_page(newpage) fails, but would like to allow for
1031	 * cases where there might be a race with the previous use of newpage.
1032	 * This is much like races on refcount of oldpage: just don't BUG().
1033	 */
1034	if (unlikely(!trylock_page(newpage)))
1035		goto out_unlock;
 
1036
1037	if (unlikely(!is_lru)) {
1038		rc = move_to_new_page(newpage, page, mode);
1039		goto out_unlock_both;
1040	}
1041
1042	/*
1043	 * Corner case handling:
1044	 * 1. When a new swap-cache page is read into, it is added to the LRU
1045	 * and treated as swapcache but it has no rmap yet.
1046	 * Calling try_to_unmap() against a page->mapping==NULL page will
1047	 * trigger a BUG.  So handle it here.
1048	 * 2. An orphaned page (see truncate_cleanup_page) might have
1049	 * fs-private metadata. The page can be picked up due to memory
1050	 * offlining.  Everywhere else except page reclaim, the page is
1051	 * invisible to the vm, so the page can not be migrated.  So try to
1052	 * free the metadata, so the page can be freed.
1053	 */
1054	if (!page->mapping) {
1055		VM_BUG_ON_PAGE(PageAnon(page), page);
1056		if (page_has_private(page)) {
1057			try_to_free_buffers(page);
1058			goto out_unlock_both;
1059		}
1060	} else if (page_mapped(page)) {
1061		/* Establish migration ptes */
1062		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1063				page);
1064		try_to_migrate(page, 0);
1065		page_was_mapped = 1;
1066	}
1067
1068	if (!page_mapped(page))
1069		rc = move_to_new_page(newpage, page, mode);
1070
1071	if (page_was_mapped)
1072		remove_migration_ptes(page,
1073			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1074
1075out_unlock_both:
1076	unlock_page(newpage);
1077out_unlock:
1078	/* Drop an anon_vma reference if we took one */
1079	if (anon_vma)
1080		put_anon_vma(anon_vma);
1081	unlock_page(page);
1082out:
1083	/*
1084	 * If migration is successful, decrease refcount of the newpage
1085	 * which will not free the page because new page owner increased
1086	 * refcounter. As well, if it is LRU page, add the page to LRU
1087	 * list in here. Use the old state of the isolated source page to
1088	 * determine if we migrated a LRU page. newpage was already unlocked
1089	 * and possibly modified by its owner - don't rely on the page
1090	 * state.
1091	 */
1092	if (rc == MIGRATEPAGE_SUCCESS) {
1093		if (unlikely(!is_lru))
1094			put_page(newpage);
1095		else
1096			putback_lru_page(newpage);
1097	}
1098
1099	return rc;
1100}
1101
1102/*
1103 * Obtain the lock on page, remove all ptes and migrate the page
1104 * to the newly allocated page in newpage.
1105 */
1106static int unmap_and_move(new_page_t get_new_page,
1107				   free_page_t put_new_page,
1108				   unsigned long private, struct page *page,
1109				   int force, enum migrate_mode mode,
1110				   enum migrate_reason reason,
1111				   struct list_head *ret)
1112{
1113	int rc = MIGRATEPAGE_SUCCESS;
1114	struct page *newpage = NULL;
 
 
 
1115
1116	if (!thp_migration_supported() && PageTransHuge(page))
1117		return -ENOSYS;
 
1118
1119	if (page_count(page) == 1) {
1120		/* page was freed from under us. So we are done. */
1121		ClearPageActive(page);
1122		ClearPageUnevictable(page);
1123		if (unlikely(__PageMovable(page))) {
1124			lock_page(page);
1125			if (!PageMovable(page))
1126				__ClearPageIsolated(page);
1127			unlock_page(page);
1128		}
1129		goto out;
1130	}
1131
1132	newpage = get_new_page(page, private);
1133	if (!newpage)
1134		return -ENOMEM;
1135
1136	rc = __unmap_and_move(page, newpage, force, mode);
1137	if (rc == MIGRATEPAGE_SUCCESS)
1138		set_page_owner_migrate_reason(newpage, reason);
 
 
 
 
 
 
 
 
 
1139
1140out:
1141	if (rc != -EAGAIN) {
1142		/*
1143		 * A page that has been migrated has all references
1144		 * removed and will be freed. A page that has not been
1145		 * migrated will have kept its references and be restored.
1146		 */
1147		list_del(&page->lru);
1148	}
1149
 
 
 
1150	/*
1151	 * If migration is successful, releases reference grabbed during
1152	 * isolation. Otherwise, restore the page to right list unless
1153	 * we want to retry.
1154	 */
1155	if (rc == MIGRATEPAGE_SUCCESS) {
1156		/*
1157		 * Compaction can migrate also non-LRU pages which are
1158		 * not accounted to NR_ISOLATED_*. They can be recognized
1159		 * as __PageMovable
1160		 */
1161		if (likely(!__PageMovable(page)))
1162			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1163					page_is_file_lru(page), -thp_nr_pages(page));
1164
1165		if (reason != MR_MEMORY_FAILURE)
1166			/*
1167			 * We release the page in page_handle_poison.
1168			 */
1169			put_page(page);
1170	} else {
1171		if (rc != -EAGAIN)
1172			list_add_tail(&page->lru, ret);
 
 
1173
1174		if (put_new_page)
1175			put_new_page(newpage, private);
1176		else
1177			put_page(newpage);
 
 
 
 
 
 
1178	}
1179
 
 
 
 
1180	return rc;
1181}
1182
1183/*
1184 * Counterpart of unmap_and_move_page() for hugepage migration.
1185 *
1186 * This function doesn't wait the completion of hugepage I/O
1187 * because there is no race between I/O and migration for hugepage.
1188 * Note that currently hugepage I/O occurs only in direct I/O
1189 * where no lock is held and PG_writeback is irrelevant,
1190 * and writeback status of all subpages are counted in the reference
1191 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1192 * under direct I/O, the reference of the head page is 512 and a bit more.)
1193 * This means that when we try to migrate hugepage whose subpages are
1194 * doing direct I/O, some references remain after try_to_unmap() and
1195 * hugepage migration fails without data corruption.
1196 *
1197 * There is also no race when direct I/O is issued on the page under migration,
1198 * because then pte is replaced with migration swap entry and direct I/O code
1199 * will wait in the page fault for migration to complete.
1200 */
1201static int unmap_and_move_huge_page(new_page_t get_new_page,
1202				free_page_t put_new_page, unsigned long private,
1203				struct page *hpage, int force,
1204				enum migrate_mode mode, int reason,
1205				struct list_head *ret)
1206{
 
