Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
 
 
  40
  41static const struct btrfs_csums {
  42	u16		size;
  43	const char	name[10];
  44	const char	driver[12];
  45} btrfs_csums[] = {
  46	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  47	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  48	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  49	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  50				     .driver = "blake2b-256" },
  51};
  52
  53/*
  54 * The leaf data grows from end-to-front in the node.  this returns the address
  55 * of the start of the last item, which is the stop of the leaf data stack.
  56 */
  57static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  58{
  59	u32 nr = btrfs_header_nritems(leaf);
  60
  61	if (nr == 0)
  62		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  63	return btrfs_item_offset(leaf, nr - 1);
  64}
  65
  66/*
  67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  68 *
  69 * @leaf:	leaf that we're doing a memmove on
  70 * @dst_offset:	item data offset we're moving to
  71 * @src_offset:	item data offset were' moving from
  72 * @len:	length of the data we're moving
  73 *
  74 * Wrapper around memmove_extent_buffer() that takes into account the header on
  75 * the leaf.  The btrfs_item offset's start directly after the header, so we
  76 * have to adjust any offsets to account for the header in the leaf.  This
  77 * handles that math to simplify the callers.
  78 */
  79static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  80				     unsigned long dst_offset,
  81				     unsigned long src_offset,
  82				     unsigned long len)
  83{
  84	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  85			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  86}
  87
  88/*
  89 * Copy item data from @src into @dst at the given @offset.
  90 *
  91 * @dst:	destination leaf that we're copying into
  92 * @src:	source leaf that we're copying from
  93 * @dst_offset:	item data offset we're copying to
  94 * @src_offset:	item data offset were' copying from
  95 * @len:	length of the data we're copying
  96 *
  97 * Wrapper around copy_extent_buffer() that takes into account the header on
  98 * the leaf.  The btrfs_item offset's start directly after the header, so we
  99 * have to adjust any offsets to account for the header in the leaf.  This
 100 * handles that math to simplify the callers.
 101 */
 102static inline void copy_leaf_data(const struct extent_buffer *dst,
 103				  const struct extent_buffer *src,
 104				  unsigned long dst_offset,
 105				  unsigned long src_offset, unsigned long len)
 106{
 107	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 108			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 109}
 110
 111/*
 112 * Move items in a @leaf (using memmove).
 113 *
 114 * @dst:	destination leaf for the items
 115 * @dst_item:	the item nr we're copying into
 116 * @src_item:	the item nr we're copying from
 117 * @nr_items:	the number of items to copy
 118 *
 119 * Wrapper around memmove_extent_buffer() that does the math to get the
 120 * appropriate offsets into the leaf from the item numbers.
 121 */
 122static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 123				      int dst_item, int src_item, int nr_items)
 124{
 125	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 126			      btrfs_item_nr_offset(leaf, src_item),
 127			      nr_items * sizeof(struct btrfs_item));
 128}
 129
 130/*
 131 * Copy items from @src into @dst at the given @offset.
 132 *
 133 * @dst:	destination leaf for the items
 134 * @src:	source leaf for the items
 135 * @dst_item:	the item nr we're copying into
 136 * @src_item:	the item nr we're copying from
 137 * @nr_items:	the number of items to copy
 138 *
 139 * Wrapper around copy_extent_buffer() that does the math to get the
 140 * appropriate offsets into the leaf from the item numbers.
 141 */
 142static inline void copy_leaf_items(const struct extent_buffer *dst,
 143				   const struct extent_buffer *src,
 144				   int dst_item, int src_item, int nr_items)
 145{
 146	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 147			      btrfs_item_nr_offset(src, src_item),
 148			      nr_items * sizeof(struct btrfs_item));
 149}
 150
 151/* This exists for btrfs-progs usages. */
 152u16 btrfs_csum_type_size(u16 type)
 153{
 154	return btrfs_csums[type].size;
 155}
 156
 157int btrfs_super_csum_size(const struct btrfs_super_block *s)
 158{
 159	u16 t = btrfs_super_csum_type(s);
 160	/*
 161	 * csum type is validated at mount time
 162	 */
 163	return btrfs_csum_type_size(t);
 164}
 165
 166const char *btrfs_super_csum_name(u16 csum_type)
 167{
 168	/* csum type is validated at mount time */
 169	return btrfs_csums[csum_type].name;
 170}
 171
 172/*
 173 * Return driver name if defined, otherwise the name that's also a valid driver
 174 * name
 175 */
 176const char *btrfs_super_csum_driver(u16 csum_type)
 177{
 178	/* csum type is validated at mount time */
 179	return btrfs_csums[csum_type].driver[0] ?
 180		btrfs_csums[csum_type].driver :
 181		btrfs_csums[csum_type].name;
 182}
 183
 184size_t __attribute_const__ btrfs_get_num_csums(void)
 185{
 186	return ARRAY_SIZE(btrfs_csums);
 187}
 188
 189struct btrfs_path *btrfs_alloc_path(void)
 190{
 191	might_sleep();
 192
 193	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 194}
 195
 196/* this also releases the path */
 197void btrfs_free_path(struct btrfs_path *p)
 198{
 199	if (!p)
 200		return;
 201	btrfs_release_path(p);
 202	kmem_cache_free(btrfs_path_cachep, p);
 203}
 204
 205/*
 206 * path release drops references on the extent buffers in the path
 207 * and it drops any locks held by this path
 208 *
 209 * It is safe to call this on paths that no locks or extent buffers held.
 210 */
 211noinline void btrfs_release_path(struct btrfs_path *p)
 212{
 213	int i;
 214
 215	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 216		p->slots[i] = 0;
 217		if (!p->nodes[i])
 218			continue;
 219		if (p->locks[i]) {
 220			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 221			p->locks[i] = 0;
 222		}
 223		free_extent_buffer(p->nodes[i]);
 224		p->nodes[i] = NULL;
 225	}
 226}
 227
 228/*
 229 * We want the transaction abort to print stack trace only for errors where the
 230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 231 * caused by external factors.
 232 */
 233bool __cold abort_should_print_stack(int error)
 234{
 235	switch (error) {
 236	case -EIO:
 237	case -EROFS:
 238	case -ENOMEM:
 239		return false;
 240	}
 241	return true;
 242}
 243
 244/*
 245 * safely gets a reference on the root node of a tree.  A lock
 246 * is not taken, so a concurrent writer may put a different node
 247 * at the root of the tree.  See btrfs_lock_root_node for the
 248 * looping required.
 249 *
 250 * The extent buffer returned by this has a reference taken, so
 251 * it won't disappear.  It may stop being the root of the tree
 252 * at any time because there are no locks held.
 253 */
 254struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 255{
 256	struct extent_buffer *eb;
 257
 258	while (1) {
 259		rcu_read_lock();
 260		eb = rcu_dereference(root->node);
 261
 262		/*
 263		 * RCU really hurts here, we could free up the root node because
 264		 * it was COWed but we may not get the new root node yet so do
 265		 * the inc_not_zero dance and if it doesn't work then
 266		 * synchronize_rcu and try again.
 267		 */
 268		if (atomic_inc_not_zero(&eb->refs)) {
 269			rcu_read_unlock();
 270			break;
 271		}
 272		rcu_read_unlock();
 273		synchronize_rcu();
 274	}
 275	return eb;
 276}
 277
 278/*
 279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 280 * just get put onto a simple dirty list.  Transaction walks this list to make
 281 * sure they get properly updated on disk.
 282 */
 283static void add_root_to_dirty_list(struct btrfs_root *root)
 284{
 285	struct btrfs_fs_info *fs_info = root->fs_info;
 286
 287	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 288	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 289		return;
 290
 291	spin_lock(&fs_info->trans_lock);
 292	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 293		/* Want the extent tree to be the last on the list */
 294		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 295			list_move_tail(&root->dirty_list,
 296				       &fs_info->dirty_cowonly_roots);
 297		else
 298			list_move(&root->dirty_list,
 299				  &fs_info->dirty_cowonly_roots);
 300	}
 301	spin_unlock(&fs_info->trans_lock);
 302}
 303
 304/*
 305 * used by snapshot creation to make a copy of a root for a tree with
 306 * a given objectid.  The buffer with the new root node is returned in
 307 * cow_ret, and this func returns zero on success or a negative error code.
 308 */
 309int btrfs_copy_root(struct btrfs_trans_handle *trans,
 310		      struct btrfs_root *root,
 311		      struct extent_buffer *buf,
 312		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 313{
 314	struct btrfs_fs_info *fs_info = root->fs_info;
 315	struct extent_buffer *cow;
 316	int ret = 0;
 317	int level;
 318	struct btrfs_disk_key disk_key;
 319	u64 reloc_src_root = 0;
 320
 321	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 322		trans->transid != fs_info->running_transaction->transid);
 323	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 324		trans->transid != root->last_trans);
 325
 326	level = btrfs_header_level(buf);
 327	if (level == 0)
 328		btrfs_item_key(buf, &disk_key, 0);
 329	else
 330		btrfs_node_key(buf, &disk_key, 0);
 331
 332	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 333		reloc_src_root = btrfs_header_owner(buf);
 334	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 335				     &disk_key, level, buf->start, 0,
 336				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
 337	if (IS_ERR(cow))
 338		return PTR_ERR(cow);
 339
 340	copy_extent_buffer_full(cow, buf);
 341	btrfs_set_header_bytenr(cow, cow->start);
 342	btrfs_set_header_generation(cow, trans->transid);
 343	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 344	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 345				     BTRFS_HEADER_FLAG_RELOC);
 346	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 347		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 348	else
 349		btrfs_set_header_owner(cow, new_root_objectid);
 350
 351	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 352
 353	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 354	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 355		ret = btrfs_inc_ref(trans, root, cow, 1);
 356	else
 357		ret = btrfs_inc_ref(trans, root, cow, 0);
 358	if (ret) {
 359		btrfs_tree_unlock(cow);
 360		free_extent_buffer(cow);
 361		btrfs_abort_transaction(trans, ret);
 362		return ret;
 363	}
 364
 365	btrfs_mark_buffer_dirty(trans, cow);
 366	*cow_ret = cow;
 367	return 0;
 368}
 369
 370/*
 371 * check if the tree block can be shared by multiple trees
 372 */
 373bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
 374			       struct btrfs_root *root,
 375			       struct extent_buffer *buf)
 376{
 377	const u64 buf_gen = btrfs_header_generation(buf);
 378
 379	/*
 380	 * Tree blocks not in shareable trees and tree roots are never shared.
 381	 * If a block was allocated after the last snapshot and the block was
 382	 * not allocated by tree relocation, we know the block is not shared.
 383	 */
 
 
 
 
 
 
 384
 385	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 386		return false;
 387
 388	if (buf == root->node)
 389		return false;
 390
 391	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
 392	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
 393		return false;
 394
 395	if (buf != root->commit_root)
 396		return true;
 397
 398	/*
 399	 * An extent buffer that used to be the commit root may still be shared
 400	 * because the tree height may have increased and it became a child of a
 401	 * higher level root. This can happen when snapshotting a subvolume
 402	 * created in the current transaction.
 403	 */
 404	if (buf_gen == trans->transid)
 405		return true;
 406
 407	return false;
 408}
 409
 410static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 411				       struct btrfs_root *root,
 412				       struct extent_buffer *buf,
 413				       struct extent_buffer *cow,
 414				       int *last_ref)
 415{
 416	struct btrfs_fs_info *fs_info = root->fs_info;
 417	u64 refs;
 418	u64 owner;
 419	u64 flags;
 420	u64 new_flags = 0;
 421	int ret;
 422
 423	/*
 424	 * Backrefs update rules:
 425	 *
 426	 * Always use full backrefs for extent pointers in tree block
 427	 * allocated by tree relocation.
 428	 *
 429	 * If a shared tree block is no longer referenced by its owner
 430	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 431	 * use full backrefs for extent pointers in tree block.
 432	 *
 433	 * If a tree block is been relocating
 434	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 435	 * use full backrefs for extent pointers in tree block.
 436	 * The reason for this is some operations (such as drop tree)
 437	 * are only allowed for blocks use full backrefs.
 438	 */
 439
 440	if (btrfs_block_can_be_shared(trans, root, buf)) {
 441		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 442					       btrfs_header_level(buf), 1,
 443					       &refs, &flags, NULL);
 444		if (ret)
 445			return ret;
 446		if (unlikely(refs == 0)) {
 447			btrfs_crit(fs_info,
 448		"found 0 references for tree block at bytenr %llu level %d root %llu",
 449				   buf->start, btrfs_header_level(buf),
 450				   btrfs_root_id(root));
 451			ret = -EUCLEAN;
 452			btrfs_abort_transaction(trans, ret);
 453			return ret;
 454		}
 455	} else {
 456		refs = 1;
 457		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 458		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 459			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 460		else
 461			flags = 0;
 462	}
 463
 464	owner = btrfs_header_owner(buf);
 465	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 466	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 467
 468	if (refs > 1) {
 469		if ((owner == root->root_key.objectid ||
 470		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 471		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 472			ret = btrfs_inc_ref(trans, root, buf, 1);
 473			if (ret)
 474				return ret;
 475
 476			if (root->root_key.objectid ==
 477			    BTRFS_TREE_RELOC_OBJECTID) {
 478				ret = btrfs_dec_ref(trans, root, buf, 0);
 479				if (ret)
 480					return ret;
 481				ret = btrfs_inc_ref(trans, root, cow, 1);
 482				if (ret)
 483					return ret;
 484			}
 485			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 486		} else {
 487
 488			if (root->root_key.objectid ==
 489			    BTRFS_TREE_RELOC_OBJECTID)
 490				ret = btrfs_inc_ref(trans, root, cow, 1);
 491			else
 492				ret = btrfs_inc_ref(trans, root, cow, 0);
 493			if (ret)
 494				return ret;
 495		}
 496		if (new_flags != 0) {
 497			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
 
 
 
 498			if (ret)
 499				return ret;
 500		}
 501	} else {
 502		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 503			if (root->root_key.objectid ==
 504			    BTRFS_TREE_RELOC_OBJECTID)
 505				ret = btrfs_inc_ref(trans, root, cow, 1);
 506			else
 507				ret = btrfs_inc_ref(trans, root, cow, 0);
 508			if (ret)
 509				return ret;
 510			ret = btrfs_dec_ref(trans, root, buf, 1);
 511			if (ret)
 512				return ret;
 513		}
 514		btrfs_clear_buffer_dirty(trans, buf);
 515		*last_ref = 1;
 516	}
 517	return 0;
 518}
 519
 520/*
 521 * does the dirty work in cow of a single block.  The parent block (if
 522 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 523 * dirty and returned locked.  If you modify the block it needs to be marked
 524 * dirty again.
 525 *
 526 * search_start -- an allocation hint for the new block
 527 *
 528 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 529 * bytes the allocator should try to find free next to the block it returns.
 530 * This is just a hint and may be ignored by the allocator.
 531 */
 532int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
 533			  struct btrfs_root *root,
 534			  struct extent_buffer *buf,
 535			  struct extent_buffer *parent, int parent_slot,
 536			  struct extent_buffer **cow_ret,
 537			  u64 search_start, u64 empty_size,
 538			  enum btrfs_lock_nesting nest)
 539{
 540	struct btrfs_fs_info *fs_info = root->fs_info;
 541	struct btrfs_disk_key disk_key;
 542	struct extent_buffer *cow;
 543	int level, ret;
 544	int last_ref = 0;
 545	int unlock_orig = 0;
 546	u64 parent_start = 0;
 547	u64 reloc_src_root = 0;
 548
 549	if (*cow_ret == buf)
 550		unlock_orig = 1;
 551
 552	btrfs_assert_tree_write_locked(buf);
 553
 554	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 555		trans->transid != fs_info->running_transaction->transid);
 556	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 557		trans->transid != root->last_trans);
 558
 559	level = btrfs_header_level(buf);
 560
 561	if (level == 0)
 562		btrfs_item_key(buf, &disk_key, 0);
 563	else
 564		btrfs_node_key(buf, &disk_key, 0);
 565
 566	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
 567		if (parent)
 568			parent_start = parent->start;
 569		reloc_src_root = btrfs_header_owner(buf);
 570	}
 571	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 572				     root->root_key.objectid, &disk_key, level,
 573				     search_start, empty_size, reloc_src_root, nest);
 574	if (IS_ERR(cow))
 575		return PTR_ERR(cow);
 576
 577	/* cow is set to blocking by btrfs_init_new_buffer */
 578
 579	copy_extent_buffer_full(cow, buf);
 580	btrfs_set_header_bytenr(cow, cow->start);
 581	btrfs_set_header_generation(cow, trans->transid);
 582	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 583	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 584				     BTRFS_HEADER_FLAG_RELOC);
 585	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 586		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 587	else
 588		btrfs_set_header_owner(cow, root->root_key.objectid);
 589
 590	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 591
 592	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 593	if (ret) {
 594		btrfs_tree_unlock(cow);
 595		free_extent_buffer(cow);
 596		btrfs_abort_transaction(trans, ret);
 597		return ret;
 598	}
 599
 600	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 601		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 602		if (ret) {
 603			btrfs_tree_unlock(cow);
 604			free_extent_buffer(cow);
 605			btrfs_abort_transaction(trans, ret);
 606			return ret;
 607		}
 608	}
 609
 610	if (buf == root->node) {
 611		WARN_ON(parent && parent != buf);
 612		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 613		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 614			parent_start = buf->start;
 615
 616		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 617		if (ret < 0) {
 618			btrfs_tree_unlock(cow);
 619			free_extent_buffer(cow);
 620			btrfs_abort_transaction(trans, ret);
 621			return ret;
 622		}
 623		atomic_inc(&cow->refs);
 
 
 624		rcu_assign_pointer(root->node, cow);
 625
 626		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 627				      parent_start, last_ref);
 628		free_extent_buffer(buf);
 629		add_root_to_dirty_list(root);
 630	} else {
 631		WARN_ON(trans->transid != btrfs_header_generation(parent));
 632		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
 633						    BTRFS_MOD_LOG_KEY_REPLACE);
 634		if (ret) {
 635			btrfs_tree_unlock(cow);
 636			free_extent_buffer(cow);
 637			btrfs_abort_transaction(trans, ret);
 638			return ret;
 639		}
 640		btrfs_set_node_blockptr(parent, parent_slot,
 641					cow->start);
 642		btrfs_set_node_ptr_generation(parent, parent_slot,
 643					      trans->transid);
 644		btrfs_mark_buffer_dirty(trans, parent);
 645		if (last_ref) {
 646			ret = btrfs_tree_mod_log_free_eb(buf);
 647			if (ret) {
 648				btrfs_tree_unlock(cow);
 649				free_extent_buffer(cow);
 650				btrfs_abort_transaction(trans, ret);
 651				return ret;
 652			}
 653		}
 654		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 655				      parent_start, last_ref);
 656	}
 657	if (unlock_orig)
 658		btrfs_tree_unlock(buf);
 659	free_extent_buffer_stale(buf);
 660	btrfs_mark_buffer_dirty(trans, cow);
 661	*cow_ret = cow;
 662	return 0;
 663}
 664
 665static inline int should_cow_block(struct btrfs_trans_handle *trans,
 666				   struct btrfs_root *root,
 667				   struct extent_buffer *buf)
 668{
 669	if (btrfs_is_testing(root->fs_info))
 670		return 0;
 671
 672	/* Ensure we can see the FORCE_COW bit */
 673	smp_mb__before_atomic();
 674
 675	/*
 676	 * We do not need to cow a block if
 677	 * 1) this block is not created or changed in this transaction;
 678	 * 2) this block does not belong to TREE_RELOC tree;
 679	 * 3) the root is not forced COW.
 680	 *
 681	 * What is forced COW:
 682	 *    when we create snapshot during committing the transaction,
 683	 *    after we've finished copying src root, we must COW the shared
 684	 *    block to ensure the metadata consistency.
 685	 */
 686	if (btrfs_header_generation(buf) == trans->transid &&
 687	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 688	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 689	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 690	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 691		return 0;
 692	return 1;
 693}
 694
 695/*
 696 * COWs a single block, see btrfs_force_cow_block() for the real work.
 697 * This version of it has extra checks so that a block isn't COWed more than
 698 * once per transaction, as long as it hasn't been written yet
 699 */
 700int btrfs_cow_block(struct btrfs_trans_handle *trans,
 701		    struct btrfs_root *root, struct extent_buffer *buf,
 702		    struct extent_buffer *parent, int parent_slot,
 703		    struct extent_buffer **cow_ret,
 704		    enum btrfs_lock_nesting nest)
 705{
 706	struct btrfs_fs_info *fs_info = root->fs_info;
 707	u64 search_start;
 708	int ret;
 709
 710	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
 711		btrfs_abort_transaction(trans, -EUCLEAN);
 712		btrfs_crit(fs_info,
 713		   "attempt to COW block %llu on root %llu that is being deleted",
 714			   buf->start, btrfs_root_id(root));
 715		return -EUCLEAN;
 716	}
 717
 718	/*
 719	 * COWing must happen through a running transaction, which always
 720	 * matches the current fs generation (it's a transaction with a state
 721	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
 722	 * into error state to prevent the commit of any transaction.
 723	 */
 724	if (unlikely(trans->transaction != fs_info->running_transaction ||
 725		     trans->transid != fs_info->generation)) {
 726		btrfs_abort_transaction(trans, -EUCLEAN);
 727		btrfs_crit(fs_info,
 728"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
 729			   buf->start, btrfs_root_id(root), trans->transid,
 730			   fs_info->running_transaction->transid,
 731			   fs_info->generation);
 732		return -EUCLEAN;
 733	}
 734
 735	if (!should_cow_block(trans, root, buf)) {
 736		*cow_ret = buf;
 737		return 0;
 738	}
 739
 740	search_start = round_down(buf->start, SZ_1G);
 741
 742	/*
 743	 * Before CoWing this block for later modification, check if it's
 744	 * the subtree root and do the delayed subtree trace if needed.
 745	 *
 746	 * Also We don't care about the error, as it's handled internally.
 747	 */
 748	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 749	ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
 750				    cow_ret, search_start, 0, nest);
 751
 752	trace_btrfs_cow_block(root, buf, *cow_ret);
 753
 754	return ret;
 755}
 756ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 757
 758/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759 * same as comp_keys only with two btrfs_key's
 760 */
 761int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 762{
 763	if (k1->objectid > k2->objectid)
 764		return 1;
 765	if (k1->objectid < k2->objectid)
 766		return -1;
 767	if (k1->type > k2->type)
 768		return 1;
 769	if (k1->type < k2->type)
 770		return -1;
 771	if (k1->offset > k2->offset)
 772		return 1;
 773	if (k1->offset < k2->offset)
 774		return -1;
 775	return 0;
 776}
 777
 778/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779 * Search for a key in the given extent_buffer.
 780 *
 781 * The lower boundary for the search is specified by the slot number @first_slot.
 782 * Use a value of 0 to search over the whole extent buffer. Works for both
 783 * leaves and nodes.
 784 *
 785 * The slot in the extent buffer is returned via @slot. If the key exists in the
 786 * extent buffer, then @slot will point to the slot where the key is, otherwise
 787 * it points to the slot where you would insert the key.
 788 *
 789 * Slot may point to the total number of items (i.e. one position beyond the last
 790 * key) if the key is bigger than the last key in the extent buffer.
 791 */
 792int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
 793		     const struct btrfs_key *key, int *slot)
 794{
 795	unsigned long p;
 796	int item_size;
 797	/*
 798	 * Use unsigned types for the low and high slots, so that we get a more
 799	 * efficient division in the search loop below.
 800	 */
 801	u32 low = first_slot;
 802	u32 high = btrfs_header_nritems(eb);
 803	int ret;
 804	const int key_size = sizeof(struct btrfs_disk_key);
 805
 806	if (unlikely(low > high)) {
 807		btrfs_err(eb->fs_info,
 808		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
 809			  __func__, low, high, eb->start,
 810			  btrfs_header_owner(eb), btrfs_header_level(eb));
 811		return -EINVAL;
 812	}
 813
 814	if (btrfs_header_level(eb) == 0) {
 815		p = offsetof(struct btrfs_leaf, items);
 816		item_size = sizeof(struct btrfs_item);
 817	} else {
 818		p = offsetof(struct btrfs_node, ptrs);
 819		item_size = sizeof(struct btrfs_key_ptr);
 820	}
 821
 822	while (low < high) {
 823		const int unit_size = folio_size(eb->folios[0]);
 824		unsigned long oil;
 825		unsigned long offset;
 826		struct btrfs_disk_key *tmp;
 827		struct btrfs_disk_key unaligned;
 828		int mid;
 829
 830		mid = (low + high) / 2;
 831		offset = p + mid * item_size;
 832		oil = get_eb_offset_in_folio(eb, offset);
 833
 834		if (oil + key_size <= unit_size) {
 835			const unsigned long idx = get_eb_folio_index(eb, offset);
 836			char *kaddr = folio_address(eb->folios[idx]);
 837
 838			oil = get_eb_offset_in_folio(eb, offset);
 839			tmp = (struct btrfs_disk_key *)(kaddr + oil);
 840		} else {
 841			read_extent_buffer(eb, &unaligned, offset, key_size);
 842			tmp = &unaligned;
 843		}
 844
 845		ret = btrfs_comp_keys(tmp, key);
 846
 847		if (ret < 0)
 848			low = mid + 1;
 849		else if (ret > 0)
 850			high = mid;
 851		else {
 852			*slot = mid;
 853			return 0;
 854		}
 855	}
 856	*slot = low;
 857	return 1;
 858}
 859
 860static void root_add_used_bytes(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 861{
 862	spin_lock(&root->accounting_lock);
 863	btrfs_set_root_used(&root->root_item,
 864		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
 865	spin_unlock(&root->accounting_lock);
 866}
 867
 868static void root_sub_used_bytes(struct btrfs_root *root)
 869{
 870	spin_lock(&root->accounting_lock);
 871	btrfs_set_root_used(&root->root_item,
 872		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
 873	spin_unlock(&root->accounting_lock);
 874}
 875
 876/* given a node and slot number, this reads the blocks it points to.  The
 877 * extent buffer is returned with a reference taken (but unlocked).
 878 */
 879struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 880					   int slot)
 881{
 882	int level = btrfs_header_level(parent);
 883	struct btrfs_tree_parent_check check = { 0 };
 884	struct extent_buffer *eb;
 885
 886	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 887		return ERR_PTR(-ENOENT);
 888
 889	ASSERT(level);
 890
 891	check.level = level - 1;
 892	check.transid = btrfs_node_ptr_generation(parent, slot);
 893	check.owner_root = btrfs_header_owner(parent);
 894	check.has_first_key = true;
 895	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 896
 897	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 898			     &check);
 899	if (IS_ERR(eb))
 900		return eb;
 901	if (!extent_buffer_uptodate(eb)) {
 902		free_extent_buffer(eb);
 903		return ERR_PTR(-EIO);
 904	}
 905
 906	return eb;
 907}
 908
 909/*
 910 * node level balancing, used to make sure nodes are in proper order for
 911 * item deletion.  We balance from the top down, so we have to make sure
 912 * that a deletion won't leave an node completely empty later on.
 913 */
 914static noinline int balance_level(struct btrfs_trans_handle *trans,
 915			 struct btrfs_root *root,
 916			 struct btrfs_path *path, int level)
 917{
 918	struct btrfs_fs_info *fs_info = root->fs_info;
 919	struct extent_buffer *right = NULL;
 920	struct extent_buffer *mid;
 921	struct extent_buffer *left = NULL;
 922	struct extent_buffer *parent = NULL;
 923	int ret = 0;
 924	int wret;
 925	int pslot;
 926	int orig_slot = path->slots[level];
 927	u64 orig_ptr;
 928
 929	ASSERT(level > 0);
 930
 931	mid = path->nodes[level];
 932
 933	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 934	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 935
 936	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 937
 938	if (level < BTRFS_MAX_LEVEL - 1) {
 939		parent = path->nodes[level + 1];
 940		pslot = path->slots[level + 1];
 941	}
 942
 943	/*
 944	 * deal with the case where there is only one pointer in the root
 945	 * by promoting the node below to a root
 946	 */
 947	if (!parent) {
 948		struct extent_buffer *child;
 949
 950		if (btrfs_header_nritems(mid) != 1)
 951			return 0;
 952
 953		/* promote the child to a root */
 954		child = btrfs_read_node_slot(mid, 0);
 955		if (IS_ERR(child)) {
 956			ret = PTR_ERR(child);
 957			goto out;
 
 958		}
 959
 960		btrfs_tree_lock(child);
 961		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 962				      BTRFS_NESTING_COW);
 963		if (ret) {
 964			btrfs_tree_unlock(child);
 965			free_extent_buffer(child);
 966			goto out;
 967		}
 968
 969		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 970		if (ret < 0) {
 971			btrfs_tree_unlock(child);
 972			free_extent_buffer(child);
 973			btrfs_abort_transaction(trans, ret);
 974			goto out;
 975		}
 976		rcu_assign_pointer(root->node, child);
 977
 978		add_root_to_dirty_list(root);
 979		btrfs_tree_unlock(child);
 980
 981		path->locks[level] = 0;
 982		path->nodes[level] = NULL;
 983		btrfs_clear_buffer_dirty(trans, mid);
 984		btrfs_tree_unlock(mid);
 985		/* once for the path */
 986		free_extent_buffer(mid);
 987
 988		root_sub_used_bytes(root);
 989		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
 990		/* once for the root ptr */
 991		free_extent_buffer_stale(mid);
 992		return 0;
 993	}
 994	if (btrfs_header_nritems(mid) >
 995	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
 996		return 0;
 997
 998	if (pslot) {
 999		left = btrfs_read_node_slot(parent, pslot - 1);
1000		if (IS_ERR(left)) {
1001			ret = PTR_ERR(left);
1002			left = NULL;
1003			goto out;
1004		}
1005
 
1006		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1007		wret = btrfs_cow_block(trans, root, left,
1008				       parent, pslot - 1, &left,
1009				       BTRFS_NESTING_LEFT_COW);
1010		if (wret) {
1011			ret = wret;
1012			goto out;
1013		}
1014	}
1015
1016	if (pslot + 1 < btrfs_header_nritems(parent)) {
1017		right = btrfs_read_node_slot(parent, pslot + 1);
1018		if (IS_ERR(right)) {
1019			ret = PTR_ERR(right);
1020			right = NULL;
1021			goto out;
1022		}
1023
 
1024		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1025		wret = btrfs_cow_block(trans, root, right,
1026				       parent, pslot + 1, &right,
1027				       BTRFS_NESTING_RIGHT_COW);
1028		if (wret) {
1029			ret = wret;
1030			goto out;
1031		}
1032	}
1033
1034	/* first, try to make some room in the middle buffer */
1035	if (left) {
1036		orig_slot += btrfs_header_nritems(left);
1037		wret = push_node_left(trans, left, mid, 1);
1038		if (wret < 0)
1039			ret = wret;
1040	}
1041
1042	/*
1043	 * then try to empty the right most buffer into the middle
1044	 */
1045	if (right) {
1046		wret = push_node_left(trans, mid, right, 1);
1047		if (wret < 0 && wret != -ENOSPC)
1048			ret = wret;
1049		if (btrfs_header_nritems(right) == 0) {
1050			btrfs_clear_buffer_dirty(trans, right);
1051			btrfs_tree_unlock(right);
1052			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1053			if (ret < 0) {
1054				free_extent_buffer_stale(right);
1055				right = NULL;
1056				goto out;
1057			}
1058			root_sub_used_bytes(root);
1059			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1060					      0, 1);
1061			free_extent_buffer_stale(right);
1062			right = NULL;
1063		} else {
1064			struct btrfs_disk_key right_key;
1065			btrfs_node_key(right, &right_key, 0);
1066			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1067					BTRFS_MOD_LOG_KEY_REPLACE);
1068			if (ret < 0) {
1069				btrfs_abort_transaction(trans, ret);
1070				goto out;
1071			}
1072			btrfs_set_node_key(parent, &right_key, pslot + 1);
1073			btrfs_mark_buffer_dirty(trans, parent);
1074		}
1075	}
1076	if (btrfs_header_nritems(mid) == 1) {
1077		/*
1078		 * we're not allowed to leave a node with one item in the
1079		 * tree during a delete.  A deletion from lower in the tree
1080		 * could try to delete the only pointer in this node.
1081		 * So, pull some keys from the left.
1082		 * There has to be a left pointer at this point because
1083		 * otherwise we would have pulled some pointers from the
1084		 * right
1085		 */
1086		if (unlikely(!left)) {
1087			btrfs_crit(fs_info,
1088"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1089				   parent->start, btrfs_header_level(parent),
1090				   mid->start, btrfs_root_id(root));
1091			ret = -EUCLEAN;
1092			btrfs_abort_transaction(trans, ret);
1093			goto out;
1094		}
1095		wret = balance_node_right(trans, mid, left);
1096		if (wret < 0) {
1097			ret = wret;
1098			goto out;
1099		}
1100		if (wret == 1) {
1101			wret = push_node_left(trans, left, mid, 1);
1102			if (wret < 0)
1103				ret = wret;
1104		}
1105		BUG_ON(wret == 1);
1106	}
1107	if (btrfs_header_nritems(mid) == 0) {
1108		btrfs_clear_buffer_dirty(trans, mid);
1109		btrfs_tree_unlock(mid);
1110		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1111		if (ret < 0) {
1112			free_extent_buffer_stale(mid);
1113			mid = NULL;
1114			goto out;
1115		}
1116		root_sub_used_bytes(root);
1117		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1118		free_extent_buffer_stale(mid);
1119		mid = NULL;
1120	} else {
1121		/* update the parent key to reflect our changes */
1122		struct btrfs_disk_key mid_key;
1123		btrfs_node_key(mid, &mid_key, 0);
1124		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1125						    BTRFS_MOD_LOG_KEY_REPLACE);
1126		if (ret < 0) {
1127			btrfs_abort_transaction(trans, ret);
1128			goto out;
1129		}
1130		btrfs_set_node_key(parent, &mid_key, pslot);
1131		btrfs_mark_buffer_dirty(trans, parent);
1132	}
1133
1134	/* update the path */
1135	if (left) {
1136		if (btrfs_header_nritems(left) > orig_slot) {
1137			atomic_inc(&left->refs);
1138			/* left was locked after cow */
1139			path->nodes[level] = left;
1140			path->slots[level + 1] -= 1;
1141			path->slots[level] = orig_slot;
1142			if (mid) {
1143				btrfs_tree_unlock(mid);
1144				free_extent_buffer(mid);
1145			}
1146		} else {
1147			orig_slot -= btrfs_header_nritems(left);
1148			path->slots[level] = orig_slot;
1149		}
1150	}
1151	/* double check we haven't messed things up */
1152	if (orig_ptr !=
1153	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1154		BUG();
1155out:
1156	if (right) {
1157		btrfs_tree_unlock(right);
1158		free_extent_buffer(right);
1159	}
1160	if (left) {
1161		if (path->nodes[level] != left)
1162			btrfs_tree_unlock(left);
1163		free_extent_buffer(left);
1164	}
1165	return ret;
1166}
1167
1168/* Node balancing for insertion.  Here we only split or push nodes around
1169 * when they are completely full.  This is also done top down, so we
1170 * have to be pessimistic.
1171 */
1172static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1173					  struct btrfs_root *root,
1174					  struct btrfs_path *path, int level)
1175{
1176	struct btrfs_fs_info *fs_info = root->fs_info;
1177	struct extent_buffer *right = NULL;
1178	struct extent_buffer *mid;
1179	struct extent_buffer *left = NULL;
1180	struct extent_buffer *parent = NULL;
1181	int ret = 0;
1182	int wret;
1183	int pslot;
1184	int orig_slot = path->slots[level];
1185
1186	if (level == 0)
1187		return 1;
1188
1189	mid = path->nodes[level];
1190	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1191
1192	if (level < BTRFS_MAX_LEVEL - 1) {
1193		parent = path->nodes[level + 1];
1194		pslot = path->slots[level + 1];
1195	}
1196
1197	if (!parent)
1198		return 1;
1199
 
 
 
 
1200	/* first, try to make some room in the middle buffer */
1201	if (pslot) {
1202		u32 left_nr;
1203
1204		left = btrfs_read_node_slot(parent, pslot - 1);
1205		if (IS_ERR(left))
1206			return PTR_ERR(left);
1207
1208		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1209
1210		left_nr = btrfs_header_nritems(left);
1211		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1212			wret = 1;
1213		} else {
1214			ret = btrfs_cow_block(trans, root, left, parent,
1215					      pslot - 1, &left,
1216					      BTRFS_NESTING_LEFT_COW);
1217			if (ret)
1218				wret = 1;
1219			else {
1220				wret = push_node_left(trans, left, mid, 0);
1221			}
1222		}
1223		if (wret < 0)
1224			ret = wret;
1225		if (wret == 0) {
1226			struct btrfs_disk_key disk_key;
1227			orig_slot += left_nr;
1228			btrfs_node_key(mid, &disk_key, 0);
1229			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1230					BTRFS_MOD_LOG_KEY_REPLACE);
1231			if (ret < 0) {
1232				btrfs_tree_unlock(left);
1233				free_extent_buffer(left);
1234				btrfs_abort_transaction(trans, ret);
1235				return ret;
1236			}
1237			btrfs_set_node_key(parent, &disk_key, pslot);
1238			btrfs_mark_buffer_dirty(trans, parent);
1239			if (btrfs_header_nritems(left) > orig_slot) {
1240				path->nodes[level] = left;
1241				path->slots[level + 1] -= 1;
1242				path->slots[level] = orig_slot;
1243				btrfs_tree_unlock(mid);
1244				free_extent_buffer(mid);
1245			} else {
1246				orig_slot -=
1247					btrfs_header_nritems(left);
1248				path->slots[level] = orig_slot;
1249				btrfs_tree_unlock(left);
1250				free_extent_buffer(left);
1251			}
1252			return 0;
1253		}
1254		btrfs_tree_unlock(left);
1255		free_extent_buffer(left);
1256	}
 
 
 
