Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/rbtree.h>
9#include <linux/mm.h>
10#include <linux/error-injection.h>
11#include "messages.h"
12#include "ctree.h"
13#include "disk-io.h"
14#include "transaction.h"
15#include "print-tree.h"
16#include "locking.h"
17#include "volumes.h"
18#include "qgroup.h"
19#include "tree-mod-log.h"
20#include "tree-checker.h"
21#include "fs.h"
22#include "accessors.h"
23#include "extent-tree.h"
24#include "relocation.h"
25#include "file-item.h"
26
27static struct kmem_cache *btrfs_path_cachep;
28
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40
41static const struct btrfs_csums {
42 u16 size;
43 const char name[10];
44 const char driver[12];
45} btrfs_csums[] = {
46 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 .driver = "blake2b-256" },
51};
52
53/*
54 * The leaf data grows from end-to-front in the node. this returns the address
55 * of the start of the last item, which is the stop of the leaf data stack.
56 */
57static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58{
59 u32 nr = btrfs_header_nritems(leaf);
60
61 if (nr == 0)
62 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 return btrfs_item_offset(leaf, nr - 1);
64}
65
66/*
67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
68 *
69 * @leaf: leaf that we're doing a memmove on
70 * @dst_offset: item data offset we're moving to
71 * @src_offset: item data offset were' moving from
72 * @len: length of the data we're moving
73 *
74 * Wrapper around memmove_extent_buffer() that takes into account the header on
75 * the leaf. The btrfs_item offset's start directly after the header, so we
76 * have to adjust any offsets to account for the header in the leaf. This
77 * handles that math to simplify the callers.
78 */
79static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 unsigned long dst_offset,
81 unsigned long src_offset,
82 unsigned long len)
83{
84 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86}
87
88/*
89 * Copy item data from @src into @dst at the given @offset.
90 *
91 * @dst: destination leaf that we're copying into
92 * @src: source leaf that we're copying from
93 * @dst_offset: item data offset we're copying to
94 * @src_offset: item data offset were' copying from
95 * @len: length of the data we're copying
96 *
97 * Wrapper around copy_extent_buffer() that takes into account the header on
98 * the leaf. The btrfs_item offset's start directly after the header, so we
99 * have to adjust any offsets to account for the header in the leaf. This
100 * handles that math to simplify the callers.
101 */
102static inline void copy_leaf_data(const struct extent_buffer *dst,
103 const struct extent_buffer *src,
104 unsigned long dst_offset,
105 unsigned long src_offset, unsigned long len)
106{
107 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 btrfs_item_nr_offset(src, 0) + src_offset, len);
109}
110
111/*
112 * Move items in a @leaf (using memmove).
113 *
114 * @dst: destination leaf for the items
115 * @dst_item: the item nr we're copying into
116 * @src_item: the item nr we're copying from
117 * @nr_items: the number of items to copy
118 *
119 * Wrapper around memmove_extent_buffer() that does the math to get the
120 * appropriate offsets into the leaf from the item numbers.
121 */
122static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 int dst_item, int src_item, int nr_items)
124{
125 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 btrfs_item_nr_offset(leaf, src_item),
127 nr_items * sizeof(struct btrfs_item));
128}
129
130/*
131 * Copy items from @src into @dst at the given @offset.
132 *
133 * @dst: destination leaf for the items
134 * @src: source leaf for the items
135 * @dst_item: the item nr we're copying into
136 * @src_item: the item nr we're copying from
137 * @nr_items: the number of items to copy
138 *
139 * Wrapper around copy_extent_buffer() that does the math to get the
140 * appropriate offsets into the leaf from the item numbers.
141 */
142static inline void copy_leaf_items(const struct extent_buffer *dst,
143 const struct extent_buffer *src,
144 int dst_item, int src_item, int nr_items)
145{
146 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 btrfs_item_nr_offset(src, src_item),
148 nr_items * sizeof(struct btrfs_item));
149}
150
151/* This exists for btrfs-progs usages. */
152u16 btrfs_csum_type_size(u16 type)
153{
154 return btrfs_csums[type].size;
155}
156
157int btrfs_super_csum_size(const struct btrfs_super_block *s)
158{
159 u16 t = btrfs_super_csum_type(s);
160 /*
161 * csum type is validated at mount time
162 */
163 return btrfs_csum_type_size(t);
164}
165
166const char *btrfs_super_csum_name(u16 csum_type)
167{
168 /* csum type is validated at mount time */
169 return btrfs_csums[csum_type].name;
170}
171
172/*
173 * Return driver name if defined, otherwise the name that's also a valid driver
174 * name
175 */
176const char *btrfs_super_csum_driver(u16 csum_type)
177{
178 /* csum type is validated at mount time */
179 return btrfs_csums[csum_type].driver[0] ?
180 btrfs_csums[csum_type].driver :
181 btrfs_csums[csum_type].name;
182}
183
184size_t __attribute_const__ btrfs_get_num_csums(void)
185{
186 return ARRAY_SIZE(btrfs_csums);
187}
188
189struct btrfs_path *btrfs_alloc_path(void)
190{
191 might_sleep();
192
193 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194}
195
196/* this also releases the path */
197void btrfs_free_path(struct btrfs_path *p)
198{
199 if (!p)
200 return;
201 btrfs_release_path(p);
202 kmem_cache_free(btrfs_path_cachep, p);
203}
204
205/*
206 * path release drops references on the extent buffers in the path
207 * and it drops any locks held by this path
208 *
209 * It is safe to call this on paths that no locks or extent buffers held.
210 */
211noinline void btrfs_release_path(struct btrfs_path *p)
212{
213 int i;
214
215 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 p->slots[i] = 0;
217 if (!p->nodes[i])
218 continue;
219 if (p->locks[i]) {
220 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 p->locks[i] = 0;
222 }
223 free_extent_buffer(p->nodes[i]);
224 p->nodes[i] = NULL;
225 }
226}
227
228/*
229 * We want the transaction abort to print stack trace only for errors where the
230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231 * caused by external factors.
232 */
233bool __cold abort_should_print_stack(int error)
234{
235 switch (error) {
236 case -EIO:
237 case -EROFS:
238 case -ENOMEM:
239 return false;
240 }
241 return true;
242}
243
244/*
245 * safely gets a reference on the root node of a tree. A lock
246 * is not taken, so a concurrent writer may put a different node
247 * at the root of the tree. See btrfs_lock_root_node for the
248 * looping required.
249 *
250 * The extent buffer returned by this has a reference taken, so
251 * it won't disappear. It may stop being the root of the tree
252 * at any time because there are no locks held.
253 */
254struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255{
256 struct extent_buffer *eb;
257
258 while (1) {
259 rcu_read_lock();
260 eb = rcu_dereference(root->node);
261
262 /*
263 * RCU really hurts here, we could free up the root node because
264 * it was COWed but we may not get the new root node yet so do
265 * the inc_not_zero dance and if it doesn't work then
266 * synchronize_rcu and try again.
267 */
268 if (atomic_inc_not_zero(&eb->refs)) {
269 rcu_read_unlock();
270 break;
271 }
272 rcu_read_unlock();
273 synchronize_rcu();
274 }
275 return eb;
276}
277
278/*
279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280 * just get put onto a simple dirty list. Transaction walks this list to make
281 * sure they get properly updated on disk.
282 */
283static void add_root_to_dirty_list(struct btrfs_root *root)
284{
285 struct btrfs_fs_info *fs_info = root->fs_info;
286
287 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 return;
290
291 spin_lock(&fs_info->trans_lock);
292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 /* Want the extent tree to be the last on the list */
294 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295 list_move_tail(&root->dirty_list,
296 &fs_info->dirty_cowonly_roots);
297 else
298 list_move(&root->dirty_list,
299 &fs_info->dirty_cowonly_roots);
300 }
301 spin_unlock(&fs_info->trans_lock);
302}
303
304/*
305 * used by snapshot creation to make a copy of a root for a tree with
306 * a given objectid. The buffer with the new root node is returned in
307 * cow_ret, and this func returns zero on success or a negative error code.
308 */
309int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 struct btrfs_root *root,
311 struct extent_buffer *buf,
312 struct extent_buffer **cow_ret, u64 new_root_objectid)
313{
314 struct btrfs_fs_info *fs_info = root->fs_info;
315 struct extent_buffer *cow;
316 int ret = 0;
317 int level;
318 struct btrfs_disk_key disk_key;
319 u64 reloc_src_root = 0;
320
321 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322 trans->transid != fs_info->running_transaction->transid);
323 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324 trans->transid != root->last_trans);
325
326 level = btrfs_header_level(buf);
327 if (level == 0)
328 btrfs_item_key(buf, &disk_key, 0);
329 else
330 btrfs_node_key(buf, &disk_key, 0);
331
332 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333 reloc_src_root = btrfs_header_owner(buf);
334 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335 &disk_key, level, buf->start, 0,
336 reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337 if (IS_ERR(cow))
338 return PTR_ERR(cow);
339
340 copy_extent_buffer_full(cow, buf);
341 btrfs_set_header_bytenr(cow, cow->start);
342 btrfs_set_header_generation(cow, trans->transid);
343 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345 BTRFS_HEADER_FLAG_RELOC);
346 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348 else
349 btrfs_set_header_owner(cow, new_root_objectid);
350
351 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352
353 WARN_ON(btrfs_header_generation(buf) > trans->transid);
354 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355 ret = btrfs_inc_ref(trans, root, cow, 1);
356 else
357 ret = btrfs_inc_ref(trans, root, cow, 0);
358 if (ret) {
359 btrfs_tree_unlock(cow);
360 free_extent_buffer(cow);
361 btrfs_abort_transaction(trans, ret);
362 return ret;
363 }
364
365 btrfs_mark_buffer_dirty(trans, cow);
366 *cow_ret = cow;
367 return 0;
368}
369
370/*
371 * check if the tree block can be shared by multiple trees
372 */
373bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root,
375 struct extent_buffer *buf)
376{
377 const u64 buf_gen = btrfs_header_generation(buf);
378
379 /*
380 * Tree blocks not in shareable trees and tree roots are never shared.
381 * If a block was allocated after the last snapshot and the block was
382 * not allocated by tree relocation, we know the block is not shared.
383 */
384
385 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386 return false;
387
388 if (buf == root->node)
389 return false;
390
391 if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393 return false;
394
395 if (buf != root->commit_root)
396 return true;
397
398 /*
399 * An extent buffer that used to be the commit root may still be shared
400 * because the tree height may have increased and it became a child of a
401 * higher level root. This can happen when snapshotting a subvolume
402 * created in the current transaction.
403 */
404 if (buf_gen == trans->transid)
405 return true;
406
407 return false;
408}
409
410static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411 struct btrfs_root *root,
412 struct extent_buffer *buf,
413 struct extent_buffer *cow,
414 int *last_ref)
415{
416 struct btrfs_fs_info *fs_info = root->fs_info;
417 u64 refs;
418 u64 owner;
419 u64 flags;
420 u64 new_flags = 0;
421 int ret;
422
423 /*
424 * Backrefs update rules:
425 *
426 * Always use full backrefs for extent pointers in tree block
427 * allocated by tree relocation.
428 *
429 * If a shared tree block is no longer referenced by its owner
430 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
431 * use full backrefs for extent pointers in tree block.
432 *
433 * If a tree block is been relocating
434 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
435 * use full backrefs for extent pointers in tree block.
436 * The reason for this is some operations (such as drop tree)
437 * are only allowed for blocks use full backrefs.
438 */
439
440 if (btrfs_block_can_be_shared(trans, root, buf)) {
441 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
442 btrfs_header_level(buf), 1,
443 &refs, &flags, NULL);
444 if (ret)
445 return ret;
446 if (unlikely(refs == 0)) {
447 btrfs_crit(fs_info,
448 "found 0 references for tree block at bytenr %llu level %d root %llu",
449 buf->start, btrfs_header_level(buf),
450 btrfs_root_id(root));
451 ret = -EUCLEAN;
452 btrfs_abort_transaction(trans, ret);
453 return ret;
454 }
455 } else {
456 refs = 1;
457 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
460 else
461 flags = 0;
462 }
463
464 owner = btrfs_header_owner(buf);
465 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
466 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
467
468 if (refs > 1) {
469 if ((owner == root->root_key.objectid ||
470 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
471 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
472 ret = btrfs_inc_ref(trans, root, buf, 1);
473 if (ret)
474 return ret;
475
476 if (root->root_key.objectid ==
477 BTRFS_TREE_RELOC_OBJECTID) {
478 ret = btrfs_dec_ref(trans, root, buf, 0);
479 if (ret)
480 return ret;
481 ret = btrfs_inc_ref(trans, root, cow, 1);
482 if (ret)
483 return ret;
484 }
485 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
486 } else {
487
488 if (root->root_key.objectid ==
489 BTRFS_TREE_RELOC_OBJECTID)
490 ret = btrfs_inc_ref(trans, root, cow, 1);
491 else
492 ret = btrfs_inc_ref(trans, root, cow, 0);
493 if (ret)
494 return ret;
495 }
496 if (new_flags != 0) {
497 ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
498 if (ret)
499 return ret;
500 }
501 } else {
502 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
503 if (root->root_key.objectid ==
504 BTRFS_TREE_RELOC_OBJECTID)
505 ret = btrfs_inc_ref(trans, root, cow, 1);
506 else
507 ret = btrfs_inc_ref(trans, root, cow, 0);
508 if (ret)
509 return ret;
510 ret = btrfs_dec_ref(trans, root, buf, 1);
511 if (ret)
512 return ret;
513 }
514 btrfs_clear_buffer_dirty(trans, buf);
515 *last_ref = 1;
516 }
517 return 0;
518}
519
520/*
521 * does the dirty work in cow of a single block. The parent block (if
522 * supplied) is updated to point to the new cow copy. The new buffer is marked
523 * dirty and returned locked. If you modify the block it needs to be marked
524 * dirty again.
525 *
526 * search_start -- an allocation hint for the new block
527 *
528 * empty_size -- a hint that you plan on doing more cow. This is the size in
529 * bytes the allocator should try to find free next to the block it returns.
530 * This is just a hint and may be ignored by the allocator.
531 */
532int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
533 struct btrfs_root *root,
534 struct extent_buffer *buf,
535 struct extent_buffer *parent, int parent_slot,
536 struct extent_buffer **cow_ret,
537 u64 search_start, u64 empty_size,
538 enum btrfs_lock_nesting nest)
539{
540 struct btrfs_fs_info *fs_info = root->fs_info;
541 struct btrfs_disk_key disk_key;
542 struct extent_buffer *cow;
543 int level, ret;
544 int last_ref = 0;
545 int unlock_orig = 0;
546 u64 parent_start = 0;
547 u64 reloc_src_root = 0;
548
549 if (*cow_ret == buf)
550 unlock_orig = 1;
551
552 btrfs_assert_tree_write_locked(buf);
553
554 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
555 trans->transid != fs_info->running_transaction->transid);
556 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
557 trans->transid != root->last_trans);
558
559 level = btrfs_header_level(buf);
560
561 if (level == 0)
562 btrfs_item_key(buf, &disk_key, 0);
563 else
564 btrfs_node_key(buf, &disk_key, 0);
565
566 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
567 if (parent)
568 parent_start = parent->start;
569 reloc_src_root = btrfs_header_owner(buf);
570 }
571 cow = btrfs_alloc_tree_block(trans, root, parent_start,
572 root->root_key.objectid, &disk_key, level,
573 search_start, empty_size, reloc_src_root, nest);
574 if (IS_ERR(cow))
575 return PTR_ERR(cow);
576
577 /* cow is set to blocking by btrfs_init_new_buffer */
578
579 copy_extent_buffer_full(cow, buf);
580 btrfs_set_header_bytenr(cow, cow->start);
581 btrfs_set_header_generation(cow, trans->transid);
582 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
583 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
584 BTRFS_HEADER_FLAG_RELOC);
585 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
586 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
587 else
588 btrfs_set_header_owner(cow, root->root_key.objectid);
589
590 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
591
592 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
593 if (ret) {
594 btrfs_tree_unlock(cow);
595 free_extent_buffer(cow);
596 btrfs_abort_transaction(trans, ret);
597 return ret;
598 }
599
600 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
601 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
602 if (ret) {
603 btrfs_tree_unlock(cow);
604 free_extent_buffer(cow);
605 btrfs_abort_transaction(trans, ret);
606 return ret;
607 }
608 }
609
610 if (buf == root->node) {
611 WARN_ON(parent && parent != buf);
612 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
613 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
614 parent_start = buf->start;
615
616 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
617 if (ret < 0) {
618 btrfs_tree_unlock(cow);
619 free_extent_buffer(cow);
620 btrfs_abort_transaction(trans, ret);
621 return ret;
622 }
623 atomic_inc(&cow->refs);
624 rcu_assign_pointer(root->node, cow);
625
626 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
627 parent_start, last_ref);
628 free_extent_buffer(buf);
629 add_root_to_dirty_list(root);
630 } else {
631 WARN_ON(trans->transid != btrfs_header_generation(parent));
632 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633 BTRFS_MOD_LOG_KEY_REPLACE);
634 if (ret) {
635 btrfs_tree_unlock(cow);
636 free_extent_buffer(cow);
637 btrfs_abort_transaction(trans, ret);
638 return ret;
639 }
640 btrfs_set_node_blockptr(parent, parent_slot,
641 cow->start);
642 btrfs_set_node_ptr_generation(parent, parent_slot,
643 trans->transid);
644 btrfs_mark_buffer_dirty(trans, parent);
645 if (last_ref) {
646 ret = btrfs_tree_mod_log_free_eb(buf);
647 if (ret) {
648 btrfs_tree_unlock(cow);
649 free_extent_buffer(cow);
650 btrfs_abort_transaction(trans, ret);
651 return ret;
652 }
653 }
654 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
655 parent_start, last_ref);
656 }
657 if (unlock_orig)
658 btrfs_tree_unlock(buf);
659 free_extent_buffer_stale(buf);
660 btrfs_mark_buffer_dirty(trans, cow);
661 *cow_ret = cow;
662 return 0;
663}
664
665static inline int should_cow_block(struct btrfs_trans_handle *trans,
666 struct btrfs_root *root,
667 struct extent_buffer *buf)
668{
669 if (btrfs_is_testing(root->fs_info))
670 return 0;
671
672 /* Ensure we can see the FORCE_COW bit */
673 smp_mb__before_atomic();
674
675 /*
676 * We do not need to cow a block if
677 * 1) this block is not created or changed in this transaction;
678 * 2) this block does not belong to TREE_RELOC tree;
679 * 3) the root is not forced COW.
680 *
681 * What is forced COW:
682 * when we create snapshot during committing the transaction,
683 * after we've finished copying src root, we must COW the shared
684 * block to ensure the metadata consistency.
685 */
686 if (btrfs_header_generation(buf) == trans->transid &&
687 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
688 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
689 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
690 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
691 return 0;
692 return 1;
693}
694
695/*
696 * COWs a single block, see btrfs_force_cow_block() for the real work.
697 * This version of it has extra checks so that a block isn't COWed more than
698 * once per transaction, as long as it hasn't been written yet
699 */
700int btrfs_cow_block(struct btrfs_trans_handle *trans,
701 struct btrfs_root *root, struct extent_buffer *buf,
702 struct extent_buffer *parent, int parent_slot,
703 struct extent_buffer **cow_ret,
704 enum btrfs_lock_nesting nest)
705{
706 struct btrfs_fs_info *fs_info = root->fs_info;
707 u64 search_start;
708 int ret;
709
710 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
711 btrfs_abort_transaction(trans, -EUCLEAN);
712 btrfs_crit(fs_info,
713 "attempt to COW block %llu on root %llu that is being deleted",
714 buf->start, btrfs_root_id(root));
715 return -EUCLEAN;
716 }
717
718 /*
719 * COWing must happen through a running transaction, which always
720 * matches the current fs generation (it's a transaction with a state
721 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
722 * into error state to prevent the commit of any transaction.
723 */
724 if (unlikely(trans->transaction != fs_info->running_transaction ||
725 trans->transid != fs_info->generation)) {
726 btrfs_abort_transaction(trans, -EUCLEAN);
727 btrfs_crit(fs_info,
728"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
729 buf->start, btrfs_root_id(root), trans->transid,
730 fs_info->running_transaction->transid,
731 fs_info->generation);
732 return -EUCLEAN;
733 }
734
735 if (!should_cow_block(trans, root, buf)) {
736 *cow_ret = buf;
737 return 0;
738 }
739
740 search_start = round_down(buf->start, SZ_1G);
741
742 /*
743 * Before CoWing this block for later modification, check if it's
744 * the subtree root and do the delayed subtree trace if needed.
745 *
746 * Also We don't care about the error, as it's handled internally.
747 */
748 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
749 ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
750 cow_ret, search_start, 0, nest);
751
752 trace_btrfs_cow_block(root, buf, *cow_ret);
753
754 return ret;
755}
756ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
757
758/*
759 * same as comp_keys only with two btrfs_key's
760 */
761int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
762{
763 if (k1->objectid > k2->objectid)
764 return 1;
765 if (k1->objectid < k2->objectid)
766 return -1;
767 if (k1->type > k2->type)
768 return 1;
769 if (k1->type < k2->type)
770 return -1;
771 if (k1->offset > k2->offset)
772 return 1;
773 if (k1->offset < k2->offset)
774 return -1;
775 return 0;
776}
777
778/*
779 * Search for a key in the given extent_buffer.
780 *
781 * The lower boundary for the search is specified by the slot number @first_slot.
782 * Use a value of 0 to search over the whole extent buffer. Works for both
783 * leaves and nodes.
784 *
785 * The slot in the extent buffer is returned via @slot. If the key exists in the
786 * extent buffer, then @slot will point to the slot where the key is, otherwise
787 * it points to the slot where you would insert the key.
788 *
789 * Slot may point to the total number of items (i.e. one position beyond the last
790 * key) if the key is bigger than the last key in the extent buffer.
791 */
792int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
793 const struct btrfs_key *key, int *slot)
794{
795 unsigned long p;
796 int item_size;
797 /*
798 * Use unsigned types for the low and high slots, so that we get a more
799 * efficient division in the search loop below.
800 */
801 u32 low = first_slot;
802 u32 high = btrfs_header_nritems(eb);
803 int ret;
804 const int key_size = sizeof(struct btrfs_disk_key);
805
806 if (unlikely(low > high)) {
807 btrfs_err(eb->fs_info,
808 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
809 __func__, low, high, eb->start,
810 btrfs_header_owner(eb), btrfs_header_level(eb));
811 return -EINVAL;
812 }
813
814 if (btrfs_header_level(eb) == 0) {
815 p = offsetof(struct btrfs_leaf, items);
816 item_size = sizeof(struct btrfs_item);
817 } else {
818 p = offsetof(struct btrfs_node, ptrs);
819 item_size = sizeof(struct btrfs_key_ptr);
820 }
821
822 while (low < high) {
823 const int unit_size = folio_size(eb->folios[0]);
824 unsigned long oil;
825 unsigned long offset;
826 struct btrfs_disk_key *tmp;
827 struct btrfs_disk_key unaligned;
828 int mid;
829
830 mid = (low + high) / 2;
831 offset = p + mid * item_size;
832 oil = get_eb_offset_in_folio(eb, offset);
833
834 if (oil + key_size <= unit_size) {
835 const unsigned long idx = get_eb_folio_index(eb, offset);
836 char *kaddr = folio_address(eb->folios[idx]);
837
838 oil = get_eb_offset_in_folio(eb, offset);
839 tmp = (struct btrfs_disk_key *)(kaddr + oil);
840 } else {
841 read_extent_buffer(eb, &unaligned, offset, key_size);
842 tmp = &unaligned;
843 }
844
845 ret = btrfs_comp_keys(tmp, key);
846
847 if (ret < 0)
848 low = mid + 1;
849 else if (ret > 0)
850 high = mid;
851 else {
852 *slot = mid;
853 return 0;
854 }
855 }
856 *slot = low;
857 return 1;
858}
859
860static void root_add_used_bytes(struct btrfs_root *root)
861{
862 spin_lock(&root->accounting_lock);
863 btrfs_set_root_used(&root->root_item,
864 btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
865 spin_unlock(&root->accounting_lock);
866}
867
868static void root_sub_used_bytes(struct btrfs_root *root)
869{
870 spin_lock(&root->accounting_lock);
871 btrfs_set_root_used(&root->root_item,
872 btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
873 spin_unlock(&root->accounting_lock);
874}
875
876/* given a node and slot number, this reads the blocks it points to. The
877 * extent buffer is returned with a reference taken (but unlocked).
878 */
879struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
880 int slot)
881{
882 int level = btrfs_header_level(parent);
883 struct btrfs_tree_parent_check check = { 0 };
884 struct extent_buffer *eb;
885
886 if (slot < 0 || slot >= btrfs_header_nritems(parent))
887 return ERR_PTR(-ENOENT);
888
889 ASSERT(level);
890
891 check.level = level - 1;
892 check.transid = btrfs_node_ptr_generation(parent, slot);
893 check.owner_root = btrfs_header_owner(parent);
894 check.has_first_key = true;
895 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
896
897 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
898 &check);
899 if (IS_ERR(eb))
900 return eb;
901 if (!extent_buffer_uptodate(eb)) {
902 free_extent_buffer(eb);
903 return ERR_PTR(-EIO);
904 }
905
906 return eb;
907}
908
909/*
910 * node level balancing, used to make sure nodes are in proper order for
911 * item deletion. We balance from the top down, so we have to make sure
912 * that a deletion won't leave an node completely empty later on.
913 */
914static noinline int balance_level(struct btrfs_trans_handle *trans,
915 struct btrfs_root *root,
916 struct btrfs_path *path, int level)
917{
918 struct btrfs_fs_info *fs_info = root->fs_info;
919 struct extent_buffer *right = NULL;
920 struct extent_buffer *mid;
921 struct extent_buffer *left = NULL;
922 struct extent_buffer *parent = NULL;
923 int ret = 0;
924 int wret;
925 int pslot;
926 int orig_slot = path->slots[level];
927 u64 orig_ptr;
928
929 ASSERT(level > 0);
930
931 mid = path->nodes[level];
932
933 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
934 WARN_ON(btrfs_header_generation(mid) != trans->transid);
935
936 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
937
938 if (level < BTRFS_MAX_LEVEL - 1) {
939 parent = path->nodes[level + 1];
940 pslot = path->slots[level + 1];
941 }
942
943 /*
944 * deal with the case where there is only one pointer in the root
945 * by promoting the node below to a root
946 */
947 if (!parent) {
948 struct extent_buffer *child;
949
950 if (btrfs_header_nritems(mid) != 1)
951 return 0;
952
953 /* promote the child to a root */
954 child = btrfs_read_node_slot(mid, 0);
955 if (IS_ERR(child)) {
956 ret = PTR_ERR(child);
957 goto out;
958 }
959
960 btrfs_tree_lock(child);
961 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
962 BTRFS_NESTING_COW);
963 if (ret) {
964 btrfs_tree_unlock(child);
965 free_extent_buffer(child);
966 goto out;
967 }
968
969 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
970 if (ret < 0) {
971 btrfs_tree_unlock(child);
972 free_extent_buffer(child);
973 btrfs_abort_transaction(trans, ret);
974 goto out;
975 }
976 rcu_assign_pointer(root->node, child);
977
978 add_root_to_dirty_list(root);
979 btrfs_tree_unlock(child);
980
981 path->locks[level] = 0;
982 path->nodes[level] = NULL;
983 btrfs_clear_buffer_dirty(trans, mid);
984 btrfs_tree_unlock(mid);
985 /* once for the path */
986 free_extent_buffer(mid);
987
988 root_sub_used_bytes(root);
989 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
990 /* once for the root ptr */
991 free_extent_buffer_stale(mid);
992 return 0;
993 }
994 if (btrfs_header_nritems(mid) >
995 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
996 return 0;
997
998 if (pslot) {
999 left = btrfs_read_node_slot(parent, pslot - 1);
1000 if (IS_ERR(left)) {
1001 ret = PTR_ERR(left);
1002 left = NULL;
1003 goto out;
1004 }
1005
1006 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1007 wret = btrfs_cow_block(trans, root, left,
1008 parent, pslot - 1, &left,
1009 BTRFS_NESTING_LEFT_COW);
1010 if (wret) {
1011 ret = wret;
1012 goto out;
1013 }
1014 }
1015
1016 if (pslot + 1 < btrfs_header_nritems(parent)) {
1017 right = btrfs_read_node_slot(parent, pslot + 1);
1018 if (IS_ERR(right)) {
1019 ret = PTR_ERR(right);
1020 right = NULL;
1021 goto out;
1022 }
1023
1024 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1025 wret = btrfs_cow_block(trans, root, right,
1026 parent, pslot + 1, &right,
1027 BTRFS_NESTING_RIGHT_COW);
1028 if (wret) {
1029 ret = wret;
1030 goto out;
1031 }
1032 }
1033
1034 /* first, try to make some room in the middle buffer */
1035 if (left) {
1036 orig_slot += btrfs_header_nritems(left);
1037 wret = push_node_left(trans, left, mid, 1);
1038 if (wret < 0)
1039 ret = wret;
1040 }
1041
1042 /*
1043 * then try to empty the right most buffer into the middle
1044 */
1045 if (right) {
1046 wret = push_node_left(trans, mid, right, 1);
1047 if (wret < 0 && wret != -ENOSPC)
1048 ret = wret;
1049 if (btrfs_header_nritems(right) == 0) {
1050 btrfs_clear_buffer_dirty(trans, right);
1051 btrfs_tree_unlock(right);
1052 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1053 if (ret < 0) {
1054 free_extent_buffer_stale(right);
1055 right = NULL;
1056 goto out;
1057 }
1058 root_sub_used_bytes(root);
1059 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1060 0, 1);
1061 free_extent_buffer_stale(right);
1062 right = NULL;
1063 } else {
1064 struct btrfs_disk_key right_key;
1065 btrfs_node_key(right, &right_key, 0);
1066 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1067 BTRFS_MOD_LOG_KEY_REPLACE);
1068 if (ret < 0) {
1069 btrfs_abort_transaction(trans, ret);
1070 goto out;
1071 }
1072 btrfs_set_node_key(parent, &right_key, pslot + 1);
1073 btrfs_mark_buffer_dirty(trans, parent);
1074 }
1075 }
1076 if (btrfs_header_nritems(mid) == 1) {
1077 /*
1078 * we're not allowed to leave a node with one item in the
1079 * tree during a delete. A deletion from lower in the tree
1080 * could try to delete the only pointer in this node.
1081 * So, pull some keys from the left.
1082 * There has to be a left pointer at this point because
1083 * otherwise we would have pulled some pointers from the
1084 * right
1085 */
1086 if (unlikely(!left)) {
1087 btrfs_crit(fs_info,
1088"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1089 parent->start, btrfs_header_level(parent),
1090 mid->start, btrfs_root_id(root));
1091 ret = -EUCLEAN;
1092 btrfs_abort_transaction(trans, ret);
1093 goto out;
1094 }
1095 wret = balance_node_right(trans, mid, left);
1096 if (wret < 0) {
1097 ret = wret;
1098 goto out;
1099 }
1100 if (wret == 1) {
1101 wret = push_node_left(trans, left, mid, 1);
1102 if (wret < 0)
1103 ret = wret;
1104 }
1105 BUG_ON(wret == 1);
1106 }
1107 if (btrfs_header_nritems(mid) == 0) {
1108 btrfs_clear_buffer_dirty(trans, mid);
1109 btrfs_tree_unlock(mid);
1110 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1111 if (ret < 0) {
1112 free_extent_buffer_stale(mid);
1113 mid = NULL;
1114 goto out;
1115 }
1116 root_sub_used_bytes(root);
1117 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1118 free_extent_buffer_stale(mid);
1119 mid = NULL;
1120 } else {
1121 /* update the parent key to reflect our changes */
1122 struct btrfs_disk_key mid_key;
1123 btrfs_node_key(mid, &mid_key, 0);
1124 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1125 BTRFS_MOD_LOG_KEY_REPLACE);
1126 if (ret < 0) {
1127 btrfs_abort_transaction(trans, ret);
1128 goto out;
1129 }
1130 btrfs_set_node_key(parent, &mid_key, pslot);
1131 btrfs_mark_buffer_dirty(trans, parent);
1132 }
1133
1134 /* update the path */
1135 if (left) {
1136 if (btrfs_header_nritems(left) > orig_slot) {
1137 atomic_inc(&left->refs);
1138 /* left was locked after cow */
1139 path->nodes[level] = left;
1140 path->slots[level + 1] -= 1;
1141 path->slots[level] = orig_slot;
1142 if (mid) {
1143 btrfs_tree_unlock(mid);
1144 free_extent_buffer(mid);
1145 }
1146 } else {
1147 orig_slot -= btrfs_header_nritems(left);
1148 path->slots[level] = orig_slot;
1149 }
1150 }
1151 /* double check we haven't messed things up */
1152 if (orig_ptr !=
1153 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1154 BUG();
1155out:
1156 if (right) {
1157 btrfs_tree_unlock(right);
1158 free_extent_buffer(right);
1159 }
1160 if (left) {
1161 if (path->nodes[level] != left)
1162 btrfs_tree_unlock(left);
1163 free_extent_buffer(left);
1164 }
1165 return ret;
1166}
1167
1168/* Node balancing for insertion. Here we only split or push nodes around
1169 * when they are completely full. This is also done top down, so we
1170 * have to be pessimistic.
1171 */
1172static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1173 struct btrfs_root *root,
1174 struct btrfs_path *path, int level)
1175{
1176 struct btrfs_fs_info *fs_info = root->fs_info;
1177 struct extent_buffer *right = NULL;
1178 struct extent_buffer *mid;
1179 struct extent_buffer *left = NULL;
1180 struct extent_buffer *parent = NULL;
1181 int ret = 0;
1182 int wret;
1183 int pslot;
1184 int orig_slot = path->slots[level];
1185
1186 if (level == 0)
1187 return 1;
1188
1189 mid = path->nodes[level];
1190 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1191
1192 if (level < BTRFS_MAX_LEVEL - 1) {
1193 parent = path->nodes[level + 1];
1194 pslot = path->slots[level + 1];
1195 }
1196
1197 if (!parent)
1198 return 1;
1199
1200 /* first, try to make some room in the middle buffer */
1201 if (pslot) {
1202 u32 left_nr;
1203
1204 left = btrfs_read_node_slot(parent, pslot - 1);
1205 if (IS_ERR(left))
1206 return PTR_ERR(left);
1207
1208 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1209
1210 left_nr = btrfs_header_nritems(left);
1211 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1212 wret = 1;
1213 } else {
1214 ret = btrfs_cow_block(trans, root, left, parent,
1215 pslot - 1, &left,
1216 BTRFS_NESTING_LEFT_COW);
1217 if (ret)
1218 wret = 1;
1219 else {
1220 wret = push_node_left(trans, left, mid, 0);
1221 }
1222 }
1223 if (wret < 0)
1224 ret = wret;
1225 if (wret == 0) {
1226 struct btrfs_disk_key disk_key;
1227 orig_slot += left_nr;
1228 btrfs_node_key(mid, &disk_key, 0);
1229 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1230 BTRFS_MOD_LOG_KEY_REPLACE);
1231 if (ret < 0) {
1232 btrfs_tree_unlock(left);
1233 free_extent_buffer(left);
1234 btrfs_abort_transaction(trans, ret);
1235 return ret;
1236 }
1237 btrfs_set_node_key(parent, &disk_key, pslot);
1238 btrfs_mark_buffer_dirty(trans, parent);
1239 if (btrfs_header_nritems(left) > orig_slot) {
1240 path->nodes[level] = left;
1241 path->slots[level + 1] -= 1;
1242 path->slots[level] = orig_slot;
1243 btrfs_tree_unlock(mid);
1244 free_extent_buffer(mid);
1245 } else {
1246 orig_slot -=
1247 btrfs_header_nritems(left);
1248 path->slots[level] = orig_slot;
1249 btrfs_tree_unlock(left);
1250 free_extent_buffer(left);
1251 }
1252 return 0;
1253 }
1254 btrfs_tree_unlock(left);
1255 free_extent_buffer(left);
1256 }
1257
1258 /*
1259 * then try to empty the right most buffer into the middle
1260 */
1261 if (pslot + 1 < btrfs_header_nritems(parent)) {
1262 u32 right_nr;
1263
1264 right = btrfs_read_node_slot(parent, pslot + 1);
1265 if (IS_ERR(right))
1266 return PTR_ERR(right);
1267
1268 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1269
1270 right_nr = btrfs_header_nritems(right);
1271 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1272 wret = 1;
1273 } else {
1274 ret = btrfs_cow_block(trans, root, right,
1275 parent, pslot + 1,
1276 &right, BTRFS_NESTING_RIGHT_COW);
1277 if (ret)
1278 wret = 1;
1279 else {
1280 wret = balance_node_right(trans, right, mid);
1281 }
1282 }
1283 if (wret < 0)
1284 ret = wret;
1285 if (wret == 0) {
1286 struct btrfs_disk_key disk_key;
1287
1288 btrfs_node_key(right, &disk_key, 0);
1289 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1290 BTRFS_MOD_LOG_KEY_REPLACE);
1291 if (ret < 0) {
1292 btrfs_tree_unlock(right);
1293 free_extent_buffer(right);
1294 btrfs_abort_transaction(trans, ret);
1295 return ret;
1296 }
1297 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1298 btrfs_mark_buffer_dirty(trans, parent);
1299
1300 if (btrfs_header_nritems(mid) <= orig_slot) {
1301 path->nodes[level] = right;
1302 path->slots[level + 1] += 1;
1303 path->slots[level] = orig_slot -
1304 btrfs_header_nritems(mid);
1305 btrfs_tree_unlock(mid);
1306 free_extent_buffer(mid);
1307 } else {
1308 btrfs_tree_unlock(right);
1309 free_extent_buffer(right);
1310 }
1311 return 0;
1312 }
1313 btrfs_tree_unlock(right);
1314 free_extent_buffer(right);
1315 }
1316 return 1;
1317}
1318
1319/*
1320 * readahead one full node of leaves, finding things that are close
1321 * to the block in 'slot', and triggering ra on them.
1322 */
1323static void reada_for_search(struct btrfs_fs_info *fs_info,
1324 struct btrfs_path *path,
1325 int level, int slot, u64 objectid)
1326{
1327 struct extent_buffer *node;
1328 struct btrfs_disk_key disk_key;
1329 u32 nritems;
1330 u64 search;
1331 u64 target;
1332 u64 nread = 0;
1333 u64 nread_max;
1334 u32 nr;
1335 u32 blocksize;
1336 u32 nscan = 0;
1337
1338 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1339 return;
1340
1341 if (!path->nodes[level])
1342 return;
1343
1344 node = path->nodes[level];
1345
1346 /*
1347 * Since the time between visiting leaves is much shorter than the time
1348 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1349 * much IO at once (possibly random).
