Loading...
1// SPDX-License-Identifier: GPL-2.0
2//
3// STMicroelectronics STM32 SPI Controller driver
4//
5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8#include <linux/bitfield.h>
9#include <linux/debugfs.h>
10#include <linux/clk.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/interrupt.h>
14#include <linux/iopoll.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/platform_device.h>
18#include <linux/pinctrl/consumer.h>
19#include <linux/pm_runtime.h>
20#include <linux/reset.h>
21#include <linux/spi/spi.h>
22
23#define DRIVER_NAME "spi_stm32"
24
25/* STM32F4/7 SPI registers */
26#define STM32FX_SPI_CR1 0x00
27#define STM32FX_SPI_CR2 0x04
28#define STM32FX_SPI_SR 0x08
29#define STM32FX_SPI_DR 0x0C
30#define STM32FX_SPI_I2SCFGR 0x1C
31
32/* STM32FX_SPI_CR1 bit fields */
33#define STM32FX_SPI_CR1_CPHA BIT(0)
34#define STM32FX_SPI_CR1_CPOL BIT(1)
35#define STM32FX_SPI_CR1_MSTR BIT(2)
36#define STM32FX_SPI_CR1_BR_SHIFT 3
37#define STM32FX_SPI_CR1_BR GENMASK(5, 3)
38#define STM32FX_SPI_CR1_SPE BIT(6)
39#define STM32FX_SPI_CR1_LSBFRST BIT(7)
40#define STM32FX_SPI_CR1_SSI BIT(8)
41#define STM32FX_SPI_CR1_SSM BIT(9)
42#define STM32FX_SPI_CR1_RXONLY BIT(10)
43#define STM32F4_SPI_CR1_DFF BIT(11)
44#define STM32F7_SPI_CR1_CRCL BIT(11)
45#define STM32FX_SPI_CR1_CRCNEXT BIT(12)
46#define STM32FX_SPI_CR1_CRCEN BIT(13)
47#define STM32FX_SPI_CR1_BIDIOE BIT(14)
48#define STM32FX_SPI_CR1_BIDIMODE BIT(15)
49#define STM32FX_SPI_CR1_BR_MIN 0
50#define STM32FX_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
51
52/* STM32FX_SPI_CR2 bit fields */
53#define STM32FX_SPI_CR2_RXDMAEN BIT(0)
54#define STM32FX_SPI_CR2_TXDMAEN BIT(1)
55#define STM32FX_SPI_CR2_SSOE BIT(2)
56#define STM32FX_SPI_CR2_FRF BIT(4)
57#define STM32FX_SPI_CR2_ERRIE BIT(5)
58#define STM32FX_SPI_CR2_RXNEIE BIT(6)
59#define STM32FX_SPI_CR2_TXEIE BIT(7)
60#define STM32F7_SPI_CR2_DS GENMASK(11, 8)
61#define STM32F7_SPI_CR2_FRXTH BIT(12)
62#define STM32F7_SPI_CR2_LDMA_RX BIT(13)
63#define STM32F7_SPI_CR2_LDMA_TX BIT(14)
64
65/* STM32FX_SPI_SR bit fields */
66#define STM32FX_SPI_SR_RXNE BIT(0)
67#define STM32FX_SPI_SR_TXE BIT(1)
68#define STM32FX_SPI_SR_CHSIDE BIT(2)
69#define STM32FX_SPI_SR_UDR BIT(3)
70#define STM32FX_SPI_SR_CRCERR BIT(4)
71#define STM32FX_SPI_SR_MODF BIT(5)
72#define STM32FX_SPI_SR_OVR BIT(6)
73#define STM32FX_SPI_SR_BSY BIT(7)
74#define STM32FX_SPI_SR_FRE BIT(8)
75#define STM32F7_SPI_SR_FRLVL GENMASK(10, 9)
76#define STM32F7_SPI_SR_FTLVL GENMASK(12, 11)
77
78/* STM32FX_SPI_I2SCFGR bit fields */
79#define STM32FX_SPI_I2SCFGR_I2SMOD BIT(11)
80
81/* STM32F4 SPI Baud Rate min/max divisor */
82#define STM32FX_SPI_BR_DIV_MIN (2 << STM32FX_SPI_CR1_BR_MIN)
83#define STM32FX_SPI_BR_DIV_MAX (2 << STM32FX_SPI_CR1_BR_MAX)
84
85/* STM32H7 SPI registers */
86#define STM32H7_SPI_CR1 0x00
87#define STM32H7_SPI_CR2 0x04
88#define STM32H7_SPI_CFG1 0x08
89#define STM32H7_SPI_CFG2 0x0C
90#define STM32H7_SPI_IER 0x10
91#define STM32H7_SPI_SR 0x14
92#define STM32H7_SPI_IFCR 0x18
93#define STM32H7_SPI_TXDR 0x20
94#define STM32H7_SPI_RXDR 0x30
95#define STM32H7_SPI_I2SCFGR 0x50
96
97/* STM32H7_SPI_CR1 bit fields */
98#define STM32H7_SPI_CR1_SPE BIT(0)
99#define STM32H7_SPI_CR1_MASRX BIT(8)
100#define STM32H7_SPI_CR1_CSTART BIT(9)
101#define STM32H7_SPI_CR1_CSUSP BIT(10)
102#define STM32H7_SPI_CR1_HDDIR BIT(11)
103#define STM32H7_SPI_CR1_SSI BIT(12)
104
105/* STM32H7_SPI_CR2 bit fields */
106#define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
107#define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0)
108
109/* STM32H7_SPI_CFG1 bit fields */
110#define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
111#define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
112#define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
113#define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
114#define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
115#define STM32H7_SPI_CFG1_MBR_SHIFT 28
116#define STM32H7_SPI_CFG1_MBR_MIN 0
117#define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
118
119/* STM32H7_SPI_CFG2 bit fields */
120#define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
121#define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
122#define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
123#define STM32H7_SPI_CFG2_MASTER BIT(22)
124#define STM32H7_SPI_CFG2_LSBFRST BIT(23)
125#define STM32H7_SPI_CFG2_CPHA BIT(24)
126#define STM32H7_SPI_CFG2_CPOL BIT(25)
127#define STM32H7_SPI_CFG2_SSM BIT(26)
128#define STM32H7_SPI_CFG2_SSIOP BIT(28)
129#define STM32H7_SPI_CFG2_AFCNTR BIT(31)
130
131/* STM32H7_SPI_IER bit fields */
132#define STM32H7_SPI_IER_RXPIE BIT(0)
133#define STM32H7_SPI_IER_TXPIE BIT(1)
134#define STM32H7_SPI_IER_DXPIE BIT(2)
135#define STM32H7_SPI_IER_EOTIE BIT(3)
136#define STM32H7_SPI_IER_TXTFIE BIT(4)
137#define STM32H7_SPI_IER_OVRIE BIT(6)
138#define STM32H7_SPI_IER_MODFIE BIT(9)
139#define STM32H7_SPI_IER_ALL GENMASK(10, 0)
140
141/* STM32H7_SPI_SR bit fields */
142#define STM32H7_SPI_SR_RXP BIT(0)
143#define STM32H7_SPI_SR_TXP BIT(1)
144#define STM32H7_SPI_SR_EOT BIT(3)
145#define STM32H7_SPI_SR_OVR BIT(6)
146#define STM32H7_SPI_SR_MODF BIT(9)
147#define STM32H7_SPI_SR_SUSP BIT(11)
148#define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
149#define STM32H7_SPI_SR_RXWNE BIT(15)
150
151/* STM32H7_SPI_IFCR bit fields */
152#define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
153
154/* STM32H7_SPI_I2SCFGR bit fields */
155#define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
156
157/* STM32MP25 SPI registers bit fields */
158#define STM32MP25_SPI_HWCFGR1 0x3F0
159
160/* STM32MP25_SPI_CR2 bit fields */
161#define STM32MP25_SPI_TSIZE_MAX_LIMITED GENMASK(9, 0)
162
163/* STM32MP25_SPI_HWCFGR1 */
164#define STM32MP25_SPI_HWCFGR1_FULLCFG GENMASK(27, 24)
165#define STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED 0x0
166#define STM32MP25_SPI_HWCFGR1_FULLCFG_FULL 0x1
167#define STM32MP25_SPI_HWCFGR1_DSCFG GENMASK(19, 16)
168#define STM32MP25_SPI_HWCFGR1_DSCFG_16_B 0x0
169#define STM32MP25_SPI_HWCFGR1_DSCFG_32_B 0x1
170
171/* STM32H7 SPI Master Baud Rate min/max divisor */
172#define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
173#define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
174
175/* STM32H7 SPI Communication mode */
176#define STM32H7_SPI_FULL_DUPLEX 0
177#define STM32H7_SPI_SIMPLEX_TX 1
178#define STM32H7_SPI_SIMPLEX_RX 2
179#define STM32H7_SPI_HALF_DUPLEX 3
180
181/* SPI Communication type */
182#define SPI_FULL_DUPLEX 0
183#define SPI_SIMPLEX_TX 1
184#define SPI_SIMPLEX_RX 2
185#define SPI_3WIRE_TX 3
186#define SPI_3WIRE_RX 4
187
188#define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */
189
190/*
191 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
192 * without fifo buffers.
193 */
194#define SPI_DMA_MIN_BYTES 16
195
196/* STM32 SPI driver helpers */
197#define STM32_SPI_HOST_MODE(stm32_spi) (!(stm32_spi)->device_mode)
198#define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
199
200/**
201 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
202 * @reg: register offset
203 * @mask: bitfield mask
204 * @shift: left shift
205 */
206struct stm32_spi_reg {
207 int reg;
208 int mask;
209 int shift;
210};
211
212/**
213 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
214 * @en: enable register and SPI enable bit
215 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
216 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
217 * @cpol: clock polarity register and polarity bit
218 * @cpha: clock phase register and phase bit
219 * @lsb_first: LSB transmitted first register and bit
220 * @cs_high: chips select active value
221 * @br: baud rate register and bitfields
222 * @rx: SPI RX data register
223 * @tx: SPI TX data register
224 * @fullcfg: SPI full or limited feature set register
225 */
226struct stm32_spi_regspec {
227 const struct stm32_spi_reg en;
228 const struct stm32_spi_reg dma_rx_en;
229 const struct stm32_spi_reg dma_tx_en;
230 const struct stm32_spi_reg cpol;
231 const struct stm32_spi_reg cpha;
232 const struct stm32_spi_reg lsb_first;
233 const struct stm32_spi_reg cs_high;
234 const struct stm32_spi_reg br;
235 const struct stm32_spi_reg rx;
236 const struct stm32_spi_reg tx;
237 const struct stm32_spi_reg fullcfg;
238};
239
240struct stm32_spi;
241
242/**
243 * struct stm32_spi_cfg - stm32 compatible configuration data
244 * @regs: registers descriptions
245 * @get_fifo_size: routine to get fifo size
246 * @get_bpw_mask: routine to get bits per word mask
247 * @disable: routine to disable controller
248 * @config: routine to configure controller as SPI Host
249 * @set_bpw: routine to configure registers to for bits per word
250 * @set_mode: routine to configure registers to desired mode
251 * @set_data_idleness: optional routine to configure registers to desired idle
252 * time between frames (if driver has this functionality)
253 * @set_number_of_data: optional routine to configure registers to desired
254 * number of data (if driver has this functionality)
255 * @write_tx: routine to write to transmit register/FIFO
256 * @read_rx: routine to read from receive register/FIFO
257 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
258 * using DMA
259 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
260 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
261 * @transfer_one_irq: routine to configure interrupts for driver
262 * @irq_handler_event: Interrupt handler for SPI controller events
263 * @irq_handler_thread: thread of interrupt handler for SPI controller
264 * @baud_rate_div_min: minimum baud rate divisor
265 * @baud_rate_div_max: maximum baud rate divisor
266 * @has_fifo: boolean to know if fifo is used for driver
267 * @has_device_mode: is this compatible capable to switch on device mode
268 * @flags: compatible specific SPI controller flags used at registration time
269 * @prevent_dma_burst: boolean to indicate to prevent DMA burst
270 */
271struct stm32_spi_cfg {
272 const struct stm32_spi_regspec *regs;
273 int (*get_fifo_size)(struct stm32_spi *spi);
274 int (*get_bpw_mask)(struct stm32_spi *spi);
275 void (*disable)(struct stm32_spi *spi);
276 int (*config)(struct stm32_spi *spi);
277 void (*set_bpw)(struct stm32_spi *spi);
278 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
279 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
280 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
281 void (*write_tx)(struct stm32_spi *spi);
282 void (*read_rx)(struct stm32_spi *spi);
283 void (*transfer_one_dma_start)(struct stm32_spi *spi);
284 void (*dma_rx_cb)(void *data);
285 void (*dma_tx_cb)(void *data);
286 int (*transfer_one_irq)(struct stm32_spi *spi);
287 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
288 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
289 unsigned int baud_rate_div_min;
290 unsigned int baud_rate_div_max;
291 bool has_fifo;
292 bool has_device_mode;
293 u16 flags;
294 bool prevent_dma_burst;
295};
296
297/**
298 * struct stm32_spi - private data of the SPI controller
299 * @dev: driver model representation of the controller
300 * @ctrl: controller interface
301 * @cfg: compatible configuration data
302 * @base: virtual memory area
303 * @clk: hw kernel clock feeding the SPI clock generator
304 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
305 * @lock: prevent I/O concurrent access
306 * @irq: SPI controller interrupt line
307 * @fifo_size: size of the embedded fifo in bytes
308 * @t_size_max: maximum number of data of one transfer
309 * @feature_set: SPI full or limited feature set
310 * @cur_midi: host inter-data idleness in ns
311 * @cur_speed: speed configured in Hz
312 * @cur_half_period: time of a half bit in us
313 * @cur_bpw: number of bits in a single SPI data frame
314 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
315 * @cur_comm: SPI communication mode
316 * @cur_xferlen: current transfer length in bytes
317 * @cur_usedma: boolean to know if dma is used in current transfer
318 * @tx_buf: data to be written, or NULL
319 * @rx_buf: data to be read, or NULL
320 * @tx_len: number of data to be written in bytes
321 * @rx_len: number of data to be read in bytes
322 * @dma_tx: dma channel for TX transfer
323 * @dma_rx: dma channel for RX transfer
324 * @phys_addr: SPI registers physical base address
325 * @device_mode: the controller is configured as SPI device
326 */
327struct stm32_spi {
328 struct device *dev;
329 struct spi_controller *ctrl;
330 const struct stm32_spi_cfg *cfg;
331 void __iomem *base;
332 struct clk *clk;
333 u32 clk_rate;
334 spinlock_t lock; /* prevent I/O concurrent access */
335 int irq;
336 unsigned int fifo_size;
337 unsigned int t_size_max;
338 unsigned int feature_set;
339#define STM32_SPI_FEATURE_LIMITED STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED /* 0x0 */
340#define STM32_SPI_FEATURE_FULL STM32MP25_SPI_HWCFGR1_FULLCFG_FULL /* 0x1 */
341
342 unsigned int cur_midi;
343 unsigned int cur_speed;
344 unsigned int cur_half_period;
345 unsigned int cur_bpw;
346 unsigned int cur_fthlv;
347 unsigned int cur_comm;
348 unsigned int cur_xferlen;
349 bool cur_usedma;
350
351 const void *tx_buf;
352 void *rx_buf;
353 int tx_len;
354 int rx_len;
355 struct dma_chan *dma_tx;
356 struct dma_chan *dma_rx;
357 dma_addr_t phys_addr;
358
359 bool device_mode;
360};
361
362static const struct stm32_spi_regspec stm32fx_spi_regspec = {
363 .en = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE },
364
365 .dma_rx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_RXDMAEN },
366 .dma_tx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN },
367
368 .cpol = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPOL },
369 .cpha = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPHA },
370 .lsb_first = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_LSBFRST },
371 .cs_high = {},
372 .br = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_BR, STM32FX_SPI_CR1_BR_SHIFT },
373
374 .rx = { STM32FX_SPI_DR },
375 .tx = { STM32FX_SPI_DR },
376};
377
378static const struct stm32_spi_regspec stm32h7_spi_regspec = {
379 /* SPI data transfer is enabled but spi_ker_ck is idle.
380 * CFG1 and CFG2 registers are write protected when SPE is enabled.
381 */
382 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
383
384 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
385 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
386
387 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
388 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
389 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
390 .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
391 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
392 STM32H7_SPI_CFG1_MBR_SHIFT },
393
394 .rx = { STM32H7_SPI_RXDR },
395 .tx = { STM32H7_SPI_TXDR },
396};
397
398static const struct stm32_spi_regspec stm32mp25_spi_regspec = {
399 /* SPI data transfer is enabled but spi_ker_ck is idle.
400 * CFG1 and CFG2 registers are write protected when SPE is enabled.
