Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* e1000_hw.c
   5 * Shared functions for accessing and configuring the MAC
   6 */
   7
   8#include <linux/bitfield.h>
   9#include "e1000.h"
  10
  11static s32 e1000_check_downshift(struct e1000_hw *hw);
  12static s32 e1000_check_polarity(struct e1000_hw *hw,
  13				e1000_rev_polarity *polarity);
  14static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  15static void e1000_clear_vfta(struct e1000_hw *hw);
  16static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  17					      bool link_up);
  18static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  19static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  20static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  21static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  22				  u16 *max_length);
  23static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  24static s32 e1000_id_led_init(struct e1000_hw *hw);
  25static void e1000_init_rx_addrs(struct e1000_hw *hw);
  26static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  27				  struct e1000_phy_info *phy_info);
  28static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  29				  struct e1000_phy_info *phy_info);
  30static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  31static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  32static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  33static s32 e1000_set_phy_type(struct e1000_hw *hw);
  34static void e1000_phy_init_script(struct e1000_hw *hw);
  35static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  36static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  37static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  38static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  39static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  40static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  41static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  42static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  43static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  44static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  45static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  46				  u16 words, u16 *data);
  47static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  48					u16 words, u16 *data);
  49static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  50static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  51static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  52static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  53static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  54				  u16 phy_data);
  55static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  56				 u16 *phy_data);
  57static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  58static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  59static void e1000_release_eeprom(struct e1000_hw *hw);
  60static void e1000_standby_eeprom(struct e1000_hw *hw);
  61static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  62static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  63static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  64static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  65				u16 *data);
  66static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  67				 u16 *data);
  68
  69/* IGP cable length table */
  70static const
  71u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  72	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  73	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  74	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  75	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
  76	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
  77	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
  78	    100,
  79	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
  80	    110, 110,
  81	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
  82	    120, 120
  83};
  84
  85static DEFINE_MUTEX(e1000_eeprom_lock);
  86static DEFINE_SPINLOCK(e1000_phy_lock);
  87
  88/**
  89 * e1000_set_phy_type - Set the phy type member in the hw struct.
  90 * @hw: Struct containing variables accessed by shared code
  91 */
  92static s32 e1000_set_phy_type(struct e1000_hw *hw)
  93{
  94	if (hw->mac_type == e1000_undefined)
  95		return -E1000_ERR_PHY_TYPE;
  96
  97	switch (hw->phy_id) {
  98	case M88E1000_E_PHY_ID:
  99	case M88E1000_I_PHY_ID:
 100	case M88E1011_I_PHY_ID:
 101	case M88E1111_I_PHY_ID:
 102	case M88E1118_E_PHY_ID:
 103		hw->phy_type = e1000_phy_m88;
 104		break;
 105	case IGP01E1000_I_PHY_ID:
 106		if (hw->mac_type == e1000_82541 ||
 107		    hw->mac_type == e1000_82541_rev_2 ||
 108		    hw->mac_type == e1000_82547 ||
 109		    hw->mac_type == e1000_82547_rev_2)
 110			hw->phy_type = e1000_phy_igp;
 111		break;
 112	case RTL8211B_PHY_ID:
 113		hw->phy_type = e1000_phy_8211;
 114		break;
 115	case RTL8201N_PHY_ID:
 116		hw->phy_type = e1000_phy_8201;
 117		break;
 118	default:
 119		/* Should never have loaded on this device */
 120		hw->phy_type = e1000_phy_undefined;
 121		return -E1000_ERR_PHY_TYPE;
 122	}
 123
 124	return E1000_SUCCESS;
 125}
 126
 127/**
 128 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 129 * @hw: Struct containing variables accessed by shared code
 130 */
 131static void e1000_phy_init_script(struct e1000_hw *hw)
 132{
 
 133	u16 phy_saved_data;
 134
 135	if (hw->phy_init_script) {
 136		msleep(20);
 137
 138		/* Save off the current value of register 0x2F5B to be restored
 139		 * at the end of this routine.
 140		 */
 141		e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 142
 143		/* Disabled the PHY transmitter */
 144		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 145		msleep(20);
 146
 147		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 148		msleep(5);
 149
 150		switch (hw->mac_type) {
 151		case e1000_82541:
 152		case e1000_82547:
 153			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 154			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 155			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 156			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 157			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 158			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 159			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 160			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 161			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 162			break;
 163
 164		case e1000_82541_rev_2:
 165		case e1000_82547_rev_2:
 166			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 167			break;
 168		default:
 169			break;
 170		}
 171
 172		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 173		msleep(20);
 174
 175		/* Now enable the transmitter */
 176		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 177
 178		if (hw->mac_type == e1000_82547) {
 179			u16 fused, fine, coarse;
 180
 181			/* Move to analog registers page */
 182			e1000_read_phy_reg(hw,
 183					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 184					   &fused);
 185
 186			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 187				e1000_read_phy_reg(hw,
 188						   IGP01E1000_ANALOG_FUSE_STATUS,
 189						   &fused);
 190
 191				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 192				coarse =
 193				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 194
 195				if (coarse >
 196				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 197					coarse -=
 198					    IGP01E1000_ANALOG_FUSE_COARSE_10;
 199					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 200				} else if (coarse ==
 201					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 202					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 203
 204				fused =
 205				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 206				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 207				    (coarse &
 208				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 209
 210				e1000_write_phy_reg(hw,
 211						    IGP01E1000_ANALOG_FUSE_CONTROL,
 212						    fused);
 213				e1000_write_phy_reg(hw,
 214						    IGP01E1000_ANALOG_FUSE_BYPASS,
 215						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 216			}
 217		}
 218	}
 219}
 220
 221/**
 222 * e1000_set_mac_type - Set the mac type member in the hw struct.
 223 * @hw: Struct containing variables accessed by shared code
 224 */
 225s32 e1000_set_mac_type(struct e1000_hw *hw)
 226{
 227	switch (hw->device_id) {
 228	case E1000_DEV_ID_82542:
 229		switch (hw->revision_id) {
 230		case E1000_82542_2_0_REV_ID:
 231			hw->mac_type = e1000_82542_rev2_0;
 232			break;
 233		case E1000_82542_2_1_REV_ID:
 234			hw->mac_type = e1000_82542_rev2_1;
 235			break;
 236		default:
 237			/* Invalid 82542 revision ID */
 238			return -E1000_ERR_MAC_TYPE;
 239		}
 240		break;
 241	case E1000_DEV_ID_82543GC_FIBER:
 242	case E1000_DEV_ID_82543GC_COPPER:
 243		hw->mac_type = e1000_82543;
 244		break;
 245	case E1000_DEV_ID_82544EI_COPPER:
 246	case E1000_DEV_ID_82544EI_FIBER:
 247	case E1000_DEV_ID_82544GC_COPPER:
 248	case E1000_DEV_ID_82544GC_LOM:
 249		hw->mac_type = e1000_82544;
 250		break;
 251	case E1000_DEV_ID_82540EM:
 252	case E1000_DEV_ID_82540EM_LOM:
 253	case E1000_DEV_ID_82540EP:
 254	case E1000_DEV_ID_82540EP_LOM:
 255	case E1000_DEV_ID_82540EP_LP:
 256		hw->mac_type = e1000_82540;
 257		break;
 258	case E1000_DEV_ID_82545EM_COPPER:
 259	case E1000_DEV_ID_82545EM_FIBER:
 260		hw->mac_type = e1000_82545;
 261		break;
 262	case E1000_DEV_ID_82545GM_COPPER:
 263	case E1000_DEV_ID_82545GM_FIBER:
 264	case E1000_DEV_ID_82545GM_SERDES:
 265		hw->mac_type = e1000_82545_rev_3;
 266		break;
 267	case E1000_DEV_ID_82546EB_COPPER:
 268	case E1000_DEV_ID_82546EB_FIBER:
 269	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 270		hw->mac_type = e1000_82546;
 271		break;
 272	case E1000_DEV_ID_82546GB_COPPER:
 273	case E1000_DEV_ID_82546GB_FIBER:
 274	case E1000_DEV_ID_82546GB_SERDES:
 275	case E1000_DEV_ID_82546GB_PCIE:
 276	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 277	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 278		hw->mac_type = e1000_82546_rev_3;
 279		break;
 280	case E1000_DEV_ID_82541EI:
 281	case E1000_DEV_ID_82541EI_MOBILE:
 282	case E1000_DEV_ID_82541ER_LOM:
 283		hw->mac_type = e1000_82541;
 284		break;
 285	case E1000_DEV_ID_82541ER:
 286	case E1000_DEV_ID_82541GI:
 287	case E1000_DEV_ID_82541GI_LF:
 288	case E1000_DEV_ID_82541GI_MOBILE:
 289		hw->mac_type = e1000_82541_rev_2;
 290		break;
 291	case E1000_DEV_ID_82547EI:
 292	case E1000_DEV_ID_82547EI_MOBILE:
 293		hw->mac_type = e1000_82547;
 294		break;
 295	case E1000_DEV_ID_82547GI:
 296		hw->mac_type = e1000_82547_rev_2;
 297		break;
 298	case E1000_DEV_ID_INTEL_CE4100_GBE:
 299		hw->mac_type = e1000_ce4100;
 300		break;
 301	default:
 302		/* Should never have loaded on this device */
 303		return -E1000_ERR_MAC_TYPE;
 304	}
 305
 306	switch (hw->mac_type) {
 307	case e1000_82541:
 308	case e1000_82547:
 309	case e1000_82541_rev_2:
 310	case e1000_82547_rev_2:
 311		hw->asf_firmware_present = true;
 312		break;
 313	default:
 314		break;
 315	}
 316
 317	/* The 82543 chip does not count tx_carrier_errors properly in
 318	 * FD mode
 319	 */
 320	if (hw->mac_type == e1000_82543)
 321		hw->bad_tx_carr_stats_fd = true;
 322
 323	if (hw->mac_type > e1000_82544)
 324		hw->has_smbus = true;
 325
 326	return E1000_SUCCESS;
 327}
 328
 329/**
 330 * e1000_set_media_type - Set media type and TBI compatibility.
 331 * @hw: Struct containing variables accessed by shared code
 332 */
 333void e1000_set_media_type(struct e1000_hw *hw)
 334{
 335	u32 status;
 336
 337	if (hw->mac_type != e1000_82543) {
 338		/* tbi_compatibility is only valid on 82543 */
 339		hw->tbi_compatibility_en = false;
 340	}
 341
 342	switch (hw->device_id) {
 343	case E1000_DEV_ID_82545GM_SERDES:
 344	case E1000_DEV_ID_82546GB_SERDES:
 345		hw->media_type = e1000_media_type_internal_serdes;
 346		break;
 347	default:
 348		switch (hw->mac_type) {
 349		case e1000_82542_rev2_0:
 350		case e1000_82542_rev2_1:
 351			hw->media_type = e1000_media_type_fiber;
 352			break;
 353		case e1000_ce4100:
 354			hw->media_type = e1000_media_type_copper;
 355			break;
 356		default:
 357			status = er32(STATUS);
 358			if (status & E1000_STATUS_TBIMODE) {
 359				hw->media_type = e1000_media_type_fiber;
 360				/* tbi_compatibility not valid on fiber */
 361				hw->tbi_compatibility_en = false;
 362			} else {
 363				hw->media_type = e1000_media_type_copper;
 364			}
 365			break;
 366		}
 367	}
 368}
 369
 370/**
 371 * e1000_reset_hw - reset the hardware completely
 372 * @hw: Struct containing variables accessed by shared code
 373 *
 374 * Reset the transmit and receive units; mask and clear all interrupts.
 375 */
 376s32 e1000_reset_hw(struct e1000_hw *hw)
 377{
 378	u32 ctrl;
 379	u32 ctrl_ext;
 
 380	u32 manc;
 381	u32 led_ctrl;
 382	s32 ret_val;
 383
 384	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 385	if (hw->mac_type == e1000_82542_rev2_0) {
 386		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 387		e1000_pci_clear_mwi(hw);
 388	}
 389
 390	/* Clear interrupt mask to stop board from generating interrupts */
 391	e_dbg("Masking off all interrupts\n");
 392	ew32(IMC, 0xffffffff);
 393
 394	/* Disable the Transmit and Receive units.  Then delay to allow
 395	 * any pending transactions to complete before we hit the MAC with
 396	 * the global reset.
 397	 */
 398	ew32(RCTL, 0);
 399	ew32(TCTL, E1000_TCTL_PSP);
 400	E1000_WRITE_FLUSH();
 401
 402	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 403	hw->tbi_compatibility_on = false;
 404
 405	/* Delay to allow any outstanding PCI transactions to complete before
 406	 * resetting the device
 407	 */
 408	msleep(10);
 409
 410	ctrl = er32(CTRL);
 411
 412	/* Must reset the PHY before resetting the MAC */
 413	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 414		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 415		E1000_WRITE_FLUSH();
 416		msleep(5);
 417	}
 418
 419	/* Issue a global reset to the MAC.  This will reset the chip's
 420	 * transmit, receive, DMA, and link units.  It will not effect
 421	 * the current PCI configuration.  The global reset bit is self-
 422	 * clearing, and should clear within a microsecond.
 423	 */
 424	e_dbg("Issuing a global reset to MAC\n");
 425
 426	switch (hw->mac_type) {
 427	case e1000_82544:
 428	case e1000_82540:
 429	case e1000_82545:
 430	case e1000_82546:
 431	case e1000_82541:
 432	case e1000_82541_rev_2:
 433		/* These controllers can't ack the 64-bit write when issuing the
 434		 * reset, so use IO-mapping as a workaround to issue the reset
 435		 */
 436		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 437		break;
 438	case e1000_82545_rev_3:
 439	case e1000_82546_rev_3:
 440		/* Reset is performed on a shadow of the control register */
 441		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 442		break;
 443	case e1000_ce4100:
 444	default:
 445		ew32(CTRL, (ctrl | E1000_CTRL_RST));
 446		break;
 447	}
 448
 449	/* After MAC reset, force reload of EEPROM to restore power-on settings
 450	 * to device.  Later controllers reload the EEPROM automatically, so
 451	 * just wait for reload to complete.
 452	 */
 453	switch (hw->mac_type) {
 454	case e1000_82542_rev2_0:
 455	case e1000_82542_rev2_1:
 456	case e1000_82543:
 457	case e1000_82544:
 458		/* Wait for reset to complete */
 459		udelay(10);
 460		ctrl_ext = er32(CTRL_EXT);
 461		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 462		ew32(CTRL_EXT, ctrl_ext);
 463		E1000_WRITE_FLUSH();
 464		/* Wait for EEPROM reload */
 465		msleep(2);
 466		break;
 467	case e1000_82541:
 468	case e1000_82541_rev_2:
 469	case e1000_82547:
 470	case e1000_82547_rev_2:
 471		/* Wait for EEPROM reload */
 472		msleep(20);
 473		break;
 474	default:
 475		/* Auto read done will delay 5ms or poll based on mac type */
 476		ret_val = e1000_get_auto_rd_done(hw);
 477		if (ret_val)
 478			return ret_val;
 479		break;
 480	}
 481
 482	/* Disable HW ARPs on ASF enabled adapters */
 483	if (hw->mac_type >= e1000_82540) {
 484		manc = er32(MANC);
 485		manc &= ~(E1000_MANC_ARP_EN);
 486		ew32(MANC, manc);
 487	}
 488
 489	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 490		e1000_phy_init_script(hw);
 491
 492		/* Configure activity LED after PHY reset */
 493		led_ctrl = er32(LEDCTL);
 494		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 495		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 496		ew32(LEDCTL, led_ctrl);
 497	}
 498
 499	/* Clear interrupt mask to stop board from generating interrupts */
 500	e_dbg("Masking off all interrupts\n");
 501	ew32(IMC, 0xffffffff);
 502
 503	/* Clear any pending interrupt events. */
 504	er32(ICR);
 505
 506	/* If MWI was previously enabled, reenable it. */
 507	if (hw->mac_type == e1000_82542_rev2_0) {
 508		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 509			e1000_pci_set_mwi(hw);
 510	}
 511
 512	return E1000_SUCCESS;
 513}
 514
 515/**
 516 * e1000_init_hw - Performs basic configuration of the adapter.
 517 * @hw: Struct containing variables accessed by shared code
 518 *
 519 * Assumes that the controller has previously been reset and is in a
 520 * post-reset uninitialized state. Initializes the receive address registers,
 521 * multicast table, and VLAN filter table. Calls routines to setup link
 522 * configuration and flow control settings. Clears all on-chip counters. Leaves
 523 * the transmit and receive units disabled and uninitialized.
 524 */
 525s32 e1000_init_hw(struct e1000_hw *hw)
 526{
 527	u32 ctrl;
 528	u32 i;
 529	s32 ret_val;
 530	u32 mta_size;
 531	u32 ctrl_ext;
 532
 533	/* Initialize Identification LED */
 534	ret_val = e1000_id_led_init(hw);
 535	if (ret_val) {
 536		e_dbg("Error Initializing Identification LED\n");
 537		return ret_val;
 538	}
 539
 540	/* Set the media type and TBI compatibility */
 541	e1000_set_media_type(hw);
 542
 543	/* Disabling VLAN filtering. */
 544	e_dbg("Initializing the IEEE VLAN\n");
 545	if (hw->mac_type < e1000_82545_rev_3)
 546		ew32(VET, 0);
 547	e1000_clear_vfta(hw);
 548
 549	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 550	if (hw->mac_type == e1000_82542_rev2_0) {
 551		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 552		e1000_pci_clear_mwi(hw);
 553		ew32(RCTL, E1000_RCTL_RST);
 554		E1000_WRITE_FLUSH();
 555		msleep(5);
 556	}
 557
 558	/* Setup the receive address. This involves initializing all of the
 559	 * Receive Address Registers (RARs 0 - 15).
 560	 */
 561	e1000_init_rx_addrs(hw);
 562
 563	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 564	if (hw->mac_type == e1000_82542_rev2_0) {
 565		ew32(RCTL, 0);
 566		E1000_WRITE_FLUSH();
 567		msleep(1);
 568		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 569			e1000_pci_set_mwi(hw);
 570	}
 571
 572	/* Zero out the Multicast HASH table */
 573	e_dbg("Zeroing the MTA\n");
 574	mta_size = E1000_MC_TBL_SIZE;
 575	for (i = 0; i < mta_size; i++) {
 576		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 577		/* use write flush to prevent Memory Write Block (MWB) from
 578		 * occurring when accessing our register space
 579		 */
 580		E1000_WRITE_FLUSH();
 581	}
 582
 583	/* Set the PCI priority bit correctly in the CTRL register.  This
 584	 * determines if the adapter gives priority to receives, or if it
 585	 * gives equal priority to transmits and receives.  Valid only on
 586	 * 82542 and 82543 silicon.
 587	 */
 588	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 589		ctrl = er32(CTRL);
 590		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 591	}
 592
 593	switch (hw->mac_type) {
 594	case e1000_82545_rev_3:
 595	case e1000_82546_rev_3:
 596		break;
 597	default:
 598		/* Workaround for PCI-X problem when BIOS sets MMRBC
 599		 * incorrectly.
 600		 */
 601		if (hw->bus_type == e1000_bus_type_pcix &&
 602		    e1000_pcix_get_mmrbc(hw) > 2048)
 603			e1000_pcix_set_mmrbc(hw, 2048);
 604		break;
 605	}
 606
 607	/* Call a subroutine to configure the link and setup flow control. */
 608	ret_val = e1000_setup_link(hw);
 609
 610	/* Set the transmit descriptor write-back policy */
 611	if (hw->mac_type > e1000_82544) {
 612		ctrl = er32(TXDCTL);
 613		ctrl =
 614		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 615		    E1000_TXDCTL_FULL_TX_DESC_WB;
 616		ew32(TXDCTL, ctrl);
 617	}
 618
 619	/* Clear all of the statistics registers (clear on read).  It is
 620	 * important that we do this after we have tried to establish link
 621	 * because the symbol error count will increment wildly if there
 622	 * is no link.
 623	 */
 624	e1000_clear_hw_cntrs(hw);
 625
 626	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 627	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 628		ctrl_ext = er32(CTRL_EXT);
 629		/* Relaxed ordering must be disabled to avoid a parity
 630		 * error crash in a PCI slot.
 631		 */
 632		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 633		ew32(CTRL_EXT, ctrl_ext);
 634	}
 635
 636	return ret_val;
 637}
 638
 639/**
 640 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 641 * @hw: Struct containing variables accessed by shared code.
 642 */
 643static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 644{
 645	u16 eeprom_data;
 646	s32 ret_val;
 647
 648	if (hw->media_type != e1000_media_type_internal_serdes)
 649		return E1000_SUCCESS;
 650
 651	switch (hw->mac_type) {
 652	case e1000_82545_rev_3:
 653	case e1000_82546_rev_3:
 654		break;
 655	default:
 656		return E1000_SUCCESS;
 657	}
 658
 659	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 660				    &eeprom_data);
 661	if (ret_val)
 662		return ret_val;
 663
 664	if (eeprom_data != EEPROM_RESERVED_WORD) {
 665		/* Adjust SERDES output amplitude only. */
 666		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 667		ret_val =
 668		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 669		if (ret_val)
 670			return ret_val;
 671	}
 672
 673	return E1000_SUCCESS;
 674}
 675
 676/**
 677 * e1000_setup_link - Configures flow control and link settings.
 678 * @hw: Struct containing variables accessed by shared code
 679 *
 680 * Determines which flow control settings to use. Calls the appropriate media-
 681 * specific link configuration function. Configures the flow control settings.
 682 * Assuming the adapter has a valid link partner, a valid link should be
 683 * established. Assumes the hardware has previously been reset and the
 684 * transmitter and receiver are not enabled.
 685 */
 686s32 e1000_setup_link(struct e1000_hw *hw)
 687{
 688	u32 ctrl_ext;
 689	s32 ret_val;
 690	u16 eeprom_data;
 691
 692	/* Read and store word 0x0F of the EEPROM. This word contains bits
 693	 * that determine the hardware's default PAUSE (flow control) mode,
 694	 * a bit that determines whether the HW defaults to enabling or
 695	 * disabling auto-negotiation, and the direction of the
 696	 * SW defined pins. If there is no SW over-ride of the flow
 697	 * control setting, then the variable hw->fc will
 698	 * be initialized based on a value in the EEPROM.
 699	 */
 700	if (hw->fc == E1000_FC_DEFAULT) {
 701		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 702					    1, &eeprom_data);
 703		if (ret_val) {
 704			e_dbg("EEPROM Read Error\n");
 705			return -E1000_ERR_EEPROM;
 706		}
 707		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 708			hw->fc = E1000_FC_NONE;
 709		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 710			 EEPROM_WORD0F_ASM_DIR)
 711			hw->fc = E1000_FC_TX_PAUSE;
 712		else
 713			hw->fc = E1000_FC_FULL;
 714	}
 715
 716	/* We want to save off the original Flow Control configuration just
 717	 * in case we get disconnected and then reconnected into a different
 718	 * hub or switch with different Flow Control capabilities.
 719	 */
 720	if (hw->mac_type == e1000_82542_rev2_0)
 721		hw->fc &= (~E1000_FC_TX_PAUSE);
 722
 723	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 724		hw->fc &= (~E1000_FC_RX_PAUSE);
 725
 726	hw->original_fc = hw->fc;
 727
 728	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 729
 730	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 731	 * polarity value for the SW controlled pins, and setup the
 732	 * Extended Device Control reg with that info.
 733	 * This is needed because one of the SW controlled pins is used for
 734	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 735	 * or e1000_phy_setup() is called.
 736	 */
 737	if (hw->mac_type == e1000_82543) {
 738		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 739					    1, &eeprom_data);
 740		if (ret_val) {
 741			e_dbg("EEPROM Read Error\n");
 742			return -E1000_ERR_EEPROM;
 743		}
 744		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 745			    SWDPIO__EXT_SHIFT);
 746		ew32(CTRL_EXT, ctrl_ext);
 747	}
 748
 749	/* Call the necessary subroutine to configure the link. */
 750	ret_val = (hw->media_type == e1000_media_type_copper) ?
 751	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 752
 753	/* Initialize the flow control address, type, and PAUSE timer
 754	 * registers to their default values.  This is done even if flow
 755	 * control is disabled, because it does not hurt anything to
 756	 * initialize these registers.
 757	 */
 758	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 759
 760	ew32(FCT, FLOW_CONTROL_TYPE);
 761	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 762	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 763
 764	ew32(FCTTV, hw->fc_pause_time);
 765
 766	/* Set the flow control receive threshold registers.  Normally,
 767	 * these registers will be set to a default threshold that may be
 768	 * adjusted later by the driver's runtime code.  However, if the
 769	 * ability to transmit pause frames in not enabled, then these
 770	 * registers will be set to 0.
 771	 */
 772	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 773		ew32(FCRTL, 0);
 774		ew32(FCRTH, 0);
 775	} else {
 776		/* We need to set up the Receive Threshold high and low water
 777		 * marks as well as (optionally) enabling the transmission of
 778		 * XON frames.
 779		 */
 780		if (hw->fc_send_xon) {
 781			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 782			ew32(FCRTH, hw->fc_high_water);
 783		} else {
 784			ew32(FCRTL, hw->fc_low_water);
 785			ew32(FCRTH, hw->fc_high_water);
 786		}
 787	}
 788	return ret_val;
 789}
 790
 791/**
 792 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 793 * @hw: Struct containing variables accessed by shared code
 794 *
 795 * Manipulates Physical Coding Sublayer functions in order to configure
 796 * link. Assumes the hardware has been previously reset and the transmitter
 797 * and receiver are not enabled.
 798 */
 799static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 800{
 801	u32 ctrl;
 802	u32 status;
 803	u32 txcw = 0;
 804	u32 i;
 805	u32 signal = 0;
 806	s32 ret_val;
 807
 808	/* On adapters with a MAC newer than 82544, SWDP 1 will be
 809	 * set when the optics detect a signal. On older adapters, it will be
 810	 * cleared when there is a signal.  This applies to fiber media only.
 811	 * If we're on serdes media, adjust the output amplitude to value
 812	 * set in the EEPROM.
 813	 */
 814	ctrl = er32(CTRL);
 815	if (hw->media_type == e1000_media_type_fiber)
 816		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 817
 818	ret_val = e1000_adjust_serdes_amplitude(hw);
 819	if (ret_val)
 820		return ret_val;
 821
 822	/* Take the link out of reset */
 823	ctrl &= ~(E1000_CTRL_LRST);
 824
 825	/* Adjust VCO speed to improve BER performance */
 826	ret_val = e1000_set_vco_speed(hw);
 827	if (ret_val)
 828		return ret_val;
 829
 830	e1000_config_collision_dist(hw);
 831
 832	/* Check for a software override of the flow control settings, and setup
 833	 * the device accordingly.  If auto-negotiation is enabled, then
 834	 * software will have to set the "PAUSE" bits to the correct value in
 835	 * the Tranmsit Config Word Register (TXCW) and re-start
 836	 * auto-negotiation.  However, if auto-negotiation is disabled, then
 837	 * software will have to manually configure the two flow control enable
 838	 * bits in the CTRL register.
 839	 *
 840	 * The possible values of the "fc" parameter are:
 841	 *  0:  Flow control is completely disabled
 842	 *  1:  Rx flow control is enabled (we can receive pause frames, but
 843	 *      not send pause frames).
 844	 *  2:  Tx flow control is enabled (we can send pause frames but we do
 845	 *      not support receiving pause frames).
 846	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
 847	 */
 848	switch (hw->fc) {
 849	case E1000_FC_NONE:
 850		/* Flow ctrl is completely disabled by a software over-ride */
 851		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 852		break;
 853	case E1000_FC_RX_PAUSE:
 854		/* Rx Flow control is enabled and Tx Flow control is disabled by
 855		 * a software over-ride. Since there really isn't a way to
 856		 * advertise that we are capable of Rx Pause ONLY, we will
 857		 * advertise that we support both symmetric and asymmetric Rx
 858		 * PAUSE. Later, we will disable the adapter's ability to send
 859		 * PAUSE frames.
 860		 */
 861		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 862		break;
 863	case E1000_FC_TX_PAUSE:
 864		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 865		 * by a software over-ride.
 866		 */
 867		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 868		break;
 869	case E1000_FC_FULL:
 870		/* Flow control (both Rx and Tx) is enabled by a software
 871		 * over-ride.
 872		 */
 873		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 874		break;
 875	default:
 876		e_dbg("Flow control param set incorrectly\n");
 877		return -E1000_ERR_CONFIG;
 878	}
 879
 880	/* Since auto-negotiation is enabled, take the link out of reset (the
 881	 * link will be in reset, because we previously reset the chip). This
 882	 * will restart auto-negotiation.  If auto-negotiation is successful
 883	 * then the link-up status bit will be set and the flow control enable
 884	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 885	 */
 886	e_dbg("Auto-negotiation enabled\n");
 887
 888	ew32(TXCW, txcw);
 889	ew32(CTRL, ctrl);
 890	E1000_WRITE_FLUSH();
 891
 892	hw->txcw = txcw;
 893	msleep(1);
 894
 895	/* If we have a signal (the cable is plugged in) then poll for a
 896	 * "Link-Up" indication in the Device Status Register.  Time-out if a
 897	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
 898	 * complete in less than 500 milliseconds even if the other end is doing
 899	 * it in SW). For internal serdes, we just assume a signal is present,
 900	 * then poll.
 901	 */
 902	if (hw->media_type == e1000_media_type_internal_serdes ||
 903	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 904		e_dbg("Looking for Link\n");
 905		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 906			msleep(10);
 907			status = er32(STATUS);
 908			if (status & E1000_STATUS_LU)
 909				break;
 910		}
 911		if (i == (LINK_UP_TIMEOUT / 10)) {
 912			e_dbg("Never got a valid link from auto-neg!!!\n");
 913			hw->autoneg_failed = 1;
 914			/* AutoNeg failed to achieve a link, so we'll call
 915			 * e1000_check_for_link. This routine will force the
 916			 * link up if we detect a signal. This will allow us to
 917			 * communicate with non-autonegotiating link partners.
 918			 */
 919			ret_val = e1000_check_for_link(hw);
 920			if (ret_val) {
 921				e_dbg("Error while checking for link\n");
 922				return ret_val;
 923			}
 924			hw->autoneg_failed = 0;
 925		} else {
 926			hw->autoneg_failed = 0;
 927			e_dbg("Valid Link Found\n");
 928		}
 929	} else {
 930		e_dbg("No Signal Detected\n");
 931	}
 932	return E1000_SUCCESS;
 933}
 934
 935/**
 936 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 937 * @hw: Struct containing variables accessed by shared code
 938 *
 939 * Commits changes to PHY configuration by calling e1000_phy_reset().
 940 */
 941static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 942{
 943	s32 ret_val;
 944
 945	/* SW reset the PHY so all changes take effect */
 946	ret_val = e1000_phy_reset(hw);
 947	if (ret_val) {
 948		e_dbg("Error Resetting the PHY\n");
 949		return ret_val;
 950	}
 951
 952	return E1000_SUCCESS;
 953}
 954
 955static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 956{
 957	s32 ret_val;
 958	u32 ctrl_aux;
 959
 960	switch (hw->phy_type) {
 961	case e1000_phy_8211:
 962		ret_val = e1000_copper_link_rtl_setup(hw);
 963		if (ret_val) {
 964			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 965			return ret_val;
 966		}
 967		break;
 968	case e1000_phy_8201:
 969		/* Set RMII mode */
 970		ctrl_aux = er32(CTL_AUX);
 971		ctrl_aux |= E1000_CTL_AUX_RMII;
 972		ew32(CTL_AUX, ctrl_aux);
 973		E1000_WRITE_FLUSH();
 974
 975		/* Disable the J/K bits required for receive */
 976		ctrl_aux = er32(CTL_AUX);
 977		ctrl_aux |= 0x4;
 978		ctrl_aux &= ~0x2;
 979		ew32(CTL_AUX, ctrl_aux);
 980		E1000_WRITE_FLUSH();
 981		ret_val = e1000_copper_link_rtl_setup(hw);
 982
 983		if (ret_val) {
 984			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 985			return ret_val;
 986		}
 987		break;
 988	default:
 989		e_dbg("Error Resetting the PHY\n");
 990		return E1000_ERR_PHY_TYPE;
 991	}
 992
 993	return E1000_SUCCESS;
 994}
 995
 996/**
 997 * e1000_copper_link_preconfig - early configuration for copper
 998 * @hw: Struct containing variables accessed by shared code
 999 *
1000 * Make sure we have a valid PHY and change PHY mode before link setup.
1001 */
1002static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1003{
1004	u32 ctrl;
1005	s32 ret_val;
1006	u16 phy_data;
1007
1008	ctrl = er32(CTRL);
1009	/* With 82543, we need to force speed and duplex on the MAC equal to
1010	 * what the PHY speed and duplex configuration is. In addition, we need
1011	 * to perform a hardware reset on the PHY to take it out of reset.
1012	 */
1013	if (hw->mac_type > e1000_82543) {
1014		ctrl |= E1000_CTRL_SLU;
1015		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1016		ew32(CTRL, ctrl);
1017	} else {
1018		ctrl |=
1019		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1020		ew32(CTRL, ctrl);
1021		ret_val = e1000_phy_hw_reset(hw);
1022		if (ret_val)
1023			return ret_val;
1024	}
1025
1026	/* Make sure we have a valid PHY */
1027	ret_val = e1000_detect_gig_phy(hw);
1028	if (ret_val) {
1029		e_dbg("Error, did not detect valid phy.\n");
1030		return ret_val;
1031	}
1032	e_dbg("Phy ID = %x\n", hw->phy_id);
1033
1034	/* Set PHY to class A mode (if necessary) */
1035	ret_val = e1000_set_phy_mode(hw);
1036	if (ret_val)
1037		return ret_val;
1038
1039	if ((hw->mac_type == e1000_82545_rev_3) ||
1040	    (hw->mac_type == e1000_82546_rev_3)) {
1041		ret_val =
1042		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1043		phy_data |= 0x00000008;
1044		ret_val =
1045		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1046	}
1047
1048	if (hw->mac_type <= e1000_82543 ||
1049	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1050	    hw->mac_type == e1000_82541_rev_2 ||
1051	    hw->mac_type == e1000_82547_rev_2)
1052		hw->phy_reset_disable = false;
1053
1054	return E1000_SUCCESS;
1055}
1056
1057/**
1058 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1059 * @hw: Struct containing variables accessed by shared code
1060 */
1061static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1062{
1063	u32 led_ctrl;
1064	s32 ret_val;
1065	u16 phy_data;
1066
1067	if (hw->phy_reset_disable)
1068		return E1000_SUCCESS;
1069
1070	ret_val = e1000_phy_reset(hw);
1071	if (ret_val) {
1072		e_dbg("Error Resetting the PHY\n");
1073		return ret_val;
1074	}
1075
1076	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1077	msleep(15);
1078	/* Configure activity LED after PHY reset */
1079	led_ctrl = er32(LEDCTL);
1080	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1081	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1082	ew32(LEDCTL, led_ctrl);
1083
1084	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1085	if (hw->phy_type == e1000_phy_igp) {
1086		/* disable lplu d3 during driver init */
1087		ret_val = e1000_set_d3_lplu_state(hw, false);
1088		if (ret_val) {
1089			e_dbg("Error Disabling LPLU D3\n");
1090			return ret_val;
1091		}
1092	}
1093
1094	/* Configure mdi-mdix settings */
1095	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1096	if (ret_val)
1097		return ret_val;
1098
1099	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1100		hw->dsp_config_state = e1000_dsp_config_disabled;
1101		/* Force MDI for earlier revs of the IGP PHY */
1102		phy_data &=
1103		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1104		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1105		hw->mdix = 1;
1106
1107	} else {
1108		hw->dsp_config_state = e1000_dsp_config_enabled;
1109		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1110
1111		switch (hw->mdix) {
1112		case 1:
1113			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1114			break;
1115		case 2:
1116			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1117			break;
1118		case 0:
1119		default:
1120			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1121			break;
1122		}
1123	}
1124	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1125	if (ret_val)
1126		return ret_val;
1127
1128	/* set auto-master slave resolution settings */
1129	if (hw->autoneg) {
1130		e1000_ms_type phy_ms_setting = hw->master_slave;
1131
1132		if (hw->ffe_config_state == e1000_ffe_config_active)
1133			hw->ffe_config_state = e1000_ffe_config_enabled;
1134
1135		if (hw->dsp_config_state == e1000_dsp_config_activated)
1136			hw->dsp_config_state = e1000_dsp_config_enabled;
1137
1138		/* when autonegotiation advertisement is only 1000Mbps then we
1139		 * should disable SmartSpeed and enable Auto MasterSlave
1140		 * resolution as hardware default.
1141		 */
1142		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1143			/* Disable SmartSpeed */
1144			ret_val =
1145			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1146					       &phy_data);
1147			if (ret_val)
1148				return ret_val;
1149			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1150			ret_val =
1151			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1152						phy_data);
1153			if (ret_val)
1154				return ret_val;
1155			/* Set auto Master/Slave resolution process */
1156			ret_val =
1157			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1158			if (ret_val)
1159				return ret_val;
1160			phy_data &= ~CR_1000T_MS_ENABLE;
1161			ret_val =
1162			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1163			if (ret_val)
1164				return ret_val;
1165		}
1166
1167		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1168		if (ret_val)
1169			return ret_val;
1170
1171		/* load defaults for future use */
1172		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1173		    ((phy_data & CR_1000T_MS_VALUE) ?
1174		     e1000_ms_force_master :
1175		     e1000_ms_force_slave) : e1000_ms_auto;
1176
1177		switch (phy_ms_setting) {
1178		case e1000_ms_force_master:
1179			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1180			break;
1181		case e1000_ms_force_slave:
1182			phy_data |= CR_1000T_MS_ENABLE;
1183			phy_data &= ~(CR_1000T_MS_VALUE);
1184			break;
1185		case e1000_ms_auto:
1186			phy_data &= ~CR_1000T_MS_ENABLE;
1187			break;
1188		default:
1189			break;
1190		}
1191		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1192		if (ret_val)
1193			return ret_val;
1194	}
1195
1196	return E1000_SUCCESS;
1197}
1198
1199/**
1200 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1201 * @hw: Struct containing variables accessed by shared code
1202 */
1203static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1204{
1205	s32 ret_val;
1206	u16 phy_data;
1207
1208	if (hw->phy_reset_disable)
1209		return E1000_SUCCESS;
1210
1211	/* Enable CRS on TX. This must be set for half-duplex operation. */
1212	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1213	if (ret_val)
1214		return ret_val;
1215
1216	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1217
1218	/* Options:
1219	 *   MDI/MDI-X = 0 (default)
1220	 *   0 - Auto for all speeds
1221	 *   1 - MDI mode
1222	 *   2 - MDI-X mode
1223	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1224	 */
1225	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1226
1227	switch (hw->mdix) {
1228	case 1:
1229		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1230		break;
1231	case 2:
1232		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1233		break;
1234	case 3:
1235		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1236		break;
1237	case 0:
1238	default:
1239		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1240		break;
1241	}
1242
1243	/* Options:
1244	 *   disable_polarity_correction = 0 (default)
1245	 *       Automatic Correction for Reversed Cable Polarity
1246	 *   0 - Disabled
1247	 *   1 - Enabled
1248	 */
1249	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1250	if (hw->disable_polarity_correction == 1)
1251		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1252	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1253	if (ret_val)
1254		return ret_val;
1255
1256	if (hw->phy_revision < M88E1011_I_REV_4) {
1257		/* Force TX_CLK in the Extended PHY Specific Control Register
1258		 * to 25MHz clock.
1259		 */
1260		ret_val =
1261		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1262				       &phy_data);
1263		if (ret_val)
1264			return ret_val;
1265
1266		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1267
1268		if ((hw->phy_revision == E1000_REVISION_2) &&
1269		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1270			/* Vidalia Phy, set the downshift counter to 5x */
1271			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1272			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1273			ret_val = e1000_write_phy_reg(hw,
1274						      M88E1000_EXT_PHY_SPEC_CTRL,
1275						      phy_data);
1276			if (ret_val)
1277				return ret_val;
1278		} else {
1279			/* Configure Master and Slave downshift values */
1280			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1281				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1282			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1283				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1284			ret_val = e1000_write_phy_reg(hw,
1285						      M88E1000_EXT_PHY_SPEC_CTRL,
1286						      phy_data);
1287			if (ret_val)
1288				return ret_val;
1289		}
1290	}
1291
1292	/* SW Reset the PHY so all changes take effect */
1293	ret_val = e1000_phy_reset(hw);
1294	if (ret_val) {
1295		e_dbg("Error Resetting the PHY\n");
1296		return ret_val;
1297	}
1298
1299	return E1000_SUCCESS;
1300}
1301
1302/**
1303 * e1000_copper_link_autoneg - setup auto-neg
1304 * @hw: Struct containing variables accessed by shared code
1305 *
1306 * Setup auto-negotiation and flow control advertisements,
1307 * and then perform auto-negotiation.
1308 */
1309static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1310{
1311	s32 ret_val;
1312	u16 phy_data;
1313
1314	/* Perform some bounds checking on the hw->autoneg_advertised
1315	 * parameter.  If this variable is zero, then set it to the default.
1316	 */
1317	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1318
1319	/* If autoneg_advertised is zero, we assume it was not defaulted
1320	 * by the calling code so we set to advertise full capability.
1321	 */
1322	if (hw->autoneg_advertised == 0)
1323		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1324
1325	/* IFE/RTL8201N PHY only supports 10/100 */
1326	if (hw->phy_type == e1000_phy_8201)
1327		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1328
1329	e_dbg("Reconfiguring auto-neg advertisement params\n");
1330	ret_val = e1000_phy_setup_autoneg(hw);
1331	if (ret_val) {
1332		e_dbg("Error Setting up Auto-Negotiation\n");
1333		return ret_val;
1334	}
1335	e_dbg("Restarting Auto-Neg\n");
1336
1337	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1338	 * the Auto Neg Restart bit in the PHY control register.
1339	 */
1340	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1341	if (ret_val)
1342		return ret_val;
1343
1344	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1345	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1346	if (ret_val)
1347		return ret_val;
1348
1349	/* Does the user want to wait for Auto-Neg to complete here, or
1350	 * check at a later time (for example, callback routine).
1351	 */
1352	if (hw->wait_autoneg_complete) {
1353		ret_val = e1000_wait_autoneg(hw);
1354		if (ret_val) {
1355			e_dbg
1356			    ("Error while waiting for autoneg to complete\n");
1357			return ret_val;
1358		}
1359	}
1360
1361	hw->get_link_status = true;
1362
1363	return E1000_SUCCESS;
1364}
1365
1366/**
1367 * e1000_copper_link_postconfig - post link setup
1368 * @hw: Struct containing variables accessed by shared code
1369 *
1370 * Config the MAC and the PHY after link is up.
1371 *   1) Set up the MAC to the current PHY speed/duplex
1372 *      if we are on 82543.  If we
1373 *      are on newer silicon, we only need to configure
1374 *      collision distance in the Transmit Control Register.
1375 *   2) Set up flow control on the MAC to that established with
1376 *      the link partner.
1377 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1378 */
1379static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1380{
1381	s32 ret_val;
1382
1383	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1384		e1000_config_collision_dist(hw);
1385	} else {
1386		ret_val = e1000_config_mac_to_phy(hw);
1387		if (ret_val) {
1388			e_dbg("Error configuring MAC to PHY settings\n");
1389			return ret_val;
1390		}
1391	}
1392	ret_val = e1000_config_fc_after_link_up(hw);
1393	if (ret_val) {
1394		e_dbg("Error Configuring Flow Control\n");
1395		return ret_val;
1396	}
1397
1398	/* Config DSP to improve Giga link quality */
1399	if (hw->phy_type == e1000_phy_igp) {
1400		ret_val = e1000_config_dsp_after_link_change(hw, true);
1401		if (ret_val) {
1402			e_dbg("Error Configuring DSP after link up\n");
1403			return ret_val;
1404		}
1405	}
1406
1407	return E1000_SUCCESS;
1408}
1409
1410/**
1411 * e1000_setup_copper_link - phy/speed/duplex setting
1412 * @hw: Struct containing variables accessed by shared code
1413 *
1414 * Detects which PHY is present and sets up the speed and duplex
1415 */
1416static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1417{
1418	s32 ret_val;
1419	u16 i;
1420	u16 phy_data;
1421
1422	/* Check if it is a valid PHY and set PHY mode if necessary. */
1423	ret_val = e1000_copper_link_preconfig(hw);
1424	if (ret_val)
1425		return ret_val;
1426
1427	if (hw->phy_type == e1000_phy_igp) {
1428		ret_val = e1000_copper_link_igp_setup(hw);
1429		if (ret_val)
1430			return ret_val;
1431	} else if (hw->phy_type == e1000_phy_m88) {
1432		ret_val = e1000_copper_link_mgp_setup(hw);
1433		if (ret_val)
1434			return ret_val;
1435	} else {
1436		ret_val = gbe_dhg_phy_setup(hw);
1437		if (ret_val) {
1438			e_dbg("gbe_dhg_phy_setup failed!\n");
1439			return ret_val;
1440		}
1441	}
1442
1443	if (hw->autoneg) {
1444		/* Setup autoneg and flow control advertisement
1445		 * and perform autonegotiation
1446		 */
1447		ret_val = e1000_copper_link_autoneg(hw);
1448		if (ret_val)
1449			return ret_val;
1450	} else {
1451		/* PHY will be set to 10H, 10F, 100H,or 100F
1452		 * depending on value from forced_speed_duplex.
1453		 */
1454		e_dbg("Forcing speed and duplex\n");
1455		ret_val = e1000_phy_force_speed_duplex(hw);
1456		if (ret_val) {
1457			e_dbg("Error Forcing Speed and Duplex\n");
1458			return ret_val;
1459		}
1460	}
1461
1462	/* Check link status. Wait up to 100 microseconds for link to become
1463	 * valid.
1464	 */
1465	for (i = 0; i < 10; i++) {
1466		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1467		if (ret_val)
1468			return ret_val;
1469		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1470		if (ret_val)
1471			return ret_val;
1472
1473		if (phy_data & MII_SR_LINK_STATUS) {
1474			/* Config the MAC and PHY after link is up */
1475			ret_val = e1000_copper_link_postconfig(hw);
1476			if (ret_val)
1477				return ret_val;
1478
1479			e_dbg("Valid link established!!!\n");
1480			return E1000_SUCCESS;
1481		}
1482		udelay(10);
1483	}
1484
1485	e_dbg("Unable to establish link!!!\n");
1486	return E1000_SUCCESS;
1487}
1488
1489/**
1490 * e1000_phy_setup_autoneg - phy settings
1491 * @hw: Struct containing variables accessed by shared code
1492 *
1493 * Configures PHY autoneg and flow control advertisement settings
1494 */
1495s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1496{
1497	s32 ret_val;
1498	u16 mii_autoneg_adv_reg;
1499	u16 mii_1000t_ctrl_reg;
1500
1501	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1502	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1503	if (ret_val)
1504		return ret_val;
1505
1506	/* Read the MII 1000Base-T Control Register (Address 9). */
1507	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1508	if (ret_val)
1509		return ret_val;
1510	else if (hw->phy_type == e1000_phy_8201)
1511		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1512
1513	/* Need to parse both autoneg_advertised and fc and set up
1514	 * the appropriate PHY registers.  First we will parse for
1515	 * autoneg_advertised software override.  Since we can advertise
1516	 * a plethora of combinations, we need to check each bit
1517	 * individually.
1518	 */
1519
1520	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1521	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1522	 * the  1000Base-T Control Register (Address 9).
1523	 */
1524	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1525	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1526
1527	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1528
1529	/* Do we want to advertise 10 Mb Half Duplex? */
1530	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1531		e_dbg("Advertise 10mb Half duplex\n");
1532		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1533	}
1534
1535	/* Do we want to advertise 10 Mb Full Duplex? */
1536	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1537		e_dbg("Advertise 10mb Full duplex\n");
1538		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1539	}
1540
1541	/* Do we want to advertise 100 Mb Half Duplex? */
1542	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1543		e_dbg("Advertise 100mb Half duplex\n");
1544		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1545	}
1546
1547	/* Do we want to advertise 100 Mb Full Duplex? */
1548	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1549		e_dbg("Advertise 100mb Full duplex\n");
1550		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1551	}
1552
1553	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1554	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1555		e_dbg
1556		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1557	}
1558
1559	/* Do we want to advertise 1000 Mb Full Duplex? */
1560	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1561		e_dbg("Advertise 1000mb Full duplex\n");
1562		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1563	}
1564
1565	/* Check for a software override of the flow control settings, and
1566	 * setup the PHY advertisement registers accordingly.  If
1567	 * auto-negotiation is enabled, then software will have to set the
1568	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1569	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1570	 * auto-negotiation.
1571	 *
1572	 * The possible values of the "fc" parameter are:
1573	 *      0:  Flow control is completely disabled
1574	 *      1:  Rx flow control is enabled (we can receive pause frames
1575	 *          but not send pause frames).
1576	 *      2:  Tx flow control is enabled (we can send pause frames
1577	 *          but we do not support receiving pause frames).
1578	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1579	 *  other:  No software override.  The flow control configuration
1580	 *          in the EEPROM is used.
1581	 */
1582	switch (hw->fc) {
1583	case E1000_FC_NONE:	/* 0 */
1584		/* Flow control (RX & TX) is completely disabled by a
1585		 * software over-ride.
1586		 */
1587		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1588		break;
1589	case E1000_FC_RX_PAUSE:	/* 1 */
1590		/* RX Flow control is enabled, and TX Flow control is
1591		 * disabled, by a software over-ride.
1592		 */
1593		/* Since there really isn't a way to advertise that we are
1594		 * capable of RX Pause ONLY, we will advertise that we
1595		 * support both symmetric and asymmetric RX PAUSE.  Later
1596		 * (in e1000_config_fc_after_link_up) we will disable the
1597		 * hw's ability to send PAUSE frames.
1598		 */
1599		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1600		break;
1601	case E1000_FC_TX_PAUSE:	/* 2 */
1602		/* TX Flow control is enabled, and RX Flow control is
1603		 * disabled, by a software over-ride.
1604		 */
1605		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1606		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1607		break;
1608	case E1000_FC_FULL:	/* 3 */
1609		/* Flow control (both RX and TX) is enabled by a software
1610		 * over-ride.
1611		 */
1612		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613		break;
1614	default:
1615		e_dbg("Flow control param set incorrectly\n");
1616		return -E1000_ERR_CONFIG;
1617	}
1618
1619	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1620	if (ret_val)
1621		return ret_val;
1622
1623	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1624
1625	if (hw->phy_type == e1000_phy_8201) {
1626		mii_1000t_ctrl_reg = 0;
1627	} else {
1628		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1629					      mii_1000t_ctrl_reg);
1630		if (ret_val)
1631			return ret_val;
1632	}
1633
1634	return E1000_SUCCESS;
1635}
1636
1637/**
1638 * e1000_phy_force_speed_duplex - force link settings
1639 * @hw: Struct containing variables accessed by shared code
1640 *
1641 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1642 */
1643static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1644{
1645	u32 ctrl;
1646	s32 ret_val;
1647	u16 mii_ctrl_reg;
1648	u16 mii_status_reg;
1649	u16 phy_data;
1650	u16 i;
1651
1652	/* Turn off Flow control if we are forcing speed and duplex. */
1653	hw->fc = E1000_FC_NONE;
1654
1655	e_dbg("hw->fc = %d\n", hw->fc);
1656
1657	/* Read the Device Control Register. */
1658	ctrl = er32(CTRL);
1659
1660	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1661	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1662	ctrl &= ~(DEVICE_SPEED_MASK);
1663
1664	/* Clear the Auto Speed Detect Enable bit. */
1665	ctrl &= ~E1000_CTRL_ASDE;
1666
1667	/* Read the MII Control Register. */
1668	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1669	if (ret_val)
1670		return ret_val;
1671
1672	/* We need to disable autoneg in order to force link and duplex. */
1673
1674	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1675
1676	/* Are we forcing Full or Half Duplex? */
1677	if (hw->forced_speed_duplex == e1000_100_full ||
1678	    hw->forced_speed_duplex == e1000_10_full) {
1679		/* We want to force full duplex so we SET the full duplex bits
1680		 * in the Device and MII Control Registers.
1681		 */
1682		ctrl |= E1000_CTRL_FD;
1683		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1684		e_dbg("Full Duplex\n");
1685	} else {
1686		/* We want to force half duplex so we CLEAR the full duplex bits
1687		 * in the Device and MII Control Registers.
1688		 */
1689		ctrl &= ~E1000_CTRL_FD;
1690		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1691		e_dbg("Half Duplex\n");
1692	}
1693
1694	/* Are we forcing 100Mbps??? */
1695	if (hw->forced_speed_duplex == e1000_100_full ||
1696	    hw->forced_speed_duplex == e1000_100_half) {
1697		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1698		ctrl |= E1000_CTRL_SPD_100;
1699		mii_ctrl_reg |= MII_CR_SPEED_100;
1700		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1701		e_dbg("Forcing 100mb ");
1702	} else {
1703		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1704		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1705		mii_ctrl_reg |= MII_CR_SPEED_10;
1706		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1707		e_dbg("Forcing 10mb ");
1708	}
1709
1710	e1000_config_collision_dist(hw);
1711
1712	/* Write the configured values back to the Device Control Reg. */
1713	ew32(CTRL, ctrl);
1714
1715	if (hw->phy_type == e1000_phy_m88) {
1716		ret_val =
1717		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1718		if (ret_val)
1719			return ret_val;
1720
1721		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1722		 * MDI forced whenever speed are duplex are forced.
1723		 */
1724		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1725		ret_val =
1726		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1727		if (ret_val)
1728			return ret_val;
1729
1730		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1731
1732		/* Need to reset the PHY or these changes will be ignored */
1733		mii_ctrl_reg |= MII_CR_RESET;
1734
1735		/* Disable MDI-X support for 10/100 */
1736	} else {
1737		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1738		 * forced whenever speed or duplex are forced.
1739		 */
1740		ret_val =
1741		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1742		if (ret_val)
1743			return ret_val;
1744
1745		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1746		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1747
1748		ret_val =
1749		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1750		if (ret_val)
1751			return ret_val;
1752	}
1753
1754	/* Write back the modified PHY MII control register. */
1755	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1756	if (ret_val)
1757		return ret_val;
1758
1759	udelay(1);
1760
1761	/* The wait_autoneg_complete flag may be a little misleading here.
1762	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1763	 * But we do want to delay for a period while forcing only so we
1764	 * don't generate false No Link messages.  So we will wait here
1765	 * only if the user has set wait_autoneg_complete to 1, which is
1766	 * the default.
1767	 */
1768	if (hw->wait_autoneg_complete) {
1769		/* We will wait for autoneg to complete. */
1770		e_dbg("Waiting for forced speed/duplex link.\n");
1771		mii_status_reg = 0;
1772
1773		/* Wait for autoneg to complete or 4.5 seconds to expire */
1774		for (i = PHY_FORCE_TIME; i > 0; i--) {
1775			/* Read the MII Status Register and wait for Auto-Neg
1776			 * Complete bit to be set.
1777			 */
1778			ret_val =
1779			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1780			if (ret_val)
1781				return ret_val;
1782
1783			ret_val =
1784			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1785			if (ret_val)
1786				return ret_val;
1787
1788			if (mii_status_reg & MII_SR_LINK_STATUS)
1789				break;
1790			msleep(100);
1791		}
1792		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1793			/* We didn't get link.  Reset the DSP and wait again
1794			 * for link.
1795			 */
1796			ret_val = e1000_phy_reset_dsp(hw);
1797			if (ret_val) {
1798				e_dbg("Error Resetting PHY DSP\n");
1799				return ret_val;
1800			}
1801		}
1802		/* This loop will early-out if the link condition has been
1803		 * met
1804		 */
1805		for (i = PHY_FORCE_TIME; i > 0; i--) {
1806			if (mii_status_reg & MII_SR_LINK_STATUS)
1807				break;
1808			msleep(100);
1809			/* Read the MII Status Register and wait for Auto-Neg
1810			 * Complete bit to be set.
1811			 */
1812			ret_val =
1813			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1814			if (ret_val)
1815				return ret_val;
1816
1817			ret_val =
1818			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1819			if (ret_val)
1820				return ret_val;
1821		}
1822	}
1823
1824	if (hw->phy_type == e1000_phy_m88) {
1825		/* Because we reset the PHY above, we need to re-force TX_CLK in
1826		 * the Extended PHY Specific Control Register to 25MHz clock.
1827		 * This value defaults back to a 2.5MHz clock when the PHY is
1828		 * reset.
1829		 */
1830		ret_val =
1831		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1832				       &phy_data);
1833		if (ret_val)
1834			return ret_val;
1835
1836		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1837		ret_val =
1838		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1839					phy_data);
1840		if (ret_val)
1841			return ret_val;
1842
1843		/* In addition, because of the s/w reset above, we need to
1844		 * enable CRS on Tx.  This must be set for both full and half
1845		 * duplex operation.
1846		 */
1847		ret_val =
1848		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849		if (ret_val)
1850			return ret_val;
1851
1852		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1853		ret_val =
1854		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1855		if (ret_val)
1856			return ret_val;
1857
1858		if ((hw->mac_type == e1000_82544 ||
1859		     hw->mac_type == e1000_82543) &&
1860		    (!hw->autoneg) &&
1861		    (hw->forced_speed_duplex == e1000_10_full ||
1862		     hw->forced_speed_duplex == e1000_10_half)) {
1863			ret_val = e1000_polarity_reversal_workaround(hw);
1864			if (ret_val)
1865				return ret_val;
1866		}
1867	}
1868	return E1000_SUCCESS;
1869}
1870
1871/**
1872 * e1000_config_collision_dist - set collision distance register
1873 * @hw: Struct containing variables accessed by shared code
1874 *
1875 * Sets the collision distance in the Transmit Control register.
1876 * Link should have been established previously. Reads the speed and duplex
1877 * information from the Device Status register.
1878 */
1879void e1000_config_collision_dist(struct e1000_hw *hw)
1880{
1881	u32 tctl, coll_dist;
1882
1883	if (hw->mac_type < e1000_82543)
1884		coll_dist = E1000_COLLISION_DISTANCE_82542;
1885	else
1886		coll_dist = E1000_COLLISION_DISTANCE;
1887
1888	tctl = er32(TCTL);
1889
1890	tctl &= ~E1000_TCTL_COLD;
1891	tctl |= coll_dist << E1000_COLD_SHIFT;
1892
1893	ew32(TCTL, tctl);
1894	E1000_WRITE_FLUSH();
1895}
1896
1897/**
1898 * e1000_config_mac_to_phy - sync phy and mac settings
1899 * @hw: Struct containing variables accessed by shared code
 
