Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
 
 
 
 
 
 
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
 
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/reboot.h>
  23#include <linux/regmap.h>
  24#include <linux/regulator/of_regulator.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/regulator/coupler.h>
  27#include <linux/regulator/driver.h>
  28#include <linux/regulator/machine.h>
  29#include <linux/module.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35#include "internal.h"
  36#include "regnl.h"
  37
  38static DEFINE_WW_CLASS(regulator_ww_class);
  39static DEFINE_MUTEX(regulator_nesting_mutex);
 
 
 
 
 
 
 
 
 
  40static DEFINE_MUTEX(regulator_list_mutex);
  41static LIST_HEAD(regulator_map_list);
  42static LIST_HEAD(regulator_ena_gpio_list);
  43static LIST_HEAD(regulator_supply_alias_list);
  44static LIST_HEAD(regulator_coupler_list);
  45static bool has_full_constraints;
  46
  47static struct dentry *debugfs_root;
  48
 
 
  49/*
  50 * struct regulator_map
  51 *
  52 * Used to provide symbolic supply names to devices.
  53 */
  54struct regulator_map {
  55	struct list_head list;
  56	const char *dev_name;   /* The dev_name() for the consumer */
  57	const char *supply;
  58	struct regulator_dev *regulator;
  59};
  60
  61/*
  62 * struct regulator_enable_gpio
  63 *
  64 * Management for shared enable GPIO pin
  65 */
  66struct regulator_enable_gpio {
  67	struct list_head list;
  68	struct gpio_desc *gpiod;
  69	u32 enable_count;	/* a number of enabled shared GPIO */
  70	u32 request_count;	/* a number of requested shared GPIO */
 
  71};
  72
  73/*
  74 * struct regulator_supply_alias
  75 *
  76 * Used to map lookups for a supply onto an alternative device.
  77 */
  78struct regulator_supply_alias {
  79	struct list_head list;
  80	struct device *src_dev;
  81	const char *src_supply;
  82	struct device *alias_dev;
  83	const char *alias_supply;
  84};
  85
  86static int _regulator_is_enabled(struct regulator_dev *rdev);
  87static int _regulator_disable(struct regulator *regulator);
  88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  89static int _regulator_get_current_limit(struct regulator_dev *rdev);
  90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  91static int _notifier_call_chain(struct regulator_dev *rdev,
  92				  unsigned long event, void *data);
  93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  94				     int min_uV, int max_uV);
  95static int regulator_balance_voltage(struct regulator_dev *rdev,
  96				     suspend_state_t state);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100static void destroy_regulator(struct regulator *regulator);
 101static void _regulator_put(struct regulator *regulator);
 102
 103const char *rdev_get_name(struct regulator_dev *rdev)
 
 
 
 
 
 104{
 105	if (rdev->constraints && rdev->constraints->name)
 106		return rdev->constraints->name;
 107	else if (rdev->desc->name)
 108		return rdev->desc->name;
 109	else
 110		return "";
 111}
 112EXPORT_SYMBOL_GPL(rdev_get_name);
 113
 114static bool have_full_constraints(void)
 115{
 116	return has_full_constraints || of_have_populated_dt();
 117}
 118
 119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 120{
 121	if (!rdev->constraints) {
 122		rdev_err(rdev, "no constraints\n");
 123		return false;
 124	}
 125
 126	if (rdev->constraints->valid_ops_mask & ops)
 127		return true;
 128
 129	return false;
 130}
 131
 132/**
 133 * regulator_lock_nested - lock a single regulator
 134 * @rdev:		regulator source
 135 * @ww_ctx:		w/w mutex acquire context
 136 *
 137 * This function can be called many times by one task on
 138 * a single regulator and its mutex will be locked only
 139 * once. If a task, which is calling this function is other
 140 * than the one, which initially locked the mutex, it will
 141 * wait on mutex.
 142 */
 143static inline int regulator_lock_nested(struct regulator_dev *rdev,
 144					struct ww_acquire_ctx *ww_ctx)
 145{
 146	bool lock = false;
 147	int ret = 0;
 148
 149	mutex_lock(&regulator_nesting_mutex);
 150
 151	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 152		if (rdev->mutex_owner == current)
 153			rdev->ref_cnt++;
 154		else
 155			lock = true;
 156
 157		if (lock) {
 158			mutex_unlock(&regulator_nesting_mutex);
 159			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 160			mutex_lock(&regulator_nesting_mutex);
 161		}
 162	} else {
 163		lock = true;
 164	}
 165
 166	if (lock && ret != -EDEADLK) {
 167		rdev->ref_cnt++;
 168		rdev->mutex_owner = current;
 169	}
 170
 171	mutex_unlock(&regulator_nesting_mutex);
 172
 173	return ret;
 174}
 175
 176/**
 177 * regulator_lock - lock a single regulator
 178 * @rdev:		regulator source
 179 *
 180 * This function can be called many times by one task on
 181 * a single regulator and its mutex will be locked only
 182 * once. If a task, which is calling this function is other
 183 * than the one, which initially locked the mutex, it will
 184 * wait on mutex.
 185 */
 186static void regulator_lock(struct regulator_dev *rdev)
 187{
 188	regulator_lock_nested(rdev, NULL);
 189}
 190
 191/**
 192 * regulator_unlock - unlock a single regulator
 193 * @rdev:		regulator_source
 194 *
 195 * This function unlocks the mutex when the
 196 * reference counter reaches 0.
 197 */
 198static void regulator_unlock(struct regulator_dev *rdev)
 199{
 200	mutex_lock(&regulator_nesting_mutex);
 201
 202	if (--rdev->ref_cnt == 0) {
 203		rdev->mutex_owner = NULL;
 204		ww_mutex_unlock(&rdev->mutex);
 205	}
 206
 207	WARN_ON_ONCE(rdev->ref_cnt < 0);
 208
 209	mutex_unlock(&regulator_nesting_mutex);
 210}
 211
 212/**
 213 * regulator_lock_two - lock two regulators
 214 * @rdev1:		first regulator
 215 * @rdev2:		second regulator
 216 * @ww_ctx:		w/w mutex acquire context
 217 *
 218 * Locks both rdevs using the regulator_ww_class.
 219 */
 220static void regulator_lock_two(struct regulator_dev *rdev1,
 221			       struct regulator_dev *rdev2,
 222			       struct ww_acquire_ctx *ww_ctx)
 223{
 224	struct regulator_dev *held, *contended;
 225	int ret;
 226
 227	ww_acquire_init(ww_ctx, &regulator_ww_class);
 228
 229	/* Try to just grab both of them */
 230	ret = regulator_lock_nested(rdev1, ww_ctx);
 231	WARN_ON(ret);
 232	ret = regulator_lock_nested(rdev2, ww_ctx);
 233	if (ret != -EDEADLOCK) {
 234		WARN_ON(ret);
 235		goto exit;
 236	}
 237
 238	held = rdev1;
 239	contended = rdev2;
 240	while (true) {
 241		regulator_unlock(held);
 242
 243		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
 244		contended->ref_cnt++;
 245		contended->mutex_owner = current;
 246		swap(held, contended);
 247		ret = regulator_lock_nested(contended, ww_ctx);
 248
 249		if (ret != -EDEADLOCK) {
 250			WARN_ON(ret);
 251			break;
 252		}
 253	}
 254
 255exit:
 256	ww_acquire_done(ww_ctx);
 257}
 258
 259/**
 260 * regulator_unlock_two - unlock two regulators
 261 * @rdev1:		first regulator
 262 * @rdev2:		second regulator
 263 * @ww_ctx:		w/w mutex acquire context
 264 *
 265 * The inverse of regulator_lock_two().
 266 */
 267
 268static void regulator_unlock_two(struct regulator_dev *rdev1,
 269				 struct regulator_dev *rdev2,
 270				 struct ww_acquire_ctx *ww_ctx)
 271{
 272	regulator_unlock(rdev2);
 273	regulator_unlock(rdev1);
 274	ww_acquire_fini(ww_ctx);
 275}
 276
 277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 278{
 279	struct regulator_dev *c_rdev;
 280	int i;
 281
 282	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 283		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 284
 285		if (rdev->supply->rdev == c_rdev)
 286			return true;
 287	}
 288
 289	return false;
 290}
 291
 292static void regulator_unlock_recursive(struct regulator_dev *rdev,
 293				       unsigned int n_coupled)
 294{
 295	struct regulator_dev *c_rdev, *supply_rdev;
 296	int i, supply_n_coupled;
 297
 298	for (i = n_coupled; i > 0; i--) {
 299		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 300
 301		if (!c_rdev)
 302			continue;
 303
 304		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 305			supply_rdev = c_rdev->supply->rdev;
 306			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 307
 308			regulator_unlock_recursive(supply_rdev,
 309						   supply_n_coupled);
 310		}
 311
 312		regulator_unlock(c_rdev);
 313	}
 314}
 315
 316static int regulator_lock_recursive(struct regulator_dev *rdev,
 317				    struct regulator_dev **new_contended_rdev,
 318				    struct regulator_dev **old_contended_rdev,
 319				    struct ww_acquire_ctx *ww_ctx)
 320{
 321	struct regulator_dev *c_rdev;
 322	int i, err;
 323
 324	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 325		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 326
 327		if (!c_rdev)
 328			continue;
 329
 330		if (c_rdev != *old_contended_rdev) {
 331			err = regulator_lock_nested(c_rdev, ww_ctx);
 332			if (err) {
 333				if (err == -EDEADLK) {
 334					*new_contended_rdev = c_rdev;
 335					goto err_unlock;
 336				}
 337
 338				/* shouldn't happen */
 339				WARN_ON_ONCE(err != -EALREADY);
 340			}
 341		} else {
 342			*old_contended_rdev = NULL;
 343		}
 344
 345		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 346			err = regulator_lock_recursive(c_rdev->supply->rdev,
 347						       new_contended_rdev,
 348						       old_contended_rdev,
 349						       ww_ctx);
 350			if (err) {
 351				regulator_unlock(c_rdev);
 352				goto err_unlock;
 353			}
 354		}
 355	}
 356
 357	return 0;
 358
 359err_unlock:
 360	regulator_unlock_recursive(rdev, i);
 361
 362	return err;
 363}
 364
 365/**
 366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 367 *				regulators
 368 * @rdev:			regulator source
 369 * @ww_ctx:			w/w mutex acquire context
 370 *
 371 * Unlock all regulators related with rdev by coupling or supplying.
 372 */
 373static void regulator_unlock_dependent(struct regulator_dev *rdev,
 374				       struct ww_acquire_ctx *ww_ctx)
 375{
 376	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 377	ww_acquire_fini(ww_ctx);
 378}
 379
 380/**
 381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 382 * @rdev:			regulator source
 383 * @ww_ctx:			w/w mutex acquire context
 384 *
 385 * This function as a wrapper on regulator_lock_recursive(), which locks
 386 * all regulators related with rdev by coupling or supplying.
 387 */
 388static void regulator_lock_dependent(struct regulator_dev *rdev,
 389				     struct ww_acquire_ctx *ww_ctx)
 390{
 391	struct regulator_dev *new_contended_rdev = NULL;
 392	struct regulator_dev *old_contended_rdev = NULL;
 393	int err;
 394
 395	mutex_lock(&regulator_list_mutex);
 396
 397	ww_acquire_init(ww_ctx, &regulator_ww_class);
 398
 399	do {
 400		if (new_contended_rdev) {
 401			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 402			old_contended_rdev = new_contended_rdev;
 403			old_contended_rdev->ref_cnt++;
 404			old_contended_rdev->mutex_owner = current;
 405		}
 406
 407		err = regulator_lock_recursive(rdev,
 408					       &new_contended_rdev,
 409					       &old_contended_rdev,
 410					       ww_ctx);
 411
 412		if (old_contended_rdev)
 413			regulator_unlock(old_contended_rdev);
 414
 415	} while (err == -EDEADLK);
 416
 417	ww_acquire_done(ww_ctx);
 
 
 418
 419	mutex_unlock(&regulator_list_mutex);
 420}
 421
 422/**
 423 * of_get_child_regulator - get a child regulator device node
 424 * based on supply name
 425 * @parent: Parent device node
 426 * @prop_name: Combination regulator supply name and "-supply"
 427 *
 428 * Traverse all child nodes.
 429 * Extract the child regulator device node corresponding to the supply name.
 430 * returns the device node corresponding to the regulator if found, else
 431 * returns NULL.
 432 */
 433static struct device_node *of_get_child_regulator(struct device_node *parent,
 434						  const char *prop_name)
 435{
 436	struct device_node *regnode = NULL;
 437	struct device_node *child = NULL;
 438
 439	for_each_child_of_node(parent, child) {
 440		regnode = of_parse_phandle(child, prop_name, 0);
 441
 442		if (!regnode) {
 443			regnode = of_get_child_regulator(child, prop_name);
 444			if (regnode)
 445				goto err_node_put;
 446		} else {
 447			goto err_node_put;
 448		}
 449	}
 450	return NULL;
 451
 452err_node_put:
 453	of_node_put(child);
 454	return regnode;
 455}
 456
 457/**
 458 * of_get_regulator - get a regulator device node based on supply name
 459 * @dev: Device pointer for the consumer (of regulator) device
 460 * @supply: regulator supply name
 461 *
 462 * Extract the regulator device node corresponding to the supply name.
 463 * returns the device node corresponding to the regulator if found, else
 464 * returns NULL.
 465 */
 466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 467{
 468	struct device_node *regnode = NULL;
 469	char prop_name[64]; /* 64 is max size of property name */
 470
 471	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 472
 473	snprintf(prop_name, 64, "%s-supply", supply);
 474	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 475
 476	if (!regnode) {
 477		regnode = of_get_child_regulator(dev->of_node, prop_name);
 478		if (regnode)
 479			return regnode;
 480
 481		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 482				prop_name, dev->of_node);
 483		return NULL;
 484	}
 485	return regnode;
 486}
 487
 
 
 
 
 
 
 
 
 
 
 
 488/* Platform voltage constraint check */
 489int regulator_check_voltage(struct regulator_dev *rdev,
 490			    int *min_uV, int *max_uV)
 491{
 492	BUG_ON(*min_uV > *max_uV);
 493
 494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 
 
 
 
 495		rdev_err(rdev, "voltage operation not allowed\n");
 496		return -EPERM;
 497	}
 498
 499	if (*max_uV > rdev->constraints->max_uV)
 500		*max_uV = rdev->constraints->max_uV;
 501	if (*min_uV < rdev->constraints->min_uV)
 502		*min_uV = rdev->constraints->min_uV;
 503
 504	if (*min_uV > *max_uV) {
 505		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 506			 *min_uV, *max_uV);
 507		return -EINVAL;
 508	}
 509
 510	return 0;
 511}
 512
 513/* return 0 if the state is valid */
 514static int regulator_check_states(suspend_state_t state)
 515{
 516	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 517}
 518
 519/* Make sure we select a voltage that suits the needs of all
 520 * regulator consumers
 521 */
 522int regulator_check_consumers(struct regulator_dev *rdev,
 523			      int *min_uV, int *max_uV,
 524			      suspend_state_t state)
 525{
 526	struct regulator *regulator;
 527	struct regulator_voltage *voltage;
 528
 529	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 530		voltage = &regulator->voltage[state];
 531		/*
 532		 * Assume consumers that didn't say anything are OK
 533		 * with anything in the constraint range.
 534		 */
 535		if (!voltage->min_uV && !voltage->max_uV)
 536			continue;
 537
 538		if (*max_uV > voltage->max_uV)
 539			*max_uV = voltage->max_uV;
 540		if (*min_uV < voltage->min_uV)
 541			*min_uV = voltage->min_uV;
 542	}
 543
 544	if (*min_uV > *max_uV) {
 545		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 546			*min_uV, *max_uV);
 547		return -EINVAL;
 548	}
 549
 550	return 0;
 551}
 552
 553/* current constraint check */
 554static int regulator_check_current_limit(struct regulator_dev *rdev,
 555					int *min_uA, int *max_uA)
 556{
 557	BUG_ON(*min_uA > *max_uA);
 558
 559	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 
 
 
 
 560		rdev_err(rdev, "current operation not allowed\n");
 561		return -EPERM;
 562	}
 563
 564	if (*max_uA > rdev->constraints->max_uA)
 565		*max_uA = rdev->constraints->max_uA;
 566	if (*min_uA < rdev->constraints->min_uA)
 567		*min_uA = rdev->constraints->min_uA;
 568
 569	if (*min_uA > *max_uA) {
 570		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 571			 *min_uA, *max_uA);
 572		return -EINVAL;
 573	}
 574
 575	return 0;
 576}
 577
 578/* operating mode constraint check */
 579static int regulator_mode_constrain(struct regulator_dev *rdev,
 580				    unsigned int *mode)
 581{
 582	switch (*mode) {
 583	case REGULATOR_MODE_FAST:
 584	case REGULATOR_MODE_NORMAL:
 585	case REGULATOR_MODE_IDLE:
 586	case REGULATOR_MODE_STANDBY:
 587		break;
 588	default:
 589		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 590		return -EINVAL;
 591	}
 592
 593	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 
 
 
 
 594		rdev_err(rdev, "mode operation not allowed\n");
 595		return -EPERM;
 596	}
 597
 598	/* The modes are bitmasks, the most power hungry modes having
 599	 * the lowest values. If the requested mode isn't supported
 600	 * try higher modes.
 601	 */
 602	while (*mode) {
 603		if (rdev->constraints->valid_modes_mask & *mode)
 604			return 0;
 605		*mode /= 2;
 606	}
 607
 608	return -EINVAL;
 609}
 610
 611static inline struct regulator_state *
 612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 613{
 614	if (rdev->constraints == NULL)
 615		return NULL;
 616
 617	switch (state) {
 618	case PM_SUSPEND_STANDBY:
 619		return &rdev->constraints->state_standby;
 620	case PM_SUSPEND_MEM:
 621		return &rdev->constraints->state_mem;
 622	case PM_SUSPEND_MAX:
 623		return &rdev->constraints->state_disk;
 624	default:
 625		return NULL;
 626	}
 627}
 628
 629static const struct regulator_state *
 630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 631{
 632	const struct regulator_state *rstate;
 633
 634	rstate = regulator_get_suspend_state(rdev, state);
 635	if (rstate == NULL)
 636		return NULL;
 637
 638	/* If we have no suspend mode configuration don't set anything;
 639	 * only warn if the driver implements set_suspend_voltage or
 640	 * set_suspend_mode callback.
 641	 */
 642	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 643	    rstate->enabled != DISABLE_IN_SUSPEND) {
 644		if (rdev->desc->ops->set_suspend_voltage ||
 645		    rdev->desc->ops->set_suspend_mode)
 646			rdev_warn(rdev, "No configuration\n");
 647		return NULL;
 648	}
 649
 650	return rstate;
 651}
 652
 653static ssize_t microvolts_show(struct device *dev,
 654			       struct device_attribute *attr, char *buf)
 655{
 656	struct regulator_dev *rdev = dev_get_drvdata(dev);
 657	int uV;
 658
 659	regulator_lock(rdev);
 660	uV = regulator_get_voltage_rdev(rdev);
 661	regulator_unlock(rdev);
 662
 663	if (uV < 0)
 664		return uV;
 665	return sprintf(buf, "%d\n", uV);
 666}
 667static DEVICE_ATTR_RO(microvolts);
 668
 669static ssize_t microamps_show(struct device *dev,
 670			      struct device_attribute *attr, char *buf)
 671{
 672	struct regulator_dev *rdev = dev_get_drvdata(dev);
 673
 674	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 675}
 676static DEVICE_ATTR_RO(microamps);
 677
 678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct regulator_dev *rdev = dev_get_drvdata(dev);
 682
 683	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 684}
 685static DEVICE_ATTR_RO(name);
 686
 687static const char *regulator_opmode_to_str(int mode)
 688{
 689	switch (mode) {
 690	case REGULATOR_MODE_FAST:
 691		return "fast";
 692	case REGULATOR_MODE_NORMAL:
 693		return "normal";
 694	case REGULATOR_MODE_IDLE:
 695		return "idle";
 696	case REGULATOR_MODE_STANDBY:
 697		return "standby";
 698	}
 699	return "unknown";
 700}
 701
 702static ssize_t regulator_print_opmode(char *buf, int mode)
 703{
 704	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 705}
 706
 707static ssize_t opmode_show(struct device *dev,
 708			   struct device_attribute *attr, char *buf)
 709{
 710	struct regulator_dev *rdev = dev_get_drvdata(dev);
 711
 712	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 713}
 714static DEVICE_ATTR_RO(opmode);
 715
 716static ssize_t regulator_print_state(char *buf, int state)
 717{
 718	if (state > 0)
 719		return sprintf(buf, "enabled\n");
 720	else if (state == 0)
 721		return sprintf(buf, "disabled\n");
 722	else
 723		return sprintf(buf, "unknown\n");
 724}
 725
 726static ssize_t state_show(struct device *dev,
 727			  struct device_attribute *attr, char *buf)
 728{
 729	struct regulator_dev *rdev = dev_get_drvdata(dev);
 730	ssize_t ret;
 731
 732	regulator_lock(rdev);
 733	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 734	regulator_unlock(rdev);
 735
 736	return ret;
 737}
 738static DEVICE_ATTR_RO(state);
 739
 740static ssize_t status_show(struct device *dev,
 741			   struct device_attribute *attr, char *buf)
 742{
 743	struct regulator_dev *rdev = dev_get_drvdata(dev);
 744	int status;
 745	char *label;
 746
 747	status = rdev->desc->ops->get_status(rdev);
 748	if (status < 0)
 749		return status;
 750
 751	switch (status) {
 752	case REGULATOR_STATUS_OFF:
 753		label = "off";
 754		break;
 755	case REGULATOR_STATUS_ON:
 756		label = "on";
 757		break;
 758	case REGULATOR_STATUS_ERROR:
 759		label = "error";
 760		break;
 761	case REGULATOR_STATUS_FAST:
 762		label = "fast";
 763		break;
 764	case REGULATOR_STATUS_NORMAL:
 765		label = "normal";
 766		break;
 767	case REGULATOR_STATUS_IDLE:
 768		label = "idle";
 769		break;
 770	case REGULATOR_STATUS_STANDBY:
 771		label = "standby";
 772		break;
 773	case REGULATOR_STATUS_BYPASS:
 774		label = "bypass";
 775		break;
 776	case REGULATOR_STATUS_UNDEFINED:
 777		label = "undefined";
 778		break;
 779	default:
 780		return -ERANGE;
 781	}
 782
 783	return sprintf(buf, "%s\n", label);
 784}
 785static DEVICE_ATTR_RO(status);
 786
 787static ssize_t min_microamps_show(struct device *dev,
 788				  struct device_attribute *attr, char *buf)
 789{
 790	struct regulator_dev *rdev = dev_get_drvdata(dev);
 791
 792	if (!rdev->constraints)
 793		return sprintf(buf, "constraint not defined\n");
 794
 795	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 796}
 797static DEVICE_ATTR_RO(min_microamps);
 798
 799static ssize_t max_microamps_show(struct device *dev,
 800				  struct device_attribute *attr, char *buf)
 801{
 802	struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804	if (!rdev->constraints)
 805		return sprintf(buf, "constraint not defined\n");
 806
 807	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 808}
 809static DEVICE_ATTR_RO(max_microamps);
 810
 811static ssize_t min_microvolts_show(struct device *dev,
 812				   struct device_attribute *attr, char *buf)
 813{
 814	struct regulator_dev *rdev = dev_get_drvdata(dev);
 815
 816	if (!rdev->constraints)
 817		return sprintf(buf, "constraint not defined\n");
 818
 819	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 820}
 821static DEVICE_ATTR_RO(min_microvolts);
 822
 823static ssize_t max_microvolts_show(struct device *dev,
 824				   struct device_attribute *attr, char *buf)
 825{
 826	struct regulator_dev *rdev = dev_get_drvdata(dev);
 827
 828	if (!rdev->constraints)
 829		return sprintf(buf, "constraint not defined\n");
 830
 831	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 832}
 833static DEVICE_ATTR_RO(max_microvolts);
 834
 835static ssize_t requested_microamps_show(struct device *dev,
 836					struct device_attribute *attr, char *buf)
 837{
 838	struct regulator_dev *rdev = dev_get_drvdata(dev);
 839	struct regulator *regulator;
 840	int uA = 0;
 841
 842	regulator_lock(rdev);
 843	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 844		if (regulator->enable_count)
 845			uA += regulator->uA_load;
 846	}
 847	regulator_unlock(rdev);
 848	return sprintf(buf, "%d\n", uA);
 849}
 850static DEVICE_ATTR_RO(requested_microamps);
 851
 852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 853			      char *buf)
 854{
 855	struct regulator_dev *rdev = dev_get_drvdata(dev);
 856	return sprintf(buf, "%d\n", rdev->use_count);
 857}
 858static DEVICE_ATTR_RO(num_users);
 859
 860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 861			 char *buf)
 862{
 863	struct regulator_dev *rdev = dev_get_drvdata(dev);
 864
 865	switch (rdev->desc->type) {
 866	case REGULATOR_VOLTAGE:
 867		return sprintf(buf, "voltage\n");
 868	case REGULATOR_CURRENT:
 869		return sprintf(buf, "current\n");
 870	}
 871	return sprintf(buf, "unknown\n");
 872}
 873static DEVICE_ATTR_RO(type);
 874
 875static ssize_t suspend_mem_microvolts_show(struct device *dev,
 876					   struct device_attribute *attr, char *buf)
 877{
 878	struct regulator_dev *rdev = dev_get_drvdata(dev);
 879
 880	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 881}
 882static DEVICE_ATTR_RO(suspend_mem_microvolts);
 
 883
 884static ssize_t suspend_disk_microvolts_show(struct device *dev,
 885					    struct device_attribute *attr, char *buf)
 886{
 887	struct regulator_dev *rdev = dev_get_drvdata(dev);
 888
 889	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 890}
 891static DEVICE_ATTR_RO(suspend_disk_microvolts);
 
 892
 893static ssize_t suspend_standby_microvolts_show(struct device *dev,
 894					       struct device_attribute *attr, char *buf)
 895{
 896	struct regulator_dev *rdev = dev_get_drvdata(dev);
 897
 898	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 899}
 900static DEVICE_ATTR_RO(suspend_standby_microvolts);
 
 901
 902static ssize_t suspend_mem_mode_show(struct device *dev,
 903				     struct device_attribute *attr, char *buf)
 904{
 905	struct regulator_dev *rdev = dev_get_drvdata(dev);
 906
 907	return regulator_print_opmode(buf,
 908		rdev->constraints->state_mem.mode);
 909}
 910static DEVICE_ATTR_RO(suspend_mem_mode);
 
 911
 912static ssize_t suspend_disk_mode_show(struct device *dev,
 913				      struct device_attribute *attr, char *buf)
 914{
 915	struct regulator_dev *rdev = dev_get_drvdata(dev);
 916
 917	return regulator_print_opmode(buf,
 918		rdev->constraints->state_disk.mode);
 919}
 920static DEVICE_ATTR_RO(suspend_disk_mode);
 
 921
 922static ssize_t suspend_standby_mode_show(struct device *dev,
 923					 struct device_attribute *attr, char *buf)
 924{
 925	struct regulator_dev *rdev = dev_get_drvdata(dev);
 926
 927	return regulator_print_opmode(buf,
 928		rdev->constraints->state_standby.mode);
 929}
 930static DEVICE_ATTR_RO(suspend_standby_mode);
 
 931
 932static ssize_t suspend_mem_state_show(struct device *dev,
 933				      struct device_attribute *attr, char *buf)
 934{
 935	struct regulator_dev *rdev = dev_get_drvdata(dev);
 936
 937	return regulator_print_state(buf,
 938			rdev->constraints->state_mem.enabled);
 939}
 940static DEVICE_ATTR_RO(suspend_mem_state);
 
 941
 942static ssize_t suspend_disk_state_show(struct device *dev,
 943				       struct device_attribute *attr, char *buf)
 944{
 945	struct regulator_dev *rdev = dev_get_drvdata(dev);
 946
 947	return regulator_print_state(buf,
 948			rdev->constraints->state_disk.enabled);
 949}
 950static DEVICE_ATTR_RO(suspend_disk_state);
 
 951
 952static ssize_t suspend_standby_state_show(struct device *dev,
 953					  struct device_attribute *attr, char *buf)
 954{
 955	struct regulator_dev *rdev = dev_get_drvdata(dev);
 956
 957	return regulator_print_state(buf,
 958			rdev->constraints->state_standby.enabled);
 959}
 960static DEVICE_ATTR_RO(suspend_standby_state);
 
 961
 962static ssize_t bypass_show(struct device *dev,
 963			   struct device_attribute *attr, char *buf)
 964{
 965	struct regulator_dev *rdev = dev_get_drvdata(dev);
 966	const char *report;
 967	bool bypass;
 968	int ret;
 969
 970	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 971
 972	if (ret != 0)
 973		report = "unknown";
 974	else if (bypass)
 975		report = "enabled";
 976	else
 977		report = "disabled";
 978
 979	return sprintf(buf, "%s\n", report);
 980}
 981static DEVICE_ATTR_RO(bypass);
 982
 983#define REGULATOR_ERROR_ATTR(name, bit)							\
 984	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 985				   char *buf)						\
 986	{										\
 987		int ret;								\
 988		unsigned int flags;							\
 989		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 990		ret = _regulator_get_error_flags(rdev, &flags);				\
 991		if (ret)								\
 992			return ret;							\
 993		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 994	}										\
 995	static DEVICE_ATTR_RO(name)
 996
 997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012	struct regulator *sibling;
1013	int current_uA = 0, output_uV, input_uV, err;
1014	unsigned int mode;
1015
 
 
1016	/*
1017	 * first check to see if we can set modes at all, otherwise just
1018	 * tell the consumer everything is OK.
1019	 */
1020	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022		return 0;
1023	}
1024
1025	if (!rdev->desc->ops->get_optimum_mode &&
1026	    !rdev->desc->ops->set_load)
1027		return 0;
1028
1029	if (!rdev->desc->ops->set_mode &&
1030	    !rdev->desc->ops->set_load)
1031		return -EINVAL;
1032
1033	/* calc total requested load */
1034	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035		if (sibling->enable_count)
1036			current_uA += sibling->uA_load;
 
 
 
 
 
 
 
 
 
 
 
 
1037	}
1038
 
 
 
 
1039	current_uA += rdev->constraints->system_load;
1040
1041	if (rdev->desc->ops->set_load) {
1042		/* set the optimum mode for our new total regulator load */
1043		err = rdev->desc->ops->set_load(rdev, current_uA);
1044		if (err < 0)
1045			rdev_err(rdev, "failed to set load %d: %pe\n",
1046				 current_uA, ERR_PTR(err));
1047	} else {
1048		/*
1049		 * Unfortunately in some cases the constraints->valid_ops has
1050		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051		 * That's not really legit but we won't consider it a fatal
1052		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053		 * wasn't set.
1054		 */
1055		if (!rdev->constraints->valid_modes_mask) {
1056			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057			return 0;
1058		}
1059
1060		/* get output voltage */
1061		output_uV = regulator_get_voltage_rdev(rdev);
1062
1063		/*
1064		 * Don't return an error; if regulator driver cares about
1065		 * output_uV then it's up to the driver to validate.
1066		 */
1067		if (output_uV <= 0)
1068			rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070		/* get input voltage */
1071		input_uV = 0;
1072		if (rdev->supply)
1073			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074		if (input_uV <= 0)
1075			input_uV = rdev->constraints->input_uV;
1076
1077		/*
1078		 * Don't return an error; if regulator driver cares about
1079		 * input_uV then it's up to the driver to validate.
1080		 */
1081		if (input_uV <= 0)
1082			rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084		/* now get the optimum mode for our new total regulator load */
1085		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086							 output_uV, current_uA);
1087
1088		/* check the new mode is allowed */
1089		err = regulator_mode_constrain(rdev, &mode);
1090		if (err < 0) {
1091			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093			return err;
1094		}
1095
1096		err = rdev->desc->ops->set_mode(rdev, mode);
1097		if (err < 0)
1098			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099				 mode, ERR_PTR(err));
1100	}
1101
1102	return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106			       const struct regulator_state *rstate)
1107{
1108	int ret = 0;
1109
1110	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111		rdev->desc->ops->set_suspend_enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114		rdev->desc->ops->set_suspend_disable)
1115		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117		ret = 0;
1118
1119	if (ret < 0) {
1120		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121		return ret;
1122	}
1123
1124	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126		if (ret < 0) {
1127			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128			return ret;
1129		}
1130	}
1131
1132	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134		if (ret < 0) {
1135			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136			return ret;
1137		}
1138	}
1139
1140	return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
 
1144{
1145	const struct regulator_state *rstate;
1146
1147	rstate = regulator_get_suspend_state_check(rdev,
1148			rdev->constraints->initial_state);
1149	if (!rstate)
1150		return 0;
1151
1152	return __suspend_set_state(rdev, rstate);
 
 
 
 
 
 
 
 
 
 
 
 
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158	struct regulation_constraints *constraints = rdev->constraints;
1159	char buf[160] = "";
1160	size_t len = sizeof(buf) - 1;
1161	int count = 0;
1162	int ret;
1163
1164	if (constraints->min_uV && constraints->max_uV) {
1165		if (constraints->min_uV == constraints->max_uV)
1166			count += scnprintf(buf + count, len - count, "%d mV ",
1167					   constraints->min_uV / 1000);
1168		else
1169			count += scnprintf(buf + count, len - count,
1170					   "%d <--> %d mV ",
1171					   constraints->min_uV / 1000,
1172					   constraints->max_uV / 1000);
1173	}
1174
1175	if (!constraints->min_uV ||
1176	    constraints->min_uV != constraints->max_uV) {
1177		ret = regulator_get_voltage_rdev(rdev);
1178		if (ret > 0)
1179			count += scnprintf(buf + count, len - count,
1180					   "at %d mV ", ret / 1000);
1181	}
1182
1183	if (constraints->uV_offset)
1184		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185				   constraints->uV_offset / 1000);
1186
1187	if (constraints->min_uA && constraints->max_uA) {
1188		if (constraints->min_uA == constraints->max_uA)
1189			count += scnprintf(buf + count, len - count, "%d mA ",
1190					   constraints->min_uA / 1000);
1191		else
1192			count += scnprintf(buf + count, len - count,
1193					   "%d <--> %d mA ",
1194					   constraints->min_uA / 1000,
1195					   constraints->max_uA / 1000);
1196	}
1197
1198	if (!constraints->min_uA ||
1199	    constraints->min_uA != constraints->max_uA) {
1200		ret = _regulator_get_current_limit(rdev);
1201		if (ret > 0)
1202			count += scnprintf(buf + count, len - count,
1203					   "at %d mA ", ret / 1000);
1204	}
1205
1206	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207		count += scnprintf(buf + count, len - count, "fast ");
1208	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209		count += scnprintf(buf + count, len - count, "normal ");
1210	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211		count += scnprintf(buf + count, len - count, "idle ");
1212	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213		count += scnprintf(buf + count, len - count, "standby ");
1214
1215	if (!count)
1216		count = scnprintf(buf, len, "no parameters");
1217	else
1218		--count;
1219
1220	count += scnprintf(buf + count, len - count, ", %s",
1221		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223	rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231	struct regulation_constraints *constraints = rdev->constraints;
1232
1233	print_constraints_debug(rdev);
1234
1235	if ((constraints->min_uV != constraints->max_uV) &&
1236	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237		rdev_warn(rdev,
1238			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242	struct regulation_constraints *constraints)
1243{
1244	const struct regulator_ops *ops = rdev->desc->ops;
1245	int ret;
1246
1247	/* do we need to apply the constraint voltage */
1248	if (rdev->constraints->apply_uV &&
1249	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250		int target_min, target_max;
1251		int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253		if (current_uV == -ENOTRECOVERABLE) {
1254			/* This regulator can't be read and must be initialized */
1255			rdev_info(rdev, "Setting %d-%duV\n",
1256				  rdev->constraints->min_uV,
1257				  rdev->constraints->max_uV);
1258			_regulator_do_set_voltage(rdev,
1259						  rdev->constraints->min_uV,
1260						  rdev->constraints->max_uV);
1261			current_uV = regulator_get_voltage_rdev(rdev);
1262		}
1263
1264		if (current_uV < 0) {
1265			if (current_uV != -EPROBE_DEFER)
1266				rdev_err(rdev,
1267					 "failed to get the current voltage: %pe\n",
1268					 ERR_PTR(current_uV));
1269			return current_uV;
1270		}
1271
1272		/*
1273		 * If we're below the minimum voltage move up to the
1274		 * minimum voltage, if we're above the maximum voltage
1275		 * then move down to the maximum.
1276		 */
1277		target_min = current_uV;
1278		target_max = current_uV;
1279
1280		if (current_uV < rdev->constraints->min_uV) {
1281			target_min = rdev->constraints->min_uV;
1282			target_max = rdev->constraints->min_uV;
1283		}
1284
1285		if (current_uV > rdev->constraints->max_uV) {
1286			target_min = rdev->constraints->max_uV;
1287			target_max = rdev->constraints->max_uV;
1288		}
1289
1290		if (target_min != current_uV || target_max != current_uV) {
1291			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292				  current_uV, target_min, target_max);
1293			ret = _regulator_do_set_voltage(
1294				rdev, target_min, target_max);
 
1295			if (ret < 0) {
1296				rdev_err(rdev,
1297					"failed to apply %d-%duV constraint: %pe\n",
1298					target_min, target_max, ERR_PTR(ret));
1299				return ret;
1300			}
1301		}
1302	}
1303
1304	/* constrain machine-level voltage specs to fit
1305	 * the actual range supported by this regulator.
1306	 */
1307	if (ops->list_voltage && rdev->desc->n_voltages) {
1308		int	count = rdev->desc->n_voltages;
1309		int	i;
1310		int	min_uV = INT_MAX;
1311		int	max_uV = INT_MIN;
1312		int	cmin = constraints->min_uV;
1313		int	cmax = constraints->max_uV;
1314
1315		/* it's safe to autoconfigure fixed-voltage supplies
1316		 * and the constraints are used by list_voltage.
1317		 */
1318		if (count == 1 && !cmin) {
1319			cmin = 1;
1320			cmax = INT_MAX;
1321			constraints->min_uV = cmin;
1322			constraints->max_uV = cmax;
1323		}
1324
1325		/* voltage constraints are optional */
1326		if ((cmin == 0) && (cmax == 0))
1327			return 0;
1328
1329		/* else require explicit machine-level constraints */
1330		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331			rdev_err(rdev, "invalid voltage constraints\n");
1332			return -EINVAL;
1333		}
1334
1335		/* no need to loop voltages if range is continuous */
1336		if (rdev->desc->continuous_voltage_range)
1337			return 0;
1338
1339		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340		for (i = 0; i < count; i++) {
1341			int	value;
1342
1343			value = ops->list_voltage(rdev, i);
1344			if (value <= 0)
1345				continue;
1346
1347			/* maybe adjust [min_uV..max_uV] */
1348			if (value >= cmin && value < min_uV)
1349				min_uV = value;
1350			if (value <= cmax && value > max_uV)
1351				max_uV = value;
1352		}
1353
1354		/* final: [min_uV..max_uV] valid iff constraints valid */
1355		if (max_uV < min_uV) {
1356			rdev_err(rdev,
1357				 "unsupportable voltage constraints %u-%uuV\n",
1358				 min_uV, max_uV);
1359			return -EINVAL;
1360		}
1361
1362		/* use regulator's subset of machine constraints */
1363		if (constraints->min_uV < min_uV) {
1364			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365				 constraints->min_uV, min_uV);
1366			constraints->min_uV = min_uV;
1367		}
1368		if (constraints->max_uV > max_uV) {
1369			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370				 constraints->max_uV, max_uV);
1371			constraints->max_uV = max_uV;
1372		}
1373	}
1374
1375	return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379	struct regulation_constraints *constraints)
1380{
1381	const struct regulator_ops *ops = rdev->desc->ops;
1382	int ret;
1383
1384	if (!constraints->min_uA && !constraints->max_uA)
1385		return 0;
1386
1387	if (constraints->min_uA > constraints->max_uA) {
1388		rdev_err(rdev, "Invalid current constraints\n");
1389		return -EINVAL;
1390	}
1391
1392	if (!ops->set_current_limit || !ops->get_current_limit) {
1393		rdev_warn(rdev, "Operation of current configuration missing\n");
1394		return 0;
1395	}
1396
1397	/* Set regulator current in constraints range */
1398	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399			constraints->max_uA);
1400	if (ret < 0) {
1401		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402		return ret;
1403	}
1404
1405	return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411			   int (*set)(struct regulator_dev *, int, int, bool),
1412			   int limit, int severity)
1413{
1414	bool enable;
1415
1416	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417		enable = false;
1418		limit = 0;
1419	} else {
1420		enable = true;
1421	}
1422
1423	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424		limit = 0;
1425
1426	return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430			int (*set)(struct regulator_dev *, int, int, bool),
1431			struct notification_limit *limits)
1432{
1433	int ret = 0;
1434
1435	if (!set)
1436		return -EOPNOTSUPP;
1437
1438	if (limits->prot)
1439		ret = notif_set_limit(rdev, set, limits->prot,
1440				      REGULATOR_SEVERITY_PROT);
1441	if (ret)
1442		return ret;
1443
1444	if (limits->err)
1445		ret = notif_set_limit(rdev, set, limits->err,
1446				      REGULATOR_SEVERITY_ERR);
1447	if (ret)
1448		return ret;
1449
1450	if (limits->warn)
1451		ret = notif_set_limit(rdev, set, limits->warn,
1452				      REGULATOR_SEVERITY_WARN);
1453
1454	return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
 
