Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/export.h>
  4#include <linux/log2.h>
  5#include <linux/percpu.h>
  6#include <linux/preempt.h>
  7#include <linux/rcupdate.h>
  8#include <linux/sched.h>
  9#include <linux/sched/clock.h>
 10#include <linux/sched/rt.h>
 11#include <linux/sched/task.h>
 12#include <linux/slab.h>
 13
 14#include <trace/events/lock.h>
 15
 16#include "six.h"
 17
 18#ifdef DEBUG
 19#define EBUG_ON(cond)			BUG_ON(cond)
 20#else
 21#define EBUG_ON(cond)			do {} while (0)
 22#endif
 23
 24#define six_acquire(l, t, r, ip)	lock_acquire(l, 0, t, r, 1, NULL, ip)
 25#define six_release(l, ip)		lock_release(l, ip)
 26
 27static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type);
 28
 29#define SIX_LOCK_HELD_read_OFFSET	0
 30#define SIX_LOCK_HELD_read		~(~0U << 26)
 31#define SIX_LOCK_HELD_intent		(1U << 26)
 32#define SIX_LOCK_HELD_write		(1U << 27)
 33#define SIX_LOCK_WAITING_read		(1U << (28 + SIX_LOCK_read))
 34#define SIX_LOCK_WAITING_write		(1U << (28 + SIX_LOCK_write))
 35#define SIX_LOCK_NOSPIN			(1U << 31)
 36
 37struct six_lock_vals {
 38	/* Value we add to the lock in order to take the lock: */
 39	u32			lock_val;
 40
 41	/* If the lock has this value (used as a mask), taking the lock fails: */
 42	u32			lock_fail;
 43
 44	/* Mask that indicates lock is held for this type: */
 45	u32			held_mask;
 46
 47	/* Waitlist we wakeup when releasing the lock: */
 48	enum six_lock_type	unlock_wakeup;
 49};
 50
 51static const struct six_lock_vals l[] = {
 52	[SIX_LOCK_read] = {
 53		.lock_val	= 1U << SIX_LOCK_HELD_read_OFFSET,
 54		.lock_fail	= SIX_LOCK_HELD_write,
 55		.held_mask	= SIX_LOCK_HELD_read,
 56		.unlock_wakeup	= SIX_LOCK_write,
 57	},
 58	[SIX_LOCK_intent] = {
 59		.lock_val	= SIX_LOCK_HELD_intent,
 60		.lock_fail	= SIX_LOCK_HELD_intent,
 61		.held_mask	= SIX_LOCK_HELD_intent,
 62		.unlock_wakeup	= SIX_LOCK_intent,
 63	},
 64	[SIX_LOCK_write] = {
 65		.lock_val	= SIX_LOCK_HELD_write,
 66		.lock_fail	= SIX_LOCK_HELD_read,
 67		.held_mask	= SIX_LOCK_HELD_write,
 68		.unlock_wakeup	= SIX_LOCK_read,
 69	},
 70};
 71
 72static inline void six_set_bitmask(struct six_lock *lock, u32 mask)
 73{
 74	if ((atomic_read(&lock->state) & mask) != mask)
 75		atomic_or(mask, &lock->state);
 76}
 77
 78static inline void six_clear_bitmask(struct six_lock *lock, u32 mask)
 79{
 80	if (atomic_read(&lock->state) & mask)
 81		atomic_and(~mask, &lock->state);
 82}
 83
 84static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type,
 85				 u32 old, struct task_struct *owner)
 86{
 87	if (type != SIX_LOCK_intent)
 88		return;
 89
 90	if (!(old & SIX_LOCK_HELD_intent)) {
 91		EBUG_ON(lock->owner);
 92		lock->owner = owner;
 93	} else {
 94		EBUG_ON(lock->owner != current);
 95	}
 96}
 97
 98static inline unsigned pcpu_read_count(struct six_lock *lock)
 99{
100	unsigned read_count = 0;
101	int cpu;
102
103	for_each_possible_cpu(cpu)
104		read_count += *per_cpu_ptr(lock->readers, cpu);
105	return read_count;
106}
107
108/*
109 * __do_six_trylock() - main trylock routine
110 *
111 * Returns 1 on success, 0 on failure
112 *
113 * In percpu reader mode, a failed trylock may cause a spurious trylock failure
114 * for anoter thread taking the competing lock type, and we may havve to do a
115 * wakeup: when a wakeup is required, we return -1 - wakeup_type.