1257
1258	/*
1259	 * then try to empty the right most buffer into the middle
1260	 */
1261	if (pslot + 1 < btrfs_header_nritems(parent)) {
1262		u32 right_nr;
1263
1264		right = btrfs_read_node_slot(parent, pslot + 1);
1265		if (IS_ERR(right))
1266			return PTR_ERR(right);
1267
1268		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1269
1270		right_nr = btrfs_header_nritems(right);
1271		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1272			wret = 1;
1273		} else {
1274			ret = btrfs_cow_block(trans, root, right,
1275					      parent, pslot + 1,
1276					      &right, BTRFS_NESTING_RIGHT_COW);
1277			if (ret)
1278				wret = 1;
1279			else {
1280				wret = balance_node_right(trans, right, mid);
1281			}
1282		}
1283		if (wret < 0)
1284			ret = wret;
1285		if (wret == 0) {
1286			struct btrfs_disk_key disk_key;
1287
1288			btrfs_node_key(right, &disk_key, 0);
1289			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1290					BTRFS_MOD_LOG_KEY_REPLACE);
1291			if (ret < 0) {
1292				btrfs_tree_unlock(right);
1293				free_extent_buffer(right);
1294				btrfs_abort_transaction(trans, ret);
1295				return ret;
1296			}
1297			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1298			btrfs_mark_buffer_dirty(trans, parent);
1299
1300			if (btrfs_header_nritems(mid) <= orig_slot) {
1301				path->nodes[level] = right;
1302				path->slots[level + 1] += 1;
1303				path->slots[level] = orig_slot -
1304					btrfs_header_nritems(mid);
1305				btrfs_tree_unlock(mid);
1306				free_extent_buffer(mid);
1307			} else {
1308				btrfs_tree_unlock(right);
1309				free_extent_buffer(right);
1310			}
1311			return 0;
1312		}
1313		btrfs_tree_unlock(right);
1314		free_extent_buffer(right);
1315	}
1316	return 1;
1317}
1318
1319/*
1320 * readahead one full node of leaves, finding things that are close
1321 * to the block in 'slot', and triggering ra on them.
1322 */
1323static void reada_for_search(struct btrfs_fs_info *fs_info,
1324			     struct btrfs_path *path,
1325			     int level, int slot, u64 objectid)
1326{
1327	struct extent_buffer *node;
1328	struct btrfs_disk_key disk_key;
1329	u32 nritems;
1330	u64 search;
1331	u64 target;
1332	u64 nread = 0;
1333	u64 nread_max;
1334	u32 nr;
1335	u32 blocksize;
1336	u32 nscan = 0;
1337
1338	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1339		return;
1340
1341	if (!path->nodes[level])
1342		return;
1343
1344	node = path->nodes[level];
1345
1346	/*
1347	 * Since the time between visiting leaves is much shorter than the time
1348	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1349	 * much IO at once (possibly random).
1350	 */
1351	if (path->reada == READA_FORWARD_ALWAYS) {
1352		if (level > 1)
1353			nread_max = node->fs_info->nodesize;
1354		else
1355			nread_max = SZ_128K;
1356	} else {
1357		nread_max = SZ_64K;
1358	}
1359
1360	search = btrfs_node_blockptr(node, slot);
1361	blocksize = fs_info->nodesize;
1362	if (path->reada != READA_FORWARD_ALWAYS) {
1363		struct extent_buffer *eb;
1364
1365		eb = find_extent_buffer(fs_info, search);
1366		if (eb) {
1367			free_extent_buffer(eb);
1368			return;
1369		}
1370	}
1371
1372	target = search;
1373
1374	nritems = btrfs_header_nritems(node);
1375	nr = slot;
1376
1377	while (1) {
1378		if (path->reada == READA_BACK) {
1379			if (nr == 0)
1380				break;
1381			nr--;
1382		} else if (path->reada == READA_FORWARD ||
1383			   path->reada == READA_FORWARD_ALWAYS) {
1384			nr++;
1385			if (nr >= nritems)
1386				break;
1387		}
1388		if (path->reada == READA_BACK && objectid) {
1389			btrfs_node_key(node, &disk_key, nr);
1390			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1391				break;
1392		}
1393		search = btrfs_node_blockptr(node, nr);
1394		if (path->reada == READA_FORWARD_ALWAYS ||
1395		    (search <= target && target - search <= 65536) ||
1396		    (search > target && search - target <= 65536)) {
1397			btrfs_readahead_node_child(node, nr);
1398			nread += blocksize;
1399		}
1400		nscan++;
1401		if (nread > nread_max || nscan > 32)
1402			break;
1403	}
1404}
1405
1406static noinline void reada_for_balance(struct btrfs_path *path, int level)
1407{
1408	struct extent_buffer *parent;
1409	int slot;
1410	int nritems;
1411
1412	parent = path->nodes[level + 1];
1413	if (!parent)
1414		return;
1415
1416	nritems = btrfs_header_nritems(parent);
1417	slot = path->slots[level + 1];
1418
1419	if (slot > 0)
1420		btrfs_readahead_node_child(parent, slot - 1);
1421	if (slot + 1 < nritems)
1422		btrfs_readahead_node_child(parent, slot + 1);
1423}
1424
1425
1426/*
1427 * when we walk down the tree, it is usually safe to unlock the higher layers
1428 * in the tree.  The exceptions are when our path goes through slot 0, because
1429 * operations on the tree might require changing key pointers higher up in the
1430 * tree.
1431 *
1432 * callers might also have set path->keep_locks, which tells this code to keep
1433 * the lock if the path points to the last slot in the block.  This is part of
1434 * walking through the tree, and selecting the next slot in the higher block.
1435 *
1436 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1437 * if lowest_unlock is 1, level 0 won't be unlocked
1438 */
1439static noinline void unlock_up(struct btrfs_path *path, int level,
1440			       int lowest_unlock, int min_write_lock_level,
1441			       int *write_lock_level)
1442{
1443	int i;
1444	int skip_level = level;
1445	bool check_skip = true;
1446
1447	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1448		if (!path->nodes[i])
1449			break;
1450		if (!path->locks[i])
1451			break;
1452
1453		if (check_skip) {
1454			if (path->slots[i] == 0) {
1455				skip_level = i + 1;
1456				continue;
1457			}
1458
1459			if (path->keep_locks) {
1460				u32 nritems;
1461
1462				nritems = btrfs_header_nritems(path->nodes[i]);
1463				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1464					skip_level = i + 1;
1465					continue;
1466				}
1467			}
1468		}
1469
1470		if (i >= lowest_unlock && i > skip_level) {
1471			check_skip = false;
1472			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1473			path->locks[i] = 0;
1474			if (write_lock_level &&
1475			    i > min_write_lock_level &&
1476			    i <= *write_lock_level) {
1477				*write_lock_level = i - 1;
1478			}
1479		}
1480	}
1481}
1482
1483/*
1484 * Helper function for btrfs_search_slot() and other functions that do a search
1485 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1486 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1487 * its pages from disk.
1488 *
1489 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1490 * whole btree search, starting again from the current root node.
1491 */
1492static int
1493read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1494		      struct extent_buffer **eb_ret, int level, int slot,
1495		      const struct btrfs_key *key)
1496{
1497	struct btrfs_fs_info *fs_info = root->fs_info;
1498	struct btrfs_tree_parent_check check = { 0 };
1499	u64 blocknr;
1500	u64 gen;
1501	struct extent_buffer *tmp;
1502	int ret;
1503	int parent_level;
1504	bool unlock_up;
1505
1506	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1507	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1508	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1509	parent_level = btrfs_header_level(*eb_ret);
1510	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1511	check.has_first_key = true;
1512	check.level = parent_level - 1;
1513	check.transid = gen;
1514	check.owner_root = root->root_key.objectid;
1515
1516	/*
1517	 * If we need to read an extent buffer from disk and we are holding locks
1518	 * on upper level nodes, we unlock all the upper nodes before reading the
1519	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1520	 * restart the search. We don't release the lock on the current level
1521	 * because we need to walk this node to figure out which blocks to read.
1522	 */
1523	tmp = find_extent_buffer(fs_info, blocknr);
1524	if (tmp) {
1525		if (p->reada == READA_FORWARD_ALWAYS)
1526			reada_for_search(fs_info, p, level, slot, key->objectid);
1527
1528		/* first we do an atomic uptodate check */
1529		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1530			/*
1531			 * Do extra check for first_key, eb can be stale due to
1532			 * being cached, read from scrub, or have multiple
1533			 * parents (shared tree blocks).
1534			 */
1535			if (btrfs_verify_level_key(tmp,
1536					parent_level - 1, &check.first_key, gen)) {
1537				free_extent_buffer(tmp);
1538				return -EUCLEAN;
1539			}
1540			*eb_ret = tmp;
1541			return 0;
1542		}
1543
1544		if (p->nowait) {
1545			free_extent_buffer(tmp);
1546			return -EAGAIN;
1547		}
1548
1549		if (unlock_up)
1550			btrfs_unlock_up_safe(p, level + 1);
1551
1552		/* now we're allowed to do a blocking uptodate check */
1553		ret = btrfs_read_extent_buffer(tmp, &check);
1554		if (ret) {
1555			free_extent_buffer(tmp);
1556			btrfs_release_path(p);
1557			return -EIO;
1558		}
1559		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1560			free_extent_buffer(tmp);
1561			btrfs_release_path(p);
1562			return -EUCLEAN;
1563		}
1564
1565		if (unlock_up)
1566			ret = -EAGAIN;
1567
1568		goto out;
1569	} else if (p->nowait) {
1570		return -EAGAIN;
1571	}
1572
1573	if (unlock_up) {
1574		btrfs_unlock_up_safe(p, level + 1);
1575		ret = -EAGAIN;
1576	} else {
1577		ret = 0;
1578	}
1579
1580	if (p->reada != READA_NONE)
1581		reada_for_search(fs_info, p, level, slot, key->objectid);
1582
1583	tmp = read_tree_block(fs_info, blocknr, &check);
1584	if (IS_ERR(tmp)) {
1585		btrfs_release_path(p);
1586		return PTR_ERR(tmp);
1587	}
1588	/*
1589	 * If the read above didn't mark this buffer up to date,
1590	 * it will never end up being up to date.  Set ret to EIO now
1591	 * and give up so that our caller doesn't loop forever
1592	 * on our EAGAINs.
1593	 */
1594	if (!extent_buffer_uptodate(tmp))
1595		ret = -EIO;
1596
1597out:
1598	if (ret == 0) {
1599		*eb_ret = tmp;
1600	} else {
1601		free_extent_buffer(tmp);
1602		btrfs_release_path(p);
1603	}
1604
1605	return ret;
1606}
1607
1608/*
1609 * helper function for btrfs_search_slot.  This does all of the checks
1610 * for node-level blocks and does any balancing required based on
1611 * the ins_len.
1612 *
1613 * If no extra work was required, zero is returned.  If we had to
1614 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1615 * start over
1616 */
1617static int
1618setup_nodes_for_search(struct btrfs_trans_handle *trans,
1619		       struct btrfs_root *root, struct btrfs_path *p,
1620		       struct extent_buffer *b, int level, int ins_len,
1621		       int *write_lock_level)
1622{
1623	struct btrfs_fs_info *fs_info = root->fs_info;
1624	int ret = 0;
1625
1626	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1627	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1628
1629		if (*write_lock_level < level + 1) {
1630			*write_lock_level = level + 1;
1631			btrfs_release_path(p);
1632			return -EAGAIN;
1633		}
1634
1635		reada_for_balance(p, level);
1636		ret = split_node(trans, root, p, level);
1637
1638		b = p->nodes[level];
1639	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1640		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1641
1642		if (*write_lock_level < level + 1) {
1643			*write_lock_level = level + 1;
1644			btrfs_release_path(p);
1645			return -EAGAIN;
1646		}
1647
1648		reada_for_balance(p, level);
1649		ret = balance_level(trans, root, p, level);
1650		if (ret)
1651			return ret;
1652
1653		b = p->nodes[level];
1654		if (!b) {
1655			btrfs_release_path(p);
1656			return -EAGAIN;
1657		}
1658		BUG_ON(btrfs_header_nritems(b) == 1);
1659	}
1660	return ret;
1661}
1662
1663int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1664		u64 iobjectid, u64 ioff, u8 key_type,
1665		struct btrfs_key *found_key)
1666{
1667	int ret;
1668	struct btrfs_key key;
1669	struct extent_buffer *eb;
1670
1671	ASSERT(path);
1672	ASSERT(found_key);
1673
1674	key.type = key_type;
1675	key.objectid = iobjectid;
1676	key.offset = ioff;
1677
1678	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1679	if (ret < 0)
1680		return ret;
1681
1682	eb = path->nodes[0];
1683	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1684		ret = btrfs_next_leaf(fs_root, path);
1685		if (ret)
1686			return ret;
1687		eb = path->nodes[0];
1688	}
1689
1690	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1691	if (found_key->type != key.type ||
1692			found_key->objectid != key.objectid)
1693		return 1;
1694
1695	return 0;
1696}
1697
1698static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1699							struct btrfs_path *p,
1700							int write_lock_level)
1701{
1702	struct extent_buffer *b;
1703	int root_lock = 0;
1704	int level = 0;
1705
1706	if (p->search_commit_root) {
1707		b = root->commit_root;
1708		atomic_inc(&b->refs);
1709		level = btrfs_header_level(b);
1710		/*
1711		 * Ensure that all callers have set skip_locking when
1712		 * p->search_commit_root = 1.
1713		 */
1714		ASSERT(p->skip_locking == 1);
1715
1716		goto out;
1717	}
1718
1719	if (p->skip_locking) {
1720		b = btrfs_root_node(root);
1721		level = btrfs_header_level(b);
1722		goto out;
1723	}
1724
1725	/* We try very hard to do read locks on the root */
1726	root_lock = BTRFS_READ_LOCK;
1727
1728	/*
1729	 * If the level is set to maximum, we can skip trying to get the read
1730	 * lock.
1731	 */
1732	if (write_lock_level < BTRFS_MAX_LEVEL) {
1733		/*
1734		 * We don't know the level of the root node until we actually
1735		 * have it read locked
1736		 */
1737		if (p->nowait) {
1738			b = btrfs_try_read_lock_root_node(root);
1739			if (IS_ERR(b))
1740				return b;
1741		} else {
1742			b = btrfs_read_lock_root_node(root);
1743		}
1744		level = btrfs_header_level(b);
1745		if (level > write_lock_level)
1746			goto out;
1747
1748		/* Whoops, must trade for write lock */
1749		btrfs_tree_read_unlock(b);
1750		free_extent_buffer(b);
1751	}
1752
1753	b = btrfs_lock_root_node(root);
1754	root_lock = BTRFS_WRITE_LOCK;
1755
1756	/* The level might have changed, check again */
1757	level = btrfs_header_level(b);
1758
1759out:
1760	/*
1761	 * The root may have failed to write out at some point, and thus is no
1762	 * longer valid, return an error in this case.
1763	 */
1764	if (!extent_buffer_uptodate(b)) {
1765		if (root_lock)
1766			btrfs_tree_unlock_rw(b, root_lock);
1767		free_extent_buffer(b);
1768		return ERR_PTR(-EIO);
1769	}
1770
1771	p->nodes[level] = b;
1772	if (!p->skip_locking)
1773		p->locks[level] = root_lock;
1774	/*
1775	 * Callers are responsible for dropping b's references.
1776	 */
1777	return b;
1778}
1779
1780/*
1781 * Replace the extent buffer at the lowest level of the path with a cloned
1782 * version. The purpose is to be able to use it safely, after releasing the
1783 * commit root semaphore, even if relocation is happening in parallel, the
1784 * transaction used for relocation is committed and the extent buffer is
1785 * reallocated in the next transaction.
1786 *
1787 * This is used in a context where the caller does not prevent transaction
1788 * commits from happening, either by holding a transaction handle or holding
1789 * some lock, while it's doing searches through a commit root.
1790 * At the moment it's only used for send operations.
1791 */
1792static int finish_need_commit_sem_search(struct btrfs_path *path)
1793{
1794	const int i = path->lowest_level;
1795	const int slot = path->slots[i];
1796	struct extent_buffer *lowest = path->nodes[i];
1797	struct extent_buffer *clone;
1798
1799	ASSERT(path->need_commit_sem);
1800
1801	if (!lowest)
1802		return 0;
1803
1804	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1805
1806	clone = btrfs_clone_extent_buffer(lowest);
1807	if (!clone)
1808		return -ENOMEM;
1809
1810	btrfs_release_path(path);
1811	path->nodes[i] = clone;
1812	path->slots[i] = slot;
1813
1814	return 0;
1815}
1816
1817static inline int search_for_key_slot(struct extent_buffer *eb,
1818				      int search_low_slot,
1819				      const struct btrfs_key *key,
1820				      int prev_cmp,
1821				      int *slot)
1822{
1823	/*
1824	 * If a previous call to btrfs_bin_search() on a parent node returned an
1825	 * exact match (prev_cmp == 0), we can safely assume the target key will
1826	 * always be at slot 0 on lower levels, since each key pointer
1827	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1828	 * subtree it points to. Thus we can skip searching lower levels.
1829	 */
1830	if (prev_cmp == 0) {
1831		*slot = 0;
1832		return 0;
1833	}
1834
1835	return btrfs_bin_search(eb, search_low_slot, key, slot);
1836}
1837
1838static int search_leaf(struct btrfs_trans_handle *trans,
1839		       struct btrfs_root *root,
1840		       const struct btrfs_key *key,
1841		       struct btrfs_path *path,
1842		       int ins_len,
1843		       int prev_cmp)
1844{
1845	struct extent_buffer *leaf = path->nodes[0];
1846	int leaf_free_space = -1;
1847	int search_low_slot = 0;
1848	int ret;
1849	bool do_bin_search = true;
1850
1851	/*
1852	 * If we are doing an insertion, the leaf has enough free space and the
1853	 * destination slot for the key is not slot 0, then we can unlock our
1854	 * write lock on the parent, and any other upper nodes, before doing the
1855	 * binary search on the leaf (with search_for_key_slot()), allowing other
1856	 * tasks to lock the parent and any other upper nodes.
1857	 */
1858	if (ins_len > 0) {
1859		/*
1860		 * Cache the leaf free space, since we will need it later and it
1861		 * will not change until then.
1862		 */
1863		leaf_free_space = btrfs_leaf_free_space(leaf);
1864
1865		/*
1866		 * !path->locks[1] means we have a single node tree, the leaf is
1867		 * the root of the tree.
1868		 */
1869		if (path->locks[1] && leaf_free_space >= ins_len) {
1870			struct btrfs_disk_key first_key;
1871
1872			ASSERT(btrfs_header_nritems(leaf) > 0);
1873			btrfs_item_key(leaf, &first_key, 0);
1874
1875			/*
1876			 * Doing the extra comparison with the first key is cheap,
1877			 * taking into account that the first key is very likely
1878			 * already in a cache line because it immediately follows
1879			 * the extent buffer's header and we have recently accessed
1880			 * the header's level field.
1881			 */
1882			ret = btrfs_comp_keys(&first_key, key);
1883			if (ret < 0) {
1884				/*
1885				 * The first key is smaller than the key we want
1886				 * to insert, so we are safe to unlock all upper
1887				 * nodes and we have to do the binary search.
1888				 *
1889				 * We do use btrfs_unlock_up_safe() and not
1890				 * unlock_up() because the later does not unlock
1891				 * nodes with a slot of 0 - we can safely unlock
1892				 * any node even if its slot is 0 since in this
1893				 * case the key does not end up at slot 0 of the
1894				 * leaf and there's no need to split the leaf.
1895				 */
1896				btrfs_unlock_up_safe(path, 1);
1897				search_low_slot = 1;
1898			} else {
1899				/*
1900				 * The first key is >= then the key we want to
1901				 * insert, so we can skip the binary search as
1902				 * the target key will be at slot 0.
1903				 *
1904				 * We can not unlock upper nodes when the key is
1905				 * less than the first key, because we will need
1906				 * to update the key at slot 0 of the parent node
1907				 * and possibly of other upper nodes too.
1908				 * If the key matches the first key, then we can
1909				 * unlock all the upper nodes, using
1910				 * btrfs_unlock_up_safe() instead of unlock_up()
1911				 * as stated above.
1912				 */
1913				if (ret == 0)
1914					btrfs_unlock_up_safe(path, 1);
1915				/*
1916				 * ret is already 0 or 1, matching the result of
1917				 * a btrfs_bin_search() call, so there is no need
1918				 * to adjust it.
1919				 */
1920				do_bin_search = false;
1921				path->slots[0] = 0;
1922			}
1923		}
1924	}
1925
1926	if (do_bin_search) {
1927		ret = search_for_key_slot(leaf, search_low_slot, key,
1928					  prev_cmp, &path->slots[0]);
1929		if (ret < 0)
1930			return ret;
1931	}
1932
1933	if (ins_len > 0) {
1934		/*
1935		 * Item key already exists. In this case, if we are allowed to
1936		 * insert the item (for example, in dir_item case, item key
1937		 * collision is allowed), it will be merged with the original
1938		 * item. Only the item size grows, no new btrfs item will be
1939		 * added. If search_for_extension is not set, ins_len already
1940		 * accounts the size btrfs_item, deduct it here so leaf space
1941		 * check will be correct.
1942		 */
1943		if (ret == 0 && !path->search_for_extension) {
1944			ASSERT(ins_len >= sizeof(struct btrfs_item));
1945			ins_len -= sizeof(struct btrfs_item);
1946		}
1947
1948		ASSERT(leaf_free_space >= 0);
1949
1950		if (leaf_free_space < ins_len) {
1951			int err;
1952
1953			err = split_leaf(trans, root, key, path, ins_len,
1954					 (ret == 0));
1955			ASSERT(err <= 0);
1956			if (WARN_ON(err > 0))
1957				err = -EUCLEAN;
1958			if (err)
1959				ret = err;
1960		}
1961	}
1962
1963	return ret;
1964}
1965
1966/*
1967 * Look for a key in a tree and perform necessary modifications to preserve
1968 * tree invariants.
1969 *
1970 * @trans:	Handle of transaction, used when modifying the tree
1971 * @p:		Holds all btree nodes along the search path
1972 * @root:	The root node of the tree
1973 * @key:	The key we are looking for
1974 * @ins_len:	Indicates purpose of search:
1975 *              >0  for inserts it's size of item inserted (*)
1976 *              <0  for deletions
1977 *               0  for plain searches, not modifying the tree
1978 *
1979 *              (*) If size of item inserted doesn't include
1980 *              sizeof(struct btrfs_item), then p->search_for_extension must
1981 *              be set.
1982 * @cow:	boolean should CoW operations be performed. Must always be 1
1983 *		when modifying the tree.
1984 *
1985 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1986 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1987 *
1988 * If @key is found, 0 is returned and you can find the item in the leaf level
1989 * of the path (level 0)
1990 *
1991 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1992 * points to the slot where it should be inserted
1993 *
1994 * If an error is encountered while searching the tree a negative error number
1995 * is returned
1996 */
1997int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1998		      const struct btrfs_key *key, struct btrfs_path *p,
1999		      int ins_len, int cow)
2000{
2001	struct btrfs_fs_info *fs_info = root->fs_info;
2002	struct extent_buffer *b;
2003	int slot;
2004	int ret;
2005	int err;
2006	int level;
2007	int lowest_unlock = 1;
2008	/* everything at write_lock_level or lower must be write locked */
2009	int write_lock_level = 0;
2010	u8 lowest_level = 0;
2011	int min_write_lock_level;
2012	int prev_cmp;
2013
2014	might_sleep();
2015
2016	lowest_level = p->lowest_level;
2017	WARN_ON(lowest_level && ins_len > 0);
2018	WARN_ON(p->nodes[0] != NULL);
2019	BUG_ON(!cow && ins_len);
2020
2021	/*
2022	 * For now only allow nowait for read only operations.  There's no
2023	 * strict reason why we can't, we just only need it for reads so it's
2024	 * only implemented for reads.
2025	 */
2026	ASSERT(!p->nowait || !cow);
2027
2028	if (ins_len < 0) {
2029		lowest_unlock = 2;
2030
2031		/* when we are removing items, we might have to go up to level
2032		 * two as we update tree pointers  Make sure we keep write
2033		 * for those levels as well
2034		 */
2035		write_lock_level = 2;
2036	} else if (ins_len > 0) {
2037		/*
2038		 * for inserting items, make sure we have a write lock on
2039		 * level 1 so we can update keys
2040		 */
2041		write_lock_level = 1;
2042	}
2043
2044	if (!cow)
2045		write_lock_level = -1;
2046
2047	if (cow && (p->keep_locks || p->lowest_level))
2048		write_lock_level = BTRFS_MAX_LEVEL;
2049
2050	min_write_lock_level = write_lock_level;
2051
2052	if (p->need_commit_sem) {
2053		ASSERT(p->search_commit_root);
2054		if (p->nowait) {
2055			if (!down_read_trylock(&fs_info->commit_root_sem))
2056				return -EAGAIN;
2057		} else {
2058			down_read(&fs_info->commit_root_sem);
2059		}
2060	}
2061
2062again:
2063	prev_cmp = -1;
2064	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2065	if (IS_ERR(b)) {
2066		ret = PTR_ERR(b);
2067		goto done;
2068	}
2069
2070	while (b) {
2071		int dec = 0;
2072
2073		level = btrfs_header_level(b);
2074
2075		if (cow) {
2076			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2077
2078			/*
2079			 * if we don't really need to cow this block
2080			 * then we don't want to set the path blocking,
2081			 * so we test it here
2082			 */
2083			if (!should_cow_block(trans, root, b))
2084				goto cow_done;
2085
2086			/*
2087			 * must have write locks on this node and the
2088			 * parent
2089			 */
2090			if (level > write_lock_level ||
2091			    (level + 1 > write_lock_level &&
2092			    level + 1 < BTRFS_MAX_LEVEL &&
2093			    p->nodes[level + 1])) {
2094				write_lock_level = level + 1;
2095				btrfs_release_path(p);
2096				goto again;
2097			}
2098
2099			if (last_level)
2100				err = btrfs_cow_block(trans, root, b, NULL, 0,
2101						      &b,
2102						      BTRFS_NESTING_COW);
2103			else
2104				err = btrfs_cow_block(trans, root, b,
2105						      p->nodes[level + 1],
2106						      p->slots[level + 1], &b,
2107						      BTRFS_NESTING_COW);
2108			if (err) {
2109				ret = err;
2110				goto done;
2111			}
2112		}
2113cow_done:
2114		p->nodes[level] = b;
2115
2116		/*
2117		 * we have a lock on b and as long as we aren't changing
2118		 * the tree, there is no way to for the items in b to change.
2119		 * It is safe to drop the lock on our parent before we
2120		 * go through the expensive btree search on b.
2121		 *
2122		 * If we're inserting or deleting (ins_len != 0), then we might
2123		 * be changing slot zero, which may require changing the parent.
2124		 * So, we can't drop the lock until after we know which slot
2125		 * we're operating on.
2126		 */
2127		if (!ins_len && !p->keep_locks) {
2128			int u = level + 1;
2129
2130			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2131				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2132				p->locks[u] = 0;
2133			}
2134		}
2135
2136		if (level == 0) {
2137			if (ins_len > 0)
2138				ASSERT(write_lock_level >= 1);
2139
2140			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2141			if (!p->search_for_split)
2142				unlock_up(p, level, lowest_unlock,
2143					  min_write_lock_level, NULL);
2144			goto done;
2145		}
2146
2147		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2148		if (ret < 0)
2149			goto done;
2150		prev_cmp = ret;
2151
2152		if (ret && slot > 0) {
2153			dec = 1;
2154			slot--;
2155		}
2156		p->slots[level] = slot;
2157		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2158					     &write_lock_level);
2159		if (err == -EAGAIN)
2160			goto again;
2161		if (err) {
2162			ret = err;
2163			goto done;
2164		}
2165		b = p->nodes[level];
2166		slot = p->slots[level];
2167
2168		/*
2169		 * Slot 0 is special, if we change the key we have to update
2170		 * the parent pointer which means we must have a write lock on
2171		 * the parent
2172		 */
2173		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2174			write_lock_level = level + 1;
2175			btrfs_release_path(p);
2176			goto again;
2177		}
2178
2179		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2180			  &write_lock_level);
2181
2182		if (level == lowest_level) {
2183			if (dec)
2184				p->slots[level]++;
2185			goto done;
2186		}
2187
2188		err = read_block_for_search(root, p, &b, level, slot, key);
2189		if (err == -EAGAIN)
2190			goto again;
2191		if (err) {
2192			ret = err;
2193			goto done;
2194		}
2195
2196		if (!p->skip_locking) {
2197			level = btrfs_header_level(b);
2198
2199			btrfs_maybe_reset_lockdep_class(root, b);
2200
2201			if (level <= write_lock_level) {
2202				btrfs_tree_lock(b);
2203				p->locks[level] = BTRFS_WRITE_LOCK;
2204			} else {
2205				if (p->nowait) {
2206					if (!btrfs_try_tree_read_lock(b)) {
2207						free_extent_buffer(b);
2208						ret = -EAGAIN;
2209						goto done;
2210					}
2211				} else {
2212					btrfs_tree_read_lock(b);
2213				}
2214				p->locks[level] = BTRFS_READ_LOCK;
2215			}
2216			p->nodes[level] = b;
2217		}
2218	}
2219	ret = 1;
2220done:
2221	if (ret < 0 && !p->skip_release_on_error)
2222		btrfs_release_path(p);
2223
2224	if (p->need_commit_sem) {
2225		int ret2;
2226
2227		ret2 = finish_need_commit_sem_search(p);
2228		up_read(&fs_info->commit_root_sem);
2229		if (ret2)
2230			ret = ret2;
2231	}
2232
2233	return ret;
2234}
2235ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2236
2237/*
2238 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2239 * current state of the tree together with the operations recorded in the tree
2240 * modification log to search for the key in a previous version of this tree, as
2241 * denoted by the time_seq parameter.
2242 *
2243 * Naturally, there is no support for insert, delete or cow operations.
2244 *
2245 * The resulting path and return value will be set up as if we called
2246 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2247 */
2248int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2249			  struct btrfs_path *p, u64 time_seq)
2250{
2251	struct btrfs_fs_info *fs_info = root->fs_info;
2252	struct extent_buffer *b;
2253	int slot;
2254	int ret;
2255	int err;
2256	int level;
2257	int lowest_unlock = 1;
2258	u8 lowest_level = 0;
2259
2260	lowest_level = p->lowest_level;
2261	WARN_ON(p->nodes[0] != NULL);
2262	ASSERT(!p->nowait);
2263
2264	if (p->search_commit_root) {
2265		BUG_ON(time_seq);
2266		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2267	}
2268
2269again:
2270	b = btrfs_get_old_root(root, time_seq);
2271	if (!b) {
2272		ret = -EIO;
2273		goto done;
2274	}
2275	level = btrfs_header_level(b);
2276	p->locks[level] = BTRFS_READ_LOCK;
2277
2278	while (b) {
2279		int dec = 0;
2280
2281		level = btrfs_header_level(b);
2282		p->nodes[level] = b;
2283
2284		/*
2285		 * we have a lock on b and as long as we aren't changing
2286		 * the tree, there is no way to for the items in b to change.
2287		 * It is safe to drop the lock on our parent before we
2288		 * go through the expensive btree search on b.
2289		 */
2290		btrfs_unlock_up_safe(p, level + 1);
2291
2292		ret = btrfs_bin_search(b, 0, key, &slot);
2293		if (ret < 0)
2294			goto done;
2295
2296		if (level == 0) {
2297			p->slots[level] = slot;
2298			unlock_up(p, level, lowest_unlock, 0, NULL);
2299			goto done;
2300		}
2301
2302		if (ret && slot > 0) {
2303			dec = 1;
2304			slot--;
2305		}
2306		p->slots[level] = slot;
2307		unlock_up(p, level, lowest_unlock, 0, NULL);
2308
2309		if (level == lowest_level) {
2310			if (dec)
2311				p->slots[level]++;
2312			goto done;
2313		}
2314
2315		err = read_block_for_search(root, p, &b, level, slot, key);
2316		if (err == -EAGAIN)
2317			goto again;
2318		if (err) {
2319			ret = err;
2320			goto done;
2321		}
2322
2323		level = btrfs_header_level(b);
2324		btrfs_tree_read_lock(b);
2325		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2326		if (!b) {
2327			ret = -ENOMEM;
2328			goto done;
2329		}
2330		p->locks[level] = BTRFS_READ_LOCK;
2331		p->nodes[level] = b;
2332	}
2333	ret = 1;
2334done:
2335	if (ret < 0)
2336		btrfs_release_path(p);
2337
2338	return ret;
2339}
2340
2341/*
2342 * Search the tree again to find a leaf with smaller keys.
2343 * Returns 0 if it found something.
2344 * Returns 1 if there are no smaller keys.
2345 * Returns < 0 on error.
2346 *
2347 * This may release the path, and so you may lose any locks held at the
2348 * time you call it.
2349 */
2350static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2351{
2352	struct btrfs_key key;
2353	struct btrfs_key orig_key;
2354	struct btrfs_disk_key found_key;
2355	int ret;
2356
2357	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2358	orig_key = key;
2359
2360	if (key.offset > 0) {
2361		key.offset--;
2362	} else if (key.type > 0) {
2363		key.type--;
2364		key.offset = (u64)-1;
2365	} else if (key.objectid > 0) {
2366		key.objectid--;
2367		key.type = (u8)-1;
2368		key.offset = (u64)-1;
2369	} else {
2370		return 1;
2371	}
2372
2373	btrfs_release_path(path);
2374	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2375	if (ret <= 0)
2376		return ret;
2377
2378	/*
2379	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2380	 * before releasing the path and calling btrfs_search_slot(), we now may
2381	 * be in a slot pointing to the same original key - this can happen if
2382	 * after we released the path, one of more items were moved from a
2383	 * sibling leaf into the front of the leaf we had due to an insertion
2384	 * (see push_leaf_right()).
2385	 * If we hit this case and our slot is > 0 and just decrement the slot
2386	 * so that the caller does not process the same key again, which may or
2387	 * may not break the caller, depending on its logic.
2388	 */
2389	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2390		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2391		ret = btrfs_comp_keys(&found_key, &orig_key);
2392		if (ret == 0) {
2393			if (path->slots[0] > 0) {
2394				path->slots[0]--;
2395				return 0;
2396			}
2397			/*
2398			 * At slot 0, same key as before, it means orig_key is
2399			 * the lowest, leftmost, key in the tree. We're done.
2400			 */
2401			return 1;
2402		}
2403	}
2404
2405	btrfs_item_key(path->nodes[0], &found_key, 0);
2406	ret = btrfs_comp_keys(&found_key, &key);
2407	/*
2408	 * We might have had an item with the previous key in the tree right
2409	 * before we released our path. And after we released our path, that
2410	 * item might have been pushed to the first slot (0) of the leaf we
2411	 * were holding due to a tree balance. Alternatively, an item with the
2412	 * previous key can exist as the only element of a leaf (big fat item).
2413	 * Therefore account for these 2 cases, so that our callers (like
2414	 * btrfs_previous_item) don't miss an existing item with a key matching
2415	 * the previous key we computed above.
2416	 */
2417	if (ret <= 0)
2418		return 0;
2419	return 1;
2420}
2421
2422/*
2423 * helper to use instead of search slot if no exact match is needed but
2424 * instead the next or previous item should be returned.
2425 * When find_higher is true, the next higher item is returned, the next lower
2426 * otherwise.
2427 * When return_any and find_higher are both true, and no higher item is found,
2428 * return the next lower instead.
2429 * When return_any is true and find_higher is false, and no lower item is found,
2430 * return the next higher instead.
2431 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2432 * < 0 on error
2433 */
2434int btrfs_search_slot_for_read(struct btrfs_root *root,
2435			       const struct btrfs_key *key,
2436			       struct btrfs_path *p, int find_higher,
2437			       int return_any)
2438{
2439	int ret;
2440	struct extent_buffer *leaf;
2441
2442again:
2443	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2444	if (ret <= 0)
2445		return ret;
2446	/*
2447	 * a return value of 1 means the path is at the position where the
2448	 * item should be inserted. Normally this is the next bigger item,
2449	 * but in case the previous item is the last in a leaf, path points
2450	 * to the first free slot in the previous leaf, i.e. at an invalid
2451	 * item.
2452	 */
2453	leaf = p->nodes[0];
2454
2455	if (find_higher) {
2456		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2457			ret = btrfs_next_leaf(root, p);
2458			if (ret <= 0)
2459				return ret;
2460			if (!return_any)
2461				return 1;
2462			/*
2463			 * no higher item found, return the next
2464			 * lower instead
2465			 */
2466			return_any = 0;
2467			find_higher = 0;
2468			btrfs_release_path(p);
2469			goto again;
2470		}
2471	} else {
2472		if (p->slots[0] == 0) {
2473			ret = btrfs_prev_leaf(root, p);
2474			if (ret < 0)
2475				return ret;
2476			if (!ret) {
2477				leaf = p->nodes[0];
2478				if (p->slots[0] == btrfs_header_nritems(leaf))
2479					p->slots[0]--;
2480				return 0;
2481			}
2482			if (!return_any)
2483				return 1;
2484			/*
2485			 * no lower item found, return the next
2486			 * higher instead
2487			 */
2488			return_any = 0;
2489			find_higher = 1;
2490			btrfs_release_path(p);
2491			goto again;
2492		} else {
2493			--p->slots[0];
2494		}
2495	}
2496	return 0;
2497}
2498
2499/*
2500 * Execute search and call btrfs_previous_item to traverse backwards if the item
2501 * was not found.
2502 *
2503 * Return 0 if found, 1 if not found and < 0 if error.
2504 */
2505int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2506			   struct btrfs_path *path)
2507{
2508	int ret;
2509
2510	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2511	if (ret > 0)
2512		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2513
2514	if (ret == 0)
2515		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2516
2517	return ret;
2518}
2519
2520/*
2521 * Search for a valid slot for the given path.
2522 *
2523 * @root:	The root node of the tree.
2524 * @key:	Will contain a valid item if found.
2525 * @path:	The starting point to validate the slot.
2526 *
2527 * Return: 0  if the item is valid
2528 *         1  if not found
2529 *         <0 if error.
2530 */
2531int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2532			      struct btrfs_path *path)
2533{
2534	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2535		int ret;
 
 
2536
2537		ret = btrfs_next_leaf(root, path);
2538		if (ret)
2539			return ret;
 
 
 
 
 
 
 
 
 
 
 
