Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/************************************************************************
3 * Copyright 2003 Digi International (www.digi.com)
4 *
5 * Copyright (C) 2004 IBM Corporation. All rights reserved.
6 *
7 * Contact Information:
8 * Scott H Kilau <Scott_Kilau@digi.com>
9 * Wendy Xiong <wendyx@us.ibm.com>
10 *
11 ***********************************************************************/
12#include <linux/delay.h> /* For udelay */
13#include <linux/serial_reg.h> /* For the various UART offsets */
14#include <linux/tty.h>
15#include <linux/pci.h>
16#include <asm/io.h>
17
18#include "jsm.h" /* Driver main header file */
19
20static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
21
22/*
23 * This function allows calls to ensure that all outstanding
24 * PCI writes have been completed, by doing a PCI read against
25 * a non-destructive, read-only location on the Neo card.
26 *
27 * In this case, we are reading the DVID (Read-only Device Identification)
28 * value of the Neo card.
29 */
30static inline void neo_pci_posting_flush(struct jsm_board *bd)
31{
32 readb(bd->re_map_membase + 0x8D);
33}
34
35static void neo_set_cts_flow_control(struct jsm_channel *ch)
36{
37 u8 ier, efr;
38 ier = readb(&ch->ch_neo_uart->ier);
39 efr = readb(&ch->ch_neo_uart->efr);
40
41 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
42
43 /* Turn on auto CTS flow control */
44 ier |= (UART_17158_IER_CTSDSR);
45 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
46
47 /* Turn off auto Xon flow control */
48 efr &= ~(UART_17158_EFR_IXON);
49
50 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
51 writeb(0, &ch->ch_neo_uart->efr);
52
53 /* Turn on UART enhanced bits */
54 writeb(efr, &ch->ch_neo_uart->efr);
55
56 /* Turn on table D, with 8 char hi/low watermarks */
57 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
58
59 /* Feed the UART our trigger levels */
60 writeb(8, &ch->ch_neo_uart->tfifo);
61 ch->ch_t_tlevel = 8;
62
63 writeb(ier, &ch->ch_neo_uart->ier);
64}
65
66static void neo_set_rts_flow_control(struct jsm_channel *ch)
67{
68 u8 ier, efr;
69 ier = readb(&ch->ch_neo_uart->ier);
70 efr = readb(&ch->ch_neo_uart->efr);
71
72 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
73
74 /* Turn on auto RTS flow control */
75 ier |= (UART_17158_IER_RTSDTR);
76 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
77
78 /* Turn off auto Xoff flow control */
79 ier &= ~(UART_17158_IER_XOFF);
80 efr &= ~(UART_17158_EFR_IXOFF);
81
82 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
83 writeb(0, &ch->ch_neo_uart->efr);
84
85 /* Turn on UART enhanced bits */
86 writeb(efr, &ch->ch_neo_uart->efr);
87
88 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
89 ch->ch_r_watermark = 4;
90
91 writeb(56, &ch->ch_neo_uart->rfifo);
92 ch->ch_r_tlevel = 56;
93
94 writeb(ier, &ch->ch_neo_uart->ier);
95
96 /*
97 * From the Neo UART spec sheet:
98 * The auto RTS/DTR function must be started by asserting
99 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
100 * it is enabled.
101 */
102 ch->ch_mostat |= (UART_MCR_RTS);
103}
104
105
106static void neo_set_ixon_flow_control(struct jsm_channel *ch)
107{
108 u8 ier, efr;
109 ier = readb(&ch->ch_neo_uart->ier);
110 efr = readb(&ch->ch_neo_uart->efr);
111
112 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
113
114 /* Turn off auto CTS flow control */
115 ier &= ~(UART_17158_IER_CTSDSR);
116 efr &= ~(UART_17158_EFR_CTSDSR);
117
118 /* Turn on auto Xon flow control */
119 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
120
121 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
122 writeb(0, &ch->ch_neo_uart->efr);
123
124 /* Turn on UART enhanced bits */
125 writeb(efr, &ch->ch_neo_uart->efr);
126
127 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
128 ch->ch_r_watermark = 4;
129
130 writeb(32, &ch->ch_neo_uart->rfifo);
131 ch->ch_r_tlevel = 32;
132
133 /* Tell UART what start/stop chars it should be looking for */
134 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
135 writeb(0, &ch->ch_neo_uart->xonchar2);
136
137 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
138 writeb(0, &ch->ch_neo_uart->xoffchar2);
139
140 writeb(ier, &ch->ch_neo_uart->ier);
141}
142
143static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
144{
145 u8 ier, efr;
146 ier = readb(&ch->ch_neo_uart->ier);
147 efr = readb(&ch->ch_neo_uart->efr);
148
149 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
150
151 /* Turn off auto RTS flow control */
152 ier &= ~(UART_17158_IER_RTSDTR);
153 efr &= ~(UART_17158_EFR_RTSDTR);
154
155 /* Turn on auto Xoff flow control */
156 ier |= (UART_17158_IER_XOFF);
157 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
158
159 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
160 writeb(0, &ch->ch_neo_uart->efr);
161
162 /* Turn on UART enhanced bits */
163 writeb(efr, &ch->ch_neo_uart->efr);
164
165 /* Turn on table D, with 8 char hi/low watermarks */
166 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
167
168 writeb(8, &ch->ch_neo_uart->tfifo);
169 ch->ch_t_tlevel = 8;
170
171 /* Tell UART what start/stop chars it should be looking for */
172 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
173 writeb(0, &ch->ch_neo_uart->xonchar2);
174
175 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
176 writeb(0, &ch->ch_neo_uart->xoffchar2);
177
178 writeb(ier, &ch->ch_neo_uart->ier);
179}
180
181static void neo_set_no_input_flow_control(struct jsm_channel *ch)
182{
183 u8 ier, efr;
184 ier = readb(&ch->ch_neo_uart->ier);
185 efr = readb(&ch->ch_neo_uart->efr);
186
187 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
188
189 /* Turn off auto RTS flow control */
190 ier &= ~(UART_17158_IER_RTSDTR);
191 efr &= ~(UART_17158_EFR_RTSDTR);
192
193 /* Turn off auto Xoff flow control */
194 ier &= ~(UART_17158_IER_XOFF);
195 if (ch->ch_c_iflag & IXON)
196 efr &= ~(UART_17158_EFR_IXOFF);
197 else
198 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
199
200 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
201 writeb(0, &ch->ch_neo_uart->efr);
202
203 /* Turn on UART enhanced bits */
204 writeb(efr, &ch->ch_neo_uart->efr);
205
206 /* Turn on table D, with 8 char hi/low watermarks */
207 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
208
209 ch->ch_r_watermark = 0;
210
211 writeb(16, &ch->ch_neo_uart->tfifo);
212 ch->ch_t_tlevel = 16;
213
214 writeb(16, &ch->ch_neo_uart->rfifo);
215 ch->ch_r_tlevel = 16;
216
217 writeb(ier, &ch->ch_neo_uart->ier);
218}
219
220static void neo_set_no_output_flow_control(struct jsm_channel *ch)
221{
222 u8 ier, efr;
223 ier = readb(&ch->ch_neo_uart->ier);
224 efr = readb(&ch->ch_neo_uart->efr);
225
226 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
227
228 /* Turn off auto CTS flow control */
229 ier &= ~(UART_17158_IER_CTSDSR);
230 efr &= ~(UART_17158_EFR_CTSDSR);
231
232 /* Turn off auto Xon flow control */
233 if (ch->ch_c_iflag & IXOFF)
234 efr &= ~(UART_17158_EFR_IXON);
235 else
236 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
237
238 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
239 writeb(0, &ch->ch_neo_uart->efr);
240
241 /* Turn on UART enhanced bits */
242 writeb(efr, &ch->ch_neo_uart->efr);
243
244 /* Turn on table D, with 8 char hi/low watermarks */
245 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
246
247 ch->ch_r_watermark = 0;
248
249 writeb(16, &ch->ch_neo_uart->tfifo);
250 ch->ch_t_tlevel = 16;
251
252 writeb(16, &ch->ch_neo_uart->rfifo);
253 ch->ch_r_tlevel = 16;
254
255 writeb(ier, &ch->ch_neo_uart->ier);
256}
257
258static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
259{
260
261 /* if hardware flow control is set, then skip this whole thing */
262 if (ch->ch_c_cflag & CRTSCTS)
263 return;
264
265 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "start\n");
266
267 /* Tell UART what start/stop chars it should be looking for */
268 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
269 writeb(0, &ch->ch_neo_uart->xonchar2);
270
271 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
272 writeb(0, &ch->ch_neo_uart->xoffchar2);
273}
274
275static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
276{
277 int qleft = 0;
278 u8 linestatus = 0;
279 u8 error_mask = 0;
280 int n = 0;
281 int total = 0;
282 u16 head;
283 u16 tail;
284
285 /* cache head and tail of queue */
286 head = ch->ch_r_head & RQUEUEMASK;
287 tail = ch->ch_r_tail & RQUEUEMASK;
288
289 /* Get our cached LSR */
290 linestatus = ch->ch_cached_lsr;
291 ch->ch_cached_lsr = 0;
292
293 /* Store how much space we have left in the queue */
294 qleft = tail - head - 1;
295 if (qleft < 0)
296 qleft += RQUEUEMASK + 1;
297
298 /*
299 * If the UART is not in FIFO mode, force the FIFO copy to
300 * NOT be run, by setting total to 0.
301 *
302 * On the other hand, if the UART IS in FIFO mode, then ask
303 * the UART to give us an approximation of data it has RX'ed.
304 */
305 if (!(ch->ch_flags & CH_FIFO_ENABLED))
306 total = 0;
307 else {
308 total = readb(&ch->ch_neo_uart->rfifo);
309
310 /*
311 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
312 *
313 * This resolves a problem/bug with the Exar chip that sometimes
314 * returns a bogus value in the rfifo register.
315 * The count can be any where from 0-3 bytes "off".
316 * Bizarre, but true.
317 */
318 total -= 3;
319 }
320
321 /*
322 * Finally, bound the copy to make sure we don't overflow
323 * our own queue...
324 * The byte by byte copy loop below this loop this will
325 * deal with the queue overflow possibility.
326 */
327 total = min(total, qleft);
328
329 while (total > 0) {
330 /*
331 * Grab the linestatus register, we need to check
332 * to see if there are any errors in the FIFO.
