Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 | // SPDX-License-Identifier: GPL-2.0 #include <linux/export.h> #include <linux/log2.h> #include <linux/percpu.h> #include <linux/preempt.h> #include <linux/rcupdate.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/sched/rt.h> #include <linux/sched/task.h> #include <linux/slab.h> #include <trace/events/lock.h> #include "six.h" #ifdef DEBUG #define EBUG_ON(cond) BUG_ON(cond) #else #define EBUG_ON(cond) do {} while (0) #endif #define six_acquire(l, t, r, ip) lock_acquire(l, 0, t, r, 1, NULL, ip) #define six_release(l, ip) lock_release(l, ip) static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type); #define SIX_LOCK_HELD_read_OFFSET 0 #define SIX_LOCK_HELD_read ~(~0U << 26) #define SIX_LOCK_HELD_intent (1U << 26) #define SIX_LOCK_HELD_write (1U << 27) #define SIX_LOCK_WAITING_read (1U << (28 + SIX_LOCK_read)) #define SIX_LOCK_WAITING_write (1U << (28 + SIX_LOCK_write)) #define SIX_LOCK_NOSPIN (1U << 31) struct six_lock_vals { /* Value we add to the lock in order to take the lock: */ u32 lock_val; /* If the lock has this value (used as a mask), taking the lock fails: */ u32 lock_fail; /* Mask that indicates lock is held for this type: */ u32 held_mask; /* Waitlist we wakeup when releasing the lock: */ enum six_lock_type unlock_wakeup; }; static const struct six_lock_vals l[] = { [SIX_LOCK_read] = { .lock_val = 1U << SIX_LOCK_HELD_read_OFFSET, .lock_fail = SIX_LOCK_HELD_write, .held_mask = SIX_LOCK_HELD_read, .unlock_wakeup = SIX_LOCK_write, }, [SIX_LOCK_intent] = { .lock_val = SIX_LOCK_HELD_intent, .lock_fail = SIX_LOCK_HELD_intent, .held_mask = SIX_LOCK_HELD_intent, .unlock_wakeup = SIX_LOCK_intent, }, [SIX_LOCK_write] = { .lock_val = SIX_LOCK_HELD_write, .lock_fail = SIX_LOCK_HELD_read, .held_mask = SIX_LOCK_HELD_write, .unlock_wakeup = SIX_LOCK_read, }, }; static inline void six_set_bitmask(struct six_lock *lock, u32 mask) { if ((atomic_read(&lock->state) & mask) != mask) atomic_or(mask, &lock->state); } static inline void six_clear_bitmask(struct six_lock *lock, u32 mask) { if (atomic_read(&lock->state) & mask) atomic_and(~mask, &lock->state); } static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type, u32 old, struct task_struct *owner) { if (type != SIX_LOCK_intent) return; if (!(old & SIX_LOCK_HELD_intent)) { EBUG_ON(lock->owner); lock->owner = owner; } else { EBUG_ON(lock->owner != current); } } static inline unsigned pcpu_read_count(struct six_lock *lock) { unsigned read_count = 0; int cpu; for_each_possible_cpu(cpu) read_count += *per_cpu_ptr(lock->readers, cpu); return read_count; } /* * __do_six_trylock() - main trylock routine * * Returns 1 on success, 0 on failure * * In percpu reader mode, a failed trylock may cause a spurious trylock failure * for anoter thread taking the competing lock type, and we may havve to do a * wakeup: when a wakeup is required, we return -1 - wakeup_type. */ static int __do_six_trylock(struct six_lock *lock, enum six_lock_type type, struct task_struct *task, bool try) { int ret; u32 old; EBUG_ON(type == SIX_LOCK_write && lock->owner != task); EBUG_ON(type == SIX_LOCK_write && (try != !(atomic_read(&lock->state) & SIX_LOCK_HELD_write))); /* * Percpu reader mode: * * The basic idea behind this algorithm is that you can implement a lock * between two threads without any atomics, just memory barriers: * * For two threads you'll need two variables, one variable for "thread a * has the lock" and another for "thread b has the lock". * * To take the lock, a thread sets its variable indicating that it holds * the lock, then issues a full memory barrier, then reads from the * other thread's variable to check if the other thread thinks it has * the lock. If we raced, we backoff and