1900 *
1901 * Sets MAC speed and duplex settings to reflect the those in the PHY
1902 * The contents of the PHY register containing the needed information need to
1903 * be passed in.
1904 */
1905static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1906{
1907	u32 ctrl;
1908	s32 ret_val;
1909	u16 phy_data;
1910
1911	/* 82544 or newer MAC, Auto Speed Detection takes care of
1912	 * MAC speed/duplex configuration.
1913	 */
1914	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1915		return E1000_SUCCESS;
1916
1917	/* Read the Device Control Register and set the bits to Force Speed
1918	 * and Duplex.
1919	 */
1920	ctrl = er32(CTRL);
1921	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1922	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1923
1924	switch (hw->phy_type) {
1925	case e1000_phy_8201:
1926		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1927		if (ret_val)
1928			return ret_val;
1929
1930		if (phy_data & RTL_PHY_CTRL_FD)
1931			ctrl |= E1000_CTRL_FD;
1932		else
1933			ctrl &= ~E1000_CTRL_FD;
1934
1935		if (phy_data & RTL_PHY_CTRL_SPD_100)
1936			ctrl |= E1000_CTRL_SPD_100;
1937		else
1938			ctrl |= E1000_CTRL_SPD_10;
1939
1940		e1000_config_collision_dist(hw);
1941		break;
1942	default:
1943		/* Set up duplex in the Device Control and Transmit Control
1944		 * registers depending on negotiated values.
1945		 */
1946		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1947					     &phy_data);
1948		if (ret_val)
1949			return ret_val;
1950
1951		if (phy_data & M88E1000_PSSR_DPLX)
1952			ctrl |= E1000_CTRL_FD;
1953		else
1954			ctrl &= ~E1000_CTRL_FD;
1955
1956		e1000_config_collision_dist(hw);
1957
1958		/* Set up speed in the Device Control register depending on
1959		 * negotiated values.
1960		 */
1961		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1962			ctrl |= E1000_CTRL_SPD_1000;
1963		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1964			 M88E1000_PSSR_100MBS)
1965			ctrl |= E1000_CTRL_SPD_100;
1966	}
1967
1968	/* Write the configured values back to the Device Control Reg. */
1969	ew32(CTRL, ctrl);
1970	return E1000_SUCCESS;
1971}
1972
1973/**
1974 * e1000_force_mac_fc - force flow control settings
1975 * @hw: Struct containing variables accessed by shared code
1976 *
1977 * Forces the MAC's flow control settings.
1978 * Sets the TFCE and RFCE bits in the device control register to reflect
1979 * the adapter settings. TFCE and RFCE need to be explicitly set by
1980 * software when a Copper PHY is used because autonegotiation is managed
1981 * by the PHY rather than the MAC. Software must also configure these
1982 * bits when link is forced on a fiber connection.
1983 */
1984s32 e1000_force_mac_fc(struct e1000_hw *hw)
1985{
1986	u32 ctrl;
1987
1988	/* Get the current configuration of the Device Control Register */
1989	ctrl = er32(CTRL);
1990
1991	/* Because we didn't get link via the internal auto-negotiation
1992	 * mechanism (we either forced link or we got link via PHY
1993	 * auto-neg), we have to manually enable/disable transmit an
1994	 * receive flow control.
1995	 *
1996	 * The "Case" statement below enables/disable flow control
1997	 * according to the "hw->fc" parameter.
1998	 *
1999	 * The possible values of the "fc" parameter are:
2000	 *      0:  Flow control is completely disabled
2001	 *      1:  Rx flow control is enabled (we can receive pause
2002	 *          frames but not send pause frames).
2003	 *      2:  Tx flow control is enabled (we can send pause frames
2004	 *          but we do not receive pause frames).
2005	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2006	 *  other:  No other values should be possible at this point.
2007	 */
2008
2009	switch (hw->fc) {
2010	case E1000_FC_NONE:
2011		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2012		break;
2013	case E1000_FC_RX_PAUSE:
2014		ctrl &= (~E1000_CTRL_TFCE);
2015		ctrl |= E1000_CTRL_RFCE;
2016		break;
2017	case E1000_FC_TX_PAUSE:
2018		ctrl &= (~E1000_CTRL_RFCE);
2019		ctrl |= E1000_CTRL_TFCE;
2020		break;
2021	case E1000_FC_FULL:
2022		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2023		break;
2024	default:
2025		e_dbg("Flow control param set incorrectly\n");
2026		return -E1000_ERR_CONFIG;
2027	}
2028
2029	/* Disable TX Flow Control for 82542 (rev 2.0) */
2030	if (hw->mac_type == e1000_82542_rev2_0)
2031		ctrl &= (~E1000_CTRL_TFCE);
2032
2033	ew32(CTRL, ctrl);
2034	return E1000_SUCCESS;
2035}
2036
2037/**
2038 * e1000_config_fc_after_link_up - configure flow control after autoneg
2039 * @hw: Struct containing variables accessed by shared code
2040 *
2041 * Configures flow control settings after link is established
2042 * Should be called immediately after a valid link has been established.
2043 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2044 * and autonegotiation is enabled, the MAC flow control settings will be set
2045 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2046 * and RFCE bits will be automatically set to the negotiated flow control mode.
2047 */
2048static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2049{
2050	s32 ret_val;
2051	u16 mii_status_reg;
2052	u16 mii_nway_adv_reg;
2053	u16 mii_nway_lp_ability_reg;
2054	u16 speed;
2055	u16 duplex;
2056
2057	/* Check for the case where we have fiber media and auto-neg failed
2058	 * so we had to force link.  In this case, we need to force the
2059	 * configuration of the MAC to match the "fc" parameter.
2060	 */
2061	if (((hw->media_type == e1000_media_type_fiber) &&
2062	     (hw->autoneg_failed)) ||
2063	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2064	     (hw->autoneg_failed)) ||
2065	    ((hw->media_type == e1000_media_type_copper) &&
2066	     (!hw->autoneg))) {
2067		ret_val = e1000_force_mac_fc(hw);
2068		if (ret_val) {
2069			e_dbg("Error forcing flow control settings\n");
2070			return ret_val;
2071		}
2072	}
2073
2074	/* Check for the case where we have copper media and auto-neg is
2075	 * enabled.  In this case, we need to check and see if Auto-Neg
2076	 * has completed, and if so, how the PHY and link partner has
2077	 * flow control configured.
2078	 */
2079	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2080		/* Read the MII Status Register and check to see if AutoNeg
2081		 * has completed.  We read this twice because this reg has
2082		 * some "sticky" (latched) bits.
2083		 */
2084		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2085		if (ret_val)
2086			return ret_val;
2087		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2088		if (ret_val)
2089			return ret_val;
2090
2091		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2092			/* The AutoNeg process has completed, so we now need to
2093			 * read both the Auto Negotiation Advertisement Register
2094			 * (Address 4) and the Auto_Negotiation Base Page
2095			 * Ability Register (Address 5) to determine how flow
2096			 * control was negotiated.
2097			 */
2098			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2099						     &mii_nway_adv_reg);
2100			if (ret_val)
2101				return ret_val;
2102			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2103						     &mii_nway_lp_ability_reg);
2104			if (ret_val)
2105				return ret_val;
2106
2107			/* Two bits in the Auto Negotiation Advertisement
2108			 * Register (Address 4) and two bits in the Auto
2109			 * Negotiation Base Page Ability Register (Address 5)
2110			 * determine flow control for both the PHY and the link
2111			 * partner.  The following table, taken out of the IEEE
2112			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2113			 * PAUSE resolution bits and how flow control is
2114			 * determined based upon these settings.
2115			 * NOTE:  DC = Don't Care
2116			 *
2117			 *   LOCAL DEVICE  |   LINK PARTNER
2118			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2119			 *-------|---------|-------|---------|------------------
2120			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2121			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2122			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2123			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2124			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2125			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2126			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2127			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2128			 *
2129			 */
2130			/* Are both PAUSE bits set to 1?  If so, this implies
2131			 * Symmetric Flow Control is enabled at both ends.  The
2132			 * ASM_DIR bits are irrelevant per the spec.
2133			 *
2134			 * For Symmetric Flow Control:
2135			 *
2136			 *   LOCAL DEVICE  |   LINK PARTNER
2137			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2138			 *-------|---------|-------|---------|------------------
2139			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2140			 *
2141			 */
2142			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2143			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2144				/* Now we need to check if the user selected Rx
2145				 * ONLY of pause frames.  In this case, we had
2146				 * to advertise FULL flow control because we
2147				 * could not advertise Rx ONLY. Hence, we must
2148				 * now check to see if we need to turn OFF the
2149				 * TRANSMISSION of PAUSE frames.
2150				 */
2151				if (hw->original_fc == E1000_FC_FULL) {
2152					hw->fc = E1000_FC_FULL;
2153					e_dbg("Flow Control = FULL.\n");
2154				} else {
2155					hw->fc = E1000_FC_RX_PAUSE;
2156					e_dbg
2157					    ("Flow Control = RX PAUSE frames only.\n");
2158				}
2159			}
2160			/* For receiving PAUSE frames ONLY.
2161			 *
2162			 *   LOCAL DEVICE  |   LINK PARTNER
2163			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164			 *-------|---------|-------|---------|------------------
2165			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2166			 *
2167			 */
2168			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2170				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2171				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2172				hw->fc = E1000_FC_TX_PAUSE;
2173				e_dbg
2174				    ("Flow Control = TX PAUSE frames only.\n");
2175			}
2176			/* For transmitting PAUSE frames ONLY.
2177			 *
2178			 *   LOCAL DEVICE  |   LINK PARTNER
2179			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180			 *-------|---------|-------|---------|------------------
2181			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2182			 *
2183			 */
2184			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2186				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2187				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2188				hw->fc = E1000_FC_RX_PAUSE;
2189				e_dbg
2190				    ("Flow Control = RX PAUSE frames only.\n");
2191			}
2192			/* Per the IEEE spec, at this point flow control should
2193			 * be disabled.  However, we want to consider that we
2194			 * could be connected to a legacy switch that doesn't
2195			 * advertise desired flow control, but can be forced on
2196			 * the link partner.  So if we advertised no flow
2197			 * control, that is what we will resolve to.  If we
2198			 * advertised some kind of receive capability (Rx Pause
2199			 * Only or Full Flow Control) and the link partner
2200			 * advertised none, we will configure ourselves to
2201			 * enable Rx Flow Control only.  We can do this safely
2202			 * for two reasons:  If the link partner really
2203			 * didn't want flow control enabled, and we enable Rx,
2204			 * no harm done since we won't be receiving any PAUSE
2205			 * frames anyway.  If the intent on the link partner was
2206			 * to have flow control enabled, then by us enabling Rx
2207			 * only, we can at least receive pause frames and
2208			 * process them. This is a good idea because in most
2209			 * cases, since we are predominantly a server NIC, more
2210			 * times than not we will be asked to delay transmission
2211			 * of packets than asking our link partner to pause
2212			 * transmission of frames.
2213			 */
2214			else if ((hw->original_fc == E1000_FC_NONE ||
2215				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2216				 hw->fc_strict_ieee) {
2217				hw->fc = E1000_FC_NONE;
2218				e_dbg("Flow Control = NONE.\n");
2219			} else {
2220				hw->fc = E1000_FC_RX_PAUSE;
2221				e_dbg
2222				    ("Flow Control = RX PAUSE frames only.\n");
2223			}
2224
2225			/* Now we need to do one last check...  If we auto-
2226			 * negotiated to HALF DUPLEX, flow control should not be
2227			 * enabled per IEEE 802.3 spec.
2228			 */
2229			ret_val =
2230			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2231			if (ret_val) {
2232				e_dbg
2233				    ("Error getting link speed and duplex\n");
2234				return ret_val;
2235			}
2236
2237			if (duplex == HALF_DUPLEX)
2238				hw->fc = E1000_FC_NONE;
2239
2240			/* Now we call a subroutine to actually force the MAC
2241			 * controller to use the correct flow control settings.
2242			 */
2243			ret_val = e1000_force_mac_fc(hw);
2244			if (ret_val) {
2245				e_dbg
2246				    ("Error forcing flow control settings\n");
2247				return ret_val;
2248			}
2249		} else {
2250			e_dbg
2251			    ("Copper PHY and Auto Neg has not completed.\n");
2252		}
2253	}
2254	return E1000_SUCCESS;
2255}
2256
2257/**
2258 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2259 * @hw: pointer to the HW structure
2260 *
2261 * Checks for link up on the hardware.  If link is not up and we have
2262 * a signal, then we need to force link up.
2263 */
2264static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2265{
2266	u32 rxcw;
2267	u32 ctrl;
2268	u32 status;
2269	s32 ret_val = E1000_SUCCESS;
2270
2271	ctrl = er32(CTRL);
2272	status = er32(STATUS);
2273	rxcw = er32(RXCW);
2274
2275	/* If we don't have link (auto-negotiation failed or link partner
2276	 * cannot auto-negotiate), and our link partner is not trying to
2277	 * auto-negotiate with us (we are receiving idles or data),
2278	 * we need to force link up. We also need to give auto-negotiation
2279	 * time to complete.
2280	 */
2281	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2282	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2283		if (hw->autoneg_failed == 0) {
2284			hw->autoneg_failed = 1;
2285			goto out;
2286		}
2287		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2288
2289		/* Disable auto-negotiation in the TXCW register */
2290		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2291
2292		/* Force link-up and also force full-duplex. */
2293		ctrl = er32(CTRL);
2294		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2295		ew32(CTRL, ctrl);
2296
2297		/* Configure Flow Control after forcing link up. */
2298		ret_val = e1000_config_fc_after_link_up(hw);
2299		if (ret_val) {
2300			e_dbg("Error configuring flow control\n");
2301			goto out;
2302		}
2303	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2304		/* If we are forcing link and we are receiving /C/ ordered
2305		 * sets, re-enable auto-negotiation in the TXCW register
2306		 * and disable forced link in the Device Control register
2307		 * in an attempt to auto-negotiate with our link partner.
2308		 */
2309		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2310		ew32(TXCW, hw->txcw);
2311		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2312
2313		hw->serdes_has_link = true;
2314	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2315		/* If we force link for non-auto-negotiation switch, check
2316		 * link status based on MAC synchronization for internal
2317		 * serdes media type.
2318		 */
2319		/* SYNCH bit and IV bit are sticky. */
2320		udelay(10);
2321		rxcw = er32(RXCW);
2322		if (rxcw & E1000_RXCW_SYNCH) {
2323			if (!(rxcw & E1000_RXCW_IV)) {
2324				hw->serdes_has_link = true;
2325				e_dbg("SERDES: Link up - forced.\n");
2326			}
2327		} else {
2328			hw->serdes_has_link = false;
2329			e_dbg("SERDES: Link down - force failed.\n");
2330		}
2331	}
2332
2333	if (E1000_TXCW_ANE & er32(TXCW)) {
2334		status = er32(STATUS);
2335		if (status & E1000_STATUS_LU) {
2336			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2337			udelay(10);
2338			rxcw = er32(RXCW);
2339			if (rxcw & E1000_RXCW_SYNCH) {
2340				if (!(rxcw & E1000_RXCW_IV)) {
2341					hw->serdes_has_link = true;
2342					e_dbg("SERDES: Link up - autoneg "
2343						 "completed successfully.\n");
2344				} else {
2345					hw->serdes_has_link = false;
2346					e_dbg("SERDES: Link down - invalid"
2347						 "codewords detected in autoneg.\n");
2348				}
2349			} else {
2350				hw->serdes_has_link = false;
2351				e_dbg("SERDES: Link down - no sync.\n");
2352			}
2353		} else {
2354			hw->serdes_has_link = false;
2355			e_dbg("SERDES: Link down - autoneg failed\n");
2356		}
2357	}
2358
2359      out:
2360	return ret_val;
2361}
2362
2363/**
2364 * e1000_check_for_link
2365 * @hw: Struct containing variables accessed by shared code
2366 *
2367 * Checks to see if the link status of the hardware has changed.
2368 * Called by any function that needs to check the link status of the adapter.
2369 */
2370s32 e1000_check_for_link(struct e1000_hw *hw)
2371{
 
 
2372	u32 status;
2373	u32 rctl;
2374	u32 icr;
 
2375	s32 ret_val;
2376	u16 phy_data;
2377
2378	er32(CTRL);
2379	status = er32(STATUS);
2380
2381	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2382	 * set when the optics detect a signal. On older adapters, it will be
2383	 * cleared when there is a signal.  This applies to fiber media only.
2384	 */
2385	if ((hw->media_type == e1000_media_type_fiber) ||
2386	    (hw->media_type == e1000_media_type_internal_serdes)) {
2387		er32(RXCW);
2388
2389		if (hw->media_type == e1000_media_type_fiber) {
 
 
 