116 */
117static int __do_six_trylock(struct six_lock *lock, enum six_lock_type type,
118			    struct task_struct *task, bool try)
119{
120	int ret;
121	u32 old;
122
123	EBUG_ON(type == SIX_LOCK_write && lock->owner != task);
124	EBUG_ON(type == SIX_LOCK_write &&
125		(try != !(atomic_read(&lock->state) & SIX_LOCK_HELD_write)));
126
127	/*
128	 * Percpu reader mode:
129	 *
130	 * The basic idea behind this algorithm is that you can implement a lock
131	 * between two threads without any atomics, just memory barriers:
132	 *
133	 * For two threads you'll need two variables, one variable for "thread a
134	 * has the lock" and another for "thread b has the lock".
135	 *
136	 * To take the lock, a thread sets its variable indicating that it holds
137	 * the lock, then issues a full memory barrier, then reads from the
138	 * other thread's variable to check if the other thread thinks it has
139	 * the lock. If we raced, we backoff and retry/sleep.
140	 *
141	 * Failure to take the lock may cause a spurious trylock failure in
142	 * another thread, because we temporarily set the lock to indicate that
143	 * we held it. This would be a problem for a thread in six_lock(), when
144	 * they are calling trylock after adding themself to the waitlist and
145	 * prior to sleeping.
146	 *
147	 * Therefore, if we fail to get the lock, and there were waiters of the
148	 * type we conflict with, we will have to issue a wakeup.
149	 *
150	 * Since we may be called under wait_lock (and by the wakeup code
151	 * itself), we return that the wakeup has to be done instead of doing it
152	 * here.
153	 */
154	if (type == SIX_LOCK_read && lock->readers) {
155		preempt_disable();
156		this_cpu_inc(*lock->readers); /* signal that we own lock */
157
158		smp_mb();
159
160		old = atomic_read(&lock->state);
161		ret = !(old & l[type].lock_fail);
162
163		this_cpu_sub(*lock->readers, !ret);
164		preempt_enable();
165
166		if (!ret) {
167			smp_mb();
168			if (atomic_read(&lock->state) & SIX_LOCK_WAITING_write)
169				ret = -1 - SIX_LOCK_write;
170		}
171	} else if (type == SIX_LOCK_write && lock->readers) {
172		if (try) {
173			atomic_add(SIX_LOCK_HELD_write, &lock->state);
174			smp_mb__after_atomic();
175		}
176
177		ret = !pcpu_read_count(lock);
178
179		if (try && !ret) {
180			old = atomic_sub_return(SIX_LOCK_HELD_write, &lock->state);
181			if (old & SIX_LOCK_WAITING_read)
182				ret = -1 - SIX_LOCK_read;
183		}
184	} else {
185		old = atomic_read(&lock->state);
186		do {
187			ret = !(old & l[type].lock_fail);
188			if (!ret || (type == SIX_LOCK_write && !try)) {
189				smp_mb();
190				break;
191			}
192		} while (!atomic_try_cmpxchg_acquire(&lock->state, &old, old + l[type].lock_val));
193
194		EBUG_ON(ret && !(atomic_read(&lock->state) & l[type].held_mask));
195	}
196
197	if (ret > 0)
198		six_set_owner(lock, type, old, task);
199
200	EBUG_ON(type == SIX_LOCK_write && try && ret <= 0 &&
201		(atomic_read(&lock->state) & SIX_LOCK_HELD_write));
202
203	return ret;
204}
205
206static void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type)
207{
208	struct six_lock_waiter *w, *next;
209	struct task_struct *task;
210	bool saw_one;
211	int ret;
212again:
213	ret = 0;
214	saw_one = false;
215	raw_spin_lock(&lock->wait_lock);
216
217	list_for_each_entry_safe(w, next, &lock->wait_list, list) {
218		if (w->lock_want != lock_type)
219			continue;
220
221		if (saw_one && lock_type != SIX_LOCK_read)
222			goto unlock;
223		saw_one = true;
224
225		ret = __do_six_trylock(lock, lock_type, w->task, false);
226		if (ret <= 0)
227			goto unlock;
228
229		/*
230		 * Similar to percpu_rwsem_wake_function(), we need to guard
231		 * against the wakee noticing w->lock_acquired, returning, and
232		 * then exiting before we do the wakeup:
233		 */
234		task = get_task_struct(w->task);
235		__list_del(w->list.prev, w->list.next);
236		/*
237		 * The release barrier here ensures the ordering of the
238		 * __list_del before setting w->lock_acquired; @w is on the
239		 * stack of the thread doing the waiting and will be reused
240		 * after it sees w->lock_acquired with no other locking:
241		 * pairs with smp_load_acquire() in six_lock_slowpath()
242		 */
243		smp_store_release(&w->lock_acquired, true);
244		wake_up_process(task);
245		put_task_struct(task);
246	}
247
248	six_clear_bitmask(lock, SIX_LOCK_WAITING_read << lock_type);
249unlock:
250	raw_spin_unlock(&lock->wait_lock);
251
252	if (ret < 0) {
253		lock_type = -ret - 1;
254		goto again;
255	}
256}
257
258__always_inline
259static void six_lock_wakeup(struct six_lock *lock, u32 state,
260			    enum six_lock_type lock_type)
261{
262	if (lock_type == SIX_LOCK_write && (state & SIX_LOCK_HELD_read))
263		return;
264
265	if (!(state & (SIX_LOCK_WAITING_read << lock_type)))
266		return;
267
268	__six_lock_wakeup(lock, lock_type);
269}
270
271__always_inline
272static bool do_six_trylock(struct six_lock *lock, enum six_lock_type type, bool try)
273{
274	int ret;
275
276	ret = __do_six_trylock(lock, type, current, try);
277	if (ret < 0)
278		__six_lock_wakeup(lock, -ret - 1);
279
280	return ret > 0;
281}
282
283/**
284 * six_trylock_ip - attempt to take a six lock without blocking
285 * @lock:	lock to take
286 * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
287 * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
288 *
289 * Return: true on success, false on failure.
290 */
291bool six_trylock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
292{
293	if (!do_six_trylock(lock, type, true))
294		return false;
295
296	if (type != SIX_LOCK_write)
297		six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip);
298	return true;
299}
300EXPORT_SYMBOL_GPL(six_trylock_ip);
301
302/**
303 * six_relock_ip - attempt to re-take a lock that was held previously
304 * @lock:	lock to take
305 * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
306 * @seq:	lock sequence number obtained from six_lock_seq() while lock was
307 *		held previously
308 * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
309 *
310 * Return: true on success, false on failure.
311 */
312bool six_relock_ip(struct six_lock *lock, enum six_lock_type type,
313		   unsigned seq, unsigned long ip)
314{
315	if (six_lock_seq(lock) != seq || !six_trylock_ip(lock, type, ip))
316		return false;
317
318	if (six_lock_seq(lock) != seq) {
319		six_unlock_ip(lock, type, ip);
320		return false;
321	}
322
323	return true;
324}
325EXPORT_SYMBOL_GPL(six_relock_ip);
326
327#ifdef CONFIG_BCACHEFS_SIX_OPTIMISTIC_SPIN
328
329static inline bool six_owner_running(struct six_lock *lock)
330{
331	/*
332	 * When there's no owner, we might have preempted between the owner
333	 * acquiring the lock and setting the owner field. If we're an RT task
334	 * that will live-lock because we won't let the owner complete.
335	 */
336	rcu_read_lock();
337	struct task_struct *owner = READ_ONCE(lock->owner);
338	bool ret = owner ? owner_on_cpu(owner) : !rt_task(current);
339	rcu_read_unlock();
340
341	return ret;
342}
343
344static inline bool six_optimistic_spin(struct six_lock *lock,
345				       struct six_lock_waiter *wait,
346				       enum six_lock_type type)
347{
348	unsigned loop = 0;
349	u64 end_time;
350
351	if (type == SIX_LOCK_write)
352		return false;
353
354	if (lock->wait_list.next != &wait->list)
355		return false;
356
357	if (atomic_read(&lock->state) & SIX_LOCK_NOSPIN)
358		return false;
359
360	preempt_disable();
361	end_time = sched_clock() + 10 * NSEC_PER_USEC;
362
363	while (!need_resched() && six_owner_running(lock)) {
364		/*
365		 * Ensures that writes to the waitlist entry happen after we see
366		 * wait->lock_acquired: pairs with the smp_store_release in
367		 * __six_lock_wakeup
368		 */
369		if (smp_load_acquire(&wait->lock_acquired)) {
370			preempt_enable();
371			return true;
372		}
373
374		if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) {
375			six_set_bitmask(lock, SIX_LOCK_NOSPIN);
376			break;
377		}
378
379		/*
380		 * The cpu_relax() call is a compiler barrier which forces
381		 * everything in this loop to be re-loaded. We don't need
382		 * memory barriers as we'll eventually observe the right
383		 * values at the cost of a few extra spins.