333 */
334 linestatus = readb(&ch->ch_neo_uart->lsr);
335
336 /*
337 * Break out if there is a FIFO error somewhere.
338 * This will allow us to go byte by byte down below,
339 * finding the exact location of the error.
340 */
341 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
342 break;
343
344 /* Make sure we don't go over the end of our queue */
345 n = min(((u32) total), (RQUEUESIZE - (u32) head));
346
347 /*
348 * Cut down n even further if needed, this is to fix
349 * a problem with memcpy_fromio() with the Neo on the
350 * IBM pSeries platform.
351 * 15 bytes max appears to be the magic number.
352 */
353 n = min((u32) n, (u32) 12);
354
355 /*
356 * Since we are grabbing the linestatus register, which
357 * will reset some bits after our read, we need to ensure
358 * we don't miss our TX FIFO emptys.
359 */
360 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
361 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
362
363 linestatus = 0;
364
365 /* Copy data from uart to the queue */
366 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
367 /*
368 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
369 * that all the data currently in the FIFO is free of
370 * breaks and parity/frame/orun errors.
371 */
372 memset(ch->ch_equeue + head, 0, n);
373
374 /* Add to and flip head if needed */
375 head = (head + n) & RQUEUEMASK;
376 total -= n;
377 qleft -= n;
378 ch->ch_rxcount += n;
379 }
380
381 /*
382 * Create a mask to determine whether we should
383 * insert the character (if any) into our queue.
384 */
385 if (ch->ch_c_iflag & IGNBRK)
386 error_mask |= UART_LSR_BI;
387
388 /*
389 * Now cleanup any leftover bytes still in the UART.
390 * Also deal with any possible queue overflow here as well.
391 */
392 while (1) {
393
394 /*
395 * Its possible we have a linestatus from the loop above
396 * this, so we "OR" on any extra bits.
397 */
398 linestatus |= readb(&ch->ch_neo_uart->lsr);
399
400 /*
401 * If the chip tells us there is no more data pending to
402 * be read, we can then leave.
403 * But before we do, cache the linestatus, just in case.
404 */
405 if (!(linestatus & UART_LSR_DR)) {
406 ch->ch_cached_lsr = linestatus;
407 break;
408 }
409
410 /* No need to store this bit */
411 linestatus &= ~UART_LSR_DR;
412
413 /*
414 * Since we are grabbing the linestatus register, which
415 * will reset some bits after our read, we need to ensure
416 * we don't miss our TX FIFO emptys.
417 */
418 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
419 linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
420 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
421 }
422
423 /*
424 * Discard character if we are ignoring the error mask.
425 */
426 if (linestatus & error_mask) {
427 u8 discard;
428 linestatus = 0;
429 memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
430 continue;
431 }
432
433 /*
434 * If our queue is full, we have no choice but to drop some data.
435 * The assumption is that HWFLOW or SWFLOW should have stopped
436 * things way way before we got to this point.
437 *
438 * I decided that I wanted to ditch the oldest data first,
439 * I hope thats okay with everyone? Yes? Good.
440 */
441 while (qleft < 1) {
442 jsm_dbg(READ, &ch->ch_bd->pci_dev,
443 "Queue full, dropping DATA:%x LSR:%x\n",
444 ch->ch_rqueue[tail], ch->ch_equeue[tail]);
445
446 ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
447 ch->ch_err_overrun++;
448 qleft++;
449 }
450
451 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
452 ch->ch_equeue[head] = (u8) linestatus;
453
454 jsm_dbg(READ, &ch->ch_bd->pci_dev, "DATA/LSR pair: %x %x\n",
455 ch->ch_rqueue[head], ch->ch_equeue[head]);
456
457 /* Ditch any remaining linestatus value. */
458 linestatus = 0;
459
460 /* Add to and flip head if needed */
461 head = (head + 1) & RQUEUEMASK;
462
463 qleft--;
464 ch->ch_rxcount++;
465 }
466
467 /*
468 * Write new final heads to channel structure.
469 */
470 ch->ch_r_head = head & RQUEUEMASK;
471 ch->ch_e_head = head & EQUEUEMASK;
472 jsm_input(ch);
473}
474
475static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
476{
477 u16 head;
478 u16 tail;
479 int n;
480 int s;
481 int qlen;
482 u32 len_written = 0;
483 struct circ_buf *circ;
484
485 if (!ch)
486 return;
487
488 circ = &ch->uart_port.state->xmit;
489
490 /* No data to write to the UART */
491 if (uart_circ_empty(circ))
492 return;
493
494 /* If port is "stopped", don't send any data to the UART */
495 if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
496 return;
497 /*
498 * If FIFOs are disabled. Send data directly to txrx register
499 */
500 if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
501 u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
502
503 ch->ch_cached_lsr |= lsrbits;
504 if (ch->ch_cached_lsr & UART_LSR_THRE) {
505 ch->ch_cached_lsr &= ~(UART_LSR_THRE);
506
507 writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx);
508 jsm_dbg(WRITE, &ch->ch_bd->pci_dev,
509 "Tx data: %x\n", circ->buf[circ->tail]);
510 circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1);
511 ch->ch_txcount++;
512 }
513 return;
514 }
515
516 /*
517 * We have to do it this way, because of the EXAR TXFIFO count bug.
518 */
519 if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
520 return;
521
522 n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
523
524 /* cache head and tail of queue */
525 head = circ->head & (UART_XMIT_SIZE - 1);
526 tail = circ->tail & (UART_XMIT_SIZE - 1);
527 qlen = uart_circ_chars_pending(circ);
528
529 /* Find minimum of the FIFO space, versus queue length */
530 n = min(n, qlen);
531
532 while (n > 0) {
533
534 s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail;
535 s = min(s, n);
536
537 if (s <= 0)
538 break;
539
540 memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s);
541 /* Add and flip queue if needed */
542 tail = (tail + s) & (UART_XMIT_SIZE - 1);
543 n -= s;
544 ch->ch_txcount += s;
545 len_written += s;
546 }
547
548 /* Update the final tail */
549 circ->tail = tail & (UART_XMIT_SIZE - 1);
550
551 if (len_written >= ch->ch_t_tlevel)
552 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
553
554 if (uart_circ_empty(circ))
555 uart_write_wakeup(&ch->uart_port);
556}
557
558static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
559{
560 u8 msignals = signals;
561
562 jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
563 "neo_parse_modem: port: %d msignals: %x\n",
564 ch->ch_portnum, msignals);
565
566 /* Scrub off lower bits. They signify delta's, which I don't care about */
567 /* Keep DDCD and DDSR though */
568 msignals &= 0xf8;
569
570 if (msignals & UART_MSR_DDCD)
571 uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
572 if (msignals & UART_MSR_DDSR)
573 uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
574 if (msignals & UART_MSR_DCD)
575 ch->ch_mistat |= UART_MSR_DCD;
576 else
577 ch->ch_mistat &= ~UART_MSR_DCD;
578
579 if (msignals & UART_MSR_DSR)
580 ch->ch_mistat |= UART_MSR_DSR;
581 else
582 ch->ch_mistat &= ~UART_MSR_DSR;
583
584 if (msignals & UART_MSR_RI)
585 ch->ch_mistat |= UART_MSR_RI;
586 else
587 ch->ch_mistat &= ~UART_MSR_RI;
588
589 if (msignals & UART_MSR_CTS)
590 ch->ch_mistat |= UART_MSR_CTS;
591 else
592 ch->ch_mistat &= ~UART_MSR_CTS;
593
594 jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
595 "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
596 ch->ch_portnum,
597 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
598 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
599 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
600 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
601 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
602 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
603}
604
605/* Make the UART raise any of the output signals we want up */
606static void neo_assert_modem_signals(struct jsm_channel *ch)
607{
608 if (!ch)
609 return;
610
611 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
612
613 /* flush write operation */
614 neo_pci_posting_flush(ch->ch_bd);
615}
616
617/*
618 * Flush the WRITE FIFO on the Neo.
619 *
620 * NOTE: Channel lock MUST be held before calling this function!
621 */
622static void neo_flush_uart_write(struct jsm_channel *ch)
623{
624 u8 tmp = 0;
625 int i = 0;
626
627 if (!ch)
628 return;
629
630 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
631
632 for (i = 0; i < 10; i++) {
633
634 /* Check to see if the UART feels it completely flushed the FIFO. */
635 tmp = readb(&ch->ch_neo_uart->isr_fcr);
636 if (tmp & UART_FCR_CLEAR_XMIT) {
637 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
638 "Still flushing TX UART... i: %d\n", i);
639 udelay(10);
640 }
641 else
642 break;
643 }
644
645 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
646}
647
648
649/*
650 * Flush the READ FIFO on the Neo.
651 *
652 * NOTE: Channel lock MUST be held before calling this function!
653 */
654static void neo_flush_uart_read(struct jsm_channel *ch)
655{
656 u8 tmp = 0;
657 int i = 0;
658
659 if (!ch)
660 return;
661
662 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
663
664 for (i = 0; i < 10; i++) {
665
666 /* Check to see if the UART feels it completely flushed the FIFO. */
667 tmp = readb(&ch->ch_neo_uart->isr_fcr);
668 if (tmp & 2) {
669 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
670 "Still flushing RX UART... i: %d\n", i);
671 udelay(10);
672 }
673 else
674 break;
675 }
676}
677
678/*
679 * No locks are assumed to be held when calling this function.
680 */
681static void neo_clear_break(struct jsm_channel *ch)
682{
683 unsigned long lock_flags;
684
685 spin_lock_irqsave(&ch->ch_lock, lock_flags);
686
687 /* Turn break off, and unset some variables */
688 if (ch->ch_flags & CH_BREAK_SENDING) {
689 u8 temp = readb(&ch->ch_neo_uart->lcr);
690 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
691
692 ch->ch_flags &= ~(CH_BREAK_SENDING);
693 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
694 "clear break Finishing UART_LCR_SBC! finished: %lx\n",
695 jiffies);
696
697 /* flush write operation */
698 neo_pci_posting_flush(ch->ch_bd);
699 }
700 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
701}
702
703/*
704 * Parse the ISR register.