2390			if (status & E1000_STATUS_LU)
2391				hw->get_link_status = false;
2392		}
2393	}
2394
2395	/* If we have a copper PHY then we only want to go out to the PHY
2396	 * registers to see if Auto-Neg has completed and/or if our link
2397	 * status has changed.  The get_link_status flag will be set if we
2398	 * receive a Link Status Change interrupt or we have Rx Sequence
2399	 * Errors.
2400	 */
2401	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2402		/* First we want to see if the MII Status Register reports
2403		 * link.  If so, then we want to get the current speed/duplex
2404		 * of the PHY.
2405		 * Read the register twice since the link bit is sticky.
2406		 */
2407		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2408		if (ret_val)
2409			return ret_val;
2410		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2411		if (ret_val)
2412			return ret_val;
2413
2414		if (phy_data & MII_SR_LINK_STATUS) {
2415			hw->get_link_status = false;
2416			/* Check if there was DownShift, must be checked
2417			 * immediately after link-up
2418			 */
2419			e1000_check_downshift(hw);
2420
2421			/* If we are on 82544 or 82543 silicon and speed/duplex
2422			 * are forced to 10H or 10F, then we will implement the
2423			 * polarity reversal workaround.  We disable interrupts
2424			 * first, and upon returning, place the devices
2425			 * interrupt state to its previous value except for the
2426			 * link status change interrupt which will
2427			 * happen due to the execution of this workaround.
2428			 */
2429
2430			if ((hw->mac_type == e1000_82544 ||
2431			     hw->mac_type == e1000_82543) &&
2432			    (!hw->autoneg) &&
2433			    (hw->forced_speed_duplex == e1000_10_full ||
2434			     hw->forced_speed_duplex == e1000_10_half)) {
2435				ew32(IMC, 0xffffffff);
2436				ret_val =
2437				    e1000_polarity_reversal_workaround(hw);
2438				icr = er32(ICR);
2439				ew32(ICS, (icr & ~E1000_ICS_LSC));
2440				ew32(IMS, IMS_ENABLE_MASK);
2441			}
2442
2443		} else {
2444			/* No link detected */
2445			e1000_config_dsp_after_link_change(hw, false);
2446			return 0;
2447		}
2448
2449		/* If we are forcing speed/duplex, then we simply return since
2450		 * we have already determined whether we have link or not.
2451		 */
2452		if (!hw->autoneg)
2453			return -E1000_ERR_CONFIG;
2454
2455		/* optimize the dsp settings for the igp phy */
2456		e1000_config_dsp_after_link_change(hw, true);
2457
2458		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2459		 * have Si on board that is 82544 or newer, Auto
2460		 * Speed Detection takes care of MAC speed/duplex
2461		 * configuration.  So we only need to configure Collision
2462		 * Distance in the MAC.  Otherwise, we need to force
2463		 * speed/duplex on the MAC to the current PHY speed/duplex
2464		 * settings.
2465		 */
2466		if ((hw->mac_type >= e1000_82544) &&
2467		    (hw->mac_type != e1000_ce4100))
2468			e1000_config_collision_dist(hw);
2469		else {
2470			ret_val = e1000_config_mac_to_phy(hw);
2471			if (ret_val) {
2472				e_dbg
2473				    ("Error configuring MAC to PHY settings\n");
2474				return ret_val;
2475			}
2476		}
2477
2478		/* Configure Flow Control now that Auto-Neg has completed.
2479		 * First, we need to restore the desired flow control settings
2480		 * because we may have had to re-autoneg with a different link
2481		 * partner.
2482		 */
2483		ret_val = e1000_config_fc_after_link_up(hw);
2484		if (ret_val) {
2485			e_dbg("Error configuring flow control\n");
2486			return ret_val;
2487		}
2488
2489		/* At this point we know that we are on copper and we have
2490		 * auto-negotiated link.  These are conditions for checking the
2491		 * link partner capability register.  We use the link speed to
2492		 * determine if TBI compatibility needs to be turned on or off.
2493		 * If the link is not at gigabit speed, then TBI compatibility
2494		 * is not needed.  If we are at gigabit speed, we turn on TBI
2495		 * compatibility.
2496		 */
2497		if (hw->tbi_compatibility_en) {
2498			u16 speed, duplex;
2499
2500			ret_val =
2501			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2502
2503			if (ret_val) {
2504				e_dbg
2505				    ("Error getting link speed and duplex\n");
2506				return ret_val;
2507			}
2508			if (speed != SPEED_1000) {
2509				/* If link speed is not set to gigabit speed, we
2510				 * do not need to enable TBI compatibility.
2511				 */
2512				if (hw->tbi_compatibility_on) {
2513					/* If we previously were in the mode,
2514					 * turn it off.
2515					 */
2516					rctl = er32(RCTL);
2517					rctl &= ~E1000_RCTL_SBP;
2518					ew32(RCTL, rctl);
2519					hw->tbi_compatibility_on = false;
2520				}
2521			} else {
2522				/* If TBI compatibility is was previously off,
2523				 * turn it on. For compatibility with a TBI link
2524				 * partner, we will store bad packets. Some
2525				 * frames have an additional byte on the end and
2526				 * will look like CRC errors to the hardware.
2527				 */
2528				if (!hw->tbi_compatibility_on) {
2529					hw->tbi_compatibility_on = true;
2530					rctl = er32(RCTL);
2531					rctl |= E1000_RCTL_SBP;
2532					ew32(RCTL, rctl);
2533				}
2534			}
2535		}
2536	}
2537
2538	if ((hw->media_type == e1000_media_type_fiber) ||
2539	    (hw->media_type == e1000_media_type_internal_serdes))
2540		e1000_check_for_serdes_link_generic(hw);
2541
2542	return E1000_SUCCESS;
2543}
2544
2545/**
2546 * e1000_get_speed_and_duplex
2547 * @hw: Struct containing variables accessed by shared code
2548 * @speed: Speed of the connection
2549 * @duplex: Duplex setting of the connection
2550 *
2551 * Detects the current speed and duplex settings of the hardware.
2552 */
2553s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2554{
2555	u32 status;
2556	s32 ret_val;
2557	u16 phy_data;
2558
2559	if (hw->mac_type >= e1000_82543) {
2560		status = er32(STATUS);
2561		if (status & E1000_STATUS_SPEED_1000) {
2562			*speed = SPEED_1000;
2563			e_dbg("1000 Mbs, ");
2564		} else if (status & E1000_STATUS_SPEED_100) {
2565			*speed = SPEED_100;
2566			e_dbg("100 Mbs, ");
2567		} else {
2568			*speed = SPEED_10;
2569			e_dbg("10 Mbs, ");
2570		}
2571
2572		if (status & E1000_STATUS_FD) {
2573			*duplex = FULL_DUPLEX;
2574			e_dbg("Full Duplex\n");
2575		} else {
2576			*duplex = HALF_DUPLEX;
2577			e_dbg(" Half Duplex\n");
2578		}
2579	} else {
2580		e_dbg("1000 Mbs, Full Duplex\n");
2581		*speed = SPEED_1000;
2582		*duplex = FULL_DUPLEX;
2583	}
2584
2585	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2586	 * even if it is operating at half duplex.  Here we set the duplex
2587	 * settings to match the duplex in the link partner's capabilities.
2588	 */
2589	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2590		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2591		if (ret_val)
2592			return ret_val;
2593
2594		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2595			*duplex = HALF_DUPLEX;
2596		else {
2597			ret_val =
2598			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2599			if (ret_val)
2600				return ret_val;
2601			if ((*speed == SPEED_100 &&
2602			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2603			    (*speed == SPEED_10 &&
2604			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2605				*duplex = HALF_DUPLEX;
2606		}
2607	}
2608
2609	return E1000_SUCCESS;
2610}
2611
2612/**
2613 * e1000_wait_autoneg
2614 * @hw: Struct containing variables accessed by shared code
2615 *
2616 * Blocks until autoneg completes or times out (~4.5 seconds)
2617 */
2618static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2619{
2620	s32 ret_val;
2621	u16 i;
2622	u16 phy_data;
2623
2624	e_dbg("Waiting for Auto-Neg to complete.\n");
2625
2626	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2627	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2628		/* Read the MII Status Register and wait for Auto-Neg
2629		 * Complete bit to be set.
2630		 */
2631		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2632		if (ret_val)
2633			return ret_val;
2634		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2635		if (ret_val)
2636			return ret_val;
2637		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2638			return E1000_SUCCESS;
2639
2640		msleep(100);
2641	}
2642	return E1000_SUCCESS;
2643}
2644
2645/**
2646 * e1000_raise_mdi_clk - Raises the Management Data Clock
2647 * @hw: Struct containing variables accessed by shared code
2648 * @ctrl: Device control register's current value
2649 */
2650static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2651{
2652	/* Raise the clock input to the Management Data Clock (by setting the
2653	 * MDC bit), and then delay 10 microseconds.
2654	 */
2655	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2656	E1000_WRITE_FLUSH();
2657	udelay(10);
2658}
2659
2660/**
2661 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2662 * @hw: Struct containing variables accessed by shared code
2663 * @ctrl: Device control register's current value
2664 */
2665static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2666{
2667	/* Lower the clock input to the Management Data Clock (by clearing the
2668	 * MDC bit), and then delay 10 microseconds.
2669	 */
2670	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2671	E1000_WRITE_FLUSH();
2672	udelay(10);
2673}
2674
2675/**
2676 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2677 * @hw: Struct containing variables accessed by shared code
2678 * @data: Data to send out to the PHY
2679 * @count: Number of bits to shift out
2680 *
2681 * Bits are shifted out in MSB to LSB order.
2682 */
2683static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2684{
2685	u32 ctrl;
2686	u32 mask;
2687
2688	/* We need to shift "count" number of bits out to the PHY. So, the value
2689	 * in the "data" parameter will be shifted out to the PHY one bit at a
2690	 * time. In order to do this, "data" must be broken down into bits.
2691	 */
2692	mask = 0x01;
2693	mask <<= (count - 1);
2694
2695	ctrl = er32(CTRL);
2696
2697	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2698	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2699
2700	while (mask) {
2701		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2702		 * "1" and then raising and lowering the Management Data Clock.
2703		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2704		 * "0" and then raising and lowering the clock.
2705		 */
2706		if (data & mask)
2707			ctrl |= E1000_CTRL_MDIO;
2708		else
2709			ctrl &= ~E1000_CTRL_MDIO;
2710
2711		ew32(CTRL, ctrl);
2712		E1000_WRITE_FLUSH();
2713
2714		udelay(10);
2715
2716		e1000_raise_mdi_clk(hw, &ctrl);
2717		e1000_lower_mdi_clk(hw, &ctrl);
2718
2719		mask = mask >> 1;
2720	}
2721}
2722
2723/**
2724 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2725 * @hw: Struct containing variables accessed by shared code
2726 *
2727 * Bits are shifted in MSB to LSB order.
2728 */
2729static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2730{
2731	u32 ctrl;
2732	u16 data = 0;
2733	u8 i;
2734
2735	/* In order to read a register from the PHY, we need to shift in a total
2736	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2737	 * used to avoid contention on the MDIO pin when a read operation is
2738	 * performed. These two bits are ignored by us and thrown away. Bits are
2739	 * "shifted in" by raising the input to the Management Data Clock
2740	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2741	 */
2742	ctrl = er32(CTRL);
2743
2744	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2745	 * input.
2746	 */
2747	ctrl &= ~E1000_CTRL_MDIO_DIR;
2748	ctrl &= ~E1000_CTRL_MDIO;
2749
2750	ew32(CTRL, ctrl);
2751	E1000_WRITE_FLUSH();
2752
2753	/* Raise and Lower the clock before reading in the data. This accounts
2754	 * for the turnaround bits. The first clock occurred when we clocked out
2755	 * the last bit of the Register Address.
2756	 */
2757	e1000_raise_mdi_clk(hw, &ctrl);
2758	e1000_lower_mdi_clk(hw, &ctrl);
2759
2760	for (data = 0, i = 0; i < 16; i++) {
2761		data = data << 1;
2762		e1000_raise_mdi_clk(hw, &ctrl);
2763		ctrl = er32(CTRL);
2764		/* Check to see if we shifted in a "1". */
2765		if (ctrl & E1000_CTRL_MDIO)
2766			data |= 1;
2767		e1000_lower_mdi_clk(hw, &ctrl);
2768	}
2769
2770	e1000_raise_mdi_clk(hw, &ctrl);
2771	e1000_lower_mdi_clk(hw, &ctrl);
2772
2773	return data;
2774}
2775
2776/**
2777 * e1000_read_phy_reg - read a phy register
2778 * @hw: Struct containing variables accessed by shared code
2779 * @reg_addr: address of the PHY register to read
2780 * @phy_data: pointer to the value on the PHY register
2781 *
2782 * Reads the value from a PHY register, if the value is on a specific non zero
2783 * page, sets the page first.
2784 */
2785s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2786{
2787	u32 ret_val;
2788	unsigned long flags;
2789
2790	spin_lock_irqsave(&e1000_phy_lock, flags);
2791
2792	if ((hw->phy_type == e1000_phy_igp) &&
2793	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2794		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2795						 (u16) reg_addr);
2796		if (ret_val)
2797			goto out;
2798	}
2799
2800	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2801					phy_data);
2802out:
2803	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2804
2805	return ret_val;
2806}
2807
2808static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2809				 u16 *phy_data)
2810{
2811	u32 i;
2812	u32 mdic = 0;
2813	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2814
2815	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2816		e_dbg("PHY Address %d is out of range\n", reg_addr);
2817		return -E1000_ERR_PARAM;
2818	}
2819
2820	if (hw->mac_type > e1000_82543) {
2821		/* Set up Op-code, Phy Address, and register address in the MDI
2822		 * Control register.  The MAC will take care of interfacing with
2823		 * the PHY to retrieve the desired data.
2824		 */
2825		if (hw->mac_type == e1000_ce4100) {
2826			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2827				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2828				(INTEL_CE_GBE_MDIC_OP_READ) |
2829				(INTEL_CE_GBE_MDIC_GO));
2830
2831			writel(mdic, E1000_MDIO_CMD);
2832
2833			/* Poll the ready bit to see if the MDI read
2834			 * completed
2835			 */
2836			for (i = 0; i < 64; i++) {
2837				udelay(50);
2838				mdic = readl(E1000_MDIO_CMD);
2839				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2840					break;
2841			}
2842
2843			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2844				e_dbg("MDI Read did not complete\n");
2845				return -E1000_ERR_PHY;
2846			}
2847
2848			mdic = readl(E1000_MDIO_STS);
2849			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2850				e_dbg("MDI Read Error\n");
2851				return -E1000_ERR_PHY;
2852			}
2853			*phy_data = (u16)mdic;
2854		} else {
2855			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2856				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2857				(E1000_MDIC_OP_READ));
2858
2859			ew32(MDIC, mdic);
2860
2861			/* Poll the ready bit to see if the MDI read
2862			 * completed
2863			 */
2864			for (i = 0; i < 64; i++) {
2865				udelay(50);
2866				mdic = er32(MDIC);
2867				if (mdic & E1000_MDIC_READY)
2868					break;
2869			}
2870			if (!(mdic & E1000_MDIC_READY)) {
2871				e_dbg("MDI Read did not complete\n");
2872				return -E1000_ERR_PHY;
2873			}
2874			if (mdic & E1000_MDIC_ERROR) {
2875				e_dbg("MDI Error\n");
2876				return -E1000_ERR_PHY;
2877			}
2878			*phy_data = (u16)mdic;
2879		}
2880	} else {
2881		/* We must first send a preamble through the MDIO pin to signal
2882		 * the beginning of an MII instruction.  This is done by sending
2883		 * 32 consecutive "1" bits.
2884		 */
2885		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2886
2887		/* Now combine the next few fields that are required for a read
2888		 * operation.  We use this method instead of calling the
2889		 * e1000_shift_out_mdi_bits routine five different times. The
2890		 * format of a MII read instruction consists of a shift out of
2891		 * 14 bits and is defined as follows:
2892		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2893		 * followed by a shift in of 18 bits.  This first two bits
2894		 * shifted in are TurnAround bits used to avoid contention on
2895		 * the MDIO pin when a READ operation is performed.  These two
2896		 * bits are thrown away followed by a shift in of 16 bits which
2897		 * contains the desired data.
2898		 */
2899		mdic = ((reg_addr) | (phy_addr << 5) |
2900			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2901
2902		e1000_shift_out_mdi_bits(hw, mdic, 14);
2903
2904		/* Now that we've shifted out the read command to the MII, we
2905		 * need to "shift in" the 16-bit value (18 total bits) of the
2906		 * requested PHY register address.
2907		 */
2908		*phy_data = e1000_shift_in_mdi_bits(hw);
2909	}
2910	return E1000_SUCCESS;
2911}
2912
2913/**
2914 * e1000_write_phy_reg - write a phy register
2915 *
2916 * @hw: Struct containing variables accessed by shared code
2917 * @reg_addr: address of the PHY register to write
2918 * @phy_data: data to write to the PHY
2919 *
2920 * Writes a value to a PHY register
2921 */
2922s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2923{
2924	u32 ret_val;
2925	unsigned long flags;
2926
2927	spin_lock_irqsave(&e1000_phy_lock, flags);
2928
2929	if ((hw->phy_type == e1000_phy_igp) &&
2930	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2931		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2932						 (u16)reg_addr);
2933		if (ret_val) {
2934			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2935			return ret_val;
2936		}
2937	}
2938
2939	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2940					 phy_data);
2941	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2942
2943	return ret_val;
2944}
2945
2946static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2947				  u16 phy_data)
2948{
2949	u32 i;
2950	u32 mdic = 0;
2951	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2952
2953	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2954		e_dbg("PHY Address %d is out of range\n", reg_addr);
2955		return -E1000_ERR_PARAM;
2956	}
2957
2958	if (hw->mac_type > e1000_82543) {
2959		/* Set up Op-code, Phy Address, register address, and data
2960		 * intended for the PHY register in the MDI Control register.
2961		 * The MAC will take care of interfacing with the PHY to send
2962		 * the desired data.
2963		 */
2964		if (hw->mac_type == e1000_ce4100) {
2965			mdic = (((u32)phy_data) |
2966				(reg_addr << E1000_MDIC_REG_SHIFT) |
2967				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2968				(INTEL_CE_GBE_MDIC_OP_WRITE) |
2969				(INTEL_CE_GBE_MDIC_GO));
2970
2971			writel(mdic, E1000_MDIO_CMD);
2972
2973			/* Poll the ready bit to see if the MDI read
2974			 * completed
2975			 */
2976			for (i = 0; i < 640; i++) {
2977				udelay(5);
2978				mdic = readl(E1000_MDIO_CMD);
2979				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2980					break;
2981			}
2982			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2983				e_dbg("MDI Write did not complete\n");
2984				return -E1000_ERR_PHY;
2985			}
2986		} else {
2987			mdic = (((u32)phy_data) |
2988				(reg_addr << E1000_MDIC_REG_SHIFT) |
2989				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2990				(E1000_MDIC_OP_WRITE));
2991
2992			ew32(MDIC, mdic);
2993
2994			/* Poll the ready bit to see if the MDI read
2995			 * completed
2996			 */
2997			for (i = 0; i < 641; i++) {
2998				udelay(5);
2999				mdic = er32(MDIC);
3000				if (mdic & E1000_MDIC_READY)
3001					break;
3002			}
3003			if (!(mdic & E1000_MDIC_READY)) {
3004				e_dbg("MDI Write did not complete\n");
3005				return -E1000_ERR_PHY;
3006			}
3007		}
3008	} else {
3009		/* We'll need to use the SW defined pins to shift the write
3010		 * command out to the PHY. We first send a preamble to the PHY
3011		 * to signal the beginning of the MII instruction.  This is done
3012		 * by sending 32 consecutive "1" bits.
3013		 */
3014		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3015
3016		/* Now combine the remaining required fields that will indicate
3017		 * a write operation. We use this method instead of calling the
3018		 * e1000_shift_out_mdi_bits routine for each field in the
3019		 * command. The format of a MII write instruction is as follows:
3020		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3021		 */
3022		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3023			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3024		mdic <<= 16;
3025		mdic |= (u32)phy_data;
3026
3027		e1000_shift_out_mdi_bits(hw, mdic, 32);
3028	}
3029
3030	return E1000_SUCCESS;
3031}
3032
3033/**
3034 * e1000_phy_hw_reset - reset the phy, hardware style
3035 * @hw: Struct containing variables accessed by shared code
3036 *
3037 * Returns the PHY to the power-on reset state
3038 */
3039s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3040{
3041	u32 ctrl, ctrl_ext;
3042	u32 led_ctrl;
3043
3044	e_dbg("Resetting Phy...\n");
3045
3046	if (hw->mac_type > e1000_82543) {
3047		/* Read the device control register and assert the
3048		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3049		 * For e1000 hardware, we delay for 10ms between the assert
3050		 * and de-assert.
3051		 */
3052		ctrl = er32(CTRL);
3053		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3054		E1000_WRITE_FLUSH();
3055
3056		msleep(10);
3057
3058		ew32(CTRL, ctrl);
3059		E1000_WRITE_FLUSH();
3060
3061	} else {
3062		/* Read the Extended Device Control Register, assert the
3063		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3064		 * out of reset.
3065		 */
3066		ctrl_ext = er32(CTRL_EXT);
3067		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3068		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3069		ew32(CTRL_EXT, ctrl_ext);
3070		E1000_WRITE_FLUSH();
3071		msleep(10);
3072		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3073		ew32(CTRL_EXT, ctrl_ext);
3074		E1000_WRITE_FLUSH();
3075	}
3076	udelay(150);
3077
3078	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3079		/* Configure activity LED after PHY reset */
3080		led_ctrl = er32(LEDCTL);
3081		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3082		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3083		ew32(LEDCTL, led_ctrl);
3084	}
3085
3086	/* Wait for FW to finish PHY configuration. */
3087	return e1000_get_phy_cfg_done(hw);
3088}
3089
3090/**
3091 * e1000_phy_reset - reset the phy to commit settings
3092 * @hw: Struct containing variables accessed by shared code
3093 *
3094 * Resets the PHY
3095 * Sets bit 15 of the MII Control register
3096 */
3097s32 e1000_phy_reset(struct e1000_hw *hw)
3098{
3099	s32 ret_val;
3100	u16 phy_data;
3101
3102	switch (hw->phy_type) {
3103	case e1000_phy_igp:
3104		ret_val = e1000_phy_hw_reset(hw);
3105		if (ret_val)
3106			return ret_val;
3107		break;
3108	default:
3109		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3110		if (ret_val)
3111			return ret_val;
3112
3113		phy_data |= MII_CR_RESET;
3114		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3115		if (ret_val)
3116			return ret_val;
3117
3118		udelay(1);
3119		break;
3120	}
3121
3122	if (hw->phy_type == e1000_phy_igp)
3123		e1000_phy_init_script(hw);
3124
3125	return E1000_SUCCESS;
3126}
3127
3128/**
3129 * e1000_detect_gig_phy - check the phy type
3130 * @hw: Struct containing variables accessed by shared code
3131 *
3132 * Probes the expected PHY address for known PHY IDs
3133 */
3134static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3135{
3136	s32 phy_init_status, ret_val;
3137	u16 phy_id_high, phy_id_low;
3138	bool match = false;
3139
3140	if (hw->phy_id != 0)
3141		return E1000_SUCCESS;
3142
3143	/* Read the PHY ID Registers to identify which PHY is onboard. */
3144	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3145	if (ret_val)
3146		return ret_val;
3147
3148	hw->phy_id = (u32)(phy_id_high << 16);
3149	udelay(20);
3150	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3151	if (ret_val)
3152		return ret_val;
3153
3154	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3155	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3156
3157	switch (hw->mac_type) {
3158	case e1000_82543:
3159		if (hw->phy_id == M88E1000_E_PHY_ID)
3160			match = true;
3161		break;
3162	case e1000_82544:
3163		if (hw->phy_id == M88E1000_I_PHY_ID)
3164			match = true;
3165		break;
3166	case e1000_82540:
3167	case e1000_82545:
3168	case e1000_82545_rev_3:
3169	case e1000_82546:
3170	case e1000_82546_rev_3:
3171		if (hw->phy_id == M88E1011_I_PHY_ID)
3172			match = true;
3173		break;
3174	case e1000_ce4100:
3175		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3176		    (hw->phy_id == RTL8201N_PHY_ID) ||
3177		    (hw->phy_id == M88E1118_E_PHY_ID))
3178			match = true;
3179		break;
3180	case e1000_82541:
3181	case e1000_82541_rev_2:
3182	case e1000_82547:
3183	case e1000_82547_rev_2:
3184		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3185			match = true;
3186		break;
3187	default:
3188		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3189		return -E1000_ERR_CONFIG;
3190	}
3191	phy_init_status = e1000_set_phy_type(hw);
3192
3193	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3194		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3195		return E1000_SUCCESS;
3196	}
3197	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3198	return -E1000_ERR_PHY;
3199}
3200
3201/**
3202 * e1000_phy_reset_dsp - reset DSP
3203 * @hw: Struct containing variables accessed by shared code
3204 *
3205 * Resets the PHY's DSP
3206 */
3207static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3208{
3209	s32 ret_val;
3210
3211	do {
3212		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3213		if (ret_val)
3214			break;
3215		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3216		if (ret_val)
3217			break;
3218		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3219		if (ret_val)
3220			break;
3221		ret_val = E1000_SUCCESS;
3222	} while (0);
3223
3224	return ret_val;
3225}
3226
3227/**
3228 * e1000_phy_igp_get_info - get igp specific registers
3229 * @hw: Struct containing variables accessed by shared code
3230 * @phy_info: PHY information structure
3231 *
3232 * Get PHY information from various PHY registers for igp PHY only.
3233 */
3234static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3235				  struct e1000_phy_info *phy_info)
3236{
3237	s32 ret_val;
3238	u16 phy_data, min_length, max_length, average;
3239	e1000_rev_polarity polarity;
3240
3241	/* The downshift status is checked only once, after link is established,
3242	 * and it stored in the hw->speed_downgraded parameter.
3243	 */
3244	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3245
3246	/* IGP01E1000 does not need to support it. */
3247	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3248
3249	/* IGP01E1000 always correct polarity reversal */
3250	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3251
3252	/* Check polarity status */
3253	ret_val = e1000_check_polarity(hw, &polarity);
3254	if (ret_val)
3255		return ret_val;
3256
3257	phy_info->cable_polarity = polarity;
3258
3259	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3260	if (ret_val)
3261		return ret_val;
3262
3263	phy_info->mdix_mode =
3264	    (e1000_auto_x_mode)FIELD_GET(IGP01E1000_PSSR_MDIX, phy_data);
 
3265
3266	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3267	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3268		/* Local/Remote Receiver Information are only valid @ 1000
3269		 * Mbps
3270		 */
3271		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3272		if (ret_val)
3273			return ret_val;
3274
3275		phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3276					       phy_data) ?
3277		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3278		phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3279						phy_data) ?
3280		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3281
3282		/* Get cable length */
3283		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3284		if (ret_val)
3285			return ret_val;
3286
3287		/* Translate to old method */
3288		average = (max_length + min_length) / 2;
3289
3290		if (average <= e1000_igp_cable_length_50)
3291			phy_info->cable_length = e1000_cable_length_50;
3292		else if (average <= e1000_igp_cable_length_80)
3293			phy_info->cable_length = e1000_cable_length_50_80;
3294		else if (average <= e1000_igp_cable_length_110)
3295			phy_info->cable_length = e1000_cable_length_80_110;
3296		else if (average <= e1000_igp_cable_length_140)
3297			phy_info->cable_length = e1000_cable_length_110_140;
3298		else
3299			phy_info->cable_length = e1000_cable_length_140;
3300	}
3301
3302	return E1000_SUCCESS;
3303}
3304
3305/**
3306 * e1000_phy_m88_get_info - get m88 specific registers
3307 * @hw: Struct containing variables accessed by shared code
3308 * @phy_info: PHY information structure
3309 *
3310 * Get PHY information from various PHY registers for m88 PHY only.
3311 */
3312static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3313				  struct e1000_phy_info *phy_info)
3314{
3315	s32 ret_val;
3316	u16 phy_data;
3317	e1000_rev_polarity polarity;
3318
3319	/* The downshift status is checked only once, after link is established,
3320	 * and it stored in the hw->speed_downgraded parameter.
3321	 */
3322	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3323
3324	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3325	if (ret_val)
3326		return ret_val;
3327
3328	phy_info->extended_10bt_distance =
3329	    FIELD_GET(M88E1000_PSCR_10BT_EXT_DIST_ENABLE, phy_data) ?
 
3330	    e1000_10bt_ext_dist_enable_lower :
3331	    e1000_10bt_ext_dist_enable_normal;
3332
3333	phy_info->polarity_correction =
3334	    FIELD_GET(M88E1000_PSCR_POLARITY_REVERSAL, phy_data) ?
 
3335	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3336
3337	/* Check polarity status */
3338	ret_val = e1000_check_polarity(hw, &polarity);
3339	if (ret_val)
3340		return ret_val;
3341	phy_info->cable_polarity = polarity;
3342
3343	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3344	if (ret_val)
3345		return ret_val;
3346
3347	phy_info->mdix_mode =
3348	    (e1000_auto_x_mode)FIELD_GET(M88E1000_PSSR_MDIX, phy_data);
 
3349
3350	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3351		/* Cable Length Estimation and Local/Remote Receiver Information
3352		 * are only valid at 1000 Mbps.
3353		 */
3354		phy_info->cable_length =
3355		    (e1000_cable_length)FIELD_GET(M88E1000_PSSR_CABLE_LENGTH,
3356						  phy_data);
 
3357
3358		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3359		if (ret_val)
3360			return ret_val;
3361
3362		phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3363					       phy_data) ?
3364		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3365		phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3366						phy_data) ?
3367		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3368	}
3369
3370	return E1000_SUCCESS;
3371}
3372
3373/**
3374 * e1000_phy_get_info - request phy info
3375 * @hw: Struct containing variables accessed by shared code
3376 * @phy_info: PHY information structure
3377 *
3378 * Get PHY information from various PHY registers
3379 */
3380s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3381{
3382	s32 ret_val;
3383	u16 phy_data;
3384
3385	phy_info->cable_length = e1000_cable_length_undefined;
3386	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3387	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3388	phy_info->downshift = e1000_downshift_undefined;
3389	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3390	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3391	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3392	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3393
3394	if (hw->media_type != e1000_media_type_copper) {
3395		e_dbg("PHY info is only valid for copper media\n");
3396		return -E1000_ERR_CONFIG;
3397	}
3398
3399	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3400	if (ret_val)
3401		return ret_val;
3402
3403	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3404	if (ret_val)
3405		return ret_val;
3406
3407	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3408		e_dbg("PHY info is only valid if link is up\n");
3409		return -E1000_ERR_CONFIG;
3410	}
3411
3412	if (hw->phy_type == e1000_phy_igp)
3413		return e1000_phy_igp_get_info(hw, phy_info);
3414	else if ((hw->phy_type == e1000_phy_8211) ||
3415		 (hw->phy_type == e1000_phy_8201))
3416		return E1000_SUCCESS;
3417	else
3418		return e1000_phy_m88_get_info(hw, phy_info);
3419}
3420
3421s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3422{
3423	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3424		e_dbg("Invalid MDI setting detected\n");
3425		hw->mdix = 1;
3426		return -E1000_ERR_CONFIG;
3427	}
3428	return E1000_SUCCESS;
3429}
3430
3431/**
3432 * e1000_init_eeprom_params - initialize sw eeprom vars
3433 * @hw: Struct containing variables accessed by shared code
3434 *
3435 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3436 * is configured.
3437 */
3438s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3439{
3440	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3441	u32 eecd = er32(EECD);
3442	s32 ret_val = E1000_SUCCESS;
3443	u16 eeprom_size;
3444
3445	switch (hw->mac_type) {
3446	case e1000_82542_rev2_0:
3447	case e1000_82542_rev2_1:
3448	case e1000_82543:
3449	case e1000_82544:
3450		eeprom->type = e1000_eeprom_microwire;
3451		eeprom->word_size = 64;
3452		eeprom->opcode_bits = 3;
3453		eeprom->address_bits = 6;
3454		eeprom->delay_usec = 50;
3455		break;
3456	case e1000_82540:
3457	case e1000_82545:
3458	case e1000_82545_rev_3:
3459	case e1000_82546:
3460	case e1000_82546_rev_3:
3461		eeprom->type = e1000_eeprom_microwire;
3462		eeprom->opcode_bits = 3;
3463		eeprom->delay_usec = 50;
3464		if (eecd & E1000_EECD_SIZE) {
3465			eeprom->word_size = 256;
3466			eeprom->address_bits = 8;
3467		} else {
3468			eeprom->word_size = 64;
3469			eeprom->address_bits = 6;
3470		}
3471		break;
3472	case e1000_82541:
3473	case e1000_82541_rev_2:
3474	case e1000_82547:
3475	case e1000_82547_rev_2:
3476		if (eecd & E1000_EECD_TYPE) {
3477			eeprom->type = e1000_eeprom_spi;
3478			eeprom->opcode_bits = 8;
3479			eeprom->delay_usec = 1;
3480			if (eecd & E1000_EECD_ADDR_BITS) {
3481				eeprom->page_size = 32;
3482				eeprom->address_bits = 16;
3483			} else {
3484				eeprom->page_size = 8;
3485				eeprom->address_bits = 8;
3486			}
3487		} else {
3488			eeprom->type = e1000_eeprom_microwire;
3489			eeprom->opcode_bits = 3;
3490			eeprom->delay_usec = 50;
3491			if (eecd & E1000_EECD_ADDR_BITS) {
3492				eeprom->word_size = 256;
3493				eeprom->address_bits = 8;
3494			} else {
3495				eeprom->word_size = 64;
3496				eeprom->address_bits = 6;
3497			}
3498		}
3499		break;
3500	default:
3501		break;
3502	}
3503
3504	if (eeprom->type == e1000_eeprom_spi) {
3505		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3506		 * 128B to 32KB (incremented by powers of 2).
3507		 */
3508		/* Set to default value for initial eeprom read. */
3509		eeprom->word_size = 64;
3510		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3511		if (ret_val)
3512			return ret_val;
3513		eeprom_size =
3514		    FIELD_GET(EEPROM_SIZE_MASK, eeprom_size);
3515		/* 256B eeprom size was not supported in earlier hardware, so we
3516		 * bump eeprom_size up one to ensure that "1" (which maps to
3517		 * 256B) is never the result used in the shifting logic below.
3518		 */
3519		if (eeprom_size)
3520			eeprom_size++;
3521
3522		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3523	}
3524	return ret_val;
3525}
3526
3527/**
3528 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3529 * @hw: Struct containing variables accessed by shared code
3530 * @eecd: EECD's current value
3531 */
3532static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3533{
3534	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3535	 * wait <delay> microseconds.
3536	 */
3537	*eecd = *eecd | E1000_EECD_SK;
3538	ew32(EECD, *eecd);
3539	E1000_WRITE_FLUSH();
3540	udelay(hw->eeprom.delay_usec);
3541}
3542
3543/**
3544 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3545 * @hw: Struct containing variables accessed by shared code
3546 * @eecd: EECD's current value
3547 */
3548static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3549{
3550	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3551	 * then wait 50 microseconds.
3552	 */
3553	*eecd = *eecd & ~E1000_EECD_SK;
3554	ew32(EECD, *eecd);
3555	E1000_WRITE_FLUSH();
3556	udelay(hw->eeprom.delay_usec);
3557}
3558
3559/**
3560 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3561 * @hw: Struct containing variables accessed by shared code
3562 * @data: data to send to the EEPROM
3563 * @count: number of bits to shift out
3564 */
3565static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3566{
3567	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3568	u32 eecd;
3569	u32 mask;
3570
3571	/* We need to shift "count" bits out to the EEPROM. So, value in the
3572	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3573	 * In order to do this, "data" must be broken down into bits.
3574	 */
3575	mask = 0x01 << (count - 1);
3576	eecd = er32(EECD);
3577	if (eeprom->type == e1000_eeprom_microwire)
3578		eecd &= ~E1000_EECD_DO;
3579	else if (eeprom->type == e1000_eeprom_spi)
3580		eecd |= E1000_EECD_DO;
3581
3582	do {
3583		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3584		 * "1", and then raising and then lowering the clock (the SK bit
3585		 * controls the clock input to the EEPROM).  A "0" is shifted
3586		 * out to the EEPROM by setting "DI" to "0" and then raising and
3587		 * then lowering the clock.
3588		 */
3589		eecd &= ~E1000_EECD_DI;
3590
3591		if (data & mask)
3592			eecd |= E1000_EECD_DI;
3593
3594		ew32(EECD, eecd);
3595		E1000_WRITE_FLUSH();
3596
3597		udelay(eeprom->delay_usec);
3598
3599		e1000_raise_ee_clk(hw, &eecd);
3600		e1000_lower_ee_clk(hw, &eecd);
3601
3602		mask = mask >> 1;
3603
3604	} while (mask);
3605
3606	/* We leave the "DI" bit set to "0" when we leave this routine. */
3607	eecd &= ~E1000_EECD_DI;
3608	ew32(EECD, eecd);
3609}
3610
3611/**
3612 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3613 * @hw: Struct containing variables accessed by shared code
3614 * @count: number of bits to shift in
3615 */
3616static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3617{
3618	u32 eecd;
3619	u32 i;
3620	u16 data;
3621
3622	/* In order to read a register from the EEPROM, we need to shift 'count'
3623	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3624	 * input to the EEPROM (setting the SK bit), and then reading the value
3625	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3626	 * should always be clear.
3627	 */
3628
3629	eecd = er32(EECD);
3630
3631	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3632	data = 0;
3633
3634	for (i = 0; i < count; i++) {
3635		data = data << 1;
3636		e1000_raise_ee_clk(hw, &eecd);
3637
3638		eecd = er32(EECD);
3639
3640		eecd &= ~(E1000_EECD_DI);
3641		if (eecd & E1000_EECD_DO)
3642			data |= 1;
3643
3644		e1000_lower_ee_clk(hw, &eecd);
3645	}
3646
3647	return data;
3648}
3649
3650/**
3651 * e1000_acquire_eeprom - Prepares EEPROM for access
3652 * @hw: Struct containing variables accessed by shared code
3653 *
3654 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3655 * function should be called before issuing a command to the EEPROM.
3656 */
3657static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3658{
3659	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3660	u32 eecd, i = 0;
3661
3662	eecd = er32(EECD);
3663
3664	/* Request EEPROM Access */
3665	if (hw->mac_type > e1000_82544) {
3666		eecd |= E1000_EECD_REQ;
3667		ew32(EECD, eecd);
3668		eecd = er32(EECD);
3669		while ((!(eecd & E1000_EECD_GNT)) &&
3670		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3671			i++;
3672			udelay(5);
3673			eecd = er32(EECD);
3674		}
3675		if (!(eecd & E1000_EECD_GNT)) {
3676			eecd &= ~E1000_EECD_REQ;
3677			ew32(EECD, eecd);
3678			e_dbg("Could not acquire EEPROM grant\n");
3679			return -E1000_ERR_EEPROM;
3680		}
3681	}
3682
3683	/* Setup EEPROM for Read/Write */
3684
3685	if (eeprom->type == e1000_eeprom_microwire) {
3686		/* Clear SK and DI */
3687		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3688		ew32(EECD, eecd);
3689
3690		/* Set CS */
3691		eecd |= E1000_EECD_CS;
3692		ew32(EECD, eecd);
3693	} else if (eeprom->type == e1000_eeprom_spi) {
3694		/* Clear SK and CS */
3695		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3696		ew32(EECD, eecd);
3697		E1000_WRITE_FLUSH();
3698		udelay(1);
3699	}
3700
3701	return E1000_SUCCESS;
3702}
3703
3704/**
3705 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3706 * @hw: Struct containing variables accessed by shared code
3707 */
3708static void e1000_standby_eeprom(struct e1000_hw *hw)
3709{
3710	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3711	u32 eecd;
3712
3713	eecd = er32(EECD);
3714
3715	if (eeprom->type == e1000_eeprom_microwire) {
3716		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3717		ew32(EECD, eecd);
3718		E1000_WRITE_FLUSH();
3719		udelay(eeprom->delay_usec);
3720
3721		/* Clock high */
3722		eecd |= E1000_EECD_SK;
3723		ew32(EECD, eecd);
3724		E1000_WRITE_FLUSH();
3725		udelay(eeprom->delay_usec);
3726
3727		/* Select EEPROM */
3728		eecd |= E1000_EECD_CS;
3729		ew32(EECD, eecd);
3730		E1000_WRITE_FLUSH();
3731		udelay(eeprom->delay_usec);
3732
3733		/* Clock low */
3734		eecd &= ~E1000_EECD_SK;
3735		ew32(EECD, eecd);
3736		E1000_WRITE_FLUSH();
3737		udelay(eeprom->delay_usec);
3738	} else if (eeprom->type == e1000_eeprom_spi) {
3739		/* Toggle CS to flush commands */
3740		eecd |= E1000_EECD_CS;
3741		ew32(EECD, eecd);
3742		E1000_WRITE_FLUSH();
3743		udelay(eeprom->delay_usec);
3744		eecd &= ~E1000_EECD_CS;
3745		ew32(EECD, eecd);
3746		E1000_WRITE_FLUSH();
3747		udelay(eeprom->delay_usec);
3748	}
3749}
3750
3751/**
3752 * e1000_release_eeprom - drop chip select
3753 * @hw: Struct containing variables accessed by shared code
3754 *
3755 * Terminates a command by inverting the EEPROM's chip select pin
3756 */
3757static void e1000_release_eeprom(struct e1000_hw *hw)
3758{
3759	u32 eecd;
3760
3761	eecd = er32(EECD);
3762
3763	if (hw->eeprom.type == e1000_eeprom_spi) {
3764		eecd |= E1000_EECD_CS;	/* Pull CS high */
3765		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3766
3767		ew32(EECD, eecd);
3768		E1000_WRITE_FLUSH();
3769
3770		udelay(hw->eeprom.delay_usec);
3771	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3772		/* cleanup eeprom */
3773
3774		/* CS on Microwire is active-high */
3775		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3776
3777		ew32(EECD, eecd);
3778
3779		/* Rising edge of clock */
3780		eecd |= E1000_EECD_SK;
3781		ew32(EECD, eecd);
3782		E1000_WRITE_FLUSH();
3783		udelay(hw->eeprom.delay_usec);
3784
3785		/* Falling edge of clock */
3786		eecd &= ~E1000_EECD_SK;
3787		ew32(EECD, eecd);
3788		E1000_WRITE_FLUSH();
3789		udelay(hw->eeprom.delay_usec);
3790	}
3791
3792	/* Stop requesting EEPROM access */
3793	if (hw->mac_type > e1000_82544) {
3794		eecd &= ~E1000_EECD_REQ;
3795		ew32(EECD, eecd);
3796	}
3797}
3798
3799/**
3800 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3801 * @hw: Struct containing variables accessed by shared code
3802 */
3803static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3804{
3805	u16 retry_count = 0;
3806	u8 spi_stat_reg;
3807
3808	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3809	 * EEPROM will signal that the command has been completed by clearing
3810	 * bit 0 of the internal status register.  If it's not cleared within
3811	 * 5 milliseconds, then error out.
3812	 */
3813	retry_count = 0;
3814	do {
3815		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3816					hw->eeprom.opcode_bits);
3817		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3818		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3819			break;
3820
3821		udelay(5);
3822		retry_count += 5;
3823
3824		e1000_standby_eeprom(hw);
3825	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3826
3827	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3828	 * only 0-5mSec on 5V devices)
3829	 */
3830	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3831		e_dbg("SPI EEPROM Status error\n");
3832		return -E1000_ERR_EEPROM;
3833	}
3834
3835	return E1000_SUCCESS;
3836}
3837
3838/**
3839 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3840 * @hw: Struct containing variables accessed by shared code
3841 * @offset: offset of  word in the EEPROM to read
3842 * @data: word read from the EEPROM
3843 * @words: number of words to read
3844 */
3845s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3846{
3847	s32 ret;
3848
3849	mutex_lock(&e1000_eeprom_lock);
3850	ret = e1000_do_read_eeprom(hw, offset, words, data);
3851	mutex_unlock(&e1000_eeprom_lock);
3852	return ret;
3853}
3854
3855static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3856				u16 *data)
3857{
3858	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3859	u32 i = 0;
3860
3861	if (hw->mac_type == e1000_ce4100) {
3862		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3863				      data);
3864		return E1000_SUCCESS;
3865	}
3866
3867	/* A check for invalid values:  offset too large, too many words, and
3868	 * not enough words.
3869	 */
3870	if ((offset >= eeprom->word_size) ||
3871	    (words > eeprom->word_size - offset) ||
3872	    (words == 0)) {
3873		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3874		      "size = %d\n", offset, eeprom->word_size);
3875		return -E1000_ERR_EEPROM;
3876	}
3877
3878	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3879	 * directly. In this case, we need to acquire the EEPROM so that
3880	 * FW or other port software does not interrupt.
3881	 */
3882	/* Prepare the EEPROM for bit-bang reading */
3883	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3884		return -E1000_ERR_EEPROM;
3885
3886	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3887	 * acquired the EEPROM at this point, so any returns should release it
3888	 */
3889	if (eeprom->type == e1000_eeprom_spi) {
3890		u16 word_in;
3891		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3892
3893		if (e1000_spi_eeprom_ready(hw)) {
3894			e1000_release_eeprom(hw);
3895			return -E1000_ERR_EEPROM;
3896		}
3897
3898		e1000_standby_eeprom(hw);
3899
3900		/* Some SPI eeproms use the 8th address bit embedded in the
3901		 * opcode
3902		 */
3903		if ((eeprom->address_bits == 8) && (offset >= 128))
3904			read_opcode |= EEPROM_A8_OPCODE_SPI;
3905
3906		/* Send the READ command (opcode + addr)  */
3907		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3908		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3909					eeprom->address_bits);
3910
3911		/* Read the data.  The address of the eeprom internally
3912		 * increments with each byte (spi) being read, saving on the
3913		 * overhead of eeprom setup and tear-down.  The address counter
3914		 * will roll over if reading beyond the size of the eeprom, thus
3915		 * allowing the entire memory to be read starting from any
3916		 * offset.
3917		 */
3918		for (i = 0; i < words; i++) {
3919			word_in = e1000_shift_in_ee_bits(hw, 16);
3920			data[i] = (word_in >> 8) | (word_in << 8);
3921		}
3922	} else if (eeprom->type == e1000_eeprom_microwire) {
3923		for (i = 0; i < words; i++) {
3924			/* Send the READ command (opcode + addr)  */
3925			e1000_shift_out_ee_bits(hw,
3926						EEPROM_READ_OPCODE_MICROWIRE,
3927						eeprom->opcode_bits);
3928			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3929						eeprom->address_bits);
3930
3931			/* Read the data.  For microwire, each word requires the
3932			 * overhead of eeprom setup and tear-down.
3933			 */
3934			data[i] = e1000_shift_in_ee_bits(hw, 16);
3935			e1000_standby_eeprom(hw);
3936			cond_resched();
3937		}
3938	}
3939
3940	/* End this read operation */
3941	e1000_release_eeprom(hw);
3942
3943	return E1000_SUCCESS;
3944}
3945
3946/**
3947 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3948 * @hw: Struct containing variables accessed by shared code
3949 *
3950 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3951 * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3952 * valid.
3953 */
3954s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3955{
3956	u16 checksum = 0;
3957	u16 i, eeprom_data;
3958
3959	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3960		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3961			e_dbg("EEPROM Read Error\n");
3962			return -E1000_ERR_EEPROM;
3963		}
3964		checksum += eeprom_data;
3965	}
3966
3967#ifdef CONFIG_PARISC
3968	/* This is a signature and not a checksum on HP c8000 */
3969	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
3970		return E1000_SUCCESS;
3971
3972#endif
3973	if (checksum == (u16)EEPROM_SUM)
3974		return E1000_SUCCESS;
3975	else {
3976		e_dbg("EEPROM Checksum Invalid\n");
3977		return -E1000_ERR_EEPROM;
3978	}
3979}
3980
3981/**
3982 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
3983 * @hw: Struct containing variables accessed by shared code
3984 *
3985 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
3986 * Writes the difference to word offset 63 of the EEPROM.
3987 */
3988s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
3989{
3990	u16 checksum = 0;
3991	u16 i, eeprom_data;
3992
3993	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
3994		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3995			e_dbg("EEPROM Read Error\n");
3996			return -E1000_ERR_EEPROM;
3997		}
3998		checksum += eeprom_data;
3999	}
4000	checksum = (u16)EEPROM_SUM - checksum;
4001	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4002		e_dbg("EEPROM Write Error\n");
4003		return -E1000_ERR_EEPROM;
4004	}
4005	return E1000_SUCCESS;
4006}
4007
4008/**
4009 * e1000_write_eeprom - write words to the different EEPROM types.
4010 * @hw: Struct containing variables accessed by shared code
4011 * @offset: offset within the EEPROM to be written to
4012 * @words: number of words to write
4013 * @data: 16 bit word to be written to the EEPROM
4014 *
4015 * If e1000_update_eeprom_checksum is not called after this function, the
4016 * EEPROM will most likely contain an invalid checksum.
4017 */
4018s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4019{
4020	s32 ret;
4021
4022	mutex_lock(&e1000_eeprom_lock);
4023	ret = e1000_do_write_eeprom(hw, offset, words, data);
4024	mutex_unlock(&e1000_eeprom_lock);
4025	return ret;
4026}
4027
4028static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4029				 u16 *data)
4030{
4031	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4032	s32 status = 0;
4033
4034	if (hw->mac_type == e1000_ce4100) {
4035		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4036				       data);
4037		return E1000_SUCCESS;
4038	}
4039
4040	/* A check for invalid values:  offset too large, too many words, and
4041	 * not enough words.
4042	 */
4043	if ((offset >= eeprom->word_size) ||
4044	    (words > eeprom->word_size - offset) ||
4045	    (words == 0)) {
4046		e_dbg("\"words\" parameter out of bounds\n");
4047		return -E1000_ERR_EEPROM;
4048	}
4049
4050	/* Prepare the EEPROM for writing  */
4051	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4052		return -E1000_ERR_EEPROM;
4053
4054	if (eeprom->type == e1000_eeprom_microwire) {
4055		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4056	} else {
4057		status = e1000_write_eeprom_spi(hw, offset, words, data);
4058		msleep(10);
4059	}
4060
4061	/* Done with writing */
4062	e1000_release_eeprom(hw);
4063
4064	return status;
4065}
4066
4067/**
4068 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4069 * @hw: Struct containing variables accessed by shared code
4070 * @offset: offset within the EEPROM to be written to
4071 * @words: number of words to write
4072 * @data: pointer to array of 8 bit words to be written to the EEPROM
4073 */
4074static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4075				  u16 *data)
4076{
4077	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4078	u16 widx = 0;
4079
4080	while (widx < words) {
4081		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4082
4083		if (e1000_spi_eeprom_ready(hw))
4084			return -E1000_ERR_EEPROM;
4085
4086		e1000_standby_eeprom(hw);
4087		cond_resched();
4088
4089		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4090		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4091					eeprom->opcode_bits);
4092
4093		e1000_standby_eeprom(hw);
4094
4095		/* Some SPI eeproms use the 8th address bit embedded in the
4096		 * opcode
4097		 */
4098		if ((eeprom->address_bits == 8) && (offset >= 128))
4099			write_opcode |= EEPROM_A8_OPCODE_SPI;
4100
4101		/* Send the Write command (8-bit opcode + addr) */
4102		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4103
4104		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4105					eeprom->address_bits);
4106
4107		/* Send the data */
4108
4109		/* Loop to allow for up to whole page write (32 bytes) of
4110		 * eeprom
4111		 */
4112		while (widx < words) {
4113			u16 word_out = data[widx];
4114
4115			word_out = (word_out >> 8) | (word_out << 8);
4116			e1000_shift_out_ee_bits(hw, word_out, 16);
4117			widx++;
4118
4119			/* Some larger eeprom sizes are capable of a 32-byte
4120			 * PAGE WRITE operation, while the smaller eeproms are
4121			 * capable of an 8-byte PAGE WRITE operation.  Break the
4122			 * inner loop to pass new address
4123			 */
4124			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4125				e1000_standby_eeprom(hw);
4126				break;
4127			}
4128		}
4129	}
4130
4131	return E1000_SUCCESS;
4132}
4133
4134/**
4135 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4136 * @hw: Struct containing variables accessed by shared code
4137 * @offset: offset within the EEPROM to be written to
4138 * @words: number of words to write
4139 * @data: pointer to array of 8 bit words to be written to the EEPROM
4140 */
4141static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4142					u16 words, u16 *data)
4143{
4144	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4145	u32 eecd;
4146	u16 words_written = 0;
4147	u16 i = 0;
4148
4149	/* Send the write enable command to the EEPROM (3-bit opcode plus
4150	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4151	 * the 11 of the dummy address as part of the opcode than it is to shift
4152	 * it over the correct number of bits for the address.  This puts the
4153	 * EEPROM into write/erase mode.
4154	 */
4155	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4156				(u16)(eeprom->opcode_bits + 2));
4157
4158	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4159
4160	/* Prepare the EEPROM */
4161	e1000_standby_eeprom(hw);
4162
4163	while (words_written < words) {
4164		/* Send the Write command (3-bit opcode + addr) */
4165		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4166					eeprom->opcode_bits);
4167
4168		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4169					eeprom->address_bits);
4170
4171		/* Send the data */
4172		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4173
4174		/* Toggle the CS line.  This in effect tells the EEPROM to
4175		 * execute the previous command.
4176		 */
4177		e1000_standby_eeprom(hw);
4178
4179		/* Read DO repeatedly until it is high (equal to '1').  The
4180		 * EEPROM will signal that the command has been completed by
4181		 * raising the DO signal. If DO does not go high in 10
4182		 * milliseconds, then error out.
4183		 */
4184		for (i = 0; i < 200; i++) {
4185			eecd = er32(EECD);
4186			if (eecd & E1000_EECD_DO)
4187				break;
4188			udelay(50);
4189		}
4190		if (i == 200) {
4191			e_dbg("EEPROM Write did not complete\n");
4192			return -E1000_ERR_EEPROM;
4193		}
4194
4195		/* Recover from write */
4196		e1000_standby_eeprom(hw);
4197		cond_resched();
4198
4199		words_written++;
4200	}
4201
4202	/* Send the write disable command to the EEPROM (3-bit opcode plus
4203	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4204	 * the 10 of the dummy address as part of the opcode than it is to shift
4205	 * it over the correct number of bits for the address.  This takes the
4206	 * EEPROM out of write/erase mode.
4207	 */
4208	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4209				(u16)(eeprom->opcode_bits + 2));
4210
4211	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4212
4213	return E1000_SUCCESS;
4214}
4215
4216/**
4217 * e1000_read_mac_addr - read the adapters MAC from eeprom
4218 * @hw: Struct containing variables accessed by shared code
4219 *
4220 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4221 * second function of dual function devices
4222 */
4223s32 e1000_read_mac_addr(struct e1000_hw *hw)
4224{
4225	u16 offset;
4226	u16 eeprom_data, i;
4227
4228	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4229		offset = i >> 1;
4230		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4231			e_dbg("EEPROM Read Error\n");
4232			return -E1000_ERR_EEPROM;
4233		}
4234		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4235		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4236	}
4237
4238	switch (hw->mac_type) {
4239	default:
4240		break;
4241	case e1000_82546:
4242	case e1000_82546_rev_3:
4243		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4244			hw->perm_mac_addr[5] ^= 0x01;
4245		break;
4246	}
4247
4248	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4249		hw->mac_addr[i] = hw->perm_mac_addr[i];
4250	return E1000_SUCCESS;
4251}
4252
4253/**
4254 * e1000_init_rx_addrs - Initializes receive address filters.
4255 * @hw: Struct containing variables accessed by shared code
4256 *
4257 * Places the MAC address in receive address register 0 and clears the rest
4258 * of the receive address registers. Clears the multicast table. Assumes
4259 * the receiver is in reset when the routine is called.
4260 */
4261static void e1000_init_rx_addrs(struct e1000_hw *hw)
4262{
4263	u32 i;
4264	u32 rar_num;
4265
4266	/* Setup the receive address. */
4267	e_dbg("Programming MAC Address into RAR[0]\n");
4268
4269	e1000_rar_set(hw, hw->mac_addr, 0);
4270
4271	rar_num = E1000_RAR_ENTRIES;
4272
4273	/* Zero out the following 14 receive addresses. RAR[15] is for
4274	 * manageability
4275	 */
4276	e_dbg("Clearing RAR[1-14]\n");
4277	for (i = 1; i < rar_num; i++) {
4278		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4279		E1000_WRITE_FLUSH();
4280		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4281		E1000_WRITE_FLUSH();
4282	}
4283}
4284
4285/**
4286 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4287 * @hw: Struct containing variables accessed by shared code
4288 * @mc_addr: the multicast address to hash
4289 */
4290u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4291{
4292	u32 hash_value = 0;
4293
4294	/* The portion of the address that is used for the hash table is
4295	 * determined by the mc_filter_type setting.
4296	 */
4297	switch (hw->mc_filter_type) {
4298		/* [0] [1] [2] [3] [4] [5]
4299		 * 01  AA  00  12  34  56
4300		 * LSB                 MSB
4301		 */
4302	case 0:
4303		/* [47:36] i.e. 0x563 for above example address */
4304		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4305		break;
4306	case 1:
4307		/* [46:35] i.e. 0xAC6 for above example address */
4308		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4309		break;
4310	case 2:
4311		/* [45:34] i.e. 0x5D8 for above example address */
4312		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4313		break;
4314	case 3:
4315		/* [43:32] i.e. 0x634 for above example address */
4316		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4317		break;
4318	}
4319
4320	hash_value &= 0xFFF;
4321	return hash_value;
4322}
4323
4324/**
4325 * e1000_rar_set - Puts an ethernet address into a receive address register.
4326 * @hw: Struct containing variables accessed by shared code
4327 * @addr: Address to put into receive address register
4328 * @index: Receive address register to write
4329 */
4330void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4331{
4332	u32 rar_low, rar_high;
4333
4334	/* HW expects these in little endian so we reverse the byte order
4335	 * from network order (big endian) to little endian
4336	 */
4337	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4338		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4339	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4340
4341	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4342	 * unit hang.
4343	 *
4344	 * Description:
4345	 * If there are any Rx frames queued up or otherwise present in the HW
4346	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4347	 * hang.  To work around this issue, we have to disable receives and
4348	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4349	 * redirect all Rx traffic to manageability and then reset the HW.
4350	 * This flushes away Rx frames, and (since the redirections to
4351	 * manageability persists across resets) keeps new ones from coming in
4352	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4353	 * addresses and undo the re-direction to manageability.
4354	 * Now, frames are coming in again, but the MAC won't accept them, so
4355	 * far so good.  We now proceed to initialize RSS (if necessary) and
4356	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4357	 * on our merry way.
4358	 */
4359	switch (hw->mac_type) {
4360	default:
4361		/* Indicate to hardware the Address is Valid. */
4362		rar_high |= E1000_RAH_AV;
4363		break;
4364	}
4365
4366	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4367	E1000_WRITE_FLUSH();
4368	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4369	E1000_WRITE_FLUSH();
4370}
4371
4372/**
4373 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4374 * @hw: Struct containing variables accessed by shared code
4375 * @offset: Offset in VLAN filter table to write
4376 * @value: Value to write into VLAN filter table
4377 */
4378void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4379{
4380	u32 temp;
4381
4382	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4383		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4384		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4385		E1000_WRITE_FLUSH();
4386		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4387		E1000_WRITE_FLUSH();
4388	} else {
4389		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4390		E1000_WRITE_FLUSH();
4391	}
4392}
4393
4394/**
4395 * e1000_clear_vfta - Clears the VLAN filter table
4396 * @hw: Struct containing variables accessed by shared code
4397 */
4398static void e1000_clear_vfta(struct e1000_hw *hw)
4399{
4400	u32 offset;
 
