Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4/* e1000_hw.c
5 * Shared functions for accessing and configuring the MAC
6 */
7
8#include <linux/bitfield.h>
9#include "e1000.h"
10
11static s32 e1000_check_downshift(struct e1000_hw *hw);
12static s32 e1000_check_polarity(struct e1000_hw *hw,
13 e1000_rev_polarity *polarity);
14static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
15static void e1000_clear_vfta(struct e1000_hw *hw);
16static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
17 bool link_up);
18static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
19static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
20static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
21static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
22 u16 *max_length);
23static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
24static s32 e1000_id_led_init(struct e1000_hw *hw);
25static void e1000_init_rx_addrs(struct e1000_hw *hw);
26static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
27 struct e1000_phy_info *phy_info);
28static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
29 struct e1000_phy_info *phy_info);
30static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
31static s32 e1000_wait_autoneg(struct e1000_hw *hw);
32static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
33static s32 e1000_set_phy_type(struct e1000_hw *hw);
34static void e1000_phy_init_script(struct e1000_hw *hw);
35static s32 e1000_setup_copper_link(struct e1000_hw *hw);
36static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
37static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
38static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
39static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
40static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
41static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
42static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
43static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
44static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
45static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
46 u16 words, u16 *data);
47static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
48 u16 words, u16 *data);
49static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
50static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
51static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
52static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
53static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
54 u16 phy_data);
55static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
56 u16 *phy_data);
57static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
58static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
59static void e1000_release_eeprom(struct e1000_hw *hw);
60static void e1000_standby_eeprom(struct e1000_hw *hw);
61static s32 e1000_set_vco_speed(struct e1000_hw *hw);
62static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
63static s32 e1000_set_phy_mode(struct e1000_hw *hw);
64static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
65 u16 *data);
66static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
67 u16 *data);
68
69/* IGP cable length table */
70static const
71u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
72 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
73 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
74 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
75 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
76 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
77 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
78 100,
79 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
80 110, 110,
81 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
82 120, 120
83};
84
85static DEFINE_MUTEX(e1000_eeprom_lock);
86static DEFINE_SPINLOCK(e1000_phy_lock);
87
88/**
89 * e1000_set_phy_type - Set the phy type member in the hw struct.
90 * @hw: Struct containing variables accessed by shared code
91 */
92static s32 e1000_set_phy_type(struct e1000_hw *hw)
93{
94 if (hw->mac_type == e1000_undefined)
95 return -E1000_ERR_PHY_TYPE;
96
97 switch (hw->phy_id) {
98 case M88E1000_E_PHY_ID:
99 case M88E1000_I_PHY_ID:
100 case M88E1011_I_PHY_ID:
101 case M88E1111_I_PHY_ID:
102 case M88E1118_E_PHY_ID:
103 hw->phy_type = e1000_phy_m88;
104 break;
105 case IGP01E1000_I_PHY_ID:
106 if (hw->mac_type == e1000_82541 ||
107 hw->mac_type == e1000_82541_rev_2 ||
108 hw->mac_type == e1000_82547 ||
109 hw->mac_type == e1000_82547_rev_2)
110 hw->phy_type = e1000_phy_igp;
111 break;
112 case RTL8211B_PHY_ID:
113 hw->phy_type = e1000_phy_8211;
114 break;
115 case RTL8201N_PHY_ID:
116 hw->phy_type = e1000_phy_8201;
117 break;
118 default:
119 /* Should never have loaded on this device */
120 hw->phy_type = e1000_phy_undefined;
121 return -E1000_ERR_PHY_TYPE;
122 }
123
124 return E1000_SUCCESS;
125}
126
127/**
128 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
129 * @hw: Struct containing variables accessed by shared code
130 */
131static void e1000_phy_init_script(struct e1000_hw *hw)
132{
133 u16 phy_saved_data;
134
135 if (hw->phy_init_script) {
136 msleep(20);
137
138 /* Save off the current value of register 0x2F5B to be restored
139 * at the end of this routine.
140 */
141 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
142
143 /* Disabled the PHY transmitter */
144 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
145 msleep(20);
146
147 e1000_write_phy_reg(hw, 0x0000, 0x0140);
148 msleep(5);
149
150 switch (hw->mac_type) {
151 case e1000_82541:
152 case e1000_82547:
153 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
154 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
155 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
156 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
157 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
158 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
159 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
160 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
161 e1000_write_phy_reg(hw, 0x2010, 0x0008);
162 break;
163
164 case e1000_82541_rev_2:
165 case e1000_82547_rev_2:
166 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
167 break;
168 default:
169 break;
170 }
171
172 e1000_write_phy_reg(hw, 0x0000, 0x3300);
173 msleep(20);
174
175 /* Now enable the transmitter */
176 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
177
178 if (hw->mac_type == e1000_82547) {
179 u16 fused, fine, coarse;
180
181 /* Move to analog registers page */
182 e1000_read_phy_reg(hw,
183 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
184 &fused);
185
186 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
187 e1000_read_phy_reg(hw,
188 IGP01E1000_ANALOG_FUSE_STATUS,
189 &fused);
190
191 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
192 coarse =
193 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
194
195 if (coarse >
196 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
197 coarse -=
198 IGP01E1000_ANALOG_FUSE_COARSE_10;
199 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
200 } else if (coarse ==
201 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
202 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
203
204 fused =
205 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
206 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
207 (coarse &
208 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
209
210 e1000_write_phy_reg(hw,
211 IGP01E1000_ANALOG_FUSE_CONTROL,
212 fused);
213 e1000_write_phy_reg(hw,
214 IGP01E1000_ANALOG_FUSE_BYPASS,
215 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
216 }
217 }
218 }
219}
220
221/**
222 * e1000_set_mac_type - Set the mac type member in the hw struct.
223 * @hw: Struct containing variables accessed by shared code
224 */
225s32 e1000_set_mac_type(struct e1000_hw *hw)
226{
227 switch (hw->device_id) {
228 case E1000_DEV_ID_82542:
229 switch (hw->revision_id) {
230 case E1000_82542_2_0_REV_ID:
231 hw->mac_type = e1000_82542_rev2_0;
232 break;
233 case E1000_82542_2_1_REV_ID:
234 hw->mac_type = e1000_82542_rev2_1;
235 break;
236 default:
237 /* Invalid 82542 revision ID */
238 return -E1000_ERR_MAC_TYPE;
239 }
240 break;
241 case E1000_DEV_ID_82543GC_FIBER:
242 case E1000_DEV_ID_82543GC_COPPER:
243 hw->mac_type = e1000_82543;
244 break;
245 case E1000_DEV_ID_82544EI_COPPER:
246 case E1000_DEV_ID_82544EI_FIBER:
247 case E1000_DEV_ID_82544GC_COPPER:
248 case E1000_DEV_ID_82544GC_LOM:
249 hw->mac_type = e1000_82544;
250 break;
251 case E1000_DEV_ID_82540EM:
252 case E1000_DEV_ID_82540EM_LOM:
253 case E1000_DEV_ID_82540EP:
254 case E1000_DEV_ID_82540EP_LOM:
255 case E1000_DEV_ID_82540EP_LP:
256 hw->mac_type = e1000_82540;
257 break;
258 case E1000_DEV_ID_82545EM_COPPER:
259 case E1000_DEV_ID_82545EM_FIBER:
260 hw->mac_type = e1000_82545;
261 break;
262 case E1000_DEV_ID_82545GM_COPPER:
263 case E1000_DEV_ID_82545GM_FIBER:
264 case E1000_DEV_ID_82545GM_SERDES:
265 hw->mac_type = e1000_82545_rev_3;
266 break;
267 case E1000_DEV_ID_82546EB_COPPER:
268 case E1000_DEV_ID_82546EB_FIBER:
269 case E1000_DEV_ID_82546EB_QUAD_COPPER:
270 hw->mac_type = e1000_82546;
271 break;
272 case E1000_DEV_ID_82546GB_COPPER:
273 case E1000_DEV_ID_82546GB_FIBER:
274 case E1000_DEV_ID_82546GB_SERDES:
275 case E1000_DEV_ID_82546GB_PCIE:
276 case E1000_DEV_ID_82546GB_QUAD_COPPER:
277 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
278 hw->mac_type = e1000_82546_rev_3;
279 break;
280 case E1000_DEV_ID_82541EI:
281 case E1000_DEV_ID_82541EI_MOBILE:
282 case E1000_DEV_ID_82541ER_LOM:
283 hw->mac_type = e1000_82541;
284 break;
285 case E1000_DEV_ID_82541ER:
286 case E1000_DEV_ID_82541GI:
287 case E1000_DEV_ID_82541GI_LF:
288 case E1000_DEV_ID_82541GI_MOBILE:
289 hw->mac_type = e1000_82541_rev_2;
290 break;
291 case E1000_DEV_ID_82547EI:
292 case E1000_DEV_ID_82547EI_MOBILE:
293 hw->mac_type = e1000_82547;
294 break;
295 case E1000_DEV_ID_82547GI:
296 hw->mac_type = e1000_82547_rev_2;
297 break;
298 case E1000_DEV_ID_INTEL_CE4100_GBE:
299 hw->mac_type = e1000_ce4100;
300 break;
301 default:
302 /* Should never have loaded on this device */
303 return -E1000_ERR_MAC_TYPE;
304 }
305
306 switch (hw->mac_type) {
307 case e1000_82541:
308 case e1000_82547:
309 case e1000_82541_rev_2:
310 case e1000_82547_rev_2:
311 hw->asf_firmware_present = true;
312 break;
313 default:
314 break;
315 }
316
317 /* The 82543 chip does not count tx_carrier_errors properly in
318 * FD mode
319 */
320 if (hw->mac_type == e1000_82543)
321 hw->bad_tx_carr_stats_fd = true;
322
323 if (hw->mac_type > e1000_82544)
324 hw->has_smbus = true;
325
326 return E1000_SUCCESS;
327}
328
329/**
330 * e1000_set_media_type - Set media type and TBI compatibility.
331 * @hw: Struct containing variables accessed by shared code
332 */
333void e1000_set_media_type(struct e1000_hw *hw)
334{
335 u32 status;
336
337 if (hw->mac_type != e1000_82543) {
338 /* tbi_compatibility is only valid on 82543 */
339 hw->tbi_compatibility_en = false;
340 }
341
342 switch (hw->device_id) {
343 case E1000_DEV_ID_82545GM_SERDES:
344 case E1000_DEV_ID_82546GB_SERDES:
345 hw->media_type = e1000_media_type_internal_serdes;
346 break;
347 default:
348 switch (hw->mac_type) {
349 case e1000_82542_rev2_0:
350 case e1000_82542_rev2_1:
351 hw->media_type = e1000_media_type_fiber;
352 break;
353 case e1000_ce4100:
354 hw->media_type = e1000_media_type_copper;
355 break;
356 default:
357 status = er32(STATUS);
358 if (status & E1000_STATUS_TBIMODE) {
359 hw->media_type = e1000_media_type_fiber;
360 /* tbi_compatibility not valid on fiber */
361 hw->tbi_compatibility_en = false;
362 } else {
363 hw->media_type = e1000_media_type_copper;
364 }
365 break;
366 }
367 }
368}
369
370/**
371 * e1000_reset_hw - reset the hardware completely
372 * @hw: Struct containing variables accessed by shared code
373 *
374 * Reset the transmit and receive units; mask and clear all interrupts.
375 */
376s32 e1000_reset_hw(struct e1000_hw *hw)
377{
378 u32 ctrl;
379 u32 ctrl_ext;
380 u32 manc;
381 u32 led_ctrl;
382 s32 ret_val;
383
384 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
385 if (hw->mac_type == e1000_82542_rev2_0) {
386 e_dbg("Disabling MWI on 82542 rev 2.0\n");
387 e1000_pci_clear_mwi(hw);
388 }
389
390 /* Clear interrupt mask to stop board from generating interrupts */
391 e_dbg("Masking off all interrupts\n");
392 ew32(IMC, 0xffffffff);
393
394 /* Disable the Transmit and Receive units. Then delay to allow
395 * any pending transactions to complete before we hit the MAC with
396 * the global reset.
397 */
398 ew32(RCTL, 0);
399 ew32(TCTL, E1000_TCTL_PSP);
400 E1000_WRITE_FLUSH();
401
402 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
403 hw->tbi_compatibility_on = false;
404
405 /* Delay to allow any outstanding PCI transactions to complete before
406 * resetting the device
407 */
408 msleep(10);
409
410 ctrl = er32(CTRL);
411
412 /* Must reset the PHY before resetting the MAC */
413 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
414 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
415 E1000_WRITE_FLUSH();
416 msleep(5);
417 }
418
419 /* Issue a global reset to the MAC. This will reset the chip's
420 * transmit, receive, DMA, and link units. It will not effect
421 * the current PCI configuration. The global reset bit is self-
422 * clearing, and should clear within a microsecond.
423 */
424 e_dbg("Issuing a global reset to MAC\n");
425
426 switch (hw->mac_type) {
427 case e1000_82544:
428 case e1000_82540:
429 case e1000_82545:
430 case e1000_82546:
431 case e1000_82541:
432 case e1000_82541_rev_2:
433 /* These controllers can't ack the 64-bit write when issuing the
434 * reset, so use IO-mapping as a workaround to issue the reset
435 */
436 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
437 break;
438 case e1000_82545_rev_3:
439 case e1000_82546_rev_3:
440 /* Reset is performed on a shadow of the control register */
441 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
442 break;
443 case e1000_ce4100:
444 default:
445 ew32(CTRL, (ctrl | E1000_CTRL_RST));
446 break;
447 }
448
449 /* After MAC reset, force reload of EEPROM to restore power-on settings
450 * to device. Later controllers reload the EEPROM automatically, so
451 * just wait for reload to complete.
452 */
453 switch (hw->mac_type) {
454 case e1000_82542_rev2_0:
455 case e1000_82542_rev2_1:
456 case e1000_82543:
457 case e1000_82544:
458 /* Wait for reset to complete */
459 udelay(10);
460 ctrl_ext = er32(CTRL_EXT);
461 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
462 ew32(CTRL_EXT, ctrl_ext);
463 E1000_WRITE_FLUSH();
464 /* Wait for EEPROM reload */
465 msleep(2);
466 break;
467 case e1000_82541:
468 case e1000_82541_rev_2:
469 case e1000_82547:
470 case e1000_82547_rev_2:
471 /* Wait for EEPROM reload */
472 msleep(20);
473 break;
474 default:
475 /* Auto read done will delay 5ms or poll based on mac type */
476 ret_val = e1000_get_auto_rd_done(hw);
477 if (ret_val)
478 return ret_val;
479 break;
480 }
481
482 /* Disable HW ARPs on ASF enabled adapters */
483 if (hw->mac_type >= e1000_82540) {
484 manc = er32(MANC);
485 manc &= ~(E1000_MANC_ARP_EN);
486 ew32(MANC, manc);
487 }
488
489 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
490 e1000_phy_init_script(hw);
491
492 /* Configure activity LED after PHY reset */
493 led_ctrl = er32(LEDCTL);
494 led_ctrl &= IGP_ACTIVITY_LED_MASK;
495 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
496 ew32(LEDCTL, led_ctrl);
497 }
498
499 /* Clear interrupt mask to stop board from generating interrupts */
500 e_dbg("Masking off all interrupts\n");
501 ew32(IMC, 0xffffffff);
502
503 /* Clear any pending interrupt events. */
504 er32(ICR);
505
506 /* If MWI was previously enabled, reenable it. */
507 if (hw->mac_type == e1000_82542_rev2_0) {
508 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
509 e1000_pci_set_mwi(hw);
510 }
511
512 return E1000_SUCCESS;
513}
514
515/**
516 * e1000_init_hw - Performs basic configuration of the adapter.
517 * @hw: Struct containing variables accessed by shared code
518 *
519 * Assumes that the controller has previously been reset and is in a
520 * post-reset uninitialized state. Initializes the receive address registers,
521 * multicast table, and VLAN filter table. Calls routines to setup link
522 * configuration and flow control settings. Clears all on-chip counters. Leaves
523 * the transmit and receive units disabled and uninitialized.
524 */
525s32 e1000_init_hw(struct e1000_hw *hw)
526{
527 u32 ctrl;
528 u32 i;
529 s32 ret_val;
530 u32 mta_size;
531 u32 ctrl_ext;
532
533 /* Initialize Identification LED */
534 ret_val = e1000_id_led_init(hw);
535 if (ret_val) {
536 e_dbg("Error Initializing Identification LED\n");
537 return ret_val;
538 }
539
540 /* Set the media type and TBI compatibility */
541 e1000_set_media_type(hw);
542
543 /* Disabling VLAN filtering. */
544 e_dbg("Initializing the IEEE VLAN\n");
545 if (hw->mac_type < e1000_82545_rev_3)
546 ew32(VET, 0);
547 e1000_clear_vfta(hw);
548
549 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
550 if (hw->mac_type == e1000_82542_rev2_0) {
551 e_dbg("Disabling MWI on 82542 rev 2.0\n");
552 e1000_pci_clear_mwi(hw);
553 ew32(RCTL, E1000_RCTL_RST);
554 E1000_WRITE_FLUSH();
555 msleep(5);
556 }
557
558 /* Setup the receive address. This involves initializing all of the
559 * Receive Address Registers (RARs 0 - 15).
560 */
561 e1000_init_rx_addrs(hw);
562
563 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
564 if (hw->mac_type == e1000_82542_rev2_0) {
565 ew32(RCTL, 0);
566 E1000_WRITE_FLUSH();
567 msleep(1);
568 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
569 e1000_pci_set_mwi(hw);
570 }
571
572 /* Zero out the Multicast HASH table */
573 e_dbg("Zeroing the MTA\n");
574 mta_size = E1000_MC_TBL_SIZE;
575 for (i = 0; i < mta_size; i++) {
576 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
577 /* use write flush to prevent Memory Write Block (MWB) from
578 * occurring when accessing our register space
579 */
580 E1000_WRITE_FLUSH();
581 }
582
583 /* Set the PCI priority bit correctly in the CTRL register. This
584 * determines if the adapter gives priority to receives, or if it
585 * gives equal priority to transmits and receives. Valid only on
586 * 82542 and 82543 silicon.
587 */
588 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
589 ctrl = er32(CTRL);
590 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
591 }
592
593 switch (hw->mac_type) {
594 case e1000_82545_rev_3:
595 case e1000_82546_rev_3:
596 break;
597 default:
598 /* Workaround for PCI-X problem when BIOS sets MMRBC
599 * incorrectly.
600 */
601 if (hw->bus_type == e1000_bus_type_pcix &&
602 e1000_pcix_get_mmrbc(hw) > 2048)
603 e1000_pcix_set_mmrbc(hw, 2048);
604 break;
605 }
606
607 /* Call a subroutine to configure the link and setup flow control. */
608 ret_val = e1000_setup_link(hw);
609
610 /* Set the transmit descriptor write-back policy */
611 if (hw->mac_type > e1000_82544) {
612 ctrl = er32(TXDCTL);
613 ctrl =
614 (ctrl & ~E1000_TXDCTL_WTHRESH) |
615 E1000_TXDCTL_FULL_TX_DESC_WB;
616 ew32(TXDCTL, ctrl);
617 }
618
619 /* Clear all of the statistics registers (clear on read). It is
620 * important that we do this after we have tried to establish link
621 * because the symbol error count will increment wildly if there
622 * is no link.
623 */
624 e1000_clear_hw_cntrs(hw);
625
626 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
627 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
628 ctrl_ext = er32(CTRL_EXT);
629 /* Relaxed ordering must be disabled to avoid a parity
630 * error crash in a PCI slot.
631 */
632 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
633 ew32(CTRL_EXT, ctrl_ext);
634 }
635
636 return ret_val;
637}
638
639/**
640 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
641 * @hw: Struct containing variables accessed by shared code.
642 */
643static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
644{
645 u16 eeprom_data;
646 s32 ret_val;
647
648 if (hw->media_type != e1000_media_type_internal_serdes)
649 return E1000_SUCCESS;
650
651 switch (hw->mac_type) {
652 case e1000_82545_rev_3:
653 case e1000_82546_rev_3:
654 break;
655 default:
656 return E1000_SUCCESS;
657 }
658
659 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
660 &eeprom_data);
661 if (ret_val)
662 return ret_val;
663
664 if (eeprom_data != EEPROM_RESERVED_WORD) {
665 /* Adjust SERDES output amplitude only. */
666 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
667 ret_val =
668 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
669 if (ret_val)
670 return ret_val;
671 }
672
673 return E1000_SUCCESS;
674}
675
676/**
677 * e1000_setup_link - Configures flow control and link settings.
678 * @hw: Struct containing variables accessed by shared code
679 *
680 * Determines which flow control settings to use. Calls the appropriate media-
681 * specific link configuration function. Configures the flow control settings.
682 * Assuming the adapter has a valid link partner, a valid link should be
683 * established. Assumes the hardware has previously been reset and the
684 * transmitter and receiver are not enabled.
685 */
686s32 e1000_setup_link(struct e1000_hw *hw)
687{
688 u32 ctrl_ext;
689 s32 ret_val;
690 u16 eeprom_data;
691
692 /* Read and store word 0x0F of the EEPROM. This word contains bits
693 * that determine the hardware's default PAUSE (flow control) mode,
694 * a bit that determines whether the HW defaults to enabling or
695 * disabling auto-negotiation, and the direction of the
696 * SW defined pins. If there is no SW over-ride of the flow
697 * control setting, then the variable hw->fc will
698 * be initialized based on a value in the EEPROM.
699 */
700 if (hw->fc == E1000_FC_DEFAULT) {
701 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
702 1, &eeprom_data);
703 if (ret_val) {
704 e_dbg("EEPROM Read Error\n");
705 return -E1000_ERR_EEPROM;
706 }
707 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
708 hw->fc = E1000_FC_NONE;
709 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
710 EEPROM_WORD0F_ASM_DIR)
711 hw->fc = E1000_FC_TX_PAUSE;
712 else
713 hw->fc = E1000_FC_FULL;
714 }
715
716 /* We want to save off the original Flow Control configuration just
717 * in case we get disconnected and then reconnected into a different
718 * hub or switch with different Flow Control capabilities.
719 */
720 if (hw->mac_type == e1000_82542_rev2_0)
721 hw->fc &= (~E1000_FC_TX_PAUSE);
722
723 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
724 hw->fc &= (~E1000_FC_RX_PAUSE);
725
726 hw->original_fc = hw->fc;
727
728 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
729
730 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
731 * polarity value for the SW controlled pins, and setup the
732 * Extended Device Control reg with that info.
733 * This is needed because one of the SW controlled pins is used for
734 * signal detection. So this should be done before e1000_setup_pcs_link()
735 * or e1000_phy_setup() is called.
736 */
737 if (hw->mac_type == e1000_82543) {
738 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
739 1, &eeprom_data);
740 if (ret_val) {
741 e_dbg("EEPROM Read Error\n");
742 return -E1000_ERR_EEPROM;
743 }
744 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
745 SWDPIO__EXT_SHIFT);
746 ew32(CTRL_EXT, ctrl_ext);
747 }
748
749 /* Call the necessary subroutine to configure the link. */
750 ret_val = (hw->media_type == e1000_media_type_copper) ?
751 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
752
753 /* Initialize the flow control address, type, and PAUSE timer
754 * registers to their default values. This is done even if flow
755 * control is disabled, because it does not hurt anything to
756 * initialize these registers.
757 */
758 e_dbg("Initializing the Flow Control address, type and timer regs\n");
759
760 ew32(FCT, FLOW_CONTROL_TYPE);
761 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
762 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
763
764 ew32(FCTTV, hw->fc_pause_time);
765
766 /* Set the flow control receive threshold registers. Normally,
767 * these registers will be set to a default threshold that may be
768 * adjusted later by the driver's runtime code. However, if the
769 * ability to transmit pause frames in not enabled, then these
770 * registers will be set to 0.
771 */
772 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
773 ew32(FCRTL, 0);
774 ew32(FCRTH, 0);
775 } else {
776 /* We need to set up the Receive Threshold high and low water
777 * marks as well as (optionally) enabling the transmission of
778 * XON frames.
779 */
780 if (hw->fc_send_xon) {
781 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
782 ew32(FCRTH, hw->fc_high_water);
783 } else {
784 ew32(FCRTL, hw->fc_low_water);
785 ew32(FCRTH, hw->fc_high_water);
786 }
787 }
788 return ret_val;
789}
790
791/**
792 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
793 * @hw: Struct containing variables accessed by shared code
794 *
795 * Manipulates Physical Coding Sublayer functions in order to configure
796 * link. Assumes the hardware has been previously reset and the transmitter
797 * and receiver are not enabled.
798 */
799static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
800{
801 u32 ctrl;
802 u32 status;
803 u32 txcw = 0;
804 u32 i;
805 u32 signal = 0;
806 s32 ret_val;
807
808 /* On adapters with a MAC newer than 82544, SWDP 1 will be
809 * set when the optics detect a signal. On older adapters, it will be
810 * cleared when there is a signal. This applies to fiber media only.
811 * If we're on serdes media, adjust the output amplitude to value
812 * set in the EEPROM.
813 */
814 ctrl = er32(CTRL);
815 if (hw->media_type == e1000_media_type_fiber)
816 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
817
818 ret_val = e1000_adjust_serdes_amplitude(hw);
819 if (ret_val)
820 return ret_val;
821
822 /* Take the link out of reset */
823 ctrl &= ~(E1000_CTRL_LRST);
824
825 /* Adjust VCO speed to improve BER performance */
826 ret_val = e1000_set_vco_speed(hw);
827 if (ret_val)
828 return ret_val;
829
830 e1000_config_collision_dist(hw);
831
832 /* Check for a software override of the flow control settings, and setup
833 * the device accordingly. If auto-negotiation is enabled, then
834 * software will have to set the "PAUSE" bits to the correct value in
835 * the Tranmsit Config Word Register (TXCW) and re-start
836 * auto-negotiation. However, if auto-negotiation is disabled, then
837 * software will have to manually configure the two flow control enable
838 * bits in the CTRL register.
839 *
840 * The possible values of the "fc" parameter are:
841 * 0: Flow control is completely disabled
842 * 1: Rx flow control is enabled (we can receive pause frames, but
843 * not send pause frames).
844 * 2: Tx flow control is enabled (we can send pause frames but we do
845 * not support receiving pause frames).
846 * 3: Both Rx and TX flow control (symmetric) are enabled.
847 */
848 switch (hw->fc) {
849 case E1000_FC_NONE:
850 /* Flow ctrl is completely disabled by a software over-ride */
851 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
852 break;
853 case E1000_FC_RX_PAUSE:
854 /* Rx Flow control is enabled and Tx Flow control is disabled by
855 * a software over-ride. Since there really isn't a way to
856 * advertise that we are capable of Rx Pause ONLY, we will
857 * advertise that we support both symmetric and asymmetric Rx
858 * PAUSE. Later, we will disable the adapter's ability to send
859 * PAUSE frames.
860 */
861 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
862 break;
863 case E1000_FC_TX_PAUSE:
864 /* Tx Flow control is enabled, and Rx Flow control is disabled,
865 * by a software over-ride.
866 */
867 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
868 break;
869 case E1000_FC_FULL:
870 /* Flow control (both Rx and Tx) is enabled by a software
871 * over-ride.
872 */
873 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
874 break;
875 default:
876 e_dbg("Flow control param set incorrectly\n");
877 return -E1000_ERR_CONFIG;
878 }
879
880 /* Since auto-negotiation is enabled, take the link out of reset (the
881 * link will be in reset, because we previously reset the chip). This
882 * will restart auto-negotiation. If auto-negotiation is successful
883 * then the link-up status bit will be set and the flow control enable
884 * bits (RFCE and TFCE) will be set according to their negotiated value.
885 */
886 e_dbg("Auto-negotiation enabled\n");
887
888 ew32(TXCW, txcw);
889 ew32(CTRL, ctrl);
890 E1000_WRITE_FLUSH();
891
892 hw->txcw = txcw;
893 msleep(1);
894
895 /* If we have a signal (the cable is plugged in) then poll for a
896 * "Link-Up" indication in the Device Status Register. Time-out if a
897 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
898 * complete in less than 500 milliseconds even if the other end is doing
899 * it in SW). For internal serdes, we just assume a signal is present,
900 * then poll.
901 */
902 if (hw->media_type == e1000_media_type_internal_serdes ||
903 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
904 e_dbg("Looking for Link\n");
905 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
906 msleep(10);
907 status = er32(STATUS);
908 if (status & E1000_STATUS_LU)
909 break;
910 }
911 if (i == (LINK_UP_TIMEOUT / 10)) {
912 e_dbg("Never got a valid link from auto-neg!!!\n");
913 hw->autoneg_failed = 1;
914 /* AutoNeg failed to achieve a link, so we'll call
915 * e1000_check_for_link. This routine will force the
916 * link up if we detect a signal. This will allow us to
917 * communicate with non-autonegotiating link partners.
918 */
919 ret_val = e1000_check_for_link(hw);
920 if (ret_val) {
921 e_dbg("Error while checking for link\n");
922 return ret_val;
923 }
924 hw->autoneg_failed = 0;
925 } else {
926 hw->autoneg_failed = 0;
927 e_dbg("Valid Link Found\n");
928 }
929 } else {
930 e_dbg("No Signal Detected\n");
931 }
932 return E1000_SUCCESS;
933}
934
935/**
936 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
937 * @hw: Struct containing variables accessed by shared code
938 *
939 * Commits changes to PHY configuration by calling e1000_phy_reset().
940 */
941static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
942{
943 s32 ret_val;
944
945 /* SW reset the PHY so all changes take effect */
946 ret_val = e1000_phy_reset(hw);
947 if (ret_val) {
948 e_dbg("Error Resetting the PHY\n");
949 return ret_val;
950 }
951
952 return E1000_SUCCESS;
953}
954
955static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
956{
957 s32 ret_val;
958 u32 ctrl_aux;
959
960 switch (hw->phy_type) {
961 case e1000_phy_8211:
962 ret_val = e1000_copper_link_rtl_setup(hw);
963 if (ret_val) {
964 e_dbg("e1000_copper_link_rtl_setup failed!\n");
965 return ret_val;
966 }
967 break;
968 case e1000_phy_8201:
969 /* Set RMII mode */
970 ctrl_aux = er32(CTL_AUX);
971 ctrl_aux |= E1000_CTL_AUX_RMII;
972 ew32(CTL_AUX, ctrl_aux);
973 E1000_WRITE_FLUSH();
974
975 /* Disable the J/K bits required for receive */
976 ctrl_aux = er32(CTL_AUX);
977 ctrl_aux |= 0x4;
978 ctrl_aux &= ~0x2;
979 ew32(CTL_AUX, ctrl_aux);
980 E1000_WRITE_FLUSH();
981 ret_val = e1000_copper_link_rtl_setup(hw);
982
983 if (ret_val) {
984 e_dbg("e1000_copper_link_rtl_setup failed!\n");
985 return ret_val;
986 }
987 break;
988 default:
989 e_dbg("Error Resetting the PHY\n");
990 return E1000_ERR_PHY_TYPE;
991 }
992
993 return E1000_SUCCESS;
994}
995
996/**
997 * e1000_copper_link_preconfig - early configuration for copper
998 * @hw: Struct containing variables accessed by shared code
999 *
1000 * Make sure we have a valid PHY and change PHY mode before link setup.
1001 */
1002static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1003{
1004 u32 ctrl;
1005 s32 ret_val;
1006 u16 phy_data;
1007
1008 ctrl = er32(CTRL);
1009 /* With 82543, we need to force speed and duplex on the MAC equal to
1010 * what the PHY speed and duplex configuration is. In addition, we need
1011 * to perform a hardware reset on the PHY to take it out of reset.
1012 */
1013 if (hw->mac_type > e1000_82543) {
1014 ctrl |= E1000_CTRL_SLU;
1015 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1016 ew32(CTRL, ctrl);
1017 } else {
1018 ctrl |=
1019 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1020 ew32(CTRL, ctrl);
1021 ret_val = e1000_phy_hw_reset(hw);
1022 if (ret_val)
1023 return ret_val;
1024 }
1025
1026 /* Make sure we have a valid PHY */
1027 ret_val = e1000_detect_gig_phy(hw);
1028 if (ret_val) {
1029 e_dbg("Error, did not detect valid phy.\n");
1030 return ret_val;
1031 }
1032 e_dbg("Phy ID = %x\n", hw->phy_id);
1033
1034 /* Set PHY to class A mode (if necessary) */
1035 ret_val = e1000_set_phy_mode(hw);
1036 if (ret_val)
1037 return ret_val;
1038
1039 if ((hw->mac_type == e1000_82545_rev_3) ||
1040 (hw->mac_type == e1000_82546_rev_3)) {
1041 ret_val =
1042 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1043 phy_data |= 0x00000008;
1044 ret_val =
1045 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1046 }
1047
1048 if (hw->mac_type <= e1000_82543 ||
1049 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1050 hw->mac_type == e1000_82541_rev_2 ||
1051 hw->mac_type == e1000_82547_rev_2)
1052 hw->phy_reset_disable = false;
1053
1054 return E1000_SUCCESS;
1055}
1056
1057/**
1058 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1059 * @hw: Struct containing variables accessed by shared code
1060 */
1061static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1062{
1063 u32 led_ctrl;
1064 s32 ret_val;
1065 u16 phy_data;
1066
1067 if (hw->phy_reset_disable)
1068 return E1000_SUCCESS;
1069
1070 ret_val = e1000_phy_reset(hw);
1071 if (ret_val) {
1072 e_dbg("Error Resetting the PHY\n");
1073 return ret_val;
1074 }
1075
1076 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1077 msleep(15);
1078 /* Configure activity LED after PHY reset */
1079 led_ctrl = er32(LEDCTL);
1080 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1081 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1082 ew32(LEDCTL, led_ctrl);
1083
1084 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1085 if (hw->phy_type == e1000_phy_igp) {
1086 /* disable lplu d3 during driver init */
1087 ret_val = e1000_set_d3_lplu_state(hw, false);
1088 if (ret_val) {
1089 e_dbg("Error Disabling LPLU D3\n");
1090 return ret_val;
1091 }
1092 }
1093
1094 /* Configure mdi-mdix settings */
1095 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1096 if (ret_val)
1097 return ret_val;
1098
1099 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1100 hw->dsp_config_state = e1000_dsp_config_disabled;
1101 /* Force MDI for earlier revs of the IGP PHY */
1102 phy_data &=
1103 ~(IGP01E1000_PSCR_AUTO_MDIX |
1104 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1105 hw->mdix = 1;
1106
1107 } else {
1108 hw->dsp_config_state = e1000_dsp_config_enabled;
1109 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1110
1111 switch (hw->mdix) {
1112 case 1:
1113 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1114 break;
1115 case 2:
1116 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1117 break;
1118 case 0:
1119 default:
1120 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1121 break;
1122 }
1123 }
1124 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1125 if (ret_val)
1126 return ret_val;
1127
1128 /* set auto-master slave resolution settings */
1129 if (hw->autoneg) {
1130 e1000_ms_type phy_ms_setting = hw->master_slave;
1131
1132 if (hw->ffe_config_state == e1000_ffe_config_active)
1133 hw->ffe_config_state = e1000_ffe_config_enabled;
1134
1135 if (hw->dsp_config_state == e1000_dsp_config_activated)
1136 hw->dsp_config_state = e1000_dsp_config_enabled;
1137
1138 /* when autonegotiation advertisement is only 1000Mbps then we
1139 * should disable SmartSpeed and enable Auto MasterSlave
1140 * resolution as hardware default.
