Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright IBM Corp. 2007
   5 *
   6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
   7 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
   8 */
   9
  10#include <linux/errno.h>
  11#include <linux/err.h>
  12#include <linux/kvm_host.h>
  13#include <linux/vmalloc.h>
  14#include <linux/hrtimer.h>
  15#include <linux/sched/signal.h>
  16#include <linux/fs.h>
  17#include <linux/slab.h>
  18#include <linux/file.h>
  19#include <linux/module.h>
  20#include <linux/irqbypass.h>
  21#include <linux/kvm_irqfd.h>
  22#include <linux/of.h>
  23#include <asm/cputable.h>
  24#include <linux/uaccess.h>
  25#include <asm/kvm_ppc.h>
  26#include <asm/cputhreads.h>
  27#include <asm/irqflags.h>
  28#include <asm/iommu.h>
  29#include <asm/switch_to.h>
  30#include <asm/xive.h>
  31#ifdef CONFIG_PPC_PSERIES
  32#include <asm/hvcall.h>
  33#include <asm/plpar_wrappers.h>
  34#endif
  35#include <asm/ultravisor.h>
  36#include <asm/setup.h>
  37
  38#include "timing.h"
 
  39#include "../mm/mmu_decl.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include "trace.h"
  43
  44struct kvmppc_ops *kvmppc_hv_ops;
  45EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
  46struct kvmppc_ops *kvmppc_pr_ops;
  47EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
  48
  49
  50int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
  51{
  52	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
  53}
  54
  55bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
  56{
  57	return kvm_arch_vcpu_runnable(vcpu);
  58}
  59
  60bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
  61{
  62	return false;
  63}
  64
  65int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  66{
  67	return 1;
  68}
  69
  70/*
  71 * Common checks before entering the guest world.  Call with interrupts
  72 * disabled.
  73 *
  74 * returns:
  75 *
  76 * == 1 if we're ready to go into guest state
  77 * <= 0 if we need to go back to the host with return value
  78 */
  79int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
  80{
  81	int r;
  82
  83	WARN_ON(irqs_disabled());
  84	hard_irq_disable();
  85
  86	while (true) {
  87		if (need_resched()) {
  88			local_irq_enable();
  89			cond_resched();
  90			hard_irq_disable();
  91			continue;
  92		}
  93
  94		if (signal_pending(current)) {
  95			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
  96			vcpu->run->exit_reason = KVM_EXIT_INTR;
  97			r = -EINTR;
  98			break;
  99		}
 100
 101		vcpu->mode = IN_GUEST_MODE;
 102
 103		/*
 104		 * Reading vcpu->requests must happen after setting vcpu->mode,
 105		 * so we don't miss a request because the requester sees
 106		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
 107		 * before next entering the guest (and thus doesn't IPI).
 108		 * This also orders the write to mode from any reads
 109		 * to the page tables done while the VCPU is running.
 110		 * Please see the comment in kvm_flush_remote_tlbs.
 111		 */
 112		smp_mb();
 113
 114		if (kvm_request_pending(vcpu)) {
 115			/* Make sure we process requests preemptable */
 116			local_irq_enable();
 117			trace_kvm_check_requests(vcpu);
 118			r = kvmppc_core_check_requests(vcpu);
 119			hard_irq_disable();
 120			if (r > 0)
 121				continue;
 122			break;
 123		}
 124
 125		if (kvmppc_core_prepare_to_enter(vcpu)) {
 126			/* interrupts got enabled in between, so we
 127			   are back at square 1 */
 128			continue;
 129		}
 130
 131		guest_enter_irqoff();
 132		return 1;
 133	}
 134
 135	/* return to host */
 136	local_irq_enable();
 137	return r;
 138}
 139EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
 140
 141#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
 142static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
 143{
 144	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
 145	int i;
 146
 147	shared->sprg0 = swab64(shared->sprg0);
 148	shared->sprg1 = swab64(shared->sprg1);
 149	shared->sprg2 = swab64(shared->sprg2);
 150	shared->sprg3 = swab64(shared->sprg3);
 151	shared->srr0 = swab64(shared->srr0);
 152	shared->srr1 = swab64(shared->srr1);
 153	shared->dar = swab64(shared->dar);
 154	shared->msr = swab64(shared->msr);
 155	shared->dsisr = swab32(shared->dsisr);
 156	shared->int_pending = swab32(shared->int_pending);
 157	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
 158		shared->sr[i] = swab32(shared->sr[i]);
 159}
 160#endif
 161
 162int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
 163{
 164	int nr = kvmppc_get_gpr(vcpu, 11);
 165	int r;
 166	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
 167	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
 168	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
 169	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
 170	unsigned long r2 = 0;
 171
 172	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
 173		/* 32 bit mode */
 174		param1 &= 0xffffffff;
 175		param2 &= 0xffffffff;
 176		param3 &= 0xffffffff;
 177		param4 &= 0xffffffff;
 178	}
 179
 180	switch (nr) {
 181	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
 182	{
 183#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
 184		/* Book3S can be little endian, find it out here */
 185		int shared_big_endian = true;
 186		if (vcpu->arch.intr_msr & MSR_LE)
 187			shared_big_endian = false;
 188		if (shared_big_endian != vcpu->arch.shared_big_endian)
 189			kvmppc_swab_shared(vcpu);
 190		vcpu->arch.shared_big_endian = shared_big_endian;
 191#endif
 192
 193		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
 194			/*
 195			 * Older versions of the Linux magic page code had
 196			 * a bug where they would map their trampoline code
 197			 * NX. If that's the case, remove !PR NX capability.
 198			 */
 199			vcpu->arch.disable_kernel_nx = true;
 200			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 201		}
 202
 203		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
 204		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
 205
 206#ifdef CONFIG_PPC_64K_PAGES
 207		/*
 208		 * Make sure our 4k magic page is in the same window of a 64k
 209		 * page within the guest and within the host's page.
 210		 */
 211		if ((vcpu->arch.magic_page_pa & 0xf000) !=
 212		    ((ulong)vcpu->arch.shared & 0xf000)) {
 213			void *old_shared = vcpu->arch.shared;
 214			ulong shared = (ulong)vcpu->arch.shared;
 215			void *new_shared;
 216
 217			shared &= PAGE_MASK;
 218			shared |= vcpu->arch.magic_page_pa & 0xf000;
 219			new_shared = (void*)shared;
 220			memcpy(new_shared, old_shared, 0x1000);
 221			vcpu->arch.shared = new_shared;
 222		}
 223#endif
 224
 225		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
 226
 227		r = EV_SUCCESS;
 228		break;
 229	}
 230	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
 231		r = EV_SUCCESS;
 232#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
 233		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
 234#endif
 235
 236		/* Second return value is in r4 */
 237		break;
 238	case EV_HCALL_TOKEN(EV_IDLE):
 239		r = EV_SUCCESS;
 240		kvm_vcpu_halt(vcpu);
 
 241		break;
 242	default:
 243		r = EV_UNIMPLEMENTED;
 244		break;
 245	}
 246
 247	kvmppc_set_gpr(vcpu, 4, r2);
 248
 249	return r;
 250}
 251EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
 252
 253int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
 254{
 255	int r = false;
 256
 257	/* We have to know what CPU to virtualize */
 258	if (!vcpu->arch.pvr)
 259		goto out;
 260
 261	/* PAPR only works with book3s_64 */
 262	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
 263		goto out;
 264
 265	/* HV KVM can only do PAPR mode for now */
 266	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
 267		goto out;
 268
 269#ifdef CONFIG_KVM_BOOKE_HV
 270	if (!cpu_has_feature(CPU_FTR_EMB_HV))
 271		goto out;
 272#endif
 273
 274	r = true;
 275
 276out:
 277	vcpu->arch.sane = r;
 278	return r ? 0 : -EINVAL;
 279}
 280EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
 281
 282int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
 283{
 284	enum emulation_result er;
 285	int r;
 286
 287	er = kvmppc_emulate_loadstore(vcpu);
 288	switch (er) {
 289	case EMULATE_DONE:
 290		/* Future optimization: only reload non-volatiles if they were
 291		 * actually modified. */
 292		r = RESUME_GUEST_NV;
 293		break;
 294	case EMULATE_AGAIN:
 295		r = RESUME_GUEST;
 296		break;
 297	case EMULATE_DO_MMIO:
 298		vcpu->run->exit_reason = KVM_EXIT_MMIO;
 299		/* We must reload nonvolatiles because "update" load/store
 300		 * instructions modify register state. */
 301		/* Future optimization: only reload non-volatiles if they were
 302		 * actually modified. */
 303		r = RESUME_HOST_NV;
 304		break;
 305	case EMULATE_FAIL:
 306	{
 307		ppc_inst_t last_inst;
 308
 309		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
 310		kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
 311				      ppc_inst_val(last_inst));
 312
 313		/*
 314		 * Injecting a Data Storage here is a bit more
 315		 * accurate since the instruction that caused the
 316		 * access could still be a valid one.
 317		 */
 318		if (!IS_ENABLED(CONFIG_BOOKE)) {
 319			ulong dsisr = DSISR_BADACCESS;
 320
 321			if (vcpu->mmio_is_write)
 322				dsisr |= DSISR_ISSTORE;
 323
 324			kvmppc_core_queue_data_storage(vcpu,
 325					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
 326					vcpu->arch.vaddr_accessed, dsisr);
 327		} else {
 328			/*
 329			 * BookE does not send a SIGBUS on a bad
 330			 * fault, so use a Program interrupt instead
 331			 * to avoid a fault loop.
 332			 */
 333			kvmppc_core_queue_program(vcpu, 0);
 334		}
 335
 336		r = RESUME_GUEST;
 337		break;
 338	}
 339	default:
 340		WARN_ON(1);
 341		r = RESUME_GUEST;
 342	}
 343
 344	return r;
 345}
 346EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
 347
 348int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
 349	      bool data)
 350{
 351	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
 352	struct kvmppc_pte pte;
 353	int r = -EINVAL;
 354
 355	vcpu->stat.st++;
 356
 357	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
 358		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
 359							    size);
 360
 361	if ((!r) || (r == -EAGAIN))
 362		return r;
 363
 364	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
 365			 XLATE_WRITE, &pte);
 366	if (r < 0)
 367		return r;
 368
 369	*eaddr = pte.raddr;
 370
 371	if (!pte.may_write)
 372		return -EPERM;
 373
 374	/* Magic page override */
 375	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
 376	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
 377	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
 378		void *magic = vcpu->arch.shared;
 379		magic += pte.eaddr & 0xfff;
 380		memcpy(magic, ptr, size);
 381		return EMULATE_DONE;
 382	}
 383
 384	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
 385		return EMULATE_DO_MMIO;
 386
 387	return EMULATE_DONE;
 388}
 389EXPORT_SYMBOL_GPL(kvmppc_st);
 390
 391int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
 392		      bool data)
 393{
 394	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
 395	struct kvmppc_pte pte;
 396	int rc = -EINVAL;
 397
 398	vcpu->stat.ld++;
 399
 400	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
 401		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
 402							      size);
 403
 404	if ((!rc) || (rc == -EAGAIN))
 405		return rc;
 406
 407	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
 408			  XLATE_READ, &pte);
 409	if (rc)
 410		return rc;
 411
 412	*eaddr = pte.raddr;
 413
 414	if (!pte.may_read)
 415		return -EPERM;
 416
 417	if (!data && !pte.may_execute)
 418		return -ENOEXEC;
 419
 420	/* Magic page override */
 421	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
 422	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
 423	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
 424		void *magic = vcpu->arch.shared;
 425		magic += pte.eaddr & 0xfff;
 426		memcpy(ptr, magic, size);
 427		return EMULATE_DONE;
 428	}
 429
 430	kvm_vcpu_srcu_read_lock(vcpu);
 431	rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
 432	kvm_vcpu_srcu_read_unlock(vcpu);
 433	if (rc)
 434		return EMULATE_DO_MMIO;
 435
 436	return EMULATE_DONE;
 437}
 438EXPORT_SYMBOL_GPL(kvmppc_ld);
 439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 441{
 442	struct kvmppc_ops *kvm_ops = NULL;
 443	int r;
 444
 445	/*
 446	 * if we have both HV and PR enabled, default is HV
 447	 */
 448	if (type == 0) {
 449		if (kvmppc_hv_ops)
 450			kvm_ops = kvmppc_hv_ops;
 451		else
 452			kvm_ops = kvmppc_pr_ops;
 453		if (!kvm_ops)
 454			goto err_out;
 455	} else	if (type == KVM_VM_PPC_HV) {
 456		if (!kvmppc_hv_ops)
 457			goto err_out;
 458		kvm_ops = kvmppc_hv_ops;
 459	} else if (type == KVM_VM_PPC_PR) {
 460		if (!kvmppc_pr_ops)
 461			goto err_out;
 462		kvm_ops = kvmppc_pr_ops;
 463	} else
 464		goto err_out;
 465
 466	if (!try_module_get(kvm_ops->owner))
 467		return -ENOENT;
 468
 469	kvm->arch.kvm_ops = kvm_ops;
 470	r = kvmppc_core_init_vm(kvm);
 471	if (r)
 472		module_put(kvm_ops->owner);
 473	return r;
 474err_out:
 475	return -EINVAL;
 476}
 477
 478void kvm_arch_destroy_vm(struct kvm *kvm)
 479{
 
 
 
 480#ifdef CONFIG_KVM_XICS
 481	/*
 482	 * We call kick_all_cpus_sync() to ensure that all
 483	 * CPUs have executed any pending IPIs before we
 484	 * continue and free VCPUs structures below.
 485	 */
 486	if (is_kvmppc_hv_enabled(kvm))
 487		kick_all_cpus_sync();
 488#endif
 489
 490	kvm_destroy_vcpus(kvm);
 
 491
 492	mutex_lock(&kvm->lock);
 
 
 
 
 493
 494	kvmppc_core_destroy_vm(kvm);
 495
 496	mutex_unlock(&kvm->lock);
 497
 498	/* drop the module reference */
 499	module_put(kvm->arch.kvm_ops->owner);
 500}
 501
 502int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 503{
 504	int r;
 505	/* Assume we're using HV mode when the HV module is loaded */
 506	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
 507
 508	if (kvm) {
 509		/*
 510		 * Hooray - we know which VM type we're running on. Depend on
 511		 * that rather than the guess above.
 512		 */
 513		hv_enabled = is_kvmppc_hv_enabled(kvm);
 514	}
 515
 516	switch (ext) {
 517#ifdef CONFIG_BOOKE
 518	case KVM_CAP_PPC_BOOKE_SREGS:
 519	case KVM_CAP_PPC_BOOKE_WATCHDOG:
 520	case KVM_CAP_PPC_EPR:
 521#else
 522	case KVM_CAP_PPC_SEGSTATE:
 523	case KVM_CAP_PPC_HIOR:
 524	case KVM_CAP_PPC_PAPR:
 525#endif
 526	case KVM_CAP_PPC_UNSET_IRQ:
 527	case KVM_CAP_PPC_IRQ_LEVEL:
 528	case KVM_CAP_ENABLE_CAP:
 529	case KVM_CAP_ONE_REG:
 530	case KVM_CAP_IOEVENTFD:
 
 531	case KVM_CAP_IMMEDIATE_EXIT:
 532	case KVM_CAP_SET_GUEST_DEBUG:
 533		r = 1;
 534		break;
 535	case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
 536	case KVM_CAP_PPC_PAIRED_SINGLES:
 537	case KVM_CAP_PPC_OSI:
 538	case KVM_CAP_PPC_GET_PVINFO:
 539#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
 540	case KVM_CAP_SW_TLB:
 541#endif
 542		/* We support this only for PR */
 543		r = !hv_enabled;
 544		break;
 545#ifdef CONFIG_KVM_MPIC
 546	case KVM_CAP_IRQ_MPIC:
 547		r = 1;
 548		break;
 549#endif
 550
 551#ifdef CONFIG_PPC_BOOK3S_64
 552	case KVM_CAP_SPAPR_TCE:
 553	case KVM_CAP_SPAPR_TCE_64:
 554		r = 1;
 555		break;
 556	case KVM_CAP_SPAPR_TCE_VFIO:
 557		r = !!cpu_has_feature(CPU_FTR_HVMODE);
 558		break;
 559	case KVM_CAP_PPC_RTAS:
 560	case KVM_CAP_PPC_FIXUP_HCALL:
 561	case KVM_CAP_PPC_ENABLE_HCALL:
 562#ifdef CONFIG_KVM_XICS
 563	case KVM_CAP_IRQ_XICS:
 564#endif
 565	case KVM_CAP_PPC_GET_CPU_CHAR:
 566		r = 1;
 567		break;
 568#ifdef CONFIG_KVM_XIVE
 569	case KVM_CAP_PPC_IRQ_XIVE:
 570		/*
 571		 * We need XIVE to be enabled on the platform (implies
 572		 * a POWER9 processor) and the PowerNV platform, as
 573		 * nested is not yet supported.
 574		 */
 575		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
 576			kvmppc_xive_native_supported();
 577		break;
 578#endif
 579
 580#ifdef CONFIG_HAVE_KVM_IRQCHIP
 581	case KVM_CAP_IRQFD_RESAMPLE:
 582		r = !xive_enabled();
 583		break;
 584#endif
 585
 586	case KVM_CAP_PPC_ALLOC_HTAB:
 587		r = hv_enabled;
 588		break;
 589#endif /* CONFIG_PPC_BOOK3S_64 */
 590#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 591	case KVM_CAP_PPC_SMT:
 592		r = 0;
 593		if (kvm) {
 594			if (kvm->arch.emul_smt_mode > 1)
 595				r = kvm->arch.emul_smt_mode;
 596			else
 597				r = kvm->arch.smt_mode;
 598		} else if (hv_enabled) {
 599			if (cpu_has_feature(CPU_FTR_ARCH_300))
 600				r = 1;
 601			else
 602				r = threads_per_subcore;
 603		}
 604		break;
 605	case KVM_CAP_PPC_SMT_POSSIBLE:
 606		r = 1;
 607		if (hv_enabled) {
 608			if (!cpu_has_feature(CPU_FTR_ARCH_300))
 609				r = ((threads_per_subcore << 1) - 1);
 610			else
 611				/* P9 can emulate dbells, so allow any mode */
 612				r = 8 | 4 | 2 | 1;
 613		}
 614		break;
 615	case KVM_CAP_PPC_RMA:
 616		r = 0;
 617		break;
 618	case KVM_CAP_PPC_HWRNG:
 619		r = kvmppc_hwrng_present();
 620		break;
 621	case KVM_CAP_PPC_MMU_RADIX:
 622		r = !!(hv_enabled && radix_enabled());
 623		break;
 624	case KVM_CAP_PPC_MMU_HASH_V3:
 625		r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
 626		       kvmppc_hv_ops->hash_v3_possible());
 627		break;
 628	case KVM_CAP_PPC_NESTED_HV:
 629		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
 630		       !kvmppc_hv_ops->enable_nested(NULL));
 631		break;
 632#endif
 633	case KVM_CAP_SYNC_MMU:
 634		BUILD_BUG_ON(!IS_ENABLED(CONFIG_KVM_GENERIC_MMU_NOTIFIER));
 