 
 
4401
4402	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4403		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
 
 
 
 
 
4404		E1000_WRITE_FLUSH();
4405	}
4406}
4407
4408static s32 e1000_id_led_init(struct e1000_hw *hw)
4409{
4410	u32 ledctl;
4411	const u32 ledctl_mask = 0x000000FF;
4412	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4413	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4414	u16 eeprom_data, i, temp;
4415	const u16 led_mask = 0x0F;
4416
4417	if (hw->mac_type < e1000_82540) {
4418		/* Nothing to do */
4419		return E1000_SUCCESS;
4420	}
4421
4422	ledctl = er32(LEDCTL);
4423	hw->ledctl_default = ledctl;
4424	hw->ledctl_mode1 = hw->ledctl_default;
4425	hw->ledctl_mode2 = hw->ledctl_default;
4426
4427	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4428		e_dbg("EEPROM Read Error\n");
4429		return -E1000_ERR_EEPROM;
4430	}
4431
4432	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4433	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4434		eeprom_data = ID_LED_DEFAULT;
4435	}
4436
4437	for (i = 0; i < 4; i++) {
4438		temp = (eeprom_data >> (i << 2)) & led_mask;
4439		switch (temp) {
4440		case ID_LED_ON1_DEF2:
4441		case ID_LED_ON1_ON2:
4442		case ID_LED_ON1_OFF2:
4443			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4444			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4445			break;
4446		case ID_LED_OFF1_DEF2:
4447		case ID_LED_OFF1_ON2:
4448		case ID_LED_OFF1_OFF2:
4449			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4450			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4451			break;
4452		default:
4453			/* Do nothing */
4454			break;
4455		}
4456		switch (temp) {
4457		case ID_LED_DEF1_ON2:
4458		case ID_LED_ON1_ON2:
4459		case ID_LED_OFF1_ON2:
4460			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4461			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4462			break;
4463		case ID_LED_DEF1_OFF2:
4464		case ID_LED_ON1_OFF2:
4465		case ID_LED_OFF1_OFF2:
4466			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4467			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4468			break;
4469		default:
4470			/* Do nothing */
4471			break;
4472		}
4473	}
4474	return E1000_SUCCESS;
4475}
4476
4477/**
4478 * e1000_setup_led
4479 * @hw: Struct containing variables accessed by shared code
4480 *
4481 * Prepares SW controlable LED for use and saves the current state of the LED.
4482 */
4483s32 e1000_setup_led(struct e1000_hw *hw)
4484{
4485	u32 ledctl;
4486	s32 ret_val = E1000_SUCCESS;
4487
4488	switch (hw->mac_type) {
4489	case e1000_82542_rev2_0:
4490	case e1000_82542_rev2_1:
4491	case e1000_82543:
4492	case e1000_82544:
4493		/* No setup necessary */
4494		break;
4495	case e1000_82541:
4496	case e1000_82547:
4497	case e1000_82541_rev_2:
4498	case e1000_82547_rev_2:
4499		/* Turn off PHY Smart Power Down (if enabled) */
4500		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4501					     &hw->phy_spd_default);
4502		if (ret_val)
4503			return ret_val;
4504		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4505					      (u16)(hw->phy_spd_default &
4506						     ~IGP01E1000_GMII_SPD));
4507		if (ret_val)
4508			return ret_val;
4509		fallthrough;
4510	default:
4511		if (hw->media_type == e1000_media_type_fiber) {
4512			ledctl = er32(LEDCTL);
4513			/* Save current LEDCTL settings */
4514			hw->ledctl_default = ledctl;
4515			/* Turn off LED0 */
4516			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4517				    E1000_LEDCTL_LED0_BLINK |
4518				    E1000_LEDCTL_LED0_MODE_MASK);
4519			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4520				   E1000_LEDCTL_LED0_MODE_SHIFT);
4521			ew32(LEDCTL, ledctl);
4522		} else if (hw->media_type == e1000_media_type_copper)
4523			ew32(LEDCTL, hw->ledctl_mode1);
4524		break;
4525	}
4526
4527	return E1000_SUCCESS;
4528}
4529
4530/**
4531 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4532 * @hw: Struct containing variables accessed by shared code
4533 */
4534s32 e1000_cleanup_led(struct e1000_hw *hw)
4535{
4536	s32 ret_val = E1000_SUCCESS;
4537
4538	switch (hw->mac_type) {
4539	case e1000_82542_rev2_0:
4540	case e1000_82542_rev2_1:
4541	case e1000_82543:
4542	case e1000_82544:
4543		/* No cleanup necessary */
4544		break;
4545	case e1000_82541:
4546	case e1000_82547:
4547	case e1000_82541_rev_2:
4548	case e1000_82547_rev_2:
4549		/* Turn on PHY Smart Power Down (if previously enabled) */
4550		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4551					      hw->phy_spd_default);
4552		if (ret_val)
4553			return ret_val;
4554		fallthrough;
4555	default:
4556		/* Restore LEDCTL settings */
4557		ew32(LEDCTL, hw->ledctl_default);
4558		break;
4559	}
4560
4561	return E1000_SUCCESS;
4562}
4563
4564/**
4565 * e1000_led_on - Turns on the software controllable LED
4566 * @hw: Struct containing variables accessed by shared code
4567 */
4568s32 e1000_led_on(struct e1000_hw *hw)
4569{
4570	u32 ctrl = er32(CTRL);
4571
4572	switch (hw->mac_type) {
4573	case e1000_82542_rev2_0:
4574	case e1000_82542_rev2_1:
4575	case e1000_82543:
4576		/* Set SW Defineable Pin 0 to turn on the LED */
4577		ctrl |= E1000_CTRL_SWDPIN0;
4578		ctrl |= E1000_CTRL_SWDPIO0;
4579		break;
4580	case e1000_82544:
4581		if (hw->media_type == e1000_media_type_fiber) {
4582			/* Set SW Defineable Pin 0 to turn on the LED */
4583			ctrl |= E1000_CTRL_SWDPIN0;
4584			ctrl |= E1000_CTRL_SWDPIO0;
4585		} else {
4586			/* Clear SW Defineable Pin 0 to turn on the LED */
4587			ctrl &= ~E1000_CTRL_SWDPIN0;
4588			ctrl |= E1000_CTRL_SWDPIO0;
4589		}
4590		break;
4591	default:
4592		if (hw->media_type == e1000_media_type_fiber) {
4593			/* Clear SW Defineable Pin 0 to turn on the LED */
4594			ctrl &= ~E1000_CTRL_SWDPIN0;
4595			ctrl |= E1000_CTRL_SWDPIO0;
4596		} else if (hw->media_type == e1000_media_type_copper) {
4597			ew32(LEDCTL, hw->ledctl_mode2);
4598			return E1000_SUCCESS;
4599		}
4600		break;
4601	}
4602
4603	ew32(CTRL, ctrl);
4604
4605	return E1000_SUCCESS;
4606}
4607
4608/**
4609 * e1000_led_off - Turns off the software controllable LED
4610 * @hw: Struct containing variables accessed by shared code
4611 */
4612s32 e1000_led_off(struct e1000_hw *hw)
4613{
4614	u32 ctrl = er32(CTRL);
4615
4616	switch (hw->mac_type) {
4617	case e1000_82542_rev2_0:
4618	case e1000_82542_rev2_1:
4619	case e1000_82543:
4620		/* Clear SW Defineable Pin 0 to turn off the LED */
4621		ctrl &= ~E1000_CTRL_SWDPIN0;
4622		ctrl |= E1000_CTRL_SWDPIO0;
4623		break;
4624	case e1000_82544:
4625		if (hw->media_type == e1000_media_type_fiber) {
4626			/* Clear SW Defineable Pin 0 to turn off the LED */
4627			ctrl &= ~E1000_CTRL_SWDPIN0;
4628			ctrl |= E1000_CTRL_SWDPIO0;
4629		} else {
4630			/* Set SW Defineable Pin 0 to turn off the LED */
4631			ctrl |= E1000_CTRL_SWDPIN0;
4632			ctrl |= E1000_CTRL_SWDPIO0;
4633		}
4634		break;
4635	default:
4636		if (hw->media_type == e1000_media_type_fiber) {
4637			/* Set SW Defineable Pin 0 to turn off the LED */
4638			ctrl |= E1000_CTRL_SWDPIN0;
4639			ctrl |= E1000_CTRL_SWDPIO0;
4640		} else if (hw->media_type == e1000_media_type_copper) {
4641			ew32(LEDCTL, hw->ledctl_mode1);
4642			return E1000_SUCCESS;
4643		}
4644		break;
4645	}
4646
4647	ew32(CTRL, ctrl);
4648
4649	return E1000_SUCCESS;
4650}
4651
4652/**
4653 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4654 * @hw: Struct containing variables accessed by shared code
4655 */
4656static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4657{
4658	er32(CRCERRS);
4659	er32(SYMERRS);
4660	er32(MPC);
4661	er32(SCC);
4662	er32(ECOL);
4663	er32(MCC);
4664	er32(LATECOL);
4665	er32(COLC);
4666	er32(DC);
4667	er32(SEC);
4668	er32(RLEC);
4669	er32(XONRXC);
4670	er32(XONTXC);
4671	er32(XOFFRXC);
4672	er32(XOFFTXC);
4673	er32(FCRUC);
4674
4675	er32(PRC64);
4676	er32(PRC127);
4677	er32(PRC255);
4678	er32(PRC511);
4679	er32(PRC1023);
4680	er32(PRC1522);
4681
4682	er32(GPRC);
4683	er32(BPRC);
4684	er32(MPRC);
4685	er32(GPTC);
4686	er32(GORCL);
4687	er32(GORCH);
4688	er32(GOTCL);
4689	er32(GOTCH);
4690	er32(RNBC);
4691	er32(RUC);
4692	er32(RFC);
4693	er32(ROC);
4694	er32(RJC);
4695	er32(TORL);
4696	er32(TORH);
4697	er32(TOTL);
4698	er32(TOTH);
4699	er32(TPR);
4700	er32(TPT);
4701
4702	er32(PTC64);
4703	er32(PTC127);
4704	er32(PTC255);
4705	er32(PTC511);
4706	er32(PTC1023);
4707	er32(PTC1522);
 
 
4708
4709	er32(MPTC);
4710	er32(BPTC);
4711
4712	if (hw->mac_type < e1000_82543)
4713		return;
4714
4715	er32(ALGNERRC);
4716	er32(RXERRC);
4717	er32(TNCRS);
4718	er32(CEXTERR);
4719	er32(TSCTC);
4720	er32(TSCTFC);
4721
4722	if (hw->mac_type <= e1000_82544)
4723		return;
4724
4725	er32(MGTPRC);
4726	er32(MGTPDC);
4727	er32(MGTPTC);
4728}
4729
4730/**
4731 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4732 * @hw: Struct containing variables accessed by shared code
4733 *
4734 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4735 * hw->ifs_params_forced to true. However, you must initialize hw->
4736 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4737 * before calling this function.
4738 */
4739void e1000_reset_adaptive(struct e1000_hw *hw)
4740{
4741	if (hw->adaptive_ifs) {
4742		if (!hw->ifs_params_forced) {
4743			hw->current_ifs_val = 0;
4744			hw->ifs_min_val = IFS_MIN;
4745			hw->ifs_max_val = IFS_MAX;
4746			hw->ifs_step_size = IFS_STEP;
4747			hw->ifs_ratio = IFS_RATIO;
4748		}
4749		hw->in_ifs_mode = false;
4750		ew32(AIT, 0);
4751	} else {
4752		e_dbg("Not in Adaptive IFS mode!\n");
4753	}
4754}
4755
4756/**
4757 * e1000_update_adaptive - update adaptive IFS
4758 * @hw: Struct containing variables accessed by shared code
 
 
4759 *
4760 * Called during the callback/watchdog routine to update IFS value based on
4761 * the ratio of transmits to collisions.
4762 */
4763void e1000_update_adaptive(struct e1000_hw *hw)
4764{
4765	if (hw->adaptive_ifs) {
4766		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4767			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4768				hw->in_ifs_mode = true;
4769				if (hw->current_ifs_val < hw->ifs_max_val) {
4770					if (hw->current_ifs_val == 0)
4771						hw->current_ifs_val =
4772						    hw->ifs_min_val;
4773					else
4774						hw->current_ifs_val +=
4775						    hw->ifs_step_size;
4776					ew32(AIT, hw->current_ifs_val);
4777				}
4778			}
4779		} else {
4780			if (hw->in_ifs_mode &&
4781			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4782				hw->current_ifs_val = 0;
4783				hw->in_ifs_mode = false;
4784				ew32(AIT, 0);
4785			}
4786		}
4787	} else {
4788		e_dbg("Not in Adaptive IFS mode!\n");
4789	}
4790}
4791
4792/**
4793 * e1000_get_bus_info
4794 * @hw: Struct containing variables accessed by shared code
4795 *
4796 * Gets the current PCI bus type, speed, and width of the hardware
4797 */
4798void e1000_get_bus_info(struct e1000_hw *hw)
4799{
4800	u32 status;
4801
4802	switch (hw->mac_type) {
4803	case e1000_82542_rev2_0:
4804	case e1000_82542_rev2_1:
4805		hw->bus_type = e1000_bus_type_pci;
4806		hw->bus_speed = e1000_bus_speed_unknown;
4807		hw->bus_width = e1000_bus_width_unknown;
4808		break;
4809	default:
4810		status = er32(STATUS);
4811		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4812		    e1000_bus_type_pcix : e1000_bus_type_pci;
4813
4814		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4815			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4816			    e1000_bus_speed_66 : e1000_bus_speed_120;
4817		} else if (hw->bus_type == e1000_bus_type_pci) {
4818			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4819			    e1000_bus_speed_66 : e1000_bus_speed_33;
4820		} else {
4821			switch (status & E1000_STATUS_PCIX_SPEED) {
4822			case E1000_STATUS_PCIX_SPEED_66:
4823				hw->bus_speed = e1000_bus_speed_66;
4824				break;
4825			case E1000_STATUS_PCIX_SPEED_100:
4826				hw->bus_speed = e1000_bus_speed_100;
4827				break;
4828			case E1000_STATUS_PCIX_SPEED_133:
4829				hw->bus_speed = e1000_bus_speed_133;
4830				break;
4831			default:
4832				hw->bus_speed = e1000_bus_speed_reserved;
4833				break;
4834			}
4835		}
4836		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4837		    e1000_bus_width_64 : e1000_bus_width_32;
4838		break;
4839	}
4840}
4841
4842/**
4843 * e1000_write_reg_io
4844 * @hw: Struct containing variables accessed by shared code
4845 * @offset: offset to write to
4846 * @value: value to write
4847 *
4848 * Writes a value to one of the devices registers using port I/O (as opposed to
4849 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4850 */
4851static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4852{
4853	unsigned long io_addr = hw->io_base;
4854	unsigned long io_data = hw->io_base + 4;
4855
4856	e1000_io_write(hw, io_addr, offset);
4857	e1000_io_write(hw, io_data, value);
4858}
4859
4860/**
4861 * e1000_get_cable_length - Estimates the cable length.
4862 * @hw: Struct containing variables accessed by shared code
4863 * @min_length: The estimated minimum length
4864 * @max_length: The estimated maximum length
4865 *
4866 * returns: - E1000_ERR_XXX
4867 *            E1000_SUCCESS
4868 *
4869 * This function always returns a ranged length (minimum & maximum).
4870 * So for M88 phy's, this function interprets the one value returned from the
4871 * register to the minimum and maximum range.
4872 * For IGP phy's, the function calculates the range by the AGC registers.
4873 */
4874static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4875				  u16 *max_length)
4876{
4877	s32 ret_val;
4878	u16 agc_value = 0;
4879	u16 i, phy_data;
4880	u16 cable_length;
4881
4882	*min_length = *max_length = 0;
4883
4884	/* Use old method for Phy older than IGP */
4885	if (hw->phy_type == e1000_phy_m88) {
4886		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4887					     &phy_data);
4888		if (ret_val)
4889			return ret_val;
4890		cable_length = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
 
4891
4892		/* Convert the enum value to ranged values */
4893		switch (cable_length) {
4894		case e1000_cable_length_50:
4895			*min_length = 0;
4896			*max_length = e1000_igp_cable_length_50;
4897			break;
4898		case e1000_cable_length_50_80:
4899			*min_length = e1000_igp_cable_length_50;
4900			*max_length = e1000_igp_cable_length_80;
4901			break;
4902		case e1000_cable_length_80_110:
4903			*min_length = e1000_igp_cable_length_80;
4904			*max_length = e1000_igp_cable_length_110;
4905			break;
4906		case e1000_cable_length_110_140:
4907			*min_length = e1000_igp_cable_length_110;
4908			*max_length = e1000_igp_cable_length_140;
4909			break;
4910		case e1000_cable_length_140:
4911			*min_length = e1000_igp_cable_length_140;
4912			*max_length = e1000_igp_cable_length_170;
4913			break;
4914		default:
4915			return -E1000_ERR_PHY;
4916		}
4917	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4918		u16 cur_agc_value;
4919		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4920		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4921		       IGP01E1000_PHY_AGC_A,
4922		       IGP01E1000_PHY_AGC_B,
4923		       IGP01E1000_PHY_AGC_C,
4924		       IGP01E1000_PHY_AGC_D
4925		};
4926		/* Read the AGC registers for all channels */
4927		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4928			ret_val =
4929			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4930			if (ret_val)
4931				return ret_val;
4932
4933			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4934
4935			/* Value bound check. */
4936			if ((cur_agc_value >=
4937			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4938			    (cur_agc_value == 0))
4939				return -E1000_ERR_PHY;
4940
4941			agc_value += cur_agc_value;
4942
4943			/* Update minimal AGC value. */
4944			if (min_agc_value > cur_agc_value)
4945				min_agc_value = cur_agc_value;
4946		}
4947
4948		/* Remove the minimal AGC result for length < 50m */
4949		if (agc_value <
4950		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4951			agc_value -= min_agc_value;
4952
4953			/* Get the average length of the remaining 3 channels */
4954			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4955		} else {
4956			/* Get the average length of all the 4 channels. */
4957			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4958		}
4959
4960		/* Set the range of the calculated length. */
4961		*min_length = ((e1000_igp_cable_length_table[agc_value] -
4962				IGP01E1000_AGC_RANGE) > 0) ?
4963		    (e1000_igp_cable_length_table[agc_value] -
4964		     IGP01E1000_AGC_RANGE) : 0;
4965		*max_length = e1000_igp_cable_length_table[agc_value] +
4966		    IGP01E1000_AGC_RANGE;
4967	}
4968
4969	return E1000_SUCCESS;
4970}
4971
4972/**
4973 * e1000_check_polarity - Check the cable polarity
4974 * @hw: Struct containing variables accessed by shared code
4975 * @polarity: output parameter : 0 - Polarity is not reversed
4976 *                               1 - Polarity is reversed.
4977 *
4978 * returns: - E1000_ERR_XXX
4979 *            E1000_SUCCESS
4980 *
4981 * For phy's older than IGP, this function simply reads the polarity bit in the
4982 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
4983 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
4984 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
4985 * IGP01E1000_PHY_PCS_INIT_REG.
4986 */
4987static s32 e1000_check_polarity(struct e1000_hw *hw,
4988				e1000_rev_polarity *polarity)
4989{
4990	s32 ret_val;
4991	u16 phy_data;
4992
4993	if (hw->phy_type == e1000_phy_m88) {
4994		/* return the Polarity bit in the Status register. */
4995		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4996					     &phy_data);
4997		if (ret_val)
4998			return ret_val;
4999		*polarity = FIELD_GET(M88E1000_PSSR_REV_POLARITY, phy_data) ?
 
5000		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5001
5002	} else if (hw->phy_type == e1000_phy_igp) {
5003		/* Read the Status register to check the speed */
5004		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5005					     &phy_data);
5006		if (ret_val)
5007			return ret_val;
5008
5009		/* If speed is 1000 Mbps, must read the
5010		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5011		 */
5012		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5013		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5014			/* Read the GIG initialization PCS register (0x00B4) */
5015			ret_val =
5016			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5017					       &phy_data);
5018			if (ret_val)
5019				return ret_val;
5020
5021			/* Check the polarity bits */
5022			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5023			    e1000_rev_polarity_reversed :
5024			    e1000_rev_polarity_normal;
5025		} else {
5026			/* For 10 Mbps, read the polarity bit in the status
5027			 * register. (for 100 Mbps this bit is always 0)
5028			 */
5029			*polarity =
5030			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5031			    e1000_rev_polarity_reversed :
5032			    e1000_rev_polarity_normal;
5033		}
5034	}
5035	return E1000_SUCCESS;
5036}
5037
5038/**
5039 * e1000_check_downshift - Check if Downshift occurred
5040 * @hw: Struct containing variables accessed by shared code
 
 
5041 *
5042 * returns: - E1000_ERR_XXX
5043 *            E1000_SUCCESS
5044 *
5045 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5046 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5047 * Link Health register.  In IGP this bit is latched high, so the driver must
5048 * read it immediately after link is established.
5049 */
5050static s32 e1000_check_downshift(struct e1000_hw *hw)
5051{
5052	s32 ret_val;
5053	u16 phy_data;
5054
5055	if (hw->phy_type == e1000_phy_igp) {
5056		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5057					     &phy_data);
5058		if (ret_val)
5059			return ret_val;
5060
5061		hw->speed_downgraded =
5062		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5063	} else if (hw->phy_type == e1000_phy_m88) {
5064		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5065					     &phy_data);
5066		if (ret_val)
5067			return ret_val;
5068
5069		hw->speed_downgraded = FIELD_GET(M88E1000_PSSR_DOWNSHIFT,
5070						 phy_data);
5071	}
5072
5073	return E1000_SUCCESS;
5074}
5075
5076static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5077	IGP01E1000_PHY_AGC_PARAM_A,
5078	IGP01E1000_PHY_AGC_PARAM_B,
5079	IGP01E1000_PHY_AGC_PARAM_C,
5080	IGP01E1000_PHY_AGC_PARAM_D
5081};
5082
5083static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5084{
5085	u16 min_length, max_length;
5086	u16 phy_data, i;
5087	s32 ret_val;
5088
5089	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5090	if (ret_val)
5091		return ret_val;
5092
5093	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5094		return 0;
5095
5096	if (min_length >= e1000_igp_cable_length_50) {
5097		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5098			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5099						     &phy_data);
5100			if (ret_val)
5101				return ret_val;
5102
5103			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5104
5105			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5106						      phy_data);
5107			if (ret_val)
5108				return ret_val;
5109		}
5110		hw->dsp_config_state = e1000_dsp_config_activated;
5111	} else {
5112		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5113		u32 idle_errs = 0;
5114
5115		/* clear previous idle error counts */
5116		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5117		if (ret_val)
5118			return ret_val;
5119
5120		for (i = 0; i < ffe_idle_err_timeout; i++) {
5121			udelay(1000);
5122			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5123						     &phy_data);
5124			if (ret_val)
5125				return ret_val;
5126
5127			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5128			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5129				hw->ffe_config_state = e1000_ffe_config_active;
5130
5131				ret_val = e1000_write_phy_reg(hw,
5132							      IGP01E1000_PHY_DSP_FFE,
5133							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5134				if (ret_val)
5135					return ret_val;
5136				break;
5137			}
5138
5139			if (idle_errs)
5140				ffe_idle_err_timeout =
5141					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5142		}
5143	}
5144
5145	return 0;
5146}
5147
5148/**
5149 * e1000_config_dsp_after_link_change
5150 * @hw: Struct containing variables accessed by shared code
5151 * @link_up: was link up at the time this was called
5152 *
5153 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5154 *            E1000_SUCCESS at any other case.
5155 *
5156 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5157 * gigabit link is achieved to improve link quality.
5158 */
5159
5160static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5161{
5162	s32 ret_val;
5163	u16 phy_data, phy_saved_data, speed, duplex, i;
5164
5165	if (hw->phy_type != e1000_phy_igp)
5166		return E1000_SUCCESS;
5167
5168	if (link_up) {
5169		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5170		if (ret_val) {
5171			e_dbg("Error getting link speed and duplex\n");
5172			return ret_val;
5173		}
5174
5175		if (speed == SPEED_1000) {
5176			ret_val = e1000_1000Mb_check_cable_length(hw);
5177			if (ret_val)
5178				return ret_val;
5179		}
5180	} else {
5181		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5182			/* Save off the current value of register 0x2F5B to be
5183			 * restored at the end of the routines.
5184			 */
5185			ret_val =
5186			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5187
5188			if (ret_val)
5189				return ret_val;
5190
5191			/* Disable the PHY transmitter */
5192			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5193
5194			if (ret_val)
5195				return ret_val;
5196
5197			msleep(20);
5198
5199			ret_val = e1000_write_phy_reg(hw, 0x0000,
5200						      IGP01E1000_IEEE_FORCE_GIGA);
5201			if (ret_val)
5202				return ret_val;
5203			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5204				ret_val =
5205				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5206						       &phy_data);
5207				if (ret_val)
5208					return ret_val;
5209
5210				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5211				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5212
5213				ret_val =
5214				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5215							phy_data);
5216				if (ret_val)
5217					return ret_val;
5218			}
5219
5220			ret_val = e1000_write_phy_reg(hw, 0x0000,
5221						      IGP01E1000_IEEE_RESTART_AUTONEG);
5222			if (ret_val)
5223				return ret_val;
5224
5225			msleep(20);
5226
5227			/* Now enable the transmitter */
5228			ret_val =
5229			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5230
5231			if (ret_val)
5232				return ret_val;
5233
5234			hw->dsp_config_state = e1000_dsp_config_enabled;
5235		}
5236
5237		if (hw->ffe_config_state == e1000_ffe_config_active) {
5238			/* Save off the current value of register 0x2F5B to be
5239			 * restored at the end of the routines.
5240			 */
5241			ret_val =
5242			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5243
5244			if (ret_val)
5245				return ret_val;
5246
5247			/* Disable the PHY transmitter */
5248			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5249
5250			if (ret_val)
5251				return ret_val;
5252
5253			msleep(20);
5254
5255			ret_val = e1000_write_phy_reg(hw, 0x0000,
5256						      IGP01E1000_IEEE_FORCE_GIGA);
5257			if (ret_val)
5258				return ret_val;
5259			ret_val =
5260			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5261						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5262			if (ret_val)
5263				return ret_val;
5264
5265			ret_val = e1000_write_phy_reg(hw, 0x0000,
5266						      IGP01E1000_IEEE_RESTART_AUTONEG);
5267			if (ret_val)
5268				return ret_val;
5269
5270			msleep(20);
5271
5272			/* Now enable the transmitter */
5273			ret_val =
5274			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5275
5276			if (ret_val)
5277				return ret_val;
5278
5279			hw->ffe_config_state = e1000_ffe_config_enabled;
5280		}
5281	}
5282	return E1000_SUCCESS;
5283}
5284
5285/**
5286 * e1000_set_phy_mode - Set PHY to class A mode
5287 * @hw: Struct containing variables accessed by shared code
5288 *
5289 * Assumes the following operations will follow to enable the new class mode.
5290 *  1. Do a PHY soft reset
5291 *  2. Restart auto-negotiation or force link.
5292 */
5293static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5294{
5295	s32 ret_val;
5296	u16 eeprom_data;
5297
5298	if ((hw->mac_type == e1000_82545_rev_3) &&
5299	    (hw->media_type == e1000_media_type_copper)) {
5300		ret_val =
5301		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5302				      &eeprom_data);
5303		if (ret_val)
5304			return ret_val;
5305
5306		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5307		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5308			ret_val =
5309			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5310						0x000B);
5311			if (ret_val)
5312				return ret_val;
5313			ret_val =
5314			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5315						0x8104);
5316			if (ret_val)
5317				return ret_val;
5318
5319			hw->phy_reset_disable = false;
5320		}
5321	}
5322
5323	return E1000_SUCCESS;
5324}
5325
5326/**
5327 * e1000_set_d3_lplu_state - set d3 link power state
5328 * @hw: Struct containing variables accessed by shared code
5329 * @active: true to enable lplu false to disable lplu.
5330 *
5331 * This function sets the lplu state according to the active flag.  When
5332 * activating lplu this function also disables smart speed and vise versa.
5333 * lplu will not be activated unless the device autonegotiation advertisement
5334 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5335 *
5336 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5337 *            E1000_SUCCESS at any other case.
5338 */
5339static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5340{
5341	s32 ret_val;
5342	u16 phy_data;
5343
5344	if (hw->phy_type != e1000_phy_igp)
5345		return E1000_SUCCESS;
5346
5347	/* During driver activity LPLU should not be used or it will attain link
5348	 * from the lowest speeds starting from 10Mbps. The capability is used
5349	 * for Dx transitions and states
5350	 */
5351	if (hw->mac_type == e1000_82541_rev_2 ||
5352	    hw->mac_type == e1000_82547_rev_2) {
5353		ret_val =
5354		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5355		if (ret_val)
5356			return ret_val;
5357	}
5358
5359	if (!active) {
5360		if (hw->mac_type == e1000_82541_rev_2 ||
5361		    hw->mac_type == e1000_82547_rev_2) {
5362			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5363			ret_val =
5364			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5365						phy_data);
5366			if (ret_val)
5367				return ret_val;
5368		}
5369
5370		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5371		 * during Dx states where the power conservation is most
5372		 * important.  During driver activity we should enable
5373		 * SmartSpeed, so performance is maintained.
5374		 */
5375		if (hw->smart_speed == e1000_smart_speed_on) {
5376			ret_val =
5377			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5378					       &phy_data);
5379			if (ret_val)
5380				return ret_val;
5381
5382			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5383			ret_val =
5384			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5385						phy_data);
5386			if (ret_val)
5387				return ret_val;
5388		} else if (hw->smart_speed == e1000_smart_speed_off) {
5389			ret_val =
5390			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5391					       &phy_data);
5392			if (ret_val)
5393				return ret_val;
5394
5395			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5396			ret_val =
5397			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5398						phy_data);
5399			if (ret_val)
5400				return ret_val;
5401		}
5402	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5403		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5404		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5405		if (hw->mac_type == e1000_82541_rev_2 ||
5406		    hw->mac_type == e1000_82547_rev_2) {
5407			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5408			ret_val =
5409			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5410						phy_data);
5411			if (ret_val)
5412				return ret_val;
5413		}
5414
5415		/* When LPLU is enabled we should disable SmartSpeed */
5416		ret_val =
5417		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5418				       &phy_data);
5419		if (ret_val)
5420			return ret_val;
5421
5422		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5423		ret_val =
5424		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5425					phy_data);
5426		if (ret_val)
5427			return ret_val;
5428	}
5429	return E1000_SUCCESS;
5430}
5431
5432/**
5433 * e1000_set_vco_speed
5434 * @hw: Struct containing variables accessed by shared code
5435 *
5436 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5437 */
5438static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5439{
5440	s32 ret_val;
5441	u16 default_page = 0;
5442	u16 phy_data;
5443
5444	switch (hw->mac_type) {
5445	case e1000_82545_rev_3:
5446	case e1000_82546_rev_3:
5447		break;
5448	default:
5449		return E1000_SUCCESS;
5450	}
5451
5452	/* Set PHY register 30, page 5, bit 8 to 0 */
5453
5454	ret_val =
5455	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5456	if (ret_val)
5457		return ret_val;
5458
5459	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5460	if (ret_val)
5461		return ret_val;
5462
5463	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5464	if (ret_val)
5465		return ret_val;
5466
5467	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5468	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5469	if (ret_val)
5470		return ret_val;
5471
5472	/* Set PHY register 30, page 4, bit 11 to 1 */
5473
5474	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5475	if (ret_val)
5476		return ret_val;
5477
5478	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5479	if (ret_val)
5480		return ret_val;
5481
5482	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5483	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5484	if (ret_val)
5485		return ret_val;
5486
5487	ret_val =
5488	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5489	if (ret_val)
5490		return ret_val;
5491
5492	return E1000_SUCCESS;
5493}
5494
5495/**
5496 * e1000_enable_mng_pass_thru - check for bmc pass through
5497 * @hw: Struct containing variables accessed by shared code
5498 *
5499 * Verifies the hardware needs to allow ARPs to be processed by the host
5500 * returns: - true/false
5501 */
5502u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5503{
5504	u32 manc;
5505
5506	if (hw->asf_firmware_present) {
5507		manc = er32(MANC);
5508
5509		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5510		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5511			return false;
5512		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5513			return true;
5514	}
5515	return false;
5516}
5517
5518static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5519{
5520	s32 ret_val;
5521	u16 mii_status_reg;
5522	u16 i;
5523
5524	/* Polarity reversal workaround for forced 10F/10H links. */
5525
5526	/* Disable the transmitter on the PHY */
5527
5528	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5529	if (ret_val)
5530		return ret_val;
5531	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5532	if (ret_val)
5533		return ret_val;
5534
5535	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5536	if (ret_val)
5537		return ret_val;
5538
5539	/* This loop will early-out if the NO link condition has been met. */
5540	for (i = PHY_FORCE_TIME; i > 0; i--) {
5541		/* Read the MII Status Register and wait for Link Status bit
5542		 * to be clear.
5543		 */
5544
5545		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5546		if (ret_val)
5547			return ret_val;
5548
5549		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5550		if (ret_val)
5551			return ret_val;
5552
5553		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5554			break;
5555		msleep(100);
5556	}
5557
5558	/* Recommended delay time after link has been lost */
5559	msleep(1000);
5560
5561	/* Now we will re-enable th transmitter on the PHY */
5562
5563	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5564	if (ret_val)
5565		return ret_val;
5566	msleep(50);
5567	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5568	if (ret_val)
5569		return ret_val;
5570	msleep(50);
5571	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5572	if (ret_val)
5573		return ret_val;
5574	msleep(50);
5575	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5576	if (ret_val)
5577		return ret_val;
5578
5579	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5580	if (ret_val)
5581		return ret_val;
5582
5583	/* This loop will early-out if the link condition has been met. */
5584	for (i = PHY_FORCE_TIME; i > 0; i--) {
5585		/* Read the MII Status Register and wait for Link Status bit
5586		 * to be set.
5587		 */
5588
5589		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5590		if (ret_val)
5591			return ret_val;
5592
5593		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5594		if (ret_val)
5595			return ret_val;
5596
5597		if (mii_status_reg & MII_SR_LINK_STATUS)
5598			break;
5599		msleep(100);
5600	}
5601	return E1000_SUCCESS;
5602}
5603
5604/**
5605 * e1000_get_auto_rd_done
5606 * @hw: Struct containing variables accessed by shared code
5607 *
5608 * Check for EEPROM Auto Read bit done.
5609 * returns: - E1000_ERR_RESET if fail to reset MAC
5610 *            E1000_SUCCESS at any other case.
5611 */
5612static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5613{
5614	msleep(5);
5615	return E1000_SUCCESS;
5616}
5617
5618/**
5619 * e1000_get_phy_cfg_done
5620 * @hw: Struct containing variables accessed by shared code
5621 *
5622 * Checks if the PHY configuration is done
5623 * returns: - E1000_ERR_RESET if fail to reset MAC
5624 *            E1000_SUCCESS at any other case.
5625 */
5626static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5627{
5628	msleep(10);
5629	return E1000_SUCCESS;
5630}
v4.6
   1/*******************************************************************************
   2*
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27 */
  28
  29/* e1000_hw.c
  30 * Shared functions for accessing and configuring the MAC
  31 */
  32
 