1141 */
1142 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1143 /* Disable SmartSpeed */
1144 ret_val =
1145 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1146 &phy_data);
1147 if (ret_val)
1148 return ret_val;
1149 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1150 ret_val =
1151 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1152 phy_data);
1153 if (ret_val)
1154 return ret_val;
1155 /* Set auto Master/Slave resolution process */
1156 ret_val =
1157 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1158 if (ret_val)
1159 return ret_val;
1160 phy_data &= ~CR_1000T_MS_ENABLE;
1161 ret_val =
1162 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1163 if (ret_val)
1164 return ret_val;
1165 }
1166
1167 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1168 if (ret_val)
1169 return ret_val;
1170
1171 /* load defaults for future use */
1172 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1173 ((phy_data & CR_1000T_MS_VALUE) ?
1174 e1000_ms_force_master :
1175 e1000_ms_force_slave) : e1000_ms_auto;
1176
1177 switch (phy_ms_setting) {
1178 case e1000_ms_force_master:
1179 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1180 break;
1181 case e1000_ms_force_slave:
1182 phy_data |= CR_1000T_MS_ENABLE;
1183 phy_data &= ~(CR_1000T_MS_VALUE);
1184 break;
1185 case e1000_ms_auto:
1186 phy_data &= ~CR_1000T_MS_ENABLE;
1187 break;
1188 default:
1189 break;
1190 }
1191 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1192 if (ret_val)
1193 return ret_val;
1194 }
1195
1196 return E1000_SUCCESS;
1197}
1198
1199/**
1200 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1201 * @hw: Struct containing variables accessed by shared code
1202 */
1203static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1204{
1205 s32 ret_val;
1206 u16 phy_data;
1207
1208 if (hw->phy_reset_disable)
1209 return E1000_SUCCESS;
1210
1211 /* Enable CRS on TX. This must be set for half-duplex operation. */
1212 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1213 if (ret_val)
1214 return ret_val;
1215
1216 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1217
1218 /* Options:
1219 * MDI/MDI-X = 0 (default)
1220 * 0 - Auto for all speeds
1221 * 1 - MDI mode
1222 * 2 - MDI-X mode
1223 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1224 */
1225 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1226
1227 switch (hw->mdix) {
1228 case 1:
1229 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1230 break;
1231 case 2:
1232 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1233 break;
1234 case 3:
1235 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1236 break;
1237 case 0:
1238 default:
1239 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1240 break;
1241 }
1242
1243 /* Options:
1244 * disable_polarity_correction = 0 (default)
1245 * Automatic Correction for Reversed Cable Polarity
1246 * 0 - Disabled
1247 * 1 - Enabled
1248 */
1249 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1250 if (hw->disable_polarity_correction == 1)
1251 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1252 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1253 if (ret_val)
1254 return ret_val;
1255
1256 if (hw->phy_revision < M88E1011_I_REV_4) {
1257 /* Force TX_CLK in the Extended PHY Specific Control Register
1258 * to 25MHz clock.
1259 */
1260 ret_val =
1261 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1262 &phy_data);
1263 if (ret_val)
1264 return ret_val;
1265
1266 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1267
1268 if ((hw->phy_revision == E1000_REVISION_2) &&
1269 (hw->phy_id == M88E1111_I_PHY_ID)) {
1270 /* Vidalia Phy, set the downshift counter to 5x */
1271 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1272 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1273 ret_val = e1000_write_phy_reg(hw,
1274 M88E1000_EXT_PHY_SPEC_CTRL,
1275 phy_data);
1276 if (ret_val)
1277 return ret_val;
1278 } else {
1279 /* Configure Master and Slave downshift values */
1280 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1281 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1282 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1283 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1284 ret_val = e1000_write_phy_reg(hw,
1285 M88E1000_EXT_PHY_SPEC_CTRL,
1286 phy_data);
1287 if (ret_val)
1288 return ret_val;
1289 }
1290 }
1291
1292 /* SW Reset the PHY so all changes take effect */
1293 ret_val = e1000_phy_reset(hw);
1294 if (ret_val) {
1295 e_dbg("Error Resetting the PHY\n");
1296 return ret_val;
1297 }
1298
1299 return E1000_SUCCESS;
1300}
1301
1302/**
1303 * e1000_copper_link_autoneg - setup auto-neg
1304 * @hw: Struct containing variables accessed by shared code
1305 *
1306 * Setup auto-negotiation and flow control advertisements,
1307 * and then perform auto-negotiation.
1308 */
1309static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1310{
1311 s32 ret_val;
1312 u16 phy_data;
1313
1314 /* Perform some bounds checking on the hw->autoneg_advertised
1315 * parameter. If this variable is zero, then set it to the default.
1316 */
1317 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1318
1319 /* If autoneg_advertised is zero, we assume it was not defaulted
1320 * by the calling code so we set to advertise full capability.
1321 */
1322 if (hw->autoneg_advertised == 0)
1323 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1324
1325 /* IFE/RTL8201N PHY only supports 10/100 */
1326 if (hw->phy_type == e1000_phy_8201)
1327 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1328
1329 e_dbg("Reconfiguring auto-neg advertisement params\n");
1330 ret_val = e1000_phy_setup_autoneg(hw);
1331 if (ret_val) {
1332 e_dbg("Error Setting up Auto-Negotiation\n");
1333 return ret_val;
1334 }
1335 e_dbg("Restarting Auto-Neg\n");
1336
1337 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1338 * the Auto Neg Restart bit in the PHY control register.
1339 */
1340 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1341 if (ret_val)
1342 return ret_val;
1343
1344 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1345 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1346 if (ret_val)
1347 return ret_val;
1348
1349 /* Does the user want to wait for Auto-Neg to complete here, or
1350 * check at a later time (for example, callback routine).
1351 */
1352 if (hw->wait_autoneg_complete) {
1353 ret_val = e1000_wait_autoneg(hw);
1354 if (ret_val) {
1355 e_dbg
1356 ("Error while waiting for autoneg to complete\n");
1357 return ret_val;
1358 }
1359 }
1360
1361 hw->get_link_status = true;
1362
1363 return E1000_SUCCESS;
1364}
1365
1366/**
1367 * e1000_copper_link_postconfig - post link setup
1368 * @hw: Struct containing variables accessed by shared code
1369 *
1370 * Config the MAC and the PHY after link is up.
1371 * 1) Set up the MAC to the current PHY speed/duplex
1372 * if we are on 82543. If we
1373 * are on newer silicon, we only need to configure
1374 * collision distance in the Transmit Control Register.
1375 * 2) Set up flow control on the MAC to that established with
1376 * the link partner.
1377 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1378 */
1379static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1380{
1381 s32 ret_val;
1382
1383 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1384 e1000_config_collision_dist(hw);
1385 } else {
1386 ret_val = e1000_config_mac_to_phy(hw);
1387 if (ret_val) {
1388 e_dbg("Error configuring MAC to PHY settings\n");
1389 return ret_val;
1390 }
1391 }
1392 ret_val = e1000_config_fc_after_link_up(hw);
1393 if (ret_val) {
1394 e_dbg("Error Configuring Flow Control\n");
1395 return ret_val;
1396 }
1397
1398 /* Config DSP to improve Giga link quality */
1399 if (hw->phy_type == e1000_phy_igp) {
1400 ret_val = e1000_config_dsp_after_link_change(hw, true);
1401 if (ret_val) {
1402 e_dbg("Error Configuring DSP after link up\n");
1403 return ret_val;
1404 }
1405 }
1406
1407 return E1000_SUCCESS;
1408}
1409
1410/**
1411 * e1000_setup_copper_link - phy/speed/duplex setting
1412 * @hw: Struct containing variables accessed by shared code
1413 *
1414 * Detects which PHY is present and sets up the speed and duplex
1415 */
1416static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1417{
1418 s32 ret_val;
1419 u16 i;
1420 u16 phy_data;
1421
1422 /* Check if it is a valid PHY and set PHY mode if necessary. */
1423 ret_val = e1000_copper_link_preconfig(hw);
1424 if (ret_val)
1425 return ret_val;
1426
1427 if (hw->phy_type == e1000_phy_igp) {
1428 ret_val = e1000_copper_link_igp_setup(hw);
1429 if (ret_val)
1430 return ret_val;
1431 } else if (hw->phy_type == e1000_phy_m88) {
1432 ret_val = e1000_copper_link_mgp_setup(hw);
1433 if (ret_val)
1434 return ret_val;
1435 } else {
1436 ret_val = gbe_dhg_phy_setup(hw);
1437 if (ret_val) {
1438 e_dbg("gbe_dhg_phy_setup failed!\n");
1439 return ret_val;
1440 }
1441 }
1442
1443 if (hw->autoneg) {
1444 /* Setup autoneg and flow control advertisement
1445 * and perform autonegotiation
1446 */
1447 ret_val = e1000_copper_link_autoneg(hw);
1448 if (ret_val)
1449 return ret_val;
1450 } else {
1451 /* PHY will be set to 10H, 10F, 100H,or 100F
1452 * depending on value from forced_speed_duplex.
1453 */
1454 e_dbg("Forcing speed and duplex\n");
1455 ret_val = e1000_phy_force_speed_duplex(hw);
1456 if (ret_val) {
1457 e_dbg("Error Forcing Speed and Duplex\n");
1458 return ret_val;
1459 }
1460 }
1461
1462 /* Check link status. Wait up to 100 microseconds for link to become
1463 * valid.
1464 */
1465 for (i = 0; i < 10; i++) {
1466 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1467 if (ret_val)
1468 return ret_val;
1469 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1470 if (ret_val)
1471 return ret_val;
1472
1473 if (phy_data & MII_SR_LINK_STATUS) {
1474 /* Config the MAC and PHY after link is up */
1475 ret_val = e1000_copper_link_postconfig(hw);
1476 if (ret_val)
1477 return ret_val;
1478
1479 e_dbg("Valid link established!!!\n");
1480 return E1000_SUCCESS;
1481 }
1482 udelay(10);
1483 }
1484
1485 e_dbg("Unable to establish link!!!\n");
1486 return E1000_SUCCESS;
1487}
1488
1489/**
1490 * e1000_phy_setup_autoneg - phy settings
1491 * @hw: Struct containing variables accessed by shared code
1492 *
1493 * Configures PHY autoneg and flow control advertisement settings
1494 */
1495s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1496{
1497 s32 ret_val;
1498 u16 mii_autoneg_adv_reg;
1499 u16 mii_1000t_ctrl_reg;
1500
1501 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1502 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1503 if (ret_val)
1504 return ret_val;
1505
1506 /* Read the MII 1000Base-T Control Register (Address 9). */
1507 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1508 if (ret_val)
1509 return ret_val;
1510 else if (hw->phy_type == e1000_phy_8201)
1511 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1512
1513 /* Need to parse both autoneg_advertised and fc and set up
1514 * the appropriate PHY registers. First we will parse for
1515 * autoneg_advertised software override. Since we can advertise
1516 * a plethora of combinations, we need to check each bit
1517 * individually.
1518 */
1519
1520 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1521 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1522 * the 1000Base-T Control Register (Address 9).
1523 */
1524 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1525 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1526
1527 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1528
1529 /* Do we want to advertise 10 Mb Half Duplex? */
1530 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1531 e_dbg("Advertise 10mb Half duplex\n");
1532 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1533 }
1534
1535 /* Do we want to advertise 10 Mb Full Duplex? */
1536 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1537 e_dbg("Advertise 10mb Full duplex\n");
1538 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1539 }
1540
1541 /* Do we want to advertise 100 Mb Half Duplex? */
1542 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1543 e_dbg("Advertise 100mb Half duplex\n");
1544 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1545 }
1546
1547 /* Do we want to advertise 100 Mb Full Duplex? */
1548 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1549 e_dbg("Advertise 100mb Full duplex\n");
1550 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1551 }
1552
1553 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1554 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1555 e_dbg
1556 ("Advertise 1000mb Half duplex requested, request denied!\n");
1557 }
1558
1559 /* Do we want to advertise 1000 Mb Full Duplex? */
1560 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1561 e_dbg("Advertise 1000mb Full duplex\n");
1562 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1563 }
1564
1565 /* Check for a software override of the flow control settings, and
1566 * setup the PHY advertisement registers accordingly. If
1567 * auto-negotiation is enabled, then software will have to set the
1568 * "PAUSE" bits to the correct value in the Auto-Negotiation
1569 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1570 * auto-negotiation.
1571 *
1572 * The possible values of the "fc" parameter are:
1573 * 0: Flow control is completely disabled
1574 * 1: Rx flow control is enabled (we can receive pause frames
1575 * but not send pause frames).
1576 * 2: Tx flow control is enabled (we can send pause frames
1577 * but we do not support receiving pause frames).
1578 * 3: Both Rx and TX flow control (symmetric) are enabled.
1579 * other: No software override. The flow control configuration
1580 * in the EEPROM is used.
1581 */
1582 switch (hw->fc) {
1583 case E1000_FC_NONE: /* 0 */
1584 /* Flow control (RX & TX) is completely disabled by a
1585 * software over-ride.
1586 */
1587 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1588 break;
1589 case E1000_FC_RX_PAUSE: /* 1 */
1590 /* RX Flow control is enabled, and TX Flow control is
1591 * disabled, by a software over-ride.
1592 */
1593 /* Since there really isn't a way to advertise that we are
1594 * capable of RX Pause ONLY, we will advertise that we
1595 * support both symmetric and asymmetric RX PAUSE. Later
1596 * (in e1000_config_fc_after_link_up) we will disable the
1597 * hw's ability to send PAUSE frames.
1598 */
1599 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1600 break;
1601 case E1000_FC_TX_PAUSE: /* 2 */
1602 /* TX Flow control is enabled, and RX Flow control is
1603 * disabled, by a software over-ride.
1604 */
1605 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1606 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1607 break;
1608 case E1000_FC_FULL: /* 3 */
1609 /* Flow control (both RX and TX) is enabled by a software
1610 * over-ride.
1611 */
1612 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613 break;
1614 default:
1615 e_dbg("Flow control param set incorrectly\n");
1616 return -E1000_ERR_CONFIG;
1617 }
1618
1619 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1620 if (ret_val)
1621 return ret_val;
1622
1623 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1624
1625 if (hw->phy_type == e1000_phy_8201) {
1626 mii_1000t_ctrl_reg = 0;
1627 } else {
1628 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1629 mii_1000t_ctrl_reg);
1630 if (ret_val)
1631 return ret_val;
1632 }
1633
1634 return E1000_SUCCESS;
1635}
1636
1637/**
1638 * e1000_phy_force_speed_duplex - force link settings
1639 * @hw: Struct containing variables accessed by shared code
1640 *
1641 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1642 */
1643static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1644{
1645 u32 ctrl;
1646 s32 ret_val;
1647 u16 mii_ctrl_reg;
1648 u16 mii_status_reg;
1649 u16 phy_data;
1650 u16 i;
1651
1652 /* Turn off Flow control if we are forcing speed and duplex. */
1653 hw->fc = E1000_FC_NONE;
1654
1655 e_dbg("hw->fc = %d\n", hw->fc);
1656
1657 /* Read the Device Control Register. */
1658 ctrl = er32(CTRL);
1659
1660 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1661 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1662 ctrl &= ~(DEVICE_SPEED_MASK);
1663
1664 /* Clear the Auto Speed Detect Enable bit. */
1665 ctrl &= ~E1000_CTRL_ASDE;
1666
1667 /* Read the MII Control Register. */
1668 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1669 if (ret_val)
1670 return ret_val;
1671
1672 /* We need to disable autoneg in order to force link and duplex. */
1673
1674 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1675
1676 /* Are we forcing Full or Half Duplex? */
1677 if (hw->forced_speed_duplex == e1000_100_full ||
1678 hw->forced_speed_duplex == e1000_10_full) {
1679 /* We want to force full duplex so we SET the full duplex bits
1680 * in the Device and MII Control Registers.
1681 */
1682 ctrl |= E1000_CTRL_FD;
1683 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1684 e_dbg("Full Duplex\n");
1685 } else {
1686 /* We want to force half duplex so we CLEAR the full duplex bits
1687 * in the Device and MII Control Registers.
1688 */
1689 ctrl &= ~E1000_CTRL_FD;
1690 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1691 e_dbg("Half Duplex\n");
1692 }
1693
1694 /* Are we forcing 100Mbps??? */
1695 if (hw->forced_speed_duplex == e1000_100_full ||
1696 hw->forced_speed_duplex == e1000_100_half) {
1697 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1698 ctrl |= E1000_CTRL_SPD_100;
1699 mii_ctrl_reg |= MII_CR_SPEED_100;
1700 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1701 e_dbg("Forcing 100mb ");
1702 } else {
1703 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1704 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1705 mii_ctrl_reg |= MII_CR_SPEED_10;
1706 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1707 e_dbg("Forcing 10mb ");
1708 }
1709
1710 e1000_config_collision_dist(hw);
1711
1712 /* Write the configured values back to the Device Control Reg. */
1713 ew32(CTRL, ctrl);
1714
1715 if (hw->phy_type == e1000_phy_m88) {
1716 ret_val =
1717 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1718 if (ret_val)
1719 return ret_val;
1720
1721 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1722 * MDI forced whenever speed are duplex are forced.
1723 */
1724 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1725 ret_val =
1726 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1727 if (ret_val)
1728 return ret_val;
1729
1730 e_dbg("M88E1000 PSCR: %x\n", phy_data);
1731
1732 /* Need to reset the PHY or these changes will be ignored */
1733 mii_ctrl_reg |= MII_CR_RESET;
1734
1735 /* Disable MDI-X support for 10/100 */
1736 } else {
1737 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1738 * forced whenever speed or duplex are forced.
1739 */
1740 ret_val =
1741 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1742 if (ret_val)
1743 return ret_val;
1744
1745 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1746 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1747
1748 ret_val =
1749 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1750 if (ret_val)
1751 return ret_val;
1752 }
1753
1754 /* Write back the modified PHY MII control register. */
1755 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1756 if (ret_val)
1757 return ret_val;
1758
1759 udelay(1);
1760
1761 /* The wait_autoneg_complete flag may be a little misleading here.
1762 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1763 * But we do want to delay for a period while forcing only so we
1764 * don't generate false No Link messages. So we will wait here
1765 * only if the user has set wait_autoneg_complete to 1, which is
1766 * the default.
1767 */
1768 if (hw->wait_autoneg_complete) {
1769 /* We will wait for autoneg to complete. */
1770 e_dbg("Waiting for forced speed/duplex link.\n");
1771 mii_status_reg = 0;
1772
1773 /* Wait for autoneg to complete or 4.5 seconds to expire */
1774 for (i = PHY_FORCE_TIME; i > 0; i--) {
1775 /* Read the MII Status Register and wait for Auto-Neg
1776 * Complete bit to be set.
1777 */
1778 ret_val =
1779 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1780 if (ret_val)
1781 return ret_val;
1782
1783 ret_val =
1784 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1785 if (ret_val)
1786 return ret_val;
1787
1788 if (mii_status_reg & MII_SR_LINK_STATUS)
1789 break;
1790 msleep(100);
1791 }
1792 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1793 /* We didn't get link. Reset the DSP and wait again
1794 * for link.
1795 */
1796 ret_val = e1000_phy_reset_dsp(hw);
1797 if (ret_val) {
1798 e_dbg("Error Resetting PHY DSP\n");
1799 return ret_val;
1800 }
1801 }
1802 /* This loop will early-out if the link condition has been
1803 * met
1804 */
1805 for (i = PHY_FORCE_TIME; i > 0; i--) {
1806 if (mii_status_reg & MII_SR_LINK_STATUS)
1807 break;
1808 msleep(100);
1809 /* Read the MII Status Register and wait for Auto-Neg
1810 * Complete bit to be set.
1811 */
1812 ret_val =
1813 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1814 if (ret_val)
1815 return ret_val;
1816
1817 ret_val =
1818 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1819 if (ret_val)
1820 return ret_val;
1821 }
1822 }
1823
1824 if (hw->phy_type == e1000_phy_m88) {
1825 /* Because we reset the PHY above, we need to re-force TX_CLK in
1826 * the Extended PHY Specific Control Register to 25MHz clock.
1827 * This value defaults back to a 2.5MHz clock when the PHY is
1828 * reset.
1829 */
1830 ret_val =
1831 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1832 &phy_data);
1833 if (ret_val)
1834 return ret_val;
1835
1836 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1837 ret_val =
1838 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1839 phy_data);
1840 if (ret_val)
1841 return ret_val;
1842
1843 /* In addition, because of the s/w reset above, we need to
1844 * enable CRS on Tx. This must be set for both full and half
1845 * duplex operation.
1846 */
1847 ret_val =
1848 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849 if (ret_val)
1850 return ret_val;
1851
1852 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1853 ret_val =
1854 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1855 if (ret_val)
1856 return ret_val;
1857
1858 if ((hw->mac_type == e1000_82544 ||
1859 hw->mac_type == e1000_82543) &&
1860 (!hw->autoneg) &&
1861 (hw->forced_speed_duplex == e1000_10_full ||
1862 hw->forced_speed_duplex == e1000_10_half)) {
1863 ret_val = e1000_polarity_reversal_workaround(hw);
1864 if (ret_val)
1865 return ret_val;
1866 }
1867 }
1868 return E1000_SUCCESS;
1869}
1870
1871/**
1872 * e1000_config_collision_dist - set collision distance register
1873 * @hw: Struct containing variables accessed by shared code
1874 *
1875 * Sets the collision distance in the Transmit Control register.
1876 * Link should have been established previously. Reads the speed and duplex
1877 * information from the Device Status register.
1878 */
1879void e1000_config_collision_dist(struct e1000_hw *hw)
1880{
1881 u32 tctl, coll_dist;
1882
1883 if (hw->mac_type < e1000_82543)
1884 coll_dist = E1000_COLLISION_DISTANCE_82542;
1885 else
1886 coll_dist = E1000_COLLISION_DISTANCE;
1887
1888 tctl = er32(TCTL);
1889
1890 tctl &= ~E1000_TCTL_COLD;
1891 tctl |= coll_dist << E1000_COLD_SHIFT;
1892
1893 ew32(TCTL, tctl);
1894 E1000_WRITE_FLUSH();
1895}
1896
1897/**
1898 * e1000_config_mac_to_phy - sync phy and mac settings
1899 * @hw: Struct containing variables accessed by shared code
1900 *
1901 * Sets MAC speed and duplex settings to reflect the those in the PHY
1902 * The contents of the PHY register containing the needed information need to
1903 * be passed in.
1904 */
1905static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1906{
1907 u32 ctrl;
1908 s32 ret_val;
1909 u16 phy_data;
1910
1911 /* 82544 or newer MAC, Auto Speed Detection takes care of
1912 * MAC speed/duplex configuration.
1913 */
1914 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1915 return E1000_SUCCESS;
1916
1917 /* Read the Device Control Register and set the bits to Force Speed
1918 * and Duplex.
1919 */
1920 ctrl = er32(CTRL);
1921 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1922 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1923
1924 switch (hw->phy_type) {
1925 case e1000_phy_8201:
1926 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1927 if (ret_val)
1928 return ret_val;
1929
1930 if (phy_data & RTL_PHY_CTRL_FD)
1931 ctrl |= E1000_CTRL_FD;
1932 else
1933 ctrl &= ~E1000_CTRL_FD;
1934
1935 if (phy_data & RTL_PHY_CTRL_SPD_100)
1936 ctrl |= E1000_CTRL_SPD_100;
1937 else
1938 ctrl |= E1000_CTRL_SPD_10;
1939
1940 e1000_config_collision_dist(hw);
1941 break;
1942 default:
1943 /* Set up duplex in the Device Control and Transmit Control
1944 * registers depending on negotiated values.
1945 */
1946 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1947 &phy_data);
1948 if (ret_val)
1949 return ret_val;
1950
1951 if (phy_data & M88E1000_PSSR_DPLX)
1952 ctrl |= E1000_CTRL_FD;
1953 else
1954 ctrl &= ~E1000_CTRL_FD;
1955
1956 e1000_config_collision_dist(hw);
1957
1958 /* Set up speed in the Device Control register depending on
1959 * negotiated values.
1960 */
1961 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1962 ctrl |= E1000_CTRL_SPD_1000;
1963 else if ((phy_data & M88E1000_PSSR_SPEED) ==
1964 M88E1000_PSSR_100MBS)
1965 ctrl |= E1000_CTRL_SPD_100;
1966 }
1967
1968 /* Write the configured values back to the Device Control Reg. */
1969 ew32(CTRL, ctrl);
1970 return E1000_SUCCESS;
1971}
1972
1973/**
1974 * e1000_force_mac_fc - force flow control settings
1975 * @hw: Struct containing variables accessed by shared code
1976 *
1977 * Forces the MAC's flow control settings.
1978 * Sets the TFCE and RFCE bits in the device control register to reflect
1979 * the adapter settings. TFCE and RFCE need to be explicitly set by
1980 * software when a Copper PHY is used because autonegotiation is managed
1981 * by the PHY rather than the MAC. Software must also configure these
1982 * bits when link is forced on a fiber connection.
1983 */
1984s32 e1000_force_mac_fc(struct e1000_hw *hw)
1985{
1986 u32 ctrl;
1987
1988 /* Get the current configuration of the Device Control Register */
1989 ctrl = er32(CTRL);
1990
1991 /* Because we didn't get link via the internal auto-negotiation
1992 * mechanism (we either forced link or we got link via PHY
1993 * auto-neg), we have to manually enable/disable transmit an
1994 * receive flow control.
1995 *
1996 * The "Case" statement below enables/disable flow control
1997 * according to the "hw->fc" parameter.
1998 *
1999 * The possible values of the "fc" parameter are:
2000 * 0: Flow control is completely disabled
2001 * 1: Rx flow control is enabled (we can receive pause
2002 * frames but not send pause frames).
2003 * 2: Tx flow control is enabled (we can send pause frames
2004 * but we do not receive pause frames).
2005 * 3: Both Rx and TX flow control (symmetric) is enabled.
2006 * other: No other values should be possible at this point.
2007 */
2008
2009 switch (hw->fc) {
2010 case E1000_FC_NONE:
2011 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2012 break;
2013 case E1000_FC_RX_PAUSE:
2014 ctrl &= (~E1000_CTRL_TFCE);
2015 ctrl |= E1000_CTRL_RFCE;
2016 break;
2017 case E1000_FC_TX_PAUSE:
2018 ctrl &= (~E1000_CTRL_RFCE);
2019 ctrl |= E1000_CTRL_TFCE;
2020 break;
2021 case E1000_FC_FULL:
2022 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2023 break;
2024 default:
2025 e_dbg("Flow control param set incorrectly\n");
2026 return -E1000_ERR_CONFIG;
2027 }
2028
2029 /* Disable TX Flow Control for 82542 (rev 2.0) */
2030 if (hw->mac_type == e1000_82542_rev2_0)
2031 ctrl &= (~E1000_CTRL_TFCE);
2032
2033 ew32(CTRL, ctrl);
2034 return E1000_SUCCESS;
2035}
2036
2037/**
2038 * e1000_config_fc_after_link_up - configure flow control after autoneg
2039 * @hw: Struct containing variables accessed by shared code
2040 *
2041 * Configures flow control settings after link is established
2042 * Should be called immediately after a valid link has been established.
2043 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2044 * and autonegotiation is enabled, the MAC flow control settings will be set
2045 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2046 * and RFCE bits will be automatically set to the negotiated flow control mode.
2047 */
2048static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2049{
2050 s32 ret_val;
2051 u16 mii_status_reg;
2052 u16 mii_nway_adv_reg;
2053 u16 mii_nway_lp_ability_reg;
2054 u16 speed;
2055 u16 duplex;
2056
2057 /* Check for the case where we have fiber media and auto-neg failed
2058 * so we had to force link. In this case, we need to force the
2059 * configuration of the MAC to match the "fc" parameter.
2060 */
2061 if (((hw->media_type == e1000_media_type_fiber) &&
2062 (hw->autoneg_failed)) ||
2063 ((hw->media_type == e1000_media_type_internal_serdes) &&
2064 (hw->autoneg_failed)) ||
2065 ((hw->media_type == e1000_media_type_copper) &&
2066 (!hw->autoneg))) {
2067 ret_val = e1000_force_mac_fc(hw);
2068 if (ret_val) {
2069 e_dbg("Error forcing flow control settings\n");
2070 return ret_val;
2071 }
2072 }
2073
2074 /* Check for the case where we have copper media and auto-neg is
2075 * enabled. In this case, we need to check and see if Auto-Neg
2076 * has completed, and if so, how the PHY and link partner has
2077 * flow control configured.
2078 */
2079 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2080 /* Read the MII Status Register and check to see if AutoNeg
2081 * has completed. We read this twice because this reg has
2082 * some "sticky" (latched) bits.
2083 */
2084 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2085 if (ret_val)
2086 return ret_val;
2087 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2088 if (ret_val)
2089 return ret_val;
2090
2091 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2092 /* The AutoNeg process has completed, so we now need to
2093 * read both the Auto Negotiation Advertisement Register
2094 * (Address 4) and the Auto_Negotiation Base Page
2095 * Ability Register (Address 5) to determine how flow
2096 * control was negotiated.
2097 */
2098 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2099 &mii_nway_adv_reg);
2100 if (ret_val)
2101 return ret_val;
2102 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2103 &mii_nway_lp_ability_reg);
2104 if (ret_val)
2105 return ret_val;
2106
2107 /* Two bits in the Auto Negotiation Advertisement
2108 * Register (Address 4) and two bits in the Auto
2109 * Negotiation Base Page Ability Register (Address 5)
2110 * determine flow control for both the PHY and the link
2111 * partner. The following table, taken out of the IEEE
2112 * 802.3ab/D6.0 dated March 25, 1999, describes these
2113 * PAUSE resolution bits and how flow control is
2114 * determined based upon these settings.
2115 * NOTE: DC = Don't Care
2116 *
2117 * LOCAL DEVICE | LINK PARTNER
2118 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2119 *-------|---------|-------|---------|------------------
2120 * 0 | 0 | DC | DC | E1000_FC_NONE
2121 * 0 | 1 | 0 | DC | E1000_FC_NONE
2122 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2123 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2124 * 1 | 0 | 0 | DC | E1000_FC_NONE
2125 * 1 | DC | 1 | DC | E1000_FC_FULL
2126 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2127 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2128 *
2129 */
2130 /* Are both PAUSE bits set to 1? If so, this implies
2131 * Symmetric Flow Control is enabled at both ends. The
2132 * ASM_DIR bits are irrelevant per the spec.
2133 *
2134 * For Symmetric Flow Control:
2135 *
2136 * LOCAL DEVICE | LINK PARTNER
2137 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2138 *-------|---------|-------|---------|------------------
2139 * 1 | DC | 1 | DC | E1000_FC_FULL
2140 *
2141 */
2142 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2143 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2144 /* Now we need to check if the user selected Rx
2145 * ONLY of pause frames. In this case, we had
2146 * to advertise FULL flow control because we
2147 * could not advertise Rx ONLY. Hence, we must
2148 * now check to see if we need to turn OFF the
2149 * TRANSMISSION of PAUSE frames.
2150 */
2151 if (hw->original_fc == E1000_FC_FULL) {
2152 hw->fc = E1000_FC_FULL;
2153 e_dbg("Flow Control = FULL.\n");
2154 } else {
2155 hw->fc = E1000_FC_RX_PAUSE;
2156 e_dbg
2157 ("Flow Control = RX PAUSE frames only.\n");
2158 }
2159 }
2160 /* For receiving PAUSE frames ONLY.
2161 *
2162 * LOCAL DEVICE | LINK PARTNER
2163 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164 *-------|---------|-------|---------|------------------
2165 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2166 *
2167 */
2168 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2170 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2171 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2172 hw->fc = E1000_FC_TX_PAUSE;
2173 e_dbg
2174 ("Flow Control = TX PAUSE frames only.\n");
2175 }
2176 /* For transmitting PAUSE frames ONLY.
2177 *
2178 * LOCAL DEVICE | LINK PARTNER
2179 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180 *-------|---------|-------|---------|------------------
2181 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2182 *
2183 */
2184 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2186 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2187 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2188 hw->fc = E1000_FC_RX_PAUSE;
2189 e_dbg
2190 ("Flow Control = RX PAUSE frames only.\n");
2191 }
2192 /* Per the IEEE spec, at this point flow control should
2193 * be disabled. However, we want to consider that we
2194 * could be connected to a legacy switch that doesn't
2195 * advertise desired flow control, but can be forced on
2196 * the link partner. So if we advertised no flow
2197 * control, that is what we will resolve to. If we
2198 * advertised some kind of receive capability (Rx Pause
2199 * Only or Full Flow Control) and the link partner
2200 * advertised none, we will configure ourselves to
2201 * enable Rx Flow Control only. We can do this safely
2202 * for two reasons: If the link partner really
2203 * didn't want flow control enabled, and we enable Rx,
2204 * no harm done since we won't be receiving any PAUSE
2205 * frames anyway. If the intent on the link partner was
2206 * to have flow control enabled, then by us enabling Rx
2207 * only, we can at least receive pause frames and
2208 * process them. This is a good idea because in most
2209 * cases, since we are predominantly a server NIC, more
2210 * times than not we will be asked to delay transmission
2211 * of packets than asking our link partner to pause
2212 * transmission of frames.
