Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8 */
9
10#include <linux/errno.h>
11#include <linux/err.h>
12#include <linux/kvm_host.h>
13#include <linux/vmalloc.h>
14#include <linux/hrtimer.h>
15#include <linux/sched/signal.h>
16#include <linux/fs.h>
17#include <linux/slab.h>
18#include <linux/file.h>
19#include <linux/module.h>
20#include <linux/irqbypass.h>
21#include <linux/kvm_irqfd.h>
22#include <linux/of.h>
23#include <asm/cputable.h>
24#include <linux/uaccess.h>
25#include <asm/kvm_ppc.h>
26#include <asm/cputhreads.h>
27#include <asm/irqflags.h>
28#include <asm/iommu.h>
29#include <asm/switch_to.h>
30#include <asm/xive.h>
31#ifdef CONFIG_PPC_PSERIES
32#include <asm/hvcall.h>
33#include <asm/plpar_wrappers.h>
34#endif
35#include <asm/ultravisor.h>
36#include <asm/setup.h>
37
38#include "timing.h"
39#include "../mm/mmu_decl.h"
40
41#define CREATE_TRACE_POINTS
42#include "trace.h"
43
44struct kvmppc_ops *kvmppc_hv_ops;
45EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46struct kvmppc_ops *kvmppc_pr_ops;
47EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
50int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51{
52 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
53}
54
55bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
56{
57 return kvm_arch_vcpu_runnable(vcpu);
58}
59
60bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
61{
62 return false;
63}
64
65int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
66{
67 return 1;
68}
69
70/*
71 * Common checks before entering the guest world. Call with interrupts
72 * disabled.
73 *
74 * returns:
75 *
76 * == 1 if we're ready to go into guest state
77 * <= 0 if we need to go back to the host with return value
78 */
79int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
80{
81 int r;
82
83 WARN_ON(irqs_disabled());
84 hard_irq_disable();
85
86 while (true) {
87 if (need_resched()) {
88 local_irq_enable();
89 cond_resched();
90 hard_irq_disable();
91 continue;
92 }
93
94 if (signal_pending(current)) {
95 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
96 vcpu->run->exit_reason = KVM_EXIT_INTR;
97 r = -EINTR;
98 break;
99 }
100
101 vcpu->mode = IN_GUEST_MODE;
102
103 /*
104 * Reading vcpu->requests must happen after setting vcpu->mode,
105 * so we don't miss a request because the requester sees
106 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
107 * before next entering the guest (and thus doesn't IPI).
108 * This also orders the write to mode from any reads
109 * to the page tables done while the VCPU is running.
110 * Please see the comment in kvm_flush_remote_tlbs.
111 */
112 smp_mb();
113
114 if (kvm_request_pending(vcpu)) {
115 /* Make sure we process requests preemptable */
116 local_irq_enable();
117 trace_kvm_check_requests(vcpu);
118 r = kvmppc_core_check_requests(vcpu);
119 hard_irq_disable();
120 if (r > 0)
121 continue;
122 break;
123 }
124
125 if (kvmppc_core_prepare_to_enter(vcpu)) {
126 /* interrupts got enabled in between, so we
127 are back at square 1 */
128 continue;
129 }
130
131 guest_enter_irqoff();
132 return 1;
133 }
134
135 /* return to host */
136 local_irq_enable();
137 return r;
138}
139EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
140
141#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
142static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
143{
144 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
145 int i;
146
147 shared->sprg0 = swab64(shared->sprg0);
148 shared->sprg1 = swab64(shared->sprg1);
149 shared->sprg2 = swab64(shared->sprg2);
150 shared->sprg3 = swab64(shared->sprg3);
151 shared->srr0 = swab64(shared->srr0);
152 shared->srr1 = swab64(shared->srr1);
153 shared->dar = swab64(shared->dar);
154 shared->msr = swab64(shared->msr);
155 shared->dsisr = swab32(shared->dsisr);
156 shared->int_pending = swab32(shared->int_pending);
157 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
158 shared->sr[i] = swab32(shared->sr[i]);
159}
160#endif
161
162int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
163{
164 int nr = kvmppc_get_gpr(vcpu, 11);
165 int r;
166 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
167 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
168 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
169 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
170 unsigned long r2 = 0;
171
172 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
173 /* 32 bit mode */
174 param1 &= 0xffffffff;
175 param2 &= 0xffffffff;
176 param3 &= 0xffffffff;
177 param4 &= 0xffffffff;
178 }
179
180 switch (nr) {
181 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
182 {
183#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
184 /* Book3S can be little endian, find it out here */
185 int shared_big_endian = true;
186 if (vcpu->arch.intr_msr & MSR_LE)
187 shared_big_endian = false;
188 if (shared_big_endian != vcpu->arch.shared_big_endian)
189 kvmppc_swab_shared(vcpu);
190 vcpu->arch.shared_big_endian = shared_big_endian;
191#endif
192
193 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
194 /*
195 * Older versions of the Linux magic page code had
196 * a bug where they would map their trampoline code
197 * NX. If that's the case, remove !PR NX capability.
198 */
199 vcpu->arch.disable_kernel_nx = true;
200 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
201 }
202
203 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
204 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
205
206#ifdef CONFIG_PPC_64K_PAGES
207 /*
208 * Make sure our 4k magic page is in the same window of a 64k
209 * page within the guest and within the host's page.
210 */
211 if ((vcpu->arch.magic_page_pa & 0xf000) !=
212 ((ulong)vcpu->arch.shared & 0xf000)) {
213 void *old_shared = vcpu->arch.shared;
214 ulong shared = (ulong)vcpu->arch.shared;
215 void *new_shared;
216
217 shared &= PAGE_MASK;
218 shared |= vcpu->arch.magic_page_pa & 0xf000;
219 new_shared = (void*)shared;
220 memcpy(new_shared, old_shared, 0x1000);
221 vcpu->arch.shared = new_shared;
222 }
223#endif
224
225 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
226
227 r = EV_SUCCESS;
228 break;
229 }
230 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
231 r = EV_SUCCESS;
232#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
233 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
234#endif
235
236 /* Second return value is in r4 */
237 break;
238 case EV_HCALL_TOKEN(EV_IDLE):
239 r = EV_SUCCESS;
240 kvm_vcpu_halt(vcpu);
241 break;
242 default:
243 r = EV_UNIMPLEMENTED;
244 break;
245 }
246
247 kvmppc_set_gpr(vcpu, 4, r2);
248
249 return r;
250}
251EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254{
255 int r = false;
256
257 /* We have to know what CPU to virtualize */
258 if (!vcpu->arch.pvr)
259 goto out;
260
261 /* PAPR only works with book3s_64 */
262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 goto out;
264
265 /* HV KVM can only do PAPR mode for now */
266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 goto out;
268
269#ifdef CONFIG_KVM_BOOKE_HV
270 if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 goto out;
272#endif
273
274 r = true;
275
276out:
277 vcpu->arch.sane = r;
278 return r ? 0 : -EINVAL;
279}
280EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283{
284 enum emulation_result er;
285 int r;
286
287 er = kvmppc_emulate_loadstore(vcpu);
288 switch (er) {
289 case EMULATE_DONE:
290 /* Future optimization: only reload non-volatiles if they were
291 * actually modified. */
292 r = RESUME_GUEST_NV;
293 break;
294 case EMULATE_AGAIN:
295 r = RESUME_GUEST;
296 break;
297 case EMULATE_DO_MMIO:
298 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299 /* We must reload nonvolatiles because "update" load/store
300 * instructions modify register state. */
301 /* Future optimization: only reload non-volatiles if they were
302 * actually modified. */
303 r = RESUME_HOST_NV;
304 break;
305 case EMULATE_FAIL:
306 {
307 ppc_inst_t last_inst;
308
309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311 ppc_inst_val(last_inst));
312
313 /*
314 * Injecting a Data Storage here is a bit more
315 * accurate since the instruction that caused the
316 * access could still be a valid one.
317 */
318 if (!IS_ENABLED(CONFIG_BOOKE)) {
319 ulong dsisr = DSISR_BADACCESS;
320
321 if (vcpu->mmio_is_write)
322 dsisr |= DSISR_ISSTORE;
323
324 kvmppc_core_queue_data_storage(vcpu,
325 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
326 vcpu->arch.vaddr_accessed, dsisr);
327 } else {
328 /*
329 * BookE does not send a SIGBUS on a bad
330 * fault, so use a Program interrupt instead
331 * to avoid a fault loop.
332 */
333 kvmppc_core_queue_program(vcpu, 0);
334 }
335
336 r = RESUME_GUEST;
337 break;
338 }
339 default:
340 WARN_ON(1);
341 r = RESUME_GUEST;
342 }
343
344 return r;
345}
346EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
347
348int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
349 bool data)
350{
351 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
352 struct kvmppc_pte pte;
353 int r = -EINVAL;
354
355 vcpu->stat.st++;
356
357 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
358 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
359 size);
360
361 if ((!r) || (r == -EAGAIN))
362 return r;
363
364 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365 XLATE_WRITE, &pte);
366 if (r < 0)
367 return r;
368
369 *eaddr = pte.raddr;
370
371 if (!pte.may_write)
372 return -EPERM;
373
374 /* Magic page override */
375 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
376 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
377 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
378 void *magic = vcpu->arch.shared;
379 magic += pte.eaddr & 0xfff;
380 memcpy(magic, ptr, size);
381 return EMULATE_DONE;
382 }
383
384 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
385 return EMULATE_DO_MMIO;
386
387 return EMULATE_DONE;
388}
389EXPORT_SYMBOL_GPL(kvmppc_st);
390
391int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
392 bool data)
393{
394 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
395 struct kvmppc_pte pte;
396 int rc = -EINVAL;
397
398 vcpu->stat.ld++;
399
400 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
401 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
402 size);
403
404 if ((!rc) || (rc == -EAGAIN))
405 return rc;
406
407 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
408 XLATE_READ, &pte);
409 if (rc)
410 return rc;
411
412 *eaddr = pte.raddr;
413
414 if (!pte.may_read)
415 return -EPERM;
416
417 if (!data && !pte.may_execute)
418 return -ENOEXEC;
419
420 /* Magic page override */
421 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
422 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
423 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
424 void *magic = vcpu->arch.shared;
425 magic += pte.eaddr & 0xfff;
426 memcpy(ptr, magic, size);
427 return EMULATE_DONE;
428 }
429
430 kvm_vcpu_srcu_read_lock(vcpu);
431 rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
432 kvm_vcpu_srcu_read_unlock(vcpu);
433 if (rc)
434 return EMULATE_DO_MMIO;
435
436 return EMULATE_DONE;
437}
438EXPORT_SYMBOL_GPL(kvmppc_ld);
439
440int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
441{
442 struct kvmppc_ops *kvm_ops = NULL;
443 int r;
444
445 /*
446 * if we have both HV and PR enabled, default is HV
447 */
448 if (type == 0) {
449 if (kvmppc_hv_ops)
450 kvm_ops = kvmppc_hv_ops;
451 else
452 kvm_ops = kvmppc_pr_ops;
453 if (!kvm_ops)
454 goto err_out;
455 } else if (type == KVM_VM_PPC_HV) {
456 if (!kvmppc_hv_ops)
457 goto err_out;
458 kvm_ops = kvmppc_hv_ops;
459 } else if (type == KVM_VM_PPC_PR) {
460 if (!kvmppc_pr_ops)
461 goto err_out;
462 kvm_ops = kvmppc_pr_ops;
463 } else
464 goto err_out;
465
466 if (!try_module_get(kvm_ops->owner))
467 return -ENOENT;
468
469 kvm->arch.kvm_ops = kvm_ops;
470 r = kvmppc_core_init_vm(kvm);
471 if (r)
472 module_put(kvm_ops->owner);
473 return r;
474err_out:
475 return -EINVAL;
476}
477
478void kvm_arch_destroy_vm(struct kvm *kvm)
479{
480#ifdef CONFIG_KVM_XICS
481 /*
482 * We call kick_all_cpus_sync() to ensure that all
483 * CPUs have executed any pending IPIs before we
484 * continue and free VCPUs structures below.
485 */
486 if (is_kvmppc_hv_enabled(kvm))
487 kick_all_cpus_sync();
488#endif
489
490 kvm_destroy_vcpus(kvm);
491
492 mutex_lock(&kvm->lock);
493
494 kvmppc_core_destroy_vm(kvm);
495
496 mutex_unlock(&kvm->lock);
497
498 /* drop the module reference */
499 module_put(kvm->arch.kvm_ops->owner);
500}
501
502int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
503{
504 int r;
505 /* Assume we're using HV mode when the HV module is loaded */
506 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
507
508 if (kvm) {
509 /*
510 * Hooray - we know which VM type we're running on. Depend on
511 * that rather than the guess above.
512 */
513 hv_enabled = is_kvmppc_hv_enabled(kvm);
514 }
515
516 switch (ext) {
517#ifdef CONFIG_BOOKE
518 case KVM_CAP_PPC_BOOKE_SREGS:
519 case KVM_CAP_PPC_BOOKE_WATCHDOG:
520 case KVM_CAP_PPC_EPR:
521#else
522 case KVM_CAP_PPC_SEGSTATE:
523 case KVM_CAP_PPC_HIOR:
524 case KVM_CAP_PPC_PAPR:
525#endif
526 case KVM_CAP_PPC_UNSET_IRQ:
527 case KVM_CAP_PPC_IRQ_LEVEL:
528 case KVM_CAP_ENABLE_CAP:
529 case KVM_CAP_ONE_REG:
530 case KVM_CAP_IOEVENTFD:
531 case KVM_CAP_IMMEDIATE_EXIT:
532 case KVM_CAP_SET_GUEST_DEBUG:
533 r = 1;
534 break;
535 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
536 case KVM_CAP_PPC_PAIRED_SINGLES:
537 case KVM_CAP_PPC_OSI:
538 case KVM_CAP_PPC_GET_PVINFO:
539#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
540 case KVM_CAP_SW_TLB:
541#endif
542 /* We support this only for PR */
543 r = !hv_enabled;
544 break;
545#ifdef CONFIG_KVM_MPIC
546 case KVM_CAP_IRQ_MPIC:
547 r = 1;
548 break;
549#endif
550
551#ifdef CONFIG_PPC_BOOK3S_64
552 case KVM_CAP_SPAPR_TCE:
553 case KVM_CAP_SPAPR_TCE_64:
554 r = 1;
555 break;
556 case KVM_CAP_SPAPR_TCE_VFIO:
557 r = !!cpu_has_feature(CPU_FTR_HVMODE);
558 break;
559 case KVM_CAP_PPC_RTAS:
560 case KVM_CAP_PPC_FIXUP_HCALL:
561 case KVM_CAP_PPC_ENABLE_HCALL:
562#ifdef CONFIG_KVM_XICS
563 case KVM_CAP_IRQ_XICS:
564#endif
565 case KVM_CAP_PPC_GET_CPU_CHAR:
566 r = 1;
567 break;
568#ifdef CONFIG_KVM_XIVE
569 case KVM_CAP_PPC_IRQ_XIVE:
570 /*
571 * We need XIVE to be enabled on the platform (implies
572 * a POWER9 processor) and the PowerNV platform, as
573 * nested is not yet supported.