2540	}
2541
2542	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2543	return 0;
2544}
2545
2546/*
2547 * adjust the pointers going up the tree, starting at level
2548 * making sure the right key of each node is points to 'key'.
2549 * This is used after shifting pointers to the left, so it stops
2550 * fixing up pointers when a given leaf/node is not in slot 0 of the
2551 * higher levels
2552 *
2553 */
2554static void fixup_low_keys(struct btrfs_trans_handle *trans,
2555			   struct btrfs_path *path,
2556			   struct btrfs_disk_key *key, int level)
2557{
2558	int i;
2559	struct extent_buffer *t;
2560	int ret;
2561
2562	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2563		int tslot = path->slots[i];
2564
2565		if (!path->nodes[i])
2566			break;
2567		t = path->nodes[i];
2568		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2569						    BTRFS_MOD_LOG_KEY_REPLACE);
2570		BUG_ON(ret < 0);
2571		btrfs_set_node_key(t, key, tslot);
2572		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2573		if (tslot != 0)
2574			break;
2575	}
2576}
2577
2578/*
2579 * update item key.
2580 *
2581 * This function isn't completely safe. It's the caller's responsibility
2582 * that the new key won't break the order
2583 */
2584void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2585			     struct btrfs_path *path,
2586			     const struct btrfs_key *new_key)
2587{
2588	struct btrfs_fs_info *fs_info = trans->fs_info;
2589	struct btrfs_disk_key disk_key;
2590	struct extent_buffer *eb;
2591	int slot;
2592
2593	eb = path->nodes[0];
2594	slot = path->slots[0];
2595	if (slot > 0) {
2596		btrfs_item_key(eb, &disk_key, slot - 1);
2597		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2598			btrfs_print_leaf(eb);
2599			btrfs_crit(fs_info,
2600		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2601				   slot, btrfs_disk_key_objectid(&disk_key),
2602				   btrfs_disk_key_type(&disk_key),
2603				   btrfs_disk_key_offset(&disk_key),
2604				   new_key->objectid, new_key->type,
2605				   new_key->offset);
 
2606			BUG();
2607		}
2608	}
2609	if (slot < btrfs_header_nritems(eb) - 1) {
2610		btrfs_item_key(eb, &disk_key, slot + 1);
2611		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2612			btrfs_print_leaf(eb);
2613			btrfs_crit(fs_info,
2614		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2615				   slot, btrfs_disk_key_objectid(&disk_key),
2616				   btrfs_disk_key_type(&disk_key),
2617				   btrfs_disk_key_offset(&disk_key),
2618				   new_key->objectid, new_key->type,
2619				   new_key->offset);
 
2620			BUG();
2621		}
2622	}
2623
2624	btrfs_cpu_key_to_disk(&disk_key, new_key);
2625	btrfs_set_item_key(eb, &disk_key, slot);
2626	btrfs_mark_buffer_dirty(trans, eb);
2627	if (slot == 0)
2628		fixup_low_keys(trans, path, &disk_key, 1);
2629}
2630
2631/*
2632 * Check key order of two sibling extent buffers.
2633 *
2634 * Return true if something is wrong.
2635 * Return false if everything is fine.
2636 *
2637 * Tree-checker only works inside one tree block, thus the following
2638 * corruption can not be detected by tree-checker:
2639 *
2640 * Leaf @left			| Leaf @right
2641 * --------------------------------------------------------------
2642 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2643 *
2644 * Key f6 in leaf @left itself is valid, but not valid when the next
2645 * key in leaf @right is 7.
2646 * This can only be checked at tree block merge time.
2647 * And since tree checker has ensured all key order in each tree block
2648 * is correct, we only need to bother the last key of @left and the first
2649 * key of @right.
2650 */
2651static bool check_sibling_keys(struct extent_buffer *left,
2652			       struct extent_buffer *right)
2653{
2654	struct btrfs_key left_last;
2655	struct btrfs_key right_first;
2656	int level = btrfs_header_level(left);
2657	int nr_left = btrfs_header_nritems(left);
2658	int nr_right = btrfs_header_nritems(right);
2659
2660	/* No key to check in one of the tree blocks */
2661	if (!nr_left || !nr_right)
2662		return false;
2663
2664	if (level) {
2665		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2666		btrfs_node_key_to_cpu(right, &right_first, 0);
2667	} else {
2668		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2669		btrfs_item_key_to_cpu(right, &right_first, 0);
2670	}
2671
2672	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2673		btrfs_crit(left->fs_info, "left extent buffer:");
2674		btrfs_print_tree(left, false);
2675		btrfs_crit(left->fs_info, "right extent buffer:");
2676		btrfs_print_tree(right, false);
2677		btrfs_crit(left->fs_info,
2678"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2679			   left_last.objectid, left_last.type,
2680			   left_last.offset, right_first.objectid,
2681			   right_first.type, right_first.offset);
2682		return true;
2683	}
2684	return false;
2685}
2686
2687/*
2688 * try to push data from one node into the next node left in the
2689 * tree.
2690 *
2691 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2692 * error, and > 0 if there was no room in the left hand block.
2693 */
2694static int push_node_left(struct btrfs_trans_handle *trans,
2695			  struct extent_buffer *dst,
2696			  struct extent_buffer *src, int empty)
2697{
2698	struct btrfs_fs_info *fs_info = trans->fs_info;
2699	int push_items = 0;
2700	int src_nritems;
2701	int dst_nritems;
2702	int ret = 0;
2703
2704	src_nritems = btrfs_header_nritems(src);
2705	dst_nritems = btrfs_header_nritems(dst);
2706	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2707	WARN_ON(btrfs_header_generation(src) != trans->transid);
2708	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2709
2710	if (!empty && src_nritems <= 8)
2711		return 1;
2712
2713	if (push_items <= 0)
2714		return 1;
2715
2716	if (empty) {
2717		push_items = min(src_nritems, push_items);
2718		if (push_items < src_nritems) {
2719			/* leave at least 8 pointers in the node if
2720			 * we aren't going to empty it
2721			 */
2722			if (src_nritems - push_items < 8) {
2723				if (push_items <= 8)
2724					return 1;
2725				push_items -= 8;
2726			}
2727		}
2728	} else
2729		push_items = min(src_nritems - 8, push_items);
2730
2731	/* dst is the left eb, src is the middle eb */
2732	if (check_sibling_keys(dst, src)) {
2733		ret = -EUCLEAN;
2734		btrfs_abort_transaction(trans, ret);
2735		return ret;
2736	}
2737	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2738	if (ret) {
2739		btrfs_abort_transaction(trans, ret);
2740		return ret;
2741	}
2742	copy_extent_buffer(dst, src,
2743			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2744			   btrfs_node_key_ptr_offset(src, 0),
2745			   push_items * sizeof(struct btrfs_key_ptr));
2746
2747	if (push_items < src_nritems) {
2748		/*
2749		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2750		 * don't need to do an explicit tree mod log operation for it.
2751		 */
2752		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2753				      btrfs_node_key_ptr_offset(src, push_items),
2754				      (src_nritems - push_items) *
2755				      sizeof(struct btrfs_key_ptr));
2756	}
2757	btrfs_set_header_nritems(src, src_nritems - push_items);
2758	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2759	btrfs_mark_buffer_dirty(trans, src);
2760	btrfs_mark_buffer_dirty(trans, dst);
2761
2762	return ret;
2763}
2764
2765/*
2766 * try to push data from one node into the next node right in the
2767 * tree.
2768 *
2769 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2770 * error, and > 0 if there was no room in the right hand block.
2771 *
2772 * this will  only push up to 1/2 the contents of the left node over
2773 */
2774static int balance_node_right(struct btrfs_trans_handle *trans,
2775			      struct extent_buffer *dst,
2776			      struct extent_buffer *src)
2777{
2778	struct btrfs_fs_info *fs_info = trans->fs_info;
2779	int push_items = 0;
2780	int max_push;
2781	int src_nritems;
2782	int dst_nritems;
2783	int ret = 0;
2784
2785	WARN_ON(btrfs_header_generation(src) != trans->transid);
2786	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2787
2788	src_nritems = btrfs_header_nritems(src);
2789	dst_nritems = btrfs_header_nritems(dst);
2790	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2791	if (push_items <= 0)
2792		return 1;
2793
2794	if (src_nritems < 4)
2795		return 1;
2796
2797	max_push = src_nritems / 2 + 1;
2798	/* don't try to empty the node */
2799	if (max_push >= src_nritems)
2800		return 1;
2801
2802	if (max_push < push_items)
2803		push_items = max_push;
2804
2805	/* dst is the right eb, src is the middle eb */
2806	if (check_sibling_keys(src, dst)) {
2807		ret = -EUCLEAN;
2808		btrfs_abort_transaction(trans, ret);
2809		return ret;
2810	}
2811
2812	/*
2813	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2814	 * need to do an explicit tree mod log operation for it.
2815	 */
2816	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2817				      btrfs_node_key_ptr_offset(dst, 0),
2818				      (dst_nritems) *
2819				      sizeof(struct btrfs_key_ptr));
2820
2821	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2822					 push_items);
2823	if (ret) {
2824		btrfs_abort_transaction(trans, ret);
2825		return ret;
2826	}
2827	copy_extent_buffer(dst, src,
2828			   btrfs_node_key_ptr_offset(dst, 0),
2829			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2830			   push_items * sizeof(struct btrfs_key_ptr));
2831
2832	btrfs_set_header_nritems(src, src_nritems - push_items);
2833	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2834
2835	btrfs_mark_buffer_dirty(trans, src);
2836	btrfs_mark_buffer_dirty(trans, dst);
2837
2838	return ret;
2839}
2840
2841/*
2842 * helper function to insert a new root level in the tree.
2843 * A new node is allocated, and a single item is inserted to
2844 * point to the existing root
2845 *
2846 * returns zero on success or < 0 on failure.
2847 */
2848static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2849			   struct btrfs_root *root,
2850			   struct btrfs_path *path, int level)
2851{
 
2852	u64 lower_gen;
2853	struct extent_buffer *lower;
2854	struct extent_buffer *c;
2855	struct extent_buffer *old;
2856	struct btrfs_disk_key lower_key;
2857	int ret;
2858
2859	BUG_ON(path->nodes[level]);
2860	BUG_ON(path->nodes[level-1] != root->node);
2861
2862	lower = path->nodes[level-1];
2863	if (level == 1)
2864		btrfs_item_key(lower, &lower_key, 0);
2865	else
2866		btrfs_node_key(lower, &lower_key, 0);
2867
2868	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2869				   &lower_key, level, root->node->start, 0,
2870				   0, BTRFS_NESTING_NEW_ROOT);
2871	if (IS_ERR(c))
2872		return PTR_ERR(c);
2873
2874	root_add_used_bytes(root);
2875
2876	btrfs_set_header_nritems(c, 1);
2877	btrfs_set_node_key(c, &lower_key, 0);
2878	btrfs_set_node_blockptr(c, 0, lower->start);
2879	lower_gen = btrfs_header_generation(lower);
2880	WARN_ON(lower_gen != trans->transid);
2881
2882	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2883
2884	btrfs_mark_buffer_dirty(trans, c);
2885
2886	old = root->node;
2887	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2888	if (ret < 0) {
2889		btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2890		btrfs_tree_unlock(c);
2891		free_extent_buffer(c);
2892		return ret;
2893	}
2894	rcu_assign_pointer(root->node, c);
2895
2896	/* the super has an extra ref to root->node */
2897	free_extent_buffer(old);
2898
2899	add_root_to_dirty_list(root);
2900	atomic_inc(&c->refs);
2901	path->nodes[level] = c;
2902	path->locks[level] = BTRFS_WRITE_LOCK;
2903	path->slots[level] = 0;
2904	return 0;
2905}
2906
2907/*
2908 * worker function to insert a single pointer in a node.
2909 * the node should have enough room for the pointer already
2910 *
2911 * slot and level indicate where you want the key to go, and
2912 * blocknr is the block the key points to.
2913 */
2914static int insert_ptr(struct btrfs_trans_handle *trans,
2915		      struct btrfs_path *path,
2916		      struct btrfs_disk_key *key, u64 bytenr,
2917		      int slot, int level)
2918{
2919	struct extent_buffer *lower;
2920	int nritems;
2921	int ret;
2922
2923	BUG_ON(!path->nodes[level]);
2924	btrfs_assert_tree_write_locked(path->nodes[level]);
2925	lower = path->nodes[level];
2926	nritems = btrfs_header_nritems(lower);
2927	BUG_ON(slot > nritems);
2928	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2929	if (slot != nritems) {
2930		if (level) {
2931			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2932					slot, nritems - slot);
2933			if (ret < 0) {
2934				btrfs_abort_transaction(trans, ret);
2935				return ret;
2936			}
2937		}
2938		memmove_extent_buffer(lower,
2939			      btrfs_node_key_ptr_offset(lower, slot + 1),
2940			      btrfs_node_key_ptr_offset(lower, slot),
2941			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2942	}
2943	if (level) {
2944		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2945						    BTRFS_MOD_LOG_KEY_ADD);
2946		if (ret < 0) {
2947			btrfs_abort_transaction(trans, ret);
2948			return ret;
2949		}
2950	}
2951	btrfs_set_node_key(lower, key, slot);
2952	btrfs_set_node_blockptr(lower, slot, bytenr);
2953	WARN_ON(trans->transid == 0);
2954	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2955	btrfs_set_header_nritems(lower, nritems + 1);
2956	btrfs_mark_buffer_dirty(trans, lower);
2957
2958	return 0;
2959}
2960
2961/*
2962 * split the node at the specified level in path in two.
2963 * The path is corrected to point to the appropriate node after the split
2964 *
2965 * Before splitting this tries to make some room in the node by pushing
2966 * left and right, if either one works, it returns right away.
2967 *
2968 * returns 0 on success and < 0 on failure
2969 */
2970static noinline int split_node(struct btrfs_trans_handle *trans,
2971			       struct btrfs_root *root,
2972			       struct btrfs_path *path, int level)
2973{
2974	struct btrfs_fs_info *fs_info = root->fs_info;
2975	struct extent_buffer *c;
2976	struct extent_buffer *split;
2977	struct btrfs_disk_key disk_key;
2978	int mid;
2979	int ret;
2980	u32 c_nritems;
2981
2982	c = path->nodes[level];
2983	WARN_ON(btrfs_header_generation(c) != trans->transid);
2984	if (c == root->node) {
2985		/*
2986		 * trying to split the root, lets make a new one
2987		 *
2988		 * tree mod log: We don't log_removal old root in
2989		 * insert_new_root, because that root buffer will be kept as a
2990		 * normal node. We are going to log removal of half of the
2991		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2992		 * holding a tree lock on the buffer, which is why we cannot
2993		 * race with other tree_mod_log users.
2994		 */
2995		ret = insert_new_root(trans, root, path, level + 1);
2996		if (ret)
2997			return ret;
2998	} else {
2999		ret = push_nodes_for_insert(trans, root, path, level);
3000		c = path->nodes[level];
3001		if (!ret && btrfs_header_nritems(c) <
3002		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3003			return 0;
3004		if (ret < 0)
3005			return ret;
3006	}
3007
3008	c_nritems = btrfs_header_nritems(c);
3009	mid = (c_nritems + 1) / 2;
3010	btrfs_node_key(c, &disk_key, mid);
3011
3012	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3013				       &disk_key, level, c->start, 0,
3014				       0, BTRFS_NESTING_SPLIT);
3015	if (IS_ERR(split))
3016		return PTR_ERR(split);
3017
3018	root_add_used_bytes(root);
3019	ASSERT(btrfs_header_level(c) == level);
3020
3021	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3022	if (ret) {
3023		btrfs_tree_unlock(split);
3024		free_extent_buffer(split);
3025		btrfs_abort_transaction(trans, ret);
3026		return ret;
3027	}
3028	copy_extent_buffer(split, c,
3029			   btrfs_node_key_ptr_offset(split, 0),
3030			   btrfs_node_key_ptr_offset(c, mid),
3031			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3032	btrfs_set_header_nritems(split, c_nritems - mid);
3033	btrfs_set_header_nritems(c, mid);
3034
3035	btrfs_mark_buffer_dirty(trans, c);
3036	btrfs_mark_buffer_dirty(trans, split);
3037
3038	ret = insert_ptr(trans, path, &disk_key, split->start,
3039			 path->slots[level + 1] + 1, level + 1);
3040	if (ret < 0) {
3041		btrfs_tree_unlock(split);
3042		free_extent_buffer(split);
3043		return ret;
3044	}
3045
3046	if (path->slots[level] >= mid) {
3047		path->slots[level] -= mid;
3048		btrfs_tree_unlock(c);
3049		free_extent_buffer(c);
3050		path->nodes[level] = split;
3051		path->slots[level + 1] += 1;
3052	} else {
3053		btrfs_tree_unlock(split);
3054		free_extent_buffer(split);
3055	}
3056	return 0;
3057}
3058
3059/*
3060 * how many bytes are required to store the items in a leaf.  start
3061 * and nr indicate which items in the leaf to check.  This totals up the
3062 * space used both by the item structs and the item data
3063 */
3064static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3065{
3066	int data_len;
3067	int nritems = btrfs_header_nritems(l);
3068	int end = min(nritems, start + nr) - 1;
3069
3070	if (!nr)
3071		return 0;
3072	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3073	data_len = data_len - btrfs_item_offset(l, end);
3074	data_len += sizeof(struct btrfs_item) * nr;
3075	WARN_ON(data_len < 0);
3076	return data_len;
3077}
3078
3079/*
3080 * The space between the end of the leaf items and
3081 * the start of the leaf data.  IOW, how much room
3082 * the leaf has left for both items and data
3083 */
3084int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3085{
3086	struct btrfs_fs_info *fs_info = leaf->fs_info;
3087	int nritems = btrfs_header_nritems(leaf);
3088	int ret;
3089
3090	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3091	if (ret < 0) {
3092		btrfs_crit(fs_info,
3093			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3094			   ret,
3095			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3096			   leaf_space_used(leaf, 0, nritems), nritems);
3097	}
3098	return ret;
3099}
3100
3101/*
3102 * min slot controls the lowest index we're willing to push to the
3103 * right.  We'll push up to and including min_slot, but no lower
3104 */
3105static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3106				      struct btrfs_path *path,
3107				      int data_size, int empty,
3108				      struct extent_buffer *right,
3109				      int free_space, u32 left_nritems,
3110				      u32 min_slot)
3111{
3112	struct btrfs_fs_info *fs_info = right->fs_info;
3113	struct extent_buffer *left = path->nodes[0];
3114	struct extent_buffer *upper = path->nodes[1];
3115	struct btrfs_map_token token;
3116	struct btrfs_disk_key disk_key;
3117	int slot;
3118	u32 i;
3119	int push_space = 0;
3120	int push_items = 0;
3121	u32 nr;
3122	u32 right_nritems;
3123	u32 data_end;
3124	u32 this_item_size;
3125
3126	if (empty)
3127		nr = 0;
3128	else
3129		nr = max_t(u32, 1, min_slot);
3130
3131	if (path->slots[0] >= left_nritems)
3132		push_space += data_size;
3133
3134	slot = path->slots[1];
3135	i = left_nritems - 1;
3136	while (i >= nr) {
3137		if (!empty && push_items > 0) {
3138			if (path->slots[0] > i)
3139				break;
3140			if (path->slots[0] == i) {
3141				int space = btrfs_leaf_free_space(left);
3142
3143				if (space + push_space * 2 > free_space)
3144					break;
3145			}
3146		}
3147
3148		if (path->slots[0] == i)
3149			push_space += data_size;
3150
3151		this_item_size = btrfs_item_size(left, i);
3152		if (this_item_size + sizeof(struct btrfs_item) +
3153		    push_space > free_space)
3154			break;
3155
3156		push_items++;
3157		push_space += this_item_size + sizeof(struct btrfs_item);
3158		if (i == 0)
3159			break;
3160		i--;
3161	}
3162
3163	if (push_items == 0)
3164		goto out_unlock;
3165
3166	WARN_ON(!empty && push_items == left_nritems);
3167
3168	/* push left to right */
3169	right_nritems = btrfs_header_nritems(right);
3170
3171	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3172	push_space -= leaf_data_end(left);
3173
3174	/* make room in the right data area */
3175	data_end = leaf_data_end(right);
3176	memmove_leaf_data(right, data_end - push_space, data_end,
3177			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3178
3179	/* copy from the left data area */
3180	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3181		       leaf_data_end(left), push_space);
3182
3183	memmove_leaf_items(right, push_items, 0, right_nritems);
3184
3185	/* copy the items from left to right */
3186	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3187
3188	/* update the item pointers */
3189	btrfs_init_map_token(&token, right);
3190	right_nritems += push_items;
3191	btrfs_set_header_nritems(right, right_nritems);
3192	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3193	for (i = 0; i < right_nritems; i++) {
3194		push_space -= btrfs_token_item_size(&token, i);
3195		btrfs_set_token_item_offset(&token, i, push_space);
3196	}
3197
3198	left_nritems -= push_items;
3199	btrfs_set_header_nritems(left, left_nritems);
3200
3201	if (left_nritems)
3202		btrfs_mark_buffer_dirty(trans, left);
3203	else
3204		btrfs_clear_buffer_dirty(trans, left);
3205
3206	btrfs_mark_buffer_dirty(trans, right);
3207
3208	btrfs_item_key(right, &disk_key, 0);
3209	btrfs_set_node_key(upper, &disk_key, slot + 1);
3210	btrfs_mark_buffer_dirty(trans, upper);
3211
3212	/* then fixup the leaf pointer in the path */
3213	if (path->slots[0] >= left_nritems) {
3214		path->slots[0] -= left_nritems;
3215		if (btrfs_header_nritems(path->nodes[0]) == 0)
3216			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3217		btrfs_tree_unlock(path->nodes[0]);
3218		free_extent_buffer(path->nodes[0]);
3219		path->nodes[0] = right;
3220		path->slots[1] += 1;
3221	} else {
3222		btrfs_tree_unlock(right);
3223		free_extent_buffer(right);
3224	}
3225	return 0;
3226
3227out_unlock:
3228	btrfs_tree_unlock(right);
3229	free_extent_buffer(right);
3230	return 1;
3231}
3232
3233/*
3234 * push some data in the path leaf to the right, trying to free up at
3235 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3236 *
3237 * returns 1 if the push failed because the other node didn't have enough
3238 * room, 0 if everything worked out and < 0 if there were major errors.
3239 *
3240 * this will push starting from min_slot to the end of the leaf.  It won't
3241 * push any slot lower than min_slot
3242 */
3243static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3244			   *root, struct btrfs_path *path,
3245			   int min_data_size, int data_size,
3246			   int empty, u32 min_slot)
3247{
3248	struct extent_buffer *left = path->nodes[0];
3249	struct extent_buffer *right;
3250	struct extent_buffer *upper;
3251	int slot;
3252	int free_space;
3253	u32 left_nritems;
3254	int ret;
3255
3256	if (!path->nodes[1])
3257		return 1;
3258
3259	slot = path->slots[1];
3260	upper = path->nodes[1];
3261	if (slot >= btrfs_header_nritems(upper) - 1)
3262		return 1;
3263
3264	btrfs_assert_tree_write_locked(path->nodes[1]);
3265
3266	right = btrfs_read_node_slot(upper, slot + 1);
 
 
 
 
3267	if (IS_ERR(right))
3268		return PTR_ERR(right);
3269
3270	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3271
3272	free_space = btrfs_leaf_free_space(right);
3273	if (free_space < data_size)
3274		goto out_unlock;
3275
3276	ret = btrfs_cow_block(trans, root, right, upper,
3277			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3278	if (ret)
3279		goto out_unlock;
3280
3281	left_nritems = btrfs_header_nritems(left);
3282	if (left_nritems == 0)
3283		goto out_unlock;
3284
3285	if (check_sibling_keys(left, right)) {
3286		ret = -EUCLEAN;
3287		btrfs_abort_transaction(trans, ret);
3288		btrfs_tree_unlock(right);
3289		free_extent_buffer(right);
3290		return ret;
3291	}
3292	if (path->slots[0] == left_nritems && !empty) {
3293		/* Key greater than all keys in the leaf, right neighbor has
3294		 * enough room for it and we're not emptying our leaf to delete
3295		 * it, therefore use right neighbor to insert the new item and
3296		 * no need to touch/dirty our left leaf. */
3297		btrfs_tree_unlock(left);
3298		free_extent_buffer(left);
3299		path->nodes[0] = right;
3300		path->slots[0] = 0;
3301		path->slots[1]++;
3302		return 0;
3303	}
3304
3305	return __push_leaf_right(trans, path, min_data_size, empty, right,
3306				 free_space, left_nritems, min_slot);
3307out_unlock:
3308	btrfs_tree_unlock(right);
3309	free_extent_buffer(right);
3310	return 1;
3311}
3312
3313/*
3314 * push some data in the path leaf to the left, trying to free up at
3315 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3316 *
3317 * max_slot can put a limit on how far into the leaf we'll push items.  The
3318 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3319 * items
3320 */
3321static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3322				     struct btrfs_path *path, int data_size,
3323				     int empty, struct extent_buffer *left,
3324				     int free_space, u32 right_nritems,
3325				     u32 max_slot)
3326{
3327	struct btrfs_fs_info *fs_info = left->fs_info;
3328	struct btrfs_disk_key disk_key;
3329	struct extent_buffer *right = path->nodes[0];
3330	int i;
3331	int push_space = 0;
3332	int push_items = 0;
3333	u32 old_left_nritems;
3334	u32 nr;
3335	int ret = 0;
3336	u32 this_item_size;
3337	u32 old_left_item_size;
3338	struct btrfs_map_token token;
3339
3340	if (empty)
3341		nr = min(right_nritems, max_slot);
3342	else
3343		nr = min(right_nritems - 1, max_slot);
3344
3345	for (i = 0; i < nr; i++) {
3346		if (!empty && push_items > 0) {
3347			if (path->slots[0] < i)
3348				break;
3349			if (path->slots[0] == i) {
3350				int space = btrfs_leaf_free_space(right);
3351
3352				if (space + push_space * 2 > free_space)
3353					break;
3354			}
3355		}
3356
3357		if (path->slots[0] == i)
3358			push_space += data_size;
3359
3360		this_item_size = btrfs_item_size(right, i);
3361		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3362		    free_space)
3363			break;
3364
3365		push_items++;
3366		push_space += this_item_size + sizeof(struct btrfs_item);
3367	}
3368
3369	if (push_items == 0) {
3370		ret = 1;
3371		goto out;
3372	}
3373	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3374
3375	/* push data from right to left */
3376	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3377
3378	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3379		     btrfs_item_offset(right, push_items - 1);
3380
3381	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3382		       btrfs_item_offset(right, push_items - 1), push_space);
3383	old_left_nritems = btrfs_header_nritems(left);
3384	BUG_ON(old_left_nritems <= 0);
3385
3386	btrfs_init_map_token(&token, left);
3387	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3388	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3389		u32 ioff;
3390
3391		ioff = btrfs_token_item_offset(&token, i);
3392		btrfs_set_token_item_offset(&token, i,
3393		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3394	}
3395	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3396
3397	/* fixup right node */
3398	if (push_items > right_nritems)
3399		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3400		       right_nritems);
3401
3402	if (push_items < right_nritems) {
3403		push_space = btrfs_item_offset(right, push_items - 1) -
3404						  leaf_data_end(right);
3405		memmove_leaf_data(right,
3406				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3407				  leaf_data_end(right), push_space);
3408
3409		memmove_leaf_items(right, 0, push_items,
3410				   btrfs_header_nritems(right) - push_items);
3411	}
3412
3413	btrfs_init_map_token(&token, right);
3414	right_nritems -= push_items;
3415	btrfs_set_header_nritems(right, right_nritems);
3416	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3417	for (i = 0; i < right_nritems; i++) {
3418		push_space = push_space - btrfs_token_item_size(&token, i);
3419		btrfs_set_token_item_offset(&token, i, push_space);
3420	}
3421
3422	btrfs_mark_buffer_dirty(trans, left);
3423	if (right_nritems)
3424		btrfs_mark_buffer_dirty(trans, right);
3425	else
3426		btrfs_clear_buffer_dirty(trans, right);
3427
3428	btrfs_item_key(right, &disk_key, 0);
3429	fixup_low_keys(trans, path, &disk_key, 1);
3430
3431	/* then fixup the leaf pointer in the path */
3432	if (path->slots[0] < push_items) {
3433		path->slots[0] += old_left_nritems;
3434		btrfs_tree_unlock(path->nodes[0]);
3435		free_extent_buffer(path->nodes[0]);
3436		path->nodes[0] = left;
3437		path->slots[1] -= 1;
3438	} else {
3439		btrfs_tree_unlock(left);
3440		free_extent_buffer(left);
3441		path->slots[0] -= push_items;
3442	}
3443	BUG_ON(path->slots[0] < 0);
3444	return ret;
3445out:
3446	btrfs_tree_unlock(left);
3447	free_extent_buffer(left);
3448	return ret;
3449}
3450
3451/*
3452 * push some data in the path leaf to the left, trying to free up at
3453 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3454 *
3455 * max_slot can put a limit on how far into the leaf we'll push items.  The
3456 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3457 * items
3458 */
3459static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3460			  *root, struct btrfs_path *path, int min_data_size,
3461			  int data_size, int empty, u32 max_slot)
3462{
3463	struct extent_buffer *right = path->nodes[0];
3464	struct extent_buffer *left;
3465	int slot;
3466	int free_space;
3467	u32 right_nritems;
3468	int ret = 0;
3469
3470	slot = path->slots[1];
3471	if (slot == 0)
3472		return 1;
3473	if (!path->nodes[1])
3474		return 1;
3475
3476	right_nritems = btrfs_header_nritems(right);
3477	if (right_nritems == 0)
3478		return 1;
3479
3480	btrfs_assert_tree_write_locked(path->nodes[1]);
3481
3482	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
 
 
 
 
3483	if (IS_ERR(left))
3484		return PTR_ERR(left);
3485
3486	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3487
3488	free_space = btrfs_leaf_free_space(left);
3489	if (free_space < data_size) {
3490		ret = 1;
3491		goto out;
3492	}
3493
3494	ret = btrfs_cow_block(trans, root, left,
3495			      path->nodes[1], slot - 1, &left,
3496			      BTRFS_NESTING_LEFT_COW);
3497	if (ret) {
3498		/* we hit -ENOSPC, but it isn't fatal here */
3499		if (ret == -ENOSPC)
3500			ret = 1;
3501		goto out;
3502	}
3503
3504	if (check_sibling_keys(left, right)) {
3505		ret = -EUCLEAN;
3506		btrfs_abort_transaction(trans, ret);
3507		goto out;
3508	}
3509	return __push_leaf_left(trans, path, min_data_size, empty, left,
3510				free_space, right_nritems, max_slot);
 