2213 */
2214 else if ((hw->original_fc == E1000_FC_NONE ||
2215 hw->original_fc == E1000_FC_TX_PAUSE) ||
2216 hw->fc_strict_ieee) {
2217 hw->fc = E1000_FC_NONE;
2218 e_dbg("Flow Control = NONE.\n");
2219 } else {
2220 hw->fc = E1000_FC_RX_PAUSE;
2221 e_dbg
2222 ("Flow Control = RX PAUSE frames only.\n");
2223 }
2224
2225 /* Now we need to do one last check... If we auto-
2226 * negotiated to HALF DUPLEX, flow control should not be
2227 * enabled per IEEE 802.3 spec.
2228 */
2229 ret_val =
2230 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2231 if (ret_val) {
2232 e_dbg
2233 ("Error getting link speed and duplex\n");
2234 return ret_val;
2235 }
2236
2237 if (duplex == HALF_DUPLEX)
2238 hw->fc = E1000_FC_NONE;
2239
2240 /* Now we call a subroutine to actually force the MAC
2241 * controller to use the correct flow control settings.
2242 */
2243 ret_val = e1000_force_mac_fc(hw);
2244 if (ret_val) {
2245 e_dbg
2246 ("Error forcing flow control settings\n");
2247 return ret_val;
2248 }
2249 } else {
2250 e_dbg
2251 ("Copper PHY and Auto Neg has not completed.\n");
2252 }
2253 }
2254 return E1000_SUCCESS;
2255}
2256
2257/**
2258 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2259 * @hw: pointer to the HW structure
2260 *
2261 * Checks for link up on the hardware. If link is not up and we have
2262 * a signal, then we need to force link up.
2263 */
2264static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2265{
2266 u32 rxcw;
2267 u32 ctrl;
2268 u32 status;
2269 s32 ret_val = E1000_SUCCESS;
2270
2271 ctrl = er32(CTRL);
2272 status = er32(STATUS);
2273 rxcw = er32(RXCW);
2274
2275 /* If we don't have link (auto-negotiation failed or link partner
2276 * cannot auto-negotiate), and our link partner is not trying to
2277 * auto-negotiate with us (we are receiving idles or data),
2278 * we need to force link up. We also need to give auto-negotiation
2279 * time to complete.
2280 */
2281 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2282 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2283 if (hw->autoneg_failed == 0) {
2284 hw->autoneg_failed = 1;
2285 goto out;
2286 }
2287 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2288
2289 /* Disable auto-negotiation in the TXCW register */
2290 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2291
2292 /* Force link-up and also force full-duplex. */
2293 ctrl = er32(CTRL);
2294 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2295 ew32(CTRL, ctrl);
2296
2297 /* Configure Flow Control after forcing link up. */
2298 ret_val = e1000_config_fc_after_link_up(hw);
2299 if (ret_val) {
2300 e_dbg("Error configuring flow control\n");
2301 goto out;
2302 }
2303 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2304 /* If we are forcing link and we are receiving /C/ ordered
2305 * sets, re-enable auto-negotiation in the TXCW register
2306 * and disable forced link in the Device Control register
2307 * in an attempt to auto-negotiate with our link partner.
2308 */
2309 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2310 ew32(TXCW, hw->txcw);
2311 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2312
2313 hw->serdes_has_link = true;
2314 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2315 /* If we force link for non-auto-negotiation switch, check
2316 * link status based on MAC synchronization for internal
2317 * serdes media type.
2318 */
2319 /* SYNCH bit and IV bit are sticky. */
2320 udelay(10);
2321 rxcw = er32(RXCW);
2322 if (rxcw & E1000_RXCW_SYNCH) {
2323 if (!(rxcw & E1000_RXCW_IV)) {
2324 hw->serdes_has_link = true;
2325 e_dbg("SERDES: Link up - forced.\n");
2326 }
2327 } else {
2328 hw->serdes_has_link = false;
2329 e_dbg("SERDES: Link down - force failed.\n");
2330 }
2331 }
2332
2333 if (E1000_TXCW_ANE & er32(TXCW)) {
2334 status = er32(STATUS);
2335 if (status & E1000_STATUS_LU) {
2336 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2337 udelay(10);
2338 rxcw = er32(RXCW);
2339 if (rxcw & E1000_RXCW_SYNCH) {
2340 if (!(rxcw & E1000_RXCW_IV)) {
2341 hw->serdes_has_link = true;
2342 e_dbg("SERDES: Link up - autoneg "
2343 "completed successfully.\n");
2344 } else {
2345 hw->serdes_has_link = false;
2346 e_dbg("SERDES: Link down - invalid"
2347 "codewords detected in autoneg.\n");
2348 }
2349 } else {
2350 hw->serdes_has_link = false;
2351 e_dbg("SERDES: Link down - no sync.\n");
2352 }
2353 } else {
2354 hw->serdes_has_link = false;
2355 e_dbg("SERDES: Link down - autoneg failed\n");
2356 }
2357 }
2358
2359 out:
2360 return ret_val;
2361}
2362
2363/**
2364 * e1000_check_for_link
2365 * @hw: Struct containing variables accessed by shared code
2366 *
2367 * Checks to see if the link status of the hardware has changed.
2368 * Called by any function that needs to check the link status of the adapter.
2369 */
2370s32 e1000_check_for_link(struct e1000_hw *hw)
2371{
2372 u32 status;
2373 u32 rctl;
2374 u32 icr;
2375 s32 ret_val;
2376 u16 phy_data;
2377
2378 er32(CTRL);
2379 status = er32(STATUS);
2380
2381 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2382 * set when the optics detect a signal. On older adapters, it will be
2383 * cleared when there is a signal. This applies to fiber media only.
2384 */
2385 if ((hw->media_type == e1000_media_type_fiber) ||
2386 (hw->media_type == e1000_media_type_internal_serdes)) {
2387 er32(RXCW);
2388
2389 if (hw->media_type == e1000_media_type_fiber) {
2390 if (status & E1000_STATUS_LU)
2391 hw->get_link_status = false;
2392 }
2393 }
2394
2395 /* If we have a copper PHY then we only want to go out to the PHY
2396 * registers to see if Auto-Neg has completed and/or if our link
2397 * status has changed. The get_link_status flag will be set if we
2398 * receive a Link Status Change interrupt or we have Rx Sequence
2399 * Errors.
2400 */
2401 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2402 /* First we want to see if the MII Status Register reports
2403 * link. If so, then we want to get the current speed/duplex
2404 * of the PHY.
2405 * Read the register twice since the link bit is sticky.
2406 */
2407 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2408 if (ret_val)
2409 return ret_val;
2410 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2411 if (ret_val)
2412 return ret_val;
2413
2414 if (phy_data & MII_SR_LINK_STATUS) {
2415 hw->get_link_status = false;
2416 /* Check if there was DownShift, must be checked
2417 * immediately after link-up
2418 */
2419 e1000_check_downshift(hw);
2420
2421 /* If we are on 82544 or 82543 silicon and speed/duplex
2422 * are forced to 10H or 10F, then we will implement the
2423 * polarity reversal workaround. We disable interrupts
2424 * first, and upon returning, place the devices
2425 * interrupt state to its previous value except for the
2426 * link status change interrupt which will
2427 * happen due to the execution of this workaround.
2428 */
2429
2430 if ((hw->mac_type == e1000_82544 ||
2431 hw->mac_type == e1000_82543) &&
2432 (!hw->autoneg) &&
2433 (hw->forced_speed_duplex == e1000_10_full ||
2434 hw->forced_speed_duplex == e1000_10_half)) {
2435 ew32(IMC, 0xffffffff);
2436 ret_val =
2437 e1000_polarity_reversal_workaround(hw);
2438 icr = er32(ICR);
2439 ew32(ICS, (icr & ~E1000_ICS_LSC));
2440 ew32(IMS, IMS_ENABLE_MASK);
2441 }
2442
2443 } else {
2444 /* No link detected */
2445 e1000_config_dsp_after_link_change(hw, false);
2446 return 0;
2447 }
2448
2449 /* If we are forcing speed/duplex, then we simply return since
2450 * we have already determined whether we have link or not.
2451 */
2452 if (!hw->autoneg)
2453 return -E1000_ERR_CONFIG;
2454
2455 /* optimize the dsp settings for the igp phy */
2456 e1000_config_dsp_after_link_change(hw, true);
2457
2458 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2459 * have Si on board that is 82544 or newer, Auto
2460 * Speed Detection takes care of MAC speed/duplex
2461 * configuration. So we only need to configure Collision
2462 * Distance in the MAC. Otherwise, we need to force
2463 * speed/duplex on the MAC to the current PHY speed/duplex
2464 * settings.
2465 */
2466 if ((hw->mac_type >= e1000_82544) &&
2467 (hw->mac_type != e1000_ce4100))
2468 e1000_config_collision_dist(hw);
2469 else {
2470 ret_val = e1000_config_mac_to_phy(hw);
2471 if (ret_val) {
2472 e_dbg
2473 ("Error configuring MAC to PHY settings\n");
2474 return ret_val;
2475 }
2476 }
2477
2478 /* Configure Flow Control now that Auto-Neg has completed.
2479 * First, we need to restore the desired flow control settings
2480 * because we may have had to re-autoneg with a different link
2481 * partner.
2482 */
2483 ret_val = e1000_config_fc_after_link_up(hw);
2484 if (ret_val) {
2485 e_dbg("Error configuring flow control\n");
2486 return ret_val;
2487 }
2488
2489 /* At this point we know that we are on copper and we have
2490 * auto-negotiated link. These are conditions for checking the
2491 * link partner capability register. We use the link speed to
2492 * determine if TBI compatibility needs to be turned on or off.
2493 * If the link is not at gigabit speed, then TBI compatibility
2494 * is not needed. If we are at gigabit speed, we turn on TBI
2495 * compatibility.
2496 */
2497 if (hw->tbi_compatibility_en) {
2498 u16 speed, duplex;
2499
2500 ret_val =
2501 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2502
2503 if (ret_val) {
2504 e_dbg
2505 ("Error getting link speed and duplex\n");
2506 return ret_val;
2507 }
2508 if (speed != SPEED_1000) {
2509 /* If link speed is not set to gigabit speed, we
2510 * do not need to enable TBI compatibility.
2511 */
2512 if (hw->tbi_compatibility_on) {
2513 /* If we previously were in the mode,
2514 * turn it off.
2515 */
2516 rctl = er32(RCTL);
2517 rctl &= ~E1000_RCTL_SBP;
2518 ew32(RCTL, rctl);
2519 hw->tbi_compatibility_on = false;
2520 }
2521 } else {
2522 /* If TBI compatibility is was previously off,
2523 * turn it on. For compatibility with a TBI link
2524 * partner, we will store bad packets. Some
2525 * frames have an additional byte on the end and
2526 * will look like CRC errors to the hardware.
2527 */
2528 if (!hw->tbi_compatibility_on) {
2529 hw->tbi_compatibility_on = true;
2530 rctl = er32(RCTL);
2531 rctl |= E1000_RCTL_SBP;
2532 ew32(RCTL, rctl);
2533 }
2534 }
2535 }
2536 }
2537
2538 if ((hw->media_type == e1000_media_type_fiber) ||
2539 (hw->media_type == e1000_media_type_internal_serdes))
2540 e1000_check_for_serdes_link_generic(hw);
2541
2542 return E1000_SUCCESS;
2543}
2544
2545/**
2546 * e1000_get_speed_and_duplex
2547 * @hw: Struct containing variables accessed by shared code
2548 * @speed: Speed of the connection
2549 * @duplex: Duplex setting of the connection
2550 *
2551 * Detects the current speed and duplex settings of the hardware.
2552 */
2553s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2554{
2555 u32 status;
2556 s32 ret_val;
2557 u16 phy_data;
2558
2559 if (hw->mac_type >= e1000_82543) {
2560 status = er32(STATUS);
2561 if (status & E1000_STATUS_SPEED_1000) {
2562 *speed = SPEED_1000;
2563 e_dbg("1000 Mbs, ");
2564 } else if (status & E1000_STATUS_SPEED_100) {
2565 *speed = SPEED_100;
2566 e_dbg("100 Mbs, ");
2567 } else {
2568 *speed = SPEED_10;
2569 e_dbg("10 Mbs, ");
2570 }
2571
2572 if (status & E1000_STATUS_FD) {
2573 *duplex = FULL_DUPLEX;
2574 e_dbg("Full Duplex\n");
2575 } else {
2576 *duplex = HALF_DUPLEX;
2577 e_dbg(" Half Duplex\n");
2578 }
2579 } else {
2580 e_dbg("1000 Mbs, Full Duplex\n");
2581 *speed = SPEED_1000;
2582 *duplex = FULL_DUPLEX;
2583 }
2584
2585 /* IGP01 PHY may advertise full duplex operation after speed downgrade
2586 * even if it is operating at half duplex. Here we set the duplex
2587 * settings to match the duplex in the link partner's capabilities.
2588 */
2589 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2590 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2591 if (ret_val)
2592 return ret_val;
2593
2594 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2595 *duplex = HALF_DUPLEX;
2596 else {
2597 ret_val =
2598 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2599 if (ret_val)
2600 return ret_val;
2601 if ((*speed == SPEED_100 &&
2602 !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2603 (*speed == SPEED_10 &&
2604 !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2605 *duplex = HALF_DUPLEX;
2606 }
2607 }
2608
2609 return E1000_SUCCESS;
2610}
2611
2612/**
2613 * e1000_wait_autoneg
2614 * @hw: Struct containing variables accessed by shared code
2615 *
2616 * Blocks until autoneg completes or times out (~4.5 seconds)
2617 */
2618static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2619{
2620 s32 ret_val;
2621 u16 i;
2622 u16 phy_data;
2623
2624 e_dbg("Waiting for Auto-Neg to complete.\n");
2625
2626 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2627 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2628 /* Read the MII Status Register and wait for Auto-Neg
2629 * Complete bit to be set.
2630 */
2631 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2632 if (ret_val)
2633 return ret_val;
2634 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2635 if (ret_val)
2636 return ret_val;
2637 if (phy_data & MII_SR_AUTONEG_COMPLETE)
2638 return E1000_SUCCESS;
2639
2640 msleep(100);
2641 }
2642 return E1000_SUCCESS;
2643}
2644
2645/**
2646 * e1000_raise_mdi_clk - Raises the Management Data Clock
2647 * @hw: Struct containing variables accessed by shared code
2648 * @ctrl: Device control register's current value
2649 */
2650static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2651{
2652 /* Raise the clock input to the Management Data Clock (by setting the
2653 * MDC bit), and then delay 10 microseconds.
2654 */
2655 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2656 E1000_WRITE_FLUSH();
2657 udelay(10);
2658}
2659
2660/**
2661 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2662 * @hw: Struct containing variables accessed by shared code
2663 * @ctrl: Device control register's current value
2664 */
2665static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2666{
2667 /* Lower the clock input to the Management Data Clock (by clearing the
2668 * MDC bit), and then delay 10 microseconds.
2669 */
2670 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2671 E1000_WRITE_FLUSH();
2672 udelay(10);
2673}
2674
2675/**
2676 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2677 * @hw: Struct containing variables accessed by shared code
2678 * @data: Data to send out to the PHY
2679 * @count: Number of bits to shift out
2680 *
2681 * Bits are shifted out in MSB to LSB order.
2682 */
2683static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2684{
2685 u32 ctrl;
2686 u32 mask;
2687
2688 /* We need to shift "count" number of bits out to the PHY. So, the value
2689 * in the "data" parameter will be shifted out to the PHY one bit at a
2690 * time. In order to do this, "data" must be broken down into bits.
2691 */
2692 mask = 0x01;
2693 mask <<= (count - 1);
2694
2695 ctrl = er32(CTRL);
2696
2697 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2698 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2699
2700 while (mask) {
2701 /* A "1" is shifted out to the PHY by setting the MDIO bit to
2702 * "1" and then raising and lowering the Management Data Clock.
2703 * A "0" is shifted out to the PHY by setting the MDIO bit to
2704 * "0" and then raising and lowering the clock.
2705 */
2706 if (data & mask)
2707 ctrl |= E1000_CTRL_MDIO;
2708 else
2709 ctrl &= ~E1000_CTRL_MDIO;
2710
2711 ew32(CTRL, ctrl);
2712 E1000_WRITE_FLUSH();
2713
2714 udelay(10);
2715
2716 e1000_raise_mdi_clk(hw, &ctrl);
2717 e1000_lower_mdi_clk(hw, &ctrl);
2718
2719 mask = mask >> 1;
2720 }
2721}
2722
2723/**
2724 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2725 * @hw: Struct containing variables accessed by shared code
2726 *
2727 * Bits are shifted in MSB to LSB order.
2728 */
2729static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2730{
2731 u32 ctrl;
2732 u16 data = 0;
2733 u8 i;
2734
2735 /* In order to read a register from the PHY, we need to shift in a total
2736 * of 18 bits from the PHY. The first two bit (turnaround) times are
2737 * used to avoid contention on the MDIO pin when a read operation is
2738 * performed. These two bits are ignored by us and thrown away. Bits are
2739 * "shifted in" by raising the input to the Management Data Clock
2740 * (setting the MDC bit), and then reading the value of the MDIO bit.
2741 */
2742 ctrl = er32(CTRL);
2743
2744 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2745 * input.
2746 */
2747 ctrl &= ~E1000_CTRL_MDIO_DIR;
2748 ctrl &= ~E1000_CTRL_MDIO;
2749
2750 ew32(CTRL, ctrl);
2751 E1000_WRITE_FLUSH();
2752
2753 /* Raise and Lower the clock before reading in the data. This accounts
2754 * for the turnaround bits. The first clock occurred when we clocked out
2755 * the last bit of the Register Address.
2756 */
2757 e1000_raise_mdi_clk(hw, &ctrl);
2758 e1000_lower_mdi_clk(hw, &ctrl);
2759
2760 for (data = 0, i = 0; i < 16; i++) {
2761 data = data << 1;
2762 e1000_raise_mdi_clk(hw, &ctrl);
2763 ctrl = er32(CTRL);
2764 /* Check to see if we shifted in a "1". */
2765 if (ctrl & E1000_CTRL_MDIO)
2766 data |= 1;
2767 e1000_lower_mdi_clk(hw, &ctrl);
2768 }
2769
2770 e1000_raise_mdi_clk(hw, &ctrl);
2771 e1000_lower_mdi_clk(hw, &ctrl);
2772
2773 return data;
2774}
2775
2776/**
2777 * e1000_read_phy_reg - read a phy register
2778 * @hw: Struct containing variables accessed by shared code
2779 * @reg_addr: address of the PHY register to read
2780 * @phy_data: pointer to the value on the PHY register
2781 *
2782 * Reads the value from a PHY register, if the value is on a specific non zero
2783 * page, sets the page first.
2784 */
2785s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2786{
2787 u32 ret_val;
2788 unsigned long flags;
2789
2790 spin_lock_irqsave(&e1000_phy_lock, flags);
2791
2792 if ((hw->phy_type == e1000_phy_igp) &&
2793 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2794 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2795 (u16) reg_addr);
2796 if (ret_val)
2797 goto out;
2798 }
2799
2800 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2801 phy_data);
2802out:
2803 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2804
2805 return ret_val;
2806}
2807
2808static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2809 u16 *phy_data)
2810{
2811 u32 i;
2812 u32 mdic = 0;
2813 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2814
2815 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2816 e_dbg("PHY Address %d is out of range\n", reg_addr);
2817 return -E1000_ERR_PARAM;
2818 }
2819
2820 if (hw->mac_type > e1000_82543) {
2821 /* Set up Op-code, Phy Address, and register address in the MDI
2822 * Control register. The MAC will take care of interfacing with
2823 * the PHY to retrieve the desired data.
2824 */
2825 if (hw->mac_type == e1000_ce4100) {
2826 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2827 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2828 (INTEL_CE_GBE_MDIC_OP_READ) |
2829 (INTEL_CE_GBE_MDIC_GO));
2830
2831 writel(mdic, E1000_MDIO_CMD);
2832
2833 /* Poll the ready bit to see if the MDI read
2834 * completed
2835 */
2836 for (i = 0; i < 64; i++) {
2837 udelay(50);
2838 mdic = readl(E1000_MDIO_CMD);
2839 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2840 break;
2841 }
2842
2843 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2844 e_dbg("MDI Read did not complete\n");
2845 return -E1000_ERR_PHY;
2846 }
2847
2848 mdic = readl(E1000_MDIO_STS);
2849 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2850 e_dbg("MDI Read Error\n");
2851 return -E1000_ERR_PHY;
2852 }
2853 *phy_data = (u16)mdic;
2854 } else {
2855 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2856 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2857 (E1000_MDIC_OP_READ));
2858
2859 ew32(MDIC, mdic);
2860
2861 /* Poll the ready bit to see if the MDI read
2862 * completed
2863 */
2864 for (i = 0; i < 64; i++) {
2865 udelay(50);
2866 mdic = er32(MDIC);
2867 if (mdic & E1000_MDIC_READY)
2868 break;
2869 }
2870 if (!(mdic & E1000_MDIC_READY)) {
2871 e_dbg("MDI Read did not complete\n");
2872 return -E1000_ERR_PHY;
2873 }
2874 if (mdic & E1000_MDIC_ERROR) {
2875 e_dbg("MDI Error\n");
2876 return -E1000_ERR_PHY;
2877 }
2878 *phy_data = (u16)mdic;
2879 }
2880 } else {
2881 /* We must first send a preamble through the MDIO pin to signal
2882 * the beginning of an MII instruction. This is done by sending
2883 * 32 consecutive "1" bits.
2884 */
2885 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2886
2887 /* Now combine the next few fields that are required for a read
2888 * operation. We use this method instead of calling the
2889 * e1000_shift_out_mdi_bits routine five different times. The
2890 * format of a MII read instruction consists of a shift out of
2891 * 14 bits and is defined as follows:
2892 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2893 * followed by a shift in of 18 bits. This first two bits
2894 * shifted in are TurnAround bits used to avoid contention on
2895 * the MDIO pin when a READ operation is performed. These two
2896 * bits are thrown away followed by a shift in of 16 bits which
2897 * contains the desired data.
2898 */
2899 mdic = ((reg_addr) | (phy_addr << 5) |
2900 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2901
2902 e1000_shift_out_mdi_bits(hw, mdic, 14);
2903
2904 /* Now that we've shifted out the read command to the MII, we
2905 * need to "shift in" the 16-bit value (18 total bits) of the
2906 * requested PHY register address.
2907 */
2908 *phy_data = e1000_shift_in_mdi_bits(hw);
2909 }
2910 return E1000_SUCCESS;
2911}
2912
2913/**
2914 * e1000_write_phy_reg - write a phy register
2915 *
2916 * @hw: Struct containing variables accessed by shared code
2917 * @reg_addr: address of the PHY register to write
2918 * @phy_data: data to write to the PHY
2919 *
2920 * Writes a value to a PHY register
2921 */
2922s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2923{
2924 u32 ret_val;
2925 unsigned long flags;
2926
2927 spin_lock_irqsave(&e1000_phy_lock, flags);
2928
2929 if ((hw->phy_type == e1000_phy_igp) &&
2930 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2931 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2932 (u16)reg_addr);
2933 if (ret_val) {
2934 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2935 return ret_val;
2936 }
2937 }
2938
2939 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2940 phy_data);
2941 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2942
2943 return ret_val;
2944}
2945
2946static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2947 u16 phy_data)
2948{
2949 u32 i;
2950 u32 mdic = 0;
2951 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2952
2953 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2954 e_dbg("PHY Address %d is out of range\n", reg_addr);
2955 return -E1000_ERR_PARAM;
2956 }
2957
2958 if (hw->mac_type > e1000_82543) {
2959 /* Set up Op-code, Phy Address, register address, and data
2960 * intended for the PHY register in the MDI Control register.
2961 * The MAC will take care of interfacing with the PHY to send
2962 * the desired data.
2963 */
2964 if (hw->mac_type == e1000_ce4100) {
2965 mdic = (((u32)phy_data) |
2966 (reg_addr << E1000_MDIC_REG_SHIFT) |
2967 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2968 (INTEL_CE_GBE_MDIC_OP_WRITE) |
2969 (INTEL_CE_GBE_MDIC_GO));
2970
2971 writel(mdic, E1000_MDIO_CMD);
2972
2973 /* Poll the ready bit to see if the MDI read
2974 * completed
2975 */
2976 for (i = 0; i < 640; i++) {
2977 udelay(5);
2978 mdic = readl(E1000_MDIO_CMD);
2979 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2980 break;
2981 }
2982 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2983 e_dbg("MDI Write did not complete\n");
2984 return -E1000_ERR_PHY;
2985 }
2986 } else {
2987 mdic = (((u32)phy_data) |
2988 (reg_addr << E1000_MDIC_REG_SHIFT) |
2989 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2990 (E1000_MDIC_OP_WRITE));
2991
2992 ew32(MDIC, mdic);
2993
2994 /* Poll the ready bit to see if the MDI read
2995 * completed
2996 */
2997 for (i = 0; i < 641; i++) {
2998 udelay(5);
2999 mdic = er32(MDIC);
3000 if (mdic & E1000_MDIC_READY)
3001 break;
3002 }
3003 if (!(mdic & E1000_MDIC_READY)) {
3004 e_dbg("MDI Write did not complete\n");
3005 return -E1000_ERR_PHY;
3006 }
3007 }
3008 } else {
3009 /* We'll need to use the SW defined pins to shift the write
3010 * command out to the PHY. We first send a preamble to the PHY
3011 * to signal the beginning of the MII instruction. This is done
3012 * by sending 32 consecutive "1" bits.
3013 */
3014 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3015
3016 /* Now combine the remaining required fields that will indicate
3017 * a write operation. We use this method instead of calling the
3018 * e1000_shift_out_mdi_bits routine for each field in the
3019 * command. The format of a MII write instruction is as follows:
3020 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3021 */
3022 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3023 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3024 mdic <<= 16;
3025 mdic |= (u32)phy_data;
3026
3027 e1000_shift_out_mdi_bits(hw, mdic, 32);
3028 }
3029
3030 return E1000_SUCCESS;
3031}
3032
3033/**
3034 * e1000_phy_hw_reset - reset the phy, hardware style
3035 * @hw: Struct containing variables accessed by shared code
3036 *
3037 * Returns the PHY to the power-on reset state
3038 */
3039s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3040{
3041 u32 ctrl, ctrl_ext;
3042 u32 led_ctrl;
3043
3044 e_dbg("Resetting Phy...\n");
3045
3046 if (hw->mac_type > e1000_82543) {
3047 /* Read the device control register and assert the
3048 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3049 * For e1000 hardware, we delay for 10ms between the assert
3050 * and de-assert.
3051 */
3052 ctrl = er32(CTRL);
3053 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3054 E1000_WRITE_FLUSH();
3055
3056 msleep(10);
3057
3058 ew32(CTRL, ctrl);
3059 E1000_WRITE_FLUSH();
3060
3061 } else {
3062 /* Read the Extended Device Control Register, assert the
3063 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3064 * out of reset.
3065 */
3066 ctrl_ext = er32(CTRL_EXT);
3067 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3068 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3069 ew32(CTRL_EXT, ctrl_ext);
3070 E1000_WRITE_FLUSH();
3071 msleep(10);
3072 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3073 ew32(CTRL_EXT, ctrl_ext);
3074 E1000_WRITE_FLUSH();
3075 }
3076 udelay(150);
3077
3078 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3079 /* Configure activity LED after PHY reset */
3080 led_ctrl = er32(LEDCTL);
3081 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3082 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3083 ew32(LEDCTL, led_ctrl);
3084 }
3085
3086 /* Wait for FW to finish PHY configuration. */
3087 return e1000_get_phy_cfg_done(hw);
3088}
3089
3090/**
3091 * e1000_phy_reset - reset the phy to commit settings
3092 * @hw: Struct containing variables accessed by shared code
3093 *
3094 * Resets the PHY
3095 * Sets bit 15 of the MII Control register
3096 */
3097s32 e1000_phy_reset(struct e1000_hw *hw)
3098{
3099 s32 ret_val;
3100 u16 phy_data;
3101
3102 switch (hw->phy_type) {
3103 case e1000_phy_igp:
3104 ret_val = e1000_phy_hw_reset(hw);
3105 if (ret_val)
3106 return ret_val;
3107 break;
3108 default:
3109 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3110 if (ret_val)
3111 return ret_val;
3112
3113 phy_data |= MII_CR_RESET;
3114 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3115 if (ret_val)
3116 return ret_val;
3117
3118 udelay(1);
3119 break;
3120 }
3121
3122 if (hw->phy_type == e1000_phy_igp)
3123 e1000_phy_init_script(hw);
3124
3125 return E1000_SUCCESS;
3126}
3127
3128/**
3129 * e1000_detect_gig_phy - check the phy type
3130 * @hw: Struct containing variables accessed by shared code
3131 *
3132 * Probes the expected PHY address for known PHY IDs
3133 */
3134static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3135{
3136 s32 phy_init_status, ret_val;
3137 u16 phy_id_high, phy_id_low;
3138 bool match = false;
3139
3140 if (hw->phy_id != 0)
3141 return E1000_SUCCESS;
3142
3143 /* Read the PHY ID Registers to identify which PHY is onboard. */
3144 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3145 if (ret_val)
3146 return ret_val;
3147
3148 hw->phy_id = (u32)(phy_id_high << 16);
3149 udelay(20);
3150 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3151 if (ret_val)
3152 return ret_val;
3153
3154 hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3155 hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3156
3157 switch (hw->mac_type) {
3158 case e1000_82543:
3159 if (hw->phy_id == M88E1000_E_PHY_ID)
3160 match = true;
3161 break;
3162 case e1000_82544:
3163 if (hw->phy_id == M88E1000_I_PHY_ID)
3164 match = true;
3165 break;
3166 case e1000_82540:
3167 case e1000_82545:
3168 case e1000_82545_rev_3:
3169 case e1000_82546:
3170 case e1000_82546_rev_3:
3171 if (hw->phy_id == M88E1011_I_PHY_ID)
3172 match = true;
3173 break;
3174 case e1000_ce4100:
3175 if ((hw->phy_id == RTL8211B_PHY_ID) ||
3176 (hw->phy_id == RTL8201N_PHY_ID) ||
3177 (hw->phy_id == M88E1118_E_PHY_ID))
3178 match = true;
3179 break;
3180 case e1000_82541:
3181 case e1000_82541_rev_2:
3182 case e1000_82547:
3183 case e1000_82547_rev_2:
3184 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3185 match = true;
3186 break;
3187 default:
3188 e_dbg("Invalid MAC type %d\n", hw->mac_type);
3189 return -E1000_ERR_CONFIG;
3190 }
3191 phy_init_status = e1000_set_phy_type(hw);
3192
3193 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3194 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3195 return E1000_SUCCESS;
3196 }
3197 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3198 return -E1000_ERR_PHY;
3199}
3200
3201/**
3202 * e1000_phy_reset_dsp - reset DSP
3203 * @hw: Struct containing variables accessed by shared code
3204 *
3205 * Resets the PHY's DSP
3206 */
3207static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3208{
3209 s32 ret_val;
3210
3211 do {
3212 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3213 if (ret_val)
3214 break;
3215 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3216 if (ret_val)
3217 break;
3218 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3219 if (ret_val)
3220 break;
3221 ret_val = E1000_SUCCESS;
3222 } while (0);
3223
3224 return ret_val;
3225}
3226
3227/**
3228 * e1000_phy_igp_get_info - get igp specific registers
3229 * @hw: Struct containing variables accessed by shared code
3230 * @phy_info: PHY information structure
3231 *
3232 * Get PHY information from various PHY registers for igp PHY only.
3233 */
3234static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3235 struct e1000_phy_info *phy_info)
3236{
3237 s32 ret_val;
3238 u16 phy_data, min_length, max_length, average;
3239 e1000_rev_polarity polarity;
3240
3241 /* The downshift status is checked only once, after link is established,
3242 * and it stored in the hw->speed_downgraded parameter.
3243 */
3244 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3245
3246 /* IGP01E1000 does not need to support it. */
3247 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3248
3249 /* IGP01E1000 always correct polarity reversal */
3250 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3251
3252 /* Check polarity status */
3253 ret_val = e1000_check_polarity(hw, &polarity);
3254 if (ret_val)
3255 return ret_val;
3256
3257 phy_info->cable_polarity = polarity;
3258
3259 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3260 if (ret_val)
3261 return ret_val;
3262
3263 phy_info->mdix_mode =
3264 (e1000_auto_x_mode)FIELD_GET(IGP01E1000_PSSR_MDIX, phy_data);
3265
3266 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3267 IGP01E1000_PSSR_SPEED_1000MBPS) {
3268 /* Local/Remote Receiver Information are only valid @ 1000
3269 * Mbps
3270 */
3271 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3272 if (ret_val)
3273 return ret_val;
3274
3275 phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3276 phy_data) ?
3277 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3278 phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3279 phy_data) ?
3280 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3281
3282 /* Get cable length */
3283 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3284 if (ret_val)
3285 return ret_val;
3286
3287 /* Translate to old method */
3288 average = (max_length + min_length) / 2;
3289
3290 if (average <= e1000_igp_cable_length_50)
3291 phy_info->cable_length = e1000_cable_length_50;
3292 else if (average <= e1000_igp_cable_length_80)
3293 phy_info->cable_length = e1000_cable_length_50_80;
3294 else if (average <= e1000_igp_cable_length_110)
3295 phy_info->cable_length = e1000_cable_length_80_110;
3296 else if (average <= e1000_igp_cable_length_140)
3297 phy_info->cable_length = e1000_cable_length_110_140;
3298 else
3299 phy_info->cable_length = e1000_cable_length_140;
3300 }
3301
3302 return E1000_SUCCESS;
3303}
3304
3305/**
3306 * e1000_phy_m88_get_info - get m88 specific registers
3307 * @hw: Struct containing variables accessed by shared code
3308 * @phy_info: PHY information structure
3309 *
3310 * Get PHY information from various PHY registers for m88 PHY only.