 
 635		r = 1;
 
 
 
 636		break;
 637#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 638	case KVM_CAP_PPC_HTAB_FD:
 639		r = hv_enabled;
 640		break;
 641#endif
 642	case KVM_CAP_NR_VCPUS:
 643		/*
 644		 * Recommending a number of CPUs is somewhat arbitrary; we
 645		 * return the number of present CPUs for -HV (since a host
 646		 * will have secondary threads "offline"), and for other KVM
 647		 * implementations just count online CPUs.
 648		 */
 649		if (hv_enabled)
 650			r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
 651		else
 652			r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
 653		break;
 654	case KVM_CAP_MAX_VCPUS:
 655		r = KVM_MAX_VCPUS;
 656		break;
 657	case KVM_CAP_MAX_VCPU_ID:
 658		r = KVM_MAX_VCPU_IDS;
 659		break;
 660#ifdef CONFIG_PPC_BOOK3S_64
 661	case KVM_CAP_PPC_GET_SMMU_INFO:
 662		r = 1;
 663		break;
 664	case KVM_CAP_SPAPR_MULTITCE:
 665		r = 1;
 666		break;
 667	case KVM_CAP_SPAPR_RESIZE_HPT:
 668		r = !!hv_enabled;
 669		break;
 670#endif
 671#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 672	case KVM_CAP_PPC_FWNMI:
 673		r = hv_enabled;
 674		break;
 675#endif
 676#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 677	case KVM_CAP_PPC_HTM:
 678		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
 679		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
 680		break;
 681#endif
 682#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 683	case KVM_CAP_PPC_SECURE_GUEST:
 684		r = hv_enabled && kvmppc_hv_ops->enable_svm &&
 685			!kvmppc_hv_ops->enable_svm(NULL);
 686		break;
 687	case KVM_CAP_PPC_DAWR1:
 688		r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
 689		       !kvmppc_hv_ops->enable_dawr1(NULL));
 690		break;
 691	case KVM_CAP_PPC_RPT_INVALIDATE:
 692		r = 1;
 693		break;
 694#endif
 695	case KVM_CAP_PPC_AIL_MODE_3:
 696		r = 0;
 697		/*
 698		 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
 699		 * The POWER9s can support it if the guest runs in hash mode,
 700		 * but QEMU doesn't necessarily query the capability in time.
 701		 */
 702		if (hv_enabled) {
 703			if (kvmhv_on_pseries()) {
 704				if (pseries_reloc_on_exception())
 705					r = 1;
 706			} else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
 707				  !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
 708				r = 1;
 709			}
 710		}
 711		break;
 712	default:
 713		r = 0;
 714		break;
 715	}
 716	return r;
 717
 718}
 719
 720long kvm_arch_dev_ioctl(struct file *filp,
 721                        unsigned int ioctl, unsigned long arg)
 722{
 723	return -EINVAL;
 724}
 725
 726void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 727{
 728	kvmppc_core_free_memslot(kvm, slot);
 729}
 730
 731int kvm_arch_prepare_memory_region(struct kvm *kvm,
 732				   const struct kvm_memory_slot *old,
 733				   struct kvm_memory_slot *new,
 734				   enum kvm_mr_change change)
 735{
 736	return kvmppc_core_prepare_memory_region(kvm, old, new, change);
 737}
 738
 739void kvm_arch_commit_memory_region(struct kvm *kvm,
 
 740				   struct kvm_memory_slot *old,
 741				   const struct kvm_memory_slot *new,
 742				   enum kvm_mr_change change)
 743{
 744	kvmppc_core_commit_memory_region(kvm, old, new, change);
 745}
 746
 747void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 748				   struct kvm_memory_slot *slot)
 749{
 750	kvmppc_core_flush_memslot(kvm, slot);
 751}
 752
 753int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 754{
 755	return 0;
 756}
 757
 758static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
 759{
 760	struct kvm_vcpu *vcpu;
 761
 762	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
 763	kvmppc_decrementer_func(vcpu);
 764
 765	return HRTIMER_NORESTART;
 766}
 767
 768int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 769{
 770	int err;
 771
 772	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
 773	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
 
 774
 775#ifdef CONFIG_KVM_EXIT_TIMING
 776	mutex_init(&vcpu->arch.exit_timing_lock);
 777#endif
 778	err = kvmppc_subarch_vcpu_init(vcpu);
 779	if (err)
 780		return err;
 781
 782	err = kvmppc_core_vcpu_create(vcpu);
 783	if (err)
 784		goto out_vcpu_uninit;
 785
 786	rcuwait_init(&vcpu->arch.wait);
 787	vcpu->arch.waitp = &vcpu->arch.wait;
 788	return 0;
 789
 790out_vcpu_uninit:
 791	kvmppc_subarch_vcpu_uninit(vcpu);
 792	return err;
 793}
 794
 795void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 796{
 797}
 798
 799void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 800{
 801	/* Make sure we're not using the vcpu anymore */
 802	hrtimer_cancel(&vcpu->arch.dec_timer);
 803
 
 
 804	switch (vcpu->arch.irq_type) {
 805	case KVMPPC_IRQ_MPIC:
 806		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
 807		break;
 808	case KVMPPC_IRQ_XICS:
 809		if (xics_on_xive())
 810			kvmppc_xive_cleanup_vcpu(vcpu);
 811		else
 812			kvmppc_xics_free_icp(vcpu);
 813		break;
 814	case KVMPPC_IRQ_XIVE:
 815		kvmppc_xive_native_cleanup_vcpu(vcpu);
 816		break;
 817	}
 818
 819	kvmppc_core_vcpu_free(vcpu);
 820
 821	kvmppc_subarch_vcpu_uninit(vcpu);
 822}
 823
 824int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 825{
 826	return kvmppc_core_pending_dec(vcpu);
 827}
 828
 829void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 830{
 831#ifdef CONFIG_BOOKE
 832	/*
 833	 * vrsave (formerly usprg0) isn't used by Linux, but may
 834	 * be used by the guest.
 835	 *
 836	 * On non-booke this is associated with Altivec and
 837	 * is handled by code in book3s.c.
 838	 */
 839	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
 840#endif
 841	kvmppc_core_vcpu_load(vcpu, cpu);
 842}
 843
 844void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 845{
 846	kvmppc_core_vcpu_put(vcpu);
 847#ifdef CONFIG_BOOKE
 848	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
 849#endif
 850}
 851
 852/*
 853 * irq_bypass_add_producer and irq_bypass_del_producer are only
 854 * useful if the architecture supports PCI passthrough.
 855 * irq_bypass_stop and irq_bypass_start are not needed and so
 856 * kvm_ops are not defined for them.
 857 */
 858bool kvm_arch_has_irq_bypass(void)
 859{
 860	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
 861		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
 862}
 863
 864int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
 865				     struct irq_bypass_producer *prod)
 866{
 867	struct kvm_kernel_irqfd *irqfd =
 868		container_of(cons, struct kvm_kernel_irqfd, consumer);
 869	struct kvm *kvm = irqfd->kvm;
 870
 871	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
 872		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
 873
 874	return 0;
 875}
 876
 877void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
 878				      struct irq_bypass_producer *prod)
 879{
 880	struct kvm_kernel_irqfd *irqfd =
 881		container_of(cons, struct kvm_kernel_irqfd, consumer);
 882	struct kvm *kvm = irqfd->kvm;
 883
 884	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
 885		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
 886}
 887
 888#ifdef CONFIG_VSX
 889static inline int kvmppc_get_vsr_dword_offset(int index)
 890{
 891	int offset;
 892
 893	if ((index != 0) && (index != 1))
 894		return -1;
 895
 896#ifdef __BIG_ENDIAN
 897	offset =  index;
 898#else
 899	offset = 1 - index;
 900#endif
 901
 902	return offset;
 903}
 904
 905static inline int kvmppc_get_vsr_word_offset(int index)
 906{
 907	int offset;
 908
 909	if ((index > 3) || (index < 0))
 910		return -1;
 911
 912#ifdef __BIG_ENDIAN
 913	offset = index;
 914#else
 915	offset = 3 - index;
 916#endif
 917	return offset;
 918}
 919
 920static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
 921	u64 gpr)
 922{
 923	union kvmppc_one_reg val;
 924	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
 925	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
 926
 927	if (offset == -1)
 928		return;
 929
 930	if (index >= 32) {
 931		kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
 932		val.vsxval[offset] = gpr;
 933		kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
 934	} else {
 935		kvmppc_set_vsx_fpr(vcpu, index, offset, gpr);
 936	}
 937}
 938
 939static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
 940	u64 gpr)
 941{
 942	union kvmppc_one_reg val;
 943	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
 944
 945	if (index >= 32) {
 946		kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
 947		val.vsxval[0] = gpr;
 948		val.vsxval[1] = gpr;
 949		kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
 950	} else {
 951		kvmppc_set_vsx_fpr(vcpu, index, 0, gpr);
 952		kvmppc_set_vsx_fpr(vcpu, index, 1,  gpr);
 953	}
 954}
 955
 956static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
 957	u32 gpr)
 958{
 959	union kvmppc_one_reg val;
 960	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
 961
 962	if (index >= 32) {
 963		val.vsx32val[0] = gpr;
 964		val.vsx32val[1] = gpr;
 965		val.vsx32val[2] = gpr;
 966		val.vsx32val[3] = gpr;
 967		kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
 968	} else {
 969		val.vsx32val[0] = gpr;
 970		val.vsx32val[1] = gpr;
 971		kvmppc_set_vsx_fpr(vcpu, index, 0, val.vsxval[0]);
 972		kvmppc_set_vsx_fpr(vcpu, index, 1, val.vsxval[0]);
 973	}
 974}
 975
 976static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
 977	u32 gpr32)
 978{
 979	union kvmppc_one_reg val;
 980	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
 981	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
 982	int dword_offset, word_offset;
 983
 984	if (offset == -1)
 985		return;
 986
 987	if (index >= 32) {
 988		kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
 989		val.vsx32val[offset] = gpr32;
 990		kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
 991	} else {
 992		dword_offset = offset / 2;
 993		word_offset = offset % 2;
 994		val.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, index, dword_offset);
 995		val.vsx32val[word_offset] = gpr32;
 996		kvmppc_set_vsx_fpr(vcpu, index, dword_offset, val.vsxval[0]);
 997	}
 998}
 999#endif /* CONFIG_VSX */
1000
1001#ifdef CONFIG_ALTIVEC
1002static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1003		int index, int element_size)
1004{
1005	int offset;
1006	int elts = sizeof(vector128)/element_size;
1007
1008	if ((index < 0) || (index >= elts))
1009		return -1;
1010
1011	if (kvmppc_need_byteswap(vcpu))
1012		offset = elts - index - 1;
1013	else
1014		offset = index;
1015
1016	return offset;
1017}
1018
1019static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1020		int index)
1021{
1022	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1023}
1024
1025static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1026		int index)
1027{
1028	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1029}
1030
1031static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1032		int index)
1033{
1034	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1035}
1036
1037static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1038		int index)
1039{
1040	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1041}
1042
1043
1044static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1045	u64 gpr)
1046{
1047	union kvmppc_one_reg val;
1048	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1049			vcpu->arch.mmio_vmx_offset);
1050	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1051
1052	if (offset == -1)
1053		return;
1054
1055	kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1056	val.vsxval[offset] = gpr;
1057	kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1058}
1059
1060static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1061	u32 gpr32)
1062{
1063	union kvmppc_one_reg val;
1064	int offset = kvmppc_get_vmx_word_offset(vcpu,
1065			vcpu->arch.mmio_vmx_offset);
1066	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1067
1068	if (offset == -1)
1069		return;
1070
1071	kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1072	val.vsx32val[offset] = gpr32;
1073	kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1074}
1075
1076static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1077	u16 gpr16)
1078{
1079	union kvmppc_one_reg val;
1080	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1081			vcpu->arch.mmio_vmx_offset);
1082	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1083
1084	if (offset == -1)
1085		return;
1086
1087	kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1088	val.vsx16val[offset] = gpr16;
1089	kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1090}
1091
1092static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1093	u8 gpr8)
1094{
1095	union kvmppc_one_reg val;
1096	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1097			vcpu->arch.mmio_vmx_offset);
1098	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1099
1100	if (offset == -1)
1101		return;
1102
1103	kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1104	val.vsx8val[offset] = gpr8;
1105	kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1106}
1107#endif /* CONFIG_ALTIVEC */
1108
1109#ifdef CONFIG_PPC_FPU
1110static inline u64 sp_to_dp(u32 fprs)
1111{
1112	u64 fprd;
1113
1114	preempt_disable();
1115	enable_kernel_fp();
1116	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1117	     : "fr0");
1118	preempt_enable();
1119	return fprd;
1120}
1121
1122static inline u32 dp_to_sp(u64 fprd)
1123{
1124	u32 fprs;
1125
1126	preempt_disable();
1127	enable_kernel_fp();
1128	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1129	     : "fr0");
1130	preempt_enable();
1131	return fprs;
1132}
1133
1134#else
1135#define sp_to_dp(x)	(x)
1136#define dp_to_sp(x)	(x)
1137#endif /* CONFIG_PPC_FPU */
1138
1139static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1140{
1141	struct kvm_run *run = vcpu->run;
1142	u64 gpr;
1143
1144	if (run->mmio.len > sizeof(gpr))
 
1145		return;
 
1146
1147	if (!vcpu->arch.mmio_host_swabbed) {
1148		switch (run->mmio.len) {
1149		case 8: gpr = *(u64 *)run->mmio.data; break;
1150		case 4: gpr = *(u32 *)run->mmio.data; break;
1151		case 2: gpr = *(u16 *)run->mmio.data; break;
1152		case 1: gpr = *(u8 *)run->mmio.data; break;
1153		}
1154	} else {
1155		switch (run->mmio.len) {
1156		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1157		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1158		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1159		case 1: gpr = *(u8 *)run->mmio.data; break;
1160		}
1161	}
1162
1163	/* conversion between single and double precision */
1164	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1165		gpr = sp_to_dp(gpr);
1166
1167	if (vcpu->arch.mmio_sign_extend) {
1168		switch (run->mmio.len) {
1169#ifdef CONFIG_PPC64
1170		case 4:
1171			gpr = (s64)(s32)gpr;
1172			break;
1173#endif
1174		case 2:
1175			gpr = (s64)(s16)gpr;
1176			break;
1177		case 1:
1178			gpr = (s64)(s8)gpr;
1179			break;
1180		}
1181	}
1182
1183	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1184	case KVM_MMIO_REG_GPR:
1185		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1186		break;
1187	case KVM_MMIO_REG_FPR:
1188		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1189			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1190
1191		kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1192		break;
1193#ifdef CONFIG_PPC_BOOK3S
1194	case KVM_MMIO_REG_QPR:
1195		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1196		break;
1197	case KVM_MMIO_REG_FQPR:
1198		kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1199		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1200		break;
1201#endif
1202#ifdef CONFIG_VSX
1203	case KVM_MMIO_REG_VSX:
1204		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1205			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1206
1207		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1208			kvmppc_set_vsr_dword(vcpu, gpr);
1209		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1210			kvmppc_set_vsr_word(vcpu, gpr);
1211		else if (vcpu->arch.mmio_copy_type ==
1212				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1213			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1214		else if (vcpu->arch.mmio_copy_type ==
1215				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1216			kvmppc_set_vsr_word_dump(vcpu, gpr);
1217		break;
1218#endif
1219#ifdef CONFIG_ALTIVEC
1220	case KVM_MMIO_REG_VMX:
1221		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1222			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1223
1224		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1225			kvmppc_set_vmx_dword(vcpu, gpr);
1226		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1227			kvmppc_set_vmx_word(vcpu, gpr);
1228		else if (vcpu->arch.mmio_copy_type ==
1229				KVMPPC_VMX_COPY_HWORD)
1230			kvmppc_set_vmx_hword(vcpu, gpr);
1231		else if (vcpu->arch.mmio_copy_type ==
1232				KVMPPC_VMX_COPY_BYTE)
1233			kvmppc_set_vmx_byte(vcpu, gpr);
1234		break;
1235#endif
1236#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1237	case KVM_MMIO_REG_NESTED_GPR:
1238		if (kvmppc_need_byteswap(vcpu))
1239			gpr = swab64(gpr);
1240		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1241				     sizeof(gpr));
1242		break;
1243#endif
1244	default:
1245		BUG();
1246	}
1247}
1248
1249static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1250				unsigned int rt, unsigned int bytes,
1251				int is_default_endian, int sign_extend)
1252{
1253	struct kvm_run *run = vcpu->run;
1254	int idx, ret;
1255	bool host_swabbed;
1256
1257	/* Pity C doesn't have a logical XOR operator */
1258	if (kvmppc_need_byteswap(vcpu)) {
1259		host_swabbed = is_default_endian;
1260	} else {
1261		host_swabbed = !is_default_endian;
1262	}
1263
1264	if (bytes > sizeof(run->mmio.data))
1265		return EMULATE_FAIL;
 