574 */
575 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
576 kvmppc_xive_native_supported();
577 break;
578#endif
579
580#ifdef CONFIG_HAVE_KVM_IRQCHIP
581 case KVM_CAP_IRQFD_RESAMPLE:
582 r = !xive_enabled();
583 break;
584#endif
585
586 case KVM_CAP_PPC_ALLOC_HTAB:
587 r = hv_enabled;
588 break;
589#endif /* CONFIG_PPC_BOOK3S_64 */
590#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
591 case KVM_CAP_PPC_SMT:
592 r = 0;
593 if (kvm) {
594 if (kvm->arch.emul_smt_mode > 1)
595 r = kvm->arch.emul_smt_mode;
596 else
597 r = kvm->arch.smt_mode;
598 } else if (hv_enabled) {
599 if (cpu_has_feature(CPU_FTR_ARCH_300))
600 r = 1;
601 else
602 r = threads_per_subcore;
603 }
604 break;
605 case KVM_CAP_PPC_SMT_POSSIBLE:
606 r = 1;
607 if (hv_enabled) {
608 if (!cpu_has_feature(CPU_FTR_ARCH_300))
609 r = ((threads_per_subcore << 1) - 1);
610 else
611 /* P9 can emulate dbells, so allow any mode */
612 r = 8 | 4 | 2 | 1;
613 }
614 break;
615 case KVM_CAP_PPC_RMA:
616 r = 0;
617 break;
618 case KVM_CAP_PPC_HWRNG:
619 r = kvmppc_hwrng_present();
620 break;
621 case KVM_CAP_PPC_MMU_RADIX:
622 r = !!(hv_enabled && radix_enabled());
623 break;
624 case KVM_CAP_PPC_MMU_HASH_V3:
625 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
626 kvmppc_hv_ops->hash_v3_possible());
627 break;
628 case KVM_CAP_PPC_NESTED_HV:
629 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
630 !kvmppc_hv_ops->enable_nested(NULL));
631 break;
632#endif
633 case KVM_CAP_SYNC_MMU:
634 BUILD_BUG_ON(!IS_ENABLED(CONFIG_KVM_GENERIC_MMU_NOTIFIER));
635 r = 1;
636 break;
637#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
638 case KVM_CAP_PPC_HTAB_FD:
639 r = hv_enabled;
640 break;
641#endif
642 case KVM_CAP_NR_VCPUS:
643 /*
644 * Recommending a number of CPUs is somewhat arbitrary; we
645 * return the number of present CPUs for -HV (since a host
646 * will have secondary threads "offline"), and for other KVM
647 * implementations just count online CPUs.
648 */
649 if (hv_enabled)
650 r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
651 else
652 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
653 break;
654 case KVM_CAP_MAX_VCPUS:
655 r = KVM_MAX_VCPUS;
656 break;
657 case KVM_CAP_MAX_VCPU_ID:
658 r = KVM_MAX_VCPU_IDS;
659 break;
660#ifdef CONFIG_PPC_BOOK3S_64
661 case KVM_CAP_PPC_GET_SMMU_INFO:
662 r = 1;
663 break;
664 case KVM_CAP_SPAPR_MULTITCE:
665 r = 1;
666 break;
667 case KVM_CAP_SPAPR_RESIZE_HPT:
668 r = !!hv_enabled;
669 break;
670#endif
671#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
672 case KVM_CAP_PPC_FWNMI:
673 r = hv_enabled;
674 break;
675#endif
676#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
677 case KVM_CAP_PPC_HTM:
678 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
679 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
680 break;
681#endif
682#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
683 case KVM_CAP_PPC_SECURE_GUEST:
684 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
685 !kvmppc_hv_ops->enable_svm(NULL);
686 break;
687 case KVM_CAP_PPC_DAWR1:
688 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
689 !kvmppc_hv_ops->enable_dawr1(NULL));
690 break;
691 case KVM_CAP_PPC_RPT_INVALIDATE:
692 r = 1;
693 break;
694#endif
695 case KVM_CAP_PPC_AIL_MODE_3:
696 r = 0;
697 /*
698 * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
699 * The POWER9s can support it if the guest runs in hash mode,
700 * but QEMU doesn't necessarily query the capability in time.
701 */
702 if (hv_enabled) {
703 if (kvmhv_on_pseries()) {
704 if (pseries_reloc_on_exception())
705 r = 1;
706 } else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
707 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
708 r = 1;
709 }
710 }
711 break;
712 default:
713 r = 0;
714 break;
715 }
716 return r;
717
718}
719
720long kvm_arch_dev_ioctl(struct file *filp,
721 unsigned int ioctl, unsigned long arg)
722{
723 return -EINVAL;
724}
725
726void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
727{
728 kvmppc_core_free_memslot(kvm, slot);
729}
730
731int kvm_arch_prepare_memory_region(struct kvm *kvm,
732 const struct kvm_memory_slot *old,
733 struct kvm_memory_slot *new,
734 enum kvm_mr_change change)
735{
736 return kvmppc_core_prepare_memory_region(kvm, old, new, change);
737}
738
739void kvm_arch_commit_memory_region(struct kvm *kvm,
740 struct kvm_memory_slot *old,
741 const struct kvm_memory_slot *new,
742 enum kvm_mr_change change)
743{
744 kvmppc_core_commit_memory_region(kvm, old, new, change);
745}
746
747void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
748 struct kvm_memory_slot *slot)
749{
750 kvmppc_core_flush_memslot(kvm, slot);
751}
752
753int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
754{
755 return 0;
756}
757
758static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
759{
760 struct kvm_vcpu *vcpu;
761
762 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
763 kvmppc_decrementer_func(vcpu);
764
765 return HRTIMER_NORESTART;
766}
767
768int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
769{
770 int err;
771
772 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
773 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
774
775#ifdef CONFIG_KVM_EXIT_TIMING
776 mutex_init(&vcpu->arch.exit_timing_lock);
777#endif
778 err = kvmppc_subarch_vcpu_init(vcpu);
779 if (err)
780 return err;
781
782 err = kvmppc_core_vcpu_create(vcpu);
783 if (err)
784 goto out_vcpu_uninit;
785
786 rcuwait_init(&vcpu->arch.wait);
787 vcpu->arch.waitp = &vcpu->arch.wait;
788 return 0;
789
790out_vcpu_uninit:
791 kvmppc_subarch_vcpu_uninit(vcpu);
792 return err;
793}
794
795void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
796{
797}
798
799void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
800{
801 /* Make sure we're not using the vcpu anymore */
802 hrtimer_cancel(&vcpu->arch.dec_timer);
803
804 switch (vcpu->arch.irq_type) {
805 case KVMPPC_IRQ_MPIC:
806 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
807 break;
808 case KVMPPC_IRQ_XICS:
809 if (xics_on_xive())
810 kvmppc_xive_cleanup_vcpu(vcpu);
811 else
812 kvmppc_xics_free_icp(vcpu);
813 break;
814 case KVMPPC_IRQ_XIVE:
815 kvmppc_xive_native_cleanup_vcpu(vcpu);
816 break;
817 }
818
819 kvmppc_core_vcpu_free(vcpu);
820
821 kvmppc_subarch_vcpu_uninit(vcpu);
822}
823
824int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
825{
826 return kvmppc_core_pending_dec(vcpu);
827}
828
829void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
830{
831#ifdef CONFIG_BOOKE
832 /*
833 * vrsave (formerly usprg0) isn't used by Linux, but may
834 * be used by the guest.
835 *
836 * On non-booke this is associated with Altivec and
837 * is handled by code in book3s.c.
838 */
839 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
840#endif
841 kvmppc_core_vcpu_load(vcpu, cpu);
842}
843
844void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
845{
846 kvmppc_core_vcpu_put(vcpu);
847#ifdef CONFIG_BOOKE
848 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
849#endif
850}
851
852/*
853 * irq_bypass_add_producer and irq_bypass_del_producer are only
854 * useful if the architecture supports PCI passthrough.
855 * irq_bypass_stop and irq_bypass_start are not needed and so
856 * kvm_ops are not defined for them.
857 */
858bool kvm_arch_has_irq_bypass(void)
859{
860 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
861 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
862}
863
864int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
865 struct irq_bypass_producer *prod)
866{
867 struct kvm_kernel_irqfd *irqfd =
868 container_of(cons, struct kvm_kernel_irqfd, consumer);
869 struct kvm *kvm = irqfd->kvm;
870
871 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
872 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
873
874 return 0;
875}
876
877void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
878 struct irq_bypass_producer *prod)
879{
880 struct kvm_kernel_irqfd *irqfd =
881 container_of(cons, struct kvm_kernel_irqfd, consumer);
882 struct kvm *kvm = irqfd->kvm;
883
884 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
885 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
886}
887
888#ifdef CONFIG_VSX
889static inline int kvmppc_get_vsr_dword_offset(int index)
890{
891 int offset;
892
893 if ((index != 0) && (index != 1))
894 return -1;
895
896#ifdef __BIG_ENDIAN
897 offset = index;
898#else
899 offset = 1 - index;
900#endif
901
902 return offset;
903}
904
905static inline int kvmppc_get_vsr_word_offset(int index)
906{
907 int offset;
908
909 if ((index > 3) || (index < 0))
910 return -1;
911
912#ifdef __BIG_ENDIAN
913 offset = index;
914#else
915 offset = 3 - index;
916#endif
917 return offset;
918}
919
920static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
921 u64 gpr)
922{
923 union kvmppc_one_reg val;
924 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
925 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
926
927 if (offset == -1)
928 return;
929
930 if (index >= 32) {
931 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
932 val.vsxval[offset] = gpr;
933 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
934 } else {
935 kvmppc_set_vsx_fpr(vcpu, index, offset, gpr);
936 }
937}
938
939static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
940 u64 gpr)
941{
942 union kvmppc_one_reg val;
943 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
944
945 if (index >= 32) {
946 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
947 val.vsxval[0] = gpr;
948 val.vsxval[1] = gpr;
949 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
950 } else {
951 kvmppc_set_vsx_fpr(vcpu, index, 0, gpr);
952 kvmppc_set_vsx_fpr(vcpu, index, 1, gpr);
953 }
954}
955
956static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
957 u32 gpr)
958{
959 union kvmppc_one_reg val;
960 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
961
962 if (index >= 32) {
963 val.vsx32val[0] = gpr;
964 val.vsx32val[1] = gpr;
965 val.vsx32val[2] = gpr;
966 val.vsx32val[3] = gpr;
967 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
968 } else {
969 val.vsx32val[0] = gpr;
970 val.vsx32val[1] = gpr;
971 kvmppc_set_vsx_fpr(vcpu, index, 0, val.vsxval[0]);
972 kvmppc_set_vsx_fpr(vcpu, index, 1, val.vsxval[0]);
973 }
974}
975
976static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
977 u32 gpr32)
978{
979 union kvmppc_one_reg val;
980 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
981 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
982 int dword_offset, word_offset;
983
984 if (offset == -1)
985 return;
986
987 if (index >= 32) {
988 kvmppc_get_vsx_vr(vcpu, index - 32, &val.vval);
989 val.vsx32val[offset] = gpr32;
990 kvmppc_set_vsx_vr(vcpu, index - 32, &val.vval);
991 } else {
992 dword_offset = offset / 2;
993 word_offset = offset % 2;
994 val.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, index, dword_offset);
995 val.vsx32val[word_offset] = gpr32;
996 kvmppc_set_vsx_fpr(vcpu, index, dword_offset, val.vsxval[0]);
997 }
998}
999#endif /* CONFIG_VSX */
1000
1001#ifdef CONFIG_ALTIVEC
1002static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1003 int index, int element_size)
1004{
1005 int offset;
1006 int elts = sizeof(vector128)/element_size;
1007
1008 if ((index < 0) || (index >= elts))
1009 return -1;
1010
1011 if (kvmppc_need_byteswap(vcpu))
1012 offset = elts - index - 1;
1013 else
1014 offset = index;
1015
1016 return offset;
1017}
1018
1019static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1020 int index)
1021{
1022 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1023}
1024
1025static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1026 int index)
1027{
1028 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1029}
1030
1031static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1032 int index)
1033{
1034 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1035}
1036
1037static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1038 int index)
1039{
1040 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1041}
1042
1043
1044static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1045 u64 gpr)
1046{
1047 union kvmppc_one_reg val;
1048 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1049 vcpu->arch.mmio_vmx_offset);
1050 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1051
1052 if (offset == -1)
1053 return;
1054
1055 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1056 val.vsxval[offset] = gpr;
1057 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1058}
1059
1060static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1061 u32 gpr32)
1062{
1063 union kvmppc_one_reg val;
1064 int offset = kvmppc_get_vmx_word_offset(vcpu,
1065 vcpu->arch.mmio_vmx_offset);
1066 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1067
1068 if (offset == -1)
1069 return;
1070
1071 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1072 val.vsx32val[offset] = gpr32;
1073 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1074}
1075
1076static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1077 u16 gpr16)
1078{
1079 union kvmppc_one_reg val;
1080 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1081 vcpu->arch.mmio_vmx_offset);
1082 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1083
1084 if (offset == -1)
1085 return;
1086
1087 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1088 val.vsx16val[offset] = gpr16;
1089 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1090}
1091
1092static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1093 u8 gpr8)
1094{
1095 union kvmppc_one_reg val;
1096 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1097 vcpu->arch.mmio_vmx_offset);
1098 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1099
1100 if (offset == -1)
1101 return;
1102
1103 kvmppc_get_vsx_vr(vcpu, index, &val.vval);
1104 val.vsx8val[offset] = gpr8;
1105 kvmppc_set_vsx_vr(vcpu, index, &val.vval);
1106}
1107#endif /* CONFIG_ALTIVEC */
1108
1109#ifdef CONFIG_PPC_FPU
1110static inline u64 sp_to_dp(u32 fprs)
1111{
1112 u64 fprd;
1113
1114 preempt_disable();
1115 enable_kernel_fp();
1116 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1117 : "fr0");
1118 preempt_enable();
1119 return fprd;
1120}
1121
1122static inline u32 dp_to_sp(u64 fprd)
1123{
1124 u32 fprs;
1125
1126 preempt_disable();
1127 enable_kernel_fp();
1128 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1129 : "fr0");
1130 preempt_enable();
1131 return fprs;
1132}
1133
1134#else
1135#define sp_to_dp(x) (x)
1136#define dp_to_sp(x) (x)
1137#endif /* CONFIG_PPC_FPU */
1138
1139static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1140{
1141 struct kvm_run *run = vcpu->run;
1142 u64 gpr;
1143
1144 if (run->mmio.len > sizeof(gpr))
1145 return;
1146
1147 if (!vcpu->arch.mmio_host_swabbed) {
1148 switch (run->mmio.len) {
1149 case 8: gpr = *(u64 *)run->mmio.data; break;
1150 case 4: gpr = *(u32 *)run->mmio.data; break;
1151 case 2: gpr = *(u16 *)run->mmio.data; break;
1152 case 1: gpr = *(u8 *)run->mmio.data; break;
1153 }
1154 } else {
1155 switch (run->mmio.len) {
1156 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1157 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1158 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1159 case 1: gpr = *(u8 *)run->mmio.data; break;
1160 }
1161 }
1162
1163 /* conversion between single and double precision */
1164 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1165 gpr = sp_to_dp(gpr);
1166
1167 if (vcpu->arch.mmio_sign_extend) {
1168 switch (run->mmio.len) {
1169#ifdef CONFIG_PPC64
1170 case 4:
1171 gpr = (s64)(s32)gpr;
1172 break;
1173#endif
1174 case 2:
1175 gpr = (s64)(s16)gpr;
1176 break;
1177 case 1:
1178 gpr = (s64)(s8)gpr;
1179 break;
1180 }
1181 }
1182
1183 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1184 case KVM_MMIO_REG_GPR:
1185 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1186 break;
1187 case KVM_MMIO_REG_FPR:
1188 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1189 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1190
1191 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1192 break;
1193#ifdef CONFIG_PPC_BOOK3S
1194 case KVM_MMIO_REG_QPR:
1195 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1196 break;
1197 case KVM_MMIO_REG_FQPR:
1198 kvmppc_set_fpr(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK, gpr);
1199 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1200 break;
1201#endif
1202#ifdef CONFIG_VSX
1203 case KVM_MMIO_REG_VSX:
1204 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1205 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1206
1207 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1208 kvmppc_set_vsr_dword(vcpu, gpr);
1209 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1210 kvmppc_set_vsr_word(vcpu, gpr);
1211 else if (vcpu->arch.mmio_copy_type ==
1212 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1213 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1214 else if (vcpu->arch.mmio_copy_type ==