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
 
1467{
1468	int ret = 0;
1469	const struct regulator_ops *ops = rdev->desc->ops;
1470
 
 
 
 
 
 
 
 
 
1471	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472	if (ret != 0)
1473		return ret;
1474
1475	ret = machine_constraints_current(rdev, rdev->constraints);
1476	if (ret != 0)
1477		return ret;
1478
1479	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480		ret = ops->set_input_current_limit(rdev,
1481						   rdev->constraints->ilim_uA);
1482		if (ret < 0) {
1483			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484			return ret;
1485		}
1486	}
1487
1488	/* do we need to setup our suspend state */
1489	if (rdev->constraints->initial_state) {
1490		ret = suspend_set_initial_state(rdev);
1491		if (ret < 0) {
1492			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493			return ret;
1494		}
1495	}
1496
1497	if (rdev->constraints->initial_mode) {
1498		if (!ops->set_mode) {
1499			rdev_err(rdev, "no set_mode operation\n");
1500			return -EINVAL;
1501		}
1502
1503		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504		if (ret < 0) {
1505			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
 
 
 
 
 
 
 
 
 
 
 
1506			return ret;
1507		}
1508	} else if (rdev->constraints->system_load) {
1509		/*
1510		 * We'll only apply the initial system load if an
1511		 * initial mode wasn't specified.
1512		 */
1513		drms_uA_update(rdev);
1514	}
1515
1516	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517		&& ops->set_ramp_delay) {
1518		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519		if (ret < 0) {
1520			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521			return ret;
1522		}
1523	}
1524
1525	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526		ret = ops->set_pull_down(rdev);
1527		if (ret < 0) {
1528			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529			return ret;
1530		}
1531	}
1532
1533	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534		ret = ops->set_soft_start(rdev);
1535		if (ret < 0) {
1536			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537			return ret;
1538		}
1539	}
1540
1541	/*
1542	 * Existing logic does not warn if over_current_protection is given as
1543	 * a constraint but driver does not support that. I think we should
1544	 * warn about this type of issues as it is possible someone changes
1545	 * PMIC on board to another type - and the another PMIC's driver does
1546	 * not support setting protection. Board composer may happily believe
1547	 * the DT limits are respected - especially if the new PMIC HW also
1548	 * supports protection but the driver does not. I won't change the logic
1549	 * without hearing more experienced opinion on this though.
1550	 *
1551	 * If warning is seen as a good idea then we can merge handling the
1552	 * over-curret protection and detection and get rid of this special
1553	 * handling.
1554	 */
1555	if (rdev->constraints->over_current_protection
1556		&& ops->set_over_current_protection) {
1557		int lim = rdev->constraints->over_curr_limits.prot;
1558
1559		ret = ops->set_over_current_protection(rdev, lim,
1560						       REGULATOR_SEVERITY_PROT,
1561						       true);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564				 ERR_PTR(ret));
1565			return ret;
1566		}
1567	}
1568
1569	if (rdev->constraints->over_current_detection)
1570		ret = handle_notify_limits(rdev,
1571					   ops->set_over_current_protection,
1572					   &rdev->constraints->over_curr_limits);
1573	if (ret) {
1574		if (ret != -EOPNOTSUPP) {
1575			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576				 ERR_PTR(ret));
1577			return ret;
1578		}
1579		rdev_warn(rdev,
1580			  "IC does not support requested over-current limits\n");
1581	}
1582
1583	if (rdev->constraints->over_voltage_detection)
1584		ret = handle_notify_limits(rdev,
1585					   ops->set_over_voltage_protection,
1586					   &rdev->constraints->over_voltage_limits);
1587	if (ret) {
1588		if (ret != -EOPNOTSUPP) {
1589			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590				 ERR_PTR(ret));
1591			return ret;
1592		}
1593		rdev_warn(rdev,
1594			  "IC does not support requested over voltage limits\n");
1595	}
1596
1597	if (rdev->constraints->under_voltage_detection)
1598		ret = handle_notify_limits(rdev,
1599					   ops->set_under_voltage_protection,
1600					   &rdev->constraints->under_voltage_limits);
1601	if (ret) {
1602		if (ret != -EOPNOTSUPP) {
1603			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604				 ERR_PTR(ret));
1605			return ret;
1606		}
1607		rdev_warn(rdev,
1608			  "IC does not support requested under voltage limits\n");
1609	}
1610
1611	if (rdev->constraints->over_temp_detection)
1612		ret = handle_notify_limits(rdev,
1613					   ops->set_thermal_protection,
1614					   &rdev->constraints->temp_limits);
1615	if (ret) {
1616		if (ret != -EOPNOTSUPP) {
1617			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618				 ERR_PTR(ret));
1619			return ret;
1620		}
1621		rdev_warn(rdev,
1622			  "IC does not support requested temperature limits\n");
1623	}
1624
1625	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626		bool ad_state = (rdev->constraints->active_discharge ==
1627			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629		ret = ops->set_active_discharge(rdev, ad_state);
1630		if (ret < 0) {
1631			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632			return ret;
1633		}
1634	}
1635
1636	/*
1637	 * If there is no mechanism for controlling the regulator then
1638	 * flag it as always_on so we don't end up duplicating checks
1639	 * for this so much.  Note that we could control the state of
1640	 * a supply to control the output on a regulator that has no
1641	 * direct control.
1642	 */
1643	if (!rdev->ena_pin && !ops->enable) {
1644		if (rdev->supply_name && !rdev->supply)
1645			return -EPROBE_DEFER;
1646
1647		if (rdev->supply)
1648			rdev->constraints->always_on =
1649				rdev->supply->rdev->constraints->always_on;
1650		else
1651			rdev->constraints->always_on = true;
1652	}
1653
1654	/* If the constraints say the regulator should be on at this point
1655	 * and we have control then make sure it is enabled.
1656	 */
1657	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658		/* If we want to enable this regulator, make sure that we know
1659		 * the supplying regulator.
1660		 */
1661		if (rdev->supply_name && !rdev->supply)
1662			return -EPROBE_DEFER;
1663
1664		/* If supplying regulator has already been enabled,
1665		 * it's not intended to have use_count increment
1666		 * when rdev is only boot-on.
1667		 */
1668		if (rdev->supply &&
1669		    (rdev->constraints->always_on ||
1670		     !regulator_is_enabled(rdev->supply))) {
1671			ret = regulator_enable(rdev->supply);
1672			if (ret < 0) {
1673				_regulator_put(rdev->supply);
1674				rdev->supply = NULL;
1675				return ret;
1676			}
1677		}
1678
1679		ret = _regulator_do_enable(rdev);
1680		if (ret < 0 && ret != -EINVAL) {
1681			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682			return ret;
1683		}
1684
1685		if (rdev->constraints->always_on)
1686			rdev->use_count++;
1687	} else if (rdev->desc->off_on_delay) {
1688		rdev->last_off = ktime_get();
1689	}
1690
1691	print_constraints(rdev);
1692	return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705		      struct regulator_dev *supply_rdev)
1706{
1707	int err;
1708
1709	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711	if (!try_module_get(supply_rdev->owner))
1712		return -ENODEV;
1713
1714	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715	if (rdev->supply == NULL) {
1716		module_put(supply_rdev->owner);
1717		err = -ENOMEM;
1718		return err;
1719	}
1720	supply_rdev->open_count++;
1721
1722	return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev:         regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply:       symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices.  Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737				      const char *consumer_dev_name,
1738				      const char *supply)
1739{
1740	struct regulator_map *node, *new_node;
1741	int has_dev;
1742
1743	if (supply == NULL)
1744		return -EINVAL;
1745
1746	if (consumer_dev_name != NULL)
1747		has_dev = 1;
1748	else
1749		has_dev = 0;
1750
1751	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752	if (new_node == NULL)
1753		return -ENOMEM;
1754
1755	new_node->regulator = rdev;
1756	new_node->supply = supply;
1757
1758	if (has_dev) {
1759		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760		if (new_node->dev_name == NULL) {
1761			kfree(new_node);
1762			return -ENOMEM;
1763		}
1764	}
1765
1766	mutex_lock(&regulator_list_mutex);
1767	list_for_each_entry(node, &regulator_map_list, list) {
1768		if (node->dev_name && consumer_dev_name) {
1769			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770				continue;
1771		} else if (node->dev_name || consumer_dev_name) {
1772			continue;
1773		}
1774
1775		if (strcmp(node->supply, supply) != 0)
1776			continue;
1777
1778		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779			 consumer_dev_name,
1780			 dev_name(&node->regulator->dev),
1781			 node->regulator->desc->name,
1782			 supply,
1783			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784		goto fail;
1785	}
1786
1787	list_add(&new_node->list, &regulator_map_list);
1788	mutex_unlock(&regulator_list_mutex);
 
1789
1790	return 0;
 
1791
1792fail:
1793	mutex_unlock(&regulator_list_mutex);
1794	kfree(new_node->dev_name);
1795	kfree(new_node);
1796	return -EBUSY;
 
 
 
 
 
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801	struct regulator_map *node, *n;
1802
1803	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804		if (rdev == node->regulator) {
1805			list_del(&node->list);
1806			kfree(node->dev_name);
1807			kfree(node);
1808		}
1809	}
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814					  char __user *user_buf,
1815					  size_t count, loff_t *ppos)
1816{
1817	const struct regulator *regulator = file->private_data;
1818	const struct regulation_constraints *c = regulator->rdev->constraints;
1819	char *buf;
1820	ssize_t ret;
1821
1822	if (!c)
1823		return 0;
1824
1825	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826	if (!buf)
1827		return -ENOMEM;
1828
1829	ret = snprintf(buf, PAGE_SIZE,
1830			"always_on: %u\n"
1831			"boot_on: %u\n"
1832			"apply_uV: %u\n"
1833			"ramp_disable: %u\n"
1834			"soft_start: %u\n"
1835			"pull_down: %u\n"
1836			"over_current_protection: %u\n",
1837			c->always_on,
1838			c->boot_on,
1839			c->apply_uV,
1840			c->ramp_disable,
1841			c->soft_start,
1842			c->pull_down,
1843			c->over_current_protection);
1844
1845	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846	kfree(buf);
1847
1848	return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855	.open = simple_open,
1856	.read = constraint_flags_read_file,
1857	.llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE	64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864					  struct device *dev,
1865					  const char *supply_name)
1866{
1867	struct regulator *regulator;
1868	int err = 0;
1869
1870	lockdep_assert_held_once(&rdev->mutex.base);
1871
1872	if (dev) {
1873		char buf[REG_STR_SIZE];
1874		int size;
1875
1876		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877				dev->kobj.name, supply_name);
1878		if (size >= REG_STR_SIZE)
1879			return NULL;
1880
1881		supply_name = kstrdup(buf, GFP_KERNEL);
1882		if (supply_name == NULL)
1883			return NULL;
1884	} else {
1885		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886		if (supply_name == NULL)
1887			return NULL;
1888	}
1889
1890	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891	if (regulator == NULL) {
1892		kfree_const(supply_name);
1893		return NULL;
1894	}
1895
 
1896	regulator->rdev = rdev;
1897	regulator->supply_name = supply_name;
1898
1899	list_add(&regulator->list, &rdev->consumer_list);
1900
1901	if (dev) {
1902		regulator->dev = dev;
1903
1904		/* Add a link to the device sysfs entry */
 
 
 
 
 
 
 
 
 
1905		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906					       supply_name);
1907		if (err) {
1908			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909				  dev->kobj.name, ERR_PTR(err));
1910			/* non-fatal */
1911		}
 
 
 
 
1912	}
1913
1914	if (err != -EEXIST)
1915		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916	if (IS_ERR(regulator->debugfs))
1917		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918
1919	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920			   &regulator->uA_load);
1921	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1923	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1925	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926			    regulator, &constraint_flags_fops);
1927
1928	/*
1929	 * Check now if the regulator is an always on regulator - if
1930	 * it is then we don't need to do nearly so much work for
1931	 * enable/disable calls.
1932	 */
1933	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934	    _regulator_is_enabled(rdev))
1935		regulator->always_on = true;
1936
 
1937	return regulator;
 
 
 
 
 
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942	if (rdev->constraints && rdev->constraints->enable_time)
1943		return rdev->constraints->enable_time;
1944	if (rdev->desc->ops->enable_time)
1945		return rdev->desc->ops->enable_time(rdev);
1946	return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950		struct device *dev, const char *supply)
1951{
1952	struct regulator_supply_alias *map;
1953
1954	list_for_each_entry(map, &regulator_supply_alias_list, list)
1955		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956			return map;
1957
1958	return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963	struct regulator_supply_alias *map;
1964
1965	map = regulator_find_supply_alias(*dev, *supply);
1966	if (map) {
1967		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968				*supply, map->alias_supply,
1969				dev_name(map->alias_dev));
1970		*dev = map->alias_dev;
1971		*supply = map->alias_supply;
1972	}
1973}
1974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977	struct regulator_dev *r = dev_to_rdev(dev);
1978
1979	return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984	struct device *dev;
1985
1986	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1987
1988	return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
 
 
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004						  const char *supply)
 
2005{
2006	struct regulator_dev *r = NULL;
2007	struct device_node *node;
2008	struct regulator_map *map;
2009	const char *devname = NULL;
2010
2011	regulator_supply_alias(&dev, &supply);
2012
2013	/* first do a dt based lookup */
2014	if (dev && dev->of_node) {
2015		node = of_get_regulator(dev, supply);
2016		if (node) {
2017			r = of_find_regulator_by_node(node);
2018			of_node_put(node);
2019			if (r)
2020				return r;
2021
 
 
2022			/*
2023			 * We have a node, but there is no device.
2024			 * assume it has not registered yet.
 
 
2025			 */
2026			return ERR_PTR(-EPROBE_DEFER);
2027		}
2028	}
2029
2030	/* if not found, try doing it non-dt way */
2031	if (dev)
2032		devname = dev_name(dev);
2033
 
 
 
 
2034	mutex_lock(&regulator_list_mutex);
2035	list_for_each_entry(map, &regulator_map_list, list) {
2036		/* If the mapping has a device set up it must match */
2037		if (map->dev_name &&
2038		    (!devname || strcmp(map->dev_name, devname)))
2039			continue;
2040
2041		if (strcmp(map->supply, supply) == 0 &&
2042		    get_device(&map->regulator->dev)) {
2043			r = map->regulator;
2044			break;
2045		}
2046	}
2047	mutex_unlock(&regulator_list_mutex);
2048
2049	if (r)
2050		return r;
2051
2052	r = regulator_lookup_by_name(supply);
2053	if (r)
2054		return r;
2055
2056	return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061	struct regulator_dev *r;
2062	struct device *dev = rdev->dev.parent;
2063	struct ww_acquire_ctx ww_ctx;
2064	int ret = 0;
2065
2066	/* No supply to resolve? */
2067	if (!rdev->supply_name)
2068		return 0;
2069
2070	/* Supply already resolved? (fast-path without locking contention) */
2071	if (rdev->supply)
2072		return 0;
2073
2074	r = regulator_dev_lookup(dev, rdev->supply_name);
2075	if (IS_ERR(r)) {
2076		ret = PTR_ERR(r);
 
 
 
 
 
 
2077
2078		/* Did the lookup explicitly defer for us? */
2079		if (ret == -EPROBE_DEFER)
2080			goto out;
2081
2082		if (have_full_constraints()) {
2083			r = dummy_regulator_rdev;
2084			get_device(&r->dev);
2085		} else {
2086			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087				rdev->supply_name, rdev->desc->name);
2088			ret = -EPROBE_DEFER;
2089			goto out;
2090		}
2091	}
2092
2093	if (r == rdev) {
2094		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095			rdev->desc->name, rdev->supply_name);
2096		if (!have_full_constraints()) {
2097			ret = -EINVAL;
2098			goto out;
2099		}
2100		r = dummy_regulator_rdev;
2101		get_device(&r->dev);
2102	}
2103
2104	/*
2105	 * If the supply's parent device is not the same as the
2106	 * regulator's parent device, then ensure the parent device
2107	 * is bound before we resolve the supply, in case the parent
2108	 * device get probe deferred and unregisters the supply.
2109	 */
2110	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111		if (!device_is_bound(r->dev.parent)) {
2112			put_device(&r->dev);
2113			ret = -EPROBE_DEFER;
2114			goto out;
2115		}
2116	}
2117
2118	/* Recursively resolve the supply of the supply */
2119	ret = regulator_resolve_supply(r);
2120	if (ret < 0) {
2121		put_device(&r->dev);
2122		goto out;
2123	}
2124
2125	/*
2126	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127	 * between rdev->supply null check and setting rdev->supply in
2128	 * set_supply() from concurrent tasks.
2129	 */
2130	regulator_lock_two(rdev, r, &ww_ctx);
2131
2132	/* Supply just resolved by a concurrent task? */
2133	if (rdev->supply) {
2134		regulator_unlock_two(rdev, r, &ww_ctx);
2135		put_device(&r->dev);
2136		goto out;
2137	}
2138
2139	ret = set_supply(rdev, r);
2140	if (ret < 0) {
2141		regulator_unlock_two(rdev, r, &ww_ctx);
2142		put_device(&r->dev);
2143		goto out;
2144	}
2145
2146	regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148	/*
2149	 * In set_machine_constraints() we may have turned this regulator on
2150	 * but we couldn't propagate to the supply if it hadn't been resolved
2151	 * yet.  Do it now.
2152	 */
2153	if (rdev->use_count) {
2154		ret = regulator_enable(rdev->supply);
2155		if (ret < 0) {
2156			_regulator_put(rdev->supply);
2157			rdev->supply = NULL;
2158			goto out;
2159		}
2160	}
2161
2162out:
2163	return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168				 enum regulator_get_type get_type)
2169{
2170	struct regulator_dev *rdev;
2171	struct regulator *regulator;
2172	struct device_link *link;
2173	int ret;
2174
2175	if (get_type >= MAX_GET_TYPE) {
2176		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177		return ERR_PTR(-EINVAL);
2178	}
2179
2180	if (id == NULL) {
2181		pr_err("get() with no identifier\n");
2182		return ERR_PTR(-EINVAL);
2183	}
2184
2185	rdev = regulator_dev_lookup(dev, id);
2186	if (IS_ERR(rdev)) {
2187		ret = PTR_ERR(rdev);
2188
2189		/*
2190		 * If regulator_dev_lookup() fails with error other
2191		 * than -ENODEV our job here is done, we simply return it.
2192		 */
2193		if (ret != -ENODEV)
2194			return ERR_PTR(ret);
2195
2196		if (!have_full_constraints()) {
2197			dev_warn(dev,
2198				 "incomplete constraints, dummy supplies not allowed\n");
2199			return ERR_PTR(-ENODEV);
2200		}
2201
2202		switch (get_type) {
2203		case NORMAL_GET:
2204			/*
2205			 * Assume that a regulator is physically present and
2206			 * enabled, even if it isn't hooked up, and just
2207			 * provide a dummy.
2208			 */
2209			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210			rdev = dummy_regulator_rdev;
2211			get_device(&rdev->dev);
2212			break;
2213
2214		case EXCLUSIVE_GET:
2215			dev_warn(dev,
2216				 "dummy supplies not allowed for exclusive requests\n");
2217			fallthrough;
2218
2219		default:
2220			return ERR_PTR(-ENODEV);
2221		}
 
 
 
 
 
 
 
 
 
 
 
2222	}
2223
 
 
 
2224	if (rdev->exclusive) {
2225		regulator = ERR_PTR(-EPERM);
2226		put_device(&rdev->dev);
2227		return regulator;
2228	}
2229
2230	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231		regulator = ERR_PTR(-EBUSY);
2232		put_device(&rdev->dev);
2233		return regulator;
2234	}
2235
2236	mutex_lock(&regulator_list_mutex);
2237	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238	mutex_unlock(&regulator_list_mutex);
2239
2240	if (ret != 0) {
2241		regulator = ERR_PTR(-EPROBE_DEFER);
2242		put_device(&rdev->dev);
2243		return regulator;
2244	}
2245
2246	ret = regulator_resolve_supply(rdev);
2247	if (ret < 0) {
2248		regulator = ERR_PTR(ret);
2249		put_device(&rdev->dev);
2250		return regulator;
2251	}
2252
2253	if (!try_module_get(rdev->owner)) {
2254		regulator = ERR_PTR(-EPROBE_DEFER);
2255		put_device(&rdev->dev);
2256		return regulator;
2257	}
2258
2259	regulator_lock(rdev);
2260	regulator = create_regulator(rdev, dev, id);
2261	regulator_unlock(rdev);
2262	if (regulator == NULL) {
2263		regulator = ERR_PTR(-ENOMEM);
2264		module_put(rdev->owner);
2265		put_device(&rdev->dev);
 
2266		return regulator;
2267	}
2268
2269	rdev->open_count++;
2270	if (get_type == EXCLUSIVE_GET) {
2271		rdev->exclusive = 1;
2272
2273		ret = _regulator_is_enabled(rdev);
2274		if (ret > 0) {
2275			rdev->use_count = 1;
2276			regulator->enable_count = 1;
2277		} else {
2278			rdev->use_count = 0;
2279			regulator->enable_count = 0;
2280		}
2281	}
2282
2283	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284	if (!IS_ERR_OR_NULL(link))
2285		regulator->device_link = true;
2286
2287	return regulator;
2288}
2289
2290/**
2291 * regulator_get - lookup and obtain a reference to a regulator.
2292 * @dev: device for regulator "consumer"
2293 * @id: Supply name or regulator ID.
2294 *
2295 * Returns a struct regulator corresponding to the regulator producer,
2296 * or IS_ERR() condition containing errno.
2297 *
2298 * Use of supply names configured via set_consumer_device_supply() is
2299 * strongly encouraged.  It is recommended that the supply name used
2300 * should match the name used for the supply and/or the relevant
2301 * device pins in the datasheet.
2302 */
2303struct regulator *regulator_get(struct device *dev, const char *id)
2304{
2305	return _regulator_get(dev, id, NORMAL_GET);
2306}
2307EXPORT_SYMBOL_GPL(regulator_get);
2308
2309/**
2310 * regulator_get_exclusive - obtain exclusive access to a regulator.
2311 * @dev: device for regulator "consumer"
2312 * @id: Supply name or regulator ID.
2313 *
2314 * Returns a struct regulator corresponding to the regulator producer,
2315 * or IS_ERR() condition containing errno.  Other consumers will be
2316 * unable to obtain this regulator while this reference is held and the
2317 * use count for the regulator will be initialised to reflect the current
2318 * state of the regulator.
2319 *
2320 * This is intended for use by consumers which cannot tolerate shared
2321 * use of the regulator such as those which need to force the
2322 * regulator off for correct operation of the hardware they are
2323 * controlling.
2324 *
2325 * Use of supply names configured via set_consumer_device_supply() is
2326 * strongly encouraged.  It is recommended that the supply name used
2327 * should match the name used for the supply and/or the relevant
2328 * device pins in the datasheet.
2329 */
2330struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331{
2332	return _regulator_get(dev, id, EXCLUSIVE_GET);
2333}
2334EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335
2336/**
2337 * regulator_get_optional - obtain optional access to a regulator.
2338 * @dev: device for regulator "consumer"
2339 * @id: Supply name or regulator ID.
2340 *
2341 * Returns a struct regulator corresponding to the regulator producer,
2342 * or IS_ERR() condition containing errno.
2343 *
2344 * This is intended for use by consumers for devices which can have
2345 * some supplies unconnected in normal use, such as some MMC devices.
2346 * It can allow the regulator core to provide stub supplies for other
2347 * supplies requested using normal regulator_get() calls without
2348 * disrupting the operation of drivers that can handle absent
2349 * supplies.
2350 *
2351 * Use of supply names configured via set_consumer_device_supply() is
2352 * strongly encouraged.  It is recommended that the supply name used
2353 * should match the name used for the supply and/or the relevant
2354 * device pins in the datasheet.
2355 */
2356struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357{
2358	return _regulator_get(dev, id, OPTIONAL_GET);
2359}
2360EXPORT_SYMBOL_GPL(regulator_get_optional);
2361
2362static void destroy_regulator(struct regulator *regulator)
2363{
2364	struct regulator_dev *rdev = regulator->rdev;
2365
2366	debugfs_remove_recursive(regulator->debugfs);
2367
2368	if (regulator->dev) {
2369		if (regulator->device_link)
2370			device_link_remove(regulator->dev, &rdev->dev);
2371
2372		/* remove any sysfs entries */
2373		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374	}
2375
2376	regulator_lock(rdev);
2377	list_del(&regulator->list);
2378
2379	rdev->open_count--;
2380	rdev->exclusive = 0;
2381	regulator_unlock(rdev);
2382
2383	kfree_const(regulator->supply_name);
2384	kfree(regulator);
2385}
2386
2387/* regulator_list_mutex lock held by regulator_put() */
2388static void _regulator_put(struct regulator *regulator)
2389{
2390	struct regulator_dev *rdev;
2391
2392	if (IS_ERR_OR_NULL(regulator))
2393		return;
2394
2395	lockdep_assert_held_once(&regulator_list_mutex);
2396
2397	/* Docs say you must disable before calling regulator_put() */
2398	WARN_ON(regulator->enable_count);
2399
2400	rdev = regulator->rdev;
2401
2402	destroy_regulator(regulator);
2403
2404	module_put(rdev->owner);
 
 
 
 
 
 
 
2405	put_device(&rdev->dev);
 
 
 
 
 
 
2406}
2407
2408/**
2409 * regulator_put - "free" the regulator source
2410 * @regulator: regulator source
2411 *
2412 * Note: drivers must ensure that all regulator_enable calls made on this
2413 * regulator source are balanced by regulator_disable calls prior to calling
2414 * this function.
2415 */
2416void regulator_put(struct regulator *regulator)
2417{
2418	mutex_lock(&regulator_list_mutex);
2419	_regulator_put(regulator);
2420	mutex_unlock(&regulator_list_mutex);
2421}
2422EXPORT_SYMBOL_GPL(regulator_put);
2423
2424/**
2425 * regulator_register_supply_alias - Provide device alias for supply lookup
2426 *
2427 * @dev: device that will be given as the regulator "consumer"
2428 * @id: Supply name or regulator ID
2429 * @alias_dev: device that should be used to lookup the supply
2430 * @alias_id: Supply name or regulator ID that should be used to lookup the
2431 * supply
2432 *
2433 * All lookups for id on dev will instead be conducted for alias_id on
2434 * alias_dev.
2435 */
2436int regulator_register_supply_alias(struct device *dev, const char *id,
2437				    struct device *alias_dev,
2438				    const char *alias_id)
2439{
2440	struct regulator_supply_alias *map;
2441
2442	map = regulator_find_supply_alias(dev, id);
2443	if (map)
2444		return -EEXIST;
2445
2446	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447	if (!map)
2448		return -ENOMEM;
2449
2450	map->src_dev = dev;
2451	map->src_supply = id;
2452	map->alias_dev = alias_dev;
2453	map->alias_supply = alias_id;
2454
2455	list_add(&map->list, &regulator_supply_alias_list);
2456
2457	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458		id, dev_name(dev), alias_id, dev_name(alias_dev));
2459
2460	return 0;
2461}
2462EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463
2464/**
2465 * regulator_unregister_supply_alias - Remove device alias
2466 *
2467 * @dev: device that will be given as the regulator "consumer"
2468 * @id: Supply name or regulator ID
2469 *
2470 * Remove a lookup alias if one exists for id on dev.
2471 */
2472void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473{
2474	struct regulator_supply_alias *map;
2475
2476	map = regulator_find_supply_alias(dev, id);
2477	if (map) {
2478		list_del(&map->list);
2479		kfree(map);
2480	}
2481}
2482EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483
2484/**
2485 * regulator_bulk_register_supply_alias - register multiple aliases
2486 *
2487 * @dev: device that will be given as the regulator "consumer"
2488 * @id: List of supply names or regulator IDs
2489 * @alias_dev: device that should be used to lookup the supply
2490 * @alias_id: List of supply names or regulator IDs that should be used to
2491 * lookup the supply
2492 * @num_id: Number of aliases to register
2493 *
2494 * @return 0 on success, an errno on failure.
2495 *
2496 * This helper function allows drivers to register several supply
2497 * aliases in one operation.  If any of the aliases cannot be
2498 * registered any aliases that were registered will be removed
2499 * before returning to the caller.
2500 */
2501int regulator_bulk_register_supply_alias(struct device *dev,
2502					 const char *const *id,
2503					 struct device *alias_dev,
2504					 const char *const *alias_id,
2505					 int num_id)
2506{
2507	int i;
2508	int ret;
2509
2510	for (i = 0; i < num_id; ++i) {
2511		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512						      alias_id[i]);
2513		if (ret < 0)
2514			goto err;
2515	}
2516
2517	return 0;
2518
2519err:
2520	dev_err(dev,
2521		"Failed to create supply alias %s,%s -> %s,%s\n",
2522		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523
2524	while (--i >= 0)
2525		regulator_unregister_supply_alias(dev, id[i]);
2526
2527	return ret;
2528}
2529EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530
2531/**
2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533 *
2534 * @dev: device that will be given as the regulator "consumer"
2535 * @id: List of supply names or regulator IDs
2536 * @num_id: Number of aliases to unregister
2537 *
2538 * This helper function allows drivers to unregister several supply
2539 * aliases in one operation.
2540 */
2541void regulator_bulk_unregister_supply_alias(struct device *dev,
2542					    const char *const *id,
2543					    int num_id)
2544{
2545	int i;
2546
2547	for (i = 0; i < num_id; ++i)
2548		regulator_unregister_supply_alias(dev, id[i]);
2549}
2550EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551
2552
2553/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555				const struct regulator_config *config)
2556{
2557	struct regulator_enable_gpio *pin, *new_pin;
2558	struct gpio_desc *gpiod;
 
2559
2560	gpiod = config->ena_gpiod;
2561	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562
2563	mutex_lock(&regulator_list_mutex);
2564
2565	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2566		if (pin->gpiod == gpiod) {
2567			rdev_dbg(rdev, "GPIO is already used\n");
 
2568			goto update_ena_gpio_to_rdev;
2569		}
2570	}
2571
2572	if (new_pin == NULL) {
2573		mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
2574		return -ENOMEM;
2575	}
2576
2577	pin = new_pin;
2578	new_pin = NULL;
2579
2580	pin->gpiod = gpiod;
 
2581	list_add(&pin->list, &regulator_ena_gpio_list);
2582
2583update_ena_gpio_to_rdev:
2584	pin->request_count++;
2585	rdev->ena_pin = pin;
2586
2587	mutex_unlock(&regulator_list_mutex);
2588	kfree(new_pin);
2589
2590	return 0;
2591}
2592
2593static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594{
2595	struct regulator_enable_gpio *pin, *n;
2596
2597	if (!rdev->ena_pin)
2598		return;
2599
2600	/* Free the GPIO only in case of no use */
2601	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2602		if (pin != rdev->ena_pin)
2603			continue;
2604
2605		if (--pin->request_count)
2606			break;
2607
2608		gpiod_put(pin->gpiod);
2609		list_del(&pin->list);
2610		kfree(pin);
2611		break;
 
 
2612	}
2613
2614	rdev->ena_pin = NULL;
2615}
2616
2617/**
2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619 * @rdev: regulator_dev structure
2620 * @enable: enable GPIO at initial use?
2621 *
2622 * GPIO is enabled in case of initial use. (enable_count is 0)
2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624 */
2625static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626{
2627	struct regulator_enable_gpio *pin = rdev->ena_pin;
2628
2629	if (!pin)
2630		return -EINVAL;
2631
2632	if (enable) {
2633		/* Enable GPIO at initial use */
2634		if (pin->enable_count == 0)
2635			gpiod_set_value_cansleep(pin->gpiod, 1);
 
2636
2637		pin->enable_count++;
2638	} else {
2639		if (pin->enable_count > 1) {
2640			pin->enable_count--;
2641			return 0;
2642		}
2643
2644		/* Disable GPIO if not used */
2645		if (pin->enable_count <= 1) {
2646			gpiod_set_value_cansleep(pin->gpiod, 0);
 
2647			pin->enable_count = 0;
2648		}
2649	}
2650
2651	return 0;
2652}
2653
2654/**
2655 * _regulator_delay_helper - a delay helper function
2656 * @delay: time to delay in microseconds
2657 *
2658 * Delay for the requested amount of time as per the guidelines in:
2659 *
2660 *     Documentation/timers/timers-howto.rst
2661 *
2662 * The assumption here is that these regulator operations will never used in
2663 * atomic context and therefore sleeping functions can be used.
2664 */
2665static void _regulator_delay_helper(unsigned int delay)
2666{
2667	unsigned int ms = delay / 1000;
2668	unsigned int us = delay % 1000;
2669
2670	if (ms > 0) {
2671		/*
2672		 * For small enough values, handle super-millisecond
2673		 * delays in the usleep_range() call below.
2674		 */
2675		if (ms < 20)
2676			us += ms * 1000;
2677		else
2678			msleep(ms);
2679	}
2680
2681	/*
2682	 * Give the scheduler some room to coalesce with any other
2683	 * wakeup sources. For delays shorter than 10 us, don't even
2684	 * bother setting up high-resolution timers and just busy-
2685	 * loop.
2686	 */
2687	if (us >= 10)
2688		usleep_range(us, us + 100);
2689	else
2690		udelay(us);
2691}
2692
2693/**
2694 * _regulator_check_status_enabled
2695 *
2696 * A helper function to check if the regulator status can be interpreted
2697 * as 'regulator is enabled'.
2698 * @rdev: the regulator device to check
2699 *
2700 * Return:
2701 * * 1			- if status shows regulator is in enabled state
2702 * * 0			- if not enabled state
2703 * * Error Value	- as received from ops->get_status()
2704 */
2705static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706{
2707	int ret = rdev->desc->ops->get_status(rdev);
2708
2709	if (ret < 0) {
2710		rdev_info(rdev, "get_status returned error: %d\n", ret);
2711		return ret;
2712	}
2713
2714	switch (ret) {
2715	case REGULATOR_STATUS_OFF:
2716	case REGULATOR_STATUS_ERROR:
2717	case REGULATOR_STATUS_UNDEFINED:
2718		return 0;
2719	default:
2720		return 1;
2721	}
2722}
2723
2724static int _regulator_do_enable(struct regulator_dev *rdev)
2725{
2726	int ret, delay;
2727
2728	/* Query before enabling in case configuration dependent.  */
2729	ret = _regulator_get_enable_time(rdev);
2730	if (ret >= 0) {
2731		delay = ret;
2732	} else {
2733		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734		delay = 0;
2735	}
2736
2737	trace_regulator_enable(rdev_get_name(rdev));
2738
2739	if (rdev->desc->off_on_delay) {
2740		/* if needed, keep a distance of off_on_delay from last time
2741		 * this regulator was disabled.
2742		 */
2743		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745
2746		if (remaining > 0)
2747			_regulator_delay_helper(remaining);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2748	}
2749
2750	if (rdev->ena_pin) {
2751		if (!rdev->ena_gpio_state) {
2752			ret = regulator_ena_gpio_ctrl(rdev, true);
2753			if (ret < 0)
2754				return ret;
2755			rdev->ena_gpio_state = 1;
2756		}
2757	} else if (rdev->desc->ops->enable) {
2758		ret = rdev->desc->ops->enable(rdev);
2759		if (ret < 0)
2760			return ret;
2761	} else {
2762		return -EINVAL;
2763	}
2764
2765	/* Allow the regulator to ramp; it would be useful to extend
2766	 * this for bulk operations so that the regulators can ramp
2767	 * together.
2768	 */
2769	trace_regulator_enable_delay(rdev_get_name(rdev));
2770
2771	/* If poll_enabled_time is set, poll upto the delay calculated
2772	 * above, delaying poll_enabled_time uS to check if the regulator
2773	 * actually got enabled.
2774	 * If the regulator isn't enabled after our delay helper has expired,
2775	 * return -ETIMEDOUT.
2776	 */
2777	if (rdev->desc->poll_enabled_time) {
2778		int time_remaining = delay;
2779
2780		while (time_remaining > 0) {
2781			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2782
2783			if (rdev->desc->ops->get_status) {
2784				ret = _regulator_check_status_enabled(rdev);
2785				if (ret < 0)
2786					return ret;
2787				else if (ret)
2788					break;
2789			} else if (rdev->desc->ops->is_enabled(rdev))
2790				break;
2791
2792			time_remaining -= rdev->desc->poll_enabled_time;
2793		}
2794
2795		if (time_remaining <= 0) {
2796			rdev_err(rdev, "Enabled check timed out\n");
2797			return -ETIMEDOUT;
2798		}
2799	} else {
2800		_regulator_delay_helper(delay);
2801	}
2802
2803	trace_regulator_enable_complete(rdev_get_name(rdev));
2804
2805	return 0;
2806}
2807
2808/**
2809 * _regulator_handle_consumer_enable - handle that a consumer enabled
2810 * @regulator: regulator source
2811 *
2812 * Some things on a regulator consumer (like the contribution towards total
2813 * load on the regulator) only have an effect when the consumer wants the
2814 * regulator enabled.  Explained in example with two consumers of the same
2815 * regulator:
2816 *   consumer A: set_load(100);       => total load = 0
2817 *   consumer A: regulator_enable();  => total load = 100
2818 *   consumer B: set_load(1000);      => total load = 100
2819 *   consumer B: regulator_enable();  => total load = 1100
2820 *   consumer A: regulator_disable(); => total_load = 1000
2821 *
2822 * This function (together with _regulator_handle_consumer_disable) is
2823 * responsible for keeping track of the refcount for a given regulator consumer
2824 * and applying / unapplying these things.
2825 *
2826 * Returns 0 upon no error; -error upon error.
2827 */
2828static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829{
2830	int ret;
2831	struct regulator_dev *rdev = regulator->rdev;
2832
2833	lockdep_assert_held_once(&rdev->mutex.base);
2834
2835	regulator->enable_count++;
2836	if (regulator->uA_load && regulator->enable_count == 1) {
2837		ret = drms_uA_update(rdev);
2838		if (ret)
2839			regulator->enable_count--;
2840		return ret;
2841	}
2842
2843	return 0;
2844}
2845
2846/**
2847 * _regulator_handle_consumer_disable - handle that a consumer disabled
2848 * @regulator: regulator source
2849 *
2850 * The opposite of _regulator_handle_consumer_enable().
2851 *
2852 * Returns 0 upon no error; -error upon error.
2853 */
2854static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855{
2856	struct regulator_dev *rdev = regulator->rdev;
2857
2858	lockdep_assert_held_once(&rdev->mutex.base);
2859
2860	if (!regulator->enable_count) {
2861		rdev_err(rdev, "Underflow of regulator enable count\n");
2862		return -EINVAL;
2863	}
2864
2865	regulator->enable_count--;
2866	if (regulator->uA_load && regulator->enable_count == 0)
2867		return drms_uA_update(rdev);
2868
2869	return 0;
2870}
2871
2872/* locks held by regulator_enable() */
2873static int _regulator_enable(struct regulator *regulator)
2874{
2875	struct regulator_dev *rdev = regulator->rdev;
2876	int ret;
2877
2878	lockdep_assert_held_once(&rdev->mutex.base);
2879
2880	if (rdev->use_count == 0 && rdev->supply) {
2881		ret = _regulator_enable(rdev->supply);
2882		if (ret < 0)
2883			return ret;
2884	}
2885
2886	/* balance only if there are regulators coupled */
2887	if (rdev->coupling_desc.n_coupled > 1) {
2888		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889		if (ret < 0)
2890			goto err_disable_supply;
2891	}
2892
2893	ret = _regulator_handle_consumer_enable(regulator);
2894	if (ret < 0)
2895		goto err_disable_supply;
 