  33#include "e1000.h"
  34
  35static s32 e1000_check_downshift(struct e1000_hw *hw);
  36static s32 e1000_check_polarity(struct e1000_hw *hw,
  37				e1000_rev_polarity *polarity);
  38static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  39static void e1000_clear_vfta(struct e1000_hw *hw);
  40static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  41					      bool link_up);
  42static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  44static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  45static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  46				  u16 *max_length);
  47static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  48static s32 e1000_id_led_init(struct e1000_hw *hw);
  49static void e1000_init_rx_addrs(struct e1000_hw *hw);
  50static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  51				  struct e1000_phy_info *phy_info);
  52static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  53				  struct e1000_phy_info *phy_info);
  54static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  55static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  57static s32 e1000_set_phy_type(struct e1000_hw *hw);
  58static void e1000_phy_init_script(struct e1000_hw *hw);
  59static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  66static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  67static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  70				  u16 words, u16 *data);
  71static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  72					u16 words, u16 *data);
  73static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  76static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  77static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  78				  u16 phy_data);
  79static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  80				 u16 *phy_data);
  81static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  83static void e1000_release_eeprom(struct e1000_hw *hw);
  84static void e1000_standby_eeprom(struct e1000_hw *hw);
  85static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  88static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  89				u16 *data);
  90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  91				 u16 *data);
  92
  93/* IGP cable length table */
  94static const
  95u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  96	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  98	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  99	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
 100	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
 101	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 102	    100,
 103	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
 104	    110, 110,
 105	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
 106	    120, 120
 107};
 108
 109static DEFINE_MUTEX(e1000_eeprom_lock);
 110static DEFINE_SPINLOCK(e1000_phy_lock);
 111
 112/**
 113 * e1000_set_phy_type - Set the phy type member in the hw struct.
 114 * @hw: Struct containing variables accessed by shared code
 115 */
 116static s32 e1000_set_phy_type(struct e1000_hw *hw)
 117{
 118	if (hw->mac_type == e1000_undefined)
 119		return -E1000_ERR_PHY_TYPE;
 120
 121	switch (hw->phy_id) {
 122	case M88E1000_E_PHY_ID:
 123	case M88E1000_I_PHY_ID:
 124	case M88E1011_I_PHY_ID:
 125	case M88E1111_I_PHY_ID:
 126	case M88E1118_E_PHY_ID:
 127		hw->phy_type = e1000_phy_m88;
 128		break;
 129	case IGP01E1000_I_PHY_ID:
 130		if (hw->mac_type == e1000_82541 ||
 131		    hw->mac_type == e1000_82541_rev_2 ||
 132		    hw->mac_type == e1000_82547 ||
 133		    hw->mac_type == e1000_82547_rev_2)
 134			hw->phy_type = e1000_phy_igp;
 135		break;
 136	case RTL8211B_PHY_ID:
 137		hw->phy_type = e1000_phy_8211;
 138		break;
 139	case RTL8201N_PHY_ID:
 140		hw->phy_type = e1000_phy_8201;
 141		break;
 142	default:
 143		/* Should never have loaded on this device */
 144		hw->phy_type = e1000_phy_undefined;
 145		return -E1000_ERR_PHY_TYPE;
 146	}
 147
 148	return E1000_SUCCESS;
 149}
 150
 151/**
 152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 153 * @hw: Struct containing variables accessed by shared code
 154 */
 155static void e1000_phy_init_script(struct e1000_hw *hw)
 156{
 157	u32 ret_val;
 158	u16 phy_saved_data;
 159
 160	if (hw->phy_init_script) {
 161		msleep(20);
 162
 163		/* Save off the current value of register 0x2F5B to be restored
 164		 * at the end of this routine.
 165		 */
 166		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 167
 168		/* Disabled the PHY transmitter */
 169		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 170		msleep(20);
 171
 172		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 173		msleep(5);
 174
 175		switch (hw->mac_type) {
 176		case e1000_82541:
 177		case e1000_82547:
 178			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 179			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 180			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 181			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 182			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 183			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 184			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 185			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 186			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 187			break;
 188
 189		case e1000_82541_rev_2:
 190		case e1000_82547_rev_2:
 191			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 192			break;
 193		default:
 194			break;
 195		}
 196
 197		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 198		msleep(20);
 199
 200		/* Now enable the transmitter */
 201		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 202
 203		if (hw->mac_type == e1000_82547) {
 204			u16 fused, fine, coarse;
 205
 206			/* Move to analog registers page */
 207			e1000_read_phy_reg(hw,
 208					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 209					   &fused);
 210
 211			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 212				e1000_read_phy_reg(hw,
 213						   IGP01E1000_ANALOG_FUSE_STATUS,
 214						   &fused);
 215
 216				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 217				coarse =
 218				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 219
 220				if (coarse >
 221				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 222					coarse -=
 223					    IGP01E1000_ANALOG_FUSE_COARSE_10;
 224					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 225				} else if (coarse ==
 226					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 227					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 228
 229				fused =
 230				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 231				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 232				    (coarse &
 233				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 234
 235				e1000_write_phy_reg(hw,
 236						    IGP01E1000_ANALOG_FUSE_CONTROL,
 237						    fused);
 238				e1000_write_phy_reg(hw,
 239						    IGP01E1000_ANALOG_FUSE_BYPASS,
 240						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 241			}
 242		}
 243	}
 244}
 245
 246/**
 247 * e1000_set_mac_type - Set the mac type member in the hw struct.
 248 * @hw: Struct containing variables accessed by shared code
 249 */
 250s32 e1000_set_mac_type(struct e1000_hw *hw)
 251{
 252	switch (hw->device_id) {
 253	case E1000_DEV_ID_82542:
 254		switch (hw->revision_id) {
 255		case E1000_82542_2_0_REV_ID:
 256			hw->mac_type = e1000_82542_rev2_0;
 257			break;
 258		case E1000_82542_2_1_REV_ID:
 259			hw->mac_type = e1000_82542_rev2_1;
 260			break;
 261		default:
 262			/* Invalid 82542 revision ID */
 263			return -E1000_ERR_MAC_TYPE;
 264		}
 265		break;
 266	case E1000_DEV_ID_82543GC_FIBER:
 267	case E1000_DEV_ID_82543GC_COPPER:
 268		hw->mac_type = e1000_82543;
 269		break;
 270	case E1000_DEV_ID_82544EI_COPPER:
 271	case E1000_DEV_ID_82544EI_FIBER:
 272	case E1000_DEV_ID_82544GC_COPPER:
 273	case E1000_DEV_ID_82544GC_LOM:
 274		hw->mac_type = e1000_82544;
 275		break;
 276	case E1000_DEV_ID_82540EM:
 277	case E1000_DEV_ID_82540EM_LOM:
 278	case E1000_DEV_ID_82540EP:
 279	case E1000_DEV_ID_82540EP_LOM:
 280	case E1000_DEV_ID_82540EP_LP:
 281		hw->mac_type = e1000_82540;
 282		break;
 283	case E1000_DEV_ID_82545EM_COPPER:
 284	case E1000_DEV_ID_82545EM_FIBER:
 285		hw->mac_type = e1000_82545;
 286		break;
 287	case E1000_DEV_ID_82545GM_COPPER:
 288	case E1000_DEV_ID_82545GM_FIBER:
 289	case E1000_DEV_ID_82545GM_SERDES:
 290		hw->mac_type = e1000_82545_rev_3;
 291		break;
 292	case E1000_DEV_ID_82546EB_COPPER:
 293	case E1000_DEV_ID_82546EB_FIBER:
 294	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 295		hw->mac_type = e1000_82546;
 296		break;
 297	case E1000_DEV_ID_82546GB_COPPER:
 298	case E1000_DEV_ID_82546GB_FIBER:
 299	case E1000_DEV_ID_82546GB_SERDES:
 300	case E1000_DEV_ID_82546GB_PCIE:
 301	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 302	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 303		hw->mac_type = e1000_82546_rev_3;
 304		break;
 305	case E1000_DEV_ID_82541EI:
 306	case E1000_DEV_ID_82541EI_MOBILE:
 307	case E1000_DEV_ID_82541ER_LOM:
 308		hw->mac_type = e1000_82541;
 309		break;
 310	case E1000_DEV_ID_82541ER:
 311	case E1000_DEV_ID_82541GI:
 312	case E1000_DEV_ID_82541GI_LF:
 313	case E1000_DEV_ID_82541GI_MOBILE:
 314		hw->mac_type = e1000_82541_rev_2;
 315		break;
 316	case E1000_DEV_ID_82547EI:
 317	case E1000_DEV_ID_82547EI_MOBILE:
 318		hw->mac_type = e1000_82547;
 319		break;
 320	case E1000_DEV_ID_82547GI:
 321		hw->mac_type = e1000_82547_rev_2;
 322		break;
 323	case E1000_DEV_ID_INTEL_CE4100_GBE:
 324		hw->mac_type = e1000_ce4100;
 325		break;
 326	default:
 327		/* Should never have loaded on this device */
 328		return -E1000_ERR_MAC_TYPE;
 329	}
 330
 331	switch (hw->mac_type) {
 332	case e1000_82541:
 333	case e1000_82547:
 334	case e1000_82541_rev_2:
 335	case e1000_82547_rev_2:
 336		hw->asf_firmware_present = true;
 337		break;
 338	default:
 339		break;
 340	}
 341
 342	/* The 82543 chip does not count tx_carrier_errors properly in
 343	 * FD mode
 344	 */
 345	if (hw->mac_type == e1000_82543)
 346		hw->bad_tx_carr_stats_fd = true;
 347
 348	if (hw->mac_type > e1000_82544)
 349		hw->has_smbus = true;
 350
 351	return E1000_SUCCESS;
 352}
 353
 354/**
 355 * e1000_set_media_type - Set media type and TBI compatibility.
 356 * @hw: Struct containing variables accessed by shared code
 357 */
 358void e1000_set_media_type(struct e1000_hw *hw)
 359{
 360	u32 status;
 361
 362	if (hw->mac_type != e1000_82543) {
 363		/* tbi_compatibility is only valid on 82543 */
 364		hw->tbi_compatibility_en = false;
 365	}
 366
 367	switch (hw->device_id) {
 368	case E1000_DEV_ID_82545GM_SERDES:
 369	case E1000_DEV_ID_82546GB_SERDES:
 370		hw->media_type = e1000_media_type_internal_serdes;
 371		break;
 372	default:
 373		switch (hw->mac_type) {
 374		case e1000_82542_rev2_0:
 375		case e1000_82542_rev2_1:
 376			hw->media_type = e1000_media_type_fiber;
 377			break;
 378		case e1000_ce4100:
 379			hw->media_type = e1000_media_type_copper;
 380			break;
 381		default:
 382			status = er32(STATUS);
 383			if (status & E1000_STATUS_TBIMODE) {
 384				hw->media_type = e1000_media_type_fiber;
 385				/* tbi_compatibility not valid on fiber */
 386				hw->tbi_compatibility_en = false;
 387			} else {
 388				hw->media_type = e1000_media_type_copper;
 389			}
 390			break;
 391		}
 392	}
 393}
 394
 395/**
 396 * e1000_reset_hw - reset the hardware completely
 397 * @hw: Struct containing variables accessed by shared code
 398 *
 399 * Reset the transmit and receive units; mask and clear all interrupts.
 400 */
 401s32 e1000_reset_hw(struct e1000_hw *hw)
 402{
 403	u32 ctrl;
 404	u32 ctrl_ext;
 405	u32 icr;
 406	u32 manc;
 407	u32 led_ctrl;
 408	s32 ret_val;
 409
 410	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 411	if (hw->mac_type == e1000_82542_rev2_0) {
 412		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 413		e1000_pci_clear_mwi(hw);
 414	}
 415
 416	/* Clear interrupt mask to stop board from generating interrupts */
 417	e_dbg("Masking off all interrupts\n");
 418	ew32(IMC, 0xffffffff);
 419
 420	/* Disable the Transmit and Receive units.  Then delay to allow
 421	 * any pending transactions to complete before we hit the MAC with
 422	 * the global reset.
 423	 */
 424	ew32(RCTL, 0);
 425	ew32(TCTL, E1000_TCTL_PSP);
 426	E1000_WRITE_FLUSH();
 427
 428	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 429	hw->tbi_compatibility_on = false;
 430
 431	/* Delay to allow any outstanding PCI transactions to complete before
 432	 * resetting the device
 433	 */
 434	msleep(10);
 435
 436	ctrl = er32(CTRL);
 437
 438	/* Must reset the PHY before resetting the MAC */
 439	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 440		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 441		E1000_WRITE_FLUSH();
 442		msleep(5);
 443	}
 444
 445	/* Issue a global reset to the MAC.  This will reset the chip's
 446	 * transmit, receive, DMA, and link units.  It will not effect
 447	 * the current PCI configuration.  The global reset bit is self-
 448	 * clearing, and should clear within a microsecond.
 449	 */
 450	e_dbg("Issuing a global reset to MAC\n");
 451
 452	switch (hw->mac_type) {
 453	case e1000_82544:
 454	case e1000_82540:
 455	case e1000_82545:
 456	case e1000_82546:
 457	case e1000_82541:
 458	case e1000_82541_rev_2:
 459		/* These controllers can't ack the 64-bit write when issuing the
 460		 * reset, so use IO-mapping as a workaround to issue the reset
 461		 */
 462		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 463		break;
 464	case e1000_82545_rev_3:
 465	case e1000_82546_rev_3:
 466		/* Reset is performed on a shadow of the control register */
 467		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 468		break;
 469	case e1000_ce4100:
 470	default:
 471		ew32(CTRL, (ctrl | E1000_CTRL_RST));
 472		break;
 473	}
 474
 475	/* After MAC reset, force reload of EEPROM to restore power-on settings
 476	 * to device.  Later controllers reload the EEPROM automatically, so
 477	 * just wait for reload to complete.
 478	 */
 479	switch (hw->mac_type) {
 480	case e1000_82542_rev2_0:
 481	case e1000_82542_rev2_1:
 482	case e1000_82543:
 483	case e1000_82544:
 484		/* Wait for reset to complete */
 485		udelay(10);
 486		ctrl_ext = er32(CTRL_EXT);
 487		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 488		ew32(CTRL_EXT, ctrl_ext);
 489		E1000_WRITE_FLUSH();
 490		/* Wait for EEPROM reload */
 491		msleep(2);
 492		break;
 493	case e1000_82541:
 494	case e1000_82541_rev_2:
 495	case e1000_82547:
 496	case e1000_82547_rev_2:
 497		/* Wait for EEPROM reload */
 498		msleep(20);
 499		break;
 500	default:
 501		/* Auto read done will delay 5ms or poll based on mac type */
 502		ret_val = e1000_get_auto_rd_done(hw);
 503		if (ret_val)
 504			return ret_val;
 505		break;
 506	}
 507
 508	/* Disable HW ARPs on ASF enabled adapters */
 509	if (hw->mac_type >= e1000_82540) {
 510		manc = er32(MANC);
 511		manc &= ~(E1000_MANC_ARP_EN);
 512		ew32(MANC, manc);
 513	}
 514
 515	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 516		e1000_phy_init_script(hw);
 517
 518		/* Configure activity LED after PHY reset */
 519		led_ctrl = er32(LEDCTL);
 520		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 521		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 522		ew32(LEDCTL, led_ctrl);
 523	}
 524
 525	/* Clear interrupt mask to stop board from generating interrupts */
 526	e_dbg("Masking off all interrupts\n");
 527	ew32(IMC, 0xffffffff);
 528
 529	/* Clear any pending interrupt events. */
 530	icr = er32(ICR);
 531
 532	/* If MWI was previously enabled, reenable it. */
 533	if (hw->mac_type == e1000_82542_rev2_0) {
 534		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 535			e1000_pci_set_mwi(hw);
 536	}
 537
 538	return E1000_SUCCESS;
 539}
 540
 541/**
 542 * e1000_init_hw - Performs basic configuration of the adapter.
 543 * @hw: Struct containing variables accessed by shared code
 544 *
 545 * Assumes that the controller has previously been reset and is in a
 546 * post-reset uninitialized state. Initializes the receive address registers,
 547 * multicast table, and VLAN filter table. Calls routines to setup link
 548 * configuration and flow control settings. Clears all on-chip counters. Leaves
 549 * the transmit and receive units disabled and uninitialized.
 550 */
 551s32 e1000_init_hw(struct e1000_hw *hw)
 552{
 553	u32 ctrl;
 554	u32 i;
 555	s32 ret_val;
 556	u32 mta_size;
 557	u32 ctrl_ext;
 558
 559	/* Initialize Identification LED */
 560	ret_val = e1000_id_led_init(hw);
 561	if (ret_val) {
 562		e_dbg("Error Initializing Identification LED\n");
 563		return ret_val;
 564	}
 565
 566	/* Set the media type and TBI compatibility */
 567	e1000_set_media_type(hw);
 568
 569	/* Disabling VLAN filtering. */
 570	e_dbg("Initializing the IEEE VLAN\n");
 571	if (hw->mac_type < e1000_82545_rev_3)
 572		ew32(VET, 0);
 573	e1000_clear_vfta(hw);
 574
 575	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 576	if (hw->mac_type == e1000_82542_rev2_0) {
 577		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 578		e1000_pci_clear_mwi(hw);
 579		ew32(RCTL, E1000_RCTL_RST);
 580		E1000_WRITE_FLUSH();
 581		msleep(5);
 582	}
 583
 584	/* Setup the receive address. This involves initializing all of the
 585	 * Receive Address Registers (RARs 0 - 15).
 586	 */
 587	e1000_init_rx_addrs(hw);
 588
 589	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 590	if (hw->mac_type == e1000_82542_rev2_0) {
 591		ew32(RCTL, 0);
 592		E1000_WRITE_FLUSH();
 593		msleep(1);
 594		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 595			e1000_pci_set_mwi(hw);
 596	}
 597
 598	/* Zero out the Multicast HASH table */
 599	e_dbg("Zeroing the MTA\n");
 600	mta_size = E1000_MC_TBL_SIZE;
 601	for (i = 0; i < mta_size; i++) {
 602		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 603		/* use write flush to prevent Memory Write Block (MWB) from
 604		 * occurring when accessing our register space
 605		 */
 606		E1000_WRITE_FLUSH();
 607	}
 608
 609	/* Set the PCI priority bit correctly in the CTRL register.  This
 610	 * determines if the adapter gives priority to receives, or if it
 611	 * gives equal priority to transmits and receives.  Valid only on
 612	 * 82542 and 82543 silicon.
 613	 */
 614	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 615		ctrl = er32(CTRL);
 616		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 617	}
 618
 619	switch (hw->mac_type) {
 620	case e1000_82545_rev_3:
 621	case e1000_82546_rev_3:
 622		break;
 623	default:
 624		/* Workaround for PCI-X problem when BIOS sets MMRBC
 625		 * incorrectly.
 626		 */
 627		if (hw->bus_type == e1000_bus_type_pcix &&
 628		    e1000_pcix_get_mmrbc(hw) > 2048)
 629			e1000_pcix_set_mmrbc(hw, 2048);
 630		break;
 631	}
 632
 633	/* Call a subroutine to configure the link and setup flow control. */
 634	ret_val = e1000_setup_link(hw);
 635
 636	/* Set the transmit descriptor write-back policy */
 637	if (hw->mac_type > e1000_82544) {
 638		ctrl = er32(TXDCTL);
 639		ctrl =
 640		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 641		    E1000_TXDCTL_FULL_TX_DESC_WB;
 642		ew32(TXDCTL, ctrl);
 643	}
 644
 645	/* Clear all of the statistics registers (clear on read).  It is
 646	 * important that we do this after we have tried to establish link
 647	 * because the symbol error count will increment wildly if there
 648	 * is no link.
 649	 */
 650	e1000_clear_hw_cntrs(hw);
 651
 652	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 653	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 654		ctrl_ext = er32(CTRL_EXT);
 655		/* Relaxed ordering must be disabled to avoid a parity
 656		 * error crash in a PCI slot.
 657		 */
 658		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 659		ew32(CTRL_EXT, ctrl_ext);
 660	}
 661
 662	return ret_val;
 663}
 664
 665/**
 666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 667 * @hw: Struct containing variables accessed by shared code.
 668 */
 669static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 670{
 671	u16 eeprom_data;
 672	s32 ret_val;
 673
 674	if (hw->media_type != e1000_media_type_internal_serdes)
 675		return E1000_SUCCESS;
 676
 677	switch (hw->mac_type) {
 678	case e1000_82545_rev_3:
 679	case e1000_82546_rev_3:
 680		break;
 681	default:
 682		return E1000_SUCCESS;
 683	}
 684
 685	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 686				    &eeprom_data);
 687	if (ret_val)
 688		return ret_val;
 689
 690	if (eeprom_data != EEPROM_RESERVED_WORD) {
 691		/* Adjust SERDES output amplitude only. */
 692		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 693		ret_val =
 694		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 695		if (ret_val)
 696			return ret_val;
 697	}
 698
 699	return E1000_SUCCESS;
 700}
 701
 702/**
 703 * e1000_setup_link - Configures flow control and link settings.
 704 * @hw: Struct containing variables accessed by shared code
 705 *
 706 * Determines which flow control settings to use. Calls the appropriate media-
 707 * specific link configuration function. Configures the flow control settings.
 708 * Assuming the adapter has a valid link partner, a valid link should be
 709 * established. Assumes the hardware has previously been reset and the
 710 * transmitter and receiver are not enabled.
 711 */
 712s32 e1000_setup_link(struct e1000_hw *hw)
 713{
 714	u32 ctrl_ext;
 715	s32 ret_val;
 716	u16 eeprom_data;
 717
 718	/* Read and store word 0x0F of the EEPROM. This word contains bits
 719	 * that determine the hardware's default PAUSE (flow control) mode,
 720	 * a bit that determines whether the HW defaults to enabling or
 721	 * disabling auto-negotiation, and the direction of the
 722	 * SW defined pins. If there is no SW over-ride of the flow
 723	 * control setting, then the variable hw->fc will
 724	 * be initialized based on a value in the EEPROM.
 725	 */
 726	if (hw->fc == E1000_FC_DEFAULT) {
 727		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 728					    1, &eeprom_data);
 729		if (ret_val) {
 730			e_dbg("EEPROM Read Error\n");
 731			return -E1000_ERR_EEPROM;
 732		}
 733		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 734			hw->fc = E1000_FC_NONE;
 735		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 736			 EEPROM_WORD0F_ASM_DIR)
 737			hw->fc = E1000_FC_TX_PAUSE;
 738		else
 739			hw->fc = E1000_FC_FULL;
 740	}
 741
 742	/* We want to save off the original Flow Control configuration just
 743	 * in case we get disconnected and then reconnected into a different
 744	 * hub or switch with different Flow Control capabilities.
 745	 */
 746	if (hw->mac_type == e1000_82542_rev2_0)
 747		hw->fc &= (~E1000_FC_TX_PAUSE);
 748
 749	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 750		hw->fc &= (~E1000_FC_RX_PAUSE);
 751
 752	hw->original_fc = hw->fc;
 753
 754	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 755
 756	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 757	 * polarity value for the SW controlled pins, and setup the
 758	 * Extended Device Control reg with that info.
 759	 * This is needed because one of the SW controlled pins is used for
 760	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 761	 * or e1000_phy_setup() is called.
 762	 */
 763	if (hw->mac_type == e1000_82543) {
 764		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 765					    1, &eeprom_data);
 766		if (ret_val) {
 767			e_dbg("EEPROM Read Error\n");
 768			return -E1000_ERR_EEPROM;
 769		}
 770		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 771			    SWDPIO__EXT_SHIFT);
 772		ew32(CTRL_EXT, ctrl_ext);
 773	}
 774
 775	/* Call the necessary subroutine to configure the link. */
 776	ret_val = (hw->media_type == e1000_media_type_copper) ?
 777	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 778
 779	/* Initialize the flow control address, type, and PAUSE timer
 780	 * registers to their default values.  This is done even if flow
 781	 * control is disabled, because it does not hurt anything to
 782	 * initialize these registers.
 783	 */
 784	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 785
 786	ew32(FCT, FLOW_CONTROL_TYPE);
 787	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 788	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 789
 790	ew32(FCTTV, hw->fc_pause_time);
 791
 792	/* Set the flow control receive threshold registers.  Normally,
 793	 * these registers will be set to a default threshold that may be
 794	 * adjusted later by the driver's runtime code.  However, if the
 795	 * ability to transmit pause frames in not enabled, then these
 796	 * registers will be set to 0.
 797	 */
 798	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 799		ew32(FCRTL, 0);
 800		ew32(FCRTH, 0);
 801	} else {
 802		/* We need to set up the Receive Threshold high and low water
 803		 * marks as well as (optionally) enabling the transmission of
 804		 * XON frames.
 805		 */
 806		if (hw->fc_send_xon) {
 807			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 808			ew32(FCRTH, hw->fc_high_water);
 809		} else {
 810			ew32(FCRTL, hw->fc_low_water);
 811			ew32(FCRTH, hw->fc_high_water);
 812		}
 813	}
 814	return ret_val;
 815}
 816
 817/**
 818 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 819 * @hw: Struct containing variables accessed by shared code
 820 *
 821 * Manipulates Physical Coding Sublayer functions in order to configure
 822 * link. Assumes the hardware has been previously reset and the transmitter
 823 * and receiver are not enabled.
 824 */
 825static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 826{
 827	u32 ctrl;
 828	u32 status;
 829	u32 txcw = 0;
 830	u32 i;
 831	u32 signal = 0;
 832	s32 ret_val;
 833
 834	/* On adapters with a MAC newer than 82544, SWDP 1 will be
 835	 * set when the optics detect a signal. On older adapters, it will be
 836	 * cleared when there is a signal.  This applies to fiber media only.
 837	 * If we're on serdes media, adjust the output amplitude to value
 838	 * set in the EEPROM.
 839	 */
 840	ctrl = er32(CTRL);
 841	if (hw->media_type == e1000_media_type_fiber)
 842		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 843
 844	ret_val = e1000_adjust_serdes_amplitude(hw);
 845	if (ret_val)
 846		return ret_val;
 847
 848	/* Take the link out of reset */
 849	ctrl &= ~(E1000_CTRL_LRST);
 850
 851	/* Adjust VCO speed to improve BER performance */
 852	ret_val = e1000_set_vco_speed(hw);
 853	if (ret_val)
 854		return ret_val;
 855
 856	e1000_config_collision_dist(hw);
 857
 858	/* Check for a software override of the flow control settings, and setup
 859	 * the device accordingly.  If auto-negotiation is enabled, then
 860	 * software will have to set the "PAUSE" bits to the correct value in
 861	 * the Tranmsit Config Word Register (TXCW) and re-start
 862	 * auto-negotiation.  However, if auto-negotiation is disabled, then
 863	 * software will have to manually configure the two flow control enable
 864	 * bits in the CTRL register.
 865	 *
 866	 * The possible values of the "fc" parameter are:
 867	 *  0:  Flow control is completely disabled
 868	 *  1:  Rx flow control is enabled (we can receive pause frames, but
 869	 *      not send pause frames).
 870	 *  2:  Tx flow control is enabled (we can send pause frames but we do
 871	 *      not support receiving pause frames).
 872	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
 873	 */
 874	switch (hw->fc) {
 875	case E1000_FC_NONE:
 876		/* Flow ctrl is completely disabled by a software over-ride */
 877		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 878		break;
 879	case E1000_FC_RX_PAUSE:
 880		/* Rx Flow control is enabled and Tx Flow control is disabled by
 881		 * a software over-ride. Since there really isn't a way to
 882		 * advertise that we are capable of Rx Pause ONLY, we will
 883		 * advertise that we support both symmetric and asymmetric Rx
 884		 * PAUSE. Later, we will disable the adapter's ability to send
 885		 * PAUSE frames.
 886		 */
 887		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 888		break;
 889	case E1000_FC_TX_PAUSE:
 890		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 891		 * by a software over-ride.
 892		 */
 893		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 894		break;
 895	case E1000_FC_FULL:
 896		/* Flow control (both Rx and Tx) is enabled by a software
 897		 * over-ride.
 898		 */
 899		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 900		break;
 901	default:
 902		e_dbg("Flow control param set incorrectly\n");
 903		return -E1000_ERR_CONFIG;
 904	}
 905
 906	/* Since auto-negotiation is enabled, take the link out of reset (the
 907	 * link will be in reset, because we previously reset the chip). This
 908	 * will restart auto-negotiation.  If auto-negotiation is successful
 909	 * then the link-up status bit will be set and the flow control enable
 910	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 911	 */
 912	e_dbg("Auto-negotiation enabled\n");
 913
 914	ew32(TXCW, txcw);
 915	ew32(CTRL, ctrl);
 916	E1000_WRITE_FLUSH();
 917
 918	hw->txcw = txcw;
 919	msleep(1);
 920
 921	/* If we have a signal (the cable is plugged in) then poll for a
 922	 * "Link-Up" indication in the Device Status Register.  Time-out if a
 923	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
 924	 * complete in less than 500 milliseconds even if the other end is doing
 925	 * it in SW). For internal serdes, we just assume a signal is present,
 926	 * then poll.
 927	 */
 928	if (hw->media_type == e1000_media_type_internal_serdes ||
 929	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 930		e_dbg("Looking for Link\n");
 931		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 932			msleep(10);
 933			status = er32(STATUS);
 934			if (status & E1000_STATUS_LU)
 935				break;
 936		}
 937		if (i == (LINK_UP_TIMEOUT / 10)) {
 938			e_dbg("Never got a valid link from auto-neg!!!\n");
 939			hw->autoneg_failed = 1;
 940			/* AutoNeg failed to achieve a link, so we'll call
 941			 * e1000_check_for_link. This routine will force the
 942			 * link up if we detect a signal. This will allow us to
 943			 * communicate with non-autonegotiating link partners.
 944			 */
 945			ret_val = e1000_check_for_link(hw);
 946			if (ret_val) {
 947				e_dbg("Error while checking for link\n");
 948				return ret_val;
 949			}
 950			hw->autoneg_failed = 0;
 951		} else {
 952			hw->autoneg_failed = 0;
 953			e_dbg("Valid Link Found\n");
 954		}
 955	} else {
 956		e_dbg("No Signal Detected\n");
 957	}
 958	return E1000_SUCCESS;
 959}
 960
 961/**
 962 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 963 * @hw: Struct containing variables accessed by shared code
 964 *
 965 * Commits changes to PHY configuration by calling e1000_phy_reset().
 966 */
 967static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 968{
 969	s32 ret_val;
 970
 971	/* SW reset the PHY so all changes take effect */
 972	ret_val = e1000_phy_reset(hw);
 973	if (ret_val) {
 974		e_dbg("Error Resetting the PHY\n");
 975		return ret_val;
 976	}
 977
 978	return E1000_SUCCESS;
 979}
 980
 981static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 982{
 983	s32 ret_val;
 984	u32 ctrl_aux;
 985
 986	switch (hw->phy_type) {
 987	case e1000_phy_8211:
 988		ret_val = e1000_copper_link_rtl_setup(hw);
 989		if (ret_val) {
 990			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 991			return ret_val;
 992		}
 993		break;
 994	case e1000_phy_8201:
 995		/* Set RMII mode */
 996		ctrl_aux = er32(CTL_AUX);
 997		ctrl_aux |= E1000_CTL_AUX_RMII;
 998		ew32(CTL_AUX, ctrl_aux);
 999		E1000_WRITE_FLUSH();
1000
1001		/* Disable the J/K bits required for receive */
1002		ctrl_aux = er32(CTL_AUX);
1003		ctrl_aux |= 0x4;
1004		ctrl_aux &= ~0x2;
1005		ew32(CTL_AUX, ctrl_aux);
1006		E1000_WRITE_FLUSH();
1007		ret_val = e1000_copper_link_rtl_setup(hw);
1008
1009		if (ret_val) {
1010			e_dbg("e1000_copper_link_rtl_setup failed!\n");
1011			return ret_val;
1012		}
1013		break;
1014	default:
1015		e_dbg("Error Resetting the PHY\n");
1016		return E1000_ERR_PHY_TYPE;
1017	}
1018
1019	return E1000_SUCCESS;
1020}
1021
1022/**
1023 * e1000_copper_link_preconfig - early configuration for copper
1024 * @hw: Struct containing variables accessed by shared code
1025 *
1026 * Make sure we have a valid PHY and change PHY mode before link setup.
1027 */
1028static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1029{
1030	u32 ctrl;
1031	s32 ret_val;
1032	u16 phy_data;
1033
1034	ctrl = er32(CTRL);
1035	/* With 82543, we need to force speed and duplex on the MAC equal to
1036	 * what the PHY speed and duplex configuration is. In addition, we need
1037	 * to perform a hardware reset on the PHY to take it out of reset.
1038	 */
1039	if (hw->mac_type > e1000_82543) {
1040		ctrl |= E1000_CTRL_SLU;
1041		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1042		ew32(CTRL, ctrl);
1043	} else {
1044		ctrl |=
1045		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1046		ew32(CTRL, ctrl);
1047		ret_val = e1000_phy_hw_reset(hw);
1048		if (ret_val)
1049			return ret_val;
1050	}
1051
1052	/* Make sure we have a valid PHY */
1053	ret_val = e1000_detect_gig_phy(hw);
1054	if (ret_val) {
1055		e_dbg("Error, did not detect valid phy.\n");
1056		return ret_val;
1057	}
1058	e_dbg("Phy ID = %x\n", hw->phy_id);
1059
1060	/* Set PHY to class A mode (if necessary) */
1061	ret_val = e1000_set_phy_mode(hw);
1062	if (ret_val)
1063		return ret_val;
1064
1065	if ((hw->mac_type == e1000_82545_rev_3) ||
1066	    (hw->mac_type == e1000_82546_rev_3)) {
1067		ret_val =
1068		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1069		phy_data |= 0x00000008;
1070		ret_val =
1071		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1072	}
1073
1074	if (hw->mac_type <= e1000_82543 ||
1075	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1076	    hw->mac_type == e1000_82541_rev_2 ||
1077	    hw->mac_type == e1000_82547_rev_2)
1078		hw->phy_reset_disable = false;
1079
1080	return E1000_SUCCESS;
1081}
1082
1083/**
1084 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1085 * @hw: Struct containing variables accessed by shared code
1086 */
1087static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1088{
1089	u32 led_ctrl;
1090	s32 ret_val;
1091	u16 phy_data;
1092
1093	if (hw->phy_reset_disable)
1094		return E1000_SUCCESS;
1095
1096	ret_val = e1000_phy_reset(hw);
1097	if (ret_val) {
1098		e_dbg("Error Resetting the PHY\n");
1099		return ret_val;
1100	}
1101
1102	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1103	msleep(15);
1104	/* Configure activity LED after PHY reset */
1105	led_ctrl = er32(LEDCTL);
1106	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1107	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1108	ew32(LEDCTL, led_ctrl);
1109
1110	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1111	if (hw->phy_type == e1000_phy_igp) {
1112		/* disable lplu d3 during driver init */
1113		ret_val = e1000_set_d3_lplu_state(hw, false);
1114		if (ret_val) {
1115			e_dbg("Error Disabling LPLU D3\n");
1116			return ret_val;
1117		}
1118	}
1119
1120	/* Configure mdi-mdix settings */
1121	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1122	if (ret_val)
1123		return ret_val;
1124
1125	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1126		hw->dsp_config_state = e1000_dsp_config_disabled;
1127		/* Force MDI for earlier revs of the IGP PHY */
1128		phy_data &=
1129		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1130		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1131		hw->mdix = 1;
1132
1133	} else {
1134		hw->dsp_config_state = e1000_dsp_config_enabled;
1135		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1136
1137		switch (hw->mdix) {
1138		case 1:
1139			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1140			break;
1141		case 2:
1142			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1143			break;
1144		case 0:
1145		default:
1146			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1147			break;
1148		}
1149	}
1150	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1151	if (ret_val)
1152		return ret_val;
1153
1154	/* set auto-master slave resolution settings */
1155	if (hw->autoneg) {
1156		e1000_ms_type phy_ms_setting = hw->master_slave;
1157
1158		if (hw->ffe_config_state == e1000_ffe_config_active)
1159			hw->ffe_config_state = e1000_ffe_config_enabled;
1160
1161		if (hw->dsp_config_state == e1000_dsp_config_activated)
1162			hw->dsp_config_state = e1000_dsp_config_enabled;
1163
1164		/* when autonegotiation advertisement is only 1000Mbps then we
1165		 * should disable SmartSpeed and enable Auto MasterSlave
1166		 * resolution as hardware default.
1167		 */
1168		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1169			/* Disable SmartSpeed */
1170			ret_val =
1171			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1172					       &phy_data);
1173			if (ret_val)
1174				return ret_val;
1175			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1176			ret_val =
1177			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1178						phy_data);
1179			if (ret_val)
1180				return ret_val;
1181			/* Set auto Master/Slave resolution process */
1182			ret_val =
1183			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1184			if (ret_val)
1185				return ret_val;
1186			phy_data &= ~CR_1000T_MS_ENABLE;
1187			ret_val =
1188			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1189			if (ret_val)
1190				return ret_val;
1191		}
1192
1193		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194		if (ret_val)
1195			return ret_val;
1196
1197		/* load defaults for future use */
1198		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1199		    ((phy_data & CR_1000T_MS_VALUE) ?
1200		     e1000_ms_force_master :
1201		     e1000_ms_force_slave) : e1000_ms_auto;
1202
1203		switch (phy_ms_setting) {
1204		case e1000_ms_force_master:
1205			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1206			break;
1207		case e1000_ms_force_slave:
1208			phy_data |= CR_1000T_MS_ENABLE;
1209			phy_data &= ~(CR_1000T_MS_VALUE);
1210			break;
1211		case e1000_ms_auto:
1212			phy_data &= ~CR_1000T_MS_ENABLE;
 