retry/sleep. * * Failure to take the lock may cause a spurious trylock failure in * another thread, because we temporarily set the lock to indicate that * we held it. This would be a problem for a thread in six_lock(), when * they are calling trylock after adding themself to the waitlist and * prior to sleeping. * * Therefore, if we fail to get the lock, and there were waiters of the * type we conflict with, we will have to issue a wakeup. * * Since we may be called under wait_lock (and by the wakeup code * itself), we return that the wakeup has to be done instead of doing it * here. */ if (type == SIX_LOCK_read && lock->readers) { preempt_disable(); this_cpu_inc(*lock->readers); /* signal that we own lock */ smp_mb(); old = atomic_read(&lock->state); ret = !(old & l[type].lock_fail); this_cpu_sub(*lock->readers, !ret); preempt_enable(); if (!ret) { smp_mb(); if (atomic_read(&lock->state) & SIX_LOCK_WAITING_write) ret = -1 - SIX_LOCK_write; } } else if (type == SIX_LOCK_write && lock->readers) { if (try) { atomic_add(SIX_LOCK_HELD_write, &lock->state); smp_mb__after_atomic(); } ret = !pcpu_read_count(lock); if (try && !ret) { old = atomic_sub_return(SIX_LOCK_HELD_write, &lock->state); if (old & SIX_LOCK_WAITING_read) ret = -1 - SIX_LOCK_read; } } else { old = atomic_read(&lock->state); do { ret = !(old & l[type].lock_fail); if (!ret || (type == SIX_LOCK_write && !try)) { smp_mb(); break; } } while (!atomic_try_cmpxchg_acquire(&lock->state, &old, old + l[type].lock_val)); EBUG_ON(ret && !(atomic_read(&lock->state) & l[type].held_mask)); } if (ret > 0) six_set_owner(lock, type, old, task); EBUG_ON(type == SIX_LOCK_write && try && ret <= 0 && (atomic_read(&lock->state) & SIX_LOCK_HELD_write)); return ret; } static void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type) { struct six_lock_waiter *w, *next; struct task_struct *task; bool saw_one; int ret; again: ret = 0; saw_one = false; raw_spin_lock(&lock->wait_lock); list_for_each_entry_safe(w, next, &lock->wait_list, list) { if (w->lock_want != lock_type) continue; if (saw_one && lock_type != SIX_LOCK_read) goto unlock; saw_one = true; ret = __do_six_trylock(lock, lock_type, w->task, false); if (ret <= 0) goto unlock; /* * Similar to percpu_rwsem_wake_function(), we need to guard * against the wakee noticing w->lock_acquired, returning, and * then exiting before we do the wakeup: */ task = get_task_struct(w->task); __list_del(w->list.prev, w->list.next); /* * The release barrier here ensures the ordering of the * __list_del before setting w->lock_acquired; @w is on the * stack of the thread doing the waiting and will be reused * after it sees w->lock_acquired with no other locking: * pairs with smp_load_acquire() in six_lock_slowpath() */ smp_store_release(&w->lock_acquired, true); wake_up_process(task); put_task_struct(task); } six_clear_bitmask(lock, SIX_LOCK_WAITING_read << lock_type); unlock: raw_spin_unlock(&lock->wait_lock); if (ret < 0) { lock_type = -ret - 1; goto again; } } __always_inline static void six_lock_wakeup(struct six_lock *lock, u32 state, enum six_lock_type lock_type) { if (lock_type == SIX_LOCK_write && (state & SIX_LOCK_HELD_read)) return; if (!(state & (SIX_LOCK_WAITING_read << lock_type))) return; __six_lock_wakeup(lock, lock_type); } __always_inline static bool do_six_trylock(struct six_lock *lock, enum six_lock_type type, bool try) { int ret; ret = __do_six_trylock(lock, type, current, try); if (ret < 0) __six_lock_wakeup(lock, -ret - 1); return ret > 0; } /** * six_trylock_ip - attempt to take a six lock without blocking * @lock: lock to take * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ * * Return: true on success, false on failure. */ bool six_trylock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip) { if (!do_six_trylock(lock, type, true)) return false; if (type != SIX_LOCK_write) six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip); return true; } EXPORT_SYMBOL_GPL(six_trylock_ip); /** * six_relock_ip - attempt to re-take a lock that was held previously * @lock: lock to take * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write * @seq: lock sequence number obtained from six_lock_seq() while lock was * held previously * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ * * Return: true on success, false on failure. */ bool six_relock_ip(struct six_lock *lock, enum six_lock_type type, unsigned seq, unsigned long ip) { if (six_lock_seq(lock) != seq || !six_trylock_ip(lock, type, ip)) return false; if (six_lock_seq(lock) != seq) { six_unlock_ip(lock, type, ip); return false; } return true; } EXPORT_SYMBOL_GPL(six_relock_ip); #ifdef CONFIG_BCACHEFS_SIX_OPTIMISTIC_SPIN static inline bool six_owner_running(struct six_lock *lock) { /* * When there's no owner, we might have preempted between the owner * acquiring the lock and setting the owner field. If we're an RT task * that will live-lock because we won't let the owner complete. */ rcu_read_lock(); struct task_struct *owner = READ_ONCE(lock->owner); bool ret = owner ? owner_on_cpu(owner) : !rt_task(current); rcu_read_unlock(); return ret; } static inline bool six_optimistic_spin(struct six_lock *lock, struct six_lock_waiter *wait, enum six_lock_type type) { unsigned loop = 0; u64 end_time; if (type == SIX_LOCK_write) return false; if (lock->wait_list.next != &wait->list) return false; if (atomic_read(&lock->state) & SIX_LOCK_NOSPIN) return false; preempt_disable(); end_time = sched_clock() + 10 * NSEC_PER_USEC; while (!need_resched() && six_owner_running(lock)) { /* * Ensures that writes to the waitlist entry happen after we see * wait->lock_acquired: pairs with the smp_store_release in * __six_lock_wakeup */ if (smp_load_acquire(&wait->lock_acquired)) { preempt_enable(); return true; } if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) { six_set_bitmask(lock, SIX_LOCK_NOSPIN); break; } /* * The cpu_relax() call is a compiler barrier which forces * everything in this loop to be re-loaded. We don't need * memory barriers as we'll eventually observe the right * values at the cost of a few extra spins. */ cpu_relax(); } preempt_enable(); return false; } #else /* CONFIG_LOCK_SPIN_ON_OWNER */ static inline bool six_optimistic_spin(struct six_lock *lock, struct six_lock_waiter *wait, enum six_lock_type type) { return false; } #endif noinline static int six_lock_slowpath(struct six_lock *lock, enum six_lock_type type, struct six_lock_waiter *wait, six_lock_should_sleep_fn should_sleep_fn, void *p, unsigned long ip) { int ret = 0; if (type == SIX_LOCK_write) { EBUG_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_write); atomic_add(SIX_LOCK_HELD_write, &lock->state); smp_mb__after_atomic(); } trace_contention_begin(lock, 0); lock_contended(&lock->dep_map, ip); wait->task = current; wait->lock_want = type; wait->lock_acquired = false; raw_spin_lock(&lock->wait_lock); six_set_bitmask(lock, SIX_LOCK_WAITING_read << type); /* * Retry taking the lock after taking waitlist lock, in case we raced * with an unlock: */ ret = __do_six_trylock(lock, type, current, false); if (ret <= 0) { wait->start_time = local_clock(); if (!list_empty(&lock->wait_list)) { struct six_lock_waiter *last = list_last_entry(&lock->wait_list, struct six_lock_waiter, list); if (time_before_eq64(wait->start_time, last->start_time)) wait->start_time = last->start_time + 1; } list_add_tail(&wait->list, &lock->wait_list); } raw_spin_unlock(&lock->wait_lock); if (unlikely(ret > 0)) { ret = 0; goto out; } if (unlikely(ret < 0)) { __six_lock_wakeup(lock, -ret - 1); ret = 0; } if (six_optimistic_spin(lock, wait, type)) goto out; while (1) { set_current_state(TASK_UNINTERRUPTIBLE); /* * Ensures that writes to the waitlist entry happen after we see * wait->lock_acquired: pairs with the smp_store_release in * __six_lock_wakeup */ if (smp_load_acquire(&wait->lock_acquired)) break; ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0; if (unlikely(ret)) { bool acquired; /* * If should_sleep_fn() returns an error, we are * required to return that error even if we already * acquired the lock - should_sleep_fn() might have * modified external state (e.g. when the deadlock cycle * detector in bcachefs issued a transaction restart) */ raw_spin_lock(&lock->wait_lock); acquired = wait->lock_acquired; if (!acquired) list_del(&wait->list); raw_spin_unlock(&lock->wait_lock); if (unlikely(acquired)) do_six_unlock_type(lock, type); break; } schedule(); } __set_current_state(TASK_RUNNING); out: if (ret && type == SIX_LOCK_write) { six_clear_bitmask(lock, SIX_LOCK_HELD_write); six_lock_wakeup(lock, atomic_read(&lock->state), SIX_LOCK_read); } trace_contention_end(lock, 0); return ret; } /** * six_lock_ip_waiter - take a lock, with full waitlist interface * @lock: lock to take * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write * @wait: pointer to wait object, which will be added to lock's waitlist * @should_sleep_fn: callback run after adding to waitlist, immediately prior * to scheduling * @p: passed through to @should_sleep_fn * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ * * This is the most general six_lock() variant, with parameters to support full * cycle detection for deadlock avoidance. * * The code calling this function must implement tracking of held locks, and the * @wait object should be embedded into the struct that tracks held locks - * which must also be accessible in a thread-safe way. * * @should_sleep_fn should invoke the cycle detector; it should walk each * lock's waiters, and for each waiter recursively walk their held locks. * * When this function must block, @wait will be added to @lock's waitlist before * calling trylock, and before calling @should_sleep_fn, and @wait will not be * removed from the lock waitlist until the lock has been successfully acquired, * or we abort. * * @wait.start_time will be monotonically increasing for any given waitlist, and * thus may be used as a loop cursor. * * Return: 0 on success, or the return code from @should_sleep_fn on failure. */ int six_lock_ip_waiter(struct six_lock *lock, enum six_lock_type type, struct six_lock_waiter *wait, six_lock_should_sleep_fn should_sleep_fn, void *p, unsigned long ip) { int ret; wait->start_time = 0; if (type != SIX_LOCK_write) six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip); ret = do_six_trylock(lock, type, true) ? 0 : six_lock_slowpath(lock, type, wait, should_sleep_fn, p, ip); if (ret && type != SIX_LOCK_write) six_release(&lock->dep_map, ip); if (!ret) lock_acquired(&lock->dep_map, ip); return ret; } EXPORT_SYMBOL_GPL(six_lock_ip_waiter); __always_inline static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type) { u32 state; if (type == SIX_LOCK_intent) lock->owner = NULL; if (type == SIX_LOCK_read && lock->readers) { smp_mb(); /* unlock barrier */ this_cpu_dec(*lock->readers); smp_mb(); /* between unlocking and checking for waiters */ state = atomic_read(&lock->state); } else { u32 v = l[type].lock_val; if (type != SIX_LOCK_read) v += atomic_read(&lock->state) & SIX_LOCK_NOSPIN; EBUG_ON(!