 
1266
1267	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1268	run->mmio.len = bytes;
1269	run->mmio.is_write = 0;
1270
1271	vcpu->arch.io_gpr = rt;
1272	vcpu->arch.mmio_host_swabbed = host_swabbed;
1273	vcpu->mmio_needed = 1;
1274	vcpu->mmio_is_write = 0;
1275	vcpu->arch.mmio_sign_extend = sign_extend;
1276
1277	idx = srcu_read_lock(&vcpu->kvm->srcu);
1278
1279	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1280			      bytes, &run->mmio.data);
1281
1282	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1283
1284	if (!ret) {
1285		kvmppc_complete_mmio_load(vcpu);
1286		vcpu->mmio_needed = 0;
1287		return EMULATE_DONE;
1288	}
1289
1290	return EMULATE_DO_MMIO;
1291}
1292
1293int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1294		       unsigned int rt, unsigned int bytes,
1295		       int is_default_endian)
1296{
1297	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1298}
1299EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1300
1301/* Same as above, but sign extends */
1302int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1303			unsigned int rt, unsigned int bytes,
1304			int is_default_endian)
1305{
1306	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1307}
1308
1309#ifdef CONFIG_VSX
1310int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1311			unsigned int rt, unsigned int bytes,
1312			int is_default_endian, int mmio_sign_extend)
1313{
1314	enum emulation_result emulated = EMULATE_DONE;
1315
1316	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1317	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1318		return EMULATE_FAIL;
1319
1320	while (vcpu->arch.mmio_vsx_copy_nums) {
1321		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1322			is_default_endian, mmio_sign_extend);
1323
1324		if (emulated != EMULATE_DONE)
1325			break;
1326
1327		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1328
1329		vcpu->arch.mmio_vsx_copy_nums--;
1330		vcpu->arch.mmio_vsx_offset++;
1331	}
1332	return emulated;
1333}
1334#endif /* CONFIG_VSX */
1335
1336int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1337			u64 val, unsigned int bytes, int is_default_endian)
1338{
1339	struct kvm_run *run = vcpu->run;
1340	void *data = run->mmio.data;
1341	int idx, ret;
1342	bool host_swabbed;
1343
1344	/* Pity C doesn't have a logical XOR operator */
1345	if (kvmppc_need_byteswap(vcpu)) {
1346		host_swabbed = is_default_endian;
1347	} else {
1348		host_swabbed = !is_default_endian;
1349	}
1350
1351	if (bytes > sizeof(run->mmio.data))
1352		return EMULATE_FAIL;
 