401 */
402 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
403
404 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
405 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
406
407 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
408 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
409 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
410 .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
411 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
412 STM32H7_SPI_CFG1_MBR_SHIFT },
413
414 .rx = { STM32H7_SPI_RXDR },
415 .tx = { STM32H7_SPI_TXDR },
416
417 .fullcfg = { STM32MP25_SPI_HWCFGR1, STM32MP25_SPI_HWCFGR1_FULLCFG },
418};
419
420static inline void stm32_spi_set_bits(struct stm32_spi *spi,
421 u32 offset, u32 bits)
422{
423 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
424 spi->base + offset);
425}
426
427static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
428 u32 offset, u32 bits)
429{
430 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
431 spi->base + offset);
432}
433
434/**
435 * stm32h7_spi_get_fifo_size - Return fifo size
436 * @spi: pointer to the spi controller data structure
437 */
438static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
439{
440 unsigned long flags;
441 u32 count = 0;
442
443 spin_lock_irqsave(&spi->lock, flags);
444
445 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
446
447 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
448 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
449
450 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
451
452 spin_unlock_irqrestore(&spi->lock, flags);
453
454 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
455
456 return count;
457}
458
459/**
460 * stm32f4_spi_get_bpw_mask - Return bits per word mask
461 * @spi: pointer to the spi controller data structure
462 */
463static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
464{
465 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
466 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
467}
468
469/**
470 * stm32f7_spi_get_bpw_mask - Return bits per word mask
471 * @spi: pointer to the spi controller data structure
472 */
473static int stm32f7_spi_get_bpw_mask(struct stm32_spi *spi)
474{
475 dev_dbg(spi->dev, "16-bit maximum data frame\n");
476 return SPI_BPW_RANGE_MASK(4, 16);
477}
478
479/**
480 * stm32h7_spi_get_bpw_mask - Return bits per word mask
481 * @spi: pointer to the spi controller data structure
482 */
483static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
484{
485 unsigned long flags;
486 u32 cfg1, max_bpw;
487
488 spin_lock_irqsave(&spi->lock, flags);
489
490 /*
491 * The most significant bit at DSIZE bit field is reserved when the
492 * maximum data size of periperal instances is limited to 16-bit
493 */
494 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
495
496 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
497 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
498
499 spin_unlock_irqrestore(&spi->lock, flags);
500
501 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
502
503 return SPI_BPW_RANGE_MASK(4, max_bpw);
504}
505
506/**
507 * stm32mp25_spi_get_bpw_mask - Return bits per word mask
508 * @spi: pointer to the spi controller data structure
509 */
510static int stm32mp25_spi_get_bpw_mask(struct stm32_spi *spi)
511{
512 u32 dscfg, max_bpw;
513
514 if (spi->feature_set == STM32_SPI_FEATURE_LIMITED) {
515 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
516 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
517 }
518
519 dscfg = FIELD_GET(STM32MP25_SPI_HWCFGR1_DSCFG,
520 readl_relaxed(spi->base + STM32MP25_SPI_HWCFGR1));
521 max_bpw = 16;
522 if (dscfg == STM32MP25_SPI_HWCFGR1_DSCFG_32_B)
523 max_bpw = 32;
524 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
525 return SPI_BPW_RANGE_MASK(4, max_bpw);
526}
527
528/**
529 * stm32_spi_prepare_mbr - Determine baud rate divisor value
530 * @spi: pointer to the spi controller data structure
531 * @speed_hz: requested speed
532 * @min_div: minimum baud rate divisor
533 * @max_div: maximum baud rate divisor
534 *
535 * Return baud rate divisor value in case of success or -EINVAL
536 */
537static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
538 u32 min_div, u32 max_div)
539{
540 u32 div, mbrdiv;
541
542 /* Ensure spi->clk_rate is even */
543 div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
544
545 /*
546 * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
547 * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
548 * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
549 * no need to check it there.
550 * However, we need to ensure the following calculations.
551 */
552 if ((div < min_div) || (div > max_div))
553 return -EINVAL;
554
555 /* Determine the first power of 2 greater than or equal to div */
556 if (div & (div - 1))
557 mbrdiv = fls(div);
558 else
559 mbrdiv = fls(div) - 1;
560
561 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
562
563 spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
564
565 return mbrdiv - 1;
566}
567
568/**
569 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
570 * @spi: pointer to the spi controller data structure
571 * @xfer_len: length of the message to be transferred
572 */
573static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
574{
575 u32 packet, bpw;
576
577 /* data packet should not exceed 1/2 of fifo space */
578 packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
579
580 /* align packet size with data registers access */
581 bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
582 return DIV_ROUND_UP(packet, bpw);
583}
584
585/**
586 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
587 * @spi: pointer to the spi controller data structure
588 *
589 * Read from tx_buf depends on remaining bytes to avoid to read beyond
590 * tx_buf end.
591 */
592static void stm32f4_spi_write_tx(struct stm32_spi *spi)
593{
594 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
595 STM32FX_SPI_SR_TXE)) {
596 u32 offs = spi->cur_xferlen - spi->tx_len;
597
598 if (spi->cur_bpw == 16) {
599 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
600
601 writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR);
602 spi->tx_len -= sizeof(u16);
603 } else {
604 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
605
606 writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR);
607 spi->tx_len -= sizeof(u8);
608 }
609 }
610
611 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
612}
613
614/**
615 * stm32f7_spi_write_tx - Write bytes to Transmit Data Register
616 * @spi: pointer to the spi controller data structure
617 *
618 * Read from tx_buf depends on remaining bytes to avoid to read beyond
619 * tx_buf end.
620 */
621static void stm32f7_spi_write_tx(struct stm32_spi *spi)
622{
623 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
624 STM32FX_SPI_SR_TXE)) {
625 u32 offs = spi->cur_xferlen - spi->tx_len;
626
627 if (spi->tx_len >= sizeof(u16)) {
628 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
629
630 writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR);
631 spi->tx_len -= sizeof(u16);
632 } else {
633 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
634
635 writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR);
636 spi->tx_len -= sizeof(u8);
637 }
638 }
639
640 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
641}
642
643/**
644 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
645 * @spi: pointer to the spi controller data structure
646 *
647 * Read from tx_buf depends on remaining bytes to avoid to read beyond
648 * tx_buf end.
649 */
650static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
651{
652 while ((spi->tx_len > 0) &&
653 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
654 STM32H7_SPI_SR_TXP)) {
655 u32 offs = spi->cur_xferlen - spi->tx_len;
656
657 if (spi->tx_len >= sizeof(u32)) {
658 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
659
660 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
661 spi->tx_len -= sizeof(u32);
662 } else if (spi->tx_len >= sizeof(u16)) {
663 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
664
665 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
666 spi->tx_len -= sizeof(u16);
667 } else {
668 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
669
670 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
671 spi->tx_len -= sizeof(u8);
672 }
673 }
674
675 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
676}
677
678/**
679 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
680 * @spi: pointer to the spi controller data structure
681 *
682 * Write in rx_buf depends on remaining bytes to avoid to write beyond
683 * rx_buf end.
684 */
685static void stm32f4_spi_read_rx(struct stm32_spi *spi)
686{
687 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
688 STM32FX_SPI_SR_RXNE)) {
689 u32 offs = spi->cur_xferlen - spi->rx_len;
690
691 if (spi->cur_bpw == 16) {
692 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
693
694 *rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR);
695 spi->rx_len -= sizeof(u16);
696 } else {
697 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
698
699 *rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR);
700 spi->rx_len -= sizeof(u8);
701 }
702 }
703
704 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
705}
706
707/**
708 * stm32f7_spi_read_rx - Read bytes from Receive Data Register
709 * @spi: pointer to the spi controller data structure
710 *
711 * Write in rx_buf depends on remaining bytes to avoid to write beyond
712 * rx_buf end.
713 */
714static void stm32f7_spi_read_rx(struct stm32_spi *spi)
715{
716 u32 sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
717 u32 frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr);
718
719 while ((spi->rx_len > 0) && (frlvl > 0)) {
720 u32 offs = spi->cur_xferlen - spi->rx_len;
721
722 if ((spi->rx_len >= sizeof(u16)) && (frlvl >= 2)) {
723 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
724
725 *rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR);
726 spi->rx_len -= sizeof(u16);
727 } else {
728 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
729
730 *rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR);
731 spi->rx_len -= sizeof(u8);
732 }
733
734 sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
735 frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr);
736 }
737
738 if (spi->rx_len >= sizeof(u16))
739 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
740 else
741 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
742
743 dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
744 __func__, spi->rx_len, sr);
745}
746
747/**
748 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
749 * @spi: pointer to the spi controller data structure
750 *
751 * Write in rx_buf depends on remaining bytes to avoid to write beyond
752 * rx_buf end.
753 */
754static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
755{
756 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
757 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
758
759 while ((spi->rx_len > 0) &&
760 ((sr & STM32H7_SPI_SR_RXP) ||
761 ((sr & STM32H7_SPI_SR_EOT) &&
762 ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
763 u32 offs = spi->cur_xferlen - spi->rx_len;
764
765 if ((spi->rx_len >= sizeof(u32)) ||
766 (sr & STM32H7_SPI_SR_RXWNE)) {
767 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
768
769 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
770 spi->rx_len -= sizeof(u32);
771 } else if ((spi->rx_len >= sizeof(u16)) ||
772 (!(sr & STM32H7_SPI_SR_RXWNE) &&
773 (rxplvl >= 2 || spi->cur_bpw > 8))) {
774 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
775
776 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
777 spi->rx_len -= sizeof(u16);
778 } else {
779 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
780
781 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
782 spi->rx_len -= sizeof(u8);
783 }
784
785 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
786 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
787 }
788
789 dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
790 __func__, spi->rx_len, sr);
791}
792
793/**
794 * stm32_spi_enable - Enable SPI controller
795 * @spi: pointer to the spi controller data structure
796 */
797static void stm32_spi_enable(struct stm32_spi *spi)
798{
799 dev_dbg(spi->dev, "enable controller\n");
800
801 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
802 spi->cfg->regs->en.mask);
803}
804
805/**
806 * stm32fx_spi_disable - Disable SPI controller
807 * @spi: pointer to the spi controller data structure
808 */
809static void stm32fx_spi_disable(struct stm32_spi *spi)
810{
811 unsigned long flags;
812 u32 sr;
813
814 dev_dbg(spi->dev, "disable controller\n");
815
816 spin_lock_irqsave(&spi->lock, flags);
817
818 if (!(readl_relaxed(spi->base + STM32FX_SPI_CR1) &
819 STM32FX_SPI_CR1_SPE)) {
820 spin_unlock_irqrestore(&spi->lock, flags);
821 return;
822 }
823
824 /* Disable interrupts */
825 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXEIE |
826 STM32FX_SPI_CR2_RXNEIE |
827 STM32FX_SPI_CR2_ERRIE);
828
829 /* Wait until BSY = 0 */
830 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32FX_SPI_SR,
831 sr, !(sr & STM32FX_SPI_SR_BSY),
832 10, 100000) < 0) {
833 dev_warn(spi->dev, "disabling condition timeout\n");
834 }
835
836 if (spi->cur_usedma && spi->dma_tx)
837 dmaengine_terminate_async(spi->dma_tx);
838 if (spi->cur_usedma && spi->dma_rx)
839 dmaengine_terminate_async(spi->dma_rx);
840
841 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE);
842
843 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN |
844 STM32FX_SPI_CR2_RXDMAEN);
845
846 /* Sequence to clear OVR flag */
847 readl_relaxed(spi->base + STM32FX_SPI_DR);
848 readl_relaxed(spi->base + STM32FX_SPI_SR);
849
850 spin_unlock_irqrestore(&spi->lock, flags);
851}
852
853/**
854 * stm32h7_spi_disable - Disable SPI controller
855 * @spi: pointer to the spi controller data structure
856 *
857 * RX-Fifo is flushed when SPI controller is disabled.
858 */
859static void stm32h7_spi_disable(struct stm32_spi *spi)
860{
861 unsigned long flags;
862 u32 cr1;
863
864 dev_dbg(spi->dev, "disable controller\n");
865
866 spin_lock_irqsave(&spi->lock, flags);
867
868 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
869
870 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
871 spin_unlock_irqrestore(&spi->lock, flags);
872 return;
873 }
874
875 /* Add a delay to make sure that transmission is ended. */
876 if (spi->cur_half_period)
877 udelay(spi->cur_half_period);
878
879 if (spi->cur_usedma && spi->dma_tx)
880 dmaengine_terminate_async(spi->dma_tx);
881 if (spi->cur_usedma && spi->dma_rx)
882 dmaengine_terminate_async(spi->dma_rx);
883
884 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
885
886 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
887 STM32H7_SPI_CFG1_RXDMAEN);
888
889 /* Disable interrupts and clear status flags */
890 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
891 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
892
893 spin_unlock_irqrestore(&spi->lock, flags);
894}
895
896/**
897 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
898 * @ctrl: controller interface
899 * @spi_dev: pointer to the spi device
900 * @transfer: pointer to spi transfer
901 *
902 * If driver has fifo and the current transfer size is greater than fifo size,
903 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
904 */
905static bool stm32_spi_can_dma(struct spi_controller *ctrl,
906 struct spi_device *spi_dev,
907 struct spi_transfer *transfer)
908{
909 unsigned int dma_size;
910 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
911
912 if (spi->cfg->has_fifo)
913 dma_size = spi->fifo_size;
914 else
915 dma_size = SPI_DMA_MIN_BYTES;
916
917 dev_dbg(spi->dev, "%s: %s\n", __func__,
918 (transfer->len > dma_size) ? "true" : "false");
919
920 return (transfer->len > dma_size);
921}
922
923/**
924 * stm32fx_spi_irq_event - Interrupt handler for SPI controller events
925 * @irq: interrupt line
926 * @dev_id: SPI controller ctrl interface
927 */
928static irqreturn_t stm32fx_spi_irq_event(int irq, void *dev_id)
929{
930 struct spi_controller *ctrl = dev_id;
931 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
932 u32 sr, mask = 0;
933 bool end = false;
934
935 spin_lock(&spi->lock);
936
937 sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
938 /*
939 * BSY flag is not handled in interrupt but it is normal behavior when
940 * this flag is set.
941 */
942 sr &= ~STM32FX_SPI_SR_BSY;
943
944 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
945 spi->cur_comm == SPI_3WIRE_TX)) {
946 /* OVR flag shouldn't be handled for TX only mode */
947 sr &= ~(STM32FX_SPI_SR_OVR | STM32FX_SPI_SR_RXNE);
948 mask |= STM32FX_SPI_SR_TXE;
949 }
950
951 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
952 spi->cur_comm == SPI_SIMPLEX_RX ||
953 spi->cur_comm == SPI_3WIRE_RX)) {
954 /* TXE flag is set and is handled when RXNE flag occurs */
955 sr &= ~STM32FX_SPI_SR_TXE;
956 mask |= STM32FX_SPI_SR_RXNE | STM32FX_SPI_SR_OVR;
957 }
958
959 if (!(sr & mask)) {
960 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
961 spin_unlock(&spi->lock);
962 return IRQ_NONE;
963 }
964
965 if (sr & STM32FX_SPI_SR_OVR) {
966 dev_warn(spi->dev, "Overrun: received value discarded\n");
967
968 /* Sequence to clear OVR flag */
969 readl_relaxed(spi->base + STM32FX_SPI_DR);
970 readl_relaxed(spi->base + STM32FX_SPI_SR);
971
972 /*
973 * If overrun is detected, it means that something went wrong,
974 * so stop the current transfer. Transfer can wait for next
975 * RXNE but DR is already read and end never happens.