3511out:
3512	btrfs_tree_unlock(left);
3513	free_extent_buffer(left);
3514	return ret;
3515}
3516
3517/*
3518 * split the path's leaf in two, making sure there is at least data_size
3519 * available for the resulting leaf level of the path.
3520 */
3521static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3522				   struct btrfs_path *path,
3523				   struct extent_buffer *l,
3524				   struct extent_buffer *right,
3525				   int slot, int mid, int nritems)
3526{
3527	struct btrfs_fs_info *fs_info = trans->fs_info;
3528	int data_copy_size;
3529	int rt_data_off;
3530	int i;
3531	int ret;
3532	struct btrfs_disk_key disk_key;
3533	struct btrfs_map_token token;
3534
3535	nritems = nritems - mid;
3536	btrfs_set_header_nritems(right, nritems);
3537	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3538
3539	copy_leaf_items(right, l, 0, mid, nritems);
3540
3541	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3542		       leaf_data_end(l), data_copy_size);
3543
3544	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3545
3546	btrfs_init_map_token(&token, right);
3547	for (i = 0; i < nritems; i++) {
3548		u32 ioff;
3549
3550		ioff = btrfs_token_item_offset(&token, i);
3551		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3552	}
3553
3554	btrfs_set_header_nritems(l, mid);
3555	btrfs_item_key(right, &disk_key, 0);
3556	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3557	if (ret < 0)
3558		return ret;
3559
3560	btrfs_mark_buffer_dirty(trans, right);
3561	btrfs_mark_buffer_dirty(trans, l);
3562	BUG_ON(path->slots[0] != slot);
3563
3564	if (mid <= slot) {
3565		btrfs_tree_unlock(path->nodes[0]);
3566		free_extent_buffer(path->nodes[0]);
3567		path->nodes[0] = right;
3568		path->slots[0] -= mid;
3569		path->slots[1] += 1;
3570	} else {
3571		btrfs_tree_unlock(right);
3572		free_extent_buffer(right);
3573	}
3574
3575	BUG_ON(path->slots[0] < 0);
3576
3577	return 0;
3578}
3579
3580/*
3581 * double splits happen when we need to insert a big item in the middle
3582 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3583 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3584 *          A                 B                 C
3585 *
3586 * We avoid this by trying to push the items on either side of our target
3587 * into the adjacent leaves.  If all goes well we can avoid the double split
3588 * completely.
3589 */
3590static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3591					  struct btrfs_root *root,
3592					  struct btrfs_path *path,
3593					  int data_size)
3594{
3595	int ret;
3596	int progress = 0;
3597	int slot;
3598	u32 nritems;
3599	int space_needed = data_size;
3600
3601	slot = path->slots[0];
3602	if (slot < btrfs_header_nritems(path->nodes[0]))
3603		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3604
3605	/*
3606	 * try to push all the items after our slot into the
3607	 * right leaf
3608	 */
3609	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3610	if (ret < 0)
3611		return ret;
3612
3613	if (ret == 0)
3614		progress++;
3615
3616	nritems = btrfs_header_nritems(path->nodes[0]);
3617	/*
3618	 * our goal is to get our slot at the start or end of a leaf.  If
3619	 * we've done so we're done
3620	 */
3621	if (path->slots[0] == 0 || path->slots[0] == nritems)
3622		return 0;
3623
3624	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3625		return 0;
3626
3627	/* try to push all the items before our slot into the next leaf */
3628	slot = path->slots[0];
3629	space_needed = data_size;
3630	if (slot > 0)
3631		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3632	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3633	if (ret < 0)
3634		return ret;
3635
3636	if (ret == 0)
3637		progress++;
3638
3639	if (progress)
3640		return 0;
3641	return 1;
3642}
3643
3644/*
3645 * split the path's leaf in two, making sure there is at least data_size
3646 * available for the resulting leaf level of the path.
3647 *
3648 * returns 0 if all went well and < 0 on failure.
3649 */
3650static noinline int split_leaf(struct btrfs_trans_handle *trans,
3651			       struct btrfs_root *root,
3652			       const struct btrfs_key *ins_key,
3653			       struct btrfs_path *path, int data_size,
3654			       int extend)
3655{
3656	struct btrfs_disk_key disk_key;
3657	struct extent_buffer *l;
3658	u32 nritems;
3659	int mid;
3660	int slot;
3661	struct extent_buffer *right;
3662	struct btrfs_fs_info *fs_info = root->fs_info;
3663	int ret = 0;
3664	int wret;
3665	int split;
3666	int num_doubles = 0;
3667	int tried_avoid_double = 0;
3668
3669	l = path->nodes[0];
3670	slot = path->slots[0];
3671	if (extend && data_size + btrfs_item_size(l, slot) +
3672	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3673		return -EOVERFLOW;
3674
3675	/* first try to make some room by pushing left and right */
3676	if (data_size && path->nodes[1]) {
3677		int space_needed = data_size;
3678
3679		if (slot < btrfs_header_nritems(l))
3680			space_needed -= btrfs_leaf_free_space(l);
3681
3682		wret = push_leaf_right(trans, root, path, space_needed,
3683				       space_needed, 0, 0);
3684		if (wret < 0)
3685			return wret;
3686		if (wret) {
3687			space_needed = data_size;
3688			if (slot > 0)
3689				space_needed -= btrfs_leaf_free_space(l);
3690			wret = push_leaf_left(trans, root, path, space_needed,
3691					      space_needed, 0, (u32)-1);
3692			if (wret < 0)
3693				return wret;
3694		}
3695		l = path->nodes[0];
3696
3697		/* did the pushes work? */
3698		if (btrfs_leaf_free_space(l) >= data_size)
3699			return 0;
3700	}
3701
3702	if (!path->nodes[1]) {
3703		ret = insert_new_root(trans, root, path, 1);
3704		if (ret)
3705			return ret;
3706	}
3707again:
3708	split = 1;
3709	l = path->nodes[0];
3710	slot = path->slots[0];
3711	nritems = btrfs_header_nritems(l);
3712	mid = (nritems + 1) / 2;
3713
3714	if (mid <= slot) {
3715		if (nritems == 1 ||
3716		    leaf_space_used(l, mid, nritems - mid) + data_size >
3717			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3718			if (slot >= nritems) {
3719				split = 0;
3720			} else {
3721				mid = slot;
3722				if (mid != nritems &&
3723				    leaf_space_used(l, mid, nritems - mid) +
3724				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3725					if (data_size && !tried_avoid_double)
3726						goto push_for_double;
3727					split = 2;
3728				}
3729			}
3730		}
3731	} else {
3732		if (leaf_space_used(l, 0, mid) + data_size >
3733			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3734			if (!extend && data_size && slot == 0) {
3735				split = 0;
3736			} else if ((extend || !data_size) && slot == 0) {
3737				mid = 1;
3738			} else {
3739				mid = slot;
3740				if (mid != nritems &&
3741				    leaf_space_used(l, mid, nritems - mid) +
3742				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3743					if (data_size && !tried_avoid_double)
3744						goto push_for_double;
3745					split = 2;
3746				}
3747			}
3748		}
3749	}
3750
3751	if (split == 0)
3752		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3753	else
3754		btrfs_item_key(l, &disk_key, mid);
3755
3756	/*
3757	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3758	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3759	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3760	 * out.  In the future we could add a
3761	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3762	 * use BTRFS_NESTING_NEW_ROOT.
3763	 */
3764	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3765				       &disk_key, 0, l->start, 0, 0,
3766				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3767				       BTRFS_NESTING_SPLIT);
3768	if (IS_ERR(right))
3769		return PTR_ERR(right);
3770
3771	root_add_used_bytes(root);
3772
3773	if (split == 0) {
3774		if (mid <= slot) {
3775			btrfs_set_header_nritems(right, 0);
3776			ret = insert_ptr(trans, path, &disk_key,
3777					 right->start, path->slots[1] + 1, 1);
3778			if (ret < 0) {
3779				btrfs_tree_unlock(right);
3780				free_extent_buffer(right);
3781				return ret;
3782			}
3783			btrfs_tree_unlock(path->nodes[0]);
3784			free_extent_buffer(path->nodes[0]);
3785			path->nodes[0] = right;
3786			path->slots[0] = 0;
3787			path->slots[1] += 1;
3788		} else {
3789			btrfs_set_header_nritems(right, 0);
3790			ret = insert_ptr(trans, path, &disk_key,
3791					 right->start, path->slots[1], 1);
3792			if (ret < 0) {
3793				btrfs_tree_unlock(right);
3794				free_extent_buffer(right);
3795				return ret;
3796			}
3797			btrfs_tree_unlock(path->nodes[0]);
3798			free_extent_buffer(path->nodes[0]);
3799			path->nodes[0] = right;
3800			path->slots[0] = 0;
3801			if (path->slots[1] == 0)
3802				fixup_low_keys(trans, path, &disk_key, 1);
3803		}
3804		/*
3805		 * We create a new leaf 'right' for the required ins_len and
3806		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3807		 * the content of ins_len to 'right'.
3808		 */
3809		return ret;
3810	}
3811
3812	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3813	if (ret < 0) {
3814		btrfs_tree_unlock(right);
3815		free_extent_buffer(right);
3816		return ret;
3817	}
3818
3819	if (split == 2) {
3820		BUG_ON(num_doubles != 0);
3821		num_doubles++;
3822		goto again;
3823	}
3824
3825	return 0;
3826
3827push_for_double:
3828	push_for_double_split(trans, root, path, data_size);
3829	tried_avoid_double = 1;
3830	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3831		return 0;
3832	goto again;
3833}
3834
3835static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3836					 struct btrfs_root *root,
3837					 struct btrfs_path *path, int ins_len)
3838{
3839	struct btrfs_key key;
3840	struct extent_buffer *leaf;
3841	struct btrfs_file_extent_item *fi;
3842	u64 extent_len = 0;
3843	u32 item_size;
3844	int ret;
3845
3846	leaf = path->nodes[0];
3847	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3848
3849	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3850	       key.type != BTRFS_EXTENT_CSUM_KEY);
3851
3852	if (btrfs_leaf_free_space(leaf) >= ins_len)
3853		return 0;
3854
3855	item_size = btrfs_item_size(leaf, path->slots[0]);
3856	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3857		fi = btrfs_item_ptr(leaf, path->slots[0],
3858				    struct btrfs_file_extent_item);
3859		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3860	}
3861	btrfs_release_path(path);
3862
3863	path->keep_locks = 1;
3864	path->search_for_split = 1;
3865	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3866	path->search_for_split = 0;
3867	if (ret > 0)
3868		ret = -EAGAIN;
3869	if (ret < 0)
3870		goto err;
3871
3872	ret = -EAGAIN;
3873	leaf = path->nodes[0];
3874	/* if our item isn't there, return now */
3875	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3876		goto err;
3877
3878	/* the leaf has  changed, it now has room.  return now */
3879	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3880		goto err;
3881
3882	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3883		fi = btrfs_item_ptr(leaf, path->slots[0],
3884				    struct btrfs_file_extent_item);
3885		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3886			goto err;
3887	}
3888
3889	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3890	if (ret)
3891		goto err;
3892
3893	path->keep_locks = 0;
3894	btrfs_unlock_up_safe(path, 1);
3895	return 0;
3896err:
3897	path->keep_locks = 0;
3898	return ret;
3899}
3900
3901static noinline int split_item(struct btrfs_trans_handle *trans,
3902			       struct btrfs_path *path,
3903			       const struct btrfs_key *new_key,
3904			       unsigned long split_offset)
3905{
3906	struct extent_buffer *leaf;
3907	int orig_slot, slot;
3908	char *buf;
3909	u32 nritems;
3910	u32 item_size;
3911	u32 orig_offset;
3912	struct btrfs_disk_key disk_key;
3913
3914	leaf = path->nodes[0];
3915	/*
3916	 * Shouldn't happen because the caller must have previously called
3917	 * setup_leaf_for_split() to make room for the new item in the leaf.
3918	 */
3919	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3920		return -ENOSPC;
3921
3922	orig_slot = path->slots[0];
3923	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3924	item_size = btrfs_item_size(leaf, path->slots[0]);
3925
3926	buf = kmalloc(item_size, GFP_NOFS);
3927	if (!buf)
3928		return -ENOMEM;
3929
3930	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3931			    path->slots[0]), item_size);
3932
3933	slot = path->slots[0] + 1;
3934	nritems = btrfs_header_nritems(leaf);
3935	if (slot != nritems) {
3936		/* shift the items */
3937		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3938	}
3939
3940	btrfs_cpu_key_to_disk(&disk_key, new_key);
3941	btrfs_set_item_key(leaf, &disk_key, slot);
3942
3943	btrfs_set_item_offset(leaf, slot, orig_offset);
3944	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3945
3946	btrfs_set_item_offset(leaf, orig_slot,
3947				 orig_offset + item_size - split_offset);
3948	btrfs_set_item_size(leaf, orig_slot, split_offset);
3949
3950	btrfs_set_header_nritems(leaf, nritems + 1);
3951
3952	/* write the data for the start of the original item */
3953	write_extent_buffer(leaf, buf,
3954			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3955			    split_offset);
3956
3957	/* write the data for the new item */
3958	write_extent_buffer(leaf, buf + split_offset,
3959			    btrfs_item_ptr_offset(leaf, slot),
3960			    item_size - split_offset);
3961	btrfs_mark_buffer_dirty(trans, leaf);
3962
3963	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3964	kfree(buf);
3965	return 0;
3966}
3967
3968/*
3969 * This function splits a single item into two items,
3970 * giving 'new_key' to the new item and splitting the
3971 * old one at split_offset (from the start of the item).
3972 *
3973 * The path may be released by this operation.  After
3974 * the split, the path is pointing to the old item.  The
3975 * new item is going to be in the same node as the old one.
3976 *
3977 * Note, the item being split must be smaller enough to live alone on
3978 * a tree block with room for one extra struct btrfs_item
3979 *
3980 * This allows us to split the item in place, keeping a lock on the
3981 * leaf the entire time.
3982 */
3983int btrfs_split_item(struct btrfs_trans_handle *trans,
3984		     struct btrfs_root *root,
3985		     struct btrfs_path *path,
3986		     const struct btrfs_key *new_key,
3987		     unsigned long split_offset)
3988{
3989	int ret;
3990	ret = setup_leaf_for_split(trans, root, path,
3991				   sizeof(struct btrfs_item));
3992	if (ret)
3993		return ret;
3994
3995	ret = split_item(trans, path, new_key, split_offset);
3996	return ret;
3997}
3998
3999/*
4000 * make the item pointed to by the path smaller.  new_size indicates
4001 * how small to make it, and from_end tells us if we just chop bytes
4002 * off the end of the item or if we shift the item to chop bytes off
4003 * the front.
4004 */
4005void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4006			 struct btrfs_path *path, u32 new_size, int from_end)
4007{
4008	int slot;
4009	struct extent_buffer *leaf;
4010	u32 nritems;
4011	unsigned int data_end;
4012	unsigned int old_data_start;
4013	unsigned int old_size;
4014	unsigned int size_diff;
4015	int i;
4016	struct btrfs_map_token token;
4017
4018	leaf = path->nodes[0];
4019	slot = path->slots[0];
4020
4021	old_size = btrfs_item_size(leaf, slot);
4022	if (old_size == new_size)
4023		return;
4024
4025	nritems = btrfs_header_nritems(leaf);
4026	data_end = leaf_data_end(leaf);
4027
4028	old_data_start = btrfs_item_offset(leaf, slot);
4029
4030	size_diff = old_size - new_size;
4031
4032	BUG_ON(slot < 0);
4033	BUG_ON(slot >= nritems);
4034
4035	/*
4036	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4037	 */
4038	/* first correct the data pointers */
4039	btrfs_init_map_token(&token, leaf);
4040	for (i = slot; i < nritems; i++) {
4041		u32 ioff;
4042
4043		ioff = btrfs_token_item_offset(&token, i);
4044		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4045	}
4046
4047	/* shift the data */
4048	if (from_end) {
4049		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4050				  old_data_start + new_size - data_end);
4051	} else {
4052		struct btrfs_disk_key disk_key;
4053		u64 offset;
4054
4055		btrfs_item_key(leaf, &disk_key, slot);
4056
4057		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4058			unsigned long ptr;
4059			struct btrfs_file_extent_item *fi;
4060
4061			fi = btrfs_item_ptr(leaf, slot,
4062					    struct btrfs_file_extent_item);
4063			fi = (struct btrfs_file_extent_item *)(
4064			     (unsigned long)fi - size_diff);
4065
4066			if (btrfs_file_extent_type(leaf, fi) ==
4067			    BTRFS_FILE_EXTENT_INLINE) {
4068				ptr = btrfs_item_ptr_offset(leaf, slot);
4069				memmove_extent_buffer(leaf, ptr,
4070				      (unsigned long)fi,
4071				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4072			}
4073		}
4074
4075		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4076				  old_data_start - data_end);
4077
4078		offset = btrfs_disk_key_offset(&disk_key);
4079		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4080		btrfs_set_item_key(leaf, &disk_key, slot);
4081		if (slot == 0)
4082			fixup_low_keys(trans, path, &disk_key, 1);
4083	}
4084
4085	btrfs_set_item_size(leaf, slot, new_size);
4086	btrfs_mark_buffer_dirty(trans, leaf);
4087
4088	if (btrfs_leaf_free_space(leaf) < 0) {
4089		btrfs_print_leaf(leaf);
4090		BUG();
4091	}
4092}
4093
4094/*
4095 * make the item pointed to by the path bigger, data_size is the added size.
4096 */
4097void btrfs_extend_item(struct btrfs_trans_handle *trans,
4098		       struct btrfs_path *path, u32 data_size)
4099{
4100	int slot;
4101	struct extent_buffer *leaf;
4102	u32 nritems;
4103	unsigned int data_end;
4104	unsigned int old_data;
4105	unsigned int old_size;
4106	int i;
4107	struct btrfs_map_token token;
4108
4109	leaf = path->nodes[0];
4110
4111	nritems = btrfs_header_nritems(leaf);
4112	data_end = leaf_data_end(leaf);
4113
4114	if (btrfs_leaf_free_space(leaf) < data_size) {
4115		btrfs_print_leaf(leaf);
4116		BUG();
4117	}
4118	slot = path->slots[0];
4119	old_data = btrfs_item_data_end(leaf, slot);
4120
4121	BUG_ON(slot < 0);
4122	if (slot >= nritems) {
4123		btrfs_print_leaf(leaf);
4124		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4125			   slot, nritems);
4126		BUG();
4127	}
4128
4129	/*
4130	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4131	 */
4132	/* first correct the data pointers */
4133	btrfs_init_map_token(&token, leaf);
4134	for (i = slot; i < nritems; i++) {
4135		u32 ioff;
4136
4137		ioff = btrfs_token_item_offset(&token, i);
4138		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4139	}
4140
4141	/* shift the data */
4142	memmove_leaf_data(leaf, data_end - data_size, data_end,
4143			  old_data - data_end);
4144
4145	data_end = old_data;
4146	old_size = btrfs_item_size(leaf, slot);
4147	btrfs_set_item_size(leaf, slot, old_size + data_size);
4148	btrfs_mark_buffer_dirty(trans, leaf);
4149
4150	if (btrfs_leaf_free_space(leaf) < 0) {
4151		btrfs_print_leaf(leaf);
4152		BUG();
4153	}
4154}
4155
4156/*
4157 * Make space in the node before inserting one or more items.
4158 *
4159 * @trans:	transaction handle
4160 * @root:	root we are inserting items to
4161 * @path:	points to the leaf/slot where we are going to insert new items
4162 * @batch:      information about the batch of items to insert
4163 *
4164 * Main purpose is to save stack depth by doing the bulk of the work in a
4165 * function that doesn't call btrfs_search_slot
4166 */
4167static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4168				   struct btrfs_root *root, struct btrfs_path *path,
4169				   const struct btrfs_item_batch *batch)
4170{
4171	struct btrfs_fs_info *fs_info = root->fs_info;
4172	int i;
4173	u32 nritems;
4174	unsigned int data_end;
4175	struct btrfs_disk_key disk_key;
4176	struct extent_buffer *leaf;
4177	int slot;
4178	struct btrfs_map_token token;
4179	u32 total_size;
4180
4181	/*
4182	 * Before anything else, update keys in the parent and other ancestors
4183	 * if needed, then release the write locks on them, so that other tasks
4184	 * can use them while we modify the leaf.
4185	 */
4186	if (path->slots[0] == 0) {
4187		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4188		fixup_low_keys(trans, path, &disk_key, 1);
4189	}
4190	btrfs_unlock_up_safe(path, 1);
4191
4192	leaf = path->nodes[0];
4193	slot = path->slots[0];
4194
4195	nritems = btrfs_header_nritems(leaf);
4196	data_end = leaf_data_end(leaf);
4197	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4198
4199	if (btrfs_leaf_free_space(leaf) < total_size) {
4200		btrfs_print_leaf(leaf);
4201		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4202			   total_size, btrfs_leaf_free_space(leaf));
4203		BUG();
4204	}
4205
4206	btrfs_init_map_token(&token, leaf);
4207	if (slot != nritems) {
4208		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4209
4210		if (old_data < data_end) {
4211			btrfs_print_leaf(leaf);
4212			btrfs_crit(fs_info,
4213		"item at slot %d with data offset %u beyond data end of leaf %u",
4214				   slot, old_data, data_end);
4215			BUG();
4216		}
4217		/*
4218		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4219		 */
4220		/* first correct the data pointers */
4221		for (i = slot; i < nritems; i++) {
4222			u32 ioff;
4223
4224			ioff = btrfs_token_item_offset(&token, i);
4225			btrfs_set_token_item_offset(&token, i,
4226						       ioff - batch->total_data_size);
4227		}
4228		/* shift the items */
4229		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4230
4231		/* shift the data */
4232		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4233				  data_end, old_data - data_end);
4234		data_end = old_data;
4235	}
4236
4237	/* setup the item for the new data */
4238	for (i = 0; i < batch->nr; i++) {
4239		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4240		btrfs_set_item_key(leaf, &disk_key, slot + i);
4241		data_end -= batch->data_sizes[i];
4242		btrfs_set_token_item_offset(&token, slot + i, data_end);
4243		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4244	}
4245
4246	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4247	btrfs_mark_buffer_dirty(trans, leaf);
4248
4249	if (btrfs_leaf_free_space(leaf) < 0) {
4250		btrfs_print_leaf(leaf);
4251		BUG();
4252	}
4253}
4254
4255/*
4256 * Insert a new item into a leaf.
4257 *
4258 * @trans:     Transaction handle.
4259 * @root:      The root of the btree.
4260 * @path:      A path pointing to the target leaf and slot.
4261 * @key:       The key of the new item.
4262 * @data_size: The size of the data associated with the new key.
4263 */
4264void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4265				 struct btrfs_root *root,
4266				 struct btrfs_path *path,
4267				 const struct btrfs_key *key,
4268				 u32 data_size)
4269{
4270	struct btrfs_item_batch batch;
4271
4272	batch.keys = key;
4273	batch.data_sizes = &data_size;
4274	batch.total_data_size = data_size;
4275	batch.nr = 1;
4276
4277	setup_items_for_insert(trans, root, path, &batch);
4278}
4279
4280/*
4281 * Given a key and some data, insert items into the tree.
4282 * This does all the path init required, making room in the tree if needed.
4283 */
4284int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4285			    struct btrfs_root *root,
4286			    struct btrfs_path *path,
4287			    const struct btrfs_item_batch *batch)
4288{
4289	int ret = 0;
4290	int slot;
4291	u32 total_size;
4292
4293	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4294	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4295	if (ret == 0)
4296		return -EEXIST;
4297	if (ret < 0)
4298		return ret;
4299
4300	slot = path->slots[0];
4301	BUG_ON(slot < 0);
4302
4303	setup_items_for_insert(trans, root, path, batch);
4304	return 0;
4305}
4306
4307/*
4308 * Given a key and some data, insert an item into the tree.
4309 * This does all the path init required, making room in the tree if needed.
4310 */
4311int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4312		      const struct btrfs_key *cpu_key, void *data,
4313		      u32 data_size)
4314{
4315	int ret = 0;
4316	struct btrfs_path *path;
4317	struct extent_buffer *leaf;
4318	unsigned long ptr;
4319
4320	path = btrfs_alloc_path();
4321	if (!path)
4322		return -ENOMEM;
4323	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4324	if (!ret) {
4325		leaf = path->nodes[0];
4326		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4327		write_extent_buffer(leaf, data, ptr, data_size);
4328		btrfs_mark_buffer_dirty(trans, leaf);
4329	}
4330	btrfs_free_path(path);
4331	return ret;
4332}
4333
4334/*
4335 * This function duplicates an item, giving 'new_key' to the new item.
4336 * It guarantees both items live in the same tree leaf and the new item is
4337 * contiguous with the original item.
4338 *
4339 * This allows us to split a file extent in place, keeping a lock on the leaf
4340 * the entire time.
4341 */
4342int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4343			 struct btrfs_root *root,
4344			 struct btrfs_path *path,
4345			 const struct btrfs_key *new_key)
4346{
4347	struct extent_buffer *leaf;
4348	int ret;
4349	u32 item_size;
4350
4351	leaf = path->nodes[0];
4352	item_size = btrfs_item_size(leaf, path->slots[0]);
4353	ret = setup_leaf_for_split(trans, root, path,
4354				   item_size + sizeof(struct btrfs_item));
4355	if (ret)
4356		return ret;
4357
4358	path->slots[0]++;
4359	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4360	leaf = path->nodes[0];
4361	memcpy_extent_buffer(leaf,
4362			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4363			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4364			     item_size);
4365	return 0;
4366}
4367
4368/*
4369 * delete the pointer from a given node.
4370 *
4371 * the tree should have been previously balanced so the deletion does not
4372 * empty a node.
4373 *
4374 * This is exported for use inside btrfs-progs, don't un-export it.
4375 */
4376int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4377		  struct btrfs_path *path, int level, int slot)
4378{
4379	struct extent_buffer *parent = path->nodes[level];
4380	u32 nritems;
4381	int ret;
4382
4383	nritems = btrfs_header_nritems(parent);
4384	if (slot != nritems - 1) {
4385		if (level) {
4386			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4387					slot + 1, nritems - slot - 1);
4388			if (ret < 0) {
4389				btrfs_abort_transaction(trans, ret);
4390				return ret;
4391			}
4392		}
4393		memmove_extent_buffer(parent,
4394			      btrfs_node_key_ptr_offset(parent, slot),
4395			      btrfs_node_key_ptr_offset(parent, slot + 1),
4396			      sizeof(struct btrfs_key_ptr) *
4397			      (nritems - slot - 1));
4398	} else if (level) {
4399		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4400						    BTRFS_MOD_LOG_KEY_REMOVE);
4401		if (ret < 0) {
4402			btrfs_abort_transaction(trans, ret);
4403			return ret;
4404		}
4405	}
4406
4407	nritems--;
4408	btrfs_set_header_nritems(parent, nritems);
4409	if (nritems == 0 && parent == root->node) {
4410		BUG_ON(btrfs_header_level(root->node) != 1);
4411		/* just turn the root into a leaf and break */
4412		btrfs_set_header_level(root->node, 0);
4413	} else if (slot == 0) {
4414		struct btrfs_disk_key disk_key;
4415
4416		btrfs_node_key(parent, &disk_key, 0);
4417		fixup_low_keys(trans, path, &disk_key, level + 1);
4418	}
4419	btrfs_mark_buffer_dirty(trans, parent);
4420	return 0;
4421}
4422
4423/*
4424 * a helper function to delete the leaf pointed to by path->slots[1] and
4425 * path->nodes[1].
4426 *
4427 * This deletes the pointer in path->nodes[1] and frees the leaf
4428 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4429 *
4430 * The path must have already been setup for deleting the leaf, including
4431 * all the proper balancing.  path->nodes[1] must be locked.
4432 */
4433static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4434				   struct btrfs_root *root,
4435				   struct btrfs_path *path,
4436				   struct extent_buffer *leaf)
4437{
4438	int ret;
4439
4440	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4441	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4442	if (ret < 0)
4443		return ret;
4444
4445	/*
4446	 * btrfs_free_extent is expensive, we want to make sure we
4447	 * aren't holding any locks when we call it
4448	 */
4449	btrfs_unlock_up_safe(path, 0);
4450
4451	root_sub_used_bytes(root);
4452
4453	atomic_inc(&leaf->refs);
4454	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4455	free_extent_buffer_stale(leaf);
4456	return 0;
4457}
4458/*
4459 * delete the item at the leaf level in path.  If that empties
4460 * the leaf, remove it from the tree
4461 */
4462int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4463		    struct btrfs_path *path, int slot, int nr)
4464{
4465	struct btrfs_fs_info *fs_info = root->fs_info;
4466	struct extent_buffer *leaf;
4467	int ret = 0;
4468	int wret;
4469	u32 nritems;
4470
4471	leaf = path->nodes[0];
4472	nritems = btrfs_header_nritems(leaf);
4473
4474	if (slot + nr != nritems) {
4475		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4476		const int data_end = leaf_data_end(leaf);
4477		struct btrfs_map_token token;
4478		u32 dsize = 0;
4479		int i;
4480
4481		for (i = 0; i < nr; i++)
4482			dsize += btrfs_item_size(leaf, slot + i);
4483
4484		memmove_leaf_data(leaf, data_end + dsize, data_end,
4485				  last_off - data_end);
4486
4487		btrfs_init_map_token(&token, leaf);
4488		for (i = slot + nr; i < nritems; i++) {
4489			u32 ioff;
4490
4491			ioff = btrfs_token_item_offset(&token, i);
4492			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4493		}
4494
4495		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4496	}
4497	btrfs_set_header_nritems(leaf, nritems - nr);
4498	nritems -= nr;
4499
4500	/* delete the leaf if we've emptied it */
4501	if (nritems == 0) {
4502		if (leaf == root->node) {
4503			btrfs_set_header_level(leaf, 0);
4504		} else {
4505			btrfs_clear_buffer_dirty(trans, leaf);
4506			ret = btrfs_del_leaf(trans, root, path, leaf);
4507			if (ret < 0)
4508				return ret;
4509		}
4510	} else {
4511		int used = leaf_space_used(leaf, 0, nritems);
4512		if (slot == 0) {
4513			struct btrfs_disk_key disk_key;
4514
4515			btrfs_item_key(leaf, &disk_key, 0);
4516			fixup_low_keys(trans, path, &disk_key, 1);
4517		}
4518
4519		/*
4520		 * Try to delete the leaf if it is mostly empty. We do this by
4521		 * trying to move all its items into its left and right neighbours.
4522		 * If we can't move all the items, then we don't delete it - it's
4523		 * not ideal, but future insertions might fill the leaf with more
4524		 * items, or items from other leaves might be moved later into our
4525		 * leaf due to deletions on those leaves.
4526		 */
4527		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4528			u32 min_push_space;
4529
4530			/* push_leaf_left fixes the path.
4531			 * make sure the path still points to our leaf
4532			 * for possible call to btrfs_del_ptr below
4533			 */
4534			slot = path->slots[1];
4535			atomic_inc(&leaf->refs);
4536			/*
4537			 * We want to be able to at least push one item to the
4538			 * left neighbour leaf, and that's the first item.
4539			 */
4540			min_push_space = sizeof(struct btrfs_item) +
4541				btrfs_item_size(leaf, 0);
4542			wret = push_leaf_left(trans, root, path, 0,
4543					      min_push_space, 1, (u32)-1);
4544			if (wret < 0 && wret != -ENOSPC)
4545				ret = wret;
4546
4547			if (path->nodes[0] == leaf &&
4548			    btrfs_header_nritems(leaf)) {
4549				/*
4550				 * If we were not able to push all items from our
4551				 * leaf to its left neighbour, then attempt to
4552				 * either push all the remaining items to the
4553				 * right neighbour or none. There's no advantage
4554				 * in pushing only some items, instead of all, as
4555				 * it's pointless to end up with a leaf having
4556				 * too few items while the neighbours can be full
4557				 * or nearly full.
4558				 */
4559				nritems = btrfs_header_nritems(leaf);
4560				min_push_space = leaf_space_used(leaf, 0, nritems);
4561				wret = push_leaf_right(trans, root, path, 0,
4562						       min_push_space, 1, 0);
4563				if (wret < 0 && wret != -ENOSPC)
4564					ret = wret;
4565			}
4566
4567			if (btrfs_header_nritems(leaf) == 0) {
4568				path->slots[1] = slot;
4569				ret = btrfs_del_leaf(trans, root, path, leaf);
4570				if (ret < 0)
4571					return ret;
4572				free_extent_buffer(leaf);
4573				ret = 0;
4574			} else {
4575				/* if we're still in the path, make sure
4576				 * we're dirty.  Otherwise, one of the
4577				 * push_leaf functions must have already
4578				 * dirtied this buffer
4579				 */
4580				if (path->nodes[0] == leaf)
4581					btrfs_mark_buffer_dirty(trans, leaf);
4582				free_extent_buffer(leaf);
4583			}
4584		} else {
4585			btrfs_mark_buffer_dirty(trans, leaf);
4586		}
4587	}
4588	return ret;
4589}
4590
4591/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4592 * A helper function to walk down the tree starting at min_key, and looking
4593 * for nodes or leaves that are have a minimum transaction id.
4594 * This is used by the btree defrag code, and tree logging
4595 *
4596 * This does not cow, but it does stuff the starting key it finds back
4597 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4598 * key and get a writable path.
4599 *
4600 * This honors path->lowest_level to prevent descent past a given level
4601 * of the tree.
4602 *
4603 * min_trans indicates the oldest transaction that you are interested
4604 * in walking through.  Any nodes or leaves older than min_trans are
4605 * skipped over (without reading them).
4606 *
4607 * returns zero if something useful was found, < 0 on error and 1 if there
4608 * was nothing in the tree that matched the search criteria.
4609 */
4610int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4611			 struct btrfs_path *path,
4612			 u64 min_trans)
4613{
4614	struct extent_buffer *cur;
4615	struct btrfs_key found_key;
4616	int slot;
4617	int sret;
4618	u32 nritems;
4619	int level;
4620	int ret = 1;
4621	int keep_locks = path->keep_locks;
4622
4623	ASSERT(!path->nowait);
4624	path->keep_locks = 1;
4625again:
4626	cur = btrfs_read_lock_root_node(root);
4627	level = btrfs_header_level(cur);
4628	WARN_ON(path->nodes[level]);
4629	path->nodes[level] = cur;
4630	path->locks[level] = BTRFS_READ_LOCK;
4631
4632	if (btrfs_header_generation(cur) < min_trans) {
4633		ret = 1;
4634		goto out;
4635	}
4636	while (1) {
4637		nritems = btrfs_header_nritems(cur);
4638		level = btrfs_header_level(cur);
4639		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4640		if (sret < 0) {
4641			ret = sret;
4642			goto out;
4643		}
4644
4645		/* at the lowest level, we're done, setup the path and exit */
4646		if (level == path->lowest_level) {
4647			if (slot >= nritems)
4648				goto find_next_key;
4649			ret = 0;
4650			path->slots[level] = slot;
4651			btrfs_item_key_to_cpu(cur, &found_key, slot);
4652			goto out;
4653		}
4654		if (sret && slot > 0)
4655			slot--;
4656		/*
4657		 * check this node pointer against the min_trans parameters.
4658		 * If it is too old, skip to the next one.
4659		 */
4660		while (slot < nritems) {
4661			u64 gen;
4662
4663			gen = btrfs_node_ptr_generation(cur, slot);
4664			if (gen < min_trans) {
4665				slot++;
4666				continue;
4667			}
4668			break;
4669		}
4670find_next_key:
4671		/*
4672		 * we didn't find a candidate key in this node, walk forward
4673		 * and find another one
4674		 */
4675		if (slot >= nritems) {
4676			path->slots[level] = slot;
4677			sret = btrfs_find_next_key(root, path, min_key, level,
4678						  min_trans);
4679			if (sret == 0) {
4680				btrfs_release_path(path);
4681				goto again;
4682			} else {
4683				goto out;
4684			}
4685		}
4686		/* save our key for returning back */
4687		btrfs_node_key_to_cpu(cur, &found_key, slot);
4688		path->slots[level] = slot;
4689		if (level == path->lowest_level) {
4690			ret = 0;
4691			goto out;
4692		}
4693		cur = btrfs_read_node_slot(cur, slot);
4694		if (IS_ERR(cur)) {
4695			ret = PTR_ERR(cur);
4696			goto out;
4697		}
4698
4699		btrfs_tree_read_lock(cur);
4700
4701		path->locks[level - 1] = BTRFS_READ_LOCK;
4702		path->nodes[level - 1] = cur;
4703		unlock_up(path, level, 1, 0, NULL);
4704	}
4705out:
4706	path->keep_locks = keep_locks;
4707	if (ret == 0) {
4708		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4709		memcpy(min_key, &found_key, sizeof(found_key));
4710	}
4711	return ret;
4712}
4713
4714/*
4715 * this is similar to btrfs_next_leaf, but does not try to preserve
4716 * and fixup the path.  It looks for and returns the next key in the
4717 * tree based on the current path and the min_trans parameters.
4718 *
4719 * 0 is returned if another key is found, < 0 if there are any errors
4720 * and 1 is returned if there are no higher keys in the tree
4721 *
4722 * path->keep_locks should be set to 1 on the search made before
4723 * calling this function.
4724 */
4725int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4726			struct btrfs_key *key, int level, u64 min_trans)
4727{
4728	int slot;
4729	struct extent_buffer *c;
4730
4731	WARN_ON(!path->keep_locks && !path->skip_locking);
4732	while (level < BTRFS_MAX_LEVEL) {
4733		if (!path->nodes[level])
4734			return 1;
4735
4736		slot = path->slots[level] + 1;
4737		c = path->nodes[level];
4738next:
4739		if (slot >= btrfs_header_nritems(c)) {
4740			int ret;
4741			int orig_lowest;
4742			struct btrfs_key cur_key;
4743			if (level + 1 >= BTRFS_MAX_LEVEL ||
4744			    !path->nodes[level + 1])
4745				return 1;
4746
4747			if (path->locks[level + 1] || path->skip_locking) {
4748				level++;
4749				continue;
4750			}
4751
4752			slot = btrfs_header_nritems(c) - 1;
4753			if (level == 0)
4754				btrfs_item_key_to_cpu(c, &cur_key, slot);
4755			else
4756				btrfs_node_key_to_cpu(c, &cur_key, slot);
4757
4758			orig_lowest = path->lowest_level;
4759			btrfs_release_path(path);
4760			path->lowest_level = level;
4761			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4762						0, 0);
4763			path->lowest_level = orig_lowest;
4764			if (ret < 0)
4765				return ret;
4766
4767			c = path->nodes[level];
4768			slot = path->slots[level];
4769			if (ret == 0)
4770				slot++;
4771			goto next;
4772		}
4773
4774		if (level == 0)
4775			btrfs_item_key_to_cpu(c, key, slot);
4776		else {
4777			u64 gen = btrfs_node_ptr_generation(c, slot);
4778
4779			if (gen < min_trans) {
4780				slot++;
4781				goto next;
4782			}
4783			btrfs_node_key_to_cpu(c, key, slot);
4784		}
4785		return 0;
4786	}
4787	return 1;
4788}
4789
4790int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4791			u64 time_seq)
4792{
4793	int slot;
4794	int level;
4795	struct extent_buffer *c;
4796	struct extent_buffer *next;
4797	struct btrfs_fs_info *fs_info = root->fs_info;
4798	struct btrfs_key key;
4799	bool need_commit_sem = false;
4800	u32 nritems;
4801	int ret;
4802	int i;
4803
4804	/*
4805	 * The nowait semantics are used only for write paths, where we don't
4806	 * use the tree mod log and sequence numbers.
4807	 */
4808	if (time_seq)
4809		ASSERT(!path->nowait);
4810
4811	nritems = btrfs_header_nritems(path->nodes[0]);
4812	if (nritems == 0)
4813		return 1;
4814
4815	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4816again:
4817	level = 1;
4818	next = NULL;
4819	btrfs_release_path(path);
4820
4821	path->keep_locks = 1;
4822
4823	if (time_seq) {
4824		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4825	} else {
4826		if (path->need_commit_sem) {
4827			path->need_commit_sem = 0;
4828			need_commit_sem = true;
4829			if (path->nowait) {
4830				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4831					ret = -EAGAIN;
4832					goto done;
4833				}
4834			} else {
4835				down_read(&fs_info->commit_root_sem);
4836			}
4837		}
4838		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4839	}
4840	path->keep_locks = 0;
4841
4842	if (ret < 0)
4843		goto done;
4844
4845	nritems = btrfs_header_nritems(path->nodes[0]);
4846	/*
4847	 * by releasing the path above we dropped all our locks.  A balance
4848	 * could have added more items next to the key that used to be
4849	 * at the very end of the block.  So, check again here and
4850	 * advance the path if there are now more items available.
4851	 */
4852	if (nritems > 0 && path->slots[0] < nritems - 1) {
4853		if (ret == 0)
4854			path->slots[0]++;
4855		ret = 0;
4856		goto done;
4857	}
4858	/*
4859	 * So the above check misses one case:
4860	 * - after releasing the path above, someone has removed the item that
4861	 *   used to be at the very end of the block, and balance between leafs
4862	 *   gets another one with bigger key.offset to replace it.
4863	 *
4864	 * This one should be returned as well, or we can get leaf corruption
4865	 * later(esp. in __btrfs_drop_extents()).
4866	 *
4867	 * And a bit more explanation about this check,
4868	 * with ret > 0, the key isn't found, the path points to the slot
4869	 * where it should be inserted, so the path->slots[0] item must be the
4870	 * bigger one.
4871	 */
4872	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4873		ret = 0;
4874		goto done;
4875	}
4876
4877	while (level < BTRFS_MAX_LEVEL) {
4878		if (!path->nodes[level]) {
4879			ret = 1;
4880			goto done;
4881		}
4882
4883		slot = path->slots[level] + 1;
4884		c = path->nodes[level];
4885		if (slot >= btrfs_header_nritems(c)) {
4886			level++;
4887			if (level == BTRFS_MAX_LEVEL) {
4888				ret = 1;
4889				goto done;
4890			}
4891			continue;
4892		}
4893
4894
4895		/*
4896		 * Our current level is where we're going to start from, and to
4897		 * make sure lockdep doesn't complain we need to drop our locks
4898		 * and nodes from 0 to our current level.
4899		 */
4900		for (i = 0; i < level; i++) {
4901			if (path->locks[level]) {
4902				btrfs_tree_read_unlock(path->nodes[i]);
4903				path->locks[i] = 0;
4904			}
4905			free_extent_buffer(path->nodes[i]);
4906			path->nodes[i] = NULL;
4907		}
4908
4909		next = c;
4910		ret = read_block_for_search(root, path, &next, level,
4911					    slot, &key);
4912		if (ret == -EAGAIN && !path->nowait)
4913			goto again;
4914
4915		if (ret < 0) {
4916			btrfs_release_path(path);
4917			goto done;
4918		}
4919
4920		if (!path->skip_locking) {
4921			ret = btrfs_try_tree_read_lock(next);
4922			if (!ret && path->nowait) {
4923				ret = -EAGAIN;
4924				goto done;
4925			}
4926			if (!ret && time_seq) {
4927				/*
4928				 * If we don't get the lock, we may be racing
4929				 * with push_leaf_left, holding that lock while
4930				 * itself waiting for the leaf we've currently
4931				 * locked. To solve this situation, we give up
4932				 * on our lock and cycle.
4933				 */
4934				free_extent_buffer(next);
4935				btrfs_release_path(path);
4936				cond_resched();
4937				goto again;
4938			}
4939			if (!ret)
4940				btrfs_tree_read_lock(next);
4941		}
4942		break;
4943	}
4944	path->slots[level] = slot;
4945	while (1) {
4946		level--;
4947		path->nodes[level] = next;
4948		path->slots[level] = 0;
4949		if (!path->skip_locking)
4950			path->locks[level] = BTRFS_READ_LOCK;
4951		if (!level)
4952			break;
4953
4954		ret = read_block_for_search(root, path, &next, level,
4955					    0, &key);
4956		if (ret == -EAGAIN && !path->nowait)
4957			goto again;
4958
4959		if (ret < 0) {
4960			btrfs_release_path(path);
4961			goto done;
4962		}
4963
4964		if (!path->skip_locking) {
4965			if (path->nowait) {
4966				if (!btrfs_try_tree_read_lock(next)) {
4967					ret = -EAGAIN;
4968					goto done;
4969				}
4970			} else {
4971				btrfs_tree_read_lock(next);
4972			}
4973		}
4974	}
4975	ret = 0;
4976done:
4977	unlock_up(path, 0, 1, 0, NULL);
4978	if (need_commit_sem) {
4979		int ret2;
4980
4981		path->need_commit_sem = 1;
4982		ret2 = finish_need_commit_sem_search(path);
4983		up_read(&fs_info->commit_root_sem);
4984		if (ret2)
4985			ret = ret2;
4986	}
4987
4988	return ret;
4989}
4990
4991int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4992{
4993	path->slots[0]++;
4994	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4995		return btrfs_next_old_leaf(root, path, time_seq);
4996	return 0;
4997}
4998
4999/*
5000 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5001 * searching until it gets past min_objectid or finds an item of 'type'
5002 *
5003 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5004 */
5005int btrfs_previous_item(struct btrfs_root *root,
5006			struct btrfs_path *path, u64 min_objectid,
5007			int type)
5008{
5009	struct btrfs_key found_key;
5010	struct extent_buffer *leaf;
5011	u32 nritems;
5012	int ret;
5013
5014	while (1) {
5015		if (path->slots[0] == 0) {
5016			ret = btrfs_prev_leaf(root, path);
5017			if (ret != 0)
5018				return ret;
5019		} else {
5020			path->slots[0]--;
5021		}
5022		leaf = path->nodes[0];
5023		nritems = btrfs_header_nritems(leaf);
5024		if (nritems == 0)
5025			return 1;
5026		if (path->slots[0] == nritems)
5027			path->slots[0]--;
5028
5029		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5030		if (found_key.objectid < min_objectid)
5031			break;
5032		if (found_key.type == type)
5033			return 0;
5034		if (found_key.objectid == min_objectid &&
5035		    found_key.type < type)
5036			break;
5037	}
5038	return 1;
5039}
5040
5041/*
5042 * search in extent tree to find a previous Metadata/Data extent item with
5043 * min objecitd.
5044 *
5045 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5046 */
5047int btrfs_previous_extent_item(struct btrfs_root *root,
5048			struct btrfs_path *path, u64 min_objectid)
5049{
5050	struct btrfs_key found_key;
5051	struct extent_buffer *leaf;
5052	u32 nritems;
5053	int ret;
5054
5055	while (1) {
5056		if (path->slots[0] == 0) {
5057			ret = btrfs_prev_leaf(root, path);
5058			if (ret != 0)
5059				return ret;
5060		} else {
5061			path->slots[0]--;
5062		}
5063		leaf = path->nodes[0];
5064		nritems = btrfs_header_nritems(leaf);
5065		if (nritems == 0)
5066			return 1;
5067		if (path->slots[0] == nritems)
5068			path->slots[0]--;
5069
5070		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5071		if (found_key.objectid < min_objectid)
5072			break;
5073		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5074		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5075			return 0;
5076		if (found_key.objectid == min_objectid &&
5077		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5078			break;
5079	}
5080	return 1;
5081}
5082
5083int __init btrfs_ctree_init(void)
5084{
5085	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5086			sizeof(struct btrfs_path), 0,
5087			SLAB_MEM_SPREAD, NULL);
5088	if (!btrfs_path_cachep)
5089		return -ENOMEM;
5090	return 0;
5091}
5092
5093void __cold btrfs_ctree_exit(void)
5094{
5095	kmem_cache_destroy(btrfs_path_cachep);
5096}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41		    int level, int slot);
  42
  43static const struct btrfs_csums {
  44	u16		size;
  45	const char	name[10];
  46	const char	driver[12];
  47} btrfs_csums[] = {
  48	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  49	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  50	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  51	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  52				     .driver = "blake2b-256" },
  53};
  54
  55/*
  56 * The leaf data grows from end-to-front in the node.  this returns the address
  57 * of the start of the last item, which is the stop of the leaf data stack.
  58 */
  59static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  60{
  61	u32 nr = btrfs_header_nritems(leaf);
  62
  63	if (nr == 0)
  64		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  65	return btrfs_item_offset(leaf, nr - 1);
  66}
  67
  68/*
  69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  70 *
  71 * @leaf:	leaf that we're doing a memmove on
  72 * @dst_offset:	item data offset we're moving to
  73 * @src_offset:	item data offset were' moving from
  74 * @len:	length of the data we're moving
  75 *
  76 * Wrapper around memmove_extent_buffer() that takes into account the header on
  77 * the leaf.  The btrfs_item offset's start directly after the header, so we
  78 * have to adjust any offsets to account for the header in the leaf.  This
  79 * handles that math to simplify the callers.
  80 */
  81static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  82				     unsigned long dst_offset,
  83				     unsigned long src_offset,
  84				     unsigned long len)
  85{
  86	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  87			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
  88}
  89
  90/*
  91 * Copy item data from @src into @dst at the given @offset.
  92 *
  93 * @dst:	destination leaf that we're copying into
  94 * @src:	source leaf that we're copying from
  95 * @dst_offset:	item data offset we're copying to
  96 * @src_offset:	item data offset were' copying from
  97 * @len:	length of the data we're copying
  98 *
  99 * Wrapper around copy_extent_buffer() that takes into account the header on
 100 * the leaf.  The btrfs_item offset's start directly after the header, so we
 101 * have to adjust any offsets to account for the header in the leaf.  This
 102 * handles that math to simplify the callers.
 103 */
 104static inline void copy_leaf_data(const struct extent_buffer *dst,
 105				  const struct extent_buffer *src,
 106				  unsigned long dst_offset,
 107				  unsigned long src_offset, unsigned long len)
 108{
 109	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 110			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 111}
 112
 113/*
 114 * Move items in a @leaf (using memmove).
 115 *
 116 * @dst:	destination leaf for the items
 117 * @dst_item:	the item nr we're copying into
 118 * @src_item:	the item nr we're copying from
 119 * @nr_items:	the number of items to copy
 120 *
 121 * Wrapper around memmove_extent_buffer() that does the math to get the
 122 * appropriate offsets into the leaf from the item numbers.
 123 */
 124static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 125				      int dst_item, int src_item, int nr_items)
 126{
 127	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 128			      btrfs_item_nr_offset(leaf, src_item),
 129			      nr_items * sizeof(struct btrfs_item));
 130}
 131
 132/*
 133 * Copy items from @src into @dst at the given @offset.
 134 *
 135 * @dst:	destination leaf for the items
 136 * @src:	source leaf for the items
 137 * @dst_item:	the item nr we're copying into
 138 * @src_item:	the item nr we're copying from
 139 * @nr_items:	the number of items to copy
 140 *
 141 * Wrapper around copy_extent_buffer() that does the math to get the
 142 * appropriate offsets into the leaf from the item numbers.
 143 */
 144static inline void copy_leaf_items(const struct extent_buffer *dst,
 145				   const struct extent_buffer *src,
 146				   int dst_item, int src_item, int nr_items)
 147{
 148	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 149			      btrfs_item_nr_offset(src, src_item),
 150			      nr_items * sizeof(struct btrfs_item));
 151}
 152
 