(atomic_read(&lock->state) & l[type].held_mask)); state = atomic_sub_return_release(v, &lock->state); } six_lock_wakeup(lock, state, l[type].unlock_wakeup); } /** * six_unlock_ip - drop a six lock * @lock: lock to unlock * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ * * When a lock is held multiple times (because six_lock_incement()) was used), * this decrements the 'lock held' counter by one. * * For example: * six_lock_read(&foo->lock); read count 1 * six_lock_increment(&foo->lock, SIX_LOCK_read); read count 2 * six_lock_unlock(&foo->lock, SIX_LOCK_read); read count 1 * six_lock_unlock(&foo->lock, SIX_LOCK_read); read count 0 */ void six_unlock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip) { EBUG_ON(type == SIX_LOCK_write && !(atomic_read(&lock->state) & SIX_LOCK_HELD_intent)); EBUG_ON((type == SIX_LOCK_write || type == SIX_LOCK_intent) && lock->owner != current); if (type != SIX_LOCK_write) six_release(&lock->dep_map, ip); else lock->seq++; if (type == SIX_LOCK_intent && lock->intent_lock_recurse) { --lock->intent_lock_recurse; return; } do_six_unlock_type(lock, type); } EXPORT_SYMBOL_GPL(six_unlock_ip); /** * six_lock_downgrade - convert an intent lock to a read lock * @lock: lock to dowgrade * * @lock will have read count incremented and intent count decremented */ void six_lock_downgrade(struct six_lock *lock) { six_lock_increment(lock, SIX_LOCK_read); six_unlock_intent(lock); } EXPORT_SYMBOL_GPL(six_lock_downgrade); /** * six_lock_tryupgrade - attempt to convert read lock to an intent lock * @lock: lock to upgrade * * On success, @lock will have intent count incremented and read count * decremented * * Return: true on success, false on failure */ bool six_lock_tryupgrade(struct six_lock *lock) { u32 old = atomic_read(&lock->state), new; do { new = old; if (new & SIX_LOCK_HELD_intent) return false; if (!lock->readers) { EBUG_ON(!(new & SIX_LOCK_HELD_read)); new -= l[SIX_LOCK_read].lock_val; } new |= SIX_LOCK_HELD_intent; } while (!atomic_try_cmpxchg_acquire(&lock->state, &old, new)); if (lock->readers) this_cpu_dec(*lock->readers); six_set_owner(lock, SIX_LOCK_intent, old, current); return true; } EXPORT_SYMBOL_GPL(six_lock_tryupgrade); /** * six_trylock_convert - attempt to convert a held lock from one type to another * @lock: lock to upgrade * @from: SIX_LOCK_read or SIX_LOCK_intent * @to: SIX_LOCK_read or SIX_LOCK_intent * * On success, @lock will have intent count incremented and read count * decremented * * Return: true on success, false on failure */ bool six_trylock_convert(struct six_lock *lock, enum six_lock_type from, enum six_lock_type to) { EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write); if (to == from) return true; if (to == SIX_LOCK_read) { six_lock_downgrade(lock); return true; } else { return six_lock_tryupgrade(lock); } } EXPORT_SYMBOL_GPL(six_trylock_convert); /** * six_lock_increment - increase held lock count on a lock that is already held * @lock: lock to increment * @type: SIX_LOCK_read or SIX_LOCK_intent * * @lock must already be held, with a lock type that is greater than or equal to * @type * * A corresponding six_unlock_type() call will be required for @lock to be fully * unlocked. */ void six_lock_increment(struct six_lock *lock, enum six_lock_type type) { six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_); /* XXX: assert already locked, and that we don't overflow: */ switch (type) { case SIX_LOCK_read: if (lock->readers) { this_cpu_inc(*lock->readers); } else { EBUG_ON(!(atomic_read(&lock->state) & (SIX_LOCK_HELD_read| SIX_LOCK_HELD_intent))); atomic_add(l[type].lock_val, &lock->state); } break; case SIX_LOCK_intent: EBUG_ON(!