1213		default:
1214			break;
1215		}
1216		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1217		if (ret_val)
1218			return ret_val;
1219	}
1220
1221	return E1000_SUCCESS;
1222}
1223
1224/**
1225 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1226 * @hw: Struct containing variables accessed by shared code
1227 */
1228static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1229{
1230	s32 ret_val;
1231	u16 phy_data;
1232
1233	if (hw->phy_reset_disable)
1234		return E1000_SUCCESS;
1235
1236	/* Enable CRS on TX. This must be set for half-duplex operation. */
1237	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1238	if (ret_val)
1239		return ret_val;
1240
1241	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1242
1243	/* Options:
1244	 *   MDI/MDI-X = 0 (default)
1245	 *   0 - Auto for all speeds
1246	 *   1 - MDI mode
1247	 *   2 - MDI-X mode
1248	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1249	 */
1250	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1251
1252	switch (hw->mdix) {
1253	case 1:
1254		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1255		break;
1256	case 2:
1257		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1258		break;
1259	case 3:
1260		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1261		break;
1262	case 0:
1263	default:
1264		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1265		break;
1266	}
1267
1268	/* Options:
1269	 *   disable_polarity_correction = 0 (default)
1270	 *       Automatic Correction for Reversed Cable Polarity
1271	 *   0 - Disabled
1272	 *   1 - Enabled
1273	 */
1274	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1275	if (hw->disable_polarity_correction == 1)
1276		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1277	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1278	if (ret_val)
1279		return ret_val;
1280
1281	if (hw->phy_revision < M88E1011_I_REV_4) {
1282		/* Force TX_CLK in the Extended PHY Specific Control Register
1283		 * to 25MHz clock.
1284		 */
1285		ret_val =
1286		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1287				       &phy_data);
1288		if (ret_val)
1289			return ret_val;
1290
1291		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1292
1293		if ((hw->phy_revision == E1000_REVISION_2) &&
1294		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1295			/* Vidalia Phy, set the downshift counter to 5x */
1296			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1297			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1298			ret_val = e1000_write_phy_reg(hw,
1299						      M88E1000_EXT_PHY_SPEC_CTRL,
1300						      phy_data);
1301			if (ret_val)
1302				return ret_val;
1303		} else {
1304			/* Configure Master and Slave downshift values */
1305			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1306				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1307			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1308				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1309			ret_val = e1000_write_phy_reg(hw,
1310						      M88E1000_EXT_PHY_SPEC_CTRL,
1311						      phy_data);
1312			if (ret_val)
1313				return ret_val;
1314		}
1315	}
1316
1317	/* SW Reset the PHY so all changes take effect */
1318	ret_val = e1000_phy_reset(hw);
1319	if (ret_val) {
1320		e_dbg("Error Resetting the PHY\n");
1321		return ret_val;
1322	}
1323
1324	return E1000_SUCCESS;
1325}
1326
1327/**
1328 * e1000_copper_link_autoneg - setup auto-neg
1329 * @hw: Struct containing variables accessed by shared code
1330 *
1331 * Setup auto-negotiation and flow control advertisements,
1332 * and then perform auto-negotiation.
1333 */
1334static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1335{
1336	s32 ret_val;
1337	u16 phy_data;
1338
1339	/* Perform some bounds checking on the hw->autoneg_advertised
1340	 * parameter.  If this variable is zero, then set it to the default.
1341	 */
1342	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1343
1344	/* If autoneg_advertised is zero, we assume it was not defaulted
1345	 * by the calling code so we set to advertise full capability.
1346	 */
1347	if (hw->autoneg_advertised == 0)
1348		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1349
1350	/* IFE/RTL8201N PHY only supports 10/100 */
1351	if (hw->phy_type == e1000_phy_8201)
1352		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1353
1354	e_dbg("Reconfiguring auto-neg advertisement params\n");
1355	ret_val = e1000_phy_setup_autoneg(hw);
1356	if (ret_val) {
1357		e_dbg("Error Setting up Auto-Negotiation\n");
1358		return ret_val;
1359	}
1360	e_dbg("Restarting Auto-Neg\n");
1361
1362	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1363	 * the Auto Neg Restart bit in the PHY control register.
1364	 */
1365	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1366	if (ret_val)
1367		return ret_val;
1368
1369	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1370	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	/* Does the user want to wait for Auto-Neg to complete here, or
1375	 * check at a later time (for example, callback routine).
1376	 */
1377	if (hw->wait_autoneg_complete) {
1378		ret_val = e1000_wait_autoneg(hw);
1379		if (ret_val) {
1380			e_dbg
1381			    ("Error while waiting for autoneg to complete\n");
1382			return ret_val;
1383		}
1384	}
1385
1386	hw->get_link_status = true;
1387
1388	return E1000_SUCCESS;
1389}
1390
1391/**
1392 * e1000_copper_link_postconfig - post link setup
1393 * @hw: Struct containing variables accessed by shared code
1394 *
1395 * Config the MAC and the PHY after link is up.
1396 *   1) Set up the MAC to the current PHY speed/duplex
1397 *      if we are on 82543.  If we
1398 *      are on newer silicon, we only need to configure
1399 *      collision distance in the Transmit Control Register.
1400 *   2) Set up flow control on the MAC to that established with
1401 *      the link partner.
1402 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1403 */
1404static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1405{
1406	s32 ret_val;
1407
1408	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1409		e1000_config_collision_dist(hw);
1410	} else {
1411		ret_val = e1000_config_mac_to_phy(hw);
1412		if (ret_val) {
1413			e_dbg("Error configuring MAC to PHY settings\n");
1414			return ret_val;
1415		}
1416	}
1417	ret_val = e1000_config_fc_after_link_up(hw);
1418	if (ret_val) {
1419		e_dbg("Error Configuring Flow Control\n");
1420		return ret_val;
1421	}
1422
1423	/* Config DSP to improve Giga link quality */
1424	if (hw->phy_type == e1000_phy_igp) {
1425		ret_val = e1000_config_dsp_after_link_change(hw, true);
1426		if (ret_val) {
1427			e_dbg("Error Configuring DSP after link up\n");
1428			return ret_val;
1429		}
1430	}
1431
1432	return E1000_SUCCESS;
1433}
1434
1435/**
1436 * e1000_setup_copper_link - phy/speed/duplex setting
1437 * @hw: Struct containing variables accessed by shared code
1438 *
1439 * Detects which PHY is present and sets up the speed and duplex
1440 */
1441static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1442{
1443	s32 ret_val;
1444	u16 i;
1445	u16 phy_data;
1446
1447	/* Check if it is a valid PHY and set PHY mode if necessary. */
1448	ret_val = e1000_copper_link_preconfig(hw);
1449	if (ret_val)
1450		return ret_val;
1451
1452	if (hw->phy_type == e1000_phy_igp) {
1453		ret_val = e1000_copper_link_igp_setup(hw);
1454		if (ret_val)
1455			return ret_val;
1456	} else if (hw->phy_type == e1000_phy_m88) {
1457		ret_val = e1000_copper_link_mgp_setup(hw);
1458		if (ret_val)
1459			return ret_val;
1460	} else {
1461		ret_val = gbe_dhg_phy_setup(hw);
1462		if (ret_val) {
1463			e_dbg("gbe_dhg_phy_setup failed!\n");
1464			return ret_val;
1465		}
1466	}
1467
1468	if (hw->autoneg) {
1469		/* Setup autoneg and flow control advertisement
1470		 * and perform autonegotiation
1471		 */
1472		ret_val = e1000_copper_link_autoneg(hw);
1473		if (ret_val)
1474			return ret_val;
1475	} else {
1476		/* PHY will be set to 10H, 10F, 100H,or 100F
1477		 * depending on value from forced_speed_duplex.
1478		 */
1479		e_dbg("Forcing speed and duplex\n");
1480		ret_val = e1000_phy_force_speed_duplex(hw);
1481		if (ret_val) {
1482			e_dbg("Error Forcing Speed and Duplex\n");
1483			return ret_val;
1484		}
1485	}
1486
1487	/* Check link status. Wait up to 100 microseconds for link to become
1488	 * valid.
1489	 */
1490	for (i = 0; i < 10; i++) {
1491		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1492		if (ret_val)
1493			return ret_val;
1494		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1495		if (ret_val)
1496			return ret_val;
1497
1498		if (phy_data & MII_SR_LINK_STATUS) {
1499			/* Config the MAC and PHY after link is up */
1500			ret_val = e1000_copper_link_postconfig(hw);
1501			if (ret_val)
1502				return ret_val;
1503
1504			e_dbg("Valid link established!!!\n");
1505			return E1000_SUCCESS;
1506		}
1507		udelay(10);
1508	}
1509
1510	e_dbg("Unable to establish link!!!\n");
1511	return E1000_SUCCESS;
1512}
1513
1514/**
1515 * e1000_phy_setup_autoneg - phy settings
1516 * @hw: Struct containing variables accessed by shared code
1517 *
1518 * Configures PHY autoneg and flow control advertisement settings
1519 */
1520s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1521{
1522	s32 ret_val;
1523	u16 mii_autoneg_adv_reg;
1524	u16 mii_1000t_ctrl_reg;
1525
1526	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1527	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1528	if (ret_val)
1529		return ret_val;
1530
1531	/* Read the MII 1000Base-T Control Register (Address 9). */
1532	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1533	if (ret_val)
1534		return ret_val;
1535	else if (hw->phy_type == e1000_phy_8201)
1536		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1537
1538	/* Need to parse both autoneg_advertised and fc and set up
1539	 * the appropriate PHY registers.  First we will parse for
1540	 * autoneg_advertised software override.  Since we can advertise
1541	 * a plethora of combinations, we need to check each bit
1542	 * individually.
1543	 */
1544
1545	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1546	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1547	 * the  1000Base-T Control Register (Address 9).
1548	 */
1549	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1550	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1551
1552	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1553
1554	/* Do we want to advertise 10 Mb Half Duplex? */
1555	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1556		e_dbg("Advertise 10mb Half duplex\n");
1557		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1558	}
1559
1560	/* Do we want to advertise 10 Mb Full Duplex? */
1561	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1562		e_dbg("Advertise 10mb Full duplex\n");
1563		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1564	}
1565
1566	/* Do we want to advertise 100 Mb Half Duplex? */
1567	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1568		e_dbg("Advertise 100mb Half duplex\n");
1569		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1570	}
1571
1572	/* Do we want to advertise 100 Mb Full Duplex? */
1573	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1574		e_dbg("Advertise 100mb Full duplex\n");
1575		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1576	}
1577
1578	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1579	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1580		e_dbg
1581		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1582	}
1583
1584	/* Do we want to advertise 1000 Mb Full Duplex? */
1585	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1586		e_dbg("Advertise 1000mb Full duplex\n");
1587		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1588	}
1589
1590	/* Check for a software override of the flow control settings, and
1591	 * setup the PHY advertisement registers accordingly.  If
1592	 * auto-negotiation is enabled, then software will have to set the
1593	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1594	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1595	 * auto-negotiation.
1596	 *
1597	 * The possible values of the "fc" parameter are:
1598	 *      0:  Flow control is completely disabled
1599	 *      1:  Rx flow control is enabled (we can receive pause frames
1600	 *          but not send pause frames).
1601	 *      2:  Tx flow control is enabled (we can send pause frames
1602	 *          but we do not support receiving pause frames).
1603	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1604	 *  other:  No software override.  The flow control configuration
1605	 *          in the EEPROM is used.
1606	 */
1607	switch (hw->fc) {
1608	case E1000_FC_NONE:	/* 0 */
1609		/* Flow control (RX & TX) is completely disabled by a
1610		 * software over-ride.
1611		 */
1612		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613		break;
1614	case E1000_FC_RX_PAUSE:	/* 1 */
1615		/* RX Flow control is enabled, and TX Flow control is
1616		 * disabled, by a software over-ride.
1617		 */
1618		/* Since there really isn't a way to advertise that we are
1619		 * capable of RX Pause ONLY, we will advertise that we
1620		 * support both symmetric and asymmetric RX PAUSE.  Later
1621		 * (in e1000_config_fc_after_link_up) we will disable the
1622		 * hw's ability to send PAUSE frames.
1623		 */
1624		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1625		break;
1626	case E1000_FC_TX_PAUSE:	/* 2 */
1627		/* TX Flow control is enabled, and RX Flow control is
1628		 * disabled, by a software over-ride.
1629		 */
1630		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1631		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1632		break;
1633	case E1000_FC_FULL:	/* 3 */
1634		/* Flow control (both RX and TX) is enabled by a software
1635		 * over-ride.
1636		 */
1637		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1638		break;
1639	default:
1640		e_dbg("Flow control param set incorrectly\n");
1641		return -E1000_ERR_CONFIG;
1642	}
1643
1644	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1645	if (ret_val)
1646		return ret_val;
1647
1648	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1649
1650	if (hw->phy_type == e1000_phy_8201) {
1651		mii_1000t_ctrl_reg = 0;
1652	} else {
1653		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1654					      mii_1000t_ctrl_reg);
1655		if (ret_val)
1656			return ret_val;
1657	}
1658
1659	return E1000_SUCCESS;
1660}
1661
1662/**
1663 * e1000_phy_force_speed_duplex - force link settings
1664 * @hw: Struct containing variables accessed by shared code
1665 *
1666 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1667 */
1668static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1669{
1670	u32 ctrl;
1671	s32 ret_val;
1672	u16 mii_ctrl_reg;
1673	u16 mii_status_reg;
1674	u16 phy_data;
1675	u16 i;
1676
1677	/* Turn off Flow control if we are forcing speed and duplex. */
1678	hw->fc = E1000_FC_NONE;
1679
1680	e_dbg("hw->fc = %d\n", hw->fc);
1681
1682	/* Read the Device Control Register. */
1683	ctrl = er32(CTRL);
1684
1685	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1686	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1687	ctrl &= ~(DEVICE_SPEED_MASK);
1688
1689	/* Clear the Auto Speed Detect Enable bit. */
1690	ctrl &= ~E1000_CTRL_ASDE;
1691
1692	/* Read the MII Control Register. */
1693	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1694	if (ret_val)
1695		return ret_val;
1696
1697	/* We need to disable autoneg in order to force link and duplex. */
1698
1699	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1700
1701	/* Are we forcing Full or Half Duplex? */
1702	if (hw->forced_speed_duplex == e1000_100_full ||
1703	    hw->forced_speed_duplex == e1000_10_full) {
1704		/* We want to force full duplex so we SET the full duplex bits
1705		 * in the Device and MII Control Registers.
1706		 */
1707		ctrl |= E1000_CTRL_FD;
1708		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1709		e_dbg("Full Duplex\n");
1710	} else {
1711		/* We want to force half duplex so we CLEAR the full duplex bits
1712		 * in the Device and MII Control Registers.
1713		 */
1714		ctrl &= ~E1000_CTRL_FD;
1715		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1716		e_dbg("Half Duplex\n");
1717	}
1718
1719	/* Are we forcing 100Mbps??? */
1720	if (hw->forced_speed_duplex == e1000_100_full ||
1721	    hw->forced_speed_duplex == e1000_100_half) {
1722		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1723		ctrl |= E1000_CTRL_SPD_100;
1724		mii_ctrl_reg |= MII_CR_SPEED_100;
1725		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1726		e_dbg("Forcing 100mb ");
1727	} else {
1728		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1729		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1730		mii_ctrl_reg |= MII_CR_SPEED_10;
1731		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1732		e_dbg("Forcing 10mb ");
1733	}
1734
1735	e1000_config_collision_dist(hw);
1736
1737	/* Write the configured values back to the Device Control Reg. */
1738	ew32(CTRL, ctrl);
1739
1740	if (hw->phy_type == e1000_phy_m88) {
1741		ret_val =
1742		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1743		if (ret_val)
1744			return ret_val;
1745
1746		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1747		 * MDI forced whenever speed are duplex are forced.
1748		 */
1749		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1750		ret_val =
1751		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1752		if (ret_val)
1753			return ret_val;
1754
1755		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1756
1757		/* Need to reset the PHY or these changes will be ignored */
1758		mii_ctrl_reg |= MII_CR_RESET;
1759
1760		/* Disable MDI-X support for 10/100 */
1761	} else {
1762		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1763		 * forced whenever speed or duplex are forced.
1764		 */
1765		ret_val =
1766		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1767		if (ret_val)
1768			return ret_val;
1769
1770		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1771		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1772
1773		ret_val =
1774		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1775		if (ret_val)
1776			return ret_val;
1777	}
1778
1779	/* Write back the modified PHY MII control register. */
1780	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1781	if (ret_val)
1782		return ret_val;
1783
1784	udelay(1);
1785
1786	/* The wait_autoneg_complete flag may be a little misleading here.
1787	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1788	 * But we do want to delay for a period while forcing only so we
1789	 * don't generate false No Link messages.  So we will wait here
1790	 * only if the user has set wait_autoneg_complete to 1, which is
1791	 * the default.
1792	 */
1793	if (hw->wait_autoneg_complete) {
1794		/* We will wait for autoneg to complete. */
1795		e_dbg("Waiting for forced speed/duplex link.\n");
1796		mii_status_reg = 0;
1797
1798		/* Wait for autoneg to complete or 4.5 seconds to expire */
1799		for (i = PHY_FORCE_TIME; i > 0; i--) {
1800			/* Read the MII Status Register and wait for Auto-Neg
1801			 * Complete bit to be set.
1802			 */
1803			ret_val =
1804			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1805			if (ret_val)
1806				return ret_val;
1807
1808			ret_val =
1809			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1810			if (ret_val)
1811				return ret_val;
1812
1813			if (mii_status_reg & MII_SR_LINK_STATUS)
1814				break;
1815			msleep(100);
1816		}
1817		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1818			/* We didn't get link.  Reset the DSP and wait again
1819			 * for link.
1820			 */
1821			ret_val = e1000_phy_reset_dsp(hw);
1822			if (ret_val) {
1823				e_dbg("Error Resetting PHY DSP\n");
1824				return ret_val;
1825			}
1826		}
1827		/* This loop will early-out if the link condition has been
1828		 * met
1829		 */
1830		for (i = PHY_FORCE_TIME; i > 0; i--) {
1831			if (mii_status_reg & MII_SR_LINK_STATUS)
1832				break;
1833			msleep(100);
1834			/* Read the MII Status Register and wait for Auto-Neg
1835			 * Complete bit to be set.
1836			 */
1837			ret_val =
1838			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1839			if (ret_val)
1840				return ret_val;
1841
1842			ret_val =
1843			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1844			if (ret_val)
1845				return ret_val;
1846		}
1847	}
1848
1849	if (hw->phy_type == e1000_phy_m88) {
1850		/* Because we reset the PHY above, we need to re-force TX_CLK in
1851		 * the Extended PHY Specific Control Register to 25MHz clock.
1852		 * This value defaults back to a 2.5MHz clock when the PHY is
1853		 * reset.
1854		 */
1855		ret_val =
1856		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1857				       &phy_data);
1858		if (ret_val)
1859			return ret_val;
1860
1861		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1862		ret_val =
1863		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1864					phy_data);
1865		if (ret_val)
1866			return ret_val;
1867
1868		/* In addition, because of the s/w reset above, we need to
1869		 * enable CRS on Tx.  This must be set for both full and half
1870		 * duplex operation.
1871		 */
1872		ret_val =
1873		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1874		if (ret_val)
1875			return ret_val;
1876
1877		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1878		ret_val =
1879		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1880		if (ret_val)
1881			return ret_val;
1882
1883		if ((hw->mac_type == e1000_82544 ||
1884		     hw->mac_type == e1000_82543) &&
1885		    (!hw->autoneg) &&
1886		    (hw->forced_speed_duplex == e1000_10_full ||
1887		     hw->forced_speed_duplex == e1000_10_half)) {
1888			ret_val = e1000_polarity_reversal_workaround(hw);
1889			if (ret_val)
1890				return ret_val;
1891		}
1892	}
1893	return E1000_SUCCESS;
1894}
1895
1896/**
1897 * e1000_config_collision_dist - set collision distance register
1898 * @hw: Struct containing variables accessed by shared code
1899 *
1900 * Sets the collision distance in the Transmit Control register.
1901 * Link should have been established previously. Reads the speed and duplex
1902 * information from the Device Status register.
1903 */
1904void e1000_config_collision_dist(struct e1000_hw *hw)
1905{
1906	u32 tctl, coll_dist;
1907
1908	if (hw->mac_type < e1000_82543)
1909		coll_dist = E1000_COLLISION_DISTANCE_82542;
1910	else
1911		coll_dist = E1000_COLLISION_DISTANCE;
1912
1913	tctl = er32(TCTL);
1914
1915	tctl &= ~E1000_TCTL_COLD;
1916	tctl |= coll_dist << E1000_COLD_SHIFT;
1917
1918	ew32(TCTL, tctl);
1919	E1000_WRITE_FLUSH();
1920}
1921
1922/**
1923 * e1000_config_mac_to_phy - sync phy and mac settings
1924 * @hw: Struct containing variables accessed by shared code
1925 * @mii_reg: data to write to the MII control register
1926 *
1927 * Sets MAC speed and duplex settings to reflect the those in the PHY
1928 * The contents of the PHY register containing the needed information need to
1929 * be passed in.
1930 */
1931static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1932{
1933	u32 ctrl;
1934	s32 ret_val;
1935	u16 phy_data;
1936
1937	/* 82544 or newer MAC, Auto Speed Detection takes care of
1938	 * MAC speed/duplex configuration.
1939	 */
1940	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1941		return E1000_SUCCESS;
1942
1943	/* Read the Device Control Register and set the bits to Force Speed
1944	 * and Duplex.
1945	 */
1946	ctrl = er32(CTRL);
1947	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1949
1950	switch (hw->phy_type) {
1951	case e1000_phy_8201:
1952		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953		if (ret_val)
1954			return ret_val;
1955
1956		if (phy_data & RTL_PHY_CTRL_FD)
1957			ctrl |= E1000_CTRL_FD;
1958		else
1959			ctrl &= ~E1000_CTRL_FD;
1960
1961		if (phy_data & RTL_PHY_CTRL_SPD_100)
1962			ctrl |= E1000_CTRL_SPD_100;
1963		else
1964			ctrl |= E1000_CTRL_SPD_10;
1965
1966		e1000_config_collision_dist(hw);
1967		break;
1968	default:
1969		/* Set up duplex in the Device Control and Transmit Control
1970		 * registers depending on negotiated values.
1971		 */
1972		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1973					     &phy_data);
1974		if (ret_val)
1975			return ret_val;
1976
1977		if (phy_data & M88E1000_PSSR_DPLX)
1978			ctrl |= E1000_CTRL_FD;
1979		else
1980			ctrl &= ~E1000_CTRL_FD;
1981
1982		e1000_config_collision_dist(hw);
1983
1984		/* Set up speed in the Device Control register depending on
1985		 * negotiated values.
1986		 */
1987		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988			ctrl |= E1000_CTRL_SPD_1000;
1989		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1990			 M88E1000_PSSR_100MBS)
1991			ctrl |= E1000_CTRL_SPD_100;
1992	}
1993
1994	/* Write the configured values back to the Device Control Reg. */
1995	ew32(CTRL, ctrl);
1996	return E1000_SUCCESS;
1997}
1998
1999/**
2000 * e1000_force_mac_fc - force flow control settings
2001 * @hw: Struct containing variables accessed by shared code
2002 *
2003 * Forces the MAC's flow control settings.
2004 * Sets the TFCE and RFCE bits in the device control register to reflect
2005 * the adapter settings. TFCE and RFCE need to be explicitly set by
2006 * software when a Copper PHY is used because autonegotiation is managed
2007 * by the PHY rather than the MAC. Software must also configure these
2008 * bits when link is forced on a fiber connection.
2009 */
2010s32 e1000_force_mac_fc(struct e1000_hw *hw)
2011{
2012	u32 ctrl;
2013
2014	/* Get the current configuration of the Device Control Register */
2015	ctrl = er32(CTRL);
2016
2017	/* Because we didn't get link via the internal auto-negotiation
2018	 * mechanism (we either forced link or we got link via PHY
2019	 * auto-neg), we have to manually enable/disable transmit an
2020	 * receive flow control.
2021	 *
2022	 * The "Case" statement below enables/disable flow control
2023	 * according to the "hw->fc" parameter.
2024	 *
2025	 * The possible values of the "fc" parameter are:
2026	 *      0:  Flow control is completely disabled
2027	 *      1:  Rx flow control is enabled (we can receive pause
2028	 *          frames but not send pause frames).
2029	 *      2:  Tx flow control is enabled (we can send pause frames
2030	 *          frames but we do not receive pause frames).
2031	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2032	 *  other:  No other values should be possible at this point.
2033	 */
2034
2035	switch (hw->fc) {
2036	case E1000_FC_NONE:
2037		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038		break;
2039	case E1000_FC_RX_PAUSE:
2040		ctrl &= (~E1000_CTRL_TFCE);
2041		ctrl |= E1000_CTRL_RFCE;
2042		break;
2043	case E1000_FC_TX_PAUSE:
2044		ctrl &= (~E1000_CTRL_RFCE);
2045		ctrl |= E1000_CTRL_TFCE;
2046		break;
2047	case E1000_FC_FULL:
2048		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049		break;
2050	default:
2051		e_dbg("Flow control param set incorrectly\n");
2052		return -E1000_ERR_CONFIG;
2053	}
2054
2055	/* Disable TX Flow Control for 82542 (rev 2.0) */
2056	if (hw->mac_type == e1000_82542_rev2_0)
2057		ctrl &= (~E1000_CTRL_TFCE);
2058
2059	ew32(CTRL, ctrl);
2060	return E1000_SUCCESS;
2061}
2062
2063/**
2064 * e1000_config_fc_after_link_up - configure flow control after autoneg
2065 * @hw: Struct containing variables accessed by shared code
2066 *
2067 * Configures flow control settings after link is established
2068 * Should be called immediately after a valid link has been established.
2069 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070 * and autonegotiation is enabled, the MAC flow control settings will be set
2071 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2072 * and RFCE bits will be automatically set to the negotiated flow control mode.
2073 */
2074static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2075{
2076	s32 ret_val;
2077	u16 mii_status_reg;
2078	u16 mii_nway_adv_reg;
2079	u16 mii_nway_lp_ability_reg;
2080	u16 speed;
2081	u16 duplex;
2082
2083	/* Check for the case where we have fiber media and auto-neg failed
2084	 * so we had to force link.  In this case, we need to force the
2085	 * configuration of the MAC to match the "fc" parameter.
2086	 */
2087	if (((hw->media_type == e1000_media_type_fiber) &&
2088	     (hw->autoneg_failed)) ||
2089	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2090	     (hw->autoneg_failed)) ||
2091	    ((hw->media_type == e1000_media_type_copper) &&
2092	     (!hw->autoneg))) {
2093		ret_val = e1000_force_mac_fc(hw);
2094		if (ret_val) {
2095			e_dbg("Error forcing flow control settings\n");
2096			return ret_val;
2097		}
2098	}
2099
2100	/* Check for the case where we have copper media and auto-neg is
2101	 * enabled.  In this case, we need to check and see if Auto-Neg
2102	 * has completed, and if so, how the PHY and link partner has
2103	 * flow control configured.
2104	 */
2105	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2106		/* Read the MII Status Register and check to see if AutoNeg
2107		 * has completed.  We read this twice because this reg has
2108		 * some "sticky" (latched) bits.
2109		 */
2110		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2111		if (ret_val)
2112			return ret_val;
2113		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2114		if (ret_val)
2115			return ret_val;
2116
2117		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2118			/* The AutoNeg process has completed, so we now need to
2119			 * read both the Auto Negotiation Advertisement Register
2120			 * (Address 4) and the Auto_Negotiation Base Page
2121			 * Ability Register (Address 5) to determine how flow
2122			 * control was negotiated.
2123			 */
2124			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2125						     &mii_nway_adv_reg);
2126			if (ret_val)
2127				return ret_val;
2128			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2129						     &mii_nway_lp_ability_reg);
2130			if (ret_val)
2131				return ret_val;
2132
2133			/* Two bits in the Auto Negotiation Advertisement
2134			 * Register (Address 4) and two bits in the Auto
2135			 * Negotiation Base Page Ability Register (Address 5)
2136			 * determine flow control for both the PHY and the link
2137			 * partner.  The following table, taken out of the IEEE
2138			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2139			 * PAUSE resolution bits and how flow control is
2140			 * determined based upon these settings.
2141			 * NOTE:  DC = Don't Care
2142			 *
2143			 *   LOCAL DEVICE  |   LINK PARTNER
2144			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2145			 *-------|---------|-------|---------|------------------
2146			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2147			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2148			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2149			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2150			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2151			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2152			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2153			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2154			 *
2155			 */
2156			/* Are both PAUSE bits set to 1?  If so, this implies
2157			 * Symmetric Flow Control is enabled at both ends.  The
2158			 * ASM_DIR bits are irrelevant per the spec.
2159			 *
2160			 * For Symmetric Flow Control:
2161			 *
2162			 *   LOCAL DEVICE  |   LINK PARTNER
2163			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164			 *-------|---------|-------|---------|------------------
2165			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2166			 *
2167			 */
2168			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2170				/* Now we need to check if the user selected Rx
2171				 * ONLY of pause frames.  In this case, we had
2172				 * to advertise FULL flow control because we
2173				 * could not advertise Rx ONLY. Hence, we must
2174				 * now check to see if we need to turn OFF the
2175				 * TRANSMISSION of PAUSE frames.
2176				 */
2177				if (hw->original_fc == E1000_FC_FULL) {
2178					hw->fc = E1000_FC_FULL;
2179					e_dbg("Flow Control = FULL.\n");
2180				} else {
2181					hw->fc = E1000_FC_RX_PAUSE;
2182					e_dbg
2183					    ("Flow Control = RX PAUSE frames only.\n");
2184				}
2185			}
2186			/* For receiving PAUSE frames ONLY.
2187			 *
2188			 *   LOCAL DEVICE  |   LINK PARTNER
2189			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2190			 *-------|---------|-------|---------|------------------
2191			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2192			 *
2193			 */
2194			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2195				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2196				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2197				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2198				hw->fc = E1000_FC_TX_PAUSE;
2199				e_dbg
2200				    ("Flow Control = TX PAUSE frames only.\n");
2201			}
2202			/* For transmitting PAUSE frames ONLY.
2203			 *
2204			 *   LOCAL DEVICE  |   LINK PARTNER
2205			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2206			 *-------|---------|-------|---------|------------------
2207			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2208			 *
2209			 */
2210			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2211				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2212				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2213				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2214				hw->fc = E1000_FC_RX_PAUSE;
2215				e_dbg
2216				    ("Flow Control = RX PAUSE frames only.\n");
2217			}
2218			/* Per the IEEE spec, at this point flow control should
2219			 * be disabled.  However, we want to consider that we
2220			 * could be connected to a legacy switch that doesn't
2221			 * advertise desired flow control, but can be forced on
2222			 * the link partner.  So if we advertised no flow
2223			 * control, that is what we will resolve to.  If we
2224			 * advertised some kind of receive capability (Rx Pause
2225			 * Only or Full Flow Control) and the link partner
2226			 * advertised none, we will configure ourselves to
2227			 * enable Rx Flow Control only.  We can do this safely
2228			 * for two reasons:  If the link partner really
2229			 * didn't want flow control enabled, and we enable Rx,
2230			 * no harm done since we won't be receiving any PAUSE
2231			 * frames anyway.  If the intent on the link partner was
2232			 * to have flow control enabled, then by us enabling Rx
2233			 * only, we can at least receive pause frames and
2234			 * process them. This is a good idea because in most
2235			 * cases, since we are predominantly a server NIC, more
2236			 * times than not we will be asked to delay transmission
2237			 * of packets than asking our link partner to pause
2238			 * transmission of frames.
2239			 */
2240			else if ((hw->original_fc == E1000_FC_NONE ||
2241				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2242				 hw->fc_strict_ieee) {
2243				hw->fc = E1000_FC_NONE;
2244				e_dbg("Flow Control = NONE.\n");
2245			} else {
2246				hw->fc = E1000_FC_RX_PAUSE;
2247				e_dbg
2248				    ("Flow Control = RX PAUSE frames only.\n");
2249			}
2250
2251			/* Now we need to do one last check...  If we auto-
2252			 * negotiated to HALF DUPLEX, flow control should not be
2253			 * enabled per IEEE 802.3 spec.
2254			 */
2255			ret_val =
2256			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2257			if (ret_val) {
2258				e_dbg
2259				    ("Error getting link speed and duplex\n");
2260				return ret_val;
2261			}
2262
2263			if (duplex == HALF_DUPLEX)
2264				hw->fc = E1000_FC_NONE;
2265
2266			/* Now we call a subroutine to actually force the MAC
2267			 * controller to use the correct flow control settings.
2268			 */
2269			ret_val = e1000_force_mac_fc(hw);
2270			if (ret_val) {
2271				e_dbg
2272				    ("Error forcing flow control settings\n");
2273				return ret_val;
2274			}
2275		} else {
2276			e_dbg
2277			    ("Copper PHY and Auto Neg has not completed.\n");
2278		}
2279	}
2280	return E1000_SUCCESS;
2281}
2282
2283/**
2284 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2285 * @hw: pointer to the HW structure
2286 *
2287 * Checks for link up on the hardware.  If link is not up and we have
2288 * a signal, then we need to force link up.
2289 */
2290static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2291{
2292	u32 rxcw;
2293	u32 ctrl;
2294	u32 status;
2295	s32 ret_val = E1000_SUCCESS;
2296
2297	ctrl = er32(CTRL);
2298	status = er32(STATUS);
2299	rxcw = er32(RXCW);
2300
2301	/* If we don't have link (auto-negotiation failed or link partner
2302	 * cannot auto-negotiate), and our link partner is not trying to
2303	 * auto-negotiate with us (we are receiving idles or data),
2304	 * we need to force link up. We also need to give auto-negotiation
2305	 * time to complete.
2306	 */
2307	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2308	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2309		if (hw->autoneg_failed == 0) {
2310			hw->autoneg_failed = 1;
2311			goto out;
2312		}
2313		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2314
2315		/* Disable auto-negotiation in the TXCW register */
2316		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2317
2318		/* Force link-up and also force full-duplex. */
2319		ctrl = er32(CTRL);
2320		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2321		ew32(CTRL, ctrl);
2322
2323		/* Configure Flow Control after forcing link up. */
2324		ret_val = e1000_config_fc_after_link_up(hw);
2325		if (ret_val) {
2326			e_dbg("Error configuring flow control\n");
2327			goto out;
2328		}
2329	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2330		/* If we are forcing link and we are receiving /C/ ordered
2331		 * sets, re-enable auto-negotiation in the TXCW register
2332		 * and disable forced link in the Device Control register
2333		 * in an attempt to auto-negotiate with our link partner.
2334		 */
2335		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2336		ew32(TXCW, hw->txcw);
2337		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2338
2339		hw->serdes_has_link = true;
2340	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2341		/* If we force link for non-auto-negotiation switch, check
2342		 * link status based on MAC synchronization for internal
2343		 * serdes media type.
2344		 */
2345		/* SYNCH bit and IV bit are sticky. */
2346		udelay(10);
2347		rxcw = er32(RXCW);
2348		if (rxcw & E1000_RXCW_SYNCH) {
2349			if (!(rxcw & E1000_RXCW_IV)) {
2350				hw->serdes_has_link = true;
2351				e_dbg("SERDES: Link up - forced.\n");
2352			}
2353		} else {
2354			hw->serdes_has_link = false;
2355			e_dbg("SERDES: Link down - force failed.\n");
2356		}
2357	}
2358
2359	if (E1000_TXCW_ANE & er32(TXCW)) {
2360		status = er32(STATUS);
2361		if (status & E1000_STATUS_LU) {
2362			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2363			udelay(10);
2364			rxcw = er32(RXCW);
2365			if (rxcw & E1000_RXCW_SYNCH) {
2366				if (!(rxcw & E1000_RXCW_IV)) {
2367					hw->serdes_has_link = true;
2368					e_dbg("SERDES: Link up - autoneg "
2369						 "completed successfully.\n");
2370				} else {
2371					hw->serdes_has_link = false;
2372					e_dbg("SERDES: Link down - invalid"
2373						 "codewords detected in autoneg.\n");
2374				}
2375			} else {
2376				hw->serdes_has_link = false;
2377				e_dbg("SERDES: Link down - no sync.\n");
2378			}
2379		} else {
2380			hw->serdes_has_link = false;
2381			e_dbg("SERDES: Link down - autoneg failed\n");
2382		}
2383	}
2384
2385      out:
2386	return ret_val;
2387}
2388
2389/**
2390 * e1000_check_for_link
2391 * @hw: Struct containing variables accessed by shared code
2392 *
2393 * Checks to see if the link status of the hardware has changed.
2394 * Called by any function that needs to check the link status of the adapter.
2395 */
2396s32 e1000_check_for_link(struct e1000_hw *hw)
2397{
2398	u32 rxcw = 0;
2399	u32 ctrl;
2400	u32 status;
2401	u32 rctl;
2402	u32 icr;
2403	u32 signal = 0;
2404	s32 ret_val;
2405	u16 phy_data;
2406
2407	ctrl = er32(CTRL);
2408	status = er32(STATUS);
2409
2410	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2411	 * set when the optics detect a signal. On older adapters, it will be
2412	 * cleared when there is a signal.  This applies to fiber media only.
2413	 */
2414	if ((hw->media_type == e1000_media_type_fiber) ||
2415	    (hw->media_type == e1000_media_type_internal_serdes)) {
2416		rxcw = er32(RXCW);
2417
2418		if (hw->media_type == e1000_media_type_fiber) {
2419			signal =
2420			    (hw->mac_type >
2421			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2422			if (status & E1000_STATUS_LU)
2423				hw->get_link_status = false;
2424		}
2425	}
2426
2427	/* If we have a copper PHY then we only want to go out to the PHY
2428	 * registers to see if Auto-Neg has completed and/or if our link
2429	 * status has changed.  The get_link_status flag will be set if we
2430	 * receive a Link Status Change interrupt or we have Rx Sequence
2431	 * Errors.
2432	 */
2433	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2434		/* First we want to see if the MII Status Register reports
2435		 * link.  If so, then we want to get the current speed/duplex
2436		 * of the PHY.
2437		 * Read the register twice since the link bit is sticky.
2438		 */
2439		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2440		if (ret_val)
2441			return ret_val;
2442		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2443		if (ret_val)
2444			return ret_val;
2445
2446		if (phy_data & MII_SR_LINK_STATUS) {
2447			hw->get_link_status = false;
2448			/* Check if there was DownShift, must be checked
2449			 * immediately after link-up
2450			 */
2451			e1000_check_downshift(hw);
2452
2453			/* If we are on 82544 or 82543 silicon and speed/duplex
2454			 * are forced to 10H or 10F, then we will implement the
2455			 * polarity reversal workaround.  We disable interrupts
2456			 * first, and upon returning, place the devices
2457			 * interrupt state to its previous value except for the
2458			 * link status change interrupt which will
2459			 * happen due to the execution of this workaround.
2460			 */
2461
2462			if ((hw->mac_type == e1000_82544 ||
2463			     hw->mac_type == e1000_82543) &&
2464			    (!hw->autoneg) &&
2465			    (hw->forced_speed_duplex == e1000_10_full ||
2466			     hw->forced_speed_duplex == e1000_10_half)) {
2467				ew32(IMC, 0xffffffff);
2468				ret_val =
2469				    e1000_polarity_reversal_workaround(hw);
2470				icr = er32(ICR);
2471				ew32(ICS, (icr & ~E1000_ICS_LSC));
2472				ew32(IMS, IMS_ENABLE_MASK);
2473			}
2474
2475		} else {
2476			/* No link detected */
2477			e1000_config_dsp_after_link_change(hw, false);
2478			return 0;
2479		}
2480
2481		/* If we are forcing speed/duplex, then we simply return since
2482		 * we have already determined whether we have link or not.
2483		 */
2484		if (!hw->autoneg)
2485			return -E1000_ERR_CONFIG;
2486
2487		/* optimize the dsp settings for the igp phy */
2488		e1000_config_dsp_after_link_change(hw, true);
2489
2490		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2491		 * have Si on board that is 82544 or newer, Auto
2492		 * Speed Detection takes care of MAC speed/duplex
2493		 * configuration.  So we only need to configure Collision
2494		 * Distance in the MAC.  Otherwise, we need to force
2495		 * speed/duplex on the MAC to the current PHY speed/duplex
2496		 * settings.
2497		 */
2498		if ((hw->mac_type >= e1000_82544) &&
2499		    (hw->mac_type != e1000_ce4100))
2500			e1000_config_collision_dist(hw);
2501		else {
2502			ret_val = e1000_config_mac_to_phy(hw);
2503			if (ret_val) {
2504				e_dbg
2505				    ("Error configuring MAC to PHY settings\n");
2506				return ret_val;
2507			}
2508		}
2509
2510		/* Configure Flow Control now that Auto-Neg has completed.
2511		 * First, we need to restore the desired flow control settings
2512		 * because we may have had to re-autoneg with a different link
2513		 * partner.
2514		 */
2515		ret_val = e1000_config_fc_after_link_up(hw);
2516		if (ret_val) {
2517			e_dbg("Error configuring flow control\n");
2518			return ret_val;
2519		}
2520
2521		/* At this point we know that we are on copper and we have
2522		 * auto-negotiated link.  These are conditions for checking the
2523		 * link partner capability register.  We use the link speed to
2524		 * determine if TBI compatibility needs to be turned on or off.
2525		 * If the link is not at gigabit speed, then TBI compatibility
2526		 * is not needed.  If we are at gigabit speed, we turn on TBI
2527		 * compatibility.
2528		 */
2529		if (hw->tbi_compatibility_en) {
2530			u16 speed, duplex;
2531
2532			ret_val =
2533			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2534
2535			if (ret_val) {
2536				e_dbg
2537				    ("Error getting link speed and duplex\n");
2538				return ret_val;
2539			}
2540			if (speed != SPEED_1000) {
2541				/* If link speed is not set to gigabit speed, we
2542				 * do not need to enable TBI compatibility.
2543				 */
2544				if (hw->tbi_compatibility_on) {
2545					/* If we previously were in the mode,
2546					 * turn it off.
2547					 */
2548					rctl = er32(RCTL);
2549					rctl &= ~E1000_RCTL_SBP;
2550					ew32(RCTL, rctl);
2551					hw->tbi_compatibility_on = false;
2552				}
2553			} else {
2554				/* If TBI compatibility is was previously off,
2555				 * turn it on. For compatibility with a TBI link
2556				 * partner, we will store bad packets. Some
2557				 * frames have an additional byte on the end and
2558				 * will look like CRC errors to to the hardware.
2559				 */
2560				if (!hw->tbi_compatibility_on) {
2561					hw->tbi_compatibility_on = true;
2562					rctl = er32(RCTL);
2563					rctl |= E1000_RCTL_SBP;
2564					ew32(RCTL, rctl);
2565				}
2566			}
2567		}
2568	}
2569
2570	if ((hw->media_type == e1000_media_type_fiber) ||
2571	    (hw->media_type == e1000_media_type_internal_serdes))
2572		e1000_check_for_serdes_link_generic(hw);
2573
2574	return E1000_SUCCESS;
2575}
2576
2577/**
2578 * e1000_get_speed_and_duplex
2579 * @hw: Struct containing variables accessed by shared code
2580 * @speed: Speed of the connection
2581 * @duplex: Duplex setting of the connection
2582 *
2583 * Detects the current speed and duplex settings of the hardware.
2584 */
2585s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2586{
2587	u32 status;
2588	s32 ret_val;
2589	u16 phy_data;
2590
2591	if (hw->mac_type >= e1000_82543) {
2592		status = er32(STATUS);
2593		if (status & E1000_STATUS_SPEED_1000) {
2594			*speed = SPEED_1000;
2595			e_dbg("1000 Mbs, ");
2596		} else if (status & E1000_STATUS_SPEED_100) {
2597			*speed = SPEED_100;
2598			e_dbg("100 Mbs, ");
2599		} else {
2600			*speed = SPEED_10;
2601			e_dbg("10 Mbs, ");
2602		}
2603
2604		if (status & E1000_STATUS_FD) {
2605			*duplex = FULL_DUPLEX;
2606			e_dbg("Full Duplex\n");
2607		} else {
2608			*duplex = HALF_DUPLEX;
2609			e_dbg(" Half Duplex\n");
2610		}
2611	} else {
2612		e_dbg("1000 Mbs, Full Duplex\n");
2613		*speed = SPEED_1000;
2614		*duplex = FULL_DUPLEX;
2615	}
2616
2617	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2618	 * even if it is operating at half duplex.  Here we set the duplex
2619	 * settings to match the duplex in the link partner's capabilities.
2620	 */
2621	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2622		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2623		if (ret_val)
2624			return ret_val;
2625
2626		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2627			*duplex = HALF_DUPLEX;
2628		else {
2629			ret_val =
2630			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2631			if (ret_val)
2632				return ret_val;
2633			if ((*speed == SPEED_100 &&
2634			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2635			    (*speed == SPEED_10 &&
2636			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2637				*duplex = HALF_DUPLEX;
2638		}
2639	}
2640
2641	return E1000_SUCCESS;
2642}
2643
2644/**
2645 * e1000_wait_autoneg
2646 * @hw: Struct containing variables accessed by shared code
2647 *
2648 * Blocks until autoneg completes or times out (~4.5 seconds)
2649 */
2650static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2651{
2652	s32 ret_val;
2653	u16 i;
2654	u16 phy_data;
2655
2656	e_dbg("Waiting for Auto-Neg to complete.\n");
2657
2658	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2659	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2660		/* Read the MII Status Register and wait for Auto-Neg
2661		 * Complete bit to be set.
2662		 */
2663		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2664		if (ret_val)
2665			return ret_val;
2666		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2667		if (ret_val)
2668			return ret_val;
2669		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2670			return E1000_SUCCESS;
2671
2672		msleep(100);
2673	}
2674	return E1000_SUCCESS;
2675}
2676
2677/**
2678 * e1000_raise_mdi_clk - Raises the Management Data Clock
2679 * @hw: Struct containing variables accessed by shared code
2680 * @ctrl: Device control register's current value
2681 */
2682static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2683{
2684	/* Raise the clock input to the Management Data Clock (by setting the
2685	 * MDC bit), and then delay 10 microseconds.
2686	 */
2687	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2688	E1000_WRITE_FLUSH();
2689	udelay(10);
2690}
2691
2692/**
2693 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2694 * @hw: Struct containing variables accessed by shared code
2695 * @ctrl: Device control register's current value
2696 */