1207	int rc = -EAGAIN;
1208	int page_was_mapped = 0;
1209	struct page *new_hpage;
1210	struct anon_vma *anon_vma = NULL;
1211	struct address_space *mapping = NULL;
1212
1213	/*
1214	 * Migratability of hugepages depends on architectures and their size.
1215	 * This check is necessary because some callers of hugepage migration
1216	 * like soft offline and memory hotremove don't walk through page
1217	 * tables or check whether the hugepage is pmd-based or not before
1218	 * kicking migration.
1219	 */
1220	if (!hugepage_migration_supported(page_hstate(hpage))) {
1221		list_move_tail(&hpage->lru, ret);
1222		return -ENOSYS;
1223	}
1224
1225	if (page_count(hpage) == 1) {
1226		/* page was freed from under us. So we are done. */
1227		putback_active_hugepage(hpage);
1228		return MIGRATEPAGE_SUCCESS;
1229	}
1230
1231	new_hpage = get_new_page(hpage, private);
1232	if (!new_hpage)
1233		return -ENOMEM;
1234
1235	if (!trylock_page(hpage)) {
1236		if (!force)
1237			goto out;
1238		switch (mode) {
1239		case MIGRATE_SYNC:
1240		case MIGRATE_SYNC_NO_COPY:
1241			break;
1242		default:
1243			goto out;
1244		}
1245		lock_page(hpage);
1246	}
1247
1248	/*
1249	 * Check for pages which are in the process of being freed.  Without
1250	 * page_mapping() set, hugetlbfs specific move page routine will not
1251	 * be called and we could leak usage counts for subpools.
1252	 */
1253	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1254		rc = -EBUSY;
1255		goto out_unlock;
1256	}
1257
1258	if (PageAnon(hpage))
1259		anon_vma = page_get_anon_vma(hpage);
1260
1261	if (unlikely(!trylock_page(new_hpage)))
1262		goto put_anon;
1263
1264	if (page_mapped(hpage)) {
1265		bool mapping_locked = false;
1266		enum ttu_flags ttu = 0;
1267
1268		if (!PageAnon(hpage)) {
1269			/*
1270			 * In shared mappings, try_to_unmap could potentially
1271			 * call huge_pmd_unshare.  Because of this, take
1272			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1273			 * to let lower levels know we have taken the lock.
1274			 */
1275			mapping = hugetlb_page_mapping_lock_write(hpage);
1276			if (unlikely(!mapping))
1277				goto unlock_put_anon;
1278
1279			mapping_locked = true;
1280			ttu |= TTU_RMAP_LOCKED;
1281		}
1282
1283		try_to_migrate(hpage, ttu);
1284		page_was_mapped = 1;
1285
1286		if (mapping_locked)
1287			i_mmap_unlock_write(mapping);
1288	}
1289
1290	if (!page_mapped(hpage))
1291		rc = move_to_new_page(new_hpage, hpage, mode);
1292
1293	if (page_was_mapped)
1294		remove_migration_ptes(hpage,
1295			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1296
1297unlock_put_anon:
1298	unlock_page(new_hpage);
1299
1300put_anon:
1301	if (anon_vma)
1302		put_anon_vma(anon_vma);
1303
1304	if (rc == MIGRATEPAGE_SUCCESS) {
1305		move_hugetlb_state(hpage, new_hpage, reason);
1306		put_new_page = NULL;
1307	}
1308
1309out_unlock:
1310	unlock_page(hpage);
1311out:
1312	if (rc == MIGRATEPAGE_SUCCESS)
1313		putback_active_hugepage(hpage);
1314	else if (rc != -EAGAIN)
1315		list_move_tail(&hpage->lru, ret);
1316
1317	/*
1318	 * If migration was not successful and there's a freeing callback, use
1319	 * it.  Otherwise, put_page() will drop the reference grabbed during
1320	 * isolation.
1321	 */
1322	if (put_new_page)
1323		put_new_page(new_hpage, private);
1324	else
1325		putback_active_hugepage(new_hpage);
1326
1327	return rc;
1328}
1329
1330static inline int try_split_thp(struct page *page, struct page **page2,
1331				struct list_head *from)
1332{
1333	int rc = 0;
1334
1335	lock_page(page);
1336	rc = split_huge_page_to_list(page, from);
1337	unlock_page(page);
1338	if (!rc)
1339		list_safe_reset_next(page, *page2, lru);
1340
1341	return rc;
1342}
1343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344/*
1345 * migrate_pages - migrate the pages specified in a list, to the free pages
1346 *		   supplied as the target for the page migration
1347 *
1348 * @from:		The list of pages to be migrated.
1349 * @get_new_page:	The function used to allocate free pages to be used
1350 *			as the target of the page migration.
1351 * @put_new_page:	The function used to free target pages if migration
1352 *			fails, or NULL if no special handling is necessary.
1353 * @private:		Private data to be passed on to get_new_page()
1354 * @mode:		The migration mode that specifies the constraints for
1355 *			page migration, if any.
1356 * @reason:		The reason for page migration.
1357 *
1358 * The function returns after 10 attempts or if no pages are movable any more
1359 * because the list has become empty or no retryable pages exist any more.
1360 * It is caller's responsibility to call putback_movable_pages() to return pages
1361 * to the LRU or free list only if ret != 0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362 *
1363 * Returns the number of pages that were not migrated, or an error code.
 
 
 
1364 */
1365int migrate_pages(struct list_head *from, new_page_t get_new_page,
1366		free_page_t put_new_page, unsigned long private,
1367		enum migrate_mode mode, int reason)
 
 
1368{
1369	int retry = 1;
1370	int thp_retry = 1;
1371	int nr_failed = 0;
1372	int nr_succeeded = 0;
1373	int nr_thp_succeeded = 0;
1374	int nr_thp_failed = 0;
1375	int nr_thp_split = 0;
1376	int pass = 0;
1377	bool is_thp = false;
1378	struct page *page;
1379	struct page *page2;
1380	int swapwrite = current->flags & PF_SWAPWRITE;
1381	int rc, nr_subpages;
1382	LIST_HEAD(ret_pages);
1383	bool nosplit = (reason == MR_NUMA_MISPLACED);
1384
1385	trace_mm_migrate_pages_start(mode, reason);
1386
1387	if (!swapwrite)
1388		current->flags |= PF_SWAPWRITE;
1389
1390	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1391		retry = 0;
1392		thp_retry = 0;
 
 
 
 
 
 
 
 
1393
1394		list_for_each_entry_safe(page, page2, from, lru) {
1395retry:
1396			/*
1397			 * THP statistics is based on the source huge page.
1398			 * Capture required information that might get lost
1399			 * during migration.
 
 
 
 
 
1400			 */
1401			is_thp = PageTransHuge(page) && !PageHuge(page);
1402			nr_subpages = thp_nr_pages(page);
1403			cond_resched();
 
 
 
 
 
 
 
 
 
1404
1405			if (PageHuge(page))
1406				rc = unmap_and_move_huge_page(get_new_page,
1407						put_new_page, private, page,
1408						pass > 2, mode, reason,
1409						&ret_pages);
1410			else
1411				rc = unmap_and_move(get_new_page, put_new_page,
1412						private, page, pass > 2, mode,
1413						reason, &ret_pages);
1414			/*
1415			 * The rules are:
1416			 *	Success: non hugetlb page will be freed, hugetlb
1417			 *		 page will be put back
 
1418			 *	-EAGAIN: stay on the from list
1419			 *	-ENOMEM: stay on the from list
1420			 *	Other errno: put on ret_pages list then splice to
1421			 *		     from list
1422			 */
1423			switch(rc) {
1424			/*
1425			 * THP migration might be unsupported or the
1426			 * allocation could've failed so we should
1427			 * retry on the same page with the THP split
1428			 * to base pages.
1429			 *
1430			 * Head page is retried immediately and tail
1431			 * pages are added to the tail of the list so
1432			 * we encounter them after the rest of the list
1433			 * is processed.
1434			 */
1435			case -ENOSYS:
1436				/* THP migration is unsupported */
1437				if (is_thp) {
1438					if (!try_split_thp(page, &page2, from)) {
1439						nr_thp_split++;
1440						goto retry;
1441					}
1442
1443					nr_thp_failed++;
1444					nr_failed += nr_subpages;
1445					break;
1446				}
1447
1448				/* Hugetlb migration is unsupported */
1449				nr_failed++;
1450				break;
1451			case -ENOMEM:
1452				/*
1453				 * When memory is low, don't bother to try to migrate
1454				 * other pages, just exit.
1455				 * THP NUMA faulting doesn't split THP to retry.
1456				 */
1457				if (is_thp && !nosplit) {
1458					if (!try_split_thp(page, &page2, from)) {
1459						nr_thp_split++;
1460						goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461					}
 