1350 */
1351 if (path->reada == READA_FORWARD_ALWAYS) {
1352 if (level > 1)
1353 nread_max = node->fs_info->nodesize;
1354 else
1355 nread_max = SZ_128K;
1356 } else {
1357 nread_max = SZ_64K;
1358 }
1359
1360 search = btrfs_node_blockptr(node, slot);
1361 blocksize = fs_info->nodesize;
1362 if (path->reada != READA_FORWARD_ALWAYS) {
1363 struct extent_buffer *eb;
1364
1365 eb = find_extent_buffer(fs_info, search);
1366 if (eb) {
1367 free_extent_buffer(eb);
1368 return;
1369 }
1370 }
1371
1372 target = search;
1373
1374 nritems = btrfs_header_nritems(node);
1375 nr = slot;
1376
1377 while (1) {
1378 if (path->reada == READA_BACK) {
1379 if (nr == 0)
1380 break;
1381 nr--;
1382 } else if (path->reada == READA_FORWARD ||
1383 path->reada == READA_FORWARD_ALWAYS) {
1384 nr++;
1385 if (nr >= nritems)
1386 break;
1387 }
1388 if (path->reada == READA_BACK && objectid) {
1389 btrfs_node_key(node, &disk_key, nr);
1390 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1391 break;
1392 }
1393 search = btrfs_node_blockptr(node, nr);
1394 if (path->reada == READA_FORWARD_ALWAYS ||
1395 (search <= target && target - search <= 65536) ||
1396 (search > target && search - target <= 65536)) {
1397 btrfs_readahead_node_child(node, nr);
1398 nread += blocksize;
1399 }
1400 nscan++;
1401 if (nread > nread_max || nscan > 32)
1402 break;
1403 }
1404}
1405
1406static noinline void reada_for_balance(struct btrfs_path *path, int level)
1407{
1408 struct extent_buffer *parent;
1409 int slot;
1410 int nritems;
1411
1412 parent = path->nodes[level + 1];
1413 if (!parent)
1414 return;
1415
1416 nritems = btrfs_header_nritems(parent);
1417 slot = path->slots[level + 1];
1418
1419 if (slot > 0)
1420 btrfs_readahead_node_child(parent, slot - 1);
1421 if (slot + 1 < nritems)
1422 btrfs_readahead_node_child(parent, slot + 1);
1423}
1424
1425
1426/*
1427 * when we walk down the tree, it is usually safe to unlock the higher layers
1428 * in the tree. The exceptions are when our path goes through slot 0, because
1429 * operations on the tree might require changing key pointers higher up in the
1430 * tree.
1431 *
1432 * callers might also have set path->keep_locks, which tells this code to keep
1433 * the lock if the path points to the last slot in the block. This is part of
1434 * walking through the tree, and selecting the next slot in the higher block.
1435 *
1436 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1437 * if lowest_unlock is 1, level 0 won't be unlocked
1438 */
1439static noinline void unlock_up(struct btrfs_path *path, int level,
1440 int lowest_unlock, int min_write_lock_level,
1441 int *write_lock_level)
1442{
1443 int i;
1444 int skip_level = level;
1445 bool check_skip = true;
1446
1447 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1448 if (!path->nodes[i])
1449 break;
1450 if (!path->locks[i])
1451 break;
1452
1453 if (check_skip) {
1454 if (path->slots[i] == 0) {
1455 skip_level = i + 1;
1456 continue;
1457 }
1458
1459 if (path->keep_locks) {
1460 u32 nritems;
1461
1462 nritems = btrfs_header_nritems(path->nodes[i]);
1463 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1464 skip_level = i + 1;
1465 continue;
1466 }
1467 }
1468 }
1469
1470 if (i >= lowest_unlock && i > skip_level) {
1471 check_skip = false;
1472 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1473 path->locks[i] = 0;
1474 if (write_lock_level &&
1475 i > min_write_lock_level &&
1476 i <= *write_lock_level) {
1477 *write_lock_level = i - 1;
1478 }
1479 }
1480 }
1481}
1482
1483/*
1484 * Helper function for btrfs_search_slot() and other functions that do a search
1485 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1486 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1487 * its pages from disk.
1488 *
1489 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1490 * whole btree search, starting again from the current root node.
1491 */
1492static int
1493read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1494 struct extent_buffer **eb_ret, int level, int slot,
1495 const struct btrfs_key *key)
1496{
1497 struct btrfs_fs_info *fs_info = root->fs_info;
1498 struct btrfs_tree_parent_check check = { 0 };
1499 u64 blocknr;
1500 u64 gen;
1501 struct extent_buffer *tmp;
1502 int ret;
1503 int parent_level;
1504 bool unlock_up;
1505
1506 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1507 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1508 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1509 parent_level = btrfs_header_level(*eb_ret);
1510 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1511 check.has_first_key = true;
1512 check.level = parent_level - 1;
1513 check.transid = gen;
1514 check.owner_root = root->root_key.objectid;
1515
1516 /*
1517 * If we need to read an extent buffer from disk and we are holding locks
1518 * on upper level nodes, we unlock all the upper nodes before reading the
1519 * extent buffer, and then return -EAGAIN to the caller as it needs to
1520 * restart the search. We don't release the lock on the current level
1521 * because we need to walk this node to figure out which blocks to read.
1522 */
1523 tmp = find_extent_buffer(fs_info, blocknr);
1524 if (tmp) {
1525 if (p->reada == READA_FORWARD_ALWAYS)
1526 reada_for_search(fs_info, p, level, slot, key->objectid);
1527
1528 /* first we do an atomic uptodate check */
1529 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1530 /*
1531 * Do extra check for first_key, eb can be stale due to
1532 * being cached, read from scrub, or have multiple
1533 * parents (shared tree blocks).
1534 */
1535 if (btrfs_verify_level_key(tmp,
1536 parent_level - 1, &check.first_key, gen)) {
1537 free_extent_buffer(tmp);
1538 return -EUCLEAN;
1539 }
1540 *eb_ret = tmp;
1541 return 0;
1542 }
1543
1544 if (p->nowait) {
1545 free_extent_buffer(tmp);
1546 return -EAGAIN;
1547 }
1548
1549 if (unlock_up)
1550 btrfs_unlock_up_safe(p, level + 1);
1551
1552 /* now we're allowed to do a blocking uptodate check */
1553 ret = btrfs_read_extent_buffer(tmp, &check);
1554 if (ret) {
1555 free_extent_buffer(tmp);
1556 btrfs_release_path(p);
1557 return -EIO;
1558 }
1559 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1560 free_extent_buffer(tmp);
1561 btrfs_release_path(p);
1562 return -EUCLEAN;
1563 }
1564
1565 if (unlock_up)
1566 ret = -EAGAIN;
1567
1568 goto out;
1569 } else if (p->nowait) {
1570 return -EAGAIN;
1571 }
1572
1573 if (unlock_up) {
1574 btrfs_unlock_up_safe(p, level + 1);
1575 ret = -EAGAIN;
1576 } else {
1577 ret = 0;
1578 }
1579
1580 if (p->reada != READA_NONE)
1581 reada_for_search(fs_info, p, level, slot, key->objectid);
1582
1583 tmp = read_tree_block(fs_info, blocknr, &check);
1584 if (IS_ERR(tmp)) {
1585 btrfs_release_path(p);
1586 return PTR_ERR(tmp);
1587 }
1588 /*
1589 * If the read above didn't mark this buffer up to date,
1590 * it will never end up being up to date. Set ret to EIO now
1591 * and give up so that our caller doesn't loop forever
1592 * on our EAGAINs.
1593 */
1594 if (!extent_buffer_uptodate(tmp))
1595 ret = -EIO;
1596
1597out:
1598 if (ret == 0) {
1599 *eb_ret = tmp;
1600 } else {
1601 free_extent_buffer(tmp);
1602 btrfs_release_path(p);
1603 }
1604
1605 return ret;
1606}
1607
1608/*
1609 * helper function for btrfs_search_slot. This does all of the checks
1610 * for node-level blocks and does any balancing required based on
1611 * the ins_len.
1612 *
1613 * If no extra work was required, zero is returned. If we had to
1614 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1615 * start over
1616 */
1617static int
1618setup_nodes_for_search(struct btrfs_trans_handle *trans,
1619 struct btrfs_root *root, struct btrfs_path *p,
1620 struct extent_buffer *b, int level, int ins_len,
1621 int *write_lock_level)
1622{
1623 struct btrfs_fs_info *fs_info = root->fs_info;
1624 int ret = 0;
1625
1626 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1627 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1628
1629 if (*write_lock_level < level + 1) {
1630 *write_lock_level = level + 1;
1631 btrfs_release_path(p);
1632 return -EAGAIN;
1633 }
1634
1635 reada_for_balance(p, level);
1636 ret = split_node(trans, root, p, level);
1637
1638 b = p->nodes[level];
1639 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1640 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1641
1642 if (*write_lock_level < level + 1) {
1643 *write_lock_level = level + 1;
1644 btrfs_release_path(p);
1645 return -EAGAIN;
1646 }
1647
1648 reada_for_balance(p, level);
1649 ret = balance_level(trans, root, p, level);
1650 if (ret)
1651 return ret;
1652
1653 b = p->nodes[level];
1654 if (!b) {
1655 btrfs_release_path(p);
1656 return -EAGAIN;
1657 }
1658 BUG_ON(btrfs_header_nritems(b) == 1);
1659 }
1660 return ret;
1661}
1662
1663int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1664 u64 iobjectid, u64 ioff, u8 key_type,
1665 struct btrfs_key *found_key)
1666{
1667 int ret;
1668 struct btrfs_key key;
1669 struct extent_buffer *eb;
1670
1671 ASSERT(path);
1672 ASSERT(found_key);
1673
1674 key.type = key_type;
1675 key.objectid = iobjectid;
1676 key.offset = ioff;
1677
1678 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1679 if (ret < 0)
1680 return ret;
1681
1682 eb = path->nodes[0];
1683 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1684 ret = btrfs_next_leaf(fs_root, path);
1685 if (ret)
1686 return ret;
1687 eb = path->nodes[0];
1688 }
1689
1690 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1691 if (found_key->type != key.type ||
1692 found_key->objectid != key.objectid)
1693 return 1;
1694
1695 return 0;
1696}
1697
1698static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1699 struct btrfs_path *p,
1700 int write_lock_level)
1701{
1702 struct extent_buffer *b;
1703 int root_lock = 0;
1704 int level = 0;
1705
1706 if (p->search_commit_root) {
1707 b = root->commit_root;
1708 atomic_inc(&b->refs);
1709 level = btrfs_header_level(b);
1710 /*
1711 * Ensure that all callers have set skip_locking when
1712 * p->search_commit_root = 1.
1713 */
1714 ASSERT(p->skip_locking == 1);
1715
1716 goto out;
1717 }
1718
1719 if (p->skip_locking) {
1720 b = btrfs_root_node(root);
1721 level = btrfs_header_level(b);
1722 goto out;
1723 }
1724
1725 /* We try very hard to do read locks on the root */
1726 root_lock = BTRFS_READ_LOCK;
1727
1728 /*
1729 * If the level is set to maximum, we can skip trying to get the read
1730 * lock.
1731 */
1732 if (write_lock_level < BTRFS_MAX_LEVEL) {
1733 /*
1734 * We don't know the level of the root node until we actually
1735 * have it read locked
1736 */
1737 if (p->nowait) {
1738 b = btrfs_try_read_lock_root_node(root);
1739 if (IS_ERR(b))
1740 return b;
1741 } else {
1742 b = btrfs_read_lock_root_node(root);
1743 }
1744 level = btrfs_header_level(b);
1745 if (level > write_lock_level)
1746 goto out;
1747
1748 /* Whoops, must trade for write lock */
1749 btrfs_tree_read_unlock(b);
1750 free_extent_buffer(b);
1751 }
1752
1753 b = btrfs_lock_root_node(root);
1754 root_lock = BTRFS_WRITE_LOCK;
1755
1756 /* The level might have changed, check again */
1757 level = btrfs_header_level(b);
1758
1759out:
1760 /*
1761 * The root may have failed to write out at some point, and thus is no
1762 * longer valid, return an error in this case.
1763 */
1764 if (!extent_buffer_uptodate(b)) {
1765 if (root_lock)
1766 btrfs_tree_unlock_rw(b, root_lock);
1767 free_extent_buffer(b);
1768 return ERR_PTR(-EIO);
1769 }
1770
1771 p->nodes[level] = b;
1772 if (!p->skip_locking)
1773 p->locks[level] = root_lock;
1774 /*
1775 * Callers are responsible for dropping b's references.
1776 */
1777 return b;
1778}
1779
1780/*
1781 * Replace the extent buffer at the lowest level of the path with a cloned
1782 * version. The purpose is to be able to use it safely, after releasing the
1783 * commit root semaphore, even if relocation is happening in parallel, the
1784 * transaction used for relocation is committed and the extent buffer is
1785 * reallocated in the next transaction.
1786 *
1787 * This is used in a context where the caller does not prevent transaction
1788 * commits from happening, either by holding a transaction handle or holding
1789 * some lock, while it's doing searches through a commit root.
1790 * At the moment it's only used for send operations.
1791 */
1792static int finish_need_commit_sem_search(struct btrfs_path *path)
1793{
1794 const int i = path->lowest_level;
1795 const int slot = path->slots[i];
1796 struct extent_buffer *lowest = path->nodes[i];
1797 struct extent_buffer *clone;
1798
1799 ASSERT(path->need_commit_sem);
1800
1801 if (!lowest)
1802 return 0;
1803
1804 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1805
1806 clone = btrfs_clone_extent_buffer(lowest);
1807 if (!clone)
1808 return -ENOMEM;
1809
1810 btrfs_release_path(path);
1811 path->nodes[i] = clone;
1812 path->slots[i] = slot;
1813
1814 return 0;
1815}
1816
1817static inline int search_for_key_slot(struct extent_buffer *eb,
1818 int search_low_slot,
1819 const struct btrfs_key *key,
1820 int prev_cmp,
1821 int *slot)
1822{
1823 /*
1824 * If a previous call to btrfs_bin_search() on a parent node returned an
1825 * exact match (prev_cmp == 0), we can safely assume the target key will
1826 * always be at slot 0 on lower levels, since each key pointer
1827 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1828 * subtree it points to. Thus we can skip searching lower levels.
1829 */
1830 if (prev_cmp == 0) {
1831 *slot = 0;
1832 return 0;
1833 }
1834
1835 return btrfs_bin_search(eb, search_low_slot, key, slot);
1836}
1837
1838static int search_leaf(struct btrfs_trans_handle *trans,
1839 struct btrfs_root *root,
1840 const struct btrfs_key *key,
1841 struct btrfs_path *path,
1842 int ins_len,
1843 int prev_cmp)
1844{
1845 struct extent_buffer *leaf = path->nodes[0];
1846 int leaf_free_space = -1;
1847 int search_low_slot = 0;
1848 int ret;
1849 bool do_bin_search = true;
1850
1851 /*
1852 * If we are doing an insertion, the leaf has enough free space and the
1853 * destination slot for the key is not slot 0, then we can unlock our
1854 * write lock on the parent, and any other upper nodes, before doing the
1855 * binary search on the leaf (with search_for_key_slot()), allowing other
1856 * tasks to lock the parent and any other upper nodes.
1857 */
1858 if (ins_len > 0) {
1859 /*
1860 * Cache the leaf free space, since we will need it later and it
1861 * will not change until then.
1862 */
1863 leaf_free_space = btrfs_leaf_free_space(leaf);
1864
1865 /*
1866 * !path->locks[1] means we have a single node tree, the leaf is
1867 * the root of the tree.
1868 */
1869 if (path->locks[1] && leaf_free_space >= ins_len) {
1870 struct btrfs_disk_key first_key;
1871
1872 ASSERT(btrfs_header_nritems(leaf) > 0);
1873 btrfs_item_key(leaf, &first_key, 0);
1874
1875 /*
1876 * Doing the extra comparison with the first key is cheap,
1877 * taking into account that the first key is very likely
1878 * already in a cache line because it immediately follows
1879 * the extent buffer's header and we have recently accessed
1880 * the header's level field.
1881 */
1882 ret = btrfs_comp_keys(&first_key, key);
1883 if (ret < 0) {
1884 /*
1885 * The first key is smaller than the key we want
1886 * to insert, so we are safe to unlock all upper
1887 * nodes and we have to do the binary search.
1888 *
1889 * We do use btrfs_unlock_up_safe() and not
1890 * unlock_up() because the later does not unlock
1891 * nodes with a slot of 0 - we can safely unlock
1892 * any node even if its slot is 0 since in this
1893 * case the key does not end up at slot 0 of the
1894 * leaf and there's no need to split the leaf.
1895 */
1896 btrfs_unlock_up_safe(path, 1);
1897 search_low_slot = 1;
1898 } else {
1899 /*
1900 * The first key is >= then the key we want to
1901 * insert, so we can skip the binary search as
1902 * the target key will be at slot 0.
1903 *
1904 * We can not unlock upper nodes when the key is
1905 * less than the first key, because we will need
1906 * to update the key at slot 0 of the parent node
1907 * and possibly of other upper nodes too.
1908 * If the key matches the first key, then we can
1909 * unlock all the upper nodes, using
1910 * btrfs_unlock_up_safe() instead of unlock_up()
1911 * as stated above.
1912 */
1913 if (ret == 0)
1914 btrfs_unlock_up_safe(path, 1);
1915 /*
1916 * ret is already 0 or 1, matching the result of
1917 * a btrfs_bin_search() call, so there is no need
1918 * to adjust it.
1919 */
1920 do_bin_search = false;
1921 path->slots[0] = 0;
1922 }
1923 }
1924 }
1925
1926 if (do_bin_search) {
1927 ret = search_for_key_slot(leaf, search_low_slot, key,
1928 prev_cmp, &path->slots[0]);
1929 if (ret < 0)
1930 return ret;
1931 }
1932
1933 if (ins_len > 0) {
1934 /*
1935 * Item key already exists. In this case, if we are allowed to
1936 * insert the item (for example, in dir_item case, item key
1937 * collision is allowed), it will be merged with the original
1938 * item. Only the item size grows, no new btrfs item will be
1939 * added. If search_for_extension is not set, ins_len already
1940 * accounts the size btrfs_item, deduct it here so leaf space
1941 * check will be correct.
1942 */
1943 if (ret == 0 && !path->search_for_extension) {
1944 ASSERT(ins_len >= sizeof(struct btrfs_item));
1945 ins_len -= sizeof(struct btrfs_item);
1946 }
1947
1948 ASSERT(leaf_free_space >= 0);
1949
1950 if (leaf_free_space < ins_len) {
1951 int err;
1952
1953 err = split_leaf(trans, root, key, path, ins_len,
1954 (ret == 0));
1955 ASSERT(err <= 0);
1956 if (WARN_ON(err > 0))
1957 err = -EUCLEAN;
1958 if (err)
1959 ret = err;
1960 }
1961 }
1962
1963 return ret;
1964}
1965
1966/*
1967 * Look for a key in a tree and perform necessary modifications to preserve
1968 * tree invariants.
1969 *
1970 * @trans: Handle of transaction, used when modifying the tree
1971 * @p: Holds all btree nodes along the search path
1972 * @root: The root node of the tree
1973 * @key: The key we are looking for
1974 * @ins_len: Indicates purpose of search:
1975 * >0 for inserts it's size of item inserted (*)
1976 * <0 for deletions
1977 * 0 for plain searches, not modifying the tree
1978 *
1979 * (*) If size of item inserted doesn't include
1980 * sizeof(struct btrfs_item), then p->search_for_extension must
1981 * be set.
1982 * @cow: boolean should CoW operations be performed. Must always be 1
1983 * when modifying the tree.
1984 *
1985 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1986 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1987 *
1988 * If @key is found, 0 is returned and you can find the item in the leaf level
1989 * of the path (level 0)
1990 *
1991 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1992 * points to the slot where it should be inserted
1993 *
1994 * If an error is encountered while searching the tree a negative error number
1995 * is returned
1996 */
1997int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1998 const struct btrfs_key *key, struct btrfs_path *p,
1999 int ins_len, int cow)
2000{
2001 struct btrfs_fs_info *fs_info = root->fs_info;
2002 struct extent_buffer *b;
2003 int slot;
2004 int ret;
2005 int err;
2006 int level;
2007 int lowest_unlock = 1;
2008 /* everything at write_lock_level or lower must be write locked */
2009 int write_lock_level = 0;
2010 u8 lowest_level = 0;
2011 int min_write_lock_level;
2012 int prev_cmp;
2013
2014 might_sleep();
2015
2016 lowest_level = p->lowest_level;
2017 WARN_ON(lowest_level && ins_len > 0);
2018 WARN_ON(p->nodes[0] != NULL);
2019 BUG_ON(!cow && ins_len);
2020
2021 /*
2022 * For now only allow nowait for read only operations. There's no
2023 * strict reason why we can't, we just only need it for reads so it's
2024 * only implemented for reads.
2025 */
2026 ASSERT(!p->nowait || !cow);
2027
2028 if (ins_len < 0) {
2029 lowest_unlock = 2;
2030
2031 /* when we are removing items, we might have to go up to level
2032 * two as we update tree pointers Make sure we keep write
2033 * for those levels as well
2034 */
2035 write_lock_level = 2;
2036 } else if (ins_len > 0) {
2037 /*
2038 * for inserting items, make sure we have a write lock on
2039 * level 1 so we can update keys
2040 */
2041 write_lock_level = 1;
2042 }
2043
2044 if (!cow)
2045 write_lock_level = -1;
2046
2047 if (cow && (p->keep_locks || p->lowest_level))
2048 write_lock_level = BTRFS_MAX_LEVEL;
2049
2050 min_write_lock_level = write_lock_level;
2051
2052 if (p->need_commit_sem) {
2053 ASSERT(p->search_commit_root);
2054 if (p->nowait) {
2055 if (!down_read_trylock(&fs_info->commit_root_sem))
2056 return -EAGAIN;
2057 } else {
2058 down_read(&fs_info->commit_root_sem);
2059 }
2060 }
2061
2062again:
2063 prev_cmp = -1;
2064 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2065 if (IS_ERR(b)) {
2066 ret = PTR_ERR(b);
2067 goto done;
2068 }
2069
2070 while (b) {
2071 int dec = 0;
2072
2073 level = btrfs_header_level(b);
2074
2075 if (cow) {
2076 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2077
2078 /*
2079 * if we don't really need to cow this block
2080 * then we don't want to set the path blocking,
2081 * so we test it here
2082 */
2083 if (!should_cow_block(trans, root, b))
2084 goto cow_done;
2085
2086 /*
2087 * must have write locks on this node and the
2088 * parent
2089 */
2090 if (level > write_lock_level ||
2091 (level + 1 > write_lock_level &&
2092 level + 1 < BTRFS_MAX_LEVEL &&
2093 p->nodes[level + 1])) {
2094 write_lock_level = level + 1;
2095 btrfs_release_path(p);
2096 goto again;
2097 }
2098
2099 if (last_level)
2100 err = btrfs_cow_block(trans, root, b, NULL, 0,
2101 &b,
2102 BTRFS_NESTING_COW);
2103 else
2104 err = btrfs_cow_block(trans, root, b,
2105 p->nodes[level + 1],
2106 p->slots[level + 1], &b,
2107 BTRFS_NESTING_COW);
2108 if (err) {
2109 ret = err;
2110 goto done;
2111 }
2112 }
2113cow_done:
2114 p->nodes[level] = b;
2115
2116 /*
2117 * we have a lock on b and as long as we aren't changing
2118 * the tree, there is no way to for the items in b to change.
2119 * It is safe to drop the lock on our parent before we
2120 * go through the expensive btree search on b.
2121 *
2122 * If we're inserting or deleting (ins_len != 0), then we might
2123 * be changing slot zero, which may require changing the parent.
2124 * So, we can't drop the lock until after we know which slot
2125 * we're operating on.
2126 */
2127 if (!ins_len && !p->keep_locks) {
2128 int u = level + 1;
2129
2130 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2131 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2132 p->locks[u] = 0;
2133 }
2134 }
2135
2136 if (level == 0) {
2137 if (ins_len > 0)
2138 ASSERT(write_lock_level >= 1);
2139
2140 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2141 if (!p->search_for_split)
2142 unlock_up(p, level, lowest_unlock,
2143 min_write_lock_level, NULL);
2144 goto done;
2145 }
2146
2147 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2148 if (ret < 0)
2149 goto done;
2150 prev_cmp = ret;
2151
2152 if (ret && slot > 0) {
2153 dec = 1;
2154 slot--;
2155 }
2156 p->slots[level] = slot;
2157 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2158 &write_lock_level);
2159 if (err == -EAGAIN)
2160 goto again;
2161 if (err) {
2162 ret = err;
2163 goto done;
2164 }
2165 b = p->nodes[level];
2166 slot = p->slots[level];
2167
2168 /*
2169 * Slot 0 is special, if we change the key we have to update
2170 * the parent pointer which means we must have a write lock on
2171 * the parent
2172 */
2173 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2174 write_lock_level = level + 1;
2175 btrfs_release_path(p);
2176 goto again;
2177 }
2178
2179 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2180 &write_lock_level);
2181
2182 if (level == lowest_level) {
2183 if (dec)
2184 p->slots[level]++;
2185 goto done;
2186 }
2187
2188 err = read_block_for_search(root, p, &b, level, slot, key);
2189 if (err == -EAGAIN)
2190 goto again;
2191 if (err) {
2192 ret = err;
2193 goto done;
2194 }
2195
2196 if (!p->skip_locking) {
2197 level = btrfs_header_level(b);
2198
2199 btrfs_maybe_reset_lockdep_class(root, b);
2200
2201 if (level <= write_lock_level) {
2202 btrfs_tree_lock(b);
2203 p->locks[level] = BTRFS_WRITE_LOCK;
2204 } else {
2205 if (p->nowait) {
2206 if (!btrfs_try_tree_read_lock(b)) {
2207 free_extent_buffer(b);
2208 ret = -EAGAIN;
2209 goto done;
2210 }
2211 } else {
2212 btrfs_tree_read_lock(b);
2213 }
2214 p->locks[level] = BTRFS_READ_LOCK;
2215 }
2216 p->nodes[level] = b;
2217 }
2218 }
2219 ret = 1;
2220done:
2221 if (ret < 0 && !p->skip_release_on_error)
2222 btrfs_release_path(p);
2223
2224 if (p->need_commit_sem) {
2225 int ret2;
2226
2227 ret2 = finish_need_commit_sem_search(p);
2228 up_read(&fs_info->commit_root_sem);
2229 if (ret2)
2230 ret = ret2;
2231 }
2232
2233 return ret;
2234}
2235ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2236
2237/*
2238 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2239 * current state of the tree together with the operations recorded in the tree
2240 * modification log to search for the key in a previous version of this tree, as
2241 * denoted by the time_seq parameter.
2242 *
2243 * Naturally, there is no support for insert, delete or cow operations.
2244 *
2245 * The resulting path and return value will be set up as if we called
2246 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2247 */
2248int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2249 struct btrfs_path *p, u64 time_seq)
2250{
2251 struct btrfs_fs_info *fs_info = root->fs_info;
2252 struct extent_buffer *b;
2253 int slot;
2254 int ret;
2255 int err;
2256 int level;
2257 int lowest_unlock = 1;
2258 u8 lowest_level = 0;
2259
2260 lowest_level = p->lowest_level;
2261 WARN_ON(p->nodes[0] != NULL);
2262 ASSERT(!p->nowait);
2263
2264 if (p->search_commit_root) {
2265 BUG_ON(time_seq);
2266 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2267 }
2268
2269again:
2270 b = btrfs_get_old_root(root, time_seq);
2271 if (!b) {
2272 ret = -EIO;
2273 goto done;
2274 }
2275 level = btrfs_header_level(b);
2276 p->locks[level] = BTRFS_READ_LOCK;
2277
2278 while (b) {
2279 int dec = 0;
2280
2281 level = btrfs_header_level(b);
2282 p->nodes[level] = b;
2283
2284 /*
2285 * we have a lock on b and as long as we aren't changing
2286 * the tree, there is no way to for the items in b to change.
2287 * It is safe to drop the lock on our parent before we
2288 * go through the expensive btree search on b.
2289 */
2290 btrfs_unlock_up_safe(p, level + 1);
2291
2292 ret = btrfs_bin_search(b, 0, key, &slot);
2293 if (ret < 0)
2294 goto done;
2295
2296 if (level == 0) {
2297 p->slots[level] = slot;
2298 unlock_up(p, level, lowest_unlock, 0, NULL);
2299 goto done;
2300 }
2301
2302 if (ret && slot > 0) {
2303 dec = 1;
2304 slot--;
2305 }
2306 p->slots[level] = slot;
2307 unlock_up(p, level, lowest_unlock, 0, NULL);
2308
2309 if (level == lowest_level) {
2310 if (dec)
2311 p->slots[level]++;
2312 goto done;
2313 }
2314
2315 err = read_block_for_search(root, p, &b, level, slot, key);
2316 if (err == -EAGAIN)
2317 goto again;
2318 if (err) {
2319 ret = err;
2320 goto done;
2321 }
2322
2323 level = btrfs_header_level(b);
2324 btrfs_tree_read_lock(b);
2325 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2326 if (!b) {
2327 ret = -ENOMEM;
2328 goto done;
2329 }
2330 p->locks[level] = BTRFS_READ_LOCK;
2331 p->nodes[level] = b;
2332 }
2333 ret = 1;
2334done:
2335 if (ret < 0)
2336 btrfs_release_path(p);
2337
2338 return ret;
2339}
2340
2341/*
2342 * Search the tree again to find a leaf with smaller keys.
2343 * Returns 0 if it found something.
2344 * Returns 1 if there are no smaller keys.
2345 * Returns < 0 on error.
2346 *
2347 * This may release the path, and so you may lose any locks held at the
2348 * time you call it.
2349 */
2350static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2351{
2352 struct btrfs_key key;
2353 struct btrfs_key orig_key;
2354 struct btrfs_disk_key found_key;
2355 int ret;
2356
2357 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2358 orig_key = key;
2359
2360 if (key.offset > 0) {
2361 key.offset--;
2362 } else if (key.type > 0) {
2363 key.type--;
2364 key.offset = (u64)-1;
2365 } else if (key.objectid > 0) {
2366 key.objectid--;
2367 key.type = (u8)-1;
2368 key.offset = (u64)-1;
2369 } else {
2370 return 1;
2371 }
2372
2373 btrfs_release_path(path);
2374 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2375 if (ret <= 0)
2376 return ret;
2377
2378 /*
2379 * Previous key not found. Even if we were at slot 0 of the leaf we had
2380 * before releasing the path and calling btrfs_search_slot(), we now may
2381 * be in a slot pointing to the same original key - this can happen if
2382 * after we released the path, one of more items were moved from a
2383 * sibling leaf into the front of the leaf we had due to an insertion
2384 * (see push_leaf_right()).
2385 * If we hit this case and our slot is > 0 and just decrement the slot
2386 * so that the caller does not process the same key again, which may or
2387 * may not break the caller, depending on its logic.
2388 */
2389 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2390 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2391 ret = btrfs_comp_keys(&found_key, &orig_key);
2392 if (ret == 0) {
2393 if (path->slots[0] > 0) {
2394 path->slots[0]--;
2395 return 0;
2396 }
2397 /*
2398 * At slot 0, same key as before, it means orig_key is
2399 * the lowest, leftmost, key in the tree. We're done.
2400 */
2401 return 1;
2402 }
2403 }
2404
2405 btrfs_item_key(path->nodes[0], &found_key, 0);
2406 ret = btrfs_comp_keys(&found_key, &key);
2407 /*
2408 * We might have had an item with the previous key in the tree right
2409 * before we released our path. And after we released our path, that
2410 * item might have been pushed to the first slot (0) of the leaf we
2411 * were holding due to a tree balance. Alternatively, an item with the
2412 * previous key can exist as the only element of a leaf (big fat item).
2413 * Therefore account for these 2 cases, so that our callers (like
2414 * btrfs_previous_item) don't miss an existing item with a key matching
2415 * the previous key we computed above.
2416 */
2417 if (ret <= 0)
2418 return 0;
2419 return 1;
2420}
2421
2422/*
2423 * helper to use instead of search slot if no exact match is needed but
2424 * instead the next or previous item should be returned.
2425 * When find_higher is true, the next higher item is returned, the next lower
2426 * otherwise.
2427 * When return_any and find_higher are both true, and no higher item is found,
2428 * return the next lower instead.
2429 * When return_any is true and find_higher is false, and no lower item is found,
2430 * return the next higher instead.
2431 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2432 * < 0 on error
2433 */
2434int btrfs_search_slot_for_read(struct btrfs_root *root,
2435 const struct btrfs_key *key,
2436 struct btrfs_path *p, int find_higher,
2437 int return_any)
2438{
2439 int ret;
2440 struct extent_buffer *leaf;
2441
2442again:
2443 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2444 if (ret <= 0)
2445 return ret;
2446 /*
2447 * a return value of 1 means the path is at the position where the
2448 * item should be inserted. Normally this is the next bigger item,
2449 * but in case the previous item is the last in a leaf, path points
2450 * to the first free slot in the previous leaf, i.e. at an invalid
2451 * item.
2452 */
2453 leaf = p->nodes[0];
2454
2455 if (find_higher) {
2456 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2457 ret = btrfs_next_leaf(root, p);
2458 if (ret <= 0)
2459 return ret;
2460 if (!return_any)
2461 return 1;
2462 /*
2463 * no higher item found, return the next
2464 * lower instead
2465 */
2466 return_any = 0;
2467 find_higher = 0;
2468 btrfs_release_path(p);
2469 goto again;
2470 }
2471 } else {
2472 if (p->slots[0] == 0) {
2473 ret = btrfs_prev_leaf(root, p);
2474 if (ret < 0)
2475 return ret;
2476 if (!ret) {
2477 leaf = p->nodes[0];
2478 if (p->slots[0] == btrfs_header_nritems(leaf))
2479 p->slots[0]--;
2480 return 0;
2481 }
2482 if (!return_any)
2483 return 1;
2484 /*
2485 * no lower item found, return the next
2486 * higher instead
2487 */
2488 return_any = 0;
2489 find_higher = 1;
2490 btrfs_release_path(p);
2491 goto again;
2492 } else {
2493 --p->slots[0];
2494 }
2495 }
2496 return 0;
2497}
2498
2499/*
2500 * Execute search and call btrfs_previous_item to traverse backwards if the item
2501 * was not found.
2502 *
2503 * Return 0 if found, 1 if not found and < 0 if error.
2504 */
2505int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2506 struct btrfs_path *path)
2507{
2508 int ret;
2509
2510 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2511 if (ret > 0)
2512 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2513
2514 if (ret == 0)
2515 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2516
2517 return ret;
2518}
2519
2520/*
2521 * Search for a valid slot for the given path.
2522 *
2523 * @root: The root node of the tree.
2524 * @key: Will contain a valid item if found.
2525 * @path: The starting point to validate the slot.
2526 *
2527 * Return: 0 if the item is valid
2528 * 1 if not found
2529 * <0 if error.
2530 */
2531int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2532 struct btrfs_path *path)
2533{
2534 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2535 int ret;
2536
2537 ret = btrfs_next_leaf(root, path);
2538 if (ret)
2539 return ret;
2540 }
2541
2542 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2543 return 0;
2544}
2545
2546/*
2547 * adjust the pointers going up the tree, starting at level
2548 * making sure the right key of each node is points to 'key'.
2549 * This is used after shifting pointers to the left, so it stops
2550 * fixing up pointers when a given leaf/node is not in slot 0 of the
2551 * higher levels
2552 *
2553 */
2554static void fixup_low_keys(struct btrfs_trans_handle *trans,
2555 struct btrfs_path *path,
2556 struct btrfs_disk_key *key, int level)
2557{
2558 int i;
2559 struct extent_buffer *t;
2560 int ret;
2561
2562 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2563 int tslot = path->slots[i];
2564
2565 if (!path->nodes[i])
2566 break;
2567 t = path->nodes[i];
2568 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2569 BTRFS_MOD_LOG_KEY_REPLACE);
2570 BUG_ON(ret < 0);
2571 btrfs_set_node_key(t, key, tslot);
2572 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2573 if (tslot != 0)
2574 break;
2575 }
2576}
2577
2578/*
2579 * update item key.
2580 *
2581 * This function isn't completely safe. It's the caller's responsibility
2582 * that the new key won't break the order
2583 */
2584void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2585 struct btrfs_path *path,
2586 const struct btrfs_key *new_key)
2587{
2588 struct btrfs_fs_info *fs_info = trans->fs_info;
2589 struct btrfs_disk_key disk_key;
2590 struct extent_buffer *eb;
2591 int slot;
2592
2593 eb = path->nodes[0];
2594 slot = path->slots[0];
2595 if (slot > 0) {
2596 btrfs_item_key(eb, &disk_key, slot - 1);
2597 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2598 btrfs_print_leaf(eb);
2599 btrfs_crit(fs_info,
2600 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2601 slot, btrfs_disk_key_objectid(&disk_key),
2602 btrfs_disk_key_type(&disk_key),
2603 btrfs_disk_key_offset(&disk_key),
2604 new_key->objectid, new_key->type,
2605 new_key->offset);
2606 BUG();
2607 }
2608 }
2609 if (slot < btrfs_header_nritems(eb) - 1) {
2610 btrfs_item_key(eb, &disk_key, slot + 1);
2611 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2612 btrfs_print_leaf(eb);
2613 btrfs_crit(fs_info,
2614 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2615 slot, btrfs_disk_key_objectid(&disk_key),
2616 btrfs_disk_key_type(&disk_key),
2617 btrfs_disk_key_offset(&disk_key),
2618 new_key->objectid, new_key->type,
2619 new_key->offset);
2620 BUG();
2621 }
2622 }
2623
2624 btrfs_cpu_key_to_disk(&disk_key, new_key);
2625 btrfs_set_item_key(eb, &disk_key, slot);
2626 btrfs_mark_buffer_dirty(trans, eb);
2627 if (slot == 0)
2628 fixup_low_keys(trans, path, &disk_key, 1);
2629}
2630
2631/*
2632 * Check key order of two sibling extent buffers.
2633 *
2634 * Return true if something is wrong.
2635 * Return false if everything is fine.
2636 *
2637 * Tree-checker only works inside one tree block, thus the following
2638 * corruption can not be detected by tree-checker:
2639 *
2640 * Leaf @left | Leaf @right
2641 * --------------------------------------------------------------
2642 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2643 *
2644 * Key f6 in leaf @left itself is valid, but not valid when the next
2645 * key in leaf @right is 7.
2646 * This can only be checked at tree block merge time.
2647 * And since tree checker has ensured all key order in each tree block
2648 * is correct, we only need to bother the last key of @left and the first
2649 * key of @right.
2650 */
2651static bool check_sibling_keys(struct extent_buffer *left,
2652 struct extent_buffer *right)
2653{
2654 struct btrfs_key left_last;
2655 struct btrfs_key right_first;
2656 int level = btrfs_header_level(left);
2657 int nr_left = btrfs_header_nritems(left);
2658 int nr_right = btrfs_header_nritems(right);
2659
2660 /* No key to check in one of the tree blocks */
2661 if (!nr_left || !nr_right)
2662 return false;
2663
2664 if (level) {
2665 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2666 btrfs_node_key_to_cpu(right, &right_first, 0);
2667 } else {
2668 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2669 btrfs_item_key_to_cpu(right, &right_first, 0);
2670 }
2671
2672 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2673 btrfs_crit(left->fs_info, "left extent buffer:");
2674 btrfs_print_tree(left, false);
2675 btrfs_crit(left->fs_info, "right extent buffer:");
2676 btrfs_print_tree(right, false);
2677 btrfs_crit(left->fs_info,
2678"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2679 left_last.objectid, left_last.type,
2680 left_last.offset, right_first.objectid,
2681 right_first.type, right_first.offset);
2682 return true;
2683 }
2684 return false;
2685}
2686
2687/*
2688 * try to push data from one node into the next node left in the
2689 * tree.