1215 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1216 kvmppc_set_vsr_word_dump(vcpu, gpr);
1217 break;
1218#endif
1219#ifdef CONFIG_ALTIVEC
1220 case KVM_MMIO_REG_VMX:
1221 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1222 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1223
1224 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1225 kvmppc_set_vmx_dword(vcpu, gpr);
1226 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1227 kvmppc_set_vmx_word(vcpu, gpr);
1228 else if (vcpu->arch.mmio_copy_type ==
1229 KVMPPC_VMX_COPY_HWORD)
1230 kvmppc_set_vmx_hword(vcpu, gpr);
1231 else if (vcpu->arch.mmio_copy_type ==
1232 KVMPPC_VMX_COPY_BYTE)
1233 kvmppc_set_vmx_byte(vcpu, gpr);
1234 break;
1235#endif
1236#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1237 case KVM_MMIO_REG_NESTED_GPR:
1238 if (kvmppc_need_byteswap(vcpu))
1239 gpr = swab64(gpr);
1240 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1241 sizeof(gpr));
1242 break;
1243#endif
1244 default:
1245 BUG();
1246 }
1247}
1248
1249static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1250 unsigned int rt, unsigned int bytes,
1251 int is_default_endian, int sign_extend)
1252{
1253 struct kvm_run *run = vcpu->run;
1254 int idx, ret;
1255 bool host_swabbed;
1256
1257 /* Pity C doesn't have a logical XOR operator */
1258 if (kvmppc_need_byteswap(vcpu)) {
1259 host_swabbed = is_default_endian;
1260 } else {
1261 host_swabbed = !is_default_endian;
1262 }
1263
1264 if (bytes > sizeof(run->mmio.data))
1265 return EMULATE_FAIL;
1266
1267 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1268 run->mmio.len = bytes;
1269 run->mmio.is_write = 0;
1270
1271 vcpu->arch.io_gpr = rt;
1272 vcpu->arch.mmio_host_swabbed = host_swabbed;
1273 vcpu->mmio_needed = 1;
1274 vcpu->mmio_is_write = 0;
1275 vcpu->arch.mmio_sign_extend = sign_extend;
1276
1277 idx = srcu_read_lock(&vcpu->kvm->srcu);
1278
1279 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1280 bytes, &run->mmio.data);
1281
1282 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1283
1284 if (!ret) {
1285 kvmppc_complete_mmio_load(vcpu);
1286 vcpu->mmio_needed = 0;
1287 return EMULATE_DONE;
1288 }
1289
1290 return EMULATE_DO_MMIO;
1291}
1292
1293int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1294 unsigned int rt, unsigned int bytes,
1295 int is_default_endian)
1296{
1297 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1298}
1299EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1300
1301/* Same as above, but sign extends */
1302int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1303 unsigned int rt, unsigned int bytes,
1304 int is_default_endian)
1305{
1306 return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1307}
1308
1309#ifdef CONFIG_VSX
1310int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1311 unsigned int rt, unsigned int bytes,
1312 int is_default_endian, int mmio_sign_extend)
1313{
1314 enum emulation_result emulated = EMULATE_DONE;
1315
1316 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1317 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1318 return EMULATE_FAIL;
1319
1320 while (vcpu->arch.mmio_vsx_copy_nums) {
1321 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1322 is_default_endian, mmio_sign_extend);
1323
1324 if (emulated != EMULATE_DONE)
1325 break;
1326
1327 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1328
1329 vcpu->arch.mmio_vsx_copy_nums--;
1330 vcpu->arch.mmio_vsx_offset++;
1331 }
1332 return emulated;
1333}
1334#endif /* CONFIG_VSX */
1335
1336int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1337 u64 val, unsigned int bytes, int is_default_endian)
1338{
1339 struct kvm_run *run = vcpu->run;
1340 void *data = run->mmio.data;
1341 int idx, ret;
1342 bool host_swabbed;
1343
1344 /* Pity C doesn't have a logical XOR operator */
1345 if (kvmppc_need_byteswap(vcpu)) {
1346 host_swabbed = is_default_endian;
1347 } else {
1348 host_swabbed = !is_default_endian;
1349 }
1350
1351 if (bytes > sizeof(run->mmio.data))
1352 return EMULATE_FAIL;
1353
1354 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1355 run->mmio.len = bytes;
1356 run->mmio.is_write = 1;
1357 vcpu->mmio_needed = 1;
1358 vcpu->mmio_is_write = 1;
1359
1360 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1361 val = dp_to_sp(val);
1362
1363 /* Store the value at the lowest bytes in 'data'. */
1364 if (!host_swabbed) {
1365 switch (bytes) {
1366 case 8: *(u64 *)data = val; break;
1367 case 4: *(u32 *)data = val; break;
1368 case 2: *(u16 *)data = val; break;
1369 case 1: *(u8 *)data = val; break;
1370 }
1371 } else {
1372 switch (bytes) {
1373 case 8: *(u64 *)data = swab64(val); break;
1374 case 4: *(u32 *)data = swab32(val); break;
1375 case 2: *(u16 *)data = swab16(val); break;
1376 case 1: *(u8 *)data = val; break;
1377 }
1378 }
1379
1380 idx = srcu_read_lock(&vcpu->kvm->srcu);
1381
1382 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1383 bytes, &run->mmio.data);
1384
1385 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1386
1387 if (!ret) {
1388 vcpu->mmio_needed = 0;
1389 return EMULATE_DONE;
1390 }
1391
1392 return EMULATE_DO_MMIO;
1393}
1394EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1395
1396#ifdef CONFIG_VSX
1397static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1398{
1399 u32 dword_offset, word_offset;
1400 union kvmppc_one_reg reg;
1401 int vsx_offset = 0;
1402 int copy_type = vcpu->arch.mmio_copy_type;
1403 int result = 0;
1404
1405 switch (copy_type) {
1406 case KVMPPC_VSX_COPY_DWORD:
1407 vsx_offset =
1408 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1409
1410 if (vsx_offset == -1) {
1411 result = -1;
1412 break;
1413 }
1414
1415 if (rs < 32) {
1416 *val = kvmppc_get_vsx_fpr(vcpu, rs, vsx_offset);
1417 } else {
1418 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval);
1419 *val = reg.vsxval[vsx_offset];
1420 }
1421 break;
1422
1423 case KVMPPC_VSX_COPY_WORD:
1424 vsx_offset =
1425 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1426
1427 if (vsx_offset == -1) {
1428 result = -1;
1429 break;
1430 }
1431
1432 if (rs < 32) {
1433 dword_offset = vsx_offset / 2;
1434 word_offset = vsx_offset % 2;
1435 reg.vsxval[0] = kvmppc_get_vsx_fpr(vcpu, rs, dword_offset);
1436 *val = reg.vsx32val[word_offset];
1437 } else {
1438 kvmppc_get_vsx_vr(vcpu, rs - 32, ®.vval);
1439 *val = reg.vsx32val[vsx_offset];
1440 }
1441 break;
1442
1443 default:
1444 result = -1;
1445 break;
1446 }
1447
1448 return result;
1449}
1450
1451int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1452 int rs, unsigned int bytes, int is_default_endian)
1453{
1454 u64 val;
1455 enum emulation_result emulated = EMULATE_DONE;
1456
1457 vcpu->arch.io_gpr = rs;
1458
1459 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1460 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1461 return EMULATE_FAIL;
1462
1463 while (vcpu->arch.mmio_vsx_copy_nums) {
1464 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1465 return EMULATE_FAIL;
1466
1467 emulated = kvmppc_handle_store(vcpu,
1468 val, bytes, is_default_endian);
1469
1470 if (emulated != EMULATE_DONE)
1471 break;
1472
1473 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1474
1475 vcpu->arch.mmio_vsx_copy_nums--;
1476 vcpu->arch.mmio_vsx_offset++;
1477 }
1478
1479 return emulated;
1480}
1481
1482static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1483{
1484 struct kvm_run *run = vcpu->run;
1485 enum emulation_result emulated = EMULATE_FAIL;
1486 int r;
1487
1488 vcpu->arch.paddr_accessed += run->mmio.len;
1489
1490 if (!vcpu->mmio_is_write) {
1491 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1492 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1493 } else {
1494 emulated = kvmppc_handle_vsx_store(vcpu,
1495 vcpu->arch.io_gpr, run->mmio.len, 1);
1496 }
1497
1498 switch (emulated) {
1499 case EMULATE_DO_MMIO:
1500 run->exit_reason = KVM_EXIT_MMIO;
1501 r = RESUME_HOST;
1502 break;
1503 case EMULATE_FAIL:
1504 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1505 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1506 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1507 r = RESUME_HOST;
1508 break;
1509 default:
1510 r = RESUME_GUEST;
1511 break;
1512 }
1513 return r;
1514}
1515#endif /* CONFIG_VSX */
1516
1517#ifdef CONFIG_ALTIVEC
1518int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1519 unsigned int rt, unsigned int bytes, int is_default_endian)
1520{
1521 enum emulation_result emulated = EMULATE_DONE;
1522
1523 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1524 return EMULATE_FAIL;
1525
1526 while (vcpu->arch.mmio_vmx_copy_nums) {
1527 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1528 is_default_endian, 0);
1529
1530 if (emulated != EMULATE_DONE)
1531 break;
1532
1533 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1534 vcpu->arch.mmio_vmx_copy_nums--;
1535 vcpu->arch.mmio_vmx_offset++;
1536 }
1537
1538 return emulated;
1539}
1540
1541static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1542{
1543 union kvmppc_one_reg reg;
1544 int vmx_offset = 0;
1545 int result = 0;
1546
1547 vmx_offset =
1548 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1549
1550 if (vmx_offset == -1)
1551 return -1;
1552
1553 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1554 *val = reg.vsxval[vmx_offset];
1555
1556 return result;
1557}
1558
1559static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1560{
1561 union kvmppc_one_reg reg;
1562 int vmx_offset = 0;
1563 int result = 0;
1564
1565 vmx_offset =
1566 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1567
1568 if (vmx_offset == -1)
1569 return -1;
1570
1571 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1572 *val = reg.vsx32val[vmx_offset];
1573
1574 return result;
1575}
1576
1577static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1578{
1579 union kvmppc_one_reg reg;
1580 int vmx_offset = 0;
1581 int result = 0;
1582
1583 vmx_offset =
1584 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1585
1586 if (vmx_offset == -1)
1587 return -1;
1588
1589 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1590 *val = reg.vsx16val[vmx_offset];
1591
1592 return result;
1593}
1594
1595static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1596{
1597 union kvmppc_one_reg reg;
1598 int vmx_offset = 0;
1599 int result = 0;
1600
1601 vmx_offset =
1602 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1603
1604 if (vmx_offset == -1)
1605 return -1;
1606
1607 kvmppc_get_vsx_vr(vcpu, index, ®.vval);
1608 *val = reg.vsx8val[vmx_offset];
1609
1610 return result;
1611}
1612
1613int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1614 unsigned int rs, unsigned int bytes, int is_default_endian)
1615{
1616 u64 val = 0;
1617 unsigned int index = rs & KVM_MMIO_REG_MASK;
1618 enum emulation_result emulated = EMULATE_DONE;
1619
1620 if (vcpu->arch.mmio_vmx_copy_nums > 2)
1621 return EMULATE_FAIL;
1622
1623 vcpu->arch.io_gpr = rs;
1624
1625 while (vcpu->arch.mmio_vmx_copy_nums) {
1626 switch (vcpu->arch.mmio_copy_type) {
1627 case KVMPPC_VMX_COPY_DWORD:
1628 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1629 return EMULATE_FAIL;
1630
1631 break;
1632 case KVMPPC_VMX_COPY_WORD:
1633 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1634 return EMULATE_FAIL;
1635 break;
1636 case KVMPPC_VMX_COPY_HWORD:
1637 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1638 return EMULATE_FAIL;
1639 break;
1640 case KVMPPC_VMX_COPY_BYTE:
1641 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1642 return EMULATE_FAIL;
1643 break;
1644 default:
1645 return EMULATE_FAIL;
1646 }
1647
1648 emulated = kvmppc_handle_store(vcpu, val, bytes,
1649 is_default_endian);
1650 if (emulated != EMULATE_DONE)
1651 break;
1652
1653 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1654 vcpu->arch.mmio_vmx_copy_nums--;
1655 vcpu->arch.mmio_vmx_offset++;
1656 }
1657
1658 return emulated;
1659}
1660
1661static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1662{
1663 struct kvm_run *run = vcpu->run;
1664 enum emulation_result emulated = EMULATE_FAIL;
1665 int r;
1666
1667 vcpu->arch.paddr_accessed += run->mmio.len;
1668
1669 if (!vcpu->mmio_is_write) {
1670 emulated = kvmppc_handle_vmx_load(vcpu,
1671 vcpu->arch.io_gpr, run->mmio.len, 1);
1672 } else {
1673 emulated = kvmppc_handle_vmx_store(vcpu,
1674 vcpu->arch.io_gpr, run->mmio.len, 1);
1675 }
1676
1677 switch (emulated) {
1678 case EMULATE_DO_MMIO:
1679 run->exit_reason = KVM_EXIT_MMIO;
1680 r = RESUME_HOST;
1681 break;
1682 case EMULATE_FAIL:
1683 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1684 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1685 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1686 r = RESUME_HOST;
1687 break;
1688 default:
1689 r = RESUME_GUEST;
1690 break;
1691 }
1692 return r;
1693}
1694#endif /* CONFIG_ALTIVEC */
1695
1696int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1697{
1698 int r = 0;
1699 union kvmppc_one_reg val;
1700 int size;
1701
1702 size = one_reg_size(reg->id);
1703 if (size > sizeof(val))
1704 return -EINVAL;
1705
1706 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1707 if (r == -EINVAL) {
1708 r = 0;
1709 switch (reg->id) {
1710#ifdef CONFIG_ALTIVEC
1711 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1712 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1713 r = -ENXIO;
1714 break;
1715 }
1716 kvmppc_get_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1717 break;
1718 case KVM_REG_PPC_VSCR:
1719 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1720 r = -ENXIO;
1721 break;
1722 }
1723 val = get_reg_val(reg->id, kvmppc_get_vscr(vcpu));
1724 break;
1725 case KVM_REG_PPC_VRSAVE:
1726 val = get_reg_val(reg->id, kvmppc_get_vrsave(vcpu));
1727 break;
1728#endif /* CONFIG_ALTIVEC */
1729 default:
1730 r = -EINVAL;
1731 break;
1732 }
1733 }
1734
1735 if (r)
1736 return r;
1737
1738 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1739 r = -EFAULT;
1740
1741 return r;
1742}
1743
1744int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1745{
1746 int r;
1747 union kvmppc_one_reg val;
1748 int size;
1749
1750 size = one_reg_size(reg->id);
1751 if (size > sizeof(val))
1752 return -EINVAL;
1753
1754 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1755 return -EFAULT;
1756
1757 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1758 if (r == -EINVAL) {
1759 r = 0;
1760 switch (reg->id) {
1761#ifdef CONFIG_ALTIVEC
1762 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1763 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1764 r = -ENXIO;
1765 break;
1766 }
1767 kvmppc_set_vsx_vr(vcpu, reg->id - KVM_REG_PPC_VR0, &val.vval);
1768 break;
1769 case KVM_REG_PPC_VSCR:
1770 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1771 r = -ENXIO;
1772 break;
1773 }
1774 kvmppc_set_vscr(vcpu, set_reg_val(reg->id, val));
1775 break;
1776 case KVM_REG_PPC_VRSAVE:
1777 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1778 r = -ENXIO;
1779 break;
1780 }
1781 kvmppc_set_vrsave(vcpu, set_reg_val(reg->id, val));
1782 break;
1783#endif /* CONFIG_ALTIVEC */
1784 default:
1785 r = -EINVAL;
1786 break;
1787 }
1788 }
1789
1790 return r;
1791}
1792
1793int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1794{
1795 struct kvm_run *run = vcpu->run;
1796 int r;
1797
1798 vcpu_load(vcpu);
1799
1800 if (vcpu->mmio_needed) {
1801 vcpu->mmio_needed = 0;
1802 if (!vcpu->mmio_is_write)
1803 kvmppc_complete_mmio_load(vcpu);
1804#ifdef CONFIG_VSX
1805 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1806 vcpu->arch.mmio_vsx_copy_nums--;
1807 vcpu->arch.mmio_vsx_offset++;
1808 }
1809
1810 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1811 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1812 if (r == RESUME_HOST) {
1813 vcpu->mmio_needed = 1;
1814 goto out;
1815 }
1816 }
1817#endif
1818#ifdef CONFIG_ALTIVEC
1819 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1820 vcpu->arch.mmio_vmx_copy_nums--;
1821 vcpu->arch.mmio_vmx_offset++;
1822 }
1823
1824 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1825 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1826 if (r == RESUME_HOST) {
1827 vcpu->mmio_needed = 1;
1828 goto out;
1829 }
1830 }
1831#endif
1832 } else if (vcpu->arch.osi_needed) {
1833 u64 *gprs = run->osi.gprs;
1834 int i;
1835
1836 for (i = 0; i < 32; i++)
1837 kvmppc_set_gpr(vcpu, i, gprs[i]);
1838 vcpu->arch.osi_needed = 0;
1839 } else if (vcpu->arch.hcall_needed) {
1840 int i;
1841
1842 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1843 for (i = 0; i < 9; ++i)
1844 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1845 vcpu->arch.hcall_needed = 0;
1846#ifdef CONFIG_BOOKE
1847 } else if (vcpu->arch.epr_needed) {
1848 kvmppc_set_epr(vcpu, run->epr.epr);
1849 vcpu->arch.epr_needed = 0;
1850#endif
1851 }
1852
1853 kvm_sigset_activate(vcpu);
1854
1855 if (run->immediate_exit)
1856 r = -EINTR;
1857 else
1858 r = kvmppc_vcpu_run(vcpu);
1859
1860 kvm_sigset_deactivate(vcpu);
1861
1862#ifdef CONFIG_ALTIVEC
1863out:
1864#endif
1865
1866 /*
1867 * We're already returning to userspace, don't pass the
1868 * RESUME_HOST flags along.