 
 
 
 
 
 153int btrfs_super_csum_size(const struct btrfs_super_block *s)
 154{
 155	u16 t = btrfs_super_csum_type(s);
 156	/*
 157	 * csum type is validated at mount time
 158	 */
 159	return btrfs_csums[t].size;
 160}
 161
 162const char *btrfs_super_csum_name(u16 csum_type)
 163{
 164	/* csum type is validated at mount time */
 165	return btrfs_csums[csum_type].name;
 166}
 167
 168/*
 169 * Return driver name if defined, otherwise the name that's also a valid driver
 170 * name
 171 */
 172const char *btrfs_super_csum_driver(u16 csum_type)
 173{
 174	/* csum type is validated at mount time */
 175	return btrfs_csums[csum_type].driver[0] ?
 176		btrfs_csums[csum_type].driver :
 177		btrfs_csums[csum_type].name;
 178}
 179
 180size_t __attribute_const__ btrfs_get_num_csums(void)
 181{
 182	return ARRAY_SIZE(btrfs_csums);
 183}
 184
 185struct btrfs_path *btrfs_alloc_path(void)
 186{
 187	might_sleep();
 188
 189	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 190}
 191
 192/* this also releases the path */
 193void btrfs_free_path(struct btrfs_path *p)
 194{
 195	if (!p)
 196		return;
 197	btrfs_release_path(p);
 198	kmem_cache_free(btrfs_path_cachep, p);
 199}
 200
 201/*
 202 * path release drops references on the extent buffers in the path
 203 * and it drops any locks held by this path
 204 *
 205 * It is safe to call this on paths that no locks or extent buffers held.
 206 */
 207noinline void btrfs_release_path(struct btrfs_path *p)
 208{
 209	int i;
 210
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 212		p->slots[i] = 0;
 213		if (!p->nodes[i])
 214			continue;
 215		if (p->locks[i]) {
 216			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 217			p->locks[i] = 0;
 218		}
 219		free_extent_buffer(p->nodes[i]);
 220		p->nodes[i] = NULL;
 221	}
 222}
 223
 224/*
 225 * We want the transaction abort to print stack trace only for errors where the
 226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 227 * caused by external factors.
 228 */
 229bool __cold abort_should_print_stack(int errno)
 230{
 231	switch (errno) {
 232	case -EIO:
 233	case -EROFS:
 234	case -ENOMEM:
 235		return false;
 236	}
 237	return true;
 238}
 239
 240/*
 241 * safely gets a reference on the root node of a tree.  A lock
 242 * is not taken, so a concurrent writer may put a different node
 243 * at the root of the tree.  See btrfs_lock_root_node for the
 244 * looping required.
 245 *
 246 * The extent buffer returned by this has a reference taken, so
 247 * it won't disappear.  It may stop being the root of the tree
 248 * at any time because there are no locks held.
 249 */
 250struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 251{
 252	struct extent_buffer *eb;
 253
 254	while (1) {
 255		rcu_read_lock();
 256		eb = rcu_dereference(root->node);
 257
 258		/*
 259		 * RCU really hurts here, we could free up the root node because
 260		 * it was COWed but we may not get the new root node yet so do
 261		 * the inc_not_zero dance and if it doesn't work then
 262		 * synchronize_rcu and try again.
 263		 */
 264		if (atomic_inc_not_zero(&eb->refs)) {
 265			rcu_read_unlock();
 266			break;
 267		}
 268		rcu_read_unlock();
 269		synchronize_rcu();
 270	}
 271	return eb;
 272}
 273
 274/*
 275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 276 * just get put onto a simple dirty list.  Transaction walks this list to make
 277 * sure they get properly updated on disk.
 278 */
 279static void add_root_to_dirty_list(struct btrfs_root *root)
 280{
 281	struct btrfs_fs_info *fs_info = root->fs_info;
 282
 283	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 284	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 285		return;
 286
 287	spin_lock(&fs_info->trans_lock);
 288	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 289		/* Want the extent tree to be the last on the list */
 290		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 291			list_move_tail(&root->dirty_list,
 292				       &fs_info->dirty_cowonly_roots);
 293		else
 294			list_move(&root->dirty_list,
 295				  &fs_info->dirty_cowonly_roots);
 296	}
 297	spin_unlock(&fs_info->trans_lock);
 298}
 299
 300/*
 301 * used by snapshot creation to make a copy of a root for a tree with
 302 * a given objectid.  The buffer with the new root node is returned in
 303 * cow_ret, and this func returns zero on success or a negative error code.
 304 */
 305int btrfs_copy_root(struct btrfs_trans_handle *trans,
 306		      struct btrfs_root *root,
 307		      struct extent_buffer *buf,
 308		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 309{
 310	struct btrfs_fs_info *fs_info = root->fs_info;
 311	struct extent_buffer *cow;
 312	int ret = 0;
 313	int level;
 314	struct btrfs_disk_key disk_key;
 
 315
 316	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 317		trans->transid != fs_info->running_transaction->transid);
 318	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 319		trans->transid != root->last_trans);
 320
 321	level = btrfs_header_level(buf);
 322	if (level == 0)
 323		btrfs_item_key(buf, &disk_key, 0);
 324	else
 325		btrfs_node_key(buf, &disk_key, 0);
 326
 
 
 327	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 328				     &disk_key, level, buf->start, 0,
 329				     BTRFS_NESTING_NEW_ROOT);
 330	if (IS_ERR(cow))
 331		return PTR_ERR(cow);
 332
 333	copy_extent_buffer_full(cow, buf);
 334	btrfs_set_header_bytenr(cow, cow->start);
 335	btrfs_set_header_generation(cow, trans->transid);
 336	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 337	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 338				     BTRFS_HEADER_FLAG_RELOC);
 339	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 340		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 341	else
 342		btrfs_set_header_owner(cow, new_root_objectid);
 343
 344	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 345
 346	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 347	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 348		ret = btrfs_inc_ref(trans, root, cow, 1);
 349	else
 350		ret = btrfs_inc_ref(trans, root, cow, 0);
 351	if (ret) {
 352		btrfs_tree_unlock(cow);
 353		free_extent_buffer(cow);
 354		btrfs_abort_transaction(trans, ret);
 355		return ret;
 356	}
 357
 358	btrfs_mark_buffer_dirty(cow);
 359	*cow_ret = cow;
 360	return 0;
 361}
 362
 363/*
 364 * check if the tree block can be shared by multiple trees
 365 */
 366int btrfs_block_can_be_shared(struct btrfs_root *root,
 367			      struct extent_buffer *buf)
 
 368{
 
 
 369	/*
 370	 * Tree blocks not in shareable trees and tree roots are never shared.
 371	 * If a block was allocated after the last snapshot and the block was
 372	 * not allocated by tree relocation, we know the block is not shared.
 373	 */
 374	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 375	    buf != root->node && buf != root->commit_root &&
 376	    (btrfs_header_generation(buf) <=
 377	     btrfs_root_last_snapshot(&root->root_item) ||
 378	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 379		return 1;
 380
 381	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382}
 383
 384static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 385				       struct btrfs_root *root,
 386				       struct extent_buffer *buf,
 387				       struct extent_buffer *cow,
 388				       int *last_ref)
 389{
 390	struct btrfs_fs_info *fs_info = root->fs_info;
 391	u64 refs;
 392	u64 owner;
 393	u64 flags;
 394	u64 new_flags = 0;
 395	int ret;
 396
 397	/*
 398	 * Backrefs update rules:
 399	 *
 400	 * Always use full backrefs for extent pointers in tree block
 401	 * allocated by tree relocation.
 402	 *
 403	 * If a shared tree block is no longer referenced by its owner
 404	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 405	 * use full backrefs for extent pointers in tree block.
 406	 *
 407	 * If a tree block is been relocating
 408	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 409	 * use full backrefs for extent pointers in tree block.
 410	 * The reason for this is some operations (such as drop tree)
 411	 * are only allowed for blocks use full backrefs.
 412	 */
 413
 414	if (btrfs_block_can_be_shared(root, buf)) {
 415		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 416					       btrfs_header_level(buf), 1,
 417					       &refs, &flags);
 418		if (ret)
 419			return ret;
 420		if (refs == 0) {
 421			ret = -EROFS;
 422			btrfs_handle_fs_error(fs_info, ret, NULL);
 
 
 
 
 423			return ret;
 424		}
 425	} else {
 426		refs = 1;
 427		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 428		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 429			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 430		else
 431			flags = 0;
 432	}
 433
 434	owner = btrfs_header_owner(buf);
 435	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 436	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 437
 438	if (refs > 1) {
 439		if ((owner == root->root_key.objectid ||
 440		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 441		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 442			ret = btrfs_inc_ref(trans, root, buf, 1);
 443			if (ret)
 444				return ret;
 445
 446			if (root->root_key.objectid ==
 447			    BTRFS_TREE_RELOC_OBJECTID) {
 448				ret = btrfs_dec_ref(trans, root, buf, 0);
 449				if (ret)
 450					return ret;
 451				ret = btrfs_inc_ref(trans, root, cow, 1);
 452				if (ret)
 453					return ret;
 454			}
 455			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 456		} else {
 457
 458			if (root->root_key.objectid ==
 459			    BTRFS_TREE_RELOC_OBJECTID)
 460				ret = btrfs_inc_ref(trans, root, cow, 1);
 461			else
 462				ret = btrfs_inc_ref(trans, root, cow, 0);
 463			if (ret)
 464				return ret;
 465		}
 466		if (new_flags != 0) {
 467			int level = btrfs_header_level(buf);
 468
 469			ret = btrfs_set_disk_extent_flags(trans, buf,
 470							  new_flags, level);
 471			if (ret)
 472				return ret;
 473		}
 474	} else {
 475		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 476			if (root->root_key.objectid ==
 477			    BTRFS_TREE_RELOC_OBJECTID)
 478				ret = btrfs_inc_ref(trans, root, cow, 1);
 479			else
 480				ret = btrfs_inc_ref(trans, root, cow, 0);
 481			if (ret)
 482				return ret;
 483			ret = btrfs_dec_ref(trans, root, buf, 1);
 484			if (ret)
 485				return ret;
 486		}
 487		btrfs_clean_tree_block(buf);
 488		*last_ref = 1;
 489	}
 490	return 0;
 491}
 492
 493/*
 494 * does the dirty work in cow of a single block.  The parent block (if
 495 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 496 * dirty and returned locked.  If you modify the block it needs to be marked
 497 * dirty again.
 498 *
 499 * search_start -- an allocation hint for the new block
 500 *
 501 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 502 * bytes the allocator should try to find free next to the block it returns.
 503 * This is just a hint and may be ignored by the allocator.
 504 */
 505static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 506			     struct btrfs_root *root,
 507			     struct extent_buffer *buf,
 508			     struct extent_buffer *parent, int parent_slot,
 509			     struct extent_buffer **cow_ret,
 510			     u64 search_start, u64 empty_size,
 511			     enum btrfs_lock_nesting nest)
 512{
 513	struct btrfs_fs_info *fs_info = root->fs_info;
 514	struct btrfs_disk_key disk_key;
 515	struct extent_buffer *cow;
 516	int level, ret;
 517	int last_ref = 0;
 518	int unlock_orig = 0;
 519	u64 parent_start = 0;
 
 520
 521	if (*cow_ret == buf)
 522		unlock_orig = 1;
 523
 524	btrfs_assert_tree_write_locked(buf);
 525
 526	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 527		trans->transid != fs_info->running_transaction->transid);
 528	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 529		trans->transid != root->last_trans);
 530
 531	level = btrfs_header_level(buf);
 532
 533	if (level == 0)
 534		btrfs_item_key(buf, &disk_key, 0);
 535	else
 536		btrfs_node_key(buf, &disk_key, 0);
 537
 538	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 539		parent_start = parent->start;
 540
 
 
 541	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 542				     root->root_key.objectid, &disk_key, level,
 543				     search_start, empty_size, nest);
 544	if (IS_ERR(cow))
 545		return PTR_ERR(cow);
 546
 547	/* cow is set to blocking by btrfs_init_new_buffer */
 548
 549	copy_extent_buffer_full(cow, buf);
 550	btrfs_set_header_bytenr(cow, cow->start);
 551	btrfs_set_header_generation(cow, trans->transid);
 552	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 553	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 554				     BTRFS_HEADER_FLAG_RELOC);
 555	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 556		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 557	else
 558		btrfs_set_header_owner(cow, root->root_key.objectid);
 559
 560	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 561
 562	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 563	if (ret) {
 564		btrfs_tree_unlock(cow);
 565		free_extent_buffer(cow);
 566		btrfs_abort_transaction(trans, ret);
 567		return ret;
 568	}
 569
 570	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 571		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 572		if (ret) {
 573			btrfs_tree_unlock(cow);
 574			free_extent_buffer(cow);
 575			btrfs_abort_transaction(trans, ret);
 576			return ret;
 577		}
 578	}
 579
 580	if (buf == root->node) {
 581		WARN_ON(parent && parent != buf);
 582		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 583		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 584			parent_start = buf->start;
 585
 
 
 
 
 
 
 
 586		atomic_inc(&cow->refs);
 587		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 588		BUG_ON(ret < 0);
 589		rcu_assign_pointer(root->node, cow);
 590
 591		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 592				      parent_start, last_ref);
 593		free_extent_buffer(buf);
 594		add_root_to_dirty_list(root);
 595	} else {
 596		WARN_ON(trans->transid != btrfs_header_generation(parent));
 597		btrfs_tree_mod_log_insert_key(parent, parent_slot,
 598					      BTRFS_MOD_LOG_KEY_REPLACE);
 
 
 
 
 
 
 599		btrfs_set_node_blockptr(parent, parent_slot,
 600					cow->start);
 601		btrfs_set_node_ptr_generation(parent, parent_slot,
 602					      trans->transid);
 603		btrfs_mark_buffer_dirty(parent);
 604		if (last_ref) {
 605			ret = btrfs_tree_mod_log_free_eb(buf);
 606			if (ret) {
 607				btrfs_tree_unlock(cow);
 608				free_extent_buffer(cow);
 609				btrfs_abort_transaction(trans, ret);
 610				return ret;
 611			}
 612		}
 613		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 614				      parent_start, last_ref);
 615	}
 616	if (unlock_orig)
 617		btrfs_tree_unlock(buf);
 618	free_extent_buffer_stale(buf);
 619	btrfs_mark_buffer_dirty(cow);
 620	*cow_ret = cow;
 621	return 0;
 622}
 623
 624static inline int should_cow_block(struct btrfs_trans_handle *trans,
 625				   struct btrfs_root *root,
 626				   struct extent_buffer *buf)
 627{
 628	if (btrfs_is_testing(root->fs_info))
 629		return 0;
 630
 631	/* Ensure we can see the FORCE_COW bit */
 632	smp_mb__before_atomic();
 633
 634	/*
 635	 * We do not need to cow a block if
 636	 * 1) this block is not created or changed in this transaction;
 637	 * 2) this block does not belong to TREE_RELOC tree;
 638	 * 3) the root is not forced COW.
 639	 *
 640	 * What is forced COW:
 641	 *    when we create snapshot during committing the transaction,
 642	 *    after we've finished copying src root, we must COW the shared
 643	 *    block to ensure the metadata consistency.
 644	 */
 645	if (btrfs_header_generation(buf) == trans->transid &&
 646	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 647	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 648	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 649	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 650		return 0;
 651	return 1;
 652}
 653
 654/*
 655 * cows a single block, see __btrfs_cow_block for the real work.
 656 * This version of it has extra checks so that a block isn't COWed more than
 657 * once per transaction, as long as it hasn't been written yet
 658 */
 659noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 660		    struct btrfs_root *root, struct extent_buffer *buf,
 661		    struct extent_buffer *parent, int parent_slot,
 662		    struct extent_buffer **cow_ret,
 663		    enum btrfs_lock_nesting nest)
 664{
 665	struct btrfs_fs_info *fs_info = root->fs_info;
 666	u64 search_start;
 667	int ret;
 668
 669	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 670		btrfs_err(fs_info,
 671			"COW'ing blocks on a fs root that's being dropped");
 672
 673	if (trans->transaction != fs_info->running_transaction)
 674		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 675		       trans->transid,
 676		       fs_info->running_transaction->transid);
 677
 678	if (trans->transid != fs_info->generation)
 679		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 680		       trans->transid, fs_info->generation);
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	if (!should_cow_block(trans, root, buf)) {
 683		*cow_ret = buf;
 684		return 0;
 685	}
 686
 687	search_start = buf->start & ~((u64)SZ_1G - 1);
 688
 689	/*
 690	 * Before CoWing this block for later modification, check if it's
 691	 * the subtree root and do the delayed subtree trace if needed.
 692	 *
 693	 * Also We don't care about the error, as it's handled internally.
 694	 */
 695	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 696	ret = __btrfs_cow_block(trans, root, buf, parent,
 697				 parent_slot, cow_ret, search_start, 0, nest);
 698
 699	trace_btrfs_cow_block(root, buf, *cow_ret);
 700
 701	return ret;
 702}
 703ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 704
 705/*
 706 * helper function for defrag to decide if two blocks pointed to by a
 707 * node are actually close by
 708 */
 709static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 710{
 711	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 712		return 1;
 713	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 714		return 1;
 715	return 0;
 716}
 717
 718#ifdef __LITTLE_ENDIAN
 719
 720/*
 721 * Compare two keys, on little-endian the disk order is same as CPU order and
 722 * we can avoid the conversion.
 723 */
 724static int comp_keys(const struct btrfs_disk_key *disk_key,
 725		     const struct btrfs_key *k2)
 726{
 727	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 728
 729	return btrfs_comp_cpu_keys(k1, k2);
 730}
 731
 732#else
 733
 734/*
 735 * compare two keys in a memcmp fashion
 736 */
 737static int comp_keys(const struct btrfs_disk_key *disk,
 738		     const struct btrfs_key *k2)
 739{
 740	struct btrfs_key k1;
 741
 742	btrfs_disk_key_to_cpu(&k1, disk);
 743
 744	return btrfs_comp_cpu_keys(&k1, k2);
 745}
 746#endif
 747
 748/*
 749 * same as comp_keys only with two btrfs_key's
 750 */
 751int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 752{
 753	if (k1->objectid > k2->objectid)
 754		return 1;
 755	if (k1->objectid < k2->objectid)
 756		return -1;
 757	if (k1->type > k2->type)
 758		return 1;
 759	if (k1->type < k2->type)
 760		return -1;
 761	if (k1->offset > k2->offset)
 762		return 1;
 763	if (k1->offset < k2->offset)
 764		return -1;
 765	return 0;
 766}
 767
 768/*
 769 * this is used by the defrag code to go through all the
 770 * leaves pointed to by a node and reallocate them so that
 771 * disk order is close to key order
 772 */
 773int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 774		       struct btrfs_root *root, struct extent_buffer *parent,
 775		       int start_slot, u64 *last_ret,
 776		       struct btrfs_key *progress)
 777{
 778	struct btrfs_fs_info *fs_info = root->fs_info;
 779	struct extent_buffer *cur;
 780	u64 blocknr;
 781	u64 search_start = *last_ret;
 782	u64 last_block = 0;
 783	u64 other;
 784	u32 parent_nritems;
 785	int end_slot;
 786	int i;
 787	int err = 0;
 788	u32 blocksize;
 789	int progress_passed = 0;
 790	struct btrfs_disk_key disk_key;
 791
 792	WARN_ON(trans->transaction != fs_info->running_transaction);
 793	WARN_ON(trans->transid != fs_info->generation);
 794
 795	parent_nritems = btrfs_header_nritems(parent);
 796	blocksize = fs_info->nodesize;
 797	end_slot = parent_nritems - 1;
 798
 799	if (parent_nritems <= 1)
 800		return 0;
 801
 802	for (i = start_slot; i <= end_slot; i++) {
 803		int close = 1;
 804
 805		btrfs_node_key(parent, &disk_key, i);
 806		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 807			continue;
 808
 809		progress_passed = 1;
 810		blocknr = btrfs_node_blockptr(parent, i);
 811		if (last_block == 0)
 812			last_block = blocknr;
 813
 814		if (i > 0) {
 815			other = btrfs_node_blockptr(parent, i - 1);
 816			close = close_blocks(blocknr, other, blocksize);
 817		}
 818		if (!close && i < end_slot) {
 819			other = btrfs_node_blockptr(parent, i + 1);
 820			close = close_blocks(blocknr, other, blocksize);
 821		}
 822		if (close) {
 823			last_block = blocknr;
 824			continue;
 825		}
 826
 827		cur = btrfs_read_node_slot(parent, i);
 828		if (IS_ERR(cur))
 829			return PTR_ERR(cur);
 830		if (search_start == 0)
 831			search_start = last_block;
 832
 833		btrfs_tree_lock(cur);
 834		err = __btrfs_cow_block(trans, root, cur, parent, i,
 835					&cur, search_start,
 836					min(16 * blocksize,
 837					    (end_slot - i) * blocksize),
 838					BTRFS_NESTING_COW);
 839		if (err) {
 840			btrfs_tree_unlock(cur);
 841			free_extent_buffer(cur);
 842			break;
 843		}
 844		search_start = cur->start;
 845		last_block = cur->start;
 846		*last_ret = search_start;
 847		btrfs_tree_unlock(cur);
 848		free_extent_buffer(cur);
 849	}
 850	return err;
 851}
 852
 853/*
 854 * Search for a key in the given extent_buffer.
 855 *
 856 * The lower boundary for the search is specified by the slot number @low. Use a
 857 * value of 0 to search over the whole extent buffer.
 
 858 *
 859 * The slot in the extent buffer is returned via @slot. If the key exists in the
 860 * extent buffer, then @slot will point to the slot where the key is, otherwise
 861 * it points to the slot where you would insert the key.
 862 *
 863 * Slot may point to the total number of items (i.e. one position beyond the last
 864 * key) if the key is bigger than the last key in the extent buffer.
 865 */
 866static noinline int generic_bin_search(struct extent_buffer *eb, int low,
 867				       const struct btrfs_key *key, int *slot)
 868{
 869	unsigned long p;
 870	int item_size;
 871	int high = btrfs_header_nritems(eb);
 
 
 
 
 
 872	int ret;
 873	const int key_size = sizeof(struct btrfs_disk_key);
 874
 875	if (low > high) {
 876		btrfs_err(eb->fs_info,
 877		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 878			  __func__, low, high, eb->start,
 879			  btrfs_header_owner(eb), btrfs_header_level(eb));
 880		return -EINVAL;
 881	}
 882
 883	if (btrfs_header_level(eb) == 0) {
 884		p = offsetof(struct btrfs_leaf, items);
 885		item_size = sizeof(struct btrfs_item);
 886	} else {
 887		p = offsetof(struct btrfs_node, ptrs);
 888		item_size = sizeof(struct btrfs_key_ptr);
 889	}
 890
 891	while (low < high) {
 892		unsigned long oip;
 
 893		unsigned long offset;
 894		struct btrfs_disk_key *tmp;
 895		struct btrfs_disk_key unaligned;
 896		int mid;
 897
 898		mid = (low + high) / 2;
 899		offset = p + mid * item_size;
 900		oip = offset_in_page(offset);
 901
 902		if (oip + key_size <= PAGE_SIZE) {
 903			const unsigned long idx = get_eb_page_index(offset);
 904			char *kaddr = page_address(eb->pages[idx]);
 905
 906			oip = get_eb_offset_in_page(eb, offset);
 907			tmp = (struct btrfs_disk_key *)(kaddr + oip);
 908		} else {
 909			read_extent_buffer(eb, &unaligned, offset, key_size);
 910			tmp = &unaligned;
 911		}
 912
 913		ret = comp_keys(tmp, key);
 914
 915		if (ret < 0)
 916			low = mid + 1;
 917		else if (ret > 0)
 918			high = mid;
 919		else {
 920			*slot = mid;
 921			return 0;
 922		}
 923	}
 924	*slot = low;
 925	return 1;
 926}
 927
 928/*
 929 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
 930 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
 931 */
 932int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 933		     int *slot)
 934{
 935	return generic_bin_search(eb, 0, key, slot);
 936}
 937
 938static void root_add_used(struct btrfs_root *root, u32 size)
 939{
 940	spin_lock(&root->accounting_lock);
 941	btrfs_set_root_used(&root->root_item,
 942			    btrfs_root_used(&root->root_item) + size);
 943	spin_unlock(&root->accounting_lock);
 944}
 945
 946static void root_sub_used(struct btrfs_root *root, u32 size)
 947{
 948	spin_lock(&root->accounting_lock);
 949	btrfs_set_root_used(&root->root_item,
 950			    btrfs_root_used(&root->root_item) - size);
 951	spin_unlock(&root->accounting_lock);
 952}
 953
 954/* given a node and slot number, this reads the blocks it points to.  The
 955 * extent buffer is returned with a reference taken (but unlocked).
 956 */
 957struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 958					   int slot)
 959{
 960	int level = btrfs_header_level(parent);
 961	struct btrfs_tree_parent_check check = { 0 };
 962	struct extent_buffer *eb;
 963
 964	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 965		return ERR_PTR(-ENOENT);
 966
 967	BUG_ON(level == 0);
 968
 969	check.level = level - 1;
 970	check.transid = btrfs_node_ptr_generation(parent, slot);
 971	check.owner_root = btrfs_header_owner(parent);
 972	check.has_first_key = true;
 973	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 974
 975	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 976			     &check);
 977	if (IS_ERR(eb))
 978		return eb;
 979	if (!extent_buffer_uptodate(eb)) {
 980		free_extent_buffer(eb);
 981		return ERR_PTR(-EIO);
 982	}
 983
 984	return eb;
 985}
 986
 987/*
 988 * node level balancing, used to make sure nodes are in proper order for
 989 * item deletion.  We balance from the top down, so we have to make sure
 990 * that a deletion won't leave an node completely empty later on.
 991 */
 992static noinline int balance_level(struct btrfs_trans_handle *trans,
 993			 struct btrfs_root *root,
 994			 struct btrfs_path *path, int level)
 995{
 996	struct btrfs_fs_info *fs_info = root->fs_info;
 997	struct extent_buffer *right = NULL;
 998	struct extent_buffer *mid;
 999	struct extent_buffer *left = NULL;
1000	struct extent_buffer *parent = NULL;
1001	int ret = 0;
1002	int wret;
1003	int pslot;
1004	int orig_slot = path->slots[level];
1005	u64 orig_ptr;
1006
1007	ASSERT(level > 0);
1008
1009	mid = path->nodes[level];
1010
1011	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1012	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1013
1014	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1015
1016	if (level < BTRFS_MAX_LEVEL - 1) {
1017		parent = path->nodes[level + 1];
1018		pslot = path->slots[level + 1];
1019	}
1020
1021	/*
1022	 * deal with the case where there is only one pointer in the root
1023	 * by promoting the node below to a root
1024	 */
1025	if (!parent) {
1026		struct extent_buffer *child;
1027
1028		if (btrfs_header_nritems(mid) != 1)
1029			return 0;
1030
1031		/* promote the child to a root */
1032		child = btrfs_read_node_slot(mid, 0);
1033		if (IS_ERR(child)) {
1034			ret = PTR_ERR(child);
1035			btrfs_handle_fs_error(fs_info, ret, NULL);
1036			goto enospc;
1037		}
1038
1039		btrfs_tree_lock(child);
1040		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1041				      BTRFS_NESTING_COW);
1042		if (ret) {
1043			btrfs_tree_unlock(child);
1044			free_extent_buffer(child);
1045			goto enospc;
1046		}
1047
1048		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1049		BUG_ON(ret < 0);
 
 
 
 
 
1050		rcu_assign_pointer(root->node, child);
1051
1052		add_root_to_dirty_list(root);
1053		btrfs_tree_unlock(child);
1054
1055		path->locks[level] = 0;
1056		path->nodes[level] = NULL;
1057		btrfs_clean_tree_block(mid);
1058		btrfs_tree_unlock(mid);
1059		/* once for the path */
1060		free_extent_buffer(mid);
1061
1062		root_sub_used(root, mid->len);
1063		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1064		/* once for the root ptr */
1065		free_extent_buffer_stale(mid);
1066		return 0;
1067	}
1068	if (btrfs_header_nritems(mid) >
1069	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1070		return 0;
1071
1072	left = btrfs_read_node_slot(parent, pslot - 1);
1073	if (IS_ERR(left))
1074		left = NULL;
 
 
 
 
1075
1076	if (left) {
1077		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1078		wret = btrfs_cow_block(trans, root, left,
1079				       parent, pslot - 1, &left,
1080				       BTRFS_NESTING_LEFT_COW);
1081		if (wret) {
1082			ret = wret;
1083			goto enospc;
1084		}
1085	}
1086
1087	right = btrfs_read_node_slot(parent, pslot + 1);
1088	if (IS_ERR(right))
1089		right = NULL;
 
 
 
 
1090
1091	if (right) {
1092		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1093		wret = btrfs_cow_block(trans, root, right,
1094				       parent, pslot + 1, &right,
1095				       BTRFS_NESTING_RIGHT_COW);
1096		if (wret) {
1097			ret = wret;
1098			goto enospc;
1099		}
1100	}
1101
1102	/* first, try to make some room in the middle buffer */
1103	if (left) {
1104		orig_slot += btrfs_header_nritems(left);
1105		wret = push_node_left(trans, left, mid, 1);
1106		if (wret < 0)
1107			ret = wret;
1108	}
1109
1110	/*
1111	 * then try to empty the right most buffer into the middle
1112	 */
1113	if (right) {
1114		wret = push_node_left(trans, mid, right, 1);
1115		if (wret < 0 && wret != -ENOSPC)
1116			ret = wret;
1117		if (btrfs_header_nritems(right) == 0) {
1118			btrfs_clean_tree_block(right);
1119			btrfs_tree_unlock(right);
1120			del_ptr(root, path, level + 1, pslot + 1);
1121			root_sub_used(root, right->len);
 
 
 
 
 
1122			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1123					      0, 1);
1124			free_extent_buffer_stale(right);
1125			right = NULL;
1126		} else {
1127			struct btrfs_disk_key right_key;
1128			btrfs_node_key(right, &right_key, 0);
1129			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1130					BTRFS_MOD_LOG_KEY_REPLACE);
1131			BUG_ON(ret < 0);
 
 
 
1132			btrfs_set_node_key(parent, &right_key, pslot + 1);
1133			btrfs_mark_buffer_dirty(parent);
1134		}
1135	}
1136	if (btrfs_header_nritems(mid) == 1) {
1137		/*
1138		 * we're not allowed to leave a node with one item in the
1139		 * tree during a delete.  A deletion from lower in the tree
1140		 * could try to delete the only pointer in this node.
1141		 * So, pull some keys from the left.
1142		 * There has to be a left pointer at this point because
1143		 * otherwise we would have pulled some pointers from the
1144		 * right
1145		 */
1146		if (!left) {
1147			ret = -EROFS;
1148			btrfs_handle_fs_error(fs_info, ret, NULL);
1149			goto enospc;
 
 
 
 
1150		}
1151		wret = balance_node_right(trans, mid, left);
1152		if (wret < 0) {
1153			ret = wret;
1154			goto enospc;
1155		}
1156		if (wret == 1) {
1157			wret = push_node_left(trans, left, mid, 1);
1158			if (wret < 0)
1159				ret = wret;
1160		}
1161		BUG_ON(wret == 1);
1162	}
1163	if (btrfs_header_nritems(mid) == 0) {
1164		btrfs_clean_tree_block(mid);
1165		btrfs_tree_unlock(mid);
1166		del_ptr(root, path, level + 1, pslot);
1167		root_sub_used(root, mid->len);
 
 
 
 
 
1168		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1169		free_extent_buffer_stale(mid);
1170		mid = NULL;
1171	} else {
1172		/* update the parent key to reflect our changes */
1173		struct btrfs_disk_key mid_key;
1174		btrfs_node_key(mid, &mid_key, 0);
1175		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1176						    BTRFS_MOD_LOG_KEY_REPLACE);
1177		BUG_ON(ret < 0);
 
 
 
1178		btrfs_set_node_key(parent, &mid_key, pslot);
1179		btrfs_mark_buffer_dirty(parent);
1180	}
1181
1182	/* update the path */
1183	if (left) {
1184		if (btrfs_header_nritems(left) > orig_slot) {
1185			atomic_inc(&left->refs);
1186			/* left was locked after cow */
1187			path->nodes[level] = left;
1188			path->slots[level + 1] -= 1;
1189			path->slots[level] = orig_slot;
1190			if (mid) {
1191				btrfs_tree_unlock(mid);
1192				free_extent_buffer(mid);
1193			}
1194		} else {
1195			orig_slot -= btrfs_header_nritems(left);
1196			path->slots[level] = orig_slot;
1197		}
1198	}
1199	/* double check we haven't messed things up */
1200	if (orig_ptr !=
1201	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1202		BUG();
1203enospc:
1204	if (right) {
1205		btrfs_tree_unlock(right);
1206		free_extent_buffer(right);
1207	}
1208	if (left) {
1209		if (path->nodes[level] != left)
1210			btrfs_tree_unlock(left);
1211		free_extent_buffer(left);
1212	}
1213	return ret;
1214}
1215
1216/* Node balancing for insertion.  Here we only split or push nodes around
1217 * when they are completely full.  This is also done top down, so we
1218 * have to be pessimistic.
1219 */
1220static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1221					  struct btrfs_root *root,
1222					  struct btrfs_path *path, int level)
1223{
1224	struct btrfs_fs_info *fs_info = root->fs_info;
1225	struct extent_buffer *right = NULL;
1226	struct extent_buffer *mid;
1227	struct extent_buffer *left = NULL;
1228	struct extent_buffer *parent = NULL;
1229	int ret = 0;
1230	int wret;
1231	int pslot;
1232	int orig_slot = path->slots[level];
1233
1234	if (level == 0)
1235		return 1;
1236
1237	mid = path->nodes[level];
1238	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1239
1240	if (level < BTRFS_MAX_LEVEL - 1) {
1241		parent = path->nodes[level + 1];
1242		pslot = path->slots[level + 1];
1243	}
1244
1245	if (!parent)
1246		return 1;
1247
1248	left = btrfs_read_node_slot(parent, pslot - 1);
1249	if (IS_ERR(left))
1250		left = NULL;
1251
1252	/* first, try to make some room in the middle buffer */
1253	if (left) {
1254		u32 left_nr;
1255
 