1462
1463					nr_thp_failed++;
1464					nr_failed += nr_subpages;
 
 
 
1465					goto out;
1466				}
1467				nr_failed++;
1468				goto out;
1469			case -EAGAIN:
1470				if (is_thp) {
1471					thp_retry++;
1472					break;
1473				}
1474				retry++;
 
 
1475				break;
1476			case MIGRATEPAGE_SUCCESS:
1477				if (is_thp) {
1478					nr_thp_succeeded++;
1479					nr_succeeded += nr_subpages;
1480					break;
1481				}
1482				nr_succeeded++;
1483				break;
1484			default:
1485				/*
1486				 * Permanent failure (-EBUSY, etc.):
1487				 * unlike -EAGAIN case, the failed page is
1488				 * removed from migration page list and not
1489				 * retried in the next outer loop.
1490				 */
1491				if (is_thp) {
1492					nr_thp_failed++;
1493					nr_failed += nr_subpages;
1494					break;
1495				}
1496				nr_failed++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497				break;
1498			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499		}
 
 
 
 
1500	}
1501	nr_failed += retry + thp_retry;
1502	nr_thp_failed += thp_retry;
1503	rc = nr_failed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504out:
1505	/*
1506	 * Put the permanent failure page back to migration list, they
1507	 * will be put back to the right list by the caller.
1508	 */
1509	list_splice(&ret_pages, from);
1510
1511	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1512	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1513	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1514	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1515	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1516	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1517			       nr_thp_failed, nr_thp_split, mode, reason);
 
 
 
 
 
 
 
 
 
1518
1519	if (!swapwrite)
1520		current->flags &= ~PF_SWAPWRITE;
1521
1522	return rc;
1523}
1524
1525struct page *alloc_migration_target(struct page *page, unsigned long private)
1526{
1527	struct migration_target_control *mtc;
1528	gfp_t gfp_mask;
1529	unsigned int order = 0;
1530	struct page *new_page = NULL;
1531	int nid;
1532	int zidx;
1533
1534	mtc = (struct migration_target_control *)private;
1535	gfp_mask = mtc->gfp_mask;
1536	nid = mtc->nid;
1537	if (nid == NUMA_NO_NODE)
1538		nid = page_to_nid(page);
1539
1540	if (PageHuge(page)) {
1541		struct hstate *h = page_hstate(compound_head(page));
1542
1543		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1544		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
 
1545	}
1546
1547	if (PageTransHuge(page)) {
1548		/*
1549		 * clear __GFP_RECLAIM to make the migration callback
1550		 * consistent with regular THP allocations.
1551		 */
1552		gfp_mask &= ~__GFP_RECLAIM;
1553		gfp_mask |= GFP_TRANSHUGE;
1554		order = HPAGE_PMD_ORDER;
1555	}
1556	zidx = zone_idx(page_zone(page));
1557	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1558		gfp_mask |= __GFP_HIGHMEM;
1559
1560	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1561
1562	if (new_page && PageTransHuge(new_page))
1563		prep_transhuge_page(new_page);
1564
1565	return new_page;
1566}
1567
1568#ifdef CONFIG_NUMA
1569
1570static int store_status(int __user *status, int start, int value, int nr)
1571{
1572	while (nr-- > 0) {
1573		if (put_user(value, status + start))
1574			return -EFAULT;
1575		start++;
1576	}
1577
1578	return 0;
1579}
1580
1581static int do_move_pages_to_node(struct mm_struct *mm,
1582		struct list_head *pagelist, int node)
1583{
1584	int err;
1585	struct migration_target_control mtc = {
1586		.nid = node,
1587		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1588	};
1589
1590	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1591			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1592	if (err)
1593		putback_movable_pages(pagelist);
1594	return err;
1595}
1596
1597/*
1598 * Resolves the given address to a struct page, isolates it from the LRU and
1599 * puts it to the given pagelist.
1600 * Returns:
1601 *     errno - if the page cannot be found/isolated
1602 *     0 - when it doesn't have to be migrated because it is already on the
1603 *         target node
1604 *     1 - when it has been queued
1605 */
1606static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1607		int node, struct list_head *pagelist, bool migrate_all)
1608{
1609	struct vm_area_struct *vma;
 
1610	struct page *page;
1611	unsigned int follflags;
1612	int err;
1613
1614	mmap_read_lock(mm);
 
 
1615	err = -EFAULT;
1616	vma = find_vma(mm, addr);
1617	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1618		goto out;
1619
1620	/* FOLL_DUMP to ignore special (like zero) pages */
1621	follflags = FOLL_GET | FOLL_DUMP;
1622	page = follow_page(vma, addr, follflags);
1623
1624	err = PTR_ERR(page);
1625	if (IS_ERR(page))
1626		goto out;
1627
1628	err = -ENOENT;
1629	if (!page)
1630		goto out;
1631
 
 
 
 
1632	err = 0;
1633	if (page_to_nid(page) == node)
1634		goto out_putpage;
1635
1636	err = -EACCES;
1637	if (page_mapcount(page) > 1 && !migrate_all)
1638		goto out_putpage;
1639
1640	if (PageHuge(page)) {
1641		if (PageHead(page)) {
1642			isolate_huge_page(page, pagelist);
1643			err = 1;
1644		}
1645	} else {
1646		struct page *head;
1647
1648		head = compound_head(page);
1649		err = isolate_lru_page(head);
1650		if (err)
1651			goto out_putpage;
1652
1653		err = 1;
1654		list_add_tail(&head->lru, pagelist);
1655		mod_node_page_state(page_pgdat(head),
1656			NR_ISOLATED_ANON + page_is_file_lru(head),
1657			thp_nr_pages(head));
1658	}
1659out_putpage:
1660	/*
1661	 * Either remove the duplicate refcount from
1662	 * isolate_lru_page() or drop the page ref if it was
1663	 * not isolated.
1664	 */
1665	put_page(page);
1666out:
1667	mmap_read_unlock(mm);
1668	return err;
1669}
1670
1671static int move_pages_and_store_status(struct mm_struct *mm, int node,
1672		struct list_head *pagelist, int __user *status,
1673		int start, int i, unsigned long nr_pages)
1674{
1675	int err;
1676
1677	if (list_empty(pagelist))
1678		return 0;
1679
1680	err = do_move_pages_to_node(mm, pagelist, node);
1681	if (err) {
1682		/*
1683		 * Positive err means the number of failed
1684		 * pages to migrate.  Since we are going to
1685		 * abort and return the number of non-migrated
1686		 * pages, so need to include the rest of the
1687		 * nr_pages that have not been attempted as
1688		 * well.
1689		 */
1690		if (err > 0)
1691			err += nr_pages - i - 1;
1692		return err;
1693	}
1694	return store_status(status, start, node, i - start);
1695}
1696
1697/*
1698 * Migrate an array of page address onto an array of nodes and fill
1699 * the corresponding array of status.
1700 */
1701static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1702			 unsigned long nr_pages,
1703			 const void __user * __user *pages,
1704			 const int __user *nodes,
1705			 int __user *status, int flags)
1706{
 
1707	int current_node = NUMA_NO_NODE;
1708	LIST_HEAD(pagelist);
1709	int start, i;
1710	int err = 0, err1;
1711
1712	lru_cache_disable();
1713
1714	for (i = start = 0; i < nr_pages; i++) {
1715		const void __user *p;
1716		unsigned long addr;
1717		int node;
1718
1719		err = -EFAULT;
1720		if (get_user(p, pages + i))
1721			goto out_flush;
 