976 */
977 end = true;
978 goto end_irq;
979 }
980
981 if (sr & STM32FX_SPI_SR_TXE) {
982 if (spi->tx_buf)
983 spi->cfg->write_tx(spi);
984 if (spi->tx_len == 0)
985 end = true;
986 }
987
988 if (sr & STM32FX_SPI_SR_RXNE) {
989 spi->cfg->read_rx(spi);
990 if (spi->rx_len == 0)
991 end = true;
992 else if (spi->tx_buf)/* Load data for discontinuous mode */
993 spi->cfg->write_tx(spi);
994 }
995
996end_irq:
997 if (end) {
998 /* Immediately disable interrupts to do not generate new one */
999 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2,
1000 STM32FX_SPI_CR2_TXEIE |
1001 STM32FX_SPI_CR2_RXNEIE |
1002 STM32FX_SPI_CR2_ERRIE);
1003 spin_unlock(&spi->lock);
1004 return IRQ_WAKE_THREAD;
1005 }
1006
1007 spin_unlock(&spi->lock);
1008 return IRQ_HANDLED;
1009}
1010
1011/**
1012 * stm32fx_spi_irq_thread - Thread of interrupt handler for SPI controller
1013 * @irq: interrupt line
1014 * @dev_id: SPI controller interface
1015 */
1016static irqreturn_t stm32fx_spi_irq_thread(int irq, void *dev_id)
1017{
1018 struct spi_controller *ctrl = dev_id;
1019 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1020
1021 spi_finalize_current_transfer(ctrl);
1022 stm32fx_spi_disable(spi);
1023
1024 return IRQ_HANDLED;
1025}
1026
1027/**
1028 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
1029 * @irq: interrupt line
1030 * @dev_id: SPI controller interface
1031 */
1032static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
1033{
1034 struct spi_controller *ctrl = dev_id;
1035 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1036 u32 sr, ier, mask;
1037 unsigned long flags;
1038 bool end = false;
1039
1040 spin_lock_irqsave(&spi->lock, flags);
1041
1042 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1043 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
1044
1045 mask = ier;
1046 /*
1047 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
1048 * SUSP to acknowledge it later. TXC is automatically cleared
1049 */
1050
1051 mask |= STM32H7_SPI_SR_SUSP;
1052 /*
1053 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
1054 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
1055 */
1056 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
1057 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
1058
1059 if (!(sr & mask)) {
1060 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
1061 sr, ier);
1062 spin_unlock_irqrestore(&spi->lock, flags);
1063 return IRQ_NONE;
1064 }
1065
1066 if (sr & STM32H7_SPI_SR_SUSP) {
1067 static DEFINE_RATELIMIT_STATE(rs,
1068 DEFAULT_RATELIMIT_INTERVAL * 10,
1069 1);
1070 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
1071 if (__ratelimit(&rs))
1072 dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
1073 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1074 stm32h7_spi_read_rxfifo(spi);
1075 /*
1076 * If communication is suspended while using DMA, it means
1077 * that something went wrong, so stop the current transfer
1078 */
1079 if (spi->cur_usedma)
1080 end = true;
1081 }
1082
1083 if (sr & STM32H7_SPI_SR_MODF) {
1084 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
1085 end = true;
1086 }
1087
1088 if (sr & STM32H7_SPI_SR_OVR) {
1089 dev_err(spi->dev, "Overrun: RX data lost\n");
1090 end = true;
1091 }
1092
1093 if (sr & STM32H7_SPI_SR_EOT) {
1094 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1095 stm32h7_spi_read_rxfifo(spi);
1096 if (!spi->cur_usedma ||
1097 (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
1098 end = true;
1099 }
1100
1101 if (sr & STM32H7_SPI_SR_TXP)
1102 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
1103 stm32h7_spi_write_txfifo(spi);
1104
1105 if (sr & STM32H7_SPI_SR_RXP)
1106 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1107 stm32h7_spi_read_rxfifo(spi);
1108
1109 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
1110
1111 spin_unlock_irqrestore(&spi->lock, flags);
1112
1113 if (end) {
1114 stm32h7_spi_disable(spi);
1115 spi_finalize_current_transfer(ctrl);
1116 }
1117
1118 return IRQ_HANDLED;
1119}
1120
1121/**
1122 * stm32_spi_prepare_msg - set up the controller to transfer a single message
1123 * @ctrl: controller interface
1124 * @msg: pointer to spi message
1125 */
1126static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
1127 struct spi_message *msg)
1128{
1129 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1130 struct spi_device *spi_dev = msg->spi;
1131 struct device_node *np = spi_dev->dev.of_node;
1132 unsigned long flags;
1133 u32 clrb = 0, setb = 0;
1134
1135 /* SPI target device may need time between data frames */
1136 spi->cur_midi = 0;
1137 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1138 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1139
1140 if (spi_dev->mode & SPI_CPOL)
1141 setb |= spi->cfg->regs->cpol.mask;
1142 else
1143 clrb |= spi->cfg->regs->cpol.mask;
1144
1145 if (spi_dev->mode & SPI_CPHA)
1146 setb |= spi->cfg->regs->cpha.mask;
1147 else
1148 clrb |= spi->cfg->regs->cpha.mask;
1149
1150 if (spi_dev->mode & SPI_LSB_FIRST)
1151 setb |= spi->cfg->regs->lsb_first.mask;
1152 else
1153 clrb |= spi->cfg->regs->lsb_first.mask;
1154
1155 if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
1156 setb |= spi->cfg->regs->cs_high.mask;
1157 else
1158 clrb |= spi->cfg->regs->cs_high.mask;
1159
1160 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1161 !!(spi_dev->mode & SPI_CPOL),
1162 !!(spi_dev->mode & SPI_CPHA),
1163 !!(spi_dev->mode & SPI_LSB_FIRST),
1164 !!(spi_dev->mode & SPI_CS_HIGH));
1165
1166 /* On STM32H7, messages should not exceed a maximum size setted
1167 * afterward via the set_number_of_data function. In order to
1168 * ensure that, split large messages into several messages
1169 */
1170 if (spi->cfg->set_number_of_data) {
1171 int ret;
1172
1173 ret = spi_split_transfers_maxwords(ctrl, msg,
1174 spi->t_size_max,
1175 GFP_KERNEL | GFP_DMA);
1176 if (ret)
1177 return ret;
1178 }
1179
1180 spin_lock_irqsave(&spi->lock, flags);
1181
1182 /* CPOL, CPHA and LSB FIRST bits have common register */
1183 if (clrb || setb)
1184 writel_relaxed(
1185 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1186 ~clrb) | setb,
1187 spi->base + spi->cfg->regs->cpol.reg);
1188
1189 spin_unlock_irqrestore(&spi->lock, flags);
1190
1191 return 0;
1192}
1193
1194/**
1195 * stm32fx_spi_dma_tx_cb - dma callback
1196 * @data: pointer to the spi controller data structure
1197 *
1198 * DMA callback is called when the transfer is complete for DMA TX channel.
1199 */
1200static void stm32fx_spi_dma_tx_cb(void *data)
1201{
1202 struct stm32_spi *spi = data;
1203
1204 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1205 spi_finalize_current_transfer(spi->ctrl);
1206 stm32fx_spi_disable(spi);
1207 }
1208}
1209
1210/**
1211 * stm32_spi_dma_rx_cb - dma callback
1212 * @data: pointer to the spi controller data structure
1213 *
1214 * DMA callback is called when the transfer is complete for DMA RX channel.
1215 */
1216static void stm32_spi_dma_rx_cb(void *data)
1217{
1218 struct stm32_spi *spi = data;
1219
1220 spi_finalize_current_transfer(spi->ctrl);
1221 spi->cfg->disable(spi);
1222}
1223
1224/**
1225 * stm32_spi_dma_config - configure dma slave channel depending on current
1226 * transfer bits_per_word.
1227 * @spi: pointer to the spi controller data structure
1228 * @dma_chan: pointer to the DMA channel
1229 * @dma_conf: pointer to the dma_slave_config structure
1230 * @dir: direction of the dma transfer
1231 */
1232static void stm32_spi_dma_config(struct stm32_spi *spi,
1233 struct dma_chan *dma_chan,
1234 struct dma_slave_config *dma_conf,
1235 enum dma_transfer_direction dir)
1236{
1237 enum dma_slave_buswidth buswidth;
1238 struct dma_slave_caps caps;
1239 u32 maxburst = 1;
1240 int ret;
1241
1242 if (spi->cur_bpw <= 8)
1243 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1244 else if (spi->cur_bpw <= 16)
1245 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1246 else
1247 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1248
1249 /* Valid for DMA Half or Full Fifo threshold */
1250 if (!spi->cfg->prevent_dma_burst && spi->cfg->has_fifo && spi->cur_fthlv != 2)
1251 maxburst = spi->cur_fthlv;
1252
1253 /* Get the DMA channel caps, and adjust maxburst if possible */
1254 ret = dma_get_slave_caps(dma_chan, &caps);
1255 if (!ret)
1256 maxburst = min(maxburst, caps.max_burst);
1257
1258 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1259 dma_conf->direction = dir;
1260 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1261 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1262 dma_conf->src_addr_width = buswidth;
1263 dma_conf->src_maxburst = maxburst;
1264
1265 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1266 buswidth, maxburst);
1267 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1268 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1269 dma_conf->dst_addr_width = buswidth;
1270 dma_conf->dst_maxburst = maxburst;
1271
1272 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1273 buswidth, maxburst);
1274 }
1275}
1276
1277/**
1278 * stm32fx_spi_transfer_one_irq - transfer a single spi_transfer using
1279 * interrupts
1280 * @spi: pointer to the spi controller data structure
1281 *
1282 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1283 * in progress.
1284 */
1285static int stm32fx_spi_transfer_one_irq(struct stm32_spi *spi)
1286{
1287 unsigned long flags;
1288 u32 cr2 = 0;
1289
1290 /* Enable the interrupts relative to the current communication mode */
1291 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1292 cr2 |= STM32FX_SPI_CR2_TXEIE;
1293 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1294 spi->cur_comm == SPI_SIMPLEX_RX ||
1295 spi->cur_comm == SPI_3WIRE_RX) {
1296 /* In transmit-only mode, the OVR flag is set in the SR register
1297 * since the received data are never read. Therefore set OVR
1298 * interrupt only when rx buffer is available.
1299 */
1300 cr2 |= STM32FX_SPI_CR2_RXNEIE | STM32FX_SPI_CR2_ERRIE;
1301 } else {
1302 return -EINVAL;
1303 }
1304
1305 spin_lock_irqsave(&spi->lock, flags);
1306
1307 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, cr2);
1308
1309 stm32_spi_enable(spi);
1310
1311 /* starting data transfer when buffer is loaded */
1312 if (spi->tx_buf)
1313 spi->cfg->write_tx(spi);
1314
1315 spin_unlock_irqrestore(&spi->lock, flags);
1316
1317 return 1;
1318}
1319
1320/**
1321 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1322 * interrupts
1323 * @spi: pointer to the spi controller data structure
1324 *
1325 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1326 * in progress.
1327 */
1328static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1329{
1330 unsigned long flags;
1331 u32 ier = 0;
1332
1333 /* Enable the interrupts relative to the current communication mode */
1334 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1335 ier |= STM32H7_SPI_IER_DXPIE;
1336 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1337 ier |= STM32H7_SPI_IER_TXPIE;
1338 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1339 ier |= STM32H7_SPI_IER_RXPIE;
1340
1341 /* Enable the interrupts relative to the end of transfer */
1342 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1343 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1344
1345 spin_lock_irqsave(&spi->lock, flags);
1346
1347 stm32_spi_enable(spi);
1348
1349 /* Be sure to have data in fifo before starting data transfer */
1350 if (spi->tx_buf)
1351 stm32h7_spi_write_txfifo(spi);
1352
1353 if (STM32_SPI_HOST_MODE(spi))
1354 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1355
1356 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1357
1358 spin_unlock_irqrestore(&spi->lock, flags);
1359
1360 return 1;
1361}
1362
1363/**
1364 * stm32fx_spi_transfer_one_dma_start - Set SPI driver registers to start
1365 * transfer using DMA
1366 * @spi: pointer to the spi controller data structure
1367 */
1368static void stm32fx_spi_transfer_one_dma_start(struct stm32_spi *spi)
1369{
1370 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1371 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1372 spi->cur_comm == SPI_FULL_DUPLEX) {
1373 /*
1374 * In transmit-only mode, the OVR flag is set in the SR register
1375 * since the received data are never read. Therefore set OVR
1376 * interrupt only when rx buffer is available.
1377 */
1378 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_ERRIE);
1379 }
1380
1381 stm32_spi_enable(spi);
1382}
1383
1384/**
1385 * stm32f7_spi_transfer_one_dma_start - Set SPI driver registers to start
1386 * transfer using DMA
1387 * @spi: pointer to the spi controller data structure
1388 */
1389static void stm32f7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1390{
1391 /* Configure DMA request trigger threshold according to DMA width */
1392 if (spi->cur_bpw <= 8)
1393 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
1394 else
1395 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
1396
1397 stm32fx_spi_transfer_one_dma_start(spi);
1398}
1399
1400/**
1401 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1402 * transfer using DMA
1403 * @spi: pointer to the spi controller data structure
1404 */
1405static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1406{
1407 uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1408
1409 /* Enable the interrupts */
1410 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1411 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1412
1413 stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1414
1415 stm32_spi_enable(spi);
1416
1417 if (STM32_SPI_HOST_MODE(spi))
1418 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1419}
1420
1421/**
1422 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1423 * @spi: pointer to the spi controller data structure
1424 * @xfer: pointer to the spi_transfer structure
1425 *
1426 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1427 * in progress.
1428 */
1429static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1430 struct spi_transfer *xfer)
1431{
1432 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1433 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1434 unsigned long flags;
1435
1436 spin_lock_irqsave(&spi->lock, flags);
1437
1438 rx_dma_desc = NULL;
1439 if (spi->rx_buf && spi->dma_rx) {
1440 stm32_spi_dma_config(spi, spi->dma_rx, &rx_dma_conf, DMA_DEV_TO_MEM);
1441 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1442
1443 /* Enable Rx DMA request */
1444 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1445 spi->cfg->regs->dma_rx_en.mask);
1446
1447 rx_dma_desc = dmaengine_prep_slave_sg(
1448 spi->dma_rx, xfer->rx_sg.sgl,
1449 xfer->rx_sg.nents,
1450 rx_dma_conf.direction,
1451 DMA_PREP_INTERRUPT);
1452 }
1453
1454 tx_dma_desc = NULL;
1455 if (spi->tx_buf && spi->dma_tx) {
1456 stm32_spi_dma_config(spi, spi->dma_tx, &tx_dma_conf, DMA_MEM_TO_DEV);
1457 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1458
1459 tx_dma_desc = dmaengine_prep_slave_sg(
1460 spi->dma_tx, xfer->tx_sg.sgl,
1461 xfer->tx_sg.nents,
1462 tx_dma_conf.direction,
1463 DMA_PREP_INTERRUPT);
1464 }
1465
1466 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1467 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1468 goto dma_desc_error;
1469
1470 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1471 goto dma_desc_error;
1472
1473 if (rx_dma_desc) {
1474 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1475 rx_dma_desc->callback_param = spi;
1476
1477 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1478 dev_err(spi->dev, "Rx DMA submit failed\n");
1479 goto dma_desc_error;
1480 }
1481 /* Enable Rx DMA channel */
1482 dma_async_issue_pending(spi->dma_rx);
1483 }
1484
1485 if (tx_dma_desc) {
1486 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1487 spi->cur_comm == SPI_3WIRE_TX) {
1488 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1489 tx_dma_desc->callback_param = spi;
1490 }
1491
1492 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1493 dev_err(spi->dev, "Tx DMA submit failed\n");
1494 goto dma_submit_error;
1495 }
1496 /* Enable Tx DMA channel */
1497 dma_async_issue_pending(spi->dma_tx);
1498
1499 /* Enable Tx DMA request */
1500 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1501 spi->cfg->regs->dma_tx_en.mask);
1502 }
1503
1504 spi->cfg->transfer_one_dma_start(spi);
1505
1506 spin_unlock_irqrestore(&spi->lock, flags);
1507
1508 return 1;
1509
1510dma_submit_error:
1511 if (spi->dma_rx)
1512 dmaengine_terminate_sync(spi->dma_rx);
1513
1514dma_desc_error:
1515 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1516 spi->cfg->regs->dma_rx_en.mask);
1517
1518 spin_unlock_irqrestore(&spi->lock, flags);
1519
1520 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1521
1522 spi->cur_usedma = false;
1523 return spi->cfg->transfer_one_irq(spi);
1524}
1525
1526/**
1527 * stm32f4_spi_set_bpw - Configure bits per word
1528 * @spi: pointer to the spi controller data structure
1529 */
1530static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1531{
1532 if (spi->cur_bpw == 16)
1533 stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF);
1534 else
1535 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF);
1536}
1537
1538/**
1539 * stm32f7_spi_set_bpw - Configure bits per word
1540 * @spi: pointer to the spi controller data structure
1541 */
1542static void stm32f7_spi_set_bpw(struct stm32_spi *spi)
1543{
1544 u32 bpw;
1545 u32 cr2_clrb = 0, cr2_setb = 0;
1546
1547 bpw = spi->cur_bpw - 1;
1548
1549 cr2_clrb |= STM32F7_SPI_CR2_DS;
1550 cr2_setb |= FIELD_PREP(STM32F7_SPI_CR2_DS, bpw);
1551
1552 if (spi->rx_len >= sizeof(u16))
1553 cr2_clrb |= STM32F7_SPI_CR2_FRXTH;
1554 else
1555 cr2_setb |= STM32F7_SPI_CR2_FRXTH;
1556
1557 writel_relaxed(
1558 (readl_relaxed(spi->base + STM32FX_SPI_CR2) &
1559 ~cr2_clrb) | cr2_setb,
1560 spi->base + STM32FX_SPI_CR2);
1561}
1562
1563/**
1564 * stm32h7_spi_set_bpw - configure bits per word
1565 * @spi: pointer to the spi controller data structure
1566 */
1567static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1568{
1569 u32 bpw, fthlv;
1570 u32 cfg1_clrb = 0, cfg1_setb = 0;
1571
1572 bpw = spi->cur_bpw - 1;
1573
1574 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1575 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1576
1577 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1578 fthlv = spi->cur_fthlv - 1;
1579
1580 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1581 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1582
1583 writel_relaxed(
1584 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1585 ~cfg1_clrb) | cfg1_setb,
1586 spi->base + STM32H7_SPI_CFG1);
1587}
1588
1589/**
1590 * stm32_spi_set_mbr - Configure baud rate divisor in host mode
1591 * @spi: pointer to the spi controller data structure
1592 * @mbrdiv: baud rate divisor value
1593 */
1594static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1595{
1596 u32 clrb = 0, setb = 0;
1597
1598 clrb |= spi->cfg->regs->br.mask;
1599 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1600
1601 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1602 ~clrb) | setb,
1603 spi->base + spi->cfg->regs->br.reg);
1604}
1605
1606/**
1607 * stm32_spi_communication_type - return transfer communication type
1608 * @spi_dev: pointer to the spi device
1609 * @transfer: pointer to spi transfer
1610 */
1611static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1612 struct spi_transfer *transfer)
1613{
1614 unsigned int type = SPI_FULL_DUPLEX;
1615
1616 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1617 /*
1618 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1619 * is forbidden and unvalidated by SPI subsystem so depending
1620 * on the valid buffer, we can determine the direction of the
1621 * transfer.