3311 */
3312static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3313 struct e1000_phy_info *phy_info)
3314{
3315 s32 ret_val;
3316 u16 phy_data;
3317 e1000_rev_polarity polarity;
3318
3319 /* The downshift status is checked only once, after link is established,
3320 * and it stored in the hw->speed_downgraded parameter.
3321 */
3322 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3323
3324 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3325 if (ret_val)
3326 return ret_val;
3327
3328 phy_info->extended_10bt_distance =
3329 FIELD_GET(M88E1000_PSCR_10BT_EXT_DIST_ENABLE, phy_data) ?
3330 e1000_10bt_ext_dist_enable_lower :
3331 e1000_10bt_ext_dist_enable_normal;
3332
3333 phy_info->polarity_correction =
3334 FIELD_GET(M88E1000_PSCR_POLARITY_REVERSAL, phy_data) ?
3335 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3336
3337 /* Check polarity status */
3338 ret_val = e1000_check_polarity(hw, &polarity);
3339 if (ret_val)
3340 return ret_val;
3341 phy_info->cable_polarity = polarity;
3342
3343 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3344 if (ret_val)
3345 return ret_val;
3346
3347 phy_info->mdix_mode =
3348 (e1000_auto_x_mode)FIELD_GET(M88E1000_PSSR_MDIX, phy_data);
3349
3350 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3351 /* Cable Length Estimation and Local/Remote Receiver Information
3352 * are only valid at 1000 Mbps.
3353 */
3354 phy_info->cable_length =
3355 (e1000_cable_length)FIELD_GET(M88E1000_PSSR_CABLE_LENGTH,
3356 phy_data);
3357
3358 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3359 if (ret_val)
3360 return ret_val;
3361
3362 phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3363 phy_data) ?
3364 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3365 phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3366 phy_data) ?
3367 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3368 }
3369
3370 return E1000_SUCCESS;
3371}
3372
3373/**
3374 * e1000_phy_get_info - request phy info
3375 * @hw: Struct containing variables accessed by shared code
3376 * @phy_info: PHY information structure
3377 *
3378 * Get PHY information from various PHY registers
3379 */
3380s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3381{
3382 s32 ret_val;
3383 u16 phy_data;
3384
3385 phy_info->cable_length = e1000_cable_length_undefined;
3386 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3387 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3388 phy_info->downshift = e1000_downshift_undefined;
3389 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3390 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3391 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3392 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3393
3394 if (hw->media_type != e1000_media_type_copper) {
3395 e_dbg("PHY info is only valid for copper media\n");
3396 return -E1000_ERR_CONFIG;
3397 }
3398
3399 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3400 if (ret_val)
3401 return ret_val;
3402
3403 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3404 if (ret_val)
3405 return ret_val;
3406
3407 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3408 e_dbg("PHY info is only valid if link is up\n");
3409 return -E1000_ERR_CONFIG;
3410 }
3411
3412 if (hw->phy_type == e1000_phy_igp)
3413 return e1000_phy_igp_get_info(hw, phy_info);
3414 else if ((hw->phy_type == e1000_phy_8211) ||
3415 (hw->phy_type == e1000_phy_8201))
3416 return E1000_SUCCESS;
3417 else
3418 return e1000_phy_m88_get_info(hw, phy_info);
3419}
3420
3421s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3422{
3423 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3424 e_dbg("Invalid MDI setting detected\n");
3425 hw->mdix = 1;
3426 return -E1000_ERR_CONFIG;
3427 }
3428 return E1000_SUCCESS;
3429}
3430
3431/**
3432 * e1000_init_eeprom_params - initialize sw eeprom vars
3433 * @hw: Struct containing variables accessed by shared code
3434 *
3435 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3436 * is configured.
3437 */
3438s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3439{
3440 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3441 u32 eecd = er32(EECD);
3442 s32 ret_val = E1000_SUCCESS;
3443 u16 eeprom_size;
3444
3445 switch (hw->mac_type) {
3446 case e1000_82542_rev2_0:
3447 case e1000_82542_rev2_1:
3448 case e1000_82543:
3449 case e1000_82544:
3450 eeprom->type = e1000_eeprom_microwire;
3451 eeprom->word_size = 64;
3452 eeprom->opcode_bits = 3;
3453 eeprom->address_bits = 6;
3454 eeprom->delay_usec = 50;
3455 break;
3456 case e1000_82540:
3457 case e1000_82545:
3458 case e1000_82545_rev_3:
3459 case e1000_82546:
3460 case e1000_82546_rev_3:
3461 eeprom->type = e1000_eeprom_microwire;
3462 eeprom->opcode_bits = 3;
3463 eeprom->delay_usec = 50;
3464 if (eecd & E1000_EECD_SIZE) {
3465 eeprom->word_size = 256;
3466 eeprom->address_bits = 8;
3467 } else {
3468 eeprom->word_size = 64;
3469 eeprom->address_bits = 6;
3470 }
3471 break;
3472 case e1000_82541:
3473 case e1000_82541_rev_2:
3474 case e1000_82547:
3475 case e1000_82547_rev_2:
3476 if (eecd & E1000_EECD_TYPE) {
3477 eeprom->type = e1000_eeprom_spi;
3478 eeprom->opcode_bits = 8;
3479 eeprom->delay_usec = 1;
3480 if (eecd & E1000_EECD_ADDR_BITS) {
3481 eeprom->page_size = 32;
3482 eeprom->address_bits = 16;
3483 } else {
3484 eeprom->page_size = 8;
3485 eeprom->address_bits = 8;
3486 }
3487 } else {
3488 eeprom->type = e1000_eeprom_microwire;
3489 eeprom->opcode_bits = 3;
3490 eeprom->delay_usec = 50;
3491 if (eecd & E1000_EECD_ADDR_BITS) {
3492 eeprom->word_size = 256;
3493 eeprom->address_bits = 8;
3494 } else {
3495 eeprom->word_size = 64;
3496 eeprom->address_bits = 6;
3497 }
3498 }
3499 break;
3500 default:
3501 break;
3502 }
3503
3504 if (eeprom->type == e1000_eeprom_spi) {
3505 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3506 * 128B to 32KB (incremented by powers of 2).
3507 */
3508 /* Set to default value for initial eeprom read. */
3509 eeprom->word_size = 64;
3510 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3511 if (ret_val)
3512 return ret_val;
3513 eeprom_size =
3514 FIELD_GET(EEPROM_SIZE_MASK, eeprom_size);
3515 /* 256B eeprom size was not supported in earlier hardware, so we
3516 * bump eeprom_size up one to ensure that "1" (which maps to
3517 * 256B) is never the result used in the shifting logic below.
3518 */
3519 if (eeprom_size)
3520 eeprom_size++;
3521
3522 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3523 }
3524 return ret_val;
3525}
3526
3527/**
3528 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3529 * @hw: Struct containing variables accessed by shared code
3530 * @eecd: EECD's current value
3531 */
3532static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3533{
3534 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3535 * wait <delay> microseconds.
3536 */
3537 *eecd = *eecd | E1000_EECD_SK;
3538 ew32(EECD, *eecd);
3539 E1000_WRITE_FLUSH();
3540 udelay(hw->eeprom.delay_usec);
3541}
3542
3543/**
3544 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3545 * @hw: Struct containing variables accessed by shared code
3546 * @eecd: EECD's current value
3547 */
3548static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3549{
3550 /* Lower the clock input to the EEPROM (by clearing the SK bit), and
3551 * then wait 50 microseconds.
3552 */
3553 *eecd = *eecd & ~E1000_EECD_SK;
3554 ew32(EECD, *eecd);
3555 E1000_WRITE_FLUSH();
3556 udelay(hw->eeprom.delay_usec);
3557}
3558
3559/**
3560 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3561 * @hw: Struct containing variables accessed by shared code
3562 * @data: data to send to the EEPROM
3563 * @count: number of bits to shift out
3564 */
3565static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3566{
3567 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3568 u32 eecd;
3569 u32 mask;
3570
3571 /* We need to shift "count" bits out to the EEPROM. So, value in the
3572 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3573 * In order to do this, "data" must be broken down into bits.
3574 */
3575 mask = 0x01 << (count - 1);
3576 eecd = er32(EECD);
3577 if (eeprom->type == e1000_eeprom_microwire)
3578 eecd &= ~E1000_EECD_DO;
3579 else if (eeprom->type == e1000_eeprom_spi)
3580 eecd |= E1000_EECD_DO;
3581
3582 do {
3583 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3584 * "1", and then raising and then lowering the clock (the SK bit
3585 * controls the clock input to the EEPROM). A "0" is shifted
3586 * out to the EEPROM by setting "DI" to "0" and then raising and
3587 * then lowering the clock.
3588 */
3589 eecd &= ~E1000_EECD_DI;
3590
3591 if (data & mask)
3592 eecd |= E1000_EECD_DI;
3593
3594 ew32(EECD, eecd);
3595 E1000_WRITE_FLUSH();
3596
3597 udelay(eeprom->delay_usec);
3598
3599 e1000_raise_ee_clk(hw, &eecd);
3600 e1000_lower_ee_clk(hw, &eecd);
3601
3602 mask = mask >> 1;
3603
3604 } while (mask);
3605
3606 /* We leave the "DI" bit set to "0" when we leave this routine. */
3607 eecd &= ~E1000_EECD_DI;
3608 ew32(EECD, eecd);
3609}
3610
3611/**
3612 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3613 * @hw: Struct containing variables accessed by shared code
3614 * @count: number of bits to shift in
3615 */
3616static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3617{
3618 u32 eecd;
3619 u32 i;
3620 u16 data;
3621
3622 /* In order to read a register from the EEPROM, we need to shift 'count'
3623 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3624 * input to the EEPROM (setting the SK bit), and then reading the value
3625 * of the "DO" bit. During this "shifting in" process the "DI" bit
3626 * should always be clear.
3627 */
3628
3629 eecd = er32(EECD);
3630
3631 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3632 data = 0;
3633
3634 for (i = 0; i < count; i++) {
3635 data = data << 1;
3636 e1000_raise_ee_clk(hw, &eecd);
3637
3638 eecd = er32(EECD);
3639
3640 eecd &= ~(E1000_EECD_DI);
3641 if (eecd & E1000_EECD_DO)
3642 data |= 1;
3643
3644 e1000_lower_ee_clk(hw, &eecd);
3645 }
3646
3647 return data;
3648}
3649
3650/**
3651 * e1000_acquire_eeprom - Prepares EEPROM for access
3652 * @hw: Struct containing variables accessed by shared code
3653 *
3654 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3655 * function should be called before issuing a command to the EEPROM.
3656 */
3657static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3658{
3659 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3660 u32 eecd, i = 0;
3661
3662 eecd = er32(EECD);
3663
3664 /* Request EEPROM Access */
3665 if (hw->mac_type > e1000_82544) {
3666 eecd |= E1000_EECD_REQ;
3667 ew32(EECD, eecd);
3668 eecd = er32(EECD);
3669 while ((!(eecd & E1000_EECD_GNT)) &&
3670 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3671 i++;
3672 udelay(5);
3673 eecd = er32(EECD);
3674 }
3675 if (!(eecd & E1000_EECD_GNT)) {
3676 eecd &= ~E1000_EECD_REQ;
3677 ew32(EECD, eecd);
3678 e_dbg("Could not acquire EEPROM grant\n");
3679 return -E1000_ERR_EEPROM;
3680 }
3681 }
3682
3683 /* Setup EEPROM for Read/Write */
3684
3685 if (eeprom->type == e1000_eeprom_microwire) {
3686 /* Clear SK and DI */
3687 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3688 ew32(EECD, eecd);
3689
3690 /* Set CS */
3691 eecd |= E1000_EECD_CS;
3692 ew32(EECD, eecd);
3693 } else if (eeprom->type == e1000_eeprom_spi) {
3694 /* Clear SK and CS */
3695 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3696 ew32(EECD, eecd);
3697 E1000_WRITE_FLUSH();
3698 udelay(1);
3699 }
3700
3701 return E1000_SUCCESS;
3702}
3703
3704/**
3705 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3706 * @hw: Struct containing variables accessed by shared code
3707 */
3708static void e1000_standby_eeprom(struct e1000_hw *hw)
3709{
3710 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3711 u32 eecd;
3712
3713 eecd = er32(EECD);
3714
3715 if (eeprom->type == e1000_eeprom_microwire) {
3716 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3717 ew32(EECD, eecd);
3718 E1000_WRITE_FLUSH();
3719 udelay(eeprom->delay_usec);
3720
3721 /* Clock high */
3722 eecd |= E1000_EECD_SK;
3723 ew32(EECD, eecd);
3724 E1000_WRITE_FLUSH();
3725 udelay(eeprom->delay_usec);
3726
3727 /* Select EEPROM */
3728 eecd |= E1000_EECD_CS;
3729 ew32(EECD, eecd);
3730 E1000_WRITE_FLUSH();
3731 udelay(eeprom->delay_usec);
3732
3733 /* Clock low */
3734 eecd &= ~E1000_EECD_SK;
3735 ew32(EECD, eecd);
3736 E1000_WRITE_FLUSH();
3737 udelay(eeprom->delay_usec);
3738 } else if (eeprom->type == e1000_eeprom_spi) {
3739 /* Toggle CS to flush commands */
3740 eecd |= E1000_EECD_CS;
3741 ew32(EECD, eecd);
3742 E1000_WRITE_FLUSH();
3743 udelay(eeprom->delay_usec);
3744 eecd &= ~E1000_EECD_CS;
3745 ew32(EECD, eecd);
3746 E1000_WRITE_FLUSH();
3747 udelay(eeprom->delay_usec);
3748 }
3749}
3750
3751/**
3752 * e1000_release_eeprom - drop chip select
3753 * @hw: Struct containing variables accessed by shared code
3754 *
3755 * Terminates a command by inverting the EEPROM's chip select pin
3756 */
3757static void e1000_release_eeprom(struct e1000_hw *hw)
3758{
3759 u32 eecd;
3760
3761 eecd = er32(EECD);
3762
3763 if (hw->eeprom.type == e1000_eeprom_spi) {
3764 eecd |= E1000_EECD_CS; /* Pull CS high */
3765 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3766
3767 ew32(EECD, eecd);
3768 E1000_WRITE_FLUSH();
3769
3770 udelay(hw->eeprom.delay_usec);
3771 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3772 /* cleanup eeprom */
3773
3774 /* CS on Microwire is active-high */
3775 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3776
3777 ew32(EECD, eecd);
3778
3779 /* Rising edge of clock */
3780 eecd |= E1000_EECD_SK;
3781 ew32(EECD, eecd);
3782 E1000_WRITE_FLUSH();
3783 udelay(hw->eeprom.delay_usec);
3784
3785 /* Falling edge of clock */
3786 eecd &= ~E1000_EECD_SK;
3787 ew32(EECD, eecd);
3788 E1000_WRITE_FLUSH();
3789 udelay(hw->eeprom.delay_usec);
3790 }
3791
3792 /* Stop requesting EEPROM access */
3793 if (hw->mac_type > e1000_82544) {
3794 eecd &= ~E1000_EECD_REQ;
3795 ew32(EECD, eecd);
3796 }
3797}
3798
3799/**
3800 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3801 * @hw: Struct containing variables accessed by shared code
3802 */
3803static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3804{
3805 u16 retry_count = 0;
3806 u8 spi_stat_reg;
3807
3808 /* Read "Status Register" repeatedly until the LSB is cleared. The
3809 * EEPROM will signal that the command has been completed by clearing
3810 * bit 0 of the internal status register. If it's not cleared within
3811 * 5 milliseconds, then error out.
3812 */
3813 retry_count = 0;
3814 do {
3815 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3816 hw->eeprom.opcode_bits);
3817 spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3818 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3819 break;
3820
3821 udelay(5);
3822 retry_count += 5;
3823
3824 e1000_standby_eeprom(hw);
3825 } while (retry_count < EEPROM_MAX_RETRY_SPI);
3826
3827 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3828 * only 0-5mSec on 5V devices)
3829 */
3830 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3831 e_dbg("SPI EEPROM Status error\n");
3832 return -E1000_ERR_EEPROM;
3833 }
3834
3835 return E1000_SUCCESS;
3836}
3837
3838/**
3839 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3840 * @hw: Struct containing variables accessed by shared code
3841 * @offset: offset of word in the EEPROM to read
3842 * @data: word read from the EEPROM
3843 * @words: number of words to read
3844 */
3845s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3846{
3847 s32 ret;
3848
3849 mutex_lock(&e1000_eeprom_lock);
3850 ret = e1000_do_read_eeprom(hw, offset, words, data);
3851 mutex_unlock(&e1000_eeprom_lock);
3852 return ret;
3853}
3854
3855static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3856 u16 *data)
3857{
3858 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3859 u32 i = 0;
3860
3861 if (hw->mac_type == e1000_ce4100) {
3862 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3863 data);
3864 return E1000_SUCCESS;
3865 }
3866
3867 /* A check for invalid values: offset too large, too many words, and
3868 * not enough words.
3869 */
3870 if ((offset >= eeprom->word_size) ||
3871 (words > eeprom->word_size - offset) ||
3872 (words == 0)) {
3873 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3874 "size = %d\n", offset, eeprom->word_size);
3875 return -E1000_ERR_EEPROM;
3876 }
3877
3878 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3879 * directly. In this case, we need to acquire the EEPROM so that
3880 * FW or other port software does not interrupt.
3881 */
3882 /* Prepare the EEPROM for bit-bang reading */
3883 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3884 return -E1000_ERR_EEPROM;
3885
3886 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
3887 * acquired the EEPROM at this point, so any returns should release it
3888 */
3889 if (eeprom->type == e1000_eeprom_spi) {
3890 u16 word_in;
3891 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3892
3893 if (e1000_spi_eeprom_ready(hw)) {
3894 e1000_release_eeprom(hw);
3895 return -E1000_ERR_EEPROM;
3896 }
3897
3898 e1000_standby_eeprom(hw);
3899
3900 /* Some SPI eeproms use the 8th address bit embedded in the
3901 * opcode
3902 */
3903 if ((eeprom->address_bits == 8) && (offset >= 128))
3904 read_opcode |= EEPROM_A8_OPCODE_SPI;
3905
3906 /* Send the READ command (opcode + addr) */
3907 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3908 e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3909 eeprom->address_bits);
3910
3911 /* Read the data. The address of the eeprom internally
3912 * increments with each byte (spi) being read, saving on the
3913 * overhead of eeprom setup and tear-down. The address counter
3914 * will roll over if reading beyond the size of the eeprom, thus
3915 * allowing the entire memory to be read starting from any
3916 * offset.
3917 */
3918 for (i = 0; i < words; i++) {
3919 word_in = e1000_shift_in_ee_bits(hw, 16);
3920 data[i] = (word_in >> 8) | (word_in << 8);
3921 }
3922 } else if (eeprom->type == e1000_eeprom_microwire) {
3923 for (i = 0; i < words; i++) {
3924 /* Send the READ command (opcode + addr) */
3925 e1000_shift_out_ee_bits(hw,
3926 EEPROM_READ_OPCODE_MICROWIRE,
3927 eeprom->opcode_bits);
3928 e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3929 eeprom->address_bits);
3930
3931 /* Read the data. For microwire, each word requires the
3932 * overhead of eeprom setup and tear-down.
3933 */
3934 data[i] = e1000_shift_in_ee_bits(hw, 16);
3935 e1000_standby_eeprom(hw);
3936 cond_resched();
3937 }
3938 }
3939
3940 /* End this read operation */
3941 e1000_release_eeprom(hw);
3942
3943 return E1000_SUCCESS;
3944}
3945
3946/**
3947 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3948 * @hw: Struct containing variables accessed by shared code
3949 *
3950 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3951 * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3952 * valid.
3953 */
3954s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3955{
3956 u16 checksum = 0;
3957 u16 i, eeprom_data;
3958
3959 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3960 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3961 e_dbg("EEPROM Read Error\n");
3962 return -E1000_ERR_EEPROM;
3963 }
3964 checksum += eeprom_data;
3965 }
3966
3967#ifdef CONFIG_PARISC
3968 /* This is a signature and not a checksum on HP c8000 */
3969 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
3970 return E1000_SUCCESS;
3971
3972#endif
3973 if (checksum == (u16)EEPROM_SUM)
3974 return E1000_SUCCESS;
3975 else {
3976 e_dbg("EEPROM Checksum Invalid\n");
3977 return -E1000_ERR_EEPROM;
3978 }
3979}
3980
3981/**
3982 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
3983 * @hw: Struct containing variables accessed by shared code
3984 *
3985 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
3986 * Writes the difference to word offset 63 of the EEPROM.
3987 */
3988s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
3989{
3990 u16 checksum = 0;
3991 u16 i, eeprom_data;
3992
3993 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
3994 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3995 e_dbg("EEPROM Read Error\n");
3996 return -E1000_ERR_EEPROM;
3997 }
3998 checksum += eeprom_data;
3999 }
4000 checksum = (u16)EEPROM_SUM - checksum;
4001 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4002 e_dbg("EEPROM Write Error\n");
4003 return -E1000_ERR_EEPROM;
4004 }
4005 return E1000_SUCCESS;
4006}
4007
4008/**
4009 * e1000_write_eeprom - write words to the different EEPROM types.
4010 * @hw: Struct containing variables accessed by shared code
4011 * @offset: offset within the EEPROM to be written to
4012 * @words: number of words to write
4013 * @data: 16 bit word to be written to the EEPROM
4014 *
4015 * If e1000_update_eeprom_checksum is not called after this function, the
4016 * EEPROM will most likely contain an invalid checksum.
4017 */
4018s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4019{
4020 s32 ret;
4021
4022 mutex_lock(&e1000_eeprom_lock);
4023 ret = e1000_do_write_eeprom(hw, offset, words, data);
4024 mutex_unlock(&e1000_eeprom_lock);
4025 return ret;
4026}
4027
4028static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4029 u16 *data)
4030{
4031 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4032 s32 status = 0;
4033
4034 if (hw->mac_type == e1000_ce4100) {
4035 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4036 data);
4037 return E1000_SUCCESS;
4038 }
4039
4040 /* A check for invalid values: offset too large, too many words, and
4041 * not enough words.
4042 */
4043 if ((offset >= eeprom->word_size) ||
4044 (words > eeprom->word_size - offset) ||
4045 (words == 0)) {
4046 e_dbg("\"words\" parameter out of bounds\n");
4047 return -E1000_ERR_EEPROM;
4048 }
4049
4050 /* Prepare the EEPROM for writing */
4051 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4052 return -E1000_ERR_EEPROM;
4053
4054 if (eeprom->type == e1000_eeprom_microwire) {
4055 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4056 } else {
4057 status = e1000_write_eeprom_spi(hw, offset, words, data);
4058 msleep(10);
4059 }
4060
4061 /* Done with writing */
4062 e1000_release_eeprom(hw);
4063
4064 return status;
4065}
4066
4067/**
4068 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4069 * @hw: Struct containing variables accessed by shared code
4070 * @offset: offset within the EEPROM to be written to
4071 * @words: number of words to write
4072 * @data: pointer to array of 8 bit words to be written to the EEPROM
4073 */
4074static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4075 u16 *data)
4076{
4077 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4078 u16 widx = 0;
4079
4080 while (widx < words) {
4081 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4082
4083 if (e1000_spi_eeprom_ready(hw))
4084 return -E1000_ERR_EEPROM;
4085
4086 e1000_standby_eeprom(hw);
4087 cond_resched();
4088
4089 /* Send the WRITE ENABLE command (8 bit opcode ) */
4090 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4091 eeprom->opcode_bits);
4092
4093 e1000_standby_eeprom(hw);
4094
4095 /* Some SPI eeproms use the 8th address bit embedded in the
4096 * opcode
4097 */
4098 if ((eeprom->address_bits == 8) && (offset >= 128))
4099 write_opcode |= EEPROM_A8_OPCODE_SPI;
4100
4101 /* Send the Write command (8-bit opcode + addr) */
4102 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4103
4104 e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4105 eeprom->address_bits);
4106
4107 /* Send the data */
4108
4109 /* Loop to allow for up to whole page write (32 bytes) of
4110 * eeprom
4111 */
4112 while (widx < words) {
4113 u16 word_out = data[widx];
4114
4115 word_out = (word_out >> 8) | (word_out << 8);
4116 e1000_shift_out_ee_bits(hw, word_out, 16);
4117 widx++;
4118
4119 /* Some larger eeprom sizes are capable of a 32-byte
4120 * PAGE WRITE operation, while the smaller eeproms are
4121 * capable of an 8-byte PAGE WRITE operation. Break the
4122 * inner loop to pass new address
4123 */
4124 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4125 e1000_standby_eeprom(hw);
4126 break;
4127 }
4128 }
4129 }
4130
4131 return E1000_SUCCESS;
4132}
4133
4134/**
4135 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4136 * @hw: Struct containing variables accessed by shared code
4137 * @offset: offset within the EEPROM to be written to
4138 * @words: number of words to write
4139 * @data: pointer to array of 8 bit words to be written to the EEPROM
4140 */
4141static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4142 u16 words, u16 *data)
4143{
4144 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4145 u32 eecd;
4146 u16 words_written = 0;
4147 u16 i = 0;
4148
4149 /* Send the write enable command to the EEPROM (3-bit opcode plus
4150 * 6/8-bit dummy address beginning with 11). It's less work to include
4151 * the 11 of the dummy address as part of the opcode than it is to shift
4152 * it over the correct number of bits for the address. This puts the
4153 * EEPROM into write/erase mode.
4154 */
4155 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4156 (u16)(eeprom->opcode_bits + 2));
4157
4158 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4159
4160 /* Prepare the EEPROM */
4161 e1000_standby_eeprom(hw);
4162
4163 while (words_written < words) {
4164 /* Send the Write command (3-bit opcode + addr) */
4165 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4166 eeprom->opcode_bits);
4167
4168 e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4169 eeprom->address_bits);
4170
4171 /* Send the data */
4172 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4173
4174 /* Toggle the CS line. This in effect tells the EEPROM to
4175 * execute the previous command.
4176 */
4177 e1000_standby_eeprom(hw);
4178
4179 /* Read DO repeatedly until it is high (equal to '1'). The
4180 * EEPROM will signal that the command has been completed by
4181 * raising the DO signal. If DO does not go high in 10
4182 * milliseconds, then error out.
4183 */
4184 for (i = 0; i < 200; i++) {
4185 eecd = er32(EECD);
4186 if (eecd & E1000_EECD_DO)
4187 break;
4188 udelay(50);
4189 }
4190 if (i == 200) {
4191 e_dbg("EEPROM Write did not complete\n");
4192 return -E1000_ERR_EEPROM;
4193 }
4194
4195 /* Recover from write */
4196 e1000_standby_eeprom(hw);
4197 cond_resched();
4198
4199 words_written++;
4200 }
4201
4202 /* Send the write disable command to the EEPROM (3-bit opcode plus
4203 * 6/8-bit dummy address beginning with 10). It's less work to include
4204 * the 10 of the dummy address as part of the opcode than it is to shift
4205 * it over the correct number of bits for the address. This takes the
4206 * EEPROM out of write/erase mode.
4207 */
4208 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4209 (u16)(eeprom->opcode_bits + 2));
4210
4211 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4212
4213 return E1000_SUCCESS;
4214}
4215
4216/**
4217 * e1000_read_mac_addr - read the adapters MAC from eeprom
4218 * @hw: Struct containing variables accessed by shared code
4219 *
4220 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4221 * second function of dual function devices
4222 */
4223s32 e1000_read_mac_addr(struct e1000_hw *hw)
4224{
4225 u16 offset;
4226 u16 eeprom_data, i;
4227
4228 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4229 offset = i >> 1;
4230 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4231 e_dbg("EEPROM Read Error\n");
4232 return -E1000_ERR_EEPROM;
4233 }
4234 hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4235 hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4236 }
4237
4238 switch (hw->mac_type) {
4239 default:
4240 break;
4241 case e1000_82546:
4242 case e1000_82546_rev_3:
4243 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4244 hw->perm_mac_addr[5] ^= 0x01;
4245 break;
4246 }
4247
4248 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4249 hw->mac_addr[i] = hw->perm_mac_addr[i];
4250 return E1000_SUCCESS;
4251}
4252
4253/**
4254 * e1000_init_rx_addrs - Initializes receive address filters.
4255 * @hw: Struct containing variables accessed by shared code
4256 *
4257 * Places the MAC address in receive address register 0 and clears the rest
4258 * of the receive address registers. Clears the multicast table. Assumes
4259 * the receiver is in reset when the routine is called.
4260 */
4261static void e1000_init_rx_addrs(struct e1000_hw *hw)
4262{
4263 u32 i;
4264 u32 rar_num;
4265
4266 /* Setup the receive address. */
4267 e_dbg("Programming MAC Address into RAR[0]\n");
4268
4269 e1000_rar_set(hw, hw->mac_addr, 0);
4270
4271 rar_num = E1000_RAR_ENTRIES;
4272
4273 /* Zero out the following 14 receive addresses. RAR[15] is for
4274 * manageability
4275 */
4276 e_dbg("Clearing RAR[1-14]\n");
4277 for (i = 1; i < rar_num; i++) {
4278 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4279 E1000_WRITE_FLUSH();
4280 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4281 E1000_WRITE_FLUSH();
4282 }
4283}
4284
4285/**
4286 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4287 * @hw: Struct containing variables accessed by shared code
4288 * @mc_addr: the multicast address to hash
4289 */
4290u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4291{
4292 u32 hash_value = 0;
4293
4294 /* The portion of the address that is used for the hash table is
4295 * determined by the mc_filter_type setting.
4296 */
4297 switch (hw->mc_filter_type) {
4298 /* [0] [1] [2] [3] [4] [5]
4299 * 01 AA 00 12 34 56
4300 * LSB MSB
4301 */
4302 case 0:
4303 /* [47:36] i.e. 0x563 for above example address */
4304 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4305 break;
4306 case 1:
4307 /* [46:35] i.e. 0xAC6 for above example address */
4308 hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4309 break;
4310 case 2:
4311 /* [45:34] i.e. 0x5D8 for above example address */
4312 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4313 break;
4314 case 3:
4315 /* [43:32] i.e. 0x634 for above example address */
4316 hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4317 break;
4318 }
4319
4320 hash_value &= 0xFFF;
4321 return hash_value;
4322}
4323
4324/**
4325 * e1000_rar_set - Puts an ethernet address into a receive address register.
4326 * @hw: Struct containing variables accessed by shared code
4327 * @addr: Address to put into receive address register
4328 * @index: Receive address register to write
4329 */
4330void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4331{
4332 u32 rar_low, rar_high;
4333
4334 /* HW expects these in little endian so we reverse the byte order
4335 * from network order (big endian) to little endian
4336 */
4337 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4338 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4339 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4340
4341 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4342 * unit hang.
4343 *
4344 * Description:
4345 * If there are any Rx frames queued up or otherwise present in the HW
4346 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4347 * hang. To work around this issue, we have to disable receives and
4348 * flush out all Rx frames before we enable RSS. To do so, we modify we
4349 * redirect all Rx traffic to manageability and then reset the HW.
4350 * This flushes away Rx frames, and (since the redirections to
4351 * manageability persists across resets) keeps new ones from coming in
4352 * while we work. Then, we clear the Address Valid AV bit for all MAC
4353 * addresses and undo the re-direction to manageability.
4354 * Now, frames are coming in again, but the MAC won't accept them, so
4355 * far so good. We now proceed to initialize RSS (if necessary) and
4356 * configure the Rx unit. Last, we re-enable the AV bits and continue
4357 * on our merry way.
4358 */
4359 switch (hw->mac_type) {
4360 default:
4361 /* Indicate to hardware the Address is Valid. */
4362 rar_high |= E1000_RAH_AV;
4363 break;
4364 }
4365
4366 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4367 E1000_WRITE_FLUSH();
4368 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4369 E1000_WRITE_FLUSH();
4370}
4371
4372/**
4373 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4374 * @hw: Struct containing variables accessed by shared code
4375 * @offset: Offset in VLAN filter table to write
4376 * @value: Value to write into VLAN filter table
4377 */
4378void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4379{
4380 u32 temp;
4381
4382 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4383 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4384 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4385 E1000_WRITE_FLUSH();
4386 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4387 E1000_WRITE_FLUSH();
4388 } else {
4389 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4390 E1000_WRITE_FLUSH();
4391 }
4392}
4393
4394/**
4395 * e1000_clear_vfta - Clears the VLAN filter table
4396 * @hw: Struct containing variables accessed by shared code
4397 */
4398static void e1000_clear_vfta(struct e1000_hw *hw)
4399{
4400 u32 offset;
4401
4402 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4403 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
4404 E1000_WRITE_FLUSH();
4405 }
4406}
4407
4408static s32 e1000_id_led_init(struct e1000_hw *hw)
4409{
4410 u32 ledctl;
4411 const u32 ledctl_mask = 0x000000FF;
4412 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4413 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4414 u16 eeprom_data, i, temp;
4415 const u16 led_mask = 0x0F;
4416
4417 if (hw->mac_type < e1000_82540) {
4418 /* Nothing to do */
4419 return E1000_SUCCESS;
4420 }
4421
4422 ledctl = er32(LEDCTL);
4423 hw->ledctl_default = ledctl;
4424 hw->ledctl_mode1 = hw->ledctl_default;
4425 hw->ledctl_mode2 = hw->ledctl_default;
4426
4427 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4428 e_dbg("EEPROM Read Error\n");
4429 return -E1000_ERR_EEPROM;
4430 }
4431
4432 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4433 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4434 eeprom_data = ID_LED_DEFAULT;
4435 }
4436
4437 for (i = 0; i < 4; i++) {
4438 temp = (eeprom_data >> (i << 2)) & led_mask;
4439 switch (temp) {
4440 case ID_LED_ON1_DEF2:
4441 case ID_LED_ON1_ON2:
4442 case ID_LED_ON1_OFF2:
4443 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4444 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4445 break;
4446 case ID_LED_OFF1_DEF2:
4447 case ID_LED_OFF1_ON2:
4448 case ID_LED_OFF1_OFF2:
4449 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4450 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4451 break;
4452 default:
4453 /* Do nothing */
4454 break;
4455 }
4456 switch (temp) {
4457 case ID_LED_DEF1_ON2:
4458 case ID_LED_ON1_ON2:
4459 case ID_LED_OFF1_ON2:
4460 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4461 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4462 break;
4463 case ID_LED_DEF1_OFF2:
4464 case ID_LED_ON1_OFF2:
4465 case ID_LED_OFF1_OFF2:
4466 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4467 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4468 break;
4469 default:
4470 /* Do nothing */
4471 break;
4472 }
4473 }
4474 return E1000_SUCCESS;
4475}
4476
4477/**
4478 * e1000_setup_led
4479 * @hw: Struct containing variables accessed by shared code
4480 *
4481 * Prepares SW controlable LED for use and saves the current state of the LED.