2690 *
2691 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2692 * error, and > 0 if there was no room in the left hand block.
2693 */
2694static int push_node_left(struct btrfs_trans_handle *trans,
2695 struct extent_buffer *dst,
2696 struct extent_buffer *src, int empty)
2697{
2698 struct btrfs_fs_info *fs_info = trans->fs_info;
2699 int push_items = 0;
2700 int src_nritems;
2701 int dst_nritems;
2702 int ret = 0;
2703
2704 src_nritems = btrfs_header_nritems(src);
2705 dst_nritems = btrfs_header_nritems(dst);
2706 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2707 WARN_ON(btrfs_header_generation(src) != trans->transid);
2708 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2709
2710 if (!empty && src_nritems <= 8)
2711 return 1;
2712
2713 if (push_items <= 0)
2714 return 1;
2715
2716 if (empty) {
2717 push_items = min(src_nritems, push_items);
2718 if (push_items < src_nritems) {
2719 /* leave at least 8 pointers in the node if
2720 * we aren't going to empty it
2721 */
2722 if (src_nritems - push_items < 8) {
2723 if (push_items <= 8)
2724 return 1;
2725 push_items -= 8;
2726 }
2727 }
2728 } else
2729 push_items = min(src_nritems - 8, push_items);
2730
2731 /* dst is the left eb, src is the middle eb */
2732 if (check_sibling_keys(dst, src)) {
2733 ret = -EUCLEAN;
2734 btrfs_abort_transaction(trans, ret);
2735 return ret;
2736 }
2737 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2738 if (ret) {
2739 btrfs_abort_transaction(trans, ret);
2740 return ret;
2741 }
2742 copy_extent_buffer(dst, src,
2743 btrfs_node_key_ptr_offset(dst, dst_nritems),
2744 btrfs_node_key_ptr_offset(src, 0),
2745 push_items * sizeof(struct btrfs_key_ptr));
2746
2747 if (push_items < src_nritems) {
2748 /*
2749 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2750 * don't need to do an explicit tree mod log operation for it.
2751 */
2752 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2753 btrfs_node_key_ptr_offset(src, push_items),
2754 (src_nritems - push_items) *
2755 sizeof(struct btrfs_key_ptr));
2756 }
2757 btrfs_set_header_nritems(src, src_nritems - push_items);
2758 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2759 btrfs_mark_buffer_dirty(trans, src);
2760 btrfs_mark_buffer_dirty(trans, dst);
2761
2762 return ret;
2763}
2764
2765/*
2766 * try to push data from one node into the next node right in the
2767 * tree.
2768 *
2769 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2770 * error, and > 0 if there was no room in the right hand block.
2771 *
2772 * this will only push up to 1/2 the contents of the left node over
2773 */
2774static int balance_node_right(struct btrfs_trans_handle *trans,
2775 struct extent_buffer *dst,
2776 struct extent_buffer *src)
2777{
2778 struct btrfs_fs_info *fs_info = trans->fs_info;
2779 int push_items = 0;
2780 int max_push;
2781 int src_nritems;
2782 int dst_nritems;
2783 int ret = 0;
2784
2785 WARN_ON(btrfs_header_generation(src) != trans->transid);
2786 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2787
2788 src_nritems = btrfs_header_nritems(src);
2789 dst_nritems = btrfs_header_nritems(dst);
2790 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2791 if (push_items <= 0)
2792 return 1;
2793
2794 if (src_nritems < 4)
2795 return 1;
2796
2797 max_push = src_nritems / 2 + 1;
2798 /* don't try to empty the node */
2799 if (max_push >= src_nritems)
2800 return 1;
2801
2802 if (max_push < push_items)
2803 push_items = max_push;
2804
2805 /* dst is the right eb, src is the middle eb */
2806 if (check_sibling_keys(src, dst)) {
2807 ret = -EUCLEAN;
2808 btrfs_abort_transaction(trans, ret);
2809 return ret;
2810 }
2811
2812 /*
2813 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2814 * need to do an explicit tree mod log operation for it.
2815 */
2816 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2817 btrfs_node_key_ptr_offset(dst, 0),
2818 (dst_nritems) *
2819 sizeof(struct btrfs_key_ptr));
2820
2821 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2822 push_items);
2823 if (ret) {
2824 btrfs_abort_transaction(trans, ret);
2825 return ret;
2826 }
2827 copy_extent_buffer(dst, src,
2828 btrfs_node_key_ptr_offset(dst, 0),
2829 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2830 push_items * sizeof(struct btrfs_key_ptr));
2831
2832 btrfs_set_header_nritems(src, src_nritems - push_items);
2833 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2834
2835 btrfs_mark_buffer_dirty(trans, src);
2836 btrfs_mark_buffer_dirty(trans, dst);
2837
2838 return ret;
2839}
2840
2841/*
2842 * helper function to insert a new root level in the tree.
2843 * A new node is allocated, and a single item is inserted to
2844 * point to the existing root
2845 *
2846 * returns zero on success or < 0 on failure.
2847 */
2848static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2849 struct btrfs_root *root,
2850 struct btrfs_path *path, int level)
2851{
2852 u64 lower_gen;
2853 struct extent_buffer *lower;
2854 struct extent_buffer *c;
2855 struct extent_buffer *old;
2856 struct btrfs_disk_key lower_key;
2857 int ret;
2858
2859 BUG_ON(path->nodes[level]);
2860 BUG_ON(path->nodes[level-1] != root->node);
2861
2862 lower = path->nodes[level-1];
2863 if (level == 1)
2864 btrfs_item_key(lower, &lower_key, 0);
2865 else
2866 btrfs_node_key(lower, &lower_key, 0);
2867
2868 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2869 &lower_key, level, root->node->start, 0,
2870 0, BTRFS_NESTING_NEW_ROOT);
2871 if (IS_ERR(c))
2872 return PTR_ERR(c);
2873
2874 root_add_used_bytes(root);
2875
2876 btrfs_set_header_nritems(c, 1);
2877 btrfs_set_node_key(c, &lower_key, 0);
2878 btrfs_set_node_blockptr(c, 0, lower->start);
2879 lower_gen = btrfs_header_generation(lower);
2880 WARN_ON(lower_gen != trans->transid);
2881
2882 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2883
2884 btrfs_mark_buffer_dirty(trans, c);
2885
2886 old = root->node;
2887 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2888 if (ret < 0) {
2889 btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2890 btrfs_tree_unlock(c);
2891 free_extent_buffer(c);
2892 return ret;
2893 }
2894 rcu_assign_pointer(root->node, c);
2895
2896 /* the super has an extra ref to root->node */
2897 free_extent_buffer(old);
2898
2899 add_root_to_dirty_list(root);
2900 atomic_inc(&c->refs);
2901 path->nodes[level] = c;
2902 path->locks[level] = BTRFS_WRITE_LOCK;
2903 path->slots[level] = 0;
2904 return 0;
2905}
2906
2907/*
2908 * worker function to insert a single pointer in a node.
2909 * the node should have enough room for the pointer already
2910 *
2911 * slot and level indicate where you want the key to go, and
2912 * blocknr is the block the key points to.
2913 */
2914static int insert_ptr(struct btrfs_trans_handle *trans,
2915 struct btrfs_path *path,
2916 struct btrfs_disk_key *key, u64 bytenr,
2917 int slot, int level)
2918{
2919 struct extent_buffer *lower;
2920 int nritems;
2921 int ret;
2922
2923 BUG_ON(!path->nodes[level]);
2924 btrfs_assert_tree_write_locked(path->nodes[level]);
2925 lower = path->nodes[level];
2926 nritems = btrfs_header_nritems(lower);
2927 BUG_ON(slot > nritems);
2928 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2929 if (slot != nritems) {
2930 if (level) {
2931 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2932 slot, nritems - slot);
2933 if (ret < 0) {
2934 btrfs_abort_transaction(trans, ret);
2935 return ret;
2936 }
2937 }
2938 memmove_extent_buffer(lower,
2939 btrfs_node_key_ptr_offset(lower, slot + 1),
2940 btrfs_node_key_ptr_offset(lower, slot),
2941 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2942 }
2943 if (level) {
2944 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2945 BTRFS_MOD_LOG_KEY_ADD);
2946 if (ret < 0) {
2947 btrfs_abort_transaction(trans, ret);
2948 return ret;
2949 }
2950 }
2951 btrfs_set_node_key(lower, key, slot);
2952 btrfs_set_node_blockptr(lower, slot, bytenr);
2953 WARN_ON(trans->transid == 0);
2954 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2955 btrfs_set_header_nritems(lower, nritems + 1);
2956 btrfs_mark_buffer_dirty(trans, lower);
2957
2958 return 0;
2959}
2960
2961/*
2962 * split the node at the specified level in path in two.
2963 * The path is corrected to point to the appropriate node after the split
2964 *
2965 * Before splitting this tries to make some room in the node by pushing
2966 * left and right, if either one works, it returns right away.
2967 *
2968 * returns 0 on success and < 0 on failure
2969 */
2970static noinline int split_node(struct btrfs_trans_handle *trans,
2971 struct btrfs_root *root,
2972 struct btrfs_path *path, int level)
2973{
2974 struct btrfs_fs_info *fs_info = root->fs_info;
2975 struct extent_buffer *c;
2976 struct extent_buffer *split;
2977 struct btrfs_disk_key disk_key;
2978 int mid;
2979 int ret;
2980 u32 c_nritems;
2981
2982 c = path->nodes[level];
2983 WARN_ON(btrfs_header_generation(c) != trans->transid);
2984 if (c == root->node) {
2985 /*
2986 * trying to split the root, lets make a new one
2987 *
2988 * tree mod log: We don't log_removal old root in
2989 * insert_new_root, because that root buffer will be kept as a
2990 * normal node. We are going to log removal of half of the
2991 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2992 * holding a tree lock on the buffer, which is why we cannot
2993 * race with other tree_mod_log users.
2994 */
2995 ret = insert_new_root(trans, root, path, level + 1);
2996 if (ret)
2997 return ret;
2998 } else {
2999 ret = push_nodes_for_insert(trans, root, path, level);
3000 c = path->nodes[level];
3001 if (!ret && btrfs_header_nritems(c) <
3002 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3003 return 0;
3004 if (ret < 0)
3005 return ret;
3006 }
3007
3008 c_nritems = btrfs_header_nritems(c);
3009 mid = (c_nritems + 1) / 2;
3010 btrfs_node_key(c, &disk_key, mid);
3011
3012 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3013 &disk_key, level, c->start, 0,
3014 0, BTRFS_NESTING_SPLIT);
3015 if (IS_ERR(split))
3016 return PTR_ERR(split);
3017
3018 root_add_used_bytes(root);
3019 ASSERT(btrfs_header_level(c) == level);
3020
3021 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3022 if (ret) {
3023 btrfs_tree_unlock(split);
3024 free_extent_buffer(split);
3025 btrfs_abort_transaction(trans, ret);
3026 return ret;
3027 }
3028 copy_extent_buffer(split, c,
3029 btrfs_node_key_ptr_offset(split, 0),
3030 btrfs_node_key_ptr_offset(c, mid),
3031 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3032 btrfs_set_header_nritems(split, c_nritems - mid);
3033 btrfs_set_header_nritems(c, mid);
3034
3035 btrfs_mark_buffer_dirty(trans, c);
3036 btrfs_mark_buffer_dirty(trans, split);
3037
3038 ret = insert_ptr(trans, path, &disk_key, split->start,
3039 path->slots[level + 1] + 1, level + 1);
3040 if (ret < 0) {
3041 btrfs_tree_unlock(split);
3042 free_extent_buffer(split);
3043 return ret;
3044 }
3045
3046 if (path->slots[level] >= mid) {
3047 path->slots[level] -= mid;
3048 btrfs_tree_unlock(c);
3049 free_extent_buffer(c);
3050 path->nodes[level] = split;
3051 path->slots[level + 1] += 1;
3052 } else {
3053 btrfs_tree_unlock(split);
3054 free_extent_buffer(split);
3055 }
3056 return 0;
3057}
3058
3059/*
3060 * how many bytes are required to store the items in a leaf. start
3061 * and nr indicate which items in the leaf to check. This totals up the
3062 * space used both by the item structs and the item data
3063 */
3064static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3065{
3066 int data_len;
3067 int nritems = btrfs_header_nritems(l);
3068 int end = min(nritems, start + nr) - 1;
3069
3070 if (!nr)
3071 return 0;
3072 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3073 data_len = data_len - btrfs_item_offset(l, end);
3074 data_len += sizeof(struct btrfs_item) * nr;
3075 WARN_ON(data_len < 0);
3076 return data_len;
3077}
3078
3079/*
3080 * The space between the end of the leaf items and
3081 * the start of the leaf data. IOW, how much room
3082 * the leaf has left for both items and data
3083 */
3084int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3085{
3086 struct btrfs_fs_info *fs_info = leaf->fs_info;
3087 int nritems = btrfs_header_nritems(leaf);
3088 int ret;
3089
3090 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3091 if (ret < 0) {
3092 btrfs_crit(fs_info,
3093 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3094 ret,
3095 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3096 leaf_space_used(leaf, 0, nritems), nritems);
3097 }
3098 return ret;
3099}
3100
3101/*
3102 * min slot controls the lowest index we're willing to push to the
3103 * right. We'll push up to and including min_slot, but no lower
3104 */
3105static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3106 struct btrfs_path *path,
3107 int data_size, int empty,
3108 struct extent_buffer *right,
3109 int free_space, u32 left_nritems,
3110 u32 min_slot)
3111{
3112 struct btrfs_fs_info *fs_info = right->fs_info;
3113 struct extent_buffer *left = path->nodes[0];
3114 struct extent_buffer *upper = path->nodes[1];
3115 struct btrfs_map_token token;
3116 struct btrfs_disk_key disk_key;
3117 int slot;
3118 u32 i;
3119 int push_space = 0;
3120 int push_items = 0;
3121 u32 nr;
3122 u32 right_nritems;
3123 u32 data_end;
3124 u32 this_item_size;
3125
3126 if (empty)
3127 nr = 0;
3128 else
3129 nr = max_t(u32, 1, min_slot);
3130
3131 if (path->slots[0] >= left_nritems)
3132 push_space += data_size;
3133
3134 slot = path->slots[1];
3135 i = left_nritems - 1;
3136 while (i >= nr) {
3137 if (!empty && push_items > 0) {
3138 if (path->slots[0] > i)
3139 break;
3140 if (path->slots[0] == i) {
3141 int space = btrfs_leaf_free_space(left);
3142
3143 if (space + push_space * 2 > free_space)
3144 break;
3145 }
3146 }
3147
3148 if (path->slots[0] == i)
3149 push_space += data_size;
3150
3151 this_item_size = btrfs_item_size(left, i);
3152 if (this_item_size + sizeof(struct btrfs_item) +
3153 push_space > free_space)
3154 break;
3155
3156 push_items++;
3157 push_space += this_item_size + sizeof(struct btrfs_item);
3158 if (i == 0)
3159 break;
3160 i--;
3161 }
3162
3163 if (push_items == 0)
3164 goto out_unlock;
3165
3166 WARN_ON(!empty && push_items == left_nritems);
3167
3168 /* push left to right */
3169 right_nritems = btrfs_header_nritems(right);
3170
3171 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3172 push_space -= leaf_data_end(left);
3173
3174 /* make room in the right data area */
3175 data_end = leaf_data_end(right);
3176 memmove_leaf_data(right, data_end - push_space, data_end,
3177 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3178
3179 /* copy from the left data area */
3180 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3181 leaf_data_end(left), push_space);
3182
3183 memmove_leaf_items(right, push_items, 0, right_nritems);
3184
3185 /* copy the items from left to right */
3186 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3187
3188 /* update the item pointers */
3189 btrfs_init_map_token(&token, right);
3190 right_nritems += push_items;
3191 btrfs_set_header_nritems(right, right_nritems);
3192 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3193 for (i = 0; i < right_nritems; i++) {
3194 push_space -= btrfs_token_item_size(&token, i);
3195 btrfs_set_token_item_offset(&token, i, push_space);
3196 }
3197
3198 left_nritems -= push_items;
3199 btrfs_set_header_nritems(left, left_nritems);
3200
3201 if (left_nritems)
3202 btrfs_mark_buffer_dirty(trans, left);
3203 else
3204 btrfs_clear_buffer_dirty(trans, left);
3205
3206 btrfs_mark_buffer_dirty(trans, right);
3207
3208 btrfs_item_key(right, &disk_key, 0);
3209 btrfs_set_node_key(upper, &disk_key, slot + 1);
3210 btrfs_mark_buffer_dirty(trans, upper);
3211
3212 /* then fixup the leaf pointer in the path */
3213 if (path->slots[0] >= left_nritems) {
3214 path->slots[0] -= left_nritems;
3215 if (btrfs_header_nritems(path->nodes[0]) == 0)
3216 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3217 btrfs_tree_unlock(path->nodes[0]);
3218 free_extent_buffer(path->nodes[0]);
3219 path->nodes[0] = right;
3220 path->slots[1] += 1;
3221 } else {
3222 btrfs_tree_unlock(right);
3223 free_extent_buffer(right);
3224 }
3225 return 0;
3226
3227out_unlock:
3228 btrfs_tree_unlock(right);
3229 free_extent_buffer(right);
3230 return 1;
3231}
3232
3233/*
3234 * push some data in the path leaf to the right, trying to free up at
3235 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3236 *
3237 * returns 1 if the push failed because the other node didn't have enough
3238 * room, 0 if everything worked out and < 0 if there were major errors.
3239 *
3240 * this will push starting from min_slot to the end of the leaf. It won't
3241 * push any slot lower than min_slot
3242 */
3243static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3244 *root, struct btrfs_path *path,
3245 int min_data_size, int data_size,
3246 int empty, u32 min_slot)
3247{
3248 struct extent_buffer *left = path->nodes[0];
3249 struct extent_buffer *right;
3250 struct extent_buffer *upper;
3251 int slot;
3252 int free_space;
3253 u32 left_nritems;
3254 int ret;
3255
3256 if (!path->nodes[1])
3257 return 1;
3258
3259 slot = path->slots[1];
3260 upper = path->nodes[1];
3261 if (slot >= btrfs_header_nritems(upper) - 1)
3262 return 1;
3263
3264 btrfs_assert_tree_write_locked(path->nodes[1]);
3265
3266 right = btrfs_read_node_slot(upper, slot + 1);
3267 if (IS_ERR(right))
3268 return PTR_ERR(right);
3269
3270 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3271
3272 free_space = btrfs_leaf_free_space(right);
3273 if (free_space < data_size)
3274 goto out_unlock;
3275
3276 ret = btrfs_cow_block(trans, root, right, upper,
3277 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3278 if (ret)
3279 goto out_unlock;
3280
3281 left_nritems = btrfs_header_nritems(left);
3282 if (left_nritems == 0)
3283 goto out_unlock;
3284
3285 if (check_sibling_keys(left, right)) {
3286 ret = -EUCLEAN;
3287 btrfs_abort_transaction(trans, ret);
3288 btrfs_tree_unlock(right);
3289 free_extent_buffer(right);
3290 return ret;
3291 }
3292 if (path->slots[0] == left_nritems && !empty) {
3293 /* Key greater than all keys in the leaf, right neighbor has
3294 * enough room for it and we're not emptying our leaf to delete
3295 * it, therefore use right neighbor to insert the new item and
3296 * no need to touch/dirty our left leaf. */
3297 btrfs_tree_unlock(left);
3298 free_extent_buffer(left);
3299 path->nodes[0] = right;
3300 path->slots[0] = 0;
3301 path->slots[1]++;
3302 return 0;
3303 }
3304
3305 return __push_leaf_right(trans, path, min_data_size, empty, right,
3306 free_space, left_nritems, min_slot);
3307out_unlock:
3308 btrfs_tree_unlock(right);
3309 free_extent_buffer(right);
3310 return 1;
3311}
3312
3313/*
3314 * push some data in the path leaf to the left, trying to free up at
3315 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3316 *
3317 * max_slot can put a limit on how far into the leaf we'll push items. The
3318 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3319 * items
3320 */
3321static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3322 struct btrfs_path *path, int data_size,
3323 int empty, struct extent_buffer *left,
3324 int free_space, u32 right_nritems,
3325 u32 max_slot)
3326{
3327 struct btrfs_fs_info *fs_info = left->fs_info;
3328 struct btrfs_disk_key disk_key;
3329 struct extent_buffer *right = path->nodes[0];
3330 int i;
3331 int push_space = 0;
3332 int push_items = 0;
3333 u32 old_left_nritems;
3334 u32 nr;
3335 int ret = 0;
3336 u32 this_item_size;
3337 u32 old_left_item_size;
3338 struct btrfs_map_token token;
3339
3340 if (empty)
3341 nr = min(right_nritems, max_slot);
3342 else
3343 nr = min(right_nritems - 1, max_slot);
3344
3345 for (i = 0; i < nr; i++) {
3346 if (!empty && push_items > 0) {
3347 if (path->slots[0] < i)
3348 break;
3349 if (path->slots[0] == i) {
3350 int space = btrfs_leaf_free_space(right);
3351
3352 if (space + push_space * 2 > free_space)
3353 break;
3354 }
3355 }
3356
3357 if (path->slots[0] == i)
3358 push_space += data_size;
3359
3360 this_item_size = btrfs_item_size(right, i);
3361 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3362 free_space)
3363 break;
3364
3365 push_items++;
3366 push_space += this_item_size + sizeof(struct btrfs_item);
3367 }
3368
3369 if (push_items == 0) {
3370 ret = 1;
3371 goto out;
3372 }
3373 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3374
3375 /* push data from right to left */
3376 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3377
3378 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3379 btrfs_item_offset(right, push_items - 1);
3380
3381 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3382 btrfs_item_offset(right, push_items - 1), push_space);
3383 old_left_nritems = btrfs_header_nritems(left);
3384 BUG_ON(old_left_nritems <= 0);
3385
3386 btrfs_init_map_token(&token, left);
3387 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3388 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3389 u32 ioff;
3390
3391 ioff = btrfs_token_item_offset(&token, i);
3392 btrfs_set_token_item_offset(&token, i,
3393 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3394 }
3395 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3396
3397 /* fixup right node */
3398 if (push_items > right_nritems)
3399 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3400 right_nritems);
3401
3402 if (push_items < right_nritems) {
3403 push_space = btrfs_item_offset(right, push_items - 1) -
3404 leaf_data_end(right);
3405 memmove_leaf_data(right,
3406 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3407 leaf_data_end(right), push_space);
3408
3409 memmove_leaf_items(right, 0, push_items,
3410 btrfs_header_nritems(right) - push_items);
3411 }
3412
3413 btrfs_init_map_token(&token, right);
3414 right_nritems -= push_items;
3415 btrfs_set_header_nritems(right, right_nritems);
3416 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3417 for (i = 0; i < right_nritems; i++) {
3418 push_space = push_space - btrfs_token_item_size(&token, i);
3419 btrfs_set_token_item_offset(&token, i, push_space);
3420 }
3421
3422 btrfs_mark_buffer_dirty(trans, left);
3423 if (right_nritems)
3424 btrfs_mark_buffer_dirty(trans, right);
3425 else
3426 btrfs_clear_buffer_dirty(trans, right);
3427
3428 btrfs_item_key(right, &disk_key, 0);
3429 fixup_low_keys(trans, path, &disk_key, 1);
3430
3431 /* then fixup the leaf pointer in the path */
3432 if (path->slots[0] < push_items) {
3433 path->slots[0] += old_left_nritems;
3434 btrfs_tree_unlock(path->nodes[0]);
3435 free_extent_buffer(path->nodes[0]);
3436 path->nodes[0] = left;
3437 path->slots[1] -= 1;
3438 } else {
3439 btrfs_tree_unlock(left);
3440 free_extent_buffer(left);
3441 path->slots[0] -= push_items;
3442 }
3443 BUG_ON(path->slots[0] < 0);
3444 return ret;
3445out:
3446 btrfs_tree_unlock(left);
3447 free_extent_buffer(left);
3448 return ret;
3449}
3450
3451/*
3452 * push some data in the path leaf to the left, trying to free up at
3453 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3454 *
3455 * max_slot can put a limit on how far into the leaf we'll push items. The
3456 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3457 * items
3458 */
3459static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3460 *root, struct btrfs_path *path, int min_data_size,
3461 int data_size, int empty, u32 max_slot)
3462{
3463 struct extent_buffer *right = path->nodes[0];
3464 struct extent_buffer *left;
3465 int slot;
3466 int free_space;
3467 u32 right_nritems;
3468 int ret = 0;
3469
3470 slot = path->slots[1];
3471 if (slot == 0)
3472 return 1;
3473 if (!path->nodes[1])
3474 return 1;
3475
3476 right_nritems = btrfs_header_nritems(right);
3477 if (right_nritems == 0)
3478 return 1;
3479
3480 btrfs_assert_tree_write_locked(path->nodes[1]);
3481
3482 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3483 if (IS_ERR(left))
3484 return PTR_ERR(left);
3485
3486 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3487
3488 free_space = btrfs_leaf_free_space(left);
3489 if (free_space < data_size) {
3490 ret = 1;
3491 goto out;
3492 }
3493
3494 ret = btrfs_cow_block(trans, root, left,
3495 path->nodes[1], slot - 1, &left,
3496 BTRFS_NESTING_LEFT_COW);
3497 if (ret) {
3498 /* we hit -ENOSPC, but it isn't fatal here */
3499 if (ret == -ENOSPC)
3500 ret = 1;
3501 goto out;
3502 }
3503
3504 if (check_sibling_keys(left, right)) {
3505 ret = -EUCLEAN;
3506 btrfs_abort_transaction(trans, ret);
3507 goto out;
3508 }
3509 return __push_leaf_left(trans, path, min_data_size, empty, left,
3510 free_space, right_nritems, max_slot);
3511out:
3512 btrfs_tree_unlock(left);
3513 free_extent_buffer(left);
3514 return ret;
3515}
3516
3517/*
3518 * split the path's leaf in two, making sure there is at least data_size
3519 * available for the resulting leaf level of the path.
3520 */
3521static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3522 struct btrfs_path *path,
3523 struct extent_buffer *l,
3524 struct extent_buffer *right,
3525 int slot, int mid, int nritems)
3526{
3527 struct btrfs_fs_info *fs_info = trans->fs_info;
3528 int data_copy_size;
3529 int rt_data_off;
3530 int i;
3531 int ret;
3532 struct btrfs_disk_key disk_key;
3533 struct btrfs_map_token token;
3534
3535 nritems = nritems - mid;
3536 btrfs_set_header_nritems(right, nritems);
3537 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3538
3539 copy_leaf_items(right, l, 0, mid, nritems);
3540
3541 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3542 leaf_data_end(l), data_copy_size);
3543
3544 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3545
3546 btrfs_init_map_token(&token, right);
3547 for (i = 0; i < nritems; i++) {
3548 u32 ioff;
3549
3550 ioff = btrfs_token_item_offset(&token, i);
3551 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3552 }
3553
3554 btrfs_set_header_nritems(l, mid);
3555 btrfs_item_key(right, &disk_key, 0);
3556 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3557 if (ret < 0)
3558 return ret;
3559
3560 btrfs_mark_buffer_dirty(trans, right);
3561 btrfs_mark_buffer_dirty(trans, l);
3562 BUG_ON(path->slots[0] != slot);
3563
3564 if (mid <= slot) {
3565 btrfs_tree_unlock(path->nodes[0]);
3566 free_extent_buffer(path->nodes[0]);
3567 path->nodes[0] = right;
3568 path->slots[0] -= mid;
3569 path->slots[1] += 1;
3570 } else {
3571 btrfs_tree_unlock(right);
3572 free_extent_buffer(right);
3573 }
3574
3575 BUG_ON(path->slots[0] < 0);
3576
3577 return 0;
3578}
3579
3580/*
3581 * double splits happen when we need to insert a big item in the middle
3582 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3583 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3584 * A B C
3585 *
3586 * We avoid this by trying to push the items on either side of our target
3587 * into the adjacent leaves. If all goes well we can avoid the double split
3588 * completely.
3589 */
3590static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3591 struct btrfs_root *root,
3592 struct btrfs_path *path,
3593 int data_size)
3594{
3595 int ret;
3596 int progress = 0;
3597 int slot;
3598 u32 nritems;
3599 int space_needed = data_size;
3600
3601 slot = path->slots[0];
3602 if (slot < btrfs_header_nritems(path->nodes[0]))
3603 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3604
3605 /*
3606 * try to push all the items after our slot into the
3607 * right leaf
3608 */
3609 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3610 if (ret < 0)
3611 return ret;
3612
3613 if (ret == 0)
3614 progress++;
3615
3616 nritems = btrfs_header_nritems(path->nodes[0]);
3617 /*
3618 * our goal is to get our slot at the start or end of a leaf. If
3619 * we've done so we're done
3620 */
3621 if (path->slots[0] == 0 || path->slots[0] == nritems)
3622 return 0;
3623
3624 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3625 return 0;
3626
3627 /* try to push all the items before our slot into the next leaf */
3628 slot = path->slots[0];
3629 space_needed = data_size;
3630 if (slot > 0)
3631 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3632 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3633 if (ret < 0)
3634 return ret;
3635
3636 if (ret == 0)
3637 progress++;
3638
3639 if (progress)
3640 return 0;
3641 return 1;
3642}
3643
3644/*
3645 * split the path's leaf in two, making sure there is at least data_size
3646 * available for the resulting leaf level of the path.
3647 *
3648 * returns 0 if all went well and < 0 on failure.
3649 */
3650static noinline int split_leaf(struct btrfs_trans_handle *trans,
3651 struct btrfs_root *root,
3652 const struct btrfs_key *ins_key,
3653 struct btrfs_path *path, int data_size,
3654 int extend)
3655{
3656 struct btrfs_disk_key disk_key;
3657 struct extent_buffer *l;
3658 u32 nritems;
3659 int mid;
3660 int slot;
3661 struct extent_buffer *right;
3662 struct btrfs_fs_info *fs_info = root->fs_info;
3663 int ret = 0;
3664 int wret;
3665 int split;
3666 int num_doubles = 0;
3667 int tried_avoid_double = 0;
3668
3669 l = path->nodes[0];
3670 slot = path->slots[0];
3671 if (extend && data_size + btrfs_item_size(l, slot) +
3672 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3673 return -EOVERFLOW;
3674
3675 /* first try to make some room by pushing left and right */
3676 if (data_size && path->nodes[1]) {
3677 int space_needed = data_size;
3678
3679 if (slot < btrfs_header_nritems(l))
3680 space_needed -= btrfs_leaf_free_space(l);
3681
3682 wret = push_leaf_right(trans, root, path, space_needed,
3683 space_needed, 0, 0);
3684 if (wret < 0)
3685 return wret;
3686 if (wret) {
3687 space_needed = data_size;
3688 if (slot > 0)
3689 space_needed -= btrfs_leaf_free_space(l);
3690 wret = push_leaf_left(trans, root, path, space_needed,
3691 space_needed, 0, (u32)-1);
3692 if (wret < 0)
3693 return wret;
3694 }
3695 l = path->nodes[0];
3696
3697 /* did the pushes work? */
3698 if (btrfs_leaf_free_space(l) >= data_size)
3699 return 0;
3700 }
3701
3702 if (!path->nodes[1]) {
3703 ret = insert_new_root(trans, root, path, 1);
3704 if (ret)
3705 return ret;
3706 }
3707again:
3708 split = 1;
3709 l = path->nodes[0];
3710 slot = path->slots[0];
3711 nritems = btrfs_header_nritems(l);
3712 mid = (nritems + 1) / 2;
3713
3714 if (mid <= slot) {
3715 if (nritems == 1 ||
3716 leaf_space_used(l, mid, nritems - mid) + data_size >
3717 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3718 if (slot >= nritems) {
3719 split = 0;
3720 } else {
3721 mid = slot;
3722 if (mid != nritems &&
3723 leaf_space_used(l, mid, nritems - mid) +
3724 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3725 if (data_size && !tried_avoid_double)
3726 goto push_for_double;
3727 split = 2;
3728 }
3729 }
3730 }
3731 } else {
3732 if (leaf_space_used(l, 0, mid) + data_size >
3733 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3734 if (!extend && data_size && slot == 0) {
3735 split = 0;
3736 } else if ((extend || !data_size) && slot == 0) {
3737 mid = 1;
3738 } else {
3739 mid = slot;
3740 if (mid != nritems &&
3741 leaf_space_used(l, mid, nritems - mid) +
3742 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3743 if (data_size && !tried_avoid_double)
3744 goto push_for_double;
3745 split = 2;
3746 }
3747 }
3748 }
3749 }
3750
3751 if (split == 0)
3752 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3753 else
3754 btrfs_item_key(l, &disk_key, mid);
3755
3756 /*
3757 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3758 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3759 * subclasses, which is 8 at the time of this patch, and we've maxed it
3760 * out. In the future we could add a
3761 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3762 * use BTRFS_NESTING_NEW_ROOT.
3763 */
3764 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3765 &disk_key, 0, l->start, 0, 0,
3766 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3767 BTRFS_NESTING_SPLIT);
3768 if (IS_ERR(right))
3769 return PTR_ERR(right);
3770
3771 root_add_used_bytes(root);
3772
3773 if (split == 0) {
3774 if (mid <= slot) {
3775 btrfs_set_header_nritems(right, 0);
3776 ret = insert_ptr(trans, path, &disk_key,
3777 right->start, path->slots[1] + 1, 1);
3778 if (ret < 0) {
3779 btrfs_tree_unlock(right);
3780 free_extent_buffer(right);
3781 return ret;
3782 }
3783 btrfs_tree_unlock(path->nodes[0]);
3784 free_extent_buffer(path->nodes[0]);
3785 path->nodes[0] = right;
3786 path->slots[0] = 0;
3787 path->slots[1] += 1;
3788 } else {
3789 btrfs_set_header_nritems(right, 0);
3790 ret = insert_ptr(trans, path, &disk_key,
3791 right->start, path->slots[1], 1);
3792 if (ret < 0) {
3793 btrfs_tree_unlock(right);
3794 free_extent_buffer(right);
3795 return ret;
3796 }
3797 btrfs_tree_unlock(path->nodes[0]);
3798 free_extent_buffer(path->nodes[0]);
3799 path->nodes[0] = right;
3800 path->slots[0] = 0;
3801 if (path->slots[1] == 0)
3802 fixup_low_keys(trans, path, &disk_key, 1);
3803 }
3804 /*
3805 * We create a new leaf 'right' for the required ins_len and
3806 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3807 * the content of ins_len to 'right'.
3808 */
3809 return ret;
3810 }
3811
3812 ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3813 if (ret < 0) {
3814 btrfs_tree_unlock(right);
3815 free_extent_buffer(right);
3816 return ret;
3817 }
3818
3819 if (split == 2) {
3820 BUG_ON(num_doubles != 0);
3821 num_doubles++;
3822 goto again;
3823 }
3824
3825 return 0;
3826
3827push_for_double:
3828 push_for_double_split(trans, root, path, data_size);
3829 tried_avoid_double = 1;
3830 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3831 return 0;
3832 goto again;
3833}
3834
3835static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3836 struct btrfs_root *root,
3837 struct btrfs_path *path, int ins_len)
3838{
3839 struct btrfs_key key;
3840 struct extent_buffer *leaf;
3841 struct btrfs_file_extent_item *fi;
3842 u64 extent_len = 0;
3843 u32 item_size;
3844 int ret;
3845
3846 leaf = path->nodes[0];
3847 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3848
3849 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3850 key.type != BTRFS_EXTENT_CSUM_KEY);
3851
3852 if (btrfs_leaf_free_space(leaf) >= ins_len)
3853 return 0;
3854
3855 item_size = btrfs_item_size(leaf, path->slots[0]);
3856 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3857 fi = btrfs_item_ptr(leaf, path->slots[0],
3858 struct btrfs_file_extent_item);
3859 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3860 }
3861 btrfs_release_path(path);
3862
3863 path->keep_locks = 1;
3864 path->search_for_split = 1;
3865 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3866 path->search_for_split = 0;
3867 if (ret > 0)
3868 ret = -EAGAIN;
3869 if (ret < 0)
3870 goto err;
3871
3872 ret = -EAGAIN;
3873 leaf = path->nodes[0];
3874 /* if our item isn't there, return now */
3875 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3876 goto err;
3877
3878 /* the leaf has changed, it now has room. return now */
3879 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3880 goto err;
3881
3882 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3883 fi = btrfs_item_ptr(leaf, path->slots[0],
3884 struct btrfs_file_extent_item);
3885 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3886 goto err;
3887 }
3888
3889 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3890 if (ret)
3891 goto err;
3892
3893 path->keep_locks = 0;
3894 btrfs_unlock_up_safe(path, 1);
3895 return 0;
3896err:
3897 path->keep_locks = 0;
3898 return ret;
3899}
3900
3901static noinline int split_item(struct btrfs_trans_handle *trans,
3902 struct btrfs_path *path,
3903 const struct btrfs_key *new_key,
3904 unsigned long split_offset)
3905{
3906 struct extent_buffer *leaf;
3907 int orig_slot, slot;
3908 char *buf;
3909 u32 nritems;
3910 u32 item_size;
3911 u32 orig_offset;
3912 struct btrfs_disk_key disk_key;
3913
3914 leaf = path->nodes[0];
3915 /*
3916 * Shouldn't happen because the caller must have previously called
3917 * setup_leaf_for_split() to make room for the new item in the leaf.
3918 */
3919 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3920 return -ENOSPC;
3921
3922 orig_slot = path->slots[0];
3923 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3924 item_size = btrfs_item_size(leaf, path->slots[0]);
3925
3926 buf = kmalloc(item_size, GFP_NOFS);
3927 if (!buf)
3928 return -ENOMEM;
3929
3930 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3931 path->slots[0]), item_size);
3932
3933 slot = path->slots[0] + 1;
3934 nritems = btrfs_header_nritems(leaf);
3935 if (slot != nritems) {
3936 /* shift the items */
3937 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3938 }
3939
3940 btrfs_cpu_key_to_disk(&disk_key, new_key);
3941 btrfs_set_item_key(leaf, &disk_key, slot);
3942
3943 btrfs_set_item_offset(leaf, slot, orig_offset);
3944 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3945
3946 btrfs_set_item_offset(leaf, orig_slot,
3947 orig_offset + item_size - split_offset);
3948 btrfs_set_item_size(leaf, orig_slot, split_offset);
3949
3950 btrfs_set_header_nritems(leaf, nritems + 1);
3951
3952 /* write the data for the start of the original item */
3953 write_extent_buffer(leaf, buf,
3954 btrfs_item_ptr_offset(leaf, path->slots[0]),
3955 split_offset);
3956
3957 /* write the data for the new item */
3958 write_extent_buffer(leaf, buf + split_offset,
3959 btrfs_item_ptr_offset(leaf, slot),
3960 item_size - split_offset);
3961 btrfs_mark_buffer_dirty(trans, leaf);
3962
3963 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3964 kfree(buf);
3965 return 0;
3966}
3967
3968/*
3969 * This function splits a single item into two items,
3970 * giving 'new_key' to the new item and splitting the
3971 * old one at split_offset (from the start of the item).