1622 */
1623 if (!transfer->tx_buf)
1624 type = SPI_3WIRE_RX;
1625 else
1626 type = SPI_3WIRE_TX;
1627 } else {
1628 if (!transfer->tx_buf)
1629 type = SPI_SIMPLEX_RX;
1630 else if (!transfer->rx_buf)
1631 type = SPI_SIMPLEX_TX;
1632 }
1633
1634 return type;
1635}
1636
1637/**
1638 * stm32fx_spi_set_mode - configure communication mode
1639 * @spi: pointer to the spi controller data structure
1640 * @comm_type: type of communication to configure
1641 */
1642static int stm32fx_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1643{
1644 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1645 stm32_spi_set_bits(spi, STM32FX_SPI_CR1,
1646 STM32FX_SPI_CR1_BIDIMODE |
1647 STM32FX_SPI_CR1_BIDIOE);
1648 } else if (comm_type == SPI_FULL_DUPLEX ||
1649 comm_type == SPI_SIMPLEX_RX) {
1650 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1,
1651 STM32FX_SPI_CR1_BIDIMODE |
1652 STM32FX_SPI_CR1_BIDIOE);
1653 } else if (comm_type == SPI_3WIRE_RX) {
1654 stm32_spi_set_bits(spi, STM32FX_SPI_CR1,
1655 STM32FX_SPI_CR1_BIDIMODE);
1656 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1,
1657 STM32FX_SPI_CR1_BIDIOE);
1658 } else {
1659 return -EINVAL;
1660 }
1661
1662 return 0;
1663}
1664
1665/**
1666 * stm32h7_spi_set_mode - configure communication mode
1667 * @spi: pointer to the spi controller data structure
1668 * @comm_type: type of communication to configure
1669 */
1670static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1671{
1672 u32 mode;
1673 u32 cfg2_clrb = 0, cfg2_setb = 0;
1674
1675 if (comm_type == SPI_3WIRE_RX) {
1676 mode = STM32H7_SPI_HALF_DUPLEX;
1677 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1678 } else if (comm_type == SPI_3WIRE_TX) {
1679 mode = STM32H7_SPI_HALF_DUPLEX;
1680 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1681 } else if (comm_type == SPI_SIMPLEX_RX) {
1682 mode = STM32H7_SPI_SIMPLEX_RX;
1683 } else if (comm_type == SPI_SIMPLEX_TX) {
1684 mode = STM32H7_SPI_SIMPLEX_TX;
1685 } else {
1686 mode = STM32H7_SPI_FULL_DUPLEX;
1687 }
1688
1689 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1690 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1691
1692 writel_relaxed(
1693 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1694 ~cfg2_clrb) | cfg2_setb,
1695 spi->base + STM32H7_SPI_CFG2);
1696
1697 return 0;
1698}
1699
1700/**
1701 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1702 * consecutive data frames in host mode
1703 * @spi: pointer to the spi controller data structure
1704 * @len: transfer len
1705 */
1706static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1707{
1708 u32 cfg2_clrb = 0, cfg2_setb = 0;
1709
1710 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1711 if ((len > 1) && (spi->cur_midi > 0)) {
1712 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1713 u32 midi = min_t(u32,
1714 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1715 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1716 STM32H7_SPI_CFG2_MIDI));
1717
1718
1719 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1720 sck_period_ns, midi, midi * sck_period_ns);
1721 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1722 }
1723
1724 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1725 ~cfg2_clrb) | cfg2_setb,
1726 spi->base + STM32H7_SPI_CFG2);
1727}
1728
1729/**
1730 * stm32h7_spi_number_of_data - configure number of data at current transfer
1731 * @spi: pointer to the spi controller data structure
1732 * @nb_words: transfer length (in words)
1733 */
1734static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1735{
1736 if (nb_words <= spi->t_size_max) {
1737 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1738 spi->base + STM32H7_SPI_CR2);
1739 } else {
1740 return -EMSGSIZE;
1741 }
1742
1743 return 0;
1744}
1745
1746/**
1747 * stm32_spi_transfer_one_setup - common setup to transfer a single
1748 * spi_transfer either using DMA or
1749 * interrupts.
1750 * @spi: pointer to the spi controller data structure
1751 * @spi_dev: pointer to the spi device
1752 * @transfer: pointer to spi transfer
1753 */
1754static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1755 struct spi_device *spi_dev,
1756 struct spi_transfer *transfer)
1757{
1758 unsigned long flags;
1759 unsigned int comm_type;
1760 int nb_words, ret = 0;
1761 int mbr;
1762
1763 spin_lock_irqsave(&spi->lock, flags);
1764
1765 spi->cur_xferlen = transfer->len;
1766
1767 spi->cur_bpw = transfer->bits_per_word;
1768 spi->cfg->set_bpw(spi);
1769
1770 /* Update spi->cur_speed with real clock speed */
1771 if (STM32_SPI_HOST_MODE(spi)) {
1772 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1773 spi->cfg->baud_rate_div_min,
1774 spi->cfg->baud_rate_div_max);
1775 if (mbr < 0) {
1776 ret = mbr;
1777 goto out;
1778 }
1779
1780 transfer->speed_hz = spi->cur_speed;
1781 stm32_spi_set_mbr(spi, mbr);
1782 }
1783
1784 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1785 ret = spi->cfg->set_mode(spi, comm_type);
1786 if (ret < 0)
1787 goto out;
1788
1789 spi->cur_comm = comm_type;
1790
1791 if (STM32_SPI_HOST_MODE(spi) && spi->cfg->set_data_idleness)
1792 spi->cfg->set_data_idleness(spi, transfer->len);
1793
1794 if (spi->cur_bpw <= 8)
1795 nb_words = transfer->len;
1796 else if (spi->cur_bpw <= 16)
1797 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1798 else
1799 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1800
1801 if (spi->cfg->set_number_of_data) {
1802 ret = spi->cfg->set_number_of_data(spi, nb_words);
1803 if (ret < 0)
1804 goto out;
1805 }
1806
1807 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1808 spi->cur_comm);
1809 dev_dbg(spi->dev,
1810 "data frame of %d-bit, data packet of %d data frames\n",
1811 spi->cur_bpw, spi->cur_fthlv);
1812 if (STM32_SPI_HOST_MODE(spi))
1813 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1814 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1815 spi->cur_xferlen, nb_words);
1816 dev_dbg(spi->dev, "dma %s\n",
1817 (spi->cur_usedma) ? "enabled" : "disabled");
1818
1819out:
1820 spin_unlock_irqrestore(&spi->lock, flags);
1821
1822 return ret;
1823}
1824
1825/**
1826 * stm32_spi_transfer_one - transfer a single spi_transfer
1827 * @ctrl: controller interface
1828 * @spi_dev: pointer to the spi device
1829 * @transfer: pointer to spi transfer
1830 *
1831 * It must return 0 if the transfer is finished or 1 if the transfer is still
1832 * in progress.
1833 */
1834static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1835 struct spi_device *spi_dev,
1836 struct spi_transfer *transfer)
1837{
1838 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1839 int ret;
1840
1841 spi->tx_buf = transfer->tx_buf;
1842 spi->rx_buf = transfer->rx_buf;
1843 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1844 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1845
1846 spi->cur_usedma = (ctrl->can_dma &&
1847 ctrl->can_dma(ctrl, spi_dev, transfer));
1848
1849 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1850 if (ret) {
1851 dev_err(spi->dev, "SPI transfer setup failed\n");
1852 return ret;
1853 }
1854
1855 if (spi->cur_usedma)
1856 return stm32_spi_transfer_one_dma(spi, transfer);
1857 else
1858 return spi->cfg->transfer_one_irq(spi);
1859}
1860
1861/**
1862 * stm32_spi_unprepare_msg - relax the hardware
1863 * @ctrl: controller interface
1864 * @msg: pointer to the spi message
1865 */
1866static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1867 struct spi_message *msg)
1868{
1869 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1870
1871 spi->cfg->disable(spi);
1872
1873 return 0;
1874}
1875
1876/**
1877 * stm32fx_spi_config - Configure SPI controller as SPI host
1878 * @spi: pointer to the spi controller data structure
1879 */
1880static int stm32fx_spi_config(struct stm32_spi *spi)
1881{
1882 unsigned long flags;
1883
1884 spin_lock_irqsave(&spi->lock, flags);
1885
1886 /* Ensure I2SMOD bit is kept cleared */
1887 stm32_spi_clr_bits(spi, STM32FX_SPI_I2SCFGR,
1888 STM32FX_SPI_I2SCFGR_I2SMOD);
1889
1890 /*
1891 * - SS input value high
1892 * - transmitter half duplex direction
1893 * - Set the host mode (default Motorola mode)
1894 * - Consider 1 host/n targets configuration and
1895 * SS input value is determined by the SSI bit
1896 */
1897 stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SSI |
1898 STM32FX_SPI_CR1_BIDIOE |
1899 STM32FX_SPI_CR1_MSTR |
1900 STM32FX_SPI_CR1_SSM);
1901
1902 spin_unlock_irqrestore(&spi->lock, flags);
1903
1904 return 0;
1905}
1906
1907/**
1908 * stm32h7_spi_config - Configure SPI controller
1909 * @spi: pointer to the spi controller data structure
1910 */
1911static int stm32h7_spi_config(struct stm32_spi *spi)
1912{
1913 unsigned long flags;
1914 u32 cr1 = 0, cfg2 = 0;
1915
1916 spin_lock_irqsave(&spi->lock, flags);
1917
1918 /* Ensure I2SMOD bit is kept cleared */
1919 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1920 STM32H7_SPI_I2SCFGR_I2SMOD);
1921
1922 if (STM32_SPI_DEVICE_MODE(spi)) {
1923 /* Use native device select */
1924 cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1925 } else {
1926 /*
1927 * - Transmitter half duplex direction
1928 * - Automatic communication suspend when RX-Fifo is full
1929 * - SS input value high
1930 */
1931 cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1932
1933 /*
1934 * - Set the host mode (default Motorola mode)
1935 * - Consider 1 host/n devices configuration and
1936 * SS input value is determined by the SSI bit
1937 * - keep control of all associated GPIOs
1938 */
1939 cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1940 }
1941
1942 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1943 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1944
1945 spin_unlock_irqrestore(&spi->lock, flags);
1946
1947 return 0;
1948}
1949
1950static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1951 .regs = &stm32fx_spi_regspec,
1952 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1953 .disable = stm32fx_spi_disable,
1954 .config = stm32fx_spi_config,
1955 .set_bpw = stm32f4_spi_set_bpw,
1956 .set_mode = stm32fx_spi_set_mode,
1957 .write_tx = stm32f4_spi_write_tx,
1958 .read_rx = stm32f4_spi_read_rx,
1959 .transfer_one_dma_start = stm32fx_spi_transfer_one_dma_start,
1960 .dma_tx_cb = stm32fx_spi_dma_tx_cb,
1961 .dma_rx_cb = stm32_spi_dma_rx_cb,
1962 .transfer_one_irq = stm32fx_spi_transfer_one_irq,
1963 .irq_handler_event = stm32fx_spi_irq_event,
1964 .irq_handler_thread = stm32fx_spi_irq_thread,
1965 .baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN,
1966 .baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX,
1967 .has_fifo = false,
1968 .has_device_mode = false,
1969 .flags = SPI_CONTROLLER_MUST_TX,
1970};
1971
1972static const struct stm32_spi_cfg stm32f7_spi_cfg = {
1973 .regs = &stm32fx_spi_regspec,
1974 .get_bpw_mask = stm32f7_spi_get_bpw_mask,
1975 .disable = stm32fx_spi_disable,
1976 .config = stm32fx_spi_config,
1977 .set_bpw = stm32f7_spi_set_bpw,
1978 .set_mode = stm32fx_spi_set_mode,
1979 .write_tx = stm32f7_spi_write_tx,
1980 .read_rx = stm32f7_spi_read_rx,
1981 .transfer_one_dma_start = stm32f7_spi_transfer_one_dma_start,
1982 .dma_tx_cb = stm32fx_spi_dma_tx_cb,
1983 .dma_rx_cb = stm32_spi_dma_rx_cb,
1984 .transfer_one_irq = stm32fx_spi_transfer_one_irq,
1985 .irq_handler_event = stm32fx_spi_irq_event,
1986 .irq_handler_thread = stm32fx_spi_irq_thread,
1987 .baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN,
1988 .baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX,
1989 .has_fifo = false,
1990 .flags = SPI_CONTROLLER_MUST_TX,
1991};
1992
1993static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1994 .regs = &stm32h7_spi_regspec,
1995 .get_fifo_size = stm32h7_spi_get_fifo_size,
1996 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1997 .disable = stm32h7_spi_disable,
1998 .config = stm32h7_spi_config,
1999 .set_bpw = stm32h7_spi_set_bpw,
2000 .set_mode = stm32h7_spi_set_mode,
2001 .set_data_idleness = stm32h7_spi_data_idleness,
2002 .set_number_of_data = stm32h7_spi_number_of_data,
2003 .write_tx = stm32h7_spi_write_txfifo,
2004 .read_rx = stm32h7_spi_read_rxfifo,
2005 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
2006 .dma_rx_cb = stm32_spi_dma_rx_cb,
2007 /*
2008 * dma_tx_cb is not necessary since in case of TX, dma is followed by
2009 * SPI access hence handling is performed within the SPI interrupt
2010 */
2011 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
2012 .irq_handler_thread = stm32h7_spi_irq_thread,
2013 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
2014 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
2015 .has_fifo = true,
2016 .has_device_mode = true,
2017};
2018
2019/*
2020 * STM32MP2 is compatible with the STM32H7 except:
2021 * - enforce the DMA maxburst value to 1
2022 * - spi8 have limited feature set (TSIZE_MAX = 1024, BPW of 8 OR 16)
2023 */
2024static const struct stm32_spi_cfg stm32mp25_spi_cfg = {
2025 .regs = &stm32mp25_spi_regspec,
2026 .get_fifo_size = stm32h7_spi_get_fifo_size,
2027 .get_bpw_mask = stm32mp25_spi_get_bpw_mask,
2028 .disable = stm32h7_spi_disable,
2029 .config = stm32h7_spi_config,
2030 .set_bpw = stm32h7_spi_set_bpw,
2031 .set_mode = stm32h7_spi_set_mode,
2032 .set_data_idleness = stm32h7_spi_data_idleness,
2033 .set_number_of_data = stm32h7_spi_number_of_data,
2034 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
2035 .dma_rx_cb = stm32_spi_dma_rx_cb,
2036 /*
2037 * dma_tx_cb is not necessary since in case of TX, dma is followed by
2038 * SPI access hence handling is performed within the SPI interrupt
2039 */
2040 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
2041 .irq_handler_thread = stm32h7_spi_irq_thread,
2042 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
2043 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
2044 .has_fifo = true,
2045 .prevent_dma_burst = true,
2046};
2047
2048static const struct of_device_id stm32_spi_of_match[] = {
2049 { .compatible = "st,stm32mp25-spi", .data = (void *)&stm32mp25_spi_cfg },
2050 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
2051 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
2052 { .compatible = "st,stm32f7-spi", .data = (void *)&stm32f7_spi_cfg },
2053 {},
2054};
2055MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
2056
2057static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
2058{
2059 spi_finalize_current_transfer(ctrl);
2060 return 0;
2061}
2062
2063static int stm32_spi_probe(struct platform_device *pdev)
2064{
2065 struct spi_controller *ctrl;
2066 struct stm32_spi *spi;
2067 struct resource *res;
2068 struct reset_control *rst;
2069 struct device_node *np = pdev->dev.of_node;
2070 bool device_mode;
2071 int ret;
2072 const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
2073
2074 device_mode = of_property_read_bool(np, "spi-slave");
2075 if (!cfg->has_device_mode && device_mode) {
2076 dev_err(&pdev->dev, "spi-slave not supported\n");
2077 return -EPERM;
2078 }
2079
2080 if (device_mode)
2081 ctrl = devm_spi_alloc_target(&pdev->dev, sizeof(struct stm32_spi));
2082 else
2083 ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(struct stm32_spi));
2084 if (!ctrl) {
2085 dev_err(&pdev->dev, "spi controller allocation failed\n");
2086 return -ENOMEM;
2087 }
2088 platform_set_drvdata(pdev, ctrl);
2089
2090 spi = spi_controller_get_devdata(ctrl);
2091 spi->dev = &pdev->dev;
2092 spi->ctrl = ctrl;
2093 spi->device_mode = device_mode;
2094 spin_lock_init(&spi->lock);
2095
2096 spi->cfg = cfg;
2097
2098 spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2099 if (IS_ERR(spi->base))
2100 return PTR_ERR(spi->base);
2101
2102 spi->phys_addr = (dma_addr_t)res->start;
2103
2104 spi->irq = platform_get_irq(pdev, 0);
2105 if (spi->irq <= 0)
2106 return spi->irq;
2107
2108 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
2109 spi->cfg->irq_handler_event,
2110 spi->cfg->irq_handler_thread,
2111 IRQF_ONESHOT, pdev->name, ctrl);
2112 if (ret) {
2113 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
2114 ret);
2115 return ret;
2116 }
2117
2118 spi->clk = devm_clk_get(&pdev->dev, NULL);
2119 if (IS_ERR(spi->clk)) {
2120 ret = PTR_ERR(spi->clk);
2121 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
2122 return ret;
2123 }
2124
2125 ret = clk_prepare_enable(spi->clk);
2126 if (ret) {
2127 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
2128 return ret;
2129 }
2130 spi->clk_rate = clk_get_rate(spi->clk);
2131 if (!spi->clk_rate) {
2132 dev_err(&pdev->dev, "clk rate = 0\n");
2133 ret = -EINVAL;
2134 goto err_clk_disable;
2135 }
2136
2137 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2138 if (rst) {
2139 if (IS_ERR(rst)) {
2140 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
2141 "failed to get reset\n");
2142 goto err_clk_disable;
2143 }
2144
2145 reset_control_assert(rst);
2146 udelay(2);
2147 reset_control_deassert(rst);
2148 }
2149
2150 if (spi->cfg->has_fifo)
2151 spi->fifo_size = spi->cfg->get_fifo_size(spi);
2152
2153 spi->feature_set = STM32_SPI_FEATURE_FULL;
2154 if (spi->cfg->regs->fullcfg.reg) {
2155 spi->feature_set =
2156 FIELD_GET(STM32MP25_SPI_HWCFGR1_FULLCFG,
2157 readl_relaxed(spi->base + spi->cfg->regs->fullcfg.reg));
2158
2159 dev_dbg(spi->dev, "%s feature set\n",
2160 spi->feature_set == STM32_SPI_FEATURE_FULL ? "full" : "limited");
2161 }
2162
2163 /* Only for STM32H7 and after */
2164 spi->t_size_max = spi->feature_set == STM32_SPI_FEATURE_FULL ?