2896
2897	if (rdev->use_count == 0) {
2898		/*
2899		 * The regulator may already be enabled if it's not switchable
2900		 * or was left on
2901		 */
2902		ret = _regulator_is_enabled(rdev);
2903		if (ret == -EINVAL || ret == 0) {
2904			if (!regulator_ops_is_valid(rdev,
2905					REGULATOR_CHANGE_STATUS)) {
2906				ret = -EPERM;
2907				goto err_consumer_disable;
2908			}
2909
2910			ret = _regulator_do_enable(rdev);
2911			if (ret < 0)
2912				goto err_consumer_disable;
2913
2914			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915					     NULL);
2916		} else if (ret < 0) {
2917			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918			goto err_consumer_disable;
2919		}
2920		/* Fallthrough on positive return values - already enabled */
2921	}
2922
2923	if (regulator->enable_count == 1)
2924		rdev->use_count++;
2925
2926	return 0;
2927
2928err_consumer_disable:
2929	_regulator_handle_consumer_disable(regulator);
2930
2931err_disable_supply:
2932	if (rdev->use_count == 0 && rdev->supply)
2933		_regulator_disable(rdev->supply);
2934
2935	return ret;
2936}
2937
2938/**
2939 * regulator_enable - enable regulator output
2940 * @regulator: regulator source
2941 *
2942 * Request that the regulator be enabled with the regulator output at
2943 * the predefined voltage or current value.  Calls to regulator_enable()
2944 * must be balanced with calls to regulator_disable().
2945 *
2946 * NOTE: the output value can be set by other drivers, boot loader or may be
2947 * hardwired in the regulator.
2948 */
2949int regulator_enable(struct regulator *regulator)
2950{
2951	struct regulator_dev *rdev = regulator->rdev;
2952	struct ww_acquire_ctx ww_ctx;
2953	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
2954
2955	regulator_lock_dependent(rdev, &ww_ctx);
2956	ret = _regulator_enable(regulator);
2957	regulator_unlock_dependent(rdev, &ww_ctx);
2958
2959	return ret;
2960}
2961EXPORT_SYMBOL_GPL(regulator_enable);
2962
2963static int _regulator_do_disable(struct regulator_dev *rdev)
2964{
2965	int ret;
2966
2967	trace_regulator_disable(rdev_get_name(rdev));
2968
2969	if (rdev->ena_pin) {
2970		if (rdev->ena_gpio_state) {
2971			ret = regulator_ena_gpio_ctrl(rdev, false);
2972			if (ret < 0)
2973				return ret;
2974			rdev->ena_gpio_state = 0;
2975		}
2976
2977	} else if (rdev->desc->ops->disable) {
2978		ret = rdev->desc->ops->disable(rdev);
2979		if (ret != 0)
2980			return ret;
2981	}
2982
 
 
 
2983	if (rdev->desc->off_on_delay)
2984		rdev->last_off = ktime_get_boottime();
2985
2986	trace_regulator_disable_complete(rdev_get_name(rdev));
2987
2988	return 0;
2989}
2990
2991/* locks held by regulator_disable() */
2992static int _regulator_disable(struct regulator *regulator)
2993{
2994	struct regulator_dev *rdev = regulator->rdev;
2995	int ret = 0;
2996
2997	lockdep_assert_held_once(&rdev->mutex.base);
2998
2999	if (WARN(regulator->enable_count == 0,
3000		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3001		return -EIO;
3002
3003	if (regulator->enable_count == 1) {
3004	/* disabling last enable_count from this regulator */
3005		/* are we the last user and permitted to disable ? */
3006		if (rdev->use_count == 1 &&
3007		    (rdev->constraints && !rdev->constraints->always_on)) {
3008
3009			/* we are last user */
3010			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3011				ret = _notifier_call_chain(rdev,
3012							   REGULATOR_EVENT_PRE_DISABLE,
3013							   NULL);
3014				if (ret & NOTIFY_STOP_MASK)
3015					return -EINVAL;
3016
3017				ret = _regulator_do_disable(rdev);
3018				if (ret < 0) {
3019					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3020					_notifier_call_chain(rdev,
3021							REGULATOR_EVENT_ABORT_DISABLE,
3022							NULL);
3023					return ret;
3024				}
3025				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3026						NULL);
 
3027			}
3028
3029			rdev->use_count = 0;
3030		} else if (rdev->use_count > 1) {
3031			rdev->use_count--;
3032		}
3033	}
3034
3035	if (ret == 0)
3036		ret = _regulator_handle_consumer_disable(regulator);
3037
3038	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3039		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
 
 
3040
3041	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3042		ret = _regulator_disable(rdev->supply);
3043
3044	return ret;
3045}
3046
3047/**
3048 * regulator_disable - disable regulator output
3049 * @regulator: regulator source
3050 *
3051 * Disable the regulator output voltage or current.  Calls to
3052 * regulator_enable() must be balanced with calls to
3053 * regulator_disable().
3054 *
3055 * NOTE: this will only disable the regulator output if no other consumer
3056 * devices have it enabled, the regulator device supports disabling and
3057 * machine constraints permit this operation.
3058 */
3059int regulator_disable(struct regulator *regulator)
3060{
3061	struct regulator_dev *rdev = regulator->rdev;
3062	struct ww_acquire_ctx ww_ctx;
3063	int ret;
 
 
 
 
 
 
3064
3065	regulator_lock_dependent(rdev, &ww_ctx);
3066	ret = _regulator_disable(regulator);
3067	regulator_unlock_dependent(rdev, &ww_ctx);
3068
3069	return ret;
3070}
3071EXPORT_SYMBOL_GPL(regulator_disable);
3072
3073/* locks held by regulator_force_disable() */
3074static int _regulator_force_disable(struct regulator_dev *rdev)
3075{
3076	int ret = 0;
3077
3078	lockdep_assert_held_once(&rdev->mutex.base);
3079
3080	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3081			REGULATOR_EVENT_PRE_DISABLE, NULL);
3082	if (ret & NOTIFY_STOP_MASK)
3083		return -EINVAL;
3084
3085	ret = _regulator_do_disable(rdev);
3086	if (ret < 0) {
3087		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3088		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3089				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3090		return ret;
3091	}
3092
3093	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094			REGULATOR_EVENT_DISABLE, NULL);
3095
3096	return 0;
3097}
3098
3099/**
3100 * regulator_force_disable - force disable regulator output
3101 * @regulator: regulator source
3102 *
3103 * Forcibly disable the regulator output voltage or current.
3104 * NOTE: this *will* disable the regulator output even if other consumer
3105 * devices have it enabled. This should be used for situations when device
3106 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3107 */
3108int regulator_force_disable(struct regulator *regulator)
3109{
3110	struct regulator_dev *rdev = regulator->rdev;
3111	struct ww_acquire_ctx ww_ctx;
3112	int ret;
3113
3114	regulator_lock_dependent(rdev, &ww_ctx);
3115
3116	ret = _regulator_force_disable(regulator->rdev);
 
3117
3118	if (rdev->coupling_desc.n_coupled > 1)
3119		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3120
3121	if (regulator->uA_load) {
3122		regulator->uA_load = 0;
3123		ret = drms_uA_update(rdev);
3124	}
3125
3126	if (rdev->use_count != 0 && rdev->supply)
3127		_regulator_disable(rdev->supply);
3128
3129	regulator_unlock_dependent(rdev, &ww_ctx);
3130
3131	return ret;
3132}
3133EXPORT_SYMBOL_GPL(regulator_force_disable);
3134
3135static void regulator_disable_work(struct work_struct *work)
3136{
3137	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3138						  disable_work.work);
3139	struct ww_acquire_ctx ww_ctx;
3140	int count, i, ret;
3141	struct regulator *regulator;
3142	int total_count = 0;
3143
3144	regulator_lock_dependent(rdev, &ww_ctx);
3145
3146	/*
3147	 * Workqueue functions queue the new work instance while the previous
3148	 * work instance is being processed. Cancel the queued work instance
3149	 * as the work instance under processing does the job of the queued
3150	 * work instance.
3151	 */
3152	cancel_delayed_work(&rdev->disable_work);
3153
3154	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3155		count = regulator->deferred_disables;
3156
3157		if (!count)
3158			continue;
 
 
 
3159
3160		total_count += count;
3161		regulator->deferred_disables = 0;
3162
 
3163		for (i = 0; i < count; i++) {
3164			ret = _regulator_disable(regulator);
3165			if (ret != 0)
3166				rdev_err(rdev, "Deferred disable failed: %pe\n",
3167					 ERR_PTR(ret));
 
3168		}
3169	}
3170	WARN_ON(!total_count);
3171
3172	if (rdev->coupling_desc.n_coupled > 1)
3173		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3174
3175	regulator_unlock_dependent(rdev, &ww_ctx);
3176}
3177
3178/**
3179 * regulator_disable_deferred - disable regulator output with delay
3180 * @regulator: regulator source
3181 * @ms: milliseconds until the regulator is disabled
3182 *
3183 * Execute regulator_disable() on the regulator after a delay.  This
3184 * is intended for use with devices that require some time to quiesce.
3185 *
3186 * NOTE: this will only disable the regulator output if no other consumer
3187 * devices have it enabled, the regulator device supports disabling and
3188 * machine constraints permit this operation.
3189 */
3190int regulator_disable_deferred(struct regulator *regulator, int ms)
3191{
3192	struct regulator_dev *rdev = regulator->rdev;
3193
 
 
 
3194	if (!ms)
3195		return regulator_disable(regulator);
3196
3197	regulator_lock(rdev);
3198	regulator->deferred_disables++;
3199	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3200			 msecs_to_jiffies(ms));
3201	regulator_unlock(rdev);
3202
 
 
3203	return 0;
3204}
3205EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3206
3207static int _regulator_is_enabled(struct regulator_dev *rdev)
3208{
3209	/* A GPIO control always takes precedence */
3210	if (rdev->ena_pin)
3211		return rdev->ena_gpio_state;
3212
3213	/* If we don't know then assume that the regulator is always on */
3214	if (!rdev->desc->ops->is_enabled)
3215		return 1;
3216
3217	return rdev->desc->ops->is_enabled(rdev);
3218}
3219
3220static int _regulator_list_voltage(struct regulator_dev *rdev,
3221				   unsigned selector, int lock)
3222{
 
3223	const struct regulator_ops *ops = rdev->desc->ops;
3224	int ret;
3225
3226	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3227		return rdev->desc->fixed_uV;
3228
3229	if (ops->list_voltage) {
3230		if (selector >= rdev->desc->n_voltages)
3231			return -EINVAL;
3232		if (selector < rdev->desc->linear_min_sel)
3233			return 0;
3234		if (lock)
3235			regulator_lock(rdev);
3236		ret = ops->list_voltage(rdev, selector);
3237		if (lock)
3238			regulator_unlock(rdev);
3239	} else if (rdev->is_switch && rdev->supply) {
3240		ret = _regulator_list_voltage(rdev->supply->rdev,
3241					      selector, lock);
3242	} else {
3243		return -EINVAL;
3244	}
3245
3246	if (ret > 0) {
3247		if (ret < rdev->constraints->min_uV)
3248			ret = 0;
3249		else if (ret > rdev->constraints->max_uV)
3250			ret = 0;
3251	}
3252
3253	return ret;
3254}
3255
3256/**
3257 * regulator_is_enabled - is the regulator output enabled
3258 * @regulator: regulator source
3259 *
3260 * Returns positive if the regulator driver backing the source/client
3261 * has requested that the device be enabled, zero if it hasn't, else a
3262 * negative errno code.
3263 *
3264 * Note that the device backing this regulator handle can have multiple
3265 * users, so it might be enabled even if regulator_enable() was never
3266 * called for this particular source.
3267 */
3268int regulator_is_enabled(struct regulator *regulator)
3269{
3270	int ret;
3271
3272	if (regulator->always_on)
3273		return 1;
3274
3275	regulator_lock(regulator->rdev);
3276	ret = _regulator_is_enabled(regulator->rdev);
3277	regulator_unlock(regulator->rdev);
3278
3279	return ret;
3280}
3281EXPORT_SYMBOL_GPL(regulator_is_enabled);
3282
3283/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284 * regulator_count_voltages - count regulator_list_voltage() selectors
3285 * @regulator: regulator source
3286 *
3287 * Returns number of selectors, or negative errno.  Selectors are
3288 * numbered starting at zero, and typically correspond to bitfields
3289 * in hardware registers.
3290 */
3291int regulator_count_voltages(struct regulator *regulator)
3292{
3293	struct regulator_dev	*rdev = regulator->rdev;
3294
3295	if (rdev->desc->n_voltages)
3296		return rdev->desc->n_voltages;
3297
3298	if (!rdev->is_switch || !rdev->supply)
3299		return -EINVAL;
3300
3301	return regulator_count_voltages(rdev->supply);
3302}
3303EXPORT_SYMBOL_GPL(regulator_count_voltages);
3304
3305/**
3306 * regulator_list_voltage - enumerate supported voltages
3307 * @regulator: regulator source
3308 * @selector: identify voltage to list
3309 * Context: can sleep
3310 *
3311 * Returns a voltage that can be passed to @regulator_set_voltage(),
3312 * zero if this selector code can't be used on this system, or a
3313 * negative errno.
3314 */
3315int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3316{
3317	return _regulator_list_voltage(regulator->rdev, selector, 1);
3318}
3319EXPORT_SYMBOL_GPL(regulator_list_voltage);
3320
3321/**
3322 * regulator_get_regmap - get the regulator's register map
3323 * @regulator: regulator source
3324 *
3325 * Returns the register map for the given regulator, or an ERR_PTR value
3326 * if the regulator doesn't use regmap.
3327 */
3328struct regmap *regulator_get_regmap(struct regulator *regulator)
3329{
3330	struct regmap *map = regulator->rdev->regmap;
3331
3332	return map ? map : ERR_PTR(-EOPNOTSUPP);
3333}
3334
3335/**
3336 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3337 * @regulator: regulator source
3338 * @vsel_reg: voltage selector register, output parameter
3339 * @vsel_mask: mask for voltage selector bitfield, output parameter
3340 *
3341 * Returns the hardware register offset and bitmask used for setting the
3342 * regulator voltage. This might be useful when configuring voltage-scaling
3343 * hardware or firmware that can make I2C requests behind the kernel's back,
3344 * for example.
3345 *
3346 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3347 * and 0 is returned, otherwise a negative errno is returned.
3348 */
3349int regulator_get_hardware_vsel_register(struct regulator *regulator,
3350					 unsigned *vsel_reg,
3351					 unsigned *vsel_mask)
3352{
3353	struct regulator_dev *rdev = regulator->rdev;
3354	const struct regulator_ops *ops = rdev->desc->ops;
3355
3356	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3357		return -EOPNOTSUPP;
3358
3359	*vsel_reg = rdev->desc->vsel_reg;
3360	*vsel_mask = rdev->desc->vsel_mask;
3361
3362	return 0;
3363}
3364EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3365
3366/**
3367 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3368 * @regulator: regulator source
3369 * @selector: identify voltage to list
3370 *
3371 * Converts the selector to a hardware-specific voltage selector that can be
3372 * directly written to the regulator registers. The address of the voltage
3373 * register can be determined by calling @regulator_get_hardware_vsel_register.
3374 *
3375 * On error a negative errno is returned.
3376 */
3377int regulator_list_hardware_vsel(struct regulator *regulator,
3378				 unsigned selector)
3379{
3380	struct regulator_dev *rdev = regulator->rdev;
3381	const struct regulator_ops *ops = rdev->desc->ops;
3382
3383	if (selector >= rdev->desc->n_voltages)
3384		return -EINVAL;
3385	if (selector < rdev->desc->linear_min_sel)
3386		return 0;
3387	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3388		return -EOPNOTSUPP;
3389
3390	return selector;
3391}
3392EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3393
3394/**
3395 * regulator_get_linear_step - return the voltage step size between VSEL values
3396 * @regulator: regulator source
3397 *
3398 * Returns the voltage step size between VSEL values for linear
3399 * regulators, or return 0 if the regulator isn't a linear regulator.
3400 */
3401unsigned int regulator_get_linear_step(struct regulator *regulator)
3402{
3403	struct regulator_dev *rdev = regulator->rdev;
3404
3405	return rdev->desc->uV_step;
3406}
3407EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3408
3409/**
3410 * regulator_is_supported_voltage - check if a voltage range can be supported
3411 *
3412 * @regulator: Regulator to check.
3413 * @min_uV: Minimum required voltage in uV.
3414 * @max_uV: Maximum required voltage in uV.
3415 *
3416 * Returns a boolean.
3417 */
3418int regulator_is_supported_voltage(struct regulator *regulator,
3419				   int min_uV, int max_uV)
3420{
3421	struct regulator_dev *rdev = regulator->rdev;
3422	int i, voltages, ret;
3423
3424	/* If we can't change voltage check the current voltage */
3425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3426		ret = regulator_get_voltage(regulator);
3427		if (ret >= 0)
3428			return min_uV <= ret && ret <= max_uV;
3429		else
3430			return ret;
3431	}
3432
3433	/* Any voltage within constrains range is fine? */
3434	if (rdev->desc->continuous_voltage_range)
3435		return min_uV >= rdev->constraints->min_uV &&
3436				max_uV <= rdev->constraints->max_uV;
3437
3438	ret = regulator_count_voltages(regulator);
3439	if (ret < 0)
3440		return 0;
3441	voltages = ret;
3442
3443	for (i = 0; i < voltages; i++) {
3444		ret = regulator_list_voltage(regulator, i);
3445
3446		if (ret >= min_uV && ret <= max_uV)
3447			return 1;
3448	}
3449
3450	return 0;
3451}
3452EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3453
3454static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3455				 int max_uV)
3456{
3457	const struct regulator_desc *desc = rdev->desc;
3458
3459	if (desc->ops->map_voltage)
3460		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3461
3462	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3463		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3464
3465	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3466		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3467
3468	if (desc->ops->list_voltage ==
3469		regulator_list_voltage_pickable_linear_range)
3470		return regulator_map_voltage_pickable_linear_range(rdev,
3471							min_uV, max_uV);
3472
3473	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3474}
3475
3476static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3477				       int min_uV, int max_uV,
3478				       unsigned *selector)
3479{
3480	struct pre_voltage_change_data data;
3481	int ret;
3482
3483	data.old_uV = regulator_get_voltage_rdev(rdev);
3484	data.min_uV = min_uV;
3485	data.max_uV = max_uV;
3486	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3487				   &data);
3488	if (ret & NOTIFY_STOP_MASK)
3489		return -EINVAL;
3490
3491	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3492	if (ret >= 0)
3493		return ret;
3494
3495	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3496			     (void *)data.old_uV);
3497
3498	return ret;
3499}
3500
3501static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3502					   int uV, unsigned selector)
3503{
3504	struct pre_voltage_change_data data;
3505	int ret;
3506
3507	data.old_uV = regulator_get_voltage_rdev(rdev);
3508	data.min_uV = uV;
3509	data.max_uV = uV;
3510	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3511				   &data);
3512	if (ret & NOTIFY_STOP_MASK)
3513		return -EINVAL;
3514
3515	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3516	if (ret >= 0)
3517		return ret;
3518
3519	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3520			     (void *)data.old_uV);
3521
3522	return ret;
3523}
3524
3525static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3526					   int uV, int new_selector)
3527{
3528	const struct regulator_ops *ops = rdev->desc->ops;
3529	int diff, old_sel, curr_sel, ret;
3530
3531	/* Stepping is only needed if the regulator is enabled. */
3532	if (!_regulator_is_enabled(rdev))
3533		goto final_set;
3534
3535	if (!ops->get_voltage_sel)
3536		return -EINVAL;
3537
3538	old_sel = ops->get_voltage_sel(rdev);
3539	if (old_sel < 0)
3540		return old_sel;
3541
3542	diff = new_selector - old_sel;
3543	if (diff == 0)
3544		return 0; /* No change needed. */
3545
3546	if (diff > 0) {
3547		/* Stepping up. */
3548		for (curr_sel = old_sel + rdev->desc->vsel_step;
3549		     curr_sel < new_selector;
3550		     curr_sel += rdev->desc->vsel_step) {
3551			/*
3552			 * Call the callback directly instead of using
3553			 * _regulator_call_set_voltage_sel() as we don't
3554			 * want to notify anyone yet. Same in the branch
3555			 * below.
3556			 */
3557			ret = ops->set_voltage_sel(rdev, curr_sel);
3558			if (ret)
3559				goto try_revert;
3560		}
3561	} else {
3562		/* Stepping down. */
3563		for (curr_sel = old_sel - rdev->desc->vsel_step;
3564		     curr_sel > new_selector;
3565		     curr_sel -= rdev->desc->vsel_step) {
3566			ret = ops->set_voltage_sel(rdev, curr_sel);
3567			if (ret)
3568				goto try_revert;
3569		}
3570	}
3571
3572final_set:
3573	/* The final selector will trigger the notifiers. */
3574	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3575
3576try_revert:
3577	/*
3578	 * At least try to return to the previous voltage if setting a new
3579	 * one failed.
3580	 */
3581	(void)ops->set_voltage_sel(rdev, old_sel);
3582	return ret;
3583}
3584
3585static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3586				       int old_uV, int new_uV)
3587{
3588	unsigned int ramp_delay = 0;
3589
3590	if (rdev->constraints->ramp_delay)
3591		ramp_delay = rdev->constraints->ramp_delay;
3592	else if (rdev->desc->ramp_delay)
3593		ramp_delay = rdev->desc->ramp_delay;
3594	else if (rdev->constraints->settling_time)
3595		return rdev->constraints->settling_time;
3596	else if (rdev->constraints->settling_time_up &&
3597		 (new_uV > old_uV))
3598		return rdev->constraints->settling_time_up;
3599	else if (rdev->constraints->settling_time_down &&
3600		 (new_uV < old_uV))
3601		return rdev->constraints->settling_time_down;
3602
3603	if (ramp_delay == 0)
3604		return 0;
3605
3606	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3607}
3608
3609static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3610				     int min_uV, int max_uV)
3611{
3612	int ret;
3613	int delay = 0;
3614	int best_val = 0;
3615	unsigned int selector;
3616	int old_selector = -1;
3617	const struct regulator_ops *ops = rdev->desc->ops;
3618	int old_uV = regulator_get_voltage_rdev(rdev);
3619
3620	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3621
3622	min_uV += rdev->constraints->uV_offset;
3623	max_uV += rdev->constraints->uV_offset;
3624
3625	/*
3626	 * If we can't obtain the old selector there is not enough
3627	 * info to call set_voltage_time_sel().
3628	 */
3629	if (_regulator_is_enabled(rdev) &&
3630	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3631		old_selector = ops->get_voltage_sel(rdev);
 
3632		if (old_selector < 0)
3633			return old_selector;
3634	}
3635
3636	if (ops->set_voltage) {
3637		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3638						  &selector);
3639
3640		if (ret >= 0) {
3641			if (ops->list_voltage)
3642				best_val = ops->list_voltage(rdev,
3643							     selector);
3644			else
3645				best_val = regulator_get_voltage_rdev(rdev);
3646		}
3647
3648	} else if (ops->set_voltage_sel) {
3649		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3650		if (ret >= 0) {
3651			best_val = ops->list_voltage(rdev, ret);
3652			if (min_uV <= best_val && max_uV >= best_val) {
3653				selector = ret;
3654				if (old_selector == selector)
3655					ret = 0;
3656				else if (rdev->desc->vsel_step)
3657					ret = _regulator_set_voltage_sel_step(
3658						rdev, best_val, selector);
3659				else
3660					ret = _regulator_call_set_voltage_sel(
3661						rdev, best_val, selector);
3662			} else {
3663				ret = -EINVAL;
3664			}
3665		}
3666	} else {
3667		ret = -EINVAL;
3668	}
3669
3670	if (ret)
3671		goto out;
 
3672
3673	if (ops->set_voltage_time_sel) {
3674		/*
3675		 * Call set_voltage_time_sel if successfully obtained
3676		 * old_selector
3677		 */
3678		if (old_selector >= 0 && old_selector != selector)
3679			delay = ops->set_voltage_time_sel(rdev, old_selector,
3680							  selector);
3681	} else {
3682		if (old_uV != best_val) {
3683			if (ops->set_voltage_time)
3684				delay = ops->set_voltage_time(rdev, old_uV,
3685							      best_val);
3686			else
3687				delay = _regulator_set_voltage_time(rdev,
3688								    old_uV,
3689								    best_val);
3690		}
3691	}
3692
3693	if (delay < 0) {
3694		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3695		delay = 0;
 
 
 
 
3696	}
3697
3698	/* Insert any necessary delays */
3699	_regulator_delay_helper(delay);
3700
3701	if (best_val >= 0) {
3702		unsigned long data = best_val;
3703
3704		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3705				     (void *)data);
3706	}
3707
3708out:
3709	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3710
3711	return ret;
3712}
3713
3714static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3715				  int min_uV, int max_uV, suspend_state_t state)
3716{
3717	struct regulator_state *rstate;
3718	int uV, sel;
3719
3720	rstate = regulator_get_suspend_state(rdev, state);
3721	if (rstate == NULL)
3722		return -EINVAL;
3723
3724	if (min_uV < rstate->min_uV)
3725		min_uV = rstate->min_uV;
3726	if (max_uV > rstate->max_uV)
3727		max_uV = rstate->max_uV;
3728
3729	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3730	if (sel < 0)
3731		return sel;
3732
3733	uV = rdev->desc->ops->list_voltage(rdev, sel);
3734	if (uV >= min_uV && uV <= max_uV)
3735		rstate->uV = uV;
3736
3737	return 0;
3738}
3739
3740static int regulator_set_voltage_unlocked(struct regulator *regulator,
3741					  int min_uV, int max_uV,
3742					  suspend_state_t state)
3743{
3744	struct regulator_dev *rdev = regulator->rdev;
3745	struct regulator_voltage *voltage = &regulator->voltage[state];
3746	int ret = 0;
3747	int old_min_uV, old_max_uV;
3748	int current_uV;
 
 
3749
3750	/* If we're setting the same range as last time the change
3751	 * should be a noop (some cpufreq implementations use the same
3752	 * voltage for multiple frequencies, for example).
3753	 */
3754	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3755		goto out;
3756
3757	/* If we're trying to set a range that overlaps the current voltage,
3758	 * return successfully even though the regulator does not support
3759	 * changing the voltage.
3760	 */
3761	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3762		current_uV = regulator_get_voltage_rdev(rdev);
3763		if (min_uV <= current_uV && current_uV <= max_uV) {
3764			voltage->min_uV = min_uV;
3765			voltage->max_uV = max_uV;
3766			goto out;
3767		}
3768	}
3769
3770	/* sanity check */
3771	if (!rdev->desc->ops->set_voltage &&
3772	    !rdev->desc->ops->set_voltage_sel) {
3773		ret = -EINVAL;
3774		goto out;
3775	}
3776
3777	/* constraints check */
3778	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3779	if (ret < 0)
3780		goto out;
3781
3782	/* restore original values in case of error */
3783	old_min_uV = voltage->min_uV;
3784	old_max_uV = voltage->max_uV;
3785	voltage->min_uV = min_uV;
3786	voltage->max_uV = max_uV;
3787
3788	/* for not coupled regulators this will just set the voltage */
3789	ret = regulator_balance_voltage(rdev, state);
3790	if (ret < 0) {
3791		voltage->min_uV = old_min_uV;
3792		voltage->max_uV = old_max_uV;
3793	}
3794
3795out:
3796	return ret;
3797}
3798
3799int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3800			       int max_uV, suspend_state_t state)
3801{
3802	int best_supply_uV = 0;
3803	int supply_change_uV = 0;
3804	int ret;
3805
3806	if (rdev->supply &&
3807	    regulator_ops_is_valid(rdev->supply->rdev,
3808				   REGULATOR_CHANGE_VOLTAGE) &&
3809	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3810					   rdev->desc->ops->get_voltage_sel))) {
3811		int current_supply_uV;
3812		int selector;
3813
3814		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3815		if (selector < 0) {
3816			ret = selector;
3817			goto out;
3818		}
3819
3820		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3821		if (best_supply_uV < 0) {
3822			ret = best_supply_uV;
3823			goto out;
3824		}
3825
3826		best_supply_uV += rdev->desc->min_dropout_uV;
3827
3828		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3829		if (current_supply_uV < 0) {
3830			ret = current_supply_uV;
3831			goto out;
3832		}
3833
3834		supply_change_uV = best_supply_uV - current_supply_uV;
3835	}
3836
3837	if (supply_change_uV > 0) {
3838		ret = regulator_set_voltage_unlocked(rdev->supply,
3839				best_supply_uV, INT_MAX, state);
3840		if (ret) {
3841			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3842				ERR_PTR(ret));
3843			goto out;
3844		}
3845	}
3846
3847	if (state == PM_SUSPEND_ON)
3848		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3849	else
3850		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3851							max_uV, state);
3852	if (ret < 0)
3853		goto out;
3854
3855	if (supply_change_uV < 0) {
3856		ret = regulator_set_voltage_unlocked(rdev->supply,
3857				best_supply_uV, INT_MAX, state);
3858		if (ret)
3859			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3860				 ERR_PTR(ret));
3861		/* No need to fail here */
3862		ret = 0;
3863	}
3864
3865out:
3866	return ret;
3867}
3868EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3869
3870static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3871					int *current_uV, int *min_uV)
3872{
3873	struct regulation_constraints *constraints = rdev->constraints;
3874
3875	/* Limit voltage change only if necessary */
3876	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3877		return 1;
3878
3879	if (*current_uV < 0) {
3880		*current_uV = regulator_get_voltage_rdev(rdev);
3881
3882		if (*current_uV < 0)
3883			return *current_uV;
3884	}
3885
3886	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3887		return 1;
3888
3889	/* Clamp target voltage within the given step */
3890	if (*current_uV < *min_uV)
3891		*min_uV = min(*current_uV + constraints->max_uV_step,
3892			      *min_uV);
3893	else
3894		*min_uV = max(*current_uV - constraints->max_uV_step,
3895			      *min_uV);
3896
3897	return 0;
3898}
3899
3900static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3901					 int *current_uV,
3902					 int *min_uV, int *max_uV,
3903					 suspend_state_t state,
3904					 int n_coupled)
3905{
3906	struct coupling_desc *c_desc = &rdev->coupling_desc;
3907	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3908	struct regulation_constraints *constraints = rdev->constraints;
3909	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3910	int max_current_uV = 0, min_current_uV = INT_MAX;
3911	int highest_min_uV = 0, target_uV, possible_uV;
3912	int i, ret, max_spread;
3913	bool done;
3914
3915	*current_uV = -1;
3916
3917	/*
3918	 * If there are no coupled regulators, simply set the voltage
3919	 * demanded by consumers.
3920	 */
3921	if (n_coupled == 1) {
3922		/*
3923		 * If consumers don't provide any demands, set voltage
3924		 * to min_uV
3925		 */
3926		desired_min_uV = constraints->min_uV;
3927		desired_max_uV = constraints->max_uV;
3928
3929		ret = regulator_check_consumers(rdev,
3930						&desired_min_uV,
3931						&desired_max_uV, state);
3932		if (ret < 0)
3933			return ret;
3934
3935		possible_uV = desired_min_uV;
3936		done = true;
3937
3938		goto finish;
3939	}
3940
3941	/* Find highest min desired voltage */
3942	for (i = 0; i < n_coupled; i++) {
3943		int tmp_min = 0;
3944		int tmp_max = INT_MAX;
3945
3946		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3947
3948		ret = regulator_check_consumers(c_rdevs[i],
3949						&tmp_min,
3950						&tmp_max, state);
3951		if (ret < 0)
3952			return ret;
3953
3954		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3955		if (ret < 0)
3956			return ret;
3957
3958		highest_min_uV = max(highest_min_uV, tmp_min);
3959
3960		if (i == 0) {
3961			desired_min_uV = tmp_min;
3962			desired_max_uV = tmp_max;
3963		}
3964	}
3965
3966	max_spread = constraints->max_spread[0];
3967
3968	/*
3969	 * Let target_uV be equal to the desired one if possible.
3970	 * If not, set it to minimum voltage, allowed by other coupled
3971	 * regulators.
3972	 */
3973	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3974
3975	/*
3976	 * Find min and max voltages, which currently aren't violating
3977	 * max_spread.
3978	 */
3979	for (i = 1; i < n_coupled; i++) {
3980		int tmp_act;
3981
3982		if (!_regulator_is_enabled(c_rdevs[i]))
3983			continue;
3984
3985		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3986		if (tmp_act < 0)
3987			return tmp_act;
3988
3989		min_current_uV = min(tmp_act, min_current_uV);
3990		max_current_uV = max(tmp_act, max_current_uV);
3991	}
3992
3993	/* There aren't any other regulators enabled */
3994	if (max_current_uV == 0) {
3995		possible_uV = target_uV;
3996	} else {
3997		/*
3998		 * Correct target voltage, so as it currently isn't
3999		 * violating max_spread
4000		 */
4001		possible_uV = max(target_uV, max_current_uV - max_spread);
4002		possible_uV = min(possible_uV, min_current_uV + max_spread);
4003	}
4004
4005	if (possible_uV > desired_max_uV)
4006		return -EINVAL;
4007
4008	done = (possible_uV == target_uV);
4009	desired_min_uV = possible_uV;
4010
4011finish:
4012	/* Apply max_uV_step constraint if necessary */
4013	if (state == PM_SUSPEND_ON) {
4014		ret = regulator_limit_voltage_step(rdev, current_uV,
4015						   &desired_min_uV);
4016		if (ret < 0)
4017			return ret;
4018
4019		if (ret == 0)
4020			done = false;
4021	}
4022
4023	/* Set current_uV if wasn't done earlier in the code and if necessary */
4024	if (n_coupled > 1 && *current_uV == -1) {
4025
4026		if (_regulator_is_enabled(rdev)) {
4027			ret = regulator_get_voltage_rdev(rdev);
4028			if (ret < 0)
4029				return ret;
4030
4031			*current_uV = ret;
4032		} else {
4033			*current_uV = desired_min_uV;
4034		}
4035	}
4036
4037	*min_uV = desired_min_uV;
4038	*max_uV = desired_max_uV;
4039
4040	return done;
4041}
4042
4043int regulator_do_balance_voltage(struct regulator_dev *rdev,
4044				 suspend_state_t state, bool skip_coupled)
4045{
4046	struct regulator_dev **c_rdevs;
4047	struct regulator_dev *best_rdev;
4048	struct coupling_desc *c_desc = &rdev->coupling_desc;
4049	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4050	unsigned int delta, best_delta;
4051	unsigned long c_rdev_done = 0;
4052	bool best_c_rdev_done;
4053
4054	c_rdevs = c_desc->coupled_rdevs;
4055	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4056
4057	/*
4058	 * Find the best possible voltage change on each loop. Leave the loop
4059	 * if there isn't any possible change.
4060	 */
4061	do {
4062		best_c_rdev_done = false;
4063		best_delta = 0;
4064		best_min_uV = 0;
4065		best_max_uV = 0;
4066		best_c_rdev = 0;
4067		best_rdev = NULL;
4068
4069		/*
4070		 * Find highest difference between optimal voltage
4071		 * and current voltage.
4072		 */
4073		for (i = 0; i < n_coupled; i++) {
4074			/*
4075			 * optimal_uV is the best voltage that can be set for
4076			 * i-th regulator at the moment without violating
4077			 * max_spread constraint in order to balance
4078			 * the coupled voltages.
4079			 */
4080			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4081
4082			if (test_bit(i, &c_rdev_done))
4083				continue;
4084
4085			ret = regulator_get_optimal_voltage(c_rdevs[i],
4086							    &current_uV,
4087							    &optimal_uV,
4088							    &optimal_max_uV,
4089							    state, n_coupled);
4090			if (ret < 0)
4091				goto out;
4092
4093			delta = abs(optimal_uV - current_uV);
4094
4095			if (delta && best_delta <= delta) {
4096				best_c_rdev_done = ret;
4097				best_delta = delta;
4098				best_rdev = c_rdevs[i];
4099				best_min_uV = optimal_uV;
4100				best_max_uV = optimal_max_uV;
4101				best_c_rdev = i;
4102			}
4103		}
4104
4105		/* Nothing to change, return successfully */
4106		if (!best_rdev) {
4107			ret = 0;
4108			goto out;
4109		}
4110
4111		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4112						 best_max_uV, state);
4113
4114		if (ret < 0)
4115			goto out;
4116
4117		if (best_c_rdev_done)
4118			set_bit(best_c_rdev, &c_rdev_done);
4119
4120	} while (n_coupled > 1);
4121
4122out:
4123	return ret;
4124}
4125
4126static int regulator_balance_voltage(struct regulator_dev *rdev,
4127				     suspend_state_t state)
4128{
4129	struct coupling_desc *c_desc = &rdev->coupling_desc;
4130	struct regulator_coupler *coupler = c_desc->coupler;
4131	bool skip_coupled = false;
4132
4133	/*
4134	 * If system is in a state other than PM_SUSPEND_ON, don't check
4135	 * other coupled regulators.
4136	 */
4137	if (state != PM_SUSPEND_ON)
4138		skip_coupled = true;
4139
4140	if (c_desc->n_resolved < c_desc->n_coupled) {
4141		rdev_err(rdev, "Not all coupled regulators registered\n");
4142		return -EPERM;
4143	}
4144
4145	/* Invoke custom balancer for customized couplers */
4146	if (coupler && coupler->balance_voltage)
4147		return coupler->balance_voltage(coupler, rdev, state);
4148
4149	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4150}
4151
4152/**
4153 * regulator_set_voltage - set regulator output voltage
4154 * @regulator: regulator source
4155 * @min_uV: Minimum required voltage in uV
4156 * @max_uV: Maximum acceptable voltage in uV
4157 *
4158 * Sets a voltage regulator to the desired output voltage. This can be set
4159 * during any regulator state. IOW, regulator can be disabled or enabled.
4160 *
4161 * If the regulator is enabled then the voltage will change to the new value
4162 * immediately otherwise if the regulator is disabled the regulator will
4163 * output at the new voltage when enabled.
4164 *
4165 * NOTE: If the regulator is shared between several devices then the lowest
4166 * request voltage that meets the system constraints will be used.
4167 * Regulator system constraints must be set for this regulator before
4168 * calling this function otherwise this call will fail.
4169 */
4170int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4171{
4172	struct ww_acquire_ctx ww_ctx;
4173	int ret;
4174
4175	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4176
4177	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4178					     PM_SUSPEND_ON);
4179
4180	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4181
4182	return ret;
4183}
4184EXPORT_SYMBOL_GPL(regulator_set_voltage);
4185
4186static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4187					   suspend_state_t state, bool en)
4188{
4189	struct regulator_state *rstate;
4190
4191	rstate = regulator_get_suspend_state(rdev, state);
4192	if (rstate == NULL)
4193		return -EINVAL;
4194
4195	if (!rstate->changeable)
4196		return -EPERM;
4197
4198	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4199
4200	return 0;
4201}
4202
4203int regulator_suspend_enable(struct regulator_dev *rdev,
4204				    suspend_state_t state)
4205{
4206	return regulator_suspend_toggle(rdev, state, true);
4207}
4208EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4209
4210int regulator_suspend_disable(struct regulator_dev *rdev,
4211				     suspend_state_t state)
4212{
4213	struct regulator *regulator;
4214	struct regulator_voltage *voltage;
4215
4216	/*
4217	 * if any consumer wants this regulator device keeping on in
4218	 * suspend states, don't set it as disabled.
4219	 */
4220	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4221		voltage = &regulator->voltage[state];
4222		if (voltage->min_uV || voltage->max_uV)
4223			return 0;
4224	}
4225
4226	return regulator_suspend_toggle(rdev, state, false);
4227}
4228EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4229
4230static int _regulator_set_suspend_voltage(struct regulator *regulator,
4231					  int min_uV, int max_uV,
4232					  suspend_state_t state)
4233{
4234	struct regulator_dev *rdev = regulator->rdev;
4235	struct regulator_state *rstate;
4236
4237	rstate = regulator_get_suspend_state(rdev, state);
4238	if (rstate == NULL)
4239		return -EINVAL;
4240
4241	if (rstate->min_uV == rstate->max_uV) {
4242		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4243		return -EPERM;
4244	}
4245
4246	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4247}
4248
4249int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4250				  int max_uV, suspend_state_t state)
4251{
4252	struct ww_acquire_ctx ww_ctx;
4253	int ret;
4254
4255	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4256	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4257		return -EINVAL;
4258
4259	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4260
4261	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4262					     max_uV, state);
4263
4264	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4265
4266	return ret;
4267}
4268EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4269
4270/**
4271 * regulator_set_voltage_time - get raise/fall time
4272 * @regulator: regulator source
4273 * @old_uV: starting voltage in microvolts
4274 * @new_uV: target voltage in microvolts
4275 *
4276 * Provided with the starting and ending voltage, this function attempts to
4277 * calculate the time in microseconds required to rise or fall to this new
4278 * voltage.
4279 */
4280int regulator_set_voltage_time(struct regulator *regulator,
4281			       int old_uV, int new_uV)
4282{
4283	struct regulator_dev *rdev = regulator->rdev;
4284	const struct regulator_ops *ops = rdev->desc->ops;
4285	int old_sel = -1;
4286	int new_sel = -1;
4287	int voltage;
4288	int i;
4289
4290	if (ops->set_voltage_time)
4291		return ops->set_voltage_time(rdev, old_uV, new_uV);
4292	else if (!ops->set_voltage_time_sel)
4293		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4294
4295	/* Currently requires operations to do this */
4296	if (!ops->list_voltage || !rdev->desc->n_voltages)
 