 
 
 
 
 
 
 
 
1722		if (get_user(node, nodes + i))
1723			goto out_flush;
1724		addr = (unsigned long)untagged_addr(p);
1725
1726		err = -ENODEV;
1727		if (node < 0 || node >= MAX_NUMNODES)
1728			goto out_flush;
1729		if (!node_state(node, N_MEMORY))
1730			goto out_flush;
1731
1732		err = -EACCES;
1733		if (!node_isset(node, task_nodes))
1734			goto out_flush;
1735
1736		if (current_node == NUMA_NO_NODE) {
1737			current_node = node;
1738			start = i;
1739		} else if (node != current_node) {
1740			err = move_pages_and_store_status(mm, current_node,
1741					&pagelist, status, start, i, nr_pages);
1742			if (err)
1743				goto out;
1744			start = i;
1745			current_node = node;
1746		}
1747
1748		/*
1749		 * Errors in the page lookup or isolation are not fatal and we simply
1750		 * report them via status
1751		 */
1752		err = add_page_for_migration(mm, addr, current_node,
1753				&pagelist, flags & MPOL_MF_MOVE_ALL);
1754
1755		if (err > 0) {
1756			/* The page is successfully queued for migration */
1757			continue;
1758		}
1759
1760		/*
 
 
 
 
 
 
 
1761		 * If the page is already on the target node (!err), store the
1762		 * node, otherwise, store the err.
1763		 */
1764		err = store_status(status, i, err ? : current_node, 1);
1765		if (err)
1766			goto out_flush;
1767
1768		err = move_pages_and_store_status(mm, current_node, &pagelist,
1769				status, start, i, nr_pages);
1770		if (err)
 
 
 
1771			goto out;
 
1772		current_node = NUMA_NO_NODE;
1773	}
1774out_flush:
1775	/* Make sure we do not overwrite the existing error */
1776	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1777				status, start, i, nr_pages);
1778	if (err >= 0)
1779		err = err1;
1780out:
1781	lru_cache_enable();
1782	return err;
1783}
1784
1785/*
1786 * Determine the nodes of an array of pages and store it in an array of status.
1787 */
1788static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1789				const void __user **pages, int *status)
1790{
1791	unsigned long i;
1792
1793	mmap_read_lock(mm);
1794
1795	for (i = 0; i < nr_pages; i++) {
1796		unsigned long addr = (unsigned long)(*pages);
1797		struct vm_area_struct *vma;
1798		struct page *page;
1799		int err = -EFAULT;
1800
1801		vma = vma_lookup(mm, addr);
1802		if (!vma)
1803			goto set_status;
1804
1805		/* FOLL_DUMP to ignore special (like zero) pages */
1806		page = follow_page(vma, addr, FOLL_DUMP);
1807
1808		err = PTR_ERR(page);
1809		if (IS_ERR(page))
1810			goto set_status;
1811
1812		err = page ? page_to_nid(page) : -ENOENT;
 
 
 
 
 
 
 
1813set_status:
1814		*status = err;
1815
1816		pages++;
1817		status++;
1818	}
1819
1820	mmap_read_unlock(mm);
1821}
1822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823/*
1824 * Determine the nodes of a user array of pages and store it in
1825 * a user array of status.
1826 */
1827static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1828			 const void __user * __user *pages,
1829			 int __user *status)
1830{
1831#define DO_PAGES_STAT_CHUNK_NR 16
1832	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1833	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1834
1835	while (nr_pages) {
1836		unsigned long chunk_nr;
1837
1838		chunk_nr = nr_pages;
1839		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1840			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1841
1842		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1843			break;
 
 
 
1844
1845		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1846
1847		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1848			break;
1849
1850		pages += chunk_nr;
1851		status += chunk_nr;
1852		nr_pages -= chunk_nr;
1853	}
1854	return nr_pages ? -EFAULT : 0;
1855}
1856
1857static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1858{
1859	struct task_struct *task;
1860	struct mm_struct *mm;
1861
1862	/*
1863	 * There is no need to check if current process has the right to modify
1864	 * the specified process when they are same.
1865	 */
1866	if (!pid) {
1867		mmget(current->mm);
1868		*mem_nodes = cpuset_mems_allowed(current);
1869		return current->mm;
1870	}
1871
1872	/* Find the mm_struct */
1873	rcu_read_lock();
1874	task = find_task_by_vpid(pid);
1875	if (!task) {
1876		rcu_read_unlock();
1877		return ERR_PTR(-ESRCH);
1878	}
1879	get_task_struct(task);
1880
1881	/*
1882	 * Check if this process has the right to modify the specified
1883	 * process. Use the regular "ptrace_may_access()" checks.
1884	 */
1885	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1886		rcu_read_unlock();
1887		mm = ERR_PTR(-EPERM);
1888		goto out;
1889	}
1890	rcu_read_unlock();
1891
1892	mm = ERR_PTR(security_task_movememory(task));
1893	if (IS_ERR(mm))
1894		goto out;
1895	*mem_nodes = cpuset_mems_allowed(task);
1896	mm = get_task_mm(task);
1897out:
1898	put_task_struct(task);
1899	if (!mm)
1900		mm = ERR_PTR(-EINVAL);
1901	return mm;
1902}
1903
1904/*
1905 * Move a list of pages in the address space of the currently executing
1906 * process.
1907 */
1908static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1909			     const void __user * __user *pages,
1910			     const int __user *nodes,
1911			     int __user *status, int flags)
1912{
1913	struct mm_struct *mm;
1914	int err;
1915	nodemask_t task_nodes;
1916
1917	/* Check flags */
1918	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1919		return -EINVAL;
1920
1921	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1922		return -EPERM;
1923
1924	mm = find_mm_struct(pid, &task_nodes);
1925	if (IS_ERR(mm))
1926		return PTR_ERR(mm);
1927
1928	if (nodes)
1929		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1930				    nodes, status, flags);
1931	else
1932		err = do_pages_stat(mm, nr_pages, pages, status);
1933
1934	mmput(mm);
1935	return err;
1936}
1937
1938SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939		const void __user * __user *, pages,
1940		const int __user *, nodes,
1941		int __user *, status, int, flags)
1942{
1943	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944}
1945
1946#ifdef CONFIG_COMPAT
1947COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948		       compat_uptr_t __user *, pages32,
1949		       const int __user *, nodes,
1950		       int __user *, status,
1951		       int, flags)
1952{
1953	const void __user * __user *pages;
1954	int i;
1955
1956	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957	for (i = 0; i < nr_pages; i++) {
1958		compat_uptr_t p;
1959
1960		if (get_user(p, pages32 + i) ||
1961			put_user(compat_ptr(p), pages + i))
1962			return -EFAULT;
1963	}
1964	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965}
1966#endif /* CONFIG_COMPAT */
1967
1968#ifdef CONFIG_NUMA_BALANCING
1969/*
1970 * Returns true if this is a safe migration target node for misplaced NUMA
1971 * pages. Currently it only checks the watermarks which crude
1972 */
1973static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974				   unsigned long nr_migrate_pages)
1975{
1976	int z;
1977
1978	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979		struct zone *zone = pgdat->node_zones + z;
1980
1981		if (!populated_zone(zone))
1982			continue;
1983
1984		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985		if (!zone_watermark_ok(zone, 0,
1986				       high_wmark_pages(zone) +
1987				       nr_migrate_pages,
1988				       ZONE_MOVABLE, 0))
1989			continue;
1990		return true;
1991	}
1992	return false;
1993}
1994
1995static struct page *alloc_misplaced_dst_page(struct page *page,
1996					   unsigned long data)
1997{
1998	int nid = (int) data;
1999	struct page *newpage;
 