4482 */
4483s32 e1000_setup_led(struct e1000_hw *hw)
4484{
4485 u32 ledctl;
4486 s32 ret_val = E1000_SUCCESS;
4487
4488 switch (hw->mac_type) {
4489 case e1000_82542_rev2_0:
4490 case e1000_82542_rev2_1:
4491 case e1000_82543:
4492 case e1000_82544:
4493 /* No setup necessary */
4494 break;
4495 case e1000_82541:
4496 case e1000_82547:
4497 case e1000_82541_rev_2:
4498 case e1000_82547_rev_2:
4499 /* Turn off PHY Smart Power Down (if enabled) */
4500 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4501 &hw->phy_spd_default);
4502 if (ret_val)
4503 return ret_val;
4504 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4505 (u16)(hw->phy_spd_default &
4506 ~IGP01E1000_GMII_SPD));
4507 if (ret_val)
4508 return ret_val;
4509 fallthrough;
4510 default:
4511 if (hw->media_type == e1000_media_type_fiber) {
4512 ledctl = er32(LEDCTL);
4513 /* Save current LEDCTL settings */
4514 hw->ledctl_default = ledctl;
4515 /* Turn off LED0 */
4516 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4517 E1000_LEDCTL_LED0_BLINK |
4518 E1000_LEDCTL_LED0_MODE_MASK);
4519 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4520 E1000_LEDCTL_LED0_MODE_SHIFT);
4521 ew32(LEDCTL, ledctl);
4522 } else if (hw->media_type == e1000_media_type_copper)
4523 ew32(LEDCTL, hw->ledctl_mode1);
4524 break;
4525 }
4526
4527 return E1000_SUCCESS;
4528}
4529
4530/**
4531 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4532 * @hw: Struct containing variables accessed by shared code
4533 */
4534s32 e1000_cleanup_led(struct e1000_hw *hw)
4535{
4536 s32 ret_val = E1000_SUCCESS;
4537
4538 switch (hw->mac_type) {
4539 case e1000_82542_rev2_0:
4540 case e1000_82542_rev2_1:
4541 case e1000_82543:
4542 case e1000_82544:
4543 /* No cleanup necessary */
4544 break;
4545 case e1000_82541:
4546 case e1000_82547:
4547 case e1000_82541_rev_2:
4548 case e1000_82547_rev_2:
4549 /* Turn on PHY Smart Power Down (if previously enabled) */
4550 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4551 hw->phy_spd_default);
4552 if (ret_val)
4553 return ret_val;
4554 fallthrough;
4555 default:
4556 /* Restore LEDCTL settings */
4557 ew32(LEDCTL, hw->ledctl_default);
4558 break;
4559 }
4560
4561 return E1000_SUCCESS;
4562}
4563
4564/**
4565 * e1000_led_on - Turns on the software controllable LED
4566 * @hw: Struct containing variables accessed by shared code
4567 */
4568s32 e1000_led_on(struct e1000_hw *hw)
4569{
4570 u32 ctrl = er32(CTRL);
4571
4572 switch (hw->mac_type) {
4573 case e1000_82542_rev2_0:
4574 case e1000_82542_rev2_1:
4575 case e1000_82543:
4576 /* Set SW Defineable Pin 0 to turn on the LED */
4577 ctrl |= E1000_CTRL_SWDPIN0;
4578 ctrl |= E1000_CTRL_SWDPIO0;
4579 break;
4580 case e1000_82544:
4581 if (hw->media_type == e1000_media_type_fiber) {
4582 /* Set SW Defineable Pin 0 to turn on the LED */
4583 ctrl |= E1000_CTRL_SWDPIN0;
4584 ctrl |= E1000_CTRL_SWDPIO0;
4585 } else {
4586 /* Clear SW Defineable Pin 0 to turn on the LED */
4587 ctrl &= ~E1000_CTRL_SWDPIN0;
4588 ctrl |= E1000_CTRL_SWDPIO0;
4589 }
4590 break;
4591 default:
4592 if (hw->media_type == e1000_media_type_fiber) {
4593 /* Clear SW Defineable Pin 0 to turn on the LED */
4594 ctrl &= ~E1000_CTRL_SWDPIN0;
4595 ctrl |= E1000_CTRL_SWDPIO0;
4596 } else if (hw->media_type == e1000_media_type_copper) {
4597 ew32(LEDCTL, hw->ledctl_mode2);
4598 return E1000_SUCCESS;
4599 }
4600 break;
4601 }
4602
4603 ew32(CTRL, ctrl);
4604
4605 return E1000_SUCCESS;
4606}
4607
4608/**
4609 * e1000_led_off - Turns off the software controllable LED
4610 * @hw: Struct containing variables accessed by shared code
4611 */
4612s32 e1000_led_off(struct e1000_hw *hw)
4613{
4614 u32 ctrl = er32(CTRL);
4615
4616 switch (hw->mac_type) {
4617 case e1000_82542_rev2_0:
4618 case e1000_82542_rev2_1:
4619 case e1000_82543:
4620 /* Clear SW Defineable Pin 0 to turn off the LED */
4621 ctrl &= ~E1000_CTRL_SWDPIN0;
4622 ctrl |= E1000_CTRL_SWDPIO0;
4623 break;
4624 case e1000_82544:
4625 if (hw->media_type == e1000_media_type_fiber) {
4626 /* Clear SW Defineable Pin 0 to turn off the LED */
4627 ctrl &= ~E1000_CTRL_SWDPIN0;
4628 ctrl |= E1000_CTRL_SWDPIO0;
4629 } else {
4630 /* Set SW Defineable Pin 0 to turn off the LED */
4631 ctrl |= E1000_CTRL_SWDPIN0;
4632 ctrl |= E1000_CTRL_SWDPIO0;
4633 }
4634 break;
4635 default:
4636 if (hw->media_type == e1000_media_type_fiber) {
4637 /* Set SW Defineable Pin 0 to turn off the LED */
4638 ctrl |= E1000_CTRL_SWDPIN0;
4639 ctrl |= E1000_CTRL_SWDPIO0;
4640 } else if (hw->media_type == e1000_media_type_copper) {
4641 ew32(LEDCTL, hw->ledctl_mode1);
4642 return E1000_SUCCESS;
4643 }
4644 break;
4645 }
4646
4647 ew32(CTRL, ctrl);
4648
4649 return E1000_SUCCESS;
4650}
4651
4652/**
4653 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4654 * @hw: Struct containing variables accessed by shared code
4655 */
4656static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4657{
4658 er32(CRCERRS);
4659 er32(SYMERRS);
4660 er32(MPC);
4661 er32(SCC);
4662 er32(ECOL);
4663 er32(MCC);
4664 er32(LATECOL);
4665 er32(COLC);
4666 er32(DC);
4667 er32(SEC);
4668 er32(RLEC);
4669 er32(XONRXC);
4670 er32(XONTXC);
4671 er32(XOFFRXC);
4672 er32(XOFFTXC);
4673 er32(FCRUC);
4674
4675 er32(PRC64);
4676 er32(PRC127);
4677 er32(PRC255);
4678 er32(PRC511);
4679 er32(PRC1023);
4680 er32(PRC1522);
4681
4682 er32(GPRC);
4683 er32(BPRC);
4684 er32(MPRC);
4685 er32(GPTC);
4686 er32(GORCL);
4687 er32(GORCH);
4688 er32(GOTCL);
4689 er32(GOTCH);
4690 er32(RNBC);
4691 er32(RUC);
4692 er32(RFC);
4693 er32(ROC);
4694 er32(RJC);
4695 er32(TORL);
4696 er32(TORH);
4697 er32(TOTL);
4698 er32(TOTH);
4699 er32(TPR);
4700 er32(TPT);
4701
4702 er32(PTC64);
4703 er32(PTC127);
4704 er32(PTC255);
4705 er32(PTC511);
4706 er32(PTC1023);
4707 er32(PTC1522);
4708
4709 er32(MPTC);
4710 er32(BPTC);
4711
4712 if (hw->mac_type < e1000_82543)
4713 return;
4714
4715 er32(ALGNERRC);
4716 er32(RXERRC);
4717 er32(TNCRS);
4718 er32(CEXTERR);
4719 er32(TSCTC);
4720 er32(TSCTFC);
4721
4722 if (hw->mac_type <= e1000_82544)
4723 return;
4724
4725 er32(MGTPRC);
4726 er32(MGTPDC);
4727 er32(MGTPTC);
4728}
4729
4730/**
4731 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4732 * @hw: Struct containing variables accessed by shared code
4733 *
4734 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4735 * hw->ifs_params_forced to true. However, you must initialize hw->
4736 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4737 * before calling this function.
4738 */
4739void e1000_reset_adaptive(struct e1000_hw *hw)
4740{
4741 if (hw->adaptive_ifs) {
4742 if (!hw->ifs_params_forced) {
4743 hw->current_ifs_val = 0;
4744 hw->ifs_min_val = IFS_MIN;
4745 hw->ifs_max_val = IFS_MAX;
4746 hw->ifs_step_size = IFS_STEP;
4747 hw->ifs_ratio = IFS_RATIO;
4748 }
4749 hw->in_ifs_mode = false;
4750 ew32(AIT, 0);
4751 } else {
4752 e_dbg("Not in Adaptive IFS mode!\n");
4753 }
4754}
4755
4756/**
4757 * e1000_update_adaptive - update adaptive IFS
4758 * @hw: Struct containing variables accessed by shared code
4759 *
4760 * Called during the callback/watchdog routine to update IFS value based on
4761 * the ratio of transmits to collisions.
4762 */
4763void e1000_update_adaptive(struct e1000_hw *hw)
4764{
4765 if (hw->adaptive_ifs) {
4766 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4767 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4768 hw->in_ifs_mode = true;
4769 if (hw->current_ifs_val < hw->ifs_max_val) {
4770 if (hw->current_ifs_val == 0)
4771 hw->current_ifs_val =
4772 hw->ifs_min_val;
4773 else
4774 hw->current_ifs_val +=
4775 hw->ifs_step_size;
4776 ew32(AIT, hw->current_ifs_val);
4777 }
4778 }
4779 } else {
4780 if (hw->in_ifs_mode &&
4781 (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4782 hw->current_ifs_val = 0;
4783 hw->in_ifs_mode = false;
4784 ew32(AIT, 0);
4785 }
4786 }
4787 } else {
4788 e_dbg("Not in Adaptive IFS mode!\n");
4789 }
4790}
4791
4792/**
4793 * e1000_get_bus_info
4794 * @hw: Struct containing variables accessed by shared code
4795 *
4796 * Gets the current PCI bus type, speed, and width of the hardware
4797 */
4798void e1000_get_bus_info(struct e1000_hw *hw)
4799{
4800 u32 status;
4801
4802 switch (hw->mac_type) {
4803 case e1000_82542_rev2_0:
4804 case e1000_82542_rev2_1:
4805 hw->bus_type = e1000_bus_type_pci;
4806 hw->bus_speed = e1000_bus_speed_unknown;
4807 hw->bus_width = e1000_bus_width_unknown;
4808 break;
4809 default:
4810 status = er32(STATUS);
4811 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4812 e1000_bus_type_pcix : e1000_bus_type_pci;
4813
4814 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4815 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4816 e1000_bus_speed_66 : e1000_bus_speed_120;
4817 } else if (hw->bus_type == e1000_bus_type_pci) {
4818 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4819 e1000_bus_speed_66 : e1000_bus_speed_33;
4820 } else {
4821 switch (status & E1000_STATUS_PCIX_SPEED) {
4822 case E1000_STATUS_PCIX_SPEED_66:
4823 hw->bus_speed = e1000_bus_speed_66;
4824 break;
4825 case E1000_STATUS_PCIX_SPEED_100:
4826 hw->bus_speed = e1000_bus_speed_100;
4827 break;
4828 case E1000_STATUS_PCIX_SPEED_133:
4829 hw->bus_speed = e1000_bus_speed_133;
4830 break;
4831 default:
4832 hw->bus_speed = e1000_bus_speed_reserved;
4833 break;
4834 }
4835 }
4836 hw->bus_width = (status & E1000_STATUS_BUS64) ?
4837 e1000_bus_width_64 : e1000_bus_width_32;
4838 break;
4839 }
4840}
4841
4842/**
4843 * e1000_write_reg_io
4844 * @hw: Struct containing variables accessed by shared code
4845 * @offset: offset to write to
4846 * @value: value to write
4847 *
4848 * Writes a value to one of the devices registers using port I/O (as opposed to
4849 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4850 */
4851static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4852{
4853 unsigned long io_addr = hw->io_base;
4854 unsigned long io_data = hw->io_base + 4;
4855
4856 e1000_io_write(hw, io_addr, offset);
4857 e1000_io_write(hw, io_data, value);
4858}
4859
4860/**
4861 * e1000_get_cable_length - Estimates the cable length.
4862 * @hw: Struct containing variables accessed by shared code
4863 * @min_length: The estimated minimum length
4864 * @max_length: The estimated maximum length
4865 *
4866 * returns: - E1000_ERR_XXX
4867 * E1000_SUCCESS
4868 *
4869 * This function always returns a ranged length (minimum & maximum).
4870 * So for M88 phy's, this function interprets the one value returned from the
4871 * register to the minimum and maximum range.
4872 * For IGP phy's, the function calculates the range by the AGC registers.
4873 */
4874static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4875 u16 *max_length)
4876{
4877 s32 ret_val;
4878 u16 agc_value = 0;
4879 u16 i, phy_data;
4880 u16 cable_length;
4881
4882 *min_length = *max_length = 0;
4883
4884 /* Use old method for Phy older than IGP */
4885 if (hw->phy_type == e1000_phy_m88) {
4886 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4887 &phy_data);
4888 if (ret_val)
4889 return ret_val;
4890 cable_length = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
4891
4892 /* Convert the enum value to ranged values */
4893 switch (cable_length) {
4894 case e1000_cable_length_50:
4895 *min_length = 0;
4896 *max_length = e1000_igp_cable_length_50;
4897 break;
4898 case e1000_cable_length_50_80:
4899 *min_length = e1000_igp_cable_length_50;
4900 *max_length = e1000_igp_cable_length_80;
4901 break;
4902 case e1000_cable_length_80_110:
4903 *min_length = e1000_igp_cable_length_80;
4904 *max_length = e1000_igp_cable_length_110;
4905 break;
4906 case e1000_cable_length_110_140:
4907 *min_length = e1000_igp_cable_length_110;
4908 *max_length = e1000_igp_cable_length_140;
4909 break;
4910 case e1000_cable_length_140:
4911 *min_length = e1000_igp_cable_length_140;
4912 *max_length = e1000_igp_cable_length_170;
4913 break;
4914 default:
4915 return -E1000_ERR_PHY;
4916 }
4917 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
4918 u16 cur_agc_value;
4919 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4920 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4921 IGP01E1000_PHY_AGC_A,
4922 IGP01E1000_PHY_AGC_B,
4923 IGP01E1000_PHY_AGC_C,
4924 IGP01E1000_PHY_AGC_D
4925 };
4926 /* Read the AGC registers for all channels */
4927 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4928 ret_val =
4929 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4930 if (ret_val)
4931 return ret_val;
4932
4933 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4934
4935 /* Value bound check. */
4936 if ((cur_agc_value >=
4937 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4938 (cur_agc_value == 0))
4939 return -E1000_ERR_PHY;
4940
4941 agc_value += cur_agc_value;
4942
4943 /* Update minimal AGC value. */
4944 if (min_agc_value > cur_agc_value)
4945 min_agc_value = cur_agc_value;
4946 }
4947
4948 /* Remove the minimal AGC result for length < 50m */
4949 if (agc_value <
4950 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4951 agc_value -= min_agc_value;
4952
4953 /* Get the average length of the remaining 3 channels */
4954 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4955 } else {
4956 /* Get the average length of all the 4 channels. */
4957 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4958 }
4959
4960 /* Set the range of the calculated length. */
4961 *min_length = ((e1000_igp_cable_length_table[agc_value] -
4962 IGP01E1000_AGC_RANGE) > 0) ?
4963 (e1000_igp_cable_length_table[agc_value] -
4964 IGP01E1000_AGC_RANGE) : 0;
4965 *max_length = e1000_igp_cable_length_table[agc_value] +
4966 IGP01E1000_AGC_RANGE;
4967 }
4968
4969 return E1000_SUCCESS;
4970}
4971
4972/**
4973 * e1000_check_polarity - Check the cable polarity
4974 * @hw: Struct containing variables accessed by shared code
4975 * @polarity: output parameter : 0 - Polarity is not reversed
4976 * 1 - Polarity is reversed.
4977 *
4978 * returns: - E1000_ERR_XXX
4979 * E1000_SUCCESS
4980 *
4981 * For phy's older than IGP, this function simply reads the polarity bit in the
4982 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
4983 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
4984 * return 0. If the link speed is 1000 Mbps the polarity status is in the
4985 * IGP01E1000_PHY_PCS_INIT_REG.
4986 */
4987static s32 e1000_check_polarity(struct e1000_hw *hw,
4988 e1000_rev_polarity *polarity)
4989{
4990 s32 ret_val;
4991 u16 phy_data;
4992
4993 if (hw->phy_type == e1000_phy_m88) {
4994 /* return the Polarity bit in the Status register. */
4995 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4996 &phy_data);
4997 if (ret_val)
4998 return ret_val;
4999 *polarity = FIELD_GET(M88E1000_PSSR_REV_POLARITY, phy_data) ?
5000 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5001
5002 } else if (hw->phy_type == e1000_phy_igp) {
5003 /* Read the Status register to check the speed */
5004 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5005 &phy_data);
5006 if (ret_val)
5007 return ret_val;
5008
5009 /* If speed is 1000 Mbps, must read the
5010 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5011 */
5012 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5013 IGP01E1000_PSSR_SPEED_1000MBPS) {
5014 /* Read the GIG initialization PCS register (0x00B4) */
5015 ret_val =
5016 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5017 &phy_data);
5018 if (ret_val)
5019 return ret_val;
5020
5021 /* Check the polarity bits */
5022 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5023 e1000_rev_polarity_reversed :
5024 e1000_rev_polarity_normal;
5025 } else {
5026 /* For 10 Mbps, read the polarity bit in the status
5027 * register. (for 100 Mbps this bit is always 0)
5028 */
5029 *polarity =
5030 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5031 e1000_rev_polarity_reversed :
5032 e1000_rev_polarity_normal;
5033 }
5034 }
5035 return E1000_SUCCESS;
5036}
5037
5038/**
5039 * e1000_check_downshift - Check if Downshift occurred
5040 * @hw: Struct containing variables accessed by shared code
5041 *
5042 * returns: - E1000_ERR_XXX
5043 * E1000_SUCCESS
5044 *
5045 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5046 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5047 * Link Health register. In IGP this bit is latched high, so the driver must
5048 * read it immediately after link is established.
5049 */
5050static s32 e1000_check_downshift(struct e1000_hw *hw)
5051{
5052 s32 ret_val;
5053 u16 phy_data;
5054
5055 if (hw->phy_type == e1000_phy_igp) {
5056 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5057 &phy_data);
5058 if (ret_val)
5059 return ret_val;
5060
5061 hw->speed_downgraded =
5062 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5063 } else if (hw->phy_type == e1000_phy_m88) {
5064 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5065 &phy_data);
5066 if (ret_val)
5067 return ret_val;
5068
5069 hw->speed_downgraded = FIELD_GET(M88E1000_PSSR_DOWNSHIFT,
5070 phy_data);
5071 }
5072
5073 return E1000_SUCCESS;
5074}
5075
5076static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5077 IGP01E1000_PHY_AGC_PARAM_A,
5078 IGP01E1000_PHY_AGC_PARAM_B,
5079 IGP01E1000_PHY_AGC_PARAM_C,
5080 IGP01E1000_PHY_AGC_PARAM_D
5081};
5082
5083static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5084{
5085 u16 min_length, max_length;
5086 u16 phy_data, i;
5087 s32 ret_val;
5088
5089 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5090 if (ret_val)
5091 return ret_val;
5092
5093 if (hw->dsp_config_state != e1000_dsp_config_enabled)
5094 return 0;
5095
5096 if (min_length >= e1000_igp_cable_length_50) {
5097 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5098 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5099 &phy_data);
5100 if (ret_val)
5101 return ret_val;
5102
5103 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5104
5105 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5106 phy_data);
5107 if (ret_val)
5108 return ret_val;
5109 }
5110 hw->dsp_config_state = e1000_dsp_config_activated;
5111 } else {
5112 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5113 u32 idle_errs = 0;
5114
5115 /* clear previous idle error counts */
5116 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5117 if (ret_val)
5118 return ret_val;
5119
5120 for (i = 0; i < ffe_idle_err_timeout; i++) {
5121 udelay(1000);
5122 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5123 &phy_data);
5124 if (ret_val)
5125 return ret_val;
5126
5127 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5128 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5129 hw->ffe_config_state = e1000_ffe_config_active;
5130
5131 ret_val = e1000_write_phy_reg(hw,
5132 IGP01E1000_PHY_DSP_FFE,
5133 IGP01E1000_PHY_DSP_FFE_CM_CP);
5134 if (ret_val)
5135 return ret_val;
5136 break;
5137 }
5138
5139 if (idle_errs)
5140 ffe_idle_err_timeout =
5141 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5142 }
5143 }
5144
5145 return 0;
5146}
5147
5148/**
5149 * e1000_config_dsp_after_link_change
5150 * @hw: Struct containing variables accessed by shared code
5151 * @link_up: was link up at the time this was called
5152 *
5153 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5154 * E1000_SUCCESS at any other case.
5155 *
5156 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5157 * gigabit link is achieved to improve link quality.
5158 */
5159
5160static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5161{
5162 s32 ret_val;
5163 u16 phy_data, phy_saved_data, speed, duplex, i;
5164
5165 if (hw->phy_type != e1000_phy_igp)
5166 return E1000_SUCCESS;
5167
5168 if (link_up) {
5169 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5170 if (ret_val) {
5171 e_dbg("Error getting link speed and duplex\n");
5172 return ret_val;
5173 }
5174
5175 if (speed == SPEED_1000) {
5176 ret_val = e1000_1000Mb_check_cable_length(hw);
5177 if (ret_val)
5178 return ret_val;
5179 }
5180 } else {
5181 if (hw->dsp_config_state == e1000_dsp_config_activated) {
5182 /* Save off the current value of register 0x2F5B to be
5183 * restored at the end of the routines.
5184 */
5185 ret_val =
5186 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5187
5188 if (ret_val)
5189 return ret_val;
5190
5191 /* Disable the PHY transmitter */
5192 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5193
5194 if (ret_val)
5195 return ret_val;
5196
5197 msleep(20);
5198
5199 ret_val = e1000_write_phy_reg(hw, 0x0000,
5200 IGP01E1000_IEEE_FORCE_GIGA);
5201 if (ret_val)
5202 return ret_val;
5203 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5204 ret_val =
5205 e1000_read_phy_reg(hw, dsp_reg_array[i],
5206 &phy_data);
5207 if (ret_val)
5208 return ret_val;
5209
5210 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5211 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5212
5213 ret_val =
5214 e1000_write_phy_reg(hw, dsp_reg_array[i],
5215 phy_data);
5216 if (ret_val)
5217 return ret_val;
5218 }
5219
5220 ret_val = e1000_write_phy_reg(hw, 0x0000,
5221 IGP01E1000_IEEE_RESTART_AUTONEG);
5222 if (ret_val)
5223 return ret_val;
5224
5225 msleep(20);
5226
5227 /* Now enable the transmitter */
5228 ret_val =
5229 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5230
5231 if (ret_val)
5232 return ret_val;
5233
5234 hw->dsp_config_state = e1000_dsp_config_enabled;
5235 }
5236
5237 if (hw->ffe_config_state == e1000_ffe_config_active) {
5238 /* Save off the current value of register 0x2F5B to be
5239 * restored at the end of the routines.
5240 */
5241 ret_val =
5242 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5243
5244 if (ret_val)
5245 return ret_val;
5246
5247 /* Disable the PHY transmitter */
5248 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5249
5250 if (ret_val)
5251 return ret_val;
5252
5253 msleep(20);
5254
5255 ret_val = e1000_write_phy_reg(hw, 0x0000,
5256 IGP01E1000_IEEE_FORCE_GIGA);
5257 if (ret_val)
5258 return ret_val;
5259 ret_val =
5260 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5261 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5262 if (ret_val)
5263 return ret_val;
5264
5265 ret_val = e1000_write_phy_reg(hw, 0x0000,
5266 IGP01E1000_IEEE_RESTART_AUTONEG);
5267 if (ret_val)
5268 return ret_val;
5269
5270 msleep(20);
5271
5272 /* Now enable the transmitter */
5273 ret_val =
5274 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5275
5276 if (ret_val)
5277 return ret_val;
5278
5279 hw->ffe_config_state = e1000_ffe_config_enabled;
5280 }
5281 }
5282 return E1000_SUCCESS;
5283}
5284
5285/**
5286 * e1000_set_phy_mode - Set PHY to class A mode
5287 * @hw: Struct containing variables accessed by shared code
5288 *
5289 * Assumes the following operations will follow to enable the new class mode.
5290 * 1. Do a PHY soft reset
5291 * 2. Restart auto-negotiation or force link.
5292 */
5293static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5294{
5295 s32 ret_val;
5296 u16 eeprom_data;
5297
5298 if ((hw->mac_type == e1000_82545_rev_3) &&
5299 (hw->media_type == e1000_media_type_copper)) {
5300 ret_val =
5301 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5302 &eeprom_data);
5303 if (ret_val)
5304 return ret_val;
5305
5306 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5307 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5308 ret_val =
5309 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5310 0x000B);
5311 if (ret_val)
5312 return ret_val;
5313 ret_val =
5314 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5315 0x8104);
5316 if (ret_val)
5317 return ret_val;
5318
5319 hw->phy_reset_disable = false;
5320 }
5321 }
5322
5323 return E1000_SUCCESS;
5324}
5325
5326/**
5327 * e1000_set_d3_lplu_state - set d3 link power state
5328 * @hw: Struct containing variables accessed by shared code
5329 * @active: true to enable lplu false to disable lplu.
5330 *
5331 * This function sets the lplu state according to the active flag. When
5332 * activating lplu this function also disables smart speed and vise versa.
5333 * lplu will not be activated unless the device autonegotiation advertisement
5334 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5335 *
5336 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5337 * E1000_SUCCESS at any other case.
5338 */
5339static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5340{
5341 s32 ret_val;
5342 u16 phy_data;
5343
5344 if (hw->phy_type != e1000_phy_igp)
5345 return E1000_SUCCESS;
5346
5347 /* During driver activity LPLU should not be used or it will attain link
5348 * from the lowest speeds starting from 10Mbps. The capability is used
5349 * for Dx transitions and states
5350 */
5351 if (hw->mac_type == e1000_82541_rev_2 ||
5352 hw->mac_type == e1000_82547_rev_2) {
5353 ret_val =
5354 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5355 if (ret_val)
5356 return ret_val;
5357 }
5358
5359 if (!active) {
5360 if (hw->mac_type == e1000_82541_rev_2 ||
5361 hw->mac_type == e1000_82547_rev_2) {
5362 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5363 ret_val =
5364 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5365 phy_data);
5366 if (ret_val)
5367 return ret_val;
5368 }
5369
5370 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
5371 * during Dx states where the power conservation is most
5372 * important. During driver activity we should enable
5373 * SmartSpeed, so performance is maintained.
5374 */
5375 if (hw->smart_speed == e1000_smart_speed_on) {
5376 ret_val =
5377 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5378 &phy_data);
5379 if (ret_val)
5380 return ret_val;
5381
5382 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5383 ret_val =
5384 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5385 phy_data);
5386 if (ret_val)
5387 return ret_val;
5388 } else if (hw->smart_speed == e1000_smart_speed_off) {
5389 ret_val =
5390 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5391 &phy_data);
5392 if (ret_val)
5393 return ret_val;
5394
5395 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5396 ret_val =
5397 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5398 phy_data);
5399 if (ret_val)
5400 return ret_val;
5401 }
5402 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5403 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5404 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5405 if (hw->mac_type == e1000_82541_rev_2 ||
5406 hw->mac_type == e1000_82547_rev_2) {
5407 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5408 ret_val =
5409 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5410 phy_data);
5411 if (ret_val)
5412 return ret_val;
5413 }
5414
5415 /* When LPLU is enabled we should disable SmartSpeed */
5416 ret_val =
5417 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5418 &phy_data);
5419 if (ret_val)
5420 return ret_val;
5421
5422 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5423 ret_val =
5424 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5425 phy_data);
5426 if (ret_val)
5427 return ret_val;
5428 }
5429 return E1000_SUCCESS;
5430}
5431
5432/**
5433 * e1000_set_vco_speed
5434 * @hw: Struct containing variables accessed by shared code
5435 *
5436 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5437 */
5438static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5439{
5440 s32 ret_val;
5441 u16 default_page = 0;
5442 u16 phy_data;
5443
5444 switch (hw->mac_type) {
5445 case e1000_82545_rev_3:
5446 case e1000_82546_rev_3:
5447 break;
5448 default:
5449 return E1000_SUCCESS;
5450 }
5451
5452 /* Set PHY register 30, page 5, bit 8 to 0 */
5453
5454 ret_val =
5455 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5456 if (ret_val)
5457 return ret_val;
5458
5459 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5460 if (ret_val)
5461 return ret_val;
5462
5463 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5464 if (ret_val)
5465 return ret_val;
5466
5467 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5468 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5469 if (ret_val)
5470 return ret_val;
5471
5472 /* Set PHY register 30, page 4, bit 11 to 1 */
5473
5474 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5475 if (ret_val)
5476 return ret_val;
5477
5478 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5479 if (ret_val)
5480 return ret_val;
5481
5482 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5483 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5484 if (ret_val)
5485 return ret_val;
5486
5487 ret_val =
5488 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5489 if (ret_val)
5490 return ret_val;
5491
5492 return E1000_SUCCESS;
5493}
5494
5495/**
5496 * e1000_enable_mng_pass_thru - check for bmc pass through
5497 * @hw: Struct containing variables accessed by shared code
5498 *
5499 * Verifies the hardware needs to allow ARPs to be processed by the host
5500 * returns: - true/false
5501 */
5502u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5503{
5504 u32 manc;
5505
5506 if (hw->asf_firmware_present) {
5507 manc = er32(MANC);
5508
5509 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5510 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5511 return false;
5512 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5513 return true;
5514 }
5515 return false;
5516}
5517
5518static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5519{
5520 s32 ret_val;
5521 u16 mii_status_reg;
5522 u16 i;
5523
5524 /* Polarity reversal workaround for forced 10F/10H links. */
5525
5526 /* Disable the transmitter on the PHY */
5527
5528 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5529 if (ret_val)
5530 return ret_val;
5531 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5532 if (ret_val)
5533 return ret_val;
5534
5535 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5536 if (ret_val)
5537 return ret_val;
5538
5539 /* This loop will early-out if the NO link condition has been met. */
5540 for (i = PHY_FORCE_TIME; i > 0; i--) {
5541 /* Read the MII Status Register and wait for Link Status bit
5542 * to be clear.
5543 */
5544
5545 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5546 if (ret_val)
5547 return ret_val;
5548
5549 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5550 if (ret_val)
5551 return ret_val;
5552
5553 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5554 break;
5555 msleep(100);
5556 }
5557
5558 /* Recommended delay time after link has been lost */
5559 msleep(1000);
5560
5561 /* Now we will re-enable th transmitter on the PHY */
5562
5563 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5564 if (ret_val)
5565 return ret_val;
5566 msleep(50);
5567 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5568 if (ret_val)
5569 return ret_val;
5570 msleep(50);
5571 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5572 if (ret_val)
5573 return ret_val;
5574 msleep(50);
5575 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5576 if (ret_val)
5577 return ret_val;
5578
5579 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5580 if (ret_val)
5581 return ret_val;
5582
5583 /* This loop will early-out if the link condition has been met. */
5584 for (i = PHY_FORCE_TIME; i > 0; i--) {
5585 /* Read the MII Status Register and wait for Link Status bit
5586 * to be set.
5587 */
5588
5589 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5590 if (ret_val)
5591 return ret_val;
5592
5593 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5594 if (ret_val)
5595 return ret_val;
5596
5597 if (mii_status_reg & MII_SR_LINK_STATUS)
5598 break;
5599 msleep(100);
5600 }
5601 return E1000_SUCCESS;
5602}
5603
5604/**
5605 * e1000_get_auto_rd_done
5606 * @hw: Struct containing variables accessed by shared code
5607 *
5608 * Check for EEPROM Auto Read bit done.
5609 * returns: - E1000_ERR_RESET if fail to reset MAC
5610 * E1000_SUCCESS at any other case.
5611 */
5612static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5613{
5614 msleep(5);
5615 return E1000_SUCCESS;
5616}
5617
5618/**
5619 * e1000_get_phy_cfg_done
5620 * @hw: Struct containing variables accessed by shared code
5621 *
5622 * Checks if the PHY configuration is done
5623 * returns: - E1000_ERR_RESET if fail to reset MAC
5624 * E1000_SUCCESS at any other case.