384		 */
385		cpu_relax();
386	}
387
388	preempt_enable();
389	return false;
390}
391
392#else /* CONFIG_LOCK_SPIN_ON_OWNER */
393
394static inline bool six_optimistic_spin(struct six_lock *lock,
395				       struct six_lock_waiter *wait,
396				       enum six_lock_type type)
397{
398	return false;
399}
400
401#endif
402
403noinline
404static int six_lock_slowpath(struct six_lock *lock, enum six_lock_type type,
405			     struct six_lock_waiter *wait,
406			     six_lock_should_sleep_fn should_sleep_fn, void *p,
407			     unsigned long ip)
408{
409	int ret = 0;
410
411	if (type == SIX_LOCK_write) {
412		EBUG_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
413		atomic_add(SIX_LOCK_HELD_write, &lock->state);
414		smp_mb__after_atomic();
415	}
416
417	trace_contention_begin(lock, 0);
418	lock_contended(&lock->dep_map, ip);
419
420	wait->task		= current;
421	wait->lock_want		= type;
422	wait->lock_acquired	= false;
423
424	raw_spin_lock(&lock->wait_lock);
425	six_set_bitmask(lock, SIX_LOCK_WAITING_read << type);
426	/*
427	 * Retry taking the lock after taking waitlist lock, in case we raced
428	 * with an unlock:
429	 */
430	ret = __do_six_trylock(lock, type, current, false);
431	if (ret <= 0) {
432		wait->start_time = local_clock();
433
434		if (!list_empty(&lock->wait_list)) {
435			struct six_lock_waiter *last =
436				list_last_entry(&lock->wait_list,
437					struct six_lock_waiter, list);
438
439			if (time_before_eq64(wait->start_time, last->start_time))
440				wait->start_time = last->start_time + 1;
441		}
442
443		list_add_tail(&wait->list, &lock->wait_list);
444	}
445	raw_spin_unlock(&lock->wait_lock);
446
447	if (unlikely(ret > 0)) {
448		ret = 0;
449		goto out;
450	}
451
452	if (unlikely(ret < 0)) {
453		__six_lock_wakeup(lock, -ret - 1);
454		ret = 0;
455	}
456
457	if (six_optimistic_spin(lock, wait, type))
458		goto out;
459
460	while (1) {
461		set_current_state(TASK_UNINTERRUPTIBLE);
462
463		/*
464		 * Ensures that writes to the waitlist entry happen after we see
465		 * wait->lock_acquired: pairs with the smp_store_release in
466		 * __six_lock_wakeup
467		 */
468		if (smp_load_acquire(&wait->lock_acquired))
469			break;
470
471		ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0;
472		if (unlikely(ret)) {
473			bool acquired;
474
475			/*
476			 * If should_sleep_fn() returns an error, we are
477			 * required to return that error even if we already
478			 * acquired the lock - should_sleep_fn() might have
479			 * modified external state (e.g. when the deadlock cycle
480			 * detector in bcachefs issued a transaction restart)
481			 */
482			raw_spin_lock(&lock->wait_lock);
483			acquired = wait->lock_acquired;
484			if (!acquired)
485				list_del(&wait->list);
486			raw_spin_unlock(&lock->wait_lock);
487
488			if (unlikely(acquired))
489				do_six_unlock_type(lock, type);
490			break;
491		}
492
493		schedule();
494	}
495
496	__set_current_state(TASK_RUNNING);
497out:
498	if (ret && type == SIX_LOCK_write) {
499		six_clear_bitmask(lock, SIX_LOCK_HELD_write);
500		six_lock_wakeup(lock, atomic_read(&lock->state), SIX_LOCK_read);
501	}
502	trace_contention_end(lock, 0);
503
504	return ret;
505}
506
507/**
508 * six_lock_ip_waiter - take a lock, with full waitlist interface
509 * @lock:	lock to take
510 * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
511 * @wait:	pointer to wait object, which will be added to lock's waitlist
512 * @should_sleep_fn: callback run after adding to waitlist, immediately prior
513 *		to scheduling
514 * @p:		passed through to @should_sleep_fn
515 * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
516 *
517 * This is the most general six_lock() variant, with parameters to support full
518 * cycle detection for deadlock avoidance.