2000
2001	newpage = __alloc_pages_node(nid,
2002					 (GFP_HIGHUSER_MOVABLE |
2003					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2004					  __GFP_NORETRY | __GFP_NOWARN) &
2005					 ~__GFP_RECLAIM, 0);
2006
2007	return newpage;
 
2008}
2009
2010static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2011						 unsigned long data)
2012{
2013	int nid = (int) data;
2014	struct page *newpage;
2015
2016	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2017				   HPAGE_PMD_ORDER);
2018	if (!newpage)
2019		goto out;
2020
2021	prep_transhuge_page(newpage);
 
 
 
 
 
2022
2023out:
2024	return newpage;
2025}
2026
2027static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2028{
2029	int page_lru;
2030
2031	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2032
2033	/* Do not migrate THP mapped by multiple processes */
2034	if (PageTransHuge(page) && total_mapcount(page) > 1)
2035		return 0;
 
2036
2037	/* Avoid migrating to a node that is nearly full */
2038	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2039		return 0;
2040
2041	if (isolate_lru_page(page))
2042		return 0;
2043
2044	page_lru = page_is_file_lru(page);
2045	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2046				thp_nr_pages(page));
2047
2048	/*
2049	 * Isolating the page has taken another reference, so the
2050	 * caller's reference can be safely dropped without the page
2051	 * disappearing underneath us during migration.
2052	 */
2053	put_page(page);
2054	return 1;
2055}
2056
2057/*
2058 * Attempt to migrate a misplaced page to the specified destination
2059 * node. Caller is expected to have an elevated reference count on
2060 * the page that will be dropped by this function before returning.
2061 */
2062int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2063			   int node)
2064{
2065	pg_data_t *pgdat = NODE_DATA(node);
2066	int isolated;
2067	int nr_remaining;
 
2068	LIST_HEAD(migratepages);
2069	new_page_t *new;
2070	bool compound;
2071	int nr_pages = thp_nr_pages(page);
2072
2073	/*
2074	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2075	 * be either base page or THP.  And it must be head page if it is
2076	 * THP.
2077	 */
2078	compound = PageTransHuge(page);
2079
2080	if (compound)
2081		new = alloc_misplaced_dst_page_thp;
2082	else
2083		new = alloc_misplaced_dst_page;
2084
2085	/*
2086	 * Don't migrate file pages that are mapped in multiple processes
2087	 * with execute permissions as they are probably shared libraries.
 
 
 
2088	 */
2089	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2090	    (vma->vm_flags & VM_EXEC))
2091		goto out;
2092
2093	/*
2094	 * Also do not migrate dirty pages as not all filesystems can move
2095	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2096	 */
2097	if (page_is_file_lru(page) && PageDirty(page))
2098		goto out;
2099
2100	isolated = numamigrate_isolate_page(pgdat, page);
2101	if (!isolated)
2102		goto out;
2103
2104	list_add(&page->lru, &migratepages);
2105	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2106				     MIGRATE_ASYNC, MR_NUMA_MISPLACED);
 
2107	if (nr_remaining) {
2108		if (!list_empty(&migratepages)) {
2109			list_del(&page->lru);
2110			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2111					page_is_file_lru(page), -nr_pages);
2112			putback_lru_page(page);
2113		}
2114		isolated = 0;
2115	} else
2116		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
 
 
 
 
 