2697static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2698{
2699	/* Lower the clock input to the Management Data Clock (by clearing the
2700	 * MDC bit), and then delay 10 microseconds.
2701	 */
2702	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2703	E1000_WRITE_FLUSH();
2704	udelay(10);
2705}
2706
2707/**
2708 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2709 * @hw: Struct containing variables accessed by shared code
2710 * @data: Data to send out to the PHY
2711 * @count: Number of bits to shift out
2712 *
2713 * Bits are shifted out in MSB to LSB order.
2714 */
2715static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2716{
2717	u32 ctrl;
2718	u32 mask;
2719
2720	/* We need to shift "count" number of bits out to the PHY. So, the value
2721	 * in the "data" parameter will be shifted out to the PHY one bit at a
2722	 * time. In order to do this, "data" must be broken down into bits.
2723	 */
2724	mask = 0x01;
2725	mask <<= (count - 1);
2726
2727	ctrl = er32(CTRL);
2728
2729	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2730	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2731
2732	while (mask) {
2733		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2734		 * "1" and then raising and lowering the Management Data Clock.
2735		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2736		 * "0" and then raising and lowering the clock.
2737		 */
2738		if (data & mask)
2739			ctrl |= E1000_CTRL_MDIO;
2740		else
2741			ctrl &= ~E1000_CTRL_MDIO;
2742
2743		ew32(CTRL, ctrl);
2744		E1000_WRITE_FLUSH();
2745
2746		udelay(10);
2747
2748		e1000_raise_mdi_clk(hw, &ctrl);
2749		e1000_lower_mdi_clk(hw, &ctrl);
2750
2751		mask = mask >> 1;
2752	}
2753}
2754
2755/**
2756 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2757 * @hw: Struct containing variables accessed by shared code
2758 *
2759 * Bits are shifted in in MSB to LSB order.
2760 */
2761static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2762{
2763	u32 ctrl;
2764	u16 data = 0;
2765	u8 i;
2766
2767	/* In order to read a register from the PHY, we need to shift in a total
2768	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2769	 * used to avoid contention on the MDIO pin when a read operation is
2770	 * performed. These two bits are ignored by us and thrown away. Bits are
2771	 * "shifted in" by raising the input to the Management Data Clock
2772	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2773	 */
2774	ctrl = er32(CTRL);
2775
2776	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2777	 * input.
2778	 */
2779	ctrl &= ~E1000_CTRL_MDIO_DIR;
2780	ctrl &= ~E1000_CTRL_MDIO;
2781
2782	ew32(CTRL, ctrl);
2783	E1000_WRITE_FLUSH();
2784
2785	/* Raise and Lower the clock before reading in the data. This accounts
2786	 * for the turnaround bits. The first clock occurred when we clocked out
2787	 * the last bit of the Register Address.
2788	 */
2789	e1000_raise_mdi_clk(hw, &ctrl);
2790	e1000_lower_mdi_clk(hw, &ctrl);
2791
2792	for (data = 0, i = 0; i < 16; i++) {
2793		data = data << 1;
2794		e1000_raise_mdi_clk(hw, &ctrl);
2795		ctrl = er32(CTRL);
2796		/* Check to see if we shifted in a "1". */
2797		if (ctrl & E1000_CTRL_MDIO)
2798			data |= 1;
2799		e1000_lower_mdi_clk(hw, &ctrl);
2800	}
2801
2802	e1000_raise_mdi_clk(hw, &ctrl);
2803	e1000_lower_mdi_clk(hw, &ctrl);
2804
2805	return data;
2806}
2807
2808/**
2809 * e1000_read_phy_reg - read a phy register
2810 * @hw: Struct containing variables accessed by shared code
2811 * @reg_addr: address of the PHY register to read
2812 * @phy_data: pointer to the value on the PHY register
2813 *
2814 * Reads the value from a PHY register, if the value is on a specific non zero
2815 * page, sets the page first.
2816 */
2817s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2818{
2819	u32 ret_val;
2820	unsigned long flags;
2821
2822	spin_lock_irqsave(&e1000_phy_lock, flags);
2823
2824	if ((hw->phy_type == e1000_phy_igp) &&
2825	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2826		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2827						 (u16) reg_addr);
2828		if (ret_val)
2829			goto out;
2830	}
2831
2832	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2833					phy_data);
2834out:
2835	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2836
2837	return ret_val;
2838}
2839
2840static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2841				 u16 *phy_data)
2842{
2843	u32 i;
2844	u32 mdic = 0;
2845	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2846
2847	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2848		e_dbg("PHY Address %d is out of range\n", reg_addr);
2849		return -E1000_ERR_PARAM;
2850	}
2851
2852	if (hw->mac_type > e1000_82543) {
2853		/* Set up Op-code, Phy Address, and register address in the MDI
2854		 * Control register.  The MAC will take care of interfacing with
2855		 * the PHY to retrieve the desired data.
2856		 */
2857		if (hw->mac_type == e1000_ce4100) {
2858			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2859				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2860				(INTEL_CE_GBE_MDIC_OP_READ) |
2861				(INTEL_CE_GBE_MDIC_GO));
2862
2863			writel(mdic, E1000_MDIO_CMD);
2864
2865			/* Poll the ready bit to see if the MDI read
2866			 * completed
2867			 */
2868			for (i = 0; i < 64; i++) {
2869				udelay(50);
2870				mdic = readl(E1000_MDIO_CMD);
2871				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2872					break;
2873			}
2874
2875			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2876				e_dbg("MDI Read did not complete\n");
2877				return -E1000_ERR_PHY;
2878			}
2879
2880			mdic = readl(E1000_MDIO_STS);
2881			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2882				e_dbg("MDI Read Error\n");
2883				return -E1000_ERR_PHY;
2884			}
2885			*phy_data = (u16)mdic;
2886		} else {
2887			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2888				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2889				(E1000_MDIC_OP_READ));
2890
2891			ew32(MDIC, mdic);
2892
2893			/* Poll the ready bit to see if the MDI read
2894			 * completed
2895			 */
2896			for (i = 0; i < 64; i++) {
2897				udelay(50);
2898				mdic = er32(MDIC);
2899				if (mdic & E1000_MDIC_READY)
2900					break;
2901			}
2902			if (!(mdic & E1000_MDIC_READY)) {
2903				e_dbg("MDI Read did not complete\n");
2904				return -E1000_ERR_PHY;
2905			}
2906			if (mdic & E1000_MDIC_ERROR) {
2907				e_dbg("MDI Error\n");
2908				return -E1000_ERR_PHY;
2909			}
2910			*phy_data = (u16)mdic;
2911		}
2912	} else {
2913		/* We must first send a preamble through the MDIO pin to signal
2914		 * the beginning of an MII instruction.  This is done by sending
2915		 * 32 consecutive "1" bits.
2916		 */
2917		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2918
2919		/* Now combine the next few fields that are required for a read
2920		 * operation.  We use this method instead of calling the
2921		 * e1000_shift_out_mdi_bits routine five different times. The
2922		 * format of a MII read instruction consists of a shift out of
2923		 * 14 bits and is defined as follows:
2924		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2925		 * followed by a shift in of 18 bits.  This first two bits
2926		 * shifted in are TurnAround bits used to avoid contention on
2927		 * the MDIO pin when a READ operation is performed.  These two
2928		 * bits are thrown away followed by a shift in of 16 bits which
2929		 * contains the desired data.
2930		 */
2931		mdic = ((reg_addr) | (phy_addr << 5) |
2932			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2933
2934		e1000_shift_out_mdi_bits(hw, mdic, 14);
2935
2936		/* Now that we've shifted out the read command to the MII, we
2937		 * need to "shift in" the 16-bit value (18 total bits) of the
2938		 * requested PHY register address.
2939		 */
2940		*phy_data = e1000_shift_in_mdi_bits(hw);
2941	}
2942	return E1000_SUCCESS;
2943}
2944
2945/**
2946 * e1000_write_phy_reg - write a phy register
2947 *
2948 * @hw: Struct containing variables accessed by shared code
2949 * @reg_addr: address of the PHY register to write
2950 * @data: data to write to the PHY
2951 *
2952 * Writes a value to a PHY register
2953 */
2954s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2955{
2956	u32 ret_val;
2957	unsigned long flags;
2958
2959	spin_lock_irqsave(&e1000_phy_lock, flags);
2960
2961	if ((hw->phy_type == e1000_phy_igp) &&
2962	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2963		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2964						 (u16)reg_addr);
2965		if (ret_val) {
2966			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2967			return ret_val;
2968		}
2969	}
2970
2971	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2972					 phy_data);
2973	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2974
2975	return ret_val;
2976}
2977
2978static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2979				  u16 phy_data)
2980{
2981	u32 i;
2982	u32 mdic = 0;
2983	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2984
2985	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2986		e_dbg("PHY Address %d is out of range\n", reg_addr);
2987		return -E1000_ERR_PARAM;
2988	}
2989
2990	if (hw->mac_type > e1000_82543) {
2991		/* Set up Op-code, Phy Address, register address, and data
2992		 * intended for the PHY register in the MDI Control register.
2993		 * The MAC will take care of interfacing with the PHY to send
2994		 * the desired data.
2995		 */
2996		if (hw->mac_type == e1000_ce4100) {
2997			mdic = (((u32)phy_data) |
2998				(reg_addr << E1000_MDIC_REG_SHIFT) |
2999				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3000				(INTEL_CE_GBE_MDIC_OP_WRITE) |
3001				(INTEL_CE_GBE_MDIC_GO));
3002
3003			writel(mdic, E1000_MDIO_CMD);
3004
3005			/* Poll the ready bit to see if the MDI read
3006			 * completed
3007			 */
3008			for (i = 0; i < 640; i++) {
3009				udelay(5);
3010				mdic = readl(E1000_MDIO_CMD);
3011				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3012					break;
3013			}
3014			if (mdic & INTEL_CE_GBE_MDIC_GO) {
3015				e_dbg("MDI Write did not complete\n");
3016				return -E1000_ERR_PHY;
3017			}
3018		} else {
3019			mdic = (((u32)phy_data) |
3020				(reg_addr << E1000_MDIC_REG_SHIFT) |
3021				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3022				(E1000_MDIC_OP_WRITE));
3023
3024			ew32(MDIC, mdic);
3025
3026			/* Poll the ready bit to see if the MDI read
3027			 * completed
3028			 */
3029			for (i = 0; i < 641; i++) {
3030				udelay(5);
3031				mdic = er32(MDIC);
3032				if (mdic & E1000_MDIC_READY)
3033					break;
3034			}
3035			if (!(mdic & E1000_MDIC_READY)) {
3036				e_dbg("MDI Write did not complete\n");
3037				return -E1000_ERR_PHY;
3038			}
3039		}
3040	} else {
3041		/* We'll need to use the SW defined pins to shift the write
3042		 * command out to the PHY. We first send a preamble to the PHY
3043		 * to signal the beginning of the MII instruction.  This is done
3044		 * by sending 32 consecutive "1" bits.
3045		 */
3046		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3047
3048		/* Now combine the remaining required fields that will indicate
3049		 * a write operation. We use this method instead of calling the
3050		 * e1000_shift_out_mdi_bits routine for each field in the
3051		 * command. The format of a MII write instruction is as follows:
3052		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3053		 */
3054		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3055			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3056		mdic <<= 16;
3057		mdic |= (u32)phy_data;
3058
3059		e1000_shift_out_mdi_bits(hw, mdic, 32);
3060	}
3061
3062	return E1000_SUCCESS;
3063}
3064
3065/**
3066 * e1000_phy_hw_reset - reset the phy, hardware style
3067 * @hw: Struct containing variables accessed by shared code
3068 *
3069 * Returns the PHY to the power-on reset state
3070 */
3071s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3072{
3073	u32 ctrl, ctrl_ext;
3074	u32 led_ctrl;
3075
3076	e_dbg("Resetting Phy...\n");
3077
3078	if (hw->mac_type > e1000_82543) {
3079		/* Read the device control register and assert the
3080		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3081		 * For e1000 hardware, we delay for 10ms between the assert
3082		 * and de-assert.
3083		 */
3084		ctrl = er32(CTRL);
3085		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3086		E1000_WRITE_FLUSH();
3087
3088		msleep(10);
3089
3090		ew32(CTRL, ctrl);
3091		E1000_WRITE_FLUSH();
3092
3093	} else {
3094		/* Read the Extended Device Control Register, assert the
3095		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3096		 * out of reset.
3097		 */
3098		ctrl_ext = er32(CTRL_EXT);
3099		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3100		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3101		ew32(CTRL_EXT, ctrl_ext);
3102		E1000_WRITE_FLUSH();
3103		msleep(10);
3104		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3105		ew32(CTRL_EXT, ctrl_ext);
3106		E1000_WRITE_FLUSH();
3107	}
3108	udelay(150);
3109
3110	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3111		/* Configure activity LED after PHY reset */
3112		led_ctrl = er32(LEDCTL);
3113		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3114		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3115		ew32(LEDCTL, led_ctrl);
3116	}
3117
3118	/* Wait for FW to finish PHY configuration. */
3119	return e1000_get_phy_cfg_done(hw);
3120}
3121
3122/**
3123 * e1000_phy_reset - reset the phy to commit settings
3124 * @hw: Struct containing variables accessed by shared code
3125 *
3126 * Resets the PHY
3127 * Sets bit 15 of the MII Control register
3128 */
3129s32 e1000_phy_reset(struct e1000_hw *hw)
3130{
3131	s32 ret_val;
3132	u16 phy_data;
3133
3134	switch (hw->phy_type) {
3135	case e1000_phy_igp:
3136		ret_val = e1000_phy_hw_reset(hw);
3137		if (ret_val)
3138			return ret_val;
3139		break;
3140	default:
3141		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3142		if (ret_val)
3143			return ret_val;
3144
3145		phy_data |= MII_CR_RESET;
3146		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3147		if (ret_val)
3148			return ret_val;
3149
3150		udelay(1);
3151		break;
3152	}
3153
3154	if (hw->phy_type == e1000_phy_igp)
3155		e1000_phy_init_script(hw);
3156
3157	return E1000_SUCCESS;
3158}
3159
3160/**
3161 * e1000_detect_gig_phy - check the phy type
3162 * @hw: Struct containing variables accessed by shared code
3163 *
3164 * Probes the expected PHY address for known PHY IDs
3165 */
3166static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3167{
3168	s32 phy_init_status, ret_val;
3169	u16 phy_id_high, phy_id_low;
3170	bool match = false;
3171
3172	if (hw->phy_id != 0)
3173		return E1000_SUCCESS;
3174
3175	/* Read the PHY ID Registers to identify which PHY is onboard. */
3176	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3177	if (ret_val)
3178		return ret_val;
3179
3180	hw->phy_id = (u32)(phy_id_high << 16);
3181	udelay(20);
3182	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3183	if (ret_val)
3184		return ret_val;
3185
3186	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3187	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3188
3189	switch (hw->mac_type) {
3190	case e1000_82543:
3191		if (hw->phy_id == M88E1000_E_PHY_ID)
3192			match = true;
3193		break;
3194	case e1000_82544:
3195		if (hw->phy_id == M88E1000_I_PHY_ID)
3196			match = true;
3197		break;
3198	case e1000_82540:
3199	case e1000_82545:
3200	case e1000_82545_rev_3:
3201	case e1000_82546:
3202	case e1000_82546_rev_3:
3203		if (hw->phy_id == M88E1011_I_PHY_ID)
3204			match = true;
3205		break;
3206	case e1000_ce4100:
3207		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3208		    (hw->phy_id == RTL8201N_PHY_ID) ||
3209		    (hw->phy_id == M88E1118_E_PHY_ID))
3210			match = true;
3211		break;
3212	case e1000_82541:
3213	case e1000_82541_rev_2:
3214	case e1000_82547:
3215	case e1000_82547_rev_2:
3216		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3217			match = true;
3218		break;
3219	default:
3220		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3221		return -E1000_ERR_CONFIG;
3222	}
3223	phy_init_status = e1000_set_phy_type(hw);
3224
3225	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3226		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3227		return E1000_SUCCESS;
3228	}
3229	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3230	return -E1000_ERR_PHY;
3231}
3232
3233/**
3234 * e1000_phy_reset_dsp - reset DSP
3235 * @hw: Struct containing variables accessed by shared code
3236 *
3237 * Resets the PHY's DSP
3238 */
3239static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3240{
3241	s32 ret_val;
3242
3243	do {
3244		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3245		if (ret_val)
3246			break;
3247		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3248		if (ret_val)
3249			break;
3250		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3251		if (ret_val)
3252			break;
3253		ret_val = E1000_SUCCESS;
3254	} while (0);
3255
3256	return ret_val;
3257}
3258
3259/**
3260 * e1000_phy_igp_get_info - get igp specific registers
3261 * @hw: Struct containing variables accessed by shared code
3262 * @phy_info: PHY information structure
3263 *
3264 * Get PHY information from various PHY registers for igp PHY only.
3265 */
3266static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3267				  struct e1000_phy_info *phy_info)
3268{
3269	s32 ret_val;
3270	u16 phy_data, min_length, max_length, average;
3271	e1000_rev_polarity polarity;
3272
3273	/* The downshift status is checked only once, after link is established,
3274	 * and it stored in the hw->speed_downgraded parameter.
3275	 */
3276	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3277
3278	/* IGP01E1000 does not need to support it. */
3279	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3280
3281	/* IGP01E1000 always correct polarity reversal */
3282	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3283
3284	/* Check polarity status */
3285	ret_val = e1000_check_polarity(hw, &polarity);
3286	if (ret_val)
3287		return ret_val;
3288
3289	phy_info->cable_polarity = polarity;
3290
3291	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3292	if (ret_val)
3293		return ret_val;
3294
3295	phy_info->mdix_mode =
3296	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3297				 IGP01E1000_PSSR_MDIX_SHIFT);
3298
3299	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3300	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3301		/* Local/Remote Receiver Information are only valid @ 1000
3302		 * Mbps
3303		 */
3304		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3305		if (ret_val)
3306			return ret_val;
3307
3308		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3309				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3310		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3311		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3312				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3313		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3314
3315		/* Get cable length */
3316		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3317		if (ret_val)
3318			return ret_val;
3319
3320		/* Translate to old method */
3321		average = (max_length + min_length) / 2;
3322
3323		if (average <= e1000_igp_cable_length_50)
3324			phy_info->cable_length = e1000_cable_length_50;
3325		else if (average <= e1000_igp_cable_length_80)
3326			phy_info->cable_length = e1000_cable_length_50_80;
3327		else if (average <= e1000_igp_cable_length_110)
3328			phy_info->cable_length = e1000_cable_length_80_110;
3329		else if (average <= e1000_igp_cable_length_140)
3330			phy_info->cable_length = e1000_cable_length_110_140;
3331		else
3332			phy_info->cable_length = e1000_cable_length_140;
3333	}
3334
3335	return E1000_SUCCESS;
3336}
3337
3338/**
3339 * e1000_phy_m88_get_info - get m88 specific registers
3340 * @hw: Struct containing variables accessed by shared code
3341 * @phy_info: PHY information structure
3342 *
3343 * Get PHY information from various PHY registers for m88 PHY only.
3344 */
3345static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3346				  struct e1000_phy_info *phy_info)
3347{
3348	s32 ret_val;
3349	u16 phy_data;
3350	e1000_rev_polarity polarity;
3351
3352	/* The downshift status is checked only once, after link is established,
3353	 * and it stored in the hw->speed_downgraded parameter.
3354	 */
3355	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3356
3357	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3358	if (ret_val)
3359		return ret_val;
3360
3361	phy_info->extended_10bt_distance =
3362	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3363	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3364	    e1000_10bt_ext_dist_enable_lower :
3365	    e1000_10bt_ext_dist_enable_normal;
3366
3367	phy_info->polarity_correction =
3368	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3369	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3370	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3371
3372	/* Check polarity status */
3373	ret_val = e1000_check_polarity(hw, &polarity);
3374	if (ret_val)
3375		return ret_val;
3376	phy_info->cable_polarity = polarity;
3377
3378	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3379	if (ret_val)
3380		return ret_val;
3381
3382	phy_info->mdix_mode =
3383	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3384				 M88E1000_PSSR_MDIX_SHIFT);
3385
3386	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3387		/* Cable Length Estimation and Local/Remote Receiver Information
3388		 * are only valid at 1000 Mbps.
3389		 */
3390		phy_info->cable_length =
3391		    (e1000_cable_length) ((phy_data &
3392					   M88E1000_PSSR_CABLE_LENGTH) >>
3393					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3394
3395		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3396		if (ret_val)
3397			return ret_val;
3398
3399		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3400				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3401		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3402		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3403				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3404		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3405	}
3406
3407	return E1000_SUCCESS;
3408}
3409
3410/**
3411 * e1000_phy_get_info - request phy info
3412 * @hw: Struct containing variables accessed by shared code
3413 * @phy_info: PHY information structure
3414 *
3415 * Get PHY information from various PHY registers
3416 */
3417s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3418{
3419	s32 ret_val;
3420	u16 phy_data;
3421
3422	phy_info->cable_length = e1000_cable_length_undefined;
3423	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3424	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3425	phy_info->downshift = e1000_downshift_undefined;
3426	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3427	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3428	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3429	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3430
3431	if (hw->media_type != e1000_media_type_copper) {
3432		e_dbg("PHY info is only valid for copper media\n");
3433		return -E1000_ERR_CONFIG;
3434	}
3435
3436	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3437	if (ret_val)
3438		return ret_val;
3439
3440	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3441	if (ret_val)
3442		return ret_val;
3443
3444	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3445		e_dbg("PHY info is only valid if link is up\n");
3446		return -E1000_ERR_CONFIG;
3447	}
3448
3449	if (hw->phy_type == e1000_phy_igp)
3450		return e1000_phy_igp_get_info(hw, phy_info);
3451	else if ((hw->phy_type == e1000_phy_8211) ||
3452		 (hw->phy_type == e1000_phy_8201))
3453		return E1000_SUCCESS;
3454	else
3455		return e1000_phy_m88_get_info(hw, phy_info);
3456}
3457
3458s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3459{
3460	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3461		e_dbg("Invalid MDI setting detected\n");
3462		hw->mdix = 1;
3463		return -E1000_ERR_CONFIG;
3464	}
3465	return E1000_SUCCESS;
3466}
3467
3468/**
3469 * e1000_init_eeprom_params - initialize sw eeprom vars
3470 * @hw: Struct containing variables accessed by shared code
3471 *
3472 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3473 * is configured.
3474 */
3475s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3476{
3477	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3478	u32 eecd = er32(EECD);
3479	s32 ret_val = E1000_SUCCESS;
3480	u16 eeprom_size;
3481
3482	switch (hw->mac_type) {
3483	case e1000_82542_rev2_0:
3484	case e1000_82542_rev2_1:
3485	case e1000_82543:
3486	case e1000_82544:
3487		eeprom->type = e1000_eeprom_microwire;
3488		eeprom->word_size = 64;
3489		eeprom->opcode_bits = 3;
3490		eeprom->address_bits = 6;
3491		eeprom->delay_usec = 50;
3492		break;
3493	case e1000_82540:
3494	case e1000_82545:
3495	case e1000_82545_rev_3:
3496	case e1000_82546:
3497	case e1000_82546_rev_3:
3498		eeprom->type = e1000_eeprom_microwire;
3499		eeprom->opcode_bits = 3;
3500		eeprom->delay_usec = 50;
3501		if (eecd & E1000_EECD_SIZE) {
3502			eeprom->word_size = 256;
3503			eeprom->address_bits = 8;
3504		} else {
3505			eeprom->word_size = 64;
3506			eeprom->address_bits = 6;
3507		}
3508		break;
3509	case e1000_82541:
3510	case e1000_82541_rev_2:
3511	case e1000_82547:
3512	case e1000_82547_rev_2:
3513		if (eecd & E1000_EECD_TYPE) {
3514			eeprom->type = e1000_eeprom_spi;
3515			eeprom->opcode_bits = 8;
3516			eeprom->delay_usec = 1;
3517			if (eecd & E1000_EECD_ADDR_BITS) {
3518				eeprom->page_size = 32;
3519				eeprom->address_bits = 16;
3520			} else {
3521				eeprom->page_size = 8;
3522				eeprom->address_bits = 8;
3523			}
3524		} else {
3525			eeprom->type = e1000_eeprom_microwire;
3526			eeprom->opcode_bits = 3;
3527			eeprom->delay_usec = 50;
3528			if (eecd & E1000_EECD_ADDR_BITS) {
3529				eeprom->word_size = 256;
3530				eeprom->address_bits = 8;
3531			} else {
3532				eeprom->word_size = 64;
3533				eeprom->address_bits = 6;
3534			}
3535		}
3536		break;
3537	default:
3538		break;
3539	}
3540
3541	if (eeprom->type == e1000_eeprom_spi) {
3542		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3543		 * 128B to 32KB (incremented by powers of 2).
3544		 */
3545		/* Set to default value for initial eeprom read. */
3546		eeprom->word_size = 64;
3547		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3548		if (ret_val)
3549			return ret_val;
3550		eeprom_size =
3551		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3552		/* 256B eeprom size was not supported in earlier hardware, so we
3553		 * bump eeprom_size up one to ensure that "1" (which maps to
3554		 * 256B) is never the result used in the shifting logic below.
3555		 */
3556		if (eeprom_size)
3557			eeprom_size++;
3558
3559		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3560	}
3561	return ret_val;
3562}
3563
3564/**
3565 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3566 * @hw: Struct containing variables accessed by shared code
3567 * @eecd: EECD's current value
3568 */
3569static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3570{
3571	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3572	 * wait <delay> microseconds.
3573	 */
3574	*eecd = *eecd | E1000_EECD_SK;
3575	ew32(EECD, *eecd);
3576	E1000_WRITE_FLUSH();
3577	udelay(hw->eeprom.delay_usec);
3578}
3579
3580/**
3581 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3582 * @hw: Struct containing variables accessed by shared code
3583 * @eecd: EECD's current value
3584 */
3585static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3586{
3587	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3588	 * then wait 50 microseconds.
3589	 */
3590	*eecd = *eecd & ~E1000_EECD_SK;
3591	ew32(EECD, *eecd);
3592	E1000_WRITE_FLUSH();
3593	udelay(hw->eeprom.delay_usec);
3594}
3595
3596/**
3597 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3598 * @hw: Struct containing variables accessed by shared code
3599 * @data: data to send to the EEPROM
3600 * @count: number of bits to shift out
3601 */
3602static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3603{
3604	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3605	u32 eecd;
3606	u32 mask;
3607
3608	/* We need to shift "count" bits out to the EEPROM. So, value in the
3609	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3610	 * In order to do this, "data" must be broken down into bits.
3611	 */
3612	mask = 0x01 << (count - 1);
3613	eecd = er32(EECD);
3614	if (eeprom->type == e1000_eeprom_microwire)
3615		eecd &= ~E1000_EECD_DO;
3616	else if (eeprom->type == e1000_eeprom_spi)
3617		eecd |= E1000_EECD_DO;
3618
3619	do {
3620		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3621		 * "1", and then raising and then lowering the clock (the SK bit
3622		 * controls the clock input to the EEPROM).  A "0" is shifted
3623		 * out to the EEPROM by setting "DI" to "0" and then raising and
3624		 * then lowering the clock.
3625		 */
3626		eecd &= ~E1000_EECD_DI;
3627
3628		if (data & mask)
3629			eecd |= E1000_EECD_DI;
3630
3631		ew32(EECD, eecd);
3632		E1000_WRITE_FLUSH();
3633
3634		udelay(eeprom->delay_usec);
3635
3636		e1000_raise_ee_clk(hw, &eecd);
3637		e1000_lower_ee_clk(hw, &eecd);
3638
3639		mask = mask >> 1;
3640
3641	} while (mask);
3642
3643	/* We leave the "DI" bit set to "0" when we leave this routine. */
3644	eecd &= ~E1000_EECD_DI;
3645	ew32(EECD, eecd);
3646}
3647
3648/**
3649 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3650 * @hw: Struct containing variables accessed by shared code
3651 * @count: number of bits to shift in
3652 */
3653static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3654{
3655	u32 eecd;
3656	u32 i;
3657	u16 data;
3658
3659	/* In order to read a register from the EEPROM, we need to shift 'count'
3660	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3661	 * input to the EEPROM (setting the SK bit), and then reading the value
3662	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3663	 * should always be clear.
3664	 */
3665
3666	eecd = er32(EECD);
3667
3668	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3669	data = 0;
3670
3671	for (i = 0; i < count; i++) {
3672		data = data << 1;
3673		e1000_raise_ee_clk(hw, &eecd);
3674
3675		eecd = er32(EECD);
3676
3677		eecd &= ~(E1000_EECD_DI);
3678		if (eecd & E1000_EECD_DO)
3679			data |= 1;
3680
3681		e1000_lower_ee_clk(hw, &eecd);
3682	}
3683
3684	return data;
3685}
3686
3687/**
3688 * e1000_acquire_eeprom - Prepares EEPROM for access
3689 * @hw: Struct containing variables accessed by shared code
3690 *
3691 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3692 * function should be called before issuing a command to the EEPROM.
3693 */
3694static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3695{
3696	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3697	u32 eecd, i = 0;
3698
3699	eecd = er32(EECD);
3700
3701	/* Request EEPROM Access */
3702	if (hw->mac_type > e1000_82544) {
3703		eecd |= E1000_EECD_REQ;
3704		ew32(EECD, eecd);
3705		eecd = er32(EECD);
3706		while ((!(eecd & E1000_EECD_GNT)) &&
3707		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3708			i++;
3709			udelay(5);
3710			eecd = er32(EECD);
3711		}
3712		if (!(eecd & E1000_EECD_GNT)) {
3713			eecd &= ~E1000_EECD_REQ;
3714			ew32(EECD, eecd);
3715			e_dbg("Could not acquire EEPROM grant\n");
3716			return -E1000_ERR_EEPROM;
3717		}
3718	}
3719
3720	/* Setup EEPROM for Read/Write */
3721
3722	if (eeprom->type == e1000_eeprom_microwire) {
3723		/* Clear SK and DI */
3724		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3725		ew32(EECD, eecd);
3726
3727		/* Set CS */
3728		eecd |= E1000_EECD_CS;
3729		ew32(EECD, eecd);
3730	} else if (eeprom->type == e1000_eeprom_spi) {
3731		/* Clear SK and CS */
3732		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3733		ew32(EECD, eecd);
3734		E1000_WRITE_FLUSH();
3735		udelay(1);
3736	}
3737
3738	return E1000_SUCCESS;
3739}
3740
3741/**
3742 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3743 * @hw: Struct containing variables accessed by shared code
3744 */
3745static void e1000_standby_eeprom(struct e1000_hw *hw)
3746{
3747	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3748	u32 eecd;
3749
3750	eecd = er32(EECD);
3751
3752	if (eeprom->type == e1000_eeprom_microwire) {
3753		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3754		ew32(EECD, eecd);
3755		E1000_WRITE_FLUSH();
3756		udelay(eeprom->delay_usec);
3757
3758		/* Clock high */
3759		eecd |= E1000_EECD_SK;
3760		ew32(EECD, eecd);
3761		E1000_WRITE_FLUSH();
3762		udelay(eeprom->delay_usec);
3763
3764		/* Select EEPROM */
3765		eecd |= E1000_EECD_CS;
3766		ew32(EECD, eecd);
3767		E1000_WRITE_FLUSH();
3768		udelay(eeprom->delay_usec);
3769
3770		/* Clock low */
3771		eecd &= ~E1000_EECD_SK;
3772		ew32(EECD, eecd);
3773		E1000_WRITE_FLUSH();
3774		udelay(eeprom->delay_usec);
3775	} else if (eeprom->type == e1000_eeprom_spi) {
3776		/* Toggle CS to flush commands */
3777		eecd |= E1000_EECD_CS;
3778		ew32(EECD, eecd);
3779		E1000_WRITE_FLUSH();
3780		udelay(eeprom->delay_usec);
3781		eecd &= ~E1000_EECD_CS;
3782		ew32(EECD, eecd);
3783		E1000_WRITE_FLUSH();
3784		udelay(eeprom->delay_usec);
3785	}
3786}
3787
3788/**
3789 * e1000_release_eeprom - drop chip select
3790 * @hw: Struct containing variables accessed by shared code
3791 *
3792 * Terminates a command by inverting the EEPROM's chip select pin
3793 */
3794static void e1000_release_eeprom(struct e1000_hw *hw)
3795{
3796	u32 eecd;
3797
3798	eecd = er32(EECD);
3799
3800	if (hw->eeprom.type == e1000_eeprom_spi) {
3801		eecd |= E1000_EECD_CS;	/* Pull CS high */
3802		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3803
3804		ew32(EECD, eecd);
3805		E1000_WRITE_FLUSH();
3806
3807		udelay(hw->eeprom.delay_usec);
3808	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3809		/* cleanup eeprom */
3810
3811		/* CS on Microwire is active-high */
3812		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3813
3814		ew32(EECD, eecd);
3815
3816		/* Rising edge of clock */
3817		eecd |= E1000_EECD_SK;
3818		ew32(EECD, eecd);
3819		E1000_WRITE_FLUSH();
3820		udelay(hw->eeprom.delay_usec);
3821
3822		/* Falling edge of clock */
3823		eecd &= ~E1000_EECD_SK;
3824		ew32(EECD, eecd);
3825		E1000_WRITE_FLUSH();
3826		udelay(hw->eeprom.delay_usec);
3827	}
3828
3829	/* Stop requesting EEPROM access */
3830	if (hw->mac_type > e1000_82544) {
3831		eecd &= ~E1000_EECD_REQ;
3832		ew32(EECD, eecd);
3833	}
3834}
3835
3836/**
3837 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3838 * @hw: Struct containing variables accessed by shared code
3839 */
3840static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3841{
3842	u16 retry_count = 0;
3843	u8 spi_stat_reg;
3844
3845	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3846	 * EEPROM will signal that the command has been completed by clearing
3847	 * bit 0 of the internal status register.  If it's not cleared within
3848	 * 5 milliseconds, then error out.
3849	 */
3850	retry_count = 0;
3851	do {
3852		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3853					hw->eeprom.opcode_bits);
3854		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3855		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3856			break;
3857
3858		udelay(5);
3859		retry_count += 5;
3860
3861		e1000_standby_eeprom(hw);
3862	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3863
3864	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3865	 * only 0-5mSec on 5V devices)
3866	 */
3867	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3868		e_dbg("SPI EEPROM Status error\n");
3869		return -E1000_ERR_EEPROM;
3870	}
3871
3872	return E1000_SUCCESS;
3873}
3874
3875/**
3876 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3877 * @hw: Struct containing variables accessed by shared code
3878 * @offset: offset of  word in the EEPROM to read
3879 * @data: word read from the EEPROM
3880 * @words: number of words to read
3881 */
3882s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3883{
3884	s32 ret;
3885
3886	mutex_lock(&e1000_eeprom_lock);
3887	ret = e1000_do_read_eeprom(hw, offset, words, data);
3888	mutex_unlock(&e1000_eeprom_lock);
3889	return ret;
3890}
3891
3892static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3893				u16 *data)
3894{
3895	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3896	u32 i = 0;
3897
3898	if (hw->mac_type == e1000_ce4100) {
3899		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3900				      data);
3901		return E1000_SUCCESS;
3902	}
3903
3904	/* A check for invalid values:  offset too large, too many words, and
3905	 * not enough words.
3906	 */
3907	if ((offset >= eeprom->word_size) ||
3908	    (words > eeprom->word_size - offset) ||
3909	    (words == 0)) {
3910		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3911		      "size = %d\n", offset, eeprom->word_size);
3912		return -E1000_ERR_EEPROM;
3913	}
3914
3915	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3916	 * directly. In this case, we need to acquire the EEPROM so that
3917	 * FW or other port software does not interrupt.
3918	 */
3919	/* Prepare the EEPROM for bit-bang reading */
3920	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3921		return -E1000_ERR_EEPROM;
3922
3923	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3924	 * acquired the EEPROM at this point, so any returns should release it
3925	 */
3926	if (eeprom->type == e1000_eeprom_spi) {
3927		u16 word_in;
3928		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3929
3930		if (e1000_spi_eeprom_ready(hw)) {
3931			e1000_release_eeprom(hw);
3932			return -E1000_ERR_EEPROM;
3933		}
3934
3935		e1000_standby_eeprom(hw);
3936
3937		/* Some SPI eeproms use the 8th address bit embedded in the
3938		 * opcode
3939		 */
3940		if ((eeprom->address_bits == 8) && (offset >= 128))
3941			read_opcode |= EEPROM_A8_OPCODE_SPI;
3942
3943		/* Send the READ command (opcode + addr)  */
3944		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3945		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3946					eeprom->address_bits);
3947
3948		/* Read the data.  The address of the eeprom internally
3949		 * increments with each byte (spi) being read, saving on the
3950		 * overhead of eeprom setup and tear-down.  The address counter
3951		 * will roll over if reading beyond the size of the eeprom, thus
3952		 * allowing the entire memory to be read starting from any
3953		 * offset.
3954		 */
3955		for (i = 0; i < words; i++) {
3956			word_in = e1000_shift_in_ee_bits(hw, 16);
3957			data[i] = (word_in >> 8) | (word_in << 8);
3958		}
3959	} else if (eeprom->type == e1000_eeprom_microwire) {
3960		for (i = 0; i < words; i++) {
3961			/* Send the READ command (opcode + addr)  */
3962			e1000_shift_out_ee_bits(hw,
3963						EEPROM_READ_OPCODE_MICROWIRE,
3964						eeprom->opcode_bits);
3965			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3966						eeprom->address_bits);
3967
3968			/* Read the data.  For microwire, each word requires the
3969			 * overhead of eeprom setup and tear-down.
3970			 */
3971			data[i] = e1000_shift_in_ee_bits(hw, 16);
3972			e1000_standby_eeprom(hw);
3973			cond_resched();
3974		}
3975	}
3976
3977	/* End this read operation */
3978	e1000_release_eeprom(hw);
3979
3980	return E1000_SUCCESS;
3981}
3982
3983/**
3984 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3985 * @hw: Struct containing variables accessed by shared code
3986 *
3987 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3988 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3989 * valid.
3990 */
3991s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3992{
3993	u16 checksum = 0;
3994	u16 i, eeprom_data;
3995
3996	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3997		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3998			e_dbg("EEPROM Read Error\n");
3999			return -E1000_ERR_EEPROM;
4000		}
4001		checksum += eeprom_data;
4002	}
4003
4004#ifdef CONFIG_PARISC
4005	/* This is a signature and not a checksum on HP c8000 */
4006	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4007		return E1000_SUCCESS;
4008
4009#endif
4010	if (checksum == (u16)EEPROM_SUM)
4011		return E1000_SUCCESS;
4012	else {
4013		e_dbg("EEPROM Checksum Invalid\n");
4014		return -E1000_ERR_EEPROM;
4015	}
4016}
4017
4018/**
4019 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4020 * @hw: Struct containing variables accessed by shared code
4021 *
4022 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4023 * Writes the difference to word offset 63 of the EEPROM.
4024 */
4025s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4026{
4027	u16 checksum = 0;
4028	u16 i, eeprom_data;
4029
4030	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4031		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4032			e_dbg("EEPROM Read Error\n");
4033			return -E1000_ERR_EEPROM;
4034		}
4035		checksum += eeprom_data;
4036	}
4037	checksum = (u16)EEPROM_SUM - checksum;
4038	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4039		e_dbg("EEPROM Write Error\n");
4040		return -E1000_ERR_EEPROM;
4041	}
4042	return E1000_SUCCESS;
4043}
4044
4045/**
4046 * e1000_write_eeprom - write words to the different EEPROM types.
4047 * @hw: Struct containing variables accessed by shared code
4048 * @offset: offset within the EEPROM to be written to
4049 * @words: number of words to write
4050 * @data: 16 bit word to be written to the EEPROM
4051 *
4052 * If e1000_update_eeprom_checksum is not called after this function, the
4053 * EEPROM will most likely contain an invalid checksum.
4054 */
4055s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4056{
4057	s32 ret;
4058
4059	mutex_lock(&e1000_eeprom_lock);
4060	ret = e1000_do_write_eeprom(hw, offset, words, data);
4061	mutex_unlock(&e1000_eeprom_lock);
4062	return ret;
4063}
4064
4065static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4066				 u16 *data)
4067{
4068	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4069	s32 status = 0;
4070
4071	if (hw->mac_type == e1000_ce4100) {
4072		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4073				       data);
4074		return E1000_SUCCESS;
4075	}
4076
4077	/* A check for invalid values:  offset too large, too many words, and
4078	 * not enough words.
4079	 */
4080	if ((offset >= eeprom->word_size) ||
4081	    (words > eeprom->word_size - offset) ||
4082	    (words == 0)) {
4083		e_dbg("\"words\" parameter out of bounds\n");
4084		return -E1000_ERR_EEPROM;
4085	}
4086
4087	/* Prepare the EEPROM for writing  */
4088	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4089		return -E1000_ERR_EEPROM;
4090
4091	if (eeprom->type == e1000_eeprom_microwire) {
4092		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4093	} else {
4094		status = e1000_write_eeprom_spi(hw, offset, words, data);
4095		msleep(10);
4096	}
4097
4098	/* Done with writing */
4099	e1000_release_eeprom(hw);
4100
4101	return status;
4102}
4103
4104/**
4105 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4106 * @hw: Struct containing variables accessed by shared code
4107 * @offset: offset within the EEPROM to be written to
4108 * @words: number of words to write
4109 * @data: pointer to array of 8 bit words to be written to the EEPROM
4110 */
4111static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4112				  u16 *data)
4113{
4114	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4115	u16 widx = 0;
4116
4117	while (widx < words) {
4118		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4119
4120		if (e1000_spi_eeprom_ready(hw))
4121			return -E1000_ERR_EEPROM;
4122
4123		e1000_standby_eeprom(hw);
4124		cond_resched();
4125
4126		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4127		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4128					eeprom->opcode_bits);
4129
4130		e1000_standby_eeprom(hw);
4131
4132		/* Some SPI eeproms use the 8th address bit embedded in the
4133		 * opcode
4134		 */
4135		if ((eeprom->address_bits == 8) && (offset >= 128))
4136			write_opcode |= EEPROM_A8_OPCODE_SPI;
4137
4138		/* Send the Write command (8-bit opcode + addr) */
4139		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4140
4141		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4142					eeprom->address_bits);
4143
4144		/* Send the data */
4145
4146		/* Loop to allow for up to whole page write (32 bytes) of
4147		 * eeprom
4148		 */
4149		while (widx < words) {
4150			u16 word_out = data[widx];
4151
4152			word_out = (word_out >> 8) | (word_out << 8);
4153			e1000_shift_out_ee_bits(hw, word_out, 16);
4154			widx++;
4155
4156			/* Some larger eeprom sizes are capable of a 32-byte
4157			 * PAGE WRITE operation, while the smaller eeproms are
4158			 * capable of an 8-byte PAGE WRITE operation.  Break the
4159			 * inner loop to pass new address
4160			 */
4161			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4162				e1000_standby_eeprom(hw);
4163				break;
4164			}
4165		}
4166	}
4167
4168	return E1000_SUCCESS;
4169}
4170
4171/**
4172 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4173 * @hw: Struct containing variables accessed by shared code
4174 * @offset: offset within the EEPROM to be written to
4175 * @words: number of words to write
4176 * @data: pointer to array of 8 bit words to be written to the EEPROM
4177 */
4178static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4179					u16 words, u16 *data)
4180{
4181	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4182	u32 eecd;
4183	u16 words_written = 0;
4184	u16 i = 0;
4185
4186	/* Send the write enable command to the EEPROM (3-bit opcode plus
4187	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4188	 * the 11 of the dummy address as part of the opcode than it is to shift
4189	 * it over the correct number of bits for the address.  This puts the
4190	 * EEPROM into write/erase mode.
4191	 */
4192	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4193				(u16)(eeprom->opcode_bits + 2));
4194
4195	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4196
4197	/* Prepare the EEPROM */
4198	e1000_standby_eeprom(hw);
4199
4200	while (words_written < words) {
4201		/* Send the Write command (3-bit opcode + addr) */
4202		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4203					eeprom->opcode_bits);
4204
4205		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4206					eeprom->address_bits);
4207
4208		/* Send the data */
4209		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4210
4211		/* Toggle the CS line.  This in effect tells the EEPROM to
4212		 * execute the previous command.
4213		 */
4214		e1000_standby_eeprom(hw);
4215
4216		/* Read DO repeatedly until it is high (equal to '1').  The
4217		 * EEPROM will signal that the command has been completed by
4218		 * raising the DO signal. If DO does not go high in 10
4219		 * milliseconds, then error out.
4220		 */
4221		for (i = 0; i < 200; i++) {
4222			eecd = er32(EECD);
4223			if (eecd & E1000_EECD_DO)
4224				break;
4225			udelay(50);
4226		}
4227		if (i == 200) {
4228			e_dbg("EEPROM Write did not complete\n");
4229			return -E1000_ERR_EEPROM;
4230		}
4231
4232		/* Recover from write */
4233		e1000_standby_eeprom(hw);
4234		cond_resched();
4235
4236		words_written++;
4237	}
4238
4239	/* Send the write disable command to the EEPROM (3-bit opcode plus
4240	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4241	 * the 10 of the dummy address as part of the opcode than it is to shift
4242	 * it over the correct number of bits for the address.  This takes the
4243	 * EEPROM out of write/erase mode.
4244	 */
4245	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4246				(u16)(eeprom->opcode_bits + 2));
4247
4248	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4249
4250	return E1000_SUCCESS;
4251}
4252
4253/**
4254 * e1000_read_mac_addr - read the adapters MAC from eeprom
4255 * @hw: Struct containing variables accessed by shared code
4256 *
4257 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4258 * second function of dual function devices
4259 */
4260s32 e1000_read_mac_addr(struct e1000_hw *hw)
4261{
4262	u16 offset;
4263	u16 eeprom_data, i;
4264
4265	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4266		offset = i >> 1;
4267		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4268			e_dbg("EEPROM Read Error\n");
4269			return -E1000_ERR_EEPROM;
4270		}
4271		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4272		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4273	}
4274
4275	switch (hw->mac_type) {
4276	default:
4277		break;
4278	case e1000_82546:
4279	case e1000_82546_rev_3:
4280		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4281			hw->perm_mac_addr[5] ^= 0x01;
4282		break;
4283	}
4284
4285	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4286		hw->mac_addr[i] = hw->perm_mac_addr[i];
4287	return E1000_SUCCESS;
4288}
4289
4290/**
4291 * e1000_init_rx_addrs - Initializes receive address filters.
4292 * @hw: Struct containing variables accessed by shared code
4293 *
4294 * Places the MAC address in receive address register 0 and clears the rest
4295 * of the receive address registers. Clears the multicast table. Assumes
4296 * the receiver is in reset when the routine is called.
4297 */
4298static void e1000_init_rx_addrs(struct e1000_hw *hw)
4299{
4300	u32 i;
4301	u32 rar_num;
4302
4303	/* Setup the receive address. */
4304	e_dbg("Programming MAC Address into RAR[0]\n");
4305
4306	e1000_rar_set(hw, hw->mac_addr, 0);
4307
4308	rar_num = E1000_RAR_ENTRIES;
4309
4310	/* Zero out the other 15 receive addresses. */
4311	e_dbg("Clearing RAR[1-15]\n");
 