2165 STM32H7_SPI_TSIZE_MAX :
2166 STM32MP25_SPI_TSIZE_MAX_LIMITED;
2167 dev_dbg(spi->dev, "one message max size %d\n", spi->t_size_max);
2168
2169 ret = spi->cfg->config(spi);
2170 if (ret) {
2171 dev_err(&pdev->dev, "controller configuration failed: %d\n",
2172 ret);
2173 goto err_clk_disable;
2174 }
2175
2176 ctrl->dev.of_node = pdev->dev.of_node;
2177 ctrl->auto_runtime_pm = true;
2178 ctrl->bus_num = pdev->id;
2179 ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
2180 SPI_3WIRE;
2181 ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
2182 ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
2183 ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
2184 ctrl->use_gpio_descriptors = true;
2185 ctrl->prepare_message = stm32_spi_prepare_msg;
2186 ctrl->transfer_one = stm32_spi_transfer_one;
2187 ctrl->unprepare_message = stm32_spi_unprepare_msg;
2188 ctrl->flags = spi->cfg->flags;
2189 if (STM32_SPI_DEVICE_MODE(spi))
2190 ctrl->target_abort = stm32h7_spi_device_abort;
2191
2192 spi->dma_tx = dma_request_chan(spi->dev, "tx");
2193 if (IS_ERR(spi->dma_tx)) {
2194 ret = PTR_ERR(spi->dma_tx);
2195 spi->dma_tx = NULL;
2196 if (ret == -EPROBE_DEFER)
2197 goto err_clk_disable;
2198
2199 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
2200 } else {
2201 ctrl->dma_tx = spi->dma_tx;
2202 }
2203
2204 spi->dma_rx = dma_request_chan(spi->dev, "rx");
2205 if (IS_ERR(spi->dma_rx)) {
2206 ret = PTR_ERR(spi->dma_rx);
2207 spi->dma_rx = NULL;
2208 if (ret == -EPROBE_DEFER)
2209 goto err_dma_release;
2210
2211 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
2212 } else {
2213 ctrl->dma_rx = spi->dma_rx;
2214 }
2215
2216 if (spi->dma_tx || spi->dma_rx)
2217 ctrl->can_dma = stm32_spi_can_dma;
2218
2219 pm_runtime_set_autosuspend_delay(&pdev->dev,
2220 STM32_SPI_AUTOSUSPEND_DELAY);
2221 pm_runtime_use_autosuspend(&pdev->dev);
2222 pm_runtime_set_active(&pdev->dev);
2223 pm_runtime_get_noresume(&pdev->dev);
2224 pm_runtime_enable(&pdev->dev);
2225
2226 ret = spi_register_controller(ctrl);
2227 if (ret) {
2228 dev_err(&pdev->dev, "spi controller registration failed: %d\n",
2229 ret);
2230 goto err_pm_disable;
2231 }
2232
2233 pm_runtime_mark_last_busy(&pdev->dev);
2234 pm_runtime_put_autosuspend(&pdev->dev);
2235
2236 dev_info(&pdev->dev, "driver initialized (%s mode)\n",
2237 STM32_SPI_HOST_MODE(spi) ? "host" : "device");
2238
2239 return 0;
2240
2241err_pm_disable:
2242 pm_runtime_disable(&pdev->dev);
2243 pm_runtime_put_noidle(&pdev->dev);
2244 pm_runtime_set_suspended(&pdev->dev);
2245 pm_runtime_dont_use_autosuspend(&pdev->dev);
2246err_dma_release:
2247 if (spi->dma_tx)
2248 dma_release_channel(spi->dma_tx);
2249 if (spi->dma_rx)
2250 dma_release_channel(spi->dma_rx);
2251err_clk_disable:
2252 clk_disable_unprepare(spi->clk);
2253
2254 return ret;
2255}
2256
2257static void stm32_spi_remove(struct platform_device *pdev)
2258{
2259 struct spi_controller *ctrl = platform_get_drvdata(pdev);
2260 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2261
2262 pm_runtime_get_sync(&pdev->dev);
2263
2264 spi_unregister_controller(ctrl);
2265 spi->cfg->disable(spi);
2266
2267 pm_runtime_disable(&pdev->dev);
2268 pm_runtime_put_noidle(&pdev->dev);
2269 pm_runtime_set_suspended(&pdev->dev);
2270 pm_runtime_dont_use_autosuspend(&pdev->dev);
2271
2272 if (ctrl->dma_tx)
2273 dma_release_channel(ctrl->dma_tx);
2274 if (ctrl->dma_rx)
2275 dma_release_channel(ctrl->dma_rx);
2276
2277 clk_disable_unprepare(spi->clk);
2278
2279
2280 pinctrl_pm_select_sleep_state(&pdev->dev);
2281}
2282
2283static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
2284{
2285 struct spi_controller *ctrl = dev_get_drvdata(dev);
2286 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2287
2288 clk_disable_unprepare(spi->clk);
2289
2290 return pinctrl_pm_select_sleep_state(dev);
2291}
2292
2293static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2294{
2295 struct spi_controller *ctrl = dev_get_drvdata(dev);
2296 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2297 int ret;
2298
2299 ret = pinctrl_pm_select_default_state(dev);
2300 if (ret)
2301 return ret;
2302
2303 return clk_prepare_enable(spi->clk);
2304}
2305
2306static int __maybe_unused stm32_spi_suspend(struct device *dev)
2307{
2308 struct spi_controller *ctrl = dev_get_drvdata(dev);
2309 int ret;
2310
2311 ret = spi_controller_suspend(ctrl);
2312 if (ret)
2313 return ret;
2314
2315 return pm_runtime_force_suspend(dev);
2316}
2317
2318static int __maybe_unused stm32_spi_resume(struct device *dev)
2319{
2320 struct spi_controller *ctrl = dev_get_drvdata(dev);
2321 struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2322 int ret;
2323
2324 ret = pm_runtime_force_resume(dev);
2325 if (ret)
2326 return ret;
2327
2328 ret = spi_controller_resume(ctrl);
2329 if (ret) {
2330 clk_disable_unprepare(spi->clk);
2331 return ret;
2332 }
2333
2334 ret = pm_runtime_resume_and_get(dev);
2335 if (ret < 0) {
2336 dev_err(dev, "Unable to power device:%d\n", ret);
2337 return ret;
2338 }
2339
2340 spi->cfg->config(spi);
2341
2342 pm_runtime_mark_last_busy(dev);
2343 pm_runtime_put_autosuspend(dev);
2344
2345 return 0;
2346}
2347
2348static const struct dev_pm_ops stm32_spi_pm_ops = {
2349 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2350 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2351 stm32_spi_runtime_resume, NULL)
2352};
2353
2354static struct platform_driver stm32_spi_driver = {
2355 .probe = stm32_spi_probe,
2356 .remove_new = stm32_spi_remove,
2357 .driver = {
2358 .name = DRIVER_NAME,
2359 .pm = &stm32_spi_pm_ops,
2360 .of_match_table = stm32_spi_of_match,
2361 },
2362};
2363
2364module_platform_driver(stm32_spi_driver);
2365
2366MODULE_ALIAS("platform:" DRIVER_NAME);
2367MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2368MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2369MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2//
3// STMicroelectronics STM32 SPI Controller driver (master mode only)
4//
5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8#include <linux/bitfield.h>
9#include <linux/debugfs.h>
10#include <linux/clk.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/interrupt.h>
14#include <linux/iopoll.h>
15#include <linux/module.h>
16#include <linux/of_platform.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/pm_runtime.h>
19#include <linux/reset.h>
20#include <linux/spi/spi.h>
21
22#define DRIVER_NAME "spi_stm32"
23
24/* STM32F4 SPI registers */
25#define STM32F4_SPI_CR1 0x00
26#define STM32F4_SPI_CR2 0x04
27#define STM32F4_SPI_SR 0x08
28#define STM32F4_SPI_DR 0x0C
29#define STM32F4_SPI_I2SCFGR 0x1C
30
31/* STM32F4_SPI_CR1 bit fields */
32#define STM32F4_SPI_CR1_CPHA BIT(0)
33#define STM32F4_SPI_CR1_CPOL BIT(1)
34#define STM32F4_SPI_CR1_MSTR BIT(2)
35#define STM32F4_SPI_CR1_BR_SHIFT 3
36#define STM32F4_SPI_CR1_BR GENMASK(5, 3)
37#define STM32F4_SPI_CR1_SPE BIT(6)
38#define STM32F4_SPI_CR1_LSBFRST BIT(7)
39#define STM32F4_SPI_CR1_SSI BIT(8)
40#define STM32F4_SPI_CR1_SSM BIT(9)
41#define STM32F4_SPI_CR1_RXONLY BIT(10)
42#define STM32F4_SPI_CR1_DFF BIT(11)
43#define STM32F4_SPI_CR1_CRCNEXT BIT(12)
44#define STM32F4_SPI_CR1_CRCEN BIT(13)
45#define STM32F4_SPI_CR1_BIDIOE BIT(14)
46#define STM32F4_SPI_CR1_BIDIMODE BIT(15)
47#define STM32F4_SPI_CR1_BR_MIN 0
48#define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
49
50/* STM32F4_SPI_CR2 bit fields */
51#define STM32F4_SPI_CR2_RXDMAEN BIT(0)
52#define STM32F4_SPI_CR2_TXDMAEN BIT(1)
53#define STM32F4_SPI_CR2_SSOE BIT(2)
54#define STM32F4_SPI_CR2_FRF BIT(4)
55#define STM32F4_SPI_CR2_ERRIE BIT(5)
56#define STM32F4_SPI_CR2_RXNEIE BIT(6)
57#define STM32F4_SPI_CR2_TXEIE BIT(7)
58
59/* STM32F4_SPI_SR bit fields */
60#define STM32F4_SPI_SR_RXNE BIT(0)
61#define STM32F4_SPI_SR_TXE BIT(1)
62#define STM32F4_SPI_SR_CHSIDE BIT(2)
63#define STM32F4_SPI_SR_UDR BIT(3)
64#define STM32F4_SPI_SR_CRCERR BIT(4)
65#define STM32F4_SPI_SR_MODF BIT(5)
66#define STM32F4_SPI_SR_OVR BIT(6)
67#define STM32F4_SPI_SR_BSY BIT(7)
68#define STM32F4_SPI_SR_FRE BIT(8)
69
70/* STM32F4_SPI_I2SCFGR bit fields */
71#define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
72
73/* STM32F4 SPI Baud Rate min/max divisor */
74#define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
75#define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
76
77/* STM32H7 SPI registers */
78#define STM32H7_SPI_CR1 0x00
79#define STM32H7_SPI_CR2 0x04
80#define STM32H7_SPI_CFG1 0x08
81#define STM32H7_SPI_CFG2 0x0C
82#define STM32H7_SPI_IER 0x10
83#define STM32H7_SPI_SR 0x14
84#define STM32H7_SPI_IFCR 0x18
85#define STM32H7_SPI_TXDR 0x20
86#define STM32H7_SPI_RXDR 0x30
87#define STM32H7_SPI_I2SCFGR 0x50
88
89/* STM32H7_SPI_CR1 bit fields */
90#define STM32H7_SPI_CR1_SPE BIT(0)
91#define STM32H7_SPI_CR1_MASRX BIT(8)
92#define STM32H7_SPI_CR1_CSTART BIT(9)
93#define STM32H7_SPI_CR1_CSUSP BIT(10)
94#define STM32H7_SPI_CR1_HDDIR BIT(11)
95#define STM32H7_SPI_CR1_SSI BIT(12)
96
97/* STM32H7_SPI_CR2 bit fields */
98#define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
99#define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0)
100
101/* STM32H7_SPI_CFG1 bit fields */
102#define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
103#define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
104#define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
105#define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
106#define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
107#define STM32H7_SPI_CFG1_MBR_SHIFT 28
108#define STM32H7_SPI_CFG1_MBR_MIN 0
109#define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
110
111/* STM32H7_SPI_CFG2 bit fields */
112#define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
113#define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
114#define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
115#define STM32H7_SPI_CFG2_MASTER BIT(22)
116#define STM32H7_SPI_CFG2_LSBFRST BIT(23)
117#define STM32H7_SPI_CFG2_CPHA BIT(24)
118#define STM32H7_SPI_CFG2_CPOL BIT(25)
119#define STM32H7_SPI_CFG2_SSM BIT(26)
120#define STM32H7_SPI_CFG2_AFCNTR BIT(31)
121
122/* STM32H7_SPI_IER bit fields */
123#define STM32H7_SPI_IER_RXPIE BIT(0)
124#define STM32H7_SPI_IER_TXPIE BIT(1)
125#define STM32H7_SPI_IER_DXPIE BIT(2)
126#define STM32H7_SPI_IER_EOTIE BIT(3)
127#define STM32H7_SPI_IER_TXTFIE BIT(4)
128#define STM32H7_SPI_IER_OVRIE BIT(6)
129#define STM32H7_SPI_IER_MODFIE BIT(9)
130#define STM32H7_SPI_IER_ALL GENMASK(10, 0)
131
132/* STM32H7_SPI_SR bit fields */
133#define STM32H7_SPI_SR_RXP BIT(0)
134#define STM32H7_SPI_SR_TXP BIT(1)
135#define STM32H7_SPI_SR_EOT BIT(3)
136#define STM32H7_SPI_SR_OVR BIT(6)
137#define STM32H7_SPI_SR_MODF BIT(9)
138#define STM32H7_SPI_SR_SUSP BIT(11)
139#define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
140#define STM32H7_SPI_SR_RXWNE BIT(15)
141
142/* STM32H7_SPI_IFCR bit fields */
143#define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
144
145/* STM32H7_SPI_I2SCFGR bit fields */
146#define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
147
148/* STM32H7 SPI Master Baud Rate min/max divisor */
149#define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
150#define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
151
152/* STM32H7 SPI Communication mode */
153#define STM32H7_SPI_FULL_DUPLEX 0
154#define STM32H7_SPI_SIMPLEX_TX 1
155#define STM32H7_SPI_SIMPLEX_RX 2
156#define STM32H7_SPI_HALF_DUPLEX 3
157
158/* SPI Communication type */
159#define SPI_FULL_DUPLEX 0
160#define SPI_SIMPLEX_TX 1
161#define SPI_SIMPLEX_RX 2
162#define SPI_3WIRE_TX 3
163#define SPI_3WIRE_RX 4
164
165/*
166 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
167 * without fifo buffers.