5625 */
5626static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5627{
5628 msleep(10);
5629 return E1000_SUCCESS;
5630}
1/*******************************************************************************
2*
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 */
28
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33#include "e1000.h"
34
35static s32 e1000_check_downshift(struct e1000_hw *hw);
36static s32 e1000_check_polarity(struct e1000_hw *hw,
37 e1000_rev_polarity *polarity);
38static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39static void e1000_clear_vfta(struct e1000_hw *hw);
40static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
41 bool link_up);
42static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
44static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
45static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 u16 *max_length);
47static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
48static s32 e1000_id_led_init(struct e1000_hw *hw);
49static void e1000_init_rx_addrs(struct e1000_hw *hw);
50static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 struct e1000_phy_info *phy_info);
52static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 struct e1000_phy_info *phy_info);
54static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
55static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57static s32 e1000_set_phy_type(struct e1000_hw *hw);
58static void e1000_phy_init_script(struct e1000_hw *hw);
59static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
67static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
70 u16 words, u16 *data);
71static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 u16 words, u16 *data);
73static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
76static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
77static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
78 u16 phy_data);
79static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
80 u16 *phy_data);
81static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
83static void e1000_release_eeprom(struct e1000_hw *hw);
84static void e1000_standby_eeprom(struct e1000_hw *hw);
85static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
88static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 u16 *data);
90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 u16 *data);
92
93/* IGP cable length table */
94static const
95u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 100,
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 110, 110,
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 120, 120
107};
108
109static DEFINE_MUTEX(e1000_eeprom_lock);
110static DEFINE_SPINLOCK(e1000_phy_lock);
111
112/**
113 * e1000_set_phy_type - Set the phy type member in the hw struct.
114 * @hw: Struct containing variables accessed by shared code
115 */
116static s32 e1000_set_phy_type(struct e1000_hw *hw)
117{
118 if (hw->mac_type == e1000_undefined)
119 return -E1000_ERR_PHY_TYPE;
120
121 switch (hw->phy_id) {
122 case M88E1000_E_PHY_ID:
123 case M88E1000_I_PHY_ID:
124 case M88E1011_I_PHY_ID:
125 case M88E1111_I_PHY_ID:
126 case M88E1118_E_PHY_ID:
127 hw->phy_type = e1000_phy_m88;
128 break;
129 case IGP01E1000_I_PHY_ID:
130 if (hw->mac_type == e1000_82541 ||
131 hw->mac_type == e1000_82541_rev_2 ||
132 hw->mac_type == e1000_82547 ||
133 hw->mac_type == e1000_82547_rev_2)
134 hw->phy_type = e1000_phy_igp;
135 break;
136 case RTL8211B_PHY_ID:
137 hw->phy_type = e1000_phy_8211;
138 break;
139 case RTL8201N_PHY_ID:
140 hw->phy_type = e1000_phy_8201;
141 break;
142 default:
143 /* Should never have loaded on this device */
144 hw->phy_type = e1000_phy_undefined;
145 return -E1000_ERR_PHY_TYPE;
146 }
147
148 return E1000_SUCCESS;
149}
150
151/**
152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153 * @hw: Struct containing variables accessed by shared code
154 */
155static void e1000_phy_init_script(struct e1000_hw *hw)
156{
157 u32 ret_val;
158 u16 phy_saved_data;
159
160 if (hw->phy_init_script) {
161 msleep(20);
162
163 /* Save off the current value of register 0x2F5B to be restored
164 * at the end of this routine.
165 */
166 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
167
168 /* Disabled the PHY transmitter */
169 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
170 msleep(20);
171
172 e1000_write_phy_reg(hw, 0x0000, 0x0140);
173 msleep(5);
174
175 switch (hw->mac_type) {
176 case e1000_82541:
177 case e1000_82547:
178 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
179 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
180 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
181 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
182 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
183 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
184 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
185 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
186 e1000_write_phy_reg(hw, 0x2010, 0x0008);
187 break;
188
189 case e1000_82541_rev_2:
190 case e1000_82547_rev_2:
191 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
192 break;
193 default:
194 break;
195 }
196
197 e1000_write_phy_reg(hw, 0x0000, 0x3300);
198 msleep(20);
199
200 /* Now enable the transmitter */
201 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
202
203 if (hw->mac_type == e1000_82547) {
204 u16 fused, fine, coarse;
205
206 /* Move to analog registers page */
207 e1000_read_phy_reg(hw,
208 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
209 &fused);
210
211 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
212 e1000_read_phy_reg(hw,
213 IGP01E1000_ANALOG_FUSE_STATUS,
214 &fused);
215
216 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
217 coarse =
218 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
219
220 if (coarse >
221 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
222 coarse -=
223 IGP01E1000_ANALOG_FUSE_COARSE_10;
224 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
225 } else if (coarse ==
226 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
227 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
228
229 fused =
230 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
231 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
232 (coarse &
233 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
234
235 e1000_write_phy_reg(hw,
236 IGP01E1000_ANALOG_FUSE_CONTROL,
237 fused);
238 e1000_write_phy_reg(hw,
239 IGP01E1000_ANALOG_FUSE_BYPASS,
240 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
241 }
242 }
243 }
244}
245
246/**
247 * e1000_set_mac_type - Set the mac type member in the hw struct.
248 * @hw: Struct containing variables accessed by shared code
249 */
250s32 e1000_set_mac_type(struct e1000_hw *hw)
251{
252 switch (hw->device_id) {
253 case E1000_DEV_ID_82542:
254 switch (hw->revision_id) {
255 case E1000_82542_2_0_REV_ID:
256 hw->mac_type = e1000_82542_rev2_0;
257 break;
258 case E1000_82542_2_1_REV_ID:
259 hw->mac_type = e1000_82542_rev2_1;
260 break;
261 default:
262 /* Invalid 82542 revision ID */
263 return -E1000_ERR_MAC_TYPE;
264 }
265 break;
266 case E1000_DEV_ID_82543GC_FIBER:
267 case E1000_DEV_ID_82543GC_COPPER:
268 hw->mac_type = e1000_82543;
269 break;
270 case E1000_DEV_ID_82544EI_COPPER:
271 case E1000_DEV_ID_82544EI_FIBER:
272 case E1000_DEV_ID_82544GC_COPPER:
273 case E1000_DEV_ID_82544GC_LOM:
274 hw->mac_type = e1000_82544;
275 break;
276 case E1000_DEV_ID_82540EM:
277 case E1000_DEV_ID_82540EM_LOM:
278 case E1000_DEV_ID_82540EP:
279 case E1000_DEV_ID_82540EP_LOM:
280 case E1000_DEV_ID_82540EP_LP:
281 hw->mac_type = e1000_82540;
282 break;
283 case E1000_DEV_ID_82545EM_COPPER:
284 case E1000_DEV_ID_82545EM_FIBER:
285 hw->mac_type = e1000_82545;
286 break;
287 case E1000_DEV_ID_82545GM_COPPER:
288 case E1000_DEV_ID_82545GM_FIBER:
289 case E1000_DEV_ID_82545GM_SERDES:
290 hw->mac_type = e1000_82545_rev_3;
291 break;
292 case E1000_DEV_ID_82546EB_COPPER:
293 case E1000_DEV_ID_82546EB_FIBER:
294 case E1000_DEV_ID_82546EB_QUAD_COPPER:
295 hw->mac_type = e1000_82546;
296 break;
297 case E1000_DEV_ID_82546GB_COPPER:
298 case E1000_DEV_ID_82546GB_FIBER:
299 case E1000_DEV_ID_82546GB_SERDES:
300 case E1000_DEV_ID_82546GB_PCIE:
301 case E1000_DEV_ID_82546GB_QUAD_COPPER:
302 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
303 hw->mac_type = e1000_82546_rev_3;
304 break;
305 case E1000_DEV_ID_82541EI:
306 case E1000_DEV_ID_82541EI_MOBILE:
307 case E1000_DEV_ID_82541ER_LOM:
308 hw->mac_type = e1000_82541;
309 break;
310 case E1000_DEV_ID_82541ER:
311 case E1000_DEV_ID_82541GI:
312 case E1000_DEV_ID_82541GI_LF:
313 case E1000_DEV_ID_82541GI_MOBILE:
314 hw->mac_type = e1000_82541_rev_2;
315 break;
316 case E1000_DEV_ID_82547EI:
317 case E1000_DEV_ID_82547EI_MOBILE:
318 hw->mac_type = e1000_82547;
319 break;
320 case E1000_DEV_ID_82547GI:
321 hw->mac_type = e1000_82547_rev_2;
322 break;
323 case E1000_DEV_ID_INTEL_CE4100_GBE:
324 hw->mac_type = e1000_ce4100;
325 break;
326 default:
327 /* Should never have loaded on this device */
328 return -E1000_ERR_MAC_TYPE;
329 }
330
331 switch (hw->mac_type) {
332 case e1000_82541:
333 case e1000_82547:
334 case e1000_82541_rev_2:
335 case e1000_82547_rev_2:
336 hw->asf_firmware_present = true;
337 break;
338 default:
339 break;
340 }
341
342 /* The 82543 chip does not count tx_carrier_errors properly in
343 * FD mode
344 */
345 if (hw->mac_type == e1000_82543)
346 hw->bad_tx_carr_stats_fd = true;
347
348 if (hw->mac_type > e1000_82544)
349 hw->has_smbus = true;
350
351 return E1000_SUCCESS;
352}
353
354/**
355 * e1000_set_media_type - Set media type and TBI compatibility.
356 * @hw: Struct containing variables accessed by shared code
357 */
358void e1000_set_media_type(struct e1000_hw *hw)
359{
360 u32 status;
361
362 if (hw->mac_type != e1000_82543) {
363 /* tbi_compatibility is only valid on 82543 */
364 hw->tbi_compatibility_en = false;
365 }
366
367 switch (hw->device_id) {
368 case E1000_DEV_ID_82545GM_SERDES:
369 case E1000_DEV_ID_82546GB_SERDES:
370 hw->media_type = e1000_media_type_internal_serdes;
371 break;
372 default:
373 switch (hw->mac_type) {
374 case e1000_82542_rev2_0:
375 case e1000_82542_rev2_1:
376 hw->media_type = e1000_media_type_fiber;
377 break;
378 case e1000_ce4100:
379 hw->media_type = e1000_media_type_copper;
380 break;
381 default:
382 status = er32(STATUS);
383 if (status & E1000_STATUS_TBIMODE) {
384 hw->media_type = e1000_media_type_fiber;
385 /* tbi_compatibility not valid on fiber */
386 hw->tbi_compatibility_en = false;
387 } else {
388 hw->media_type = e1000_media_type_copper;
389 }
390 break;
391 }
392 }
393}
394
395/**
396 * e1000_reset_hw - reset the hardware completely
397 * @hw: Struct containing variables accessed by shared code
398 *
399 * Reset the transmit and receive units; mask and clear all interrupts.
400 */
401s32 e1000_reset_hw(struct e1000_hw *hw)
402{
403 u32 ctrl;
404 u32 ctrl_ext;
405 u32 icr;
406 u32 manc;
407 u32 led_ctrl;
408 s32 ret_val;
409
410 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
411 if (hw->mac_type == e1000_82542_rev2_0) {
412 e_dbg("Disabling MWI on 82542 rev 2.0\n");
413 e1000_pci_clear_mwi(hw);
414 }
415
416 /* Clear interrupt mask to stop board from generating interrupts */
417 e_dbg("Masking off all interrupts\n");
418 ew32(IMC, 0xffffffff);
419
420 /* Disable the Transmit and Receive units. Then delay to allow
421 * any pending transactions to complete before we hit the MAC with
422 * the global reset.
423 */
424 ew32(RCTL, 0);
425 ew32(TCTL, E1000_TCTL_PSP);
426 E1000_WRITE_FLUSH();
427
428 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
429 hw->tbi_compatibility_on = false;
430
431 /* Delay to allow any outstanding PCI transactions to complete before
432 * resetting the device
433 */
434 msleep(10);
435
436 ctrl = er32(CTRL);
437
438 /* Must reset the PHY before resetting the MAC */
439 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
440 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
441 E1000_WRITE_FLUSH();
442 msleep(5);
443 }
444
445 /* Issue a global reset to the MAC. This will reset the chip's
446 * transmit, receive, DMA, and link units. It will not effect
447 * the current PCI configuration. The global reset bit is self-
448 * clearing, and should clear within a microsecond.
449 */
450 e_dbg("Issuing a global reset to MAC\n");
451
452 switch (hw->mac_type) {
453 case e1000_82544:
454 case e1000_82540:
455 case e1000_82545:
456 case e1000_82546:
457 case e1000_82541:
458 case e1000_82541_rev_2:
459 /* These controllers can't ack the 64-bit write when issuing the
460 * reset, so use IO-mapping as a workaround to issue the reset
461 */
462 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
463 break;
464 case e1000_82545_rev_3:
465 case e1000_82546_rev_3:
466 /* Reset is performed on a shadow of the control register */
467 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
468 break;
469 case e1000_ce4100:
470 default:
471 ew32(CTRL, (ctrl | E1000_CTRL_RST));
472 break;
473 }
474
475 /* After MAC reset, force reload of EEPROM to restore power-on settings
476 * to device. Later controllers reload the EEPROM automatically, so
477 * just wait for reload to complete.
478 */
479 switch (hw->mac_type) {
480 case e1000_82542_rev2_0:
481 case e1000_82542_rev2_1:
482 case e1000_82543:
483 case e1000_82544:
484 /* Wait for reset to complete */
485 udelay(10);
486 ctrl_ext = er32(CTRL_EXT);
487 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
488 ew32(CTRL_EXT, ctrl_ext);
489 E1000_WRITE_FLUSH();
490 /* Wait for EEPROM reload */
491 msleep(2);
492 break;
493 case e1000_82541:
494 case e1000_82541_rev_2:
495 case e1000_82547:
496 case e1000_82547_rev_2:
497 /* Wait for EEPROM reload */
498 msleep(20);
499 break;
500 default:
501 /* Auto read done will delay 5ms or poll based on mac type */
502 ret_val = e1000_get_auto_rd_done(hw);
503 if (ret_val)
504 return ret_val;
505 break;
506 }
507
508 /* Disable HW ARPs on ASF enabled adapters */
509 if (hw->mac_type >= e1000_82540) {
510 manc = er32(MANC);
511 manc &= ~(E1000_MANC_ARP_EN);
512 ew32(MANC, manc);
513 }
514
515 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
516 e1000_phy_init_script(hw);
517
518 /* Configure activity LED after PHY reset */
519 led_ctrl = er32(LEDCTL);
520 led_ctrl &= IGP_ACTIVITY_LED_MASK;
521 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
522 ew32(LEDCTL, led_ctrl);
523 }
524
525 /* Clear interrupt mask to stop board from generating interrupts */
526 e_dbg("Masking off all interrupts\n");
527 ew32(IMC, 0xffffffff);
528
529 /* Clear any pending interrupt events. */
530 icr = er32(ICR);
531
532 /* If MWI was previously enabled, reenable it. */
533 if (hw->mac_type == e1000_82542_rev2_0) {
534 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
535 e1000_pci_set_mwi(hw);
536 }
537
538 return E1000_SUCCESS;
539}
540
541/**
542 * e1000_init_hw - Performs basic configuration of the adapter.
543 * @hw: Struct containing variables accessed by shared code
544 *
545 * Assumes that the controller has previously been reset and is in a
546 * post-reset uninitialized state. Initializes the receive address registers,
547 * multicast table, and VLAN filter table. Calls routines to setup link
548 * configuration and flow control settings. Clears all on-chip counters. Leaves
549 * the transmit and receive units disabled and uninitialized.
550 */
551s32 e1000_init_hw(struct e1000_hw *hw)
552{
553 u32 ctrl;
554 u32 i;
555 s32 ret_val;
556 u32 mta_size;
557 u32 ctrl_ext;
558
559 /* Initialize Identification LED */
560 ret_val = e1000_id_led_init(hw);
561 if (ret_val) {
562 e_dbg("Error Initializing Identification LED\n");
563 return ret_val;
564 }
565
566 /* Set the media type and TBI compatibility */
567 e1000_set_media_type(hw);
568
569 /* Disabling VLAN filtering. */
570 e_dbg("Initializing the IEEE VLAN\n");
571 if (hw->mac_type < e1000_82545_rev_3)
572 ew32(VET, 0);
573 e1000_clear_vfta(hw);
574
575 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
576 if (hw->mac_type == e1000_82542_rev2_0) {
577 e_dbg("Disabling MWI on 82542 rev 2.0\n");
578 e1000_pci_clear_mwi(hw);
579 ew32(RCTL, E1000_RCTL_RST);
580 E1000_WRITE_FLUSH();
581 msleep(5);
582 }
583
584 /* Setup the receive address. This involves initializing all of the
585 * Receive Address Registers (RARs 0 - 15).
586 */
587 e1000_init_rx_addrs(hw);
588
589 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
590 if (hw->mac_type == e1000_82542_rev2_0) {
591 ew32(RCTL, 0);
592 E1000_WRITE_FLUSH();
593 msleep(1);
594 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
595 e1000_pci_set_mwi(hw);
596 }
597
598 /* Zero out the Multicast HASH table */
599 e_dbg("Zeroing the MTA\n");
600 mta_size = E1000_MC_TBL_SIZE;
601 for (i = 0; i < mta_size; i++) {
602 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
603 /* use write flush to prevent Memory Write Block (MWB) from
604 * occurring when accessing our register space
605 */
606 E1000_WRITE_FLUSH();
607 }
608
609 /* Set the PCI priority bit correctly in the CTRL register. This
610 * determines if the adapter gives priority to receives, or if it
611 * gives equal priority to transmits and receives. Valid only on
612 * 82542 and 82543 silicon.
613 */
614 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
615 ctrl = er32(CTRL);
616 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
617 }
618
619 switch (hw->mac_type) {
620 case e1000_82545_rev_3:
621 case e1000_82546_rev_3:
622 break;
623 default:
624 /* Workaround for PCI-X problem when BIOS sets MMRBC
625 * incorrectly.
626 */
627 if (hw->bus_type == e1000_bus_type_pcix &&
628 e1000_pcix_get_mmrbc(hw) > 2048)
629 e1000_pcix_set_mmrbc(hw, 2048);
630 break;
631 }
632
633 /* Call a subroutine to configure the link and setup flow control. */
634 ret_val = e1000_setup_link(hw);
635
636 /* Set the transmit descriptor write-back policy */
637 if (hw->mac_type > e1000_82544) {
638 ctrl = er32(TXDCTL);
639 ctrl =
640 (ctrl & ~E1000_TXDCTL_WTHRESH) |
641 E1000_TXDCTL_FULL_TX_DESC_WB;
642 ew32(TXDCTL, ctrl);
643 }
644
645 /* Clear all of the statistics registers (clear on read). It is
646 * important that we do this after we have tried to establish link
647 * because the symbol error count will increment wildly if there
648 * is no link.
649 */
650 e1000_clear_hw_cntrs(hw);
651
652 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
653 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
654 ctrl_ext = er32(CTRL_EXT);
655 /* Relaxed ordering must be disabled to avoid a parity
656 * error crash in a PCI slot.
657 */
658 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
659 ew32(CTRL_EXT, ctrl_ext);
660 }
661
662 return ret_val;
663}
664
665/**
666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
667 * @hw: Struct containing variables accessed by shared code.
668 */
669static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
670{
671 u16 eeprom_data;
672 s32 ret_val;
673
674 if (hw->media_type != e1000_media_type_internal_serdes)
675 return E1000_SUCCESS;
676
677 switch (hw->mac_type) {
678 case e1000_82545_rev_3:
679 case e1000_82546_rev_3:
680 break;
681 default:
682 return E1000_SUCCESS;
683 }
684
685 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
686 &eeprom_data);
687 if (ret_val)
688 return ret_val;
689
690 if (eeprom_data != EEPROM_RESERVED_WORD) {
691 /* Adjust SERDES output amplitude only. */
692 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
693 ret_val =
694 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
695 if (ret_val)
696 return ret_val;
697 }
698
699 return E1000_SUCCESS;
700}
701
702/**
703 * e1000_setup_link - Configures flow control and link settings.
704 * @hw: Struct containing variables accessed by shared code
705 *
706 * Determines which flow control settings to use. Calls the appropriate media-
707 * specific link configuration function. Configures the flow control settings.
708 * Assuming the adapter has a valid link partner, a valid link should be
709 * established. Assumes the hardware has previously been reset and the
710 * transmitter and receiver are not enabled.
711 */
712s32 e1000_setup_link(struct e1000_hw *hw)
713{
714 u32 ctrl_ext;
715 s32 ret_val;
716 u16 eeprom_data;
717
718 /* Read and store word 0x0F of the EEPROM. This word contains bits
719 * that determine the hardware's default PAUSE (flow control) mode,
720 * a bit that determines whether the HW defaults to enabling or
721 * disabling auto-negotiation, and the direction of the
722 * SW defined pins. If there is no SW over-ride of the flow
723 * control setting, then the variable hw->fc will
724 * be initialized based on a value in the EEPROM.
725 */
726 if (hw->fc == E1000_FC_DEFAULT) {
727 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
728 1, &eeprom_data);
729 if (ret_val) {
730 e_dbg("EEPROM Read Error\n");
731 return -E1000_ERR_EEPROM;
732 }
733 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
734 hw->fc = E1000_FC_NONE;
735 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
736 EEPROM_WORD0F_ASM_DIR)
737 hw->fc = E1000_FC_TX_PAUSE;
738 else
739 hw->fc = E1000_FC_FULL;
740 }
741
742 /* We want to save off the original Flow Control configuration just
743 * in case we get disconnected and then reconnected into a different
744 * hub or switch with different Flow Control capabilities.
745 */
746 if (hw->mac_type == e1000_82542_rev2_0)
747 hw->fc &= (~E1000_FC_TX_PAUSE);
748
749 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
750 hw->fc &= (~E1000_FC_RX_PAUSE);
751
752 hw->original_fc = hw->fc;
753
754 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
755
756 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
757 * polarity value for the SW controlled pins, and setup the
758 * Extended Device Control reg with that info.
759 * This is needed because one of the SW controlled pins is used for
760 * signal detection. So this should be done before e1000_setup_pcs_link()
761 * or e1000_phy_setup() is called.
762 */
763 if (hw->mac_type == e1000_82543) {
764 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
765 1, &eeprom_data);
766 if (ret_val) {
767 e_dbg("EEPROM Read Error\n");
768 return -E1000_ERR_EEPROM;
769 }
770 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
771 SWDPIO__EXT_SHIFT);
772 ew32(CTRL_EXT, ctrl_ext);
773 }
774
775 /* Call the necessary subroutine to configure the link. */
776 ret_val = (hw->media_type == e1000_media_type_copper) ?
777 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
778
779 /* Initialize the flow control address, type, and PAUSE timer
780 * registers to their default values. This is done even if flow
781 * control is disabled, because it does not hurt anything to
782 * initialize these registers.
783 */
784 e_dbg("Initializing the Flow Control address, type and timer regs\n");
785
786 ew32(FCT, FLOW_CONTROL_TYPE);
787 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
788 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
789
790 ew32(FCTTV, hw->fc_pause_time);
791
792 /* Set the flow control receive threshold registers. Normally,
793 * these registers will be set to a default threshold that may be
794 * adjusted later by the driver's runtime code. However, if the
795 * ability to transmit pause frames in not enabled, then these
796 * registers will be set to 0.
797 */
798 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
799 ew32(FCRTL, 0);
800 ew32(FCRTH, 0);
801 } else {
802 /* We need to set up the Receive Threshold high and low water
803 * marks as well as (optionally) enabling the transmission of
804 * XON frames.
805 */
806 if (hw->fc_send_xon) {
807 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
808 ew32(FCRTH, hw->fc_high_water);
809 } else {
810 ew32(FCRTL, hw->fc_low_water);
811 ew32(FCRTH, hw->fc_high_water);
812 }
813 }
814 return ret_val;
815}
816
817/**
818 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
819 * @hw: Struct containing variables accessed by shared code
820 *
821 * Manipulates Physical Coding Sublayer functions in order to configure
822 * link. Assumes the hardware has been previously reset and the transmitter
823 * and receiver are not enabled.
824 */
825static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
826{
827 u32 ctrl;
828 u32 status;
829 u32 txcw = 0;
830 u32 i;
831 u32 signal = 0;
832 s32 ret_val;
833
834 /* On adapters with a MAC newer than 82544, SWDP 1 will be
835 * set when the optics detect a signal. On older adapters, it will be
836 * cleared when there is a signal. This applies to fiber media only.
837 * If we're on serdes media, adjust the output amplitude to value
838 * set in the EEPROM.
839 */
840 ctrl = er32(CTRL);
841 if (hw->media_type == e1000_media_type_fiber)
842 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
843
844 ret_val = e1000_adjust_serdes_amplitude(hw);
845 if (ret_val)
846 return ret_val;
847
848 /* Take the link out of reset */
849 ctrl &= ~(E1000_CTRL_LRST);
850
851 /* Adjust VCO speed to improve BER performance */
852 ret_val = e1000_set_vco_speed(hw);
853 if (ret_val)
854 return ret_val;
855
856 e1000_config_collision_dist(hw);
857
858 /* Check for a software override of the flow control settings, and setup
859 * the device accordingly. If auto-negotiation is enabled, then
860 * software will have to set the "PAUSE" bits to the correct value in
861 * the Tranmsit Config Word Register (TXCW) and re-start
862 * auto-negotiation. However, if auto-negotiation is disabled, then
863 * software will have to manually configure the two flow control enable
864 * bits in the CTRL register.
865 *
866 * The possible values of the "fc" parameter are:
867 * 0: Flow control is completely disabled
868 * 1: Rx flow control is enabled (we can receive pause frames, but
869 * not send pause frames).
870 * 2: Tx flow control is enabled (we can send pause frames but we do
871 * not support receiving pause frames).
872 * 3: Both Rx and TX flow control (symmetric) are enabled.
873 */
874 switch (hw->fc) {
875 case E1000_FC_NONE:
876 /* Flow ctrl is completely disabled by a software over-ride */
877 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
878 break;
879 case E1000_FC_RX_PAUSE:
880 /* Rx Flow control is enabled and Tx Flow control is disabled by
881 * a software over-ride. Since there really isn't a way to
882 * advertise that we are capable of Rx Pause ONLY, we will
883 * advertise that we support both symmetric and asymmetric Rx
884 * PAUSE. Later, we will disable the adapter's ability to send
885 * PAUSE frames.
886 */
887 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
888 break;
889 case E1000_FC_TX_PAUSE:
890 /* Tx Flow control is enabled, and Rx Flow control is disabled,
891 * by a software over-ride.
892 */
893 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
894 break;
895 case E1000_FC_FULL:
896 /* Flow control (both Rx and Tx) is enabled by a software
897 * over-ride.
898 */
899 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
900 break;
901 default:
902 e_dbg("Flow control param set incorrectly\n");
903 return -E1000_ERR_CONFIG;
904 }
905
906 /* Since auto-negotiation is enabled, take the link out of reset (the
907 * link will be in reset, because we previously reset the chip). This
908 * will restart auto-negotiation. If auto-negotiation is successful
909 * then the link-up status bit will be set and the flow control enable
910 * bits (RFCE and TFCE) will be set according to their negotiated value.
911 */
912 e_dbg("Auto-negotiation enabled\n");
913
914 ew32(TXCW, txcw);
915 ew32(CTRL, ctrl);
916 E1000_WRITE_FLUSH();
917
918 hw->txcw = txcw;
919 msleep(1);
920
921 /* If we have a signal (the cable is plugged in) then poll for a
922 * "Link-Up" indication in the Device Status Register. Time-out if a
923 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
924 * complete in less than 500 milliseconds even if the other end is doing
925 * it in SW). For internal serdes, we just assume a signal is present,
926 * then poll.
927 */
928 if (hw->media_type == e1000_media_type_internal_serdes ||
929 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
930 e_dbg("Looking for Link\n");
931 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
932 msleep(10);
933 status = er32(STATUS);
934 if (status & E1000_STATUS_LU)
935 break;
936 }
937 if (i == (LINK_UP_TIMEOUT / 10)) {
938 e_dbg("Never got a valid link from auto-neg!!!\n");
939 hw->autoneg_failed = 1;
940 /* AutoNeg failed to achieve a link, so we'll call
941 * e1000_check_for_link. This routine will force the
942 * link up if we detect a signal. This will allow us to
943 * communicate with non-autonegotiating link partners.
944 */
945 ret_val = e1000_check_for_link(hw);
946 if (ret_val) {
947 e_dbg("Error while checking for link\n");
948 return ret_val;
949 }
950 hw->autoneg_failed = 0;
951 } else {
952 hw->autoneg_failed = 0;
953 e_dbg("Valid Link Found\n");
954 }
955 } else {
956 e_dbg("No Signal Detected\n");
957 }
958 return E1000_SUCCESS;
959}
960
961/**
962 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
963 * @hw: Struct containing variables accessed by shared code
964 *
965 * Commits changes to PHY configuration by calling e1000_phy_reset().
966 */
967static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
968{
969 s32 ret_val;
970
971 /* SW reset the PHY so all changes take effect */
972 ret_val = e1000_phy_reset(hw);
973 if (ret_val) {
974 e_dbg("Error Resetting the PHY\n");
975 return ret_val;
976 }
977
978 return E1000_SUCCESS;
979}
980
981static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
982{
983 s32 ret_val;
984 u32 ctrl_aux;
985
986 switch (hw->phy_type) {
987 case e1000_phy_8211:
988 ret_val = e1000_copper_link_rtl_setup(hw);
989 if (ret_val) {
990 e_dbg("e1000_copper_link_rtl_setup failed!\n");
991 return ret_val;
992 }
993 break;
994 case e1000_phy_8201:
995 /* Set RMII mode */
996 ctrl_aux = er32(CTL_AUX);
997 ctrl_aux |= E1000_CTL_AUX_RMII;
998 ew32(CTL_AUX, ctrl_aux);
999 E1000_WRITE_FLUSH();
1000
1001 /* Disable the J/K bits required for receive */
1002 ctrl_aux = er32(CTL_AUX);
1003 ctrl_aux |= 0x4;
1004 ctrl_aux &= ~0x2;
1005 ew32(CTL_AUX, ctrl_aux);
1006 E1000_WRITE_FLUSH();
1007 ret_val = e1000_copper_link_rtl_setup(hw);
1008
1009 if (ret_val) {
1010 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1011 return ret_val;
1012 }
1013 break;
1014 default:
1015 e_dbg("Error Resetting the PHY\n");
1016 return E1000_ERR_PHY_TYPE;
1017 }
1018
1019 return E1000_SUCCESS;
1020}
1021
1022/**
1023 * e1000_copper_link_preconfig - early configuration for copper
1024 * @hw: Struct containing variables accessed by shared code
1025 *
1026 * Make sure we have a valid PHY and change PHY mode before link setup.
1027 */
1028static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1029{
1030 u32 ctrl;
1031 s32 ret_val;
1032 u16 phy_data;
1033
1034 ctrl = er32(CTRL);
1035 /* With 82543, we need to force speed and duplex on the MAC equal to
1036 * what the PHY speed and duplex configuration is. In addition, we need
1037 * to perform a hardware reset on the PHY to take it out of reset.
1038 */
1039 if (hw->mac_type > e1000_82543) {
1040 ctrl |= E1000_CTRL_SLU;
1041 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1042 ew32(CTRL, ctrl);
1043 } else {
1044 ctrl |=
1045 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1046 ew32(CTRL, ctrl);
1047 ret_val = e1000_phy_hw_reset(hw);
1048 if (ret_val)
1049 return ret_val;
1050 }
1051
1052 /* Make sure we have a valid PHY */
1053 ret_val = e1000_detect_gig_phy(hw);
1054 if (ret_val) {
1055 e_dbg("Error, did not detect valid phy.\n");
1056 return ret_val;
1057 }
1058 e_dbg("Phy ID = %x\n", hw->phy_id);
1059
1060 /* Set PHY to class A mode (if necessary) */
1061 ret_val = e1000_set_phy_mode(hw);
1062 if (ret_val)
1063 return ret_val;
1064
1065 if ((hw->mac_type == e1000_82545_rev_3) ||
1066 (hw->mac_type == e1000_82546_rev_3)) {
1067 ret_val =
1068 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1069 phy_data |= 0x00000008;
1070 ret_val =
1071 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1072 }
1073
1074 if (hw->mac_type <= e1000_82543 ||
1075 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1076 hw->mac_type == e1000_82541_rev_2 ||
1077 hw->mac_type == e1000_82547_rev_2)
1078 hw->phy_reset_disable = false;
1079
1080 return E1000_SUCCESS;
1081}
1082
1083/**
1084 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1085 * @hw: Struct containing variables accessed by shared code
1086 */
1087static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1088{
1089 u32 led_ctrl;
1090 s32 ret_val;
1091 u16 phy_data;
1092
1093 if (hw->phy_reset_disable)
1094 return E1000_SUCCESS;
1095
1096 ret_val = e1000_phy_reset(hw);
1097 if (ret_val) {
1098 e_dbg("Error Resetting the PHY\n");
1099 return ret_val;
1100 }
1101
1102 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1103 msleep(15);
1104 /* Configure activity LED after PHY reset */
1105 led_ctrl = er32(LEDCTL);
1106 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1107 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1108 ew32(LEDCTL, led_ctrl);
1109
1110 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1111 if (hw->phy_type == e1000_phy_igp) {
1112 /* disable lplu d3 during driver init */
1113 ret_val = e1000_set_d3_lplu_state(hw, false);
1114 if (ret_val) {
1115 e_dbg("Error Disabling LPLU D3\n");
1116 return ret_val;
1117 }
1118 }
1119
1120 /* Configure mdi-mdix settings */
1121 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1122 if (ret_val)
1123 return ret_val;
1124
1125 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1126 hw->dsp_config_state = e1000_dsp_config_disabled;
1127 /* Force MDI for earlier revs of the IGP PHY */
1128 phy_data &=
1129 ~(IGP01E1000_PSCR_AUTO_MDIX |
1130 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1131 hw->mdix = 1;
1132
1133 } else {
1134 hw->dsp_config_state = e1000_dsp_config_enabled;
1135 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1136
1137 switch (hw->mdix) {
1138 case 1:
1139 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1140 break;
1141 case 2:
1142 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1143 break;
1144 case 0:
1145 default:
1146 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1147 break;
1148 }
1149 }
1150 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1151 if (ret_val)
1152 return ret_val;
1153
1154 /* set auto-master slave resolution settings */
1155 if (hw->autoneg) {
1156 e1000_ms_type phy_ms_setting = hw->master_slave;
1157
1158 if (hw->ffe_config_state == e1000_ffe_config_active)
1159 hw->ffe_config_state = e1000_ffe_config_enabled;
1160
1161 if (hw->dsp_config_state == e1000_dsp_config_activated)
1162 hw->dsp_config_state = e1000_dsp_config_enabled;
1163
1164 /* when autonegotiation advertisement is only 1000Mbps then we
1165 * should disable SmartSpeed and enable Auto MasterSlave
1166 * resolution as hardware default.