2117	BUG_ON(!list_empty(&migratepages));
2118	return isolated;
2119
2120out:
2121	put_page(page);
2122	return 0;
2123}
2124#endif /* CONFIG_NUMA_BALANCING */
2125#endif /* CONFIG_NUMA */
2126
2127#ifdef CONFIG_DEVICE_PRIVATE
2128static int migrate_vma_collect_skip(unsigned long start,
2129				    unsigned long end,
2130				    struct mm_walk *walk)
2131{
2132	struct migrate_vma *migrate = walk->private;
2133	unsigned long addr;
2134
2135	for (addr = start; addr < end; addr += PAGE_SIZE) {
2136		migrate->dst[migrate->npages] = 0;
2137		migrate->src[migrate->npages++] = 0;
2138	}
2139
2140	return 0;
2141}
2142
2143static int migrate_vma_collect_hole(unsigned long start,
2144				    unsigned long end,
2145				    __always_unused int depth,
2146				    struct mm_walk *walk)
2147{
2148	struct migrate_vma *migrate = walk->private;
2149	unsigned long addr;
2150
2151	/* Only allow populating anonymous memory. */
2152	if (!vma_is_anonymous(walk->vma))
2153		return migrate_vma_collect_skip(start, end, walk);
2154
2155	for (addr = start; addr < end; addr += PAGE_SIZE) {
2156		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2157		migrate->dst[migrate->npages] = 0;
2158		migrate->npages++;
2159		migrate->cpages++;
2160	}
2161
2162	return 0;
2163}
2164
2165static int migrate_vma_collect_pmd(pmd_t *pmdp,
2166				   unsigned long start,
2167				   unsigned long end,
2168				   struct mm_walk *walk)
2169{
2170	struct migrate_vma *migrate = walk->private;
2171	struct vm_area_struct *vma = walk->vma;
2172	struct mm_struct *mm = vma->vm_mm;
2173	unsigned long addr = start, unmapped = 0;
2174	spinlock_t *ptl;
2175	pte_t *ptep;
2176
2177again:
2178	if (pmd_none(*pmdp))
2179		return migrate_vma_collect_hole(start, end, -1, walk);
2180
2181	if (pmd_trans_huge(*pmdp)) {
2182		struct page *page;
2183
2184		ptl = pmd_lock(mm, pmdp);
2185		if (unlikely(!pmd_trans_huge(*pmdp))) {
2186			spin_unlock(ptl);
2187			goto again;
2188		}
2189
2190		page = pmd_page(*pmdp);
2191		if (is_huge_zero_page(page)) {
2192			spin_unlock(ptl);
2193			split_huge_pmd(vma, pmdp, addr);
2194			if (pmd_trans_unstable(pmdp))
2195				return migrate_vma_collect_skip(start, end,
2196								walk);
2197		} else {
2198			int ret;
2199
2200			get_page(page);
2201			spin_unlock(ptl);
2202			if (unlikely(!trylock_page(page)))
2203				return migrate_vma_collect_skip(start, end,
2204								walk);
2205			ret = split_huge_page(page);
2206			unlock_page(page);
2207			put_page(page);
2208			if (ret)
2209				return migrate_vma_collect_skip(start, end,
2210								walk);
2211			if (pmd_none(*pmdp))
2212				return migrate_vma_collect_hole(start, end, -1,
2213								walk);
2214		}
2215	}
2216
2217	if (unlikely(pmd_bad(*pmdp)))
2218		return migrate_vma_collect_skip(start, end, walk);
2219
2220	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2221	arch_enter_lazy_mmu_mode();
2222
2223	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2224		unsigned long mpfn = 0, pfn;
2225		struct page *page;
2226		swp_entry_t entry;
2227		pte_t pte;
2228
2229		pte = *ptep;
2230
2231		if (pte_none(pte)) {
2232			if (vma_is_anonymous(vma)) {
2233				mpfn = MIGRATE_PFN_MIGRATE;
2234				migrate->cpages++;
2235			}
2236			goto next;
2237		}
2238
2239		if (!pte_present(pte)) {
2240			/*
2241			 * Only care about unaddressable device page special
2242			 * page table entry. Other special swap entries are not
2243			 * migratable, and we ignore regular swapped page.
2244			 */
2245			entry = pte_to_swp_entry(pte);
2246			if (!is_device_private_entry(entry))
2247				goto next;
2248
2249			page = pfn_swap_entry_to_page(entry);
2250			if (!(migrate->flags &
2251				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2252			    page->pgmap->owner != migrate->pgmap_owner)
2253				goto next;
2254
2255			mpfn = migrate_pfn(page_to_pfn(page)) |
2256					MIGRATE_PFN_MIGRATE;
2257			if (is_writable_device_private_entry(entry))
2258				mpfn |= MIGRATE_PFN_WRITE;
2259		} else {
2260			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2261				goto next;
2262			pfn = pte_pfn(pte);
2263			if (is_zero_pfn(pfn)) {
2264				mpfn = MIGRATE_PFN_MIGRATE;
2265				migrate->cpages++;
2266				goto next;
2267			}
2268			page = vm_normal_page(migrate->vma, addr, pte);
2269			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2270			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2271		}
2272
2273		/* FIXME support THP */
2274		if (!page || !page->mapping || PageTransCompound(page)) {
2275			mpfn = 0;
2276			goto next;
2277		}
2278
2279		/*
2280		 * By getting a reference on the page we pin it and that blocks
2281		 * any kind of migration. Side effect is that it "freezes" the
2282		 * pte.
2283		 *
2284		 * We drop this reference after isolating the page from the lru
2285		 * for non device page (device page are not on the lru and thus
2286		 * can't be dropped from it).
2287		 */
2288		get_page(page);
2289		migrate->cpages++;
2290
2291		/*
2292		 * Optimize for the common case where page is only mapped once
2293		 * in one process. If we can lock the page, then we can safely
2294		 * set up a special migration page table entry now.
2295		 */
2296		if (trylock_page(page)) {
2297			pte_t swp_pte;
2298
2299			mpfn |= MIGRATE_PFN_LOCKED;
2300			ptep_get_and_clear(mm, addr, ptep);
2301
2302			/* Setup special migration page table entry */
2303			if (mpfn & MIGRATE_PFN_WRITE)
2304				entry = make_writable_migration_entry(
2305							page_to_pfn(page));
2306			else
2307				entry = make_readable_migration_entry(
2308							page_to_pfn(page));
2309			swp_pte = swp_entry_to_pte(entry);
2310			if (pte_present(pte)) {
2311				if (pte_soft_dirty(pte))
2312					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2313				if (pte_uffd_wp(pte))
2314					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2315			} else {
2316				if (pte_swp_soft_dirty(pte))
2317					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2318				if (pte_swp_uffd_wp(pte))
2319					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2320			}
2321			set_pte_at(mm, addr, ptep, swp_pte);
2322
2323			/*
2324			 * This is like regular unmap: we remove the rmap and
2325			 * drop page refcount. Page won't be freed, as we took
2326			 * a reference just above.
2327			 */
2328			page_remove_rmap(page, false);
2329			put_page(page);
2330
2331			if (pte_present(pte))
2332				unmapped++;
2333		}
2334
2335next:
2336		migrate->dst[migrate->npages] = 0;
2337		migrate->src[migrate->npages++] = mpfn;
2338	}
2339	arch_leave_lazy_mmu_mode();
2340	pte_unmap_unlock(ptep - 1, ptl);
2341
2342	/* Only flush the TLB if we actually modified any entries */
2343	if (unmapped)
2344		flush_tlb_range(walk->vma, start, end);
2345
2346	return 0;
2347}
2348
2349static const struct mm_walk_ops migrate_vma_walk_ops = {
2350	.pmd_entry		= migrate_vma_collect_pmd,
2351	.pte_hole		= migrate_vma_collect_hole,
2352};
2353
2354/*
2355 * migrate_vma_collect() - collect pages over a range of virtual addresses
2356 * @migrate: migrate struct containing all migration information
2357 *
2358 * This will walk the CPU page table. For each virtual address backed by a
2359 * valid page, it updates the src array and takes a reference on the page, in
2360 * order to pin the page until we lock it and unmap it.
2361 */
2362static void migrate_vma_collect(struct migrate_vma *migrate)
2363{
2364	struct mmu_notifier_range range;
2365
2366	/*
2367	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2368	 * that the registered device driver can skip invalidating device
2369	 * private page mappings that won't be migrated.
2370	 */
2371	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2372		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2373		migrate->pgmap_owner);
2374	mmu_notifier_invalidate_range_start(&range);
2375
2376	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2377			&migrate_vma_walk_ops, migrate);
2378
2379	mmu_notifier_invalidate_range_end(&range);
2380	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2381}
2382
2383/*
2384 * migrate_vma_check_page() - check if page is pinned or not
2385 * @page: struct page to check
2386 *
2387 * Pinned pages cannot be migrated. This is the same test as in
2388 * migrate_page_move_mapping(), except that here we allow migration of a
2389 * ZONE_DEVICE page.
2390 */
2391static bool migrate_vma_check_page(struct page *page)
2392{
2393	/*
2394	 * One extra ref because caller holds an extra reference, either from
2395	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2396	 * a device page.
2397	 */
2398	int extra = 1;
2399
2400	/*
2401	 * FIXME support THP (transparent huge page), it is bit more complex to
2402	 * check them than regular pages, because they can be mapped with a pmd
2403	 * or with a pte (split pte mapping).
2404	 */
2405	if (PageCompound(page))
2406		return false;
2407
2408	/* Page from ZONE_DEVICE have one extra reference */
2409	if (is_zone_device_page(page)) {
2410		/*
2411		 * Private page can never be pin as they have no valid pte and
2412		 * GUP will fail for those. Yet if there is a pending migration
2413		 * a thread might try to wait on the pte migration entry and