3972 *
3973 * The path may be released by this operation. After
3974 * the split, the path is pointing to the old item. The
3975 * new item is going to be in the same node as the old one.
3976 *
3977 * Note, the item being split must be smaller enough to live alone on
3978 * a tree block with room for one extra struct btrfs_item
3979 *
3980 * This allows us to split the item in place, keeping a lock on the
3981 * leaf the entire time.
3982 */
3983int btrfs_split_item(struct btrfs_trans_handle *trans,
3984 struct btrfs_root *root,
3985 struct btrfs_path *path,
3986 const struct btrfs_key *new_key,
3987 unsigned long split_offset)
3988{
3989 int ret;
3990 ret = setup_leaf_for_split(trans, root, path,
3991 sizeof(struct btrfs_item));
3992 if (ret)
3993 return ret;
3994
3995 ret = split_item(trans, path, new_key, split_offset);
3996 return ret;
3997}
3998
3999/*
4000 * make the item pointed to by the path smaller. new_size indicates
4001 * how small to make it, and from_end tells us if we just chop bytes
4002 * off the end of the item or if we shift the item to chop bytes off
4003 * the front.
4004 */
4005void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4006 struct btrfs_path *path, u32 new_size, int from_end)
4007{
4008 int slot;
4009 struct extent_buffer *leaf;
4010 u32 nritems;
4011 unsigned int data_end;
4012 unsigned int old_data_start;
4013 unsigned int old_size;
4014 unsigned int size_diff;
4015 int i;
4016 struct btrfs_map_token token;
4017
4018 leaf = path->nodes[0];
4019 slot = path->slots[0];
4020
4021 old_size = btrfs_item_size(leaf, slot);
4022 if (old_size == new_size)
4023 return;
4024
4025 nritems = btrfs_header_nritems(leaf);
4026 data_end = leaf_data_end(leaf);
4027
4028 old_data_start = btrfs_item_offset(leaf, slot);
4029
4030 size_diff = old_size - new_size;
4031
4032 BUG_ON(slot < 0);
4033 BUG_ON(slot >= nritems);
4034
4035 /*
4036 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4037 */
4038 /* first correct the data pointers */
4039 btrfs_init_map_token(&token, leaf);
4040 for (i = slot; i < nritems; i++) {
4041 u32 ioff;
4042
4043 ioff = btrfs_token_item_offset(&token, i);
4044 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4045 }
4046
4047 /* shift the data */
4048 if (from_end) {
4049 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4050 old_data_start + new_size - data_end);
4051 } else {
4052 struct btrfs_disk_key disk_key;
4053 u64 offset;
4054
4055 btrfs_item_key(leaf, &disk_key, slot);
4056
4057 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4058 unsigned long ptr;
4059 struct btrfs_file_extent_item *fi;
4060
4061 fi = btrfs_item_ptr(leaf, slot,
4062 struct btrfs_file_extent_item);
4063 fi = (struct btrfs_file_extent_item *)(
4064 (unsigned long)fi - size_diff);
4065
4066 if (btrfs_file_extent_type(leaf, fi) ==
4067 BTRFS_FILE_EXTENT_INLINE) {
4068 ptr = btrfs_item_ptr_offset(leaf, slot);
4069 memmove_extent_buffer(leaf, ptr,
4070 (unsigned long)fi,
4071 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4072 }
4073 }
4074
4075 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4076 old_data_start - data_end);
4077
4078 offset = btrfs_disk_key_offset(&disk_key);
4079 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4080 btrfs_set_item_key(leaf, &disk_key, slot);
4081 if (slot == 0)
4082 fixup_low_keys(trans, path, &disk_key, 1);
4083 }
4084
4085 btrfs_set_item_size(leaf, slot, new_size);
4086 btrfs_mark_buffer_dirty(trans, leaf);
4087
4088 if (btrfs_leaf_free_space(leaf) < 0) {
4089 btrfs_print_leaf(leaf);
4090 BUG();
4091 }
4092}
4093
4094/*
4095 * make the item pointed to by the path bigger, data_size is the added size.
4096 */
4097void btrfs_extend_item(struct btrfs_trans_handle *trans,
4098 struct btrfs_path *path, u32 data_size)
4099{
4100 int slot;
4101 struct extent_buffer *leaf;
4102 u32 nritems;
4103 unsigned int data_end;
4104 unsigned int old_data;
4105 unsigned int old_size;
4106 int i;
4107 struct btrfs_map_token token;
4108
4109 leaf = path->nodes[0];
4110
4111 nritems = btrfs_header_nritems(leaf);
4112 data_end = leaf_data_end(leaf);
4113
4114 if (btrfs_leaf_free_space(leaf) < data_size) {
4115 btrfs_print_leaf(leaf);
4116 BUG();
4117 }
4118 slot = path->slots[0];
4119 old_data = btrfs_item_data_end(leaf, slot);
4120
4121 BUG_ON(slot < 0);
4122 if (slot >= nritems) {
4123 btrfs_print_leaf(leaf);
4124 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4125 slot, nritems);
4126 BUG();
4127 }
4128
4129 /*
4130 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4131 */
4132 /* first correct the data pointers */
4133 btrfs_init_map_token(&token, leaf);
4134 for (i = slot; i < nritems; i++) {
4135 u32 ioff;
4136
4137 ioff = btrfs_token_item_offset(&token, i);
4138 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4139 }
4140
4141 /* shift the data */
4142 memmove_leaf_data(leaf, data_end - data_size, data_end,
4143 old_data - data_end);
4144
4145 data_end = old_data;
4146 old_size = btrfs_item_size(leaf, slot);
4147 btrfs_set_item_size(leaf, slot, old_size + data_size);
4148 btrfs_mark_buffer_dirty(trans, leaf);
4149
4150 if (btrfs_leaf_free_space(leaf) < 0) {
4151 btrfs_print_leaf(leaf);
4152 BUG();
4153 }
4154}
4155
4156/*
4157 * Make space in the node before inserting one or more items.
4158 *
4159 * @trans: transaction handle
4160 * @root: root we are inserting items to
4161 * @path: points to the leaf/slot where we are going to insert new items
4162 * @batch: information about the batch of items to insert
4163 *
4164 * Main purpose is to save stack depth by doing the bulk of the work in a
4165 * function that doesn't call btrfs_search_slot
4166 */
4167static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4168 struct btrfs_root *root, struct btrfs_path *path,
4169 const struct btrfs_item_batch *batch)
4170{
4171 struct btrfs_fs_info *fs_info = root->fs_info;
4172 int i;
4173 u32 nritems;
4174 unsigned int data_end;
4175 struct btrfs_disk_key disk_key;
4176 struct extent_buffer *leaf;
4177 int slot;
4178 struct btrfs_map_token token;
4179 u32 total_size;
4180
4181 /*
4182 * Before anything else, update keys in the parent and other ancestors
4183 * if needed, then release the write locks on them, so that other tasks
4184 * can use them while we modify the leaf.
4185 */
4186 if (path->slots[0] == 0) {
4187 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4188 fixup_low_keys(trans, path, &disk_key, 1);
4189 }
4190 btrfs_unlock_up_safe(path, 1);
4191
4192 leaf = path->nodes[0];
4193 slot = path->slots[0];
4194
4195 nritems = btrfs_header_nritems(leaf);
4196 data_end = leaf_data_end(leaf);
4197 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4198
4199 if (btrfs_leaf_free_space(leaf) < total_size) {
4200 btrfs_print_leaf(leaf);
4201 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4202 total_size, btrfs_leaf_free_space(leaf));
4203 BUG();
4204 }
4205
4206 btrfs_init_map_token(&token, leaf);
4207 if (slot != nritems) {
4208 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4209
4210 if (old_data < data_end) {
4211 btrfs_print_leaf(leaf);
4212 btrfs_crit(fs_info,
4213 "item at slot %d with data offset %u beyond data end of leaf %u",
4214 slot, old_data, data_end);
4215 BUG();
4216 }
4217 /*
4218 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4219 */
4220 /* first correct the data pointers */
4221 for (i = slot; i < nritems; i++) {
4222 u32 ioff;
4223
4224 ioff = btrfs_token_item_offset(&token, i);
4225 btrfs_set_token_item_offset(&token, i,
4226 ioff - batch->total_data_size);
4227 }
4228 /* shift the items */
4229 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4230
4231 /* shift the data */
4232 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4233 data_end, old_data - data_end);
4234 data_end = old_data;
4235 }
4236
4237 /* setup the item for the new data */
4238 for (i = 0; i < batch->nr; i++) {
4239 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4240 btrfs_set_item_key(leaf, &disk_key, slot + i);
4241 data_end -= batch->data_sizes[i];
4242 btrfs_set_token_item_offset(&token, slot + i, data_end);
4243 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4244 }
4245
4246 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4247 btrfs_mark_buffer_dirty(trans, leaf);
4248
4249 if (btrfs_leaf_free_space(leaf) < 0) {
4250 btrfs_print_leaf(leaf);
4251 BUG();
4252 }
4253}
4254
4255/*
4256 * Insert a new item into a leaf.
4257 *
4258 * @trans: Transaction handle.
4259 * @root: The root of the btree.
4260 * @path: A path pointing to the target leaf and slot.
4261 * @key: The key of the new item.
4262 * @data_size: The size of the data associated with the new key.
4263 */
4264void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4265 struct btrfs_root *root,
4266 struct btrfs_path *path,
4267 const struct btrfs_key *key,
4268 u32 data_size)
4269{
4270 struct btrfs_item_batch batch;
4271
4272 batch.keys = key;
4273 batch.data_sizes = &data_size;
4274 batch.total_data_size = data_size;
4275 batch.nr = 1;
4276
4277 setup_items_for_insert(trans, root, path, &batch);
4278}
4279
4280/*
4281 * Given a key and some data, insert items into the tree.
4282 * This does all the path init required, making room in the tree if needed.
4283 */
4284int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4285 struct btrfs_root *root,
4286 struct btrfs_path *path,
4287 const struct btrfs_item_batch *batch)
4288{
4289 int ret = 0;
4290 int slot;
4291 u32 total_size;
4292
4293 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4294 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4295 if (ret == 0)
4296 return -EEXIST;
4297 if (ret < 0)
4298 return ret;
4299
4300 slot = path->slots[0];
4301 BUG_ON(slot < 0);
4302
4303 setup_items_for_insert(trans, root, path, batch);
4304 return 0;
4305}
4306
4307/*
4308 * Given a key and some data, insert an item into the tree.
4309 * This does all the path init required, making room in the tree if needed.
4310 */
4311int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4312 const struct btrfs_key *cpu_key, void *data,
4313 u32 data_size)
4314{
4315 int ret = 0;
4316 struct btrfs_path *path;
4317 struct extent_buffer *leaf;
4318 unsigned long ptr;
4319
4320 path = btrfs_alloc_path();
4321 if (!path)
4322 return -ENOMEM;
4323 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4324 if (!ret) {
4325 leaf = path->nodes[0];
4326 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4327 write_extent_buffer(leaf, data, ptr, data_size);
4328 btrfs_mark_buffer_dirty(trans, leaf);
4329 }
4330 btrfs_free_path(path);
4331 return ret;
4332}
4333
4334/*
4335 * This function duplicates an item, giving 'new_key' to the new item.
4336 * It guarantees both items live in the same tree leaf and the new item is
4337 * contiguous with the original item.
4338 *
4339 * This allows us to split a file extent in place, keeping a lock on the leaf
4340 * the entire time.
4341 */
4342int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4343 struct btrfs_root *root,
4344 struct btrfs_path *path,
4345 const struct btrfs_key *new_key)
4346{
4347 struct extent_buffer *leaf;
4348 int ret;
4349 u32 item_size;
4350
4351 leaf = path->nodes[0];
4352 item_size = btrfs_item_size(leaf, path->slots[0]);
4353 ret = setup_leaf_for_split(trans, root, path,
4354 item_size + sizeof(struct btrfs_item));
4355 if (ret)
4356 return ret;
4357
4358 path->slots[0]++;
4359 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4360 leaf = path->nodes[0];
4361 memcpy_extent_buffer(leaf,
4362 btrfs_item_ptr_offset(leaf, path->slots[0]),
4363 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4364 item_size);
4365 return 0;
4366}
4367
4368/*
4369 * delete the pointer from a given node.
4370 *
4371 * the tree should have been previously balanced so the deletion does not
4372 * empty a node.
4373 *
4374 * This is exported for use inside btrfs-progs, don't un-export it.
4375 */
4376int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4377 struct btrfs_path *path, int level, int slot)
4378{
4379 struct extent_buffer *parent = path->nodes[level];
4380 u32 nritems;
4381 int ret;
4382
4383 nritems = btrfs_header_nritems(parent);
4384 if (slot != nritems - 1) {
4385 if (level) {
4386 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4387 slot + 1, nritems - slot - 1);
4388 if (ret < 0) {
4389 btrfs_abort_transaction(trans, ret);
4390 return ret;
4391 }
4392 }
4393 memmove_extent_buffer(parent,
4394 btrfs_node_key_ptr_offset(parent, slot),
4395 btrfs_node_key_ptr_offset(parent, slot + 1),
4396 sizeof(struct btrfs_key_ptr) *
4397 (nritems - slot - 1));
4398 } else if (level) {
4399 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4400 BTRFS_MOD_LOG_KEY_REMOVE);
4401 if (ret < 0) {
4402 btrfs_abort_transaction(trans, ret);
4403 return ret;
4404 }
4405 }
4406
4407 nritems--;
4408 btrfs_set_header_nritems(parent, nritems);
4409 if (nritems == 0 && parent == root->node) {
4410 BUG_ON(btrfs_header_level(root->node) != 1);
4411 /* just turn the root into a leaf and break */
4412 btrfs_set_header_level(root->node, 0);
4413 } else if (slot == 0) {
4414 struct btrfs_disk_key disk_key;
4415
4416 btrfs_node_key(parent, &disk_key, 0);
4417 fixup_low_keys(trans, path, &disk_key, level + 1);
4418 }
4419 btrfs_mark_buffer_dirty(trans, parent);
4420 return 0;
4421}
4422
4423/*
4424 * a helper function to delete the leaf pointed to by path->slots[1] and
4425 * path->nodes[1].
4426 *
4427 * This deletes the pointer in path->nodes[1] and frees the leaf
4428 * block extent. zero is returned if it all worked out, < 0 otherwise.
4429 *
4430 * The path must have already been setup for deleting the leaf, including
4431 * all the proper balancing. path->nodes[1] must be locked.
4432 */
4433static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4434 struct btrfs_root *root,
4435 struct btrfs_path *path,
4436 struct extent_buffer *leaf)
4437{
4438 int ret;
4439
4440 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4441 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4442 if (ret < 0)
4443 return ret;
4444
4445 /*
4446 * btrfs_free_extent is expensive, we want to make sure we
4447 * aren't holding any locks when we call it
4448 */
4449 btrfs_unlock_up_safe(path, 0);
4450
4451 root_sub_used_bytes(root);
4452
4453 atomic_inc(&leaf->refs);
4454 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4455 free_extent_buffer_stale(leaf);
4456 return 0;
4457}
4458/*
4459 * delete the item at the leaf level in path. If that empties
4460 * the leaf, remove it from the tree
4461 */
4462int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4463 struct btrfs_path *path, int slot, int nr)
4464{
4465 struct btrfs_fs_info *fs_info = root->fs_info;
4466 struct extent_buffer *leaf;
4467 int ret = 0;
4468 int wret;
4469 u32 nritems;
4470
4471 leaf = path->nodes[0];
4472 nritems = btrfs_header_nritems(leaf);
4473
4474 if (slot + nr != nritems) {
4475 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4476 const int data_end = leaf_data_end(leaf);
4477 struct btrfs_map_token token;
4478 u32 dsize = 0;
4479 int i;
4480
4481 for (i = 0; i < nr; i++)
4482 dsize += btrfs_item_size(leaf, slot + i);
4483
4484 memmove_leaf_data(leaf, data_end + dsize, data_end,
4485 last_off - data_end);
4486
4487 btrfs_init_map_token(&token, leaf);
4488 for (i = slot + nr; i < nritems; i++) {
4489 u32 ioff;
4490
4491 ioff = btrfs_token_item_offset(&token, i);
4492 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4493 }
4494
4495 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4496 }
4497 btrfs_set_header_nritems(leaf, nritems - nr);
4498 nritems -= nr;
4499
4500 /* delete the leaf if we've emptied it */
4501 if (nritems == 0) {
4502 if (leaf == root->node) {
4503 btrfs_set_header_level(leaf, 0);
4504 } else {
4505 btrfs_clear_buffer_dirty(trans, leaf);
4506 ret = btrfs_del_leaf(trans, root, path, leaf);
4507 if (ret < 0)
4508 return ret;
4509 }
4510 } else {
4511 int used = leaf_space_used(leaf, 0, nritems);
4512 if (slot == 0) {
4513 struct btrfs_disk_key disk_key;
4514
4515 btrfs_item_key(leaf, &disk_key, 0);
4516 fixup_low_keys(trans, path, &disk_key, 1);
4517 }
4518
4519 /*
4520 * Try to delete the leaf if it is mostly empty. We do this by
4521 * trying to move all its items into its left and right neighbours.
4522 * If we can't move all the items, then we don't delete it - it's
4523 * not ideal, but future insertions might fill the leaf with more
4524 * items, or items from other leaves might be moved later into our
4525 * leaf due to deletions on those leaves.
4526 */
4527 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4528 u32 min_push_space;
4529
4530 /* push_leaf_left fixes the path.
4531 * make sure the path still points to our leaf
4532 * for possible call to btrfs_del_ptr below
4533 */
4534 slot = path->slots[1];
4535 atomic_inc(&leaf->refs);
4536 /*
4537 * We want to be able to at least push one item to the
4538 * left neighbour leaf, and that's the first item.
4539 */
4540 min_push_space = sizeof(struct btrfs_item) +
4541 btrfs_item_size(leaf, 0);
4542 wret = push_leaf_left(trans, root, path, 0,
4543 min_push_space, 1, (u32)-1);
4544 if (wret < 0 && wret != -ENOSPC)
4545 ret = wret;
4546
4547 if (path->nodes[0] == leaf &&
4548 btrfs_header_nritems(leaf)) {
4549 /*
4550 * If we were not able to push all items from our
4551 * leaf to its left neighbour, then attempt to
4552 * either push all the remaining items to the
4553 * right neighbour or none. There's no advantage
4554 * in pushing only some items, instead of all, as
4555 * it's pointless to end up with a leaf having
4556 * too few items while the neighbours can be full
4557 * or nearly full.
4558 */
4559 nritems = btrfs_header_nritems(leaf);
4560 min_push_space = leaf_space_used(leaf, 0, nritems);
4561 wret = push_leaf_right(trans, root, path, 0,
4562 min_push_space, 1, 0);
4563 if (wret < 0 && wret != -ENOSPC)
4564 ret = wret;
4565 }
4566
4567 if (btrfs_header_nritems(leaf) == 0) {
4568 path->slots[1] = slot;
4569 ret = btrfs_del_leaf(trans, root, path, leaf);
4570 if (ret < 0)
4571 return ret;
4572 free_extent_buffer(leaf);
4573 ret = 0;
4574 } else {
4575 /* if we're still in the path, make sure
4576 * we're dirty. Otherwise, one of the
4577 * push_leaf functions must have already
4578 * dirtied this buffer
4579 */
4580 if (path->nodes[0] == leaf)
4581 btrfs_mark_buffer_dirty(trans, leaf);
4582 free_extent_buffer(leaf);
4583 }
4584 } else {
4585 btrfs_mark_buffer_dirty(trans, leaf);
4586 }
4587 }
4588 return ret;
4589}
4590
4591/*
4592 * A helper function to walk down the tree starting at min_key, and looking
4593 * for nodes or leaves that are have a minimum transaction id.
4594 * This is used by the btree defrag code, and tree logging
4595 *
4596 * This does not cow, but it does stuff the starting key it finds back
4597 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4598 * key and get a writable path.
4599 *
4600 * This honors path->lowest_level to prevent descent past a given level
4601 * of the tree.
4602 *
4603 * min_trans indicates the oldest transaction that you are interested
4604 * in walking through. Any nodes or leaves older than min_trans are
4605 * skipped over (without reading them).
4606 *
4607 * returns zero if something useful was found, < 0 on error and 1 if there
4608 * was nothing in the tree that matched the search criteria.
4609 */
4610int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4611 struct btrfs_path *path,
4612 u64 min_trans)
4613{
4614 struct extent_buffer *cur;
4615 struct btrfs_key found_key;
4616 int slot;
4617 int sret;
4618 u32 nritems;
4619 int level;
4620 int ret = 1;
4621 int keep_locks = path->keep_locks;
4622
4623 ASSERT(!path->nowait);
4624 path->keep_locks = 1;
4625again:
4626 cur = btrfs_read_lock_root_node(root);
4627 level = btrfs_header_level(cur);
4628 WARN_ON(path->nodes[level]);
4629 path->nodes[level] = cur;
4630 path->locks[level] = BTRFS_READ_LOCK;
4631
4632 if (btrfs_header_generation(cur) < min_trans) {
4633 ret = 1;
4634 goto out;
4635 }
4636 while (1) {
4637 nritems = btrfs_header_nritems(cur);
4638 level = btrfs_header_level(cur);
4639 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4640 if (sret < 0) {
4641 ret = sret;
4642 goto out;
4643 }
4644
4645 /* at the lowest level, we're done, setup the path and exit */
4646 if (level == path->lowest_level) {
4647 if (slot >= nritems)
4648 goto find_next_key;
4649 ret = 0;
4650 path->slots[level] = slot;
4651 btrfs_item_key_to_cpu(cur, &found_key, slot);
4652 goto out;
4653 }
4654 if (sret && slot > 0)
4655 slot--;
4656 /*
4657 * check this node pointer against the min_trans parameters.
4658 * If it is too old, skip to the next one.
4659 */
4660 while (slot < nritems) {
4661 u64 gen;
4662
4663 gen = btrfs_node_ptr_generation(cur, slot);
4664 if (gen < min_trans) {
4665 slot++;
4666 continue;
4667 }
4668 break;
4669 }
4670find_next_key:
4671 /*
4672 * we didn't find a candidate key in this node, walk forward
4673 * and find another one
4674 */
4675 if (slot >= nritems) {
4676 path->slots[level] = slot;
4677 sret = btrfs_find_next_key(root, path, min_key, level,
4678 min_trans);
4679 if (sret == 0) {
4680 btrfs_release_path(path);
4681 goto again;
4682 } else {
4683 goto out;
4684 }
4685 }
4686 /* save our key for returning back */
4687 btrfs_node_key_to_cpu(cur, &found_key, slot);
4688 path->slots[level] = slot;
4689 if (level == path->lowest_level) {
4690 ret = 0;
4691 goto out;
4692 }
4693 cur = btrfs_read_node_slot(cur, slot);
4694 if (IS_ERR(cur)) {
4695 ret = PTR_ERR(cur);
4696 goto out;
4697 }
4698
4699 btrfs_tree_read_lock(cur);
4700
4701 path->locks[level - 1] = BTRFS_READ_LOCK;
4702 path->nodes[level - 1] = cur;
4703 unlock_up(path, level, 1, 0, NULL);
4704 }
4705out:
4706 path->keep_locks = keep_locks;
4707 if (ret == 0) {
4708 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4709 memcpy(min_key, &found_key, sizeof(found_key));
4710 }
4711 return ret;
4712}
4713
4714/*
4715 * this is similar to btrfs_next_leaf, but does not try to preserve
4716 * and fixup the path. It looks for and returns the next key in the
4717 * tree based on the current path and the min_trans parameters.
4718 *
4719 * 0 is returned if another key is found, < 0 if there are any errors
4720 * and 1 is returned if there are no higher keys in the tree
4721 *
4722 * path->keep_locks should be set to 1 on the search made before
4723 * calling this function.
4724 */
4725int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4726 struct btrfs_key *key, int level, u64 min_trans)
4727{
4728 int slot;
4729 struct extent_buffer *c;
4730
4731 WARN_ON(!path->keep_locks && !path->skip_locking);
4732 while (level < BTRFS_MAX_LEVEL) {
4733 if (!path->nodes[level])
4734 return 1;
4735
4736 slot = path->slots[level] + 1;
4737 c = path->nodes[level];
4738next:
4739 if (slot >= btrfs_header_nritems(c)) {
4740 int ret;
4741 int orig_lowest;
4742 struct btrfs_key cur_key;
4743 if (level + 1 >= BTRFS_MAX_LEVEL ||
4744 !path->nodes[level + 1])
4745 return 1;
4746
4747 if (path->locks[level + 1] || path->skip_locking) {
4748 level++;
4749 continue;
4750 }
4751
4752 slot = btrfs_header_nritems(c) - 1;
4753 if (level == 0)
4754 btrfs_item_key_to_cpu(c, &cur_key, slot);
4755 else
4756 btrfs_node_key_to_cpu(c, &cur_key, slot);
4757
4758 orig_lowest = path->lowest_level;
4759 btrfs_release_path(path);
4760 path->lowest_level = level;
4761 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4762 0, 0);
4763 path->lowest_level = orig_lowest;
4764 if (ret < 0)
4765 return ret;
4766
4767 c = path->nodes[level];
4768 slot = path->slots[level];
4769 if (ret == 0)
4770 slot++;
4771 goto next;
4772 }
4773
4774 if (level == 0)
4775 btrfs_item_key_to_cpu(c, key, slot);
4776 else {
4777 u64 gen = btrfs_node_ptr_generation(c, slot);
4778
4779 if (gen < min_trans) {
4780 slot++;
4781 goto next;
4782 }
4783 btrfs_node_key_to_cpu(c, key, slot);
4784 }
4785 return 0;
4786 }
4787 return 1;
4788}
4789
4790int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4791 u64 time_seq)
4792{
4793 int slot;
4794 int level;
4795 struct extent_buffer *c;
4796 struct extent_buffer *next;
4797 struct btrfs_fs_info *fs_info = root->fs_info;
4798 struct btrfs_key key;
4799 bool need_commit_sem = false;
4800 u32 nritems;
4801 int ret;
4802 int i;
4803
4804 /*
4805 * The nowait semantics are used only for write paths, where we don't
4806 * use the tree mod log and sequence numbers.
4807 */
4808 if (time_seq)
4809 ASSERT(!path->nowait);
4810
4811 nritems = btrfs_header_nritems(path->nodes[0]);
4812 if (nritems == 0)
4813 return 1;
4814
4815 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4816again:
4817 level = 1;
4818 next = NULL;
4819 btrfs_release_path(path);
4820
4821 path->keep_locks = 1;
4822
4823 if (time_seq) {
4824 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4825 } else {
4826 if (path->need_commit_sem) {
4827 path->need_commit_sem = 0;
4828 need_commit_sem = true;
4829 if (path->nowait) {
4830 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4831 ret = -EAGAIN;
4832 goto done;
4833 }
4834 } else {
4835 down_read(&fs_info->commit_root_sem);
4836 }
4837 }
4838 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4839 }
4840 path->keep_locks = 0;
4841
4842 if (ret < 0)
4843 goto done;
4844
4845 nritems = btrfs_header_nritems(path->nodes[0]);
4846 /*
4847 * by releasing the path above we dropped all our locks. A balance
4848 * could have added more items next to the key that used to be
4849 * at the very end of the block. So, check again here and
4850 * advance the path if there are now more items available.
4851 */
4852 if (nritems > 0 && path->slots[0] < nritems - 1) {
4853 if (ret == 0)
4854 path->slots[0]++;
4855 ret = 0;
4856 goto done;
4857 }
4858 /*
4859 * So the above check misses one case:
4860 * - after releasing the path above, someone has removed the item that
4861 * used to be at the very end of the block, and balance between leafs
4862 * gets another one with bigger key.offset to replace it.
4863 *
4864 * This one should be returned as well, or we can get leaf corruption
4865 * later(esp. in __btrfs_drop_extents()).
4866 *
4867 * And a bit more explanation about this check,
4868 * with ret > 0, the key isn't found, the path points to the slot
4869 * where it should be inserted, so the path->slots[0] item must be the
4870 * bigger one.
4871 */
4872 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4873 ret = 0;
4874 goto done;
4875 }
4876
4877 while (level < BTRFS_MAX_LEVEL) {
4878 if (!path->nodes[level]) {
4879 ret = 1;
4880 goto done;
4881 }
4882
4883 slot = path->slots[level] + 1;
4884 c = path->nodes[level];
4885 if (slot >= btrfs_header_nritems(c)) {
4886 level++;
4887 if (level == BTRFS_MAX_LEVEL) {
4888 ret = 1;
4889 goto done;
4890 }
4891 continue;
4892 }
4893
4894
4895 /*
4896 * Our current level is where we're going to start from, and to
4897 * make sure lockdep doesn't complain we need to drop our locks
4898 * and nodes from 0 to our current level.
4899 */
4900 for (i = 0; i < level; i++) {
4901 if (path->locks[level]) {
4902 btrfs_tree_read_unlock(path->nodes[i]);
4903 path->locks[i] = 0;
4904 }
4905 free_extent_buffer(path->nodes[i]);
4906 path->nodes[i] = NULL;
4907 }
4908
4909 next = c;
4910 ret = read_block_for_search(root, path, &next, level,
4911 slot, &key);
4912 if (ret == -EAGAIN && !path->nowait)
4913 goto again;
4914
4915 if (ret < 0) {
4916 btrfs_release_path(path);
4917 goto done;
4918 }
4919
4920 if (!path->skip_locking) {
4921 ret = btrfs_try_tree_read_lock(next);
4922 if (!ret && path->nowait) {
4923 ret = -EAGAIN;
4924 goto done;
4925 }
4926 if (!ret && time_seq) {
4927 /*
4928 * If we don't get the lock, we may be racing
4929 * with push_leaf_left, holding that lock while
4930 * itself waiting for the leaf we've currently
4931 * locked. To solve this situation, we give up
4932 * on our lock and cycle.
4933 */
4934 free_extent_buffer(next);
4935 btrfs_release_path(path);
4936 cond_resched();
4937 goto again;
4938 }
4939 if (!ret)
4940 btrfs_tree_read_lock(next);
4941 }
4942 break;
4943 }
4944 path->slots[level] = slot;
4945 while (1) {
4946 level--;
4947 path->nodes[level] = next;
4948 path->slots[level] = 0;
4949 if (!path->skip_locking)
4950 path->locks[level] = BTRFS_READ_LOCK;
4951 if (!level)
4952 break;
4953
4954 ret = read_block_for_search(root, path, &next, level,
4955 0, &key);
4956 if (ret == -EAGAIN && !path->nowait)
4957 goto again;
4958
4959 if (ret < 0) {
4960 btrfs_release_path(path);
4961 goto done;
4962 }
4963
4964 if (!path->skip_locking) {
4965 if (path->nowait) {
4966 if (!btrfs_try_tree_read_lock(next)) {
4967 ret = -EAGAIN;
4968 goto done;
4969 }
4970 } else {
4971 btrfs_tree_read_lock(next);
4972 }
4973 }
4974 }
4975 ret = 0;
4976done:
4977 unlock_up(path, 0, 1, 0, NULL);
4978 if (need_commit_sem) {
4979 int ret2;
4980
4981 path->need_commit_sem = 1;
4982 ret2 = finish_need_commit_sem_search(path);
4983 up_read(&fs_info->commit_root_sem);
4984 if (ret2)
4985 ret = ret2;
4986 }
4987
4988 return ret;
4989}
4990
4991int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4992{
4993 path->slots[0]++;
4994 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4995 return btrfs_next_old_leaf(root, path, time_seq);
4996 return 0;
4997}
4998
4999/*
5000 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5001 * searching until it gets past min_objectid or finds an item of 'type'
5002 *
5003 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5004 */
5005int btrfs_previous_item(struct btrfs_root *root,
5006 struct btrfs_path *path, u64 min_objectid,
5007 int type)
5008{
5009 struct btrfs_key found_key;
5010 struct extent_buffer *leaf;
5011 u32 nritems;
5012 int ret;
5013
5014 while (1) {
5015 if (path->slots[0] == 0) {
5016 ret = btrfs_prev_leaf(root, path);
5017 if (ret != 0)
5018 return ret;
5019 } else {
5020 path->slots[0]--;
5021 }
5022 leaf = path->nodes[0];
5023 nritems = btrfs_header_nritems(leaf);
5024 if (nritems == 0)
5025 return 1;
5026 if (path->slots[0] == nritems)
5027 path->slots[0]--;
5028
5029 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5030 if (found_key.objectid < min_objectid)
5031 break;
5032 if (found_key.type == type)
5033 return 0;
5034 if (found_key.objectid == min_objectid &&
5035 found_key.type < type)
5036 break;
5037 }
5038 return 1;
5039}
5040
5041/*
5042 * search in extent tree to find a previous Metadata/Data extent item with
5043 * min objecitd.
5044 *
5045 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5046 */
5047int btrfs_previous_extent_item(struct btrfs_root *root,
5048 struct btrfs_path *path, u64 min_objectid)
5049{
5050 struct btrfs_key found_key;
5051 struct extent_buffer *leaf;
5052 u32 nritems;
5053 int ret;
5054
5055 while (1) {
5056 if (path->slots[0] == 0) {
5057 ret = btrfs_prev_leaf(root, path);
5058 if (ret != 0)
5059 return ret;
5060 } else {
5061 path->slots[0]--;
5062 }
5063 leaf = path->nodes[0];
5064 nritems = btrfs_header_nritems(leaf);
5065 if (nritems == 0)
5066 return 1;
5067 if (path->slots[0] == nritems)
5068 path->slots[0]--;
5069
5070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5071 if (found_key.objectid < min_objectid)
5072 break;
5073 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5074 found_key.type == BTRFS_METADATA_ITEM_KEY)
5075 return 0;
5076 if (found_key.objectid == min_objectid &&
5077 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5078 break;
5079 }
5080 return 1;
5081}
5082
5083int __init btrfs_ctree_init(void)
5084{
5085 btrfs_path_cachep = kmem_cache_create("btrfs_path",
5086 sizeof(struct btrfs_path), 0,
5087 SLAB_MEM_SPREAD, NULL);
5088 if (!btrfs_path_cachep)
5089 return -ENOMEM;
5090 return 0;
5091}
5092
5093void __cold btrfs_ctree_exit(void)
5094{
5095 kmem_cache_destroy(btrfs_path_cachep);
5096}
1/*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/rbtree.h>
22#include <linux/vmalloc.h>
23#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "print-tree.h"
27#include "locking.h"
28
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 *root, struct btrfs_key *ins_key,
33 struct btrfs_path *path, int data_size, int extend);
34static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root, struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct btrfs_root *root,
39 struct extent_buffer *dst_buf,
40 struct extent_buffer *src_buf);
41static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 int level, int slot);
43static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45
46struct btrfs_path *btrfs_alloc_path(void)
47{
48 struct btrfs_path *path;
49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 return path;
51}
52
53/*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
57noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58{
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 }
69}
70
71/*
72 * reset all the locked nodes in the patch to spinning locks.
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
78 */
79noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 struct extent_buffer *held, int held_rw)
81{
82 int i;
83
84 if (held) {
85 btrfs_set_lock_blocking_rw(held, held_rw);
86 if (held_rw == BTRFS_WRITE_LOCK)
87 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 else if (held_rw == BTRFS_READ_LOCK)
89 held_rw = BTRFS_READ_LOCK_BLOCKING;
90 }
91 btrfs_set_path_blocking(p);
92
93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 if (p->nodes[i] && p->locks[i]) {
95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 p->locks[i] = BTRFS_WRITE_LOCK;
98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 p->locks[i] = BTRFS_READ_LOCK;
100 }
101 }
102
103 if (held)
104 btrfs_clear_lock_blocking_rw(held, held_rw);
105}
106
107/* this also releases the path */
108void btrfs_free_path(struct btrfs_path *p)
109{
110 if (!p)
111 return;
112 btrfs_release_path(p);
113 kmem_cache_free(btrfs_path_cachep, p);
114}
115
116/*
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
119 *
120 * It is safe to call this on paths that no locks or extent buffers held.
121 */
122noinline void btrfs_release_path(struct btrfs_path *p)
123{
124 int i;
125
126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127 p->slots[i] = 0;
128 if (!p->nodes[i])
129 continue;
130 if (p->locks[i]) {
131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 p->locks[i] = 0;
133 }
134 free_extent_buffer(p->nodes[i]);
135 p->nodes[i] = NULL;
136 }
137}
138
139/*
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
143 * looping required.
144 *
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
148 */
149struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150{
151 struct extent_buffer *eb;
152
153 while (1) {
154 rcu_read_lock();
155 eb = rcu_dereference(root->node);
156
157 /*
158 * RCU really hurts here, we could free up the root node because
159 * it was cow'ed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
162 */
163 if (atomic_inc_not_zero(&eb->refs)) {
164 rcu_read_unlock();
165 break;
166 }
167 rcu_read_unlock();
168 synchronize_rcu();
169 }
170 return eb;
171}
172
173/* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
176 */
177struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178{
179 struct extent_buffer *eb;
180
181 while (1) {
182 eb = btrfs_root_node(root);
183 btrfs_tree_lock(eb);
184 if (eb == root->node)
185 break;
186 btrfs_tree_unlock(eb);
187 free_extent_buffer(eb);
188 }
189 return eb;
190}
191
192/* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
195 */
196static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197{
198 struct extent_buffer *eb;
199
200 while (1) {
201 eb = btrfs_root_node(root);
202 btrfs_tree_read_lock(eb);
203 if (eb == root->node)
204 break;
205 btrfs_tree_read_unlock(eb);
206 free_extent_buffer(eb);
207 }
208 return eb;
209}
210
211/* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
214 */
215static void add_root_to_dirty_list(struct btrfs_root *root)
216{
217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 return;
220
221 spin_lock(&root->fs_info->trans_lock);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 /* Want the extent tree to be the last on the list */
224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 list_move_tail(&root->dirty_list,
226 &root->fs_info->dirty_cowonly_roots);
227 else
228 list_move(&root->dirty_list,
229 &root->fs_info->dirty_cowonly_roots);
230 }
231 spin_unlock(&root->fs_info->trans_lock);
232}
233
234/*
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
238 */
239int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root,
241 struct extent_buffer *buf,
242 struct extent_buffer **cow_ret, u64 new_root_objectid)
243{
244 struct extent_buffer *cow;
245 int ret = 0;
246 int level;
247 struct btrfs_disk_key disk_key;
248
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 trans->transid != root->fs_info->running_transaction->transid);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != root->last_trans);
253
254 level = btrfs_header_level(buf);
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
259
260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 &disk_key, level, buf->start, 0);
262 if (IS_ERR(cow))
263 return PTR_ERR(cow);
264
265 copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 btrfs_set_header_bytenr(cow, cow->start);
267 btrfs_set_header_generation(cow, trans->transid);
268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 BTRFS_HEADER_FLAG_RELOC);
271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 else
274 btrfs_set_header_owner(cow, new_root_objectid);
275
276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277 BTRFS_FSID_SIZE);
278
279 WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 ret = btrfs_inc_ref(trans, root, cow, 1);
282 else
283 ret = btrfs_inc_ref(trans, root, cow, 0);
284
285 if (ret)
286 return ret;
287
288 btrfs_mark_buffer_dirty(cow);
289 *cow_ret = cow;
290 return 0;
291}
292
293enum mod_log_op {
294 MOD_LOG_KEY_REPLACE,
295 MOD_LOG_KEY_ADD,
296 MOD_LOG_KEY_REMOVE,
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 MOD_LOG_MOVE_KEYS,
300 MOD_LOG_ROOT_REPLACE,
301};
302
303struct tree_mod_move {
304 int dst_slot;
305 int nr_items;
306};
307
308struct tree_mod_root {
309 u64 logical;
310 u8 level;
311};
312
313struct tree_mod_elem {
314 struct rb_node node;
315 u64 logical;
316 u64 seq;
317 enum mod_log_op op;
318
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 int slot;
321
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 u64 generation;
324
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key;
327 u64 blockptr;
328
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move;
331
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root;
334};
335
336static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337{
338 read_lock(&fs_info->tree_mod_log_lock);
339}
340
341static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342{
343 read_unlock(&fs_info->tree_mod_log_lock);
344}
345
346static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347{
348 write_lock(&fs_info->tree_mod_log_lock);
349}
350
351static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352{
353 write_unlock(&fs_info->tree_mod_log_lock);
354}
355
356/*
357 * Pull a new tree mod seq number for our operation.