705 */
706static void neo_parse_isr(struct jsm_board *brd, u32 port)
707{
708 struct jsm_channel *ch;
709 u8 isr;
710 u8 cause;
711 unsigned long lock_flags;
712
713 if (!brd)
714 return;
715
716 if (port >= brd->maxports)
717 return;
718
719 ch = brd->channels[port];
720 if (!ch)
721 return;
722
723 /* Here we try to figure out what caused the interrupt to happen */
724 while (1) {
725
726 isr = readb(&ch->ch_neo_uart->isr_fcr);
727
728 /* Bail if no pending interrupt */
729 if (isr & UART_IIR_NO_INT)
730 break;
731
732 /*
733 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
734 */
735 isr &= ~(UART_17158_IIR_FIFO_ENABLED);
736
737 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d isr: %x\n",
738 __FILE__, __LINE__, isr);
739
740 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
741 /* Read data from uart -> queue */
742 neo_copy_data_from_uart_to_queue(ch);
743
744 /* Call our tty layer to enforce queue flow control if needed. */
745 spin_lock_irqsave(&ch->ch_lock, lock_flags);
746 jsm_check_queue_flow_control(ch);
747 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
748 }
749
750 if (isr & UART_IIR_THRI) {
751 /* Transfer data (if any) from Write Queue -> UART. */
752 spin_lock_irqsave(&ch->ch_lock, lock_flags);
753 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
754 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
755 neo_copy_data_from_queue_to_uart(ch);
756 }
757
758 if (isr & UART_17158_IIR_XONXOFF) {
759 cause = readb(&ch->ch_neo_uart->xoffchar1);
760
761 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
762 "Port %d. Got ISR_XONXOFF: cause:%x\n",
763 port, cause);
764
765 /*
766 * Since the UART detected either an XON or
767 * XOFF match, we need to figure out which
768 * one it was, so we can suspend or resume data flow.
769 */
770 spin_lock_irqsave(&ch->ch_lock, lock_flags);
771 if (cause == UART_17158_XON_DETECT) {
772 /* Is output stopped right now, if so, resume it */
773 if (brd->channels[port]->ch_flags & CH_STOP) {
774 ch->ch_flags &= ~(CH_STOP);
775 }
776 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
777 "Port %d. XON detected in incoming data\n",
778 port);
779 }
780 else if (cause == UART_17158_XOFF_DETECT) {
781 if (!(brd->channels[port]->ch_flags & CH_STOP)) {
782 ch->ch_flags |= CH_STOP;
783 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
784 "Setting CH_STOP\n");
785 }
786 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
787 "Port: %d. XOFF detected in incoming data\n",
788 port);
789 }
790 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
791 }
792
793 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
794 /*
795 * If we get here, this means the hardware is doing auto flow control.
796 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
797 */
798 cause = readb(&ch->ch_neo_uart->mcr);
799
800 /* Which pin is doing auto flow? RTS or DTR? */
801 spin_lock_irqsave(&ch->ch_lock, lock_flags);
802 if ((cause & 0x4) == 0) {
803 if (cause & UART_MCR_RTS)
804 ch->ch_mostat |= UART_MCR_RTS;
805 else
806 ch->ch_mostat &= ~(UART_MCR_RTS);
807 } else {
808 if (cause & UART_MCR_DTR)
809 ch->ch_mostat |= UART_MCR_DTR;
810 else
811 ch->ch_mostat &= ~(UART_MCR_DTR);
812 }
813 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
814 }
815
816 /* Parse any modem signal changes */
817 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
818 "MOD_STAT: sending to parse_modem_sigs\n");
819 uart_port_lock_irqsave(&ch->uart_port, &lock_flags);
820 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
821 uart_port_unlock_irqrestore(&ch->uart_port, lock_flags);
822 }
823}
824
825static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
826{
827 struct jsm_channel *ch;
828 int linestatus;
829 unsigned long lock_flags;
830
831 if (!brd)
832 return;
833
834 if (port >= brd->maxports)
835 return;
836
837 ch = brd->channels[port];
838 if (!ch)
839 return;
840
841 linestatus = readb(&ch->ch_neo_uart->lsr);
842
843 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d port: %d linestatus: %x\n",
844 __FILE__, __LINE__, port, linestatus);
845
846 ch->ch_cached_lsr |= linestatus;
847
848 if (ch->ch_cached_lsr & UART_LSR_DR) {
849 /* Read data from uart -> queue */
850 neo_copy_data_from_uart_to_queue(ch);
851 spin_lock_irqsave(&ch->ch_lock, lock_flags);
852 jsm_check_queue_flow_control(ch);
853 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
854 }
855
856 /*
857 * This is a special flag. It indicates that at least 1
858 * RX error (parity, framing, or break) has happened.
859 * Mark this in our struct, which will tell me that I have
860 *to do the special RX+LSR read for this FIFO load.
861 */
862 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
863 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
864 "%s:%d Port: %d Got an RX error, need to parse LSR\n",
865 __FILE__, __LINE__, port);
866
867 /*
868 * The next 3 tests should *NOT* happen, as the above test
869 * should encapsulate all 3... At least, thats what Exar says.
870 */
871
872 if (linestatus & UART_LSR_PE) {
873 ch->ch_err_parity++;
874 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. PAR ERR!\n",
875 __FILE__, __LINE__, port);
876 }
877
878 if (linestatus & UART_LSR_FE) {
879 ch->ch_err_frame++;
880 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. FRM ERR!\n",
881 __FILE__, __LINE__, port);
882 }
883
884 if (linestatus & UART_LSR_BI) {
885 ch->ch_err_break++;
886 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
887 "%s:%d Port: %d. BRK INTR!\n",
888 __FILE__, __LINE__, port);
889 }
890
891 if (linestatus & UART_LSR_OE) {
892 /*
893 * Rx Oruns. Exar says that an orun will NOT corrupt
894 * the FIFO. It will just replace the holding register
895 * with this new data byte. So basically just ignore this.
896 * Probably we should eventually have an orun stat in our driver...
897 */
898 ch->ch_err_overrun++;
899 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
900 "%s:%d Port: %d. Rx Overrun!\n",
901 __FILE__, __LINE__, port);
902 }
903
904 if (linestatus & UART_LSR_THRE) {
905 spin_lock_irqsave(&ch->ch_lock, lock_flags);
906 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
907 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
908
909 /* Transfer data (if any) from Write Queue -> UART. */
910 neo_copy_data_from_queue_to_uart(ch);
911 }
912 else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
913 spin_lock_irqsave(&ch->ch_lock, lock_flags);
914 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
915 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
916
917 /* Transfer data (if any) from Write Queue -> UART. */
918 neo_copy_data_from_queue_to_uart(ch);
919 }
920}
921
922/*
923 * neo_param()
924 * Send any/all changes to the line to the UART.
925 */
926static void neo_param(struct jsm_channel *ch)
927{
928 u8 lcr = 0;
929 u8 uart_lcr, ier;
930 u32 baud;
931 int quot;
932 struct jsm_board *bd;
933
934 bd = ch->ch_bd;
935 if (!bd)
936 return;
937
938 /*
939 * If baud rate is zero, flush queues, and set mval to drop DTR.
940 */
941 if ((ch->ch_c_cflag & CBAUD) == B0) {
942 ch->ch_r_head = ch->ch_r_tail = 0;
943 ch->ch_e_head = ch->ch_e_tail = 0;
944
945 neo_flush_uart_write(ch);
946 neo_flush_uart_read(ch);
947
948 ch->ch_flags |= (CH_BAUD0);
949 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
950 neo_assert_modem_signals(ch);
951 return;
952
953 } else {
954 int i;
955 unsigned int cflag;
956 static struct {
957 unsigned int rate;
958 unsigned int cflag;
959 } baud_rates[] = {
960 { 921600, B921600 },
961 { 460800, B460800 },
962 { 230400, B230400 },
963 { 115200, B115200 },
964 { 57600, B57600 },
965 { 38400, B38400 },
966 { 19200, B19200 },
967 { 9600, B9600 },
968 { 4800, B4800 },
969 { 2400, B2400 },
970 { 1200, B1200 },
971 { 600, B600 },
972 { 300, B300 },
973 { 200, B200 },
974 { 150, B150 },
975 { 134, B134 },
976 { 110, B110 },
977 { 75, B75 },
978 { 50, B50 },
979 };
980
981 cflag = C_BAUD(ch->uart_port.state->port.tty);
982 baud = 9600;
983 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
984 if (baud_rates[i].cflag == cflag) {
985 baud = baud_rates[i].rate;
986 break;
987 }
988 }
989
990 if (ch->ch_flags & CH_BAUD0)
991 ch->ch_flags &= ~(CH_BAUD0);
992 }
993
994 if (ch->ch_c_cflag & PARENB)
995 lcr |= UART_LCR_PARITY;
996
997 if (!(ch->ch_c_cflag & PARODD))
998 lcr |= UART_LCR_EPAR;
999
1000 if (ch->ch_c_cflag & CMSPAR)
1001 lcr |= UART_LCR_SPAR;
1002
1003 if (ch->ch_c_cflag & CSTOPB)
1004 lcr |= UART_LCR_STOP;
1005
1006 lcr |= UART_LCR_WLEN(tty_get_char_size(ch->ch_c_cflag));
1007
1008 ier = readb(&ch->ch_neo_uart->ier);
1009 uart_lcr = readb(&ch->ch_neo_uart->lcr);
1010
1011 quot = ch->ch_bd->bd_dividend / baud;
1012
1013 if (quot != 0) {
1014 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1015 writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1016 writeb((quot >> 8), &ch->ch_neo_uart->ier);
1017 writeb(lcr, &ch->ch_neo_uart->lcr);
1018 }
1019
1020 if (uart_lcr != lcr)
1021 writeb(lcr, &ch->ch_neo_uart->lcr);
1022
1023 if (ch->ch_c_cflag & CREAD)
1024 ier |= (UART_IER_RDI | UART_IER_RLSI);
1025
1026 ier |= (UART_IER_THRI | UART_IER_MSI);
1027
1028 writeb(ier, &ch->ch_neo_uart->ier);
1029
1030 /* Set new start/stop chars */
1031 neo_set_new_start_stop_chars(ch);
1032
1033 if (ch->ch_c_cflag & CRTSCTS)
1034 neo_set_cts_flow_control(ch);
1035 else if (ch->ch_c_iflag & IXON) {
1036 /* If start/stop is set to disable, then we should disable flow control */
1037 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1038 neo_set_no_output_flow_control(ch);
1039 else
1040 neo_set_ixon_flow_control(ch);
1041 }
1042 else
1043 neo_set_no_output_flow_control(ch);
1044
1045 if (ch->ch_c_cflag & CRTSCTS)
1046 neo_set_rts_flow_control(ch);
1047 else if (ch->ch_c_iflag & IXOFF) {
1048 /* If start/stop is set to disable, then we should disable flow control */
1049 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1050 neo_set_no_input_flow_control(ch);
1051 else
1052 neo_set_ixoff_flow_control(ch);
1053 }
1054 else
1055 neo_set_no_input_flow_control(ch);
1056 /*
1057 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1058 * Not exactly elegant, but this is needed because of the Exar chip's
1059 * delay on firing off the RX FIFO interrupt on slower baud rates.