168 */
169#define SPI_DMA_MIN_BYTES 16
170
171/**
172 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
173 * @reg: register offset
174 * @mask: bitfield mask
175 * @shift: left shift
176 */
177struct stm32_spi_reg {
178 int reg;
179 int mask;
180 int shift;
181};
182
183/**
184 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
185 * @en: enable register and SPI enable bit
186 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
187 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
188 * @cpol: clock polarity register and polarity bit
189 * @cpha: clock phase register and phase bit
190 * @lsb_first: LSB transmitted first register and bit
191 * @br: baud rate register and bitfields
192 * @rx: SPI RX data register
193 * @tx: SPI TX data register
194 */
195struct stm32_spi_regspec {
196 const struct stm32_spi_reg en;
197 const struct stm32_spi_reg dma_rx_en;
198 const struct stm32_spi_reg dma_tx_en;
199 const struct stm32_spi_reg cpol;
200 const struct stm32_spi_reg cpha;
201 const struct stm32_spi_reg lsb_first;
202 const struct stm32_spi_reg br;
203 const struct stm32_spi_reg rx;
204 const struct stm32_spi_reg tx;
205};
206
207struct stm32_spi;
208
209/**
210 * struct stm32_spi_cfg - stm32 compatible configuration data
211 * @regs: registers descriptions
212 * @get_fifo_size: routine to get fifo size
213 * @get_bpw_mask: routine to get bits per word mask
214 * @disable: routine to disable controller
215 * @config: routine to configure controller as SPI Master
216 * @set_bpw: routine to configure registers to for bits per word
217 * @set_mode: routine to configure registers to desired mode
218 * @set_data_idleness: optional routine to configure registers to desired idle
219 * time between frames (if driver has this functionality)
220 * @set_number_of_data: optional routine to configure registers to desired
221 * number of data (if driver has this functionality)
222 * @can_dma: routine to determine if the transfer is eligible for DMA use
223 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
224 * using DMA
225 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
226 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
227 * @transfer_one_irq: routine to configure interrupts for driver
228 * @irq_handler_event: Interrupt handler for SPI controller events
229 * @irq_handler_thread: thread of interrupt handler for SPI controller
230 * @baud_rate_div_min: minimum baud rate divisor
231 * @baud_rate_div_max: maximum baud rate divisor
232 * @has_fifo: boolean to know if fifo is used for driver
233 * @has_startbit: boolean to know if start bit is used to start transfer
234 */
235struct stm32_spi_cfg {
236 const struct stm32_spi_regspec *regs;
237 int (*get_fifo_size)(struct stm32_spi *spi);
238 int (*get_bpw_mask)(struct stm32_spi *spi);
239 void (*disable)(struct stm32_spi *spi);
240 int (*config)(struct stm32_spi *spi);
241 void (*set_bpw)(struct stm32_spi *spi);
242 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
243 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
244 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
245 void (*transfer_one_dma_start)(struct stm32_spi *spi);
246 void (*dma_rx_cb)(void *data);
247 void (*dma_tx_cb)(void *data);
248 int (*transfer_one_irq)(struct stm32_spi *spi);
249 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
250 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
251 unsigned int baud_rate_div_min;
252 unsigned int baud_rate_div_max;
253 bool has_fifo;
254};
255
256/**
257 * struct stm32_spi - private data of the SPI controller
258 * @dev: driver model representation of the controller
259 * @master: controller master interface
260 * @cfg: compatible configuration data
261 * @base: virtual memory area
262 * @clk: hw kernel clock feeding the SPI clock generator
263 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
264 * @lock: prevent I/O concurrent access
265 * @irq: SPI controller interrupt line
266 * @fifo_size: size of the embedded fifo in bytes
267 * @cur_midi: master inter-data idleness in ns
268 * @cur_speed: speed configured in Hz
269 * @cur_bpw: number of bits in a single SPI data frame
270 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
271 * @cur_comm: SPI communication mode
272 * @cur_xferlen: current transfer length in bytes
273 * @cur_usedma: boolean to know if dma is used in current transfer
274 * @tx_buf: data to be written, or NULL
275 * @rx_buf: data to be read, or NULL
276 * @tx_len: number of data to be written in bytes
277 * @rx_len: number of data to be read in bytes
278 * @dma_tx: dma channel for TX transfer
279 * @dma_rx: dma channel for RX transfer
280 * @phys_addr: SPI registers physical base address
281 */
282struct stm32_spi {
283 struct device *dev;
284 struct spi_master *master;
285 const struct stm32_spi_cfg *cfg;
286 void __iomem *base;
287 struct clk *clk;
288 u32 clk_rate;
289 spinlock_t lock; /* prevent I/O concurrent access */
290 int irq;
291 unsigned int fifo_size;
292
293 unsigned int cur_midi;
294 unsigned int cur_speed;
295 unsigned int cur_bpw;
296 unsigned int cur_fthlv;
297 unsigned int cur_comm;
298 unsigned int cur_xferlen;
299 bool cur_usedma;
300
301 const void *tx_buf;
302 void *rx_buf;
303 int tx_len;
304 int rx_len;
305 struct dma_chan *dma_tx;
306 struct dma_chan *dma_rx;
307 dma_addr_t phys_addr;
308};
309
310static const struct stm32_spi_regspec stm32f4_spi_regspec = {
311 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
312
313 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
314 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
315
316 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
317 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
318 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
319 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
320
321 .rx = { STM32F4_SPI_DR },
322 .tx = { STM32F4_SPI_DR },
323};
324
325static const struct stm32_spi_regspec stm32h7_spi_regspec = {
326 /* SPI data transfer is enabled but spi_ker_ck is idle.
327 * CFG1 and CFG2 registers are write protected when SPE is enabled.
328 */
329 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
330
331 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
332 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
333
334 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
335 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
336 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
337 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
338 STM32H7_SPI_CFG1_MBR_SHIFT },
339
340 .rx = { STM32H7_SPI_RXDR },
341 .tx = { STM32H7_SPI_TXDR },
342};
343
344static inline void stm32_spi_set_bits(struct stm32_spi *spi,
345 u32 offset, u32 bits)
346{
347 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
348 spi->base + offset);
349}
350
351static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
352 u32 offset, u32 bits)
353{
354 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
355 spi->base + offset);
356}
357
358/**
359 * stm32h7_spi_get_fifo_size - Return fifo size
360 * @spi: pointer to the spi controller data structure
361 */
362static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
363{
364 unsigned long flags;
365 u32 count = 0;
366
367 spin_lock_irqsave(&spi->lock, flags);
368
369 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
370
371 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
372 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
373
374 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
375
376 spin_unlock_irqrestore(&spi->lock, flags);
377
378 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
379
380 return count;
381}
382
383/**
384 * stm32f4_spi_get_bpw_mask - Return bits per word mask
385 * @spi: pointer to the spi controller data structure
386 */
387static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
388{
389 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
390 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
391}
392
393/**
394 * stm32h7_spi_get_bpw_mask - Return bits per word mask
395 * @spi: pointer to the spi controller data structure
396 */
397static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
398{
399 unsigned long flags;
400 u32 cfg1, max_bpw;
401
402 spin_lock_irqsave(&spi->lock, flags);
403
404 /*
405 * The most significant bit at DSIZE bit field is reserved when the
406 * maximum data size of periperal instances is limited to 16-bit
407 */
408 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
409
410 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
411 max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
412
413 spin_unlock_irqrestore(&spi->lock, flags);
414
415 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
416
417 return SPI_BPW_RANGE_MASK(4, max_bpw);
418}
419
420/**
421 * stm32_spi_prepare_mbr - Determine baud rate divisor value
422 * @spi: pointer to the spi controller data structure
423 * @speed_hz: requested speed
424 * @min_div: minimum baud rate divisor
425 * @max_div: maximum baud rate divisor
426 *
427 * Return baud rate divisor value in case of success or -EINVAL
428 */
429static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
430 u32 min_div, u32 max_div)
431{
432 u32 div, mbrdiv;
433
434 /* Ensure spi->clk_rate is even */
435 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
436
437 /*
438 * SPI framework set xfer->speed_hz to master->max_speed_hz if
439 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
440 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
441 * no need to check it there.
442 * However, we need to ensure the following calculations.
443 */
444 if ((div < min_div) || (div > max_div))
445 return -EINVAL;
446
447 /* Determine the first power of 2 greater than or equal to div */
448 if (div & (div - 1))
449 mbrdiv = fls(div);
450 else
451 mbrdiv = fls(div) - 1;
452
453 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
454
455 return mbrdiv - 1;
456}
457
458/**
459 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
460 * @spi: pointer to the spi controller data structure
461 * @xfer_len: length of the message to be transferred
462 */
463static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
464{
465 u32 packet, bpw;
466
467 /* data packet should not exceed 1/2 of fifo space */
468 packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
469
470 /* align packet size with data registers access */
471 bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
472 return DIV_ROUND_UP(packet, bpw);
473}
474
475/**
476 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
477 * @spi: pointer to the spi controller data structure
478 *
479 * Read from tx_buf depends on remaining bytes to avoid to read beyond
480 * tx_buf end.
481 */
482static void stm32f4_spi_write_tx(struct stm32_spi *spi)
483{
484 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
485 STM32F4_SPI_SR_TXE)) {
486 u32 offs = spi->cur_xferlen - spi->tx_len;
487
488 if (spi->cur_bpw == 16) {
489 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
490
491 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
492 spi->tx_len -= sizeof(u16);
493 } else {
494 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
495
496 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
497 spi->tx_len -= sizeof(u8);
498 }
499 }
500
501 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
502}
503
504/**
505 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
506 * @spi: pointer to the spi controller data structure
507 *
508 * Read from tx_buf depends on remaining bytes to avoid to read beyond
509 * tx_buf end.
510 */
511static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
512{
513 while ((spi->tx_len > 0) &&
514 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
515 STM32H7_SPI_SR_TXP)) {
516 u32 offs = spi->cur_xferlen - spi->tx_len;
517
518 if (spi->tx_len >= sizeof(u32)) {
519 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
520
521 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
522 spi->tx_len -= sizeof(u32);
523 } else if (spi->tx_len >= sizeof(u16)) {
524 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
525
526 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
527 spi->tx_len -= sizeof(u16);
528 } else {
529 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
530
531 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
532 spi->tx_len -= sizeof(u8);
533 }
534 }
535
536 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
537}
538
539/**
540 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
541 * @spi: pointer to the spi controller data structure
542 *
543 * Write in rx_buf depends on remaining bytes to avoid to write beyond
544 * rx_buf end.
545 */
546static void stm32f4_spi_read_rx(struct stm32_spi *spi)
547{
548 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
549 STM32F4_SPI_SR_RXNE)) {
550 u32 offs = spi->cur_xferlen - spi->rx_len;
551
552 if (spi->cur_bpw == 16) {
553 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
554
555 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
556 spi->rx_len -= sizeof(u16);
557 } else {
558 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
559
560 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
561 spi->rx_len -= sizeof(u8);
562 }
563 }
564
565 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
566}
567
568/**
569 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
570 * @spi: pointer to the spi controller data structure
571 * @flush: boolean indicating that FIFO should be flushed
572 *
573 * Write in rx_buf depends on remaining bytes to avoid to write beyond
574 * rx_buf end.
575 */
576static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
577{
578 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
579 u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
580
581 while ((spi->rx_len > 0) &&
582 ((sr & STM32H7_SPI_SR_RXP) ||
583 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
584 u32 offs = spi->cur_xferlen - spi->rx_len;
585
586 if ((spi->rx_len >= sizeof(u32)) ||
587 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
588 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
589
590 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
591 spi->rx_len -= sizeof(u32);
592 } else if ((spi->rx_len >= sizeof(u16)) ||
593 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
594 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
595
596 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
597 spi->rx_len -= sizeof(u16);
598 } else {
599 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
600
601 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
602 spi->rx_len -= sizeof(u8);
603 }
604
605 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
606 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
607 }
608
609 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
610 flush ? "(flush)" : "", spi->rx_len);
611}
612
613/**
614 * stm32_spi_enable - Enable SPI controller
615 * @spi: pointer to the spi controller data structure
616 */
617static void stm32_spi_enable(struct stm32_spi *spi)
618{
619 dev_dbg(spi->dev, "enable controller\n");
620
621 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
622 spi->cfg->regs->en.mask);
623}
624
625/**
626 * stm32f4_spi_disable - Disable SPI controller
627 * @spi: pointer to the spi controller data structure
628 */
629static void stm32f4_spi_disable(struct stm32_spi *spi)
630{
631 unsigned long flags;
632 u32 sr;
633
634 dev_dbg(spi->dev, "disable controller\n");
635
636 spin_lock_irqsave(&spi->lock, flags);
637
638 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
639 STM32F4_SPI_CR1_SPE)) {
640 spin_unlock_irqrestore(&spi->lock, flags);
641 return;
642 }
643
644 /* Disable interrupts */
645 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
646 STM32F4_SPI_CR2_RXNEIE |
647 STM32F4_SPI_CR2_ERRIE);
648
649 /* Wait until BSY = 0 */
650 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
651 sr, !(sr & STM32F4_SPI_SR_BSY),
652 10, 100000) < 0) {
653 dev_warn(spi->dev, "disabling condition timeout\n");
654 }
655
656 if (spi->cur_usedma && spi->dma_tx)
657 dmaengine_terminate_all(spi->dma_tx);
658 if (spi->cur_usedma && spi->dma_rx)
659 dmaengine_terminate_all(spi->dma_rx);
660
661 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
662
663 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
664 STM32F4_SPI_CR2_RXDMAEN);
665
666 /* Sequence to clear OVR flag */
667 readl_relaxed(spi->base + STM32F4_SPI_DR);
668 readl_relaxed(spi->base + STM32F4_SPI_SR);
669
670 spin_unlock_irqrestore(&spi->lock, flags);
671}
672
673/**
674 * stm32h7_spi_disable - Disable SPI controller
675 * @spi: pointer to the spi controller data structure
676 *
677 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
678 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
679 * RX-Fifo.
680 * Normally, if TSIZE has been configured, we should relax the hardware at the
681 * reception of the EOT interrupt. But in case of error, EOT will not be
682 * raised. So the subsystem unprepare_message call allows us to properly
683 * complete the transfer from an hardware point of view.
684 */
685static void stm32h7_spi_disable(struct stm32_spi *spi)
686{
687 unsigned long flags;
688 u32 cr1, sr;
689
690 dev_dbg(spi->dev, "disable controller\n");
691
692 spin_lock_irqsave(&spi->lock, flags);
693
694 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
695
696 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
697 spin_unlock_irqrestore(&spi->lock, flags);
698 return;
699 }
700
701 /* Wait on EOT or suspend the flow */
702 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
703 sr, !(sr & STM32H7_SPI_SR_EOT),
704 10, 100000) < 0) {
705 if (cr1 & STM32H7_SPI_CR1_CSTART) {
706 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
707 spi->base + STM32H7_SPI_CR1);
708 if (readl_relaxed_poll_timeout_atomic(
709 spi->base + STM32H7_SPI_SR,
710 sr, !(sr & STM32H7_SPI_SR_SUSP),
711 10, 100000) < 0)
712 dev_warn(spi->dev,
713 "Suspend request timeout\n");
714 }
715 }
716
717 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
718 stm32h7_spi_read_rxfifo(spi, true);
719
720 if (spi->cur_usedma && spi->dma_tx)
721 dmaengine_terminate_all(spi->dma_tx);
722 if (spi->cur_usedma && spi->dma_rx)
723 dmaengine_terminate_all(spi->dma_rx);
724
725 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
726
727 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728 STM32H7_SPI_CFG1_RXDMAEN);
729
730 /* Disable interrupts and clear status flags */
731 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
733
734 spin_unlock_irqrestore(&spi->lock, flags);
735}
736
737/**
738 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
739 * @master: controller master interface
740 * @spi_dev: pointer to the spi device
741 * @transfer: pointer to spi transfer
742 *
743 * If driver has fifo and the current transfer size is greater than fifo size,
744 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
745 */
746static bool stm32_spi_can_dma(struct spi_master *master,
747 struct spi_device *spi_dev,
748 struct spi_transfer *transfer)
749{
750 unsigned int dma_size;
751 struct stm32_spi *spi = spi_master_get_devdata(master);
752
753 if (spi->cfg->has_fifo)
754 dma_size = spi->fifo_size;
755 else
756 dma_size = SPI_DMA_MIN_BYTES;
757
758 dev_dbg(spi->dev, "%s: %s\n", __func__,
759 (transfer->len > dma_size) ? "true" : "false");
760
761 return (transfer->len > dma_size);
762}
763
764/**
765 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766 * @irq: interrupt line
767 * @dev_id: SPI controller master interface
768 */
769static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770{
771 struct spi_master *master = dev_id;
772 struct stm32_spi *spi = spi_master_get_devdata(master);
773 u32 sr, mask = 0;
774 bool end = false;
775
776 spin_lock(&spi->lock);
777
778 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779 /*
780 * BSY flag is not handled in interrupt but it is normal behavior when
781 * this flag is set.
782 */
783 sr &= ~STM32F4_SPI_SR_BSY;
784
785 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786 spi->cur_comm == SPI_3WIRE_TX)) {
787 /* OVR flag shouldn't be handled for TX only mode */
788 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
789 mask |= STM32F4_SPI_SR_TXE;
790 }
791
792 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793 spi->cur_comm == SPI_SIMPLEX_RX ||
794 spi->cur_comm == SPI_3WIRE_RX)) {
795 /* TXE flag is set and is handled when RXNE flag occurs */
796 sr &= ~STM32F4_SPI_SR_TXE;
797 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798 }
799
800 if (!(sr & mask)) {
801 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
802 spin_unlock(&spi->lock);
803 return IRQ_NONE;
804 }
805
806 if (sr & STM32F4_SPI_SR_OVR) {
807 dev_warn(spi->dev, "Overrun: received value discarded\n");
808
809 /* Sequence to clear OVR flag */
810 readl_relaxed(spi->base + STM32F4_SPI_DR);
811 readl_relaxed(spi->base + STM32F4_SPI_SR);
812
813 /*
814 * If overrun is detected, it means that something went wrong,
815 * so stop the current transfer. Transfer can wait for next
816 * RXNE but DR is already read and end never happens.