358 */
359static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360{
361 return atomic64_inc_return(&fs_info->tree_mod_seq);
362}
363
364/*
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
370 * blocker was added.
371 */
372u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
374{
375 tree_mod_log_write_lock(fs_info);
376 spin_lock(&fs_info->tree_mod_seq_lock);
377 if (!elem->seq) {
378 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 }
381 spin_unlock(&fs_info->tree_mod_seq_lock);
382 tree_mod_log_write_unlock(fs_info);
383
384 return elem->seq;
385}
386
387void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 struct seq_list *elem)
389{
390 struct rb_root *tm_root;
391 struct rb_node *node;
392 struct rb_node *next;
393 struct seq_list *cur_elem;
394 struct tree_mod_elem *tm;
395 u64 min_seq = (u64)-1;
396 u64 seq_putting = elem->seq;
397
398 if (!seq_putting)
399 return;
400
401 spin_lock(&fs_info->tree_mod_seq_lock);
402 list_del(&elem->list);
403 elem->seq = 0;
404
405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 if (cur_elem->seq < min_seq) {
407 if (seq_putting > cur_elem->seq) {
408 /*
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
411 */
412 spin_unlock(&fs_info->tree_mod_seq_lock);
413 return;
414 }
415 min_seq = cur_elem->seq;
416 }
417 }
418 spin_unlock(&fs_info->tree_mod_seq_lock);
419
420 /*
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
423 */
424 tree_mod_log_write_lock(fs_info);
425 tm_root = &fs_info->tree_mod_log;
426 for (node = rb_first(tm_root); node; node = next) {
427 next = rb_next(node);
428 tm = container_of(node, struct tree_mod_elem, node);
429 if (tm->seq > min_seq)
430 continue;
431 rb_erase(node, tm_root);
432 kfree(tm);
433 }
434 tree_mod_log_write_unlock(fs_info);
435}
436
437/*
438 * key order of the log:
439 * node/leaf start address -> sequence
440 *
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
444 *
445 * Note: must be called with write lock (tree_mod_log_write_lock).
446 */
447static noinline int
448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449{
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
454
455 BUG_ON(!tm);
456
457 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458
459 tm_root = &fs_info->tree_mod_log;
460 new = &tm_root->rb_node;
461 while (*new) {
462 cur = container_of(*new, struct tree_mod_elem, node);
463 parent = *new;
464 if (cur->logical < tm->logical)
465 new = &((*new)->rb_left);
466 else if (cur->logical > tm->logical)
467 new = &((*new)->rb_right);
468 else if (cur->seq < tm->seq)
469 new = &((*new)->rb_left);
470 else if (cur->seq > tm->seq)
471 new = &((*new)->rb_right);
472 else
473 return -EEXIST;
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
478 return 0;
479}
480
481/*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 tree_mod_log_write_unlock(fs_info);
498 return 1;
499 }
500
501 return 0;
502}
503
504/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 struct extent_buffer *eb)
507{
508 smp_mb();
509 if (list_empty(&(fs_info)->tree_mod_seq_list))
510 return 0;
511 if (eb && btrfs_header_level(eb) == 0)
512 return 0;
513
514 return 1;
515}
516
517static struct tree_mod_elem *
518alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 enum mod_log_op op, gfp_t flags)
520{
521 struct tree_mod_elem *tm;
522
523 tm = kzalloc(sizeof(*tm), flags);
524 if (!tm)
525 return NULL;
526
527 tm->logical = eb->start;
528 if (op != MOD_LOG_KEY_ADD) {
529 btrfs_node_key(eb, &tm->key, slot);
530 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 }
532 tm->op = op;
533 tm->slot = slot;
534 tm->generation = btrfs_node_ptr_generation(eb, slot);
535 RB_CLEAR_NODE(&tm->node);
536
537 return tm;
538}
539
540static noinline int
541tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 struct extent_buffer *eb, int slot,
543 enum mod_log_op op, gfp_t flags)
544{
545 struct tree_mod_elem *tm;
546 int ret;
547
548 if (!tree_mod_need_log(fs_info, eb))
549 return 0;
550
551 tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 if (!tm)
553 return -ENOMEM;
554
555 if (tree_mod_dont_log(fs_info, eb)) {
556 kfree(tm);
557 return 0;
558 }
559
560 ret = __tree_mod_log_insert(fs_info, tm);
561 tree_mod_log_write_unlock(fs_info);
562 if (ret)
563 kfree(tm);
564
565 return ret;
566}
567
568static noinline int
569tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 struct extent_buffer *eb, int dst_slot, int src_slot,
571 int nr_items, gfp_t flags)
572{
573 struct tree_mod_elem *tm = NULL;
574 struct tree_mod_elem **tm_list = NULL;
575 int ret = 0;
576 int i;
577 int locked = 0;
578
579 if (!tree_mod_need_log(fs_info, eb))
580 return 0;
581
582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 if (!tm_list)
584 return -ENOMEM;
585
586 tm = kzalloc(sizeof(*tm), flags);
587 if (!tm) {
588 ret = -ENOMEM;
589 goto free_tms;
590 }
591
592 tm->logical = eb->start;
593 tm->slot = src_slot;
594 tm->move.dst_slot = dst_slot;
595 tm->move.nr_items = nr_items;
596 tm->op = MOD_LOG_MOVE_KEYS;
597
598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601 if (!tm_list[i]) {
602 ret = -ENOMEM;
603 goto free_tms;
604 }
605 }
606
607 if (tree_mod_dont_log(fs_info, eb))
608 goto free_tms;
609 locked = 1;
610
611 /*
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
615 */
616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618 if (ret)
619 goto free_tms;
620 }
621
622 ret = __tree_mod_log_insert(fs_info, tm);
623 if (ret)
624 goto free_tms;
625 tree_mod_log_write_unlock(fs_info);
626 kfree(tm_list);
627
628 return 0;
629free_tms:
630 for (i = 0; i < nr_items; i++) {
631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 kfree(tm_list[i]);
634 }
635 if (locked)
636 tree_mod_log_write_unlock(fs_info);
637 kfree(tm_list);
638 kfree(tm);
639
640 return ret;
641}
642
643static inline int
644__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 struct tree_mod_elem **tm_list,
646 int nritems)
647{
648 int i, j;
649 int ret;
650
651 for (i = nritems - 1; i >= 0; i--) {
652 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 if (ret) {
654 for (j = nritems - 1; j > i; j--)
655 rb_erase(&tm_list[j]->node,
656 &fs_info->tree_mod_log);
657 return ret;
658 }
659 }
660
661 return 0;
662}
663
664static noinline int
665tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 struct extent_buffer *old_root,
667 struct extent_buffer *new_root, gfp_t flags,
668 int log_removal)
669{
670 struct tree_mod_elem *tm = NULL;
671 struct tree_mod_elem **tm_list = NULL;
672 int nritems = 0;
673 int ret = 0;
674 int i;
675
676 if (!tree_mod_need_log(fs_info, NULL))
677 return 0;
678
679 if (log_removal && btrfs_header_level(old_root) > 0) {
680 nritems = btrfs_header_nritems(old_root);
681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 flags);
683 if (!tm_list) {
684 ret = -ENOMEM;
685 goto free_tms;
686 }
687 for (i = 0; i < nritems; i++) {
688 tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690 if (!tm_list[i]) {
691 ret = -ENOMEM;
692 goto free_tms;
693 }
694 }
695 }
696
697 tm = kzalloc(sizeof(*tm), flags);
698 if (!tm) {
699 ret = -ENOMEM;
700 goto free_tms;
701 }
702
703 tm->logical = new_root->start;
704 tm->old_root.logical = old_root->start;
705 tm->old_root.level = btrfs_header_level(old_root);
706 tm->generation = btrfs_header_generation(old_root);
707 tm->op = MOD_LOG_ROOT_REPLACE;
708
709 if (tree_mod_dont_log(fs_info, NULL))
710 goto free_tms;
711
712 if (tm_list)
713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 if (!ret)
715 ret = __tree_mod_log_insert(fs_info, tm);
716
717 tree_mod_log_write_unlock(fs_info);
718 if (ret)
719 goto free_tms;
720 kfree(tm_list);
721
722 return ret;
723
724free_tms:
725 if (tm_list) {
726 for (i = 0; i < nritems; i++)
727 kfree(tm_list[i]);
728 kfree(tm_list);
729 }
730 kfree(tm);
731
732 return ret;
733}
734
735static struct tree_mod_elem *
736__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737 int smallest)
738{
739 struct rb_root *tm_root;
740 struct rb_node *node;
741 struct tree_mod_elem *cur = NULL;
742 struct tree_mod_elem *found = NULL;
743
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->logical < start) {
750 node = node->rb_left;
751 } else if (cur->logical > start) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
770 }
771 }
772 tree_mod_log_read_unlock(fs_info);
773
774 return found;
775}
776
777/*
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
781 */
782static struct tree_mod_elem *
783tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
785{
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
787}
788
789/*
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
793 */
794static struct tree_mod_elem *
795tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796{
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
798}
799
800static noinline int
801tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
804{
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
810
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
813
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
816
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
821
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
830 }
831
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
837 }
838 }
839
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
843
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
851 }
852
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
855
856 return 0;
857
858free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
863 }
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
867
868 return ret;
869}
870
871static inline void
872tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
874{
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
879}
880
881static noinline void
882tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
884{
885 int ret;
886
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
891}
892
893static noinline int
894tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895{
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
900
901 if (btrfs_header_level(eb) == 0)
902 return 0;
903
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
906
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 if (!tm_list)
910 return -ENOMEM;
911
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
918 }
919 }
920
921 if (tree_mod_dont_log(fs_info, eb))
922 goto free_tms;
923
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
929
930 return 0;
931
932free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
936
937 return ret;
938}
939
940static noinline void
941tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
943 int log_removal)
944{
945 int ret;
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
948 BUG_ON(ret < 0);
949}
950
951/*
952 * check if the tree block can be shared by multiple trees
953 */
954int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
956{
957 /*
958 * Tree blocks not in refernece counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
962 */
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973#endif
974 return 0;
975}
976
977static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
981 int *last_ref)
982{
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_std_error(root->fs_info, ret, NULL);
1015 return ret;
1016 }
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1053 }
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1056
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1074 }
1075 clean_tree_block(trans, root->fs_info, buf);
1076 *last_ref = 1;
1077 }
1078 return 0;
1079}
1080
1081/*
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1099{
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1102 int level, ret;
1103 int last_ref = 0;
1104 int unlock_orig = 0;
1105 u64 parent_start;
1106
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1109
1110 btrfs_assert_tree_locked(buf);
1111
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1116
1117 level = btrfs_header_level(buf);
1118
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1123
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1131
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
1137
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 BTRFS_FSID_SIZE);
1153
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, root, ret);
1157 return ret;
1158 }
1159
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 if (ret) {
1163 btrfs_abort_transaction(trans, root, ret);
1164 return ret;
1165 }
1166 }
1167
1168 if (buf == root->node) {
1169 WARN_ON(parent && parent != buf);
1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 parent_start = buf->start;
1173 else
1174 parent_start = 0;
1175
1176 extent_buffer_get(cow);
1177 tree_mod_log_set_root_pointer(root, cow, 1);
1178 rcu_assign_pointer(root->node, cow);
1179
1180 btrfs_free_tree_block(trans, root, buf, parent_start,
1181 last_ref);
1182 free_extent_buffer(buf);
1183 add_root_to_dirty_list(root);
1184 } else {
1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 parent_start = parent->start;
1187 else
1188 parent_start = 0;
1189
1190 WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 btrfs_set_node_blockptr(parent, parent_slot,
1194 cow->start);
1195 btrfs_set_node_ptr_generation(parent, parent_slot,
1196 trans->transid);
1197 btrfs_mark_buffer_dirty(parent);
1198 if (last_ref) {
1199 ret = tree_mod_log_free_eb(root->fs_info, buf);
1200 if (ret) {
1201 btrfs_abort_transaction(trans, root, ret);
1202 return ret;
1203 }
1204 }
1205 btrfs_free_tree_block(trans, root, buf, parent_start,
1206 last_ref);
1207 }
1208 if (unlock_orig)
1209 btrfs_tree_unlock(buf);
1210 free_extent_buffer_stale(buf);
1211 btrfs_mark_buffer_dirty(cow);
1212 *cow_ret = cow;
1213 return 0;
1214}
1215
1216/*
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1219 */
1220static struct tree_mod_elem *
1221__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 struct extent_buffer *eb_root, u64 time_seq)
1223{
1224 struct tree_mod_elem *tm;
1225 struct tree_mod_elem *found = NULL;
1226 u64 root_logical = eb_root->start;
1227 int looped = 0;
1228
1229 if (!time_seq)
1230 return NULL;
1231
1232 /*
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1237 */
1238 while (1) {
1239 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 time_seq);
1241 if (!looped && !tm)
1242 return NULL;
1243 /*
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1246 * level 0.
1247 */
1248 if (!tm)
1249 break;
1250
1251 /*
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 */
1256 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 break;
1258
1259 found = tm;
1260 root_logical = tm->old_root.logical;
1261 looped = 1;
1262 }
1263
1264 /* if there's no old root to return, return what we found instead */
1265 if (!found)
1266 found = tm;
1267
1268 return found;
1269}
1270
1271/*
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewinded (until we reach something older than
1274 * time_seq).
1275 */
1276static void
1277__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 u64 time_seq, struct tree_mod_elem *first_tm)
1279{
1280 u32 n;
1281 struct rb_node *next;
1282 struct tree_mod_elem *tm = first_tm;
1283 unsigned long o_dst;
1284 unsigned long o_src;
1285 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287 n = btrfs_header_nritems(eb);
1288 tree_mod_log_read_lock(fs_info);
1289 while (tm && tm->seq >= time_seq) {
1290 /*
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1294 */
1295 switch (tm->op) {
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 BUG_ON(tm->slot < n);
1298 /* Fallthrough */
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 case MOD_LOG_KEY_REMOVE:
1301 btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 btrfs_set_node_ptr_generation(eb, tm->slot,
1304 tm->generation);
1305 n++;
1306 break;
1307 case MOD_LOG_KEY_REPLACE:
1308 BUG_ON(tm->slot >= n);
1309 btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 btrfs_set_node_ptr_generation(eb, tm->slot,
1312 tm->generation);
1313 break;
1314 case MOD_LOG_KEY_ADD:
1315 /* if a move operation is needed it's in the log */
1316 n--;
1317 break;
1318 case MOD_LOG_MOVE_KEYS:
1319 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 memmove_extent_buffer(eb, o_dst, o_src,
1322 tm->move.nr_items * p_size);
1323 break;
1324 case MOD_LOG_ROOT_REPLACE:
1325 /*
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1333 */
1334 break;
1335 }
1336 next = rb_next(&tm->node);
1337 if (!next)
1338 break;
1339 tm = container_of(next, struct tree_mod_elem, node);
1340 if (tm->logical != first_tm->logical)
1341 break;
1342 }
1343 tree_mod_log_read_unlock(fs_info);
1344 btrfs_set_header_nritems(eb, n);
1345}
1346
1347/*
1348 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1353 */
1354static struct extent_buffer *
1355tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 struct extent_buffer *eb, u64 time_seq)
1357{
1358 struct extent_buffer *eb_rewin;
1359 struct tree_mod_elem *tm;
1360
1361 if (!time_seq)
1362 return eb;
1363
1364 if (btrfs_header_level(eb) == 0)
1365 return eb;
1366
1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 if (!tm)
1369 return eb;
1370
1371 btrfs_set_path_blocking(path);
1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 BUG_ON(tm->slot != 0);
1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1377 if (!eb_rewin) {
1378 btrfs_tree_read_unlock_blocking(eb);
1379 free_extent_buffer(eb);
1380 return NULL;
1381 }
1382 btrfs_set_header_bytenr(eb_rewin, eb->start);
1383 btrfs_set_header_backref_rev(eb_rewin,
1384 btrfs_header_backref_rev(eb));
1385 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1386 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1387 } else {
1388 eb_rewin = btrfs_clone_extent_buffer(eb);
1389 if (!eb_rewin) {
1390 btrfs_tree_read_unlock_blocking(eb);
1391 free_extent_buffer(eb);
1392 return NULL;
1393 }
1394 }
1395
1396 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1397 btrfs_tree_read_unlock_blocking(eb);
1398 free_extent_buffer(eb);
1399
1400 extent_buffer_get(eb_rewin);
1401 btrfs_tree_read_lock(eb_rewin);
1402 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1403 WARN_ON(btrfs_header_nritems(eb_rewin) >
1404 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1405
1406 return eb_rewin;
1407}
1408
1409/*
1410 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1411 * value. If there are no changes, the current root->root_node is returned. If
1412 * anything changed in between, there's a fresh buffer allocated on which the
1413 * rewind operations are done. In any case, the returned buffer is read locked.
1414 * Returns NULL on error (with no locks held).
1415 */
1416static inline struct extent_buffer *
1417get_old_root(struct btrfs_root *root, u64 time_seq)
1418{
1419 struct tree_mod_elem *tm;
1420 struct extent_buffer *eb = NULL;
1421 struct extent_buffer *eb_root;
1422 struct extent_buffer *old;
1423 struct tree_mod_root *old_root = NULL;
1424 u64 old_generation = 0;
1425 u64 logical;
1426
1427 eb_root = btrfs_read_lock_root_node(root);
1428 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1429 if (!tm)
1430 return eb_root;
1431
1432 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1433 old_root = &tm->old_root;
1434 old_generation = tm->generation;
1435 logical = old_root->logical;
1436 } else {
1437 logical = eb_root->start;
1438 }
1439
1440 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1441 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1442 btrfs_tree_read_unlock(eb_root);
1443 free_extent_buffer(eb_root);
1444 old = read_tree_block(root, logical, 0);
1445 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1446 if (!IS_ERR(old))
1447 free_extent_buffer(old);
1448 btrfs_warn(root->fs_info,
1449 "failed to read tree block %llu from get_old_root", logical);
1450 } else {
1451 eb = btrfs_clone_extent_buffer(old);
1452 free_extent_buffer(old);
1453 }
1454 } else if (old_root) {
1455 btrfs_tree_read_unlock(eb_root);
1456 free_extent_buffer(eb_root);
1457 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1458 } else {
1459 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1460 eb = btrfs_clone_extent_buffer(eb_root);
1461 btrfs_tree_read_unlock_blocking(eb_root);
1462 free_extent_buffer(eb_root);
1463 }
1464
1465 if (!eb)
1466 return NULL;
1467 extent_buffer_get(eb);
1468 btrfs_tree_read_lock(eb);
1469 if (old_root) {
1470 btrfs_set_header_bytenr(eb, eb->start);
1471 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1472 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1473 btrfs_set_header_level(eb, old_root->level);
1474 btrfs_set_header_generation(eb, old_generation);
1475 }
1476 if (tm)
1477 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1478 else
1479 WARN_ON(btrfs_header_level(eb) != 0);
1480 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1481
1482 return eb;
1483}
1484
1485int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1486{
1487 struct tree_mod_elem *tm;
1488 int level;
1489 struct extent_buffer *eb_root = btrfs_root_node(root);
1490
1491 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1492 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1493 level = tm->old_root.level;
1494 } else {
1495 level = btrfs_header_level(eb_root);
1496 }
1497 free_extent_buffer(eb_root);
1498
1499 return level;
1500}
1501
1502static inline int should_cow_block(struct btrfs_trans_handle *trans,
1503 struct btrfs_root *root,
1504 struct extent_buffer *buf)
1505{
1506 if (btrfs_test_is_dummy_root(root))
1507 return 0;
1508
1509 /* ensure we can see the force_cow */
1510 smp_rmb();
1511
1512 /*
1513 * We do not need to cow a block if
1514 * 1) this block is not created or changed in this transaction;
1515 * 2) this block does not belong to TREE_RELOC tree;
1516 * 3) the root is not forced COW.
1517 *
1518 * What is forced COW:
1519 * when we create snapshot during commiting the transaction,
1520 * after we've finished coping src root, we must COW the shared
1521 * block to ensure the metadata consistency.
1522 */
1523 if (btrfs_header_generation(buf) == trans->transid &&
1524 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1525 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1526 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1527 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1528 return 0;
1529 return 1;
1530}
1531
1532/*
1533 * cows a single block, see __btrfs_cow_block for the real work.
1534 * This version of it has extra checks so that a block isn't cow'd more than
1535 * once per transaction, as long as it hasn't been written yet
1536 */
1537noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1538 struct btrfs_root *root, struct extent_buffer *buf,
1539 struct extent_buffer *parent, int parent_slot,
1540 struct extent_buffer **cow_ret)
1541{
1542 u64 search_start;
1543 int ret;
1544
1545 if (trans->transaction != root->fs_info->running_transaction)
1546 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1547 trans->transid,
1548 root->fs_info->running_transaction->transid);
1549
1550 if (trans->transid != root->fs_info->generation)
1551 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1552 trans->transid, root->fs_info->generation);
1553
1554 if (!should_cow_block(trans, root, buf)) {
1555 *cow_ret = buf;
1556 return 0;
1557 }
1558
1559 search_start = buf->start & ~((u64)SZ_1G - 1);
1560
1561 if (parent)
1562 btrfs_set_lock_blocking(parent);
1563 btrfs_set_lock_blocking(buf);
1564
1565 ret = __btrfs_cow_block(trans, root, buf, parent,
1566 parent_slot, cow_ret, search_start, 0);
1567
1568 trace_btrfs_cow_block(root, buf, *cow_ret);
1569
1570 return ret;
1571}
1572
1573/*
1574 * helper function for defrag to decide if two blocks pointed to by a
1575 * node are actually close by
1576 */
1577static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1578{
1579 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1580 return 1;
1581 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1582 return 1;
1583 return 0;
1584}
1585
1586/*
1587 * compare two keys in a memcmp fashion
1588 */
1589static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1590{
1591 struct btrfs_key k1;
1592
1593 btrfs_disk_key_to_cpu(&k1, disk);
1594
1595 return btrfs_comp_cpu_keys(&k1, k2);
1596}
1597
1598/*
1599 * same as comp_keys only with two btrfs_key's
1600 */
1601int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1602{
1603 if (k1->objectid > k2->objectid)
1604 return 1;
1605 if (k1->objectid < k2->objectid)
1606 return -1;
1607 if (k1->type > k2->type)
1608 return 1;
1609 if (k1->type < k2->type)
1610 return -1;
1611 if (k1->offset > k2->offset)
1612 return 1;
1613 if (k1->offset < k2->offset)
1614 return -1;
1615 return 0;
1616}
1617
1618/*
1619 * this is used by the defrag code to go through all the
1620 * leaves pointed to by a node and reallocate them so that
1621 * disk order is close to key order
1622 */
1623int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1624 struct btrfs_root *root, struct extent_buffer *parent,
1625 int start_slot, u64 *last_ret,
1626 struct btrfs_key *progress)
1627{
1628 struct extent_buffer *cur;
1629 u64 blocknr;
1630 u64 gen;
1631 u64 search_start = *last_ret;
1632 u64 last_block = 0;
1633 u64 other;
1634 u32 parent_nritems;
1635 int end_slot;
1636 int i;
1637 int err = 0;
1638 int parent_level;
1639 int uptodate;
1640 u32 blocksize;
1641 int progress_passed = 0;
1642 struct btrfs_disk_key disk_key;
1643
1644 parent_level = btrfs_header_level(parent);
1645
1646 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1647 WARN_ON(trans->transid != root->fs_info->generation);
1648
1649 parent_nritems = btrfs_header_nritems(parent);
1650 blocksize = root->nodesize;
1651 end_slot = parent_nritems - 1;
1652
1653 if (parent_nritems <= 1)
1654 return 0;
1655
1656 btrfs_set_lock_blocking(parent);
1657
1658 for (i = start_slot; i <= end_slot; i++) {
1659 int close = 1;
1660
1661 btrfs_node_key(parent, &disk_key, i);
1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663 continue;
1664
1665 progress_passed = 1;
1666 blocknr = btrfs_node_blockptr(parent, i);
1667 gen = btrfs_node_ptr_generation(parent, i);
1668 if (last_block == 0)
1669 last_block = blocknr;
1670
1671 if (i > 0) {
1672 other = btrfs_node_blockptr(parent, i - 1);
1673 close = close_blocks(blocknr, other, blocksize);
1674 }
1675 if (!close && i < end_slot) {
1676 other = btrfs_node_blockptr(parent, i + 1);
1677 close = close_blocks(blocknr, other, blocksize);
1678 }
1679 if (close) {
1680 last_block = blocknr;
1681 continue;
1682 }
1683
1684 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1685 if (cur)
1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1687 else
1688 uptodate = 0;
1689 if (!cur || !uptodate) {
1690 if (!cur) {
1691 cur = read_tree_block(root, blocknr, gen);
1692 if (IS_ERR(cur)) {
1693 return PTR_ERR(cur);
1694 } else if (!extent_buffer_uptodate(cur)) {
1695 free_extent_buffer(cur);
1696 return -EIO;
1697 }
1698 } else if (!uptodate) {
1699 err = btrfs_read_buffer(cur, gen);
1700 if (err) {
1701 free_extent_buffer(cur);
1702 return err;
1703 }
1704 }
1705 }
1706 if (search_start == 0)
1707 search_start = last_block;
1708
1709 btrfs_tree_lock(cur);
1710 btrfs_set_lock_blocking(cur);
1711 err = __btrfs_cow_block(trans, root, cur, parent, i,
1712 &cur, search_start,
1713 min(16 * blocksize,
1714 (end_slot - i) * blocksize));
1715 if (err) {
1716 btrfs_tree_unlock(cur);
1717 free_extent_buffer(cur);
1718 break;
1719 }
1720 search_start = cur->start;
1721 last_block = cur->start;
1722 *last_ret = search_start;
1723 btrfs_tree_unlock(cur);
1724 free_extent_buffer(cur);
1725 }
1726 return err;
1727}
1728
1729/*
1730 * The leaf data grows from end-to-front in the node.
1731 * this returns the address of the start of the last item,
1732 * which is the stop of the leaf data stack
1733 */
1734static inline unsigned int leaf_data_end(struct btrfs_root *root,
1735 struct extent_buffer *leaf)
1736{
1737 u32 nr = btrfs_header_nritems(leaf);
1738 if (nr == 0)
1739 return BTRFS_LEAF_DATA_SIZE(root);
1740 return btrfs_item_offset_nr(leaf, nr - 1);
1741}
1742
1743
1744/*
1745 * search for key in the extent_buffer. The items start at offset p,
1746 * and they are item_size apart. There are 'max' items in p.
1747 *
1748 * the slot in the array is returned via slot, and it points to
1749 * the place where you would insert key if it is not found in
1750 * the array.
1751 *
1752 * slot may point to max if the key is bigger than all of the keys
1753 */
1754static noinline int generic_bin_search(struct extent_buffer *eb,
1755 unsigned long p,
1756 int item_size, struct btrfs_key *key,
1757 int max, int *slot)
1758{
1759 int low = 0;
1760 int high = max;
1761 int mid;
1762 int ret;
1763 struct btrfs_disk_key *tmp = NULL;
1764 struct btrfs_disk_key unaligned;
1765 unsigned long offset;
1766 char *kaddr = NULL;
1767 unsigned long map_start = 0;
1768 unsigned long map_len = 0;
1769 int err;
1770
1771 while (low < high) {
1772 mid = (low + high) / 2;
1773 offset = p + mid * item_size;
1774
1775 if (!kaddr || offset < map_start ||
1776 (offset + sizeof(struct btrfs_disk_key)) >
1777 map_start + map_len) {
1778
1779 err = map_private_extent_buffer(eb, offset,
1780 sizeof(struct btrfs_disk_key),
1781 &kaddr, &map_start, &map_len);
1782
1783 if (!err) {
1784 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785 map_start);
1786 } else {
1787 read_extent_buffer(eb, &unaligned,
1788 offset, sizeof(unaligned));
1789 tmp = &unaligned;
1790 }
1791
1792 } else {
1793 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1794 map_start);
1795 }
1796 ret = comp_keys(tmp, key);
1797
1798 if (ret < 0)
1799 low = mid + 1;
1800 else if (ret > 0)
1801 high = mid;
1802 else {
1803 *slot = mid;
1804 return 0;
1805 }
1806 }
1807 *slot = low;
1808 return 1;
1809}
1810
1811/*
1812 * simple bin_search frontend that does the right thing for
1813 * leaves vs nodes
1814 */
1815static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1816 int level, int *slot)
1817{
1818 if (level == 0)
1819 return generic_bin_search(eb,
1820 offsetof(struct btrfs_leaf, items),
1821 sizeof(struct btrfs_item),
1822 key, btrfs_header_nritems(eb),
1823 slot);
1824 else
1825 return generic_bin_search(eb,
1826 offsetof(struct btrfs_node, ptrs),
1827 sizeof(struct btrfs_key_ptr),
1828 key, btrfs_header_nritems(eb),
1829 slot);
1830}
1831
1832int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1833 int level, int *slot)
1834{
1835 return bin_search(eb, key, level, slot);
1836}
1837
1838static void root_add_used(struct btrfs_root *root, u32 size)
1839{
1840 spin_lock(&root->accounting_lock);
1841 btrfs_set_root_used(&root->root_item,
1842 btrfs_root_used(&root->root_item) + size);
1843 spin_unlock(&root->accounting_lock);
1844}
1845
1846static void root_sub_used(struct btrfs_root *root, u32 size)
1847{
1848 spin_lock(&root->accounting_lock);
1849 btrfs_set_root_used(&root->root_item,
1850 btrfs_root_used(&root->root_item) - size);
1851 spin_unlock(&root->accounting_lock);
1852}
1853
1854/* given a node and slot number, this reads the blocks it points to. The
1855 * extent buffer is returned with a reference taken (but unlocked).
1856 * NULL is returned on error.
1857 */
1858static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1859 struct extent_buffer *parent, int slot)
1860{
1861 int level = btrfs_header_level(parent);
1862 struct extent_buffer *eb;
1863
1864 if (slot < 0)
1865 return NULL;
1866 if (slot >= btrfs_header_nritems(parent))
1867 return NULL;
1868
1869 BUG_ON(level == 0);
1870
1871 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1872 btrfs_node_ptr_generation(parent, slot));
1873 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1874 if (!IS_ERR(eb))
1875 free_extent_buffer(eb);
1876 eb = NULL;
1877 }
1878
1879 return eb;
1880}
1881
1882/*
1883 * node level balancing, used to make sure nodes are in proper order for
1884 * item deletion. We balance from the top down, so we have to make sure
1885 * that a deletion won't leave an node completely empty later on.
1886 */
1887static noinline int balance_level(struct btrfs_trans_handle *trans,
1888 struct btrfs_root *root,
1889 struct btrfs_path *path, int level)
1890{
1891 struct extent_buffer *right = NULL;
1892 struct extent_buffer *mid;
1893 struct extent_buffer *left = NULL;
1894 struct extent_buffer *parent = NULL;
1895 int ret = 0;
1896 int wret;
1897 int pslot;
1898 int orig_slot = path->slots[level];
1899 u64 orig_ptr;
1900
1901 if (level == 0)
1902 return 0;
1903
1904 mid = path->nodes[level];
1905
1906 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1907 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1908 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1909
1910 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1911
1912 if (level < BTRFS_MAX_LEVEL - 1) {
1913 parent = path->nodes[level + 1];
1914 pslot = path->slots[level + 1];
1915 }
1916
1917 /*
1918 * deal with the case where there is only one pointer in the root
1919 * by promoting the node below to a root
1920 */
1921 if (!parent) {
1922 struct extent_buffer *child;
1923
1924 if (btrfs_header_nritems(mid) != 1)
1925 return 0;
1926
1927 /* promote the child to a root */
1928 child = read_node_slot(root, mid, 0);
1929 if (!child) {
1930 ret = -EROFS;
1931 btrfs_std_error(root->fs_info, ret, NULL);
1932 goto enospc;
1933 }
1934
1935 btrfs_tree_lock(child);
1936 btrfs_set_lock_blocking(child);
1937 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1938 if (ret) {
1939 btrfs_tree_unlock(child);
1940 free_extent_buffer(child);
1941 goto enospc;
1942 }
1943
1944 tree_mod_log_set_root_pointer(root, child, 1);
1945 rcu_assign_pointer(root->node, child);
1946
1947 add_root_to_dirty_list(root);
1948 btrfs_tree_unlock(child);
1949
1950 path->locks[level] = 0;
1951 path->nodes[level] = NULL;
1952 clean_tree_block(trans, root->fs_info, mid);
1953 btrfs_tree_unlock(mid);
1954 /* once for the path */
1955 free_extent_buffer(mid);
1956
1957 root_sub_used(root, mid->len);
1958 btrfs_free_tree_block(trans, root, mid, 0, 1);
1959 /* once for the root ptr */
1960 free_extent_buffer_stale(mid);
1961 return 0;
1962 }
1963 if (btrfs_header_nritems(mid) >
1964 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1965 return 0;
1966
1967 left = read_node_slot(root, parent, pslot - 1);
1968 if (left) {
1969 btrfs_tree_lock(left);
1970 btrfs_set_lock_blocking(left);
1971 wret = btrfs_cow_block(trans, root, left,
1972 parent, pslot - 1, &left);
1973 if (wret) {
1974 ret = wret;
1975 goto enospc;
1976 }
1977 }
1978 right = read_node_slot(root, parent, pslot + 1);
1979 if (right) {
1980 btrfs_tree_lock(right);
1981 btrfs_set_lock_blocking(right);
1982 wret = btrfs_cow_block(trans, root, right,
1983 parent, pslot + 1, &right);
1984 if (wret) {
1985 ret = wret;
1986 goto enospc;
1987 }
1988 }
1989
1990 /* first, try to make some room in the middle buffer */
1991 if (left) {
1992 orig_slot += btrfs_header_nritems(left);
1993 wret = push_node_left(trans, root, left, mid, 1);
1994 if (wret < 0)
1995 ret = wret;
1996 }
1997
1998 /*
1999 * then try to empty the right most buffer into the middle
2000 */
2001 if (right) {
2002 wret = push_node_left(trans, root, mid, right, 1);
2003 if (wret < 0 && wret != -ENOSPC)
2004 ret = wret;
2005 if (btrfs_header_nritems(right) == 0) {
2006 clean_tree_block(trans, root->fs_info, right);
2007 btrfs_tree_unlock(right);
2008 del_ptr(root, path, level + 1, pslot + 1);
2009 root_sub_used(root, right->len);
2010 btrfs_free_tree_block(trans, root, right, 0, 1);
2011 free_extent_buffer_stale(right);
2012 right = NULL;
2013 } else {
2014 struct btrfs_disk_key right_key;
2015 btrfs_node_key(right, &right_key, 0);
2016 tree_mod_log_set_node_key(root->fs_info, parent,
2017 pslot + 1, 0);
2018 btrfs_set_node_key(parent, &right_key, pslot + 1);
2019 btrfs_mark_buffer_dirty(parent);
2020 }
2021 }
2022 if (btrfs_header_nritems(mid) == 1) {
2023 /*
2024 * we're not allowed to leave a node with one item in the
2025 * tree during a delete. A deletion from lower in the tree
2026 * could try to delete the only pointer in this node.
2027 * So, pull some keys from the left.
2028 * There has to be a left pointer at this point because
2029 * otherwise we would have pulled some pointers from the
2030 * right
2031 */
2032 if (!left) {
2033 ret = -EROFS;
2034 btrfs_std_error(root->fs_info, ret, NULL);
2035 goto enospc;
2036 }
2037 wret = balance_node_right(trans, root, mid, left);
2038 if (wret < 0) {
2039 ret = wret;
2040 goto enospc;
2041 }
2042 if (wret == 1) {
2043 wret = push_node_left(trans, root, left, mid, 1);
2044 if (wret < 0)
2045 ret = wret;
2046 }
2047 BUG_ON(wret == 1);
2048 }
2049 if (btrfs_header_nritems(mid) == 0) {
2050 clean_tree_block(trans, root->fs_info, mid);
2051 btrfs_tree_unlock(mid);
2052 del_ptr(root, path, level + 1, pslot);
2053 root_sub_used(root, mid->len);
2054 btrfs_free_tree_block(trans, root, mid, 0, 1);
2055 free_extent_buffer_stale(mid);
2056 mid = NULL;
2057 } else {
2058 /* update the parent key to reflect our changes */
2059 struct btrfs_disk_key mid_key;
2060 btrfs_node_key(mid, &mid_key, 0);
2061 tree_mod_log_set_node_key(root->fs_info, parent,
2062 pslot, 0);
2063 btrfs_set_node_key(parent, &mid_key, pslot);
2064 btrfs_mark_buffer_dirty(parent);
2065 }
2066
2067 /* update the path */
2068 if (left) {
2069 if (btrfs_header_nritems(left) > orig_slot) {
2070 extent_buffer_get(left);
2071 /* left was locked after cow */
2072 path->nodes[level] = left;
2073 path->slots[level + 1] -= 1;
2074 path->slots[level] = orig_slot;
2075 if (mid) {
2076 btrfs_tree_unlock(mid);
2077 free_extent_buffer(mid);
2078 }
2079 } else {
2080 orig_slot -= btrfs_header_nritems(left);
2081 path->slots[level] = orig_slot;
2082 }
2083 }
2084 /* double check we haven't messed things up */
2085 if (orig_ptr !=
2086 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2087 BUG();
2088enospc:
2089 if (right) {
2090 btrfs_tree_unlock(right);
2091 free_extent_buffer(right);
2092 }
2093 if (left) {
2094 if (path->nodes[level] != left)
2095 btrfs_tree_unlock(left);
2096 free_extent_buffer(left);
2097 }
2098 return ret;
2099}
2100
2101/* Node balancing for insertion. Here we only split or push nodes around
2102 * when they are completely full. This is also done top down, so we
2103 * have to be pessimistic.