 
 
 
1256		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1257
1258		left_nr = btrfs_header_nritems(left);
1259		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1260			wret = 1;
1261		} else {
1262			ret = btrfs_cow_block(trans, root, left, parent,
1263					      pslot - 1, &left,
1264					      BTRFS_NESTING_LEFT_COW);
1265			if (ret)
1266				wret = 1;
1267			else {
1268				wret = push_node_left(trans, left, mid, 0);
1269			}
1270		}
1271		if (wret < 0)
1272			ret = wret;
1273		if (wret == 0) {
1274			struct btrfs_disk_key disk_key;
1275			orig_slot += left_nr;
1276			btrfs_node_key(mid, &disk_key, 0);
1277			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1278					BTRFS_MOD_LOG_KEY_REPLACE);
1279			BUG_ON(ret < 0);
 
 
 
 
 
1280			btrfs_set_node_key(parent, &disk_key, pslot);
1281			btrfs_mark_buffer_dirty(parent);
1282			if (btrfs_header_nritems(left) > orig_slot) {
1283				path->nodes[level] = left;
1284				path->slots[level + 1] -= 1;
1285				path->slots[level] = orig_slot;
1286				btrfs_tree_unlock(mid);
1287				free_extent_buffer(mid);
1288			} else {
1289				orig_slot -=
1290					btrfs_header_nritems(left);
1291				path->slots[level] = orig_slot;
1292				btrfs_tree_unlock(left);
1293				free_extent_buffer(left);
1294			}
1295			return 0;
1296		}
1297		btrfs_tree_unlock(left);
1298		free_extent_buffer(left);
1299	}
1300	right = btrfs_read_node_slot(parent, pslot + 1);
1301	if (IS_ERR(right))
1302		right = NULL;
1303
1304	/*
1305	 * then try to empty the right most buffer into the middle
1306	 */
1307	if (right) {
1308		u32 right_nr;
1309
 
 
 
 
1310		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1311
1312		right_nr = btrfs_header_nritems(right);
1313		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1314			wret = 1;
1315		} else {
1316			ret = btrfs_cow_block(trans, root, right,
1317					      parent, pslot + 1,
1318					      &right, BTRFS_NESTING_RIGHT_COW);
1319			if (ret)
1320				wret = 1;
1321			else {
1322				wret = balance_node_right(trans, right, mid);
1323			}
1324		}
1325		if (wret < 0)
1326			ret = wret;
1327		if (wret == 0) {
1328			struct btrfs_disk_key disk_key;
1329
1330			btrfs_node_key(right, &disk_key, 0);
1331			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1332					BTRFS_MOD_LOG_KEY_REPLACE);
1333			BUG_ON(ret < 0);
 
 
 
 
 
1334			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1335			btrfs_mark_buffer_dirty(parent);
1336
1337			if (btrfs_header_nritems(mid) <= orig_slot) {
1338				path->nodes[level] = right;
1339				path->slots[level + 1] += 1;
1340				path->slots[level] = orig_slot -
1341					btrfs_header_nritems(mid);
1342				btrfs_tree_unlock(mid);
1343				free_extent_buffer(mid);
1344			} else {
1345				btrfs_tree_unlock(right);
1346				free_extent_buffer(right);
1347			}
1348			return 0;
1349		}
1350		btrfs_tree_unlock(right);
1351		free_extent_buffer(right);
1352	}
1353	return 1;
1354}
1355
1356/*
1357 * readahead one full node of leaves, finding things that are close
1358 * to the block in 'slot', and triggering ra on them.
1359 */
1360static void reada_for_search(struct btrfs_fs_info *fs_info,
1361			     struct btrfs_path *path,
1362			     int level, int slot, u64 objectid)
1363{
1364	struct extent_buffer *node;
1365	struct btrfs_disk_key disk_key;
1366	u32 nritems;
1367	u64 search;
1368	u64 target;
1369	u64 nread = 0;
1370	u64 nread_max;
1371	u32 nr;
1372	u32 blocksize;
1373	u32 nscan = 0;
1374
1375	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1376		return;
1377
1378	if (!path->nodes[level])
1379		return;
1380
1381	node = path->nodes[level];
1382
1383	/*
1384	 * Since the time between visiting leaves is much shorter than the time
1385	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1386	 * much IO at once (possibly random).
1387	 */
1388	if (path->reada == READA_FORWARD_ALWAYS) {
1389		if (level > 1)
1390			nread_max = node->fs_info->nodesize;
1391		else
1392			nread_max = SZ_128K;
1393	} else {
1394		nread_max = SZ_64K;
1395	}
1396
1397	search = btrfs_node_blockptr(node, slot);
1398	blocksize = fs_info->nodesize;
1399	if (path->reada != READA_FORWARD_ALWAYS) {
1400		struct extent_buffer *eb;
1401
1402		eb = find_extent_buffer(fs_info, search);
1403		if (eb) {
1404			free_extent_buffer(eb);
1405			return;
1406		}
1407	}
1408
1409	target = search;
1410
1411	nritems = btrfs_header_nritems(node);
1412	nr = slot;
1413
1414	while (1) {
1415		if (path->reada == READA_BACK) {
1416			if (nr == 0)
1417				break;
1418			nr--;
1419		} else if (path->reada == READA_FORWARD ||
1420			   path->reada == READA_FORWARD_ALWAYS) {
1421			nr++;
1422			if (nr >= nritems)
1423				break;
1424		}
1425		if (path->reada == READA_BACK && objectid) {
1426			btrfs_node_key(node, &disk_key, nr);
1427			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1428				break;
1429		}
1430		search = btrfs_node_blockptr(node, nr);
1431		if (path->reada == READA_FORWARD_ALWAYS ||
1432		    (search <= target && target - search <= 65536) ||
1433		    (search > target && search - target <= 65536)) {
1434			btrfs_readahead_node_child(node, nr);
1435			nread += blocksize;
1436		}
1437		nscan++;
1438		if (nread > nread_max || nscan > 32)
1439			break;
1440	}
1441}
1442
1443static noinline void reada_for_balance(struct btrfs_path *path, int level)
1444{
1445	struct extent_buffer *parent;
1446	int slot;
1447	int nritems;
1448
1449	parent = path->nodes[level + 1];
1450	if (!parent)
1451		return;
1452
1453	nritems = btrfs_header_nritems(parent);
1454	slot = path->slots[level + 1];
1455
1456	if (slot > 0)
1457		btrfs_readahead_node_child(parent, slot - 1);
1458	if (slot + 1 < nritems)
1459		btrfs_readahead_node_child(parent, slot + 1);
1460}
1461
1462
1463/*
1464 * when we walk down the tree, it is usually safe to unlock the higher layers
1465 * in the tree.  The exceptions are when our path goes through slot 0, because
1466 * operations on the tree might require changing key pointers higher up in the
1467 * tree.
1468 *
1469 * callers might also have set path->keep_locks, which tells this code to keep
1470 * the lock if the path points to the last slot in the block.  This is part of
1471 * walking through the tree, and selecting the next slot in the higher block.
1472 *
1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1474 * if lowest_unlock is 1, level 0 won't be unlocked
1475 */
1476static noinline void unlock_up(struct btrfs_path *path, int level,
1477			       int lowest_unlock, int min_write_lock_level,
1478			       int *write_lock_level)
1479{
1480	int i;
1481	int skip_level = level;
1482	bool check_skip = true;
1483
1484	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1485		if (!path->nodes[i])
1486			break;
1487		if (!path->locks[i])
1488			break;
1489
1490		if (check_skip) {
1491			if (path->slots[i] == 0) {
1492				skip_level = i + 1;
1493				continue;
1494			}
1495
1496			if (path->keep_locks) {
1497				u32 nritems;
1498
1499				nritems = btrfs_header_nritems(path->nodes[i]);
1500				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1501					skip_level = i + 1;
1502					continue;
1503				}
1504			}
1505		}
1506
1507		if (i >= lowest_unlock && i > skip_level) {
1508			check_skip = false;
1509			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1510			path->locks[i] = 0;
1511			if (write_lock_level &&
1512			    i > min_write_lock_level &&
1513			    i <= *write_lock_level) {
1514				*write_lock_level = i - 1;
1515			}
1516		}
1517	}
1518}
1519
1520/*
1521 * Helper function for btrfs_search_slot() and other functions that do a search
1522 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1523 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1524 * its pages from disk.
1525 *
1526 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1527 * whole btree search, starting again from the current root node.
1528 */
1529static int
1530read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1531		      struct extent_buffer **eb_ret, int level, int slot,
1532		      const struct btrfs_key *key)
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	struct btrfs_tree_parent_check check = { 0 };
1536	u64 blocknr;
1537	u64 gen;
1538	struct extent_buffer *tmp;
1539	int ret;
1540	int parent_level;
1541	bool unlock_up;
1542
1543	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1544	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1545	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1546	parent_level = btrfs_header_level(*eb_ret);
1547	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1548	check.has_first_key = true;
1549	check.level = parent_level - 1;
1550	check.transid = gen;
1551	check.owner_root = root->root_key.objectid;
1552
1553	/*
1554	 * If we need to read an extent buffer from disk and we are holding locks
1555	 * on upper level nodes, we unlock all the upper nodes before reading the
1556	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1557	 * restart the search. We don't release the lock on the current level
1558	 * because we need to walk this node to figure out which blocks to read.
1559	 */
1560	tmp = find_extent_buffer(fs_info, blocknr);
1561	if (tmp) {
1562		if (p->reada == READA_FORWARD_ALWAYS)
1563			reada_for_search(fs_info, p, level, slot, key->objectid);
1564
1565		/* first we do an atomic uptodate check */
1566		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1567			/*
1568			 * Do extra check for first_key, eb can be stale due to
1569			 * being cached, read from scrub, or have multiple
1570			 * parents (shared tree blocks).
1571			 */
1572			if (btrfs_verify_level_key(tmp,
1573					parent_level - 1, &check.first_key, gen)) {
1574				free_extent_buffer(tmp);
1575				return -EUCLEAN;
1576			}
1577			*eb_ret = tmp;
1578			return 0;
1579		}
1580
1581		if (p->nowait) {
1582			free_extent_buffer(tmp);
1583			return -EAGAIN;
1584		}
1585
1586		if (unlock_up)
1587			btrfs_unlock_up_safe(p, level + 1);
1588
1589		/* now we're allowed to do a blocking uptodate check */
1590		ret = btrfs_read_extent_buffer(tmp, &check);
1591		if (ret) {
1592			free_extent_buffer(tmp);
1593			btrfs_release_path(p);
1594			return -EIO;
1595		}
1596		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1597			free_extent_buffer(tmp);
1598			btrfs_release_path(p);
1599			return -EUCLEAN;
1600		}
1601
1602		if (unlock_up)
1603			ret = -EAGAIN;
1604
1605		goto out;
1606	} else if (p->nowait) {
1607		return -EAGAIN;
1608	}
1609
1610	if (unlock_up) {
1611		btrfs_unlock_up_safe(p, level + 1);
1612		ret = -EAGAIN;
1613	} else {
1614		ret = 0;
1615	}
1616
1617	if (p->reada != READA_NONE)
1618		reada_for_search(fs_info, p, level, slot, key->objectid);
1619
1620	tmp = read_tree_block(fs_info, blocknr, &check);
1621	if (IS_ERR(tmp)) {
1622		btrfs_release_path(p);
1623		return PTR_ERR(tmp);
1624	}
1625	/*
1626	 * If the read above didn't mark this buffer up to date,
1627	 * it will never end up being up to date.  Set ret to EIO now
1628	 * and give up so that our caller doesn't loop forever
1629	 * on our EAGAINs.
1630	 */
1631	if (!extent_buffer_uptodate(tmp))
1632		ret = -EIO;
1633
1634out:
1635	if (ret == 0) {
1636		*eb_ret = tmp;
1637	} else {
1638		free_extent_buffer(tmp);
1639		btrfs_release_path(p);
1640	}
1641
1642	return ret;
1643}
1644
1645/*
1646 * helper function for btrfs_search_slot.  This does all of the checks
1647 * for node-level blocks and does any balancing required based on
1648 * the ins_len.
1649 *
1650 * If no extra work was required, zero is returned.  If we had to
1651 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1652 * start over
1653 */
1654static int
1655setup_nodes_for_search(struct btrfs_trans_handle *trans,
1656		       struct btrfs_root *root, struct btrfs_path *p,
1657		       struct extent_buffer *b, int level, int ins_len,
1658		       int *write_lock_level)
1659{
1660	struct btrfs_fs_info *fs_info = root->fs_info;
1661	int ret = 0;
1662
1663	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1664	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1665
1666		if (*write_lock_level < level + 1) {
1667			*write_lock_level = level + 1;
1668			btrfs_release_path(p);
1669			return -EAGAIN;
1670		}
1671
1672		reada_for_balance(p, level);
1673		ret = split_node(trans, root, p, level);
1674
1675		b = p->nodes[level];
1676	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1677		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1678
1679		if (*write_lock_level < level + 1) {
1680			*write_lock_level = level + 1;
1681			btrfs_release_path(p);
1682			return -EAGAIN;
1683		}
1684
1685		reada_for_balance(p, level);
1686		ret = balance_level(trans, root, p, level);
1687		if (ret)
1688			return ret;
1689
1690		b = p->nodes[level];
1691		if (!b) {
1692			btrfs_release_path(p);
1693			return -EAGAIN;
1694		}
1695		BUG_ON(btrfs_header_nritems(b) == 1);
1696	}
1697	return ret;
1698}
1699
1700int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1701		u64 iobjectid, u64 ioff, u8 key_type,
1702		struct btrfs_key *found_key)
1703{
1704	int ret;
1705	struct btrfs_key key;
1706	struct extent_buffer *eb;
1707
1708	ASSERT(path);
1709	ASSERT(found_key);
1710
1711	key.type = key_type;
1712	key.objectid = iobjectid;
1713	key.offset = ioff;
1714
1715	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1716	if (ret < 0)
1717		return ret;
1718
1719	eb = path->nodes[0];
1720	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1721		ret = btrfs_next_leaf(fs_root, path);
1722		if (ret)
1723			return ret;
1724		eb = path->nodes[0];
1725	}
1726
1727	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1728	if (found_key->type != key.type ||
1729			found_key->objectid != key.objectid)
1730		return 1;
1731
1732	return 0;
1733}
1734
1735static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1736							struct btrfs_path *p,
1737							int write_lock_level)
1738{
1739	struct extent_buffer *b;
1740	int root_lock = 0;
1741	int level = 0;
1742
1743	if (p->search_commit_root) {
1744		b = root->commit_root;
1745		atomic_inc(&b->refs);
1746		level = btrfs_header_level(b);
1747		/*
1748		 * Ensure that all callers have set skip_locking when
1749		 * p->search_commit_root = 1.
1750		 */
1751		ASSERT(p->skip_locking == 1);
1752
1753		goto out;
1754	}
1755
1756	if (p->skip_locking) {
1757		b = btrfs_root_node(root);
1758		level = btrfs_header_level(b);
1759		goto out;
1760	}
1761
1762	/* We try very hard to do read locks on the root */
1763	root_lock = BTRFS_READ_LOCK;
1764
1765	/*
1766	 * If the level is set to maximum, we can skip trying to get the read
1767	 * lock.
1768	 */
1769	if (write_lock_level < BTRFS_MAX_LEVEL) {
1770		/*
1771		 * We don't know the level of the root node until we actually
1772		 * have it read locked
1773		 */
1774		if (p->nowait) {
1775			b = btrfs_try_read_lock_root_node(root);
1776			if (IS_ERR(b))
1777				return b;
1778		} else {
1779			b = btrfs_read_lock_root_node(root);
1780		}
1781		level = btrfs_header_level(b);
1782		if (level > write_lock_level)
1783			goto out;
1784
1785		/* Whoops, must trade for write lock */
1786		btrfs_tree_read_unlock(b);
1787		free_extent_buffer(b);
1788	}
1789
1790	b = btrfs_lock_root_node(root);
1791	root_lock = BTRFS_WRITE_LOCK;
1792
1793	/* The level might have changed, check again */
1794	level = btrfs_header_level(b);
1795
1796out:
1797	/*
1798	 * The root may have failed to write out at some point, and thus is no
1799	 * longer valid, return an error in this case.
1800	 */
1801	if (!extent_buffer_uptodate(b)) {
1802		if (root_lock)
1803			btrfs_tree_unlock_rw(b, root_lock);
1804		free_extent_buffer(b);
1805		return ERR_PTR(-EIO);
1806	}
1807
1808	p->nodes[level] = b;
1809	if (!p->skip_locking)
1810		p->locks[level] = root_lock;
1811	/*
1812	 * Callers are responsible for dropping b's references.
1813	 */
1814	return b;
1815}
1816
1817/*
1818 * Replace the extent buffer at the lowest level of the path with a cloned
1819 * version. The purpose is to be able to use it safely, after releasing the
1820 * commit root semaphore, even if relocation is happening in parallel, the
1821 * transaction used for relocation is committed and the extent buffer is
1822 * reallocated in the next transaction.
1823 *
1824 * This is used in a context where the caller does not prevent transaction
1825 * commits from happening, either by holding a transaction handle or holding
1826 * some lock, while it's doing searches through a commit root.
1827 * At the moment it's only used for send operations.
1828 */
1829static int finish_need_commit_sem_search(struct btrfs_path *path)
1830{
1831	const int i = path->lowest_level;
1832	const int slot = path->slots[i];
1833	struct extent_buffer *lowest = path->nodes[i];
1834	struct extent_buffer *clone;
1835
1836	ASSERT(path->need_commit_sem);
1837
1838	if (!lowest)
1839		return 0;
1840
1841	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1842
1843	clone = btrfs_clone_extent_buffer(lowest);
1844	if (!clone)
1845		return -ENOMEM;
1846
1847	btrfs_release_path(path);
1848	path->nodes[i] = clone;
1849	path->slots[i] = slot;
1850
1851	return 0;
1852}
1853
1854static inline int search_for_key_slot(struct extent_buffer *eb,
1855				      int search_low_slot,
1856				      const struct btrfs_key *key,
1857				      int prev_cmp,
1858				      int *slot)
1859{
1860	/*
1861	 * If a previous call to btrfs_bin_search() on a parent node returned an
1862	 * exact match (prev_cmp == 0), we can safely assume the target key will
1863	 * always be at slot 0 on lower levels, since each key pointer
1864	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1865	 * subtree it points to. Thus we can skip searching lower levels.
1866	 */
1867	if (prev_cmp == 0) {
1868		*slot = 0;
1869		return 0;
1870	}
1871
1872	return generic_bin_search(eb, search_low_slot, key, slot);
1873}
1874
1875static int search_leaf(struct btrfs_trans_handle *trans,
1876		       struct btrfs_root *root,
1877		       const struct btrfs_key *key,
1878		       struct btrfs_path *path,
1879		       int ins_len,
1880		       int prev_cmp)
1881{
1882	struct extent_buffer *leaf = path->nodes[0];
1883	int leaf_free_space = -1;
1884	int search_low_slot = 0;
1885	int ret;
1886	bool do_bin_search = true;
1887
1888	/*
1889	 * If we are doing an insertion, the leaf has enough free space and the
1890	 * destination slot for the key is not slot 0, then we can unlock our
1891	 * write lock on the parent, and any other upper nodes, before doing the
1892	 * binary search on the leaf (with search_for_key_slot()), allowing other
1893	 * tasks to lock the parent and any other upper nodes.
1894	 */
1895	if (ins_len > 0) {
1896		/*
1897		 * Cache the leaf free space, since we will need it later and it
1898		 * will not change until then.
1899		 */
1900		leaf_free_space = btrfs_leaf_free_space(leaf);
1901
1902		/*
1903		 * !path->locks[1] means we have a single node tree, the leaf is
1904		 * the root of the tree.
1905		 */
1906		if (path->locks[1] && leaf_free_space >= ins_len) {
1907			struct btrfs_disk_key first_key;
1908
1909			ASSERT(btrfs_header_nritems(leaf) > 0);
1910			btrfs_item_key(leaf, &first_key, 0);
1911
1912			/*
1913			 * Doing the extra comparison with the first key is cheap,
1914			 * taking into account that the first key is very likely
1915			 * already in a cache line because it immediately follows
1916			 * the extent buffer's header and we have recently accessed
1917			 * the header's level field.
1918			 */
1919			ret = comp_keys(&first_key, key);
1920			if (ret < 0) {
1921				/*
1922				 * The first key is smaller than the key we want
1923				 * to insert, so we are safe to unlock all upper
1924				 * nodes and we have to do the binary search.
1925				 *
1926				 * We do use btrfs_unlock_up_safe() and not
1927				 * unlock_up() because the later does not unlock
1928				 * nodes with a slot of 0 - we can safely unlock
1929				 * any node even if its slot is 0 since in this
1930				 * case the key does not end up at slot 0 of the
1931				 * leaf and there's no need to split the leaf.
1932				 */
1933				btrfs_unlock_up_safe(path, 1);
1934				search_low_slot = 1;
1935			} else {
1936				/*
1937				 * The first key is >= then the key we want to
1938				 * insert, so we can skip the binary search as
1939				 * the target key will be at slot 0.
1940				 *
1941				 * We can not unlock upper nodes when the key is
1942				 * less than the first key, because we will need
1943				 * to update the key at slot 0 of the parent node
1944				 * and possibly of other upper nodes too.
1945				 * If the key matches the first key, then we can
1946				 * unlock all the upper nodes, using
1947				 * btrfs_unlock_up_safe() instead of unlock_up()
1948				 * as stated above.
1949				 */
1950				if (ret == 0)
1951					btrfs_unlock_up_safe(path, 1);
1952				/*
1953				 * ret is already 0 or 1, matching the result of
1954				 * a btrfs_bin_search() call, so there is no need
1955				 * to adjust it.
1956				 */
1957				do_bin_search = false;
1958				path->slots[0] = 0;
1959			}
1960		}
1961	}
1962
1963	if (do_bin_search) {
1964		ret = search_for_key_slot(leaf, search_low_slot, key,
1965					  prev_cmp, &path->slots[0]);
1966		if (ret < 0)
1967			return ret;
1968	}
1969
1970	if (ins_len > 0) {
1971		/*
1972		 * Item key already exists. In this case, if we are allowed to
1973		 * insert the item (for example, in dir_item case, item key
1974		 * collision is allowed), it will be merged with the original
1975		 * item. Only the item size grows, no new btrfs item will be
1976		 * added. If search_for_extension is not set, ins_len already
1977		 * accounts the size btrfs_item, deduct it here so leaf space
1978		 * check will be correct.
1979		 */
1980		if (ret == 0 && !path->search_for_extension) {
1981			ASSERT(ins_len >= sizeof(struct btrfs_item));
1982			ins_len -= sizeof(struct btrfs_item);
1983		}
1984
1985		ASSERT(leaf_free_space >= 0);
1986
1987		if (leaf_free_space < ins_len) {
1988			int err;
1989
1990			err = split_leaf(trans, root, key, path, ins_len,
1991					 (ret == 0));
1992			ASSERT(err <= 0);
1993			if (WARN_ON(err > 0))
1994				err = -EUCLEAN;
1995			if (err)
1996				ret = err;
1997		}
1998	}
1999
2000	return ret;
2001}
2002
2003/*
2004 * btrfs_search_slot - look for a key in a tree and perform necessary
2005 * modifications to preserve tree invariants.
2006 *
2007 * @trans:	Handle of transaction, used when modifying the tree
2008 * @p:		Holds all btree nodes along the search path
2009 * @root:	The root node of the tree
2010 * @key:	The key we are looking for
2011 * @ins_len:	Indicates purpose of search:
2012 *              >0  for inserts it's size of item inserted (*)
2013 *              <0  for deletions
2014 *               0  for plain searches, not modifying the tree
2015 *
2016 *              (*) If size of item inserted doesn't include
2017 *              sizeof(struct btrfs_item), then p->search_for_extension must
2018 *              be set.
2019 * @cow:	boolean should CoW operations be performed. Must always be 1
2020 *		when modifying the tree.
2021 *
2022 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2023 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2024 *
2025 * If @key is found, 0 is returned and you can find the item in the leaf level
2026 * of the path (level 0)
2027 *
2028 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2029 * points to the slot where it should be inserted
2030 *
2031 * If an error is encountered while searching the tree a negative error number
2032 * is returned
2033 */
2034int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2035		      const struct btrfs_key *key, struct btrfs_path *p,
2036		      int ins_len, int cow)
2037{
2038	struct btrfs_fs_info *fs_info = root->fs_info;
2039	struct extent_buffer *b;
2040	int slot;
2041	int ret;
2042	int err;
2043	int level;
2044	int lowest_unlock = 1;
2045	/* everything at write_lock_level or lower must be write locked */
2046	int write_lock_level = 0;
2047	u8 lowest_level = 0;
2048	int min_write_lock_level;
2049	int prev_cmp;
2050
2051	might_sleep();
2052
2053	lowest_level = p->lowest_level;
2054	WARN_ON(lowest_level && ins_len > 0);
2055	WARN_ON(p->nodes[0] != NULL);
2056	BUG_ON(!cow && ins_len);
2057
2058	/*
2059	 * For now only allow nowait for read only operations.  There's no
2060	 * strict reason why we can't, we just only need it for reads so it's
2061	 * only implemented for reads.
2062	 */
2063	ASSERT(!p->nowait || !cow);
2064
2065	if (ins_len < 0) {
2066		lowest_unlock = 2;
2067
2068		/* when we are removing items, we might have to go up to level
2069		 * two as we update tree pointers  Make sure we keep write
2070		 * for those levels as well
2071		 */
2072		write_lock_level = 2;
2073	} else if (ins_len > 0) {
2074		/*
2075		 * for inserting items, make sure we have a write lock on
2076		 * level 1 so we can update keys
2077		 */
2078		write_lock_level = 1;
2079	}
2080
2081	if (!cow)
2082		write_lock_level = -1;
2083
2084	if (cow && (p->keep_locks || p->lowest_level))
2085		write_lock_level = BTRFS_MAX_LEVEL;
2086
2087	min_write_lock_level = write_lock_level;
2088
2089	if (p->need_commit_sem) {
2090		ASSERT(p->search_commit_root);
2091		if (p->nowait) {
2092			if (!down_read_trylock(&fs_info->commit_root_sem))
2093				return -EAGAIN;
2094		} else {
2095			down_read(&fs_info->commit_root_sem);
2096		}
2097	}
2098
2099again:
2100	prev_cmp = -1;
2101	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2102	if (IS_ERR(b)) {
2103		ret = PTR_ERR(b);
2104		goto done;
2105	}
2106
2107	while (b) {
2108		int dec = 0;
2109
2110		level = btrfs_header_level(b);
2111
2112		if (cow) {
2113			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2114
2115			/*
2116			 * if we don't really need to cow this block
2117			 * then we don't want to set the path blocking,
2118			 * so we test it here
2119			 */
2120			if (!should_cow_block(trans, root, b))
2121				goto cow_done;
2122
2123			/*
2124			 * must have write locks on this node and the
2125			 * parent
2126			 */
2127			if (level > write_lock_level ||
2128			    (level + 1 > write_lock_level &&
2129			    level + 1 < BTRFS_MAX_LEVEL &&
2130			    p->nodes[level + 1])) {
2131				write_lock_level = level + 1;
2132				btrfs_release_path(p);
2133				goto again;
2134			}
2135
2136			if (last_level)
2137				err = btrfs_cow_block(trans, root, b, NULL, 0,
2138						      &b,
2139						      BTRFS_NESTING_COW);
2140			else
2141				err = btrfs_cow_block(trans, root, b,
2142						      p->nodes[level + 1],
2143						      p->slots[level + 1], &b,
2144						      BTRFS_NESTING_COW);
2145			if (err) {
2146				ret = err;
2147				goto done;
2148			}
2149		}
2150cow_done:
2151		p->nodes[level] = b;
2152
2153		/*
2154		 * we have a lock on b and as long as we aren't changing
2155		 * the tree, there is no way to for the items in b to change.
2156		 * It is safe to drop the lock on our parent before we
2157		 * go through the expensive btree search on b.
2158		 *
2159		 * If we're inserting or deleting (ins_len != 0), then we might
2160		 * be changing slot zero, which may require changing the parent.
2161		 * So, we can't drop the lock until after we know which slot
2162		 * we're operating on.
2163		 */
2164		if (!ins_len && !p->keep_locks) {
2165			int u = level + 1;
2166
2167			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2168				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2169				p->locks[u] = 0;
2170			}
2171		}
2172
2173		if (level == 0) {
2174			if (ins_len > 0)
2175				ASSERT(write_lock_level >= 1);
2176
2177			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2178			if (!p->search_for_split)
2179				unlock_up(p, level, lowest_unlock,
2180					  min_write_lock_level, NULL);
2181			goto done;
2182		}
2183
2184		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2185		if (ret < 0)
2186			goto done;
2187		prev_cmp = ret;
2188
2189		if (ret && slot > 0) {
2190			dec = 1;
2191			slot--;
2192		}
2193		p->slots[level] = slot;
2194		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2195					     &write_lock_level);
2196		if (err == -EAGAIN)
2197			goto again;
2198		if (err) {
2199			ret = err;
2200			goto done;
2201		}
2202		b = p->nodes[level];
2203		slot = p->slots[level];
2204
2205		/*
2206		 * Slot 0 is special, if we change the key we have to update
2207		 * the parent pointer which means we must have a write lock on
2208		 * the parent
2209		 */
2210		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2211			write_lock_level = level + 1;
2212			btrfs_release_path(p);
2213			goto again;
2214		}
2215
2216		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2217			  &write_lock_level);
2218
2219		if (level == lowest_level) {
2220			if (dec)
2221				p->slots[level]++;
2222			goto done;
2223		}
2224
2225		err = read_block_for_search(root, p, &b, level, slot, key);
2226		if (err == -EAGAIN)
2227			goto again;
2228		if (err) {
2229			ret = err;
2230			goto done;
2231		}
2232
2233		if (!p->skip_locking) {
2234			level = btrfs_header_level(b);
2235
2236			btrfs_maybe_reset_lockdep_class(root, b);
2237
2238			if (level <= write_lock_level) {
2239				btrfs_tree_lock(b);
2240				p->locks[level] = BTRFS_WRITE_LOCK;
2241			} else {
2242				if (p->nowait) {
2243					if (!btrfs_try_tree_read_lock(b)) {
2244						free_extent_buffer(b);
2245						ret = -EAGAIN;
2246						goto done;
2247					}
2248				} else {
2249					btrfs_tree_read_lock(b);
2250				}
2251				p->locks[level] = BTRFS_READ_LOCK;
2252			}
2253			p->nodes[level] = b;
2254		}
2255	}
2256	ret = 1;
2257done:
2258	if (ret < 0 && !p->skip_release_on_error)
2259		btrfs_release_path(p);
2260
2261	if (p->need_commit_sem) {
2262		int ret2;
2263
2264		ret2 = finish_need_commit_sem_search(p);
2265		up_read(&fs_info->commit_root_sem);
2266		if (ret2)
2267			ret = ret2;
2268	}
2269
2270	return ret;
2271}
2272ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2273
2274/*
2275 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2276 * current state of the tree together with the operations recorded in the tree
2277 * modification log to search for the key in a previous version of this tree, as
2278 * denoted by the time_seq parameter.
2279 *
2280 * Naturally, there is no support for insert, delete or cow operations.
2281 *
2282 * The resulting path and return value will be set up as if we called
2283 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2284 */
2285int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2286			  struct btrfs_path *p, u64 time_seq)
2287{
2288	struct btrfs_fs_info *fs_info = root->fs_info;
2289	struct extent_buffer *b;
2290	int slot;
2291	int ret;
2292	int err;
2293	int level;
2294	int lowest_unlock = 1;
2295	u8 lowest_level = 0;
2296
2297	lowest_level = p->lowest_level;
2298	WARN_ON(p->nodes[0] != NULL);
2299	ASSERT(!p->nowait);
2300
2301	if (p->search_commit_root) {
2302		BUG_ON(time_seq);
2303		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2304	}
2305
2306again:
2307	b = btrfs_get_old_root(root, time_seq);
2308	if (!b) {
2309		ret = -EIO;
2310		goto done;
2311	}
2312	level = btrfs_header_level(b);
2313	p->locks[level] = BTRFS_READ_LOCK;
2314
2315	while (b) {
2316		int dec = 0;
2317
2318		level = btrfs_header_level(b);
2319		p->nodes[level] = b;
2320
2321		/*
2322		 * we have a lock on b and as long as we aren't changing
2323		 * the tree, there is no way to for the items in b to change.
2324		 * It is safe to drop the lock on our parent before we
2325		 * go through the expensive btree search on b.
2326		 */
2327		btrfs_unlock_up_safe(p, level + 1);
2328
2329		ret = btrfs_bin_search(b, key, &slot);
2330		if (ret < 0)
2331			goto done;
2332
2333		if (level == 0) {
2334			p->slots[level] = slot;
2335			unlock_up(p, level, lowest_unlock, 0, NULL);
2336			goto done;
2337		}
2338
2339		if (ret && slot > 0) {
2340			dec = 1;
2341			slot--;
2342		}
2343		p->slots[level] = slot;
2344		unlock_up(p, level, lowest_unlock, 0, NULL);
2345
2346		if (level == lowest_level) {
2347			if (dec)
2348				p->slots[level]++;
2349			goto done;
2350		}
2351
2352		err = read_block_for_search(root, p, &b, level, slot, key);
2353		if (err == -EAGAIN)
2354			goto again;
2355		if (err) {
2356			ret = err;
2357			goto done;
2358		}
2359
2360		level = btrfs_header_level(b);
2361		btrfs_tree_read_lock(b);
2362		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2363		if (!b) {
2364			ret = -ENOMEM;
2365			goto done;
2366		}
2367		p->locks[level] = BTRFS_READ_LOCK;
2368		p->nodes[level] = b;
2369	}
2370	ret = 1;
2371done:
2372	if (ret < 0)
2373		btrfs_release_path(p);
2374
2375	return ret;
2376}
2377
2378/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379 * helper to use instead of search slot if no exact match is needed but
2380 * instead the next or previous item should be returned.
2381 * When find_higher is true, the next higher item is returned, the next lower
2382 * otherwise.
2383 * When return_any and find_higher are both true, and no higher item is found,
2384 * return the next lower instead.
2385 * When return_any is true and find_higher is false, and no lower item is found,
2386 * return the next higher instead.
2387 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2388 * < 0 on error
2389 */
2390int btrfs_search_slot_for_read(struct btrfs_root *root,
2391			       const struct btrfs_key *key,
2392			       struct btrfs_path *p, int find_higher,
2393			       int return_any)
2394{
2395	int ret;
2396	struct extent_buffer *leaf;
2397
2398again:
2399	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2400	if (ret <= 0)
2401		return ret;
2402	/*
2403	 * a return value of 1 means the path is at the position where the
2404	 * item should be inserted. Normally this is the next bigger item,
2405	 * but in case the previous item is the last in a leaf, path points
2406	 * to the first free slot in the previous leaf, i.e. at an invalid
2407	 * item.
2408	 */
2409	leaf = p->nodes[0];
2410
2411	if (find_higher) {
2412		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2413			ret = btrfs_next_leaf(root, p);
2414			if (ret <= 0)
2415				return ret;
2416			if (!return_any)
2417				return 1;
2418			/*
2419			 * no higher item found, return the next
2420			 * lower instead
2421			 */
2422			return_any = 0;
2423			find_higher = 0;
2424			btrfs_release_path(p);
2425			goto again;
2426		}
2427	} else {
2428		if (p->slots[0] == 0) {
2429			ret = btrfs_prev_leaf(root, p);
2430			if (ret < 0)
2431				return ret;
2432			if (!ret) {
2433				leaf = p->nodes[0];
2434				if (p->slots[0] == btrfs_header_nritems(leaf))
2435					p->slots[0]--;
2436				return 0;
2437			}
2438			if (!return_any)
2439				return 1;
2440			/*
2441			 * no lower item found, return the next
2442			 * higher instead
2443			 */
2444			return_any = 0;
2445			find_higher = 1;
2446			btrfs_release_path(p);
2447			goto again;
2448		} else {
2449			--p->slots[0];
2450		}
2451	}
2452	return 0;
2453}
2454
2455/*
2456 * Execute search and call btrfs_previous_item to traverse backwards if the item
2457 * was not found.
2458 *
2459 * Return 0 if found, 1 if not found and < 0 if error.
2460 */
2461int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2462			   struct btrfs_path *path)
2463{
2464	int ret;
2465
2466	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2467	if (ret > 0)
2468		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2469
2470	if (ret == 0)
2471		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2472
2473	return ret;
2474}
2475
2476/*
2477 * Search for a valid slot for the given path.
2478 *
2479 * @root:	The root node of the tree.
2480 * @key:	Will contain a valid item if found.
2481 * @path:	The starting point to validate the slot.
2482 *
2483 * Return: 0  if the item is valid
2484 *         1  if not found
2485 *         <0 if error.
2486 */
2487int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2488			      struct btrfs_path *path)
2489{
2490	while (1) {
2491		int ret;
2492		const int slot = path->slots[0];
2493		const struct extent_buffer *leaf = path->nodes[0];
2494
2495		/* This is where we start walking the path. */
2496		if (slot >= btrfs_header_nritems(leaf)) {
2497			/*
2498			 * If we've reached the last slot in this leaf we need
2499			 * to go to the next leaf and reset the path.
2500			 */
2501			ret = btrfs_next_leaf(root, path);
2502			if (ret)
2503				return ret;
2504			continue;
2505		}
2506		/* Store the found, valid item in @key. */
2507		btrfs_item_key_to_cpu(leaf, key, slot);
2508		break;
2509	}
 
 
2510	return 0;
2511}
2512
2513/*
2514 * adjust the pointers going up the tree, starting at level
2515 * making sure the right key of each node is points to 'key'.
2516 * This is used after shifting pointers to the left, so it stops
2517 * fixing up pointers when a given leaf/node is not in slot 0 of the
2518 * higher levels
2519 *
2520 */
2521static void fixup_low_keys(struct btrfs_path *path,
 
2522			   struct btrfs_disk_key *key, int level)
2523{
2524	int i;
2525	struct extent_buffer *t;
2526	int ret;
2527
2528	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2529		int tslot = path->slots[i];
2530
2531		if (!path->nodes[i])
2532			break;
2533		t = path->nodes[i];
2534		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2535						    BTRFS_MOD_LOG_KEY_REPLACE);
2536		BUG_ON(ret < 0);
2537		btrfs_set_node_key(t, key, tslot);
2538		btrfs_mark_buffer_dirty(path->nodes[i]);
2539		if (tslot != 0)
2540			break;
2541	}
2542}
2543
2544/*
2545 * update item key.
2546 *
2547 * This function isn't completely safe. It's the caller's responsibility
2548 * that the new key won't break the order
2549 */
2550void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2551			     struct btrfs_path *path,
2552			     const struct btrfs_key *new_key)
2553{
 