1060 */
1061 if (baud < 9600) {
1062 writeb(1, &ch->ch_neo_uart->rfifo);
1063 ch->ch_r_tlevel = 1;
1064 }
1065
1066 neo_assert_modem_signals(ch);
1067
1068 /* Get current status of the modem signals now */
1069 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1070 return;
1071}
1072
1073/*
1074 * jsm_neo_intr()
1075 *
1076 * Neo specific interrupt handler.
1077 */
1078static irqreturn_t neo_intr(int irq, void *voidbrd)
1079{
1080 struct jsm_board *brd = voidbrd;
1081 struct jsm_channel *ch;
1082 int port = 0;
1083 int type = 0;
1084 int current_port;
1085 u32 tmp;
1086 u32 uart_poll;
1087 unsigned long lock_flags;
1088 unsigned long lock_flags2;
1089 int outofloop_count = 0;
1090
1091 /* Lock out the slow poller from running on this board. */
1092 spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1093
1094 /*
1095 * Read in "extended" IRQ information from the 32bit Neo register.
1096 * Bits 0-7: What port triggered the interrupt.
1097 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1098 */
1099 uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1100
1101 jsm_dbg(INTR, &brd->pci_dev, "%s:%d uart_poll: %x\n",
1102 __FILE__, __LINE__, uart_poll);
1103
1104 if (!uart_poll) {
1105 jsm_dbg(INTR, &brd->pci_dev,
1106 "Kernel interrupted to me, but no pending interrupts...\n");
1107 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1108 return IRQ_NONE;
1109 }
1110
1111 /* At this point, we have at least SOMETHING to service, dig further... */
1112
1113 current_port = 0;
1114
1115 /* Loop on each port */
1116 while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1117
1118 tmp = uart_poll;
1119 outofloop_count++;
1120
1121 /* Check current port to see if it has interrupt pending */
1122 if ((tmp & jsm_offset_table[current_port]) != 0) {
1123 port = current_port;
1124 type = tmp >> (8 + (port * 3));
1125 type &= 0x7;
1126 } else {
1127 current_port++;
1128 continue;
1129 }
1130
1131 jsm_dbg(INTR, &brd->pci_dev, "%s:%d port: %x type: %x\n",
1132 __FILE__, __LINE__, port, type);
1133
1134 /* Remove this port + type from uart_poll */
1135 uart_poll &= ~(jsm_offset_table[port]);
1136
1137 if (!type) {
1138 /* If no type, just ignore it, and move onto next port */
1139 jsm_dbg(INTR, &brd->pci_dev,
1140 "Interrupt with no type! port: %d\n", port);
1141 continue;
1142 }
1143
1144 /* Switch on type of interrupt we have */
1145 switch (type) {
1146
1147 case UART_17158_RXRDY_TIMEOUT:
1148 /*
1149 * RXRDY Time-out is cleared by reading data in the
1150 * RX FIFO until it falls below the trigger level.
1151 */
1152
1153 /* Verify the port is in range. */
1154 if (port >= brd->nasync)
1155 continue;
1156
1157 ch = brd->channels[port];
1158 if (!ch)
1159 continue;
1160
1161 neo_copy_data_from_uart_to_queue(ch);
1162
1163 /* Call our tty layer to enforce queue flow control if needed. */
1164 spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1165 jsm_check_queue_flow_control(ch);
1166 spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1167
1168 continue;
1169
1170 case UART_17158_RX_LINE_STATUS:
1171 /*
1172 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1173 */
1174 neo_parse_lsr(brd, port);
1175 continue;
1176
1177 case UART_17158_TXRDY:
1178 /*
1179 * TXRDY interrupt clears after reading ISR register for the UART channel.
1180 */
1181
1182 /*
1183 * Yes, this is odd...
1184 * Why would I check EVERY possibility of type of
1185 * interrupt, when we know its TXRDY???
1186 * Becuz for some reason, even tho we got triggered for TXRDY,
1187 * it seems to be occasionally wrong. Instead of TX, which
1188 * it should be, I was getting things like RXDY too. Weird.
1189 */
1190 neo_parse_isr(brd, port);
1191 continue;
1192
1193 case UART_17158_MSR:
1194 /*
1195 * MSR or flow control was seen.
1196 */
1197 neo_parse_isr(brd, port);
1198 continue;
1199
1200 default:
1201 /*
1202 * The UART triggered us with a bogus interrupt type.
1203 * It appears the Exar chip, when REALLY bogged down, will throw
1204 * these once and awhile.
1205 * Its harmless, just ignore it and move on.
1206 */
1207 jsm_dbg(INTR, &brd->pci_dev,
1208 "%s:%d Unknown Interrupt type: %x\n",
1209 __FILE__, __LINE__, type);
1210 continue;
1211 }
1212 }
1213
1214 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1215
1216 jsm_dbg(INTR, &brd->pci_dev, "finish\n");
1217 return IRQ_HANDLED;
1218}
1219
1220/*
1221 * Neo specific way of turning off the receiver.
1222 * Used as a way to enforce queue flow control when in
1223 * hardware flow control mode.
1224 */
1225static void neo_disable_receiver(struct jsm_channel *ch)
1226{
1227 u8 tmp = readb(&ch->ch_neo_uart->ier);
1228 tmp &= ~(UART_IER_RDI);
1229 writeb(tmp, &ch->ch_neo_uart->ier);
1230
1231 /* flush write operation */
1232 neo_pci_posting_flush(ch->ch_bd);
1233}
1234
1235
1236/*
1237 * Neo specific way of turning on the receiver.
1238 * Used as a way to un-enforce queue flow control when in
1239 * hardware flow control mode.
1240 */
1241static void neo_enable_receiver(struct jsm_channel *ch)
1242{
1243 u8 tmp = readb(&ch->ch_neo_uart->ier);
1244 tmp |= (UART_IER_RDI);
1245 writeb(tmp, &ch->ch_neo_uart->ier);
1246
1247 /* flush write operation */
1248 neo_pci_posting_flush(ch->ch_bd);
1249}
1250
1251static void neo_send_start_character(struct jsm_channel *ch)
1252{
1253 if (!ch)
1254 return;
1255
1256 if (ch->ch_startc != __DISABLED_CHAR) {
1257 ch->ch_xon_sends++;
1258 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1259
1260 /* flush write operation */
1261 neo_pci_posting_flush(ch->ch_bd);
1262 }
1263}
1264
1265static void neo_send_stop_character(struct jsm_channel *ch)
1266{
1267 if (!ch)
1268 return;
1269
1270 if (ch->ch_stopc != __DISABLED_CHAR) {
1271 ch->ch_xoff_sends++;
1272 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1273
1274 /* flush write operation */
1275 neo_pci_posting_flush(ch->ch_bd);
1276 }
1277}
1278
1279/*
1280 * neo_uart_init
1281 */
1282static void neo_uart_init(struct jsm_channel *ch)
1283{
1284 writeb(0, &ch->ch_neo_uart->ier);
1285 writeb(0, &ch->ch_neo_uart->efr);
1286 writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1287
1288 /* Clear out UART and FIFO */
1289 readb(&ch->ch_neo_uart->txrx);
1290 writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1291 readb(&ch->ch_neo_uart->lsr);
1292 readb(&ch->ch_neo_uart->msr);
1293
1294 ch->ch_flags |= CH_FIFO_ENABLED;
1295
1296 /* Assert any signals we want up */
1297 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1298}
1299
1300/*
1301 * Make the UART completely turn off.
1302 */
1303static void neo_uart_off(struct jsm_channel *ch)
1304{
1305 /* Turn off UART enhanced bits */
1306 writeb(0, &ch->ch_neo_uart->efr);
1307
1308 /* Stop all interrupts from occurring. */
1309 writeb(0, &ch->ch_neo_uart->ier);
1310}
1311
1312/* Channel lock MUST be held by the calling function! */
1313static void neo_send_break(struct jsm_channel *ch)
1314{
1315 /*
1316 * Set the time we should stop sending the break.
1317 * If we are already sending a break, toss away the existing
1318 * time to stop, and use this new value instead.
1319 */
1320
1321 /* Tell the UART to start sending the break */
1322 if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1323 u8 temp = readb(&ch->ch_neo_uart->lcr);
1324 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1325 ch->ch_flags |= (CH_BREAK_SENDING);
1326
1327 /* flush write operation */
1328 neo_pci_posting_flush(ch->ch_bd);
1329 }
1330}
1331
1332struct board_ops jsm_neo_ops = {
1333 .intr = neo_intr,
1334 .uart_init = neo_uart_init,
1335 .uart_off = neo_uart_off,
1336 .param = neo_param,
1337 .assert_modem_signals = neo_assert_modem_signals,
1338 .flush_uart_write = neo_flush_uart_write,
1339 .flush_uart_read = neo_flush_uart_read,
1340 .disable_receiver = neo_disable_receiver,
1341 .enable_receiver = neo_enable_receiver,
1342 .send_break = neo_send_break,
1343 .clear_break = neo_clear_break,
1344 .send_start_character = neo_send_start_character,
1345 .send_stop_character = neo_send_stop_character,
1346 .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart,
1347};
1// SPDX-License-Identifier: GPL-2.0+
2/************************************************************************
3 * Copyright 2003 Digi International (www.digi.com)
4 *
5 * Copyright (C) 2004 IBM Corporation. All rights reserved.
6 *
7 * Contact Information:
8 * Scott H Kilau <Scott_Kilau@digi.com>
9 * Wendy Xiong <wendyx@us.ibm.com>
10 *
11 ***********************************************************************/
12#include <linux/delay.h> /* For udelay */
13#include <linux/serial_reg.h> /* For the various UART offsets */
14#include <linux/tty.h>
15#include <linux/pci.h>
16#include <asm/io.h>
17
18#include "jsm.h" /* Driver main header file */
19
20static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
21
22/*
23 * This function allows calls to ensure that all outstanding
24 * PCI writes have been completed, by doing a PCI read against
25 * a non-destructive, read-only location on the Neo card.