4297		return -EINVAL;
4298
4299	for (i = 0; i < rdev->desc->n_voltages; i++) {
4300		/* We only look for exact voltage matches here */
4301		if (i < rdev->desc->linear_min_sel)
4302			continue;
4303
4304		if (old_sel >= 0 && new_sel >= 0)
4305			break;
4306
4307		voltage = regulator_list_voltage(regulator, i);
4308		if (voltage < 0)
4309			return -EINVAL;
4310		if (voltage == 0)
4311			continue;
4312		if (voltage == old_uV)
4313			old_sel = i;
4314		if (voltage == new_uV)
4315			new_sel = i;
4316	}
4317
4318	if (old_sel < 0 || new_sel < 0)
4319		return -EINVAL;
4320
4321	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4322}
4323EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4324
4325/**
4326 * regulator_set_voltage_time_sel - get raise/fall time
4327 * @rdev: regulator source device
4328 * @old_selector: selector for starting voltage
4329 * @new_selector: selector for target voltage
4330 *
4331 * Provided with the starting and target voltage selectors, this function
4332 * returns time in microseconds required to rise or fall to this new voltage
4333 *
4334 * Drivers providing ramp_delay in regulation_constraints can use this as their
4335 * set_voltage_time_sel() operation.
4336 */
4337int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4338				   unsigned int old_selector,
4339				   unsigned int new_selector)
4340{
 
4341	int old_volt, new_volt;
4342
 
 
 
 
 
 
 
 
 
 
4343	/* sanity check */
4344	if (!rdev->desc->ops->list_voltage)
4345		return -EINVAL;
4346
4347	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4348	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4349
4350	if (rdev->desc->ops->set_voltage_time)
4351		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4352							 new_volt);
4353	else
4354		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4355}
4356EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4357
4358int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4359{
4360	int ret;
4361
4362	regulator_lock(rdev);
4363
4364	if (!rdev->desc->ops->set_voltage &&
4365	    !rdev->desc->ops->set_voltage_sel) {
4366		ret = -EINVAL;
4367		goto out;
4368	}
4369
4370	/* balance only, if regulator is coupled */
4371	if (rdev->coupling_desc.n_coupled > 1)
4372		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4373	else
4374		ret = -EOPNOTSUPP;
4375
4376out:
4377	regulator_unlock(rdev);
4378	return ret;
4379}
4380
4381/**
4382 * regulator_sync_voltage - re-apply last regulator output voltage
4383 * @regulator: regulator source
4384 *
4385 * Re-apply the last configured voltage.  This is intended to be used
4386 * where some external control source the consumer is cooperating with
4387 * has caused the configured voltage to change.
4388 */
4389int regulator_sync_voltage(struct regulator *regulator)
4390{
4391	struct regulator_dev *rdev = regulator->rdev;
4392	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4393	int ret, min_uV, max_uV;
4394
4395	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4396		return 0;
4397
4398	regulator_lock(rdev);
4399
4400	if (!rdev->desc->ops->set_voltage &&
4401	    !rdev->desc->ops->set_voltage_sel) {
4402		ret = -EINVAL;
4403		goto out;
4404	}
4405
4406	/* This is only going to work if we've had a voltage configured. */
4407	if (!voltage->min_uV && !voltage->max_uV) {
4408		ret = -EINVAL;
4409		goto out;
4410	}
4411
4412	min_uV = voltage->min_uV;
4413	max_uV = voltage->max_uV;
4414
4415	/* This should be a paranoia check... */
4416	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4417	if (ret < 0)
4418		goto out;
4419
4420	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4421	if (ret < 0)
4422		goto out;
4423
4424	/* balance only, if regulator is coupled */
4425	if (rdev->coupling_desc.n_coupled > 1)
4426		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4427	else
4428		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4429
4430out:
4431	regulator_unlock(rdev);
4432	return ret;
4433}
4434EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4435
4436int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4437{
4438	int sel, ret;
4439	bool bypassed;
4440
4441	if (rdev->desc->ops->get_bypass) {
4442		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4443		if (ret < 0)
4444			return ret;
4445		if (bypassed) {
4446			/* if bypassed the regulator must have a supply */
4447			if (!rdev->supply) {
4448				rdev_err(rdev,
4449					 "bypassed regulator has no supply!\n");
4450				return -EPROBE_DEFER;
4451			}
4452
4453			return regulator_get_voltage_rdev(rdev->supply->rdev);
4454		}
4455	}
4456
4457	if (rdev->desc->ops->get_voltage_sel) {
4458		sel = rdev->desc->ops->get_voltage_sel(rdev);
4459		if (sel < 0)
4460			return sel;
4461		ret = rdev->desc->ops->list_voltage(rdev, sel);
4462	} else if (rdev->desc->ops->get_voltage) {
4463		ret = rdev->desc->ops->get_voltage(rdev);
4464	} else if (rdev->desc->ops->list_voltage) {
4465		ret = rdev->desc->ops->list_voltage(rdev, 0);
4466	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4467		ret = rdev->desc->fixed_uV;
4468	} else if (rdev->supply) {
4469		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4470	} else if (rdev->supply_name) {
4471		return -EPROBE_DEFER;
4472	} else {
4473		return -EINVAL;
4474	}
4475
4476	if (ret < 0)
4477		return ret;
4478	return ret - rdev->constraints->uV_offset;
4479}
4480EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4481
4482/**
4483 * regulator_get_voltage - get regulator output voltage
4484 * @regulator: regulator source
4485 *
4486 * This returns the current regulator voltage in uV.
4487 *
4488 * NOTE: If the regulator is disabled it will return the voltage value. This
4489 * function should not be used to determine regulator state.
4490 */
4491int regulator_get_voltage(struct regulator *regulator)
4492{
4493	struct ww_acquire_ctx ww_ctx;
4494	int ret;
4495
4496	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4497	ret = regulator_get_voltage_rdev(regulator->rdev);
4498	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 
 
4499
4500	return ret;
4501}
4502EXPORT_SYMBOL_GPL(regulator_get_voltage);
4503
4504/**
4505 * regulator_set_current_limit - set regulator output current limit
4506 * @regulator: regulator source
4507 * @min_uA: Minimum supported current in uA
4508 * @max_uA: Maximum supported current in uA
4509 *
4510 * Sets current sink to the desired output current. This can be set during
4511 * any regulator state. IOW, regulator can be disabled or enabled.
4512 *
4513 * If the regulator is enabled then the current will change to the new value
4514 * immediately otherwise if the regulator is disabled the regulator will
4515 * output at the new current when enabled.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_current_limit(struct regulator *regulator,
4521			       int min_uA, int max_uA)
4522{
4523	struct regulator_dev *rdev = regulator->rdev;
4524	int ret;
4525
4526	regulator_lock(rdev);
4527
4528	/* sanity check */
4529	if (!rdev->desc->ops->set_current_limit) {
4530		ret = -EINVAL;
4531		goto out;
4532	}
4533
4534	/* constraints check */
4535	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4536	if (ret < 0)
4537		goto out;
4538
4539	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4540out:
4541	regulator_unlock(rdev);
4542	return ret;
4543}
4544EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4545
4546static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4547{
4548	/* sanity check */
4549	if (!rdev->desc->ops->get_current_limit)
4550		return -EINVAL;
4551
4552	return rdev->desc->ops->get_current_limit(rdev);
4553}
4554
4555static int _regulator_get_current_limit(struct regulator_dev *rdev)
4556{
4557	int ret;
4558
4559	regulator_lock(rdev);
4560	ret = _regulator_get_current_limit_unlocked(rdev);
4561	regulator_unlock(rdev);
 
 
 
 
4562
 
 
 
4563	return ret;
4564}
4565
4566/**
4567 * regulator_get_current_limit - get regulator output current
4568 * @regulator: regulator source
4569 *
4570 * This returns the current supplied by the specified current sink in uA.
4571 *
4572 * NOTE: If the regulator is disabled it will return the current value. This
4573 * function should not be used to determine regulator state.
4574 */
4575int regulator_get_current_limit(struct regulator *regulator)
4576{
4577	return _regulator_get_current_limit(regulator->rdev);
4578}
4579EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4580
4581/**
4582 * regulator_set_mode - set regulator operating mode
4583 * @regulator: regulator source
4584 * @mode: operating mode - one of the REGULATOR_MODE constants
4585 *
4586 * Set regulator operating mode to increase regulator efficiency or improve
4587 * regulation performance.
4588 *
4589 * NOTE: Regulator system constraints must be set for this regulator before
4590 * calling this function otherwise this call will fail.
4591 */
4592int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4593{
4594	struct regulator_dev *rdev = regulator->rdev;
4595	int ret;
4596	int regulator_curr_mode;
4597
4598	regulator_lock(rdev);
4599
4600	/* sanity check */
4601	if (!rdev->desc->ops->set_mode) {
4602		ret = -EINVAL;
4603		goto out;
4604	}
4605
4606	/* return if the same mode is requested */
4607	if (rdev->desc->ops->get_mode) {
4608		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4609		if (regulator_curr_mode == mode) {
4610			ret = 0;
4611			goto out;
4612		}
4613	}
4614
4615	/* constraints check */
4616	ret = regulator_mode_constrain(rdev, &mode);
4617	if (ret < 0)
4618		goto out;
4619
4620	ret = rdev->desc->ops->set_mode(rdev, mode);
4621out:
4622	regulator_unlock(rdev);
4623	return ret;
4624}
4625EXPORT_SYMBOL_GPL(regulator_set_mode);
4626
4627static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4628{
4629	/* sanity check */
4630	if (!rdev->desc->ops->get_mode)
4631		return -EINVAL;
4632
4633	return rdev->desc->ops->get_mode(rdev);
4634}
4635
4636static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4637{
4638	int ret;
4639
4640	regulator_lock(rdev);
4641	ret = _regulator_get_mode_unlocked(rdev);
4642	regulator_unlock(rdev);
 
 
 
 
4643
 
 
 
4644	return ret;
4645}
4646
4647/**
4648 * regulator_get_mode - get regulator operating mode
4649 * @regulator: regulator source
4650 *
4651 * Get the current regulator operating mode.
4652 */
4653unsigned int regulator_get_mode(struct regulator *regulator)
4654{
4655	return _regulator_get_mode(regulator->rdev);
4656}
4657EXPORT_SYMBOL_GPL(regulator_get_mode);
4658
4659static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4660{
4661	int ret = 0;
4662
4663	if (rdev->use_cached_err) {
4664		spin_lock(&rdev->err_lock);
4665		ret = rdev->cached_err;
4666		spin_unlock(&rdev->err_lock);
4667	}
4668	return ret;
4669}
4670
4671static int _regulator_get_error_flags(struct regulator_dev *rdev,
4672					unsigned int *flags)
4673{
4674	int cached_flags, ret = 0;
4675
4676	regulator_lock(rdev);
4677
4678	cached_flags = rdev_get_cached_err_flags(rdev);
4679
4680	if (rdev->desc->ops->get_error_flags)
4681		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4682	else if (!rdev->use_cached_err)
4683		ret = -EINVAL;
4684
4685	*flags |= cached_flags;
4686
4687	regulator_unlock(rdev);
4688
4689	return ret;
4690}
4691
4692/**
4693 * regulator_get_error_flags - get regulator error information
4694 * @regulator: regulator source
4695 * @flags: pointer to store error flags
4696 *
4697 * Get the current regulator error information.
4698 */
4699int regulator_get_error_flags(struct regulator *regulator,
4700				unsigned int *flags)
4701{
4702	return _regulator_get_error_flags(regulator->rdev, flags);
4703}
4704EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4705
4706/**
4707 * regulator_set_load - set regulator load
4708 * @regulator: regulator source
4709 * @uA_load: load current
4710 *
4711 * Notifies the regulator core of a new device load. This is then used by
4712 * DRMS (if enabled by constraints) to set the most efficient regulator
4713 * operating mode for the new regulator loading.
4714 *
4715 * Consumer devices notify their supply regulator of the maximum power
4716 * they will require (can be taken from device datasheet in the power
4717 * consumption tables) when they change operational status and hence power
4718 * state. Examples of operational state changes that can affect power
4719 * consumption are :-
4720 *
4721 *    o Device is opened / closed.
4722 *    o Device I/O is about to begin or has just finished.
4723 *    o Device is idling in between work.
4724 *
4725 * This information is also exported via sysfs to userspace.
4726 *
4727 * DRMS will sum the total requested load on the regulator and change
4728 * to the most efficient operating mode if platform constraints allow.
4729 *
4730 * NOTE: when a regulator consumer requests to have a regulator
4731 * disabled then any load that consumer requested no longer counts
4732 * toward the total requested load.  If the regulator is re-enabled
4733 * then the previously requested load will start counting again.
4734 *
4735 * If a regulator is an always-on regulator then an individual consumer's
4736 * load will still be removed if that consumer is fully disabled.
4737 *
4738 * On error a negative errno is returned.
4739 */
4740int regulator_set_load(struct regulator *regulator, int uA_load)
4741{
4742	struct regulator_dev *rdev = regulator->rdev;
4743	int old_uA_load;
4744	int ret = 0;
4745
4746	regulator_lock(rdev);
4747	old_uA_load = regulator->uA_load;
4748	regulator->uA_load = uA_load;
4749	if (regulator->enable_count && old_uA_load != uA_load) {
4750		ret = drms_uA_update(rdev);
4751		if (ret < 0)
4752			regulator->uA_load = old_uA_load;
4753	}
4754	regulator_unlock(rdev);
4755
4756	return ret;
4757}
4758EXPORT_SYMBOL_GPL(regulator_set_load);
4759
4760/**
4761 * regulator_allow_bypass - allow the regulator to go into bypass mode
4762 *
4763 * @regulator: Regulator to configure
4764 * @enable: enable or disable bypass mode
4765 *
4766 * Allow the regulator to go into bypass mode if all other consumers
4767 * for the regulator also enable bypass mode and the machine
4768 * constraints allow this.  Bypass mode means that the regulator is
4769 * simply passing the input directly to the output with no regulation.
4770 */
4771int regulator_allow_bypass(struct regulator *regulator, bool enable)
4772{
4773	struct regulator_dev *rdev = regulator->rdev;
4774	const char *name = rdev_get_name(rdev);
4775	int ret = 0;
4776
4777	if (!rdev->desc->ops->set_bypass)
4778		return 0;
4779
4780	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
 
4781		return 0;
4782
4783	regulator_lock(rdev);
4784
4785	if (enable && !regulator->bypass) {
4786		rdev->bypass_count++;
4787
4788		if (rdev->bypass_count == rdev->open_count) {
4789			trace_regulator_bypass_enable(name);
4790
4791			ret = rdev->desc->ops->set_bypass(rdev, enable);
4792			if (ret != 0)
4793				rdev->bypass_count--;
4794			else
4795				trace_regulator_bypass_enable_complete(name);
4796		}
4797
4798	} else if (!enable && regulator->bypass) {
4799		rdev->bypass_count--;
4800
4801		if (rdev->bypass_count != rdev->open_count) {
4802			trace_regulator_bypass_disable(name);
4803
4804			ret = rdev->desc->ops->set_bypass(rdev, enable);
4805			if (ret != 0)
4806				rdev->bypass_count++;
4807			else
4808				trace_regulator_bypass_disable_complete(name);
4809		}
4810	}
4811
4812	if (ret == 0)
4813		regulator->bypass = enable;
4814
4815	regulator_unlock(rdev);
4816
4817	return ret;
4818}
4819EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4820
4821/**
4822 * regulator_register_notifier - register regulator event notifier
4823 * @regulator: regulator source
4824 * @nb: notifier block
4825 *
4826 * Register notifier block to receive regulator events.
4827 */
4828int regulator_register_notifier(struct regulator *regulator,
4829			      struct notifier_block *nb)
4830{
4831	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4832						nb);
4833}
4834EXPORT_SYMBOL_GPL(regulator_register_notifier);
4835
4836/**
4837 * regulator_unregister_notifier - unregister regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Unregister regulator event notifier block.
4842 */
4843int regulator_unregister_notifier(struct regulator *regulator,
4844				struct notifier_block *nb)
4845{
4846	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4847						  nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4850
4851/* notify regulator consumers and downstream regulator consumers.
4852 * Note mutex must be held by caller.
4853 */
4854static int _notifier_call_chain(struct regulator_dev *rdev,
4855				  unsigned long event, void *data)
4856{
4857	/* call rdev chain first */
4858	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4859
4860	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4861		struct device *parent = rdev->dev.parent;
4862		const char *rname = rdev_get_name(rdev);
4863		char name[32];
4864
4865		/* Avoid duplicate debugfs directory names */
4866		if (parent && rname == rdev->desc->name) {
4867			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4868				 rname);
4869			rname = name;
4870		}
4871		reg_generate_netlink_event(rname, event);
4872	}
4873
4874	return ret;
4875}
4876
4877int _regulator_bulk_get(struct device *dev, int num_consumers,
4878			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4879{
4880	int i;
4881	int ret;
4882
4883	for (i = 0; i < num_consumers; i++)
4884		consumers[i].consumer = NULL;
4885
4886	for (i = 0; i < num_consumers; i++) {
4887		consumers[i].consumer = _regulator_get(dev,
4888						       consumers[i].supply, get_type);
 
 
4889		if (IS_ERR(consumers[i].consumer)) {
4890			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4891					    "Failed to get supply '%s'",
4892					    consumers[i].supply);
4893			consumers[i].consumer = NULL;
4894			goto err;
4895		}
4896
4897		if (consumers[i].init_load_uA > 0) {
4898			ret = regulator_set_load(consumers[i].consumer,
4899						 consumers[i].init_load_uA);
4900			if (ret) {
4901				i++;
4902				goto err;
4903			}
4904		}
4905	}
4906
4907	return 0;
4908
4909err:
4910	while (--i >= 0)
4911		regulator_put(consumers[i].consumer);
4912
4913	return ret;
4914}
4915
4916/**
4917 * regulator_bulk_get - get multiple regulator consumers
4918 *
4919 * @dev:           Device to supply
4920 * @num_consumers: Number of consumers to register
4921 * @consumers:     Configuration of consumers; clients are stored here.
4922 *
4923 * @return 0 on success, an errno on failure.
4924 *
4925 * This helper function allows drivers to get several regulator
4926 * consumers in one operation.  If any of the regulators cannot be
4927 * acquired then any regulators that were allocated will be freed
4928 * before returning to the caller.
4929 */
4930int regulator_bulk_get(struct device *dev, int num_consumers,
4931		       struct regulator_bulk_data *consumers)
4932{
4933	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4934}
4935EXPORT_SYMBOL_GPL(regulator_bulk_get);
4936
4937static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4938{
4939	struct regulator_bulk_data *bulk = data;
4940
4941	bulk->ret = regulator_enable(bulk->consumer);
4942}
4943
4944/**
4945 * regulator_bulk_enable - enable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers:     Consumer data; clients are stored here.
4949 * @return         0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to enable multiple regulator
4952 * clients in a single API call.  If any consumers cannot be enabled
4953 * then any others that were enabled will be disabled again prior to
4954 * return.
4955 */
4956int regulator_bulk_enable(int num_consumers,
4957			  struct regulator_bulk_data *consumers)
4958{
4959	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4960	int i;
4961	int ret = 0;
4962
4963	for (i = 0; i < num_consumers; i++) {
4964		async_schedule_domain(regulator_bulk_enable_async,
4965				      &consumers[i], &async_domain);
 
 
 
4966	}
4967
4968	async_synchronize_full_domain(&async_domain);
4969
4970	/* If any consumer failed we need to unwind any that succeeded */
4971	for (i = 0; i < num_consumers; i++) {
4972		if (consumers[i].ret != 0) {
4973			ret = consumers[i].ret;
4974			goto err;
4975		}
4976	}
4977
4978	return 0;
4979
4980err:
4981	for (i = 0; i < num_consumers; i++) {
4982		if (consumers[i].ret < 0)
4983			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4984			       ERR_PTR(consumers[i].ret));
4985		else
4986			regulator_disable(consumers[i].consumer);
4987	}
4988
4989	return ret;
4990}
4991EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4992
4993/**
4994 * regulator_bulk_disable - disable multiple regulator consumers
4995 *
4996 * @num_consumers: Number of consumers
4997 * @consumers:     Consumer data; clients are stored here.
4998 * @return         0 on success, an errno on failure
4999 *
5000 * This convenience API allows consumers to disable multiple regulator
5001 * clients in a single API call.  If any consumers cannot be disabled
5002 * then any others that were disabled will be enabled again prior to
5003 * return.
5004 */
5005int regulator_bulk_disable(int num_consumers,
5006			   struct regulator_bulk_data *consumers)
5007{
5008	int i;
5009	int ret, r;
5010
5011	for (i = num_consumers - 1; i >= 0; --i) {
5012		ret = regulator_disable(consumers[i].consumer);
5013		if (ret != 0)
5014			goto err;
5015	}
5016
5017	return 0;
5018
5019err:
5020	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5021	for (++i; i < num_consumers; ++i) {
5022		r = regulator_enable(consumers[i].consumer);
5023		if (r != 0)
5024			pr_err("Failed to re-enable %s: %pe\n",
5025			       consumers[i].supply, ERR_PTR(r));
5026	}
5027
5028	return ret;
5029}
5030EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5031
5032/**
5033 * regulator_bulk_force_disable - force disable multiple regulator consumers
5034 *
5035 * @num_consumers: Number of consumers
5036 * @consumers:     Consumer data; clients are stored here.
5037 * @return         0 on success, an errno on failure
5038 *
5039 * This convenience API allows consumers to forcibly disable multiple regulator
5040 * clients in a single API call.
5041 * NOTE: This should be used for situations when device damage will
5042 * likely occur if the regulators are not disabled (e.g. over temp).
5043 * Although regulator_force_disable function call for some consumers can
5044 * return error numbers, the function is called for all consumers.
5045 */
5046int regulator_bulk_force_disable(int num_consumers,
5047			   struct regulator_bulk_data *consumers)
5048{
5049	int i;
5050	int ret = 0;
5051
5052	for (i = 0; i < num_consumers; i++) {
5053		consumers[i].ret =
5054			    regulator_force_disable(consumers[i].consumer);
5055
5056		/* Store first error for reporting */
5057		if (consumers[i].ret && !ret)
5058			ret = consumers[i].ret;
 
 
5059	}
5060
 
 
5061	return ret;
5062}
5063EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5064
5065/**
5066 * regulator_bulk_free - free multiple regulator consumers
5067 *
5068 * @num_consumers: Number of consumers
5069 * @consumers:     Consumer data; clients are stored here.
5070 *
5071 * This convenience API allows consumers to free multiple regulator
5072 * clients in a single API call.
5073 */
5074void regulator_bulk_free(int num_consumers,
5075			 struct regulator_bulk_data *consumers)
5076{
5077	int i;
5078
5079	for (i = 0; i < num_consumers; i++) {
5080		regulator_put(consumers[i].consumer);
5081		consumers[i].consumer = NULL;
5082	}
5083}
5084EXPORT_SYMBOL_GPL(regulator_bulk_free);
5085
5086/**
5087 * regulator_handle_critical - Handle events for system-critical regulators.
5088 * @rdev: The regulator device.
5089 * @event: The event being handled.
5090 *
5091 * This function handles critical events such as under-voltage, over-current,
5092 * and unknown errors for regulators deemed system-critical. On detecting such
5093 * events, it triggers a hardware protection shutdown with a defined timeout.
5094 */
5095static void regulator_handle_critical(struct regulator_dev *rdev,
5096				      unsigned long event)
5097{
5098	const char *reason = NULL;
5099
5100	if (!rdev->constraints->system_critical)
5101		return;
5102
5103	switch (event) {
5104	case REGULATOR_EVENT_UNDER_VOLTAGE:
5105		reason = "System critical regulator: voltage drop detected";
5106		break;
5107	case REGULATOR_EVENT_OVER_CURRENT:
5108		reason = "System critical regulator: over-current detected";
5109		break;
5110	case REGULATOR_EVENT_FAIL:
5111		reason = "System critical regulator: unknown error";
5112	}
5113
5114	if (!reason)
5115		return;
5116
5117	hw_protection_shutdown(reason,
5118			       rdev->constraints->uv_less_critical_window_ms);
5119}
5120
5121/**
5122 * regulator_notifier_call_chain - call regulator event notifier
5123 * @rdev: regulator source
5124 * @event: notifier block
5125 * @data: callback-specific data.
5126 *
5127 * Called by regulator drivers to notify clients a regulator event has
5128 * occurred.
 
5129 */
5130int regulator_notifier_call_chain(struct regulator_dev *rdev,
5131				  unsigned long event, void *data)
5132{
5133	regulator_handle_critical(rdev, event);
5134
5135	_notifier_call_chain(rdev, event, data);
5136	return NOTIFY_DONE;
5137
5138}
5139EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5140
5141/**
5142 * regulator_mode_to_status - convert a regulator mode into a status
5143 *
5144 * @mode: Mode to convert
5145 *
5146 * Convert a regulator mode into a status.
5147 */
5148int regulator_mode_to_status(unsigned int mode)
5149{
5150	switch (mode) {
5151	case REGULATOR_MODE_FAST:
5152		return REGULATOR_STATUS_FAST;
5153	case REGULATOR_MODE_NORMAL:
5154		return REGULATOR_STATUS_NORMAL;
5155	case REGULATOR_MODE_IDLE:
5156		return REGULATOR_STATUS_IDLE;
5157	case REGULATOR_MODE_STANDBY:
5158		return REGULATOR_STATUS_STANDBY;
5159	default:
5160		return REGULATOR_STATUS_UNDEFINED;
5161	}
5162}
5163EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5164
5165static struct attribute *regulator_dev_attrs[] = {
5166	&dev_attr_name.attr,
5167	&dev_attr_num_users.attr,
5168	&dev_attr_type.attr,
5169	&dev_attr_microvolts.attr,
5170	&dev_attr_microamps.attr,
5171	&dev_attr_opmode.attr,
5172	&dev_attr_state.attr,
5173	&dev_attr_status.attr,
5174	&dev_attr_bypass.attr,
5175	&dev_attr_requested_microamps.attr,
5176	&dev_attr_min_microvolts.attr,
5177	&dev_attr_max_microvolts.attr,
5178	&dev_attr_min_microamps.attr,
5179	&dev_attr_max_microamps.attr,
5180	&dev_attr_under_voltage.attr,
5181	&dev_attr_over_current.attr,
5182	&dev_attr_regulation_out.attr,
5183	&dev_attr_fail.attr,
5184	&dev_attr_over_temp.attr,
5185	&dev_attr_under_voltage_warn.attr,
5186	&dev_attr_over_current_warn.attr,
5187	&dev_attr_over_voltage_warn.attr,
5188	&dev_attr_over_temp_warn.attr,
5189	&dev_attr_suspend_standby_state.attr,
5190	&dev_attr_suspend_mem_state.attr,
5191	&dev_attr_suspend_disk_state.attr,
5192	&dev_attr_suspend_standby_microvolts.attr,
5193	&dev_attr_suspend_mem_microvolts.attr,
5194	&dev_attr_suspend_disk_microvolts.attr,
5195	&dev_attr_suspend_standby_mode.attr,
5196	&dev_attr_suspend_mem_mode.attr,
5197	&dev_attr_suspend_disk_mode.attr,
5198	NULL
5199};
5200
5201/*
5202 * To avoid cluttering sysfs (and memory) with useless state, only
5203 * create attributes that can be meaningfully displayed.
5204 */
5205static umode_t regulator_attr_is_visible(struct kobject *kobj,
5206					 struct attribute *attr, int idx)
5207{
5208	struct device *dev = kobj_to_dev(kobj);
5209	struct regulator_dev *rdev = dev_to_rdev(dev);
5210	const struct regulator_ops *ops = rdev->desc->ops;
5211	umode_t mode = attr->mode;
5212
5213	/* these three are always present */
5214	if (attr == &dev_attr_name.attr ||
5215	    attr == &dev_attr_num_users.attr ||
5216	    attr == &dev_attr_type.attr)
5217		return mode;
5218
5219	/* some attributes need specific methods to be displayed */
5220	if (attr == &dev_attr_microvolts.attr) {
5221		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5222		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5223		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5224		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5225			return mode;
5226		return 0;
5227	}
5228
5229	if (attr == &dev_attr_microamps.attr)
5230		return ops->get_current_limit ? mode : 0;
5231
5232	if (attr == &dev_attr_opmode.attr)
5233		return ops->get_mode ? mode : 0;
5234
5235	if (attr == &dev_attr_state.attr)
5236		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5237
5238	if (attr == &dev_attr_status.attr)
5239		return ops->get_status ? mode : 0;
5240
5241	if (attr == &dev_attr_bypass.attr)
5242		return ops->get_bypass ? mode : 0;
5243
5244	if (attr == &dev_attr_under_voltage.attr ||
5245	    attr == &dev_attr_over_current.attr ||
5246	    attr == &dev_attr_regulation_out.attr ||
5247	    attr == &dev_attr_fail.attr ||
5248	    attr == &dev_attr_over_temp.attr ||
5249	    attr == &dev_attr_under_voltage_warn.attr ||
5250	    attr == &dev_attr_over_current_warn.attr ||
5251	    attr == &dev_attr_over_voltage_warn.attr ||
5252	    attr == &dev_attr_over_temp_warn.attr)
5253		return ops->get_error_flags ? mode : 0;
5254
5255	/* constraints need specific supporting methods */
5256	if (attr == &dev_attr_min_microvolts.attr ||
5257	    attr == &dev_attr_max_microvolts.attr)
5258		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5259
5260	if (attr == &dev_attr_min_microamps.attr ||
5261	    attr == &dev_attr_max_microamps.attr)
5262		return ops->set_current_limit ? mode : 0;
5263
5264	if (attr == &dev_attr_suspend_standby_state.attr ||
5265	    attr == &dev_attr_suspend_mem_state.attr ||
5266	    attr == &dev_attr_suspend_disk_state.attr)
5267		return mode;
5268
5269	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5270	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5271	    attr == &dev_attr_suspend_disk_microvolts.attr)
5272		return ops->set_suspend_voltage ? mode : 0;
5273
5274	if (attr == &dev_attr_suspend_standby_mode.attr ||
5275	    attr == &dev_attr_suspend_mem_mode.attr ||
5276	    attr == &dev_attr_suspend_disk_mode.attr)
5277		return ops->set_suspend_mode ? mode : 0;
5278
5279	return mode;
5280}
5281
5282static const struct attribute_group regulator_dev_group = {
5283	.attrs = regulator_dev_attrs,
5284	.is_visible = regulator_attr_is_visible,
5285};
5286
5287static const struct attribute_group *regulator_dev_groups[] = {
5288	&regulator_dev_group,
5289	NULL
5290};
5291
5292static void regulator_dev_release(struct device *dev)
5293{
5294	struct regulator_dev *rdev = dev_get_drvdata(dev);
5295
5296	debugfs_remove_recursive(rdev->debugfs);
5297	kfree(rdev->constraints);
5298	of_node_put(rdev->dev.of_node);
5299	kfree(rdev);
5300}
5301
 
 
 
 
 
 
5302static void rdev_init_debugfs(struct regulator_dev *rdev)
5303{
5304	struct device *parent = rdev->dev.parent;
5305	const char *rname = rdev_get_name(rdev);
5306	char name[NAME_MAX];
5307
5308	/* Avoid duplicate debugfs directory names */
5309	if (parent && rname == rdev->desc->name) {
5310		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5311			 rname);
5312		rname = name;
5313	}
5314
5315	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5316	if (IS_ERR(rdev->debugfs))
5317		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 
 
5318
5319	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5320			   &rdev->use_count);
5321	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5322			   &rdev->open_count);
5323	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5324			   &rdev->bypass_count);
5325}
5326
5327static int regulator_register_resolve_supply(struct device *dev, void *data)
5328{
5329	struct regulator_dev *rdev = dev_to_rdev(dev);
5330
5331	if (regulator_resolve_supply(rdev))
5332		rdev_dbg(rdev, "unable to resolve supply\n");
5333
5334	return 0;
5335}
5336
5337int regulator_coupler_register(struct regulator_coupler *coupler)
5338{
5339	mutex_lock(&regulator_list_mutex);
5340	list_add_tail(&coupler->list, &regulator_coupler_list);
5341	mutex_unlock(&regulator_list_mutex);
5342
5343	return 0;
5344}
5345
5346static struct regulator_coupler *
5347regulator_find_coupler(struct regulator_dev *rdev)
5348{
5349	struct regulator_coupler *coupler;
5350	int err;
5351
5352	/*
5353	 * Note that regulators are appended to the list and the generic
5354	 * coupler is registered first, hence it will be attached at last
5355	 * if nobody cared.
5356	 */
5357	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5358		err = coupler->attach_regulator(coupler, rdev);
5359		if (!err) {
5360			if (!coupler->balance_voltage &&
5361			    rdev->coupling_desc.n_coupled > 2)
5362				goto err_unsupported;
5363
5364			return coupler;
5365		}
5366
5367		if (err < 0)
5368			return ERR_PTR(err);
5369
5370		if (err == 1)
5371			continue;
5372
5373		break;
5374	}
5375
5376	return ERR_PTR(-EINVAL);
5377
5378err_unsupported:
5379	if (coupler->detach_regulator)
5380		coupler->detach_regulator(coupler, rdev);
5381
5382	rdev_err(rdev,
5383		"Voltage balancing for multiple regulator couples is unimplemented\n");
5384
5385	return ERR_PTR(-EPERM);
5386}
5387
5388static void regulator_resolve_coupling(struct regulator_dev *rdev)
5389{
5390	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5391	struct coupling_desc *c_desc = &rdev->coupling_desc;
5392	int n_coupled = c_desc->n_coupled;
5393	struct regulator_dev *c_rdev;
5394	int i;
5395
5396	for (i = 1; i < n_coupled; i++) {
5397		/* already resolved */
5398		if (c_desc->coupled_rdevs[i])
5399			continue;
5400
5401		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5402
5403		if (!c_rdev)
5404			continue;
5405
5406		if (c_rdev->coupling_desc.coupler != coupler) {
5407			rdev_err(rdev, "coupler mismatch with %s\n",
5408				 rdev_get_name(c_rdev));
5409			return;
5410		}
5411
5412		c_desc->coupled_rdevs[i] = c_rdev;
5413		c_desc->n_resolved++;
5414
5415		regulator_resolve_coupling(c_rdev);
5416	}
5417}
5418
5419static void regulator_remove_coupling(struct regulator_dev *rdev)
5420{
5421	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5422	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5423	struct regulator_dev *__c_rdev, *c_rdev;
5424	unsigned int __n_coupled, n_coupled;
5425	int i, k;
5426	int err;
5427
5428	n_coupled = c_desc->n_coupled;
5429
5430	for (i = 1; i < n_coupled; i++) {
5431		c_rdev = c_desc->coupled_rdevs[i];
5432
5433		if (!c_rdev)
5434			continue;
5435
5436		regulator_lock(c_rdev);
5437
5438		__c_desc = &c_rdev->coupling_desc;
5439		__n_coupled = __c_desc->n_coupled;
5440
5441		for (k = 1; k < __n_coupled; k++) {
5442			__c_rdev = __c_desc->coupled_rdevs[k];
5443
5444			if (__c_rdev == rdev) {
5445				__c_desc->coupled_rdevs[k] = NULL;
5446				__c_desc->n_resolved--;
5447				break;
5448			}
5449		}
5450
5451		regulator_unlock(c_rdev);
5452
5453		c_desc->coupled_rdevs[i] = NULL;
5454		c_desc->n_resolved--;
5455	}
5456
5457	if (coupler && coupler->detach_regulator) {
5458		err = coupler->detach_regulator(coupler, rdev);
5459		if (err)
5460			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5461				 ERR_PTR(err));
5462	}
5463
5464	kfree(rdev->coupling_desc.coupled_rdevs);
5465	rdev->coupling_desc.coupled_rdevs = NULL;
5466}
5467
5468static int regulator_init_coupling(struct regulator_dev *rdev)
5469{
5470	struct regulator_dev **coupled;
5471	int err, n_phandles;
5472
5473	if (!IS_ENABLED(CONFIG_OF))
5474		n_phandles = 0;
5475	else
5476		n_phandles = of_get_n_coupled(rdev);
5477
5478	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5479	if (!coupled)
5480		return -ENOMEM;
5481
5482	rdev->coupling_desc.coupled_rdevs = coupled;
5483
5484	/*
5485	 * Every regulator should always have coupling descriptor filled with
5486	 * at least pointer to itself.
5487	 */
5488	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5489	rdev->coupling_desc.n_coupled = n_phandles + 1;
5490	rdev->coupling_desc.n_resolved++;
5491
5492	/* regulator isn't coupled */
5493	if (n_phandles == 0)
5494		return 0;
5495
5496	if (!of_check_coupling_data(rdev))
5497		return -EPERM;
5498
5499	mutex_lock(&regulator_list_mutex);
5500	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5501	mutex_unlock(&regulator_list_mutex);
5502
5503	if (IS_ERR(rdev->coupling_desc.coupler)) {
5504		err = PTR_ERR(rdev->coupling_desc.coupler);
5505		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5506		return err;
5507	}
5508
5509	return 0;
5510}
5511
5512static int generic_coupler_attach(struct regulator_coupler *coupler,
5513				  struct regulator_dev *rdev)
5514{
5515	if (rdev->coupling_desc.n_coupled > 2) {
5516		rdev_err(rdev,
5517			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5518		return -EPERM;
5519	}
5520
5521	if (!rdev->constraints->always_on) {
5522		rdev_err(rdev,
5523			 "Coupling of a non always-on regulator is unimplemented\n");
5524		return -ENOTSUPP;
5525	}
5526
5527	return 0;
5528}
5529
5530static struct regulator_coupler generic_regulator_coupler = {
5531	.attach_regulator = generic_coupler_attach,
5532};
5533
5534/**
5535 * regulator_register - register regulator
5536 * @dev: the device that drive the regulator
5537 * @regulator_desc: regulator to register
5538 * @cfg: runtime configuration for regulator
5539 *
5540 * Called by regulator drivers to register a regulator.
5541 * Returns a valid pointer to struct regulator_dev on success
5542 * or an ERR_PTR() on error.
5543 */
5544struct regulator_dev *
5545regulator_register(struct device *dev,
5546		   const struct regulator_desc *regulator_desc,
5547		   const struct regulator_config *cfg)
5548{
 