519 *
520 * The code calling this function must implement tracking of held locks, and the
521 * @wait object should be embedded into the struct that tracks held locks -
522 * which must also be accessible in a thread-safe way.
523 *
524 * @should_sleep_fn should invoke the cycle detector; it should walk each
525 * lock's waiters, and for each waiter recursively walk their held locks.
526 *
527 * When this function must block, @wait will be added to @lock's waitlist before
528 * calling trylock, and before calling @should_sleep_fn, and @wait will not be
529 * removed from the lock waitlist until the lock has been successfully acquired,
530 * or we abort.
531 *
532 * @wait.start_time will be monotonically increasing for any given waitlist, and
533 * thus may be used as a loop cursor.
534 *
535 * Return: 0 on success, or the return code from @should_sleep_fn on failure.
536 */
537int six_lock_ip_waiter(struct six_lock *lock, enum six_lock_type type,
538		       struct six_lock_waiter *wait,
539		       six_lock_should_sleep_fn should_sleep_fn, void *p,
540		       unsigned long ip)
541{
542	int ret;
543
544	wait->start_time = 0;
545
546	if (type != SIX_LOCK_write)
547		six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip);
548
549	ret = do_six_trylock(lock, type, true) ? 0
550		: six_lock_slowpath(lock, type, wait, should_sleep_fn, p, ip);
551
552	if (ret && type != SIX_LOCK_write)
553		six_release(&lock->dep_map, ip);
554	if (!ret)
555		lock_acquired(&lock->dep_map, ip);
556
557	return ret;
558}
559EXPORT_SYMBOL_GPL(six_lock_ip_waiter);
560
561__always_inline
562static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type)
563{
564	u32 state;
565
566	if (type == SIX_LOCK_intent)
567		lock->owner = NULL;
568
569	if (type == SIX_LOCK_read &&
570	    lock->readers) {
571		smp_mb(); /* unlock barrier */
572		this_cpu_dec(*lock->readers);
573		smp_mb(); /* between unlocking and checking for waiters */
574		state = atomic_read(&lock->state);
575	} else {
576		u32 v = l[type].lock_val;
577
578		if (type != SIX_LOCK_read)
579			v += atomic_read(&lock->state) & SIX_LOCK_NOSPIN;
580
581		EBUG_ON(!(atomic_read(&lock->state) & l[type].held_mask));
582		state = atomic_sub_return_release(v, &lock->state);
583	}
584
585	six_lock_wakeup(lock, state, l[type].unlock_wakeup);
586}
587
588/**
589 * six_unlock_ip - drop a six lock
590 * @lock:	lock to unlock
591 * @type:	SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write
592 * @ip:		ip parameter for lockdep/lockstat, i.e. _THIS_IP_
593 *
594 * When a lock is held multiple times (because six_lock_incement()) was used),
595 * this decrements the 'lock held' counter by one.