 
4312	for (i = 1; i < rar_num; i++) {
4313		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4314		E1000_WRITE_FLUSH();
4315		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4316		E1000_WRITE_FLUSH();
4317	}
4318}
4319
4320/**
4321 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4322 * @hw: Struct containing variables accessed by shared code
4323 * @mc_addr: the multicast address to hash
4324 */
4325u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4326{
4327	u32 hash_value = 0;
4328
4329	/* The portion of the address that is used for the hash table is
4330	 * determined by the mc_filter_type setting.
4331	 */
4332	switch (hw->mc_filter_type) {
4333		/* [0] [1] [2] [3] [4] [5]
4334		 * 01  AA  00  12  34  56
4335		 * LSB                 MSB
4336		 */
4337	case 0:
4338		/* [47:36] i.e. 0x563 for above example address */
4339		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4340		break;
4341	case 1:
4342		/* [46:35] i.e. 0xAC6 for above example address */
4343		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4344		break;
4345	case 2:
4346		/* [45:34] i.e. 0x5D8 for above example address */
4347		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4348		break;
4349	case 3:
4350		/* [43:32] i.e. 0x634 for above example address */
4351		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4352		break;
4353	}
4354
4355	hash_value &= 0xFFF;
4356	return hash_value;
4357}
4358
4359/**
4360 * e1000_rar_set - Puts an ethernet address into a receive address register.
4361 * @hw: Struct containing variables accessed by shared code
4362 * @addr: Address to put into receive address register
4363 * @index: Receive address register to write
4364 */
4365void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4366{
4367	u32 rar_low, rar_high;
4368
4369	/* HW expects these in little endian so we reverse the byte order
4370	 * from network order (big endian) to little endian
4371	 */
4372	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4373		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4374	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4375
4376	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4377	 * unit hang.
4378	 *
4379	 * Description:
4380	 * If there are any Rx frames queued up or otherwise present in the HW
4381	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4382	 * hang.  To work around this issue, we have to disable receives and
4383	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4384	 * redirect all Rx traffic to manageability and then reset the HW.
4385	 * This flushes away Rx frames, and (since the redirections to
4386	 * manageability persists across resets) keeps new ones from coming in
4387	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4388	 * addresses and undo the re-direction to manageability.
4389	 * Now, frames are coming in again, but the MAC won't accept them, so
4390	 * far so good.  We now proceed to initialize RSS (if necessary) and
4391	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4392	 * on our merry way.
4393	 */
4394	switch (hw->mac_type) {
4395	default:
4396		/* Indicate to hardware the Address is Valid. */
4397		rar_high |= E1000_RAH_AV;
4398		break;
4399	}
4400
4401	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4402	E1000_WRITE_FLUSH();
4403	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4404	E1000_WRITE_FLUSH();
4405}
4406
4407/**
4408 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4409 * @hw: Struct containing variables accessed by shared code
4410 * @offset: Offset in VLAN filer table to write
4411 * @value: Value to write into VLAN filter table
4412 */
4413void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4414{
4415	u32 temp;
4416
4417	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4418		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4419		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4420		E1000_WRITE_FLUSH();
4421		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4422		E1000_WRITE_FLUSH();
4423	} else {
4424		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4425		E1000_WRITE_FLUSH();
4426	}
4427}
4428
4429/**
4430 * e1000_clear_vfta - Clears the VLAN filer table
4431 * @hw: Struct containing variables accessed by shared code
4432 */
4433static void e1000_clear_vfta(struct e1000_hw *hw)
4434{
4435	u32 offset;
4436	u32 vfta_value = 0;
4437	u32 vfta_offset = 0;
4438	u32 vfta_bit_in_reg = 0;
4439
4440	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4441		/* If the offset we want to clear is the same offset of the
4442		 * manageability VLAN ID, then clear all bits except that of the
4443		 * manageability unit
4444		 */
4445		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4446		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4447		E1000_WRITE_FLUSH();
4448	}
4449}
4450
4451static s32 e1000_id_led_init(struct e1000_hw *hw)
4452{
4453	u32 ledctl;
4454	const u32 ledctl_mask = 0x000000FF;
4455	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4456	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4457	u16 eeprom_data, i, temp;
4458	const u16 led_mask = 0x0F;
4459
4460	if (hw->mac_type < e1000_82540) {
4461		/* Nothing to do */
4462		return E1000_SUCCESS;
4463	}
4464
4465	ledctl = er32(LEDCTL);
4466	hw->ledctl_default = ledctl;
4467	hw->ledctl_mode1 = hw->ledctl_default;
4468	hw->ledctl_mode2 = hw->ledctl_default;
4469
4470	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4471		e_dbg("EEPROM Read Error\n");
4472		return -E1000_ERR_EEPROM;
4473	}
4474
4475	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4476	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4477		eeprom_data = ID_LED_DEFAULT;
4478	}
4479
4480	for (i = 0; i < 4; i++) {
4481		temp = (eeprom_data >> (i << 2)) & led_mask;
4482		switch (temp) {
4483		case ID_LED_ON1_DEF2:
4484		case ID_LED_ON1_ON2:
4485		case ID_LED_ON1_OFF2:
4486			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4487			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4488			break;
4489		case ID_LED_OFF1_DEF2:
4490		case ID_LED_OFF1_ON2:
4491		case ID_LED_OFF1_OFF2:
4492			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4493			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4494			break;
4495		default:
4496			/* Do nothing */
4497			break;
4498		}
4499		switch (temp) {
4500		case ID_LED_DEF1_ON2:
4501		case ID_LED_ON1_ON2:
4502		case ID_LED_OFF1_ON2:
4503			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4504			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4505			break;
4506		case ID_LED_DEF1_OFF2:
4507		case ID_LED_ON1_OFF2:
4508		case ID_LED_OFF1_OFF2:
4509			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4510			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4511			break;
4512		default:
4513			/* Do nothing */
4514			break;
4515		}
4516	}
4517	return E1000_SUCCESS;
4518}
4519
4520/**
4521 * e1000_setup_led
4522 * @hw: Struct containing variables accessed by shared code
4523 *
4524 * Prepares SW controlable LED for use and saves the current state of the LED.
4525 */
4526s32 e1000_setup_led(struct e1000_hw *hw)
4527{
4528	u32 ledctl;
4529	s32 ret_val = E1000_SUCCESS;
4530
4531	switch (hw->mac_type) {
4532	case e1000_82542_rev2_0:
4533	case e1000_82542_rev2_1:
4534	case e1000_82543:
4535	case e1000_82544:
4536		/* No setup necessary */
4537		break;
4538	case e1000_82541:
4539	case e1000_82547:
4540	case e1000_82541_rev_2:
4541	case e1000_82547_rev_2:
4542		/* Turn off PHY Smart Power Down (if enabled) */
4543		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4544					     &hw->phy_spd_default);
4545		if (ret_val)
4546			return ret_val;
4547		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4548					      (u16)(hw->phy_spd_default &
4549						     ~IGP01E1000_GMII_SPD));
4550		if (ret_val)
4551			return ret_val;
4552		/* Fall Through */
4553	default:
4554		if (hw->media_type == e1000_media_type_fiber) {
4555			ledctl = er32(LEDCTL);
4556			/* Save current LEDCTL settings */
4557			hw->ledctl_default = ledctl;
4558			/* Turn off LED0 */
4559			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4560				    E1000_LEDCTL_LED0_BLINK |
4561				    E1000_LEDCTL_LED0_MODE_MASK);
4562			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4563				   E1000_LEDCTL_LED0_MODE_SHIFT);
4564			ew32(LEDCTL, ledctl);
4565		} else if (hw->media_type == e1000_media_type_copper)
4566			ew32(LEDCTL, hw->ledctl_mode1);
4567		break;
4568	}
4569
4570	return E1000_SUCCESS;
4571}
4572
4573/**
4574 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4575 * @hw: Struct containing variables accessed by shared code
4576 */
4577s32 e1000_cleanup_led(struct e1000_hw *hw)
4578{
4579	s32 ret_val = E1000_SUCCESS;
4580
4581	switch (hw->mac_type) {
4582	case e1000_82542_rev2_0:
4583	case e1000_82542_rev2_1:
4584	case e1000_82543:
4585	case e1000_82544:
4586		/* No cleanup necessary */
4587		break;
4588	case e1000_82541:
4589	case e1000_82547:
4590	case e1000_82541_rev_2:
4591	case e1000_82547_rev_2:
4592		/* Turn on PHY Smart Power Down (if previously enabled) */
4593		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4594					      hw->phy_spd_default);
4595		if (ret_val)
4596			return ret_val;
4597		/* Fall Through */
4598	default:
4599		/* Restore LEDCTL settings */
4600		ew32(LEDCTL, hw->ledctl_default);
4601		break;
4602	}
4603
4604	return E1000_SUCCESS;
4605}
4606
4607/**
4608 * e1000_led_on - Turns on the software controllable LED
4609 * @hw: Struct containing variables accessed by shared code
4610 */
4611s32 e1000_led_on(struct e1000_hw *hw)
4612{
4613	u32 ctrl = er32(CTRL);
4614
4615	switch (hw->mac_type) {
4616	case e1000_82542_rev2_0:
4617	case e1000_82542_rev2_1:
4618	case e1000_82543:
4619		/* Set SW Defineable Pin 0 to turn on the LED */
4620		ctrl |= E1000_CTRL_SWDPIN0;
4621		ctrl |= E1000_CTRL_SWDPIO0;
4622		break;
4623	case e1000_82544:
4624		if (hw->media_type == e1000_media_type_fiber) {
4625			/* Set SW Defineable Pin 0 to turn on the LED */
4626			ctrl |= E1000_CTRL_SWDPIN0;
4627			ctrl |= E1000_CTRL_SWDPIO0;
4628		} else {
4629			/* Clear SW Defineable Pin 0 to turn on the LED */
4630			ctrl &= ~E1000_CTRL_SWDPIN0;
4631			ctrl |= E1000_CTRL_SWDPIO0;
4632		}
4633		break;
4634	default:
4635		if (hw->media_type == e1000_media_type_fiber) {
4636			/* Clear SW Defineable Pin 0 to turn on the LED */
4637			ctrl &= ~E1000_CTRL_SWDPIN0;
4638			ctrl |= E1000_CTRL_SWDPIO0;
4639		} else if (hw->media_type == e1000_media_type_copper) {
4640			ew32(LEDCTL, hw->ledctl_mode2);
4641			return E1000_SUCCESS;
4642		}
4643		break;
4644	}
4645
4646	ew32(CTRL, ctrl);
4647
4648	return E1000_SUCCESS;
4649}
4650
4651/**
4652 * e1000_led_off - Turns off the software controllable LED
4653 * @hw: Struct containing variables accessed by shared code
4654 */
4655s32 e1000_led_off(struct e1000_hw *hw)
4656{
4657	u32 ctrl = er32(CTRL);
4658
4659	switch (hw->mac_type) {
4660	case e1000_82542_rev2_0:
4661	case e1000_82542_rev2_1:
4662	case e1000_82543:
4663		/* Clear SW Defineable Pin 0 to turn off the LED */
4664		ctrl &= ~E1000_CTRL_SWDPIN0;
4665		ctrl |= E1000_CTRL_SWDPIO0;
4666		break;
4667	case e1000_82544:
4668		if (hw->media_type == e1000_media_type_fiber) {
4669			/* Clear SW Defineable Pin 0 to turn off the LED */
4670			ctrl &= ~E1000_CTRL_SWDPIN0;
4671			ctrl |= E1000_CTRL_SWDPIO0;
4672		} else {
4673			/* Set SW Defineable Pin 0 to turn off the LED */
4674			ctrl |= E1000_CTRL_SWDPIN0;
4675			ctrl |= E1000_CTRL_SWDPIO0;
4676		}
4677		break;
4678	default:
4679		if (hw->media_type == e1000_media_type_fiber) {
4680			/* Set SW Defineable Pin 0 to turn off the LED */
4681			ctrl |= E1000_CTRL_SWDPIN0;
4682			ctrl |= E1000_CTRL_SWDPIO0;
4683		} else if (hw->media_type == e1000_media_type_copper) {
4684			ew32(LEDCTL, hw->ledctl_mode1);
4685			return E1000_SUCCESS;
4686		}
4687		break;
4688	}
4689
4690	ew32(CTRL, ctrl);
4691
4692	return E1000_SUCCESS;
4693}
4694
4695/**
4696 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4697 * @hw: Struct containing variables accessed by shared code
4698 */
4699static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4700{
4701	volatile u32 temp;
4702
4703	temp = er32(CRCERRS);
4704	temp = er32(SYMERRS);
4705	temp = er32(MPC);
4706	temp = er32(SCC);
4707	temp = er32(ECOL);
4708	temp = er32(MCC);
4709	temp = er32(LATECOL);
4710	temp = er32(COLC);
4711	temp = er32(DC);
4712	temp = er32(SEC);
4713	temp = er32(RLEC);
4714	temp = er32(XONRXC);
4715	temp = er32(XONTXC);
4716	temp = er32(XOFFRXC);
4717	temp = er32(XOFFTXC);
4718	temp = er32(FCRUC);
4719
4720	temp = er32(PRC64);
4721	temp = er32(PRC127);
4722	temp = er32(PRC255);
4723	temp = er32(PRC511);
4724	temp = er32(PRC1023);
4725	temp = er32(PRC1522);
4726
4727	temp = er32(GPRC);
4728	temp = er32(BPRC);
4729	temp = er32(MPRC);
4730	temp = er32(GPTC);
4731	temp = er32(GORCL);
4732	temp = er32(GORCH);
4733	temp = er32(GOTCL);
4734	temp = er32(GOTCH);
4735	temp = er32(RNBC);
4736	temp = er32(RUC);
4737	temp = er32(RFC);
4738	temp = er32(ROC);
4739	temp = er32(RJC);
4740	temp = er32(TORL);
4741	temp = er32(TORH);
4742	temp = er32(TOTL);
4743	temp = er32(TOTH);
4744	temp = er32(TPR);
4745	temp = er32(TPT);
4746
4747	temp = er32(PTC64);
4748	temp = er32(PTC127);
4749	temp = er32(PTC255);
4750	temp = er32(PTC511);
4751	temp = er32(PTC1023);
4752	temp = er32(PTC1522);
4753
4754	temp = er32(MPTC);
4755	temp = er32(BPTC);
4756
4757	if (hw->mac_type < e1000_82543)
4758		return;
4759
4760	temp = er32(ALGNERRC);
4761	temp = er32(RXERRC);
4762	temp = er32(TNCRS);
4763	temp = er32(CEXTERR);
4764	temp = er32(TSCTC);
4765	temp = er32(TSCTFC);
4766
4767	if (hw->mac_type <= e1000_82544)
4768		return;
4769
4770	temp = er32(MGTPRC);
4771	temp = er32(MGTPDC);
4772	temp = er32(MGTPTC);
4773}
4774
4775/**
4776 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4777 * @hw: Struct containing variables accessed by shared code
4778 *
4779 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4780 * hw->ifs_params_forced to true. However, you must initialize hw->
4781 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4782 * before calling this function.
4783 */
4784void e1000_reset_adaptive(struct e1000_hw *hw)
4785{
4786	if (hw->adaptive_ifs) {
4787		if (!hw->ifs_params_forced) {
4788			hw->current_ifs_val = 0;
4789			hw->ifs_min_val = IFS_MIN;
4790			hw->ifs_max_val = IFS_MAX;
4791			hw->ifs_step_size = IFS_STEP;
4792			hw->ifs_ratio = IFS_RATIO;
4793		}
4794		hw->in_ifs_mode = false;
4795		ew32(AIT, 0);
4796	} else {
4797		e_dbg("Not in Adaptive IFS mode!\n");
4798	}
4799}
4800
4801/**
4802 * e1000_update_adaptive - update adaptive IFS
4803 * @hw: Struct containing variables accessed by shared code
4804 * @tx_packets: Number of transmits since last callback
4805 * @total_collisions: Number of collisions since last callback
4806 *
4807 * Called during the callback/watchdog routine to update IFS value based on
4808 * the ratio of transmits to collisions.
4809 */
4810void e1000_update_adaptive(struct e1000_hw *hw)
4811{
4812	if (hw->adaptive_ifs) {
4813		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4814			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4815				hw->in_ifs_mode = true;
4816				if (hw->current_ifs_val < hw->ifs_max_val) {
4817					if (hw->current_ifs_val == 0)
4818						hw->current_ifs_val =
4819						    hw->ifs_min_val;
4820					else
4821						hw->current_ifs_val +=
4822						    hw->ifs_step_size;
4823					ew32(AIT, hw->current_ifs_val);
4824				}
4825			}
4826		} else {
4827			if (hw->in_ifs_mode &&
4828			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4829				hw->current_ifs_val = 0;
4830				hw->in_ifs_mode = false;
4831				ew32(AIT, 0);
4832			}
4833		}
4834	} else {
4835		e_dbg("Not in Adaptive IFS mode!\n");
4836	}
4837}
4838
4839/**
4840 * e1000_get_bus_info
4841 * @hw: Struct containing variables accessed by shared code
4842 *
4843 * Gets the current PCI bus type, speed, and width of the hardware
4844 */
4845void e1000_get_bus_info(struct e1000_hw *hw)
4846{
4847	u32 status;
4848
4849	switch (hw->mac_type) {
4850	case e1000_82542_rev2_0:
4851	case e1000_82542_rev2_1:
4852		hw->bus_type = e1000_bus_type_pci;
4853		hw->bus_speed = e1000_bus_speed_unknown;
4854		hw->bus_width = e1000_bus_width_unknown;
4855		break;
4856	default:
4857		status = er32(STATUS);
4858		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4859		    e1000_bus_type_pcix : e1000_bus_type_pci;
4860
4861		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4862			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4863			    e1000_bus_speed_66 : e1000_bus_speed_120;
4864		} else if (hw->bus_type == e1000_bus_type_pci) {
4865			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4866			    e1000_bus_speed_66 : e1000_bus_speed_33;
4867		} else {
4868			switch (status & E1000_STATUS_PCIX_SPEED) {
4869			case E1000_STATUS_PCIX_SPEED_66:
4870				hw->bus_speed = e1000_bus_speed_66;
4871				break;
4872			case E1000_STATUS_PCIX_SPEED_100:
4873				hw->bus_speed = e1000_bus_speed_100;
4874				break;
4875			case E1000_STATUS_PCIX_SPEED_133:
4876				hw->bus_speed = e1000_bus_speed_133;
4877				break;
4878			default:
4879				hw->bus_speed = e1000_bus_speed_reserved;
4880				break;
4881			}
4882		}
4883		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4884		    e1000_bus_width_64 : e1000_bus_width_32;
4885		break;
4886	}
4887}
4888
4889/**
4890 * e1000_write_reg_io
4891 * @hw: Struct containing variables accessed by shared code
4892 * @offset: offset to write to
4893 * @value: value to write
4894 *
4895 * Writes a value to one of the devices registers using port I/O (as opposed to
4896 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4897 */
4898static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4899{
4900	unsigned long io_addr = hw->io_base;
4901	unsigned long io_data = hw->io_base + 4;
4902
4903	e1000_io_write(hw, io_addr, offset);
4904	e1000_io_write(hw, io_data, value);
4905}
4906
4907/**
4908 * e1000_get_cable_length - Estimates the cable length.
4909 * @hw: Struct containing variables accessed by shared code
4910 * @min_length: The estimated minimum length
4911 * @max_length: The estimated maximum length
4912 *
4913 * returns: - E1000_ERR_XXX
4914 *            E1000_SUCCESS
4915 *
4916 * This function always returns a ranged length (minimum & maximum).
4917 * So for M88 phy's, this function interprets the one value returned from the
4918 * register to the minimum and maximum range.
4919 * For IGP phy's, the function calculates the range by the AGC registers.
4920 */
4921static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4922				  u16 *max_length)
4923{
4924	s32 ret_val;
4925	u16 agc_value = 0;
4926	u16 i, phy_data;
4927	u16 cable_length;
4928
4929	*min_length = *max_length = 0;
4930
4931	/* Use old method for Phy older than IGP */
4932	if (hw->phy_type == e1000_phy_m88) {
4933		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4934					     &phy_data);
4935		if (ret_val)
4936			return ret_val;
4937		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4938		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4939
4940		/* Convert the enum value to ranged values */
4941		switch (cable_length) {
4942		case e1000_cable_length_50:
4943			*min_length = 0;
4944			*max_length = e1000_igp_cable_length_50;
4945			break;
4946		case e1000_cable_length_50_80:
4947			*min_length = e1000_igp_cable_length_50;
4948			*max_length = e1000_igp_cable_length_80;
4949			break;
4950		case e1000_cable_length_80_110:
4951			*min_length = e1000_igp_cable_length_80;
4952			*max_length = e1000_igp_cable_length_110;
4953			break;
4954		case e1000_cable_length_110_140:
4955			*min_length = e1000_igp_cable_length_110;
4956			*max_length = e1000_igp_cable_length_140;
4957			break;
4958		case e1000_cable_length_140:
4959			*min_length = e1000_igp_cable_length_140;
4960			*max_length = e1000_igp_cable_length_170;
4961			break;
4962		default:
4963			return -E1000_ERR_PHY;
4964		}
4965	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4966		u16 cur_agc_value;
4967		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4968		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4969		       IGP01E1000_PHY_AGC_A,
4970		       IGP01E1000_PHY_AGC_B,
4971		       IGP01E1000_PHY_AGC_C,
4972		       IGP01E1000_PHY_AGC_D
4973		};
4974		/* Read the AGC registers for all channels */
4975		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4976			ret_val =
4977			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4978			if (ret_val)
4979				return ret_val;
4980
4981			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4982
4983			/* Value bound check. */
4984			if ((cur_agc_value >=
4985			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4986			    (cur_agc_value == 0))
4987				return -E1000_ERR_PHY;
4988
4989			agc_value += cur_agc_value;
4990
4991			/* Update minimal AGC value. */
4992			if (min_agc_value > cur_agc_value)
4993				min_agc_value = cur_agc_value;
4994		}
4995
4996		/* Remove the minimal AGC result for length < 50m */
4997		if (agc_value <
4998		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4999			agc_value -= min_agc_value;
5000
5001			/* Get the average length of the remaining 3 channels */
5002			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5003		} else {
5004			/* Get the average length of all the 4 channels. */
5005			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5006		}
5007
5008		/* Set the range of the calculated length. */
5009		*min_length = ((e1000_igp_cable_length_table[agc_value] -
5010				IGP01E1000_AGC_RANGE) > 0) ?
5011		    (e1000_igp_cable_length_table[agc_value] -
5012		     IGP01E1000_AGC_RANGE) : 0;
5013		*max_length = e1000_igp_cable_length_table[agc_value] +
5014		    IGP01E1000_AGC_RANGE;
5015	}
5016
5017	return E1000_SUCCESS;
5018}
5019
5020/**
5021 * e1000_check_polarity - Check the cable polarity
5022 * @hw: Struct containing variables accessed by shared code
5023 * @polarity: output parameter : 0 - Polarity is not reversed
5024 *                               1 - Polarity is reversed.
5025 *
5026 * returns: - E1000_ERR_XXX
5027 *            E1000_SUCCESS
5028 *
5029 * For phy's older than IGP, this function simply reads the polarity bit in the
5030 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5031 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5032 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5033 * IGP01E1000_PHY_PCS_INIT_REG.
5034 */
5035static s32 e1000_check_polarity(struct e1000_hw *hw,
5036				e1000_rev_polarity *polarity)
5037{
5038	s32 ret_val;
5039	u16 phy_data;
5040
5041	if (hw->phy_type == e1000_phy_m88) {
5042		/* return the Polarity bit in the Status register. */
5043		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5044					     &phy_data);
5045		if (ret_val)
5046			return ret_val;
5047		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5048			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5049		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5050
5051	} else if (hw->phy_type == e1000_phy_igp) {
5052		/* Read the Status register to check the speed */
5053		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5054					     &phy_data);
5055		if (ret_val)
5056			return ret_val;
5057
5058		/* If speed is 1000 Mbps, must read the
5059		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5060		 */
5061		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5062		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5063			/* Read the GIG initialization PCS register (0x00B4) */
5064			ret_val =
5065			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5066					       &phy_data);
5067			if (ret_val)
5068				return ret_val;
5069
5070			/* Check the polarity bits */
5071			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5072			    e1000_rev_polarity_reversed :
5073			    e1000_rev_polarity_normal;
5074		} else {
5075			/* For 10 Mbps, read the polarity bit in the status
5076			 * register. (for 100 Mbps this bit is always 0)
5077			 */
5078			*polarity =
5079			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5080			    e1000_rev_polarity_reversed :
5081			    e1000_rev_polarity_normal;
5082		}
5083	}
5084	return E1000_SUCCESS;
5085}
5086
5087/**
5088 * e1000_check_downshift - Check if Downshift occurred
5089 * @hw: Struct containing variables accessed by shared code
5090 * @downshift: output parameter : 0 - No Downshift occurred.
5091 *                                1 - Downshift occurred.
5092 *
5093 * returns: - E1000_ERR_XXX
5094 *            E1000_SUCCESS
5095 *
5096 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5097 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5098 * Link Health register.  In IGP this bit is latched high, so the driver must
5099 * read it immediately after link is established.
5100 */
5101static s32 e1000_check_downshift(struct e1000_hw *hw)
5102{
5103	s32 ret_val;
5104	u16 phy_data;
5105
5106	if (hw->phy_type == e1000_phy_igp) {
5107		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5108					     &phy_data);
5109		if (ret_val)
5110			return ret_val;
5111
5112		hw->speed_downgraded =
5113		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5114	} else if (hw->phy_type == e1000_phy_m88) {
5115		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5116					     &phy_data);
5117		if (ret_val)
5118			return ret_val;
5119
5120		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5121		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5122	}
5123
5124	return E1000_SUCCESS;
5125}
5126
5127static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5128	IGP01E1000_PHY_AGC_PARAM_A,
5129	IGP01E1000_PHY_AGC_PARAM_B,
5130	IGP01E1000_PHY_AGC_PARAM_C,
5131	IGP01E1000_PHY_AGC_PARAM_D
5132};
5133
5134static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5135{
5136	u16 min_length, max_length;
5137	u16 phy_data, i;
5138	s32 ret_val;
5139
5140	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5141	if (ret_val)
5142		return ret_val;
5143
5144	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5145		return 0;
5146
5147	if (min_length >= e1000_igp_cable_length_50) {
5148		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5149			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5150						     &phy_data);
5151			if (ret_val)
5152				return ret_val;
5153
5154			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5155
5156			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5157						      phy_data);
5158			if (ret_val)
5159				return ret_val;
5160		}
5161		hw->dsp_config_state = e1000_dsp_config_activated;
5162	} else {
5163		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5164		u32 idle_errs = 0;
5165
5166		/* clear previous idle error counts */
5167		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5168		if (ret_val)
5169			return ret_val;
5170
5171		for (i = 0; i < ffe_idle_err_timeout; i++) {
5172			udelay(1000);
5173			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5174						     &phy_data);
5175			if (ret_val)
5176				return ret_val;
5177
5178			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5179			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5180				hw->ffe_config_state = e1000_ffe_config_active;
5181
5182				ret_val = e1000_write_phy_reg(hw,
5183							      IGP01E1000_PHY_DSP_FFE,
5184							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5185				if (ret_val)
5186					return ret_val;
5187				break;
5188			}
5189
5190			if (idle_errs)
5191				ffe_idle_err_timeout =
5192					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5193		}
5194	}
5195
5196	return 0;
5197}
5198
5199/**
5200 * e1000_config_dsp_after_link_change
5201 * @hw: Struct containing variables accessed by shared code
5202 * @link_up: was link up at the time this was called
5203 *
5204 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5205 *            E1000_SUCCESS at any other case.
5206 *
5207 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5208 * gigabit link is achieved to improve link quality.
5209 */
5210
5211static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5212{
5213	s32 ret_val;
5214	u16 phy_data, phy_saved_data, speed, duplex, i;
5215
5216	if (hw->phy_type != e1000_phy_igp)
5217		return E1000_SUCCESS;
5218
5219	if (link_up) {
5220		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5221		if (ret_val) {
5222			e_dbg("Error getting link speed and duplex\n");
5223			return ret_val;
5224		}
5225
5226		if (speed == SPEED_1000) {
5227			ret_val = e1000_1000Mb_check_cable_length(hw);
5228			if (ret_val)
5229				return ret_val;
5230		}
5231	} else {
5232		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5233			/* Save off the current value of register 0x2F5B to be
5234			 * restored at the end of the routines.
5235			 */
5236			ret_val =
5237			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5238
5239			if (ret_val)
5240				return ret_val;
5241
5242			/* Disable the PHY transmitter */
5243			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5244
5245			if (ret_val)
5246				return ret_val;
5247
5248			msleep(20);
5249
5250			ret_val = e1000_write_phy_reg(hw, 0x0000,
5251						      IGP01E1000_IEEE_FORCE_GIGA);
5252			if (ret_val)
5253				return ret_val;
5254			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5255				ret_val =
5256				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5257						       &phy_data);
5258				if (ret_val)
5259					return ret_val;
5260
5261				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5262				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5263
5264				ret_val =
5265				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5266							phy_data);
5267				if (ret_val)
5268					return ret_val;
5269			}
5270
5271			ret_val = e1000_write_phy_reg(hw, 0x0000,
5272						      IGP01E1000_IEEE_RESTART_AUTONEG);
5273			if (ret_val)
5274				return ret_val;
5275
5276			msleep(20);
5277
5278			/* Now enable the transmitter */
5279			ret_val =
5280			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5281
5282			if (ret_val)
5283				return ret_val;
5284
5285			hw->dsp_config_state = e1000_dsp_config_enabled;
5286		}
5287
5288		if (hw->ffe_config_state == e1000_ffe_config_active) {
5289			/* Save off the current value of register 0x2F5B to be
5290			 * restored at the end of the routines.
5291			 */
5292			ret_val =
5293			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5294
5295			if (ret_val)
5296				return ret_val;
5297
5298			/* Disable the PHY transmitter */
5299			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5300
5301			if (ret_val)
5302				return ret_val;
5303
5304			msleep(20);
5305
5306			ret_val = e1000_write_phy_reg(hw, 0x0000,
5307						      IGP01E1000_IEEE_FORCE_GIGA);
5308			if (ret_val)
5309				return ret_val;
5310			ret_val =
5311			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5312						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5313			if (ret_val)
5314				return ret_val;
5315
5316			ret_val = e1000_write_phy_reg(hw, 0x0000,
5317						      IGP01E1000_IEEE_RESTART_AUTONEG);
5318			if (ret_val)
5319				return ret_val;
5320
5321			msleep(20);
5322
5323			/* Now enable the transmitter */
5324			ret_val =
5325			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5326
5327			if (ret_val)
5328				return ret_val;
5329
5330			hw->ffe_config_state = e1000_ffe_config_enabled;
5331		}
5332	}
5333	return E1000_SUCCESS;
5334}
5335
5336/**
5337 * e1000_set_phy_mode - Set PHY to class A mode
5338 * @hw: Struct containing variables accessed by shared code
5339 *
5340 * Assumes the following operations will follow to enable the new class mode.
5341 *  1. Do a PHY soft reset
5342 *  2. Restart auto-negotiation or force link.
5343 */
5344static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5345{
5346	s32 ret_val;
5347	u16 eeprom_data;
5348
5349	if ((hw->mac_type == e1000_82545_rev_3) &&
5350	    (hw->media_type == e1000_media_type_copper)) {
5351		ret_val =
5352		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5353				      &eeprom_data);
5354		if (ret_val)
5355			return ret_val;
5356
5357		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5358		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5359			ret_val =
5360			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5361						0x000B);
5362			if (ret_val)
5363				return ret_val;
5364			ret_val =
5365			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5366						0x8104);
5367			if (ret_val)
5368				return ret_val;
5369
5370			hw->phy_reset_disable = false;
5371		}
5372	}
5373
5374	return E1000_SUCCESS;
5375}
5376
5377/**
5378 * e1000_set_d3_lplu_state - set d3 link power state
5379 * @hw: Struct containing variables accessed by shared code
5380 * @active: true to enable lplu false to disable lplu.
5381 *
5382 * This function sets the lplu state according to the active flag.  When
5383 * activating lplu this function also disables smart speed and vise versa.
5384 * lplu will not be activated unless the device autonegotiation advertisement
5385 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5386 *
5387 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5388 *            E1000_SUCCESS at any other case.
5389 */
5390static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5391{
5392	s32 ret_val;
5393	u16 phy_data;
5394
5395	if (hw->phy_type != e1000_phy_igp)
5396		return E1000_SUCCESS;
5397
5398	/* During driver activity LPLU should not be used or it will attain link
5399	 * from the lowest speeds starting from 10Mbps. The capability is used
5400	 * for Dx transitions and states
5401	 */
5402	if (hw->mac_type == e1000_82541_rev_2 ||
5403	    hw->mac_type == e1000_82547_rev_2) {
5404		ret_val =
5405		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5406		if (ret_val)
5407			return ret_val;
5408	}
5409
5410	if (!active) {
5411		if (hw->mac_type == e1000_82541_rev_2 ||
5412		    hw->mac_type == e1000_82547_rev_2) {
5413			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5414			ret_val =
5415			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5416						phy_data);
5417			if (ret_val)
5418				return ret_val;
5419		}
5420
5421		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5422		 * during Dx states where the power conservation is most
5423		 * important.  During driver activity we should enable
5424		 * SmartSpeed, so performance is maintained.
5425		 */
5426		if (hw->smart_speed == e1000_smart_speed_on) {
5427			ret_val =
5428			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5429					       &phy_data);
5430			if (ret_val)
5431				return ret_val;
5432
5433			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5434			ret_val =
5435			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5436						phy_data);
5437			if (ret_val)
5438				return ret_val;
5439		} else if (hw->smart_speed == e1000_smart_speed_off) {
5440			ret_val =
5441			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5442					       &phy_data);
5443			if (ret_val)
5444				return ret_val;
5445
5446			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5447			ret_val =
5448			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5449						phy_data);
5450			if (ret_val)
5451				return ret_val;
5452		}
5453	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5454		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5455		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5456		if (hw->mac_type == e1000_82541_rev_2 ||
5457		    hw->mac_type == e1000_82547_rev_2) {
5458			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5459			ret_val =
5460			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5461						phy_data);
5462			if (ret_val)
5463				return ret_val;
5464		}
5465
5466		/* When LPLU is enabled we should disable SmartSpeed */
5467		ret_val =
5468		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5469				       &phy_data);
5470		if (ret_val)
5471			return ret_val;
5472
5473		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5474		ret_val =
5475		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5476					phy_data);
5477		if (ret_val)
5478			return ret_val;
5479	}
5480	return E1000_SUCCESS;
5481}
5482
5483/**
5484 * e1000_set_vco_speed
5485 * @hw: Struct containing variables accessed by shared code
5486 *
5487 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5488 */
5489static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5490{
5491	s32 ret_val;
5492	u16 default_page = 0;
5493	u16 phy_data;
5494
5495	switch (hw->mac_type) {
5496	case e1000_82545_rev_3:
5497	case e1000_82546_rev_3:
5498		break;
5499	default:
5500		return E1000_SUCCESS;
5501	}
5502
5503	/* Set PHY register 30, page 5, bit 8 to 0 */
5504
5505	ret_val =
5506	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5507	if (ret_val)
5508		return ret_val;
5509
5510	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5511	if (ret_val)
5512		return ret_val;
5513
5514	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5515	if (ret_val)
5516		return ret_val;
5517
5518	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5519	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5520	if (ret_val)
5521		return ret_val;
5522
5523	/* Set PHY register 30, page 4, bit 11 to 1 */
5524
5525	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5526	if (ret_val)
5527		return ret_val;
5528
5529	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5530	if (ret_val)
5531		return ret_val;
5532
5533	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5534	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5535	if (ret_val)
5536		return ret_val;
5537
5538	ret_val =
5539	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5540	if (ret_val)
5541		return ret_val;
5542
5543	return E1000_SUCCESS;
5544}
5545
5546/**
5547 * e1000_enable_mng_pass_thru - check for bmc pass through
5548 * @hw: Struct containing variables accessed by shared code
5549 *
5550 * Verifies the hardware needs to allow ARPs to be processed by the host
5551 * returns: - true/false
5552 */
5553u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5554{
5555	u32 manc;
5556
5557	if (hw->asf_firmware_present) {
5558		manc = er32(MANC);
5559
5560		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5561		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5562			return false;
5563		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5564			return true;
5565	}
5566	return false;
5567}
5568
5569static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5570{
5571	s32 ret_val;
5572	u16 mii_status_reg;
5573	u16 i;
5574
5575	/* Polarity reversal workaround for forced 10F/10H links. */
5576
5577	/* Disable the transmitter on the PHY */
5578
5579	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5580	if (ret_val)
5581		return ret_val;
5582	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5583	if (ret_val)
5584		return ret_val;
5585
5586	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5587	if (ret_val)
5588		return ret_val;
5589
5590	/* This loop will early-out if the NO link condition has been met. */
5591	for (i = PHY_FORCE_TIME; i > 0; i--) {
5592		/* Read the MII Status Register and wait for Link Status bit
5593		 * to be clear.
5594		 */
5595
5596		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5597		if (ret_val)
5598			return ret_val;
5599
5600		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5601		if (ret_val)
5602			return ret_val;
5603
5604		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5605			break;
5606		msleep(100);
5607	}
5608
5609	/* Recommended delay time after link has been lost */
5610	msleep(1000);
5611
5612	/* Now we will re-enable th transmitter on the PHY */
5613
5614	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5615	if (ret_val)
5616		return ret_val;
5617	msleep(50);
5618	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5619	if (ret_val)
5620		return ret_val;
5621	msleep(50);
5622	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5623	if (ret_val)
5624		return ret_val;
5625	msleep(50);
5626	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5627	if (ret_val)
5628		return ret_val;
5629
5630	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5631	if (ret_val)
5632		return ret_val;
5633
5634	/* This loop will early-out if the link condition has been met. */
5635	for (i = PHY_FORCE_TIME; i > 0; i--) {
5636		/* Read the MII Status Register and wait for Link Status bit
5637		 * to be set.
5638		 */
5639
5640		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5641		if (ret_val)
5642			return ret_val;
5643
5644		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5645		if (ret_val)
5646			return ret_val;
5647
5648		if (mii_status_reg & MII_SR_LINK_STATUS)
5649			break;
5650		msleep(100);
5651	}
5652	return E1000_SUCCESS;
5653}
5654
5655/**
5656 * e1000_get_auto_rd_done
5657 * @hw: Struct containing variables accessed by shared code
5658 *
5659 * Check for EEPROM Auto Read bit done.
5660 * returns: - E1000_ERR_RESET if fail to reset MAC
5661 *            E1000_SUCCESS at any other case.
5662 */
5663static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5664{
5665	msleep(5);
5666	return E1000_SUCCESS;
5667}
5668
5669/**
5670 * e1000_get_phy_cfg_done
5671 * @hw: Struct containing variables accessed by shared code
5672 *
5673 * Checks if the PHY configuration is done
5674 * returns: - E1000_ERR_RESET if fail to reset MAC
5675 *            E1000_SUCCESS at any other case.
5676 */
5677static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5678{
5679	msleep(10);
5680	return E1000_SUCCESS;
5681}