5549	const struct regulator_init_data *init_data;
5550	struct regulator_config *config = NULL;
5551	static atomic_t regulator_no = ATOMIC_INIT(-1);
5552	struct regulator_dev *rdev;
5553	bool dangling_cfg_gpiod = false;
5554	bool dangling_of_gpiod = false;
5555	int ret, i;
5556	bool resolved_early = false;
5557
5558	if (cfg == NULL)
5559		return ERR_PTR(-EINVAL);
5560	if (cfg->ena_gpiod)
5561		dangling_cfg_gpiod = true;
5562	if (regulator_desc == NULL) {
5563		ret = -EINVAL;
5564		goto rinse;
5565	}
5566
5567	WARN_ON(!dev || !cfg->dev);
 
5568
5569	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5570		ret = -EINVAL;
5571		goto rinse;
5572	}
5573
5574	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5575	    regulator_desc->type != REGULATOR_CURRENT) {
5576		ret = -EINVAL;
5577		goto rinse;
5578	}
5579
5580	/* Only one of each should be implemented */
5581	WARN_ON(regulator_desc->ops->get_voltage &&
5582		regulator_desc->ops->get_voltage_sel);
5583	WARN_ON(regulator_desc->ops->set_voltage &&
5584		regulator_desc->ops->set_voltage_sel);
5585
5586	/* If we're using selectors we must implement list_voltage. */
5587	if (regulator_desc->ops->get_voltage_sel &&
5588	    !regulator_desc->ops->list_voltage) {
5589		ret = -EINVAL;
5590		goto rinse;
5591	}
5592	if (regulator_desc->ops->set_voltage_sel &&
5593	    !regulator_desc->ops->list_voltage) {
5594		ret = -EINVAL;
5595		goto rinse;
5596	}
5597
5598	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5599	if (rdev == NULL) {
5600		ret = -ENOMEM;
5601		goto rinse;
5602	}
5603	device_initialize(&rdev->dev);
5604	dev_set_drvdata(&rdev->dev, rdev);
5605	rdev->dev.class = &regulator_class;
5606	spin_lock_init(&rdev->err_lock);
5607
5608	/*
5609	 * Duplicate the config so the driver could override it after
5610	 * parsing init data.
5611	 */
5612	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5613	if (config == NULL) {
5614		ret = -ENOMEM;
5615		goto clean;
5616	}
5617
5618	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5619					       &rdev->dev.of_node);
5620
5621	/*
5622	 * Sometimes not all resources are probed already so we need to take
5623	 * that into account. This happens most the time if the ena_gpiod comes
5624	 * from a gpio extender or something else.
5625	 */
5626	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5627		ret = -EPROBE_DEFER;
5628		goto clean;
5629	}
5630
5631	/*
5632	 * We need to keep track of any GPIO descriptor coming from the
5633	 * device tree until we have handled it over to the core. If the
5634	 * config that was passed in to this function DOES NOT contain
5635	 * a descriptor, and the config after this call DOES contain
5636	 * a descriptor, we definitely got one from parsing the device
5637	 * tree.
5638	 */
5639	if (!cfg->ena_gpiod && config->ena_gpiod)
5640		dangling_of_gpiod = true;
5641	if (!init_data) {
5642		init_data = config->init_data;
5643		rdev->dev.of_node = of_node_get(config->of_node);
5644	}
5645
5646	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
 
 
5647	rdev->reg_data = config->driver_data;
5648	rdev->owner = regulator_desc->owner;
5649	rdev->desc = regulator_desc;
5650	if (config->regmap)
5651		rdev->regmap = config->regmap;
5652	else if (dev_get_regmap(dev, NULL))
5653		rdev->regmap = dev_get_regmap(dev, NULL);
5654	else if (dev->parent)
5655		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5656	INIT_LIST_HEAD(&rdev->consumer_list);
5657	INIT_LIST_HEAD(&rdev->list);
5658	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5659	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5660
5661	if (init_data && init_data->supply_regulator)
5662		rdev->supply_name = init_data->supply_regulator;
5663	else if (regulator_desc->supply_name)
5664		rdev->supply_name = regulator_desc->supply_name;
5665
5666	/* register with sysfs */
5667	rdev->dev.parent = config->dev;
5668	dev_set_name(&rdev->dev, "regulator.%lu",
5669		    (unsigned long) atomic_inc_return(&regulator_no));
5670
5671	/* set regulator constraints */
5672	if (init_data)
5673		rdev->constraints = kmemdup(&init_data->constraints,
5674					    sizeof(*rdev->constraints),
5675					    GFP_KERNEL);
5676	else
5677		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5678					    GFP_KERNEL);
5679	if (!rdev->constraints) {
5680		ret = -ENOMEM;
5681		goto wash;
5682	}
5683
5684	if ((rdev->supply_name && !rdev->supply) &&
5685		(rdev->constraints->always_on ||
5686		 rdev->constraints->boot_on)) {
5687		ret = regulator_resolve_supply(rdev);
5688		if (ret)
5689			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5690					 ERR_PTR(ret));
5691
5692		resolved_early = true;
5693	}
5694
5695	/* perform any regulator specific init */
5696	if (init_data && init_data->regulator_init) {
5697		ret = init_data->regulator_init(rdev->reg_data);
5698		if (ret < 0)
5699			goto wash;
5700	}
5701
5702	if (config->ena_gpiod) {
 
5703		ret = regulator_ena_gpio_request(rdev, config);
5704		if (ret != 0) {
5705			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5706				 ERR_PTR(ret));
5707			goto wash;
5708		}
5709		/* The regulator core took over the GPIO descriptor */
5710		dangling_cfg_gpiod = false;
5711		dangling_of_gpiod = false;
5712	}
5713
5714	ret = set_machine_constraints(rdev);
5715	if (ret == -EPROBE_DEFER && !resolved_early) {
5716		/* Regulator might be in bypass mode and so needs its supply
5717		 * to set the constraints
5718		 */
5719		/* FIXME: this currently triggers a chicken-and-egg problem
5720		 * when creating -SUPPLY symlink in sysfs to a regulator
5721		 * that is just being created
5722		 */
5723		rdev_dbg(rdev, "will resolve supply early: %s\n",
5724			 rdev->supply_name);
5725		ret = regulator_resolve_supply(rdev);
5726		if (!ret)
5727			ret = set_machine_constraints(rdev);
5728		else
5729			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5730				 ERR_PTR(ret));
5731	}
5732	if (ret < 0)
5733		goto wash;
 
 
 
 
 
 
 
5734
5735	ret = regulator_init_coupling(rdev);
5736	if (ret < 0)
5737		goto wash;
 
 
 
 
 
5738
5739	/* add consumers devices */
5740	if (init_data) {
5741		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5742			ret = set_consumer_device_supply(rdev,
5743				init_data->consumer_supplies[i].dev_name,
5744				init_data->consumer_supplies[i].supply);
5745			if (ret < 0) {
5746				dev_err(dev, "Failed to set supply %s\n",
5747					init_data->consumer_supplies[i].supply);
5748				goto unset_supplies;
5749			}
5750		}
5751	}
5752
5753	if (!rdev->desc->ops->get_voltage &&
5754	    !rdev->desc->ops->list_voltage &&
5755	    !rdev->desc->fixed_uV)
5756		rdev->is_switch = true;
5757
5758	ret = device_add(&rdev->dev);
5759	if (ret != 0)
5760		goto unset_supplies;
5761
5762	rdev_init_debugfs(rdev);
5763
5764	/* try to resolve regulators coupling since a new one was registered */
5765	mutex_lock(&regulator_list_mutex);
5766	regulator_resolve_coupling(rdev);
5767	mutex_unlock(&regulator_list_mutex);
5768
5769	/* try to resolve regulators supply since a new one was registered */
5770	class_for_each_device(&regulator_class, NULL, NULL,
5771			      regulator_register_resolve_supply);
5772	kfree(config);
5773	return rdev;
5774
5775unset_supplies:
5776	mutex_lock(&regulator_list_mutex);
5777	unset_regulator_supplies(rdev);
5778	regulator_remove_coupling(rdev);
5779	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
5780wash:
5781	regulator_put(rdev->supply);
5782	kfree(rdev->coupling_desc.coupled_rdevs);
5783	mutex_lock(&regulator_list_mutex);
5784	regulator_ena_gpio_free(rdev);
5785	mutex_unlock(&regulator_list_mutex);
5786clean:
5787	if (dangling_of_gpiod)
5788		gpiod_put(config->ena_gpiod);
5789	kfree(config);
5790	put_device(&rdev->dev);
5791rinse:
5792	if (dangling_cfg_gpiod)
5793		gpiod_put(cfg->ena_gpiod);
5794	return ERR_PTR(ret);
5795}
5796EXPORT_SYMBOL_GPL(regulator_register);
5797
5798/**
5799 * regulator_unregister - unregister regulator
5800 * @rdev: regulator to unregister
5801 *
5802 * Called by regulator drivers to unregister a regulator.
5803 */
5804void regulator_unregister(struct regulator_dev *rdev)
5805{
5806	if (rdev == NULL)
5807		return;
5808
5809	if (rdev->supply) {
5810		while (rdev->use_count--)
5811			regulator_disable(rdev->supply);
5812		regulator_put(rdev->supply);
5813	}
5814
5815	flush_work(&rdev->disable_work.work);
5816
5817	mutex_lock(&regulator_list_mutex);
5818
 
5819	WARN_ON(rdev->open_count);
5820	regulator_remove_coupling(rdev);
5821	unset_regulator_supplies(rdev);
5822	list_del(&rdev->list);
 
5823	regulator_ena_gpio_free(rdev);
5824	device_unregister(&rdev->dev);
5825
5826	mutex_unlock(&regulator_list_mutex);
5827}
5828EXPORT_SYMBOL_GPL(regulator_unregister);
5829
5830#ifdef CONFIG_SUSPEND
5831/**
5832 * regulator_suspend - prepare regulators for system wide suspend
5833 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5834 *
5835 * Configure each regulator with it's suspend operating parameters for state.
5836 */
5837static int regulator_suspend(struct device *dev)
5838{
5839	struct regulator_dev *rdev = dev_to_rdev(dev);
5840	suspend_state_t state = pm_suspend_target_state;
5841	int ret;
5842	const struct regulator_state *rstate;
5843
5844	rstate = regulator_get_suspend_state_check(rdev, state);
5845	if (!rstate)
5846		return 0;
5847
5848	regulator_lock(rdev);
5849	ret = __suspend_set_state(rdev, rstate);
5850	regulator_unlock(rdev);
5851
5852	return ret;
5853}
5854
5855static int regulator_resume(struct device *dev)
 
 
 
 
 
 
 
5856{
5857	suspend_state_t state = pm_suspend_target_state;
5858	struct regulator_dev *rdev = dev_to_rdev(dev);
5859	struct regulator_state *rstate;
5860	int ret = 0;
5861
5862	rstate = regulator_get_suspend_state(rdev, state);
5863	if (rstate == NULL)
5864		return 0;
5865
5866	/* Avoid grabbing the lock if we don't need to */
5867	if (!rdev->desc->ops->resume)
5868		return 0;
 
5869
5870	regulator_lock(rdev);
 
 
 
5871
5872	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5873	    rstate->enabled == DISABLE_IN_SUSPEND)
5874		ret = rdev->desc->ops->resume(rdev);
 
 
 
 
 
 
 
 
 
 
 
5875
5876	regulator_unlock(rdev);
 
 
 
 
 
5877
5878	return ret;
 
5879}
5880#else /* !CONFIG_SUSPEND */
5881
5882#define regulator_suspend	NULL
5883#define regulator_resume	NULL
5884
5885#endif /* !CONFIG_SUSPEND */
5886
5887#ifdef CONFIG_PM
5888static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5889	.suspend	= regulator_suspend,
5890	.resume		= regulator_resume,
5891};
5892#endif
 
 
 
 
5893
5894struct class regulator_class = {
5895	.name = "regulator",
5896	.dev_release = regulator_dev_release,
5897	.dev_groups = regulator_dev_groups,
5898#ifdef CONFIG_PM
5899	.pm = &regulator_pm_ops,
5900#endif
5901};
5902/**
5903 * regulator_has_full_constraints - the system has fully specified constraints
5904 *
5905 * Calling this function will cause the regulator API to disable all
5906 * regulators which have a zero use count and don't have an always_on
5907 * constraint in a late_initcall.
5908 *
5909 * The intention is that this will become the default behaviour in a
5910 * future kernel release so users are encouraged to use this facility
5911 * now.
5912 */
5913void regulator_has_full_constraints(void)
5914{
5915	has_full_constraints = 1;
5916}
5917EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5918
5919/**
5920 * rdev_get_drvdata - get rdev regulator driver data
5921 * @rdev: regulator
5922 *
5923 * Get rdev regulator driver private data. This call can be used in the
5924 * regulator driver context.
5925 */
5926void *rdev_get_drvdata(struct regulator_dev *rdev)
5927{
5928	return rdev->reg_data;
5929}
5930EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5931
5932/**
5933 * regulator_get_drvdata - get regulator driver data
5934 * @regulator: regulator
5935 *
5936 * Get regulator driver private data. This call can be used in the consumer
5937 * driver context when non API regulator specific functions need to be called.
5938 */
5939void *regulator_get_drvdata(struct regulator *regulator)
5940{
5941	return regulator->rdev->reg_data;
5942}
5943EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5944
5945/**
5946 * regulator_set_drvdata - set regulator driver data
5947 * @regulator: regulator
5948 * @data: data
5949 */
5950void regulator_set_drvdata(struct regulator *regulator, void *data)
5951{
5952	regulator->rdev->reg_data = data;
5953}
5954EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5955
5956/**
5957 * rdev_get_id - get regulator ID
5958 * @rdev: regulator
5959 */
5960int rdev_get_id(struct regulator_dev *rdev)
5961{
5962	return rdev->desc->id;
5963}
5964EXPORT_SYMBOL_GPL(rdev_get_id);
5965
5966struct device *rdev_get_dev(struct regulator_dev *rdev)
5967{
5968	return &rdev->dev;
5969}
5970EXPORT_SYMBOL_GPL(rdev_get_dev);
5971
5972struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5973{
5974	return rdev->regmap;
5975}
5976EXPORT_SYMBOL_GPL(rdev_get_regmap);
5977
5978void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5979{
5980	return reg_init_data->driver_data;
5981}
5982EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5983
5984#ifdef CONFIG_DEBUG_FS
5985static int supply_map_show(struct seq_file *sf, void *data)
 
5986{
 
 
5987	struct regulator_map *map;
5988
 
 
 
5989	list_for_each_entry(map, &regulator_map_list, list) {
5990		seq_printf(sf, "%s -> %s.%s\n",
5991				rdev_get_name(map->regulator), map->dev_name,
5992				map->supply);
 
 
 
 
 
 
 
5993	}
5994
5995	return 0;
 
 
 
 
5996}
5997DEFINE_SHOW_ATTRIBUTE(supply_map);
 
 
 
 
 
 
 
5998
 
5999struct summary_data {
6000	struct seq_file *s;
6001	struct regulator_dev *parent;
6002	int level;
6003};
6004
6005static void regulator_summary_show_subtree(struct seq_file *s,
6006					   struct regulator_dev *rdev,
6007					   int level);
6008
6009static int regulator_summary_show_children(struct device *dev, void *data)
6010{
6011	struct regulator_dev *rdev = dev_to_rdev(dev);
6012	struct summary_data *summary_data = data;
6013
6014	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6015		regulator_summary_show_subtree(summary_data->s, rdev,
6016					       summary_data->level + 1);
6017
6018	return 0;
6019}
6020
6021static void regulator_summary_show_subtree(struct seq_file *s,
6022					   struct regulator_dev *rdev,
6023					   int level)
6024{
6025	struct regulation_constraints *c;
6026	struct regulator *consumer;
6027	struct summary_data summary_data;
6028	unsigned int opmode;
6029
6030	if (!rdev)
6031		return;
6032
6033	opmode = _regulator_get_mode_unlocked(rdev);
6034	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6035		   level * 3 + 1, "",
6036		   30 - level * 3, rdev_get_name(rdev),
6037		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6038		   regulator_opmode_to_str(opmode));
6039
6040	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6041	seq_printf(s, "%5dmA ",
6042		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6043
6044	c = rdev->constraints;
6045	if (c) {
6046		switch (rdev->desc->type) {
6047		case REGULATOR_VOLTAGE:
6048			seq_printf(s, "%5dmV %5dmV ",
6049				   c->min_uV / 1000, c->max_uV / 1000);
6050			break;
6051		case REGULATOR_CURRENT:
6052			seq_printf(s, "%5dmA %5dmA ",
6053				   c->min_uA / 1000, c->max_uA / 1000);
6054			break;
6055		}
6056	}
6057
6058	seq_puts(s, "\n");
6059
6060	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6061		if (consumer->dev && consumer->dev->class == &regulator_class)
6062			continue;
6063
6064		seq_printf(s, "%*s%-*s ",
6065			   (level + 1) * 3 + 1, "",
6066			   30 - (level + 1) * 3,
6067			   consumer->supply_name ? consumer->supply_name :
6068			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6069
6070		switch (rdev->desc->type) {
6071		case REGULATOR_VOLTAGE:
6072			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6073				   consumer->enable_count,
6074				   consumer->uA_load / 1000,
6075				   consumer->uA_load && !consumer->enable_count ?
6076				   '*' : ' ',
6077				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6078				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6079			break;
6080		case REGULATOR_CURRENT:
6081			break;
6082		}
6083
6084		seq_puts(s, "\n");
6085	}
6086
6087	summary_data.s = s;
6088	summary_data.level = level;
6089	summary_data.parent = rdev;
6090
6091	class_for_each_device(&regulator_class, NULL, &summary_data,
6092			      regulator_summary_show_children);
6093}
6094
6095struct summary_lock_data {
6096	struct ww_acquire_ctx *ww_ctx;
6097	struct regulator_dev **new_contended_rdev;
6098	struct regulator_dev **old_contended_rdev;
6099};
6100
6101static int regulator_summary_lock_one(struct device *dev, void *data)
6102{
6103	struct regulator_dev *rdev = dev_to_rdev(dev);
6104	struct summary_lock_data *lock_data = data;
6105	int ret = 0;
6106
6107	if (rdev != *lock_data->old_contended_rdev) {
6108		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6109
6110		if (ret == -EDEADLK)
6111			*lock_data->new_contended_rdev = rdev;
6112		else
6113			WARN_ON_ONCE(ret);
6114	} else {
6115		*lock_data->old_contended_rdev = NULL;
6116	}
6117
6118	return ret;
6119}
6120
6121static int regulator_summary_unlock_one(struct device *dev, void *data)
6122{
6123	struct regulator_dev *rdev = dev_to_rdev(dev);
6124	struct summary_lock_data *lock_data = data;
6125
6126	if (lock_data) {
6127		if (rdev == *lock_data->new_contended_rdev)
6128			return -EDEADLK;
6129	}
6130
6131	regulator_unlock(rdev);
6132
6133	return 0;
6134}
6135
6136static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6137				      struct regulator_dev **new_contended_rdev,
6138				      struct regulator_dev **old_contended_rdev)
6139{
6140	struct summary_lock_data lock_data;
6141	int ret;
6142
6143	lock_data.ww_ctx = ww_ctx;
6144	lock_data.new_contended_rdev = new_contended_rdev;
6145	lock_data.old_contended_rdev = old_contended_rdev;
6146
6147	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6148				    regulator_summary_lock_one);
6149	if (ret)
6150		class_for_each_device(&regulator_class, NULL, &lock_data,
6151				      regulator_summary_unlock_one);
6152
6153	return ret;
6154}
6155
6156static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6157{
6158	struct regulator_dev *new_contended_rdev = NULL;
6159	struct regulator_dev *old_contended_rdev = NULL;
6160	int err;
6161
6162	mutex_lock(&regulator_list_mutex);
6163
6164	ww_acquire_init(ww_ctx, &regulator_ww_class);
6165
6166	do {
6167		if (new_contended_rdev) {
6168			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6169			old_contended_rdev = new_contended_rdev;
6170			old_contended_rdev->ref_cnt++;
6171			old_contended_rdev->mutex_owner = current;
6172		}
6173
6174		err = regulator_summary_lock_all(ww_ctx,
6175						 &new_contended_rdev,
6176						 &old_contended_rdev);
6177
6178		if (old_contended_rdev)
6179			regulator_unlock(old_contended_rdev);
6180
6181	} while (err == -EDEADLK);
6182
6183	ww_acquire_done(ww_ctx);
6184}
6185
6186static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6187{
6188	class_for_each_device(&regulator_class, NULL, NULL,
6189			      regulator_summary_unlock_one);
6190	ww_acquire_fini(ww_ctx);
6191
6192	mutex_unlock(&regulator_list_mutex);
6193}
6194
6195static int regulator_summary_show_roots(struct device *dev, void *data)
6196{
6197	struct regulator_dev *rdev = dev_to_rdev(dev);
6198	struct seq_file *s = data;
6199
6200	if (!rdev->supply)
6201		regulator_summary_show_subtree(s, rdev, 0);
6202
6203	return 0;
6204}
6205
6206static int regulator_summary_show(struct seq_file *s, void *data)
6207{
6208	struct ww_acquire_ctx ww_ctx;
6209
6210	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6211	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6212
6213	regulator_summary_lock(&ww_ctx);
6214
6215	class_for_each_device(&regulator_class, NULL, s,
6216			      regulator_summary_show_roots);
6217
6218	regulator_summary_unlock(&ww_ctx);
6219
6220	return 0;
6221}
6222DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6223#endif /* CONFIG_DEBUG_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
6224
6225static int __init regulator_init(void)
6226{
6227	int ret;
6228
6229	ret = class_register(&regulator_class);
6230
6231	debugfs_root = debugfs_create_dir("regulator", NULL);
6232	if (IS_ERR(debugfs_root))
6233		pr_debug("regulator: Failed to create debugfs directory\n");
6234
6235#ifdef CONFIG_DEBUG_FS
6236	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6237			    &supply_map_fops);
6238
6239	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6240			    NULL, &regulator_summary_fops);
6241#endif
6242	regulator_dummy_init();
6243
6244	regulator_coupler_register(&generic_regulator_coupler);
6245
6246	return ret;
6247}
6248
6249/* init early to allow our consumers to complete system booting */
6250core_initcall(regulator_init);
6251
6252static int regulator_late_cleanup(struct device *dev, void *data)
6253{
6254	struct regulator_dev *rdev = dev_to_rdev(dev);
 
6255	struct regulation_constraints *c = rdev->constraints;
6256	int ret;
6257
6258	if (c && c->always_on)
6259		return 0;
6260
6261	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6262		return 0;
6263
6264	regulator_lock(rdev);
6265
6266	if (rdev->use_count)
6267		goto unlock;
6268
6269	/* If reading the status failed, assume that it's off. */
6270	if (_regulator_is_enabled(rdev) <= 0)
 
 
 
 
 
6271		goto unlock;
6272
6273	if (have_full_constraints()) {
6274		/* We log since this may kill the system if it goes
6275		 * wrong.
6276		 */
6277		rdev_info(rdev, "disabling\n");
6278		ret = _regulator_do_disable(rdev);
6279		if (ret != 0)
6280			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6281	} else {
6282		/* The intention is that in future we will
6283		 * assume that full constraints are provided
6284		 * so warn even if we aren't going to do
6285		 * anything here.
6286		 */
6287		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6288	}
6289
6290unlock:
6291	regulator_unlock(rdev);
6292
6293	return 0;
6294}
6295
6296static bool regulator_ignore_unused;
6297static int __init regulator_ignore_unused_setup(char *__unused)
6298{
6299	regulator_ignore_unused = true;
6300	return 1;
6301}
6302__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6303
6304static void regulator_init_complete_work_function(struct work_struct *work)
6305{
6306	/*
6307	 * Regulators may had failed to resolve their input supplies
6308	 * when were registered, either because the input supply was
6309	 * not registered yet or because its parent device was not
6310	 * bound yet. So attempt to resolve the input supplies for
6311	 * pending regulators before trying to disable unused ones.
6312	 */
6313	class_for_each_device(&regulator_class, NULL, NULL,
6314			      regulator_register_resolve_supply);
6315
6316	/*
6317	 * For debugging purposes, it may be useful to prevent unused
6318	 * regulators from being disabled.
6319	 */
6320	if (regulator_ignore_unused) {
6321		pr_warn("regulator: Not disabling unused regulators\n");
6322		return;
6323	}
6324
6325	/* If we have a full configuration then disable any regulators
6326	 * we have permission to change the status for and which are
6327	 * not in use or always_on.  This is effectively the default
6328	 * for DT and ACPI as they have full constraints.
6329	 */
6330	class_for_each_device(&regulator_class, NULL, NULL,
6331			      regulator_late_cleanup);
6332}
6333
6334static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6335			    regulator_init_complete_work_function);
6336
6337static int __init regulator_init_complete(void)
6338{
6339	/*
6340	 * Since DT doesn't provide an idiomatic mechanism for
6341	 * enabling full constraints and since it's much more natural
6342	 * with DT to provide them just assume that a DT enabled
6343	 * system has full constraints.
6344	 */
6345	if (of_have_populated_dt())
6346		has_full_constraints = true;
6347
6348	/*
6349	 * We punt completion for an arbitrary amount of time since
6350	 * systems like distros will load many drivers from userspace
6351	 * so consumers might not always be ready yet, this is
6352	 * particularly an issue with laptops where this might bounce
6353	 * the display off then on.  Ideally we'd get a notification
6354	 * from userspace when this happens but we don't so just wait
6355	 * a bit and hope we waited long enough.  It'd be better if
6356	 * we'd only do this on systems that need it, and a kernel
6357	 * command line option might be useful.
6358	 */
6359	schedule_delayed_work(&regulator_init_complete_work,
6360			      msecs_to_jiffies(30000));
6361
6362	return 0;
6363}
6364late_initcall_sync(regulator_init_complete);
v4.6
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
 
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
 
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
 
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
 
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61static struct class regulator_class;
  62
  63/*
  64 * struct regulator_map
  65 *
  66 * Used to provide symbolic supply names to devices.
  67 */
  68struct regulator_map {
  69	struct list_head list;
  70	const char *dev_name;   /* The dev_name() for the consumer */
  71	const char *supply;
  72	struct regulator_dev *regulator;
  73};
  74
  75/*
  76 * struct regulator_enable_gpio
  77 *
  78 * Management for shared enable GPIO pin
  79 */
  80struct regulator_enable_gpio {
  81	struct list_head list;
  82	struct gpio_desc *gpiod;
  83	u32 enable_count;	/* a number of enabled shared GPIO */
  84	u32 request_count;	/* a number of requested shared GPIO */
  85	unsigned int ena_gpio_invert:1;
  86};
  87
  88/*
  89 * struct regulator_supply_alias
  90 *
  91 * Used to map lookups for a supply onto an alternative device.
  92 */
  93struct regulator_supply_alias {
  94	struct list_head list;
  95	struct device *src_dev;
  96	const char *src_supply;
  97	struct device *alias_dev;
  98	const char *alias_supply;
  99};
 100
 101static int _regulator_is_enabled(struct regulator_dev *rdev);
 102static int _regulator_disable(struct regulator_dev *rdev);
 103static int _regulator_get_voltage(struct regulator_dev *rdev);
 104static int _regulator_get_current_limit(struct regulator_dev *rdev);
 105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 106static int _notifier_call_chain(struct regulator_dev *rdev,
 107				  unsigned long event, void *data);
 108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 109				     int min_uV, int max_uV);
 
 
 110static struct regulator *create_regulator(struct regulator_dev *rdev,
 111					  struct device *dev,
 112					  const char *supply_name);
 
 113static void _regulator_put(struct regulator *regulator);
 114
 115static struct regulator_dev *dev_to_rdev(struct device *dev)
 116{
 117	return container_of(dev, struct regulator_dev, dev);
 118}
 119
 120static const char *rdev_get_name(struct regulator_dev *rdev)
 121{
 122	if (rdev->constraints && rdev->constraints->name)
 123		return rdev->constraints->name;
 124	else if (rdev->desc->name)
 125		return rdev->desc->name;
 126	else
 127		return "";
 128}
 
 129
 130static bool have_full_constraints(void)
 131{
 132	return has_full_constraints || of_have_populated_dt();
 133}
 134
 135static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 136{
 137	if (rdev && rdev->supply)
 138		return rdev->supply->rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139
 140	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141}
 142
 143/**
 144 * regulator_lock_supply - lock a regulator and its supplies
 145 * @rdev:         regulator source
 
 
 
 
 146 */
 147static void regulator_lock_supply(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 148{
 
 149	int i;
 150
 151	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 152		mutex_lock_nested(&rdev->mutex, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153}
 154
 155/**
 156 * regulator_unlock_supply - unlock a regulator and its supplies
 157 * @rdev:         regulator source
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158 */
 159static void regulator_unlock_supply(struct regulator_dev *rdev)
 
 160{
 161	struct regulator *supply;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162
 163	while (1) {
 164		mutex_unlock(&rdev->mutex);
 165		supply = rdev->supply;
 166
 167		if (!rdev->supply)
 168			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169
 170		rdev = supply->rdev;
 
 
 
 
 
 
 171	}
 
 
 
 
 
 172}
 173
 174/**
 175 * of_get_regulator - get a regulator device node based on supply name
 176 * @dev: Device pointer for the consumer (of regulator) device
 177 * @supply: regulator supply name
 178 *
 179 * Extract the regulator device node corresponding to the supply name.
 180 * returns the device node corresponding to the regulator if found, else
 181 * returns NULL.
 182 */
 183static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 184{
 185	struct device_node *regnode = NULL;
 186	char prop_name[32]; /* 32 is max size of property name */
 187
 188	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 189
 190	snprintf(prop_name, 32, "%s-supply", supply);
 191	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 192
 193	if (!regnode) {
 194		dev_dbg(dev, "Looking up %s property in node %s failed",
 195				prop_name, dev->of_node->full_name);
 
 
 
 
 196		return NULL;
 197	}
 198	return regnode;
 199}
 200
 201static int _regulator_can_change_status(struct regulator_dev *rdev)
 202{
 203	if (!rdev->constraints)
 204		return 0;
 205
 206	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 207		return 1;
 208	else
 209		return 0;
 210}
 211
 212/* Platform voltage constraint check */
 213static int regulator_check_voltage(struct regulator_dev *rdev,
 214				   int *min_uV, int *max_uV)
 215{
 216	BUG_ON(*min_uV > *max_uV);
 217
 218	if (!rdev->constraints) {
 219		rdev_err(rdev, "no constraints\n");
 220		return -ENODEV;
 221	}
 222	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 223		rdev_err(rdev, "voltage operation not allowed\n");
 224		return -EPERM;
 225	}
 226
 227	if (*max_uV > rdev->constraints->max_uV)
 228		*max_uV = rdev->constraints->max_uV;
 229	if (*min_uV < rdev->constraints->min_uV)
 230		*min_uV = rdev->constraints->min_uV;
 231
 232	if (*min_uV > *max_uV) {
 233		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 234			 *min_uV, *max_uV);
 235		return -EINVAL;
 236	}
 237
 238	return 0;
 239}
 240
 
 
 
 
 
 
 241/* Make sure we select a voltage that suits the needs of all
 242 * regulator consumers
 243 */
 244static int regulator_check_consumers(struct regulator_dev *rdev,
 245				     int *min_uV, int *max_uV)
 
 246{
 247	struct regulator *regulator;
 
 248
 249	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 
 250		/*
 251		 * Assume consumers that didn't say anything are OK
 252		 * with anything in the constraint range.
 253		 */
 254		if (!regulator->min_uV && !regulator->max_uV)
 255			continue;
 256
 257		if (*max_uV > regulator->max_uV)
 258			*max_uV = regulator->max_uV;
 259		if (*min_uV < regulator->min_uV)
 260			*min_uV = regulator->min_uV;
 261	}
 262
 263	if (*min_uV > *max_uV) {
 264		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 265			*min_uV, *max_uV);
 266		return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272/* current constraint check */
 273static int regulator_check_current_limit(struct regulator_dev *rdev,
 274					int *min_uA, int *max_uA)
 275{
 276	BUG_ON(*min_uA > *max_uA);
 277
 278	if (!rdev->constraints) {
 279		rdev_err(rdev, "no constraints\n");
 280		return -ENODEV;
 281	}
 282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 283		rdev_err(rdev, "current operation not allowed\n");
 284		return -EPERM;
 285	}
 286
 287	if (*max_uA > rdev->constraints->max_uA)
 288		*max_uA = rdev->constraints->max_uA;
 289	if (*min_uA < rdev->constraints->min_uA)
 290		*min_uA = rdev->constraints->min_uA;
 291
 292	if (*min_uA > *max_uA) {
 293		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 294			 *min_uA, *max_uA);
 295		return -EINVAL;
 296	}
 297
 298	return 0;
 299}
 300
 301/* operating mode constraint check */
 302static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 
 303{
 304	switch (*mode) {
 305	case REGULATOR_MODE_FAST:
 306	case REGULATOR_MODE_NORMAL:
 307	case REGULATOR_MODE_IDLE:
 308	case REGULATOR_MODE_STANDBY:
 309		break;
 310	default:
 311		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 312		return -EINVAL;
 313	}
 314
 315	if (!rdev->constraints) {
 316		rdev_err(rdev, "no constraints\n");
 317		return -ENODEV;
 318	}
 319	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 320		rdev_err(rdev, "mode operation not allowed\n");
 321		return -EPERM;
 322	}
 323
 324	/* The modes are bitmasks, the most power hungry modes having
 325	 * the lowest values. If the requested mode isn't supported
 326	 * try higher modes. */
 
 327	while (*mode) {
 328		if (rdev->constraints->valid_modes_mask & *mode)
 329			return 0;
 330		*mode /= 2;
 331	}
 332
 333	return -EINVAL;
 334}
 335
 336/* dynamic regulator mode switching constraint check */
 337static int regulator_check_drms(struct regulator_dev *rdev)
 338{
 339	if (!rdev->constraints) {
 340		rdev_err(rdev, "no constraints\n");
 341		return -ENODEV;
 
 
 
 
 
 
 
 
 
 342	}
 343	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 344		rdev_dbg(rdev, "drms operation not allowed\n");
 345		return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346	}
 347	return 0;
 
 348}
 349
 350static ssize_t regulator_uV_show(struct device *dev,
 351				struct device_attribute *attr, char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354	ssize_t ret;
 355
 356	mutex_lock(&rdev->mutex);
 357	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 358	mutex_unlock(&rdev->mutex);
 359
 360	return ret;
 
 
 361}
 362static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 363
 364static ssize_t regulator_uA_show(struct device *dev,
 365				struct device_attribute *attr, char *buf)
 366{
 367	struct regulator_dev *rdev = dev_get_drvdata(dev);
 368
 369	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 370}
 371static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 372
 373static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 374			 char *buf)
 375{
 376	struct regulator_dev *rdev = dev_get_drvdata(dev);
 377
 378	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 379}
 380static DEVICE_ATTR_RO(name);
 381
 382static ssize_t regulator_print_opmode(char *buf, int mode)
 383{
 384	switch (mode) {
 385	case REGULATOR_MODE_FAST:
 386		return sprintf(buf, "fast\n");
 387	case REGULATOR_MODE_NORMAL:
 388		return sprintf(buf, "normal\n");
 389	case REGULATOR_MODE_IDLE:
 390		return sprintf(buf, "idle\n");
 391	case REGULATOR_MODE_STANDBY:
 392		return sprintf(buf, "standby\n");
 393	}
 394	return sprintf(buf, "unknown\n");
 
 
 
 
 
 395}
 396
 397static ssize_t regulator_opmode_show(struct device *dev,
 398				    struct device_attribute *attr, char *buf)
 399{
 400	struct regulator_dev *rdev = dev_get_drvdata(dev);
 401
 402	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 403}
 404static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 405
 406static ssize_t regulator_print_state(char *buf, int state)
 407{
 408	if (state > 0)
 409		return sprintf(buf, "enabled\n");
 410	else if (state == 0)
 411		return sprintf(buf, "disabled\n");
 412	else
 413		return sprintf(buf, "unknown\n");
 414}
 415
 416static ssize_t regulator_state_show(struct device *dev,
 417				   struct device_attribute *attr, char *buf)
 418{
 419	struct regulator_dev *rdev = dev_get_drvdata(dev);
 420	ssize_t ret;
 421
 422	mutex_lock(&rdev->mutex);
 423	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 424	mutex_unlock(&rdev->mutex);
 425
 426	return ret;
 427}
 428static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 429
 430static ssize_t regulator_status_show(struct device *dev,
 431				   struct device_attribute *attr, char *buf)
 432{
 433	struct regulator_dev *rdev = dev_get_drvdata(dev);
 434	int status;
 435	char *label;
 436
 437	status = rdev->desc->ops->get_status(rdev);
 438	if (status < 0)
 439		return status;
 440
 441	switch (status) {
 442	case REGULATOR_STATUS_OFF:
 443		label = "off";
 444		break;
 445	case REGULATOR_STATUS_ON:
 446		label = "on";
 447		break;
 448	case REGULATOR_STATUS_ERROR:
 449		label = "error";
 450		break;
 451	case REGULATOR_STATUS_FAST:
 452		label = "fast";
 453		break;
 454	case REGULATOR_STATUS_NORMAL:
 455		label = "normal";
 456		break;
 457	case REGULATOR_STATUS_IDLE:
 458		label = "idle";
 459		break;
 460	case REGULATOR_STATUS_STANDBY:
 461		label = "standby";
 462		break;
 463	case REGULATOR_STATUS_BYPASS:
 464		label = "bypass";
 465		break;
 466	case REGULATOR_STATUS_UNDEFINED:
 467		label = "undefined";
 468		break;
 469	default:
 470		return -ERANGE;
 471	}
 472
 473	return sprintf(buf, "%s\n", label);
 474}
 475static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 476
 477static ssize_t regulator_min_uA_show(struct device *dev,
 478				    struct device_attribute *attr, char *buf)
 479{
 480	struct regulator_dev *rdev = dev_get_drvdata(dev);
 481
 482	if (!rdev->constraints)
 483		return sprintf(buf, "constraint not defined\n");
 484
 485	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 486}
 487static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 488
 489static ssize_t regulator_max_uA_show(struct device *dev,
 490				    struct device_attribute *attr, char *buf)
 491{
 492	struct regulator_dev *rdev = dev_get_drvdata(dev);
 493
 494	if (!rdev->constraints)
 495		return sprintf(buf, "constraint not defined\n");
 496
 497	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 498}
 499static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 500
 501static ssize_t regulator_min_uV_show(struct device *dev,
 502				    struct device_attribute *attr, char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506	if (!rdev->constraints)
 507		return sprintf(buf, "constraint not defined\n");
 508
 509	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 510}
 511static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 512
 513static ssize_t regulator_max_uV_show(struct device *dev,
 514				    struct device_attribute *attr, char *buf)
 515{
 516	struct regulator_dev *rdev = dev_get_drvdata(dev);
 517
 518	if (!rdev->constraints)
 519		return sprintf(buf, "constraint not defined\n");
 520
 521	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 522}
 523static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 524
 525static ssize_t regulator_total_uA_show(struct device *dev,
 526				      struct device_attribute *attr, char *buf)
 527{
 528	struct regulator_dev *rdev = dev_get_drvdata(dev);
 529	struct regulator *regulator;
 530	int uA = 0;
 531
 532	mutex_lock(&rdev->mutex);
 533	list_for_each_entry(regulator, &rdev->consumer_list, list)
 534		uA += regulator->uA_load;
 535	mutex_unlock(&rdev->mutex);
 