2414		 * will bump the page reference count. Sadly there is no way to
2415		 * differentiate a regular pin from migration wait. Hence to
2416		 * avoid 2 racing thread trying to migrate back to CPU to enter
2417		 * infinite loop (one stopping migration because the other is
2418		 * waiting on pte migration entry). We always return true here.
2419		 *
2420		 * FIXME proper solution is to rework migration_entry_wait() so
2421		 * it does not need to take a reference on page.
2422		 */
2423		return is_device_private_page(page);
2424	}
2425
2426	/* For file back page */
2427	if (page_mapping(page))
2428		extra += 1 + page_has_private(page);
2429
2430	if ((page_count(page) - extra) > page_mapcount(page))
2431		return false;
2432
2433	return true;
2434}
2435
2436/*
2437 * migrate_vma_prepare() - lock pages and isolate them from the lru
2438 * @migrate: migrate struct containing all migration information
2439 *
2440 * This locks pages that have been collected by migrate_vma_collect(). Once each
2441 * page is locked it is isolated from the lru (for non-device pages). Finally,
2442 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2443 * migrated by concurrent kernel threads.
2444 */
2445static void migrate_vma_prepare(struct migrate_vma *migrate)
2446{
2447	const unsigned long npages = migrate->npages;
2448	const unsigned long start = migrate->start;
2449	unsigned long addr, i, restore = 0;
2450	bool allow_drain = true;
2451
2452	lru_add_drain();
2453
2454	for (i = 0; (i < npages) && migrate->cpages; i++) {
2455		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2456		bool remap = true;
2457
2458		if (!page)
2459			continue;
2460
2461		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2462			/*
2463			 * Because we are migrating several pages there can be
2464			 * a deadlock between 2 concurrent migration where each
2465			 * are waiting on each other page lock.
2466			 *
2467			 * Make migrate_vma() a best effort thing and backoff
2468			 * for any page we can not lock right away.
2469			 */
2470			if (!trylock_page(page)) {
2471				migrate->src[i] = 0;
2472				migrate->cpages--;
2473				put_page(page);
2474				continue;
2475			}
2476			remap = false;
2477			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2478		}
2479
2480		/* ZONE_DEVICE pages are not on LRU */
2481		if (!is_zone_device_page(page)) {
2482			if (!PageLRU(page) && allow_drain) {
2483				/* Drain CPU's pagevec */
2484				lru_add_drain_all();
2485				allow_drain = false;
2486			}
2487
2488			if (isolate_lru_page(page)) {
2489				if (remap) {
2490					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2491					migrate->cpages--;
2492					restore++;
2493				} else {
2494					migrate->src[i] = 0;
2495					unlock_page(page);
2496					migrate->cpages--;
2497					put_page(page);
2498				}
2499				continue;
2500			}
2501
2502			/* Drop the reference we took in collect */
2503			put_page(page);
2504		}
2505
2506		if (!migrate_vma_check_page(page)) {
2507			if (remap) {
2508				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2509				migrate->cpages--;
2510				restore++;
2511
2512				if (!is_zone_device_page(page)) {
2513					get_page(page);
2514					putback_lru_page(page);
2515				}
2516			} else {
2517				migrate->src[i] = 0;
2518				unlock_page(page);
2519				migrate->cpages--;
2520
2521				if (!is_zone_device_page(page))
2522					putback_lru_page(page);
2523				else
2524					put_page(page);
2525			}
2526		}
2527	}
2528
2529	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2530		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2531
2532		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2533			continue;
2534
2535		remove_migration_pte(page, migrate->vma, addr, page);
2536
2537		migrate->src[i] = 0;
2538		unlock_page(page);
2539		put_page(page);
2540		restore--;
2541	}
2542}
2543
2544/*
2545 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2546 * @migrate: migrate struct containing all migration information
2547 *
2548 * Replace page mapping (CPU page table pte) with a special migration pte entry
2549 * and check again if it has been pinned. Pinned pages are restored because we
2550 * cannot migrate them.
2551 *
2552 * This is the last step before we call the device driver callback to allocate
2553 * destination memory and copy contents of original page over to new page.
2554 */
2555static void migrate_vma_unmap(struct migrate_vma *migrate)
2556{
2557	const unsigned long npages = migrate->npages;
2558	const unsigned long start = migrate->start;
2559	unsigned long addr, i, restore = 0;
2560
2561	for (i = 0; i < npages; i++) {
2562		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565			continue;
2566
2567		if (page_mapped(page)) {
2568			try_to_migrate(page, 0);
2569			if (page_mapped(page))
2570				goto restore;
2571		}
2572
2573		if (migrate_vma_check_page(page))
2574			continue;
2575
2576restore:
2577		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2578		migrate->cpages--;
2579		restore++;
2580	}
2581
2582	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2583		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584
2585		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586			continue;
2587
2588		remove_migration_ptes(page, page, false);
2589
2590		migrate->src[i] = 0;
2591		unlock_page(page);
2592		restore--;
2593
2594		if (is_zone_device_page(page))
2595			put_page(page);
2596		else
2597			putback_lru_page(page);
2598	}
2599}
2600
2601/**
2602 * migrate_vma_setup() - prepare to migrate a range of memory
2603 * @args: contains the vma, start, and pfns arrays for the migration
2604 *
2605 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2606 * without an error.
2607 *
2608 * Prepare to migrate a range of memory virtual address range by collecting all
2609 * the pages backing each virtual address in the range, saving them inside the
2610 * src array.  Then lock those pages and unmap them. Once the pages are locked
2611 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2612 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2613 * corresponding src array entry.  Then restores any pages that are pinned, by
2614 * remapping and unlocking those pages.
2615 *
2616 * The caller should then allocate destination memory and copy source memory to
2617 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2618 * flag set).  Once these are allocated and copied, the caller must update each
2619 * corresponding entry in the dst array with the pfn value of the destination
2620 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2621 * (destination pages must have their struct pages locked, via lock_page()).
2622 *
2623 * Note that the caller does not have to migrate all the pages that are marked
2624 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2625 * device memory to system memory.  If the caller cannot migrate a device page
2626 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2627 * consequences for the userspace process, so it must be avoided if at all
2628 * possible.
2629 *
2630 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2631 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2632 * allowing the caller to allocate device memory for those unbacked virtual
2633 * addresses.  For this the caller simply has to allocate device memory and
2634 * properly set the destination entry like for regular migration.  Note that
2635 * this can still fail, and thus inside the device driver you must check if the
2636 * migration was successful for those entries after calling migrate_vma_pages(),
2637 * just like for regular migration.
2638 *
2639 * After that, the callers must call migrate_vma_pages() to go over each entry
2640 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2641 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2642 * then migrate_vma_pages() to migrate struct page information from the source
2643 * struct page to the destination struct page.  If it fails to migrate the
2644 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2645 * src array.
2646 *
2647 * At this point all successfully migrated pages have an entry in the src
2648 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2649 * array entry with MIGRATE_PFN_VALID flag set.
2650 *
2651 * Once migrate_vma_pages() returns the caller may inspect which pages were
2652 * successfully migrated, and which were not.  Successfully migrated pages will
2653 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2654 *
2655 * It is safe to update device page table after migrate_vma_pages() because
2656 * both destination and source page are still locked, and the mmap_lock is held
2657 * in read mode (hence no one can unmap the range being migrated).
2658 *
2659 * Once the caller is done cleaning up things and updating its page table (if it
2660 * chose to do so, this is not an obligation) it finally calls
2661 * migrate_vma_finalize() to update the CPU page table to point to new pages
2662 * for successfully migrated pages or otherwise restore the CPU page table to
2663 * point to the original source pages.
2664 */
2665int migrate_vma_setup(struct migrate_vma *args)
2666{