1167 */
1168 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1169 /* Disable SmartSpeed */
1170 ret_val =
1171 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1172 &phy_data);
1173 if (ret_val)
1174 return ret_val;
1175 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1176 ret_val =
1177 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1178 phy_data);
1179 if (ret_val)
1180 return ret_val;
1181 /* Set auto Master/Slave resolution process */
1182 ret_val =
1183 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1184 if (ret_val)
1185 return ret_val;
1186 phy_data &= ~CR_1000T_MS_ENABLE;
1187 ret_val =
1188 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1189 if (ret_val)
1190 return ret_val;
1191 }
1192
1193 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194 if (ret_val)
1195 return ret_val;
1196
1197 /* load defaults for future use */
1198 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1199 ((phy_data & CR_1000T_MS_VALUE) ?
1200 e1000_ms_force_master :
1201 e1000_ms_force_slave) : e1000_ms_auto;
1202
1203 switch (phy_ms_setting) {
1204 case e1000_ms_force_master:
1205 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1206 break;
1207 case e1000_ms_force_slave:
1208 phy_data |= CR_1000T_MS_ENABLE;
1209 phy_data &= ~(CR_1000T_MS_VALUE);
1210 break;
1211 case e1000_ms_auto:
1212 phy_data &= ~CR_1000T_MS_ENABLE;
1213 default:
1214 break;
1215 }
1216 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1217 if (ret_val)
1218 return ret_val;
1219 }
1220
1221 return E1000_SUCCESS;
1222}
1223
1224/**
1225 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1226 * @hw: Struct containing variables accessed by shared code
1227 */
1228static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1229{
1230 s32 ret_val;
1231 u16 phy_data;
1232
1233 if (hw->phy_reset_disable)
1234 return E1000_SUCCESS;
1235
1236 /* Enable CRS on TX. This must be set for half-duplex operation. */
1237 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1238 if (ret_val)
1239 return ret_val;
1240
1241 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1242
1243 /* Options:
1244 * MDI/MDI-X = 0 (default)
1245 * 0 - Auto for all speeds
1246 * 1 - MDI mode
1247 * 2 - MDI-X mode
1248 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1249 */
1250 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1251
1252 switch (hw->mdix) {
1253 case 1:
1254 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1255 break;
1256 case 2:
1257 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1258 break;
1259 case 3:
1260 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1261 break;
1262 case 0:
1263 default:
1264 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1265 break;
1266 }
1267
1268 /* Options:
1269 * disable_polarity_correction = 0 (default)
1270 * Automatic Correction for Reversed Cable Polarity
1271 * 0 - Disabled
1272 * 1 - Enabled
1273 */
1274 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1275 if (hw->disable_polarity_correction == 1)
1276 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1277 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1278 if (ret_val)
1279 return ret_val;
1280
1281 if (hw->phy_revision < M88E1011_I_REV_4) {
1282 /* Force TX_CLK in the Extended PHY Specific Control Register
1283 * to 25MHz clock.
1284 */
1285 ret_val =
1286 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1287 &phy_data);
1288 if (ret_val)
1289 return ret_val;
1290
1291 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1292
1293 if ((hw->phy_revision == E1000_REVISION_2) &&
1294 (hw->phy_id == M88E1111_I_PHY_ID)) {
1295 /* Vidalia Phy, set the downshift counter to 5x */
1296 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1297 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1298 ret_val = e1000_write_phy_reg(hw,
1299 M88E1000_EXT_PHY_SPEC_CTRL,
1300 phy_data);
1301 if (ret_val)
1302 return ret_val;
1303 } else {
1304 /* Configure Master and Slave downshift values */
1305 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1306 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1307 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1308 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1309 ret_val = e1000_write_phy_reg(hw,
1310 M88E1000_EXT_PHY_SPEC_CTRL,
1311 phy_data);
1312 if (ret_val)
1313 return ret_val;
1314 }
1315 }
1316
1317 /* SW Reset the PHY so all changes take effect */
1318 ret_val = e1000_phy_reset(hw);
1319 if (ret_val) {
1320 e_dbg("Error Resetting the PHY\n");
1321 return ret_val;
1322 }
1323
1324 return E1000_SUCCESS;
1325}
1326
1327/**
1328 * e1000_copper_link_autoneg - setup auto-neg
1329 * @hw: Struct containing variables accessed by shared code
1330 *
1331 * Setup auto-negotiation and flow control advertisements,
1332 * and then perform auto-negotiation.
1333 */
1334static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1335{
1336 s32 ret_val;
1337 u16 phy_data;
1338
1339 /* Perform some bounds checking on the hw->autoneg_advertised
1340 * parameter. If this variable is zero, then set it to the default.
1341 */
1342 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1343
1344 /* If autoneg_advertised is zero, we assume it was not defaulted
1345 * by the calling code so we set to advertise full capability.
1346 */
1347 if (hw->autoneg_advertised == 0)
1348 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1349
1350 /* IFE/RTL8201N PHY only supports 10/100 */
1351 if (hw->phy_type == e1000_phy_8201)
1352 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1353
1354 e_dbg("Reconfiguring auto-neg advertisement params\n");
1355 ret_val = e1000_phy_setup_autoneg(hw);
1356 if (ret_val) {
1357 e_dbg("Error Setting up Auto-Negotiation\n");
1358 return ret_val;
1359 }
1360 e_dbg("Restarting Auto-Neg\n");
1361
1362 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1363 * the Auto Neg Restart bit in the PHY control register.
1364 */
1365 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1366 if (ret_val)
1367 return ret_val;
1368
1369 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1370 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1371 if (ret_val)
1372 return ret_val;
1373
1374 /* Does the user want to wait for Auto-Neg to complete here, or
1375 * check at a later time (for example, callback routine).
1376 */
1377 if (hw->wait_autoneg_complete) {
1378 ret_val = e1000_wait_autoneg(hw);
1379 if (ret_val) {
1380 e_dbg
1381 ("Error while waiting for autoneg to complete\n");
1382 return ret_val;
1383 }
1384 }
1385
1386 hw->get_link_status = true;
1387
1388 return E1000_SUCCESS;
1389}
1390
1391/**
1392 * e1000_copper_link_postconfig - post link setup
1393 * @hw: Struct containing variables accessed by shared code
1394 *
1395 * Config the MAC and the PHY after link is up.
1396 * 1) Set up the MAC to the current PHY speed/duplex
1397 * if we are on 82543. If we
1398 * are on newer silicon, we only need to configure
1399 * collision distance in the Transmit Control Register.
1400 * 2) Set up flow control on the MAC to that established with
1401 * the link partner.
1402 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1403 */
1404static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1405{
1406 s32 ret_val;
1407
1408 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1409 e1000_config_collision_dist(hw);
1410 } else {
1411 ret_val = e1000_config_mac_to_phy(hw);
1412 if (ret_val) {
1413 e_dbg("Error configuring MAC to PHY settings\n");
1414 return ret_val;
1415 }
1416 }
1417 ret_val = e1000_config_fc_after_link_up(hw);
1418 if (ret_val) {
1419 e_dbg("Error Configuring Flow Control\n");
1420 return ret_val;
1421 }
1422
1423 /* Config DSP to improve Giga link quality */
1424 if (hw->phy_type == e1000_phy_igp) {
1425 ret_val = e1000_config_dsp_after_link_change(hw, true);
1426 if (ret_val) {
1427 e_dbg("Error Configuring DSP after link up\n");
1428 return ret_val;
1429 }
1430 }
1431
1432 return E1000_SUCCESS;
1433}
1434
1435/**
1436 * e1000_setup_copper_link - phy/speed/duplex setting
1437 * @hw: Struct containing variables accessed by shared code
1438 *
1439 * Detects which PHY is present and sets up the speed and duplex
1440 */
1441static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1442{
1443 s32 ret_val;
1444 u16 i;
1445 u16 phy_data;
1446
1447 /* Check if it is a valid PHY and set PHY mode if necessary. */
1448 ret_val = e1000_copper_link_preconfig(hw);
1449 if (ret_val)
1450 return ret_val;
1451
1452 if (hw->phy_type == e1000_phy_igp) {
1453 ret_val = e1000_copper_link_igp_setup(hw);
1454 if (ret_val)
1455 return ret_val;
1456 } else if (hw->phy_type == e1000_phy_m88) {
1457 ret_val = e1000_copper_link_mgp_setup(hw);
1458 if (ret_val)
1459 return ret_val;
1460 } else {
1461 ret_val = gbe_dhg_phy_setup(hw);
1462 if (ret_val) {
1463 e_dbg("gbe_dhg_phy_setup failed!\n");
1464 return ret_val;
1465 }
1466 }
1467
1468 if (hw->autoneg) {
1469 /* Setup autoneg and flow control advertisement
1470 * and perform autonegotiation
1471 */
1472 ret_val = e1000_copper_link_autoneg(hw);
1473 if (ret_val)
1474 return ret_val;
1475 } else {
1476 /* PHY will be set to 10H, 10F, 100H,or 100F
1477 * depending on value from forced_speed_duplex.
1478 */
1479 e_dbg("Forcing speed and duplex\n");
1480 ret_val = e1000_phy_force_speed_duplex(hw);
1481 if (ret_val) {
1482 e_dbg("Error Forcing Speed and Duplex\n");
1483 return ret_val;
1484 }
1485 }
1486
1487 /* Check link status. Wait up to 100 microseconds for link to become
1488 * valid.
1489 */
1490 for (i = 0; i < 10; i++) {
1491 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1492 if (ret_val)
1493 return ret_val;
1494 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1495 if (ret_val)
1496 return ret_val;
1497
1498 if (phy_data & MII_SR_LINK_STATUS) {
1499 /* Config the MAC and PHY after link is up */
1500 ret_val = e1000_copper_link_postconfig(hw);
1501 if (ret_val)
1502 return ret_val;
1503
1504 e_dbg("Valid link established!!!\n");
1505 return E1000_SUCCESS;
1506 }
1507 udelay(10);
1508 }
1509
1510 e_dbg("Unable to establish link!!!\n");
1511 return E1000_SUCCESS;
1512}
1513
1514/**
1515 * e1000_phy_setup_autoneg - phy settings
1516 * @hw: Struct containing variables accessed by shared code
1517 *
1518 * Configures PHY autoneg and flow control advertisement settings
1519 */
1520s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1521{
1522 s32 ret_val;
1523 u16 mii_autoneg_adv_reg;
1524 u16 mii_1000t_ctrl_reg;
1525
1526 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1527 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1528 if (ret_val)
1529 return ret_val;
1530
1531 /* Read the MII 1000Base-T Control Register (Address 9). */
1532 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1533 if (ret_val)
1534 return ret_val;
1535 else if (hw->phy_type == e1000_phy_8201)
1536 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1537
1538 /* Need to parse both autoneg_advertised and fc and set up
1539 * the appropriate PHY registers. First we will parse for
1540 * autoneg_advertised software override. Since we can advertise
1541 * a plethora of combinations, we need to check each bit
1542 * individually.
1543 */
1544
1545 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1546 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1547 * the 1000Base-T Control Register (Address 9).
1548 */
1549 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1550 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1551
1552 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1553
1554 /* Do we want to advertise 10 Mb Half Duplex? */
1555 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1556 e_dbg("Advertise 10mb Half duplex\n");
1557 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1558 }
1559
1560 /* Do we want to advertise 10 Mb Full Duplex? */
1561 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1562 e_dbg("Advertise 10mb Full duplex\n");
1563 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1564 }
1565
1566 /* Do we want to advertise 100 Mb Half Duplex? */
1567 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1568 e_dbg("Advertise 100mb Half duplex\n");
1569 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1570 }
1571
1572 /* Do we want to advertise 100 Mb Full Duplex? */
1573 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1574 e_dbg("Advertise 100mb Full duplex\n");
1575 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1576 }
1577
1578 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1579 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1580 e_dbg
1581 ("Advertise 1000mb Half duplex requested, request denied!\n");
1582 }
1583
1584 /* Do we want to advertise 1000 Mb Full Duplex? */
1585 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1586 e_dbg("Advertise 1000mb Full duplex\n");
1587 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1588 }
1589
1590 /* Check for a software override of the flow control settings, and
1591 * setup the PHY advertisement registers accordingly. If
1592 * auto-negotiation is enabled, then software will have to set the
1593 * "PAUSE" bits to the correct value in the Auto-Negotiation
1594 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1595 * auto-negotiation.
1596 *
1597 * The possible values of the "fc" parameter are:
1598 * 0: Flow control is completely disabled
1599 * 1: Rx flow control is enabled (we can receive pause frames
1600 * but not send pause frames).
1601 * 2: Tx flow control is enabled (we can send pause frames
1602 * but we do not support receiving pause frames).
1603 * 3: Both Rx and TX flow control (symmetric) are enabled.
1604 * other: No software override. The flow control configuration
1605 * in the EEPROM is used.
1606 */
1607 switch (hw->fc) {
1608 case E1000_FC_NONE: /* 0 */
1609 /* Flow control (RX & TX) is completely disabled by a
1610 * software over-ride.
1611 */
1612 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613 break;
1614 case E1000_FC_RX_PAUSE: /* 1 */
1615 /* RX Flow control is enabled, and TX Flow control is
1616 * disabled, by a software over-ride.
1617 */
1618 /* Since there really isn't a way to advertise that we are
1619 * capable of RX Pause ONLY, we will advertise that we
1620 * support both symmetric and asymmetric RX PAUSE. Later
1621 * (in e1000_config_fc_after_link_up) we will disable the
1622 * hw's ability to send PAUSE frames.
1623 */
1624 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1625 break;
1626 case E1000_FC_TX_PAUSE: /* 2 */
1627 /* TX Flow control is enabled, and RX Flow control is
1628 * disabled, by a software over-ride.
1629 */
1630 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1631 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1632 break;
1633 case E1000_FC_FULL: /* 3 */
1634 /* Flow control (both RX and TX) is enabled by a software
1635 * over-ride.
1636 */
1637 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1638 break;
1639 default:
1640 e_dbg("Flow control param set incorrectly\n");
1641 return -E1000_ERR_CONFIG;
1642 }
1643
1644 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1645 if (ret_val)
1646 return ret_val;
1647
1648 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1649
1650 if (hw->phy_type == e1000_phy_8201) {
1651 mii_1000t_ctrl_reg = 0;
1652 } else {
1653 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1654 mii_1000t_ctrl_reg);
1655 if (ret_val)
1656 return ret_val;
1657 }
1658
1659 return E1000_SUCCESS;
1660}
1661
1662/**
1663 * e1000_phy_force_speed_duplex - force link settings
1664 * @hw: Struct containing variables accessed by shared code
1665 *
1666 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1667 */
1668static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1669{
1670 u32 ctrl;
1671 s32 ret_val;
1672 u16 mii_ctrl_reg;
1673 u16 mii_status_reg;
1674 u16 phy_data;
1675 u16 i;
1676
1677 /* Turn off Flow control if we are forcing speed and duplex. */
1678 hw->fc = E1000_FC_NONE;
1679
1680 e_dbg("hw->fc = %d\n", hw->fc);
1681
1682 /* Read the Device Control Register. */
1683 ctrl = er32(CTRL);
1684
1685 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1686 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1687 ctrl &= ~(DEVICE_SPEED_MASK);
1688
1689 /* Clear the Auto Speed Detect Enable bit. */
1690 ctrl &= ~E1000_CTRL_ASDE;
1691
1692 /* Read the MII Control Register. */
1693 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1694 if (ret_val)
1695 return ret_val;
1696
1697 /* We need to disable autoneg in order to force link and duplex. */
1698
1699 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1700
1701 /* Are we forcing Full or Half Duplex? */
1702 if (hw->forced_speed_duplex == e1000_100_full ||
1703 hw->forced_speed_duplex == e1000_10_full) {
1704 /* We want to force full duplex so we SET the full duplex bits
1705 * in the Device and MII Control Registers.
1706 */
1707 ctrl |= E1000_CTRL_FD;
1708 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1709 e_dbg("Full Duplex\n");
1710 } else {
1711 /* We want to force half duplex so we CLEAR the full duplex bits
1712 * in the Device and MII Control Registers.
1713 */
1714 ctrl &= ~E1000_CTRL_FD;
1715 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1716 e_dbg("Half Duplex\n");
1717 }
1718
1719 /* Are we forcing 100Mbps??? */
1720 if (hw->forced_speed_duplex == e1000_100_full ||
1721 hw->forced_speed_duplex == e1000_100_half) {
1722 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1723 ctrl |= E1000_CTRL_SPD_100;
1724 mii_ctrl_reg |= MII_CR_SPEED_100;
1725 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1726 e_dbg("Forcing 100mb ");
1727 } else {
1728 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1729 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1730 mii_ctrl_reg |= MII_CR_SPEED_10;
1731 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1732 e_dbg("Forcing 10mb ");
1733 }
1734
1735 e1000_config_collision_dist(hw);
1736
1737 /* Write the configured values back to the Device Control Reg. */
1738 ew32(CTRL, ctrl);
1739
1740 if (hw->phy_type == e1000_phy_m88) {
1741 ret_val =
1742 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1743 if (ret_val)
1744 return ret_val;
1745
1746 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1747 * MDI forced whenever speed are duplex are forced.
1748 */
1749 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1750 ret_val =
1751 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1752 if (ret_val)
1753 return ret_val;
1754
1755 e_dbg("M88E1000 PSCR: %x\n", phy_data);
1756
1757 /* Need to reset the PHY or these changes will be ignored */
1758 mii_ctrl_reg |= MII_CR_RESET;
1759
1760 /* Disable MDI-X support for 10/100 */
1761 } else {
1762 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1763 * forced whenever speed or duplex are forced.
1764 */
1765 ret_val =
1766 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1767 if (ret_val)
1768 return ret_val;
1769
1770 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1771 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1772
1773 ret_val =
1774 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1775 if (ret_val)
1776 return ret_val;
1777 }
1778
1779 /* Write back the modified PHY MII control register. */
1780 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1781 if (ret_val)
1782 return ret_val;
1783
1784 udelay(1);
1785
1786 /* The wait_autoneg_complete flag may be a little misleading here.
1787 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1788 * But we do want to delay for a period while forcing only so we
1789 * don't generate false No Link messages. So we will wait here
1790 * only if the user has set wait_autoneg_complete to 1, which is
1791 * the default.
1792 */
1793 if (hw->wait_autoneg_complete) {
1794 /* We will wait for autoneg to complete. */
1795 e_dbg("Waiting for forced speed/duplex link.\n");
1796 mii_status_reg = 0;
1797
1798 /* Wait for autoneg to complete or 4.5 seconds to expire */
1799 for (i = PHY_FORCE_TIME; i > 0; i--) {
1800 /* Read the MII Status Register and wait for Auto-Neg
1801 * Complete bit to be set.
1802 */
1803 ret_val =
1804 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1805 if (ret_val)
1806 return ret_val;
1807
1808 ret_val =
1809 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1810 if (ret_val)
1811 return ret_val;
1812
1813 if (mii_status_reg & MII_SR_LINK_STATUS)
1814 break;
1815 msleep(100);
1816 }
1817 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1818 /* We didn't get link. Reset the DSP and wait again
1819 * for link.
1820 */
1821 ret_val = e1000_phy_reset_dsp(hw);
1822 if (ret_val) {
1823 e_dbg("Error Resetting PHY DSP\n");
1824 return ret_val;
1825 }
1826 }
1827 /* This loop will early-out if the link condition has been
1828 * met
1829 */
1830 for (i = PHY_FORCE_TIME; i > 0; i--) {
1831 if (mii_status_reg & MII_SR_LINK_STATUS)
1832 break;
1833 msleep(100);
1834 /* Read the MII Status Register and wait for Auto-Neg
1835 * Complete bit to be set.
1836 */
1837 ret_val =
1838 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1839 if (ret_val)
1840 return ret_val;
1841
1842 ret_val =
1843 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1844 if (ret_val)
1845 return ret_val;
1846 }
1847 }
1848
1849 if (hw->phy_type == e1000_phy_m88) {
1850 /* Because we reset the PHY above, we need to re-force TX_CLK in
1851 * the Extended PHY Specific Control Register to 25MHz clock.
1852 * This value defaults back to a 2.5MHz clock when the PHY is
1853 * reset.
1854 */
1855 ret_val =
1856 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1857 &phy_data);
1858 if (ret_val)
1859 return ret_val;
1860
1861 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1862 ret_val =
1863 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1864 phy_data);
1865 if (ret_val)
1866 return ret_val;
1867
1868 /* In addition, because of the s/w reset above, we need to
1869 * enable CRS on Tx. This must be set for both full and half
1870 * duplex operation.
1871 */
1872 ret_val =
1873 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1874 if (ret_val)
1875 return ret_val;
1876
1877 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1878 ret_val =
1879 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1880 if (ret_val)
1881 return ret_val;
1882
1883 if ((hw->mac_type == e1000_82544 ||
1884 hw->mac_type == e1000_82543) &&
1885 (!hw->autoneg) &&
1886 (hw->forced_speed_duplex == e1000_10_full ||
1887 hw->forced_speed_duplex == e1000_10_half)) {
1888 ret_val = e1000_polarity_reversal_workaround(hw);
1889 if (ret_val)
1890 return ret_val;
1891 }
1892 }
1893 return E1000_SUCCESS;
1894}
1895
1896/**
1897 * e1000_config_collision_dist - set collision distance register
1898 * @hw: Struct containing variables accessed by shared code
1899 *
1900 * Sets the collision distance in the Transmit Control register.
1901 * Link should have been established previously. Reads the speed and duplex
1902 * information from the Device Status register.
1903 */
1904void e1000_config_collision_dist(struct e1000_hw *hw)
1905{
1906 u32 tctl, coll_dist;
1907
1908 if (hw->mac_type < e1000_82543)
1909 coll_dist = E1000_COLLISION_DISTANCE_82542;
1910 else
1911 coll_dist = E1000_COLLISION_DISTANCE;
1912
1913 tctl = er32(TCTL);
1914
1915 tctl &= ~E1000_TCTL_COLD;
1916 tctl |= coll_dist << E1000_COLD_SHIFT;
1917
1918 ew32(TCTL, tctl);
1919 E1000_WRITE_FLUSH();
1920}
1921
1922/**
1923 * e1000_config_mac_to_phy - sync phy and mac settings
1924 * @hw: Struct containing variables accessed by shared code
1925 * @mii_reg: data to write to the MII control register
1926 *
1927 * Sets MAC speed and duplex settings to reflect the those in the PHY
1928 * The contents of the PHY register containing the needed information need to
1929 * be passed in.
1930 */
1931static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1932{
1933 u32 ctrl;
1934 s32 ret_val;
1935 u16 phy_data;
1936
1937 /* 82544 or newer MAC, Auto Speed Detection takes care of
1938 * MAC speed/duplex configuration.
1939 */
1940 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1941 return E1000_SUCCESS;
1942
1943 /* Read the Device Control Register and set the bits to Force Speed
1944 * and Duplex.
1945 */
1946 ctrl = er32(CTRL);
1947 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1949
1950 switch (hw->phy_type) {
1951 case e1000_phy_8201:
1952 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953 if (ret_val)
1954 return ret_val;
1955
1956 if (phy_data & RTL_PHY_CTRL_FD)
1957 ctrl |= E1000_CTRL_FD;
1958 else
1959 ctrl &= ~E1000_CTRL_FD;
1960
1961 if (phy_data & RTL_PHY_CTRL_SPD_100)
1962 ctrl |= E1000_CTRL_SPD_100;
1963 else
1964 ctrl |= E1000_CTRL_SPD_10;
1965
1966 e1000_config_collision_dist(hw);
1967 break;
1968 default:
1969 /* Set up duplex in the Device Control and Transmit Control
1970 * registers depending on negotiated values.
1971 */
1972 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1973 &phy_data);
1974 if (ret_val)
1975 return ret_val;
1976
1977 if (phy_data & M88E1000_PSSR_DPLX)
1978 ctrl |= E1000_CTRL_FD;
1979 else
1980 ctrl &= ~E1000_CTRL_FD;
1981
1982 e1000_config_collision_dist(hw);
1983
1984 /* Set up speed in the Device Control register depending on
1985 * negotiated values.
1986 */
1987 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988 ctrl |= E1000_CTRL_SPD_1000;
1989 else if ((phy_data & M88E1000_PSSR_SPEED) ==
1990 M88E1000_PSSR_100MBS)
1991 ctrl |= E1000_CTRL_SPD_100;
1992 }
1993
1994 /* Write the configured values back to the Device Control Reg. */
1995 ew32(CTRL, ctrl);
1996 return E1000_SUCCESS;
1997}
1998
1999/**
2000 * e1000_force_mac_fc - force flow control settings
2001 * @hw: Struct containing variables accessed by shared code
2002 *
2003 * Forces the MAC's flow control settings.
2004 * Sets the TFCE and RFCE bits in the device control register to reflect
2005 * the adapter settings. TFCE and RFCE need to be explicitly set by
2006 * software when a Copper PHY is used because autonegotiation is managed
2007 * by the PHY rather than the MAC. Software must also configure these
2008 * bits when link is forced on a fiber connection.
2009 */
2010s32 e1000_force_mac_fc(struct e1000_hw *hw)
2011{
2012 u32 ctrl;
2013
2014 /* Get the current configuration of the Device Control Register */
2015 ctrl = er32(CTRL);
2016
2017 /* Because we didn't get link via the internal auto-negotiation
2018 * mechanism (we either forced link or we got link via PHY
2019 * auto-neg), we have to manually enable/disable transmit an
2020 * receive flow control.
2021 *
2022 * The "Case" statement below enables/disable flow control
2023 * according to the "hw->fc" parameter.
2024 *
2025 * The possible values of the "fc" parameter are:
2026 * 0: Flow control is completely disabled
2027 * 1: Rx flow control is enabled (we can receive pause
2028 * frames but not send pause frames).
2029 * 2: Tx flow control is enabled (we can send pause frames
2030 * frames but we do not receive pause frames).
2031 * 3: Both Rx and TX flow control (symmetric) is enabled.
2032 * other: No other values should be possible at this point.
2033 */
2034
2035 switch (hw->fc) {
2036 case E1000_FC_NONE:
2037 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038 break;
2039 case E1000_FC_RX_PAUSE:
2040 ctrl &= (~E1000_CTRL_TFCE);
2041 ctrl |= E1000_CTRL_RFCE;
2042 break;
2043 case E1000_FC_TX_PAUSE:
2044 ctrl &= (~E1000_CTRL_RFCE);
2045 ctrl |= E1000_CTRL_TFCE;
2046 break;
2047 case E1000_FC_FULL:
2048 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049 break;
2050 default:
2051 e_dbg("Flow control param set incorrectly\n");
2052 return -E1000_ERR_CONFIG;
2053 }
2054
2055 /* Disable TX Flow Control for 82542 (rev 2.0) */
2056 if (hw->mac_type == e1000_82542_rev2_0)
2057 ctrl &= (~E1000_CTRL_TFCE);
2058
2059 ew32(CTRL, ctrl);
2060 return E1000_SUCCESS;
2061}
2062
2063/**
2064 * e1000_config_fc_after_link_up - configure flow control after autoneg
2065 * @hw: Struct containing variables accessed by shared code
2066 *
2067 * Configures flow control settings after link is established
2068 * Should be called immediately after a valid link has been established.
2069 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070 * and autonegotiation is enabled, the MAC flow control settings will be set
2071 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2072 * and RFCE bits will be automatically set to the negotiated flow control mode.
2073 */
2074static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2075{
2076 s32 ret_val;
2077 u16 mii_status_reg;
2078 u16 mii_nway_adv_reg;
2079 u16 mii_nway_lp_ability_reg;
2080 u16 speed;
2081 u16 duplex;
2082
2083 /* Check for the case where we have fiber media and auto-neg failed
2084 * so we had to force link. In this case, we need to force the
2085 * configuration of the MAC to match the "fc" parameter.
2086 */
2087 if (((hw->media_type == e1000_media_type_fiber) &&
2088 (hw->autoneg_failed)) ||
2089 ((hw->media_type == e1000_media_type_internal_serdes) &&
2090 (hw->autoneg_failed)) ||
2091 ((hw->media_type == e1000_media_type_copper) &&
2092 (!hw->autoneg))) {
2093 ret_val = e1000_force_mac_fc(hw);
2094 if (ret_val) {
2095 e_dbg("Error forcing flow control settings\n");
2096 return ret_val;
2097 }
2098 }
2099
2100 /* Check for the case where we have copper media and auto-neg is
2101 * enabled. In this case, we need to check and see if Auto-Neg
2102 * has completed, and if so, how the PHY and link partner has
2103 * flow control configured.
2104 */
2105 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2106 /* Read the MII Status Register and check to see if AutoNeg
2107 * has completed. We read this twice because this reg has
2108 * some "sticky" (latched) bits.
2109 */
2110 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2111 if (ret_val)
2112 return ret_val;
2113 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2114 if (ret_val)
2115 return ret_val;
2116
2117 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2118 /* The AutoNeg process has completed, so we now need to
2119 * read both the Auto Negotiation Advertisement Register
2120 * (Address 4) and the Auto_Negotiation Base Page
2121 * Ability Register (Address 5) to determine how flow
2122 * control was negotiated.
2123 */
2124 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2125 &mii_nway_adv_reg);
2126 if (ret_val)
2127 return ret_val;
2128 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2129 &mii_nway_lp_ability_reg);
2130 if (ret_val)
2131 return ret_val;
2132
2133 /* Two bits in the Auto Negotiation Advertisement
2134 * Register (Address 4) and two bits in the Auto
2135 * Negotiation Base Page Ability Register (Address 5)
2136 * determine flow control for both the PHY and the link
2137 * partner. The following table, taken out of the IEEE
2138 * 802.3ab/D6.0 dated March 25, 1999, describes these
2139 * PAUSE resolution bits and how flow control is
2140 * determined based upon these settings.
2141 * NOTE: DC = Don't Care
2142 *
2143 * LOCAL DEVICE | LINK PARTNER
2144 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2145 *-------|---------|-------|---------|------------------
2146 * 0 | 0 | DC | DC | E1000_FC_NONE
2147 * 0 | 1 | 0 | DC | E1000_FC_NONE
2148 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2149 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2150 * 1 | 0 | 0 | DC | E1000_FC_NONE
2151 * 1 | DC | 1 | DC | E1000_FC_FULL
2152 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2153 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2154 *
2155 */
2156 /* Are both PAUSE bits set to 1? If so, this implies
2157 * Symmetric Flow Control is enabled at both ends. The
2158 * ASM_DIR bits are irrelevant per the spec.
2159 *
2160 * For Symmetric Flow Control:
2161 *
2162 * LOCAL DEVICE | LINK PARTNER
2163 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164 *-------|---------|-------|---------|------------------
2165 * 1 | DC | 1 | DC | E1000_FC_FULL
2166 *
2167 */
2168 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2170 /* Now we need to check if the user selected Rx
2171 * ONLY of pause frames. In this case, we had
2172 * to advertise FULL flow control because we
2173 * could not advertise Rx ONLY. Hence, we must
2174 * now check to see if we need to turn OFF the
2175 * TRANSMISSION of PAUSE frames.
2176 */
2177 if (hw->original_fc == E1000_FC_FULL) {
2178 hw->fc = E1000_FC_FULL;
2179 e_dbg("Flow Control = FULL.\n");
2180 } else {
2181 hw->fc = E1000_FC_RX_PAUSE;
2182 e_dbg
2183 ("Flow Control = RX PAUSE frames only.\n");
2184 }
2185 }
2186 /* For receiving PAUSE frames ONLY.
2187 *
2188 * LOCAL DEVICE | LINK PARTNER
2189 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2190 *-------|---------|-------|---------|------------------
2191 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2192 *
2193 */
2194 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2195 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2196 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2197 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2198 hw->fc = E1000_FC_TX_PAUSE;
2199 e_dbg
2200 ("Flow Control = TX PAUSE frames only.\n");
2201 }
2202 /* For transmitting PAUSE frames ONLY.
2203 *
2204 * LOCAL DEVICE | LINK PARTNER
2205 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2206 *-------|---------|-------|---------|------------------
2207 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2208 *
2209 */
2210 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2211 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2212 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2213 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2214 hw->fc = E1000_FC_RX_PAUSE;
2215 e_dbg
2216 ("Flow Control = RX PAUSE frames only.\n");
2217 }
2218 /* Per the IEEE spec, at this point flow control should
2219 * be disabled. However, we want to consider that we
2220 * could be connected to a legacy switch that doesn't
2221 * advertise desired flow control, but can be forced on
2222 * the link partner. So if we advertised no flow
2223 * control, that is what we will resolve to. If we
2224 * advertised some kind of receive capability (Rx Pause
2225 * Only or Full Flow Control) and the link partner
2226 * advertised none, we will configure ourselves to
2227 * enable Rx Flow Control only. We can do this safely
2228 * for two reasons: If the link partner really
2229 * didn't want flow control enabled, and we enable Rx,
2230 * no harm done since we won't be receiving any PAUSE
2231 * frames anyway. If the intent on the link partner was
2232 * to have flow control enabled, then by us enabling Rx
2233 * only, we can at least receive pause frames and
2234 * process them. This is a good idea because in most
2235 * cases, since we are predominantly a server NIC, more
2236 * times than not we will be asked to delay transmission
2237 * of packets than asking our link partner to pause
2238 * transmission of frames.