 
 536	return sprintf(buf, "%d\n", uA);
 537}
 538static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 539
 540static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 541			      char *buf)
 542{
 543	struct regulator_dev *rdev = dev_get_drvdata(dev);
 544	return sprintf(buf, "%d\n", rdev->use_count);
 545}
 546static DEVICE_ATTR_RO(num_users);
 547
 548static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 549			 char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	switch (rdev->desc->type) {
 554	case REGULATOR_VOLTAGE:
 555		return sprintf(buf, "voltage\n");
 556	case REGULATOR_CURRENT:
 557		return sprintf(buf, "current\n");
 558	}
 559	return sprintf(buf, "unknown\n");
 560}
 561static DEVICE_ATTR_RO(type);
 562
 563static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 564				struct device_attribute *attr, char *buf)
 565{
 566	struct regulator_dev *rdev = dev_get_drvdata(dev);
 567
 568	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 569}
 570static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 571		regulator_suspend_mem_uV_show, NULL);
 572
 573static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 574				struct device_attribute *attr, char *buf)
 575{
 576	struct regulator_dev *rdev = dev_get_drvdata(dev);
 577
 578	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 579}
 580static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 581		regulator_suspend_disk_uV_show, NULL);
 582
 583static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 584				struct device_attribute *attr, char *buf)
 585{
 586	struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 589}
 590static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 591		regulator_suspend_standby_uV_show, NULL);
 592
 593static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 594				struct device_attribute *attr, char *buf)
 595{
 596	struct regulator_dev *rdev = dev_get_drvdata(dev);
 597
 598	return regulator_print_opmode(buf,
 599		rdev->constraints->state_mem.mode);
 600}
 601static DEVICE_ATTR(suspend_mem_mode, 0444,
 602		regulator_suspend_mem_mode_show, NULL);
 603
 604static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 605				struct device_attribute *attr, char *buf)
 606{
 607	struct regulator_dev *rdev = dev_get_drvdata(dev);
 608
 609	return regulator_print_opmode(buf,
 610		rdev->constraints->state_disk.mode);
 611}
 612static DEVICE_ATTR(suspend_disk_mode, 0444,
 613		regulator_suspend_disk_mode_show, NULL);
 614
 615static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 616				struct device_attribute *attr, char *buf)
 617{
 618	struct regulator_dev *rdev = dev_get_drvdata(dev);
 619
 620	return regulator_print_opmode(buf,
 621		rdev->constraints->state_standby.mode);
 622}
 623static DEVICE_ATTR(suspend_standby_mode, 0444,
 624		regulator_suspend_standby_mode_show, NULL);
 625
 626static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 627				   struct device_attribute *attr, char *buf)
 628{
 629	struct regulator_dev *rdev = dev_get_drvdata(dev);
 630
 631	return regulator_print_state(buf,
 632			rdev->constraints->state_mem.enabled);
 633}
 634static DEVICE_ATTR(suspend_mem_state, 0444,
 635		regulator_suspend_mem_state_show, NULL);
 636
 637static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 638				   struct device_attribute *attr, char *buf)
 639{
 640	struct regulator_dev *rdev = dev_get_drvdata(dev);
 641
 642	return regulator_print_state(buf,
 643			rdev->constraints->state_disk.enabled);
 644}
 645static DEVICE_ATTR(suspend_disk_state, 0444,
 646		regulator_suspend_disk_state_show, NULL);
 647
 648static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 649				   struct device_attribute *attr, char *buf)
 650{
 651	struct regulator_dev *rdev = dev_get_drvdata(dev);
 652
 653	return regulator_print_state(buf,
 654			rdev->constraints->state_standby.enabled);
 655}
 656static DEVICE_ATTR(suspend_standby_state, 0444,
 657		regulator_suspend_standby_state_show, NULL);
 658
 659static ssize_t regulator_bypass_show(struct device *dev,
 660				     struct device_attribute *attr, char *buf)
 661{
 662	struct regulator_dev *rdev = dev_get_drvdata(dev);
 663	const char *report;
 664	bool bypass;
 665	int ret;
 666
 667	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 668
 669	if (ret != 0)
 670		report = "unknown";
 671	else if (bypass)
 672		report = "enabled";
 673	else
 674		report = "disabled";
 675
 676	return sprintf(buf, "%s\n", report);
 677}
 678static DEVICE_ATTR(bypass, 0444,
 679		   regulator_bypass_show, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680
 681/* Calculate the new optimum regulator operating mode based on the new total
 682 * consumer load. All locks held by caller */
 
 683static int drms_uA_update(struct regulator_dev *rdev)
 684{
 685	struct regulator *sibling;
 686	int current_uA = 0, output_uV, input_uV, err;
 687	unsigned int mode;
 688
 689	lockdep_assert_held_once(&rdev->mutex);
 690
 691	/*
 692	 * first check to see if we can set modes at all, otherwise just
 693	 * tell the consumer everything is OK.
 694	 */
 695	err = regulator_check_drms(rdev);
 696	if (err < 0)
 697		return 0;
 
 698
 699	if (!rdev->desc->ops->get_optimum_mode &&
 700	    !rdev->desc->ops->set_load)
 701		return 0;
 702
 703	if (!rdev->desc->ops->set_mode &&
 704	    !rdev->desc->ops->set_load)
 705		return -EINVAL;
 706
 707	/* get output voltage */
 708	output_uV = _regulator_get_voltage(rdev);
 709	if (output_uV <= 0) {
 710		rdev_err(rdev, "invalid output voltage found\n");
 711		return -EINVAL;
 712	}
 713
 714	/* get input voltage */
 715	input_uV = 0;
 716	if (rdev->supply)
 717		input_uV = regulator_get_voltage(rdev->supply);
 718	if (input_uV <= 0)
 719		input_uV = rdev->constraints->input_uV;
 720	if (input_uV <= 0) {
 721		rdev_err(rdev, "invalid input voltage found\n");
 722		return -EINVAL;
 723	}
 724
 725	/* calc total requested load */
 726	list_for_each_entry(sibling, &rdev->consumer_list, list)
 727		current_uA += sibling->uA_load;
 728
 729	current_uA += rdev->constraints->system_load;
 730
 731	if (rdev->desc->ops->set_load) {
 732		/* set the optimum mode for our new total regulator load */
 733		err = rdev->desc->ops->set_load(rdev, current_uA);
 734		if (err < 0)
 735			rdev_err(rdev, "failed to set load %d\n", current_uA);
 
 736	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737		/* now get the optimum mode for our new total regulator load */
 738		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 739							 output_uV, current_uA);
 740
 741		/* check the new mode is allowed */
 742		err = regulator_mode_constrain(rdev, &mode);
 743		if (err < 0) {
 744			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 745				 current_uA, input_uV, output_uV);
 746			return err;
 747		}
 748
 749		err = rdev->desc->ops->set_mode(rdev, mode);
 750		if (err < 0)
 751			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 
 752	}
 753
 754	return err;
 755}
 756
 757static int suspend_set_state(struct regulator_dev *rdev,
 758	struct regulator_state *rstate)
 759{
 760	int ret = 0;
 761
 762	/* If we have no suspend mode configration don't set anything;
 763	 * only warn if the driver implements set_suspend_voltage or
 764	 * set_suspend_mode callback.
 765	 */
 766	if (!rstate->enabled && !rstate->disabled) {
 767		if (rdev->desc->ops->set_suspend_voltage ||
 768		    rdev->desc->ops->set_suspend_mode)
 769			rdev_warn(rdev, "No configuration\n");
 770		return 0;
 771	}
 772
 773	if (rstate->enabled && rstate->disabled) {
 774		rdev_err(rdev, "invalid configuration\n");
 775		return -EINVAL;
 776	}
 777
 778	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 779		ret = rdev->desc->ops->set_suspend_enable(rdev);
 780	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 
 781		ret = rdev->desc->ops->set_suspend_disable(rdev);
 782	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 783		ret = 0;
 784
 785	if (ret < 0) {
 786		rdev_err(rdev, "failed to enabled/disable\n");
 787		return ret;
 788	}
 789
 790	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 791		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 792		if (ret < 0) {
 793			rdev_err(rdev, "failed to set voltage\n");
 794			return ret;
 795		}
 796	}
 797
 798	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 799		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 800		if (ret < 0) {
 801			rdev_err(rdev, "failed to set mode\n");
 802			return ret;
 803		}
 804	}
 
 805	return ret;
 806}
 807
 808/* locks held by caller */
 809static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 810{
 811	lockdep_assert_held_once(&rdev->mutex);
 812
 813	if (!rdev->constraints)
 814		return -EINVAL;
 
 
 815
 816	switch (state) {
 817	case PM_SUSPEND_STANDBY:
 818		return suspend_set_state(rdev,
 819			&rdev->constraints->state_standby);
 820	case PM_SUSPEND_MEM:
 821		return suspend_set_state(rdev,
 822			&rdev->constraints->state_mem);
 823	case PM_SUSPEND_MAX:
 824		return suspend_set_state(rdev,
 825			&rdev->constraints->state_disk);
 826	default:
 827		return -EINVAL;
 828	}
 829}
 830
 831static void print_constraints(struct regulator_dev *rdev)
 
 832{
 833	struct regulation_constraints *constraints = rdev->constraints;
 834	char buf[160] = "";
 835	size_t len = sizeof(buf) - 1;
 836	int count = 0;
 837	int ret;
 838
 839	if (constraints->min_uV && constraints->max_uV) {
 840		if (constraints->min_uV == constraints->max_uV)
 841			count += scnprintf(buf + count, len - count, "%d mV ",
 842					   constraints->min_uV / 1000);
 843		else
 844			count += scnprintf(buf + count, len - count,
 845					   "%d <--> %d mV ",
 846					   constraints->min_uV / 1000,
 847					   constraints->max_uV / 1000);
 848	}
 849
 850	if (!constraints->min_uV ||
 851	    constraints->min_uV != constraints->max_uV) {
 852		ret = _regulator_get_voltage(rdev);
 853		if (ret > 0)
 854			count += scnprintf(buf + count, len - count,
 855					   "at %d mV ", ret / 1000);
 856	}
 857
 858	if (constraints->uV_offset)
 859		count += scnprintf(buf + count, len - count, "%dmV offset ",
 860				   constraints->uV_offset / 1000);
 861
 862	if (constraints->min_uA && constraints->max_uA) {
 863		if (constraints->min_uA == constraints->max_uA)
 864			count += scnprintf(buf + count, len - count, "%d mA ",
 865					   constraints->min_uA / 1000);
 866		else
 867			count += scnprintf(buf + count, len - count,
 868					   "%d <--> %d mA ",
 869					   constraints->min_uA / 1000,
 870					   constraints->max_uA / 1000);
 871	}
 872
 873	if (!constraints->min_uA ||
 874	    constraints->min_uA != constraints->max_uA) {
 875		ret = _regulator_get_current_limit(rdev);
 876		if (ret > 0)
 877			count += scnprintf(buf + count, len - count,
 878					   "at %d mA ", ret / 1000);
 879	}
 880
 881	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 882		count += scnprintf(buf + count, len - count, "fast ");
 883	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 884		count += scnprintf(buf + count, len - count, "normal ");
 885	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 886		count += scnprintf(buf + count, len - count, "idle ");
 887	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 888		count += scnprintf(buf + count, len - count, "standby");
 889
 890	if (!count)
 891		scnprintf(buf, len, "no parameters");
 
 
 
 
 
 892
 893	rdev_dbg(rdev, "%s\n", buf);
 
 
 
 
 
 
 
 
 
 
 894
 895	if ((constraints->min_uV != constraints->max_uV) &&
 896	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 897		rdev_warn(rdev,
 898			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 899}
 900
 901static int machine_constraints_voltage(struct regulator_dev *rdev,
 902	struct regulation_constraints *constraints)
 903{
 904	const struct regulator_ops *ops = rdev->desc->ops;
 905	int ret;
 906
 907	/* do we need to apply the constraint voltage */
 908	if (rdev->constraints->apply_uV &&
 909	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 910		int current_uV = _regulator_get_voltage(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 911		if (current_uV < 0) {
 912			rdev_err(rdev,
 913				 "failed to get the current voltage(%d)\n",
 914				 current_uV);
 
 915			return current_uV;
 916		}
 917		if (current_uV < rdev->constraints->min_uV ||
 918		    current_uV > rdev->constraints->max_uV) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919			ret = _regulator_do_set_voltage(
 920				rdev, rdev->constraints->min_uV,
 921				rdev->constraints->max_uV);
 922			if (ret < 0) {
 923				rdev_err(rdev,
 924					"failed to apply %duV constraint(%d)\n",
 925					rdev->constraints->min_uV, ret);
 926				return ret;
 927			}
 928		}
 929	}
 930
 931	/* constrain machine-level voltage specs to fit
 932	 * the actual range supported by this regulator.
 933	 */
 934	if (ops->list_voltage && rdev->desc->n_voltages) {
 935		int	count = rdev->desc->n_voltages;
 936		int	i;
 937		int	min_uV = INT_MAX;
 938		int	max_uV = INT_MIN;
 939		int	cmin = constraints->min_uV;
 940		int	cmax = constraints->max_uV;
 941
 942		/* it's safe to autoconfigure fixed-voltage supplies
 943		   and the constraints are used by list_voltage. */
 
 944		if (count == 1 && !cmin) {
 945			cmin = 1;
 946			cmax = INT_MAX;
 947			constraints->min_uV = cmin;
 948			constraints->max_uV = cmax;
 949		}
 950
 951		/* voltage constraints are optional */
 952		if ((cmin == 0) && (cmax == 0))
 953			return 0;
 954
 955		/* else require explicit machine-level constraints */
 956		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 957			rdev_err(rdev, "invalid voltage constraints\n");
 958			return -EINVAL;
 959		}
 960
 
 
 
 
 961		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 962		for (i = 0; i < count; i++) {
 963			int	value;
 964
 965			value = ops->list_voltage(rdev, i);
 966			if (value <= 0)
 967				continue;
 968
 969			/* maybe adjust [min_uV..max_uV] */
 970			if (value >= cmin && value < min_uV)
 971				min_uV = value;
 972			if (value <= cmax && value > max_uV)
 973				max_uV = value;
 974		}
 975
 976		/* final: [min_uV..max_uV] valid iff constraints valid */
 977		if (max_uV < min_uV) {
 978			rdev_err(rdev,
 979				 "unsupportable voltage constraints %u-%uuV\n",
 980				 min_uV, max_uV);
 981			return -EINVAL;
 982		}
 983
 984		/* use regulator's subset of machine constraints */
 985		if (constraints->min_uV < min_uV) {
 986			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 987				 constraints->min_uV, min_uV);
 988			constraints->min_uV = min_uV;
 989		}
 990		if (constraints->max_uV > max_uV) {
 991			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 992				 constraints->max_uV, max_uV);
 993			constraints->max_uV = max_uV;
 994		}
 995	}
 996
 997	return 0;
 998}
 999
1000static int machine_constraints_current(struct regulator_dev *rdev,
1001	struct regulation_constraints *constraints)
1002{
1003	const struct regulator_ops *ops = rdev->desc->ops;
1004	int ret;
1005
1006	if (!constraints->min_uA && !constraints->max_uA)
1007		return 0;
1008
1009	if (constraints->min_uA > constraints->max_uA) {
1010		rdev_err(rdev, "Invalid current constraints\n");
1011		return -EINVAL;
1012	}
1013
1014	if (!ops->set_current_limit || !ops->get_current_limit) {
1015		rdev_warn(rdev, "Operation of current configuration missing\n");
1016		return 0;
1017	}
1018
1019	/* Set regulator current in constraints range */
1020	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021			constraints->max_uA);
1022	if (ret < 0) {
1023		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024		return ret;
1025	}
1026
1027	return 0;
1028}
1029
1030static int _regulator_do_enable(struct regulator_dev *rdev);
1031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032/**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
1043static int set_machine_constraints(struct regulator_dev *rdev,
1044	const struct regulation_constraints *constraints)
1045{
1046	int ret = 0;
1047	const struct regulator_ops *ops = rdev->desc->ops;
1048
1049	if (constraints)
1050		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051					    GFP_KERNEL);
1052	else
1053		rdev->constraints = kzalloc(sizeof(*constraints),
1054					    GFP_KERNEL);
1055	if (!rdev->constraints)
1056		return -ENOMEM;
1057
1058	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059	if (ret != 0)
1060		return ret;
1061
1062	ret = machine_constraints_current(rdev, rdev->constraints);
1063	if (ret != 0)
1064		return ret;
1065
1066	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067		ret = ops->set_input_current_limit(rdev,
1068						   rdev->constraints->ilim_uA);
1069		if (ret < 0) {
1070			rdev_err(rdev, "failed to set input limit\n");
1071			return ret;
1072		}
1073	}
1074
1075	/* do we need to setup our suspend state */
1076	if (rdev->constraints->initial_state) {
1077		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078		if (ret < 0) {
1079			rdev_err(rdev, "failed to set suspend state\n");
1080			return ret;
1081		}
1082	}
1083
1084	if (rdev->constraints->initial_mode) {
1085		if (!ops->set_mode) {
1086			rdev_err(rdev, "no set_mode operation\n");
1087			return -EINVAL;
1088		}
1089
1090		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091		if (ret < 0) {
1092			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093			return ret;
1094		}
1095	}
1096
1097	/* If the constraints say the regulator should be on at this point
1098	 * and we have control then make sure it is enabled.
1099	 */
1100	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101		ret = _regulator_do_enable(rdev);
1102		if (ret < 0 && ret != -EINVAL) {
1103			rdev_err(rdev, "failed to enable\n");
1104			return ret;
1105		}
 
 
 
 
 
 
1106	}
1107
1108	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109		&& ops->set_ramp_delay) {
1110		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111		if (ret < 0) {
1112			rdev_err(rdev, "failed to set ramp_delay\n");
1113			return ret;
1114		}
1115	}
1116
1117	if (rdev->constraints->pull_down && ops->set_pull_down) {
1118		ret = ops->set_pull_down(rdev);
1119		if (ret < 0) {
1120			rdev_err(rdev, "failed to set pull down\n");
1121			return ret;
1122		}
1123	}
1124
1125	if (rdev->constraints->soft_start && ops->set_soft_start) {
1126		ret = ops->set_soft_start(rdev);
1127		if (ret < 0) {
1128			rdev_err(rdev, "failed to set soft start\n");
1129			return ret;
1130		}
1131	}
1132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133	if (rdev->constraints->over_current_protection
1134		&& ops->set_over_current_protection) {
1135		ret = ops->set_over_current_protection(rdev);
 
 
 
 
1136		if (ret < 0) {
1137			rdev_err(rdev, "failed to set over current protection\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138			return ret;
1139		}
 
 
1140	}
1141
1142	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143		bool ad_state = (rdev->constraints->active_discharge ==
1144			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146		ret = ops->set_active_discharge(rdev, ad_state);
1147		if (ret < 0) {
1148			rdev_err(rdev, "failed to set active discharge\n");
1149			return ret;
1150		}
1151	}
1152
1153	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154		bool ad_state = (rdev->constraints->active_discharge ==
1155			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156
1157		ret = ops->set_active_discharge(rdev, ad_state);
1158		if (ret < 0) {
1159			rdev_err(rdev, "failed to set active discharge\n");
1160			return ret;
1161		}
 
 
 
 
 
1162	}
1163
1164	print_constraints(rdev);
1165	return 0;
1166}
1167
1168/**
1169 * set_supply - set regulator supply regulator
1170 * @rdev: regulator name
1171 * @supply_rdev: supply regulator name
1172 *
1173 * Called by platform initialisation code to set the supply regulator for this
1174 * regulator. This ensures that a regulators supply will also be enabled by the
1175 * core if it's child is enabled.
1176 */
1177static int set_supply(struct regulator_dev *rdev,
1178		      struct regulator_dev *supply_rdev)
1179{
1180	int err;
1181
1182	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183
1184	if (!try_module_get(supply_rdev->owner))
1185		return -ENODEV;
1186
1187	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188	if (rdev->supply == NULL) {
 
1189		err = -ENOMEM;
1190		return err;
1191	}
1192	supply_rdev->open_count++;
1193
1194	return 0;
1195}
1196
1197/**
1198 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199 * @rdev:         regulator source
1200 * @consumer_dev_name: dev_name() string for device supply applies to
1201 * @supply:       symbolic name for supply
1202 *
1203 * Allows platform initialisation code to map physical regulator
1204 * sources to symbolic names for supplies for use by devices.  Devices
1205 * should use these symbolic names to request regulators, avoiding the
1206 * need to provide board-specific regulator names as platform data.
1207 */
1208static int set_consumer_device_supply(struct regulator_dev *rdev,
1209				      const char *consumer_dev_name,
1210				      const char *supply)
1211{
1212	struct regulator_map *node;
1213	int has_dev;
1214
1215	if (supply == NULL)
1216		return -EINVAL;
1217
1218	if (consumer_dev_name != NULL)
1219		has_dev = 1;
1220	else
1221		has_dev = 0;
1222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223	list_for_each_entry(node, &regulator_map_list, list) {
1224		if (node->dev_name && consumer_dev_name) {
1225			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226				continue;
1227		} else if (node->dev_name || consumer_dev_name) {
1228			continue;
1229		}
1230
1231		if (strcmp(node->supply, supply) != 0)
1232			continue;
1233
1234		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235			 consumer_dev_name,
1236			 dev_name(&node->regulator->dev),
1237			 node->regulator->desc->name,
1238			 supply,
1239			 dev_name(&rdev->dev), rdev_get_name(rdev));
1240		return -EBUSY;
1241	}
1242
1243	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244	if (node == NULL)
1245		return -ENOMEM;
1246
1247	node->regulator = rdev;
1248	node->supply = supply;
1249
1250	if (has_dev) {
1251		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252		if (node->dev_name == NULL) {
1253			kfree(node);
1254			return -ENOMEM;
1255		}
1256	}
1257
1258	list_add(&node->list, &regulator_map_list);
1259	return 0;
1260}
1261
1262static void unset_regulator_supplies(struct regulator_dev *rdev)
1263{
1264	struct regulator_map *node, *n;
1265
1266	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267		if (rdev == node->regulator) {
1268			list_del(&node->list);
1269			kfree(node->dev_name);
1270			kfree(node);
1271		}
1272	}
1273}
1274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275#define REG_STR_SIZE	64
1276
1277static struct regulator *create_regulator(struct regulator_dev *rdev,
1278					  struct device *dev,
1279					  const char *supply_name)
1280{
1281	struct regulator *regulator;
1282	char buf[REG_STR_SIZE];
1283	int err, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284
1285	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286	if (regulator == NULL)
 
1287		return NULL;
 
1288
1289	mutex_lock(&rdev->mutex);
1290	regulator->rdev = rdev;
 
 
1291	list_add(&regulator->list, &rdev->consumer_list);
1292
1293	if (dev) {
1294		regulator->dev = dev;
1295
1296		/* Add a link to the device sysfs entry */
1297		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298				 dev->kobj.name, supply_name);
1299		if (size >= REG_STR_SIZE)
1300			goto overflow_err;
1301
1302		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303		if (regulator->supply_name == NULL)
1304			goto overflow_err;
1305
1306		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307					buf);
1308		if (err) {
1309			rdev_dbg(rdev, "could not add device link %s err %d\n",
1310				  dev->kobj.name, err);
1311			/* non-fatal */
1312		}
1313	} else {
1314		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315		if (regulator->supply_name == NULL)
1316			goto overflow_err;
1317	}
1318
1319	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320						rdev->debugfs);
1321	if (!regulator->debugfs) {
1322		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323	} else {
1324		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325				   &regulator->uA_load);
1326		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327				   &regulator->min_uV);
1328		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329				   &regulator->max_uV);
1330	}
 
1331
1332	/*
1333	 * Check now if the regulator is an always on regulator - if
1334	 * it is then we don't need to do nearly so much work for
1335	 * enable/disable calls.
1336	 */
1337	if (!_regulator_can_change_status(rdev) &&
1338	    _regulator_is_enabled(rdev))
1339		regulator->always_on = true;
1340
1341	mutex_unlock(&rdev->mutex);
1342	return regulator;
1343overflow_err:
1344	list_del(&regulator->list);
1345	kfree(regulator);
1346	mutex_unlock(&rdev->mutex);
1347	return NULL;
1348}
1349
1350static int _regulator_get_enable_time(struct regulator_dev *rdev)
1351{
1352	if (rdev->constraints && rdev->constraints->enable_time)
1353		return rdev->constraints->enable_time;
1354	if (!rdev->desc->ops->enable_time)
1355		return rdev->desc->enable_time;
1356	return rdev->desc->ops->enable_time(rdev);
1357}
1358
1359static struct regulator_supply_alias *regulator_find_supply_alias(
1360		struct device *dev, const char *supply)
1361{
1362	struct regulator_supply_alias *map;
1363
1364	list_for_each_entry(map, &regulator_supply_alias_list, list)
1365		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366			return map;
1367
1368	return NULL;
1369}
1370
1371static void regulator_supply_alias(struct device **dev, const char **supply)
1372{
1373	struct regulator_supply_alias *map;
1374
1375	map = regulator_find_supply_alias(*dev, *supply);
1376	if (map) {
1377		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378				*supply, map->alias_supply,
1379				dev_name(map->alias_dev));
1380		*dev = map->alias_dev;
1381		*supply = map->alias_supply;
1382	}
1383}
1384
1385static int of_node_match(struct device *dev, const void *data)
1386{
1387	return dev->of_node == data;
1388}
1389
1390static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1391{
1392	struct device *dev;
1393
1394	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1395
1396	return dev ? dev_to_rdev(dev) : NULL;
1397}
1398
1399static int regulator_match(struct device *dev, const void *data)
1400{
1401	struct regulator_dev *r = dev_to_rdev(dev);
1402
1403	return strcmp(rdev_get_name(r), data) == 0;
1404}
1405
1406static struct regulator_dev *regulator_lookup_by_name(const char *name)
1407{
1408	struct device *dev;
1409
1410	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1411
1412	return dev ? dev_to_rdev(dev) : NULL;
1413}
1414
1415/**
1416 * regulator_dev_lookup - lookup a regulator device.
1417 * @dev: device for regulator "consumer".
1418 * @supply: Supply name or regulator ID.
1419 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420 * lookup could succeed in the future.
1421 *
1422 * If successful, returns a struct regulator_dev that corresponds to the name
1423 * @supply and with the embedded struct device refcount incremented by one,
1424 * or NULL on failure. The refcount must be dropped by calling put_device().
 
 
 
1425 */
1426static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427						  const char *supply,
1428						  int *ret)
1429{
1430	struct regulator_dev *r;
1431	struct device_node *node;
1432	struct regulator_map *map;
1433	const char *devname = NULL;
1434
1435	regulator_supply_alias(&dev, &supply);
1436
1437	/* first do a dt based lookup */
1438	if (dev && dev->of_node) {
1439		node = of_get_regulator(dev, supply);
1440		if (node) {
1441			r = of_find_regulator_by_node(node);
 
1442			if (r)
1443				return r;
1444			*ret = -EPROBE_DEFER;
1445			return NULL;
1446		} else {
1447			/*
1448			 * If we couldn't even get the node then it's
1449			 * not just that the device didn't register
1450			 * yet, there's no node and we'll never
1451			 * succeed.
1452			 */
1453			*ret = -ENODEV;
1454		}
1455	}
1456
1457	/* if not found, try doing it non-dt way */
1458	if (dev)
1459		devname = dev_name(dev);
1460
1461	r = regulator_lookup_by_name(supply);
1462	if (r)
1463		return r;
1464
1465	mutex_lock(&regulator_list_mutex);
1466	list_for_each_entry(map, &regulator_map_list, list) {
1467		/* If the mapping has a device set up it must match */
1468		if (map->dev_name &&
1469		    (!devname || strcmp(map->dev_name, devname)))
1470			continue;
1471
1472		if (strcmp(map->supply, supply) == 0 &&
1473		    get_device(&map->regulator->dev)) {
1474			mutex_unlock(&regulator_list_mutex);
1475			return map->regulator;
1476		}
1477	}
1478	mutex_unlock(&regulator_list_mutex);
1479
1480	return NULL;
 
 
 
 
 
 
 
1481}
1482
1483static int regulator_resolve_supply(struct regulator_dev *rdev)
1484{
1485	struct regulator_dev *r;
1486	struct device *dev = rdev->dev.parent;
1487	int ret;
 
1488
1489	/* No supply to resovle? */
1490	if (!rdev->supply_name)
1491		return 0;
1492
1493	/* Supply already resolved? */
1494	if (rdev->supply)
1495		return 0;
1496
1497	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498	if (!r) {
1499		if (ret == -ENODEV) {
1500			/*
1501			 * No supply was specified for this regulator and
1502			 * there will never be one.
1503			 */
1504			return 0;
1505		}
1506
1507		/* Did the lookup explicitly defer for us? */
1508		if (ret == -EPROBE_DEFER)
1509			return ret;
1510
1511		if (have_full_constraints()) {
1512			r = dummy_regulator_rdev;
1513			get_device(&r->dev);
1514		} else {
1515			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516				rdev->supply_name, rdev->desc->name);
1517			return -EPROBE_DEFER;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518		}
1519	}
1520
1521	/* Recursively resolve the supply of the supply */
1522	ret = regulator_resolve_supply(r);
1523	if (ret < 0) {
1524		put_device(&r->dev);
1525		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526	}
1527
1528	ret = set_supply(rdev, r);
1529	if (ret < 0) {
 
1530		put_device(&r->dev);
1531		return ret;
1532	}
1533
1534	/* Cascade always-on state to supply */
1535	if (_regulator_is_enabled(rdev) && rdev->supply) {
 
 
 
 
 
 
1536		ret = regulator_enable(rdev->supply);
1537		if (ret < 0) {
1538			_regulator_put(rdev->supply);
1539			return ret;
 
1540		}
1541	}
1542
1543	return 0;
 
1544}
1545
1546/* Internal regulator request function */
1547static struct regulator *_regulator_get(struct device *dev, const char *id,
1548					bool exclusive, bool allow_dummy)
1549{
1550	struct regulator_dev *rdev;
1551	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552	const char *devname = NULL;
1553	int ret;
1554
 
 
 
 
 
1555	if (id == NULL) {
1556		pr_err("get() with no identifier\n");
1557		return ERR_PTR(-EINVAL);
1558	}
1559
1560	if (dev)
1561		devname = dev_name(dev);
 
1562
1563	if (have_full_constraints())
1564		ret = -ENODEV;
1565	else
1566		ret = -EPROBE_DEFER;
 
 
1567
1568	rdev = regulator_dev_lookup(dev, id, &ret);
1569	if (rdev)
1570		goto found;
 
 
1571
1572	regulator = ERR_PTR(ret);
1573
1574	/*
1575	 * If we have return value from dev_lookup fail, we do not expect to
1576	 * succeed, so, quit with appropriate error value
1577	 */
1578	if (ret && ret != -ENODEV)
1579		return regulator;
 
 
 
1580
1581	if (!devname)
1582		devname = "deviceless";
 
 
1583
1584	/*
1585	 * Assume that a regulator is physically present and enabled
1586	 * even if it isn't hooked up and just provide a dummy.
1587	 */
1588	if (have_full_constraints() && allow_dummy) {
1589		pr_warn("%s supply %s not found, using dummy regulator\n",
1590			devname, id);
1591
1592		rdev = dummy_regulator_rdev;
1593		get_device(&rdev->dev);
1594		goto found;
1595	/* Don't log an error when called from regulator_get_optional() */
1596	} else if (!have_full_constraints() || exclusive) {
1597		dev_warn(dev, "dummy supplies not allowed\n");
1598	}
1599
1600	return regulator;
1601
1602found:
1603	if (rdev->exclusive) {
1604		regulator = ERR_PTR(-EPERM);
1605		put_device(&rdev->dev);
1606		return regulator;
1607	}
1608
1609	if (exclusive && rdev->open_count) {
1610		regulator = ERR_PTR(-EBUSY);
1611		put_device(&rdev->dev);
1612		return regulator;
1613	}
1614
 
 
 
 
 
 
 
 
 
 
1615	ret = regulator_resolve_supply(rdev);
1616	if (ret < 0) {
1617		regulator = ERR_PTR(ret);
1618		put_device(&rdev->dev);
1619		return regulator;
1620	}
1621
1622	if (!try_module_get(rdev->owner)) {
 
1623		put_device(&rdev->dev);
1624		return regulator;
1625	}
1626
 
1627	regulator = create_regulator(rdev, dev, id);
 
1628	if (regulator == NULL) {
1629		regulator = ERR_PTR(-ENOMEM);
 
1630		put_device(&rdev->dev);
1631		module_put(rdev->owner);
1632		return regulator;
1633	}
1634
1635	rdev->open_count++;
1636	if (exclusive) {
1637		rdev->exclusive = 1;
1638
1639		ret = _regulator_is_enabled(rdev);
1640		if (ret > 0)
1641			rdev->use_count = 1;
1642		else
 
1643			rdev->use_count = 0;
 
 
1644	}
1645
 
 
 
 
1646	return regulator;
1647}
1648
1649/**
1650 * regulator_get - lookup and obtain a reference to a regulator.
1651 * @dev: device for regulator "consumer"
1652 * @id: Supply name or regulator ID.
1653 *
1654 * Returns a struct regulator corresponding to the regulator producer,
1655 * or IS_ERR() condition containing errno.
1656 *
1657 * Use of supply names configured via regulator_set_device_supply() is
1658 * strongly encouraged.  It is recommended that the supply name used
1659 * should match the name used for the supply and/or the relevant
1660 * device pins in the datasheet.
1661 */
1662struct regulator *regulator_get(struct device *dev, const char *id)
1663{
1664	return _regulator_get(dev, id, false, true);
1665}
1666EXPORT_SYMBOL_GPL(regulator_get);
1667
1668/**
1669 * regulator_get_exclusive - obtain exclusive access to a regulator.
1670 * @dev: device for regulator "consumer"
1671 * @id: Supply name or regulator ID.
1672 *
1673 * Returns a struct regulator corresponding to the regulator producer,
1674 * or IS_ERR() condition containing errno.  Other consumers will be
1675 * unable to obtain this regulator while this reference is held and the
1676 * use count for the regulator will be initialised to reflect the current
1677 * state of the regulator.
1678 *
1679 * This is intended for use by consumers which cannot tolerate shared
1680 * use of the regulator such as those which need to force the
1681 * regulator off for correct operation of the hardware they are
1682 * controlling.
1683 *
1684 * Use of supply names configured via regulator_set_device_supply() is
1685 * strongly encouraged.  It is recommended that the supply name used
1686 * should match the name used for the supply and/or the relevant
1687 * device pins in the datasheet.
1688 */
1689struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1690{
1691	return _regulator_get(dev, id, true, false);
1692}
1693EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1694
1695/**
1696 * regulator_get_optional - obtain optional access to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1699 *
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1702 *
1703 * This is intended for use by consumers for devices which can have
1704 * some supplies unconnected in normal use, such as some MMC devices.
1705 * It can allow the regulator core to provide stub supplies for other
1706 * supplies requested using normal regulator_get() calls without
1707 * disrupting the operation of drivers that can handle absent
1708 * supplies.
1709 *
1710 * Use of supply names configured via regulator_set_device_supply() is
1711 * strongly encouraged.  It is recommended that the supply name used
1712 * should match the name used for the supply and/or the relevant
1713 * device pins in the datasheet.
1714 */
1715struct regulator *regulator_get_optional(struct device *dev, const char *id)
1716{
1717	return _regulator_get(dev, id, false, false);
1718}
1719EXPORT_SYMBOL_GPL(regulator_get_optional);
1720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721/* regulator_list_mutex lock held by regulator_put() */
1722static void _regulator_put(struct regulator *regulator)
1723{
1724	struct regulator_dev *rdev;
1725
1726	if (IS_ERR_OR_NULL(regulator))
1727		return;
1728
1729	lockdep_assert_held_once(&regulator_list_mutex);
1730
 
 
 
1731	rdev = regulator->rdev;
1732
1733	debugfs_remove_recursive(regulator->debugfs);
1734
1735	/* remove any sysfs entries */
1736	if (regulator->dev)
1737		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738	mutex_lock(&rdev->mutex);
1739	list_del(&regulator->list);
1740
1741	rdev->open_count--;
1742	rdev->exclusive = 0;
1743	put_device(&rdev->dev);
1744	mutex_unlock(&rdev->mutex);
1745
1746	kfree(regulator->supply_name);
1747	kfree(regulator);
1748
1749	module_put(rdev->owner);
1750}
1751
1752/**
1753 * regulator_put - "free" the regulator source
1754 * @regulator: regulator source
1755 *
1756 * Note: drivers must ensure that all regulator_enable calls made on this
1757 * regulator source are balanced by regulator_disable calls prior to calling
1758 * this function.
1759 */
1760void regulator_put(struct regulator *regulator)
1761{
1762	mutex_lock(&regulator_list_mutex);
1763	_regulator_put(regulator);
1764	mutex_unlock(&regulator_list_mutex);
1765}
1766EXPORT_SYMBOL_GPL(regulator_put);
1767
1768/**
1769 * regulator_register_supply_alias - Provide device alias for supply lookup
1770 *
1771 * @dev: device that will be given as the regulator "consumer"
1772 * @id: Supply name or regulator ID
1773 * @alias_dev: device that should be used to lookup the supply
1774 * @alias_id: Supply name or regulator ID that should be used to lookup the
1775 * supply
1776 *
1777 * All lookups for id on dev will instead be conducted for alias_id on
1778 * alias_dev.
1779 */
1780int regulator_register_supply_alias(struct device *dev, const char *id,
1781				    struct device *alias_dev,
1782				    const char *alias_id)
1783{
1784	struct regulator_supply_alias *map;
1785
1786	map = regulator_find_supply_alias(dev, id);
1787	if (map)
1788		return -EEXIST;
1789
1790	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791	if (!map)
1792		return -ENOMEM;
1793
1794	map->src_dev = dev;
1795	map->src_supply = id;
1796	map->alias_dev = alias_dev;
1797	map->alias_supply = alias_id;
1798
1799	list_add(&map->list, &regulator_supply_alias_list);
1800
1801	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802		id, dev_name(dev), alias_id, dev_name(alias_dev));
1803
1804	return 0;
1805}
1806EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1807
1808/**
1809 * regulator_unregister_supply_alias - Remove device alias
1810 *
1811 * @dev: device that will be given as the regulator "consumer"
1812 * @id: Supply name or regulator ID
1813 *
1814 * Remove a lookup alias if one exists for id on dev.
1815 */
1816void regulator_unregister_supply_alias(struct device *dev, const char *id)
1817{
1818	struct regulator_supply_alias *map;
1819
1820	map = regulator_find_supply_alias(dev, id);
1821	if (map) {
1822		list_del(&map->list);
1823		kfree(map);
1824	}
1825}
1826EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1827
1828/**
1829 * regulator_bulk_register_supply_alias - register multiple aliases
1830 *
1831 * @dev: device that will be given as the regulator "consumer"
1832 * @id: List of supply names or regulator IDs
1833 * @alias_dev: device that should be used to lookup the supply
1834 * @alias_id: List of supply names or regulator IDs that should be used to
1835 * lookup the supply
1836 * @num_id: Number of aliases to register
1837 *
1838 * @return 0 on success, an errno on failure.
1839 *
1840 * This helper function allows drivers to register several supply
1841 * aliases in one operation.  If any of the aliases cannot be
1842 * registered any aliases that were registered will be removed
1843 * before returning to the caller.
1844 */
1845int regulator_bulk_register_supply_alias(struct device *dev,
1846					 const char *const *id,
1847					 struct device *alias_dev,
1848					 const char *const *alias_id,
1849					 int num_id)
1850{
1851	int i;
1852	int ret;
1853
1854	for (i = 0; i < num_id; ++i) {
1855		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856						      alias_id[i]);
1857		if (ret < 0)
1858			goto err;
1859	}
1860
1861	return 0;
1862
1863err:
1864	dev_err(dev,
1865		"Failed to create supply alias %s,%s -> %s,%s\n",
1866		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1867
1868	while (--i >= 0)
1869		regulator_unregister_supply_alias(dev, id[i]);
1870
1871	return ret;
1872}
1873EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1874
1875/**
1876 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1877 *
1878 * @dev: device that will be given as the regulator "consumer"
1879 * @id: List of supply names or regulator IDs
1880 * @num_id: Number of aliases to unregister
1881 *
1882 * This helper function allows drivers to unregister several supply
1883 * aliases in one operation.
1884 */
1885void regulator_bulk_unregister_supply_alias(struct device *dev,
1886					    const char *const *id,
1887					    int num_id)
1888{
1889	int i;
1890
1891	for (i = 0; i < num_id; ++i)
1892		regulator_unregister_supply_alias(dev, id[i]);
1893}
1894EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1895
1896
1897/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899				const struct regulator_config *config)
1900{
1901	struct regulator_enable_gpio *pin;
1902	struct gpio_desc *gpiod;
1903	int ret;
1904
1905	gpiod = gpio_to_desc(config->ena_gpio);
 