817 */
818 end = true;
819 goto end_irq;
820 }
821
822 if (sr & STM32F4_SPI_SR_TXE) {
823 if (spi->tx_buf)
824 stm32f4_spi_write_tx(spi);
825 if (spi->tx_len == 0)
826 end = true;
827 }
828
829 if (sr & STM32F4_SPI_SR_RXNE) {
830 stm32f4_spi_read_rx(spi);
831 if (spi->rx_len == 0)
832 end = true;
833 else if (spi->tx_buf)/* Load data for discontinuous mode */
834 stm32f4_spi_write_tx(spi);
835 }
836
837end_irq:
838 if (end) {
839 /* Immediately disable interrupts to do not generate new one */
840 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841 STM32F4_SPI_CR2_TXEIE |
842 STM32F4_SPI_CR2_RXNEIE |
843 STM32F4_SPI_CR2_ERRIE);
844 spin_unlock(&spi->lock);
845 return IRQ_WAKE_THREAD;
846 }
847
848 spin_unlock(&spi->lock);
849 return IRQ_HANDLED;
850}
851
852/**
853 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854 * @irq: interrupt line
855 * @dev_id: SPI controller master interface
856 */
857static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858{
859 struct spi_master *master = dev_id;
860 struct stm32_spi *spi = spi_master_get_devdata(master);
861
862 spi_finalize_current_transfer(master);
863 stm32f4_spi_disable(spi);
864
865 return IRQ_HANDLED;
866}
867
868/**
869 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
870 * @irq: interrupt line
871 * @dev_id: SPI controller master interface
872 */
873static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
874{
875 struct spi_master *master = dev_id;
876 struct stm32_spi *spi = spi_master_get_devdata(master);
877 u32 sr, ier, mask;
878 unsigned long flags;
879 bool end = false;
880
881 spin_lock_irqsave(&spi->lock, flags);
882
883 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
885
886 mask = ier;
887 /*
888 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
889 * SUSP to acknowledge it later. TXC is automatically cleared
890 */
891
892 mask |= STM32H7_SPI_SR_SUSP;
893 /*
894 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
895 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
896 */
897 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
898 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
899
900 if (!(sr & mask)) {
901 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
902 sr, ier);
903 spin_unlock_irqrestore(&spi->lock, flags);
904 return IRQ_NONE;
905 }
906
907 if (sr & STM32H7_SPI_SR_SUSP) {
908 static DEFINE_RATELIMIT_STATE(rs,
909 DEFAULT_RATELIMIT_INTERVAL * 10,
910 1);
911 if (__ratelimit(&rs))
912 dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
913 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
914 stm32h7_spi_read_rxfifo(spi, false);
915 /*
916 * If communication is suspended while using DMA, it means
917 * that something went wrong, so stop the current transfer
918 */
919 if (spi->cur_usedma)
920 end = true;
921 }
922
923 if (sr & STM32H7_SPI_SR_MODF) {
924 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
925 end = true;
926 }
927
928 if (sr & STM32H7_SPI_SR_OVR) {
929 dev_err(spi->dev, "Overrun: RX data lost\n");
930 end = true;
931 }
932
933 if (sr & STM32H7_SPI_SR_EOT) {
934 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
935 stm32h7_spi_read_rxfifo(spi, true);
936 end = true;
937 }
938
939 if (sr & STM32H7_SPI_SR_TXP)
940 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
941 stm32h7_spi_write_txfifo(spi);
942
943 if (sr & STM32H7_SPI_SR_RXP)
944 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
945 stm32h7_spi_read_rxfifo(spi, false);
946
947 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
948
949 spin_unlock_irqrestore(&spi->lock, flags);
950
951 if (end) {
952 stm32h7_spi_disable(spi);
953 spi_finalize_current_transfer(master);
954 }
955
956 return IRQ_HANDLED;
957}
958
959/**
960 * stm32_spi_prepare_msg - set up the controller to transfer a single message
961 * @master: controller master interface
962 * @msg: pointer to spi message
963 */
964static int stm32_spi_prepare_msg(struct spi_master *master,
965 struct spi_message *msg)
966{
967 struct stm32_spi *spi = spi_master_get_devdata(master);
968 struct spi_device *spi_dev = msg->spi;
969 struct device_node *np = spi_dev->dev.of_node;
970 unsigned long flags;
971 u32 clrb = 0, setb = 0;
972
973 /* SPI slave device may need time between data frames */
974 spi->cur_midi = 0;
975 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
976 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
977
978 if (spi_dev->mode & SPI_CPOL)
979 setb |= spi->cfg->regs->cpol.mask;
980 else
981 clrb |= spi->cfg->regs->cpol.mask;
982
983 if (spi_dev->mode & SPI_CPHA)
984 setb |= spi->cfg->regs->cpha.mask;
985 else
986 clrb |= spi->cfg->regs->cpha.mask;
987
988 if (spi_dev->mode & SPI_LSB_FIRST)
989 setb |= spi->cfg->regs->lsb_first.mask;
990 else
991 clrb |= spi->cfg->regs->lsb_first.mask;
992
993 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
994 !!(spi_dev->mode & SPI_CPOL),
995 !!(spi_dev->mode & SPI_CPHA),
996 !!(spi_dev->mode & SPI_LSB_FIRST),
997 !!(spi_dev->mode & SPI_CS_HIGH));
998
999 /* On STM32H7, messages should not exceed a maximum size setted
1000 * afterward via the set_number_of_data function. In order to
1001 * ensure that, split large messages into several messages
1002 */
1003 if (spi->cfg->set_number_of_data) {
1004 int ret;
1005
1006 ret = spi_split_transfers_maxsize(master, msg,
1007 STM32H7_SPI_TSIZE_MAX,
1008 GFP_KERNEL | GFP_DMA);
1009 if (ret)
1010 return ret;
1011 }
1012
1013 spin_lock_irqsave(&spi->lock, flags);
1014
1015 /* CPOL, CPHA and LSB FIRST bits have common register */
1016 if (clrb || setb)
1017 writel_relaxed(
1018 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1019 ~clrb) | setb,
1020 spi->base + spi->cfg->regs->cpol.reg);
1021
1022 spin_unlock_irqrestore(&spi->lock, flags);
1023
1024 return 0;
1025}
1026
1027/**
1028 * stm32f4_spi_dma_tx_cb - dma callback
1029 * @data: pointer to the spi controller data structure
1030 *
1031 * DMA callback is called when the transfer is complete for DMA TX channel.
1032 */
1033static void stm32f4_spi_dma_tx_cb(void *data)
1034{
1035 struct stm32_spi *spi = data;
1036
1037 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1038 spi_finalize_current_transfer(spi->master);
1039 stm32f4_spi_disable(spi);
1040 }
1041}
1042
1043/**
1044 * stm32f4_spi_dma_rx_cb - dma callback
1045 * @data: pointer to the spi controller data structure
1046 *
1047 * DMA callback is called when the transfer is complete for DMA RX channel.
1048 */
1049static void stm32f4_spi_dma_rx_cb(void *data)
1050{
1051 struct stm32_spi *spi = data;
1052
1053 spi_finalize_current_transfer(spi->master);
1054 stm32f4_spi_disable(spi);
1055}
1056
1057/**
1058 * stm32h7_spi_dma_cb - dma callback
1059 * @data: pointer to the spi controller data structure
1060 *
1061 * DMA callback is called when the transfer is complete or when an error
1062 * occurs. If the transfer is complete, EOT flag is raised.
1063 */
1064static void stm32h7_spi_dma_cb(void *data)
1065{
1066 struct stm32_spi *spi = data;
1067 unsigned long flags;
1068 u32 sr;
1069
1070 spin_lock_irqsave(&spi->lock, flags);
1071
1072 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1073
1074 spin_unlock_irqrestore(&spi->lock, flags);
1075
1076 if (!(sr & STM32H7_SPI_SR_EOT))
1077 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1078
1079 /* Now wait for EOT, or SUSP or OVR in case of error */
1080}
1081
1082/**
1083 * stm32_spi_dma_config - configure dma slave channel depending on current
1084 * transfer bits_per_word.
1085 * @spi: pointer to the spi controller data structure
1086 * @dma_conf: pointer to the dma_slave_config structure
1087 * @dir: direction of the dma transfer
1088 */
1089static void stm32_spi_dma_config(struct stm32_spi *spi,
1090 struct dma_slave_config *dma_conf,
1091 enum dma_transfer_direction dir)
1092{
1093 enum dma_slave_buswidth buswidth;
1094 u32 maxburst;
1095
1096 if (spi->cur_bpw <= 8)
1097 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1098 else if (spi->cur_bpw <= 16)
1099 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1100 else
1101 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1102
1103 if (spi->cfg->has_fifo) {
1104 /* Valid for DMA Half or Full Fifo threshold */
1105 if (spi->cur_fthlv == 2)
1106 maxburst = 1;
1107 else
1108 maxburst = spi->cur_fthlv;
1109 } else {
1110 maxburst = 1;
1111 }
1112
1113 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1114 dma_conf->direction = dir;
1115 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1116 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1117 dma_conf->src_addr_width = buswidth;
1118 dma_conf->src_maxburst = maxburst;
1119
1120 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1121 buswidth, maxburst);
1122 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1123 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1124 dma_conf->dst_addr_width = buswidth;
1125 dma_conf->dst_maxburst = maxburst;
1126
1127 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1128 buswidth, maxburst);
1129 }
1130}
1131
1132/**
1133 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1134 * interrupts
1135 * @spi: pointer to the spi controller data structure
1136 *
1137 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1138 * in progress.
1139 */
1140static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1141{
1142 unsigned long flags;
1143 u32 cr2 = 0;
1144
1145 /* Enable the interrupts relative to the current communication mode */
1146 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1147 cr2 |= STM32F4_SPI_CR2_TXEIE;
1148 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1149 spi->cur_comm == SPI_SIMPLEX_RX ||
1150 spi->cur_comm == SPI_3WIRE_RX) {
1151 /* In transmit-only mode, the OVR flag is set in the SR register
1152 * since the received data are never read. Therefore set OVR
1153 * interrupt only when rx buffer is available.
1154 */
1155 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1156 } else {
1157 return -EINVAL;
1158 }
1159
1160 spin_lock_irqsave(&spi->lock, flags);
1161
1162 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1163
1164 stm32_spi_enable(spi);
1165
1166 /* starting data transfer when buffer is loaded */
1167 if (spi->tx_buf)
1168 stm32f4_spi_write_tx(spi);
1169
1170 spin_unlock_irqrestore(&spi->lock, flags);
1171
1172 return 1;
1173}
1174
1175/**
1176 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1177 * interrupts
1178 * @spi: pointer to the spi controller data structure
1179 *
1180 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1181 * in progress.
1182 */
1183static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1184{
1185 unsigned long flags;
1186 u32 ier = 0;
1187
1188 /* Enable the interrupts relative to the current communication mode */
1189 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1190 ier |= STM32H7_SPI_IER_DXPIE;
1191 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1192 ier |= STM32H7_SPI_IER_TXPIE;
1193 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1194 ier |= STM32H7_SPI_IER_RXPIE;
1195
1196 /* Enable the interrupts relative to the end of transfer */
1197 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1198 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1199
1200 spin_lock_irqsave(&spi->lock, flags);
1201
1202 stm32_spi_enable(spi);
1203
1204 /* Be sure to have data in fifo before starting data transfer */
1205 if (spi->tx_buf)
1206 stm32h7_spi_write_txfifo(spi);
1207
1208 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1209
1210 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1211
1212 spin_unlock_irqrestore(&spi->lock, flags);
1213
1214 return 1;
1215}
1216
1217/**
1218 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1219 * transfer using DMA
1220 * @spi: pointer to the spi controller data structure
1221 */
1222static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1223{
1224 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1225 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1226 spi->cur_comm == SPI_FULL_DUPLEX) {
1227 /*
1228 * In transmit-only mode, the OVR flag is set in the SR register
1229 * since the received data are never read. Therefore set OVR
1230 * interrupt only when rx buffer is available.
1231 */
1232 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1233 }
1234
1235 stm32_spi_enable(spi);
1236}
1237
1238/**
1239 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1240 * transfer using DMA
1241 * @spi: pointer to the spi controller data structure
1242 */
1243static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1244{
1245 /* Enable the interrupts relative to the end of transfer */
1246 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1247 STM32H7_SPI_IER_TXTFIE |
1248 STM32H7_SPI_IER_OVRIE |
1249 STM32H7_SPI_IER_MODFIE);
1250
1251 stm32_spi_enable(spi);
1252
1253 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1254}
1255
1256/**
1257 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1258 * @spi: pointer to the spi controller data structure
1259 * @xfer: pointer to the spi_transfer structure
1260 *
1261 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1262 * in progress.
1263 */
1264static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1265 struct spi_transfer *xfer)
1266{
1267 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1268 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1269 unsigned long flags;
1270
1271 spin_lock_irqsave(&spi->lock, flags);
1272
1273 rx_dma_desc = NULL;
1274 if (spi->rx_buf && spi->dma_rx) {
1275 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1276 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1277
1278 /* Enable Rx DMA request */
1279 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1280 spi->cfg->regs->dma_rx_en.mask);
1281
1282 rx_dma_desc = dmaengine_prep_slave_sg(
1283 spi->dma_rx, xfer->rx_sg.sgl,
1284 xfer->rx_sg.nents,
1285 rx_dma_conf.direction,
1286 DMA_PREP_INTERRUPT);
1287 }
1288
1289 tx_dma_desc = NULL;
1290 if (spi->tx_buf && spi->dma_tx) {
1291 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1292 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1293
1294 tx_dma_desc = dmaengine_prep_slave_sg(
1295 spi->dma_tx, xfer->tx_sg.sgl,
1296 xfer->tx_sg.nents,
1297 tx_dma_conf.direction,
1298 DMA_PREP_INTERRUPT);
1299 }
1300
1301 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1302 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1303 goto dma_desc_error;
1304
1305 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1306 goto dma_desc_error;
1307
1308 if (rx_dma_desc) {
1309 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1310 rx_dma_desc->callback_param = spi;
1311
1312 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1313 dev_err(spi->dev, "Rx DMA submit failed\n");
1314 goto dma_desc_error;
1315 }
1316 /* Enable Rx DMA channel */
1317 dma_async_issue_pending(spi->dma_rx);
1318 }
1319
1320 if (tx_dma_desc) {
1321 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1322 spi->cur_comm == SPI_3WIRE_TX) {
1323 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1324 tx_dma_desc->callback_param = spi;
1325 }
1326
1327 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1328 dev_err(spi->dev, "Tx DMA submit failed\n");
1329 goto dma_submit_error;
1330 }
1331 /* Enable Tx DMA channel */
1332 dma_async_issue_pending(spi->dma_tx);
1333
1334 /* Enable Tx DMA request */
1335 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1336 spi->cfg->regs->dma_tx_en.mask);
1337 }
1338
1339 spi->cfg->transfer_one_dma_start(spi);
1340
1341 spin_unlock_irqrestore(&spi->lock, flags);
1342
1343 return 1;
1344
1345dma_submit_error:
1346 if (spi->dma_rx)
1347 dmaengine_terminate_all(spi->dma_rx);
1348
1349dma_desc_error:
1350 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1351 spi->cfg->regs->dma_rx_en.mask);
1352
1353 spin_unlock_irqrestore(&spi->lock, flags);
1354
1355 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1356
1357 spi->cur_usedma = false;
1358 return spi->cfg->transfer_one_irq(spi);
1359}
1360
1361/**
1362 * stm32f4_spi_set_bpw - Configure bits per word
1363 * @spi: pointer to the spi controller data structure
1364 */
1365static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1366{
1367 if (spi->cur_bpw == 16)
1368 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1369 else
1370 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1371}
1372
1373/**
1374 * stm32h7_spi_set_bpw - configure bits per word
1375 * @spi: pointer to the spi controller data structure
1376 */
1377static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1378{
1379 u32 bpw, fthlv;
1380 u32 cfg1_clrb = 0, cfg1_setb = 0;
1381
1382 bpw = spi->cur_bpw - 1;
1383
1384 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1385 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1386
1387 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1388 fthlv = spi->cur_fthlv - 1;
1389
1390 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1391 cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1392
1393 writel_relaxed(
1394 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1395 ~cfg1_clrb) | cfg1_setb,
1396 spi->base + STM32H7_SPI_CFG1);
1397}
1398
1399/**
1400 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1401 * @spi: pointer to the spi controller data structure
1402 * @mbrdiv: baud rate divisor value
1403 */
1404static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1405{
1406 u32 clrb = 0, setb = 0;
1407
1408 clrb |= spi->cfg->regs->br.mask;
1409 setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1410
1411 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1412 ~clrb) | setb,
1413 spi->base + spi->cfg->regs->br.reg);
1414}
1415
1416/**
1417 * stm32_spi_communication_type - return transfer communication type
1418 * @spi_dev: pointer to the spi device
1419 * @transfer: pointer to spi transfer
1420 */
1421static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1422 struct spi_transfer *transfer)
1423{
1424 unsigned int type = SPI_FULL_DUPLEX;
1425
1426 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1427 /*
1428 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1429 * is forbidden and unvalidated by SPI subsystem so depending
1430 * on the valid buffer, we can determine the direction of the
1431 * transfer.
1432 */
1433 if (!transfer->tx_buf)
1434 type = SPI_3WIRE_RX;
1435 else
1436 type = SPI_3WIRE_TX;
1437 } else {
1438 if (!transfer->tx_buf)
1439 type = SPI_SIMPLEX_RX;
1440 else if (!transfer->rx_buf)
1441 type = SPI_SIMPLEX_TX;
1442 }
1443
1444 return type;
1445}
1446
1447/**
1448 * stm32f4_spi_set_mode - configure communication mode
1449 * @spi: pointer to the spi controller data structure
1450 * @comm_type: type of communication to configure
1451 */
1452static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1453{
1454 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1455 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1456 STM32F4_SPI_CR1_BIDIMODE |
1457 STM32F4_SPI_CR1_BIDIOE);
1458 } else if (comm_type == SPI_FULL_DUPLEX ||
1459 comm_type == SPI_SIMPLEX_RX) {
1460 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1461 STM32F4_SPI_CR1_BIDIMODE |
1462 STM32F4_SPI_CR1_BIDIOE);
1463 } else if (comm_type == SPI_3WIRE_RX) {
1464 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1465 STM32F4_SPI_CR1_BIDIMODE);
1466 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1467 STM32F4_SPI_CR1_BIDIOE);
1468 } else {
1469 return -EINVAL;
1470 }
1471
1472 return 0;
1473}
1474
1475/**
1476 * stm32h7_spi_set_mode - configure communication mode
1477 * @spi: pointer to the spi controller data structure
1478 * @comm_type: type of communication to configure
1479 */
1480static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1481{
1482 u32 mode;
1483 u32 cfg2_clrb = 0, cfg2_setb = 0;
1484
1485 if (comm_type == SPI_3WIRE_RX) {
1486 mode = STM32H7_SPI_HALF_DUPLEX;
1487 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1488 } else if (comm_type == SPI_3WIRE_TX) {
1489 mode = STM32H7_SPI_HALF_DUPLEX;
1490 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1491 } else if (comm_type == SPI_SIMPLEX_RX) {
1492 mode = STM32H7_SPI_SIMPLEX_RX;
1493 } else if (comm_type == SPI_SIMPLEX_TX) {
1494 mode = STM32H7_SPI_SIMPLEX_TX;
1495 } else {
1496 mode = STM32H7_SPI_FULL_DUPLEX;
1497 }
1498
1499 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1500 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1501
1502 writel_relaxed(
1503 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1504 ~cfg2_clrb) | cfg2_setb,
1505 spi->base + STM32H7_SPI_CFG2);
1506
1507 return 0;
1508}
1509
1510/**
1511 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1512 * consecutive data frames in master mode
1513 * @spi: pointer to the spi controller data structure
1514 * @len: transfer len
1515 */
1516static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1517{
1518 u32 cfg2_clrb = 0, cfg2_setb = 0;
1519
1520 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1521 if ((len > 1) && (spi->cur_midi > 0)) {
1522 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1523 u32 midi = min_t(u32,
1524 DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1525 FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1526 STM32H7_SPI_CFG2_MIDI));
1527
1528
1529 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1530 sck_period_ns, midi, midi * sck_period_ns);
1531 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1532 }
1533
1534 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1535 ~cfg2_clrb) | cfg2_setb,
1536 spi->base + STM32H7_SPI_CFG2);
1537}
1538
1539/**
1540 * stm32h7_spi_number_of_data - configure number of data at current transfer
1541 * @spi: pointer to the spi controller data structure
1542 * @nb_words: transfer length (in words)
1543 */
1544static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1545{
1546 if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1547 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1548 spi->base + STM32H7_SPI_CR2);
1549 } else {
1550 return -EMSGSIZE;
1551 }
1552
1553 return 0;
1554}
1555
1556/**
1557 * stm32_spi_transfer_one_setup - common setup to transfer a single
1558 * spi_transfer either using DMA or
1559 * interrupts.