 
1353
1354	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1355	run->mmio.len = bytes;
1356	run->mmio.is_write = 1;
1357	vcpu->mmio_needed = 1;
1358	vcpu->mmio_is_write = 1;
1359
1360	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1361		val = dp_to_sp(val);
1362
1363	/* Store the value at the lowest bytes in 'data'. */
1364	if (!host_swabbed) {
1365		switch (bytes) {
1366		case 8: *(u64 *)data = val; break;
1367		case 4: *(u32 *)data = val; break;
1368		case 2: *(u16 *)data = val; break;
1369		case 1: *(u8  *)data = val; break;
1370		}
1371	} else {
1372		switch (bytes) {
1373		case 8: *(u64 *)data = swab64(val); break;
1374		case 4: *(u32 *)data = swab32(val); break;
1375		case 2: *(u16 *)data = swab16(val); break;
1376		case 1: *(u8  *)data = val; break;
1377		}
1378	}
1379
1380	idx = srcu_read_lock(&vcpu->kvm->srcu);
1381
1382	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1383			       bytes, &run->mmio.data);
1384
1385	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1386
1387	if (!ret) {
1388		vcpu->mmio_needed = 0;
1389		return EMULATE_DONE;
1390	}
1391
1392	return EMULATE_DO_MMIO;
1393}
1394EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1395
1396#ifdef CONFIG_VSX
1397static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1398{
1399	u32 dword_offset, word_offset;
1400	union kvmppc_one_reg reg;
1401	int vsx_offset = 0;
1402	int copy_type = vcpu->arch.mmio_copy_type;
1403	int result = 0;
1404
1405	switch (copy_type) {
1406	case KVMPPC_VSX_COPY_DWORD:
1407		vsx_offset =
1408			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1409
1410		if (vsx_offset == -1) {
1411			result = -1;
1412			break;
1413		}
1414
1415		if (rs < 32) {
1416			*val = kvmppc_get_vsx_fpr(vcpu, rs, vsx_offset);
1417		} else {
1418			kvmppc_get_vsx_vr(vcpu, rs - 32, &reg.vval);
1419			*val = reg.vsxval[vsx_offset];
1420		}
1421		break;
1422
1423	case KVMPPC_VSX_COPY_WORD:
1424		vsx_offset =
1425			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1426
1427		if (vsx_offset == -1) {
1428			result = -1;
1429			break;
1430		}
1431
1432		if (rs < 32) {
1433			dword_offset = vsx_offset / 2;
1434			word_offset = vsx_offset % 2;
1435			reg.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, rs, dword_offset);
1436			*val = reg.vsx32val[word_offset];
1437		} else {
1438			kvmppc_get_vsx_vr(vcpu, rs - 32, &reg.vval);
1439			*val = reg.vsx32val[vsx_offset];
1440		}
1441		break;
1442
1443	default:
1444		result = -1;
1445		break;
1446	}
1447
1448	return result;
1449}
1450
1451int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1452			int rs, unsigned int bytes, int is_default_endian)
1453{
1454	u64 val;
1455	enum emulation_result emulated = EMULATE_DONE;
1456
1457	vcpu->arch.io_gpr = rs;
1458
1459	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1460	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1461		return EMULATE_FAIL;
1462
1463	while (vcpu->arch.mmio_vsx_copy_nums) {
1464		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1465			return EMULATE_FAIL;
1466
1467		emulated = kvmppc_handle_store(vcpu,
1468			 val, bytes, is_default_endian);
1469
1470		if (emulated != EMULATE_DONE)
1471			break;
1472
1473		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1474
1475		vcpu->arch.mmio_vsx_copy_nums--;
1476		vcpu->arch.mmio_vsx_offset++;
1477	}
1478
1479	return emulated;
1480}
1481
1482static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1483{
1484	struct kvm_run *run = vcpu->run;
1485	enum emulation_result emulated = EMULATE_FAIL;
1486	int r;
1487
1488	vcpu->arch.paddr_accessed += run->mmio.len;
1489
1490	if (!vcpu->mmio_is_write) {
1491		emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1492			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1493	} else {
1494		emulated = kvmppc_handle_vsx_store(vcpu,
1495			 vcpu->arch.io_gpr, run->mmio.len, 1);
1496	}
1497
1498	switch (emulated) {
1499	case EMULATE_DO_MMIO:
1500		run->exit_reason = KVM_EXIT_MMIO;
1501		r = RESUME_HOST;
1502		break;
1503	case EMULATE_FAIL:
1504		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1505		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1506		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1507		r = RESUME_HOST;
1508		break;
1509	default:
1510		r = RESUME_GUEST;
1511		break;
1512	}
1513	return r;
1514}
1515#endif /* CONFIG_VSX */
1516
1517#ifdef CONFIG_ALTIVEC
1518int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1519		unsigned int rt, unsigned int bytes, int is_default_endian)
1520{
1521	enum emulation_result emulated = EMULATE_DONE;
1522
1523	if (vcpu->arch.mmio_vmx_copy_nums > 2)
1524		return EMULATE_FAIL;
1525
1526	while (vcpu->arch.mmio_vmx_copy_nums) {
1527		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1528				is_default_endian, 0);
1529
1530		if (emulated != EMULATE_DONE)
1531			break;
1532
1533		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1534		vcpu->arch.mmio_vmx_copy_nums--;
1535		vcpu->arch.mmio_vmx_offset++;
1536	}
1537
1538	return emulated;
1539}
1540
1541static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1542{
1543	union kvmppc_one_reg reg;
1544	int vmx_offset = 0;
1545	int result = 0;
1546
1547	vmx_offset =
1548		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1549
1550	if (vmx_offset == -1)
1551		return -1;
1552
1553	kvmppc_get_vsx_vr(vcpu, index, &reg.vval);
1554	*val = reg.vsxval[vmx_offset];
1555
1556	return result;
1557}
1558
1559static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1560{
1561	union kvmppc_one_reg reg;
1562	int vmx_offset = 0;
1563	int result = 0;
1564
1565	vmx_offset =
1566		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1567
1568	if (vmx_offset == -1)
1569		return -1;
1570
1571	kvmppc_get_vsx_vr(vcpu, index, &reg.vval);
1572	*val = reg.vsx32val[vmx_offset];
1573
1574	return result;
1575}
1576
1577static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1578{
1579	union kvmppc_one_reg reg;
1580	int vmx_offset = 0;
1581	int result = 0;
1582
1583	vmx_offset =
1584		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1585
1586	if (vmx_offset == -1)
1587		return -1;
1588
1589	kvmppc_get_vsx_vr(vcpu, index, &reg.vval);
1590	*val = reg.vsx16val[vmx_offset];
1591
1592	return result;
1593}
1594
1595static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1596{
1597	union kvmppc_one_reg reg;
1598	int vmx_offset = 0;
1599	int result = 0;
1600
1601	vmx_offset =
1602		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1603
1604	if (vmx_offset == -1)
1605		return -1;
1606
1607	kvmppc_get_vsx_vr(vcpu, index, &reg.vval);
1608	*val = reg.vsx8val[vmx_offset];
1609
1610	return result;
1611}
1612
1613int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1614		unsigned int rs, unsigned int bytes, int is_default_endian)
1615{
1616	u64 val = 0;
1617	unsigned int index = rs & KVM_MMIO_REG_MASK;
1618	enum emulation_result emulated = EMULATE_DONE;
1619
1620	if (vcpu->arch.mmio_vmx_copy_nums > 2)
1621		return EMULATE_FAIL;
1622
1623	vcpu->arch.io_gpr = rs;
1624
1625	while (vcpu->arch.mmio_vmx_copy_nums) {
1626		switch (vcpu->arch.mmio_copy_type) {
1627		case KVMPPC_VMX_COPY_DWORD:
1628			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1629				return EMULATE_FAIL;
1630
1631			break;
1632		case KVMPPC_VMX_COPY_WORD:
1633			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1634				return EMULATE_FAIL;
1635			break;
1636		case KVMPPC_VMX_COPY_HWORD:
1637			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1638				return EMULATE_FAIL;
1639			break;
1640		case KVMPPC_VMX_COPY_BYTE:
1641			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1642				return EMULATE_FAIL;
1643			break;
1644		default:
1645			return EMULATE_FAIL;
1646		}
1647
1648		emulated = kvmppc_handle_store(vcpu, val, bytes,
1649				is_default_endian);
1650		if (emulated != EMULATE_DONE)
1651			break;
1652
1653		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1654		vcpu->arch.mmio_vmx_copy_nums--;
1655		vcpu->arch.mmio_vmx_offset++;
1656	}
1657
1658	return emulated;
1659}
1660
1661static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1662{
1663	struct kvm_run *run = vcpu->run;
1664	enum emulation_result emulated = EMULATE_FAIL;
1665	int r;
1666
1667	vcpu->arch.paddr_accessed += run->mmio.len;
1668
1669	if (!vcpu->mmio_is_write) {
1670		emulated = kvmppc_handle_vmx_load(vcpu,
1671				vcpu->arch.io_gpr, run->mmio.len, 1);
1672	} else {
1673		emulated = kvmppc_handle_vmx_store(vcpu,
1674				vcpu->arch.io_gpr, run->mmio.len, 1);
1675	}
1676
1677	switch (emulated) {
1678	case EMULATE_DO_MMIO:
1679		run->exit_reason = KVM_EXIT_MMIO;
1680		r = RESUME_HOST;
1681		break;
1682	case EMULATE_FAIL:
1683		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1684		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1685		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1686		r = RESUME_HOST;
1687		break;
1688	default:
1689		r = RESUME_GUEST;
1690		break;
1691	}
1692	return r;
1693}
1694#endif /* CONFIG_ALTIVEC */
1695
1696int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1697{
1698	int r = 0;
1699	union kvmppc_one_reg val;
1700	int size;
1701
1702	size = one_reg_size(reg->id);
1703	if (size > sizeof(val))
1704		return -EINVAL;
1705
1706	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1707	if (r == -EINVAL) {
1708		r = 0;
1709		switch (reg->id) {
1710#ifdef CONFIG_ALTIVEC
1711		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1712			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1713				r = -ENXIO;
1714				break;
1715			}
1716			kvmppc_get_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1717			break;
1718		case KVM_REG_PPC_VSCR:
1719			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1720				r = -ENXIO;
1721				break;
1722			}
1723			val = get_reg_val(reg->id, kvmppc_get_vscr(vcpu));
1724			break;
1725		case KVM_REG_PPC_VRSAVE:
1726			val = get_reg_val(reg->id, kvmppc_get_vrsave(vcpu));
1727			break;
1728#endif /* CONFIG_ALTIVEC */
1729		default:
1730			r = -EINVAL;
1731			break;
1732		}
1733	}
1734
1735	if (r)
1736		return r;
1737
1738	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1739		r = -EFAULT;
1740
1741	return r;
1742}
1743
1744int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1745{
1746	int r;
1747	union kvmppc_one_reg val;
1748	int size;
1749
1750	size = one_reg_size(reg->id);
1751	if (size > sizeof(val))
1752		return -EINVAL;
1753
1754	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1755		return -EFAULT;
1756
1757	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1758	if (r == -EINVAL) {
1759		r = 0;
1760		switch (reg->id) {
1761#ifdef CONFIG_ALTIVEC
1762		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1763			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1764				r = -ENXIO;
1765				break;
1766			}
1767			kvmppc_set_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1768			break;
1769		case KVM_REG_PPC_VSCR:
1770			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1771				r = -ENXIO;
1772				break;
1773			}
1774			kvmppc_set_vscr(vcpu, set_reg_val(reg->id, val));
1775			break;
1776		case KVM_REG_PPC_VRSAVE:
1777			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1778				r = -ENXIO;
1779				break;
1780			}
1781			kvmppc_set_vrsave(vcpu, set_reg_val(reg->id, val));
1782			break;
1783#endif /* CONFIG_ALTIVEC */
1784		default:
1785			r = -EINVAL;
1786			break;
1787		}
1788	}
1789
1790	return r;
1791}
1792
1793int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1794{
1795	struct kvm_run *run = vcpu->run;
1796	int r;
1797
1798	vcpu_load(vcpu);
1799
1800	if (vcpu->mmio_needed) {
1801		vcpu->mmio_needed = 0;
1802		if (!vcpu->mmio_is_write)
1803			kvmppc_complete_mmio_load(vcpu);
1804#ifdef CONFIG_VSX
1805		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1806			vcpu->arch.mmio_vsx_copy_nums--;
1807			vcpu->arch.mmio_vsx_offset++;
1808		}
1809
1810		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1811			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1812			if (r == RESUME_HOST) {
1813				vcpu->mmio_needed = 1;
1814				goto out;
1815			}
1816		}
1817#endif
1818#ifdef CONFIG_ALTIVEC
1819		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1820			vcpu->arch.mmio_vmx_copy_nums--;
1821			vcpu->arch.mmio_vmx_offset++;
1822		}
1823
1824		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1825			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1826			if (r == RESUME_HOST) {
1827				vcpu->mmio_needed = 1;
1828				goto out;
1829			}
1830		}
1831#endif
1832	} else if (vcpu->arch.osi_needed) {
1833		u64 *gprs = run->osi.gprs;
1834		int i;
1835
1836		for (i = 0; i < 32; i++)
1837			kvmppc_set_gpr(vcpu, i, gprs[i]);
1838		vcpu->arch.osi_needed = 0;
1839	} else if (vcpu->arch.hcall_needed) {
1840		int i;
1841
1842		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1843		for (i = 0; i < 9; ++i)
1844			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1845		vcpu->arch.hcall_needed = 0;
1846#ifdef CONFIG_BOOKE
1847	} else if (vcpu->arch.epr_needed) {
1848		kvmppc_set_epr(vcpu, run->epr.epr);
1849		vcpu->arch.epr_needed = 0;
1850#endif
1851	}
1852
1853	kvm_sigset_activate(vcpu);
1854
1855	if (run->immediate_exit)
1856		r = -EINTR;
1857	else
1858		r = kvmppc_vcpu_run(vcpu);
1859
1860	kvm_sigset_deactivate(vcpu);
1861
1862#ifdef CONFIG_ALTIVEC
1863out:
1864#endif
1865
1866	/*
1867	 * We're already returning to userspace, don't pass the
1868	 * RESUME_HOST flags along.
1869	 */
1870	if (r > 0)
1871		r = 0;
1872
1873	vcpu_put(vcpu);
1874	return r;
1875}
1876
1877int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1878{
1879	if (irq->irq == KVM_INTERRUPT_UNSET) {
1880		kvmppc_core_dequeue_external(vcpu);
1881		return 0;
1882	}
1883
1884	kvmppc_core_queue_external(vcpu, irq);
1885
1886	kvm_vcpu_kick(vcpu);
1887
1888	return 0;
1889}
1890
1891static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1892				     struct kvm_enable_cap *cap)
1893{
1894	int r;
1895
1896	if (cap->flags)
1897		return -EINVAL;
1898
1899	switch (cap->cap) {
1900	case KVM_CAP_PPC_OSI:
1901		r = 0;
1902		vcpu->arch.osi_enabled = true;
1903		break;
1904	case KVM_CAP_PPC_PAPR:
1905		r = 0;
1906		vcpu->arch.papr_enabled = true;
1907		break;
1908	case KVM_CAP_PPC_EPR:
1909		r = 0;
1910		if (cap->args[0])
1911			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1912		else
1913			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1914		break;
1915#ifdef CONFIG_BOOKE
1916	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1917		r = 0;
1918		vcpu->arch.watchdog_enabled = true;
1919		break;
1920#endif
1921#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1922	case KVM_CAP_SW_TLB: {
1923		struct kvm_config_tlb cfg;
1924		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1925
1926		r = -EFAULT;
1927		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1928			break;
1929
1930		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1931		break;
1932	}
1933#endif
1934#ifdef CONFIG_KVM_MPIC
1935	case KVM_CAP_IRQ_MPIC: {
1936		struct fd f;
1937		struct kvm_device *dev;
1938
1939		r = -EBADF;
1940		f = fdget(cap->args[0]);
1941		if (!f.file)
1942			break;
1943
1944		r = -EPERM;
1945		dev = kvm_device_from_filp(f.file);
1946		if (dev)
1947			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1948
1949		fdput(f);
1950		break;
1951	}
1952#endif
1953#ifdef CONFIG_KVM_XICS
1954	case KVM_CAP_IRQ_XICS: {
1955		struct fd f;
1956		struct kvm_device *dev;
1957
1958		r = -EBADF;
1959		f = fdget(cap->args[0]);
1960		if (!f.file)
1961			break;
1962
1963		r = -EPERM;
1964		dev = kvm_device_from_filp(f.file);
1965		if (dev) {
1966			if (xics_on_xive())
1967				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1968			else
1969				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1970		}
1971
1972		fdput(f);
1973		break;
1974	}
1975#endif /* CONFIG_KVM_XICS */
1976#ifdef CONFIG_KVM_XIVE
1977	case KVM_CAP_PPC_IRQ_XIVE: {
1978		struct fd f;
1979		struct kvm_device *dev;
1980
1981		r = -EBADF;
1982		f = fdget(cap->args[0]);
1983		if (!f.file)
1984			break;
1985
1986		r = -ENXIO;
1987		if (!xive_enabled())
1988			break;
1989
1990		r = -EPERM;
1991		dev = kvm_device_from_filp(f.file);
1992		if (dev)
1993			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1994							    cap->args[1]);
1995
1996		fdput(f);
1997		break;
1998	}
1999#endif /* CONFIG_KVM_XIVE */
2000#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2001	case KVM_CAP_PPC_FWNMI:
2002		r = -EINVAL;
2003		if (!is_kvmppc_hv_enabled(vcpu->kvm))
2004			break;
2005		r = 0;
2006		vcpu->kvm->arch.fwnmi_enabled = true;
2007		break;
2008#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2009	default:
2010		r = -EINVAL;
2011		break;
2012	}
2013
2014	if (!r)
2015		r = kvmppc_sanity_check(vcpu);
2016
2017	return r;
2018}
2019
2020bool kvm_arch_intc_initialized(struct kvm *kvm)
2021{
2022#ifdef CONFIG_KVM_MPIC
2023	if (kvm->arch.mpic)
2024		return true;
2025#endif
2026#ifdef CONFIG_KVM_XICS
2027	if (kvm->arch.xics || kvm->arch.xive)
2028		return true;
2029#endif
2030	return false;
2031}
2032
2033int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2034                                    struct kvm_mp_state *mp_state)
2035{
2036	return -EINVAL;
2037}
2038
2039int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2040                                    struct kvm_mp_state *mp_state)
2041{
2042	return -EINVAL;
2043}
2044
2045long kvm_arch_vcpu_async_ioctl(struct file *filp,
2046			       unsigned int ioctl, unsigned long arg)
2047{
2048	struct kvm_vcpu *vcpu = filp->private_data;
2049	void __user *argp = (void __user *)arg;
2050
2051	if (ioctl == KVM_INTERRUPT) {
2052		struct kvm_interrupt irq;
2053		if (copy_from_user(&irq, argp, sizeof(irq)))
2054			return -EFAULT;
2055		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2056	}
2057	return -ENOIOCTLCMD;
2058}
2059
2060long kvm_arch_vcpu_ioctl(struct file *filp,
2061                         unsigned int ioctl, unsigned long arg)
2062{
2063	struct kvm_vcpu *vcpu = filp->private_data;
2064	void __user *argp = (void __user *)arg;
2065	long r;
2066
2067	switch (ioctl) {
2068	case KVM_ENABLE_CAP:
2069	{
2070		struct kvm_enable_cap cap;
2071		r = -EFAULT;
2072		if (copy_from_user(&cap, argp, sizeof(cap)))
2073			goto out;
2074		vcpu_load(vcpu);
2075		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2076		vcpu_put(vcpu);
2077		break;
2078	}
2079
2080	case KVM_SET_ONE_REG:
2081	case KVM_GET_ONE_REG:
2082	{
2083		struct kvm_one_reg reg;
2084		r = -EFAULT;
2085		if (copy_from_user(&reg, argp, sizeof(reg)))
2086			goto out;
2087		if (ioctl == KVM_SET_ONE_REG)
2088			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2089		else
2090			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2091		break;
2092	}
2093
2094#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2095	case KVM_DIRTY_TLB: {
2096		struct kvm_dirty_tlb dirty;
2097		r = -EFAULT;
2098		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2099			goto out;
2100		vcpu_load(vcpu);
2101		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2102		vcpu_put(vcpu);
2103		break;
2104	}
2105#endif
2106	default:
2107		r = -EINVAL;
2108	}
2109
2110out:
2111	return r;
2112}
2113
2114vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2115{
2116	return VM_FAULT_SIGBUS;
2117}
2118
2119static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2120{
2121	u32 inst_nop = 0x60000000;
2122#ifdef CONFIG_KVM_BOOKE_HV
2123	u32 inst_sc1 = 0x44000022;
2124	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2125	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2126	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2127	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2128#else
2129	u32 inst_lis = 0x3c000000;
2130	u32 inst_ori = 0x60000000;
2131	u32 inst_sc = 0x44000002;
2132	u32 inst_imm_mask = 0xffff;
2133
2134	/*
2135	 * The hypercall to get into KVM from within guest context is as
2136	 * follows:
2137	 *
2138	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2139	 *    ori r0, KVM_SC_MAGIC_R0@l
2140	 *    sc
2141	 *    nop
2142	 */
2143	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2144	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2145	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2146	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2147#endif
2148
2149	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2150
2151	return 0;
2152}
2153
2154bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2155{
2156	int ret = 0;
2157
2158#ifdef CONFIG_KVM_MPIC
2159	ret = ret || (kvm->arch.mpic != NULL);
2160#endif
2161#ifdef CONFIG_KVM_XICS
2162	ret = ret || (kvm->arch.xics != NULL);
2163	ret = ret || (kvm->arch.xive != NULL);
2164#endif
2165	smp_rmb();
2166	return ret;
2167}
2168
2169int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2170			  bool line_status)
2171{
2172	if (!kvm_arch_irqchip_in_kernel(kvm))
2173		return -ENXIO;
2174
2175	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2176					irq_event->irq, irq_event->level,
2177					line_status);
2178	return 0;
2179}
2180
2181
2182int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2183			    struct kvm_enable_cap *cap)
2184{
2185	int r;
2186
2187	if (cap->flags)
2188		return -EINVAL;
2189
2190	switch (cap->cap) {
2191#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2192	case KVM_CAP_PPC_ENABLE_HCALL: {
2193		unsigned long hcall = cap->args[0];
2194
2195		r = -EINVAL;
2196		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2197		    cap->args[1] > 1)
2198			break;
2199		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2200			break;
2201		if (cap->args[1])
2202			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2203		else
2204			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2205		r = 0;
2206		break;
2207	}
2208	case KVM_CAP_PPC_SMT: {
2209		unsigned long mode = cap->args[0];
2210		unsigned long flags = cap->args[1];
2211
2212		r = -EINVAL;
2213		if (kvm->arch.kvm_ops->set_smt_mode)
2214			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2215		break;
2216	}
2217
2218	case KVM_CAP_PPC_NESTED_HV:
2219		r = -EINVAL;
2220		if (!is_kvmppc_hv_enabled(kvm) ||
2221		    !kvm->arch.kvm_ops->enable_nested)
2222			break;
2223		r = kvm->arch.kvm_ops->enable_nested(kvm);
2224		break;
2225#endif
2226#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2227	case KVM_CAP_PPC_SECURE_GUEST:
2228		r = -EINVAL;
2229		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2230			break;
2231		r = kvm->arch.kvm_ops->enable_svm(kvm);
2232		break;
2233	case KVM_CAP_PPC_DAWR1:
2234		r = -EINVAL;
2235		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2236			break;
2237		r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2238		break;
2239#endif
2240	default:
2241		r = -EINVAL;
2242		break;
2243	}
2244
2245	return r;
2246}
2247
2248#ifdef CONFIG_PPC_BOOK3S_64
2249/*
2250 * These functions check whether the underlying hardware is safe
2251 * against attacks based on observing the effects of speculatively
2252 * executed instructions, and whether it supplies instructions for
2253 * use in workarounds.  The information comes from firmware, either
2254 * via the device tree on powernv platforms or from an hcall on
2255 * pseries platforms.
2256 */
2257#ifdef CONFIG_PPC_PSERIES
2258static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2259{
2260	struct h_cpu_char_result c;
2261	unsigned long rc;
2262
2263	if (!machine_is(pseries))
2264		return -ENOTTY;
2265
2266	rc = plpar_get_cpu_characteristics(&c);
2267	if (rc == H_SUCCESS) {
2268		cp->character = c.character;
2269		cp->behaviour = c.behaviour;
2270		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2271			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2272			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2273			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2274			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2275			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2276			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2277			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2278			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2279		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2280			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2281			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2282			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2283	}
2284	return 0;
2285}
2286#else
2287static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2288{
2289	return -ENOTTY;
2290}
2291#endif
2292
2293static inline bool have_fw_feat(struct device_node *fw_features,
2294				const char *state, const char *name)
2295{
2296	struct device_node *np;
2297	bool r = false;
2298
2299	np = of_get_child_by_name(fw_features, name);
2300	if (np) {
2301		r = of_property_read_bool(np, state);
2302		of_node_put(np);
2303	}
2304	return r;
2305}
2306
2307static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2308{
2309	struct device_node *np, *fw_features;
2310	int r;
2311
2312	memset(cp, 0, sizeof(*cp));
2313	r = pseries_get_cpu_char(cp);
2314	if (r != -ENOTTY)
2315		return r;
2316
2317	np = of_find_node_by_name(NULL, "ibm,opal");
2318	if (np) {
2319		fw_features = of_get_child_by_name(np, "fw-features");
2320		of_node_put(np);
2321		if (!fw_features)
2322			return 0;
2323		if (have_fw_feat(fw_features, "enabled",
2324				 "inst-spec-barrier-ori31,31,0"))
2325			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2326		if (have_fw_feat(fw_features, "enabled",
2327				 "fw-bcctrl-serialized"))
2328			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2329		if (have_fw_feat(fw_features, "enabled",
2330				 "inst-l1d-flush-ori30,30,0"))
2331			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2332		if (have_fw_feat(fw_features, "enabled",
2333				 "inst-l1d-flush-trig2"))
2334			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2335		if (have_fw_feat(fw_features, "enabled",
2336				 "fw-l1d-thread-split"))
2337			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2338		if (have_fw_feat(fw_features, "enabled",
2339				 "fw-count-cache-disabled"))
2340			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2341		if (have_fw_feat(fw_features, "enabled",
2342				 "fw-count-cache-flush-bcctr2,0,0"))
2343			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2344		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2345			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2346			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2347			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2348			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2349			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2350			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2351
2352		if (have_fw_feat(fw_features, "enabled",
2353				 "speculation-policy-favor-security"))
2354			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2355		if (!have_fw_feat(fw_features, "disabled",
2356				  "needs-l1d-flush-msr-pr-0-to-1"))
2357			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2358		if (!have_fw_feat(fw_features, "disabled",
2359				  "needs-spec-barrier-for-bound-checks"))
2360			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2361		if (have_fw_feat(fw_features, "enabled",
2362				 "needs-count-cache-flush-on-context-switch"))
2363			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2364		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2365			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2366			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2367			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2368
2369		of_node_put(fw_features);
2370	}
2371
2372	return 0;
2373}
2374#endif
2375
2376int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
 
2377{
2378	struct kvm *kvm __maybe_unused = filp->private_data;
2379	void __user *argp = (void __user *)arg;
2380	int r;
2381
2382	switch (ioctl) {
2383	case KVM_PPC_GET_PVINFO: {
2384		struct kvm_ppc_pvinfo pvinfo;
2385		memset(&pvinfo, 0, sizeof(pvinfo));
2386		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2387		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2388			r = -EFAULT;
2389			goto out;
2390		}
2391
2392		break;
2393	}
2394#ifdef CONFIG_SPAPR_TCE_IOMMU
2395	case KVM_CREATE_SPAPR_TCE_64: {
2396		struct kvm_create_spapr_tce_64 create_tce_64;
2397
2398		r = -EFAULT;
2399		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2400			goto out;
2401		if (create_tce_64.flags) {
2402			r = -EINVAL;
2403			goto out;
2404		}
2405		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2406		goto out;
2407	}
2408	case KVM_CREATE_SPAPR_TCE: {
2409		struct kvm_create_spapr_tce create_tce;
2410		struct kvm_create_spapr_tce_64 create_tce_64;
2411
2412		r = -EFAULT;
2413		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2414			goto out;
2415
2416		create_tce_64.liobn = create_tce.liobn;
2417		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2418		create_tce_64.offset = 0;
2419		create_tce_64.size = create_tce.window_size >>
2420				IOMMU_PAGE_SHIFT_4K;
2421		create_tce_64.flags = 0;
2422		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2423		goto out;
2424	}
2425#endif
2426#ifdef CONFIG_PPC_BOOK3S_64
2427	case KVM_PPC_GET_SMMU_INFO: {
2428		struct kvm_ppc_smmu_info info;
2429		struct kvm *kvm = filp->private_data;
2430
2431		memset(&info, 0, sizeof(info));
2432		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2433		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2434			r = -EFAULT;
2435		break;
2436	}
2437	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2438		struct kvm *kvm = filp->private_data;
2439
2440		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2441		break;
2442	}
2443	case KVM_PPC_CONFIGURE_V3_MMU: {
2444		struct kvm *kvm = filp->private_data;
2445		struct kvm_ppc_mmuv3_cfg cfg;
2446
2447		r = -EINVAL;
2448		if (!kvm->arch.kvm_ops->configure_mmu)
2449			goto out;
2450		r = -EFAULT;
2451		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2452			goto out;
2453		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2454		break;
2455	}
2456	case KVM_PPC_GET_RMMU_INFO: {
2457		struct kvm *kvm = filp->private_data;
2458		struct kvm_ppc_rmmu_info info;
2459
2460		r = -EINVAL;
2461		if (!kvm->arch.kvm_ops->get_rmmu_info)
2462			goto out;
2463		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2464		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2465			r = -EFAULT;
2466		break;
2467	}
2468	case KVM_PPC_GET_CPU_CHAR: {
2469		struct kvm_ppc_cpu_char cpuchar;
2470
2471		r = kvmppc_get_cpu_char(&cpuchar);
2472		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2473			r = -EFAULT;
2474		break;
2475	}
2476	case KVM_PPC_SVM_OFF: {
2477		struct kvm *kvm = filp->private_data;
2478
2479		r = 0;
2480		if (!kvm->arch.kvm_ops->svm_off)
2481			goto out;
2482
2483		r = kvm->arch.kvm_ops->svm_off(kvm);
2484		break;
2485	}
2486	default: {
2487		struct kvm *kvm = filp->private_data;
2488		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2489	}
2490#else /* CONFIG_PPC_BOOK3S_64 */
2491	default:
2492		r = -ENOTTY;
2493#endif
2494	}
2495out:
2496	return r;
2497}
2498
2499static DEFINE_IDA(lpid_inuse);
2500static unsigned long nr_lpids;
2501
2502long kvmppc_alloc_lpid(void)
2503{
2504	int lpid;
2505
2506	/* The host LPID must always be 0 (allocation starts at 1) */
2507	lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2508	if (lpid < 0) {
2509		if (lpid == -ENOMEM)
2510			pr_err("%s: Out of memory\n", __func__);
2511		else
2512			pr_err("%s: No LPIDs free\n", __func__);
2513		return -ENOMEM;
2514	}
 