1869 */
1870 if (r > 0)
1871 r = 0;
1872
1873 vcpu_put(vcpu);
1874 return r;
1875}
1876
1877int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1878{
1879 if (irq->irq == KVM_INTERRUPT_UNSET) {
1880 kvmppc_core_dequeue_external(vcpu);
1881 return 0;
1882 }
1883
1884 kvmppc_core_queue_external(vcpu, irq);
1885
1886 kvm_vcpu_kick(vcpu);
1887
1888 return 0;
1889}
1890
1891static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1892 struct kvm_enable_cap *cap)
1893{
1894 int r;
1895
1896 if (cap->flags)
1897 return -EINVAL;
1898
1899 switch (cap->cap) {
1900 case KVM_CAP_PPC_OSI:
1901 r = 0;
1902 vcpu->arch.osi_enabled = true;
1903 break;
1904 case KVM_CAP_PPC_PAPR:
1905 r = 0;
1906 vcpu->arch.papr_enabled = true;
1907 break;
1908 case KVM_CAP_PPC_EPR:
1909 r = 0;
1910 if (cap->args[0])
1911 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1912 else
1913 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1914 break;
1915#ifdef CONFIG_BOOKE
1916 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1917 r = 0;
1918 vcpu->arch.watchdog_enabled = true;
1919 break;
1920#endif
1921#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1922 case KVM_CAP_SW_TLB: {
1923 struct kvm_config_tlb cfg;
1924 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1925
1926 r = -EFAULT;
1927 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1928 break;
1929
1930 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1931 break;
1932 }
1933#endif
1934#ifdef CONFIG_KVM_MPIC
1935 case KVM_CAP_IRQ_MPIC: {
1936 struct fd f;
1937 struct kvm_device *dev;
1938
1939 r = -EBADF;
1940 f = fdget(cap->args[0]);
1941 if (!f.file)
1942 break;
1943
1944 r = -EPERM;
1945 dev = kvm_device_from_filp(f.file);
1946 if (dev)
1947 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1948
1949 fdput(f);
1950 break;
1951 }
1952#endif
1953#ifdef CONFIG_KVM_XICS
1954 case KVM_CAP_IRQ_XICS: {
1955 struct fd f;
1956 struct kvm_device *dev;
1957
1958 r = -EBADF;
1959 f = fdget(cap->args[0]);
1960 if (!f.file)
1961 break;
1962
1963 r = -EPERM;
1964 dev = kvm_device_from_filp(f.file);
1965 if (dev) {
1966 if (xics_on_xive())
1967 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1968 else
1969 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1970 }
1971
1972 fdput(f);
1973 break;
1974 }
1975#endif /* CONFIG_KVM_XICS */
1976#ifdef CONFIG_KVM_XIVE
1977 case KVM_CAP_PPC_IRQ_XIVE: {
1978 struct fd f;
1979 struct kvm_device *dev;
1980
1981 r = -EBADF;
1982 f = fdget(cap->args[0]);
1983 if (!f.file)
1984 break;
1985
1986 r = -ENXIO;
1987 if (!xive_enabled())
1988 break;
1989
1990 r = -EPERM;
1991 dev = kvm_device_from_filp(f.file);
1992 if (dev)
1993 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1994 cap->args[1]);
1995
1996 fdput(f);
1997 break;
1998 }
1999#endif /* CONFIG_KVM_XIVE */
2000#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2001 case KVM_CAP_PPC_FWNMI:
2002 r = -EINVAL;
2003 if (!is_kvmppc_hv_enabled(vcpu->kvm))
2004 break;
2005 r = 0;
2006 vcpu->kvm->arch.fwnmi_enabled = true;
2007 break;
2008#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2009 default:
2010 r = -EINVAL;
2011 break;
2012 }
2013
2014 if (!r)
2015 r = kvmppc_sanity_check(vcpu);
2016
2017 return r;
2018}
2019
2020bool kvm_arch_intc_initialized(struct kvm *kvm)
2021{
2022#ifdef CONFIG_KVM_MPIC
2023 if (kvm->arch.mpic)
2024 return true;
2025#endif
2026#ifdef CONFIG_KVM_XICS
2027 if (kvm->arch.xics || kvm->arch.xive)
2028 return true;
2029#endif
2030 return false;
2031}
2032
2033int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2034 struct kvm_mp_state *mp_state)
2035{
2036 return -EINVAL;
2037}
2038
2039int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2040 struct kvm_mp_state *mp_state)
2041{
2042 return -EINVAL;
2043}
2044
2045long kvm_arch_vcpu_async_ioctl(struct file *filp,
2046 unsigned int ioctl, unsigned long arg)
2047{
2048 struct kvm_vcpu *vcpu = filp->private_data;
2049 void __user *argp = (void __user *)arg;
2050
2051 if (ioctl == KVM_INTERRUPT) {
2052 struct kvm_interrupt irq;
2053 if (copy_from_user(&irq, argp, sizeof(irq)))
2054 return -EFAULT;
2055 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2056 }
2057 return -ENOIOCTLCMD;
2058}
2059
2060long kvm_arch_vcpu_ioctl(struct file *filp,
2061 unsigned int ioctl, unsigned long arg)
2062{
2063 struct kvm_vcpu *vcpu = filp->private_data;
2064 void __user *argp = (void __user *)arg;
2065 long r;
2066
2067 switch (ioctl) {
2068 case KVM_ENABLE_CAP:
2069 {
2070 struct kvm_enable_cap cap;
2071 r = -EFAULT;
2072 if (copy_from_user(&cap, argp, sizeof(cap)))
2073 goto out;
2074 vcpu_load(vcpu);
2075 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2076 vcpu_put(vcpu);
2077 break;
2078 }
2079
2080 case KVM_SET_ONE_REG:
2081 case KVM_GET_ONE_REG:
2082 {
2083 struct kvm_one_reg reg;
2084 r = -EFAULT;
2085 if (copy_from_user(®, argp, sizeof(reg)))
2086 goto out;
2087 if (ioctl == KVM_SET_ONE_REG)
2088 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2089 else
2090 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2091 break;
2092 }
2093
2094#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2095 case KVM_DIRTY_TLB: {
2096 struct kvm_dirty_tlb dirty;
2097 r = -EFAULT;
2098 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2099 goto out;
2100 vcpu_load(vcpu);
2101 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2102 vcpu_put(vcpu);
2103 break;
2104 }
2105#endif
2106 default:
2107 r = -EINVAL;
2108 }
2109
2110out:
2111 return r;
2112}
2113
2114vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2115{
2116 return VM_FAULT_SIGBUS;
2117}
2118
2119static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2120{
2121 u32 inst_nop = 0x60000000;
2122#ifdef CONFIG_KVM_BOOKE_HV
2123 u32 inst_sc1 = 0x44000022;
2124 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2125 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2126 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2127 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2128#else
2129 u32 inst_lis = 0x3c000000;
2130 u32 inst_ori = 0x60000000;
2131 u32 inst_sc = 0x44000002;
2132 u32 inst_imm_mask = 0xffff;
2133
2134 /*
2135 * The hypercall to get into KVM from within guest context is as
2136 * follows:
2137 *
2138 * lis r0, r0, KVM_SC_MAGIC_R0@h
2139 * ori r0, KVM_SC_MAGIC_R0@l
2140 * sc
2141 * nop
2142 */
2143 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2144 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2145 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2146 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2147#endif
2148
2149 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2150
2151 return 0;
2152}
2153
2154bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2155{
2156 int ret = 0;
2157
2158#ifdef CONFIG_KVM_MPIC
2159 ret = ret || (kvm->arch.mpic != NULL);
2160#endif
2161#ifdef CONFIG_KVM_XICS
2162 ret = ret || (kvm->arch.xics != NULL);
2163 ret = ret || (kvm->arch.xive != NULL);
2164#endif
2165 smp_rmb();
2166 return ret;
2167}
2168
2169int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2170 bool line_status)
2171{
2172 if (!kvm_arch_irqchip_in_kernel(kvm))
2173 return -ENXIO;
2174
2175 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2176 irq_event->irq, irq_event->level,
2177 line_status);
2178 return 0;
2179}
2180
2181
2182int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2183 struct kvm_enable_cap *cap)
2184{
2185 int r;
2186
2187 if (cap->flags)
2188 return -EINVAL;
2189
2190 switch (cap->cap) {
2191#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2192 case KVM_CAP_PPC_ENABLE_HCALL: {
2193 unsigned long hcall = cap->args[0];
2194
2195 r = -EINVAL;
2196 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2197 cap->args[1] > 1)
2198 break;
2199 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2200 break;
2201 if (cap->args[1])
2202 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2203 else
2204 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2205 r = 0;
2206 break;
2207 }
2208 case KVM_CAP_PPC_SMT: {
2209 unsigned long mode = cap->args[0];
2210 unsigned long flags = cap->args[1];
2211
2212 r = -EINVAL;
2213 if (kvm->arch.kvm_ops->set_smt_mode)
2214 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2215 break;
2216 }
2217
2218 case KVM_CAP_PPC_NESTED_HV:
2219 r = -EINVAL;
2220 if (!is_kvmppc_hv_enabled(kvm) ||
2221 !kvm->arch.kvm_ops->enable_nested)
2222 break;
2223 r = kvm->arch.kvm_ops->enable_nested(kvm);
2224 break;
2225#endif
2226#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2227 case KVM_CAP_PPC_SECURE_GUEST:
2228 r = -EINVAL;
2229 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2230 break;
2231 r = kvm->arch.kvm_ops->enable_svm(kvm);
2232 break;
2233 case KVM_CAP_PPC_DAWR1:
2234 r = -EINVAL;
2235 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2236 break;
2237 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2238 break;
2239#endif
2240 default:
2241 r = -EINVAL;
2242 break;
2243 }
2244
2245 return r;
2246}
2247
2248#ifdef CONFIG_PPC_BOOK3S_64
2249/*
2250 * These functions check whether the underlying hardware is safe
2251 * against attacks based on observing the effects of speculatively
2252 * executed instructions, and whether it supplies instructions for
2253 * use in workarounds. The information comes from firmware, either
2254 * via the device tree on powernv platforms or from an hcall on
2255 * pseries platforms.