 
 
1906
1907	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908		if (pin->gpiod == gpiod) {
1909			rdev_dbg(rdev, "GPIO %d is already used\n",
1910				config->ena_gpio);
1911			goto update_ena_gpio_to_rdev;
1912		}
1913	}
1914
1915	ret = gpio_request_one(config->ena_gpio,
1916				GPIOF_DIR_OUT | config->ena_gpio_flags,
1917				rdev_get_name(rdev));
1918	if (ret)
1919		return ret;
1920
1921	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922	if (pin == NULL) {
1923		gpio_free(config->ena_gpio);
1924		return -ENOMEM;
1925	}
1926
 
 
 
1927	pin->gpiod = gpiod;
1928	pin->ena_gpio_invert = config->ena_gpio_invert;
1929	list_add(&pin->list, &regulator_ena_gpio_list);
1930
1931update_ena_gpio_to_rdev:
1932	pin->request_count++;
1933	rdev->ena_pin = pin;
 
 
 
 
1934	return 0;
1935}
1936
1937static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1938{
1939	struct regulator_enable_gpio *pin, *n;
1940
1941	if (!rdev->ena_pin)
1942		return;
1943
1944	/* Free the GPIO only in case of no use */
1945	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946		if (pin->gpiod == rdev->ena_pin->gpiod) {
1947			if (pin->request_count <= 1) {
1948				pin->request_count = 0;
1949				gpiod_put(pin->gpiod);
1950				list_del(&pin->list);
1951				kfree(pin);
1952				rdev->ena_pin = NULL;
1953				return;
1954			} else {
1955				pin->request_count--;
1956			}
1957		}
1958	}
 
 
1959}
1960
1961/**
1962 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963 * @rdev: regulator_dev structure
1964 * @enable: enable GPIO at initial use?
1965 *
1966 * GPIO is enabled in case of initial use. (enable_count is 0)
1967 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1968 */
1969static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1970{
1971	struct regulator_enable_gpio *pin = rdev->ena_pin;
1972
1973	if (!pin)
1974		return -EINVAL;
1975
1976	if (enable) {
1977		/* Enable GPIO at initial use */
1978		if (pin->enable_count == 0)
1979			gpiod_set_value_cansleep(pin->gpiod,
1980						 !pin->ena_gpio_invert);
1981
1982		pin->enable_count++;
1983	} else {
1984		if (pin->enable_count > 1) {
1985			pin->enable_count--;
1986			return 0;
1987		}
1988
1989		/* Disable GPIO if not used */
1990		if (pin->enable_count <= 1) {
1991			gpiod_set_value_cansleep(pin->gpiod,
1992						 pin->ena_gpio_invert);
1993			pin->enable_count = 0;
1994		}
1995	}
1996
1997	return 0;
1998}
1999
2000/**
2001 * _regulator_enable_delay - a delay helper function
2002 * @delay: time to delay in microseconds
2003 *
2004 * Delay for the requested amount of time as per the guidelines in:
2005 *
2006 *     Documentation/timers/timers-howto.txt
2007 *
2008 * The assumption here is that regulators will never be enabled in
2009 * atomic context and therefore sleeping functions can be used.
2010 */
2011static void _regulator_enable_delay(unsigned int delay)
2012{
2013	unsigned int ms = delay / 1000;
2014	unsigned int us = delay % 1000;
2015
2016	if (ms > 0) {
2017		/*
2018		 * For small enough values, handle super-millisecond
2019		 * delays in the usleep_range() call below.
2020		 */
2021		if (ms < 20)
2022			us += ms * 1000;
2023		else
2024			msleep(ms);
2025	}
2026
2027	/*
2028	 * Give the scheduler some room to coalesce with any other
2029	 * wakeup sources. For delays shorter than 10 us, don't even
2030	 * bother setting up high-resolution timers and just busy-
2031	 * loop.
2032	 */
2033	if (us >= 10)
2034		usleep_range(us, us + 100);
2035	else
2036		udelay(us);
2037}
2038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039static int _regulator_do_enable(struct regulator_dev *rdev)
2040{
2041	int ret, delay;
2042
2043	/* Query before enabling in case configuration dependent.  */
2044	ret = _regulator_get_enable_time(rdev);
2045	if (ret >= 0) {
2046		delay = ret;
2047	} else {
2048		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049		delay = 0;
2050	}
2051
2052	trace_regulator_enable(rdev_get_name(rdev));
2053
2054	if (rdev->desc->off_on_delay) {
2055		/* if needed, keep a distance of off_on_delay from last time
2056		 * this regulator was disabled.
2057		 */
2058		unsigned long start_jiffy = jiffies;
2059		unsigned long intended, max_delay, remaining;
2060
2061		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062		intended = rdev->last_off_jiffy + max_delay;
2063
2064		if (time_before(start_jiffy, intended)) {
2065			/* calc remaining jiffies to deal with one-time
2066			 * timer wrapping.
2067			 * in case of multiple timer wrapping, either it can be
2068			 * detected by out-of-range remaining, or it cannot be
2069			 * detected and we gets a panelty of
2070			 * _regulator_enable_delay().
2071			 */
2072			remaining = intended - start_jiffy;
2073			if (remaining <= max_delay)
2074				_regulator_enable_delay(
2075						jiffies_to_usecs(remaining));
2076		}
2077	}
2078
2079	if (rdev->ena_pin) {
2080		if (!rdev->ena_gpio_state) {
2081			ret = regulator_ena_gpio_ctrl(rdev, true);
2082			if (ret < 0)
2083				return ret;
2084			rdev->ena_gpio_state = 1;
2085		}
2086	} else if (rdev->desc->ops->enable) {
2087		ret = rdev->desc->ops->enable(rdev);
2088		if (ret < 0)
2089			return ret;
2090	} else {
2091		return -EINVAL;
2092	}
2093
2094	/* Allow the regulator to ramp; it would be useful to extend
2095	 * this for bulk operations so that the regulators can ramp
2096	 * together.  */
 
2097	trace_regulator_enable_delay(rdev_get_name(rdev));
2098
2099	_regulator_enable_delay(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100
2101	trace_regulator_enable_complete(rdev_get_name(rdev));
2102
2103	return 0;
2104}
2105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106/* locks held by regulator_enable() */
2107static int _regulator_enable(struct regulator_dev *rdev)
2108{
 
2109	int ret;
2110
2111	lockdep_assert_held_once(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
2112
2113	/* check voltage and requested load before enabling */
2114	if (rdev->constraints &&
2115	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116		drms_uA_update(rdev);
2117
2118	if (rdev->use_count == 0) {
2119		/* The regulator may on if it's not switchable or left on */
 
 
 
2120		ret = _regulator_is_enabled(rdev);
2121		if (ret == -EINVAL || ret == 0) {
2122			if (!_regulator_can_change_status(rdev))
2123				return -EPERM;
 
 
 
2124
2125			ret = _regulator_do_enable(rdev);
2126			if (ret < 0)
2127				return ret;
2128
 
 
2129		} else if (ret < 0) {
2130			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131			return ret;
2132		}
2133		/* Fallthrough on positive return values - already enabled */
2134	}
2135
2136	rdev->use_count++;
 
2137
2138	return 0;
 
 
 
 
 
 
 
 
 
2139}
2140
2141/**
2142 * regulator_enable - enable regulator output
2143 * @regulator: regulator source
2144 *
2145 * Request that the regulator be enabled with the regulator output at
2146 * the predefined voltage or current value.  Calls to regulator_enable()
2147 * must be balanced with calls to regulator_disable().
2148 *
2149 * NOTE: the output value can be set by other drivers, boot loader or may be
2150 * hardwired in the regulator.
2151 */
2152int regulator_enable(struct regulator *regulator)
2153{
2154	struct regulator_dev *rdev = regulator->rdev;
2155	int ret = 0;
2156
2157	if (regulator->always_on)
2158		return 0;
2159
2160	if (rdev->supply) {
2161		ret = regulator_enable(rdev->supply);
2162		if (ret != 0)
2163			return ret;
2164	}
2165
2166	mutex_lock(&rdev->mutex);
2167	ret = _regulator_enable(rdev);
2168	mutex_unlock(&rdev->mutex);
2169
2170	if (ret != 0 && rdev->supply)
2171		regulator_disable(rdev->supply);
 
2172
2173	return ret;
2174}
2175EXPORT_SYMBOL_GPL(regulator_enable);
2176
2177static int _regulator_do_disable(struct regulator_dev *rdev)
2178{
2179	int ret;
2180
2181	trace_regulator_disable(rdev_get_name(rdev));
2182
2183	if (rdev->ena_pin) {
2184		if (rdev->ena_gpio_state) {
2185			ret = regulator_ena_gpio_ctrl(rdev, false);
2186			if (ret < 0)
2187				return ret;
2188			rdev->ena_gpio_state = 0;
2189		}
2190
2191	} else if (rdev->desc->ops->disable) {
2192		ret = rdev->desc->ops->disable(rdev);
2193		if (ret != 0)
2194			return ret;
2195	}
2196
2197	/* cares about last_off_jiffy only if off_on_delay is required by
2198	 * device.
2199	 */
2200	if (rdev->desc->off_on_delay)
2201		rdev->last_off_jiffy = jiffies;
2202
2203	trace_regulator_disable_complete(rdev_get_name(rdev));
2204
2205	return 0;
2206}
2207
2208/* locks held by regulator_disable() */
2209static int _regulator_disable(struct regulator_dev *rdev)
2210{
 
2211	int ret = 0;
2212
2213	lockdep_assert_held_once(&rdev->mutex);
2214
2215	if (WARN(rdev->use_count <= 0,
2216		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217		return -EIO;
2218
2219	/* are we the last user and permitted to disable ? */
2220	if (rdev->use_count == 1 &&
2221	    (rdev->constraints && !rdev->constraints->always_on)) {
2222
2223		/* we are last user */
2224		if (_regulator_can_change_status(rdev)) {
2225			ret = _notifier_call_chain(rdev,
2226						   REGULATOR_EVENT_PRE_DISABLE,
2227						   NULL);
2228			if (ret & NOTIFY_STOP_MASK)
2229				return -EINVAL;
2230
2231			ret = _regulator_do_disable(rdev);
2232			if (ret < 0) {
2233				rdev_err(rdev, "failed to disable\n");
2234				_notifier_call_chain(rdev,
2235						REGULATOR_EVENT_ABORT_DISABLE,
 
 
 
 
 
 
2236						NULL);
2237				return ret;
2238			}
2239			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240					NULL);
 
 
2241		}
 
2242
2243		rdev->use_count = 0;
2244	} else if (rdev->use_count > 1) {
2245
2246		if (rdev->constraints &&
2247			(rdev->constraints->valid_ops_mask &
2248			REGULATOR_CHANGE_DRMS))
2249			drms_uA_update(rdev);
2250
2251		rdev->use_count--;
2252	}
2253
2254	return ret;
2255}
2256
2257/**
2258 * regulator_disable - disable regulator output
2259 * @regulator: regulator source
2260 *
2261 * Disable the regulator output voltage or current.  Calls to
2262 * regulator_enable() must be balanced with calls to
2263 * regulator_disable().
2264 *
2265 * NOTE: this will only disable the regulator output if no other consumer
2266 * devices have it enabled, the regulator device supports disabling and
2267 * machine constraints permit this operation.
2268 */
2269int regulator_disable(struct regulator *regulator)
2270{
2271	struct regulator_dev *rdev = regulator->rdev;
2272	int ret = 0;
2273
2274	if (regulator->always_on)
2275		return 0;
2276
2277	mutex_lock(&rdev->mutex);
2278	ret = _regulator_disable(rdev);
2279	mutex_unlock(&rdev->mutex);
2280
2281	if (ret == 0 && rdev->supply)
2282		regulator_disable(rdev->supply);
 
2283
2284	return ret;
2285}
2286EXPORT_SYMBOL_GPL(regulator_disable);
2287
2288/* locks held by regulator_force_disable() */
2289static int _regulator_force_disable(struct regulator_dev *rdev)
2290{
2291	int ret = 0;
2292
2293	lockdep_assert_held_once(&rdev->mutex);
2294
2295	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296			REGULATOR_EVENT_PRE_DISABLE, NULL);
2297	if (ret & NOTIFY_STOP_MASK)
2298		return -EINVAL;
2299
2300	ret = _regulator_do_disable(rdev);
2301	if (ret < 0) {
2302		rdev_err(rdev, "failed to force disable\n");
2303		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305		return ret;
2306	}
2307
2308	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309			REGULATOR_EVENT_DISABLE, NULL);
2310
2311	return 0;
2312}
2313
2314/**
2315 * regulator_force_disable - force disable regulator output
2316 * @regulator: regulator source
2317 *
2318 * Forcibly disable the regulator output voltage or current.
2319 * NOTE: this *will* disable the regulator output even if other consumer
2320 * devices have it enabled. This should be used for situations when device
2321 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2322 */
2323int regulator_force_disable(struct regulator *regulator)
2324{
2325	struct regulator_dev *rdev = regulator->rdev;
 
2326	int ret;
2327
2328	mutex_lock(&rdev->mutex);
2329	regulator->uA_load = 0;
2330	ret = _regulator_force_disable(regulator->rdev);
2331	mutex_unlock(&rdev->mutex);
2332
2333	if (rdev->supply)
2334		while (rdev->open_count--)
2335			regulator_disable(rdev->supply);
 
 
 
 
 
 
 
 
 
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_force_disable);
2340
2341static void regulator_disable_work(struct work_struct *work)
2342{
2343	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344						  disable_work.work);
 
2345	int count, i, ret;
 
 
2346
2347	mutex_lock(&rdev->mutex);
2348
2349	BUG_ON(!rdev->deferred_disables);
 
 
 
 
 
 
2350
2351	count = rdev->deferred_disables;
2352	rdev->deferred_disables = 0;
2353
2354	for (i = 0; i < count; i++) {
2355		ret = _regulator_disable(rdev);
2356		if (ret != 0)
2357			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2358	}
2359
2360	mutex_unlock(&rdev->mutex);
 
2361
2362	if (rdev->supply) {
2363		for (i = 0; i < count; i++) {
2364			ret = regulator_disable(rdev->supply);
2365			if (ret != 0) {
2366				rdev_err(rdev,
2367					 "Supply disable failed: %d\n", ret);
2368			}
2369		}
2370	}
 
 
 
 
 
 
2371}
2372
2373/**
2374 * regulator_disable_deferred - disable regulator output with delay
2375 * @regulator: regulator source
2376 * @ms: miliseconds until the regulator is disabled
2377 *
2378 * Execute regulator_disable() on the regulator after a delay.  This
2379 * is intended for use with devices that require some time to quiesce.
2380 *
2381 * NOTE: this will only disable the regulator output if no other consumer
2382 * devices have it enabled, the regulator device supports disabling and
2383 * machine constraints permit this operation.
2384 */
2385int regulator_disable_deferred(struct regulator *regulator, int ms)
2386{
2387	struct regulator_dev *rdev = regulator->rdev;
2388
2389	if (regulator->always_on)
2390		return 0;
2391
2392	if (!ms)
2393		return regulator_disable(regulator);
2394
2395	mutex_lock(&rdev->mutex);
2396	rdev->deferred_disables++;
2397	mutex_unlock(&rdev->mutex);
 
 
2398
2399	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400			   msecs_to_jiffies(ms));
2401	return 0;
2402}
2403EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2404
2405static int _regulator_is_enabled(struct regulator_dev *rdev)
2406{
2407	/* A GPIO control always takes precedence */
2408	if (rdev->ena_pin)
2409		return rdev->ena_gpio_state;
2410
2411	/* If we don't know then assume that the regulator is always on */
2412	if (!rdev->desc->ops->is_enabled)
2413		return 1;
2414
2415	return rdev->desc->ops->is_enabled(rdev);
2416}
2417
2418static int _regulator_list_voltage(struct regulator *regulator,
2419				    unsigned selector, int lock)
2420{
2421	struct regulator_dev *rdev = regulator->rdev;
2422	const struct regulator_ops *ops = rdev->desc->ops;
2423	int ret;
2424
2425	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426		return rdev->desc->fixed_uV;
2427
2428	if (ops->list_voltage) {
2429		if (selector >= rdev->desc->n_voltages)
2430			return -EINVAL;
 
 
2431		if (lock)
2432			mutex_lock(&rdev->mutex);
2433		ret = ops->list_voltage(rdev, selector);
2434		if (lock)
2435			mutex_unlock(&rdev->mutex);
2436	} else if (rdev->supply) {
2437		ret = _regulator_list_voltage(rdev->supply, selector, lock);
 
2438	} else {
2439		return -EINVAL;
2440	}
2441
2442	if (ret > 0) {
2443		if (ret < rdev->constraints->min_uV)
2444			ret = 0;
2445		else if (ret > rdev->constraints->max_uV)
2446			ret = 0;
2447	}
2448
2449	return ret;
2450}
2451
2452/**
2453 * regulator_is_enabled - is the regulator output enabled
2454 * @regulator: regulator source
2455 *
2456 * Returns positive if the regulator driver backing the source/client
2457 * has requested that the device be enabled, zero if it hasn't, else a
2458 * negative errno code.
2459 *
2460 * Note that the device backing this regulator handle can have multiple
2461 * users, so it might be enabled even if regulator_enable() was never
2462 * called for this particular source.
2463 */
2464int regulator_is_enabled(struct regulator *regulator)
2465{
2466	int ret;
2467
2468	if (regulator->always_on)
2469		return 1;
2470
2471	mutex_lock(&regulator->rdev->mutex);
2472	ret = _regulator_is_enabled(regulator->rdev);
2473	mutex_unlock(&regulator->rdev->mutex);
2474
2475	return ret;
2476}
2477EXPORT_SYMBOL_GPL(regulator_is_enabled);
2478
2479/**
2480 * regulator_can_change_voltage - check if regulator can change voltage
2481 * @regulator: regulator source
2482 *
2483 * Returns positive if the regulator driver backing the source/client
2484 * can change its voltage, false otherwise. Useful for detecting fixed
2485 * or dummy regulators and disabling voltage change logic in the client
2486 * driver.
2487 */
2488int regulator_can_change_voltage(struct regulator *regulator)
2489{
2490	struct regulator_dev	*rdev = regulator->rdev;
2491
2492	if (rdev->constraints &&
2493	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495			return 1;
2496
2497		if (rdev->desc->continuous_voltage_range &&
2498		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2500			return 1;
2501	}
2502
2503	return 0;
2504}
2505EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2506
2507/**
2508 * regulator_count_voltages - count regulator_list_voltage() selectors
2509 * @regulator: regulator source
2510 *
2511 * Returns number of selectors, or negative errno.  Selectors are
2512 * numbered starting at zero, and typically correspond to bitfields
2513 * in hardware registers.
2514 */
2515int regulator_count_voltages(struct regulator *regulator)
2516{
2517	struct regulator_dev	*rdev = regulator->rdev;
2518
2519	if (rdev->desc->n_voltages)
2520		return rdev->desc->n_voltages;
2521
2522	if (!rdev->supply)
2523		return -EINVAL;
2524
2525	return regulator_count_voltages(rdev->supply);
2526}
2527EXPORT_SYMBOL_GPL(regulator_count_voltages);
2528
2529/**
2530 * regulator_list_voltage - enumerate supported voltages
2531 * @regulator: regulator source
2532 * @selector: identify voltage to list
2533 * Context: can sleep
2534 *
2535 * Returns a voltage that can be passed to @regulator_set_voltage(),
2536 * zero if this selector code can't be used on this system, or a
2537 * negative errno.
2538 */
2539int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2540{
2541	return _regulator_list_voltage(regulator, selector, 1);
2542}
2543EXPORT_SYMBOL_GPL(regulator_list_voltage);
2544
2545/**
2546 * regulator_get_regmap - get the regulator's register map
2547 * @regulator: regulator source
2548 *
2549 * Returns the register map for the given regulator, or an ERR_PTR value
2550 * if the regulator doesn't use regmap.
2551 */
2552struct regmap *regulator_get_regmap(struct regulator *regulator)
2553{
2554	struct regmap *map = regulator->rdev->regmap;
2555
2556	return map ? map : ERR_PTR(-EOPNOTSUPP);
2557}
2558
2559/**
2560 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561 * @regulator: regulator source
2562 * @vsel_reg: voltage selector register, output parameter
2563 * @vsel_mask: mask for voltage selector bitfield, output parameter
2564 *
2565 * Returns the hardware register offset and bitmask used for setting the
2566 * regulator voltage. This might be useful when configuring voltage-scaling
2567 * hardware or firmware that can make I2C requests behind the kernel's back,
2568 * for example.
2569 *
2570 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571 * and 0 is returned, otherwise a negative errno is returned.
2572 */
2573int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574					 unsigned *vsel_reg,
2575					 unsigned *vsel_mask)
2576{
2577	struct regulator_dev *rdev = regulator->rdev;
2578	const struct regulator_ops *ops = rdev->desc->ops;
2579
2580	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581		return -EOPNOTSUPP;
2582
2583	 *vsel_reg = rdev->desc->vsel_reg;
2584	 *vsel_mask = rdev->desc->vsel_mask;
2585
2586	 return 0;
2587}
2588EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2589
2590/**
2591 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592 * @regulator: regulator source
2593 * @selector: identify voltage to list
2594 *
2595 * Converts the selector to a hardware-specific voltage selector that can be
2596 * directly written to the regulator registers. The address of the voltage
2597 * register can be determined by calling @regulator_get_hardware_vsel_register.
2598 *
2599 * On error a negative errno is returned.
2600 */
2601int regulator_list_hardware_vsel(struct regulator *regulator,
2602				 unsigned selector)
2603{
2604	struct regulator_dev *rdev = regulator->rdev;
2605	const struct regulator_ops *ops = rdev->desc->ops;
2606
2607	if (selector >= rdev->desc->n_voltages)
2608		return -EINVAL;
 
 
2609	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610		return -EOPNOTSUPP;
2611
2612	return selector;
2613}
2614EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2615
2616/**
2617 * regulator_get_linear_step - return the voltage step size between VSEL values
2618 * @regulator: regulator source
2619 *
2620 * Returns the voltage step size between VSEL values for linear
2621 * regulators, or return 0 if the regulator isn't a linear regulator.
2622 */
2623unsigned int regulator_get_linear_step(struct regulator *regulator)
2624{
2625	struct regulator_dev *rdev = regulator->rdev;
2626
2627	return rdev->desc->uV_step;
2628}
2629EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2630
2631/**
2632 * regulator_is_supported_voltage - check if a voltage range can be supported
2633 *
2634 * @regulator: Regulator to check.
2635 * @min_uV: Minimum required voltage in uV.
2636 * @max_uV: Maximum required voltage in uV.
2637 *
2638 * Returns a boolean or a negative error code.
2639 */
2640int regulator_is_supported_voltage(struct regulator *regulator,
2641				   int min_uV, int max_uV)
2642{
2643	struct regulator_dev *rdev = regulator->rdev;
2644	int i, voltages, ret;
2645
2646	/* If we can't change voltage check the current voltage */
2647	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648		ret = regulator_get_voltage(regulator);
2649		if (ret >= 0)
2650			return min_uV <= ret && ret <= max_uV;
2651		else
2652			return ret;
2653	}
2654
2655	/* Any voltage within constrains range is fine? */
2656	if (rdev->desc->continuous_voltage_range)
2657		return min_uV >= rdev->constraints->min_uV &&
2658				max_uV <= rdev->constraints->max_uV;
2659
2660	ret = regulator_count_voltages(regulator);
2661	if (ret < 0)
2662		return ret;
2663	voltages = ret;
2664
2665	for (i = 0; i < voltages; i++) {
2666		ret = regulator_list_voltage(regulator, i);
2667
2668		if (ret >= min_uV && ret <= max_uV)
2669			return 1;
2670	}
2671
2672	return 0;
2673}
2674EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675
2676static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677				 int max_uV)
2678{
2679	const struct regulator_desc *desc = rdev->desc;
2680
2681	if (desc->ops->map_voltage)
2682		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2683
2684	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2686
2687	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2689
 
 
 
 
 
2690	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2691}
2692
2693static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694				       int min_uV, int max_uV,
2695				       unsigned *selector)
2696{
2697	struct pre_voltage_change_data data;
2698	int ret;
2699
2700	data.old_uV = _regulator_get_voltage(rdev);
2701	data.min_uV = min_uV;
2702	data.max_uV = max_uV;
2703	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704				   &data);
2705	if (ret & NOTIFY_STOP_MASK)
2706		return -EINVAL;
2707
2708	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709	if (ret >= 0)
2710		return ret;
2711
2712	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713			     (void *)data.old_uV);
2714
2715	return ret;
2716}
2717
2718static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719					   int uV, unsigned selector)
2720{
2721	struct pre_voltage_change_data data;
2722	int ret;
2723
2724	data.old_uV = _regulator_get_voltage(rdev);
2725	data.min_uV = uV;
2726	data.max_uV = uV;
2727	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728				   &data);
2729	if (ret & NOTIFY_STOP_MASK)
2730		return -EINVAL;
2731
2732	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733	if (ret >= 0)
2734		return ret;
2735
2736	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737			     (void *)data.old_uV);
2738
2739	return ret;
2740}
2741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743				     int min_uV, int max_uV)
2744{
2745	int ret;
2746	int delay = 0;
2747	int best_val = 0;
2748	unsigned int selector;
2749	int old_selector = -1;
 
 
2750
2751	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2752
2753	min_uV += rdev->constraints->uV_offset;
2754	max_uV += rdev->constraints->uV_offset;
2755
2756	/*
2757	 * If we can't obtain the old selector there is not enough
2758	 * info to call set_voltage_time_sel().
2759	 */
2760	if (_regulator_is_enabled(rdev) &&
2761	    rdev->desc->ops->set_voltage_time_sel &&
2762	    rdev->desc->ops->get_voltage_sel) {
2763		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764		if (old_selector < 0)
2765			return old_selector;
2766	}
2767
2768	if (rdev->desc->ops->set_voltage) {
2769		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770						  &selector);
2771
2772		if (ret >= 0) {
2773			if (rdev->desc->ops->list_voltage)
2774				best_val = rdev->desc->ops->list_voltage(rdev,
2775									 selector);
2776			else
2777				best_val = _regulator_get_voltage(rdev);
2778		}
2779
2780	} else if (rdev->desc->ops->set_voltage_sel) {
2781		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2782		if (ret >= 0) {
2783			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784			if (min_uV <= best_val && max_uV >= best_val) {
2785				selector = ret;
2786				if (old_selector == selector)
2787					ret = 0;
 
 
 
2788				else
2789					ret = _regulator_call_set_voltage_sel(
2790						rdev, best_val, selector);
2791			} else {
2792				ret = -EINVAL;
2793			}
2794		}
2795	} else {
2796		ret = -EINVAL;
2797	}
2798
2799	/* Call set_voltage_time_sel if successfully obtained old_selector */
2800	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801		&& old_selector != selector) {
2802
2803		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804						old_selector, selector);
2805		if (delay < 0) {
2806			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807				  delay);
2808			delay = 0;
 
 
 
 
 
 
 
 
 
 
 
2809		}
 
2810
2811		/* Insert any necessary delays */
2812		if (delay >= 1000) {
2813			mdelay(delay / 1000);
2814			udelay(delay % 1000);
2815		} else if (delay) {
2816			udelay(delay);
2817		}
2818	}
2819
2820	if (ret == 0 && best_val >= 0) {
 
 
 
2821		unsigned long data = best_val;
2822
2823		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824				     (void *)data);
2825	}
2826
 
2827	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828
2829	return ret;
2830}
2831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833					  int min_uV, int max_uV)
 
2834{
2835	struct regulator_dev *rdev = regulator->rdev;
 
2836	int ret = 0;
2837	int old_min_uV, old_max_uV;
2838	int current_uV;
2839	int best_supply_uV = 0;
2840	int supply_change_uV = 0;
2841
2842	/* If we're setting the same range as last time the change
2843	 * should be a noop (some cpufreq implementations use the same
2844	 * voltage for multiple frequencies, for example).
2845	 */
2846	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847		goto out;
2848
2849	/* If we're trying to set a range that overlaps the current voltage,
2850	 * return successfully even though the regulator does not support
2851	 * changing the voltage.
2852	 */
2853	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854		current_uV = _regulator_get_voltage(rdev);
2855		if (min_uV <= current_uV && current_uV <= max_uV) {
2856			regulator->min_uV = min_uV;
2857			regulator->max_uV = max_uV;
2858			goto out;
2859		}
2860	}
2861
2862	/* sanity check */
2863	if (!rdev->desc->ops->set_voltage &&
2864	    !rdev->desc->ops->set_voltage_sel) {
2865		ret = -EINVAL;
2866		goto out;
2867	}
2868
2869	/* constraints check */
2870	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871	if (ret < 0)
2872		goto out;
2873
2874	/* restore original values in case of error */
2875	old_min_uV = regulator->min_uV;
2876	old_max_uV = regulator->max_uV;
2877	regulator->min_uV = min_uV;
2878	regulator->max_uV = max_uV;
 
 
 
 
 
 
 
 
 
 
 
2879
2880	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881	if (ret < 0)
2882		goto out2;
 
 
 
2883
2884	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885				!rdev->desc->ops->get_voltage)) {
 
 
 
2886		int current_supply_uV;
2887		int selector;
2888
2889		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890		if (selector < 0) {
2891			ret = selector;
2892			goto out2;
2893		}
2894
2895		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896		if (best_supply_uV < 0) {
2897			ret = best_supply_uV;
2898			goto out2;
2899		}
2900
2901		best_supply_uV += rdev->desc->min_dropout_uV;
2902
2903		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904		if (current_supply_uV < 0) {
2905			ret = current_supply_uV;
2906			goto out2;
2907		}
2908
2909		supply_change_uV = best_supply_uV - current_supply_uV;
2910	}
2911
2912	if (supply_change_uV > 0) {
2913		ret = regulator_set_voltage_unlocked(rdev->supply,
2914				best_supply_uV, INT_MAX);
2915		if (ret) {
2916			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917					ret);
2918			goto out2;
2919		}
2920	}
2921
2922	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
2923	if (ret < 0)
2924		goto out2;
2925
2926	if (supply_change_uV < 0) {
2927		ret = regulator_set_voltage_unlocked(rdev->supply,
2928				best_supply_uV, INT_MAX);
2929		if (ret)
2930			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931					ret);
2932		/* No need to fail here */
2933		ret = 0;
2934	}
2935
2936out:
2937	return ret;
2938out2:
2939	regulator->min_uV = old_min_uV;
2940	regulator->max_uV = old_max_uV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942	return ret;
2943}
2944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2945/**
2946 * regulator_set_voltage - set regulator output voltage
2947 * @regulator: regulator source
2948 * @min_uV: Minimum required voltage in uV
2949 * @max_uV: Maximum acceptable voltage in uV
2950 *
2951 * Sets a voltage regulator to the desired output voltage. This can be set
2952 * during any regulator state. IOW, regulator can be disabled or enabled.
2953 *
2954 * If the regulator is enabled then the voltage will change to the new value
2955 * immediately otherwise if the regulator is disabled the regulator will
2956 * output at the new voltage when enabled.
2957 *
2958 * NOTE: If the regulator is shared between several devices then the lowest
2959 * request voltage that meets the system constraints will be used.
2960 * Regulator system constraints must be set for this regulator before
2961 * calling this function otherwise this call will fail.
2962 */
2963int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2964{
2965	int ret = 0;
 
2966
2967	regulator_lock_supply(regulator->rdev);
2968
2969	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
 
2970
2971	regulator_unlock_supply(regulator->rdev);
2972
2973	return ret;
2974}
2975EXPORT_SYMBOL_GPL(regulator_set_voltage);
2976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2977/**
2978 * regulator_set_voltage_time - get raise/fall time
2979 * @regulator: regulator source
2980 * @old_uV: starting voltage in microvolts
2981 * @new_uV: target voltage in microvolts
2982 *
2983 * Provided with the starting and ending voltage, this function attempts to
2984 * calculate the time in microseconds required to rise or fall to this new
2985 * voltage.
2986 */
2987int regulator_set_voltage_time(struct regulator *regulator,
2988			       int old_uV, int new_uV)
2989{
2990	struct regulator_dev *rdev = regulator->rdev;
2991	const struct regulator_ops *ops = rdev->desc->ops;
2992	int old_sel = -1;
2993	int new_sel = -1;
2994	int voltage;
2995	int i;
2996
 
 
 
 
 
2997	/* Currently requires operations to do this */
2998	if (!ops->list_voltage || !ops->set_voltage_time_sel
2999	    || !rdev->desc->n_voltages)
3000		return -EINVAL;
3001
3002	for (i = 0; i < rdev->desc->n_voltages; i++) {
3003		/* We only look for exact voltage matches here */
 
 
 
 
 
 
3004		voltage = regulator_list_voltage(regulator, i);
3005		if (voltage < 0)
3006			return -EINVAL;
3007		if (voltage == 0)
3008			continue;
3009		if (voltage == old_uV)
3010			old_sel = i;
3011		if (voltage == new_uV)
3012			new_sel = i;
3013	}
3014
3015	if (old_sel < 0 || new_sel < 0)
3016		return -EINVAL;
3017
3018	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3019}
3020EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3021
3022/**
3023 * regulator_set_voltage_time_sel - get raise/fall time
3024 * @rdev: regulator source device
3025 * @old_selector: selector for starting voltage
3026 * @new_selector: selector for target voltage
3027 *
3028 * Provided with the starting and target voltage selectors, this function
3029 * returns time in microseconds required to rise or fall to this new voltage
3030 *
3031 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032 * set_voltage_time_sel() operation.
3033 */
3034int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035				   unsigned int old_selector,
3036				   unsigned int new_selector)
3037{
3038	unsigned int ramp_delay = 0;
3039	int old_volt, new_volt;
3040
3041	if (rdev->constraints->ramp_delay)
3042		ramp_delay = rdev->constraints->ramp_delay;
3043	else if (rdev->desc->ramp_delay)
3044		ramp_delay = rdev->desc->ramp_delay;
3045
3046	if (ramp_delay == 0) {
3047		rdev_warn(rdev, "ramp_delay not set\n");
3048		return 0;
3049	}
3050
3051	/* sanity check */
3052	if (!rdev->desc->ops->list_voltage)
3053		return -EINVAL;
3054
3055	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3057
3058	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
 
 
 
 
3059}
3060EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062/**
3063 * regulator_sync_voltage - re-apply last regulator output voltage
3064 * @regulator: regulator source
3065 *
3066 * Re-apply the last configured voltage.  This is intended to be used
3067 * where some external control source the consumer is cooperating with
3068 * has caused the configured voltage to change.
3069 */
3070int regulator_sync_voltage(struct regulator *regulator)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
 
3073	int ret, min_uV, max_uV;
3074
3075	mutex_lock(&rdev->mutex);
 
 
 
3076
3077	if (!rdev->desc->ops->set_voltage &&
3078	    !rdev->desc->ops->set_voltage_sel) {
3079		ret = -EINVAL;
3080		goto out;
3081	}
3082
3083	/* This is only going to work if we've had a voltage configured. */
3084	if (!regulator->min_uV && !regulator->max_uV) {
3085		ret = -EINVAL;
3086		goto out;
3087	}
3088
3089	min_uV = regulator->min_uV;
3090	max_uV = regulator->max_uV;
3091
3092	/* This should be a paranoia check... */
3093	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094	if (ret < 0)
3095		goto out;
3096
3097	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098	if (ret < 0)
3099		goto out;
3100
3101	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
3102
3103out:
3104	mutex_unlock(&rdev->mutex);
3105	return ret;
3106}
3107EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3108
3109static int _regulator_get_voltage(struct regulator_dev *rdev)
3110{
3111	int sel, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	if (rdev->desc->ops->get_voltage_sel) {
3114		sel = rdev->desc->ops->get_voltage_sel(rdev);
3115		if (sel < 0)
3116			return sel;
3117		ret = rdev->desc->ops->list_voltage(rdev, sel);
3118	} else if (rdev->desc->ops->get_voltage) {
3119		ret = rdev->desc->ops->get_voltage(rdev);
3120	} else if (rdev->desc->ops->list_voltage) {
3121		ret = rdev->desc->ops->list_voltage(rdev, 0);
3122	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123		ret = rdev->desc->fixed_uV;
3124	} else if (rdev->supply) {
3125		ret = _regulator_get_voltage(rdev->supply->rdev);
 
 
3126	} else {
3127		return -EINVAL;
3128	}
3129
3130	if (ret < 0)
3131		return ret;
3132	return ret - rdev->constraints->uV_offset;
3133}
 
3134
3135/**
3136 * regulator_get_voltage - get regulator output voltage
3137 * @regulator: regulator source
3138 *
3139 * This returns the current regulator voltage in uV.
3140 *
3141 * NOTE: If the regulator is disabled it will return the voltage value. This
3142 * function should not be used to determine regulator state.
3143 */
3144int regulator_get_voltage(struct regulator *regulator)
3145{
 
3146	int ret;
3147
3148	regulator_lock_supply(regulator->rdev);
3149
3150	ret = _regulator_get_voltage(regulator->rdev);
3151
3152	regulator_unlock_supply(regulator->rdev);
3153
3154	return ret;
3155}
3156EXPORT_SYMBOL_GPL(regulator_get_voltage);
3157
3158/**
3159 * regulator_set_current_limit - set regulator output current limit
3160 * @regulator: regulator source
3161 * @min_uA: Minimum supported current in uA
3162 * @max_uA: Maximum supported current in uA
3163 *
3164 * Sets current sink to the desired output current. This can be set during
3165 * any regulator state. IOW, regulator can be disabled or enabled.
3166 *
3167 * If the regulator is enabled then the current will change to the new value
3168 * immediately otherwise if the regulator is disabled the regulator will
3169 * output at the new current when enabled.
3170 *
3171 * NOTE: Regulator system constraints must be set for this regulator before
3172 * calling this function otherwise this call will fail.
3173 */
3174int regulator_set_current_limit(struct regulator *regulator,
3175			       int min_uA, int max_uA)
3176{
3177	struct regulator_dev *rdev = regulator->rdev;
3178	int ret;
3179
3180	mutex_lock(&rdev->mutex);
3181
3182	/* sanity check */
3183	if (!rdev->desc->ops->set_current_limit) {
3184		ret = -EINVAL;
3185		goto out;
3186	}
3187
3188	/* constraints check */
3189	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190	if (ret < 0)
3191		goto out;
3192
3193	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194out:
3195	mutex_unlock(&rdev->mutex);
3196	return ret;
3197}
3198EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3199
 