1560 * @spi: pointer to the spi controller data structure
1561 * @spi_dev: pointer to the spi device
1562 * @transfer: pointer to spi transfer
1563 */
1564static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1565 struct spi_device *spi_dev,
1566 struct spi_transfer *transfer)
1567{
1568 unsigned long flags;
1569 unsigned int comm_type;
1570 int nb_words, ret = 0;
1571 int mbr;
1572
1573 spin_lock_irqsave(&spi->lock, flags);
1574
1575 spi->cur_xferlen = transfer->len;
1576
1577 spi->cur_bpw = transfer->bits_per_word;
1578 spi->cfg->set_bpw(spi);
1579
1580 /* Update spi->cur_speed with real clock speed */
1581 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1582 spi->cfg->baud_rate_div_min,
1583 spi->cfg->baud_rate_div_max);
1584 if (mbr < 0) {
1585 ret = mbr;
1586 goto out;
1587 }
1588
1589 transfer->speed_hz = spi->cur_speed;
1590 stm32_spi_set_mbr(spi, mbr);
1591
1592 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1593 ret = spi->cfg->set_mode(spi, comm_type);
1594 if (ret < 0)
1595 goto out;
1596
1597 spi->cur_comm = comm_type;
1598
1599 if (spi->cfg->set_data_idleness)
1600 spi->cfg->set_data_idleness(spi, transfer->len);
1601
1602 if (spi->cur_bpw <= 8)
1603 nb_words = transfer->len;
1604 else if (spi->cur_bpw <= 16)
1605 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1606 else
1607 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1608
1609 if (spi->cfg->set_number_of_data) {
1610 ret = spi->cfg->set_number_of_data(spi, nb_words);
1611 if (ret < 0)
1612 goto out;
1613 }
1614
1615 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1616 spi->cur_comm);
1617 dev_dbg(spi->dev,
1618 "data frame of %d-bit, data packet of %d data frames\n",
1619 spi->cur_bpw, spi->cur_fthlv);
1620 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1621 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1622 spi->cur_xferlen, nb_words);
1623 dev_dbg(spi->dev, "dma %s\n",
1624 (spi->cur_usedma) ? "enabled" : "disabled");
1625
1626out:
1627 spin_unlock_irqrestore(&spi->lock, flags);
1628
1629 return ret;
1630}
1631
1632/**
1633 * stm32_spi_transfer_one - transfer a single spi_transfer
1634 * @master: controller master interface
1635 * @spi_dev: pointer to the spi device
1636 * @transfer: pointer to spi transfer
1637 *
1638 * It must return 0 if the transfer is finished or 1 if the transfer is still
1639 * in progress.
1640 */
1641static int stm32_spi_transfer_one(struct spi_master *master,
1642 struct spi_device *spi_dev,
1643 struct spi_transfer *transfer)
1644{
1645 struct stm32_spi *spi = spi_master_get_devdata(master);
1646 int ret;
1647
1648 /* Don't do anything on 0 bytes transfers */
1649 if (transfer->len == 0)
1650 return 0;
1651
1652 spi->tx_buf = transfer->tx_buf;
1653 spi->rx_buf = transfer->rx_buf;
1654 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1655 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1656
1657 spi->cur_usedma = (master->can_dma &&
1658 master->can_dma(master, spi_dev, transfer));
1659
1660 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1661 if (ret) {
1662 dev_err(spi->dev, "SPI transfer setup failed\n");
1663 return ret;
1664 }
1665
1666 if (spi->cur_usedma)
1667 return stm32_spi_transfer_one_dma(spi, transfer);
1668 else
1669 return spi->cfg->transfer_one_irq(spi);
1670}
1671
1672/**
1673 * stm32_spi_unprepare_msg - relax the hardware
1674 * @master: controller master interface
1675 * @msg: pointer to the spi message
1676 */
1677static int stm32_spi_unprepare_msg(struct spi_master *master,
1678 struct spi_message *msg)
1679{
1680 struct stm32_spi *spi = spi_master_get_devdata(master);
1681
1682 spi->cfg->disable(spi);
1683
1684 return 0;
1685}
1686
1687/**
1688 * stm32f4_spi_config - Configure SPI controller as SPI master
1689 * @spi: pointer to the spi controller data structure
1690 */
1691static int stm32f4_spi_config(struct stm32_spi *spi)
1692{
1693 unsigned long flags;
1694
1695 spin_lock_irqsave(&spi->lock, flags);
1696
1697 /* Ensure I2SMOD bit is kept cleared */
1698 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1699 STM32F4_SPI_I2SCFGR_I2SMOD);
1700
1701 /*
1702 * - SS input value high
1703 * - transmitter half duplex direction
1704 * - Set the master mode (default Motorola mode)
1705 * - Consider 1 master/n slaves configuration and
1706 * SS input value is determined by the SSI bit
1707 */
1708 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1709 STM32F4_SPI_CR1_BIDIOE |
1710 STM32F4_SPI_CR1_MSTR |
1711 STM32F4_SPI_CR1_SSM);
1712
1713 spin_unlock_irqrestore(&spi->lock, flags);
1714
1715 return 0;
1716}
1717
1718/**
1719 * stm32h7_spi_config - Configure SPI controller as SPI master
1720 * @spi: pointer to the spi controller data structure
1721 */
1722static int stm32h7_spi_config(struct stm32_spi *spi)
1723{
1724 unsigned long flags;
1725
1726 spin_lock_irqsave(&spi->lock, flags);
1727
1728 /* Ensure I2SMOD bit is kept cleared */
1729 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1730 STM32H7_SPI_I2SCFGR_I2SMOD);
1731
1732 /*
1733 * - SS input value high
1734 * - transmitter half duplex direction
1735 * - automatic communication suspend when RX-Fifo is full
1736 */
1737 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1738 STM32H7_SPI_CR1_HDDIR |
1739 STM32H7_SPI_CR1_MASRX);
1740
1741 /*
1742 * - Set the master mode (default Motorola mode)
1743 * - Consider 1 master/n slaves configuration and
1744 * SS input value is determined by the SSI bit
1745 * - keep control of all associated GPIOs
1746 */
1747 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1748 STM32H7_SPI_CFG2_SSM |
1749 STM32H7_SPI_CFG2_AFCNTR);
1750
1751 spin_unlock_irqrestore(&spi->lock, flags);
1752
1753 return 0;
1754}
1755
1756static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1757 .regs = &stm32f4_spi_regspec,
1758 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1759 .disable = stm32f4_spi_disable,
1760 .config = stm32f4_spi_config,
1761 .set_bpw = stm32f4_spi_set_bpw,
1762 .set_mode = stm32f4_spi_set_mode,
1763 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1764 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1765 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1766 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1767 .irq_handler_event = stm32f4_spi_irq_event,
1768 .irq_handler_thread = stm32f4_spi_irq_thread,
1769 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1770 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1771 .has_fifo = false,
1772};
1773
1774static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1775 .regs = &stm32h7_spi_regspec,
1776 .get_fifo_size = stm32h7_spi_get_fifo_size,
1777 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1778 .disable = stm32h7_spi_disable,
1779 .config = stm32h7_spi_config,
1780 .set_bpw = stm32h7_spi_set_bpw,
1781 .set_mode = stm32h7_spi_set_mode,
1782 .set_data_idleness = stm32h7_spi_data_idleness,
1783 .set_number_of_data = stm32h7_spi_number_of_data,
1784 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1785 .dma_rx_cb = stm32h7_spi_dma_cb,
1786 .dma_tx_cb = stm32h7_spi_dma_cb,
1787 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1788 .irq_handler_thread = stm32h7_spi_irq_thread,
1789 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1790 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1791 .has_fifo = true,
1792};
1793
1794static const struct of_device_id stm32_spi_of_match[] = {
1795 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1796 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1797 {},
1798};
1799MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1800
1801static int stm32_spi_probe(struct platform_device *pdev)
1802{
1803 struct spi_master *master;
1804 struct stm32_spi *spi;
1805 struct resource *res;
1806 struct reset_control *rst;
1807 int ret;
1808
1809 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1810 if (!master) {
1811 dev_err(&pdev->dev, "spi master allocation failed\n");
1812 return -ENOMEM;
1813 }
1814 platform_set_drvdata(pdev, master);
1815
1816 spi = spi_master_get_devdata(master);
1817 spi->dev = &pdev->dev;
1818 spi->master = master;
1819 spin_lock_init(&spi->lock);
1820
1821 spi->cfg = (const struct stm32_spi_cfg *)
1822 of_match_device(pdev->dev.driver->of_match_table,
1823 &pdev->dev)->data;
1824
1825 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826 spi->base = devm_ioremap_resource(&pdev->dev, res);
1827 if (IS_ERR(spi->base))
1828 return PTR_ERR(spi->base);
1829
1830 spi->phys_addr = (dma_addr_t)res->start;
1831
1832 spi->irq = platform_get_irq(pdev, 0);
1833 if (spi->irq <= 0)
1834 return dev_err_probe(&pdev->dev, spi->irq,
1835 "failed to get irq\n");
1836
1837 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1838 spi->cfg->irq_handler_event,
1839 spi->cfg->irq_handler_thread,
1840 IRQF_ONESHOT, pdev->name, master);
1841 if (ret) {
1842 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1843 ret);
1844 return ret;
1845 }
1846
1847 spi->clk = devm_clk_get(&pdev->dev, NULL);
1848 if (IS_ERR(spi->clk)) {
1849 ret = PTR_ERR(spi->clk);
1850 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1851 return ret;
1852 }
1853
1854 ret = clk_prepare_enable(spi->clk);
1855 if (ret) {
1856 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1857 return ret;
1858 }
1859 spi->clk_rate = clk_get_rate(spi->clk);
1860 if (!spi->clk_rate) {
1861 dev_err(&pdev->dev, "clk rate = 0\n");
1862 ret = -EINVAL;
1863 goto err_clk_disable;
1864 }
1865
1866 rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1867 if (rst) {
1868 if (IS_ERR(rst)) {
1869 ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1870 "failed to get reset\n");
1871 goto err_clk_disable;
1872 }
1873
1874 reset_control_assert(rst);
1875 udelay(2);
1876 reset_control_deassert(rst);
1877 }
1878
1879 if (spi->cfg->has_fifo)
1880 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1881
1882 ret = spi->cfg->config(spi);
1883 if (ret) {
1884 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1885 ret);
1886 goto err_clk_disable;
1887 }
1888
1889 master->dev.of_node = pdev->dev.of_node;
1890 master->auto_runtime_pm = true;
1891 master->bus_num = pdev->id;
1892 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1893 SPI_3WIRE;
1894 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1895 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1896 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1897 master->use_gpio_descriptors = true;
1898 master->prepare_message = stm32_spi_prepare_msg;
1899 master->transfer_one = stm32_spi_transfer_one;
1900 master->unprepare_message = stm32_spi_unprepare_msg;
1901 master->flags = SPI_MASTER_MUST_TX;
1902
1903 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1904 if (IS_ERR(spi->dma_tx)) {
1905 ret = PTR_ERR(spi->dma_tx);
1906 spi->dma_tx = NULL;
1907 if (ret == -EPROBE_DEFER)
1908 goto err_clk_disable;
1909
1910 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1911 } else {
1912 master->dma_tx = spi->dma_tx;
1913 }
1914
1915 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1916 if (IS_ERR(spi->dma_rx)) {
1917 ret = PTR_ERR(spi->dma_rx);
1918 spi->dma_rx = NULL;
1919 if (ret == -EPROBE_DEFER)
1920 goto err_dma_release;
1921
1922 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1923 } else {
1924 master->dma_rx = spi->dma_rx;
1925 }
1926
1927 if (spi->dma_tx || spi->dma_rx)
1928 master->can_dma = stm32_spi_can_dma;
1929
1930 pm_runtime_set_active(&pdev->dev);
1931 pm_runtime_get_noresume(&pdev->dev);
1932 pm_runtime_enable(&pdev->dev);
1933
1934 ret = spi_register_master(master);
1935 if (ret) {
1936 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1937 ret);
1938 goto err_pm_disable;
1939 }
1940
1941 dev_info(&pdev->dev, "driver initialized\n");
1942
1943 return 0;
1944
1945err_pm_disable:
1946 pm_runtime_disable(&pdev->dev);
1947 pm_runtime_put_noidle(&pdev->dev);
1948 pm_runtime_set_suspended(&pdev->dev);
1949err_dma_release:
1950 if (spi->dma_tx)
1951 dma_release_channel(spi->dma_tx);
1952 if (spi->dma_rx)
1953 dma_release_channel(spi->dma_rx);
1954err_clk_disable:
1955 clk_disable_unprepare(spi->clk);
1956
1957 return ret;
1958}
1959
1960static int stm32_spi_remove(struct platform_device *pdev)
1961{
1962 struct spi_master *master = platform_get_drvdata(pdev);
1963 struct stm32_spi *spi = spi_master_get_devdata(master);
1964
1965 pm_runtime_get_sync(&pdev->dev);
1966
1967 spi_unregister_master(master);
1968 spi->cfg->disable(spi);
1969
1970 pm_runtime_disable(&pdev->dev);
1971 pm_runtime_put_noidle(&pdev->dev);
1972 pm_runtime_set_suspended(&pdev->dev);
1973 if (master->dma_tx)
1974 dma_release_channel(master->dma_tx);
1975 if (master->dma_rx)
1976 dma_release_channel(master->dma_rx);
1977
1978 clk_disable_unprepare(spi->clk);
1979
1980
1981 pinctrl_pm_select_sleep_state(&pdev->dev);
1982
1983 return 0;
1984}
1985
1986static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1987{
1988 struct spi_master *master = dev_get_drvdata(dev);
1989 struct stm32_spi *spi = spi_master_get_devdata(master);
1990
1991 clk_disable_unprepare(spi->clk);
1992
1993 return pinctrl_pm_select_sleep_state(dev);
1994}
1995
1996static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1997{
1998 struct spi_master *master = dev_get_drvdata(dev);
1999 struct stm32_spi *spi = spi_master_get_devdata(master);
2000 int ret;
2001
2002 ret = pinctrl_pm_select_default_state(dev);
2003 if (ret)
2004 return ret;
2005
2006 return clk_prepare_enable(spi->clk);
2007}
2008
2009static int __maybe_unused stm32_spi_suspend(struct device *dev)
2010{
2011 struct spi_master *master = dev_get_drvdata(dev);
2012 int ret;
2013
2014 ret = spi_master_suspend(master);
2015 if (ret)
2016 return ret;
2017
2018 return pm_runtime_force_suspend(dev);
2019}
2020
2021static int __maybe_unused stm32_spi_resume(struct device *dev)
2022{
2023 struct spi_master *master = dev_get_drvdata(dev);
2024 struct stm32_spi *spi = spi_master_get_devdata(master);
2025 int ret;
2026
2027 ret = pm_runtime_force_resume(dev);
2028 if (ret)
2029 return ret;
2030
2031 ret = spi_master_resume(master);
2032 if (ret) {
2033 clk_disable_unprepare(spi->clk);
2034 return ret;
2035 }
2036
2037 ret = pm_runtime_get_sync(dev);
2038 if (ret < 0) {
2039 pm_runtime_put_noidle(dev);
2040 dev_err(dev, "Unable to power device:%d\n", ret);
2041 return ret;
2042 }
2043
2044 spi->cfg->config(spi);
2045
2046 pm_runtime_mark_last_busy(dev);
2047 pm_runtime_put_autosuspend(dev);
2048
2049 return 0;
2050}
2051
2052static const struct dev_pm_ops stm32_spi_pm_ops = {
2053 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2054 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2055 stm32_spi_runtime_resume, NULL)
2056};
2057
2058static struct platform_driver stm32_spi_driver = {
2059 .probe = stm32_spi_probe,
2060 .remove = stm32_spi_remove,
2061 .driver = {
2062 .name = DRIVER_NAME,
2063 .pm = &stm32_spi_pm_ops,
2064 .of_match_table = stm32_spi_of_match,
2065 },
2066};
2067
2068module_platform_driver(stm32_spi_driver);
2069
2070MODULE_ALIAS("platform:" DRIVER_NAME);
2071MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2072MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2073MODULE_LICENSE("GPL v2");