26 *
27 * In this case, we are reading the DVID (Read-only Device Identification)
28 * value of the Neo card.
29 */
30static inline void neo_pci_posting_flush(struct jsm_board *bd)
31{
32 readb(bd->re_map_membase + 0x8D);
33}
34
35static void neo_set_cts_flow_control(struct jsm_channel *ch)
36{
37 u8 ier, efr;
38 ier = readb(&ch->ch_neo_uart->ier);
39 efr = readb(&ch->ch_neo_uart->efr);
40
41 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
42
43 /* Turn on auto CTS flow control */
44 ier |= (UART_17158_IER_CTSDSR);
45 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
46
47 /* Turn off auto Xon flow control */
48 efr &= ~(UART_17158_EFR_IXON);
49
50 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
51 writeb(0, &ch->ch_neo_uart->efr);
52
53 /* Turn on UART enhanced bits */
54 writeb(efr, &ch->ch_neo_uart->efr);
55
56 /* Turn on table D, with 8 char hi/low watermarks */
57 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
58
59 /* Feed the UART our trigger levels */
60 writeb(8, &ch->ch_neo_uart->tfifo);
61 ch->ch_t_tlevel = 8;
62
63 writeb(ier, &ch->ch_neo_uart->ier);
64}
65
66static void neo_set_rts_flow_control(struct jsm_channel *ch)
67{
68 u8 ier, efr;
69 ier = readb(&ch->ch_neo_uart->ier);
70 efr = readb(&ch->ch_neo_uart->efr);
71
72 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
73
74 /* Turn on auto RTS flow control */
75 ier |= (UART_17158_IER_RTSDTR);
76 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
77
78 /* Turn off auto Xoff flow control */
79 ier &= ~(UART_17158_IER_XOFF);
80 efr &= ~(UART_17158_EFR_IXOFF);
81
82 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
83 writeb(0, &ch->ch_neo_uart->efr);
84
85 /* Turn on UART enhanced bits */
86 writeb(efr, &ch->ch_neo_uart->efr);
87
88 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
89 ch->ch_r_watermark = 4;
90
91 writeb(56, &ch->ch_neo_uart->rfifo);
92 ch->ch_r_tlevel = 56;
93
94 writeb(ier, &ch->ch_neo_uart->ier);
95
96 /*
97 * From the Neo UART spec sheet:
98 * The auto RTS/DTR function must be started by asserting
99 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
100 * it is enabled.
101 */
102 ch->ch_mostat |= (UART_MCR_RTS);
103}
104
105
106static void neo_set_ixon_flow_control(struct jsm_channel *ch)
107{
108 u8 ier, efr;
109 ier = readb(&ch->ch_neo_uart->ier);
110 efr = readb(&ch->ch_neo_uart->efr);
111
112 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
113
114 /* Turn off auto CTS flow control */
115 ier &= ~(UART_17158_IER_CTSDSR);
116 efr &= ~(UART_17158_EFR_CTSDSR);
117
118 /* Turn on auto Xon flow control */
119 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
120
121 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
122 writeb(0, &ch->ch_neo_uart->efr);
123
124 /* Turn on UART enhanced bits */
125 writeb(efr, &ch->ch_neo_uart->efr);
126
127 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
128 ch->ch_r_watermark = 4;
129
130 writeb(32, &ch->ch_neo_uart->rfifo);
131 ch->ch_r_tlevel = 32;
132
133 /* Tell UART what start/stop chars it should be looking for */
134 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
135 writeb(0, &ch->ch_neo_uart->xonchar2);
136
137 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
138 writeb(0, &ch->ch_neo_uart->xoffchar2);
139
140 writeb(ier, &ch->ch_neo_uart->ier);
141}
142
143static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
144{
145 u8 ier, efr;
146 ier = readb(&ch->ch_neo_uart->ier);
147 efr = readb(&ch->ch_neo_uart->efr);
148
149 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
150
151 /* Turn off auto RTS flow control */
152 ier &= ~(UART_17158_IER_RTSDTR);
153 efr &= ~(UART_17158_EFR_RTSDTR);
154
155 /* Turn on auto Xoff flow control */
156 ier |= (UART_17158_IER_XOFF);
157 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
158
159 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
160 writeb(0, &ch->ch_neo_uart->efr);
161
162 /* Turn on UART enhanced bits */
163 writeb(efr, &ch->ch_neo_uart->efr);
164
165 /* Turn on table D, with 8 char hi/low watermarks */
166 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
167
168 writeb(8, &ch->ch_neo_uart->tfifo);
169 ch->ch_t_tlevel = 8;
170
171 /* Tell UART what start/stop chars it should be looking for */
172 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
173 writeb(0, &ch->ch_neo_uart->xonchar2);
174
175 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
176 writeb(0, &ch->ch_neo_uart->xoffchar2);
177
178 writeb(ier, &ch->ch_neo_uart->ier);
179}
180
181static void neo_set_no_input_flow_control(struct jsm_channel *ch)
182{
183 u8 ier, efr;
184 ier = readb(&ch->ch_neo_uart->ier);
185 efr = readb(&ch->ch_neo_uart->efr);
186
187 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
188
189 /* Turn off auto RTS flow control */
190 ier &= ~(UART_17158_IER_RTSDTR);
191 efr &= ~(UART_17158_EFR_RTSDTR);
192
193 /* Turn off auto Xoff flow control */
194 ier &= ~(UART_17158_IER_XOFF);
195 if (ch->ch_c_iflag & IXON)
196 efr &= ~(UART_17158_EFR_IXOFF);
197 else
198 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
199
200 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
201 writeb(0, &ch->ch_neo_uart->efr);
202
203 /* Turn on UART enhanced bits */
204 writeb(efr, &ch->ch_neo_uart->efr);
205
206 /* Turn on table D, with 8 char hi/low watermarks */
207 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
208
209 ch->ch_r_watermark = 0;
210
211 writeb(16, &ch->ch_neo_uart->tfifo);
212 ch->ch_t_tlevel = 16;
213
214 writeb(16, &ch->ch_neo_uart->rfifo);
215 ch->ch_r_tlevel = 16;
216
217 writeb(ier, &ch->ch_neo_uart->ier);
218}
219
220static void neo_set_no_output_flow_control(struct jsm_channel *ch)
221{
222 u8 ier, efr;
223 ier = readb(&ch->ch_neo_uart->ier);
224 efr = readb(&ch->ch_neo_uart->efr);
225
226 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
227
228 /* Turn off auto CTS flow control */
229 ier &= ~(UART_17158_IER_CTSDSR);
230 efr &= ~(UART_17158_EFR_CTSDSR);
231
232 /* Turn off auto Xon flow control */
233 if (ch->ch_c_iflag & IXOFF)
234 efr &= ~(UART_17158_EFR_IXON);
235 else
236 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
237
238 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
239 writeb(0, &ch->ch_neo_uart->efr);
240
241 /* Turn on UART enhanced bits */
242 writeb(efr, &ch->ch_neo_uart->efr);
243
244 /* Turn on table D, with 8 char hi/low watermarks */
245 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
246
247 ch->ch_r_watermark = 0;
248
249 writeb(16, &ch->ch_neo_uart->tfifo);
250 ch->ch_t_tlevel = 16;
251
252 writeb(16, &ch->ch_neo_uart->rfifo);
253 ch->ch_r_tlevel = 16;
254
255 writeb(ier, &ch->ch_neo_uart->ier);
256}
257
258static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
259{
260
261 /* if hardware flow control is set, then skip this whole thing */
262 if (ch->ch_c_cflag & CRTSCTS)
263 return;
264
265 jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "start\n");
266
267 /* Tell UART what start/stop chars it should be looking for */
268 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
269 writeb(0, &ch->ch_neo_uart->xonchar2);
270
271 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
272 writeb(0, &ch->ch_neo_uart->xoffchar2);
273}
274
275static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
276{
277 int qleft = 0;
278 u8 linestatus = 0;
279 u8 error_mask = 0;
280 int n = 0;
281 int total = 0;
282 u16 head;
283 u16 tail;
284
285 /* cache head and tail of queue */
286 head = ch->ch_r_head & RQUEUEMASK;
287 tail = ch->ch_r_tail & RQUEUEMASK;
288
289 /* Get our cached LSR */
290 linestatus = ch->ch_cached_lsr;
291 ch->ch_cached_lsr = 0;
292
293 /* Store how much space we have left in the queue */
294 if ((qleft = tail - head - 1) < 0)
295 qleft += RQUEUEMASK + 1;
296
297 /*
298 * If the UART is not in FIFO mode, force the FIFO copy to
299 * NOT be run, by setting total to 0.
300 *
301 * On the other hand, if the UART IS in FIFO mode, then ask
302 * the UART to give us an approximation of data it has RX'ed.
303 */
304 if (!(ch->ch_flags & CH_FIFO_ENABLED))
305 total = 0;
306 else {
307 total = readb(&ch->ch_neo_uart->rfifo);
308
309 /*
310 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
311 *
312 * This resolves a problem/bug with the Exar chip that sometimes
313 * returns a bogus value in the rfifo register.
314 * The count can be any where from 0-3 bytes "off".
315 * Bizarre, but true.
316 */
317 total -= 3;
318 }
319
320 /*
321 * Finally, bound the copy to make sure we don't overflow
322 * our own queue...
323 * The byte by byte copy loop below this loop this will
324 * deal with the queue overflow possibility.
325 */
326 total = min(total, qleft);
327
328 while (total > 0) {
329 /*
330 * Grab the linestatus register, we need to check
331 * to see if there are any errors in the FIFO.
332 */
333 linestatus = readb(&ch->ch_neo_uart->lsr);
334
335 /*
336 * Break out if there is a FIFO error somewhere.
337 * This will allow us to go byte by byte down below,
338 * finding the exact location of the error.
339 */
340 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
341 break;
342
343 /* Make sure we don't go over the end of our queue */
344 n = min(((u32) total), (RQUEUESIZE - (u32) head));
345
346 /*
347 * Cut down n even further if needed, this is to fix
348 * a problem with memcpy_fromio() with the Neo on the
349 * IBM pSeries platform.
350 * 15 bytes max appears to be the magic number.
351 */
352 n = min((u32) n, (u32) 12);
353
354 /*
355 * Since we are grabbing the linestatus register, which
356 * will reset some bits after our read, we need to ensure
357 * we don't miss our TX FIFO emptys.