596 *
597 * For example:
598 * six_lock_read(&foo->lock);				read count 1
599 * six_lock_increment(&foo->lock, SIX_LOCK_read);	read count 2
600 * six_lock_unlock(&foo->lock, SIX_LOCK_read);		read count 1
601 * six_lock_unlock(&foo->lock, SIX_LOCK_read);		read count 0
602 */
603void six_unlock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip)
604{
605	EBUG_ON(type == SIX_LOCK_write &&
606		!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
607	EBUG_ON((type == SIX_LOCK_write ||
608		 type == SIX_LOCK_intent) &&
609		lock->owner != current);
610
611	if (type != SIX_LOCK_write)
612		six_release(&lock->dep_map, ip);
613	else
614		lock->seq++;
615
616	if (type == SIX_LOCK_intent &&
617	    lock->intent_lock_recurse) {
618		--lock->intent_lock_recurse;
619		return;
620	}
621
622	do_six_unlock_type(lock, type);
623}
624EXPORT_SYMBOL_GPL(six_unlock_ip);
625
626/**
627 * six_lock_downgrade - convert an intent lock to a read lock
628 * @lock:	lock to dowgrade
629 *
630 * @lock will have read count incremented and intent count decremented
631 */
632void six_lock_downgrade(struct six_lock *lock)
633{
634	six_lock_increment(lock, SIX_LOCK_read);
635	six_unlock_intent(lock);
636}
637EXPORT_SYMBOL_GPL(six_lock_downgrade);
638
639/**
640 * six_lock_tryupgrade - attempt to convert read lock to an intent lock
641 * @lock:	lock to upgrade
642 *
643 * On success, @lock will have intent count incremented and read count
644 * decremented
645 *
646 * Return: true on success, false on failure
647 */
648bool six_lock_tryupgrade(struct six_lock *lock)
649{
650	u32 old = atomic_read(&lock->state), new;
651
652	do {
653		new = old;
654
655		if (new & SIX_LOCK_HELD_intent)
656			return false;
657
658		if (!lock->readers) {
659			EBUG_ON(!(new & SIX_LOCK_HELD_read));
660			new -= l[SIX_LOCK_read].lock_val;
661		}
662
663		new |= SIX_LOCK_HELD_intent;
664	} while (!atomic_try_cmpxchg_acquire(&lock->state, &old, new));
665
666	if (lock->readers)
667		this_cpu_dec(*lock->readers);
668
669	six_set_owner(lock, SIX_LOCK_intent, old, current);
670
671	return true;
672}
673EXPORT_SYMBOL_GPL(six_lock_tryupgrade);
674
675/**
676 * six_trylock_convert - attempt to convert a held lock from one type to another
677 * @lock:	lock to upgrade
678 * @from:	SIX_LOCK_read or SIX_LOCK_intent
679 * @to:		SIX_LOCK_read or SIX_LOCK_intent
680 *
681 * On success, @lock will have intent count incremented and read count
682 * decremented
683 *
684 * Return: true on success, false on failure
685 */
686bool six_trylock_convert(struct six_lock *lock,
687			 enum six_lock_type from,
688			 enum six_lock_type to)
689{
690	EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write);
691
692	if (to == from)
693		return true;
694
695	if (to == SIX_LOCK_read) {
696		six_lock_downgrade(lock);
697		return true;
698	} else {
699		return six_lock_tryupgrade(lock);
700	}
701}
702EXPORT_SYMBOL_GPL(six_trylock_convert);
703
704/**
705 * six_lock_increment - increase held lock count on a lock that is already held
706 * @lock:	lock to increment
707 * @type:	SIX_LOCK_read or SIX_LOCK_intent
708 *
709 * @lock must already be held, with a lock type that is greater than or equal to
710 * @type
711 *
712 * A corresponding six_unlock_type() call will be required for @lock to be fully
713 * unlocked.
714 */
715void six_lock_increment(struct six_lock *lock, enum six_lock_type type)
716{
717	six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_);
718
719	/* XXX: assert already locked, and that we don't overflow: */
720
721	switch (type) {
722	case SIX_LOCK_read:
723		if (lock->readers) {
724			this_cpu_inc(*lock->readers);
725		} else {
726			EBUG_ON(!(atomic_read(&lock->state) &
727				  (SIX_LOCK_HELD_read|
728				   SIX_LOCK_HELD_intent)));
729			atomic_add(l[type].lock_val, &lock->state);
730		}
731		break;
732	case SIX_LOCK_intent:
733		EBUG_ON(!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent));
734		lock->intent_lock_recurse++;
735		break;
736	case SIX_LOCK_write:
737		BUG();
738		break;
739	}
740}
741EXPORT_SYMBOL_GPL(six_lock_increment);
742
743/**
744 * six_lock_wakeup_all - wake up all waiters on @lock
745 * @lock:	lock to wake up waiters for
746 *
747 * Wakeing up waiters will cause them to re-run should_sleep_fn, which may then
748 * abort the lock operation.
749 *
750 * This function is never needed in a bug-free program; it's only useful in
751 * debug code, e.g. to determine if a cycle detector is at fault.