2515
2516	return lpid;
2517}
2518EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2519
 
 
 
 
 
 
2520void kvmppc_free_lpid(long lpid)
2521{
2522	ida_free(&lpid_inuse, lpid);
2523}
2524EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2525
2526/* nr_lpids_param includes the host LPID */
2527void kvmppc_init_lpid(unsigned long nr_lpids_param)
2528{
2529	nr_lpids = nr_lpids_param;
 
2530}
2531EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2532
2533EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2534
2535void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2536{
2537	if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2538		vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2539}
2540
2541int kvm_arch_create_vm_debugfs(struct kvm *kvm)
2542{
2543	if (kvm->arch.kvm_ops->create_vm_debugfs)
2544		kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2545	return 0;
2546}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright IBM Corp. 2007
   5 *
   6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
   7 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
   8 */
   9
  10#include <linux/errno.h>
  11#include <linux/err.h>
  12#include <linux/kvm_host.h>
  13#include <linux/vmalloc.h>
  14#include <linux/hrtimer.h>
  15#include <linux/sched/signal.h>
  16#include <linux/fs.h>
  17#include <linux/slab.h>
  18#include <linux/file.h>
  19#include <linux/module.h>
  20#include <linux/irqbypass.h>
  21#include <linux/kvm_irqfd.h>
 
  22#include <asm/cputable.h>
  23#include <linux/uaccess.h>
  24#include <asm/kvm_ppc.h>
  25#include <asm/cputhreads.h>
  26#include <asm/irqflags.h>
  27#include <asm/iommu.h>
  28#include <asm/switch_to.h>
  29#include <asm/xive.h>
  30#ifdef CONFIG_PPC_PSERIES
  31#include <asm/hvcall.h>
  32#include <asm/plpar_wrappers.h>
  33#endif
  34#include <asm/ultravisor.h>
 
  35
  36#include "timing.h"
  37#include "irq.h"
  38#include "../mm/mmu_decl.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include "trace.h"
  42
  43struct kvmppc_ops *kvmppc_hv_ops;
  44EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
  45struct kvmppc_ops *kvmppc_pr_ops;
  46EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
  47
  48
  49int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
  50{
  51	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
  52}
  53
  54bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
  55{
  56	return kvm_arch_vcpu_runnable(vcpu);
  57}
  58
  59bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
  60{
  61	return false;
  62}
  63
  64int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  65{
  66	return 1;
  67}
  68
  69/*
  70 * Common checks before entering the guest world.  Call with interrupts
  71 * disabled.
  72 *
  73 * returns:
  74 *
  75 * == 1 if we're ready to go into guest state
  76 * <= 0 if we need to go back to the host with return value
  77 */
  78int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
  79{
  80	int r;
  81
  82	WARN_ON(irqs_disabled());
  83	hard_irq_disable();
  84
  85	while (true) {
  86		if (need_resched()) {
  87			local_irq_enable();
  88			cond_resched();
  89			hard_irq_disable();
  90			continue;
  91		}
  92
  93		if (signal_pending(current)) {
  94			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
  95			vcpu->run->exit_reason = KVM_EXIT_INTR;
  96			r = -EINTR;
  97			break;
  98		}
  99
 100		vcpu->mode = IN_GUEST_MODE;
 101
 102		/*
 103		 * Reading vcpu->requests must happen after setting vcpu->mode,
 104		 * so we don't miss a request because the requester sees
 105		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
 106		 * before next entering the guest (and thus doesn't IPI).
 107		 * This also orders the write to mode from any reads
 108		 * to the page tables done while the VCPU is running.
 109		 * Please see the comment in kvm_flush_remote_tlbs.
 110		 */
 111		smp_mb();
 112
 113		if (kvm_request_pending(vcpu)) {
 114			/* Make sure we process requests preemptable */
 115			local_irq_enable();
 116			trace_kvm_check_requests(vcpu);
 117			r = kvmppc_core_check_requests(vcpu);
 118			hard_irq_disable();
 119			if (r > 0)
 120				continue;
 121			break;
 122		}
 123
 124		if (kvmppc_core_prepare_to_enter(vcpu)) {
 125			/* interrupts got enabled in between, so we
 126			   are back at square 1 */
 127			continue;
 128		}
 129
 130		guest_enter_irqoff();
 131		return 1;
 132	}
 133
 134	/* return to host */
 135	local_irq_enable();
 136	return r;
 137}
 138EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
 139
 140#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
 141static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
 142{
 143	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
 144	int i;
 145
 146	shared->sprg0 = swab64(shared->sprg0);
 147	shared->sprg1 = swab64(shared->sprg1);
 148	shared->sprg2 = swab64(shared->sprg2);
 149	shared->sprg3 = swab64(shared->sprg3);
 150	shared->srr0 = swab64(shared->srr0);
 151	shared->srr1 = swab64(shared->srr1);
 152	shared->dar = swab64(shared->dar);
 153	shared->msr = swab64(shared->msr);
 154	shared->dsisr = swab32(shared->dsisr);
 155	shared->int_pending = swab32(shared->int_pending);
 156	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
 157		shared->sr[i] = swab32(shared->sr[i]);
 158}
 159#endif
 160
 161int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
 162{
 163	int nr = kvmppc_get_gpr(vcpu, 11);
 164	int r;
 165	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
 166	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
 167	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
 168	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
 169	unsigned long r2 = 0;
 170
 171	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
 172		/* 32 bit mode */
 173		param1 &= 0xffffffff;
 174		param2 &= 0xffffffff;
 175		param3 &= 0xffffffff;
 176		param4 &= 0xffffffff;
 177	}
 178
 179	switch (nr) {
 180	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
 181	{
 182#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
 183		/* Book3S can be little endian, find it out here */
 184		int shared_big_endian = true;
 185		if (vcpu->arch.intr_msr & MSR_LE)
 186			shared_big_endian = false;
 187		if (shared_big_endian != vcpu->arch.shared_big_endian)
 188			kvmppc_swab_shared(vcpu);
 189		vcpu->arch.shared_big_endian = shared_big_endian;
 190#endif
 191
 192		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
 193			/*
 194			 * Older versions of the Linux magic page code had
 195			 * a bug where they would map their trampoline code
 196			 * NX. If that's the case, remove !PR NX capability.
 197			 */
 198			vcpu->arch.disable_kernel_nx = true;
 199			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 200		}
 201
 202		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
 203		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
 204
 205#ifdef CONFIG_PPC_64K_PAGES
 206		/*
 207		 * Make sure our 4k magic page is in the same window of a 64k
 208		 * page within the guest and within the host's page.
 209		 */
 210		if ((vcpu->arch.magic_page_pa & 0xf000) !=
 211		    ((ulong)vcpu->arch.shared & 0xf000)) {
 212			void *old_shared = vcpu->arch.shared;
 213			ulong shared = (ulong)vcpu->arch.shared;
 214			void *new_shared;
 215
 216			shared &= PAGE_MASK;
 217			shared |= vcpu->arch.magic_page_pa & 0xf000;
 218			new_shared = (void*)shared;
 219			memcpy(new_shared, old_shared, 0x1000);
 220			vcpu->arch.shared = new_shared;
 221		}
 222#endif
 223
 224		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
 225
 226		r = EV_SUCCESS;
 227		break;
 228	}
 229	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
 230		r = EV_SUCCESS;
 231#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
 232		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
 233#endif
 234
 235		/* Second return value is in r4 */
 236		break;
 237	case EV_HCALL_TOKEN(EV_IDLE):
 238		r = EV_SUCCESS;
 239		kvm_vcpu_block(vcpu);
 240		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 241		break;
 242	default:
 243		r = EV_UNIMPLEMENTED;
 244		break;
 245	}
 246
 247	kvmppc_set_gpr(vcpu, 4, r2);
 248
 249	return r;
 250}
 251EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
 252
 253int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
 254{
 255	int r = false;
 256
 257	/* We have to know what CPU to virtualize */
 258	if (!vcpu->arch.pvr)
 259		goto out;
 260
 261	/* PAPR only works with book3s_64 */
 262	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
 263		goto out;
 264
 265	/* HV KVM can only do PAPR mode for now */
 266	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
 267		goto out;
 268
 269#ifdef CONFIG_KVM_BOOKE_HV
 270	if (!cpu_has_feature(CPU_FTR_EMB_HV))
 271		goto out;
 272#endif
 273
 274	r = true;
 275
 276out:
 277	vcpu->arch.sane = r;
 278	return r ? 0 : -EINVAL;
 279}
 280EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
 281
 282int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
 283{
 284	enum emulation_result er;
 285	int r;
 286
 287	er = kvmppc_emulate_loadstore(vcpu);
 288	switch (er) {
 289	case EMULATE_DONE:
 290		/* Future optimization: only reload non-volatiles if they were
 291		 * actually modified. */
 292		r = RESUME_GUEST_NV;
 293		break;
 294	case EMULATE_AGAIN:
 295		r = RESUME_GUEST;
 296		break;
 297	case EMULATE_DO_MMIO:
 298		vcpu->run->exit_reason = KVM_EXIT_MMIO;
 299		/* We must reload nonvolatiles because "update" load/store
 300		 * instructions modify register state. */
 301		/* Future optimization: only reload non-volatiles if they were
 302		 * actually modified. */
 303		r = RESUME_HOST_NV;
 304		break;
 305	case EMULATE_FAIL:
 306	{
 307		u32 last_inst;
 308
 309		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
 310		/* XXX Deliver Program interrupt to guest. */
 311		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
 312		r = RESUME_HOST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313		break;
 314	}
 315	default:
 316		WARN_ON(1);
 317		r = RESUME_GUEST;
 318	}
 319
 320	return r;
 321}
 322EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
 323
 324int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
 325	      bool data)
 326{
 327	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
 328	struct kvmppc_pte pte;
 329	int r = -EINVAL;
 330
 331	vcpu->stat.st++;
 332
 333	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
 334		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
 335							    size);
 336
 337	if ((!r) || (r == -EAGAIN))
 338		return r;
 339
 340	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
 341			 XLATE_WRITE, &pte);
 342	if (r < 0)
 343		return r;
 344
 345	*eaddr = pte.raddr;
 346
 347	if (!pte.may_write)
 348		return -EPERM;
 349
 350	/* Magic page override */
 351	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
 352	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
 353	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
 354		void *magic = vcpu->arch.shared;
 355		magic += pte.eaddr & 0xfff;
 356		memcpy(magic, ptr, size);
 357		return EMULATE_DONE;
 358	}
 359
 360	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
 361		return EMULATE_DO_MMIO;
 362
 363	return EMULATE_DONE;
 364}
 365EXPORT_SYMBOL_GPL(kvmppc_st);
 366
 367int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
 368		      bool data)
 369{
 370	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
 371	struct kvmppc_pte pte;
 372	int rc = -EINVAL;
 373
 374	vcpu->stat.ld++;
 375
 376	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
 377		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
 378							      size);
 379
 380	if ((!rc) || (rc == -EAGAIN))
 381		return rc;
 382
 383	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
 384			  XLATE_READ, &pte);
 385	if (rc)
 386		return rc;
 387
 388	*eaddr = pte.raddr;
 389
 390	if (!pte.may_read)
 391		return -EPERM;
 392
 393	if (!data && !pte.may_execute)
 394		return -ENOEXEC;
 395
 396	/* Magic page override */
 397	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
 398	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
 399	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
 400		void *magic = vcpu->arch.shared;
 401		magic += pte.eaddr & 0xfff;
 402		memcpy(ptr, magic, size);
 403		return EMULATE_DONE;
 404	}
 405
 406	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
 407	rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
 408	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
 409	if (rc)
 410		return EMULATE_DO_MMIO;
 411
 412	return EMULATE_DONE;
 413}
 414EXPORT_SYMBOL_GPL(kvmppc_ld);
 415
 416int kvm_arch_hardware_enable(void)
 417{
 418	return 0;
 419}
 420
 421int kvm_arch_hardware_setup(void *opaque)
 422{
 423	return 0;
 424}
 425
 426int kvm_arch_check_processor_compat(void *opaque)
 427{
 428	return kvmppc_core_check_processor_compat();
 429}
 430
 431int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 432{
 433	struct kvmppc_ops *kvm_ops = NULL;
 
 
 434	/*
 435	 * if we have both HV and PR enabled, default is HV
 436	 */
 437	if (type == 0) {
 438		if (kvmppc_hv_ops)
 439			kvm_ops = kvmppc_hv_ops;
 440		else
 441			kvm_ops = kvmppc_pr_ops;
 442		if (!kvm_ops)
 443			goto err_out;
 444	} else	if (type == KVM_VM_PPC_HV) {
 445		if (!kvmppc_hv_ops)
 446			goto err_out;
 447		kvm_ops = kvmppc_hv_ops;
 448	} else if (type == KVM_VM_PPC_PR) {
 449		if (!kvmppc_pr_ops)
 450			goto err_out;
 451		kvm_ops = kvmppc_pr_ops;
 452	} else
 453		goto err_out;
 454
 455	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
 456		return -ENOENT;
 457
 458	kvm->arch.kvm_ops = kvm_ops;
 459	return kvmppc_core_init_vm(kvm);
 
 
 
 460err_out:
 461	return -EINVAL;
 462}
 463
 464void kvm_arch_destroy_vm(struct kvm *kvm)
 465{
 466	unsigned int i;
 467	struct kvm_vcpu *vcpu;
 468
 469#ifdef CONFIG_KVM_XICS
 470	/*
 471	 * We call kick_all_cpus_sync() to ensure that all
 472	 * CPUs have executed any pending IPIs before we
 473	 * continue and free VCPUs structures below.
 474	 */
 475	if (is_kvmppc_hv_enabled(kvm))
 476		kick_all_cpus_sync();
 477#endif
 478
 479	kvm_for_each_vcpu(i, vcpu, kvm)
 480		kvm_vcpu_destroy(vcpu);
 481
 482	mutex_lock(&kvm->lock);
 483	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 484		kvm->vcpus[i] = NULL;
 485
 486	atomic_set(&kvm->online_vcpus, 0);
 487
 488	kvmppc_core_destroy_vm(kvm);
 489
 490	mutex_unlock(&kvm->lock);
 491
 492	/* drop the module reference */
 493	module_put(kvm->arch.kvm_ops->owner);
 494}
 495
 496int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 497{
 498	int r;
 499	/* Assume we're using HV mode when the HV module is loaded */
 500	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
 501
 502	if (kvm) {
 503		/*
 504		 * Hooray - we know which VM type we're running on. Depend on
 505		 * that rather than the guess above.
 506		 */
 507		hv_enabled = is_kvmppc_hv_enabled(kvm);
 508	}
 509
 510	switch (ext) {
 511#ifdef CONFIG_BOOKE
 512	case KVM_CAP_PPC_BOOKE_SREGS:
 513	case KVM_CAP_PPC_BOOKE_WATCHDOG:
 514	case KVM_CAP_PPC_EPR:
 515#else
 516	case KVM_CAP_PPC_SEGSTATE:
 517	case KVM_CAP_PPC_HIOR:
 518	case KVM_CAP_PPC_PAPR:
 519#endif
 520	case KVM_CAP_PPC_UNSET_IRQ:
 521	case KVM_CAP_PPC_IRQ_LEVEL:
 522	case KVM_CAP_ENABLE_CAP:
 523	case KVM_CAP_ONE_REG:
 524	case KVM_CAP_IOEVENTFD:
 525	case KVM_CAP_DEVICE_CTRL:
 526	case KVM_CAP_IMMEDIATE_EXIT:
 527	case KVM_CAP_SET_GUEST_DEBUG:
 528		r = 1;
 529		break;
 530	case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
 531	case KVM_CAP_PPC_PAIRED_SINGLES:
 532	case KVM_CAP_PPC_OSI:
 533	case KVM_CAP_PPC_GET_PVINFO:
 534#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
 535	case KVM_CAP_SW_TLB:
 536#endif
 537		/* We support this only for PR */
 538		r = !hv_enabled;
 539		break;
 540#ifdef CONFIG_KVM_MPIC
 541	case KVM_CAP_IRQ_MPIC:
 542		r = 1;
 543		break;
 544#endif
 545
 546#ifdef CONFIG_PPC_BOOK3S_64
 547	case KVM_CAP_SPAPR_TCE:
 548	case KVM_CAP_SPAPR_TCE_64:
 549		r = 1;
 550		break;
 551	case KVM_CAP_SPAPR_TCE_VFIO:
 552		r = !!cpu_has_feature(CPU_FTR_HVMODE);
 553		break;
 554	case KVM_CAP_PPC_RTAS:
 555	case KVM_CAP_PPC_FIXUP_HCALL:
 556	case KVM_CAP_PPC_ENABLE_HCALL:
 557#ifdef CONFIG_KVM_XICS
 558	case KVM_CAP_IRQ_XICS:
 559#endif
 560	case KVM_CAP_PPC_GET_CPU_CHAR:
 561		r = 1;
 562		break;
 563#ifdef CONFIG_KVM_XIVE
 564	case KVM_CAP_PPC_IRQ_XIVE:
 565		/*
 566		 * We need XIVE to be enabled on the platform (implies
 567		 * a POWER9 processor) and the PowerNV platform, as
 568		 * nested is not yet supported.
 569		 */
 570		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
 571			kvmppc_xive_native_supported();
 572		break;
 573#endif
 574
 