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent)); lock->intent_lock_recurse++; break; case SIX_LOCK_write: BUG(); break; } } EXPORT_SYMBOL_GPL(six_lock_increment); /** * six_lock_wakeup_all - wake up all waiters on @lock * @lock: lock to wake up waiters for * * Wakeing up waiters will cause them to re-run should_sleep_fn, which may then * abort the lock operation. * * This function is never needed in a bug-free program; it's only useful in * debug code, e.g. to determine if a cycle detector is at fault. */ void six_lock_wakeup_all(struct six_lock *lock) { u32 state = atomic_read(&lock->state); struct six_lock_waiter *w; six_lock_wakeup(lock, state, SIX_LOCK_read); six_lock_wakeup(lock, state, SIX_LOCK_intent); six_lock_wakeup(lock, state, SIX_LOCK_write); raw_spin_lock(&lock->wait_lock); list_for_each_entry(w, &lock->wait_list, list) wake_up_process(w->task); raw_spin_unlock(&lock->wait_lock); } EXPORT_SYMBOL_GPL(six_lock_wakeup_all); /** * six_lock_counts - return held lock counts, for each lock type * @lock: lock to return counters for * * Return: the number of times a lock is held for read, intent and write. */ struct six_lock_count six_lock_counts(struct six_lock *lock) { struct six_lock_count ret; ret.n[SIX_LOCK_read] = !lock->readers ? atomic_read(&lock->state) & SIX_LOCK_HELD_read : pcpu_read_count(lock); ret.n[SIX_LOCK_intent] = !!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent) + lock->intent_lock_recurse; ret.n[SIX_LOCK_write] = !!(atomic_read(&lock->state) & SIX_LOCK_HELD_write); return ret; } EXPORT_SYMBOL_GPL(six_lock_counts); /** * six_lock_readers_add - directly manipulate reader count of a lock * @lock: lock to add/subtract readers for * @nr: reader count to add/subtract * * When an upper layer is implementing lock reentrency, we may have both read * and intent locks on the same lock. * * When we need to take a write lock, the read locks will cause self-deadlock, * because six locks themselves do not track which read locks are held by the * current thread and which are held by a different thread - it does no * per-thread tracking of held locks. * * The upper layer that is tracking held locks may however, if trylock() has * failed, count up its own read locks, subtract them, take the write lock, and * then re-add them. * * As in any other situation when taking a write lock, @lock must be held for * intent one (or more) times, so @lock will never be left unlocked. */ void six_lock_readers_add(struct six_lock *lock, int nr) { if (lock->readers) { this_cpu_add(*lock->readers, nr); } else { EBUG_ON((int) (atomic_read(&lock->state) & SIX_LOCK_HELD_read) + nr < 0); /* reader count starts at bit 0 */ atomic_add(nr, &lock->state); } } EXPORT_SYMBOL_GPL(six_lock_readers_add); /** * six_lock_exit - release resources held by a lock prior to freeing * @lock: lock to exit * * When a lock was initialized in percpu mode (SIX_OLCK_INIT_PCPU), this is * required to free the percpu read counts. */ void six_lock_exit(struct six_lock *lock) { WARN_ON(lock->readers && pcpu_read_count(lock)); WARN_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_read); free_percpu(lock->readers); lock->readers = NULL; } EXPORT_SYMBOL_GPL(six_lock_exit); void __six_lock_init(struct six_lock *lock, const char *name, struct lock_class_key *key, enum six_lock_init_flags flags) { atomic_set(&lock->state, 0); raw_spin_lock_init(&lock->wait_lock); INIT_LIST_HEAD(&lock->wait_list); #ifdef CONFIG_DEBUG_LOCK_ALLOC debug_check_no_locks_freed((void *) lock, sizeof(*lock)); lockdep_init_map(&lock->dep_map, name, key, 0); #endif /* * Don't assume that we have real percpu variables available in * userspace: */ #ifdef __KERNEL__ if (flags & SIX_LOCK_INIT_PCPU) { /* * We don't return an error here on memory allocation failure * since percpu is an optimization, and locks will work with the * same semantics in non-percpu mode: callers can check for * failure if they wish by checking lock->readers, but generally * will not want to treat it as an error. */ lock->readers = alloc_percpu(unsigned); } #endif } EXPORT_SYMBOL_GPL(__six_lock_init); |