2104 */
2105static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2106 struct btrfs_root *root,
2107 struct btrfs_path *path, int level)
2108{
2109 struct extent_buffer *right = NULL;
2110 struct extent_buffer *mid;
2111 struct extent_buffer *left = NULL;
2112 struct extent_buffer *parent = NULL;
2113 int ret = 0;
2114 int wret;
2115 int pslot;
2116 int orig_slot = path->slots[level];
2117
2118 if (level == 0)
2119 return 1;
2120
2121 mid = path->nodes[level];
2122 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2123
2124 if (level < BTRFS_MAX_LEVEL - 1) {
2125 parent = path->nodes[level + 1];
2126 pslot = path->slots[level + 1];
2127 }
2128
2129 if (!parent)
2130 return 1;
2131
2132 left = read_node_slot(root, parent, pslot - 1);
2133
2134 /* first, try to make some room in the middle buffer */
2135 if (left) {
2136 u32 left_nr;
2137
2138 btrfs_tree_lock(left);
2139 btrfs_set_lock_blocking(left);
2140
2141 left_nr = btrfs_header_nritems(left);
2142 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2143 wret = 1;
2144 } else {
2145 ret = btrfs_cow_block(trans, root, left, parent,
2146 pslot - 1, &left);
2147 if (ret)
2148 wret = 1;
2149 else {
2150 wret = push_node_left(trans, root,
2151 left, mid, 0);
2152 }
2153 }
2154 if (wret < 0)
2155 ret = wret;
2156 if (wret == 0) {
2157 struct btrfs_disk_key disk_key;
2158 orig_slot += left_nr;
2159 btrfs_node_key(mid, &disk_key, 0);
2160 tree_mod_log_set_node_key(root->fs_info, parent,
2161 pslot, 0);
2162 btrfs_set_node_key(parent, &disk_key, pslot);
2163 btrfs_mark_buffer_dirty(parent);
2164 if (btrfs_header_nritems(left) > orig_slot) {
2165 path->nodes[level] = left;
2166 path->slots[level + 1] -= 1;
2167 path->slots[level] = orig_slot;
2168 btrfs_tree_unlock(mid);
2169 free_extent_buffer(mid);
2170 } else {
2171 orig_slot -=
2172 btrfs_header_nritems(left);
2173 path->slots[level] = orig_slot;
2174 btrfs_tree_unlock(left);
2175 free_extent_buffer(left);
2176 }
2177 return 0;
2178 }
2179 btrfs_tree_unlock(left);
2180 free_extent_buffer(left);
2181 }
2182 right = read_node_slot(root, parent, pslot + 1);
2183
2184 /*
2185 * then try to empty the right most buffer into the middle
2186 */
2187 if (right) {
2188 u32 right_nr;
2189
2190 btrfs_tree_lock(right);
2191 btrfs_set_lock_blocking(right);
2192
2193 right_nr = btrfs_header_nritems(right);
2194 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2195 wret = 1;
2196 } else {
2197 ret = btrfs_cow_block(trans, root, right,
2198 parent, pslot + 1,
2199 &right);
2200 if (ret)
2201 wret = 1;
2202 else {
2203 wret = balance_node_right(trans, root,
2204 right, mid);
2205 }
2206 }
2207 if (wret < 0)
2208 ret = wret;
2209 if (wret == 0) {
2210 struct btrfs_disk_key disk_key;
2211
2212 btrfs_node_key(right, &disk_key, 0);
2213 tree_mod_log_set_node_key(root->fs_info, parent,
2214 pslot + 1, 0);
2215 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2216 btrfs_mark_buffer_dirty(parent);
2217
2218 if (btrfs_header_nritems(mid) <= orig_slot) {
2219 path->nodes[level] = right;
2220 path->slots[level + 1] += 1;
2221 path->slots[level] = orig_slot -
2222 btrfs_header_nritems(mid);
2223 btrfs_tree_unlock(mid);
2224 free_extent_buffer(mid);
2225 } else {
2226 btrfs_tree_unlock(right);
2227 free_extent_buffer(right);
2228 }
2229 return 0;
2230 }
2231 btrfs_tree_unlock(right);
2232 free_extent_buffer(right);
2233 }
2234 return 1;
2235}
2236
2237/*
2238 * readahead one full node of leaves, finding things that are close
2239 * to the block in 'slot', and triggering ra on them.
2240 */
2241static void reada_for_search(struct btrfs_root *root,
2242 struct btrfs_path *path,
2243 int level, int slot, u64 objectid)
2244{
2245 struct extent_buffer *node;
2246 struct btrfs_disk_key disk_key;
2247 u32 nritems;
2248 u64 search;
2249 u64 target;
2250 u64 nread = 0;
2251 u64 gen;
2252 struct extent_buffer *eb;
2253 u32 nr;
2254 u32 blocksize;
2255 u32 nscan = 0;
2256
2257 if (level != 1)
2258 return;
2259
2260 if (!path->nodes[level])
2261 return;
2262
2263 node = path->nodes[level];
2264
2265 search = btrfs_node_blockptr(node, slot);
2266 blocksize = root->nodesize;
2267 eb = btrfs_find_tree_block(root->fs_info, search);
2268 if (eb) {
2269 free_extent_buffer(eb);
2270 return;
2271 }
2272
2273 target = search;
2274
2275 nritems = btrfs_header_nritems(node);
2276 nr = slot;
2277
2278 while (1) {
2279 if (path->reada == READA_BACK) {
2280 if (nr == 0)
2281 break;
2282 nr--;
2283 } else if (path->reada == READA_FORWARD) {
2284 nr++;
2285 if (nr >= nritems)
2286 break;
2287 }
2288 if (path->reada == READA_BACK && objectid) {
2289 btrfs_node_key(node, &disk_key, nr);
2290 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2291 break;
2292 }
2293 search = btrfs_node_blockptr(node, nr);
2294 if ((search <= target && target - search <= 65536) ||
2295 (search > target && search - target <= 65536)) {
2296 gen = btrfs_node_ptr_generation(node, nr);
2297 readahead_tree_block(root, search);
2298 nread += blocksize;
2299 }
2300 nscan++;
2301 if ((nread > 65536 || nscan > 32))
2302 break;
2303 }
2304}
2305
2306static noinline void reada_for_balance(struct btrfs_root *root,
2307 struct btrfs_path *path, int level)
2308{
2309 int slot;
2310 int nritems;
2311 struct extent_buffer *parent;
2312 struct extent_buffer *eb;
2313 u64 gen;
2314 u64 block1 = 0;
2315 u64 block2 = 0;
2316
2317 parent = path->nodes[level + 1];
2318 if (!parent)
2319 return;
2320
2321 nritems = btrfs_header_nritems(parent);
2322 slot = path->slots[level + 1];
2323
2324 if (slot > 0) {
2325 block1 = btrfs_node_blockptr(parent, slot - 1);
2326 gen = btrfs_node_ptr_generation(parent, slot - 1);
2327 eb = btrfs_find_tree_block(root->fs_info, block1);
2328 /*
2329 * if we get -eagain from btrfs_buffer_uptodate, we
2330 * don't want to return eagain here. That will loop
2331 * forever
2332 */
2333 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2334 block1 = 0;
2335 free_extent_buffer(eb);
2336 }
2337 if (slot + 1 < nritems) {
2338 block2 = btrfs_node_blockptr(parent, slot + 1);
2339 gen = btrfs_node_ptr_generation(parent, slot + 1);
2340 eb = btrfs_find_tree_block(root->fs_info, block2);
2341 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2342 block2 = 0;
2343 free_extent_buffer(eb);
2344 }
2345
2346 if (block1)
2347 readahead_tree_block(root, block1);
2348 if (block2)
2349 readahead_tree_block(root, block2);
2350}
2351
2352
2353/*
2354 * when we walk down the tree, it is usually safe to unlock the higher layers
2355 * in the tree. The exceptions are when our path goes through slot 0, because
2356 * operations on the tree might require changing key pointers higher up in the
2357 * tree.
2358 *
2359 * callers might also have set path->keep_locks, which tells this code to keep
2360 * the lock if the path points to the last slot in the block. This is part of
2361 * walking through the tree, and selecting the next slot in the higher block.
2362 *
2363 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2364 * if lowest_unlock is 1, level 0 won't be unlocked
2365 */
2366static noinline void unlock_up(struct btrfs_path *path, int level,
2367 int lowest_unlock, int min_write_lock_level,
2368 int *write_lock_level)
2369{
2370 int i;
2371 int skip_level = level;
2372 int no_skips = 0;
2373 struct extent_buffer *t;
2374
2375 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2376 if (!path->nodes[i])
2377 break;
2378 if (!path->locks[i])
2379 break;
2380 if (!no_skips && path->slots[i] == 0) {
2381 skip_level = i + 1;
2382 continue;
2383 }
2384 if (!no_skips && path->keep_locks) {
2385 u32 nritems;
2386 t = path->nodes[i];
2387 nritems = btrfs_header_nritems(t);
2388 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2389 skip_level = i + 1;
2390 continue;
2391 }
2392 }
2393 if (skip_level < i && i >= lowest_unlock)
2394 no_skips = 1;
2395
2396 t = path->nodes[i];
2397 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2398 btrfs_tree_unlock_rw(t, path->locks[i]);
2399 path->locks[i] = 0;
2400 if (write_lock_level &&
2401 i > min_write_lock_level &&
2402 i <= *write_lock_level) {
2403 *write_lock_level = i - 1;
2404 }
2405 }
2406 }
2407}
2408
2409/*
2410 * This releases any locks held in the path starting at level and
2411 * going all the way up to the root.
2412 *
2413 * btrfs_search_slot will keep the lock held on higher nodes in a few
2414 * corner cases, such as COW of the block at slot zero in the node. This
2415 * ignores those rules, and it should only be called when there are no
2416 * more updates to be done higher up in the tree.
2417 */
2418noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2419{
2420 int i;
2421
2422 if (path->keep_locks)
2423 return;
2424
2425 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2426 if (!path->nodes[i])
2427 continue;
2428 if (!path->locks[i])
2429 continue;
2430 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2431 path->locks[i] = 0;
2432 }
2433}
2434
2435/*
2436 * helper function for btrfs_search_slot. The goal is to find a block
2437 * in cache without setting the path to blocking. If we find the block
2438 * we return zero and the path is unchanged.
2439 *
2440 * If we can't find the block, we set the path blocking and do some
2441 * reada. -EAGAIN is returned and the search must be repeated.
2442 */
2443static int
2444read_block_for_search(struct btrfs_trans_handle *trans,
2445 struct btrfs_root *root, struct btrfs_path *p,
2446 struct extent_buffer **eb_ret, int level, int slot,
2447 struct btrfs_key *key, u64 time_seq)
2448{
2449 u64 blocknr;
2450 u64 gen;
2451 struct extent_buffer *b = *eb_ret;
2452 struct extent_buffer *tmp;
2453 int ret;
2454
2455 blocknr = btrfs_node_blockptr(b, slot);
2456 gen = btrfs_node_ptr_generation(b, slot);
2457
2458 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2459 if (tmp) {
2460 /* first we do an atomic uptodate check */
2461 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2462 *eb_ret = tmp;
2463 return 0;
2464 }
2465
2466 /* the pages were up to date, but we failed
2467 * the generation number check. Do a full
2468 * read for the generation number that is correct.
2469 * We must do this without dropping locks so
2470 * we can trust our generation number
2471 */
2472 btrfs_set_path_blocking(p);
2473
2474 /* now we're allowed to do a blocking uptodate check */
2475 ret = btrfs_read_buffer(tmp, gen);
2476 if (!ret) {
2477 *eb_ret = tmp;
2478 return 0;
2479 }
2480 free_extent_buffer(tmp);
2481 btrfs_release_path(p);
2482 return -EIO;
2483 }
2484
2485 /*
2486 * reduce lock contention at high levels
2487 * of the btree by dropping locks before
2488 * we read. Don't release the lock on the current
2489 * level because we need to walk this node to figure
2490 * out which blocks to read.
2491 */
2492 btrfs_unlock_up_safe(p, level + 1);
2493 btrfs_set_path_blocking(p);
2494
2495 free_extent_buffer(tmp);
2496 if (p->reada != READA_NONE)
2497 reada_for_search(root, p, level, slot, key->objectid);
2498
2499 btrfs_release_path(p);
2500
2501 ret = -EAGAIN;
2502 tmp = read_tree_block(root, blocknr, 0);
2503 if (!IS_ERR(tmp)) {
2504 /*
2505 * If the read above didn't mark this buffer up to date,
2506 * it will never end up being up to date. Set ret to EIO now
2507 * and give up so that our caller doesn't loop forever
2508 * on our EAGAINs.
2509 */
2510 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2511 ret = -EIO;
2512 free_extent_buffer(tmp);
2513 }
2514 return ret;
2515}
2516
2517/*
2518 * helper function for btrfs_search_slot. This does all of the checks
2519 * for node-level blocks and does any balancing required based on
2520 * the ins_len.
2521 *
2522 * If no extra work was required, zero is returned. If we had to
2523 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2524 * start over
2525 */
2526static int
2527setup_nodes_for_search(struct btrfs_trans_handle *trans,
2528 struct btrfs_root *root, struct btrfs_path *p,
2529 struct extent_buffer *b, int level, int ins_len,
2530 int *write_lock_level)
2531{
2532 int ret;
2533 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2534 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2535 int sret;
2536
2537 if (*write_lock_level < level + 1) {
2538 *write_lock_level = level + 1;
2539 btrfs_release_path(p);
2540 goto again;
2541 }
2542
2543 btrfs_set_path_blocking(p);
2544 reada_for_balance(root, p, level);
2545 sret = split_node(trans, root, p, level);
2546 btrfs_clear_path_blocking(p, NULL, 0);
2547
2548 BUG_ON(sret > 0);
2549 if (sret) {
2550 ret = sret;
2551 goto done;
2552 }
2553 b = p->nodes[level];
2554 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2555 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2556 int sret;
2557
2558 if (*write_lock_level < level + 1) {
2559 *write_lock_level = level + 1;
2560 btrfs_release_path(p);
2561 goto again;
2562 }
2563
2564 btrfs_set_path_blocking(p);
2565 reada_for_balance(root, p, level);
2566 sret = balance_level(trans, root, p, level);
2567 btrfs_clear_path_blocking(p, NULL, 0);
2568
2569 if (sret) {
2570 ret = sret;
2571 goto done;
2572 }
2573 b = p->nodes[level];
2574 if (!b) {
2575 btrfs_release_path(p);
2576 goto again;
2577 }
2578 BUG_ON(btrfs_header_nritems(b) == 1);
2579 }
2580 return 0;
2581
2582again:
2583 ret = -EAGAIN;
2584done:
2585 return ret;
2586}
2587
2588static void key_search_validate(struct extent_buffer *b,
2589 struct btrfs_key *key,
2590 int level)
2591{
2592#ifdef CONFIG_BTRFS_ASSERT
2593 struct btrfs_disk_key disk_key;
2594
2595 btrfs_cpu_key_to_disk(&disk_key, key);
2596
2597 if (level == 0)
2598 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2599 offsetof(struct btrfs_leaf, items[0].key),
2600 sizeof(disk_key)));
2601 else
2602 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2603 offsetof(struct btrfs_node, ptrs[0].key),
2604 sizeof(disk_key)));
2605#endif
2606}
2607
2608static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2609 int level, int *prev_cmp, int *slot)
2610{
2611 if (*prev_cmp != 0) {
2612 *prev_cmp = bin_search(b, key, level, slot);
2613 return *prev_cmp;
2614 }
2615
2616 key_search_validate(b, key, level);
2617 *slot = 0;
2618
2619 return 0;
2620}
2621
2622int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2623 u64 iobjectid, u64 ioff, u8 key_type,
2624 struct btrfs_key *found_key)
2625{
2626 int ret;
2627 struct btrfs_key key;
2628 struct extent_buffer *eb;
2629
2630 ASSERT(path);
2631 ASSERT(found_key);
2632
2633 key.type = key_type;
2634 key.objectid = iobjectid;
2635 key.offset = ioff;
2636
2637 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2638 if (ret < 0)
2639 return ret;
2640
2641 eb = path->nodes[0];
2642 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2643 ret = btrfs_next_leaf(fs_root, path);
2644 if (ret)
2645 return ret;
2646 eb = path->nodes[0];
2647 }
2648
2649 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2650 if (found_key->type != key.type ||
2651 found_key->objectid != key.objectid)
2652 return 1;
2653
2654 return 0;
2655}
2656
2657/*
2658 * look for key in the tree. path is filled in with nodes along the way
2659 * if key is found, we return zero and you can find the item in the leaf
2660 * level of the path (level 0)
2661 *
2662 * If the key isn't found, the path points to the slot where it should
2663 * be inserted, and 1 is returned. If there are other errors during the
2664 * search a negative error number is returned.
2665 *
2666 * if ins_len > 0, nodes and leaves will be split as we walk down the
2667 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2668 * possible)
2669 */
2670int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2671 *root, struct btrfs_key *key, struct btrfs_path *p, int
2672 ins_len, int cow)
2673{
2674 struct extent_buffer *b;
2675 int slot;
2676 int ret;
2677 int err;
2678 int level;
2679 int lowest_unlock = 1;
2680 int root_lock;
2681 /* everything at write_lock_level or lower must be write locked */
2682 int write_lock_level = 0;
2683 u8 lowest_level = 0;
2684 int min_write_lock_level;
2685 int prev_cmp;
2686
2687 lowest_level = p->lowest_level;
2688 WARN_ON(lowest_level && ins_len > 0);
2689 WARN_ON(p->nodes[0] != NULL);
2690 BUG_ON(!cow && ins_len);
2691
2692 if (ins_len < 0) {
2693 lowest_unlock = 2;
2694
2695 /* when we are removing items, we might have to go up to level
2696 * two as we update tree pointers Make sure we keep write
2697 * for those levels as well
2698 */
2699 write_lock_level = 2;
2700 } else if (ins_len > 0) {
2701 /*
2702 * for inserting items, make sure we have a write lock on
2703 * level 1 so we can update keys
2704 */
2705 write_lock_level = 1;
2706 }
2707
2708 if (!cow)
2709 write_lock_level = -1;
2710
2711 if (cow && (p->keep_locks || p->lowest_level))
2712 write_lock_level = BTRFS_MAX_LEVEL;
2713
2714 min_write_lock_level = write_lock_level;
2715
2716again:
2717 prev_cmp = -1;
2718 /*
2719 * we try very hard to do read locks on the root
2720 */
2721 root_lock = BTRFS_READ_LOCK;
2722 level = 0;
2723 if (p->search_commit_root) {
2724 /*
2725 * the commit roots are read only
2726 * so we always do read locks
2727 */
2728 if (p->need_commit_sem)
2729 down_read(&root->fs_info->commit_root_sem);
2730 b = root->commit_root;
2731 extent_buffer_get(b);
2732 level = btrfs_header_level(b);
2733 if (p->need_commit_sem)
2734 up_read(&root->fs_info->commit_root_sem);
2735 if (!p->skip_locking)
2736 btrfs_tree_read_lock(b);
2737 } else {
2738 if (p->skip_locking) {
2739 b = btrfs_root_node(root);
2740 level = btrfs_header_level(b);
2741 } else {
2742 /* we don't know the level of the root node
2743 * until we actually have it read locked
2744 */
2745 b = btrfs_read_lock_root_node(root);
2746 level = btrfs_header_level(b);
2747 if (level <= write_lock_level) {
2748 /* whoops, must trade for write lock */
2749 btrfs_tree_read_unlock(b);
2750 free_extent_buffer(b);
2751 b = btrfs_lock_root_node(root);
2752 root_lock = BTRFS_WRITE_LOCK;
2753
2754 /* the level might have changed, check again */
2755 level = btrfs_header_level(b);
2756 }
2757 }
2758 }
2759 p->nodes[level] = b;
2760 if (!p->skip_locking)
2761 p->locks[level] = root_lock;
2762
2763 while (b) {
2764 level = btrfs_header_level(b);
2765
2766 /*
2767 * setup the path here so we can release it under lock
2768 * contention with the cow code
2769 */
2770 if (cow) {
2771 /*
2772 * if we don't really need to cow this block
2773 * then we don't want to set the path blocking,
2774 * so we test it here
2775 */
2776 if (!should_cow_block(trans, root, b))
2777 goto cow_done;
2778
2779 /*
2780 * must have write locks on this node and the
2781 * parent
2782 */
2783 if (level > write_lock_level ||
2784 (level + 1 > write_lock_level &&
2785 level + 1 < BTRFS_MAX_LEVEL &&
2786 p->nodes[level + 1])) {
2787 write_lock_level = level + 1;
2788 btrfs_release_path(p);
2789 goto again;
2790 }
2791
2792 btrfs_set_path_blocking(p);
2793 err = btrfs_cow_block(trans, root, b,
2794 p->nodes[level + 1],
2795 p->slots[level + 1], &b);
2796 if (err) {
2797 ret = err;
2798 goto done;
2799 }
2800 }
2801cow_done:
2802 p->nodes[level] = b;
2803 btrfs_clear_path_blocking(p, NULL, 0);
2804
2805 /*
2806 * we have a lock on b and as long as we aren't changing
2807 * the tree, there is no way to for the items in b to change.
2808 * It is safe to drop the lock on our parent before we
2809 * go through the expensive btree search on b.
2810 *
2811 * If we're inserting or deleting (ins_len != 0), then we might
2812 * be changing slot zero, which may require changing the parent.
2813 * So, we can't drop the lock until after we know which slot
2814 * we're operating on.
2815 */
2816 if (!ins_len && !p->keep_locks) {
2817 int u = level + 1;
2818
2819 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2820 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2821 p->locks[u] = 0;
2822 }
2823 }
2824
2825 ret = key_search(b, key, level, &prev_cmp, &slot);
2826
2827 if (level != 0) {
2828 int dec = 0;
2829 if (ret && slot > 0) {
2830 dec = 1;
2831 slot -= 1;
2832 }
2833 p->slots[level] = slot;
2834 err = setup_nodes_for_search(trans, root, p, b, level,
2835 ins_len, &write_lock_level);
2836 if (err == -EAGAIN)
2837 goto again;
2838 if (err) {
2839 ret = err;
2840 goto done;
2841 }
2842 b = p->nodes[level];
2843 slot = p->slots[level];
2844
2845 /*
2846 * slot 0 is special, if we change the key
2847 * we have to update the parent pointer
2848 * which means we must have a write lock
2849 * on the parent
2850 */
2851 if (slot == 0 && ins_len &&
2852 write_lock_level < level + 1) {
2853 write_lock_level = level + 1;
2854 btrfs_release_path(p);
2855 goto again;
2856 }
2857
2858 unlock_up(p, level, lowest_unlock,
2859 min_write_lock_level, &write_lock_level);
2860
2861 if (level == lowest_level) {
2862 if (dec)
2863 p->slots[level]++;
2864 goto done;
2865 }
2866
2867 err = read_block_for_search(trans, root, p,
2868 &b, level, slot, key, 0);
2869 if (err == -EAGAIN)
2870 goto again;
2871 if (err) {
2872 ret = err;
2873 goto done;
2874 }
2875
2876 if (!p->skip_locking) {
2877 level = btrfs_header_level(b);
2878 if (level <= write_lock_level) {
2879 err = btrfs_try_tree_write_lock(b);
2880 if (!err) {
2881 btrfs_set_path_blocking(p);
2882 btrfs_tree_lock(b);
2883 btrfs_clear_path_blocking(p, b,
2884 BTRFS_WRITE_LOCK);
2885 }
2886 p->locks[level] = BTRFS_WRITE_LOCK;
2887 } else {
2888 err = btrfs_tree_read_lock_atomic(b);
2889 if (!err) {
2890 btrfs_set_path_blocking(p);
2891 btrfs_tree_read_lock(b);
2892 btrfs_clear_path_blocking(p, b,
2893 BTRFS_READ_LOCK);
2894 }
2895 p->locks[level] = BTRFS_READ_LOCK;
2896 }
2897 p->nodes[level] = b;
2898 }
2899 } else {
2900 p->slots[level] = slot;
2901 if (ins_len > 0 &&
2902 btrfs_leaf_free_space(root, b) < ins_len) {
2903 if (write_lock_level < 1) {
2904 write_lock_level = 1;
2905 btrfs_release_path(p);
2906 goto again;
2907 }
2908
2909 btrfs_set_path_blocking(p);
2910 err = split_leaf(trans, root, key,
2911 p, ins_len, ret == 0);
2912 btrfs_clear_path_blocking(p, NULL, 0);
2913
2914 BUG_ON(err > 0);
2915 if (err) {
2916 ret = err;
2917 goto done;
2918 }
2919 }
2920 if (!p->search_for_split)
2921 unlock_up(p, level, lowest_unlock,
2922 min_write_lock_level, &write_lock_level);
2923 goto done;
2924 }
2925 }
2926 ret = 1;
2927done:
2928 /*
2929 * we don't really know what they plan on doing with the path
2930 * from here on, so for now just mark it as blocking
2931 */
2932 if (!p->leave_spinning)
2933 btrfs_set_path_blocking(p);
2934 if (ret < 0 && !p->skip_release_on_error)
2935 btrfs_release_path(p);
2936 return ret;
2937}
2938
2939/*
2940 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2941 * current state of the tree together with the operations recorded in the tree
2942 * modification log to search for the key in a previous version of this tree, as
2943 * denoted by the time_seq parameter.
2944 *
2945 * Naturally, there is no support for insert, delete or cow operations.
2946 *
2947 * The resulting path and return value will be set up as if we called
2948 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2949 */
2950int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2951 struct btrfs_path *p, u64 time_seq)
2952{
2953 struct extent_buffer *b;
2954 int slot;
2955 int ret;
2956 int err;
2957 int level;
2958 int lowest_unlock = 1;
2959 u8 lowest_level = 0;
2960 int prev_cmp = -1;
2961
2962 lowest_level = p->lowest_level;
2963 WARN_ON(p->nodes[0] != NULL);
2964
2965 if (p->search_commit_root) {
2966 BUG_ON(time_seq);
2967 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2968 }
2969
2970again:
2971 b = get_old_root(root, time_seq);
2972 level = btrfs_header_level(b);
2973 p->locks[level] = BTRFS_READ_LOCK;
2974
2975 while (b) {
2976 level = btrfs_header_level(b);
2977 p->nodes[level] = b;
2978 btrfs_clear_path_blocking(p, NULL, 0);
2979
2980 /*
2981 * we have a lock on b and as long as we aren't changing
2982 * the tree, there is no way to for the items in b to change.
2983 * It is safe to drop the lock on our parent before we
2984 * go through the expensive btree search on b.
2985 */
2986 btrfs_unlock_up_safe(p, level + 1);
2987
2988 /*
2989 * Since we can unwind eb's we want to do a real search every
2990 * time.
2991 */
2992 prev_cmp = -1;
2993 ret = key_search(b, key, level, &prev_cmp, &slot);
2994
2995 if (level != 0) {
2996 int dec = 0;
2997 if (ret && slot > 0) {
2998 dec = 1;
2999 slot -= 1;
3000 }
3001 p->slots[level] = slot;
3002 unlock_up(p, level, lowest_unlock, 0, NULL);
3003
3004 if (level == lowest_level) {
3005 if (dec)
3006 p->slots[level]++;
3007 goto done;
3008 }
3009
3010 err = read_block_for_search(NULL, root, p, &b, level,
3011 slot, key, time_seq);
3012 if (err == -EAGAIN)
3013 goto again;
3014 if (err) {
3015 ret = err;
3016 goto done;
3017 }
3018
3019 level = btrfs_header_level(b);
3020 err = btrfs_tree_read_lock_atomic(b);
3021 if (!err) {
3022 btrfs_set_path_blocking(p);
3023 btrfs_tree_read_lock(b);
3024 btrfs_clear_path_blocking(p, b,
3025 BTRFS_READ_LOCK);
3026 }
3027 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3028 if (!b) {
3029 ret = -ENOMEM;
3030 goto done;
3031 }
3032 p->locks[level] = BTRFS_READ_LOCK;
3033 p->nodes[level] = b;
3034 } else {
3035 p->slots[level] = slot;
3036 unlock_up(p, level, lowest_unlock, 0, NULL);
3037 goto done;
3038 }
3039 }
3040 ret = 1;
3041done:
3042 if (!p->leave_spinning)
3043 btrfs_set_path_blocking(p);
3044 if (ret < 0)
3045 btrfs_release_path(p);
3046
3047 return ret;
3048}
3049
3050/*
3051 * helper to use instead of search slot if no exact match is needed but
3052 * instead the next or previous item should be returned.
3053 * When find_higher is true, the next higher item is returned, the next lower
3054 * otherwise.
3055 * When return_any and find_higher are both true, and no higher item is found,
3056 * return the next lower instead.
3057 * When return_any is true and find_higher is false, and no lower item is found,
3058 * return the next higher instead.
3059 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3060 * < 0 on error
3061 */
3062int btrfs_search_slot_for_read(struct btrfs_root *root,
3063 struct btrfs_key *key, struct btrfs_path *p,
3064 int find_higher, int return_any)
3065{
3066 int ret;
3067 struct extent_buffer *leaf;
3068
3069again:
3070 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3071 if (ret <= 0)
3072 return ret;
3073 /*
3074 * a return value of 1 means the path is at the position where the
3075 * item should be inserted. Normally this is the next bigger item,
3076 * but in case the previous item is the last in a leaf, path points
3077 * to the first free slot in the previous leaf, i.e. at an invalid
3078 * item.
3079 */
3080 leaf = p->nodes[0];
3081
3082 if (find_higher) {
3083 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3084 ret = btrfs_next_leaf(root, p);
3085 if (ret <= 0)
3086 return ret;
3087 if (!return_any)
3088 return 1;
3089 /*
3090 * no higher item found, return the next
3091 * lower instead
3092 */
3093 return_any = 0;
3094 find_higher = 0;
3095 btrfs_release_path(p);
3096 goto again;
3097 }
3098 } else {
3099 if (p->slots[0] == 0) {
3100 ret = btrfs_prev_leaf(root, p);
3101 if (ret < 0)
3102 return ret;
3103 if (!ret) {
3104 leaf = p->nodes[0];
3105 if (p->slots[0] == btrfs_header_nritems(leaf))
3106 p->slots[0]--;
3107 return 0;
3108 }
3109 if (!return_any)
3110 return 1;
3111 /*
3112 * no lower item found, return the next
3113 * higher instead
3114 */
3115 return_any = 0;
3116 find_higher = 1;
3117 btrfs_release_path(p);
3118 goto again;
3119 } else {
3120 --p->slots[0];
3121 }
3122 }
3123 return 0;
3124}
3125
3126/*
3127 * adjust the pointers going up the tree, starting at level
3128 * making sure the right key of each node is points to 'key'.
3129 * This is used after shifting pointers to the left, so it stops
3130 * fixing up pointers when a given leaf/node is not in slot 0 of the
3131 * higher levels
3132 *
3133 */
3134static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3135 struct btrfs_path *path,
3136 struct btrfs_disk_key *key, int level)
3137{
3138 int i;
3139 struct extent_buffer *t;
3140
3141 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3142 int tslot = path->slots[i];
3143 if (!path->nodes[i])
3144 break;
3145 t = path->nodes[i];
3146 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3147 btrfs_set_node_key(t, key, tslot);
3148 btrfs_mark_buffer_dirty(path->nodes[i]);
3149 if (tslot != 0)
3150 break;
3151 }
3152}
3153
3154/*
3155 * update item key.
3156 *
3157 * This function isn't completely safe. It's the caller's responsibility
3158 * that the new key won't break the order
3159 */
3160void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3161 struct btrfs_path *path,
3162 struct btrfs_key *new_key)
3163{
3164 struct btrfs_disk_key disk_key;
3165 struct extent_buffer *eb;
3166 int slot;
3167
3168 eb = path->nodes[0];
3169 slot = path->slots[0];
3170 if (slot > 0) {
3171 btrfs_item_key(eb, &disk_key, slot - 1);
3172 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3173 }
3174 if (slot < btrfs_header_nritems(eb) - 1) {
3175 btrfs_item_key(eb, &disk_key, slot + 1);
3176 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3177 }
3178
3179 btrfs_cpu_key_to_disk(&disk_key, new_key);
3180 btrfs_set_item_key(eb, &disk_key, slot);
3181 btrfs_mark_buffer_dirty(eb);
3182 if (slot == 0)
3183 fixup_low_keys(fs_info, path, &disk_key, 1);
3184}
3185
3186/*
3187 * try to push data from one node into the next node left in the
3188 * tree.
3189 *
3190 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3191 * error, and > 0 if there was no room in the left hand block.
3192 */
3193static int push_node_left(struct btrfs_trans_handle *trans,
3194 struct btrfs_root *root, struct extent_buffer *dst,
3195 struct extent_buffer *src, int empty)
3196{
3197 int push_items = 0;
3198 int src_nritems;
3199 int dst_nritems;
3200 int ret = 0;
3201
3202 src_nritems = btrfs_header_nritems(src);
3203 dst_nritems = btrfs_header_nritems(dst);
3204 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3205 WARN_ON(btrfs_header_generation(src) != trans->transid);
3206 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3207
3208 if (!empty && src_nritems <= 8)
3209 return 1;
3210
3211 if (push_items <= 0)
3212 return 1;
3213
3214 if (empty) {
3215 push_items = min(src_nritems, push_items);
3216 if (push_items < src_nritems) {
3217 /* leave at least 8 pointers in the node if
3218 * we aren't going to empty it
3219 */
3220 if (src_nritems - push_items < 8) {
3221 if (push_items <= 8)
3222 return 1;
3223 push_items -= 8;
3224 }
3225 }
3226 } else
3227 push_items = min(src_nritems - 8, push_items);
3228
3229 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3230 push_items);
3231 if (ret) {
3232 btrfs_abort_transaction(trans, root, ret);
3233 return ret;
3234 }
3235 copy_extent_buffer(dst, src,
3236 btrfs_node_key_ptr_offset(dst_nritems),
3237 btrfs_node_key_ptr_offset(0),
3238 push_items * sizeof(struct btrfs_key_ptr));
3239
3240 if (push_items < src_nritems) {
3241 /*
3242 * don't call tree_mod_log_eb_move here, key removal was already
3243 * fully logged by tree_mod_log_eb_copy above.
3244 */
3245 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3246 btrfs_node_key_ptr_offset(push_items),
3247 (src_nritems - push_items) *
3248 sizeof(struct btrfs_key_ptr));
3249 }
3250 btrfs_set_header_nritems(src, src_nritems - push_items);
3251 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3252 btrfs_mark_buffer_dirty(src);
3253 btrfs_mark_buffer_dirty(dst);
3254
3255 return ret;
3256}
3257
3258/*
3259 * try to push data from one node into the next node right in the
3260 * tree.
3261 *
3262 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3263 * error, and > 0 if there was no room in the right hand block.
3264 *
3265 * this will only push up to 1/2 the contents of the left node over
3266 */
3267static int balance_node_right(struct btrfs_trans_handle *trans,
3268 struct btrfs_root *root,
3269 struct extent_buffer *dst,
3270 struct extent_buffer *src)
3271{
3272 int push_items = 0;
3273 int max_push;
3274 int src_nritems;
3275 int dst_nritems;
3276 int ret = 0;
3277
3278 WARN_ON(btrfs_header_generation(src) != trans->transid);
3279 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3280
3281 src_nritems = btrfs_header_nritems(src);
3282 dst_nritems = btrfs_header_nritems(dst);
3283 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3284 if (push_items <= 0)
3285 return 1;
3286
3287 if (src_nritems < 4)
3288 return 1;
3289
3290 max_push = src_nritems / 2 + 1;
3291 /* don't try to empty the node */
3292 if (max_push >= src_nritems)
3293 return 1;
3294
3295 if (max_push < push_items)
3296 push_items = max_push;
3297
3298 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3299 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3300 btrfs_node_key_ptr_offset(0),
3301 (dst_nritems) *
3302 sizeof(struct btrfs_key_ptr));
3303
3304 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3305 src_nritems - push_items, push_items);
3306 if (ret) {
3307 btrfs_abort_transaction(trans, root, ret);
3308 return ret;
3309 }
3310 copy_extent_buffer(dst, src,
3311 btrfs_node_key_ptr_offset(0),
3312 btrfs_node_key_ptr_offset(src_nritems - push_items),
3313 push_items * sizeof(struct btrfs_key_ptr));
3314
3315 btrfs_set_header_nritems(src, src_nritems - push_items);
3316 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3317
3318 btrfs_mark_buffer_dirty(src);
3319 btrfs_mark_buffer_dirty(dst);
3320
3321 return ret;
3322}
3323
3324/*
3325 * helper function to insert a new root level in the tree.
3326 * A new node is allocated, and a single item is inserted to
3327 * point to the existing root
3328 *
3329 * returns zero on success or < 0 on failure.
3330 */
3331static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3332 struct btrfs_root *root,
3333 struct btrfs_path *path, int level)
3334{
3335 u64 lower_gen;
3336 struct extent_buffer *lower;
3337 struct extent_buffer *c;
3338 struct extent_buffer *old;
3339 struct btrfs_disk_key lower_key;
3340
3341 BUG_ON(path->nodes[level]);
3342 BUG_ON(path->nodes[level-1] != root->node);
3343
3344 lower = path->nodes[level-1];
3345 if (level == 1)
3346 btrfs_item_key(lower, &lower_key, 0);
3347 else
3348 btrfs_node_key(lower, &lower_key, 0);
3349
3350 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3351 &lower_key, level, root->node->start, 0);
3352 if (IS_ERR(c))
3353 return PTR_ERR(c);
3354
3355 root_add_used(root, root->nodesize);
3356
3357 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3358 btrfs_set_header_nritems(c, 1);
3359 btrfs_set_header_level(c, level);
3360 btrfs_set_header_bytenr(c, c->start);
3361 btrfs_set_header_generation(c, trans->transid);
3362 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3363 btrfs_set_header_owner(c, root->root_key.objectid);
3364
3365 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3366 BTRFS_FSID_SIZE);
3367
3368 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3369 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3370
3371 btrfs_set_node_key(c, &lower_key, 0);
3372 btrfs_set_node_blockptr(c, 0, lower->start);
3373 lower_gen = btrfs_header_generation(lower);
3374 WARN_ON(lower_gen != trans->transid);
3375
3376 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3377
3378 btrfs_mark_buffer_dirty(c);
3379
3380 old = root->node;
3381 tree_mod_log_set_root_pointer(root, c, 0);
3382 rcu_assign_pointer(root->node, c);
3383
3384 /* the super has an extra ref to root->node */
3385 free_extent_buffer(old);
3386
3387 add_root_to_dirty_list(root);
3388 extent_buffer_get(c);
3389 path->nodes[level] = c;
3390 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3391 path->slots[level] = 0;
3392 return 0;
3393}
3394
3395/*
3396 * worker function to insert a single pointer in a node.