2667	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2668
2669	args->start &= PAGE_MASK;
2670	args->end &= PAGE_MASK;
2671	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2672	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2673		return -EINVAL;
2674	if (nr_pages <= 0)
2675		return -EINVAL;
2676	if (args->start < args->vma->vm_start ||
2677	    args->start >= args->vma->vm_end)
2678		return -EINVAL;
2679	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2680		return -EINVAL;
2681	if (!args->src || !args->dst)
2682		return -EINVAL;
2683
2684	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2685	args->cpages = 0;
2686	args->npages = 0;
2687
2688	migrate_vma_collect(args);
2689
2690	if (args->cpages)
2691		migrate_vma_prepare(args);
2692	if (args->cpages)
2693		migrate_vma_unmap(args);
2694
2695	/*
2696	 * At this point pages are locked and unmapped, and thus they have
2697	 * stable content and can safely be copied to destination memory that
2698	 * is allocated by the drivers.
2699	 */
2700	return 0;
2701
2702}
2703EXPORT_SYMBOL(migrate_vma_setup);
2704
2705/*
2706 * This code closely matches the code in:
2707 *   __handle_mm_fault()
2708 *     handle_pte_fault()
2709 *       do_anonymous_page()
2710 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2711 * private page.
2712 */
2713static void migrate_vma_insert_page(struct migrate_vma *migrate,
2714				    unsigned long addr,
2715				    struct page *page,
2716				    unsigned long *src)
2717{
2718	struct vm_area_struct *vma = migrate->vma;
2719	struct mm_struct *mm = vma->vm_mm;
2720	bool flush = false;
2721	spinlock_t *ptl;
2722	pte_t entry;
2723	pgd_t *pgdp;
2724	p4d_t *p4dp;
2725	pud_t *pudp;
2726	pmd_t *pmdp;
2727	pte_t *ptep;
2728
2729	/* Only allow populating anonymous memory */
2730	if (!vma_is_anonymous(vma))
2731		goto abort;
2732
2733	pgdp = pgd_offset(mm, addr);
2734	p4dp = p4d_alloc(mm, pgdp, addr);
2735	if (!p4dp)
2736		goto abort;
2737	pudp = pud_alloc(mm, p4dp, addr);
2738	if (!pudp)
2739		goto abort;
2740	pmdp = pmd_alloc(mm, pudp, addr);
2741	if (!pmdp)
2742		goto abort;
2743
2744	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2745		goto abort;
2746
2747	/*
2748	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2749	 * pte_offset_map() on pmds where a huge pmd might be created
2750	 * from a different thread.
2751	 *
2752	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2753	 * parallel threads are excluded by other means.
2754	 *
2755	 * Here we only have mmap_read_lock(mm).
2756	 */
2757	if (pte_alloc(mm, pmdp))
2758		goto abort;
2759
2760	/* See the comment in pte_alloc_one_map() */
2761	if (unlikely(pmd_trans_unstable(pmdp)))
2762		goto abort;
2763
2764	if (unlikely(anon_vma_prepare(vma)))
2765		goto abort;
2766	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2767		goto abort;
2768
2769	/*
2770	 * The memory barrier inside __SetPageUptodate makes sure that
2771	 * preceding stores to the page contents become visible before
2772	 * the set_pte_at() write.
2773	 */
2774	__SetPageUptodate(page);
2775
2776	if (is_zone_device_page(page)) {
2777		if (is_device_private_page(page)) {
2778			swp_entry_t swp_entry;
2779
2780			if (vma->vm_flags & VM_WRITE)
2781				swp_entry = make_writable_device_private_entry(
2782							page_to_pfn(page));
2783			else
2784				swp_entry = make_readable_device_private_entry(
2785							page_to_pfn(page));
2786			entry = swp_entry_to_pte(swp_entry);
2787		} else {
2788			/*
2789			 * For now we only support migrating to un-addressable
2790			 * device memory.
2791			 */
2792			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2793			goto abort;
2794		}
2795	} else {
2796		entry = mk_pte(page, vma->vm_page_prot);
2797		if (vma->vm_flags & VM_WRITE)
2798			entry = pte_mkwrite(pte_mkdirty(entry));
2799	}
2800
2801	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2802
2803	if (check_stable_address_space(mm))
2804		goto unlock_abort;
2805
2806	if (pte_present(*ptep)) {
2807		unsigned long pfn = pte_pfn(*ptep);
2808
2809		if (!is_zero_pfn(pfn))
2810			goto unlock_abort;
2811		flush = true;
2812	} else if (!pte_none(*ptep))
2813		goto unlock_abort;
2814
2815	/*
2816	 * Check for userfaultfd but do not deliver the fault. Instead,
2817	 * just back off.
2818	 */
2819	if (userfaultfd_missing(vma))
2820		goto unlock_abort;
2821
2822	inc_mm_counter(mm, MM_ANONPAGES);
2823	page_add_new_anon_rmap(page, vma, addr, false);
2824	if (!is_zone_device_page(page))
2825		lru_cache_add_inactive_or_unevictable(page, vma);
2826	get_page(page);
2827
2828	if (flush) {
2829		flush_cache_page(vma, addr, pte_pfn(*ptep));
2830		ptep_clear_flush_notify(vma, addr, ptep);
2831		set_pte_at_notify(mm, addr, ptep, entry);
2832		update_mmu_cache(vma, addr, ptep);
2833	} else {
2834		/* No need to invalidate - it was non-present before */
2835		set_pte_at(mm, addr, ptep, entry);
2836		update_mmu_cache(vma, addr, ptep);
2837	}
2838
2839	pte_unmap_unlock(ptep, ptl);
2840	*src = MIGRATE_PFN_MIGRATE;
2841	return;
2842
2843unlock_abort:
2844	pte_unmap_unlock(ptep, ptl);
2845abort:
2846	*src &= ~MIGRATE_PFN_MIGRATE;
2847}
2848
2849/**
2850 * migrate_vma_pages() - migrate meta-data from src page to dst page
2851 * @migrate: migrate struct containing all migration information
2852 *
2853 * This migrates struct page meta-data from source struct page to destination
2854 * struct page. This effectively finishes the migration from source page to the
2855 * destination page.
2856 */
2857void migrate_vma_pages(struct migrate_vma *migrate)
2858{
2859	const unsigned long npages = migrate->npages;
2860	const unsigned long start = migrate->start;
2861	struct mmu_notifier_range range;
2862	unsigned long addr, i;
2863	bool notified = false;
2864
2865	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2866		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868		struct address_space *mapping;
2869		int r;
2870
2871		if (!newpage) {
2872			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2873			continue;
2874		}
2875
2876		if (!page) {
2877			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2878				continue;
2879			if (!notified) {
2880				notified = true;
2881
2882				mmu_notifier_range_init_owner(&range,
2883					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2884					migrate->vma->vm_mm, addr, migrate->end,
2885					migrate->pgmap_owner);
2886				mmu_notifier_invalidate_range_start(&range);
2887			}
2888			migrate_vma_insert_page(migrate, addr, newpage,
2889						&migrate->src[i]);
2890			continue;
2891		}
2892
2893		mapping = page_mapping(page);
2894
2895		if (is_zone_device_page(newpage)) {
2896			if (is_device_private_page(newpage)) {
2897				/*
2898				 * For now only support private anonymous when
2899				 * migrating to un-addressable device memory.
2900				 */
2901				if (mapping) {
2902					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2903					continue;
2904				}
2905			} else {
2906				/*
2907				 * Other types of ZONE_DEVICE page are not
2908				 * supported.
2909				 */
2910				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2911				continue;
2912			}
2913		}
2914
2915		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2916		if (r != MIGRATEPAGE_SUCCESS)
2917			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918	}
2919
2920	/*
2921	 * No need to double call mmu_notifier->invalidate_range() callback as
2922	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2923	 * did already call it.
2924	 */
2925	if (notified)
2926		mmu_notifier_invalidate_range_only_end(&range);
2927}
2928EXPORT_SYMBOL(migrate_vma_pages);
2929
2930/**
2931 * migrate_vma_finalize() - restore CPU page table entry
2932 * @migrate: migrate struct containing all migration information
2933 *
2934 * This replaces the special migration pte entry with either a mapping to the
2935 * new page if migration was successful for that page, or to the original page
2936 * otherwise.
2937 *
2938 * This also unlocks the pages and puts them back on the lru, or drops the extra
2939 * refcount, for device pages.
2940 */
2941void migrate_vma_finalize(struct migrate_vma *migrate)
2942{
2943	const unsigned long npages = migrate->npages;
2944	unsigned long i;
2945
2946	for (i = 0; i < npages; i++) {
2947		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2948		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2949
2950		if (!page) {
2951			if (newpage) {
2952				unlock_page(newpage);
2953				put_page(newpage);
2954			}
2955			continue;
2956		}
2957
2958		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2959			if (newpage) {
2960				unlock_page(newpage);
2961				put_page(newpage);
2962			}
2963			newpage = page;
2964		}
2965
2966		remove_migration_ptes(page, newpage, false);
2967		unlock_page(page);
2968
2969		if (is_zone_device_page(page))
2970			put_page(page);
2971		else
2972			putback_lru_page(page);
2973
2974		if (newpage != page) {
2975			unlock_page(newpage);
2976			if (is_zone_device_page(newpage))
2977				put_page(newpage);
2978			else
2979				putback_lru_page(newpage);
2980		}
2981	}
2982}
2983EXPORT_SYMBOL(migrate_vma_finalize);
2984#endif /* CONFIG_DEVICE_PRIVATE */