2256 */
2257#ifdef CONFIG_PPC_PSERIES
2258static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2259{
2260 struct h_cpu_char_result c;
2261 unsigned long rc;
2262
2263 if (!machine_is(pseries))
2264 return -ENOTTY;
2265
2266 rc = plpar_get_cpu_characteristics(&c);
2267 if (rc == H_SUCCESS) {
2268 cp->character = c.character;
2269 cp->behaviour = c.behaviour;
2270 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2271 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2272 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2273 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2274 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2275 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2276 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2277 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2278 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2279 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2280 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2281 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2282 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2283 }
2284 return 0;
2285}
2286#else
2287static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2288{
2289 return -ENOTTY;
2290}
2291#endif
2292
2293static inline bool have_fw_feat(struct device_node *fw_features,
2294 const char *state, const char *name)
2295{
2296 struct device_node *np;
2297 bool r = false;
2298
2299 np = of_get_child_by_name(fw_features, name);
2300 if (np) {
2301 r = of_property_read_bool(np, state);
2302 of_node_put(np);
2303 }
2304 return r;
2305}
2306
2307static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2308{
2309 struct device_node *np, *fw_features;
2310 int r;
2311
2312 memset(cp, 0, sizeof(*cp));
2313 r = pseries_get_cpu_char(cp);
2314 if (r != -ENOTTY)
2315 return r;
2316
2317 np = of_find_node_by_name(NULL, "ibm,opal");
2318 if (np) {
2319 fw_features = of_get_child_by_name(np, "fw-features");
2320 of_node_put(np);
2321 if (!fw_features)
2322 return 0;
2323 if (have_fw_feat(fw_features, "enabled",
2324 "inst-spec-barrier-ori31,31,0"))
2325 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2326 if (have_fw_feat(fw_features, "enabled",
2327 "fw-bcctrl-serialized"))
2328 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2329 if (have_fw_feat(fw_features, "enabled",
2330 "inst-l1d-flush-ori30,30,0"))
2331 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2332 if (have_fw_feat(fw_features, "enabled",
2333 "inst-l1d-flush-trig2"))
2334 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2335 if (have_fw_feat(fw_features, "enabled",
2336 "fw-l1d-thread-split"))
2337 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2338 if (have_fw_feat(fw_features, "enabled",
2339 "fw-count-cache-disabled"))
2340 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2341 if (have_fw_feat(fw_features, "enabled",
2342 "fw-count-cache-flush-bcctr2,0,0"))
2343 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2344 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2345 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2346 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2347 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2348 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2349 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2350 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2351
2352 if (have_fw_feat(fw_features, "enabled",
2353 "speculation-policy-favor-security"))
2354 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2355 if (!have_fw_feat(fw_features, "disabled",
2356 "needs-l1d-flush-msr-pr-0-to-1"))
2357 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2358 if (!have_fw_feat(fw_features, "disabled",
2359 "needs-spec-barrier-for-bound-checks"))
2360 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2361 if (have_fw_feat(fw_features, "enabled",
2362 "needs-count-cache-flush-on-context-switch"))
2363 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2364 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2365 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2366 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2367 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2368
2369 of_node_put(fw_features);
2370 }
2371
2372 return 0;
2373}
2374#endif
2375
2376int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2377{
2378 struct kvm *kvm __maybe_unused = filp->private_data;
2379 void __user *argp = (void __user *)arg;
2380 int r;
2381
2382 switch (ioctl) {
2383 case KVM_PPC_GET_PVINFO: {
2384 struct kvm_ppc_pvinfo pvinfo;
2385 memset(&pvinfo, 0, sizeof(pvinfo));
2386 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2387 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2388 r = -EFAULT;
2389 goto out;
2390 }
2391
2392 break;
2393 }
2394#ifdef CONFIG_SPAPR_TCE_IOMMU
2395 case KVM_CREATE_SPAPR_TCE_64: {
2396 struct kvm_create_spapr_tce_64 create_tce_64;
2397
2398 r = -EFAULT;
2399 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2400 goto out;
2401 if (create_tce_64.flags) {
2402 r = -EINVAL;
2403 goto out;
2404 }
2405 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2406 goto out;
2407 }
2408 case KVM_CREATE_SPAPR_TCE: {
2409 struct kvm_create_spapr_tce create_tce;
2410 struct kvm_create_spapr_tce_64 create_tce_64;
2411
2412 r = -EFAULT;
2413 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2414 goto out;
2415
2416 create_tce_64.liobn = create_tce.liobn;
2417 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2418 create_tce_64.offset = 0;
2419 create_tce_64.size = create_tce.window_size >>
2420 IOMMU_PAGE_SHIFT_4K;
2421 create_tce_64.flags = 0;
2422 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2423 goto out;
2424 }
2425#endif
2426#ifdef CONFIG_PPC_BOOK3S_64
2427 case KVM_PPC_GET_SMMU_INFO: {
2428 struct kvm_ppc_smmu_info info;
2429 struct kvm *kvm = filp->private_data;
2430
2431 memset(&info, 0, sizeof(info));
2432 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2433 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2434 r = -EFAULT;
2435 break;
2436 }
2437 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2438 struct kvm *kvm = filp->private_data;
2439
2440 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2441 break;
2442 }
2443 case KVM_PPC_CONFIGURE_V3_MMU: {
2444 struct kvm *kvm = filp->private_data;
2445 struct kvm_ppc_mmuv3_cfg cfg;
2446
2447 r = -EINVAL;
2448 if (!kvm->arch.kvm_ops->configure_mmu)
2449 goto out;
2450 r = -EFAULT;
2451 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2452 goto out;
2453 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2454 break;
2455 }
2456 case KVM_PPC_GET_RMMU_INFO: {
2457 struct kvm *kvm = filp->private_data;
2458 struct kvm_ppc_rmmu_info info;
2459
2460 r = -EINVAL;
2461 if (!kvm->arch.kvm_ops->get_rmmu_info)
2462 goto out;
2463 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2464 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2465 r = -EFAULT;
2466 break;
2467 }
2468 case KVM_PPC_GET_CPU_CHAR: {
2469 struct kvm_ppc_cpu_char cpuchar;
2470
2471 r = kvmppc_get_cpu_char(&cpuchar);
2472 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2473 r = -EFAULT;
2474 break;
2475 }
2476 case KVM_PPC_SVM_OFF: {
2477 struct kvm *kvm = filp->private_data;
2478
2479 r = 0;
2480 if (!kvm->arch.kvm_ops->svm_off)
2481 goto out;
2482
2483 r = kvm->arch.kvm_ops->svm_off(kvm);
2484 break;
2485 }
2486 default: {
2487 struct kvm *kvm = filp->private_data;
2488 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2489 }
2490#else /* CONFIG_PPC_BOOK3S_64 */
2491 default:
2492 r = -ENOTTY;
2493#endif
2494 }
2495out:
2496 return r;
2497}
2498
2499static DEFINE_IDA(lpid_inuse);
2500static unsigned long nr_lpids;
2501
2502long kvmppc_alloc_lpid(void)
2503{
2504 int lpid;
2505
2506 /* The host LPID must always be 0 (allocation starts at 1) */
2507 lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
2508 if (lpid < 0) {
2509 if (lpid == -ENOMEM)
2510 pr_err("%s: Out of memory\n", __func__);
2511 else
2512 pr_err("%s: No LPIDs free\n", __func__);
2513 return -ENOMEM;
2514 }
2515
2516 return lpid;
2517}
2518EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2519
2520void kvmppc_free_lpid(long lpid)
2521{
2522 ida_free(&lpid_inuse, lpid);
2523}
2524EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2525
2526/* nr_lpids_param includes the host LPID */
2527void kvmppc_init_lpid(unsigned long nr_lpids_param)
2528{
2529 nr_lpids = nr_lpids_param;
2530}
2531EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2532
2533EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2534
2535void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2536{
2537 if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2538 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2539}
2540
2541int kvm_arch_create_vm_debugfs(struct kvm *kvm)
2542{
2543 if (kvm->arch.kvm_ops->create_vm_debugfs)
2544 kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2545 return 0;
2546}
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21#include <linux/errno.h>
22#include <linux/err.h>
23#include <linux/kvm_host.h>
24#include <linux/vmalloc.h>
25#include <linux/hrtimer.h>
26#include <linux/sched/signal.h>
27#include <linux/fs.h>
28#include <linux/slab.h>
29#include <linux/file.h>
30#include <linux/module.h>
31#include <linux/irqbypass.h>
32#include <linux/kvm_irqfd.h>
33#include <asm/cputable.h>
34#include <linux/uaccess.h>
35#include <asm/kvm_ppc.h>
36#include <asm/tlbflush.h>
37#include <asm/cputhreads.h>
38#include <asm/irqflags.h>
39#include <asm/iommu.h>
40#include <asm/switch_to.h>
41#include <asm/xive.h>
42#ifdef CONFIG_PPC_PSERIES
43#include <asm/hvcall.h>
44#include <asm/plpar_wrappers.h>
45#endif
46
47#include "timing.h"
48#include "irq.h"
49#include "../mm/mmu_decl.h"
50
51#define CREATE_TRACE_POINTS
52#include "trace.h"
53
54struct kvmppc_ops *kvmppc_hv_ops;
55EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56struct kvmppc_ops *kvmppc_pr_ops;
57EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58
59
60int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61{
62 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63}
64
65bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66{
67 return false;
68}
69
70int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71{
72 return 1;
73}
74
75/*
76 * Common checks before entering the guest world. Call with interrupts
77 * disabled.
78 *
79 * returns:
80 *
81 * == 1 if we're ready to go into guest state
82 * <= 0 if we need to go back to the host with return value
83 */
84int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85{
86 int r;
87
88 WARN_ON(irqs_disabled());
89 hard_irq_disable();
90
91 while (true) {
92 if (need_resched()) {
93 local_irq_enable();
94 cond_resched();
95 hard_irq_disable();
96 continue;
97 }
98
99 if (signal_pending(current)) {
100 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101 vcpu->run->exit_reason = KVM_EXIT_INTR;
102 r = -EINTR;
103 break;
104 }
105
106 vcpu->mode = IN_GUEST_MODE;
107
108 /*
109 * Reading vcpu->requests must happen after setting vcpu->mode,
110 * so we don't miss a request because the requester sees
111 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112 * before next entering the guest (and thus doesn't IPI).
113 * This also orders the write to mode from any reads
114 * to the page tables done while the VCPU is running.
115 * Please see the comment in kvm_flush_remote_tlbs.
116 */
117 smp_mb();
118
119 if (kvm_request_pending(vcpu)) {
120 /* Make sure we process requests preemptable */
121 local_irq_enable();
122 trace_kvm_check_requests(vcpu);
123 r = kvmppc_core_check_requests(vcpu);
124 hard_irq_disable();
125 if (r > 0)
126 continue;
127 break;
128 }
129
130 if (kvmppc_core_prepare_to_enter(vcpu)) {
131 /* interrupts got enabled in between, so we
132 are back at square 1 */
133 continue;
134 }
135
136 guest_enter_irqoff();
137 return 1;
138 }
139
140 /* return to host */
141 local_irq_enable();
142 return r;
143}
144EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145
146#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148{
149 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150 int i;
151
152 shared->sprg0 = swab64(shared->sprg0);
153 shared->sprg1 = swab64(shared->sprg1);
154 shared->sprg2 = swab64(shared->sprg2);
155 shared->sprg3 = swab64(shared->sprg3);
156 shared->srr0 = swab64(shared->srr0);
157 shared->srr1 = swab64(shared->srr1);
158 shared->dar = swab64(shared->dar);
159 shared->msr = swab64(shared->msr);
160 shared->dsisr = swab32(shared->dsisr);
161 shared->int_pending = swab32(shared->int_pending);
162 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163 shared->sr[i] = swab32(shared->sr[i]);
164}
165#endif
166
167int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168{
169 int nr = kvmppc_get_gpr(vcpu, 11);
170 int r;
171 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175 unsigned long r2 = 0;
176
177 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178 /* 32 bit mode */
179 param1 &= 0xffffffff;
180 param2 &= 0xffffffff;
181 param3 &= 0xffffffff;
182 param4 &= 0xffffffff;
183 }
184
185 switch (nr) {
186 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187 {
188#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189 /* Book3S can be little endian, find it out here */
190 int shared_big_endian = true;
191 if (vcpu->arch.intr_msr & MSR_LE)
192 shared_big_endian = false;
193 if (shared_big_endian != vcpu->arch.shared_big_endian)
194 kvmppc_swab_shared(vcpu);
195 vcpu->arch.shared_big_endian = shared_big_endian;
196#endif
197
198 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199 /*
200 * Older versions of the Linux magic page code had
201 * a bug where they would map their trampoline code
202 * NX. If that's the case, remove !PR NX capability.
203 */
204 vcpu->arch.disable_kernel_nx = true;
205 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206 }
207
208 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210
211#ifdef CONFIG_PPC_64K_PAGES
212 /*
213 * Make sure our 4k magic page is in the same window of a 64k
214 * page within the guest and within the host's page.
215 */
216 if ((vcpu->arch.magic_page_pa & 0xf000) !=
217 ((ulong)vcpu->arch.shared & 0xf000)) {
218 void *old_shared = vcpu->arch.shared;
219 ulong shared = (ulong)vcpu->arch.shared;
220 void *new_shared;
221
222 shared &= PAGE_MASK;
223 shared |= vcpu->arch.magic_page_pa & 0xf000;
224 new_shared = (void*)shared;
225 memcpy(new_shared, old_shared, 0x1000);
226 vcpu->arch.shared = new_shared;
227 }
228#endif
229
230 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231
232 r = EV_SUCCESS;
233 break;
234 }
235 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236 r = EV_SUCCESS;
237#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239#endif
240
241 /* Second return value is in r4 */
242 break;
243 case EV_HCALL_TOKEN(EV_IDLE):
244 r = EV_SUCCESS;
245 kvm_vcpu_block(vcpu);
246 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247 break;
248 default:
249 r = EV_UNIMPLEMENTED;
250 break;
251 }
252
253 kvmppc_set_gpr(vcpu, 4, r2);
254
255 return r;
256}
257EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258
259int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260{
261 int r = false;
262
263 /* We have to know what CPU to virtualize */
264 if (!vcpu->arch.pvr)
265 goto out;
266
267 /* PAPR only works with book3s_64 */
268 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269 goto out;
270
271 /* HV KVM can only do PAPR mode for now */
272 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273 goto out;
274
275#ifdef CONFIG_KVM_BOOKE_HV
276 if (!cpu_has_feature(CPU_FTR_EMB_HV))
277 goto out;
278#endif
279
280 r = true;
281
282out:
283 vcpu->arch.sane = r;
284 return r ? 0 : -EINVAL;
285}
286EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287
288int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289{
290 enum emulation_result er;
291 int r;
292
293 er = kvmppc_emulate_loadstore(vcpu);
294 switch (er) {
295 case EMULATE_DONE:
296 /* Future optimization: only reload non-volatiles if they were
297 * actually modified. */
298 r = RESUME_GUEST_NV;
299 break;
300 case EMULATE_AGAIN:
301 r = RESUME_GUEST;
302 break;
303 case EMULATE_DO_MMIO:
304 run->exit_reason = KVM_EXIT_MMIO;
305 /* We must reload nonvolatiles because "update" load/store
306 * instructions modify register state. */
307 /* Future optimization: only reload non-volatiles if they were
308 * actually modified. */
309 r = RESUME_HOST_NV;
310 break;
311 case EMULATE_FAIL:
312 {
313 u32 last_inst;
314
315 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316 /* XXX Deliver Program interrupt to guest. */
317 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318 r = RESUME_HOST;
319 break;
320 }
321 default:
322 WARN_ON(1);
323 r = RESUME_GUEST;
324 }
325
326 return r;
327}
328EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329
330int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331 bool data)
332{
333 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334 struct kvmppc_pte pte;
335 int r;
336
337 vcpu->stat.st++;
338
339 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340 XLATE_WRITE, &pte);
341 if (r < 0)
342 return r;
343
344 *eaddr = pte.raddr;
345
346 if (!pte.may_write)
347 return -EPERM;
348
349 /* Magic page override */
350 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353 void *magic = vcpu->arch.shared;
354 magic += pte.eaddr & 0xfff;
355 memcpy(magic, ptr, size);
356 return EMULATE_DONE;
357 }
358
359 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360 return EMULATE_DO_MMIO;
361
362 return EMULATE_DONE;
363}
364EXPORT_SYMBOL_GPL(kvmppc_st);
365
366int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367 bool data)
368{
369 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370 struct kvmppc_pte pte;
371 int rc;
372
373 vcpu->stat.ld++;
374
375 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376 XLATE_READ, &pte);
377 if (rc)
378 return rc;
379
380 *eaddr = pte.raddr;
381
382 if (!pte.may_read)
383 return -EPERM;
384
385 if (!data && !pte.may_execute)
386 return -ENOEXEC;
387
388 /* Magic page override */
389 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392 void *magic = vcpu->arch.shared;
393 magic += pte.eaddr & 0xfff;
394 memcpy(ptr, magic, size);
395 return EMULATE_DONE;
396 }
397
398 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399 return EMULATE_DO_MMIO;
400
401 return EMULATE_DONE;
402}
403EXPORT_SYMBOL_GPL(kvmppc_ld);
404
405int kvm_arch_hardware_enable(void)
406{
407 return 0;
408}
409
410int kvm_arch_hardware_setup(void)
411{
412 return 0;
413}
414
415void kvm_arch_check_processor_compat(void *rtn)
416{
417 *(int *)rtn = kvmppc_core_check_processor_compat();
418}
419
420int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421{
422 struct kvmppc_ops *kvm_ops = NULL;
423 /*
424 * if we have both HV and PR enabled, default is HV
425 */
426 if (type == 0) {
427 if (kvmppc_hv_ops)
428 kvm_ops = kvmppc_hv_ops;
429 else
430 kvm_ops = kvmppc_pr_ops;
431 if (!kvm_ops)
432 goto err_out;
433 } else if (type == KVM_VM_PPC_HV) {
434 if (!kvmppc_hv_ops)
435 goto err_out;
436 kvm_ops = kvmppc_hv_ops;
437 } else if (type == KVM_VM_PPC_PR) {
438 if (!kvmppc_pr_ops)
439 goto err_out;
440 kvm_ops = kvmppc_pr_ops;
441 } else
442 goto err_out;
443
444 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445 return -ENOENT;
446
447 kvm->arch.kvm_ops = kvm_ops;
448 return kvmppc_core_init_vm(kvm);
449err_out:
450 return -EINVAL;
451}
452
453bool kvm_arch_has_vcpu_debugfs(void)
454{
455 return false;
456}
457
458int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459{
460 return 0;
461}
462
463void kvm_arch_destroy_vm(struct kvm *kvm)
464{
465 unsigned int i;
466 struct kvm_vcpu *vcpu;
467
468#ifdef CONFIG_KVM_XICS
469 /*
470 * We call kick_all_cpus_sync() to ensure that all
471 * CPUs have executed any pending IPIs before we
472 * continue and free VCPUs structures below.