3397 * the node should have enough room for the pointer already
3398 *
3399 * slot and level indicate where you want the key to go, and
3400 * blocknr is the block the key points to.
3401 */
3402static void insert_ptr(struct btrfs_trans_handle *trans,
3403 struct btrfs_root *root, struct btrfs_path *path,
3404 struct btrfs_disk_key *key, u64 bytenr,
3405 int slot, int level)
3406{
3407 struct extent_buffer *lower;
3408 int nritems;
3409 int ret;
3410
3411 BUG_ON(!path->nodes[level]);
3412 btrfs_assert_tree_locked(path->nodes[level]);
3413 lower = path->nodes[level];
3414 nritems = btrfs_header_nritems(lower);
3415 BUG_ON(slot > nritems);
3416 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3417 if (slot != nritems) {
3418 if (level)
3419 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3420 slot, nritems - slot);
3421 memmove_extent_buffer(lower,
3422 btrfs_node_key_ptr_offset(slot + 1),
3423 btrfs_node_key_ptr_offset(slot),
3424 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3425 }
3426 if (level) {
3427 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3428 MOD_LOG_KEY_ADD, GFP_NOFS);
3429 BUG_ON(ret < 0);
3430 }
3431 btrfs_set_node_key(lower, key, slot);
3432 btrfs_set_node_blockptr(lower, slot, bytenr);
3433 WARN_ON(trans->transid == 0);
3434 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3435 btrfs_set_header_nritems(lower, nritems + 1);
3436 btrfs_mark_buffer_dirty(lower);
3437}
3438
3439/*
3440 * split the node at the specified level in path in two.
3441 * The path is corrected to point to the appropriate node after the split
3442 *
3443 * Before splitting this tries to make some room in the node by pushing
3444 * left and right, if either one works, it returns right away.
3445 *
3446 * returns 0 on success and < 0 on failure
3447 */
3448static noinline int split_node(struct btrfs_trans_handle *trans,
3449 struct btrfs_root *root,
3450 struct btrfs_path *path, int level)
3451{
3452 struct extent_buffer *c;
3453 struct extent_buffer *split;
3454 struct btrfs_disk_key disk_key;
3455 int mid;
3456 int ret;
3457 u32 c_nritems;
3458
3459 c = path->nodes[level];
3460 WARN_ON(btrfs_header_generation(c) != trans->transid);
3461 if (c == root->node) {
3462 /*
3463 * trying to split the root, lets make a new one
3464 *
3465 * tree mod log: We don't log_removal old root in
3466 * insert_new_root, because that root buffer will be kept as a
3467 * normal node. We are going to log removal of half of the
3468 * elements below with tree_mod_log_eb_copy. We're holding a
3469 * tree lock on the buffer, which is why we cannot race with
3470 * other tree_mod_log users.
3471 */
3472 ret = insert_new_root(trans, root, path, level + 1);
3473 if (ret)
3474 return ret;
3475 } else {
3476 ret = push_nodes_for_insert(trans, root, path, level);
3477 c = path->nodes[level];
3478 if (!ret && btrfs_header_nritems(c) <
3479 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3480 return 0;
3481 if (ret < 0)
3482 return ret;
3483 }
3484
3485 c_nritems = btrfs_header_nritems(c);
3486 mid = (c_nritems + 1) / 2;
3487 btrfs_node_key(c, &disk_key, mid);
3488
3489 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3490 &disk_key, level, c->start, 0);
3491 if (IS_ERR(split))
3492 return PTR_ERR(split);
3493
3494 root_add_used(root, root->nodesize);
3495
3496 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3497 btrfs_set_header_level(split, btrfs_header_level(c));
3498 btrfs_set_header_bytenr(split, split->start);
3499 btrfs_set_header_generation(split, trans->transid);
3500 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3501 btrfs_set_header_owner(split, root->root_key.objectid);
3502 write_extent_buffer(split, root->fs_info->fsid,
3503 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3504 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3505 btrfs_header_chunk_tree_uuid(split),
3506 BTRFS_UUID_SIZE);
3507
3508 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3509 mid, c_nritems - mid);
3510 if (ret) {
3511 btrfs_abort_transaction(trans, root, ret);
3512 return ret;
3513 }
3514 copy_extent_buffer(split, c,
3515 btrfs_node_key_ptr_offset(0),
3516 btrfs_node_key_ptr_offset(mid),
3517 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3518 btrfs_set_header_nritems(split, c_nritems - mid);
3519 btrfs_set_header_nritems(c, mid);
3520 ret = 0;
3521
3522 btrfs_mark_buffer_dirty(c);
3523 btrfs_mark_buffer_dirty(split);
3524
3525 insert_ptr(trans, root, path, &disk_key, split->start,
3526 path->slots[level + 1] + 1, level + 1);
3527
3528 if (path->slots[level] >= mid) {
3529 path->slots[level] -= mid;
3530 btrfs_tree_unlock(c);
3531 free_extent_buffer(c);
3532 path->nodes[level] = split;
3533 path->slots[level + 1] += 1;
3534 } else {
3535 btrfs_tree_unlock(split);
3536 free_extent_buffer(split);
3537 }
3538 return ret;
3539}
3540
3541/*
3542 * how many bytes are required to store the items in a leaf. start
3543 * and nr indicate which items in the leaf to check. This totals up the
3544 * space used both by the item structs and the item data
3545 */
3546static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3547{
3548 struct btrfs_item *start_item;
3549 struct btrfs_item *end_item;
3550 struct btrfs_map_token token;
3551 int data_len;
3552 int nritems = btrfs_header_nritems(l);
3553 int end = min(nritems, start + nr) - 1;
3554
3555 if (!nr)
3556 return 0;
3557 btrfs_init_map_token(&token);
3558 start_item = btrfs_item_nr(start);
3559 end_item = btrfs_item_nr(end);
3560 data_len = btrfs_token_item_offset(l, start_item, &token) +
3561 btrfs_token_item_size(l, start_item, &token);
3562 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3563 data_len += sizeof(struct btrfs_item) * nr;
3564 WARN_ON(data_len < 0);
3565 return data_len;
3566}
3567
3568/*
3569 * The space between the end of the leaf items and
3570 * the start of the leaf data. IOW, how much room
3571 * the leaf has left for both items and data
3572 */
3573noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3574 struct extent_buffer *leaf)
3575{
3576 int nritems = btrfs_header_nritems(leaf);
3577 int ret;
3578 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3579 if (ret < 0) {
3580 btrfs_crit(root->fs_info,
3581 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3582 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3583 leaf_space_used(leaf, 0, nritems), nritems);
3584 }
3585 return ret;
3586}
3587
3588/*
3589 * min slot controls the lowest index we're willing to push to the
3590 * right. We'll push up to and including min_slot, but no lower
3591 */
3592static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3593 struct btrfs_root *root,
3594 struct btrfs_path *path,
3595 int data_size, int empty,
3596 struct extent_buffer *right,
3597 int free_space, u32 left_nritems,
3598 u32 min_slot)
3599{
3600 struct extent_buffer *left = path->nodes[0];
3601 struct extent_buffer *upper = path->nodes[1];
3602 struct btrfs_map_token token;
3603 struct btrfs_disk_key disk_key;
3604 int slot;
3605 u32 i;
3606 int push_space = 0;
3607 int push_items = 0;
3608 struct btrfs_item *item;
3609 u32 nr;
3610 u32 right_nritems;
3611 u32 data_end;
3612 u32 this_item_size;
3613
3614 btrfs_init_map_token(&token);
3615
3616 if (empty)
3617 nr = 0;
3618 else
3619 nr = max_t(u32, 1, min_slot);
3620
3621 if (path->slots[0] >= left_nritems)
3622 push_space += data_size;
3623
3624 slot = path->slots[1];
3625 i = left_nritems - 1;
3626 while (i >= nr) {
3627 item = btrfs_item_nr(i);
3628
3629 if (!empty && push_items > 0) {
3630 if (path->slots[0] > i)
3631 break;
3632 if (path->slots[0] == i) {
3633 int space = btrfs_leaf_free_space(root, left);
3634 if (space + push_space * 2 > free_space)
3635 break;
3636 }
3637 }
3638
3639 if (path->slots[0] == i)
3640 push_space += data_size;
3641
3642 this_item_size = btrfs_item_size(left, item);
3643 if (this_item_size + sizeof(*item) + push_space > free_space)
3644 break;
3645
3646 push_items++;
3647 push_space += this_item_size + sizeof(*item);
3648 if (i == 0)
3649 break;
3650 i--;
3651 }
3652
3653 if (push_items == 0)
3654 goto out_unlock;
3655
3656 WARN_ON(!empty && push_items == left_nritems);
3657
3658 /* push left to right */
3659 right_nritems = btrfs_header_nritems(right);
3660
3661 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3662 push_space -= leaf_data_end(root, left);
3663
3664 /* make room in the right data area */
3665 data_end = leaf_data_end(root, right);
3666 memmove_extent_buffer(right,
3667 btrfs_leaf_data(right) + data_end - push_space,
3668 btrfs_leaf_data(right) + data_end,
3669 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3670
3671 /* copy from the left data area */
3672 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3673 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3674 btrfs_leaf_data(left) + leaf_data_end(root, left),
3675 push_space);
3676
3677 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3678 btrfs_item_nr_offset(0),
3679 right_nritems * sizeof(struct btrfs_item));
3680
3681 /* copy the items from left to right */
3682 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3683 btrfs_item_nr_offset(left_nritems - push_items),
3684 push_items * sizeof(struct btrfs_item));
3685
3686 /* update the item pointers */
3687 right_nritems += push_items;
3688 btrfs_set_header_nritems(right, right_nritems);
3689 push_space = BTRFS_LEAF_DATA_SIZE(root);
3690 for (i = 0; i < right_nritems; i++) {
3691 item = btrfs_item_nr(i);
3692 push_space -= btrfs_token_item_size(right, item, &token);
3693 btrfs_set_token_item_offset(right, item, push_space, &token);
3694 }
3695
3696 left_nritems -= push_items;
3697 btrfs_set_header_nritems(left, left_nritems);
3698
3699 if (left_nritems)
3700 btrfs_mark_buffer_dirty(left);
3701 else
3702 clean_tree_block(trans, root->fs_info, left);
3703
3704 btrfs_mark_buffer_dirty(right);
3705
3706 btrfs_item_key(right, &disk_key, 0);
3707 btrfs_set_node_key(upper, &disk_key, slot + 1);
3708 btrfs_mark_buffer_dirty(upper);
3709
3710 /* then fixup the leaf pointer in the path */
3711 if (path->slots[0] >= left_nritems) {
3712 path->slots[0] -= left_nritems;
3713 if (btrfs_header_nritems(path->nodes[0]) == 0)
3714 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3715 btrfs_tree_unlock(path->nodes[0]);
3716 free_extent_buffer(path->nodes[0]);
3717 path->nodes[0] = right;
3718 path->slots[1] += 1;
3719 } else {
3720 btrfs_tree_unlock(right);
3721 free_extent_buffer(right);
3722 }
3723 return 0;
3724
3725out_unlock:
3726 btrfs_tree_unlock(right);
3727 free_extent_buffer(right);
3728 return 1;
3729}
3730
3731/*
3732 * push some data in the path leaf to the right, trying to free up at
3733 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3734 *
3735 * returns 1 if the push failed because the other node didn't have enough
3736 * room, 0 if everything worked out and < 0 if there were major errors.
3737 *
3738 * this will push starting from min_slot to the end of the leaf. It won't
3739 * push any slot lower than min_slot
3740 */
3741static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3742 *root, struct btrfs_path *path,
3743 int min_data_size, int data_size,
3744 int empty, u32 min_slot)
3745{
3746 struct extent_buffer *left = path->nodes[0];
3747 struct extent_buffer *right;
3748 struct extent_buffer *upper;
3749 int slot;
3750 int free_space;
3751 u32 left_nritems;
3752 int ret;
3753
3754 if (!path->nodes[1])
3755 return 1;
3756
3757 slot = path->slots[1];
3758 upper = path->nodes[1];
3759 if (slot >= btrfs_header_nritems(upper) - 1)
3760 return 1;
3761
3762 btrfs_assert_tree_locked(path->nodes[1]);
3763
3764 right = read_node_slot(root, upper, slot + 1);
3765 if (right == NULL)
3766 return 1;
3767
3768 btrfs_tree_lock(right);
3769 btrfs_set_lock_blocking(right);
3770
3771 free_space = btrfs_leaf_free_space(root, right);
3772 if (free_space < data_size)
3773 goto out_unlock;
3774
3775 /* cow and double check */
3776 ret = btrfs_cow_block(trans, root, right, upper,
3777 slot + 1, &right);
3778 if (ret)
3779 goto out_unlock;
3780
3781 free_space = btrfs_leaf_free_space(root, right);
3782 if (free_space < data_size)
3783 goto out_unlock;
3784
3785 left_nritems = btrfs_header_nritems(left);
3786 if (left_nritems == 0)
3787 goto out_unlock;
3788
3789 if (path->slots[0] == left_nritems && !empty) {
3790 /* Key greater than all keys in the leaf, right neighbor has
3791 * enough room for it and we're not emptying our leaf to delete
3792 * it, therefore use right neighbor to insert the new item and
3793 * no need to touch/dirty our left leaft. */
3794 btrfs_tree_unlock(left);
3795 free_extent_buffer(left);
3796 path->nodes[0] = right;
3797 path->slots[0] = 0;
3798 path->slots[1]++;
3799 return 0;
3800 }
3801
3802 return __push_leaf_right(trans, root, path, min_data_size, empty,
3803 right, free_space, left_nritems, min_slot);
3804out_unlock:
3805 btrfs_tree_unlock(right);
3806 free_extent_buffer(right);
3807 return 1;
3808}
3809
3810/*
3811 * push some data in the path leaf to the left, trying to free up at
3812 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3813 *
3814 * max_slot can put a limit on how far into the leaf we'll push items. The
3815 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3816 * items
3817 */
3818static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3819 struct btrfs_root *root,
3820 struct btrfs_path *path, int data_size,
3821 int empty, struct extent_buffer *left,
3822 int free_space, u32 right_nritems,
3823 u32 max_slot)
3824{
3825 struct btrfs_disk_key disk_key;
3826 struct extent_buffer *right = path->nodes[0];
3827 int i;
3828 int push_space = 0;
3829 int push_items = 0;
3830 struct btrfs_item *item;
3831 u32 old_left_nritems;
3832 u32 nr;
3833 int ret = 0;
3834 u32 this_item_size;
3835 u32 old_left_item_size;
3836 struct btrfs_map_token token;
3837
3838 btrfs_init_map_token(&token);
3839
3840 if (empty)
3841 nr = min(right_nritems, max_slot);
3842 else
3843 nr = min(right_nritems - 1, max_slot);
3844
3845 for (i = 0; i < nr; i++) {
3846 item = btrfs_item_nr(i);
3847
3848 if (!empty && push_items > 0) {
3849 if (path->slots[0] < i)
3850 break;
3851 if (path->slots[0] == i) {
3852 int space = btrfs_leaf_free_space(root, right);
3853 if (space + push_space * 2 > free_space)
3854 break;
3855 }
3856 }
3857
3858 if (path->slots[0] == i)
3859 push_space += data_size;
3860
3861 this_item_size = btrfs_item_size(right, item);
3862 if (this_item_size + sizeof(*item) + push_space > free_space)
3863 break;
3864
3865 push_items++;
3866 push_space += this_item_size + sizeof(*item);
3867 }
3868
3869 if (push_items == 0) {
3870 ret = 1;
3871 goto out;
3872 }
3873 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3874
3875 /* push data from right to left */
3876 copy_extent_buffer(left, right,
3877 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878 btrfs_item_nr_offset(0),
3879 push_items * sizeof(struct btrfs_item));
3880
3881 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3882 btrfs_item_offset_nr(right, push_items - 1);
3883
3884 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3885 leaf_data_end(root, left) - push_space,
3886 btrfs_leaf_data(right) +
3887 btrfs_item_offset_nr(right, push_items - 1),
3888 push_space);
3889 old_left_nritems = btrfs_header_nritems(left);
3890 BUG_ON(old_left_nritems <= 0);
3891
3892 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3893 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3894 u32 ioff;
3895
3896 item = btrfs_item_nr(i);
3897
3898 ioff = btrfs_token_item_offset(left, item, &token);
3899 btrfs_set_token_item_offset(left, item,
3900 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3901 &token);
3902 }
3903 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3904
3905 /* fixup right node */
3906 if (push_items > right_nritems)
3907 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3908 right_nritems);
3909
3910 if (push_items < right_nritems) {
3911 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912 leaf_data_end(root, right);
3913 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3914 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3915 btrfs_leaf_data(right) +
3916 leaf_data_end(root, right), push_space);
3917
3918 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919 btrfs_item_nr_offset(push_items),
3920 (btrfs_header_nritems(right) - push_items) *
3921 sizeof(struct btrfs_item));
3922 }
3923 right_nritems -= push_items;
3924 btrfs_set_header_nritems(right, right_nritems);
3925 push_space = BTRFS_LEAF_DATA_SIZE(root);
3926 for (i = 0; i < right_nritems; i++) {
3927 item = btrfs_item_nr(i);
3928
3929 push_space = push_space - btrfs_token_item_size(right,
3930 item, &token);
3931 btrfs_set_token_item_offset(right, item, push_space, &token);
3932 }
3933
3934 btrfs_mark_buffer_dirty(left);
3935 if (right_nritems)
3936 btrfs_mark_buffer_dirty(right);
3937 else
3938 clean_tree_block(trans, root->fs_info, right);
3939
3940 btrfs_item_key(right, &disk_key, 0);
3941 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3942
3943 /* then fixup the leaf pointer in the path */
3944 if (path->slots[0] < push_items) {
3945 path->slots[0] += old_left_nritems;
3946 btrfs_tree_unlock(path->nodes[0]);
3947 free_extent_buffer(path->nodes[0]);
3948 path->nodes[0] = left;
3949 path->slots[1] -= 1;
3950 } else {
3951 btrfs_tree_unlock(left);
3952 free_extent_buffer(left);
3953 path->slots[0] -= push_items;
3954 }
3955 BUG_ON(path->slots[0] < 0);
3956 return ret;
3957out:
3958 btrfs_tree_unlock(left);
3959 free_extent_buffer(left);
3960 return ret;
3961}
3962
3963/*
3964 * push some data in the path leaf to the left, trying to free up at
3965 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3966 *
3967 * max_slot can put a limit on how far into the leaf we'll push items. The
3968 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3969 * items
3970 */
3971static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972 *root, struct btrfs_path *path, int min_data_size,
3973 int data_size, int empty, u32 max_slot)
3974{
3975 struct extent_buffer *right = path->nodes[0];
3976 struct extent_buffer *left;
3977 int slot;
3978 int free_space;
3979 u32 right_nritems;
3980 int ret = 0;
3981
3982 slot = path->slots[1];
3983 if (slot == 0)
3984 return 1;
3985 if (!path->nodes[1])
3986 return 1;
3987
3988 right_nritems = btrfs_header_nritems(right);
3989 if (right_nritems == 0)
3990 return 1;
3991
3992 btrfs_assert_tree_locked(path->nodes[1]);
3993
3994 left = read_node_slot(root, path->nodes[1], slot - 1);
3995 if (left == NULL)
3996 return 1;
3997
3998 btrfs_tree_lock(left);
3999 btrfs_set_lock_blocking(left);
4000
4001 free_space = btrfs_leaf_free_space(root, left);
4002 if (free_space < data_size) {
4003 ret = 1;
4004 goto out;
4005 }
4006
4007 /* cow and double check */
4008 ret = btrfs_cow_block(trans, root, left,
4009 path->nodes[1], slot - 1, &left);
4010 if (ret) {
4011 /* we hit -ENOSPC, but it isn't fatal here */
4012 if (ret == -ENOSPC)
4013 ret = 1;
4014 goto out;
4015 }
4016
4017 free_space = btrfs_leaf_free_space(root, left);
4018 if (free_space < data_size) {
4019 ret = 1;
4020 goto out;
4021 }
4022
4023 return __push_leaf_left(trans, root, path, min_data_size,
4024 empty, left, free_space, right_nritems,
4025 max_slot);
4026out:
4027 btrfs_tree_unlock(left);
4028 free_extent_buffer(left);
4029 return ret;
4030}
4031
4032/*
4033 * split the path's leaf in two, making sure there is at least data_size
4034 * available for the resulting leaf level of the path.
4035 */
4036static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4037 struct btrfs_root *root,
4038 struct btrfs_path *path,
4039 struct extent_buffer *l,
4040 struct extent_buffer *right,
4041 int slot, int mid, int nritems)
4042{
4043 int data_copy_size;
4044 int rt_data_off;
4045 int i;
4046 struct btrfs_disk_key disk_key;
4047 struct btrfs_map_token token;
4048
4049 btrfs_init_map_token(&token);
4050
4051 nritems = nritems - mid;
4052 btrfs_set_header_nritems(right, nritems);
4053 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4054
4055 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4056 btrfs_item_nr_offset(mid),
4057 nritems * sizeof(struct btrfs_item));
4058
4059 copy_extent_buffer(right, l,
4060 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4061 data_copy_size, btrfs_leaf_data(l) +
4062 leaf_data_end(root, l), data_copy_size);
4063
4064 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4065 btrfs_item_end_nr(l, mid);
4066
4067 for (i = 0; i < nritems; i++) {
4068 struct btrfs_item *item = btrfs_item_nr(i);
4069 u32 ioff;
4070
4071 ioff = btrfs_token_item_offset(right, item, &token);
4072 btrfs_set_token_item_offset(right, item,
4073 ioff + rt_data_off, &token);
4074 }
4075
4076 btrfs_set_header_nritems(l, mid);
4077 btrfs_item_key(right, &disk_key, 0);
4078 insert_ptr(trans, root, path, &disk_key, right->start,
4079 path->slots[1] + 1, 1);
4080
4081 btrfs_mark_buffer_dirty(right);
4082 btrfs_mark_buffer_dirty(l);
4083 BUG_ON(path->slots[0] != slot);
4084
4085 if (mid <= slot) {
4086 btrfs_tree_unlock(path->nodes[0]);
4087 free_extent_buffer(path->nodes[0]);
4088 path->nodes[0] = right;
4089 path->slots[0] -= mid;
4090 path->slots[1] += 1;
4091 } else {
4092 btrfs_tree_unlock(right);
4093 free_extent_buffer(right);
4094 }
4095
4096 BUG_ON(path->slots[0] < 0);
4097}
4098
4099/*
4100 * double splits happen when we need to insert a big item in the middle
4101 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4102 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4103 * A B C
4104 *
4105 * We avoid this by trying to push the items on either side of our target
4106 * into the adjacent leaves. If all goes well we can avoid the double split
4107 * completely.
4108 */
4109static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4110 struct btrfs_root *root,
4111 struct btrfs_path *path,
4112 int data_size)
4113{
4114 int ret;
4115 int progress = 0;
4116 int slot;
4117 u32 nritems;
4118 int space_needed = data_size;
4119
4120 slot = path->slots[0];
4121 if (slot < btrfs_header_nritems(path->nodes[0]))
4122 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4123
4124 /*
4125 * try to push all the items after our slot into the
4126 * right leaf
4127 */
4128 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4129 if (ret < 0)
4130 return ret;
4131
4132 if (ret == 0)
4133 progress++;
4134
4135 nritems = btrfs_header_nritems(path->nodes[0]);
4136 /*
4137 * our goal is to get our slot at the start or end of a leaf. If
4138 * we've done so we're done
4139 */
4140 if (path->slots[0] == 0 || path->slots[0] == nritems)
4141 return 0;
4142
4143 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4144 return 0;
4145
4146 /* try to push all the items before our slot into the next leaf */
4147 slot = path->slots[0];
4148 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4149 if (ret < 0)
4150 return ret;
4151
4152 if (ret == 0)
4153 progress++;
4154
4155 if (progress)
4156 return 0;
4157 return 1;
4158}
4159
4160/*
4161 * split the path's leaf in two, making sure there is at least data_size
4162 * available for the resulting leaf level of the path.
4163 *
4164 * returns 0 if all went well and < 0 on failure.
4165 */
4166static noinline int split_leaf(struct btrfs_trans_handle *trans,
4167 struct btrfs_root *root,
4168 struct btrfs_key *ins_key,
4169 struct btrfs_path *path, int data_size,
4170 int extend)
4171{
4172 struct btrfs_disk_key disk_key;
4173 struct extent_buffer *l;
4174 u32 nritems;
4175 int mid;
4176 int slot;
4177 struct extent_buffer *right;
4178 struct btrfs_fs_info *fs_info = root->fs_info;
4179 int ret = 0;
4180 int wret;
4181 int split;
4182 int num_doubles = 0;
4183 int tried_avoid_double = 0;
4184
4185 l = path->nodes[0];
4186 slot = path->slots[0];
4187 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4188 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4189 return -EOVERFLOW;
4190
4191 /* first try to make some room by pushing left and right */
4192 if (data_size && path->nodes[1]) {
4193 int space_needed = data_size;
4194
4195 if (slot < btrfs_header_nritems(l))
4196 space_needed -= btrfs_leaf_free_space(root, l);
4197
4198 wret = push_leaf_right(trans, root, path, space_needed,
4199 space_needed, 0, 0);
4200 if (wret < 0)
4201 return wret;
4202 if (wret) {
4203 wret = push_leaf_left(trans, root, path, space_needed,
4204 space_needed, 0, (u32)-1);
4205 if (wret < 0)
4206 return wret;
4207 }
4208 l = path->nodes[0];
4209
4210 /* did the pushes work? */
4211 if (btrfs_leaf_free_space(root, l) >= data_size)
4212 return 0;
4213 }
4214
4215 if (!path->nodes[1]) {
4216 ret = insert_new_root(trans, root, path, 1);
4217 if (ret)
4218 return ret;
4219 }
4220again:
4221 split = 1;
4222 l = path->nodes[0];
4223 slot = path->slots[0];
4224 nritems = btrfs_header_nritems(l);
4225 mid = (nritems + 1) / 2;
4226
4227 if (mid <= slot) {
4228 if (nritems == 1 ||
4229 leaf_space_used(l, mid, nritems - mid) + data_size >
4230 BTRFS_LEAF_DATA_SIZE(root)) {
4231 if (slot >= nritems) {
4232 split = 0;
4233 } else {
4234 mid = slot;
4235 if (mid != nritems &&
4236 leaf_space_used(l, mid, nritems - mid) +
4237 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4238 if (data_size && !tried_avoid_double)
4239 goto push_for_double;
4240 split = 2;
4241 }
4242 }
4243 }
4244 } else {
4245 if (leaf_space_used(l, 0, mid) + data_size >
4246 BTRFS_LEAF_DATA_SIZE(root)) {
4247 if (!extend && data_size && slot == 0) {
4248 split = 0;
4249 } else if ((extend || !data_size) && slot == 0) {
4250 mid = 1;
4251 } else {
4252 mid = slot;
4253 if (mid != nritems &&
4254 leaf_space_used(l, mid, nritems - mid) +
4255 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4256 if (data_size && !tried_avoid_double)
4257 goto push_for_double;
4258 split = 2;
4259 }
4260 }
4261 }
4262 }
4263
4264 if (split == 0)
4265 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4266 else
4267 btrfs_item_key(l, &disk_key, mid);
4268
4269 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4270 &disk_key, 0, l->start, 0);
4271 if (IS_ERR(right))
4272 return PTR_ERR(right);
4273
4274 root_add_used(root, root->nodesize);
4275
4276 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4277 btrfs_set_header_bytenr(right, right->start);
4278 btrfs_set_header_generation(right, trans->transid);
4279 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4280 btrfs_set_header_owner(right, root->root_key.objectid);
4281 btrfs_set_header_level(right, 0);
4282 write_extent_buffer(right, fs_info->fsid,
4283 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4284
4285 write_extent_buffer(right, fs_info->chunk_tree_uuid,
4286 btrfs_header_chunk_tree_uuid(right),
4287 BTRFS_UUID_SIZE);
4288
4289 if (split == 0) {
4290 if (mid <= slot) {
4291 btrfs_set_header_nritems(right, 0);
4292 insert_ptr(trans, root, path, &disk_key, right->start,
4293 path->slots[1] + 1, 1);
4294 btrfs_tree_unlock(path->nodes[0]);
4295 free_extent_buffer(path->nodes[0]);
4296 path->nodes[0] = right;
4297 path->slots[0] = 0;
4298 path->slots[1] += 1;
4299 } else {
4300 btrfs_set_header_nritems(right, 0);
4301 insert_ptr(trans, root, path, &disk_key, right->start,
4302 path->slots[1], 1);
4303 btrfs_tree_unlock(path->nodes[0]);
4304 free_extent_buffer(path->nodes[0]);
4305 path->nodes[0] = right;
4306 path->slots[0] = 0;
4307 if (path->slots[1] == 0)
4308 fixup_low_keys(fs_info, path, &disk_key, 1);
4309 }
4310 btrfs_mark_buffer_dirty(right);
4311 return ret;
4312 }
4313
4314 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4315
4316 if (split == 2) {
4317 BUG_ON(num_doubles != 0);
4318 num_doubles++;
4319 goto again;
4320 }
4321
4322 return 0;
4323
4324push_for_double:
4325 push_for_double_split(trans, root, path, data_size);
4326 tried_avoid_double = 1;
4327 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4328 return 0;
4329 goto again;
4330}
4331
4332static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4333 struct btrfs_root *root,
4334 struct btrfs_path *path, int ins_len)
4335{
4336 struct btrfs_key key;
4337 struct extent_buffer *leaf;
4338 struct btrfs_file_extent_item *fi;
4339 u64 extent_len = 0;
4340 u32 item_size;
4341 int ret;
4342
4343 leaf = path->nodes[0];
4344 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4345
4346 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4347 key.type != BTRFS_EXTENT_CSUM_KEY);
4348
4349 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4350 return 0;
4351
4352 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4353 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4354 fi = btrfs_item_ptr(leaf, path->slots[0],
4355 struct btrfs_file_extent_item);
4356 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4357 }
4358 btrfs_release_path(path);
4359
4360 path->keep_locks = 1;
4361 path->search_for_split = 1;
4362 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4363 path->search_for_split = 0;
4364 if (ret > 0)
4365 ret = -EAGAIN;
4366 if (ret < 0)
4367 goto err;
4368
4369 ret = -EAGAIN;
4370 leaf = path->nodes[0];
4371 /* if our item isn't there, return now */
4372 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4373 goto err;
4374
4375 /* the leaf has changed, it now has room. return now */
4376 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4377 goto err;
4378
4379 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4380 fi = btrfs_item_ptr(leaf, path->slots[0],
4381 struct btrfs_file_extent_item);
4382 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4383 goto err;
4384 }
4385
4386 btrfs_set_path_blocking(path);
4387 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4388 if (ret)
4389 goto err;
4390
4391 path->keep_locks = 0;
4392 btrfs_unlock_up_safe(path, 1);
4393 return 0;
4394err:
4395 path->keep_locks = 0;
4396 return ret;
4397}
4398
4399static noinline int split_item(struct btrfs_trans_handle *trans,
4400 struct btrfs_root *root,
4401 struct btrfs_path *path,
4402 struct btrfs_key *new_key,
4403 unsigned long split_offset)
4404{
4405 struct extent_buffer *leaf;
4406 struct btrfs_item *item;
4407 struct btrfs_item *new_item;
4408 int slot;
4409 char *buf;
4410 u32 nritems;
4411 u32 item_size;
4412 u32 orig_offset;
4413 struct btrfs_disk_key disk_key;
4414
4415 leaf = path->nodes[0];
4416 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4417
4418 btrfs_set_path_blocking(path);
4419
4420 item = btrfs_item_nr(path->slots[0]);
4421 orig_offset = btrfs_item_offset(leaf, item);
4422 item_size = btrfs_item_size(leaf, item);
4423
4424 buf = kmalloc(item_size, GFP_NOFS);
4425 if (!buf)
4426 return -ENOMEM;
4427
4428 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4429 path->slots[0]), item_size);
4430
4431 slot = path->slots[0] + 1;
4432 nritems = btrfs_header_nritems(leaf);
4433 if (slot != nritems) {
4434 /* shift the items */
4435 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4436 btrfs_item_nr_offset(slot),
4437 (nritems - slot) * sizeof(struct btrfs_item));
4438 }
4439
4440 btrfs_cpu_key_to_disk(&disk_key, new_key);
4441 btrfs_set_item_key(leaf, &disk_key, slot);
4442
4443 new_item = btrfs_item_nr(slot);
4444
4445 btrfs_set_item_offset(leaf, new_item, orig_offset);
4446 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4447
4448 btrfs_set_item_offset(leaf, item,
4449 orig_offset + item_size - split_offset);
4450 btrfs_set_item_size(leaf, item, split_offset);
4451
4452 btrfs_set_header_nritems(leaf, nritems + 1);
4453
4454 /* write the data for the start of the original item */
4455 write_extent_buffer(leaf, buf,
4456 btrfs_item_ptr_offset(leaf, path->slots[0]),
4457 split_offset);
4458
4459 /* write the data for the new item */
4460 write_extent_buffer(leaf, buf + split_offset,
4461 btrfs_item_ptr_offset(leaf, slot),
4462 item_size - split_offset);
4463 btrfs_mark_buffer_dirty(leaf);
4464
4465 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4466 kfree(buf);
4467 return 0;
4468}
4469
4470/*
4471 * This function splits a single item into two items,
4472 * giving 'new_key' to the new item and splitting the
4473 * old one at split_offset (from the start of the item).
4474 *
4475 * The path may be released by this operation. After
4476 * the split, the path is pointing to the old item. The
4477 * new item is going to be in the same node as the old one.
4478 *
4479 * Note, the item being split must be smaller enough to live alone on
4480 * a tree block with room for one extra struct btrfs_item
4481 *
4482 * This allows us to split the item in place, keeping a lock on the
4483 * leaf the entire time.
4484 */
4485int btrfs_split_item(struct btrfs_trans_handle *trans,
4486 struct btrfs_root *root,
4487 struct btrfs_path *path,
4488 struct btrfs_key *new_key,
4489 unsigned long split_offset)
4490{
4491 int ret;
4492 ret = setup_leaf_for_split(trans, root, path,
4493 sizeof(struct btrfs_item));
4494 if (ret)
4495 return ret;
4496
4497 ret = split_item(trans, root, path, new_key, split_offset);
4498 return ret;
4499}
4500
4501/*
4502 * This function duplicate a item, giving 'new_key' to the new item.
4503 * It guarantees both items live in the same tree leaf and the new item
4504 * is contiguous with the original item.
4505 *
4506 * This allows us to split file extent in place, keeping a lock on the
4507 * leaf the entire time.
4508 */
4509int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4510 struct btrfs_root *root,
4511 struct btrfs_path *path,
4512 struct btrfs_key *new_key)
4513{
4514 struct extent_buffer *leaf;
4515 int ret;
4516 u32 item_size;
4517
4518 leaf = path->nodes[0];
4519 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4520 ret = setup_leaf_for_split(trans, root, path,
4521 item_size + sizeof(struct btrfs_item));
4522 if (ret)
4523 return ret;
4524
4525 path->slots[0]++;
4526 setup_items_for_insert(root, path, new_key, &item_size,
4527 item_size, item_size +
4528 sizeof(struct btrfs_item), 1);
4529 leaf = path->nodes[0];
4530 memcpy_extent_buffer(leaf,
4531 btrfs_item_ptr_offset(leaf, path->slots[0]),
4532 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4533 item_size);
4534 return 0;
4535}
4536
4537/*
4538 * make the item pointed to by the path smaller. new_size indicates
4539 * how small to make it, and from_end tells us if we just chop bytes
4540 * off the end of the item or if we shift the item to chop bytes off
4541 * the front.
4542 */
4543void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4544 u32 new_size, int from_end)
4545{
4546 int slot;
4547 struct extent_buffer *leaf;
4548 struct btrfs_item *item;
4549 u32 nritems;
4550 unsigned int data_end;
4551 unsigned int old_data_start;
4552 unsigned int old_size;
4553 unsigned int size_diff;
4554 int i;
4555 struct btrfs_map_token token;
4556
4557 btrfs_init_map_token(&token);
4558
4559 leaf = path->nodes[0];
4560 slot = path->slots[0];
4561
4562 old_size = btrfs_item_size_nr(leaf, slot);
4563 if (old_size == new_size)
4564 return;
4565
4566 nritems = btrfs_header_nritems(leaf);
4567 data_end = leaf_data_end(root, leaf);
4568
4569 old_data_start = btrfs_item_offset_nr(leaf, slot);
4570
4571 size_diff = old_size - new_size;
4572
4573 BUG_ON(slot < 0);
4574 BUG_ON(slot >= nritems);
4575
4576 /*
4577 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4578 */
4579 /* first correct the data pointers */
4580 for (i = slot; i < nritems; i++) {
4581 u32 ioff;
4582 item = btrfs_item_nr(i);
4583
4584 ioff = btrfs_token_item_offset(leaf, item, &token);
4585 btrfs_set_token_item_offset(leaf, item,
4586 ioff + size_diff, &token);
4587 }
4588
4589 /* shift the data */
4590 if (from_end) {
4591 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4592 data_end + size_diff, btrfs_leaf_data(leaf) +
4593 data_end, old_data_start + new_size - data_end);
4594 } else {
4595 struct btrfs_disk_key disk_key;
4596 u64 offset;
4597
4598 btrfs_item_key(leaf, &disk_key, slot);
4599
4600 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4601 unsigned long ptr;
4602 struct btrfs_file_extent_item *fi;
4603
4604 fi = btrfs_item_ptr(leaf, slot,
4605 struct btrfs_file_extent_item);
4606 fi = (struct btrfs_file_extent_item *)(
4607 (unsigned long)fi - size_diff);
4608
4609 if (btrfs_file_extent_type(leaf, fi) ==
4610 BTRFS_FILE_EXTENT_INLINE) {
4611 ptr = btrfs_item_ptr_offset(leaf, slot);
4612 memmove_extent_buffer(leaf, ptr,
4613 (unsigned long)fi,
4614 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4615 }
4616 }
4617
4618 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4619 data_end + size_diff, btrfs_leaf_data(leaf) +
4620 data_end, old_data_start - data_end);
4621
4622 offset = btrfs_disk_key_offset(&disk_key);
4623 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4624 btrfs_set_item_key(leaf, &disk_key, slot);
4625 if (slot == 0)
4626 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4627 }
4628
4629 item = btrfs_item_nr(slot);
4630 btrfs_set_item_size(leaf, item, new_size);
4631 btrfs_mark_buffer_dirty(leaf);
4632
4633 if (btrfs_leaf_free_space(root, leaf) < 0) {
4634 btrfs_print_leaf(root, leaf);
4635 BUG();
4636 }
4637}
4638
4639/*
4640 * make the item pointed to by the path bigger, data_size is the added size.