358 */
359 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
360 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
361
362 linestatus = 0;
363
364 /* Copy data from uart to the queue */
365 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
366 /*
367 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
368 * that all the data currently in the FIFO is free of
369 * breaks and parity/frame/orun errors.
370 */
371 memset(ch->ch_equeue + head, 0, n);
372
373 /* Add to and flip head if needed */
374 head = (head + n) & RQUEUEMASK;
375 total -= n;
376 qleft -= n;
377 ch->ch_rxcount += n;
378 }
379
380 /*
381 * Create a mask to determine whether we should
382 * insert the character (if any) into our queue.
383 */
384 if (ch->ch_c_iflag & IGNBRK)
385 error_mask |= UART_LSR_BI;
386
387 /*
388 * Now cleanup any leftover bytes still in the UART.
389 * Also deal with any possible queue overflow here as well.
390 */
391 while (1) {
392
393 /*
394 * Its possible we have a linestatus from the loop above
395 * this, so we "OR" on any extra bits.
396 */
397 linestatus |= readb(&ch->ch_neo_uart->lsr);
398
399 /*
400 * If the chip tells us there is no more data pending to
401 * be read, we can then leave.
402 * But before we do, cache the linestatus, just in case.
403 */
404 if (!(linestatus & UART_LSR_DR)) {
405 ch->ch_cached_lsr = linestatus;
406 break;
407 }
408
409 /* No need to store this bit */
410 linestatus &= ~UART_LSR_DR;
411
412 /*
413 * Since we are grabbing the linestatus register, which
414 * will reset some bits after our read, we need to ensure
415 * we don't miss our TX FIFO emptys.
416 */
417 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
418 linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
419 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
420 }
421
422 /*
423 * Discard character if we are ignoring the error mask.
424 */
425 if (linestatus & error_mask) {
426 u8 discard;
427 linestatus = 0;
428 memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
429 continue;
430 }
431
432 /*
433 * If our queue is full, we have no choice but to drop some data.
434 * The assumption is that HWFLOW or SWFLOW should have stopped
435 * things way way before we got to this point.
436 *
437 * I decided that I wanted to ditch the oldest data first,
438 * I hope thats okay with everyone? Yes? Good.
439 */
440 while (qleft < 1) {
441 jsm_dbg(READ, &ch->ch_bd->pci_dev,
442 "Queue full, dropping DATA:%x LSR:%x\n",
443 ch->ch_rqueue[tail], ch->ch_equeue[tail]);
444
445 ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
446 ch->ch_err_overrun++;
447 qleft++;
448 }
449
450 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
451 ch->ch_equeue[head] = (u8) linestatus;
452
453 jsm_dbg(READ, &ch->ch_bd->pci_dev, "DATA/LSR pair: %x %x\n",
454 ch->ch_rqueue[head], ch->ch_equeue[head]);
455
456 /* Ditch any remaining linestatus value. */
457 linestatus = 0;
458
459 /* Add to and flip head if needed */
460 head = (head + 1) & RQUEUEMASK;
461
462 qleft--;
463 ch->ch_rxcount++;
464 }
465
466 /*
467 * Write new final heads to channel structure.
468 */
469 ch->ch_r_head = head & RQUEUEMASK;
470 ch->ch_e_head = head & EQUEUEMASK;
471 jsm_input(ch);
472}
473
474static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
475{
476 u16 head;
477 u16 tail;
478 int n;
479 int s;
480 int qlen;
481 u32 len_written = 0;
482 struct circ_buf *circ;
483
484 if (!ch)
485 return;
486
487 circ = &ch->uart_port.state->xmit;
488
489 /* No data to write to the UART */
490 if (uart_circ_empty(circ))
491 return;
492
493 /* If port is "stopped", don't send any data to the UART */
494 if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
495 return;
496 /*
497 * If FIFOs are disabled. Send data directly to txrx register
498 */
499 if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
500 u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
501
502 ch->ch_cached_lsr |= lsrbits;
503 if (ch->ch_cached_lsr & UART_LSR_THRE) {
504 ch->ch_cached_lsr &= ~(UART_LSR_THRE);
505
506 writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx);
507 jsm_dbg(WRITE, &ch->ch_bd->pci_dev,
508 "Tx data: %x\n", circ->buf[circ->tail]);
509 circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1);
510 ch->ch_txcount++;
511 }
512 return;
513 }
514
515 /*
516 * We have to do it this way, because of the EXAR TXFIFO count bug.
517 */
518 if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
519 return;
520
521 n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
522
523 /* cache head and tail of queue */
524 head = circ->head & (UART_XMIT_SIZE - 1);
525 tail = circ->tail & (UART_XMIT_SIZE - 1);
526 qlen = uart_circ_chars_pending(circ);
527
528 /* Find minimum of the FIFO space, versus queue length */
529 n = min(n, qlen);
530
531 while (n > 0) {
532
533 s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail;
534 s = min(s, n);
535
536 if (s <= 0)
537 break;
538
539 memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s);
540 /* Add and flip queue if needed */
541 tail = (tail + s) & (UART_XMIT_SIZE - 1);
542 n -= s;
543 ch->ch_txcount += s;
544 len_written += s;
545 }
546
547 /* Update the final tail */
548 circ->tail = tail & (UART_XMIT_SIZE - 1);
549
550 if (len_written >= ch->ch_t_tlevel)
551 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
552
553 if (uart_circ_empty(circ))
554 uart_write_wakeup(&ch->uart_port);
555}
556
557static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
558{
559 u8 msignals = signals;
560
561 jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
562 "neo_parse_modem: port: %d msignals: %x\n",
563 ch->ch_portnum, msignals);
564
565 /* Scrub off lower bits. They signify delta's, which I don't care about */
566 /* Keep DDCD and DDSR though */
567 msignals &= 0xf8;
568
569 if (msignals & UART_MSR_DDCD)
570 uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
571 if (msignals & UART_MSR_DDSR)
572 uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
573 if (msignals & UART_MSR_DCD)
574 ch->ch_mistat |= UART_MSR_DCD;
575 else
576 ch->ch_mistat &= ~UART_MSR_DCD;
577
578 if (msignals & UART_MSR_DSR)
579 ch->ch_mistat |= UART_MSR_DSR;
580 else
581 ch->ch_mistat &= ~UART_MSR_DSR;
582
583 if (msignals & UART_MSR_RI)
584 ch->ch_mistat |= UART_MSR_RI;
585 else
586 ch->ch_mistat &= ~UART_MSR_RI;
587
588 if (msignals & UART_MSR_CTS)
589 ch->ch_mistat |= UART_MSR_CTS;
590 else
591 ch->ch_mistat &= ~UART_MSR_CTS;
592
593 jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
594 "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
595 ch->ch_portnum,
596 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
597 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
598 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
599 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
600 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
601 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
602}
603
604/* Make the UART raise any of the output signals we want up */
605static void neo_assert_modem_signals(struct jsm_channel *ch)
606{
607 if (!ch)
608 return;
609
610 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
611
612 /* flush write operation */
613 neo_pci_posting_flush(ch->ch_bd);
614}
615
616/*
617 * Flush the WRITE FIFO on the Neo.
618 *
619 * NOTE: Channel lock MUST be held before calling this function!
620 */
621static void neo_flush_uart_write(struct jsm_channel *ch)
622{
623 u8 tmp = 0;
624 int i = 0;
625
626 if (!ch)
627 return;
628
629 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
630
631 for (i = 0; i < 10; i++) {
632
633 /* Check to see if the UART feels it completely flushed the FIFO. */
634 tmp = readb(&ch->ch_neo_uart->isr_fcr);
635 if (tmp & UART_FCR_CLEAR_XMIT) {
636 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
637 "Still flushing TX UART... i: %d\n", i);
638 udelay(10);
639 }
640 else
641 break;
642 }
643
644 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
645}
646
647
648/*
649 * Flush the READ FIFO on the Neo.
650 *
651 * NOTE: Channel lock MUST be held before calling this function!
652 */
653static void neo_flush_uart_read(struct jsm_channel *ch)
654{
655 u8 tmp = 0;
656 int i = 0;
657
658 if (!ch)
659 return;
660
661 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
662
663 for (i = 0; i < 10; i++) {
664
665 /* Check to see if the UART feels it completely flushed the FIFO. */
666 tmp = readb(&ch->ch_neo_uart->isr_fcr);
667 if (tmp & 2) {
668 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
669 "Still flushing RX UART... i: %d\n", i);
670 udelay(10);
671 }
672 else
673 break;
674 }
675}
676
677/*
678 * No locks are assumed to be held when calling this function.
679 */
680static void neo_clear_break(struct jsm_channel *ch)
681{
682 unsigned long lock_flags;
683
684 spin_lock_irqsave(&ch->ch_lock, lock_flags);
685
686 /* Turn break off, and unset some variables */
687 if (ch->ch_flags & CH_BREAK_SENDING) {
688 u8 temp = readb(&ch->ch_neo_uart->lcr);
689 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
690
691 ch->ch_flags &= ~(CH_BREAK_SENDING);
692 jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
693 "clear break Finishing UART_LCR_SBC! finished: %lx\n",
694 jiffies);
695
696 /* flush write operation */
697 neo_pci_posting_flush(ch->ch_bd);
698 }
699 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
700}
701
702/*
703 * Parse the ISR register.
704 */
705static void neo_parse_isr(struct jsm_board *brd, u32 port)
706{
707 struct jsm_channel *ch;
708 u8 isr;
709 u8 cause;
710 unsigned long lock_flags;
711
712 if (!brd)
713 return;
714
715 if (port >= brd->maxports)
716 return;
717
718 ch = brd->channels[port];
719 if (!ch)
720 return;
721
722 /* Here we try to figure out what caused the interrupt to happen */
723 while (1) {
724
725 isr = readb(&ch->ch_neo_uart->isr_fcr);
726
727 /* Bail if no pending interrupt */
728 if (isr & UART_IIR_NO_INT)
729 break;
730
731 /*
732 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
733 */
734 isr &= ~(UART_17158_IIR_FIFO_ENABLED);
735
736 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d isr: %x\n",
737 __FILE__, __LINE__, isr);
738
739 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
740 /* Read data from uart -> queue */
741 neo_copy_data_from_uart_to_queue(ch);
742
743 /* Call our tty layer to enforce queue flow control if needed. */
744 spin_lock_irqsave(&ch->ch_lock, lock_flags);
745 jsm_check_queue_flow_control(ch);
746 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
747 }
748
749 if (isr & UART_IIR_THRI) {
750 /* Transfer data (if any) from Write Queue -> UART. */
751 spin_lock_irqsave(&ch->ch_lock, lock_flags);
752 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
753 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
754 neo_copy_data_from_queue_to_uart(ch);
755 }
756
757 if (isr & UART_17158_IIR_XONXOFF) {
758 cause = readb(&ch->ch_neo_uart->xoffchar1);
759
760 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
761 "Port %d. Got ISR_XONXOFF: cause:%x\n",
762 port, cause);
763
764 /*
765 * Since the UART detected either an XON or
766 * XOFF match, we need to figure out which
767 * one it was, so we can suspend or resume data flow.