2554	struct btrfs_disk_key disk_key;
2555	struct extent_buffer *eb;
2556	int slot;
2557
2558	eb = path->nodes[0];
2559	slot = path->slots[0];
2560	if (slot > 0) {
2561		btrfs_item_key(eb, &disk_key, slot - 1);
2562		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
 
2563			btrfs_crit(fs_info,
2564		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2565				   slot, btrfs_disk_key_objectid(&disk_key),
2566				   btrfs_disk_key_type(&disk_key),
2567				   btrfs_disk_key_offset(&disk_key),
2568				   new_key->objectid, new_key->type,
2569				   new_key->offset);
2570			btrfs_print_leaf(eb);
2571			BUG();
2572		}
2573	}
2574	if (slot < btrfs_header_nritems(eb) - 1) {
2575		btrfs_item_key(eb, &disk_key, slot + 1);
2576		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
 
2577			btrfs_crit(fs_info,
2578		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2579				   slot, btrfs_disk_key_objectid(&disk_key),
2580				   btrfs_disk_key_type(&disk_key),
2581				   btrfs_disk_key_offset(&disk_key),
2582				   new_key->objectid, new_key->type,
2583				   new_key->offset);
2584			btrfs_print_leaf(eb);
2585			BUG();
2586		}
2587	}
2588
2589	btrfs_cpu_key_to_disk(&disk_key, new_key);
2590	btrfs_set_item_key(eb, &disk_key, slot);
2591	btrfs_mark_buffer_dirty(eb);
2592	if (slot == 0)
2593		fixup_low_keys(path, &disk_key, 1);
2594}
2595
2596/*
2597 * Check key order of two sibling extent buffers.
2598 *
2599 * Return true if something is wrong.
2600 * Return false if everything is fine.
2601 *
2602 * Tree-checker only works inside one tree block, thus the following
2603 * corruption can not be detected by tree-checker:
2604 *
2605 * Leaf @left			| Leaf @right
2606 * --------------------------------------------------------------
2607 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2608 *
2609 * Key f6 in leaf @left itself is valid, but not valid when the next
2610 * key in leaf @right is 7.
2611 * This can only be checked at tree block merge time.
2612 * And since tree checker has ensured all key order in each tree block
2613 * is correct, we only need to bother the last key of @left and the first
2614 * key of @right.
2615 */
2616static bool check_sibling_keys(struct extent_buffer *left,
2617			       struct extent_buffer *right)
2618{
2619	struct btrfs_key left_last;
2620	struct btrfs_key right_first;
2621	int level = btrfs_header_level(left);
2622	int nr_left = btrfs_header_nritems(left);
2623	int nr_right = btrfs_header_nritems(right);
2624
2625	/* No key to check in one of the tree blocks */
2626	if (!nr_left || !nr_right)
2627		return false;
2628
2629	if (level) {
2630		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2631		btrfs_node_key_to_cpu(right, &right_first, 0);
2632	} else {
2633		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2634		btrfs_item_key_to_cpu(right, &right_first, 0);
2635	}
2636
2637	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
 
 
 
 
2638		btrfs_crit(left->fs_info,
2639"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2640			   left_last.objectid, left_last.type,
2641			   left_last.offset, right_first.objectid,
2642			   right_first.type, right_first.offset);
2643		return true;
2644	}
2645	return false;
2646}
2647
2648/*
2649 * try to push data from one node into the next node left in the
2650 * tree.
2651 *
2652 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2653 * error, and > 0 if there was no room in the left hand block.
2654 */
2655static int push_node_left(struct btrfs_trans_handle *trans,
2656			  struct extent_buffer *dst,
2657			  struct extent_buffer *src, int empty)
2658{
2659	struct btrfs_fs_info *fs_info = trans->fs_info;
2660	int push_items = 0;
2661	int src_nritems;
2662	int dst_nritems;
2663	int ret = 0;
2664
2665	src_nritems = btrfs_header_nritems(src);
2666	dst_nritems = btrfs_header_nritems(dst);
2667	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2668	WARN_ON(btrfs_header_generation(src) != trans->transid);
2669	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2670
2671	if (!empty && src_nritems <= 8)
2672		return 1;
2673
2674	if (push_items <= 0)
2675		return 1;
2676
2677	if (empty) {
2678		push_items = min(src_nritems, push_items);
2679		if (push_items < src_nritems) {
2680			/* leave at least 8 pointers in the node if
2681			 * we aren't going to empty it
2682			 */
2683			if (src_nritems - push_items < 8) {
2684				if (push_items <= 8)
2685					return 1;
2686				push_items -= 8;
2687			}
2688		}
2689	} else
2690		push_items = min(src_nritems - 8, push_items);
2691
2692	/* dst is the left eb, src is the middle eb */
2693	if (check_sibling_keys(dst, src)) {
2694		ret = -EUCLEAN;
2695		btrfs_abort_transaction(trans, ret);
2696		return ret;
2697	}
2698	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2699	if (ret) {
2700		btrfs_abort_transaction(trans, ret);
2701		return ret;
2702	}
2703	copy_extent_buffer(dst, src,
2704			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2705			   btrfs_node_key_ptr_offset(src, 0),
2706			   push_items * sizeof(struct btrfs_key_ptr));
2707
2708	if (push_items < src_nritems) {
2709		/*
2710		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2711		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2712		 */
2713		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2714				      btrfs_node_key_ptr_offset(src, push_items),
2715				      (src_nritems - push_items) *
2716				      sizeof(struct btrfs_key_ptr));
2717	}
2718	btrfs_set_header_nritems(src, src_nritems - push_items);
2719	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2720	btrfs_mark_buffer_dirty(src);
2721	btrfs_mark_buffer_dirty(dst);
2722
2723	return ret;
2724}
2725
2726/*
2727 * try to push data from one node into the next node right in the
2728 * tree.
2729 *
2730 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2731 * error, and > 0 if there was no room in the right hand block.
2732 *
2733 * this will  only push up to 1/2 the contents of the left node over
2734 */
2735static int balance_node_right(struct btrfs_trans_handle *trans,
2736			      struct extent_buffer *dst,
2737			      struct extent_buffer *src)
2738{
2739	struct btrfs_fs_info *fs_info = trans->fs_info;
2740	int push_items = 0;
2741	int max_push;
2742	int src_nritems;
2743	int dst_nritems;
2744	int ret = 0;
2745
2746	WARN_ON(btrfs_header_generation(src) != trans->transid);
2747	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2748
2749	src_nritems = btrfs_header_nritems(src);
2750	dst_nritems = btrfs_header_nritems(dst);
2751	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2752	if (push_items <= 0)
2753		return 1;
2754
2755	if (src_nritems < 4)
2756		return 1;
2757
2758	max_push = src_nritems / 2 + 1;
2759	/* don't try to empty the node */
2760	if (max_push >= src_nritems)
2761		return 1;
2762
2763	if (max_push < push_items)
2764		push_items = max_push;
2765
2766	/* dst is the right eb, src is the middle eb */
2767	if (check_sibling_keys(src, dst)) {
2768		ret = -EUCLEAN;
2769		btrfs_abort_transaction(trans, ret);
2770		return ret;
2771	}
2772	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2773	BUG_ON(ret < 0);
 
 
 
2774	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2775				      btrfs_node_key_ptr_offset(dst, 0),
2776				      (dst_nritems) *
2777				      sizeof(struct btrfs_key_ptr));
2778
2779	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2780					 push_items);
2781	if (ret) {
2782		btrfs_abort_transaction(trans, ret);
2783		return ret;
2784	}
2785	copy_extent_buffer(dst, src,
2786			   btrfs_node_key_ptr_offset(dst, 0),
2787			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2788			   push_items * sizeof(struct btrfs_key_ptr));
2789
2790	btrfs_set_header_nritems(src, src_nritems - push_items);
2791	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2792
2793	btrfs_mark_buffer_dirty(src);
2794	btrfs_mark_buffer_dirty(dst);
2795
2796	return ret;
2797}
2798
2799/*
2800 * helper function to insert a new root level in the tree.
2801 * A new node is allocated, and a single item is inserted to
2802 * point to the existing root
2803 *
2804 * returns zero on success or < 0 on failure.
2805 */
2806static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2807			   struct btrfs_root *root,
2808			   struct btrfs_path *path, int level)
2809{
2810	struct btrfs_fs_info *fs_info = root->fs_info;
2811	u64 lower_gen;
2812	struct extent_buffer *lower;
2813	struct extent_buffer *c;
2814	struct extent_buffer *old;
2815	struct btrfs_disk_key lower_key;
2816	int ret;
2817
2818	BUG_ON(path->nodes[level]);
2819	BUG_ON(path->nodes[level-1] != root->node);
2820
2821	lower = path->nodes[level-1];
2822	if (level == 1)
2823		btrfs_item_key(lower, &lower_key, 0);
2824	else
2825		btrfs_node_key(lower, &lower_key, 0);
2826
2827	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2828				   &lower_key, level, root->node->start, 0,
2829				   BTRFS_NESTING_NEW_ROOT);
2830	if (IS_ERR(c))
2831		return PTR_ERR(c);
2832
2833	root_add_used(root, fs_info->nodesize);
2834
2835	btrfs_set_header_nritems(c, 1);
2836	btrfs_set_node_key(c, &lower_key, 0);
2837	btrfs_set_node_blockptr(c, 0, lower->start);
2838	lower_gen = btrfs_header_generation(lower);
2839	WARN_ON(lower_gen != trans->transid);
2840
2841	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2842
2843	btrfs_mark_buffer_dirty(c);
2844
2845	old = root->node;
2846	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2847	BUG_ON(ret < 0);
 
 
 
 
 
2848	rcu_assign_pointer(root->node, c);
2849
2850	/* the super has an extra ref to root->node */
2851	free_extent_buffer(old);
2852
2853	add_root_to_dirty_list(root);
2854	atomic_inc(&c->refs);
2855	path->nodes[level] = c;
2856	path->locks[level] = BTRFS_WRITE_LOCK;
2857	path->slots[level] = 0;
2858	return 0;
2859}
2860
2861/*
2862 * worker function to insert a single pointer in a node.
2863 * the node should have enough room for the pointer already
2864 *
2865 * slot and level indicate where you want the key to go, and
2866 * blocknr is the block the key points to.
2867 */
2868static void insert_ptr(struct btrfs_trans_handle *trans,
2869		       struct btrfs_path *path,
2870		       struct btrfs_disk_key *key, u64 bytenr,
2871		       int slot, int level)
2872{
2873	struct extent_buffer *lower;
2874	int nritems;
2875	int ret;
2876
2877	BUG_ON(!path->nodes[level]);
2878	btrfs_assert_tree_write_locked(path->nodes[level]);
2879	lower = path->nodes[level];
2880	nritems = btrfs_header_nritems(lower);
2881	BUG_ON(slot > nritems);
2882	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2883	if (slot != nritems) {
2884		if (level) {
2885			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2886					slot, nritems - slot);
2887			BUG_ON(ret < 0);
 
 
 
2888		}
2889		memmove_extent_buffer(lower,
2890			      btrfs_node_key_ptr_offset(lower, slot + 1),
2891			      btrfs_node_key_ptr_offset(lower, slot),
2892			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2893	}
2894	if (level) {
2895		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2896						    BTRFS_MOD_LOG_KEY_ADD);
2897		BUG_ON(ret < 0);
 
 
 
2898	}
2899	btrfs_set_node_key(lower, key, slot);
2900	btrfs_set_node_blockptr(lower, slot, bytenr);
2901	WARN_ON(trans->transid == 0);
2902	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2903	btrfs_set_header_nritems(lower, nritems + 1);
2904	btrfs_mark_buffer_dirty(lower);
 
 
2905}
2906
2907/*
2908 * split the node at the specified level in path in two.
2909 * The path is corrected to point to the appropriate node after the split
2910 *
2911 * Before splitting this tries to make some room in the node by pushing
2912 * left and right, if either one works, it returns right away.
2913 *
2914 * returns 0 on success and < 0 on failure
2915 */
2916static noinline int split_node(struct btrfs_trans_handle *trans,
2917			       struct btrfs_root *root,
2918			       struct btrfs_path *path, int level)
2919{
2920	struct btrfs_fs_info *fs_info = root->fs_info;
2921	struct extent_buffer *c;
2922	struct extent_buffer *split;
2923	struct btrfs_disk_key disk_key;
2924	int mid;
2925	int ret;
2926	u32 c_nritems;
2927
2928	c = path->nodes[level];
2929	WARN_ON(btrfs_header_generation(c) != trans->transid);
2930	if (c == root->node) {
2931		/*
2932		 * trying to split the root, lets make a new one
2933		 *
2934		 * tree mod log: We don't log_removal old root in
2935		 * insert_new_root, because that root buffer will be kept as a
2936		 * normal node. We are going to log removal of half of the
2937		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2938		 * holding a tree lock on the buffer, which is why we cannot
2939		 * race with other tree_mod_log users.
2940		 */
2941		ret = insert_new_root(trans, root, path, level + 1);
2942		if (ret)
2943			return ret;
2944	} else {
2945		ret = push_nodes_for_insert(trans, root, path, level);
2946		c = path->nodes[level];
2947		if (!ret && btrfs_header_nritems(c) <
2948		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2949			return 0;
2950		if (ret < 0)
2951			return ret;
2952	}
2953
2954	c_nritems = btrfs_header_nritems(c);
2955	mid = (c_nritems + 1) / 2;
2956	btrfs_node_key(c, &disk_key, mid);
2957
2958	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2959				       &disk_key, level, c->start, 0,
2960				       BTRFS_NESTING_SPLIT);
2961	if (IS_ERR(split))
2962		return PTR_ERR(split);
2963
2964	root_add_used(root, fs_info->nodesize);
2965	ASSERT(btrfs_header_level(c) == level);
2966
2967	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2968	if (ret) {
 
 
2969		btrfs_abort_transaction(trans, ret);
2970		return ret;
2971	}
2972	copy_extent_buffer(split, c,
2973			   btrfs_node_key_ptr_offset(split, 0),
2974			   btrfs_node_key_ptr_offset(c, mid),
2975			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2976	btrfs_set_header_nritems(split, c_nritems - mid);
2977	btrfs_set_header_nritems(c, mid);
2978
2979	btrfs_mark_buffer_dirty(c);
2980	btrfs_mark_buffer_dirty(split);
2981
2982	insert_ptr(trans, path, &disk_key, split->start,
2983		   path->slots[level + 1] + 1, level + 1);
 
 
 
 
 
2984
2985	if (path->slots[level] >= mid) {
2986		path->slots[level] -= mid;
2987		btrfs_tree_unlock(c);
2988		free_extent_buffer(c);
2989		path->nodes[level] = split;
2990		path->slots[level + 1] += 1;
2991	} else {
2992		btrfs_tree_unlock(split);
2993		free_extent_buffer(split);
2994	}
2995	return 0;
2996}
2997
2998/*
2999 * how many bytes are required to store the items in a leaf.  start
3000 * and nr indicate which items in the leaf to check.  This totals up the
3001 * space used both by the item structs and the item data
3002 */
3003static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3004{
3005	int data_len;
3006	int nritems = btrfs_header_nritems(l);
3007	int end = min(nritems, start + nr) - 1;
3008
3009	if (!nr)
3010		return 0;
3011	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3012	data_len = data_len - btrfs_item_offset(l, end);
3013	data_len += sizeof(struct btrfs_item) * nr;
3014	WARN_ON(data_len < 0);
3015	return data_len;
3016}
3017
3018/*
3019 * The space between the end of the leaf items and
3020 * the start of the leaf data.  IOW, how much room
3021 * the leaf has left for both items and data
3022 */
3023noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3024{
3025	struct btrfs_fs_info *fs_info = leaf->fs_info;
3026	int nritems = btrfs_header_nritems(leaf);
3027	int ret;
3028
3029	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3030	if (ret < 0) {
3031		btrfs_crit(fs_info,
3032			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3033			   ret,
3034			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3035			   leaf_space_used(leaf, 0, nritems), nritems);
3036	}
3037	return ret;
3038}
3039
3040/*
3041 * min slot controls the lowest index we're willing to push to the
3042 * right.  We'll push up to and including min_slot, but no lower
3043 */
3044static noinline int __push_leaf_right(struct btrfs_path *path,
 
3045				      int data_size, int empty,
3046				      struct extent_buffer *right,
3047				      int free_space, u32 left_nritems,
3048				      u32 min_slot)
3049{
3050	struct btrfs_fs_info *fs_info = right->fs_info;
3051	struct extent_buffer *left = path->nodes[0];
3052	struct extent_buffer *upper = path->nodes[1];
3053	struct btrfs_map_token token;
3054	struct btrfs_disk_key disk_key;
3055	int slot;
3056	u32 i;
3057	int push_space = 0;
3058	int push_items = 0;
3059	u32 nr;
3060	u32 right_nritems;
3061	u32 data_end;
3062	u32 this_item_size;
3063
3064	if (empty)
3065		nr = 0;
3066	else
3067		nr = max_t(u32, 1, min_slot);
3068
3069	if (path->slots[0] >= left_nritems)
3070		push_space += data_size;
3071
3072	slot = path->slots[1];
3073	i = left_nritems - 1;
3074	while (i >= nr) {
3075		if (!empty && push_items > 0) {
3076			if (path->slots[0] > i)
3077				break;
3078			if (path->slots[0] == i) {
3079				int space = btrfs_leaf_free_space(left);
3080
3081				if (space + push_space * 2 > free_space)
3082					break;
3083			}
3084		}
3085
3086		if (path->slots[0] == i)
3087			push_space += data_size;
3088
3089		this_item_size = btrfs_item_size(left, i);
3090		if (this_item_size + sizeof(struct btrfs_item) +
3091		    push_space > free_space)
3092			break;
3093
3094		push_items++;
3095		push_space += this_item_size + sizeof(struct btrfs_item);
3096		if (i == 0)
3097			break;
3098		i--;
3099	}
3100
3101	if (push_items == 0)
3102		goto out_unlock;
3103
3104	WARN_ON(!empty && push_items == left_nritems);
3105
3106	/* push left to right */
3107	right_nritems = btrfs_header_nritems(right);
3108
3109	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3110	push_space -= leaf_data_end(left);
3111
3112	/* make room in the right data area */
3113	data_end = leaf_data_end(right);
3114	memmove_leaf_data(right, data_end - push_space, data_end,
3115			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3116
3117	/* copy from the left data area */
3118	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3119		       leaf_data_end(left), push_space);
3120
3121	memmove_leaf_items(right, push_items, 0, right_nritems);
3122
3123	/* copy the items from left to right */
3124	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3125
3126	/* update the item pointers */
3127	btrfs_init_map_token(&token, right);
3128	right_nritems += push_items;
3129	btrfs_set_header_nritems(right, right_nritems);
3130	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3131	for (i = 0; i < right_nritems; i++) {
3132		push_space -= btrfs_token_item_size(&token, i);
3133		btrfs_set_token_item_offset(&token, i, push_space);
3134	}
3135
3136	left_nritems -= push_items;
3137	btrfs_set_header_nritems(left, left_nritems);
3138
3139	if (left_nritems)
3140		btrfs_mark_buffer_dirty(left);
3141	else
3142		btrfs_clean_tree_block(left);
3143
3144	btrfs_mark_buffer_dirty(right);
3145
3146	btrfs_item_key(right, &disk_key, 0);
3147	btrfs_set_node_key(upper, &disk_key, slot + 1);
3148	btrfs_mark_buffer_dirty(upper);
3149
3150	/* then fixup the leaf pointer in the path */
3151	if (path->slots[0] >= left_nritems) {
3152		path->slots[0] -= left_nritems;
3153		if (btrfs_header_nritems(path->nodes[0]) == 0)
3154			btrfs_clean_tree_block(path->nodes[0]);
3155		btrfs_tree_unlock(path->nodes[0]);
3156		free_extent_buffer(path->nodes[0]);
3157		path->nodes[0] = right;
3158		path->slots[1] += 1;
3159	} else {
3160		btrfs_tree_unlock(right);
3161		free_extent_buffer(right);
3162	}
3163	return 0;
3164
3165out_unlock:
3166	btrfs_tree_unlock(right);
3167	free_extent_buffer(right);
3168	return 1;
3169}
3170
3171/*
3172 * push some data in the path leaf to the right, trying to free up at
3173 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3174 *
3175 * returns 1 if the push failed because the other node didn't have enough
3176 * room, 0 if everything worked out and < 0 if there were major errors.
3177 *
3178 * this will push starting from min_slot to the end of the leaf.  It won't
3179 * push any slot lower than min_slot
3180 */
3181static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3182			   *root, struct btrfs_path *path,
3183			   int min_data_size, int data_size,
3184			   int empty, u32 min_slot)
3185{
3186	struct extent_buffer *left = path->nodes[0];
3187	struct extent_buffer *right;
3188	struct extent_buffer *upper;
3189	int slot;
3190	int free_space;
3191	u32 left_nritems;
3192	int ret;
3193
3194	if (!path->nodes[1])
3195		return 1;
3196
3197	slot = path->slots[1];
3198	upper = path->nodes[1];
3199	if (slot >= btrfs_header_nritems(upper) - 1)
3200		return 1;
3201
3202	btrfs_assert_tree_write_locked(path->nodes[1]);
3203
3204	right = btrfs_read_node_slot(upper, slot + 1);
3205	/*
3206	 * slot + 1 is not valid or we fail to read the right node,
3207	 * no big deal, just return.
3208	 */
3209	if (IS_ERR(right))
3210		return 1;
3211
3212	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3213
3214	free_space = btrfs_leaf_free_space(right);
3215	if (free_space < data_size)
3216		goto out_unlock;
3217
3218	ret = btrfs_cow_block(trans, root, right, upper,
3219			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3220	if (ret)
3221		goto out_unlock;
3222
3223	left_nritems = btrfs_header_nritems(left);
3224	if (left_nritems == 0)
3225		goto out_unlock;
3226
3227	if (check_sibling_keys(left, right)) {
3228		ret = -EUCLEAN;
 
3229		btrfs_tree_unlock(right);
3230		free_extent_buffer(right);
3231		return ret;
3232	}
3233	if (path->slots[0] == left_nritems && !empty) {
3234		/* Key greater than all keys in the leaf, right neighbor has
3235		 * enough room for it and we're not emptying our leaf to delete
3236		 * it, therefore use right neighbor to insert the new item and
3237		 * no need to touch/dirty our left leaf. */
3238		btrfs_tree_unlock(left);
3239		free_extent_buffer(left);
3240		path->nodes[0] = right;
3241		path->slots[0] = 0;
3242		path->slots[1]++;
3243		return 0;
3244	}
3245
3246	return __push_leaf_right(path, min_data_size, empty,
3247				right, free_space, left_nritems, min_slot);
3248out_unlock:
3249	btrfs_tree_unlock(right);
3250	free_extent_buffer(right);
3251	return 1;
3252}
3253
3254/*
3255 * push some data in the path leaf to the left, trying to free up at
3256 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3257 *
3258 * max_slot can put a limit on how far into the leaf we'll push items.  The
3259 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3260 * items
3261 */
3262static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
3263				     int empty, struct extent_buffer *left,
3264				     int free_space, u32 right_nritems,
3265				     u32 max_slot)
3266{
3267	struct btrfs_fs_info *fs_info = left->fs_info;
3268	struct btrfs_disk_key disk_key;
3269	struct extent_buffer *right = path->nodes[0];
3270	int i;
3271	int push_space = 0;
3272	int push_items = 0;
3273	u32 old_left_nritems;
3274	u32 nr;
3275	int ret = 0;
3276	u32 this_item_size;
3277	u32 old_left_item_size;
3278	struct btrfs_map_token token;
3279
3280	if (empty)
3281		nr = min(right_nritems, max_slot);
3282	else
3283		nr = min(right_nritems - 1, max_slot);
3284
3285	for (i = 0; i < nr; i++) {
3286		if (!empty && push_items > 0) {
3287			if (path->slots[0] < i)
3288				break;
3289			if (path->slots[0] == i) {
3290				int space = btrfs_leaf_free_space(right);
3291
3292				if (space + push_space * 2 > free_space)
3293					break;
3294			}
3295		}
3296
3297		if (path->slots[0] == i)
3298			push_space += data_size;
3299
3300		this_item_size = btrfs_item_size(right, i);
3301		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3302		    free_space)
3303			break;
3304
3305		push_items++;
3306		push_space += this_item_size + sizeof(struct btrfs_item);
3307	}
3308
3309	if (push_items == 0) {
3310		ret = 1;
3311		goto out;
3312	}
3313	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3314
3315	/* push data from right to left */
3316	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3317
3318	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3319		     btrfs_item_offset(right, push_items - 1);
3320
3321	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3322		       btrfs_item_offset(right, push_items - 1), push_space);
3323	old_left_nritems = btrfs_header_nritems(left);
3324	BUG_ON(old_left_nritems <= 0);
3325
3326	btrfs_init_map_token(&token, left);
3327	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3328	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3329		u32 ioff;
3330
3331		ioff = btrfs_token_item_offset(&token, i);
3332		btrfs_set_token_item_offset(&token, i,
3333		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3334	}
3335	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3336
3337	/* fixup right node */
3338	if (push_items > right_nritems)
3339		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3340		       right_nritems);
3341
3342	if (push_items < right_nritems) {
3343		push_space = btrfs_item_offset(right, push_items - 1) -
3344						  leaf_data_end(right);
3345		memmove_leaf_data(right,
3346				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3347				  leaf_data_end(right), push_space);
3348
3349		memmove_leaf_items(right, 0, push_items,
3350				   btrfs_header_nritems(right) - push_items);
3351	}
3352
3353	btrfs_init_map_token(&token, right);
3354	right_nritems -= push_items;
3355	btrfs_set_header_nritems(right, right_nritems);
3356	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3357	for (i = 0; i < right_nritems; i++) {
3358		push_space = push_space - btrfs_token_item_size(&token, i);
3359		btrfs_set_token_item_offset(&token, i, push_space);
3360	}
3361
3362	btrfs_mark_buffer_dirty(left);
3363	if (right_nritems)
3364		btrfs_mark_buffer_dirty(right);
3365	else
3366		btrfs_clean_tree_block(right);
3367
3368	btrfs_item_key(right, &disk_key, 0);
3369	fixup_low_keys(path, &disk_key, 1);
3370
3371	/* then fixup the leaf pointer in the path */
3372	if (path->slots[0] < push_items) {
3373		path->slots[0] += old_left_nritems;
3374		btrfs_tree_unlock(path->nodes[0]);
3375		free_extent_buffer(path->nodes[0]);
3376		path->nodes[0] = left;
3377		path->slots[1] -= 1;
3378	} else {
3379		btrfs_tree_unlock(left);
3380		free_extent_buffer(left);
3381		path->slots[0] -= push_items;
3382	}
3383	BUG_ON(path->slots[0] < 0);
3384	return ret;
3385out:
3386	btrfs_tree_unlock(left);
3387	free_extent_buffer(left);
3388	return ret;
3389}
3390
3391/*
3392 * push some data in the path leaf to the left, trying to free up at
3393 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3394 *
3395 * max_slot can put a limit on how far into the leaf we'll push items.  The
3396 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3397 * items
3398 */
3399static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3400			  *root, struct btrfs_path *path, int min_data_size,
3401			  int data_size, int empty, u32 max_slot)
3402{
3403	struct extent_buffer *right = path->nodes[0];
3404	struct extent_buffer *left;
3405	int slot;
3406	int free_space;
3407	u32 right_nritems;
3408	int ret = 0;
3409
3410	slot = path->slots[1];
3411	if (slot == 0)
3412		return 1;
3413	if (!path->nodes[1])
3414		return 1;
3415
3416	right_nritems = btrfs_header_nritems(right);
3417	if (right_nritems == 0)
3418		return 1;
3419
3420	btrfs_assert_tree_write_locked(path->nodes[1]);
3421
3422	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3423	/*
3424	 * slot - 1 is not valid or we fail to read the left node,
3425	 * no big deal, just return.
3426	 */
3427	if (IS_ERR(left))
3428		return 1;
3429
3430	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3431
3432	free_space = btrfs_leaf_free_space(left);
3433	if (free_space < data_size) {
3434		ret = 1;
3435		goto out;
3436	}
3437
3438	ret = btrfs_cow_block(trans, root, left,
3439			      path->nodes[1], slot - 1, &left,
3440			      BTRFS_NESTING_LEFT_COW);
3441	if (ret) {
3442		/* we hit -ENOSPC, but it isn't fatal here */
3443		if (ret == -ENOSPC)
3444			ret = 1;
3445		goto out;
3446	}
3447
3448	if (check_sibling_keys(left, right)) {
3449		ret = -EUCLEAN;
 
3450		goto out;
3451	}
3452	return __push_leaf_left(path, min_data_size,
3453			       empty, left, free_space, right_nritems,
3454			       max_slot);
3455out:
3456	btrfs_tree_unlock(left);
3457	free_extent_buffer(left);
3458	return ret;
3459}
3460
3461/*
3462 * split the path's leaf in two, making sure there is at least data_size
3463 * available for the resulting leaf level of the path.
3464 */
3465static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3466				    struct btrfs_path *path,
3467				    struct extent_buffer *l,
3468				    struct extent_buffer *right,
3469				    int slot, int mid, int nritems)
3470{
3471	struct btrfs_fs_info *fs_info = trans->fs_info;
3472	int data_copy_size;
3473	int rt_data_off;
3474	int i;
 
3475	struct btrfs_disk_key disk_key;
3476	struct btrfs_map_token token;
3477
3478	nritems = nritems - mid;
3479	btrfs_set_header_nritems(right, nritems);
3480	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3481
3482	copy_leaf_items(right, l, 0, mid, nritems);
3483
3484	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3485		       leaf_data_end(l), data_copy_size);
3486
3487	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3488
3489	btrfs_init_map_token(&token, right);
3490	for (i = 0; i < nritems; i++) {
3491		u32 ioff;
3492
3493		ioff = btrfs_token_item_offset(&token, i);
3494		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3495	}
3496
3497	btrfs_set_header_nritems(l, mid);
3498	btrfs_item_key(right, &disk_key, 0);
3499	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
 
3500
3501	btrfs_mark_buffer_dirty(right);
3502	btrfs_mark_buffer_dirty(l);
3503	BUG_ON(path->slots[0] != slot);
3504
3505	if (mid <= slot) {
3506		btrfs_tree_unlock(path->nodes[0]);
3507		free_extent_buffer(path->nodes[0]);
3508		path->nodes[0] = right;
3509		path->slots[0] -= mid;
3510		path->slots[1] += 1;
3511	} else {
3512		btrfs_tree_unlock(right);
3513		free_extent_buffer(right);
3514	}
3515
3516	BUG_ON(path->slots[0] < 0);
 
 
3517}
3518
3519/*
3520 * double splits happen when we need to insert a big item in the middle
3521 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3522 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3523 *          A                 B                 C
3524 *
3525 * We avoid this by trying to push the items on either side of our target
3526 * into the adjacent leaves.  If all goes well we can avoid the double split
3527 * completely.
3528 */
3529static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3530					  struct btrfs_root *root,
3531					  struct btrfs_path *path,
3532					  int data_size)
3533{
3534	int ret;
3535	int progress = 0;
3536	int slot;
3537	u32 nritems;
3538	int space_needed = data_size;
3539
3540	slot = path->slots[0];
3541	if (slot < btrfs_header_nritems(path->nodes[0]))
3542		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3543
3544	/*
3545	 * try to push all the items after our slot into the
3546	 * right leaf
3547	 */
3548	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3549	if (ret < 0)
3550		return ret;
3551
3552	if (ret == 0)
3553		progress++;
3554
3555	nritems = btrfs_header_nritems(path->nodes[0]);
3556	/*
3557	 * our goal is to get our slot at the start or end of a leaf.  If
3558	 * we've done so we're done
3559	 */
3560	if (path->slots[0] == 0 || path->slots[0] == nritems)
3561		return 0;
3562
3563	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3564		return 0;
3565
3566	/* try to push all the items before our slot into the next leaf */
3567	slot = path->slots[0];
3568	space_needed = data_size;
3569	if (slot > 0)
3570		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3571	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3572	if (ret < 0)
3573		return ret;
3574
3575	if (ret == 0)
3576		progress++;
3577
3578	if (progress)
3579		return 0;
3580	return 1;
3581}
3582
3583/*
3584 * split the path's leaf in two, making sure there is at least data_size
3585 * available for the resulting leaf level of the path.
3586 *
3587 * returns 0 if all went well and < 0 on failure.
3588 */
3589static noinline int split_leaf(struct btrfs_trans_handle *trans,
3590			       struct btrfs_root *root,
3591			       const struct btrfs_key *ins_key,
3592			       struct btrfs_path *path, int data_size,
3593			       int extend)
3594{
3595	struct btrfs_disk_key disk_key;
3596	struct extent_buffer *l;
3597	u32 nritems;
3598	int mid;
3599	int slot;
3600	struct extent_buffer *right;
3601	struct btrfs_fs_info *fs_info = root->fs_info;
3602	int ret = 0;
3603	int wret;
3604	int split;
3605	int num_doubles = 0;
3606	int tried_avoid_double = 0;
3607
3608	l = path->nodes[0];
3609	slot = path->slots[0];
3610	if (extend && data_size + btrfs_item_size(l, slot) +
3611	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3612		return -EOVERFLOW;
3613
3614	/* first try to make some room by pushing left and right */
3615	if (data_size && path->nodes[1]) {
3616		int space_needed = data_size;
3617
3618		if (slot < btrfs_header_nritems(l))
3619			space_needed -= btrfs_leaf_free_space(l);
3620
3621		wret = push_leaf_right(trans, root, path, space_needed,
3622				       space_needed, 0, 0);
3623		if (wret < 0)
3624			return wret;
3625		if (wret) {
3626			space_needed = data_size;
3627			if (slot > 0)
3628				space_needed -= btrfs_leaf_free_space(l);
3629			wret = push_leaf_left(trans, root, path, space_needed,
3630					      space_needed, 0, (u32)-1);
3631			if (wret < 0)
3632				return wret;
3633		}
3634		l = path->nodes[0];
3635
3636		/* did the pushes work? */
3637		if (btrfs_leaf_free_space(l) >= data_size)
3638			return 0;
3639	}
3640
3641	if (!path->nodes[1]) {
3642		ret = insert_new_root(trans, root, path, 1);
3643		if (ret)
3644			return ret;
3645	}
3646again:
3647	split = 1;
3648	l = path->nodes[0];
3649	slot = path->slots[0];
3650	nritems = btrfs_header_nritems(l);
3651	mid = (nritems + 1) / 2;
3652
3653	if (mid <= slot) {
3654		if (nritems == 1 ||
3655		    leaf_space_used(l, mid, nritems - mid) + data_size >
3656			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3657			if (slot >= nritems) {
3658				split = 0;
3659			} else {
3660				mid = slot;
3661				if (mid != nritems &&
3662				    leaf_space_used(l, mid, nritems - mid) +
3663				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664					if (data_size && !tried_avoid_double)
3665						goto push_for_double;
3666					split = 2;
3667				}
3668			}
3669		}
3670	} else {
3671		if (leaf_space_used(l, 0, mid) + data_size >
3672			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673			if (!extend && data_size && slot == 0) {
3674				split = 0;
3675			} else if ((extend || !data_size) && slot == 0) {
3676				mid = 1;
3677			} else {
3678				mid = slot;
3679				if (mid != nritems &&
3680				    leaf_space_used(l, mid, nritems - mid) +
3681				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3682					if (data_size && !tried_avoid_double)
3683						goto push_for_double;
3684					split = 2;
3685				}
3686			}
3687		}
3688	}
3689
3690	if (split == 0)
3691		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3692	else
3693		btrfs_item_key(l, &disk_key, mid);
3694
3695	/*
3696	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3697	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3698	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3699	 * out.  In the future we could add a
3700	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3701	 * use BTRFS_NESTING_NEW_ROOT.
3702	 */
3703	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3704				       &disk_key, 0, l->start, 0,
3705				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3706				       BTRFS_NESTING_SPLIT);
3707	if (IS_ERR(right))
3708		return PTR_ERR(right);
3709
3710	root_add_used(root, fs_info->nodesize);
3711
3712	if (split == 0) {
3713		if (mid <= slot) {
3714			btrfs_set_header_nritems(right, 0);
3715			insert_ptr(trans, path, &disk_key,
3716				   right->start, path->slots[1] + 1, 1);
 
 
 
 
 
3717			btrfs_tree_unlock(path->nodes[0]);
3718			free_extent_buffer(path->nodes[0]);
3719			path->nodes[0] = right;
3720			path->slots[0] = 0;
3721			path->slots[1] += 1;
3722		} else {
3723			btrfs_set_header_nritems(right, 0);
3724			insert_ptr(trans, path, &disk_key,
3725				   right->start, path->slots[1], 1);
 
 
 
 
 
3726			btrfs_tree_unlock(path->nodes[0]);
3727			free_extent_buffer(path->nodes[0]);
3728			path->nodes[0] = right;
3729			path->slots[0] = 0;
3730			if (path->slots[1] == 0)
3731				fixup_low_keys(path, &disk_key, 1);
3732		}
3733		/*
3734		 * We create a new leaf 'right' for the required ins_len and
3735		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3736		 * the content of ins_len to 'right'.
3737		 */
3738		return ret;
3739	}
3740
3741	copy_for_split(trans, path, l, right, slot, mid, nritems);
 
 
 
 
 