 
 
 
 
 
 575	case KVM_CAP_PPC_ALLOC_HTAB:
 576		r = hv_enabled;
 577		break;
 578#endif /* CONFIG_PPC_BOOK3S_64 */
 579#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 580	case KVM_CAP_PPC_SMT:
 581		r = 0;
 582		if (kvm) {
 583			if (kvm->arch.emul_smt_mode > 1)
 584				r = kvm->arch.emul_smt_mode;
 585			else
 586				r = kvm->arch.smt_mode;
 587		} else if (hv_enabled) {
 588			if (cpu_has_feature(CPU_FTR_ARCH_300))
 589				r = 1;
 590			else
 591				r = threads_per_subcore;
 592		}
 593		break;
 594	case KVM_CAP_PPC_SMT_POSSIBLE:
 595		r = 1;
 596		if (hv_enabled) {
 597			if (!cpu_has_feature(CPU_FTR_ARCH_300))
 598				r = ((threads_per_subcore << 1) - 1);
 599			else
 600				/* P9 can emulate dbells, so allow any mode */
 601				r = 8 | 4 | 2 | 1;
 602		}
 603		break;
 604	case KVM_CAP_PPC_RMA:
 605		r = 0;
 606		break;
 607	case KVM_CAP_PPC_HWRNG:
 608		r = kvmppc_hwrng_present();
 609		break;
 610	case KVM_CAP_PPC_MMU_RADIX:
 611		r = !!(hv_enabled && radix_enabled());
 612		break;
 613	case KVM_CAP_PPC_MMU_HASH_V3:
 614		r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
 615		       kvmppc_hv_ops->hash_v3_possible());
 616		break;
 617	case KVM_CAP_PPC_NESTED_HV:
 618		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
 619		       !kvmppc_hv_ops->enable_nested(NULL));
 620		break;
 621#endif
 622	case KVM_CAP_SYNC_MMU:
 623#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 624		r = hv_enabled;
 625#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 626		r = 1;
 627#else
 628		r = 0;
 629#endif
 630		break;
 631#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 632	case KVM_CAP_PPC_HTAB_FD:
 633		r = hv_enabled;
 634		break;
 635#endif
 636	case KVM_CAP_NR_VCPUS:
 637		/*
 638		 * Recommending a number of CPUs is somewhat arbitrary; we
 639		 * return the number of present CPUs for -HV (since a host
 640		 * will have secondary threads "offline"), and for other KVM
 641		 * implementations just count online CPUs.
 642		 */
 643		if (hv_enabled)
 644			r = num_present_cpus();
 645		else
 646			r = num_online_cpus();
 647		break;
 648	case KVM_CAP_MAX_VCPUS:
 649		r = KVM_MAX_VCPUS;
 650		break;
 651	case KVM_CAP_MAX_VCPU_ID:
 652		r = KVM_MAX_VCPU_ID;
 653		break;
 654#ifdef CONFIG_PPC_BOOK3S_64
 655	case KVM_CAP_PPC_GET_SMMU_INFO:
 656		r = 1;
 657		break;
 658	case KVM_CAP_SPAPR_MULTITCE:
 659		r = 1;
 660		break;
 661	case KVM_CAP_SPAPR_RESIZE_HPT:
 662		r = !!hv_enabled;
 663		break;
 664#endif
 665#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 666	case KVM_CAP_PPC_FWNMI:
 667		r = hv_enabled;
 668		break;
 669#endif
 670#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 671	case KVM_CAP_PPC_HTM:
 672		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
 673		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
 674		break;
 675#endif
 676#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 677	case KVM_CAP_PPC_SECURE_GUEST:
 678		r = hv_enabled && kvmppc_hv_ops->enable_svm &&
 679			!kvmppc_hv_ops->enable_svm(NULL);
 680		break;
 681	case KVM_CAP_PPC_DAWR1:
 682		r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
 683		       !kvmppc_hv_ops->enable_dawr1(NULL));
 684		break;
 685	case KVM_CAP_PPC_RPT_INVALIDATE:
 686		r = 1;
 687		break;
 688#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689	default:
 690		r = 0;
 691		break;
 692	}
 693	return r;
 694
 695}
 696
 697long kvm_arch_dev_ioctl(struct file *filp,
 698                        unsigned int ioctl, unsigned long arg)
 699{
 700	return -EINVAL;
 701}
 702
 703void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 704{
 705	kvmppc_core_free_memslot(kvm, slot);
 706}
 707
 708int kvm_arch_prepare_memory_region(struct kvm *kvm,
 709				   struct kvm_memory_slot *memslot,
 710				   const struct kvm_userspace_memory_region *mem,
 711				   enum kvm_mr_change change)
 712{
 713	return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
 714}
 715
 716void kvm_arch_commit_memory_region(struct kvm *kvm,
 717				   const struct kvm_userspace_memory_region *mem,
 718				   struct kvm_memory_slot *old,
 719				   const struct kvm_memory_slot *new,
 720				   enum kvm_mr_change change)
 721{
 722	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
 723}
 724
 725void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 726				   struct kvm_memory_slot *slot)
 727{
 728	kvmppc_core_flush_memslot(kvm, slot);
 729}
 730
 731int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 732{
 733	return 0;
 734}
 735
 736static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
 737{
 738	struct kvm_vcpu *vcpu;
 739
 740	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
 741	kvmppc_decrementer_func(vcpu);
 742
 743	return HRTIMER_NORESTART;
 744}
 745
 746int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 747{
 748	int err;
 749
 750	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
 751	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
 752	vcpu->arch.dec_expires = get_tb();
 753
 754#ifdef CONFIG_KVM_EXIT_TIMING
 755	mutex_init(&vcpu->arch.exit_timing_lock);
 756#endif
 757	err = kvmppc_subarch_vcpu_init(vcpu);
 758	if (err)
 759		return err;
 760
 761	err = kvmppc_core_vcpu_create(vcpu);
 762	if (err)
 763		goto out_vcpu_uninit;
 764
 765	vcpu->arch.waitp = &vcpu->wait;
 766	kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
 767	return 0;
 768
 769out_vcpu_uninit:
 770	kvmppc_subarch_vcpu_uninit(vcpu);
 771	return err;
 772}
 773
 774void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 775{
 776}
 777
 778void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 779{
 780	/* Make sure we're not using the vcpu anymore */
 781	hrtimer_cancel(&vcpu->arch.dec_timer);
 782
 783	kvmppc_remove_vcpu_debugfs(vcpu);
 784
 785	switch (vcpu->arch.irq_type) {
 786	case KVMPPC_IRQ_MPIC:
 787		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
 788		break;
 789	case KVMPPC_IRQ_XICS:
 790		if (xics_on_xive())
 791			kvmppc_xive_cleanup_vcpu(vcpu);
 792		else
 793			kvmppc_xics_free_icp(vcpu);
 794		break;
 795	case KVMPPC_IRQ_XIVE:
 796		kvmppc_xive_native_cleanup_vcpu(vcpu);
 797		break;
 798	}
 799
 800	kvmppc_core_vcpu_free(vcpu);
 801
 802	kvmppc_subarch_vcpu_uninit(vcpu);
 803}
 804
 805int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 806{
 807	return kvmppc_core_pending_dec(vcpu);
 808}
 809
 810void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 811{
 812#ifdef CONFIG_BOOKE
 813	/*
 814	 * vrsave (formerly usprg0) isn't used by Linux, but may
 815	 * be used by the guest.
 816	 *
 817	 * On non-booke this is associated with Altivec and
 818	 * is handled by code in book3s.c.
 819	 */
 820	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
 821#endif
 822	kvmppc_core_vcpu_load(vcpu, cpu);
 823}
 824
 825void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 826{
 827	kvmppc_core_vcpu_put(vcpu);
 828#ifdef CONFIG_BOOKE
 829	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
 830#endif
 831}
 832
 833/*
 834 * irq_bypass_add_producer and irq_bypass_del_producer are only
 835 * useful if the architecture supports PCI passthrough.
 836 * irq_bypass_stop and irq_bypass_start are not needed and so
 837 * kvm_ops are not defined for them.
 838 */
 839bool kvm_arch_has_irq_bypass(void)
 840{
 841	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
 842		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
 843}
 844
 845int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
 846				     struct irq_bypass_producer *prod)
 847{
 848	struct kvm_kernel_irqfd *irqfd =
 849		container_of(cons, struct kvm_kernel_irqfd, consumer);
 850	struct kvm *kvm = irqfd->kvm;
 851
 852	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
 853		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
 854
 855	return 0;
 856}
 857
 858void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
 859				      struct irq_bypass_producer *prod)
 860{
 861	struct kvm_kernel_irqfd *irqfd =
 862		container_of(cons, struct kvm_kernel_irqfd, consumer);
 863	struct kvm *kvm = irqfd->kvm;
 864
 865	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
 866		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
 867}
 868
 869#ifdef CONFIG_VSX
 870static inline int kvmppc_get_vsr_dword_offset(int index)
 871{
 872	int offset;
 873
 874	if ((index != 0) && (index != 1))
 875		return -1;
 876
 877#ifdef __BIG_ENDIAN
 878	offset =  index;
 879#else
 880	offset = 1 - index;
 881#endif
 882
 883	return offset;
 884}
 885
 886static inline int kvmppc_get_vsr_word_offset(int index)
 887{
 888	int offset;
 889
 890	if ((index > 3) || (index < 0))
 891		return -1;
 892
 893#ifdef __BIG_ENDIAN
 894	offset = index;
 895#else
 896	offset = 3 - index;
 897#endif
 898	return offset;
 899}
 900
 901static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
 902	u64 gpr)
 903{
 904	union kvmppc_one_reg val;
 905	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
 906	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
 907
 908	if (offset == -1)
 909		return;
 910
 911	if (index >= 32) {
 912		val.vval = VCPU_VSX_VR(vcpu, index - 32);
 913		val.vsxval[offset] = gpr;
 914		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
 915	} else {
 916		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
 917	}
 918}
 919
 920static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
 921	u64 gpr)
 922{
 923	union kvmppc_one_reg val;
 924	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
 925
 926	if (index >= 32) {
 927		val.vval = VCPU_VSX_VR(vcpu, index - 32);
 928		val.vsxval[0] = gpr;
 929		val.vsxval[1] = gpr;
 930		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
 931	} else {
 932		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
 933		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
 934	}
 935}
 936
 937static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
 938	u32 gpr)
 939{
 940	union kvmppc_one_reg val;
 941	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
 942
 943	if (index >= 32) {
 944		val.vsx32val[0] = gpr;
 945		val.vsx32val[1] = gpr;
 946		val.vsx32val[2] = gpr;
 947		val.vsx32val[3] = gpr;
 948		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
 949	} else {
 950		val.vsx32val[0] = gpr;
 951		val.vsx32val[1] = gpr;
 952		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
 953		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
 954	}
 955}
 956
 957static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
 958	u32 gpr32)
 959{
 960	union kvmppc_one_reg val;
 961	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
 962	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
 963	int dword_offset, word_offset;
 964
 965	if (offset == -1)
 966		return;
 967
 968	if (index >= 32) {
 969		val.vval = VCPU_VSX_VR(vcpu, index - 32);
 970		val.vsx32val[offset] = gpr32;
 971		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
 972	} else {
 973		dword_offset = offset / 2;
 974		word_offset = offset % 2;
 975		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
 976		val.vsx32val[word_offset] = gpr32;
 977		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
 978	}
 979}
 980#endif /* CONFIG_VSX */
 981
 982#ifdef CONFIG_ALTIVEC
 983static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
 984		int index, int element_size)
 985{
 986	int offset;
 987	int elts = sizeof(vector128)/element_size;
 988
 989	if ((index < 0) || (index >= elts))
 990		return -1;
 991
 992	if (kvmppc_need_byteswap(vcpu))
 993		offset = elts - index - 1;
 994	else
 995		offset = index;
 996
 997	return offset;
 998}
 999
1000static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1001		int index)
1002{
1003	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1004}
1005
1006static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1007		int index)
1008{
1009	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1010}
1011
1012static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1013		int index)
1014{
1015	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1016}
1017
1018static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1019		int index)
1020{
1021	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1022}
1023
1024
1025static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1026	u64 gpr)
1027{
1028	union kvmppc_one_reg val;
1029	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1030			vcpu->arch.mmio_vmx_offset);
1031	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1032
1033	if (offset == -1)
1034		return;
1035
1036	val.vval = VCPU_VSX_VR(vcpu, index);
1037	val.vsxval[offset] = gpr;
1038	VCPU_VSX_VR(vcpu, index) = val.vval;
1039}
1040
1041static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1042	u32 gpr32)
1043{
1044	union kvmppc_one_reg val;
1045	int offset = kvmppc_get_vmx_word_offset(vcpu,
1046			vcpu->arch.mmio_vmx_offset);
1047	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1048
1049	if (offset == -1)
1050		return;
1051
1052	val.vval = VCPU_VSX_VR(vcpu, index);
1053	val.vsx32val[offset] = gpr32;
1054	VCPU_VSX_VR(vcpu, index) = val.vval;
1055}
1056
1057static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1058	u16 gpr16)
1059{
1060	union kvmppc_one_reg val;
1061	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1062			vcpu->arch.mmio_vmx_offset);
1063	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1064
1065	if (offset == -1)
1066		return;
1067
1068	val.vval = VCPU_VSX_VR(vcpu, index);
1069	val.vsx16val[offset] = gpr16;
1070	VCPU_VSX_VR(vcpu, index) = val.vval;
1071}
1072
1073static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1074	u8 gpr8)
1075{
1076	union kvmppc_one_reg val;
1077	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1078			vcpu->arch.mmio_vmx_offset);
1079	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1080
1081	if (offset == -1)
1082		return;
1083
1084	val.vval = VCPU_VSX_VR(vcpu, index);
1085	val.vsx8val[offset] = gpr8;
1086	VCPU_VSX_VR(vcpu, index) = val.vval;
1087}
1088#endif /* CONFIG_ALTIVEC */
1089
1090#ifdef CONFIG_PPC_FPU
1091static inline u64 sp_to_dp(u32 fprs)
1092{
1093	u64 fprd;
1094
1095	preempt_disable();
1096	enable_kernel_fp();
1097	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m"UPD_CONSTR (fprd) : "m"UPD_CONSTR (fprs)
1098	     : "fr0");
1099	preempt_enable();
1100	return fprd;
1101}
1102
1103static inline u32 dp_to_sp(u64 fprd)
1104{
1105	u32 fprs;
1106
1107	preempt_disable();
1108	enable_kernel_fp();
1109	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m"UPD_CONSTR (fprs) : "m"UPD_CONSTR (fprd)
1110	     : "fr0");
1111	preempt_enable();
1112	return fprs;
1113}
1114
1115#else
1116#define sp_to_dp(x)	(x)
1117#define dp_to_sp(x)	(x)
1118#endif /* CONFIG_PPC_FPU */
1119
1120static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1121{
1122	struct kvm_run *run = vcpu->run;
1123	u64 gpr;
1124
1125	if (run->mmio.len > sizeof(gpr)) {
1126		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1127		return;
1128	}
1129
1130	if (!vcpu->arch.mmio_host_swabbed) {
1131		switch (run->mmio.len) {
1132		case 8: gpr = *(u64 *)run->mmio.data; break;
1133		case 4: gpr = *(u32 *)run->mmio.data; break;
1134		case 2: gpr = *(u16 *)run->mmio.data; break;
1135		case 1: gpr = *(u8 *)run->mmio.data; break;
1136		}
1137	} else {
1138		switch (run->mmio.len) {
1139		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1140		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1141		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1142		case 1: gpr = *(u8 *)run->mmio.data; break;
1143		}
1144	}
1145
1146	/* conversion between single and double precision */
1147	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1148		gpr = sp_to_dp(gpr);
1149
1150	if (vcpu->arch.mmio_sign_extend) {
1151		switch (run->mmio.len) {
1152#ifdef CONFIG_PPC64
1153		case 4:
1154			gpr = (s64)(s32)gpr;
1155			break;
1156#endif
1157		case 2:
1158			gpr = (s64)(s16)gpr;
1159			break;
1160		case 1:
1161			gpr = (s64)(s8)gpr;
1162			break;
1163		}
1164	}
1165
1166	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1167	case KVM_MMIO_REG_GPR:
1168		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1169		break;
1170	case KVM_MMIO_REG_FPR:
1171		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1172			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1173
1174		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1175		break;
1176#ifdef CONFIG_PPC_BOOK3S
1177	case KVM_MMIO_REG_QPR:
1178		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1179		break;
1180	case KVM_MMIO_REG_FQPR:
1181		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1182		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1183		break;
1184#endif
1185#ifdef CONFIG_VSX
1186	case KVM_MMIO_REG_VSX:
1187		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1188			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1189
1190		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1191			kvmppc_set_vsr_dword(vcpu, gpr);
1192		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1193			kvmppc_set_vsr_word(vcpu, gpr);
1194		else if (vcpu->arch.mmio_copy_type ==
1195				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1196			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1197		else if (vcpu->arch.mmio_copy_type ==
1198				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1199			kvmppc_set_vsr_word_dump(vcpu, gpr);
1200		break;
1201#endif
1202#ifdef CONFIG_ALTIVEC