768 */
769 spin_lock_irqsave(&ch->ch_lock, lock_flags);
770 if (cause == UART_17158_XON_DETECT) {
771 /* Is output stopped right now, if so, resume it */
772 if (brd->channels[port]->ch_flags & CH_STOP) {
773 ch->ch_flags &= ~(CH_STOP);
774 }
775 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
776 "Port %d. XON detected in incoming data\n",
777 port);
778 }
779 else if (cause == UART_17158_XOFF_DETECT) {
780 if (!(brd->channels[port]->ch_flags & CH_STOP)) {
781 ch->ch_flags |= CH_STOP;
782 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
783 "Setting CH_STOP\n");
784 }
785 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
786 "Port: %d. XOFF detected in incoming data\n",
787 port);
788 }
789 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
790 }
791
792 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
793 /*
794 * If we get here, this means the hardware is doing auto flow control.
795 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
796 */
797 cause = readb(&ch->ch_neo_uart->mcr);
798
799 /* Which pin is doing auto flow? RTS or DTR? */
800 spin_lock_irqsave(&ch->ch_lock, lock_flags);
801 if ((cause & 0x4) == 0) {
802 if (cause & UART_MCR_RTS)
803 ch->ch_mostat |= UART_MCR_RTS;
804 else
805 ch->ch_mostat &= ~(UART_MCR_RTS);
806 } else {
807 if (cause & UART_MCR_DTR)
808 ch->ch_mostat |= UART_MCR_DTR;
809 else
810 ch->ch_mostat &= ~(UART_MCR_DTR);
811 }
812 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
813 }
814
815 /* Parse any modem signal changes */
816 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
817 "MOD_STAT: sending to parse_modem_sigs\n");
818 spin_lock_irqsave(&ch->uart_port.lock, lock_flags);
819 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
820 spin_unlock_irqrestore(&ch->uart_port.lock, lock_flags);
821 }
822}
823
824static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
825{
826 struct jsm_channel *ch;
827 int linestatus;
828 unsigned long lock_flags;
829
830 if (!brd)
831 return;
832
833 if (port >= brd->maxports)
834 return;
835
836 ch = brd->channels[port];
837 if (!ch)
838 return;
839
840 linestatus = readb(&ch->ch_neo_uart->lsr);
841
842 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d port: %d linestatus: %x\n",
843 __FILE__, __LINE__, port, linestatus);
844
845 ch->ch_cached_lsr |= linestatus;
846
847 if (ch->ch_cached_lsr & UART_LSR_DR) {
848 /* Read data from uart -> queue */
849 neo_copy_data_from_uart_to_queue(ch);
850 spin_lock_irqsave(&ch->ch_lock, lock_flags);
851 jsm_check_queue_flow_control(ch);
852 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
853 }
854
855 /*
856 * This is a special flag. It indicates that at least 1
857 * RX error (parity, framing, or break) has happened.
858 * Mark this in our struct, which will tell me that I have
859 *to do the special RX+LSR read for this FIFO load.
860 */
861 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
862 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
863 "%s:%d Port: %d Got an RX error, need to parse LSR\n",
864 __FILE__, __LINE__, port);
865
866 /*
867 * The next 3 tests should *NOT* happen, as the above test
868 * should encapsulate all 3... At least, thats what Exar says.
869 */
870
871 if (linestatus & UART_LSR_PE) {
872 ch->ch_err_parity++;
873 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. PAR ERR!\n",
874 __FILE__, __LINE__, port);
875 }
876
877 if (linestatus & UART_LSR_FE) {
878 ch->ch_err_frame++;
879 jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. FRM ERR!\n",
880 __FILE__, __LINE__, port);
881 }
882
883 if (linestatus & UART_LSR_BI) {
884 ch->ch_err_break++;
885 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
886 "%s:%d Port: %d. BRK INTR!\n",
887 __FILE__, __LINE__, port);
888 }
889
890 if (linestatus & UART_LSR_OE) {
891 /*
892 * Rx Oruns. Exar says that an orun will NOT corrupt
893 * the FIFO. It will just replace the holding register
894 * with this new data byte. So basically just ignore this.
895 * Probably we should eventually have an orun stat in our driver...
896 */
897 ch->ch_err_overrun++;
898 jsm_dbg(INTR, &ch->ch_bd->pci_dev,
899 "%s:%d Port: %d. Rx Overrun!\n",
900 __FILE__, __LINE__, port);
901 }
902
903 if (linestatus & UART_LSR_THRE) {
904 spin_lock_irqsave(&ch->ch_lock, lock_flags);
905 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
906 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
907
908 /* Transfer data (if any) from Write Queue -> UART. */
909 neo_copy_data_from_queue_to_uart(ch);
910 }
911 else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
912 spin_lock_irqsave(&ch->ch_lock, lock_flags);
913 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
914 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
915
916 /* Transfer data (if any) from Write Queue -> UART. */
917 neo_copy_data_from_queue_to_uart(ch);
918 }
919}
920
921/*
922 * neo_param()
923 * Send any/all changes to the line to the UART.
924 */
925static void neo_param(struct jsm_channel *ch)
926{
927 u8 lcr = 0;
928 u8 uart_lcr, ier;
929 u32 baud;
930 int quot;
931 struct jsm_board *bd;
932
933 bd = ch->ch_bd;
934 if (!bd)
935 return;
936
937 /*
938 * If baud rate is zero, flush queues, and set mval to drop DTR.
939 */
940 if ((ch->ch_c_cflag & (CBAUD)) == 0) {
941 ch->ch_r_head = ch->ch_r_tail = 0;
942 ch->ch_e_head = ch->ch_e_tail = 0;
943
944 neo_flush_uart_write(ch);
945 neo_flush_uart_read(ch);
946
947 ch->ch_flags |= (CH_BAUD0);
948 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
949 neo_assert_modem_signals(ch);
950 return;
951
952 } else {
953 int i;
954 unsigned int cflag;
955 static struct {
956 unsigned int rate;
957 unsigned int cflag;
958 } baud_rates[] = {
959 { 921600, B921600 },
960 { 460800, B460800 },
961 { 230400, B230400 },
962 { 115200, B115200 },
963 { 57600, B57600 },
964 { 38400, B38400 },
965 { 19200, B19200 },
966 { 9600, B9600 },
967 { 4800, B4800 },
968 { 2400, B2400 },
969 { 1200, B1200 },
970 { 600, B600 },
971 { 300, B300 },
972 { 200, B200 },
973 { 150, B150 },
974 { 134, B134 },
975 { 110, B110 },
976 { 75, B75 },
977 { 50, B50 },
978 };
979
980 cflag = C_BAUD(ch->uart_port.state->port.tty);
981 baud = 9600;
982 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
983 if (baud_rates[i].cflag == cflag) {
984 baud = baud_rates[i].rate;
985 break;
986 }
987 }
988
989 if (ch->ch_flags & CH_BAUD0)
990 ch->ch_flags &= ~(CH_BAUD0);
991 }
992
993 if (ch->ch_c_cflag & PARENB)
994 lcr |= UART_LCR_PARITY;
995
996 if (!(ch->ch_c_cflag & PARODD))
997 lcr |= UART_LCR_EPAR;
998
999 /*
1000 * Not all platforms support mark/space parity,
1001 * so this will hide behind an ifdef.
1002 */
1003#ifdef CMSPAR
1004 if (ch->ch_c_cflag & CMSPAR)
1005 lcr |= UART_LCR_SPAR;
1006#endif
1007
1008 if (ch->ch_c_cflag & CSTOPB)
1009 lcr |= UART_LCR_STOP;
1010
1011 switch (ch->ch_c_cflag & CSIZE) {
1012 case CS5:
1013 lcr |= UART_LCR_WLEN5;
1014 break;
1015 case CS6:
1016 lcr |= UART_LCR_WLEN6;
1017 break;
1018 case CS7:
1019 lcr |= UART_LCR_WLEN7;
1020 break;
1021 case CS8:
1022 default:
1023 lcr |= UART_LCR_WLEN8;
1024 break;
1025 }
1026
1027 ier = readb(&ch->ch_neo_uart->ier);
1028 uart_lcr = readb(&ch->ch_neo_uart->lcr);
1029
1030 quot = ch->ch_bd->bd_dividend / baud;
1031
1032 if (quot != 0) {
1033 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1034 writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1035 writeb((quot >> 8), &ch->ch_neo_uart->ier);
1036 writeb(lcr, &ch->ch_neo_uart->lcr);
1037 }
1038
1039 if (uart_lcr != lcr)
1040 writeb(lcr, &ch->ch_neo_uart->lcr);
1041
1042 if (ch->ch_c_cflag & CREAD)
1043 ier |= (UART_IER_RDI | UART_IER_RLSI);
1044
1045 ier |= (UART_IER_THRI | UART_IER_MSI);
1046
1047 writeb(ier, &ch->ch_neo_uart->ier);
1048
1049 /* Set new start/stop chars */
1050 neo_set_new_start_stop_chars(ch);
1051
1052 if (ch->ch_c_cflag & CRTSCTS)
1053 neo_set_cts_flow_control(ch);
1054 else if (ch->ch_c_iflag & IXON) {
1055 /* If start/stop is set to disable, then we should disable flow control */
1056 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1057 neo_set_no_output_flow_control(ch);
1058 else
1059 neo_set_ixon_flow_control(ch);
1060 }
1061 else
1062 neo_set_no_output_flow_control(ch);
1063
1064 if (ch->ch_c_cflag & CRTSCTS)
1065 neo_set_rts_flow_control(ch);
1066 else if (ch->ch_c_iflag & IXOFF) {
1067 /* If start/stop is set to disable, then we should disable flow control */
1068 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1069 neo_set_no_input_flow_control(ch);
1070 else
1071 neo_set_ixoff_flow_control(ch);
1072 }
1073 else
1074 neo_set_no_input_flow_control(ch);
1075 /*
1076 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1077 * Not exactly elegant, but this is needed because of the Exar chip's
1078 * delay on firing off the RX FIFO interrupt on slower baud rates.