473 */
474 if (is_kvmppc_hv_enabled(kvm))
475 kick_all_cpus_sync();
476#endif
477
478 kvm_for_each_vcpu(i, vcpu, kvm)
479 kvm_arch_vcpu_free(vcpu);
480
481 mutex_lock(&kvm->lock);
482 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483 kvm->vcpus[i] = NULL;
484
485 atomic_set(&kvm->online_vcpus, 0);
486
487 kvmppc_core_destroy_vm(kvm);
488
489 mutex_unlock(&kvm->lock);
490
491 /* drop the module reference */
492 module_put(kvm->arch.kvm_ops->owner);
493}
494
495int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496{
497 int r;
498 /* Assume we're using HV mode when the HV module is loaded */
499 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500
501 if (kvm) {
502 /*
503 * Hooray - we know which VM type we're running on. Depend on
504 * that rather than the guess above.
505 */
506 hv_enabled = is_kvmppc_hv_enabled(kvm);
507 }
508
509 switch (ext) {
510#ifdef CONFIG_BOOKE
511 case KVM_CAP_PPC_BOOKE_SREGS:
512 case KVM_CAP_PPC_BOOKE_WATCHDOG:
513 case KVM_CAP_PPC_EPR:
514#else
515 case KVM_CAP_PPC_SEGSTATE:
516 case KVM_CAP_PPC_HIOR:
517 case KVM_CAP_PPC_PAPR:
518#endif
519 case KVM_CAP_PPC_UNSET_IRQ:
520 case KVM_CAP_PPC_IRQ_LEVEL:
521 case KVM_CAP_ENABLE_CAP:
522 case KVM_CAP_ENABLE_CAP_VM:
523 case KVM_CAP_ONE_REG:
524 case KVM_CAP_IOEVENTFD:
525 case KVM_CAP_DEVICE_CTRL:
526 case KVM_CAP_IMMEDIATE_EXIT:
527 r = 1;
528 break;
529 case KVM_CAP_PPC_PAIRED_SINGLES:
530 case KVM_CAP_PPC_OSI:
531 case KVM_CAP_PPC_GET_PVINFO:
532#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533 case KVM_CAP_SW_TLB:
534#endif
535 /* We support this only for PR */
536 r = !hv_enabled;
537 break;
538#ifdef CONFIG_KVM_MPIC
539 case KVM_CAP_IRQ_MPIC:
540 r = 1;
541 break;
542#endif
543
544#ifdef CONFIG_PPC_BOOK3S_64
545 case KVM_CAP_SPAPR_TCE:
546 case KVM_CAP_SPAPR_TCE_64:
547 /* fallthrough */
548 case KVM_CAP_SPAPR_TCE_VFIO:
549 case KVM_CAP_PPC_RTAS:
550 case KVM_CAP_PPC_FIXUP_HCALL:
551 case KVM_CAP_PPC_ENABLE_HCALL:
552#ifdef CONFIG_KVM_XICS
553 case KVM_CAP_IRQ_XICS:
554#endif
555 case KVM_CAP_PPC_GET_CPU_CHAR:
556 r = 1;
557 break;
558
559 case KVM_CAP_PPC_ALLOC_HTAB:
560 r = hv_enabled;
561 break;
562#endif /* CONFIG_PPC_BOOK3S_64 */
563#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564 case KVM_CAP_PPC_SMT:
565 r = 0;
566 if (kvm) {
567 if (kvm->arch.emul_smt_mode > 1)
568 r = kvm->arch.emul_smt_mode;
569 else
570 r = kvm->arch.smt_mode;
571 } else if (hv_enabled) {
572 if (cpu_has_feature(CPU_FTR_ARCH_300))
573 r = 1;
574 else
575 r = threads_per_subcore;
576 }
577 break;
578 case KVM_CAP_PPC_SMT_POSSIBLE:
579 r = 1;
580 if (hv_enabled) {
581 if (!cpu_has_feature(CPU_FTR_ARCH_300))
582 r = ((threads_per_subcore << 1) - 1);
583 else
584 /* P9 can emulate dbells, so allow any mode */
585 r = 8 | 4 | 2 | 1;
586 }
587 break;
588 case KVM_CAP_PPC_RMA:
589 r = 0;
590 break;
591 case KVM_CAP_PPC_HWRNG:
592 r = kvmppc_hwrng_present();
593 break;
594 case KVM_CAP_PPC_MMU_RADIX:
595 r = !!(hv_enabled && radix_enabled());
596 break;
597 case KVM_CAP_PPC_MMU_HASH_V3:
598 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599 break;
600#endif
601 case KVM_CAP_SYNC_MMU:
602#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603 r = hv_enabled;
604#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605 r = 1;
606#else
607 r = 0;
608#endif
609 break;
610#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611 case KVM_CAP_PPC_HTAB_FD:
612 r = hv_enabled;
613 break;
614#endif
615 case KVM_CAP_NR_VCPUS:
616 /*
617 * Recommending a number of CPUs is somewhat arbitrary; we
618 * return the number of present CPUs for -HV (since a host
619 * will have secondary threads "offline"), and for other KVM
620 * implementations just count online CPUs.
621 */
622 if (hv_enabled)
623 r = num_present_cpus();
624 else
625 r = num_online_cpus();
626 break;
627 case KVM_CAP_NR_MEMSLOTS:
628 r = KVM_USER_MEM_SLOTS;
629 break;
630 case KVM_CAP_MAX_VCPUS:
631 r = KVM_MAX_VCPUS;
632 break;
633#ifdef CONFIG_PPC_BOOK3S_64
634 case KVM_CAP_PPC_GET_SMMU_INFO:
635 r = 1;
636 break;
637 case KVM_CAP_SPAPR_MULTITCE:
638 r = 1;
639 break;
640 case KVM_CAP_SPAPR_RESIZE_HPT:
641 r = !!hv_enabled;
642 break;
643#endif
644#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
645 case KVM_CAP_PPC_FWNMI:
646 r = hv_enabled;
647 break;
648#endif
649#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
650 case KVM_CAP_PPC_HTM:
651 r = hv_enabled &&
652 (!!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
653 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
654 break;
655#endif
656 default:
657 r = 0;
658 break;
659 }
660 return r;
661
662}
663
664long kvm_arch_dev_ioctl(struct file *filp,
665 unsigned int ioctl, unsigned long arg)
666{
667 return -EINVAL;
668}
669
670void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
671 struct kvm_memory_slot *dont)
672{
673 kvmppc_core_free_memslot(kvm, free, dont);
674}
675
676int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
677 unsigned long npages)
678{
679 return kvmppc_core_create_memslot(kvm, slot, npages);
680}
681
682int kvm_arch_prepare_memory_region(struct kvm *kvm,
683 struct kvm_memory_slot *memslot,
684 const struct kvm_userspace_memory_region *mem,
685 enum kvm_mr_change change)
686{
687 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
688}
689
690void kvm_arch_commit_memory_region(struct kvm *kvm,
691 const struct kvm_userspace_memory_region *mem,
692 const struct kvm_memory_slot *old,
693 const struct kvm_memory_slot *new,
694 enum kvm_mr_change change)
695{
696 kvmppc_core_commit_memory_region(kvm, mem, old, new);
697}
698
699void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
700 struct kvm_memory_slot *slot)
701{
702 kvmppc_core_flush_memslot(kvm, slot);
703}
704
705struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
706{
707 struct kvm_vcpu *vcpu;
708 vcpu = kvmppc_core_vcpu_create(kvm, id);
709 if (!IS_ERR(vcpu)) {
710 vcpu->arch.wqp = &vcpu->wq;
711 kvmppc_create_vcpu_debugfs(vcpu, id);
712 }
713 return vcpu;
714}
715
716void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
717{
718}
719
720void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
721{
722 /* Make sure we're not using the vcpu anymore */
723 hrtimer_cancel(&vcpu->arch.dec_timer);
724
725 kvmppc_remove_vcpu_debugfs(vcpu);
726
727 switch (vcpu->arch.irq_type) {
728 case KVMPPC_IRQ_MPIC:
729 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
730 break;
731 case KVMPPC_IRQ_XICS:
732 if (xive_enabled())
733 kvmppc_xive_cleanup_vcpu(vcpu);
734 else
735 kvmppc_xics_free_icp(vcpu);
736 break;
737 }
738
739 kvmppc_core_vcpu_free(vcpu);
740}
741
742void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
743{
744 kvm_arch_vcpu_free(vcpu);
745}
746
747int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
748{
749 return kvmppc_core_pending_dec(vcpu);
750}
751
752static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
753{
754 struct kvm_vcpu *vcpu;
755
756 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
757 kvmppc_decrementer_func(vcpu);
758
759 return HRTIMER_NORESTART;
760}
761
762int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
763{
764 int ret;
765
766 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
767 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
768 vcpu->arch.dec_expires = get_tb();
769
770#ifdef CONFIG_KVM_EXIT_TIMING
771 mutex_init(&vcpu->arch.exit_timing_lock);
772#endif
773 ret = kvmppc_subarch_vcpu_init(vcpu);
774 return ret;
775}
776
777void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
778{
779 kvmppc_mmu_destroy(vcpu);
780 kvmppc_subarch_vcpu_uninit(vcpu);
781}
782
783void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
784{
785#ifdef CONFIG_BOOKE
786 /*
787 * vrsave (formerly usprg0) isn't used by Linux, but may
788 * be used by the guest.
789 *
790 * On non-booke this is associated with Altivec and
791 * is handled by code in book3s.c.
792 */
793 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
794#endif
795 kvmppc_core_vcpu_load(vcpu, cpu);
796}
797
798void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
799{
800 kvmppc_core_vcpu_put(vcpu);
801#ifdef CONFIG_BOOKE
802 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
803#endif
804}
805
806/*
807 * irq_bypass_add_producer and irq_bypass_del_producer are only
808 * useful if the architecture supports PCI passthrough.
809 * irq_bypass_stop and irq_bypass_start are not needed and so
810 * kvm_ops are not defined for them.
811 */
812bool kvm_arch_has_irq_bypass(void)
813{
814 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
815 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
816}
817
818int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
819 struct irq_bypass_producer *prod)
820{
821 struct kvm_kernel_irqfd *irqfd =
822 container_of(cons, struct kvm_kernel_irqfd, consumer);
823 struct kvm *kvm = irqfd->kvm;
824
825 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
826 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
827
828 return 0;
829}
830
831void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
832 struct irq_bypass_producer *prod)
833{
834 struct kvm_kernel_irqfd *irqfd =
835 container_of(cons, struct kvm_kernel_irqfd, consumer);
836 struct kvm *kvm = irqfd->kvm;
837
838 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
839 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
840}
841
842#ifdef CONFIG_VSX
843static inline int kvmppc_get_vsr_dword_offset(int index)
844{
845 int offset;
846
847 if ((index != 0) && (index != 1))
848 return -1;
849
850#ifdef __BIG_ENDIAN
851 offset = index;
852#else
853 offset = 1 - index;
854#endif
855
856 return offset;
857}
858
859static inline int kvmppc_get_vsr_word_offset(int index)
860{
861 int offset;
862
863 if ((index > 3) || (index < 0))
864 return -1;
865
866#ifdef __BIG_ENDIAN
867 offset = index;
868#else
869 offset = 3 - index;
870#endif
871 return offset;
872}
873
874static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
875 u64 gpr)
876{
877 union kvmppc_one_reg val;
878 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
879 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
880
881 if (offset == -1)
882 return;
883
884 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
885 val.vval = VCPU_VSX_VR(vcpu, index);
886 val.vsxval[offset] = gpr;
887 VCPU_VSX_VR(vcpu, index) = val.vval;
888 } else {
889 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
890 }
891}
892
893static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
894 u64 gpr)
895{
896 union kvmppc_one_reg val;
897 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
898
899 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
900 val.vval = VCPU_VSX_VR(vcpu, index);
901 val.vsxval[0] = gpr;
902 val.vsxval[1] = gpr;
903 VCPU_VSX_VR(vcpu, index) = val.vval;
904 } else {
905 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
906 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
907 }
908}
909
910static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
911 u32 gpr32)
912{
913 union kvmppc_one_reg val;
914 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
915 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
916 int dword_offset, word_offset;
917
918 if (offset == -1)
919 return;
920
921 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
922 val.vval = VCPU_VSX_VR(vcpu, index);
923 val.vsx32val[offset] = gpr32;
924 VCPU_VSX_VR(vcpu, index) = val.vval;
925 } else {
926 dword_offset = offset / 2;
927 word_offset = offset % 2;
928 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
929 val.vsx32val[word_offset] = gpr32;
930 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
931 }
932}
933#endif /* CONFIG_VSX */
934
935#ifdef CONFIG_ALTIVEC
936static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
937 u64 gpr)
938{
939 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
940 u32 hi, lo;
941 u32 di;
942
943#ifdef __BIG_ENDIAN
944 hi = gpr >> 32;
945 lo = gpr & 0xffffffff;
946#else
947 lo = gpr >> 32;
948 hi = gpr & 0xffffffff;
949#endif
950
951 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */
952 if (di > 1)
953 return;
954
955 if (vcpu->arch.mmio_host_swabbed)
956 di = 1 - di;
957
958 VCPU_VSX_VR(vcpu, index).u[di * 2] = hi;
959 VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo;
960}
961#endif /* CONFIG_ALTIVEC */
962
963#ifdef CONFIG_PPC_FPU
964static inline u64 sp_to_dp(u32 fprs)
965{
966 u64 fprd;
967
968 preempt_disable();
969 enable_kernel_fp();
970 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
971 : "fr0");
972 preempt_enable();
973 return fprd;
974}
975
976static inline u32 dp_to_sp(u64 fprd)
977{
978 u32 fprs;
979
980 preempt_disable();
981 enable_kernel_fp();
982 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
983 : "fr0");
984 preempt_enable();
985 return fprs;
986}
987
988#else
989#define sp_to_dp(x) (x)
990#define dp_to_sp(x) (x)
991#endif /* CONFIG_PPC_FPU */
992
993static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
994 struct kvm_run *run)
995{
996 u64 uninitialized_var(gpr);
997
998 if (run->mmio.len > sizeof(gpr)) {
999 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1000 return;
1001 }
1002
1003 if (!vcpu->arch.mmio_host_swabbed) {
1004 switch (run->mmio.len) {
1005 case 8: gpr = *(u64 *)run->mmio.data; break;
1006 case 4: gpr = *(u32 *)run->mmio.data; break;
1007 case 2: gpr = *(u16 *)run->mmio.data; break;
1008 case 1: gpr = *(u8 *)run->mmio.data; break;
1009 }
1010 } else {
1011 switch (run->mmio.len) {
1012 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1013 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1014 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1015 case 1: gpr = *(u8 *)run->mmio.data; break;
1016 }
1017 }
1018
1019 /* conversion between single and double precision */
1020 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1021 gpr = sp_to_dp(gpr);
1022
1023 if (vcpu->arch.mmio_sign_extend) {
1024 switch (run->mmio.len) {
1025#ifdef CONFIG_PPC64
1026 case 4:
1027 gpr = (s64)(s32)gpr;
1028 break;
1029#endif
1030 case 2:
1031 gpr = (s64)(s16)gpr;
1032 break;
1033 case 1:
1034 gpr = (s64)(s8)gpr;
1035 break;
1036 }
1037 }
1038
1039 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1040 case KVM_MMIO_REG_GPR:
1041 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1042 break;
1043 case KVM_MMIO_REG_FPR:
1044 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1045 break;
1046#ifdef CONFIG_PPC_BOOK3S
1047 case KVM_MMIO_REG_QPR:
1048 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1049 break;
1050 case KVM_MMIO_REG_FQPR:
1051 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1052 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1053 break;
1054#endif
1055#ifdef CONFIG_VSX
1056 case KVM_MMIO_REG_VSX:
1057 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1058 kvmppc_set_vsr_dword(vcpu, gpr);
1059 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1060 kvmppc_set_vsr_word(vcpu, gpr);
1061 else if (vcpu->arch.mmio_vsx_copy_type ==
1062 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1063 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1064 break;
1065#endif
1066#ifdef CONFIG_ALTIVEC