3742
3743	if (split == 2) {
3744		BUG_ON(num_doubles != 0);
3745		num_doubles++;
3746		goto again;
3747	}
3748
3749	return 0;
3750
3751push_for_double:
3752	push_for_double_split(trans, root, path, data_size);
3753	tried_avoid_double = 1;
3754	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3755		return 0;
3756	goto again;
3757}
3758
3759static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3760					 struct btrfs_root *root,
3761					 struct btrfs_path *path, int ins_len)
3762{
3763	struct btrfs_key key;
3764	struct extent_buffer *leaf;
3765	struct btrfs_file_extent_item *fi;
3766	u64 extent_len = 0;
3767	u32 item_size;
3768	int ret;
3769
3770	leaf = path->nodes[0];
3771	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3772
3773	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3774	       key.type != BTRFS_EXTENT_CSUM_KEY);
3775
3776	if (btrfs_leaf_free_space(leaf) >= ins_len)
3777		return 0;
3778
3779	item_size = btrfs_item_size(leaf, path->slots[0]);
3780	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3781		fi = btrfs_item_ptr(leaf, path->slots[0],
3782				    struct btrfs_file_extent_item);
3783		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3784	}
3785	btrfs_release_path(path);
3786
3787	path->keep_locks = 1;
3788	path->search_for_split = 1;
3789	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3790	path->search_for_split = 0;
3791	if (ret > 0)
3792		ret = -EAGAIN;
3793	if (ret < 0)
3794		goto err;
3795
3796	ret = -EAGAIN;
3797	leaf = path->nodes[0];
3798	/* if our item isn't there, return now */
3799	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3800		goto err;
3801
3802	/* the leaf has  changed, it now has room.  return now */
3803	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3804		goto err;
3805
3806	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3807		fi = btrfs_item_ptr(leaf, path->slots[0],
3808				    struct btrfs_file_extent_item);
3809		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3810			goto err;
3811	}
3812
3813	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3814	if (ret)
3815		goto err;
3816
3817	path->keep_locks = 0;
3818	btrfs_unlock_up_safe(path, 1);
3819	return 0;
3820err:
3821	path->keep_locks = 0;
3822	return ret;
3823}
3824
3825static noinline int split_item(struct btrfs_path *path,
 
3826			       const struct btrfs_key *new_key,
3827			       unsigned long split_offset)
3828{
3829	struct extent_buffer *leaf;
3830	int orig_slot, slot;
3831	char *buf;
3832	u32 nritems;
3833	u32 item_size;
3834	u32 orig_offset;
3835	struct btrfs_disk_key disk_key;
3836
3837	leaf = path->nodes[0];
3838	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
 
 
 
 
 
3839
3840	orig_slot = path->slots[0];
3841	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3842	item_size = btrfs_item_size(leaf, path->slots[0]);
3843
3844	buf = kmalloc(item_size, GFP_NOFS);
3845	if (!buf)
3846		return -ENOMEM;
3847
3848	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3849			    path->slots[0]), item_size);
3850
3851	slot = path->slots[0] + 1;
3852	nritems = btrfs_header_nritems(leaf);
3853	if (slot != nritems) {
3854		/* shift the items */
3855		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3856	}
3857
3858	btrfs_cpu_key_to_disk(&disk_key, new_key);
3859	btrfs_set_item_key(leaf, &disk_key, slot);
3860
3861	btrfs_set_item_offset(leaf, slot, orig_offset);
3862	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3863
3864	btrfs_set_item_offset(leaf, orig_slot,
3865				 orig_offset + item_size - split_offset);
3866	btrfs_set_item_size(leaf, orig_slot, split_offset);
3867
3868	btrfs_set_header_nritems(leaf, nritems + 1);
3869
3870	/* write the data for the start of the original item */
3871	write_extent_buffer(leaf, buf,
3872			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3873			    split_offset);
3874
3875	/* write the data for the new item */
3876	write_extent_buffer(leaf, buf + split_offset,
3877			    btrfs_item_ptr_offset(leaf, slot),
3878			    item_size - split_offset);
3879	btrfs_mark_buffer_dirty(leaf);
3880
3881	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3882	kfree(buf);
3883	return 0;
3884}
3885
3886/*
3887 * This function splits a single item into two items,
3888 * giving 'new_key' to the new item and splitting the
3889 * old one at split_offset (from the start of the item).
3890 *
3891 * The path may be released by this operation.  After
3892 * the split, the path is pointing to the old item.  The
3893 * new item is going to be in the same node as the old one.
3894 *
3895 * Note, the item being split must be smaller enough to live alone on
3896 * a tree block with room for one extra struct btrfs_item
3897 *
3898 * This allows us to split the item in place, keeping a lock on the
3899 * leaf the entire time.
3900 */
3901int btrfs_split_item(struct btrfs_trans_handle *trans,
3902		     struct btrfs_root *root,
3903		     struct btrfs_path *path,
3904		     const struct btrfs_key *new_key,
3905		     unsigned long split_offset)
3906{
3907	int ret;
3908	ret = setup_leaf_for_split(trans, root, path,
3909				   sizeof(struct btrfs_item));
3910	if (ret)
3911		return ret;
3912
3913	ret = split_item(path, new_key, split_offset);
3914	return ret;
3915}
3916
3917/*
3918 * make the item pointed to by the path smaller.  new_size indicates
3919 * how small to make it, and from_end tells us if we just chop bytes
3920 * off the end of the item or if we shift the item to chop bytes off
3921 * the front.
3922 */
3923void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
3924{
3925	int slot;
3926	struct extent_buffer *leaf;
3927	u32 nritems;
3928	unsigned int data_end;
3929	unsigned int old_data_start;
3930	unsigned int old_size;
3931	unsigned int size_diff;
3932	int i;
3933	struct btrfs_map_token token;
3934
3935	leaf = path->nodes[0];
3936	slot = path->slots[0];
3937
3938	old_size = btrfs_item_size(leaf, slot);
3939	if (old_size == new_size)
3940		return;
3941
3942	nritems = btrfs_header_nritems(leaf);
3943	data_end = leaf_data_end(leaf);
3944
3945	old_data_start = btrfs_item_offset(leaf, slot);
3946
3947	size_diff = old_size - new_size;
3948
3949	BUG_ON(slot < 0);
3950	BUG_ON(slot >= nritems);
3951
3952	/*
3953	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3954	 */
3955	/* first correct the data pointers */
3956	btrfs_init_map_token(&token, leaf);
3957	for (i = slot; i < nritems; i++) {
3958		u32 ioff;
3959
3960		ioff = btrfs_token_item_offset(&token, i);
3961		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3962	}
3963
3964	/* shift the data */
3965	if (from_end) {
3966		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3967				  old_data_start + new_size - data_end);
3968	} else {
3969		struct btrfs_disk_key disk_key;
3970		u64 offset;
3971
3972		btrfs_item_key(leaf, &disk_key, slot);
3973
3974		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3975			unsigned long ptr;
3976			struct btrfs_file_extent_item *fi;
3977
3978			fi = btrfs_item_ptr(leaf, slot,
3979					    struct btrfs_file_extent_item);
3980			fi = (struct btrfs_file_extent_item *)(
3981			     (unsigned long)fi - size_diff);
3982
3983			if (btrfs_file_extent_type(leaf, fi) ==
3984			    BTRFS_FILE_EXTENT_INLINE) {
3985				ptr = btrfs_item_ptr_offset(leaf, slot);
3986				memmove_extent_buffer(leaf, ptr,
3987				      (unsigned long)fi,
3988				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3989			}
3990		}
3991
3992		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3993				  old_data_start - data_end);
3994
3995		offset = btrfs_disk_key_offset(&disk_key);
3996		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3997		btrfs_set_item_key(leaf, &disk_key, slot);
3998		if (slot == 0)
3999			fixup_low_keys(path, &disk_key, 1);
4000	}
4001
4002	btrfs_set_item_size(leaf, slot, new_size);
4003	btrfs_mark_buffer_dirty(leaf);
4004
4005	if (btrfs_leaf_free_space(leaf) < 0) {
4006		btrfs_print_leaf(leaf);
4007		BUG();
4008	}
4009}
4010
4011/*
4012 * make the item pointed to by the path bigger, data_size is the added size.
4013 */
4014void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
4015{
4016	int slot;
4017	struct extent_buffer *leaf;
4018	u32 nritems;
4019	unsigned int data_end;
4020	unsigned int old_data;
4021	unsigned int old_size;
4022	int i;
4023	struct btrfs_map_token token;
4024
4025	leaf = path->nodes[0];
4026
4027	nritems = btrfs_header_nritems(leaf);
4028	data_end = leaf_data_end(leaf);
4029
4030	if (btrfs_leaf_free_space(leaf) < data_size) {
4031		btrfs_print_leaf(leaf);
4032		BUG();
4033	}
4034	slot = path->slots[0];
4035	old_data = btrfs_item_data_end(leaf, slot);
4036
4037	BUG_ON(slot < 0);
4038	if (slot >= nritems) {
4039		btrfs_print_leaf(leaf);
4040		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4041			   slot, nritems);
4042		BUG();
4043	}
4044
4045	/*
4046	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4047	 */
4048	/* first correct the data pointers */
4049	btrfs_init_map_token(&token, leaf);
4050	for (i = slot; i < nritems; i++) {
4051		u32 ioff;
4052
4053		ioff = btrfs_token_item_offset(&token, i);
4054		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4055	}
4056
4057	/* shift the data */
4058	memmove_leaf_data(leaf, data_end - data_size, data_end,
4059			  old_data - data_end);
4060
4061	data_end = old_data;
4062	old_size = btrfs_item_size(leaf, slot);
4063	btrfs_set_item_size(leaf, slot, old_size + data_size);
4064	btrfs_mark_buffer_dirty(leaf);
4065
4066	if (btrfs_leaf_free_space(leaf) < 0) {
4067		btrfs_print_leaf(leaf);
4068		BUG();
4069	}
4070}
4071
4072/*
4073 * Make space in the node before inserting one or more items.
4074 *
 
4075 * @root:	root we are inserting items to
4076 * @path:	points to the leaf/slot where we are going to insert new items
4077 * @batch:      information about the batch of items to insert
4078 *
4079 * Main purpose is to save stack depth by doing the bulk of the work in a
4080 * function that doesn't call btrfs_search_slot
4081 */
4082static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
 
4083				   const struct btrfs_item_batch *batch)
4084{
4085	struct btrfs_fs_info *fs_info = root->fs_info;
4086	int i;
4087	u32 nritems;
4088	unsigned int data_end;
4089	struct btrfs_disk_key disk_key;
4090	struct extent_buffer *leaf;
4091	int slot;
4092	struct btrfs_map_token token;
4093	u32 total_size;
4094
4095	/*
4096	 * Before anything else, update keys in the parent and other ancestors
4097	 * if needed, then release the write locks on them, so that other tasks
4098	 * can use them while we modify the leaf.
4099	 */
4100	if (path->slots[0] == 0) {
4101		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4102		fixup_low_keys(path, &disk_key, 1);
4103	}
4104	btrfs_unlock_up_safe(path, 1);
4105
4106	leaf = path->nodes[0];
4107	slot = path->slots[0];
4108
4109	nritems = btrfs_header_nritems(leaf);
4110	data_end = leaf_data_end(leaf);
4111	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4112
4113	if (btrfs_leaf_free_space(leaf) < total_size) {
4114		btrfs_print_leaf(leaf);
4115		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4116			   total_size, btrfs_leaf_free_space(leaf));
4117		BUG();
4118	}
4119
4120	btrfs_init_map_token(&token, leaf);
4121	if (slot != nritems) {
4122		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4123
4124		if (old_data < data_end) {
4125			btrfs_print_leaf(leaf);
4126			btrfs_crit(fs_info,
4127		"item at slot %d with data offset %u beyond data end of leaf %u",
4128				   slot, old_data, data_end);
4129			BUG();
4130		}
4131		/*
4132		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4133		 */
4134		/* first correct the data pointers */
4135		for (i = slot; i < nritems; i++) {
4136			u32 ioff;
4137
4138			ioff = btrfs_token_item_offset(&token, i);
4139			btrfs_set_token_item_offset(&token, i,
4140						       ioff - batch->total_data_size);
4141		}
4142		/* shift the items */
4143		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4144
4145		/* shift the data */
4146		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4147				  data_end, old_data - data_end);
4148		data_end = old_data;
4149	}
4150
4151	/* setup the item for the new data */
4152	for (i = 0; i < batch->nr; i++) {
4153		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4154		btrfs_set_item_key(leaf, &disk_key, slot + i);
4155		data_end -= batch->data_sizes[i];
4156		btrfs_set_token_item_offset(&token, slot + i, data_end);
4157		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4158	}
4159
4160	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4161	btrfs_mark_buffer_dirty(leaf);
4162
4163	if (btrfs_leaf_free_space(leaf) < 0) {
4164		btrfs_print_leaf(leaf);
4165		BUG();
4166	}
4167}
4168
4169/*
4170 * Insert a new item into a leaf.
4171 *
 
4172 * @root:      The root of the btree.
4173 * @path:      A path pointing to the target leaf and slot.
4174 * @key:       The key of the new item.
4175 * @data_size: The size of the data associated with the new key.
4176 */
4177void btrfs_setup_item_for_insert(struct btrfs_root *root,
 
4178				 struct btrfs_path *path,
4179				 const struct btrfs_key *key,
4180				 u32 data_size)
4181{
4182	struct btrfs_item_batch batch;
4183
4184	batch.keys = key;
4185	batch.data_sizes = &data_size;
4186	batch.total_data_size = data_size;
4187	batch.nr = 1;
4188
4189	setup_items_for_insert(root, path, &batch);
4190}
4191
4192/*
4193 * Given a key and some data, insert items into the tree.
4194 * This does all the path init required, making room in the tree if needed.
4195 */
4196int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4197			    struct btrfs_root *root,
4198			    struct btrfs_path *path,
4199			    const struct btrfs_item_batch *batch)
4200{
4201	int ret = 0;
4202	int slot;
4203	u32 total_size;
4204
4205	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4206	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4207	if (ret == 0)
4208		return -EEXIST;
4209	if (ret < 0)
4210		return ret;
4211
4212	slot = path->slots[0];
4213	BUG_ON(slot < 0);
4214
4215	setup_items_for_insert(root, path, batch);
4216	return 0;
4217}
4218
4219/*
4220 * Given a key and some data, insert an item into the tree.
4221 * This does all the path init required, making room in the tree if needed.
4222 */
4223int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224		      const struct btrfs_key *cpu_key, void *data,
4225		      u32 data_size)
4226{
4227	int ret = 0;
4228	struct btrfs_path *path;
4229	struct extent_buffer *leaf;
4230	unsigned long ptr;
4231
4232	path = btrfs_alloc_path();
4233	if (!path)
4234		return -ENOMEM;
4235	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4236	if (!ret) {
4237		leaf = path->nodes[0];
4238		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4239		write_extent_buffer(leaf, data, ptr, data_size);
4240		btrfs_mark_buffer_dirty(leaf);
4241	}
4242	btrfs_free_path(path);
4243	return ret;
4244}
4245
4246/*
4247 * This function duplicates an item, giving 'new_key' to the new item.
4248 * It guarantees both items live in the same tree leaf and the new item is
4249 * contiguous with the original item.
4250 *
4251 * This allows us to split a file extent in place, keeping a lock on the leaf
4252 * the entire time.
4253 */
4254int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4255			 struct btrfs_root *root,
4256			 struct btrfs_path *path,
4257			 const struct btrfs_key *new_key)
4258{
4259	struct extent_buffer *leaf;
4260	int ret;
4261	u32 item_size;
4262
4263	leaf = path->nodes[0];
4264	item_size = btrfs_item_size(leaf, path->slots[0]);
4265	ret = setup_leaf_for_split(trans, root, path,
4266				   item_size + sizeof(struct btrfs_item));
4267	if (ret)
4268		return ret;
4269
4270	path->slots[0]++;
4271	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4272	leaf = path->nodes[0];
4273	memcpy_extent_buffer(leaf,
4274			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4275			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4276			     item_size);
4277	return 0;
4278}
4279
4280/*
4281 * delete the pointer from a given node.
4282 *
4283 * the tree should have been previously balanced so the deletion does not
4284 * empty a node.
 
 
4285 */
4286static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4287		    int level, int slot)
4288{
4289	struct extent_buffer *parent = path->nodes[level];
4290	u32 nritems;
4291	int ret;
4292
4293	nritems = btrfs_header_nritems(parent);
4294	if (slot != nritems - 1) {
4295		if (level) {
4296			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4297					slot + 1, nritems - slot - 1);
4298			BUG_ON(ret < 0);
 
 
 
4299		}
4300		memmove_extent_buffer(parent,
4301			      btrfs_node_key_ptr_offset(parent, slot),
4302			      btrfs_node_key_ptr_offset(parent, slot + 1),
4303			      sizeof(struct btrfs_key_ptr) *
4304			      (nritems - slot - 1));
4305	} else if (level) {
4306		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4307						    BTRFS_MOD_LOG_KEY_REMOVE);
4308		BUG_ON(ret < 0);
 
 
 
4309	}
4310
4311	nritems--;
4312	btrfs_set_header_nritems(parent, nritems);
4313	if (nritems == 0 && parent == root->node) {
4314		BUG_ON(btrfs_header_level(root->node) != 1);
4315		/* just turn the root into a leaf and break */
4316		btrfs_set_header_level(root->node, 0);
4317	} else if (slot == 0) {
4318		struct btrfs_disk_key disk_key;
4319
4320		btrfs_node_key(parent, &disk_key, 0);
4321		fixup_low_keys(path, &disk_key, level + 1);
4322	}
4323	btrfs_mark_buffer_dirty(parent);
 
4324}
4325
4326/*
4327 * a helper function to delete the leaf pointed to by path->slots[1] and
4328 * path->nodes[1].
4329 *
4330 * This deletes the pointer in path->nodes[1] and frees the leaf
4331 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4332 *
4333 * The path must have already been setup for deleting the leaf, including
4334 * all the proper balancing.  path->nodes[1] must be locked.
4335 */
4336static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4337				    struct btrfs_root *root,
4338				    struct btrfs_path *path,
4339				    struct extent_buffer *leaf)
4340{
 
 
4341	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4342	del_ptr(root, path, 1, path->slots[1]);
 
 
4343
4344	/*
4345	 * btrfs_free_extent is expensive, we want to make sure we
4346	 * aren't holding any locks when we call it
4347	 */
4348	btrfs_unlock_up_safe(path, 0);
4349
4350	root_sub_used(root, leaf->len);
4351
4352	atomic_inc(&leaf->refs);
4353	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4354	free_extent_buffer_stale(leaf);
 
4355}
4356/*
4357 * delete the item at the leaf level in path.  If that empties
4358 * the leaf, remove it from the tree
4359 */
4360int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4361		    struct btrfs_path *path, int slot, int nr)
4362{
4363	struct btrfs_fs_info *fs_info = root->fs_info;
4364	struct extent_buffer *leaf;
4365	int ret = 0;
4366	int wret;
4367	u32 nritems;
4368
4369	leaf = path->nodes[0];
4370	nritems = btrfs_header_nritems(leaf);
4371
4372	if (slot + nr != nritems) {
4373		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4374		const int data_end = leaf_data_end(leaf);
4375		struct btrfs_map_token token;
4376		u32 dsize = 0;
4377		int i;
4378
4379		for (i = 0; i < nr; i++)
4380			dsize += btrfs_item_size(leaf, slot + i);
4381
4382		memmove_leaf_data(leaf, data_end + dsize, data_end,
4383				  last_off - data_end);
4384
4385		btrfs_init_map_token(&token, leaf);
4386		for (i = slot + nr; i < nritems; i++) {
4387			u32 ioff;
4388
4389			ioff = btrfs_token_item_offset(&token, i);
4390			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4391		}
4392
4393		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4394	}
4395	btrfs_set_header_nritems(leaf, nritems - nr);
4396	nritems -= nr;
4397
4398	/* delete the leaf if we've emptied it */
4399	if (nritems == 0) {
4400		if (leaf == root->node) {
4401			btrfs_set_header_level(leaf, 0);
4402		} else {
4403			btrfs_clean_tree_block(leaf);
4404			btrfs_del_leaf(trans, root, path, leaf);
 
 
4405		}
4406	} else {
4407		int used = leaf_space_used(leaf, 0, nritems);
4408		if (slot == 0) {
4409			struct btrfs_disk_key disk_key;
4410
4411			btrfs_item_key(leaf, &disk_key, 0);
4412			fixup_low_keys(path, &disk_key, 1);
4413		}
4414
4415		/*
4416		 * Try to delete the leaf if it is mostly empty. We do this by
4417		 * trying to move all its items into its left and right neighbours.
4418		 * If we can't move all the items, then we don't delete it - it's
4419		 * not ideal, but future insertions might fill the leaf with more
4420		 * items, or items from other leaves might be moved later into our
4421		 * leaf due to deletions on those leaves.
4422		 */
4423		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4424			u32 min_push_space;
4425
4426			/* push_leaf_left fixes the path.
4427			 * make sure the path still points to our leaf
4428			 * for possible call to del_ptr below
4429			 */
4430			slot = path->slots[1];
4431			atomic_inc(&leaf->refs);
4432			/*
4433			 * We want to be able to at least push one item to the
4434			 * left neighbour leaf, and that's the first item.
4435			 */
4436			min_push_space = sizeof(struct btrfs_item) +
4437				btrfs_item_size(leaf, 0);
4438			wret = push_leaf_left(trans, root, path, 0,
4439					      min_push_space, 1, (u32)-1);
4440			if (wret < 0 && wret != -ENOSPC)
4441				ret = wret;
4442
4443			if (path->nodes[0] == leaf &&
4444			    btrfs_header_nritems(leaf)) {
4445				/*
4446				 * If we were not able to push all items from our
4447				 * leaf to its left neighbour, then attempt to
4448				 * either push all the remaining items to the
4449				 * right neighbour or none. There's no advantage
4450				 * in pushing only some items, instead of all, as
4451				 * it's pointless to end up with a leaf having
4452				 * too few items while the neighbours can be full
4453				 * or nearly full.
4454				 */
4455				nritems = btrfs_header_nritems(leaf);
4456				min_push_space = leaf_space_used(leaf, 0, nritems);
4457				wret = push_leaf_right(trans, root, path, 0,
4458						       min_push_space, 1, 0);
4459				if (wret < 0 && wret != -ENOSPC)
4460					ret = wret;
4461			}
4462
4463			if (btrfs_header_nritems(leaf) == 0) {
4464				path->slots[1] = slot;
4465				btrfs_del_leaf(trans, root, path, leaf);
 
 
4466				free_extent_buffer(leaf);
4467				ret = 0;
4468			} else {
4469				/* if we're still in the path, make sure
4470				 * we're dirty.  Otherwise, one of the
4471				 * push_leaf functions must have already
4472				 * dirtied this buffer
4473				 */
4474				if (path->nodes[0] == leaf)
4475					btrfs_mark_buffer_dirty(leaf);
4476				free_extent_buffer(leaf);
4477			}
4478		} else {
4479			btrfs_mark_buffer_dirty(leaf);
4480		}
4481	}
4482	return ret;
4483}
4484
4485/*
4486 * search the tree again to find a leaf with lesser keys
4487 * returns 0 if it found something or 1 if there are no lesser leaves.
4488 * returns < 0 on io errors.
4489 *
4490 * This may release the path, and so you may lose any locks held at the
4491 * time you call it.
4492 */
4493int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4494{
4495	struct btrfs_key key;
4496	struct btrfs_disk_key found_key;
4497	int ret;
4498
4499	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4500
4501	if (key.offset > 0) {
4502		key.offset--;
4503	} else if (key.type > 0) {
4504		key.type--;
4505		key.offset = (u64)-1;
4506	} else if (key.objectid > 0) {
4507		key.objectid--;
4508		key.type = (u8)-1;
4509		key.offset = (u64)-1;
4510	} else {
4511		return 1;
4512	}
4513
4514	btrfs_release_path(path);
4515	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516	if (ret < 0)
4517		return ret;
4518	btrfs_item_key(path->nodes[0], &found_key, 0);
4519	ret = comp_keys(&found_key, &key);
4520	/*
4521	 * We might have had an item with the previous key in the tree right
4522	 * before we released our path. And after we released our path, that
4523	 * item might have been pushed to the first slot (0) of the leaf we
4524	 * were holding due to a tree balance. Alternatively, an item with the
4525	 * previous key can exist as the only element of a leaf (big fat item).
4526	 * Therefore account for these 2 cases, so that our callers (like
4527	 * btrfs_previous_item) don't miss an existing item with a key matching
4528	 * the previous key we computed above.
4529	 */
4530	if (ret <= 0)
4531		return 0;
4532	return 1;
4533}
4534
4535/*
4536 * A helper function to walk down the tree starting at min_key, and looking
4537 * for nodes or leaves that are have a minimum transaction id.
4538 * This is used by the btree defrag code, and tree logging
4539 *
4540 * This does not cow, but it does stuff the starting key it finds back
4541 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4542 * key and get a writable path.
4543 *
4544 * This honors path->lowest_level to prevent descent past a given level
4545 * of the tree.
4546 *
4547 * min_trans indicates the oldest transaction that you are interested
4548 * in walking through.  Any nodes or leaves older than min_trans are
4549 * skipped over (without reading them).
4550 *
4551 * returns zero if something useful was found, < 0 on error and 1 if there
4552 * was nothing in the tree that matched the search criteria.
4553 */
4554int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4555			 struct btrfs_path *path,
4556			 u64 min_trans)
4557{
4558	struct extent_buffer *cur;
4559	struct btrfs_key found_key;
4560	int slot;
4561	int sret;
4562	u32 nritems;
4563	int level;
4564	int ret = 1;
4565	int keep_locks = path->keep_locks;
4566
4567	ASSERT(!path->nowait);
4568	path->keep_locks = 1;
4569again:
4570	cur = btrfs_read_lock_root_node(root);
4571	level = btrfs_header_level(cur);
4572	WARN_ON(path->nodes[level]);
4573	path->nodes[level] = cur;
4574	path->locks[level] = BTRFS_READ_LOCK;
4575
4576	if (btrfs_header_generation(cur) < min_trans) {
4577		ret = 1;
4578		goto out;
4579	}
4580	while (1) {
4581		nritems = btrfs_header_nritems(cur);
4582		level = btrfs_header_level(cur);
4583		sret = btrfs_bin_search(cur, min_key, &slot);
4584		if (sret < 0) {
4585			ret = sret;
4586			goto out;
4587		}
4588
4589		/* at the lowest level, we're done, setup the path and exit */
4590		if (level == path->lowest_level) {
4591			if (slot >= nritems)
4592				goto find_next_key;
4593			ret = 0;
4594			path->slots[level] = slot;
4595			btrfs_item_key_to_cpu(cur, &found_key, slot);
4596			goto out;
4597		}
4598		if (sret && slot > 0)
4599			slot--;
4600		/*
4601		 * check this node pointer against the min_trans parameters.
4602		 * If it is too old, skip to the next one.
4603		 */
4604		while (slot < nritems) {
4605			u64 gen;
4606
4607			gen = btrfs_node_ptr_generation(cur, slot);
4608			if (gen < min_trans) {
4609				slot++;
4610				continue;
4611			}
4612			break;
4613		}
4614find_next_key:
4615		/*
4616		 * we didn't find a candidate key in this node, walk forward
4617		 * and find another one
4618		 */
4619		if (slot >= nritems) {
4620			path->slots[level] = slot;
4621			sret = btrfs_find_next_key(root, path, min_key, level,
4622						  min_trans);
4623			if (sret == 0) {
4624				btrfs_release_path(path);
4625				goto again;
4626			} else {
4627				goto out;
4628			}
4629		}
4630		/* save our key for returning back */
4631		btrfs_node_key_to_cpu(cur, &found_key, slot);
4632		path->slots[level] = slot;
4633		if (level == path->lowest_level) {
4634			ret = 0;
4635			goto out;
4636		}
4637		cur = btrfs_read_node_slot(cur, slot);
4638		if (IS_ERR(cur)) {
4639			ret = PTR_ERR(cur);
4640			goto out;
4641		}
4642
4643		btrfs_tree_read_lock(cur);
4644
4645		path->locks[level - 1] = BTRFS_READ_LOCK;
4646		path->nodes[level - 1] = cur;
4647		unlock_up(path, level, 1, 0, NULL);
4648	}
4649out:
4650	path->keep_locks = keep_locks;
4651	if (ret == 0) {
4652		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4653		memcpy(min_key, &found_key, sizeof(found_key));
4654	}
4655	return ret;
4656}
4657
4658/*
4659 * this is similar to btrfs_next_leaf, but does not try to preserve
4660 * and fixup the path.  It looks for and returns the next key in the
4661 * tree based on the current path and the min_trans parameters.
4662 *
4663 * 0 is returned if another key is found, < 0 if there are any errors
4664 * and 1 is returned if there are no higher keys in the tree
4665 *
4666 * path->keep_locks should be set to 1 on the search made before
4667 * calling this function.
4668 */
4669int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4670			struct btrfs_key *key, int level, u64 min_trans)
4671{
4672	int slot;
4673	struct extent_buffer *c;
4674
4675	WARN_ON(!path->keep_locks && !path->skip_locking);
4676	while (level < BTRFS_MAX_LEVEL) {
4677		if (!path->nodes[level])
4678			return 1;
4679
4680		slot = path->slots[level] + 1;
4681		c = path->nodes[level];
4682next:
4683		if (slot >= btrfs_header_nritems(c)) {
4684			int ret;
4685			int orig_lowest;
4686			struct btrfs_key cur_key;
4687			if (level + 1 >= BTRFS_MAX_LEVEL ||
4688			    !path->nodes[level + 1])
4689				return 1;
4690
4691			if (path->locks[level + 1] || path->skip_locking) {
4692				level++;
4693				continue;
4694			}
4695
4696			slot = btrfs_header_nritems(c) - 1;
4697			if (level == 0)
4698				btrfs_item_key_to_cpu(c, &cur_key, slot);
4699			else
4700				btrfs_node_key_to_cpu(c, &cur_key, slot);
4701
4702			orig_lowest = path->lowest_level;
4703			btrfs_release_path(path);
4704			path->lowest_level = level;
4705			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4706						0, 0);
4707			path->lowest_level = orig_lowest;
4708			if (ret < 0)
4709				return ret;
4710
4711			c = path->nodes[level];
4712			slot = path->slots[level];
4713			if (ret == 0)
4714				slot++;
4715			goto next;
4716		}
4717
4718		if (level == 0)
4719			btrfs_item_key_to_cpu(c, key, slot);
4720		else {
4721			u64 gen = btrfs_node_ptr_generation(c, slot);
4722
4723			if (gen < min_trans) {
4724				slot++;
4725				goto next;
4726			}
4727			btrfs_node_key_to_cpu(c, key, slot);
4728		}
4729		return 0;
4730	}
4731	return 1;
4732}
4733
4734int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4735			u64 time_seq)
4736{
4737	int slot;
4738	int level;
4739	struct extent_buffer *c;
4740	struct extent_buffer *next;
4741	struct btrfs_fs_info *fs_info = root->fs_info;
4742	struct btrfs_key key;
4743	bool need_commit_sem = false;
4744	u32 nritems;
4745	int ret;
4746	int i;
4747
4748	/*
4749	 * The nowait semantics are used only for write paths, where we don't
4750	 * use the tree mod log and sequence numbers.
4751	 */
4752	if (time_seq)
4753		ASSERT(!path->nowait);
4754
4755	nritems = btrfs_header_nritems(path->nodes[0]);
4756	if (nritems == 0)
4757		return 1;
4758
4759	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4760again:
4761	level = 1;
4762	next = NULL;
4763	btrfs_release_path(path);
4764
4765	path->keep_locks = 1;
4766
4767	if (time_seq) {
4768		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4769	} else {
4770		if (path->need_commit_sem) {
4771			path->need_commit_sem = 0;
4772			need_commit_sem = true;
4773			if (path->nowait) {
4774				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4775					ret = -EAGAIN;
4776					goto done;
4777				}
4778			} else {
4779				down_read(&fs_info->commit_root_sem);
4780			}
4781		}
4782		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4783	}
4784	path->keep_locks = 0;
4785
4786	if (ret < 0)
4787		goto done;
4788
4789	nritems = btrfs_header_nritems(path->nodes[0]);
4790	/*
4791	 * by releasing the path above we dropped all our locks.  A balance
4792	 * could have added more items next to the key that used to be
4793	 * at the very end of the block.  So, check again here and
4794	 * advance the path if there are now more items available.
4795	 */
4796	if (nritems > 0 && path->slots[0] < nritems - 1) {
4797		if (ret == 0)
4798			path->slots[0]++;
4799		ret = 0;
4800		goto done;
4801	}
4802	/*
4803	 * So the above check misses one case:
4804	 * - after releasing the path above, someone has removed the item that
4805	 *   used to be at the very end of the block, and balance between leafs
4806	 *   gets another one with bigger key.offset to replace it.
4807	 *
4808	 * This one should be returned as well, or we can get leaf corruption
4809	 * later(esp. in __btrfs_drop_extents()).
4810	 *
4811	 * And a bit more explanation about this check,
4812	 * with ret > 0, the key isn't found, the path points to the slot
4813	 * where it should be inserted, so the path->slots[0] item must be the
4814	 * bigger one.
4815	 */
4816	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4817		ret = 0;
4818		goto done;
4819	}
4820
4821	while (level < BTRFS_MAX_LEVEL) {
4822		if (!path->nodes[level]) {
4823			ret = 1;
4824			goto done;
4825		}
4826
4827		slot = path->slots[level] + 1;
4828		c = path->nodes[level];
4829		if (slot >= btrfs_header_nritems(c)) {
4830			level++;
4831			if (level == BTRFS_MAX_LEVEL) {
4832				ret = 1;
4833				goto done;
4834			}
4835			continue;
4836		}
4837
4838
4839		/*
4840		 * Our current level is where we're going to start from, and to
4841		 * make sure lockdep doesn't complain we need to drop our locks
4842		 * and nodes from 0 to our current level.
4843		 */
4844		for (i = 0; i < level; i++) {
4845			if (path->locks[level]) {
4846				btrfs_tree_read_unlock(path->nodes[i]);
4847				path->locks[i] = 0;
4848			}
4849			free_extent_buffer(path->nodes[i]);
4850			path->nodes[i] = NULL;
4851		}
4852
4853		next = c;
4854		ret = read_block_for_search(root, path, &next, level,
4855					    slot, &key);
4856		if (ret == -EAGAIN && !path->nowait)
4857			goto again;
4858
4859		if (ret < 0) {
4860			btrfs_release_path(path);
4861			goto done;
4862		}
4863
4864		if (!path->skip_locking) {
4865			ret = btrfs_try_tree_read_lock(next);
4866			if (!ret && path->nowait) {
4867				ret = -EAGAIN;
4868				goto done;
4869			}
4870			if (!ret && time_seq) {
4871				/*
4872				 * If we don't get the lock, we may be racing
4873				 * with push_leaf_left, holding that lock while
4874				 * itself waiting for the leaf we've currently
4875				 * locked. To solve this situation, we give up
4876				 * on our lock and cycle.
4877				 */
4878				free_extent_buffer(next);
4879				btrfs_release_path(path);
4880				cond_resched();
4881				goto again;
4882			}
4883			if (!ret)
4884				btrfs_tree_read_lock(next);
4885		}
4886		break;
4887	}
4888	path->slots[level] = slot;
4889	while (1) {
4890		level--;
4891		path->nodes[level] = next;
4892		path->slots[level] = 0;
4893		if (!path->skip_locking)
4894			path->locks[level] = BTRFS_READ_LOCK;
4895		if (!level)
4896			break;
4897
4898		ret = read_block_for_search(root, path, &next, level,
4899					    0, &key);
4900		if (ret == -EAGAIN && !path->nowait)
4901			goto again;
4902
4903		if (ret < 0) {
4904			btrfs_release_path(path);
4905			goto done;
4906		}
4907
4908		if (!path->skip_locking) {
4909			if (path->nowait) {
4910				if (!btrfs_try_tree_read_lock(next)) {
4911					ret = -EAGAIN;
4912					goto done;
4913				}
4914			} else {
4915				btrfs_tree_read_lock(next);
4916			}
4917		}
4918	}
4919	ret = 0;
4920done:
4921	unlock_up(path, 0, 1, 0, NULL);
4922	if (need_commit_sem) {
4923		int ret2;
4924
4925		path->need_commit_sem = 1;
4926		ret2 = finish_need_commit_sem_search(path);
4927		up_read(&fs_info->commit_root_sem);
4928		if (ret2)
4929			ret = ret2;
4930	}
4931
4932	return ret;
4933}
4934
4935int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4936{
4937	path->slots[0]++;
4938	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4939		return btrfs_next_old_leaf(root, path, time_seq);
4940	return 0;
4941}
4942
4943/*
4944 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4945 * searching until it gets past min_objectid or finds an item of 'type'
4946 *
4947 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4948 */
4949int btrfs_previous_item(struct btrfs_root *root,
4950			struct btrfs_path *path, u64 min_objectid,
4951			int type)
4952{
4953	struct btrfs_key found_key;
4954	struct extent_buffer *leaf;
4955	u32 nritems;
4956	int ret;
4957
4958	while (1) {
4959		if (path->slots[0] == 0) {
4960			ret = btrfs_prev_leaf(root, path);
4961			if (ret != 0)
4962				return ret;
4963		} else {
4964			path->slots[0]--;
4965		}
4966		leaf = path->nodes[0];
4967		nritems = btrfs_header_nritems(leaf);
4968		if (nritems == 0)
4969			return 1;
4970		if (path->slots[0] == nritems)
4971			path->slots[0]--;
4972
4973		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4974		if (found_key.objectid < min_objectid)
4975			break;
4976		if (found_key.type == type)
4977			return 0;
4978		if (found_key.objectid == min_objectid &&
4979		    found_key.type < type)
4980			break;
4981	}
4982	return 1;
4983}
4984
4985/*
4986 * search in extent tree to find a previous Metadata/Data extent item with
4987 * min objecitd.
4988 *
4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4990 */
4991int btrfs_previous_extent_item(struct btrfs_root *root,
4992			struct btrfs_path *path, u64 min_objectid)
4993{
4994	struct btrfs_key found_key;
4995	struct extent_buffer *leaf;
4996	u32 nritems;
4997	int ret;
4998
4999	while (1) {
5000		if (path->slots[0] == 0) {
5001			ret = btrfs_prev_leaf(root, path);
5002			if (ret != 0)
5003				return ret;
5004		} else {
5005			path->slots[0]--;
5006		}
5007		leaf = path->nodes[0];
5008		nritems = btrfs_header_nritems(leaf);
5009		if (nritems == 0)
5010			return 1;
5011		if (path->slots[0] == nritems)
5012			path->slots[0]--;
5013
5014		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5015		if (found_key.objectid < min_objectid)
5016			break;
5017		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5018		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5019			return 0;
5020		if (found_key.objectid == min_objectid &&
5021		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5022			break;
5023	}
5024	return 1;
5025}
5026
5027int __init btrfs_ctree_init(void)
5028{
5029	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5030			sizeof(struct btrfs_path), 0,
5031			SLAB_MEM_SPREAD, NULL);
5032	if (!btrfs_path_cachep)
5033		return -ENOMEM;
5034	return 0;
5035}
5036
5037void __cold btrfs_ctree_exit(void)
5038{
5039	kmem_cache_destroy(btrfs_path_cachep);
5040}