 
 
 
 
 
 
 
 
3200static int _regulator_get_current_limit(struct regulator_dev *rdev)
3201{
3202	int ret;
3203
3204	mutex_lock(&rdev->mutex);
3205
3206	/* sanity check */
3207	if (!rdev->desc->ops->get_current_limit) {
3208		ret = -EINVAL;
3209		goto out;
3210	}
3211
3212	ret = rdev->desc->ops->get_current_limit(rdev);
3213out:
3214	mutex_unlock(&rdev->mutex);
3215	return ret;
3216}
3217
3218/**
3219 * regulator_get_current_limit - get regulator output current
3220 * @regulator: regulator source
3221 *
3222 * This returns the current supplied by the specified current sink in uA.
3223 *
3224 * NOTE: If the regulator is disabled it will return the current value. This
3225 * function should not be used to determine regulator state.
3226 */
3227int regulator_get_current_limit(struct regulator *regulator)
3228{
3229	return _regulator_get_current_limit(regulator->rdev);
3230}
3231EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3232
3233/**
3234 * regulator_set_mode - set regulator operating mode
3235 * @regulator: regulator source
3236 * @mode: operating mode - one of the REGULATOR_MODE constants
3237 *
3238 * Set regulator operating mode to increase regulator efficiency or improve
3239 * regulation performance.
3240 *
3241 * NOTE: Regulator system constraints must be set for this regulator before
3242 * calling this function otherwise this call will fail.
3243 */
3244int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3245{
3246	struct regulator_dev *rdev = regulator->rdev;
3247	int ret;
3248	int regulator_curr_mode;
3249
3250	mutex_lock(&rdev->mutex);
3251
3252	/* sanity check */
3253	if (!rdev->desc->ops->set_mode) {
3254		ret = -EINVAL;
3255		goto out;
3256	}
3257
3258	/* return if the same mode is requested */
3259	if (rdev->desc->ops->get_mode) {
3260		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261		if (regulator_curr_mode == mode) {
3262			ret = 0;
3263			goto out;
3264		}
3265	}
3266
3267	/* constraints check */
3268	ret = regulator_mode_constrain(rdev, &mode);
3269	if (ret < 0)
3270		goto out;
3271
3272	ret = rdev->desc->ops->set_mode(rdev, mode);
3273out:
3274	mutex_unlock(&rdev->mutex);
3275	return ret;
3276}
3277EXPORT_SYMBOL_GPL(regulator_set_mode);
3278
 
 
 
 
 
 
 
 
 
3279static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3280{
3281	int ret;
3282
3283	mutex_lock(&rdev->mutex);
3284
3285	/* sanity check */
3286	if (!rdev->desc->ops->get_mode) {
3287		ret = -EINVAL;
3288		goto out;
3289	}
3290
3291	ret = rdev->desc->ops->get_mode(rdev);
3292out:
3293	mutex_unlock(&rdev->mutex);
3294	return ret;
3295}
3296
3297/**
3298 * regulator_get_mode - get regulator operating mode
3299 * @regulator: regulator source
3300 *
3301 * Get the current regulator operating mode.
3302 */
3303unsigned int regulator_get_mode(struct regulator *regulator)
3304{
3305	return _regulator_get_mode(regulator->rdev);
3306}
3307EXPORT_SYMBOL_GPL(regulator_get_mode);
3308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3309/**
3310 * regulator_set_load - set regulator load
3311 * @regulator: regulator source
3312 * @uA_load: load current
3313 *
3314 * Notifies the regulator core of a new device load. This is then used by
3315 * DRMS (if enabled by constraints) to set the most efficient regulator
3316 * operating mode for the new regulator loading.
3317 *
3318 * Consumer devices notify their supply regulator of the maximum power
3319 * they will require (can be taken from device datasheet in the power
3320 * consumption tables) when they change operational status and hence power
3321 * state. Examples of operational state changes that can affect power
3322 * consumption are :-
3323 *
3324 *    o Device is opened / closed.
3325 *    o Device I/O is about to begin or has just finished.
3326 *    o Device is idling in between work.
3327 *
3328 * This information is also exported via sysfs to userspace.
3329 *
3330 * DRMS will sum the total requested load on the regulator and change
3331 * to the most efficient operating mode if platform constraints allow.
3332 *
 
 
 
 
 
 
 
 
3333 * On error a negative errno is returned.
3334 */
3335int regulator_set_load(struct regulator *regulator, int uA_load)
3336{
3337	struct regulator_dev *rdev = regulator->rdev;
3338	int ret;
 
3339
3340	mutex_lock(&rdev->mutex);
 
3341	regulator->uA_load = uA_load;
3342	ret = drms_uA_update(rdev);
3343	mutex_unlock(&rdev->mutex);
 
 
 
 
3344
3345	return ret;
3346}
3347EXPORT_SYMBOL_GPL(regulator_set_load);
3348
3349/**
3350 * regulator_allow_bypass - allow the regulator to go into bypass mode
3351 *
3352 * @regulator: Regulator to configure
3353 * @enable: enable or disable bypass mode
3354 *
3355 * Allow the regulator to go into bypass mode if all other consumers
3356 * for the regulator also enable bypass mode and the machine
3357 * constraints allow this.  Bypass mode means that the regulator is
3358 * simply passing the input directly to the output with no regulation.
3359 */
3360int regulator_allow_bypass(struct regulator *regulator, bool enable)
3361{
3362	struct regulator_dev *rdev = regulator->rdev;
 
3363	int ret = 0;
3364
3365	if (!rdev->desc->ops->set_bypass)
3366		return 0;
3367
3368	if (rdev->constraints &&
3369	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370		return 0;
3371
3372	mutex_lock(&rdev->mutex);
3373
3374	if (enable && !regulator->bypass) {
3375		rdev->bypass_count++;
3376
3377		if (rdev->bypass_count == rdev->open_count) {
 
 
3378			ret = rdev->desc->ops->set_bypass(rdev, enable);
3379			if (ret != 0)
3380				rdev->bypass_count--;
 
 
3381		}
3382
3383	} else if (!enable && regulator->bypass) {
3384		rdev->bypass_count--;
3385
3386		if (rdev->bypass_count != rdev->open_count) {
 
 
3387			ret = rdev->desc->ops->set_bypass(rdev, enable);
3388			if (ret != 0)
3389				rdev->bypass_count++;
 
 
3390		}
3391	}
3392
3393	if (ret == 0)
3394		regulator->bypass = enable;
3395
3396	mutex_unlock(&rdev->mutex);
3397
3398	return ret;
3399}
3400EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3401
3402/**
3403 * regulator_register_notifier - register regulator event notifier
3404 * @regulator: regulator source
3405 * @nb: notifier block
3406 *
3407 * Register notifier block to receive regulator events.
3408 */
3409int regulator_register_notifier(struct regulator *regulator,
3410			      struct notifier_block *nb)
3411{
3412	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3413						nb);
3414}
3415EXPORT_SYMBOL_GPL(regulator_register_notifier);
3416
3417/**
3418 * regulator_unregister_notifier - unregister regulator event notifier
3419 * @regulator: regulator source
3420 * @nb: notifier block
3421 *
3422 * Unregister regulator event notifier block.
3423 */
3424int regulator_unregister_notifier(struct regulator *regulator,
3425				struct notifier_block *nb)
3426{
3427	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3428						  nb);
3429}
3430EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3431
3432/* notify regulator consumers and downstream regulator consumers.
3433 * Note mutex must be held by caller.
3434 */
3435static int _notifier_call_chain(struct regulator_dev *rdev,
3436				  unsigned long event, void *data)
3437{
3438	/* call rdev chain first */
3439	return blocking_notifier_call_chain(&rdev->notifier, event, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3440}
3441
3442/**
3443 * regulator_bulk_get - get multiple regulator consumers
3444 *
3445 * @dev:           Device to supply
3446 * @num_consumers: Number of consumers to register
3447 * @consumers:     Configuration of consumers; clients are stored here.
3448 *
3449 * @return 0 on success, an errno on failure.
3450 *
3451 * This helper function allows drivers to get several regulator
3452 * consumers in one operation.  If any of the regulators cannot be
3453 * acquired then any regulators that were allocated will be freed
3454 * before returning to the caller.
3455 */
3456int regulator_bulk_get(struct device *dev, int num_consumers,
3457		       struct regulator_bulk_data *consumers)
3458{
3459	int i;
3460	int ret;
3461
3462	for (i = 0; i < num_consumers; i++)
3463		consumers[i].consumer = NULL;
3464
3465	for (i = 0; i < num_consumers; i++) {
3466		consumers[i].consumer = _regulator_get(dev,
3467						       consumers[i].supply,
3468						       false,
3469						       !consumers[i].optional);
3470		if (IS_ERR(consumers[i].consumer)) {
3471			ret = PTR_ERR(consumers[i].consumer);
3472			dev_err(dev, "Failed to get supply '%s': %d\n",
3473				consumers[i].supply, ret);
3474			consumers[i].consumer = NULL;
3475			goto err;
3476		}
 
 
 
 
 
 
 
 
 
3477	}
3478
3479	return 0;
3480
3481err:
3482	while (--i >= 0)
3483		regulator_put(consumers[i].consumer);
3484
3485	return ret;
3486}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3487EXPORT_SYMBOL_GPL(regulator_bulk_get);
3488
3489static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3490{
3491	struct regulator_bulk_data *bulk = data;
3492
3493	bulk->ret = regulator_enable(bulk->consumer);
3494}
3495
3496/**
3497 * regulator_bulk_enable - enable multiple regulator consumers
3498 *
3499 * @num_consumers: Number of consumers
3500 * @consumers:     Consumer data; clients are stored here.
3501 * @return         0 on success, an errno on failure
3502 *
3503 * This convenience API allows consumers to enable multiple regulator
3504 * clients in a single API call.  If any consumers cannot be enabled
3505 * then any others that were enabled will be disabled again prior to
3506 * return.
3507 */
3508int regulator_bulk_enable(int num_consumers,
3509			  struct regulator_bulk_data *consumers)
3510{
3511	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512	int i;
3513	int ret = 0;
3514
3515	for (i = 0; i < num_consumers; i++) {
3516		if (consumers[i].consumer->always_on)
3517			consumers[i].ret = 0;
3518		else
3519			async_schedule_domain(regulator_bulk_enable_async,
3520					      &consumers[i], &async_domain);
3521	}
3522
3523	async_synchronize_full_domain(&async_domain);
3524
3525	/* If any consumer failed we need to unwind any that succeeded */
3526	for (i = 0; i < num_consumers; i++) {
3527		if (consumers[i].ret != 0) {
3528			ret = consumers[i].ret;
3529			goto err;
3530		}
3531	}
3532
3533	return 0;
3534
3535err:
3536	for (i = 0; i < num_consumers; i++) {
3537		if (consumers[i].ret < 0)
3538			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539			       consumers[i].ret);
3540		else
3541			regulator_disable(consumers[i].consumer);
3542	}
3543
3544	return ret;
3545}
3546EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3547
3548/**
3549 * regulator_bulk_disable - disable multiple regulator consumers
3550 *
3551 * @num_consumers: Number of consumers
3552 * @consumers:     Consumer data; clients are stored here.
3553 * @return         0 on success, an errno on failure
3554 *
3555 * This convenience API allows consumers to disable multiple regulator
3556 * clients in a single API call.  If any consumers cannot be disabled
3557 * then any others that were disabled will be enabled again prior to
3558 * return.
3559 */
3560int regulator_bulk_disable(int num_consumers,
3561			   struct regulator_bulk_data *consumers)
3562{
3563	int i;
3564	int ret, r;
3565
3566	for (i = num_consumers - 1; i >= 0; --i) {
3567		ret = regulator_disable(consumers[i].consumer);
3568		if (ret != 0)
3569			goto err;
3570	}
3571
3572	return 0;
3573
3574err:
3575	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576	for (++i; i < num_consumers; ++i) {
3577		r = regulator_enable(consumers[i].consumer);
3578		if (r != 0)
3579			pr_err("Failed to reename %s: %d\n",
3580			       consumers[i].supply, r);
3581	}
3582
3583	return ret;
3584}
3585EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3586
3587/**
3588 * regulator_bulk_force_disable - force disable multiple regulator consumers
3589 *
3590 * @num_consumers: Number of consumers
3591 * @consumers:     Consumer data; clients are stored here.
3592 * @return         0 on success, an errno on failure
3593 *
3594 * This convenience API allows consumers to forcibly disable multiple regulator
3595 * clients in a single API call.
3596 * NOTE: This should be used for situations when device damage will
3597 * likely occur if the regulators are not disabled (e.g. over temp).
3598 * Although regulator_force_disable function call for some consumers can
3599 * return error numbers, the function is called for all consumers.
3600 */
3601int regulator_bulk_force_disable(int num_consumers,
3602			   struct regulator_bulk_data *consumers)
3603{
3604	int i;
3605	int ret;
3606
3607	for (i = 0; i < num_consumers; i++)
3608		consumers[i].ret =
3609			    regulator_force_disable(consumers[i].consumer);
3610
3611	for (i = 0; i < num_consumers; i++) {
3612		if (consumers[i].ret != 0) {
3613			ret = consumers[i].ret;
3614			goto out;
3615		}
3616	}
3617
3618	return 0;
3619out:
3620	return ret;
3621}
3622EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3623
3624/**
3625 * regulator_bulk_free - free multiple regulator consumers
3626 *
3627 * @num_consumers: Number of consumers
3628 * @consumers:     Consumer data; clients are stored here.
3629 *
3630 * This convenience API allows consumers to free multiple regulator
3631 * clients in a single API call.
3632 */
3633void regulator_bulk_free(int num_consumers,
3634			 struct regulator_bulk_data *consumers)
3635{
3636	int i;
3637
3638	for (i = 0; i < num_consumers; i++) {
3639		regulator_put(consumers[i].consumer);
3640		consumers[i].consumer = NULL;
3641	}
3642}
3643EXPORT_SYMBOL_GPL(regulator_bulk_free);
3644
3645/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3646 * regulator_notifier_call_chain - call regulator event notifier
3647 * @rdev: regulator source
3648 * @event: notifier block
3649 * @data: callback-specific data.
3650 *
3651 * Called by regulator drivers to notify clients a regulator event has
3652 * occurred. We also notify regulator clients downstream.
3653 * Note lock must be held by caller.
3654 */
3655int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656				  unsigned long event, void *data)
3657{
3658	lockdep_assert_held_once(&rdev->mutex);
3659
3660	_notifier_call_chain(rdev, event, data);
3661	return NOTIFY_DONE;
3662
3663}
3664EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3665
3666/**
3667 * regulator_mode_to_status - convert a regulator mode into a status
3668 *
3669 * @mode: Mode to convert
3670 *
3671 * Convert a regulator mode into a status.
3672 */
3673int regulator_mode_to_status(unsigned int mode)
3674{
3675	switch (mode) {
3676	case REGULATOR_MODE_FAST:
3677		return REGULATOR_STATUS_FAST;
3678	case REGULATOR_MODE_NORMAL:
3679		return REGULATOR_STATUS_NORMAL;
3680	case REGULATOR_MODE_IDLE:
3681		return REGULATOR_STATUS_IDLE;
3682	case REGULATOR_MODE_STANDBY:
3683		return REGULATOR_STATUS_STANDBY;
3684	default:
3685		return REGULATOR_STATUS_UNDEFINED;
3686	}
3687}
3688EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3689
3690static struct attribute *regulator_dev_attrs[] = {
3691	&dev_attr_name.attr,
3692	&dev_attr_num_users.attr,
3693	&dev_attr_type.attr,
3694	&dev_attr_microvolts.attr,
3695	&dev_attr_microamps.attr,
3696	&dev_attr_opmode.attr,
3697	&dev_attr_state.attr,
3698	&dev_attr_status.attr,
3699	&dev_attr_bypass.attr,
3700	&dev_attr_requested_microamps.attr,
3701	&dev_attr_min_microvolts.attr,
3702	&dev_attr_max_microvolts.attr,
3703	&dev_attr_min_microamps.attr,
3704	&dev_attr_max_microamps.attr,
 
 
 
 
 
 
 
 
 
3705	&dev_attr_suspend_standby_state.attr,
3706	&dev_attr_suspend_mem_state.attr,
3707	&dev_attr_suspend_disk_state.attr,
3708	&dev_attr_suspend_standby_microvolts.attr,
3709	&dev_attr_suspend_mem_microvolts.attr,
3710	&dev_attr_suspend_disk_microvolts.attr,
3711	&dev_attr_suspend_standby_mode.attr,
3712	&dev_attr_suspend_mem_mode.attr,
3713	&dev_attr_suspend_disk_mode.attr,
3714	NULL
3715};
3716
3717/*
3718 * To avoid cluttering sysfs (and memory) with useless state, only
3719 * create attributes that can be meaningfully displayed.
3720 */
3721static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722					 struct attribute *attr, int idx)
3723{
3724	struct device *dev = kobj_to_dev(kobj);
3725	struct regulator_dev *rdev = dev_to_rdev(dev);
3726	const struct regulator_ops *ops = rdev->desc->ops;
3727	umode_t mode = attr->mode;
3728
3729	/* these three are always present */
3730	if (attr == &dev_attr_name.attr ||
3731	    attr == &dev_attr_num_users.attr ||
3732	    attr == &dev_attr_type.attr)
3733		return mode;
3734
3735	/* some attributes need specific methods to be displayed */
3736	if (attr == &dev_attr_microvolts.attr) {
3737		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741			return mode;
3742		return 0;
3743	}
3744
3745	if (attr == &dev_attr_microamps.attr)
3746		return ops->get_current_limit ? mode : 0;
3747
3748	if (attr == &dev_attr_opmode.attr)
3749		return ops->get_mode ? mode : 0;
3750
3751	if (attr == &dev_attr_state.attr)
3752		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3753
3754	if (attr == &dev_attr_status.attr)
3755		return ops->get_status ? mode : 0;
3756
3757	if (attr == &dev_attr_bypass.attr)
3758		return ops->get_bypass ? mode : 0;
3759
3760	/* some attributes are type-specific */
3761	if (attr == &dev_attr_requested_microamps.attr)
3762		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
 
 
 
 
 
 
 
3763
3764	/* constraints need specific supporting methods */
3765	if (attr == &dev_attr_min_microvolts.attr ||
3766	    attr == &dev_attr_max_microvolts.attr)
3767		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3768
3769	if (attr == &dev_attr_min_microamps.attr ||
3770	    attr == &dev_attr_max_microamps.attr)
3771		return ops->set_current_limit ? mode : 0;
3772
3773	if (attr == &dev_attr_suspend_standby_state.attr ||
3774	    attr == &dev_attr_suspend_mem_state.attr ||
3775	    attr == &dev_attr_suspend_disk_state.attr)
3776		return mode;
3777
3778	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3780	    attr == &dev_attr_suspend_disk_microvolts.attr)
3781		return ops->set_suspend_voltage ? mode : 0;
3782
3783	if (attr == &dev_attr_suspend_standby_mode.attr ||
3784	    attr == &dev_attr_suspend_mem_mode.attr ||
3785	    attr == &dev_attr_suspend_disk_mode.attr)
3786		return ops->set_suspend_mode ? mode : 0;
3787
3788	return mode;
3789}
3790
3791static const struct attribute_group regulator_dev_group = {
3792	.attrs = regulator_dev_attrs,
3793	.is_visible = regulator_attr_is_visible,
3794};
3795
3796static const struct attribute_group *regulator_dev_groups[] = {
3797	&regulator_dev_group,
3798	NULL
3799};
3800
3801static void regulator_dev_release(struct device *dev)
3802{
3803	struct regulator_dev *rdev = dev_get_drvdata(dev);
3804
 
3805	kfree(rdev->constraints);
3806	of_node_put(rdev->dev.of_node);
3807	kfree(rdev);
3808}
3809
3810static struct class regulator_class = {
3811	.name = "regulator",
3812	.dev_release = regulator_dev_release,
3813	.dev_groups = regulator_dev_groups,
3814};
3815
3816static void rdev_init_debugfs(struct regulator_dev *rdev)
3817{
3818	struct device *parent = rdev->dev.parent;
3819	const char *rname = rdev_get_name(rdev);
3820	char name[NAME_MAX];
3821
3822	/* Avoid duplicate debugfs directory names */
3823	if (parent && rname == rdev->desc->name) {
3824		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825			 rname);
3826		rname = name;
3827	}
3828
3829	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830	if (!rdev->debugfs) {
3831		rdev_warn(rdev, "Failed to create debugfs directory\n");
3832		return;
3833	}
3834
3835	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836			   &rdev->use_count);
3837	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838			   &rdev->open_count);
3839	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840			   &rdev->bypass_count);
3841}
3842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3843/**
3844 * regulator_register - register regulator
 
3845 * @regulator_desc: regulator to register
3846 * @cfg: runtime configuration for regulator
3847 *
3848 * Called by regulator drivers to register a regulator.
3849 * Returns a valid pointer to struct regulator_dev on success
3850 * or an ERR_PTR() on error.
3851 */
3852struct regulator_dev *
3853regulator_register(const struct regulator_desc *regulator_desc,
 
3854		   const struct regulator_config *cfg)
3855{
3856	const struct regulation_constraints *constraints = NULL;
3857	const struct regulator_init_data *init_data;
3858	struct regulator_config *config = NULL;
3859	static atomic_t regulator_no = ATOMIC_INIT(-1);
3860	struct regulator_dev *rdev;
3861	struct device *dev;
 
3862	int ret, i;
 
3863
3864	if (regulator_desc == NULL || cfg == NULL)
3865		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
3866
3867	dev = cfg->dev;
3868	WARN_ON(!dev);
3869
3870	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871		return ERR_PTR(-EINVAL);
 
 
3872
3873	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874	    regulator_desc->type != REGULATOR_CURRENT)
3875		return ERR_PTR(-EINVAL);
 
 
3876
3877	/* Only one of each should be implemented */
3878	WARN_ON(regulator_desc->ops->get_voltage &&
3879		regulator_desc->ops->get_voltage_sel);
3880	WARN_ON(regulator_desc->ops->set_voltage &&
3881		regulator_desc->ops->set_voltage_sel);
3882
3883	/* If we're using selectors we must implement list_voltage. */
3884	if (regulator_desc->ops->get_voltage_sel &&
3885	    !regulator_desc->ops->list_voltage) {
3886		return ERR_PTR(-EINVAL);
 
3887	}
3888	if (regulator_desc->ops->set_voltage_sel &&
3889	    !regulator_desc->ops->list_voltage) {
3890		return ERR_PTR(-EINVAL);
 
3891	}
3892
3893	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894	if (rdev == NULL)
3895		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
3896
3897	/*
3898	 * Duplicate the config so the driver could override it after
3899	 * parsing init data.
3900	 */
3901	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902	if (config == NULL) {
3903		kfree(rdev);
3904		return ERR_PTR(-ENOMEM);
3905	}
3906
3907	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908					       &rdev->dev.of_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3909	if (!init_data) {
3910		init_data = config->init_data;
3911		rdev->dev.of_node = of_node_get(config->of_node);
3912	}
3913
3914	mutex_lock(&regulator_list_mutex);
3915
3916	mutex_init(&rdev->mutex);
3917	rdev->reg_data = config->driver_data;
3918	rdev->owner = regulator_desc->owner;
3919	rdev->desc = regulator_desc;
3920	if (config->regmap)
3921		rdev->regmap = config->regmap;
3922	else if (dev_get_regmap(dev, NULL))
3923		rdev->regmap = dev_get_regmap(dev, NULL);
3924	else if (dev->parent)
3925		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926	INIT_LIST_HEAD(&rdev->consumer_list);
3927	INIT_LIST_HEAD(&rdev->list);
3928	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3930
3931	/* preform any regulator specific init */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3932	if (init_data && init_data->regulator_init) {
3933		ret = init_data->regulator_init(rdev->reg_data);
3934		if (ret < 0)
3935			goto clean;
3936	}
3937
3938	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939	    gpio_is_valid(config->ena_gpio)) {
3940		ret = regulator_ena_gpio_request(rdev, config);
3941		if (ret != 0) {
3942			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943				 config->ena_gpio, ret);
3944			goto clean;
3945		}
 
 
 
3946	}
3947
3948	/* register with sysfs */
3949	rdev->dev.class = &regulator_class;
3950	rdev->dev.parent = dev;
3951	dev_set_name(&rdev->dev, "regulator.%lu",
3952		    (unsigned long) atomic_inc_return(&regulator_no));
3953	ret = device_register(&rdev->dev);
3954	if (ret != 0) {
3955		put_device(&rdev->dev);
 
 
 
 
 
 
 
 
 
 
 
3956		goto wash;
3957	}
3958
3959	dev_set_drvdata(&rdev->dev, rdev);
3960
3961	/* set regulator constraints */
3962	if (init_data)
3963		constraints = &init_data->constraints;
3964
3965	ret = set_machine_constraints(rdev, constraints);
3966	if (ret < 0)
3967		goto scrub;
3968
3969	if (init_data && init_data->supply_regulator)
3970		rdev->supply_name = init_data->supply_regulator;
3971	else if (regulator_desc->supply_name)
3972		rdev->supply_name = regulator_desc->supply_name;
3973
3974	/* add consumers devices */
3975	if (init_data) {
3976		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977			ret = set_consumer_device_supply(rdev,
3978				init_data->consumer_supplies[i].dev_name,
3979				init_data->consumer_supplies[i].supply);
3980			if (ret < 0) {
3981				dev_err(dev, "Failed to set supply %s\n",
3982					init_data->consumer_supplies[i].supply);
3983				goto unset_supplies;
3984			}
3985		}
3986	}
3987
 
 
 
 
 
 
 
 
 
3988	rdev_init_debugfs(rdev);
3989out:
 
 
 
3990	mutex_unlock(&regulator_list_mutex);
 
 
 
 
3991	kfree(config);
3992	return rdev;
3993
3994unset_supplies:
 
3995	unset_regulator_supplies(rdev);
3996
3997scrub:
3998	regulator_ena_gpio_free(rdev);
3999	device_unregister(&rdev->dev);
4000	/* device core frees rdev */
4001	rdev = ERR_PTR(ret);
4002	goto out;
4003
4004wash:
 
 
 
4005	regulator_ena_gpio_free(rdev);
 
4006clean:
4007	kfree(rdev);
4008	rdev = ERR_PTR(ret);
4009	goto out;
 
 
 
 
 
4010}
4011EXPORT_SYMBOL_GPL(regulator_register);
4012
4013/**
4014 * regulator_unregister - unregister regulator
4015 * @rdev: regulator to unregister
4016 *
4017 * Called by regulator drivers to unregister a regulator.
4018 */
4019void regulator_unregister(struct regulator_dev *rdev)
4020{
4021	if (rdev == NULL)
4022		return;
4023
4024	if (rdev->supply) {
4025		while (rdev->use_count--)
4026			regulator_disable(rdev->supply);
4027		regulator_put(rdev->supply);
4028	}
 
 
 
4029	mutex_lock(&regulator_list_mutex);
4030	debugfs_remove_recursive(rdev->debugfs);
4031	flush_work(&rdev->disable_work.work);
4032	WARN_ON(rdev->open_count);
 
4033	unset_regulator_supplies(rdev);
4034	list_del(&rdev->list);
4035	mutex_unlock(&regulator_list_mutex);
4036	regulator_ena_gpio_free(rdev);
4037	device_unregister(&rdev->dev);
 
 
4038}
4039EXPORT_SYMBOL_GPL(regulator_unregister);
4040
4041static int _regulator_suspend_prepare(struct device *dev, void *data)
 
 
 
 
 
 
 
4042{
4043	struct regulator_dev *rdev = dev_to_rdev(dev);
4044	const suspend_state_t *state = data;
4045	int ret;
 
 
 
 
 
4046
4047	mutex_lock(&rdev->mutex);
4048	ret = suspend_prepare(rdev, *state);
4049	mutex_unlock(&rdev->mutex);
4050
4051	return ret;
4052}
4053
4054/**
4055 * regulator_suspend_prepare - prepare regulators for system wide suspend
4056 * @state: system suspend state
4057 *
4058 * Configure each regulator with it's suspend operating parameters for state.
4059 * This will usually be called by machine suspend code prior to supending.
4060 */
4061int regulator_suspend_prepare(suspend_state_t state)
4062{
4063	/* ON is handled by regulator active state */
4064	if (state == PM_SUSPEND_ON)
4065		return -EINVAL;
 
 
 
 
 
4066
4067	return class_for_each_device(&regulator_class, NULL, &state,
4068				     _regulator_suspend_prepare);
4069}
4070EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4071
4072static int _regulator_suspend_finish(struct device *dev, void *data)
4073{
4074	struct regulator_dev *rdev = dev_to_rdev(dev);
4075	int ret;
4076
4077	mutex_lock(&rdev->mutex);
4078	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4079		if (!_regulator_is_enabled(rdev)) {
4080			ret = _regulator_do_enable(rdev);
4081			if (ret)
4082				dev_err(dev,
4083					"Failed to resume regulator %d\n",
4084					ret);
4085		}
4086	} else {
4087		if (!have_full_constraints())
4088			goto unlock;
4089		if (!_regulator_is_enabled(rdev))
4090			goto unlock;
4091
4092		ret = _regulator_do_disable(rdev);
4093		if (ret)
4094			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4095	}
4096unlock:
4097	mutex_unlock(&rdev->mutex);
4098
4099	/* Keep processing regulators in spite of any errors */
4100	return 0;
4101}
 
 
 
 
4102
4103/**
4104 * regulator_suspend_finish - resume regulators from system wide suspend
4105 *
4106 * Turn on regulators that might be turned off by regulator_suspend_prepare
4107 * and that should be turned on according to the regulators properties.
4108 */
4109int regulator_suspend_finish(void)
4110{
4111	return class_for_each_device(&regulator_class, NULL, NULL,
4112				     _regulator_suspend_finish);
4113}
4114EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4115
 
 
 
 
 
 
 
 
4116/**
4117 * regulator_has_full_constraints - the system has fully specified constraints
4118 *
4119 * Calling this function will cause the regulator API to disable all
4120 * regulators which have a zero use count and don't have an always_on
4121 * constraint in a late_initcall.
4122 *
4123 * The intention is that this will become the default behaviour in a
4124 * future kernel release so users are encouraged to use this facility
4125 * now.
4126 */
4127void regulator_has_full_constraints(void)
4128{
4129	has_full_constraints = 1;
4130}
4131EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4132
4133/**
4134 * rdev_get_drvdata - get rdev regulator driver data
4135 * @rdev: regulator
4136 *
4137 * Get rdev regulator driver private data. This call can be used in the
4138 * regulator driver context.
4139 */
4140void *rdev_get_drvdata(struct regulator_dev *rdev)
4141{
4142	return rdev->reg_data;
4143}
4144EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4145
4146/**
4147 * regulator_get_drvdata - get regulator driver data
4148 * @regulator: regulator
4149 *
4150 * Get regulator driver private data. This call can be used in the consumer
4151 * driver context when non API regulator specific functions need to be called.
4152 */
4153void *regulator_get_drvdata(struct regulator *regulator)
4154{
4155	return regulator->rdev->reg_data;
4156}
4157EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4158
4159/**
4160 * regulator_set_drvdata - set regulator driver data
4161 * @regulator: regulator
4162 * @data: data
4163 */
4164void regulator_set_drvdata(struct regulator *regulator, void *data)
4165{
4166	regulator->rdev->reg_data = data;
4167}
4168EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4169
4170/**
4171 * regulator_get_id - get regulator ID
4172 * @rdev: regulator
4173 */
4174int rdev_get_id(struct regulator_dev *rdev)
4175{
4176	return rdev->desc->id;
4177}
4178EXPORT_SYMBOL_GPL(rdev_get_id);
4179
4180struct device *rdev_get_dev(struct regulator_dev *rdev)
4181{
4182	return &rdev->dev;
4183}
4184EXPORT_SYMBOL_GPL(rdev_get_dev);
4185
 
 
 
 
 
 
4186void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4187{
4188	return reg_init_data->driver_data;
4189}
4190EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4191
4192#ifdef CONFIG_DEBUG_FS
4193static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194				    size_t count, loff_t *ppos)
4195{
4196	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197	ssize_t len, ret = 0;
4198	struct regulator_map *map;
4199
4200	if (!buf)
4201		return -ENOMEM;
4202
4203	list_for_each_entry(map, &regulator_map_list, list) {
4204		len = snprintf(buf + ret, PAGE_SIZE - ret,
4205			       "%s -> %s.%s\n",
4206			       rdev_get_name(map->regulator), map->dev_name,
4207			       map->supply);
4208		if (len >= 0)
4209			ret += len;
4210		if (ret > PAGE_SIZE) {
4211			ret = PAGE_SIZE;
4212			break;
4213		}
4214	}
4215
4216	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4217
4218	kfree(buf);
4219
4220	return ret;
4221}
4222#endif
4223
4224static const struct file_operations supply_map_fops = {
4225#ifdef CONFIG_DEBUG_FS
4226	.read = supply_map_read_file,
4227	.llseek = default_llseek,
4228#endif
4229};
4230
4231#ifdef CONFIG_DEBUG_FS
4232struct summary_data {
4233	struct seq_file *s;
4234	struct regulator_dev *parent;
4235	int level;
4236};
4237
4238static void regulator_summary_show_subtree(struct seq_file *s,
4239					   struct regulator_dev *rdev,
4240					   int level);
4241
4242static int regulator_summary_show_children(struct device *dev, void *data)
4243{
4244	struct regulator_dev *rdev = dev_to_rdev(dev);
4245	struct summary_data *summary_data = data;
4246
4247	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248		regulator_summary_show_subtree(summary_data->s, rdev,
4249					       summary_data->level + 1);
4250
4251	return 0;
4252}
4253
4254static void regulator_summary_show_subtree(struct seq_file *s,
4255					   struct regulator_dev *rdev,
4256					   int level)
4257{
4258	struct regulation_constraints *c;
4259	struct regulator *consumer;
4260	struct summary_data summary_data;
 
4261
4262	if (!rdev)
4263		return;
4264
4265	seq_printf(s, "%*s%-*s %3d %4d %6d ",
 
4266		   level * 3 + 1, "",
4267		   30 - level * 3, rdev_get_name(rdev),
4268		   rdev->use_count, rdev->open_count, rdev->bypass_count);
 
4269
4270	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
 
4272
4273	c = rdev->constraints;
4274	if (c) {
4275		switch (rdev->desc->type) {
4276		case REGULATOR_VOLTAGE:
4277			seq_printf(s, "%5dmV %5dmV ",
4278				   c->min_uV / 1000, c->max_uV / 1000);
4279			break;
4280		case REGULATOR_CURRENT:
4281			seq_printf(s, "%5dmA %5dmA ",
4282				   c->min_uA / 1000, c->max_uA / 1000);
4283			break;
4284		}
4285	}
4286
4287	seq_puts(s, "\n");
4288
4289	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290		if (consumer->dev->class == &regulator_class)
4291			continue;
4292
4293		seq_printf(s, "%*s%-*s ",
4294			   (level + 1) * 3 + 1, "",
4295			   30 - (level + 1) * 3, dev_name(consumer->dev));
 
 
4296
4297		switch (rdev->desc->type) {
4298		case REGULATOR_VOLTAGE:
4299			seq_printf(s, "%37dmV %5dmV",
4300				   consumer->min_uV / 1000,
4301				   consumer->max_uV / 1000);
 
 
 
 
4302			break;
4303		case REGULATOR_CURRENT:
4304			break;
4305		}
4306
4307		seq_puts(s, "\n");
4308	}
4309
4310	summary_data.s = s;
4311	summary_data.level = level;
4312	summary_data.parent = rdev;
4313
4314	class_for_each_device(&regulator_class, NULL, &summary_data,
4315			      regulator_summary_show_children);
4316}
4317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4318static int regulator_summary_show_roots(struct device *dev, void *data)
4319{
4320	struct regulator_dev *rdev = dev_to_rdev(dev);
4321	struct seq_file *s = data;
4322
4323	if (!rdev->supply)
4324		regulator_summary_show_subtree(s, rdev, 0);
4325
4326	return 0;
4327}
4328
4329static int regulator_summary_show(struct seq_file *s, void *data)
4330{
4331	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4332	seq_puts(s, "-------------------------------------------------------------------------------\n");
 
 
 
 
4333
4334	class_for_each_device(&regulator_class, NULL, s,
4335			      regulator_summary_show_roots);
4336
 
 
4337	return 0;
4338}
4339
4340static int regulator_summary_open(struct inode *inode, struct file *file)
4341{
4342	return single_open(file, regulator_summary_show, inode->i_private);
4343}
4344#endif
4345
4346static const struct file_operations regulator_summary_fops = {
4347#ifdef CONFIG_DEBUG_FS
4348	.open		= regulator_summary_open,
4349	.read		= seq_read,
4350	.llseek		= seq_lseek,
4351	.release	= single_release,
4352#endif
4353};
4354
4355static int __init regulator_init(void)
4356{
4357	int ret;
4358
4359	ret = class_register(&regulator_class);
4360
4361	debugfs_root = debugfs_create_dir("regulator", NULL);
4362	if (!debugfs_root)
4363		pr_warn("regulator: Failed to create debugfs directory\n");
4364
 
4365	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366			    &supply_map_fops);
4367
4368	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369			    NULL, &regulator_summary_fops);
 
 
4370
4371	regulator_dummy_init();
4372
4373	return ret;
4374}
4375
4376/* init early to allow our consumers to complete system booting */
4377core_initcall(regulator_init);
4378
4379static int __init regulator_late_cleanup(struct device *dev, void *data)
4380{
4381	struct regulator_dev *rdev = dev_to_rdev(dev);
4382	const struct regulator_ops *ops = rdev->desc->ops;
4383	struct regulation_constraints *c = rdev->constraints;
4384	int enabled, ret;
4385
4386	if (c && c->always_on)
4387		return 0;
4388
4389	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390		return 0;
4391
4392	mutex_lock(&rdev->mutex);
4393
4394	if (rdev->use_count)
4395		goto unlock;
4396
4397	/* If we can't read the status assume it's on. */
4398	if (ops->is_enabled)
4399		enabled = ops->is_enabled(rdev);
4400	else
4401		enabled = 1;
4402
4403	if (!enabled)
4404		goto unlock;
4405
4406	if (have_full_constraints()) {
4407		/* We log since this may kill the system if it goes
4408		 * wrong. */
 
4409		rdev_info(rdev, "disabling\n");
4410		ret = _regulator_do_disable(rdev);
4411		if (ret != 0)
4412			rdev_err(rdev, "couldn't disable: %d\n", ret);
4413	} else {
4414		/* The intention is that in future we will
4415		 * assume that full constraints are provided
4416		 * so warn even if we aren't going to do
4417		 * anything here.
4418		 */
4419		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4420	}
4421
4422unlock:
4423	mutex_unlock(&rdev->mutex);
4424
4425	return 0;
4426}
4427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4428static int __init regulator_init_complete(void)
4429{
4430	/*
4431	 * Since DT doesn't provide an idiomatic mechanism for
4432	 * enabling full constraints and since it's much more natural
4433	 * with DT to provide them just assume that a DT enabled
4434	 * system has full constraints.
4435	 */
4436	if (of_have_populated_dt())
4437		has_full_constraints = true;
4438
4439	/* If we have a full configuration then disable any regulators
4440	 * we have permission to change the status for and which are
4441	 * not in use or always_on.  This is effectively the default
4442	 * for DT and ACPI as they have full constraints.
 
 
 
 
 
 
4443	 */
4444	class_for_each_device(&regulator_class, NULL, NULL,
4445			      regulator_late_cleanup);
4446
4447	return 0;
4448}
4449late_initcall_sync(regulator_init_complete);