1067 case KVM_MMIO_REG_VMX:
1068 kvmppc_set_vmx_dword(vcpu, gpr);
1069 break;
1070#endif
1071 default:
1072 BUG();
1073 }
1074}
1075
1076static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1077 unsigned int rt, unsigned int bytes,
1078 int is_default_endian, int sign_extend)
1079{
1080 int idx, ret;
1081 bool host_swabbed;
1082
1083 /* Pity C doesn't have a logical XOR operator */
1084 if (kvmppc_need_byteswap(vcpu)) {
1085 host_swabbed = is_default_endian;
1086 } else {
1087 host_swabbed = !is_default_endian;
1088 }
1089
1090 if (bytes > sizeof(run->mmio.data)) {
1091 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1092 run->mmio.len);
1093 }
1094
1095 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1096 run->mmio.len = bytes;
1097 run->mmio.is_write = 0;
1098
1099 vcpu->arch.io_gpr = rt;
1100 vcpu->arch.mmio_host_swabbed = host_swabbed;
1101 vcpu->mmio_needed = 1;
1102 vcpu->mmio_is_write = 0;
1103 vcpu->arch.mmio_sign_extend = sign_extend;
1104
1105 idx = srcu_read_lock(&vcpu->kvm->srcu);
1106
1107 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1108 bytes, &run->mmio.data);
1109
1110 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1111
1112 if (!ret) {
1113 kvmppc_complete_mmio_load(vcpu, run);
1114 vcpu->mmio_needed = 0;
1115 return EMULATE_DONE;
1116 }
1117
1118 return EMULATE_DO_MMIO;
1119}
1120
1121int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1122 unsigned int rt, unsigned int bytes,
1123 int is_default_endian)
1124{
1125 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1126}
1127EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1128
1129/* Same as above, but sign extends */
1130int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1131 unsigned int rt, unsigned int bytes,
1132 int is_default_endian)
1133{
1134 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1135}
1136
1137#ifdef CONFIG_VSX
1138int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1139 unsigned int rt, unsigned int bytes,
1140 int is_default_endian, int mmio_sign_extend)
1141{
1142 enum emulation_result emulated = EMULATE_DONE;
1143
1144 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1145 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1146 return EMULATE_FAIL;
1147
1148 while (vcpu->arch.mmio_vsx_copy_nums) {
1149 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1150 is_default_endian, mmio_sign_extend);
1151
1152 if (emulated != EMULATE_DONE)
1153 break;
1154
1155 vcpu->arch.paddr_accessed += run->mmio.len;
1156
1157 vcpu->arch.mmio_vsx_copy_nums--;
1158 vcpu->arch.mmio_vsx_offset++;
1159 }
1160 return emulated;
1161}
1162#endif /* CONFIG_VSX */
1163
1164int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1165 u64 val, unsigned int bytes, int is_default_endian)
1166{
1167 void *data = run->mmio.data;
1168 int idx, ret;
1169 bool host_swabbed;
1170
1171 /* Pity C doesn't have a logical XOR operator */
1172 if (kvmppc_need_byteswap(vcpu)) {
1173 host_swabbed = is_default_endian;
1174 } else {
1175 host_swabbed = !is_default_endian;
1176 }
1177
1178 if (bytes > sizeof(run->mmio.data)) {
1179 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1180 run->mmio.len);
1181 }
1182
1183 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1184 run->mmio.len = bytes;
1185 run->mmio.is_write = 1;
1186 vcpu->mmio_needed = 1;
1187 vcpu->mmio_is_write = 1;
1188
1189 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1190 val = dp_to_sp(val);
1191
1192 /* Store the value at the lowest bytes in 'data'. */
1193 if (!host_swabbed) {
1194 switch (bytes) {
1195 case 8: *(u64 *)data = val; break;
1196 case 4: *(u32 *)data = val; break;
1197 case 2: *(u16 *)data = val; break;
1198 case 1: *(u8 *)data = val; break;
1199 }
1200 } else {
1201 switch (bytes) {
1202 case 8: *(u64 *)data = swab64(val); break;
1203 case 4: *(u32 *)data = swab32(val); break;
1204 case 2: *(u16 *)data = swab16(val); break;
1205 case 1: *(u8 *)data = val; break;
1206 }
1207 }
1208
1209 idx = srcu_read_lock(&vcpu->kvm->srcu);
1210
1211 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1212 bytes, &run->mmio.data);
1213
1214 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1215
1216 if (!ret) {
1217 vcpu->mmio_needed = 0;
1218 return EMULATE_DONE;
1219 }
1220
1221 return EMULATE_DO_MMIO;
1222}
1223EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1224
1225#ifdef CONFIG_VSX
1226static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1227{
1228 u32 dword_offset, word_offset;
1229 union kvmppc_one_reg reg;
1230 int vsx_offset = 0;
1231 int copy_type = vcpu->arch.mmio_vsx_copy_type;
1232 int result = 0;
1233
1234 switch (copy_type) {
1235 case KVMPPC_VSX_COPY_DWORD:
1236 vsx_offset =
1237 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1238
1239 if (vsx_offset == -1) {
1240 result = -1;
1241 break;
1242 }
1243
1244 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1245 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1246 } else {
1247 reg.vval = VCPU_VSX_VR(vcpu, rs);
1248 *val = reg.vsxval[vsx_offset];
1249 }
1250 break;
1251
1252 case KVMPPC_VSX_COPY_WORD:
1253 vsx_offset =
1254 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1255
1256 if (vsx_offset == -1) {
1257 result = -1;
1258 break;
1259 }
1260
1261 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1262 dword_offset = vsx_offset / 2;
1263 word_offset = vsx_offset % 2;
1264 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1265 *val = reg.vsx32val[word_offset];
1266 } else {
1267 reg.vval = VCPU_VSX_VR(vcpu, rs);
1268 *val = reg.vsx32val[vsx_offset];
1269 }
1270 break;
1271
1272 default:
1273 result = -1;
1274 break;
1275 }
1276
1277 return result;
1278}
1279
1280int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1281 int rs, unsigned int bytes, int is_default_endian)
1282{
1283 u64 val;
1284 enum emulation_result emulated = EMULATE_DONE;
1285
1286 vcpu->arch.io_gpr = rs;
1287
1288 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1289 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1290 return EMULATE_FAIL;
1291
1292 while (vcpu->arch.mmio_vsx_copy_nums) {
1293 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1294 return EMULATE_FAIL;
1295
1296 emulated = kvmppc_handle_store(run, vcpu,
1297 val, bytes, is_default_endian);
1298
1299 if (emulated != EMULATE_DONE)
1300 break;
1301
1302 vcpu->arch.paddr_accessed += run->mmio.len;
1303
1304 vcpu->arch.mmio_vsx_copy_nums--;
1305 vcpu->arch.mmio_vsx_offset++;
1306 }
1307
1308 return emulated;
1309}
1310
1311static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1312 struct kvm_run *run)
1313{
1314 enum emulation_result emulated = EMULATE_FAIL;
1315 int r;
1316
1317 vcpu->arch.paddr_accessed += run->mmio.len;
1318
1319 if (!vcpu->mmio_is_write) {
1320 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1321 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1322 } else {
1323 emulated = kvmppc_handle_vsx_store(run, vcpu,
1324 vcpu->arch.io_gpr, run->mmio.len, 1);
1325 }
1326
1327 switch (emulated) {
1328 case EMULATE_DO_MMIO:
1329 run->exit_reason = KVM_EXIT_MMIO;
1330 r = RESUME_HOST;
1331 break;
1332 case EMULATE_FAIL:
1333 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1334 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1336 r = RESUME_HOST;
1337 break;
1338 default:
1339 r = RESUME_GUEST;
1340 break;
1341 }
1342 return r;
1343}
1344#endif /* CONFIG_VSX */
1345
1346#ifdef CONFIG_ALTIVEC
1347/* handle quadword load access in two halves */
1348int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1349 unsigned int rt, int is_default_endian)
1350{
1351 enum emulation_result emulated = EMULATE_DONE;
1352
1353 while (vcpu->arch.mmio_vmx_copy_nums) {
1354 emulated = __kvmppc_handle_load(run, vcpu, rt, 8,
1355 is_default_endian, 0);
1356
1357 if (emulated != EMULATE_DONE)
1358 break;
1359
1360 vcpu->arch.paddr_accessed += run->mmio.len;
1361 vcpu->arch.mmio_vmx_copy_nums--;
1362 }
1363
1364 return emulated;
1365}
1366
1367static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1368{
1369 vector128 vrs = VCPU_VSX_VR(vcpu, rs);
1370 u32 di;
1371 u64 w0, w1;
1372
1373 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */
1374 if (di > 1)
1375 return -1;
1376
1377 if (vcpu->arch.mmio_host_swabbed)
1378 di = 1 - di;
1379
1380 w0 = vrs.u[di * 2];
1381 w1 = vrs.u[di * 2 + 1];
1382
1383#ifdef __BIG_ENDIAN
1384 *val = (w0 << 32) | w1;
1385#else
1386 *val = (w1 << 32) | w0;
1387#endif
1388 return 0;
1389}
1390
1391/* handle quadword store in two halves */
1392int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1393 unsigned int rs, int is_default_endian)
1394{
1395 u64 val = 0;
1396 enum emulation_result emulated = EMULATE_DONE;
1397
1398 vcpu->arch.io_gpr = rs;
1399
1400 while (vcpu->arch.mmio_vmx_copy_nums) {
1401 if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1)
1402 return EMULATE_FAIL;
1403
1404 emulated = kvmppc_handle_store(run, vcpu, val, 8,
1405 is_default_endian);
1406 if (emulated != EMULATE_DONE)
1407 break;
1408
1409 vcpu->arch.paddr_accessed += run->mmio.len;
1410 vcpu->arch.mmio_vmx_copy_nums--;
1411 }
1412
1413 return emulated;
1414}
1415
1416static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1417 struct kvm_run *run)
1418{
1419 enum emulation_result emulated = EMULATE_FAIL;
1420 int r;
1421
1422 vcpu->arch.paddr_accessed += run->mmio.len;
1423
1424 if (!vcpu->mmio_is_write) {
1425 emulated = kvmppc_handle_load128_by2x64(run, vcpu,
1426 vcpu->arch.io_gpr, 1);
1427 } else {
1428 emulated = kvmppc_handle_store128_by2x64(run, vcpu,
1429 vcpu->arch.io_gpr, 1);
1430 }
1431
1432 switch (emulated) {
1433 case EMULATE_DO_MMIO:
1434 run->exit_reason = KVM_EXIT_MMIO;
1435 r = RESUME_HOST;
1436 break;
1437 case EMULATE_FAIL:
1438 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1439 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1440 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1441 r = RESUME_HOST;
1442 break;
1443 default:
1444 r = RESUME_GUEST;
1445 break;
1446 }
1447 return r;
1448}
1449#endif /* CONFIG_ALTIVEC */
1450
1451int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1452{
1453 int r = 0;
1454 union kvmppc_one_reg val;
1455 int size;
1456
1457 size = one_reg_size(reg->id);
1458 if (size > sizeof(val))
1459 return -EINVAL;
1460
1461 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1462 if (r == -EINVAL) {
1463 r = 0;
1464 switch (reg->id) {
1465#ifdef CONFIG_ALTIVEC
1466 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1467 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1468 r = -ENXIO;
1469 break;
1470 }
1471 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1472 break;
1473 case KVM_REG_PPC_VSCR:
1474 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1475 r = -ENXIO;
1476 break;
1477 }
1478 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1479 break;
1480 case KVM_REG_PPC_VRSAVE:
1481 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1482 break;
1483#endif /* CONFIG_ALTIVEC */
1484 default:
1485 r = -EINVAL;
1486 break;
1487 }
1488 }
1489
1490 if (r)
1491 return r;
1492
1493 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1494 r = -EFAULT;
1495
1496 return r;
1497}
1498
1499int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1500{
1501 int r;
1502 union kvmppc_one_reg val;
1503 int size;
1504
1505 size = one_reg_size(reg->id);
1506 if (size > sizeof(val))
1507 return -EINVAL;
1508
1509 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1510 return -EFAULT;
1511
1512 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1513 if (r == -EINVAL) {
1514 r = 0;
1515 switch (reg->id) {
1516#ifdef CONFIG_ALTIVEC
1517 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1518 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1519 r = -ENXIO;
1520 break;
1521 }
1522 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1523 break;
1524 case KVM_REG_PPC_VSCR:
1525 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1526 r = -ENXIO;
1527 break;
1528 }
1529 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1530 break;
1531 case KVM_REG_PPC_VRSAVE:
1532 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1533 r = -ENXIO;
1534 break;
1535 }
1536 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1537 break;
1538#endif /* CONFIG_ALTIVEC */
1539 default:
1540 r = -EINVAL;
1541 break;
1542 }
1543 }
1544
1545 return r;
1546}
1547
1548int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1549{
1550 int r;
1551
1552 vcpu_load(vcpu);
1553
1554 if (vcpu->mmio_needed) {
1555 vcpu->mmio_needed = 0;
1556 if (!vcpu->mmio_is_write)
1557 kvmppc_complete_mmio_load(vcpu, run);
1558#ifdef CONFIG_VSX
1559 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1560 vcpu->arch.mmio_vsx_copy_nums--;
1561 vcpu->arch.mmio_vsx_offset++;
1562 }
1563
1564 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1565 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1566 if (r == RESUME_HOST) {
1567 vcpu->mmio_needed = 1;
1568 goto out;
1569 }
1570 }
1571#endif
1572#ifdef CONFIG_ALTIVEC
1573 if (vcpu->arch.mmio_vmx_copy_nums > 0)
1574 vcpu->arch.mmio_vmx_copy_nums--;
1575
1576 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1577 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1578 if (r == RESUME_HOST) {
1579 vcpu->mmio_needed = 1;
1580 goto out;
1581 }
1582 }
1583#endif
1584 } else if (vcpu->arch.osi_needed) {
1585 u64 *gprs = run->osi.gprs;
1586 int i;
1587
1588 for (i = 0; i < 32; i++)
1589 kvmppc_set_gpr(vcpu, i, gprs[i]);
1590 vcpu->arch.osi_needed = 0;
1591 } else if (vcpu->arch.hcall_needed) {
1592 int i;
1593
1594 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1595 for (i = 0; i < 9; ++i)
1596 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1597 vcpu->arch.hcall_needed = 0;
1598#ifdef CONFIG_BOOKE
1599 } else if (vcpu->arch.epr_needed) {
1600 kvmppc_set_epr(vcpu, run->epr.epr);
1601 vcpu->arch.epr_needed = 0;
1602#endif
1603 }
1604
1605 kvm_sigset_activate(vcpu);
1606
1607 if (run->immediate_exit)
1608 r = -EINTR;
1609 else
1610 r = kvmppc_vcpu_run(run, vcpu);
1611
1612 kvm_sigset_deactivate(vcpu);
1613
1614#ifdef CONFIG_ALTIVEC
1615out:
1616#endif
1617 vcpu_put(vcpu);
1618 return r;
1619}
1620
1621int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1622{
1623 if (irq->irq == KVM_INTERRUPT_UNSET) {
1624 kvmppc_core_dequeue_external(vcpu);
1625 return 0;
1626 }
1627
1628 kvmppc_core_queue_external(vcpu, irq);
1629
1630 kvm_vcpu_kick(vcpu);
1631
1632 return 0;
1633}
1634
1635static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1636 struct kvm_enable_cap *cap)
1637{
1638 int r;
1639
1640 if (cap->flags)
1641 return -EINVAL;
1642
1643 switch (cap->cap) {
1644 case KVM_CAP_PPC_OSI:
1645 r = 0;
1646 vcpu->arch.osi_enabled = true;
1647 break;
1648 case KVM_CAP_PPC_PAPR:
1649 r = 0;
1650 vcpu->arch.papr_enabled = true;
1651 break;
1652 case KVM_CAP_PPC_EPR:
1653 r = 0;
1654 if (cap->args[0])
1655 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1656 else
1657 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1658 break;
1659#ifdef CONFIG_BOOKE
1660 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1661 r = 0;
1662 vcpu->arch.watchdog_enabled = true;
1663 break;
1664#endif