1079 */
1080 if (baud < 9600) {
1081 writeb(1, &ch->ch_neo_uart->rfifo);
1082 ch->ch_r_tlevel = 1;
1083 }
1084
1085 neo_assert_modem_signals(ch);
1086
1087 /* Get current status of the modem signals now */
1088 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1089 return;
1090}
1091
1092/*
1093 * jsm_neo_intr()
1094 *
1095 * Neo specific interrupt handler.
1096 */
1097static irqreturn_t neo_intr(int irq, void *voidbrd)
1098{
1099 struct jsm_board *brd = voidbrd;
1100 struct jsm_channel *ch;
1101 int port = 0;
1102 int type = 0;
1103 int current_port;
1104 u32 tmp;
1105 u32 uart_poll;
1106 unsigned long lock_flags;
1107 unsigned long lock_flags2;
1108 int outofloop_count = 0;
1109
1110 /* Lock out the slow poller from running on this board. */
1111 spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1112
1113 /*
1114 * Read in "extended" IRQ information from the 32bit Neo register.
1115 * Bits 0-7: What port triggered the interrupt.
1116 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1117 */
1118 uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1119
1120 jsm_dbg(INTR, &brd->pci_dev, "%s:%d uart_poll: %x\n",
1121 __FILE__, __LINE__, uart_poll);
1122
1123 if (!uart_poll) {
1124 jsm_dbg(INTR, &brd->pci_dev,
1125 "Kernel interrupted to me, but no pending interrupts...\n");
1126 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1127 return IRQ_NONE;
1128 }
1129
1130 /* At this point, we have at least SOMETHING to service, dig further... */
1131
1132 current_port = 0;
1133
1134 /* Loop on each port */
1135 while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1136
1137 tmp = uart_poll;
1138 outofloop_count++;
1139
1140 /* Check current port to see if it has interrupt pending */
1141 if ((tmp & jsm_offset_table[current_port]) != 0) {
1142 port = current_port;
1143 type = tmp >> (8 + (port * 3));
1144 type &= 0x7;
1145 } else {
1146 current_port++;
1147 continue;
1148 }
1149
1150 jsm_dbg(INTR, &brd->pci_dev, "%s:%d port: %x type: %x\n",
1151 __FILE__, __LINE__, port, type);
1152
1153 /* Remove this port + type from uart_poll */
1154 uart_poll &= ~(jsm_offset_table[port]);
1155
1156 if (!type) {
1157 /* If no type, just ignore it, and move onto next port */
1158 jsm_dbg(INTR, &brd->pci_dev,
1159 "Interrupt with no type! port: %d\n", port);
1160 continue;
1161 }
1162
1163 /* Switch on type of interrupt we have */
1164 switch (type) {
1165
1166 case UART_17158_RXRDY_TIMEOUT:
1167 /*
1168 * RXRDY Time-out is cleared by reading data in the
1169 * RX FIFO until it falls below the trigger level.
1170 */
1171
1172 /* Verify the port is in range. */
1173 if (port >= brd->nasync)
1174 continue;
1175
1176 ch = brd->channels[port];
1177 if (!ch)
1178 continue;
1179
1180 neo_copy_data_from_uart_to_queue(ch);
1181
1182 /* Call our tty layer to enforce queue flow control if needed. */
1183 spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1184 jsm_check_queue_flow_control(ch);
1185 spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1186
1187 continue;
1188
1189 case UART_17158_RX_LINE_STATUS:
1190 /*
1191 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1192 */
1193 neo_parse_lsr(brd, port);
1194 continue;
1195
1196 case UART_17158_TXRDY:
1197 /*
1198 * TXRDY interrupt clears after reading ISR register for the UART channel.
1199 */
1200
1201 /*
1202 * Yes, this is odd...
1203 * Why would I check EVERY possibility of type of
1204 * interrupt, when we know its TXRDY???
1205 * Becuz for some reason, even tho we got triggered for TXRDY,
1206 * it seems to be occasionally wrong. Instead of TX, which
1207 * it should be, I was getting things like RXDY too. Weird.
1208 */
1209 neo_parse_isr(brd, port);
1210 continue;
1211
1212 case UART_17158_MSR:
1213 /*
1214 * MSR or flow control was seen.
1215 */
1216 neo_parse_isr(brd, port);
1217 continue;
1218
1219 default:
1220 /*
1221 * The UART triggered us with a bogus interrupt type.
1222 * It appears the Exar chip, when REALLY bogged down, will throw
1223 * these once and awhile.
1224 * Its harmless, just ignore it and move on.
1225 */
1226 jsm_dbg(INTR, &brd->pci_dev,
1227 "%s:%d Unknown Interrupt type: %x\n",
1228 __FILE__, __LINE__, type);
1229 continue;
1230 }
1231 }
1232
1233 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1234
1235 jsm_dbg(INTR, &brd->pci_dev, "finish\n");
1236 return IRQ_HANDLED;
1237}
1238
1239/*
1240 * Neo specific way of turning off the receiver.
1241 * Used as a way to enforce queue flow control when in
1242 * hardware flow control mode.
1243 */
1244static void neo_disable_receiver(struct jsm_channel *ch)
1245{
1246 u8 tmp = readb(&ch->ch_neo_uart->ier);
1247 tmp &= ~(UART_IER_RDI);
1248 writeb(tmp, &ch->ch_neo_uart->ier);
1249
1250 /* flush write operation */
1251 neo_pci_posting_flush(ch->ch_bd);
1252}
1253
1254
1255/*
1256 * Neo specific way of turning on the receiver.
1257 * Used as a way to un-enforce queue flow control when in
1258 * hardware flow control mode.
1259 */
1260static void neo_enable_receiver(struct jsm_channel *ch)
1261{
1262 u8 tmp = readb(&ch->ch_neo_uart->ier);
1263 tmp |= (UART_IER_RDI);
1264 writeb(tmp, &ch->ch_neo_uart->ier);
1265
1266 /* flush write operation */
1267 neo_pci_posting_flush(ch->ch_bd);
1268}
1269
1270static void neo_send_start_character(struct jsm_channel *ch)
1271{
1272 if (!ch)
1273 return;
1274
1275 if (ch->ch_startc != __DISABLED_CHAR) {
1276 ch->ch_xon_sends++;
1277 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1278
1279 /* flush write operation */
1280 neo_pci_posting_flush(ch->ch_bd);
1281 }
1282}
1283
1284static void neo_send_stop_character(struct jsm_channel *ch)
1285{
1286 if (!ch)
1287 return;
1288
1289 if (ch->ch_stopc != __DISABLED_CHAR) {
1290 ch->ch_xoff_sends++;
1291 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1292
1293 /* flush write operation */
1294 neo_pci_posting_flush(ch->ch_bd);
1295 }
1296}
1297
1298/*
1299 * neo_uart_init
1300 */
1301static void neo_uart_init(struct jsm_channel *ch)
1302{
1303 writeb(0, &ch->ch_neo_uart->ier);
1304 writeb(0, &ch->ch_neo_uart->efr);
1305 writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1306
1307 /* Clear out UART and FIFO */
1308 readb(&ch->ch_neo_uart->txrx);
1309 writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1310 readb(&ch->ch_neo_uart->lsr);
1311 readb(&ch->ch_neo_uart->msr);
1312
1313 ch->ch_flags |= CH_FIFO_ENABLED;
1314
1315 /* Assert any signals we want up */
1316 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1317}
1318
1319/*
1320 * Make the UART completely turn off.
1321 */
1322static void neo_uart_off(struct jsm_channel *ch)
1323{
1324 /* Turn off UART enhanced bits */
1325 writeb(0, &ch->ch_neo_uart->efr);
1326
1327 /* Stop all interrupts from occurring. */
1328 writeb(0, &ch->ch_neo_uart->ier);
1329}
1330
1331static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1332{
1333 u8 left = 0;
1334 u8 lsr = readb(&ch->ch_neo_uart->lsr);
1335
1336 /* We must cache the LSR as some of the bits get reset once read... */
1337 ch->ch_cached_lsr |= lsr;
1338
1339 /* Determine whether the Transmitter is empty or not */
1340 if (!(lsr & UART_LSR_TEMT))
1341 left = 1;
1342 else {
1343 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1344 left = 0;
1345 }
1346
1347 return left;
1348}
1349
1350/* Channel lock MUST be held by the calling function! */
1351static void neo_send_break(struct jsm_channel *ch)
1352{
1353 /*
1354 * Set the time we should stop sending the break.
1355 * If we are already sending a break, toss away the existing
1356 * time to stop, and use this new value instead.
1357 */
1358
1359 /* Tell the UART to start sending the break */
1360 if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1361 u8 temp = readb(&ch->ch_neo_uart->lcr);
1362 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1363 ch->ch_flags |= (CH_BREAK_SENDING);
1364
1365 /* flush write operation */
1366 neo_pci_posting_flush(ch->ch_bd);
1367 }
1368}
1369
1370/*
1371 * neo_send_immediate_char.
1372 *
1373 * Sends a specific character as soon as possible to the UART,
1374 * jumping over any bytes that might be in the write queue.
1375 *
1376 * The channel lock MUST be held by the calling function.
1377 */
1378static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1379{
1380 if (!ch)
1381 return;
1382
1383 writeb(c, &ch->ch_neo_uart->txrx);
1384
1385 /* flush write operation */
1386 neo_pci_posting_flush(ch->ch_bd);
1387}
1388
1389struct board_ops jsm_neo_ops = {
1390 .intr = neo_intr,
1391 .uart_init = neo_uart_init,
1392 .uart_off = neo_uart_off,
1393 .param = neo_param,
1394 .assert_modem_signals = neo_assert_modem_signals,
1395 .flush_uart_write = neo_flush_uart_write,
1396 .flush_uart_read = neo_flush_uart_read,
1397 .disable_receiver = neo_disable_receiver,
1398 .enable_receiver = neo_enable_receiver,
1399 .send_break = neo_send_break,
1400 .clear_break = neo_clear_break,
1401 .send_start_character = neo_send_start_character,
1402 .send_stop_character = neo_send_stop_character,
1403 .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart,
1404 .get_uart_bytes_left = neo_get_uart_bytes_left,
1405 .send_immediate_char = neo_send_immediate_char
1406};