4641 */
4642void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4643 u32 data_size)
4644{
4645 int slot;
4646 struct extent_buffer *leaf;
4647 struct btrfs_item *item;
4648 u32 nritems;
4649 unsigned int data_end;
4650 unsigned int old_data;
4651 unsigned int old_size;
4652 int i;
4653 struct btrfs_map_token token;
4654
4655 btrfs_init_map_token(&token);
4656
4657 leaf = path->nodes[0];
4658
4659 nritems = btrfs_header_nritems(leaf);
4660 data_end = leaf_data_end(root, leaf);
4661
4662 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4663 btrfs_print_leaf(root, leaf);
4664 BUG();
4665 }
4666 slot = path->slots[0];
4667 old_data = btrfs_item_end_nr(leaf, slot);
4668
4669 BUG_ON(slot < 0);
4670 if (slot >= nritems) {
4671 btrfs_print_leaf(root, leaf);
4672 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4673 slot, nritems);
4674 BUG_ON(1);
4675 }
4676
4677 /*
4678 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4679 */
4680 /* first correct the data pointers */
4681 for (i = slot; i < nritems; i++) {
4682 u32 ioff;
4683 item = btrfs_item_nr(i);
4684
4685 ioff = btrfs_token_item_offset(leaf, item, &token);
4686 btrfs_set_token_item_offset(leaf, item,
4687 ioff - data_size, &token);
4688 }
4689
4690 /* shift the data */
4691 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4692 data_end - data_size, btrfs_leaf_data(leaf) +
4693 data_end, old_data - data_end);
4694
4695 data_end = old_data;
4696 old_size = btrfs_item_size_nr(leaf, slot);
4697 item = btrfs_item_nr(slot);
4698 btrfs_set_item_size(leaf, item, old_size + data_size);
4699 btrfs_mark_buffer_dirty(leaf);
4700
4701 if (btrfs_leaf_free_space(root, leaf) < 0) {
4702 btrfs_print_leaf(root, leaf);
4703 BUG();
4704 }
4705}
4706
4707/*
4708 * this is a helper for btrfs_insert_empty_items, the main goal here is
4709 * to save stack depth by doing the bulk of the work in a function
4710 * that doesn't call btrfs_search_slot
4711 */
4712void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4713 struct btrfs_key *cpu_key, u32 *data_size,
4714 u32 total_data, u32 total_size, int nr)
4715{
4716 struct btrfs_item *item;
4717 int i;
4718 u32 nritems;
4719 unsigned int data_end;
4720 struct btrfs_disk_key disk_key;
4721 struct extent_buffer *leaf;
4722 int slot;
4723 struct btrfs_map_token token;
4724
4725 if (path->slots[0] == 0) {
4726 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4727 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4728 }
4729 btrfs_unlock_up_safe(path, 1);
4730
4731 btrfs_init_map_token(&token);
4732
4733 leaf = path->nodes[0];
4734 slot = path->slots[0];
4735
4736 nritems = btrfs_header_nritems(leaf);
4737 data_end = leaf_data_end(root, leaf);
4738
4739 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4740 btrfs_print_leaf(root, leaf);
4741 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4742 total_size, btrfs_leaf_free_space(root, leaf));
4743 BUG();
4744 }
4745
4746 if (slot != nritems) {
4747 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4748
4749 if (old_data < data_end) {
4750 btrfs_print_leaf(root, leaf);
4751 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4752 slot, old_data, data_end);
4753 BUG_ON(1);
4754 }
4755 /*
4756 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4757 */
4758 /* first correct the data pointers */
4759 for (i = slot; i < nritems; i++) {
4760 u32 ioff;
4761
4762 item = btrfs_item_nr( i);
4763 ioff = btrfs_token_item_offset(leaf, item, &token);
4764 btrfs_set_token_item_offset(leaf, item,
4765 ioff - total_data, &token);
4766 }
4767 /* shift the items */
4768 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4769 btrfs_item_nr_offset(slot),
4770 (nritems - slot) * sizeof(struct btrfs_item));
4771
4772 /* shift the data */
4773 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4774 data_end - total_data, btrfs_leaf_data(leaf) +
4775 data_end, old_data - data_end);
4776 data_end = old_data;
4777 }
4778
4779 /* setup the item for the new data */
4780 for (i = 0; i < nr; i++) {
4781 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4782 btrfs_set_item_key(leaf, &disk_key, slot + i);
4783 item = btrfs_item_nr(slot + i);
4784 btrfs_set_token_item_offset(leaf, item,
4785 data_end - data_size[i], &token);
4786 data_end -= data_size[i];
4787 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4788 }
4789
4790 btrfs_set_header_nritems(leaf, nritems + nr);
4791 btrfs_mark_buffer_dirty(leaf);
4792
4793 if (btrfs_leaf_free_space(root, leaf) < 0) {
4794 btrfs_print_leaf(root, leaf);
4795 BUG();
4796 }
4797}
4798
4799/*
4800 * Given a key and some data, insert items into the tree.
4801 * This does all the path init required, making room in the tree if needed.
4802 */
4803int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4804 struct btrfs_root *root,
4805 struct btrfs_path *path,
4806 struct btrfs_key *cpu_key, u32 *data_size,
4807 int nr)
4808{
4809 int ret = 0;
4810 int slot;
4811 int i;
4812 u32 total_size = 0;
4813 u32 total_data = 0;
4814
4815 for (i = 0; i < nr; i++)
4816 total_data += data_size[i];
4817
4818 total_size = total_data + (nr * sizeof(struct btrfs_item));
4819 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4820 if (ret == 0)
4821 return -EEXIST;
4822 if (ret < 0)
4823 return ret;
4824
4825 slot = path->slots[0];
4826 BUG_ON(slot < 0);
4827
4828 setup_items_for_insert(root, path, cpu_key, data_size,
4829 total_data, total_size, nr);
4830 return 0;
4831}
4832
4833/*
4834 * Given a key and some data, insert an item into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4836 */
4837int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4838 *root, struct btrfs_key *cpu_key, void *data, u32
4839 data_size)
4840{
4841 int ret = 0;
4842 struct btrfs_path *path;
4843 struct extent_buffer *leaf;
4844 unsigned long ptr;
4845
4846 path = btrfs_alloc_path();
4847 if (!path)
4848 return -ENOMEM;
4849 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4850 if (!ret) {
4851 leaf = path->nodes[0];
4852 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4853 write_extent_buffer(leaf, data, ptr, data_size);
4854 btrfs_mark_buffer_dirty(leaf);
4855 }
4856 btrfs_free_path(path);
4857 return ret;
4858}
4859
4860/*
4861 * delete the pointer from a given node.
4862 *
4863 * the tree should have been previously balanced so the deletion does not
4864 * empty a node.
4865 */
4866static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4867 int level, int slot)
4868{
4869 struct extent_buffer *parent = path->nodes[level];
4870 u32 nritems;
4871 int ret;
4872
4873 nritems = btrfs_header_nritems(parent);
4874 if (slot != nritems - 1) {
4875 if (level)
4876 tree_mod_log_eb_move(root->fs_info, parent, slot,
4877 slot + 1, nritems - slot - 1);
4878 memmove_extent_buffer(parent,
4879 btrfs_node_key_ptr_offset(slot),
4880 btrfs_node_key_ptr_offset(slot + 1),
4881 sizeof(struct btrfs_key_ptr) *
4882 (nritems - slot - 1));
4883 } else if (level) {
4884 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4885 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4886 BUG_ON(ret < 0);
4887 }
4888
4889 nritems--;
4890 btrfs_set_header_nritems(parent, nritems);
4891 if (nritems == 0 && parent == root->node) {
4892 BUG_ON(btrfs_header_level(root->node) != 1);
4893 /* just turn the root into a leaf and break */
4894 btrfs_set_header_level(root->node, 0);
4895 } else if (slot == 0) {
4896 struct btrfs_disk_key disk_key;
4897
4898 btrfs_node_key(parent, &disk_key, 0);
4899 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4900 }
4901 btrfs_mark_buffer_dirty(parent);
4902}
4903
4904/*
4905 * a helper function to delete the leaf pointed to by path->slots[1] and
4906 * path->nodes[1].
4907 *
4908 * This deletes the pointer in path->nodes[1] and frees the leaf
4909 * block extent. zero is returned if it all worked out, < 0 otherwise.
4910 *
4911 * The path must have already been setup for deleting the leaf, including
4912 * all the proper balancing. path->nodes[1] must be locked.
4913 */
4914static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4915 struct btrfs_root *root,
4916 struct btrfs_path *path,
4917 struct extent_buffer *leaf)
4918{
4919 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4920 del_ptr(root, path, 1, path->slots[1]);
4921
4922 /*
4923 * btrfs_free_extent is expensive, we want to make sure we
4924 * aren't holding any locks when we call it
4925 */
4926 btrfs_unlock_up_safe(path, 0);
4927
4928 root_sub_used(root, leaf->len);
4929
4930 extent_buffer_get(leaf);
4931 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4932 free_extent_buffer_stale(leaf);
4933}
4934/*
4935 * delete the item at the leaf level in path. If that empties
4936 * the leaf, remove it from the tree
4937 */
4938int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4939 struct btrfs_path *path, int slot, int nr)
4940{
4941 struct extent_buffer *leaf;
4942 struct btrfs_item *item;
4943 u32 last_off;
4944 u32 dsize = 0;
4945 int ret = 0;
4946 int wret;
4947 int i;
4948 u32 nritems;
4949 struct btrfs_map_token token;
4950
4951 btrfs_init_map_token(&token);
4952
4953 leaf = path->nodes[0];
4954 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4955
4956 for (i = 0; i < nr; i++)
4957 dsize += btrfs_item_size_nr(leaf, slot + i);
4958
4959 nritems = btrfs_header_nritems(leaf);
4960
4961 if (slot + nr != nritems) {
4962 int data_end = leaf_data_end(root, leaf);
4963
4964 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4965 data_end + dsize,
4966 btrfs_leaf_data(leaf) + data_end,
4967 last_off - data_end);
4968
4969 for (i = slot + nr; i < nritems; i++) {
4970 u32 ioff;
4971
4972 item = btrfs_item_nr(i);
4973 ioff = btrfs_token_item_offset(leaf, item, &token);
4974 btrfs_set_token_item_offset(leaf, item,
4975 ioff + dsize, &token);
4976 }
4977
4978 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4979 btrfs_item_nr_offset(slot + nr),
4980 sizeof(struct btrfs_item) *
4981 (nritems - slot - nr));
4982 }
4983 btrfs_set_header_nritems(leaf, nritems - nr);
4984 nritems -= nr;
4985
4986 /* delete the leaf if we've emptied it */
4987 if (nritems == 0) {
4988 if (leaf == root->node) {
4989 btrfs_set_header_level(leaf, 0);
4990 } else {
4991 btrfs_set_path_blocking(path);
4992 clean_tree_block(trans, root->fs_info, leaf);
4993 btrfs_del_leaf(trans, root, path, leaf);
4994 }
4995 } else {
4996 int used = leaf_space_used(leaf, 0, nritems);
4997 if (slot == 0) {
4998 struct btrfs_disk_key disk_key;
4999
5000 btrfs_item_key(leaf, &disk_key, 0);
5001 fixup_low_keys(root->fs_info, path, &disk_key, 1);
5002 }
5003
5004 /* delete the leaf if it is mostly empty */
5005 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5006 /* push_leaf_left fixes the path.
5007 * make sure the path still points to our leaf
5008 * for possible call to del_ptr below
5009 */
5010 slot = path->slots[1];
5011 extent_buffer_get(leaf);
5012
5013 btrfs_set_path_blocking(path);
5014 wret = push_leaf_left(trans, root, path, 1, 1,
5015 1, (u32)-1);
5016 if (wret < 0 && wret != -ENOSPC)
5017 ret = wret;
5018
5019 if (path->nodes[0] == leaf &&
5020 btrfs_header_nritems(leaf)) {
5021 wret = push_leaf_right(trans, root, path, 1,
5022 1, 1, 0);
5023 if (wret < 0 && wret != -ENOSPC)
5024 ret = wret;
5025 }
5026
5027 if (btrfs_header_nritems(leaf) == 0) {
5028 path->slots[1] = slot;
5029 btrfs_del_leaf(trans, root, path, leaf);
5030 free_extent_buffer(leaf);
5031 ret = 0;
5032 } else {
5033 /* if we're still in the path, make sure
5034 * we're dirty. Otherwise, one of the
5035 * push_leaf functions must have already
5036 * dirtied this buffer
5037 */
5038 if (path->nodes[0] == leaf)
5039 btrfs_mark_buffer_dirty(leaf);
5040 free_extent_buffer(leaf);
5041 }
5042 } else {
5043 btrfs_mark_buffer_dirty(leaf);
5044 }
5045 }
5046 return ret;
5047}
5048
5049/*
5050 * search the tree again to find a leaf with lesser keys
5051 * returns 0 if it found something or 1 if there are no lesser leaves.
5052 * returns < 0 on io errors.
5053 *
5054 * This may release the path, and so you may lose any locks held at the
5055 * time you call it.
5056 */
5057int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5058{
5059 struct btrfs_key key;
5060 struct btrfs_disk_key found_key;
5061 int ret;
5062
5063 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5064
5065 if (key.offset > 0) {
5066 key.offset--;
5067 } else if (key.type > 0) {
5068 key.type--;
5069 key.offset = (u64)-1;
5070 } else if (key.objectid > 0) {
5071 key.objectid--;
5072 key.type = (u8)-1;
5073 key.offset = (u64)-1;
5074 } else {
5075 return 1;
5076 }
5077
5078 btrfs_release_path(path);
5079 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5080 if (ret < 0)
5081 return ret;
5082 btrfs_item_key(path->nodes[0], &found_key, 0);
5083 ret = comp_keys(&found_key, &key);
5084 /*
5085 * We might have had an item with the previous key in the tree right
5086 * before we released our path. And after we released our path, that
5087 * item might have been pushed to the first slot (0) of the leaf we
5088 * were holding due to a tree balance. Alternatively, an item with the
5089 * previous key can exist as the only element of a leaf (big fat item).
5090 * Therefore account for these 2 cases, so that our callers (like
5091 * btrfs_previous_item) don't miss an existing item with a key matching
5092 * the previous key we computed above.
5093 */
5094 if (ret <= 0)
5095 return 0;
5096 return 1;
5097}
5098
5099/*
5100 * A helper function to walk down the tree starting at min_key, and looking
5101 * for nodes or leaves that are have a minimum transaction id.
5102 * This is used by the btree defrag code, and tree logging
5103 *
5104 * This does not cow, but it does stuff the starting key it finds back
5105 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5106 * key and get a writable path.
5107 *
5108 * This does lock as it descends, and path->keep_locks should be set
5109 * to 1 by the caller.
5110 *
5111 * This honors path->lowest_level to prevent descent past a given level
5112 * of the tree.
5113 *
5114 * min_trans indicates the oldest transaction that you are interested
5115 * in walking through. Any nodes or leaves older than min_trans are
5116 * skipped over (without reading them).
5117 *
5118 * returns zero if something useful was found, < 0 on error and 1 if there
5119 * was nothing in the tree that matched the search criteria.
5120 */
5121int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5122 struct btrfs_path *path,
5123 u64 min_trans)
5124{
5125 struct extent_buffer *cur;
5126 struct btrfs_key found_key;
5127 int slot;
5128 int sret;
5129 u32 nritems;
5130 int level;
5131 int ret = 1;
5132 int keep_locks = path->keep_locks;
5133
5134 path->keep_locks = 1;
5135again:
5136 cur = btrfs_read_lock_root_node(root);
5137 level = btrfs_header_level(cur);
5138 WARN_ON(path->nodes[level]);
5139 path->nodes[level] = cur;
5140 path->locks[level] = BTRFS_READ_LOCK;
5141
5142 if (btrfs_header_generation(cur) < min_trans) {
5143 ret = 1;
5144 goto out;
5145 }
5146 while (1) {
5147 nritems = btrfs_header_nritems(cur);
5148 level = btrfs_header_level(cur);
5149 sret = bin_search(cur, min_key, level, &slot);
5150
5151 /* at the lowest level, we're done, setup the path and exit */
5152 if (level == path->lowest_level) {
5153 if (slot >= nritems)
5154 goto find_next_key;
5155 ret = 0;
5156 path->slots[level] = slot;
5157 btrfs_item_key_to_cpu(cur, &found_key, slot);
5158 goto out;
5159 }
5160 if (sret && slot > 0)
5161 slot--;
5162 /*
5163 * check this node pointer against the min_trans parameters.
5164 * If it is too old, old, skip to the next one.
5165 */
5166 while (slot < nritems) {
5167 u64 gen;
5168
5169 gen = btrfs_node_ptr_generation(cur, slot);
5170 if (gen < min_trans) {
5171 slot++;
5172 continue;
5173 }
5174 break;
5175 }
5176find_next_key:
5177 /*
5178 * we didn't find a candidate key in this node, walk forward
5179 * and find another one
5180 */
5181 if (slot >= nritems) {
5182 path->slots[level] = slot;
5183 btrfs_set_path_blocking(path);
5184 sret = btrfs_find_next_key(root, path, min_key, level,
5185 min_trans);
5186 if (sret == 0) {
5187 btrfs_release_path(path);
5188 goto again;
5189 } else {
5190 goto out;
5191 }
5192 }
5193 /* save our key for returning back */
5194 btrfs_node_key_to_cpu(cur, &found_key, slot);
5195 path->slots[level] = slot;
5196 if (level == path->lowest_level) {
5197 ret = 0;
5198 goto out;
5199 }
5200 btrfs_set_path_blocking(path);
5201 cur = read_node_slot(root, cur, slot);
5202 BUG_ON(!cur); /* -ENOMEM */
5203
5204 btrfs_tree_read_lock(cur);
5205
5206 path->locks[level - 1] = BTRFS_READ_LOCK;
5207 path->nodes[level - 1] = cur;
5208 unlock_up(path, level, 1, 0, NULL);
5209 btrfs_clear_path_blocking(path, NULL, 0);
5210 }
5211out:
5212 path->keep_locks = keep_locks;
5213 if (ret == 0) {
5214 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5215 btrfs_set_path_blocking(path);
5216 memcpy(min_key, &found_key, sizeof(found_key));
5217 }
5218 return ret;
5219}
5220
5221static void tree_move_down(struct btrfs_root *root,
5222 struct btrfs_path *path,
5223 int *level, int root_level)
5224{
5225 BUG_ON(*level == 0);
5226 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5227 path->slots[*level]);
5228 path->slots[*level - 1] = 0;
5229 (*level)--;
5230}
5231
5232static int tree_move_next_or_upnext(struct btrfs_root *root,
5233 struct btrfs_path *path,
5234 int *level, int root_level)
5235{
5236 int ret = 0;
5237 int nritems;
5238 nritems = btrfs_header_nritems(path->nodes[*level]);
5239
5240 path->slots[*level]++;
5241
5242 while (path->slots[*level] >= nritems) {
5243 if (*level == root_level)
5244 return -1;
5245
5246 /* move upnext */
5247 path->slots[*level] = 0;
5248 free_extent_buffer(path->nodes[*level]);
5249 path->nodes[*level] = NULL;
5250 (*level)++;
5251 path->slots[*level]++;
5252
5253 nritems = btrfs_header_nritems(path->nodes[*level]);
5254 ret = 1;
5255 }
5256 return ret;
5257}
5258
5259/*
5260 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5261 * or down.
5262 */
5263static int tree_advance(struct btrfs_root *root,
5264 struct btrfs_path *path,
5265 int *level, int root_level,
5266 int allow_down,
5267 struct btrfs_key *key)
5268{
5269 int ret;
5270
5271 if (*level == 0 || !allow_down) {
5272 ret = tree_move_next_or_upnext(root, path, level, root_level);
5273 } else {
5274 tree_move_down(root, path, level, root_level);
5275 ret = 0;
5276 }
5277 if (ret >= 0) {
5278 if (*level == 0)
5279 btrfs_item_key_to_cpu(path->nodes[*level], key,
5280 path->slots[*level]);
5281 else
5282 btrfs_node_key_to_cpu(path->nodes[*level], key,
5283 path->slots[*level]);
5284 }
5285 return ret;
5286}
5287
5288static int tree_compare_item(struct btrfs_root *left_root,
5289 struct btrfs_path *left_path,
5290 struct btrfs_path *right_path,
5291 char *tmp_buf)
5292{
5293 int cmp;
5294 int len1, len2;
5295 unsigned long off1, off2;
5296
5297 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5298 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5299 if (len1 != len2)
5300 return 1;
5301
5302 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5303 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5304 right_path->slots[0]);
5305
5306 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5307
5308 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5309 if (cmp)
5310 return 1;
5311 return 0;
5312}
5313
5314#define ADVANCE 1
5315#define ADVANCE_ONLY_NEXT -1
5316
5317/*
5318 * This function compares two trees and calls the provided callback for
5319 * every changed/new/deleted item it finds.
5320 * If shared tree blocks are encountered, whole subtrees are skipped, making
5321 * the compare pretty fast on snapshotted subvolumes.
5322 *
5323 * This currently works on commit roots only. As commit roots are read only,
5324 * we don't do any locking. The commit roots are protected with transactions.
5325 * Transactions are ended and rejoined when a commit is tried in between.
5326 *
5327 * This function checks for modifications done to the trees while comparing.
5328 * If it detects a change, it aborts immediately.
5329 */
5330int btrfs_compare_trees(struct btrfs_root *left_root,
5331 struct btrfs_root *right_root,
5332 btrfs_changed_cb_t changed_cb, void *ctx)
5333{
5334 int ret;
5335 int cmp;
5336 struct btrfs_path *left_path = NULL;
5337 struct btrfs_path *right_path = NULL;
5338 struct btrfs_key left_key;
5339 struct btrfs_key right_key;
5340 char *tmp_buf = NULL;
5341 int left_root_level;
5342 int right_root_level;
5343 int left_level;
5344 int right_level;
5345 int left_end_reached;
5346 int right_end_reached;
5347 int advance_left;
5348 int advance_right;
5349 u64 left_blockptr;
5350 u64 right_blockptr;
5351 u64 left_gen;
5352 u64 right_gen;
5353
5354 left_path = btrfs_alloc_path();
5355 if (!left_path) {
5356 ret = -ENOMEM;
5357 goto out;
5358 }
5359 right_path = btrfs_alloc_path();
5360 if (!right_path) {
5361 ret = -ENOMEM;
5362 goto out;
5363 }
5364
5365 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5366 if (!tmp_buf) {
5367 tmp_buf = vmalloc(left_root->nodesize);
5368 if (!tmp_buf) {
5369 ret = -ENOMEM;
5370 goto out;
5371 }
5372 }
5373
5374 left_path->search_commit_root = 1;
5375 left_path->skip_locking = 1;
5376 right_path->search_commit_root = 1;
5377 right_path->skip_locking = 1;
5378
5379 /*
5380 * Strategy: Go to the first items of both trees. Then do
5381 *
5382 * If both trees are at level 0
5383 * Compare keys of current items
5384 * If left < right treat left item as new, advance left tree
5385 * and repeat
5386 * If left > right treat right item as deleted, advance right tree
5387 * and repeat
5388 * If left == right do deep compare of items, treat as changed if
5389 * needed, advance both trees and repeat
5390 * If both trees are at the same level but not at level 0
5391 * Compare keys of current nodes/leafs
5392 * If left < right advance left tree and repeat
5393 * If left > right advance right tree and repeat
5394 * If left == right compare blockptrs of the next nodes/leafs
5395 * If they match advance both trees but stay at the same level
5396 * and repeat
5397 * If they don't match advance both trees while allowing to go
5398 * deeper and repeat
5399 * If tree levels are different
5400 * Advance the tree that needs it and repeat
5401 *
5402 * Advancing a tree means:
5403 * If we are at level 0, try to go to the next slot. If that's not
5404 * possible, go one level up and repeat. Stop when we found a level
5405 * where we could go to the next slot. We may at this point be on a
5406 * node or a leaf.
5407 *
5408 * If we are not at level 0 and not on shared tree blocks, go one
5409 * level deeper.
5410 *
5411 * If we are not at level 0 and on shared tree blocks, go one slot to
5412 * the right if possible or go up and right.
5413 */
5414
5415 down_read(&left_root->fs_info->commit_root_sem);
5416 left_level = btrfs_header_level(left_root->commit_root);
5417 left_root_level = left_level;
5418 left_path->nodes[left_level] = left_root->commit_root;
5419 extent_buffer_get(left_path->nodes[left_level]);
5420
5421 right_level = btrfs_header_level(right_root->commit_root);
5422 right_root_level = right_level;
5423 right_path->nodes[right_level] = right_root->commit_root;
5424 extent_buffer_get(right_path->nodes[right_level]);
5425 up_read(&left_root->fs_info->commit_root_sem);
5426
5427 if (left_level == 0)
5428 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5429 &left_key, left_path->slots[left_level]);
5430 else
5431 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5432 &left_key, left_path->slots[left_level]);
5433 if (right_level == 0)
5434 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5435 &right_key, right_path->slots[right_level]);
5436 else
5437 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5438 &right_key, right_path->slots[right_level]);
5439
5440 left_end_reached = right_end_reached = 0;
5441 advance_left = advance_right = 0;
5442
5443 while (1) {
5444 if (advance_left && !left_end_reached) {
5445 ret = tree_advance(left_root, left_path, &left_level,
5446 left_root_level,
5447 advance_left != ADVANCE_ONLY_NEXT,
5448 &left_key);
5449 if (ret < 0)
5450 left_end_reached = ADVANCE;
5451 advance_left = 0;
5452 }
5453 if (advance_right && !right_end_reached) {
5454 ret = tree_advance(right_root, right_path, &right_level,
5455 right_root_level,
5456 advance_right != ADVANCE_ONLY_NEXT,
5457 &right_key);
5458 if (ret < 0)
5459 right_end_reached = ADVANCE;
5460 advance_right = 0;
5461 }
5462
5463 if (left_end_reached && right_end_reached) {
5464 ret = 0;
5465 goto out;
5466 } else if (left_end_reached) {
5467 if (right_level == 0) {
5468 ret = changed_cb(left_root, right_root,
5469 left_path, right_path,
5470 &right_key,
5471 BTRFS_COMPARE_TREE_DELETED,
5472 ctx);
5473 if (ret < 0)
5474 goto out;
5475 }
5476 advance_right = ADVANCE;
5477 continue;
5478 } else if (right_end_reached) {
5479 if (left_level == 0) {
5480 ret = changed_cb(left_root, right_root,
5481 left_path, right_path,
5482 &left_key,
5483 BTRFS_COMPARE_TREE_NEW,
5484 ctx);
5485 if (ret < 0)
5486 goto out;
5487 }
5488 advance_left = ADVANCE;
5489 continue;
5490 }
5491
5492 if (left_level == 0 && right_level == 0) {
5493 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5494 if (cmp < 0) {
5495 ret = changed_cb(left_root, right_root,
5496 left_path, right_path,
5497 &left_key,
5498 BTRFS_COMPARE_TREE_NEW,
5499 ctx);
5500 if (ret < 0)
5501 goto out;
5502 advance_left = ADVANCE;
5503 } else if (cmp > 0) {
5504 ret = changed_cb(left_root, right_root,
5505 left_path, right_path,
5506 &right_key,
5507 BTRFS_COMPARE_TREE_DELETED,
5508 ctx);
5509 if (ret < 0)
5510 goto out;
5511 advance_right = ADVANCE;
5512 } else {
5513 enum btrfs_compare_tree_result result;
5514
5515 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5516 ret = tree_compare_item(left_root, left_path,
5517 right_path, tmp_buf);
5518 if (ret)
5519 result = BTRFS_COMPARE_TREE_CHANGED;
5520 else
5521 result = BTRFS_COMPARE_TREE_SAME;
5522 ret = changed_cb(left_root, right_root,
5523 left_path, right_path,
5524 &left_key, result, ctx);
5525 if (ret < 0)
5526 goto out;
5527 advance_left = ADVANCE;
5528 advance_right = ADVANCE;
5529 }
5530 } else if (left_level == right_level) {
5531 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532 if (cmp < 0) {
5533 advance_left = ADVANCE;
5534 } else if (cmp > 0) {
5535 advance_right = ADVANCE;
5536 } else {
5537 left_blockptr = btrfs_node_blockptr(
5538 left_path->nodes[left_level],
5539 left_path->slots[left_level]);
5540 right_blockptr = btrfs_node_blockptr(
5541 right_path->nodes[right_level],
5542 right_path->slots[right_level]);
5543 left_gen = btrfs_node_ptr_generation(
5544 left_path->nodes[left_level],
5545 left_path->slots[left_level]);
5546 right_gen = btrfs_node_ptr_generation(
5547 right_path->nodes[right_level],
5548 right_path->slots[right_level]);
5549 if (left_blockptr == right_blockptr &&
5550 left_gen == right_gen) {
5551 /*
5552 * As we're on a shared block, don't
5553 * allow to go deeper.
5554 */
5555 advance_left = ADVANCE_ONLY_NEXT;
5556 advance_right = ADVANCE_ONLY_NEXT;
5557 } else {
5558 advance_left = ADVANCE;
5559 advance_right = ADVANCE;
5560 }
5561 }
5562 } else if (left_level < right_level) {
5563 advance_right = ADVANCE;
5564 } else {
5565 advance_left = ADVANCE;
5566 }
5567 }
5568
5569out:
5570 btrfs_free_path(left_path);
5571 btrfs_free_path(right_path);
5572 kvfree(tmp_buf);
5573 return ret;
5574}
5575
5576/*
5577 * this is similar to btrfs_next_leaf, but does not try to preserve
5578 * and fixup the path. It looks for and returns the next key in the
5579 * tree based on the current path and the min_trans parameters.
5580 *
5581 * 0 is returned if another key is found, < 0 if there are any errors
5582 * and 1 is returned if there are no higher keys in the tree
5583 *
5584 * path->keep_locks should be set to 1 on the search made before
5585 * calling this function.
5586 */
5587int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5588 struct btrfs_key *key, int level, u64 min_trans)
5589{
5590 int slot;
5591 struct extent_buffer *c;
5592
5593 WARN_ON(!path->keep_locks);
5594 while (level < BTRFS_MAX_LEVEL) {
5595 if (!path->nodes[level])
5596 return 1;
5597
5598 slot = path->slots[level] + 1;
5599 c = path->nodes[level];
5600next:
5601 if (slot >= btrfs_header_nritems(c)) {
5602 int ret;
5603 int orig_lowest;
5604 struct btrfs_key cur_key;
5605 if (level + 1 >= BTRFS_MAX_LEVEL ||
5606 !path->nodes[level + 1])
5607 return 1;
5608
5609 if (path->locks[level + 1]) {
5610 level++;
5611 continue;
5612 }
5613
5614 slot = btrfs_header_nritems(c) - 1;
5615 if (level == 0)
5616 btrfs_item_key_to_cpu(c, &cur_key, slot);
5617 else
5618 btrfs_node_key_to_cpu(c, &cur_key, slot);
5619
5620 orig_lowest = path->lowest_level;
5621 btrfs_release_path(path);
5622 path->lowest_level = level;
5623 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5624 0, 0);
5625 path->lowest_level = orig_lowest;
5626 if (ret < 0)
5627 return ret;
5628
5629 c = path->nodes[level];
5630 slot = path->slots[level];
5631 if (ret == 0)
5632 slot++;
5633 goto next;
5634 }
5635
5636 if (level == 0)
5637 btrfs_item_key_to_cpu(c, key, slot);
5638 else {
5639 u64 gen = btrfs_node_ptr_generation(c, slot);
5640
5641 if (gen < min_trans) {
5642 slot++;
5643 goto next;
5644 }
5645 btrfs_node_key_to_cpu(c, key, slot);
5646 }
5647 return 0;
5648 }
5649 return 1;
5650}
5651
5652/*
5653 * search the tree again to find a leaf with greater keys
5654 * returns 0 if it found something or 1 if there are no greater leaves.
5655 * returns < 0 on io errors.
5656 */
5657int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5658{
5659 return btrfs_next_old_leaf(root, path, 0);
5660}
5661
5662int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5663 u64 time_seq)
5664{
5665 int slot;
5666 int level;
5667 struct extent_buffer *c;
5668 struct extent_buffer *next;
5669 struct btrfs_key key;
5670 u32 nritems;
5671 int ret;
5672 int old_spinning = path->leave_spinning;
5673 int next_rw_lock = 0;
5674
5675 nritems = btrfs_header_nritems(path->nodes[0]);
5676 if (nritems == 0)
5677 return 1;
5678
5679 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5680again:
5681 level = 1;
5682 next = NULL;
5683 next_rw_lock = 0;
5684 btrfs_release_path(path);
5685
5686 path->keep_locks = 1;
5687 path->leave_spinning = 1;
5688
5689 if (time_seq)
5690 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5691 else
5692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5693 path->keep_locks = 0;
5694
5695 if (ret < 0)
5696 return ret;
5697
5698 nritems = btrfs_header_nritems(path->nodes[0]);
5699 /*
5700 * by releasing the path above we dropped all our locks. A balance
5701 * could have added more items next to the key that used to be
5702 * at the very end of the block. So, check again here and
5703 * advance the path if there are now more items available.
5704 */
5705 if (nritems > 0 && path->slots[0] < nritems - 1) {
5706 if (ret == 0)
5707 path->slots[0]++;
5708 ret = 0;
5709 goto done;
5710 }
5711 /*
5712 * So the above check misses one case:
5713 * - after releasing the path above, someone has removed the item that
5714 * used to be at the very end of the block, and balance between leafs
5715 * gets another one with bigger key.offset to replace it.
5716 *
5717 * This one should be returned as well, or we can get leaf corruption
5718 * later(esp. in __btrfs_drop_extents()).
5719 *
5720 * And a bit more explanation about this check,
5721 * with ret > 0, the key isn't found, the path points to the slot
5722 * where it should be inserted, so the path->slots[0] item must be the
5723 * bigger one.
5724 */
5725 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5726 ret = 0;
5727 goto done;
5728 }
5729
5730 while (level < BTRFS_MAX_LEVEL) {
5731 if (!path->nodes[level]) {
5732 ret = 1;
5733 goto done;
5734 }
5735
5736 slot = path->slots[level] + 1;
5737 c = path->nodes[level];
5738 if (slot >= btrfs_header_nritems(c)) {
5739 level++;
5740 if (level == BTRFS_MAX_LEVEL) {
5741 ret = 1;
5742 goto done;
5743 }
5744 continue;
5745 }
5746
5747 if (next) {
5748 btrfs_tree_unlock_rw(next, next_rw_lock);
5749 free_extent_buffer(next);
5750 }
5751
5752 next = c;
5753 next_rw_lock = path->locks[level];
5754 ret = read_block_for_search(NULL, root, path, &next, level,
5755 slot, &key, 0);
5756 if (ret == -EAGAIN)
5757 goto again;
5758
5759 if (ret < 0) {
5760 btrfs_release_path(path);
5761 goto done;
5762 }
5763
5764 if (!path->skip_locking) {
5765 ret = btrfs_try_tree_read_lock(next);
5766 if (!ret && time_seq) {
5767 /*
5768 * If we don't get the lock, we may be racing
5769 * with push_leaf_left, holding that lock while
5770 * itself waiting for the leaf we've currently
5771 * locked. To solve this situation, we give up
5772 * on our lock and cycle.
5773 */
5774 free_extent_buffer(next);
5775 btrfs_release_path(path);
5776 cond_resched();
5777 goto again;
5778 }
5779 if (!ret) {
5780 btrfs_set_path_blocking(path);
5781 btrfs_tree_read_lock(next);
5782 btrfs_clear_path_blocking(path, next,
5783 BTRFS_READ_LOCK);
5784 }
5785 next_rw_lock = BTRFS_READ_LOCK;
5786 }
5787 break;
5788 }
5789 path->slots[level] = slot;
5790 while (1) {
5791 level--;
5792 c = path->nodes[level];
5793 if (path->locks[level])
5794 btrfs_tree_unlock_rw(c, path->locks[level]);
5795
5796 free_extent_buffer(c);
5797 path->nodes[level] = next;
5798 path->slots[level] = 0;
5799 if (!path->skip_locking)
5800 path->locks[level] = next_rw_lock;
5801 if (!level)
5802 break;
5803
5804 ret = read_block_for_search(NULL, root, path, &next, level,
5805 0, &key, 0);
5806 if (ret == -EAGAIN)
5807 goto again;
5808
5809 if (ret < 0) {
5810 btrfs_release_path(path);
5811 goto done;
5812 }
5813
5814 if (!path->skip_locking) {
5815 ret = btrfs_try_tree_read_lock(next);
5816 if (!ret) {
5817 btrfs_set_path_blocking(path);
5818 btrfs_tree_read_lock(next);
5819 btrfs_clear_path_blocking(path, next,
5820 BTRFS_READ_LOCK);
5821 }
5822 next_rw_lock = BTRFS_READ_LOCK;
5823 }
5824 }
5825 ret = 0;
5826done:
5827 unlock_up(path, 0, 1, 0, NULL);
5828 path->leave_spinning = old_spinning;
5829 if (!old_spinning)
5830 btrfs_set_path_blocking(path);
5831
5832 return ret;
5833}
5834
5835/*
5836 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5837 * searching until it gets past min_objectid or finds an item of 'type'
5838 *
5839 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5840 */
5841int btrfs_previous_item(struct btrfs_root *root,
5842 struct btrfs_path *path, u64 min_objectid,
5843 int type)
5844{
5845 struct btrfs_key found_key;
5846 struct extent_buffer *leaf;
5847 u32 nritems;
5848 int ret;
5849
5850 while (1) {
5851 if (path->slots[0] == 0) {
5852 btrfs_set_path_blocking(path);
5853 ret = btrfs_prev_leaf(root, path);
5854 if (ret != 0)
5855 return ret;
5856 } else {
5857 path->slots[0]--;
5858 }
5859 leaf = path->nodes[0];
5860 nritems = btrfs_header_nritems(leaf);
5861 if (nritems == 0)
5862 return 1;
5863 if (path->slots[0] == nritems)
5864 path->slots[0]--;
5865
5866 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5867 if (found_key.objectid < min_objectid)
5868 break;
5869 if (found_key.type == type)
5870 return 0;
5871 if (found_key.objectid == min_objectid &&
5872 found_key.type < type)
5873 break;
5874 }
5875 return 1;
5876}
5877
5878/*
5879 * search in extent tree to find a previous Metadata/Data extent item with
5880 * min objecitd.
5881 *
5882 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5883 */
5884int btrfs_previous_extent_item(struct btrfs_root *root,
5885 struct btrfs_path *path, u64 min_objectid)
5886{
5887 struct btrfs_key found_key;
5888 struct extent_buffer *leaf;
5889 u32 nritems;
5890 int ret;
5891
5892 while (1) {
5893 if (path->slots[0] == 0) {
5894 btrfs_set_path_blocking(path);
5895 ret = btrfs_prev_leaf(root, path);
5896 if (ret != 0)
5897 return ret;
5898 } else {
5899 path->slots[0]--;
5900 }
5901 leaf = path->nodes[0];
5902 nritems = btrfs_header_nritems(leaf);
5903 if (nritems == 0)
5904 return 1;
5905 if (path->slots[0] == nritems)
5906 path->slots[0]--;
5907
5908 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5909 if (found_key.objectid < min_objectid)
5910 break;
5911 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5912 found_key.type == BTRFS_METADATA_ITEM_KEY)
5913 return 0;
5914 if (found_key.objectid == min_objectid &&
5915 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5916 break;
5917 }
5918 return 1;
5919}