1665#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1666 case KVM_CAP_SW_TLB: {
1667 struct kvm_config_tlb cfg;
1668 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1669
1670 r = -EFAULT;
1671 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1672 break;
1673
1674 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1675 break;
1676 }
1677#endif
1678#ifdef CONFIG_KVM_MPIC
1679 case KVM_CAP_IRQ_MPIC: {
1680 struct fd f;
1681 struct kvm_device *dev;
1682
1683 r = -EBADF;
1684 f = fdget(cap->args[0]);
1685 if (!f.file)
1686 break;
1687
1688 r = -EPERM;
1689 dev = kvm_device_from_filp(f.file);
1690 if (dev)
1691 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1692
1693 fdput(f);
1694 break;
1695 }
1696#endif
1697#ifdef CONFIG_KVM_XICS
1698 case KVM_CAP_IRQ_XICS: {
1699 struct fd f;
1700 struct kvm_device *dev;
1701
1702 r = -EBADF;
1703 f = fdget(cap->args[0]);
1704 if (!f.file)
1705 break;
1706
1707 r = -EPERM;
1708 dev = kvm_device_from_filp(f.file);
1709 if (dev) {
1710 if (xive_enabled())
1711 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1712 else
1713 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1714 }
1715
1716 fdput(f);
1717 break;
1718 }
1719#endif /* CONFIG_KVM_XICS */
1720#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1721 case KVM_CAP_PPC_FWNMI:
1722 r = -EINVAL;
1723 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1724 break;
1725 r = 0;
1726 vcpu->kvm->arch.fwnmi_enabled = true;
1727 break;
1728#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1729 default:
1730 r = -EINVAL;
1731 break;
1732 }
1733
1734 if (!r)
1735 r = kvmppc_sanity_check(vcpu);
1736
1737 return r;
1738}
1739
1740bool kvm_arch_intc_initialized(struct kvm *kvm)
1741{
1742#ifdef CONFIG_KVM_MPIC
1743 if (kvm->arch.mpic)
1744 return true;
1745#endif
1746#ifdef CONFIG_KVM_XICS
1747 if (kvm->arch.xics || kvm->arch.xive)
1748 return true;
1749#endif
1750 return false;
1751}
1752
1753int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1754 struct kvm_mp_state *mp_state)
1755{
1756 return -EINVAL;
1757}
1758
1759int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1760 struct kvm_mp_state *mp_state)
1761{
1762 return -EINVAL;
1763}
1764
1765long kvm_arch_vcpu_async_ioctl(struct file *filp,
1766 unsigned int ioctl, unsigned long arg)
1767{
1768 struct kvm_vcpu *vcpu = filp->private_data;
1769 void __user *argp = (void __user *)arg;
1770
1771 if (ioctl == KVM_INTERRUPT) {
1772 struct kvm_interrupt irq;
1773 if (copy_from_user(&irq, argp, sizeof(irq)))
1774 return -EFAULT;
1775 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1776 }
1777 return -ENOIOCTLCMD;
1778}
1779
1780long kvm_arch_vcpu_ioctl(struct file *filp,
1781 unsigned int ioctl, unsigned long arg)
1782{
1783 struct kvm_vcpu *vcpu = filp->private_data;
1784 void __user *argp = (void __user *)arg;
1785 long r;
1786
1787 vcpu_load(vcpu);
1788
1789 switch (ioctl) {
1790 case KVM_ENABLE_CAP:
1791 {
1792 struct kvm_enable_cap cap;
1793 r = -EFAULT;
1794 if (copy_from_user(&cap, argp, sizeof(cap)))
1795 goto out;
1796 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1797 break;
1798 }
1799
1800 case KVM_SET_ONE_REG:
1801 case KVM_GET_ONE_REG:
1802 {
1803 struct kvm_one_reg reg;
1804 r = -EFAULT;
1805 if (copy_from_user(®, argp, sizeof(reg)))
1806 goto out;
1807 if (ioctl == KVM_SET_ONE_REG)
1808 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
1809 else
1810 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
1811 break;
1812 }
1813
1814#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1815 case KVM_DIRTY_TLB: {
1816 struct kvm_dirty_tlb dirty;
1817 r = -EFAULT;
1818 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1819 goto out;
1820 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1821 break;
1822 }
1823#endif
1824 default:
1825 r = -EINVAL;
1826 }
1827
1828out:
1829 vcpu_put(vcpu);
1830 return r;
1831}
1832
1833int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1834{
1835 return VM_FAULT_SIGBUS;
1836}
1837
1838static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1839{
1840 u32 inst_nop = 0x60000000;
1841#ifdef CONFIG_KVM_BOOKE_HV
1842 u32 inst_sc1 = 0x44000022;
1843 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1844 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1845 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1846 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1847#else
1848 u32 inst_lis = 0x3c000000;
1849 u32 inst_ori = 0x60000000;
1850 u32 inst_sc = 0x44000002;
1851 u32 inst_imm_mask = 0xffff;
1852
1853 /*
1854 * The hypercall to get into KVM from within guest context is as
1855 * follows:
1856 *
1857 * lis r0, r0, KVM_SC_MAGIC_R0@h
1858 * ori r0, KVM_SC_MAGIC_R0@l
1859 * sc
1860 * nop
1861 */
1862 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1863 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1864 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1865 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1866#endif
1867
1868 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1869
1870 return 0;
1871}
1872
1873int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1874 bool line_status)
1875{
1876 if (!irqchip_in_kernel(kvm))
1877 return -ENXIO;
1878
1879 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1880 irq_event->irq, irq_event->level,
1881 line_status);
1882 return 0;
1883}
1884
1885
1886static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1887 struct kvm_enable_cap *cap)
1888{
1889 int r;
1890
1891 if (cap->flags)
1892 return -EINVAL;
1893
1894 switch (cap->cap) {
1895#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1896 case KVM_CAP_PPC_ENABLE_HCALL: {
1897 unsigned long hcall = cap->args[0];
1898
1899 r = -EINVAL;
1900 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1901 cap->args[1] > 1)
1902 break;
1903 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1904 break;
1905 if (cap->args[1])
1906 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1907 else
1908 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1909 r = 0;
1910 break;
1911 }
1912 case KVM_CAP_PPC_SMT: {
1913 unsigned long mode = cap->args[0];
1914 unsigned long flags = cap->args[1];
1915
1916 r = -EINVAL;
1917 if (kvm->arch.kvm_ops->set_smt_mode)
1918 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1919 break;
1920 }
1921#endif
1922 default:
1923 r = -EINVAL;
1924 break;
1925 }
1926
1927 return r;
1928}
1929
1930#ifdef CONFIG_PPC_BOOK3S_64
1931/*
1932 * These functions check whether the underlying hardware is safe
1933 * against attacks based on observing the effects of speculatively
1934 * executed instructions, and whether it supplies instructions for
1935 * use in workarounds. The information comes from firmware, either
1936 * via the device tree on powernv platforms or from an hcall on
1937 * pseries platforms.
1938 */
1939#ifdef CONFIG_PPC_PSERIES
1940static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1941{
1942 struct h_cpu_char_result c;
1943 unsigned long rc;
1944
1945 if (!machine_is(pseries))
1946 return -ENOTTY;
1947
1948 rc = plpar_get_cpu_characteristics(&c);
1949 if (rc == H_SUCCESS) {
1950 cp->character = c.character;
1951 cp->behaviour = c.behaviour;
1952 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1953 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1954 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1955 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1956 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1957 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1958 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1959 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1960 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1961 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1962 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1963 }
1964 return 0;
1965}
1966#else
1967static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1968{
1969 return -ENOTTY;
1970}
1971#endif
1972
1973static inline bool have_fw_feat(struct device_node *fw_features,
1974 const char *state, const char *name)
1975{
1976 struct device_node *np;
1977 bool r = false;
1978
1979 np = of_get_child_by_name(fw_features, name);
1980 if (np) {
1981 r = of_property_read_bool(np, state);
1982 of_node_put(np);
1983 }
1984 return r;
1985}
1986
1987static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1988{
1989 struct device_node *np, *fw_features;
1990 int r;
1991
1992 memset(cp, 0, sizeof(*cp));
1993 r = pseries_get_cpu_char(cp);
1994 if (r != -ENOTTY)
1995 return r;
1996
1997 np = of_find_node_by_name(NULL, "ibm,opal");
1998 if (np) {
1999 fw_features = of_get_child_by_name(np, "fw-features");
2000 of_node_put(np);
2001 if (!fw_features)
2002 return 0;
2003 if (have_fw_feat(fw_features, "enabled",
2004 "inst-spec-barrier-ori31,31,0"))
2005 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2006 if (have_fw_feat(fw_features, "enabled",
2007 "fw-bcctrl-serialized"))
2008 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2009 if (have_fw_feat(fw_features, "enabled",
2010 "inst-l1d-flush-ori30,30,0"))
2011 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2012 if (have_fw_feat(fw_features, "enabled",
2013 "inst-l1d-flush-trig2"))
2014 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2015 if (have_fw_feat(fw_features, "enabled",
2016 "fw-l1d-thread-split"))
2017 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2018 if (have_fw_feat(fw_features, "enabled",
2019 "fw-count-cache-disabled"))
2020 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2021 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2022 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2023 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2024 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2025 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2026 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2027
2028 if (have_fw_feat(fw_features, "enabled",
2029 "speculation-policy-favor-security"))
2030 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2031 if (!have_fw_feat(fw_features, "disabled",
2032 "needs-l1d-flush-msr-pr-0-to-1"))
2033 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2034 if (!have_fw_feat(fw_features, "disabled",
2035 "needs-spec-barrier-for-bound-checks"))
2036 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2037 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2038 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2039 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2040
2041 of_node_put(fw_features);
2042 }
2043
2044 return 0;
2045}
2046#endif
2047
2048long kvm_arch_vm_ioctl(struct file *filp,
2049 unsigned int ioctl, unsigned long arg)
2050{
2051 struct kvm *kvm __maybe_unused = filp->private_data;
2052 void __user *argp = (void __user *)arg;
2053 long r;
2054
2055 switch (ioctl) {
2056 case KVM_PPC_GET_PVINFO: {
2057 struct kvm_ppc_pvinfo pvinfo;
2058 memset(&pvinfo, 0, sizeof(pvinfo));
2059 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2060 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2061 r = -EFAULT;
2062 goto out;
2063 }
2064
2065 break;
2066 }
2067 case KVM_ENABLE_CAP:
2068 {
2069 struct kvm_enable_cap cap;
2070 r = -EFAULT;
2071 if (copy_from_user(&cap, argp, sizeof(cap)))
2072 goto out;
2073 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2074 break;
2075 }
2076#ifdef CONFIG_SPAPR_TCE_IOMMU
2077 case KVM_CREATE_SPAPR_TCE_64: {
2078 struct kvm_create_spapr_tce_64 create_tce_64;
2079
2080 r = -EFAULT;
2081 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2082 goto out;
2083 if (create_tce_64.flags) {
2084 r = -EINVAL;
2085 goto out;
2086 }
2087 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2088 goto out;
2089 }
2090 case KVM_CREATE_SPAPR_TCE: {
2091 struct kvm_create_spapr_tce create_tce;
2092 struct kvm_create_spapr_tce_64 create_tce_64;
2093
2094 r = -EFAULT;
2095 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2096 goto out;
2097
2098 create_tce_64.liobn = create_tce.liobn;
2099 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2100 create_tce_64.offset = 0;
2101 create_tce_64.size = create_tce.window_size >>
2102 IOMMU_PAGE_SHIFT_4K;
2103 create_tce_64.flags = 0;
2104 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2105 goto out;
2106 }
2107#endif
2108#ifdef CONFIG_PPC_BOOK3S_64
2109 case KVM_PPC_GET_SMMU_INFO: {
2110 struct kvm_ppc_smmu_info info;
2111 struct kvm *kvm = filp->private_data;
2112
2113 memset(&info, 0, sizeof(info));
2114 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2115 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2116 r = -EFAULT;
2117 break;
2118 }
2119 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2120 struct kvm *kvm = filp->private_data;
2121
2122 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2123 break;
2124 }
2125 case KVM_PPC_CONFIGURE_V3_MMU: {
2126 struct kvm *kvm = filp->private_data;
2127 struct kvm_ppc_mmuv3_cfg cfg;
2128
2129 r = -EINVAL;
2130 if (!kvm->arch.kvm_ops->configure_mmu)
2131 goto out;
2132 r = -EFAULT;
2133 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2134 goto out;
2135 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2136 break;
2137 }
2138 case KVM_PPC_GET_RMMU_INFO: {
2139 struct kvm *kvm = filp->private_data;
2140 struct kvm_ppc_rmmu_info info;
2141
2142 r = -EINVAL;
2143 if (!kvm->arch.kvm_ops->get_rmmu_info)
2144 goto out;
2145 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2146 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2147 r = -EFAULT;
2148 break;
2149 }
2150 case KVM_PPC_GET_CPU_CHAR: {
2151 struct kvm_ppc_cpu_char cpuchar;
2152
2153 r = kvmppc_get_cpu_char(&cpuchar);
2154 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2155 r = -EFAULT;
2156 break;
2157 }
2158 default: {
2159 struct kvm *kvm = filp->private_data;
2160 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2161 }
2162#else /* CONFIG_PPC_BOOK3S_64 */
2163 default:
2164 r = -ENOTTY;
2165#endif
2166 }
2167out:
2168 return r;
2169}
2170
2171static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2172static unsigned long nr_lpids;
2173
2174long kvmppc_alloc_lpid(void)
2175{
2176 long lpid;
2177
2178 do {
2179 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2180 if (lpid >= nr_lpids) {
2181 pr_err("%s: No LPIDs free\n", __func__);
2182 return -ENOMEM;
2183 }
2184 } while (test_and_set_bit(lpid, lpid_inuse));
2185
2186 return lpid;
2187}
2188EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2189
2190void kvmppc_claim_lpid(long lpid)
2191{
2192 set_bit(lpid, lpid_inuse);
2193}
2194EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2195
2196void kvmppc_free_lpid(long lpid)
2197{
2198 clear_bit(lpid, lpid_inuse);
2199}
2200EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2201
2202void kvmppc_init_lpid(unsigned long nr_lpids_param)
2203{
2204 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2205 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2206}
2207EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2208
2209int kvm_arch_init(void *opaque)
2210{
2211 return 0;
2212}
2213
2214EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);