1203	case KVM_MMIO_REG_VMX:
1204		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1205			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1206
1207		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1208			kvmppc_set_vmx_dword(vcpu, gpr);
1209		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1210			kvmppc_set_vmx_word(vcpu, gpr);
1211		else if (vcpu->arch.mmio_copy_type ==
1212				KVMPPC_VMX_COPY_HWORD)
1213			kvmppc_set_vmx_hword(vcpu, gpr);
1214		else if (vcpu->arch.mmio_copy_type ==
1215				KVMPPC_VMX_COPY_BYTE)
1216			kvmppc_set_vmx_byte(vcpu, gpr);
1217		break;
1218#endif
1219#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1220	case KVM_MMIO_REG_NESTED_GPR:
1221		if (kvmppc_need_byteswap(vcpu))
1222			gpr = swab64(gpr);
1223		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1224				     sizeof(gpr));
1225		break;
1226#endif
1227	default:
1228		BUG();
1229	}
1230}
1231
1232static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1233				unsigned int rt, unsigned int bytes,
1234				int is_default_endian, int sign_extend)
1235{
1236	struct kvm_run *run = vcpu->run;
1237	int idx, ret;
1238	bool host_swabbed;
1239
1240	/* Pity C doesn't have a logical XOR operator */
1241	if (kvmppc_need_byteswap(vcpu)) {
1242		host_swabbed = is_default_endian;
1243	} else {
1244		host_swabbed = !is_default_endian;
1245	}
1246
1247	if (bytes > sizeof(run->mmio.data)) {
1248		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1249		       run->mmio.len);
1250	}
1251
1252	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1253	run->mmio.len = bytes;
1254	run->mmio.is_write = 0;
1255
1256	vcpu->arch.io_gpr = rt;
1257	vcpu->arch.mmio_host_swabbed = host_swabbed;
1258	vcpu->mmio_needed = 1;
1259	vcpu->mmio_is_write = 0;
1260	vcpu->arch.mmio_sign_extend = sign_extend;
1261
1262	idx = srcu_read_lock(&vcpu->kvm->srcu);
1263
1264	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1265			      bytes, &run->mmio.data);
1266
1267	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1268
1269	if (!ret) {
1270		kvmppc_complete_mmio_load(vcpu);
1271		vcpu->mmio_needed = 0;
1272		return EMULATE_DONE;
1273	}
1274
1275	return EMULATE_DO_MMIO;
1276}
1277
1278int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1279		       unsigned int rt, unsigned int bytes,
1280		       int is_default_endian)
1281{
1282	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1283}
1284EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1285
1286/* Same as above, but sign extends */
1287int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1288			unsigned int rt, unsigned int bytes,
1289			int is_default_endian)
1290{
1291	return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1292}
1293
1294#ifdef CONFIG_VSX
1295int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1296			unsigned int rt, unsigned int bytes,
1297			int is_default_endian, int mmio_sign_extend)
1298{
1299	enum emulation_result emulated = EMULATE_DONE;
1300
1301	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1302	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1303		return EMULATE_FAIL;
1304
1305	while (vcpu->arch.mmio_vsx_copy_nums) {
1306		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1307			is_default_endian, mmio_sign_extend);
1308
1309		if (emulated != EMULATE_DONE)
1310			break;
1311
1312		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1313
1314		vcpu->arch.mmio_vsx_copy_nums--;
1315		vcpu->arch.mmio_vsx_offset++;
1316	}
1317	return emulated;
1318}
1319#endif /* CONFIG_VSX */
1320
1321int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1322			u64 val, unsigned int bytes, int is_default_endian)
1323{
1324	struct kvm_run *run = vcpu->run;
1325	void *data = run->mmio.data;
1326	int idx, ret;
1327	bool host_swabbed;
1328
1329	/* Pity C doesn't have a logical XOR operator */
1330	if (kvmppc_need_byteswap(vcpu)) {
1331		host_swabbed = is_default_endian;
1332	} else {
1333		host_swabbed = !is_default_endian;
1334	}
1335
1336	if (bytes > sizeof(run->mmio.data)) {
1337		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1338		       run->mmio.len);
1339	}
1340
1341	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1342	run->mmio.len = bytes;
1343	run->mmio.is_write = 1;
1344	vcpu->mmio_needed = 1;
1345	vcpu->mmio_is_write = 1;
1346
1347	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1348		val = dp_to_sp(val);
1349
1350	/* Store the value at the lowest bytes in 'data'. */
1351	if (!host_swabbed) {
1352		switch (bytes) {
1353		case 8: *(u64 *)data = val; break;
1354		case 4: *(u32 *)data = val; break;
1355		case 2: *(u16 *)data = val; break;
1356		case 1: *(u8  *)data = val; break;
1357		}
1358	} else {
1359		switch (bytes) {
1360		case 8: *(u64 *)data = swab64(val); break;
1361		case 4: *(u32 *)data = swab32(val); break;
1362		case 2: *(u16 *)data = swab16(val); break;
1363		case 1: *(u8  *)data = val; break;
1364		}
1365	}
1366
1367	idx = srcu_read_lock(&vcpu->kvm->srcu);
1368
1369	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1370			       bytes, &run->mmio.data);
1371
1372	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1373
1374	if (!ret) {
1375		vcpu->mmio_needed = 0;
1376		return EMULATE_DONE;
1377	}
1378
1379	return EMULATE_DO_MMIO;
1380}
1381EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1382
1383#ifdef CONFIG_VSX
1384static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1385{
1386	u32 dword_offset, word_offset;
1387	union kvmppc_one_reg reg;
1388	int vsx_offset = 0;
1389	int copy_type = vcpu->arch.mmio_copy_type;
1390	int result = 0;
1391
1392	switch (copy_type) {
1393	case KVMPPC_VSX_COPY_DWORD:
1394		vsx_offset =
1395			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1396
1397		if (vsx_offset == -1) {
1398			result = -1;
1399			break;
1400		}
1401
1402		if (rs < 32) {
1403			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1404		} else {
1405			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1406			*val = reg.vsxval[vsx_offset];
1407		}
1408		break;
1409
1410	case KVMPPC_VSX_COPY_WORD:
1411		vsx_offset =
1412			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1413
1414		if (vsx_offset == -1) {
1415			result = -1;
1416			break;
1417		}
1418
1419		if (rs < 32) {
1420			dword_offset = vsx_offset / 2;
1421			word_offset = vsx_offset % 2;
1422			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1423			*val = reg.vsx32val[word_offset];
1424		} else {
1425			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1426			*val = reg.vsx32val[vsx_offset];
1427		}
1428		break;
1429
1430	default:
1431		result = -1;
1432		break;
1433	}
1434
1435	return result;
1436}
1437
1438int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1439			int rs, unsigned int bytes, int is_default_endian)
1440{
1441	u64 val;
1442	enum emulation_result emulated = EMULATE_DONE;
1443
1444	vcpu->arch.io_gpr = rs;
1445
1446	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1447	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1448		return EMULATE_FAIL;
1449
1450	while (vcpu->arch.mmio_vsx_copy_nums) {
1451		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1452			return EMULATE_FAIL;
1453
1454		emulated = kvmppc_handle_store(vcpu,
1455			 val, bytes, is_default_endian);
1456
1457		if (emulated != EMULATE_DONE)
1458			break;
1459
1460		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1461
1462		vcpu->arch.mmio_vsx_copy_nums--;
1463		vcpu->arch.mmio_vsx_offset++;
1464	}
1465
1466	return emulated;
1467}
1468
1469static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1470{
1471	struct kvm_run *run = vcpu->run;
1472	enum emulation_result emulated = EMULATE_FAIL;
1473	int r;
1474
1475	vcpu->arch.paddr_accessed += run->mmio.len;
1476
1477	if (!vcpu->mmio_is_write) {
1478		emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1479			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1480	} else {
1481		emulated = kvmppc_handle_vsx_store(vcpu,
1482			 vcpu->arch.io_gpr, run->mmio.len, 1);
1483	}
1484
1485	switch (emulated) {
1486	case EMULATE_DO_MMIO:
1487		run->exit_reason = KVM_EXIT_MMIO;
1488		r = RESUME_HOST;
1489		break;
1490	case EMULATE_FAIL:
1491		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1492		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1493		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1494		r = RESUME_HOST;
1495		break;
1496	default:
1497		r = RESUME_GUEST;
1498		break;
1499	}
1500	return r;
1501}
1502#endif /* CONFIG_VSX */
1503
1504#ifdef CONFIG_ALTIVEC
1505int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1506		unsigned int rt, unsigned int bytes, int is_default_endian)
1507{
1508	enum emulation_result emulated = EMULATE_DONE;
1509
1510	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1511		return EMULATE_FAIL;
1512
1513	while (vcpu->arch.mmio_vmx_copy_nums) {
1514		emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1515				is_default_endian, 0);
1516
1517		if (emulated != EMULATE_DONE)
1518			break;
1519
1520		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1521		vcpu->arch.mmio_vmx_copy_nums--;
1522		vcpu->arch.mmio_vmx_offset++;
1523	}
1524
1525	return emulated;
1526}
1527
1528static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1529{
1530	union kvmppc_one_reg reg;
1531	int vmx_offset = 0;
1532	int result = 0;
1533
1534	vmx_offset =
1535		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1536
1537	if (vmx_offset == -1)
1538		return -1;
1539
1540	reg.vval = VCPU_VSX_VR(vcpu, index);
1541	*val = reg.vsxval[vmx_offset];
1542
1543	return result;
1544}
1545
1546static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1547{
1548	union kvmppc_one_reg reg;
1549	int vmx_offset = 0;
1550	int result = 0;
1551
1552	vmx_offset =
1553		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1554
1555	if (vmx_offset == -1)
1556		return -1;
1557
1558	reg.vval = VCPU_VSX_VR(vcpu, index);
1559	*val = reg.vsx32val[vmx_offset];
1560
1561	return result;
1562}
1563
1564static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1565{
1566	union kvmppc_one_reg reg;
1567	int vmx_offset = 0;
1568	int result = 0;
1569
1570	vmx_offset =
1571		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1572
1573	if (vmx_offset == -1)
1574		return -1;
1575
1576	reg.vval = VCPU_VSX_VR(vcpu, index);
1577	*val = reg.vsx16val[vmx_offset];
1578
1579	return result;
1580}
1581
1582static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1583{
1584	union kvmppc_one_reg reg;
1585	int vmx_offset = 0;
1586	int result = 0;
1587
1588	vmx_offset =
1589		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1590
1591	if (vmx_offset == -1)
1592		return -1;
1593
1594	reg.vval = VCPU_VSX_VR(vcpu, index);
1595	*val = reg.vsx8val[vmx_offset];
1596
1597	return result;
1598}
1599
1600int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1601		unsigned int rs, unsigned int bytes, int is_default_endian)
1602{
1603	u64 val = 0;
1604	unsigned int index = rs & KVM_MMIO_REG_MASK;
1605	enum emulation_result emulated = EMULATE_DONE;
1606
1607	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1608		return EMULATE_FAIL;
1609
1610	vcpu->arch.io_gpr = rs;
1611
1612	while (vcpu->arch.mmio_vmx_copy_nums) {
1613		switch (vcpu->arch.mmio_copy_type) {
1614		case KVMPPC_VMX_COPY_DWORD:
1615			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1616				return EMULATE_FAIL;
1617
1618			break;
1619		case KVMPPC_VMX_COPY_WORD:
1620			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1621				return EMULATE_FAIL;
1622			break;
1623		case KVMPPC_VMX_COPY_HWORD:
1624			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1625				return EMULATE_FAIL;
1626			break;
1627		case KVMPPC_VMX_COPY_BYTE:
1628			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1629				return EMULATE_FAIL;
1630			break;
1631		default:
1632			return EMULATE_FAIL;
1633		}
1634
1635		emulated = kvmppc_handle_store(vcpu, val, bytes,
1636				is_default_endian);
1637		if (emulated != EMULATE_DONE)
1638			break;
1639
1640		vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1641		vcpu->arch.mmio_vmx_copy_nums--;
1642		vcpu->arch.mmio_vmx_offset++;
1643	}
1644
1645	return emulated;
1646}
1647
1648static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1649{
1650	struct kvm_run *run = vcpu->run;
1651	enum emulation_result emulated = EMULATE_FAIL;
1652	int r;
1653
1654	vcpu->arch.paddr_accessed += run->mmio.len;
1655
1656	if (!vcpu->mmio_is_write) {
1657		emulated = kvmppc_handle_vmx_load(vcpu,
1658				vcpu->arch.io_gpr, run->mmio.len, 1);
1659	} else {
1660		emulated = kvmppc_handle_vmx_store(vcpu,
1661				vcpu->arch.io_gpr, run->mmio.len, 1);
1662	}
1663
1664	switch (emulated) {
1665	case EMULATE_DO_MMIO:
1666		run->exit_reason = KVM_EXIT_MMIO;
1667		r = RESUME_HOST;
1668		break;
1669	case EMULATE_FAIL:
1670		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1671		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1672		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1673		r = RESUME_HOST;
1674		break;
1675	default:
1676		r = RESUME_GUEST;
1677		break;
1678	}
1679	return r;
1680}
1681#endif /* CONFIG_ALTIVEC */
1682
1683int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1684{
1685	int r = 0;
1686	union kvmppc_one_reg val;
1687	int size;
1688
1689	size = one_reg_size(reg->id);
1690	if (size > sizeof(val))
1691		return -EINVAL;
1692
1693	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1694	if (r == -EINVAL) {
1695		r = 0;
1696		switch (reg->id) {
1697#ifdef CONFIG_ALTIVEC
1698		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1699			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1700				r = -ENXIO;
1701				break;
1702			}
1703			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1704			break;
1705		case KVM_REG_PPC_VSCR:
1706			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1707				r = -ENXIO;
1708				break;
1709			}
1710			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1711			break;
1712		case KVM_REG_PPC_VRSAVE:
1713			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1714			break;
1715#endif /* CONFIG_ALTIVEC */
1716		default:
1717			r = -EINVAL;
1718			break;
1719		}
1720	}
1721
1722	if (r)
1723		return r;
1724
1725	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1726		r = -EFAULT;
1727
1728	return r;
1729}
1730
1731int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1732{
1733	int r;
1734	union kvmppc_one_reg val;
1735	int size;
1736
1737	size = one_reg_size(reg->id);
1738	if (size > sizeof(val))
1739		return -EINVAL;
1740
1741	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1742		return -EFAULT;
1743
1744	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1745	if (r == -EINVAL) {
1746		r = 0;
1747		switch (reg->id) {
1748#ifdef CONFIG_ALTIVEC
1749		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1750			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1751				r = -ENXIO;
1752				break;
1753			}
1754			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1755			break;
1756		case KVM_REG_PPC_VSCR:
1757			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1758				r = -ENXIO;
1759				break;
1760			}
1761			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1762			break;
1763		case KVM_REG_PPC_VRSAVE:
1764			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1765				r = -ENXIO;
1766				break;
1767			}
1768			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1769			break;
1770#endif /* CONFIG_ALTIVEC */
1771		default:
1772			r = -EINVAL;
1773			break;
1774		}
1775	}
1776
1777	return r;
1778}
1779
1780int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1781{
1782	struct kvm_run *run = vcpu->run;
1783	int r;
1784
1785	vcpu_load(vcpu);
1786
1787	if (vcpu->mmio_needed) {
1788		vcpu->mmio_needed = 0;
1789		if (!vcpu->mmio_is_write)
1790			kvmppc_complete_mmio_load(vcpu);
1791#ifdef CONFIG_VSX
1792		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1793			vcpu->arch.mmio_vsx_copy_nums--;
1794			vcpu->arch.mmio_vsx_offset++;
1795		}
1796
1797		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1798			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1799			if (r == RESUME_HOST) {
1800				vcpu->mmio_needed = 1;
1801				goto out;
1802			}
1803		}
1804#endif
1805#ifdef CONFIG_ALTIVEC
1806		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1807			vcpu->arch.mmio_vmx_copy_nums--;
1808			vcpu->arch.mmio_vmx_offset++;
1809		}
1810
1811		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1812			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1813			if (r == RESUME_HOST) {
1814				vcpu->mmio_needed = 1;
1815				goto out;
1816			}
1817		}
1818#endif
1819	} else if (vcpu->arch.osi_needed) {
1820		u64 *gprs = run->osi.gprs;
1821		int i;
1822
1823		for (i = 0; i < 32; i++)
1824			kvmppc_set_gpr(vcpu, i, gprs[i]);
1825		vcpu->arch.osi_needed = 0;
1826	} else if (vcpu->arch.hcall_needed) {
1827		int i;
1828
1829		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1830		for (i = 0; i < 9; ++i)
1831			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1832		vcpu->arch.hcall_needed = 0;
1833#ifdef CONFIG_BOOKE
1834	} else if (vcpu->arch.epr_needed) {
1835		kvmppc_set_epr(vcpu, run->epr.epr);
1836		vcpu->arch.epr_needed = 0;
1837#endif
1838	}
1839
1840	kvm_sigset_activate(vcpu);
1841
1842	if (run->immediate_exit)
1843		r = -EINTR;
1844	else
1845		r = kvmppc_vcpu_run(vcpu);
1846
1847	kvm_sigset_deactivate(vcpu);
1848
1849#ifdef CONFIG_ALTIVEC
1850out:
1851#endif
 
 
 
 
 