752 */
753void six_lock_wakeup_all(struct six_lock *lock)
754{
755	u32 state = atomic_read(&lock->state);
756	struct six_lock_waiter *w;
757
758	six_lock_wakeup(lock, state, SIX_LOCK_read);
759	six_lock_wakeup(lock, state, SIX_LOCK_intent);
760	six_lock_wakeup(lock, state, SIX_LOCK_write);
761
762	raw_spin_lock(&lock->wait_lock);
763	list_for_each_entry(w, &lock->wait_list, list)
764		wake_up_process(w->task);
765	raw_spin_unlock(&lock->wait_lock);
766}
767EXPORT_SYMBOL_GPL(six_lock_wakeup_all);
768
769/**
770 * six_lock_counts - return held lock counts, for each lock type
771 * @lock:	lock to return counters for
772 *
773 * Return: the number of times a lock is held for read, intent and write.
774 */
775struct six_lock_count six_lock_counts(struct six_lock *lock)
776{
777	struct six_lock_count ret;
778
779	ret.n[SIX_LOCK_read]	= !lock->readers
780		? atomic_read(&lock->state) & SIX_LOCK_HELD_read
781		: pcpu_read_count(lock);
782	ret.n[SIX_LOCK_intent]	= !!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent) +
783		lock->intent_lock_recurse;
784	ret.n[SIX_LOCK_write]	= !!(atomic_read(&lock->state) & SIX_LOCK_HELD_write);
785
786	return ret;
787}
788EXPORT_SYMBOL_GPL(six_lock_counts);
789
790/**
791 * six_lock_readers_add - directly manipulate reader count of a lock
792 * @lock:	lock to add/subtract readers for
793 * @nr:		reader count to add/subtract
794 *
795 * When an upper layer is implementing lock reentrency, we may have both read
796 * and intent locks on the same lock.
797 *
798 * When we need to take a write lock, the read locks will cause self-deadlock,
799 * because six locks themselves do not track which read locks are held by the
800 * current thread and which are held by a different thread - it does no
801 * per-thread tracking of held locks.
802 *
803 * The upper layer that is tracking held locks may however, if trylock() has
804 * failed, count up its own read locks, subtract them, take the write lock, and
805 * then re-add them.
806 *
807 * As in any other situation when taking a write lock, @lock must be held for
808 * intent one (or more) times, so @lock will never be left unlocked.
809 */
810void six_lock_readers_add(struct six_lock *lock, int nr)
811{
812	if (lock->readers) {
813		this_cpu_add(*lock->readers, nr);
814	} else {
815		EBUG_ON((int) (atomic_read(&lock->state) & SIX_LOCK_HELD_read) + nr < 0);
816		/* reader count starts at bit 0 */
817		atomic_add(nr, &lock->state);
818	}
819}
820EXPORT_SYMBOL_GPL(six_lock_readers_add);
821
822/**
823 * six_lock_exit - release resources held by a lock prior to freeing
824 * @lock:	lock to exit
825 *
826 * When a lock was initialized in percpu mode (SIX_OLCK_INIT_PCPU), this is
827 * required to free the percpu read counts.
828 */
829void six_lock_exit(struct six_lock *lock)
830{
831	WARN_ON(lock->readers && pcpu_read_count(lock));
832	WARN_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_read);
833
834	free_percpu(lock->readers);
835	lock->readers = NULL;
836}
837EXPORT_SYMBOL_GPL(six_lock_exit);
838
839void __six_lock_init(struct six_lock *lock, const char *name,
840		     struct lock_class_key *key, enum six_lock_init_flags flags)
841{
842	atomic_set(&lock->state, 0);
843	raw_spin_lock_init(&lock->wait_lock);
844	INIT_LIST_HEAD(&lock->wait_list);
845#ifdef CONFIG_DEBUG_LOCK_ALLOC
846	debug_check_no_locks_freed((void *) lock, sizeof(*lock));
847	lockdep_init_map(&lock->dep_map, name, key, 0);
848#endif
849
850	/*
851	 * Don't assume that we have real percpu variables available in
852	 * userspace:
853	 */
854#ifdef __KERNEL__
855	if (flags & SIX_LOCK_INIT_PCPU) {
856		/*
857		 * We don't return an error here on memory allocation failure
858		 * since percpu is an optimization, and locks will work with the
859		 * same semantics in non-percpu mode: callers can check for
860		 * failure if they wish by checking lock->readers, but generally
861		 * will not want to treat it as an error.
862		 */
863		lock->readers = alloc_percpu(unsigned);
864	}
865#endif
866}
867EXPORT_SYMBOL_GPL(__six_lock_init);