 
 
 
1852	vcpu_put(vcpu);
1853	return r;
1854}
1855
1856int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1857{
1858	if (irq->irq == KVM_INTERRUPT_UNSET) {
1859		kvmppc_core_dequeue_external(vcpu);
1860		return 0;
1861	}
1862
1863	kvmppc_core_queue_external(vcpu, irq);
1864
1865	kvm_vcpu_kick(vcpu);
1866
1867	return 0;
1868}
1869
1870static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1871				     struct kvm_enable_cap *cap)
1872{
1873	int r;
1874
1875	if (cap->flags)
1876		return -EINVAL;
1877
1878	switch (cap->cap) {
1879	case KVM_CAP_PPC_OSI:
1880		r = 0;
1881		vcpu->arch.osi_enabled = true;
1882		break;
1883	case KVM_CAP_PPC_PAPR:
1884		r = 0;
1885		vcpu->arch.papr_enabled = true;
1886		break;
1887	case KVM_CAP_PPC_EPR:
1888		r = 0;
1889		if (cap->args[0])
1890			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1891		else
1892			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1893		break;
1894#ifdef CONFIG_BOOKE
1895	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1896		r = 0;
1897		vcpu->arch.watchdog_enabled = true;
1898		break;
1899#endif
1900#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1901	case KVM_CAP_SW_TLB: {
1902		struct kvm_config_tlb cfg;
1903		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1904
1905		r = -EFAULT;
1906		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1907			break;
1908
1909		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1910		break;
1911	}
1912#endif
1913#ifdef CONFIG_KVM_MPIC
1914	case KVM_CAP_IRQ_MPIC: {
1915		struct fd f;
1916		struct kvm_device *dev;
1917
1918		r = -EBADF;
1919		f = fdget(cap->args[0]);
1920		if (!f.file)
1921			break;
1922
1923		r = -EPERM;
1924		dev = kvm_device_from_filp(f.file);
1925		if (dev)
1926			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1927
1928		fdput(f);
1929		break;
1930	}
1931#endif
1932#ifdef CONFIG_KVM_XICS
1933	case KVM_CAP_IRQ_XICS: {
1934		struct fd f;
1935		struct kvm_device *dev;
1936
1937		r = -EBADF;
1938		f = fdget(cap->args[0]);
1939		if (!f.file)
1940			break;
1941
1942		r = -EPERM;
1943		dev = kvm_device_from_filp(f.file);
1944		if (dev) {
1945			if (xics_on_xive())
1946				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1947			else
1948				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1949		}
1950
1951		fdput(f);
1952		break;
1953	}
1954#endif /* CONFIG_KVM_XICS */
1955#ifdef CONFIG_KVM_XIVE
1956	case KVM_CAP_PPC_IRQ_XIVE: {
1957		struct fd f;
1958		struct kvm_device *dev;
1959
1960		r = -EBADF;
1961		f = fdget(cap->args[0]);
1962		if (!f.file)
1963			break;
1964
1965		r = -ENXIO;
1966		if (!xive_enabled())
1967			break;
1968
1969		r = -EPERM;
1970		dev = kvm_device_from_filp(f.file);
1971		if (dev)
1972			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1973							    cap->args[1]);
1974
1975		fdput(f);
1976		break;
1977	}
1978#endif /* CONFIG_KVM_XIVE */
1979#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1980	case KVM_CAP_PPC_FWNMI:
1981		r = -EINVAL;
1982		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1983			break;
1984		r = 0;
1985		vcpu->kvm->arch.fwnmi_enabled = true;
1986		break;
1987#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1988	default:
1989		r = -EINVAL;
1990		break;
1991	}
1992
1993	if (!r)
1994		r = kvmppc_sanity_check(vcpu);
1995
1996	return r;
1997}
1998
1999bool kvm_arch_intc_initialized(struct kvm *kvm)
2000{
2001#ifdef CONFIG_KVM_MPIC
2002	if (kvm->arch.mpic)
2003		return true;
2004#endif
2005#ifdef CONFIG_KVM_XICS
2006	if (kvm->arch.xics || kvm->arch.xive)
2007		return true;
2008#endif
2009	return false;
2010}
2011
2012int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2013                                    struct kvm_mp_state *mp_state)
2014{
2015	return -EINVAL;
2016}
2017
2018int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2019                                    struct kvm_mp_state *mp_state)
2020{
2021	return -EINVAL;
2022}
2023
2024long kvm_arch_vcpu_async_ioctl(struct file *filp,
2025			       unsigned int ioctl, unsigned long arg)
2026{
2027	struct kvm_vcpu *vcpu = filp->private_data;
2028	void __user *argp = (void __user *)arg;
2029
2030	if (ioctl == KVM_INTERRUPT) {
2031		struct kvm_interrupt irq;
2032		if (copy_from_user(&irq, argp, sizeof(irq)))
2033			return -EFAULT;
2034		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2035	}
2036	return -ENOIOCTLCMD;
2037}
2038
2039long kvm_arch_vcpu_ioctl(struct file *filp,
2040                         unsigned int ioctl, unsigned long arg)
2041{
2042	struct kvm_vcpu *vcpu = filp->private_data;
2043	void __user *argp = (void __user *)arg;
2044	long r;
2045
2046	switch (ioctl) {
2047	case KVM_ENABLE_CAP:
2048	{
2049		struct kvm_enable_cap cap;
2050		r = -EFAULT;
2051		if (copy_from_user(&cap, argp, sizeof(cap)))
2052			goto out;
2053		vcpu_load(vcpu);
2054		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2055		vcpu_put(vcpu);
2056		break;
2057	}
2058
2059	case KVM_SET_ONE_REG:
2060	case KVM_GET_ONE_REG:
2061	{
2062		struct kvm_one_reg reg;
2063		r = -EFAULT;
2064		if (copy_from_user(&reg, argp, sizeof(reg)))
2065			goto out;
2066		if (ioctl == KVM_SET_ONE_REG)
2067			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2068		else
2069			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2070		break;
2071	}
2072
2073#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2074	case KVM_DIRTY_TLB: {
2075		struct kvm_dirty_tlb dirty;
2076		r = -EFAULT;
2077		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2078			goto out;
2079		vcpu_load(vcpu);
2080		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2081		vcpu_put(vcpu);
2082		break;
2083	}
2084#endif
2085	default:
2086		r = -EINVAL;
2087	}
2088
2089out:
2090	return r;
2091}
2092
2093vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2094{
2095	return VM_FAULT_SIGBUS;
2096}
2097
2098static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2099{
2100	u32 inst_nop = 0x60000000;
2101#ifdef CONFIG_KVM_BOOKE_HV
2102	u32 inst_sc1 = 0x44000022;
2103	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2104	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2105	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2106	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2107#else
2108	u32 inst_lis = 0x3c000000;
2109	u32 inst_ori = 0x60000000;
2110	u32 inst_sc = 0x44000002;
2111	u32 inst_imm_mask = 0xffff;
2112
2113	/*
2114	 * The hypercall to get into KVM from within guest context is as
2115	 * follows:
2116	 *
2117	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2118	 *    ori r0, KVM_SC_MAGIC_R0@l
2119	 *    sc
2120	 *    nop
2121	 */
2122	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2123	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2124	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2125	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2126#endif
2127
2128	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2129
2130	return 0;
2131}
2132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2134			  bool line_status)
2135{
2136	if (!irqchip_in_kernel(kvm))
2137		return -ENXIO;
2138
2139	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2140					irq_event->irq, irq_event->level,
2141					line_status);
2142	return 0;
2143}
2144
2145
2146int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2147			    struct kvm_enable_cap *cap)
2148{
2149	int r;
2150
2151	if (cap->flags)
2152		return -EINVAL;
2153
2154	switch (cap->cap) {
2155#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2156	case KVM_CAP_PPC_ENABLE_HCALL: {
2157		unsigned long hcall = cap->args[0];
2158
2159		r = -EINVAL;
2160		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2161		    cap->args[1] > 1)
2162			break;
2163		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2164			break;
2165		if (cap->args[1])
2166			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2167		else
2168			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2169		r = 0;
2170		break;
2171	}
2172	case KVM_CAP_PPC_SMT: {
2173		unsigned long mode = cap->args[0];
2174		unsigned long flags = cap->args[1];
2175
2176		r = -EINVAL;
2177		if (kvm->arch.kvm_ops->set_smt_mode)
2178			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2179		break;
2180	}
2181
2182	case KVM_CAP_PPC_NESTED_HV:
2183		r = -EINVAL;
2184		if (!is_kvmppc_hv_enabled(kvm) ||
2185		    !kvm->arch.kvm_ops->enable_nested)
2186			break;
2187		r = kvm->arch.kvm_ops->enable_nested(kvm);
2188		break;
2189#endif
2190#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2191	case KVM_CAP_PPC_SECURE_GUEST:
2192		r = -EINVAL;
2193		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2194			break;
2195		r = kvm->arch.kvm_ops->enable_svm(kvm);
2196		break;
2197	case KVM_CAP_PPC_DAWR1:
2198		r = -EINVAL;
2199		if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2200			break;
2201		r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2202		break;
2203#endif
2204	default:
2205		r = -EINVAL;
2206		break;
2207	}
2208
2209	return r;
2210}
2211
2212#ifdef CONFIG_PPC_BOOK3S_64
2213/*
2214 * These functions check whether the underlying hardware is safe
2215 * against attacks based on observing the effects of speculatively
2216 * executed instructions, and whether it supplies instructions for
2217 * use in workarounds.  The information comes from firmware, either
2218 * via the device tree on powernv platforms or from an hcall on
2219 * pseries platforms.
2220 */
2221#ifdef CONFIG_PPC_PSERIES
2222static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2223{
2224	struct h_cpu_char_result c;
2225	unsigned long rc;
2226
2227	if (!machine_is(pseries))
2228		return -ENOTTY;
2229
2230	rc = plpar_get_cpu_characteristics(&c);
2231	if (rc == H_SUCCESS) {
2232		cp->character = c.character;
2233		cp->behaviour = c.behaviour;
2234		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2235			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2236			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2237			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2238			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2239			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2240			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2241			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2242			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2243		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2244			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2245			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2246			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2247	}
2248	return 0;
2249}
2250#else
2251static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2252{
2253	return -ENOTTY;
2254}
2255#endif
2256
2257static inline bool have_fw_feat(struct device_node *fw_features,
2258				const char *state, const char *name)
2259{
2260	struct device_node *np;
2261	bool r = false;
2262
2263	np = of_get_child_by_name(fw_features, name);
2264	if (np) {
2265		r = of_property_read_bool(np, state);
2266		of_node_put(np);
2267	}
2268	return r;
2269}
2270
2271static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2272{
2273	struct device_node *np, *fw_features;
2274	int r;
2275
2276	memset(cp, 0, sizeof(*cp));
2277	r = pseries_get_cpu_char(cp);
2278	if (r != -ENOTTY)
2279		return r;
2280
2281	np = of_find_node_by_name(NULL, "ibm,opal");
2282	if (np) {
2283		fw_features = of_get_child_by_name(np, "fw-features");
2284		of_node_put(np);
2285		if (!fw_features)
2286			return 0;
2287		if (have_fw_feat(fw_features, "enabled",
2288				 "inst-spec-barrier-ori31,31,0"))
2289			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2290		if (have_fw_feat(fw_features, "enabled",
2291				 "fw-bcctrl-serialized"))
2292			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2293		if (have_fw_feat(fw_features, "enabled",
2294				 "inst-l1d-flush-ori30,30,0"))
2295			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2296		if (have_fw_feat(fw_features, "enabled",
2297				 "inst-l1d-flush-trig2"))
2298			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2299		if (have_fw_feat(fw_features, "enabled",
2300				 "fw-l1d-thread-split"))
2301			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2302		if (have_fw_feat(fw_features, "enabled",
2303				 "fw-count-cache-disabled"))
2304			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2305		if (have_fw_feat(fw_features, "enabled",
2306				 "fw-count-cache-flush-bcctr2,0,0"))
2307			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2308		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2309			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2310			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2311			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2312			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2313			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2314			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2315
2316		if (have_fw_feat(fw_features, "enabled",
2317				 "speculation-policy-favor-security"))
2318			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2319		if (!have_fw_feat(fw_features, "disabled",
2320				  "needs-l1d-flush-msr-pr-0-to-1"))
2321			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2322		if (!have_fw_feat(fw_features, "disabled",
2323				  "needs-spec-barrier-for-bound-checks"))
2324			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2325		if (have_fw_feat(fw_features, "enabled",
2326				 "needs-count-cache-flush-on-context-switch"))
2327			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2328		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2329			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2330			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2331			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2332
2333		of_node_put(fw_features);
2334	}
2335
2336	return 0;
2337}
2338#endif
2339
2340long kvm_arch_vm_ioctl(struct file *filp,
2341                       unsigned int ioctl, unsigned long arg)
2342{
2343	struct kvm *kvm __maybe_unused = filp->private_data;
2344	void __user *argp = (void __user *)arg;
2345	long r;
2346
2347	switch (ioctl) {
2348	case KVM_PPC_GET_PVINFO: {
2349		struct kvm_ppc_pvinfo pvinfo;
2350		memset(&pvinfo, 0, sizeof(pvinfo));
2351		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2352		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2353			r = -EFAULT;
2354			goto out;
2355		}
2356
2357		break;
2358	}
2359#ifdef CONFIG_SPAPR_TCE_IOMMU
2360	case KVM_CREATE_SPAPR_TCE_64: {
2361		struct kvm_create_spapr_tce_64 create_tce_64;
2362
2363		r = -EFAULT;
2364		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2365			goto out;
2366		if (create_tce_64.flags) {
2367			r = -EINVAL;
2368			goto out;
2369		}
2370		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2371		goto out;
2372	}
2373	case KVM_CREATE_SPAPR_TCE: {
2374		struct kvm_create_spapr_tce create_tce;
2375		struct kvm_create_spapr_tce_64 create_tce_64;
2376
2377		r = -EFAULT;
2378		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2379			goto out;
2380
2381		create_tce_64.liobn = create_tce.liobn;
2382		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2383		create_tce_64.offset = 0;
2384		create_tce_64.size = create_tce.window_size >>
2385				IOMMU_PAGE_SHIFT_4K;
2386		create_tce_64.flags = 0;
2387		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2388		goto out;
2389	}
2390#endif
2391#ifdef CONFIG_PPC_BOOK3S_64
2392	case KVM_PPC_GET_SMMU_INFO: {
2393		struct kvm_ppc_smmu_info info;
2394		struct kvm *kvm = filp->private_data;
2395
2396		memset(&info, 0, sizeof(info));
2397		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2398		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2399			r = -EFAULT;
2400		break;
2401	}
2402	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2403		struct kvm *kvm = filp->private_data;
2404
2405		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2406		break;
2407	}
2408	case KVM_PPC_CONFIGURE_V3_MMU: {
2409		struct kvm *kvm = filp->private_data;
2410		struct kvm_ppc_mmuv3_cfg cfg;
2411
2412		r = -EINVAL;
2413		if (!kvm->arch.kvm_ops->configure_mmu)
2414			goto out;
2415		r = -EFAULT;
2416		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2417			goto out;
2418		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2419		break;
2420	}
2421	case KVM_PPC_GET_RMMU_INFO: {
2422		struct kvm *kvm = filp->private_data;
2423		struct kvm_ppc_rmmu_info info;
2424
2425		r = -EINVAL;
2426		if (!kvm->arch.kvm_ops->get_rmmu_info)
2427			goto out;
2428		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2429		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2430			r = -EFAULT;
2431		break;
2432	}
2433	case KVM_PPC_GET_CPU_CHAR: {
2434		struct kvm_ppc_cpu_char cpuchar;
2435
2436		r = kvmppc_get_cpu_char(&cpuchar);
2437		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2438			r = -EFAULT;
2439		break;
2440	}
2441	case KVM_PPC_SVM_OFF: {
2442		struct kvm *kvm = filp->private_data;
2443
2444		r = 0;
2445		if (!kvm->arch.kvm_ops->svm_off)
2446			goto out;
2447
2448		r = kvm->arch.kvm_ops->svm_off(kvm);
2449		break;
2450	}
2451	default: {
2452		struct kvm *kvm = filp->private_data;
2453		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2454	}
2455#else /* CONFIG_PPC_BOOK3S_64 */
2456	default:
2457		r = -ENOTTY;
2458#endif
2459	}
2460out:
2461	return r;
2462}
2463
2464static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2465static unsigned long nr_lpids;
2466
2467long kvmppc_alloc_lpid(void)
2468{
2469	long lpid;
2470
2471	do {
2472		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2473		if (lpid >= nr_lpids) {
 
 
 
2474			pr_err("%s: No LPIDs free\n", __func__);
2475			return -ENOMEM;
2476		}
2477	} while (test_and_set_bit(lpid, lpid_inuse));
2478
2479	return lpid;
2480}
2481EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2482
2483void kvmppc_claim_lpid(long lpid)
2484{
2485	set_bit(lpid, lpid_inuse);
2486}
2487EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2488
2489void kvmppc_free_lpid(long lpid)
2490{
2491	clear_bit(lpid, lpid_inuse);
2492}
2493EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2494
 
2495void kvmppc_init_lpid(unsigned long nr_lpids_param)
2496{
2497	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2498	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2499}
2500EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2501
2502int kvm_arch_init(void *opaque)
 
 
2503{
 
 
 
 
 
 
 
 
2504	return 0;
2505}
2506
2507EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);