2239 */
2240 else if ((hw->original_fc == E1000_FC_NONE ||
2241 hw->original_fc == E1000_FC_TX_PAUSE) ||
2242 hw->fc_strict_ieee) {
2243 hw->fc = E1000_FC_NONE;
2244 e_dbg("Flow Control = NONE.\n");
2245 } else {
2246 hw->fc = E1000_FC_RX_PAUSE;
2247 e_dbg
2248 ("Flow Control = RX PAUSE frames only.\n");
2249 }
2250
2251 /* Now we need to do one last check... If we auto-
2252 * negotiated to HALF DUPLEX, flow control should not be
2253 * enabled per IEEE 802.3 spec.
2254 */
2255 ret_val =
2256 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2257 if (ret_val) {
2258 e_dbg
2259 ("Error getting link speed and duplex\n");
2260 return ret_val;
2261 }
2262
2263 if (duplex == HALF_DUPLEX)
2264 hw->fc = E1000_FC_NONE;
2265
2266 /* Now we call a subroutine to actually force the MAC
2267 * controller to use the correct flow control settings.
2268 */
2269 ret_val = e1000_force_mac_fc(hw);
2270 if (ret_val) {
2271 e_dbg
2272 ("Error forcing flow control settings\n");
2273 return ret_val;
2274 }
2275 } else {
2276 e_dbg
2277 ("Copper PHY and Auto Neg has not completed.\n");
2278 }
2279 }
2280 return E1000_SUCCESS;
2281}
2282
2283/**
2284 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2285 * @hw: pointer to the HW structure
2286 *
2287 * Checks for link up on the hardware. If link is not up and we have
2288 * a signal, then we need to force link up.
2289 */
2290static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2291{
2292 u32 rxcw;
2293 u32 ctrl;
2294 u32 status;
2295 s32 ret_val = E1000_SUCCESS;
2296
2297 ctrl = er32(CTRL);
2298 status = er32(STATUS);
2299 rxcw = er32(RXCW);
2300
2301 /* If we don't have link (auto-negotiation failed or link partner
2302 * cannot auto-negotiate), and our link partner is not trying to
2303 * auto-negotiate with us (we are receiving idles or data),
2304 * we need to force link up. We also need to give auto-negotiation
2305 * time to complete.
2306 */
2307 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2308 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2309 if (hw->autoneg_failed == 0) {
2310 hw->autoneg_failed = 1;
2311 goto out;
2312 }
2313 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2314
2315 /* Disable auto-negotiation in the TXCW register */
2316 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2317
2318 /* Force link-up and also force full-duplex. */
2319 ctrl = er32(CTRL);
2320 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2321 ew32(CTRL, ctrl);
2322
2323 /* Configure Flow Control after forcing link up. */
2324 ret_val = e1000_config_fc_after_link_up(hw);
2325 if (ret_val) {
2326 e_dbg("Error configuring flow control\n");
2327 goto out;
2328 }
2329 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2330 /* If we are forcing link and we are receiving /C/ ordered
2331 * sets, re-enable auto-negotiation in the TXCW register
2332 * and disable forced link in the Device Control register
2333 * in an attempt to auto-negotiate with our link partner.
2334 */
2335 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2336 ew32(TXCW, hw->txcw);
2337 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2338
2339 hw->serdes_has_link = true;
2340 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2341 /* If we force link for non-auto-negotiation switch, check
2342 * link status based on MAC synchronization for internal
2343 * serdes media type.
2344 */
2345 /* SYNCH bit and IV bit are sticky. */
2346 udelay(10);
2347 rxcw = er32(RXCW);
2348 if (rxcw & E1000_RXCW_SYNCH) {
2349 if (!(rxcw & E1000_RXCW_IV)) {
2350 hw->serdes_has_link = true;
2351 e_dbg("SERDES: Link up - forced.\n");
2352 }
2353 } else {
2354 hw->serdes_has_link = false;
2355 e_dbg("SERDES: Link down - force failed.\n");
2356 }
2357 }
2358
2359 if (E1000_TXCW_ANE & er32(TXCW)) {
2360 status = er32(STATUS);
2361 if (status & E1000_STATUS_LU) {
2362 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2363 udelay(10);
2364 rxcw = er32(RXCW);
2365 if (rxcw & E1000_RXCW_SYNCH) {
2366 if (!(rxcw & E1000_RXCW_IV)) {
2367 hw->serdes_has_link = true;
2368 e_dbg("SERDES: Link up - autoneg "
2369 "completed successfully.\n");
2370 } else {
2371 hw->serdes_has_link = false;
2372 e_dbg("SERDES: Link down - invalid"
2373 "codewords detected in autoneg.\n");
2374 }
2375 } else {
2376 hw->serdes_has_link = false;
2377 e_dbg("SERDES: Link down - no sync.\n");
2378 }
2379 } else {
2380 hw->serdes_has_link = false;
2381 e_dbg("SERDES: Link down - autoneg failed\n");
2382 }
2383 }
2384
2385 out:
2386 return ret_val;
2387}
2388
2389/**
2390 * e1000_check_for_link
2391 * @hw: Struct containing variables accessed by shared code
2392 *
2393 * Checks to see if the link status of the hardware has changed.
2394 * Called by any function that needs to check the link status of the adapter.
2395 */
2396s32 e1000_check_for_link(struct e1000_hw *hw)
2397{
2398 u32 rxcw = 0;
2399 u32 ctrl;
2400 u32 status;
2401 u32 rctl;
2402 u32 icr;
2403 u32 signal = 0;
2404 s32 ret_val;
2405 u16 phy_data;
2406
2407 ctrl = er32(CTRL);
2408 status = er32(STATUS);
2409
2410 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2411 * set when the optics detect a signal. On older adapters, it will be
2412 * cleared when there is a signal. This applies to fiber media only.
2413 */
2414 if ((hw->media_type == e1000_media_type_fiber) ||
2415 (hw->media_type == e1000_media_type_internal_serdes)) {
2416 rxcw = er32(RXCW);
2417
2418 if (hw->media_type == e1000_media_type_fiber) {
2419 signal =
2420 (hw->mac_type >
2421 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2422 if (status & E1000_STATUS_LU)
2423 hw->get_link_status = false;
2424 }
2425 }
2426
2427 /* If we have a copper PHY then we only want to go out to the PHY
2428 * registers to see if Auto-Neg has completed and/or if our link
2429 * status has changed. The get_link_status flag will be set if we
2430 * receive a Link Status Change interrupt or we have Rx Sequence
2431 * Errors.
2432 */
2433 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2434 /* First we want to see if the MII Status Register reports
2435 * link. If so, then we want to get the current speed/duplex
2436 * of the PHY.
2437 * Read the register twice since the link bit is sticky.
2438 */
2439 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2440 if (ret_val)
2441 return ret_val;
2442 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2443 if (ret_val)
2444 return ret_val;
2445
2446 if (phy_data & MII_SR_LINK_STATUS) {
2447 hw->get_link_status = false;
2448 /* Check if there was DownShift, must be checked
2449 * immediately after link-up
2450 */
2451 e1000_check_downshift(hw);
2452
2453 /* If we are on 82544 or 82543 silicon and speed/duplex
2454 * are forced to 10H or 10F, then we will implement the
2455 * polarity reversal workaround. We disable interrupts
2456 * first, and upon returning, place the devices
2457 * interrupt state to its previous value except for the
2458 * link status change interrupt which will
2459 * happen due to the execution of this workaround.
2460 */
2461
2462 if ((hw->mac_type == e1000_82544 ||
2463 hw->mac_type == e1000_82543) &&
2464 (!hw->autoneg) &&
2465 (hw->forced_speed_duplex == e1000_10_full ||
2466 hw->forced_speed_duplex == e1000_10_half)) {
2467 ew32(IMC, 0xffffffff);
2468 ret_val =
2469 e1000_polarity_reversal_workaround(hw);
2470 icr = er32(ICR);
2471 ew32(ICS, (icr & ~E1000_ICS_LSC));
2472 ew32(IMS, IMS_ENABLE_MASK);
2473 }
2474
2475 } else {
2476 /* No link detected */
2477 e1000_config_dsp_after_link_change(hw, false);
2478 return 0;
2479 }
2480
2481 /* If we are forcing speed/duplex, then we simply return since
2482 * we have already determined whether we have link or not.
2483 */
2484 if (!hw->autoneg)
2485 return -E1000_ERR_CONFIG;
2486
2487 /* optimize the dsp settings for the igp phy */
2488 e1000_config_dsp_after_link_change(hw, true);
2489
2490 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2491 * have Si on board that is 82544 or newer, Auto
2492 * Speed Detection takes care of MAC speed/duplex
2493 * configuration. So we only need to configure Collision
2494 * Distance in the MAC. Otherwise, we need to force
2495 * speed/duplex on the MAC to the current PHY speed/duplex
2496 * settings.
2497 */
2498 if ((hw->mac_type >= e1000_82544) &&
2499 (hw->mac_type != e1000_ce4100))
2500 e1000_config_collision_dist(hw);
2501 else {
2502 ret_val = e1000_config_mac_to_phy(hw);
2503 if (ret_val) {
2504 e_dbg
2505 ("Error configuring MAC to PHY settings\n");
2506 return ret_val;
2507 }
2508 }
2509
2510 /* Configure Flow Control now that Auto-Neg has completed.
2511 * First, we need to restore the desired flow control settings
2512 * because we may have had to re-autoneg with a different link
2513 * partner.
2514 */
2515 ret_val = e1000_config_fc_after_link_up(hw);
2516 if (ret_val) {
2517 e_dbg("Error configuring flow control\n");
2518 return ret_val;
2519 }
2520
2521 /* At this point we know that we are on copper and we have
2522 * auto-negotiated link. These are conditions for checking the
2523 * link partner capability register. We use the link speed to
2524 * determine if TBI compatibility needs to be turned on or off.
2525 * If the link is not at gigabit speed, then TBI compatibility
2526 * is not needed. If we are at gigabit speed, we turn on TBI
2527 * compatibility.
2528 */
2529 if (hw->tbi_compatibility_en) {
2530 u16 speed, duplex;
2531
2532 ret_val =
2533 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2534
2535 if (ret_val) {
2536 e_dbg
2537 ("Error getting link speed and duplex\n");
2538 return ret_val;
2539 }
2540 if (speed != SPEED_1000) {
2541 /* If link speed is not set to gigabit speed, we
2542 * do not need to enable TBI compatibility.
2543 */
2544 if (hw->tbi_compatibility_on) {
2545 /* If we previously were in the mode,
2546 * turn it off.
2547 */
2548 rctl = er32(RCTL);
2549 rctl &= ~E1000_RCTL_SBP;
2550 ew32(RCTL, rctl);
2551 hw->tbi_compatibility_on = false;
2552 }
2553 } else {
2554 /* If TBI compatibility is was previously off,
2555 * turn it on. For compatibility with a TBI link
2556 * partner, we will store bad packets. Some
2557 * frames have an additional byte on the end and
2558 * will look like CRC errors to to the hardware.
2559 */
2560 if (!hw->tbi_compatibility_on) {
2561 hw->tbi_compatibility_on = true;
2562 rctl = er32(RCTL);
2563 rctl |= E1000_RCTL_SBP;
2564 ew32(RCTL, rctl);
2565 }
2566 }
2567 }
2568 }
2569
2570 if ((hw->media_type == e1000_media_type_fiber) ||
2571 (hw->media_type == e1000_media_type_internal_serdes))
2572 e1000_check_for_serdes_link_generic(hw);
2573
2574 return E1000_SUCCESS;
2575}
2576
2577/**
2578 * e1000_get_speed_and_duplex
2579 * @hw: Struct containing variables accessed by shared code
2580 * @speed: Speed of the connection
2581 * @duplex: Duplex setting of the connection
2582 *
2583 * Detects the current speed and duplex settings of the hardware.
2584 */
2585s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2586{
2587 u32 status;
2588 s32 ret_val;
2589 u16 phy_data;
2590
2591 if (hw->mac_type >= e1000_82543) {
2592 status = er32(STATUS);
2593 if (status & E1000_STATUS_SPEED_1000) {
2594 *speed = SPEED_1000;
2595 e_dbg("1000 Mbs, ");
2596 } else if (status & E1000_STATUS_SPEED_100) {
2597 *speed = SPEED_100;
2598 e_dbg("100 Mbs, ");
2599 } else {
2600 *speed = SPEED_10;
2601 e_dbg("10 Mbs, ");
2602 }
2603
2604 if (status & E1000_STATUS_FD) {
2605 *duplex = FULL_DUPLEX;
2606 e_dbg("Full Duplex\n");
2607 } else {
2608 *duplex = HALF_DUPLEX;
2609 e_dbg(" Half Duplex\n");
2610 }
2611 } else {
2612 e_dbg("1000 Mbs, Full Duplex\n");
2613 *speed = SPEED_1000;
2614 *duplex = FULL_DUPLEX;
2615 }
2616
2617 /* IGP01 PHY may advertise full duplex operation after speed downgrade
2618 * even if it is operating at half duplex. Here we set the duplex
2619 * settings to match the duplex in the link partner's capabilities.
2620 */
2621 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2622 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2623 if (ret_val)
2624 return ret_val;
2625
2626 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2627 *duplex = HALF_DUPLEX;
2628 else {
2629 ret_val =
2630 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2631 if (ret_val)
2632 return ret_val;
2633 if ((*speed == SPEED_100 &&
2634 !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2635 (*speed == SPEED_10 &&
2636 !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2637 *duplex = HALF_DUPLEX;
2638 }
2639 }
2640
2641 return E1000_SUCCESS;
2642}
2643
2644/**
2645 * e1000_wait_autoneg
2646 * @hw: Struct containing variables accessed by shared code
2647 *
2648 * Blocks until autoneg completes or times out (~4.5 seconds)
2649 */
2650static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2651{
2652 s32 ret_val;
2653 u16 i;
2654 u16 phy_data;
2655
2656 e_dbg("Waiting for Auto-Neg to complete.\n");
2657
2658 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2659 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2660 /* Read the MII Status Register and wait for Auto-Neg
2661 * Complete bit to be set.
2662 */
2663 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2664 if (ret_val)
2665 return ret_val;
2666 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2667 if (ret_val)
2668 return ret_val;
2669 if (phy_data & MII_SR_AUTONEG_COMPLETE)
2670 return E1000_SUCCESS;
2671
2672 msleep(100);
2673 }
2674 return E1000_SUCCESS;
2675}
2676
2677/**
2678 * e1000_raise_mdi_clk - Raises the Management Data Clock
2679 * @hw: Struct containing variables accessed by shared code
2680 * @ctrl: Device control register's current value
2681 */
2682static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2683{
2684 /* Raise the clock input to the Management Data Clock (by setting the
2685 * MDC bit), and then delay 10 microseconds.
2686 */
2687 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2688 E1000_WRITE_FLUSH();
2689 udelay(10);
2690}
2691
2692/**
2693 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2694 * @hw: Struct containing variables accessed by shared code
2695 * @ctrl: Device control register's current value
2696 */
2697static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2698{
2699 /* Lower the clock input to the Management Data Clock (by clearing the
2700 * MDC bit), and then delay 10 microseconds.
2701 */
2702 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2703 E1000_WRITE_FLUSH();
2704 udelay(10);
2705}
2706
2707/**
2708 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2709 * @hw: Struct containing variables accessed by shared code
2710 * @data: Data to send out to the PHY
2711 * @count: Number of bits to shift out
2712 *
2713 * Bits are shifted out in MSB to LSB order.
2714 */
2715static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2716{
2717 u32 ctrl;
2718 u32 mask;
2719
2720 /* We need to shift "count" number of bits out to the PHY. So, the value
2721 * in the "data" parameter will be shifted out to the PHY one bit at a
2722 * time. In order to do this, "data" must be broken down into bits.
2723 */
2724 mask = 0x01;
2725 mask <<= (count - 1);
2726
2727 ctrl = er32(CTRL);
2728
2729 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2730 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2731
2732 while (mask) {
2733 /* A "1" is shifted out to the PHY by setting the MDIO bit to
2734 * "1" and then raising and lowering the Management Data Clock.
2735 * A "0" is shifted out to the PHY by setting the MDIO bit to
2736 * "0" and then raising and lowering the clock.
2737 */
2738 if (data & mask)
2739 ctrl |= E1000_CTRL_MDIO;
2740 else
2741 ctrl &= ~E1000_CTRL_MDIO;
2742
2743 ew32(CTRL, ctrl);
2744 E1000_WRITE_FLUSH();
2745
2746 udelay(10);
2747
2748 e1000_raise_mdi_clk(hw, &ctrl);
2749 e1000_lower_mdi_clk(hw, &ctrl);
2750
2751 mask = mask >> 1;
2752 }
2753}
2754
2755/**
2756 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2757 * @hw: Struct containing variables accessed by shared code
2758 *
2759 * Bits are shifted in in MSB to LSB order.
2760 */
2761static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2762{
2763 u32 ctrl;
2764 u16 data = 0;
2765 u8 i;
2766
2767 /* In order to read a register from the PHY, we need to shift in a total
2768 * of 18 bits from the PHY. The first two bit (turnaround) times are
2769 * used to avoid contention on the MDIO pin when a read operation is
2770 * performed. These two bits are ignored by us and thrown away. Bits are
2771 * "shifted in" by raising the input to the Management Data Clock
2772 * (setting the MDC bit), and then reading the value of the MDIO bit.
2773 */
2774 ctrl = er32(CTRL);
2775
2776 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2777 * input.
2778 */
2779 ctrl &= ~E1000_CTRL_MDIO_DIR;
2780 ctrl &= ~E1000_CTRL_MDIO;
2781
2782 ew32(CTRL, ctrl);
2783 E1000_WRITE_FLUSH();
2784
2785 /* Raise and Lower the clock before reading in the data. This accounts
2786 * for the turnaround bits. The first clock occurred when we clocked out
2787 * the last bit of the Register Address.
2788 */
2789 e1000_raise_mdi_clk(hw, &ctrl);
2790 e1000_lower_mdi_clk(hw, &ctrl);
2791
2792 for (data = 0, i = 0; i < 16; i++) {
2793 data = data << 1;
2794 e1000_raise_mdi_clk(hw, &ctrl);
2795 ctrl = er32(CTRL);
2796 /* Check to see if we shifted in a "1". */
2797 if (ctrl & E1000_CTRL_MDIO)
2798 data |= 1;
2799 e1000_lower_mdi_clk(hw, &ctrl);
2800 }
2801
2802 e1000_raise_mdi_clk(hw, &ctrl);
2803 e1000_lower_mdi_clk(hw, &ctrl);
2804
2805 return data;
2806}
2807
2808/**
2809 * e1000_read_phy_reg - read a phy register
2810 * @hw: Struct containing variables accessed by shared code
2811 * @reg_addr: address of the PHY register to read
2812 * @phy_data: pointer to the value on the PHY register
2813 *
2814 * Reads the value from a PHY register, if the value is on a specific non zero
2815 * page, sets the page first.
2816 */
2817s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2818{
2819 u32 ret_val;
2820 unsigned long flags;
2821
2822 spin_lock_irqsave(&e1000_phy_lock, flags);
2823
2824 if ((hw->phy_type == e1000_phy_igp) &&
2825 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2826 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2827 (u16) reg_addr);
2828 if (ret_val)
2829 goto out;
2830 }
2831
2832 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2833 phy_data);
2834out:
2835 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2836
2837 return ret_val;
2838}
2839
2840static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2841 u16 *phy_data)
2842{
2843 u32 i;
2844 u32 mdic = 0;
2845 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2846
2847 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2848 e_dbg("PHY Address %d is out of range\n", reg_addr);
2849 return -E1000_ERR_PARAM;
2850 }
2851
2852 if (hw->mac_type > e1000_82543) {
2853 /* Set up Op-code, Phy Address, and register address in the MDI
2854 * Control register. The MAC will take care of interfacing with
2855 * the PHY to retrieve the desired data.
2856 */
2857 if (hw->mac_type == e1000_ce4100) {
2858 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2859 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2860 (INTEL_CE_GBE_MDIC_OP_READ) |
2861 (INTEL_CE_GBE_MDIC_GO));
2862
2863 writel(mdic, E1000_MDIO_CMD);
2864
2865 /* Poll the ready bit to see if the MDI read
2866 * completed
2867 */
2868 for (i = 0; i < 64; i++) {
2869 udelay(50);
2870 mdic = readl(E1000_MDIO_CMD);
2871 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2872 break;
2873 }
2874
2875 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2876 e_dbg("MDI Read did not complete\n");
2877 return -E1000_ERR_PHY;
2878 }
2879
2880 mdic = readl(E1000_MDIO_STS);
2881 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2882 e_dbg("MDI Read Error\n");
2883 return -E1000_ERR_PHY;
2884 }
2885 *phy_data = (u16)mdic;
2886 } else {
2887 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2888 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2889 (E1000_MDIC_OP_READ));
2890
2891 ew32(MDIC, mdic);
2892
2893 /* Poll the ready bit to see if the MDI read
2894 * completed
2895 */
2896 for (i = 0; i < 64; i++) {
2897 udelay(50);
2898 mdic = er32(MDIC);
2899 if (mdic & E1000_MDIC_READY)
2900 break;
2901 }
2902 if (!(mdic & E1000_MDIC_READY)) {
2903 e_dbg("MDI Read did not complete\n");
2904 return -E1000_ERR_PHY;
2905 }
2906 if (mdic & E1000_MDIC_ERROR) {
2907 e_dbg("MDI Error\n");
2908 return -E1000_ERR_PHY;
2909 }
2910 *phy_data = (u16)mdic;
2911 }
2912 } else {
2913 /* We must first send a preamble through the MDIO pin to signal
2914 * the beginning of an MII instruction. This is done by sending
2915 * 32 consecutive "1" bits.
2916 */
2917 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2918
2919 /* Now combine the next few fields that are required for a read
2920 * operation. We use this method instead of calling the
2921 * e1000_shift_out_mdi_bits routine five different times. The
2922 * format of a MII read instruction consists of a shift out of
2923 * 14 bits and is defined as follows:
2924 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2925 * followed by a shift in of 18 bits. This first two bits
2926 * shifted in are TurnAround bits used to avoid contention on
2927 * the MDIO pin when a READ operation is performed. These two
2928 * bits are thrown away followed by a shift in of 16 bits which
2929 * contains the desired data.
2930 */
2931 mdic = ((reg_addr) | (phy_addr << 5) |
2932 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2933
2934 e1000_shift_out_mdi_bits(hw, mdic, 14);
2935
2936 /* Now that we've shifted out the read command to the MII, we
2937 * need to "shift in" the 16-bit value (18 total bits) of the
2938 * requested PHY register address.
2939 */
2940 *phy_data = e1000_shift_in_mdi_bits(hw);
2941 }
2942 return E1000_SUCCESS;
2943}
2944
2945/**
2946 * e1000_write_phy_reg - write a phy register
2947 *
2948 * @hw: Struct containing variables accessed by shared code
2949 * @reg_addr: address of the PHY register to write
2950 * @data: data to write to the PHY
2951 *
2952 * Writes a value to a PHY register
2953 */
2954s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2955{
2956 u32 ret_val;
2957 unsigned long flags;
2958
2959 spin_lock_irqsave(&e1000_phy_lock, flags);
2960
2961 if ((hw->phy_type == e1000_phy_igp) &&
2962 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2963 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2964 (u16)reg_addr);
2965 if (ret_val) {
2966 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2967 return ret_val;
2968 }
2969 }
2970
2971 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2972 phy_data);
2973 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2974
2975 return ret_val;
2976}
2977
2978static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2979 u16 phy_data)
2980{
2981 u32 i;
2982 u32 mdic = 0;
2983 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2984
2985 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2986 e_dbg("PHY Address %d is out of range\n", reg_addr);
2987 return -E1000_ERR_PARAM;
2988 }
2989
2990 if (hw->mac_type > e1000_82543) {
2991 /* Set up Op-code, Phy Address, register address, and data
2992 * intended for the PHY register in the MDI Control register.
2993 * The MAC will take care of interfacing with the PHY to send
2994 * the desired data.
2995 */
2996 if (hw->mac_type == e1000_ce4100) {
2997 mdic = (((u32)phy_data) |
2998 (reg_addr << E1000_MDIC_REG_SHIFT) |
2999 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3000 (INTEL_CE_GBE_MDIC_OP_WRITE) |
3001 (INTEL_CE_GBE_MDIC_GO));
3002
3003 writel(mdic, E1000_MDIO_CMD);
3004
3005 /* Poll the ready bit to see if the MDI read
3006 * completed
3007 */
3008 for (i = 0; i < 640; i++) {
3009 udelay(5);
3010 mdic = readl(E1000_MDIO_CMD);
3011 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3012 break;
3013 }
3014 if (mdic & INTEL_CE_GBE_MDIC_GO) {
3015 e_dbg("MDI Write did not complete\n");
3016 return -E1000_ERR_PHY;
3017 }
3018 } else {
3019 mdic = (((u32)phy_data) |
3020 (reg_addr << E1000_MDIC_REG_SHIFT) |
3021 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3022 (E1000_MDIC_OP_WRITE));
3023
3024 ew32(MDIC, mdic);
3025
3026 /* Poll the ready bit to see if the MDI read
3027 * completed
3028 */
3029 for (i = 0; i < 641; i++) {
3030 udelay(5);
3031 mdic = er32(MDIC);
3032 if (mdic & E1000_MDIC_READY)
3033 break;
3034 }
3035 if (!(mdic & E1000_MDIC_READY)) {
3036 e_dbg("MDI Write did not complete\n");
3037 return -E1000_ERR_PHY;
3038 }
3039 }
3040 } else {
3041 /* We'll need to use the SW defined pins to shift the write
3042 * command out to the PHY. We first send a preamble to the PHY
3043 * to signal the beginning of the MII instruction. This is done
3044 * by sending 32 consecutive "1" bits.
3045 */
3046 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3047
3048 /* Now combine the remaining required fields that will indicate
3049 * a write operation. We use this method instead of calling the
3050 * e1000_shift_out_mdi_bits routine for each field in the
3051 * command. The format of a MII write instruction is as follows:
3052 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3053 */
3054 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3055 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3056 mdic <<= 16;
3057 mdic |= (u32)phy_data;
3058
3059 e1000_shift_out_mdi_bits(hw, mdic, 32);
3060 }
3061
3062 return E1000_SUCCESS;
3063}
3064
3065/**
3066 * e1000_phy_hw_reset - reset the phy, hardware style
3067 * @hw: Struct containing variables accessed by shared code
3068 *
3069 * Returns the PHY to the power-on reset state
3070 */
3071s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3072{
3073 u32 ctrl, ctrl_ext;
3074 u32 led_ctrl;
3075
3076 e_dbg("Resetting Phy...\n");
3077
3078 if (hw->mac_type > e1000_82543) {
3079 /* Read the device control register and assert the
3080 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3081 * For e1000 hardware, we delay for 10ms between the assert
3082 * and de-assert.
3083 */
3084 ctrl = er32(CTRL);
3085 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3086 E1000_WRITE_FLUSH();
3087
3088 msleep(10);
3089
3090 ew32(CTRL, ctrl);
3091 E1000_WRITE_FLUSH();
3092
3093 } else {
3094 /* Read the Extended Device Control Register, assert the
3095 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3096 * out of reset.
3097 */
3098 ctrl_ext = er32(CTRL_EXT);
3099 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3100 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3101 ew32(CTRL_EXT, ctrl_ext);
3102 E1000_WRITE_FLUSH();
3103 msleep(10);
3104 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3105 ew32(CTRL_EXT, ctrl_ext);
3106 E1000_WRITE_FLUSH();
3107 }
3108 udelay(150);
3109
3110 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3111 /* Configure activity LED after PHY reset */
3112 led_ctrl = er32(LEDCTL);
3113 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3114 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3115 ew32(LEDCTL, led_ctrl);
3116 }
3117
3118 /* Wait for FW to finish PHY configuration. */
3119 return e1000_get_phy_cfg_done(hw);
3120}
3121
3122/**
3123 * e1000_phy_reset - reset the phy to commit settings
3124 * @hw: Struct containing variables accessed by shared code
3125 *
3126 * Resets the PHY
3127 * Sets bit 15 of the MII Control register
3128 */
3129s32 e1000_phy_reset(struct e1000_hw *hw)
3130{
3131 s32 ret_val;
3132 u16 phy_data;
3133
3134 switch (hw->phy_type) {
3135 case e1000_phy_igp:
3136 ret_val = e1000_phy_hw_reset(hw);
3137 if (ret_val)
3138 return ret_val;
3139 break;
3140 default:
3141 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3142 if (ret_val)
3143 return ret_val;
3144
3145 phy_data |= MII_CR_RESET;
3146 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3147 if (ret_val)
3148 return ret_val;
3149
3150 udelay(1);
3151 break;
3152 }
3153
3154 if (hw->phy_type == e1000_phy_igp)
3155 e1000_phy_init_script(hw);
3156
3157 return E1000_SUCCESS;
3158}
3159
3160/**
3161 * e1000_detect_gig_phy - check the phy type
3162 * @hw: Struct containing variables accessed by shared code
3163 *
3164 * Probes the expected PHY address for known PHY IDs
3165 */
3166static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3167{
3168 s32 phy_init_status, ret_val;
3169 u16 phy_id_high, phy_id_low;
3170 bool match = false;
3171
3172 if (hw->phy_id != 0)
3173 return E1000_SUCCESS;
3174
3175 /* Read the PHY ID Registers to identify which PHY is onboard. */
3176 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3177 if (ret_val)
3178 return ret_val;
3179
3180 hw->phy_id = (u32)(phy_id_high << 16);
3181 udelay(20);
3182 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3183 if (ret_val)
3184 return ret_val;
3185
3186 hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3187 hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3188
3189 switch (hw->mac_type) {
3190 case e1000_82543:
3191 if (hw->phy_id == M88E1000_E_PHY_ID)
3192 match = true;
3193 break;
3194 case e1000_82544:
3195 if (hw->phy_id == M88E1000_I_PHY_ID)
3196 match = true;
3197 break;
3198 case e1000_82540:
3199 case e1000_82545:
3200 case e1000_82545_rev_3:
3201 case e1000_82546:
3202 case e1000_82546_rev_3:
3203 if (hw->phy_id == M88E1011_I_PHY_ID)
3204 match = true;
3205 break;
3206 case e1000_ce4100:
3207 if ((hw->phy_id == RTL8211B_PHY_ID) ||
3208 (hw->phy_id == RTL8201N_PHY_ID) ||
3209 (hw->phy_id == M88E1118_E_PHY_ID))
3210 match = true;
3211 break;
3212 case e1000_82541:
3213 case e1000_82541_rev_2:
3214 case e1000_82547:
3215 case e1000_82547_rev_2:
3216 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3217 match = true;
3218 break;
3219 default:
3220 e_dbg("Invalid MAC type %d\n", hw->mac_type);
3221 return -E1000_ERR_CONFIG;
3222 }
3223 phy_init_status = e1000_set_phy_type(hw);
3224
3225 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3226 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3227 return E1000_SUCCESS;
3228 }
3229 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3230 return -E1000_ERR_PHY;
3231}
3232
3233/**
3234 * e1000_phy_reset_dsp - reset DSP
3235 * @hw: Struct containing variables accessed by shared code
3236 *
3237 * Resets the PHY's DSP
3238 */
3239static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3240{
3241 s32 ret_val;
3242
3243 do {
3244 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3245 if (ret_val)
3246 break;
3247 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3248 if (ret_val)
3249 break;
3250 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3251 if (ret_val)
3252 break;
3253 ret_val = E1000_SUCCESS;
3254 } while (0);
3255
3256 return ret_val;
3257}
3258
3259/**
3260 * e1000_phy_igp_get_info - get igp specific registers
3261 * @hw: Struct containing variables accessed by shared code
3262 * @phy_info: PHY information structure
3263 *
3264 * Get PHY information from various PHY registers for igp PHY only.
3265 */
3266static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3267 struct e1000_phy_info *phy_info)
3268{
3269 s32 ret_val;
3270 u16 phy_data, min_length, max_length, average;
3271 e1000_rev_polarity polarity;
3272
3273 /* The downshift status is checked only once, after link is established,
3274 * and it stored in the hw->speed_downgraded parameter.
3275 */
3276 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3277
3278 /* IGP01E1000 does not need to support it. */
3279 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3280
3281 /* IGP01E1000 always correct polarity reversal */
3282 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3283
3284 /* Check polarity status */
3285 ret_val = e1000_check_polarity(hw, &polarity);
3286 if (ret_val)
3287 return ret_val;
3288
3289 phy_info->cable_polarity = polarity;
3290
3291 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3292 if (ret_val)
3293 return ret_val;
3294
3295 phy_info->mdix_mode =
3296 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3297 IGP01E1000_PSSR_MDIX_SHIFT);
3298
3299 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3300 IGP01E1000_PSSR_SPEED_1000MBPS) {
3301 /* Local/Remote Receiver Information are only valid @ 1000
3302 * Mbps
3303 */
3304 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3305 if (ret_val)
3306 return ret_val;
3307
3308 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3309 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3310 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3311 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3312 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3313 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3314
3315 /* Get cable length */
3316 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3317 if (ret_val)
3318 return ret_val;
3319
3320 /* Translate to old method */
3321 average = (max_length + min_length) / 2;
3322
3323 if (average <= e1000_igp_cable_length_50)
3324 phy_info->cable_length = e1000_cable_length_50;
3325 else if (average <= e1000_igp_cable_length_80)
3326 phy_info->cable_length = e1000_cable_length_50_80;
3327 else if (average <= e1000_igp_cable_length_110)
3328 phy_info->cable_length = e1000_cable_length_80_110;
3329 else if (average <= e1000_igp_cable_length_140)
3330 phy_info->cable_length = e1000_cable_length_110_140;
3331 else
3332 phy_info->cable_length = e1000_cable_length_140;
3333 }
3334
3335 return E1000_SUCCESS;
3336}
3337
3338/**
3339 * e1000_phy_m88_get_info - get m88 specific registers
3340 * @hw: Struct containing variables accessed by shared code
3341 * @phy_info: PHY information structure
3342 *
3343 * Get PHY information from various PHY registers for m88 PHY only.
3344 */
3345static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3346 struct e1000_phy_info *phy_info)
3347{
3348 s32 ret_val;
3349 u16 phy_data;
3350 e1000_rev_polarity polarity;
3351
3352 /* The downshift status is checked only once, after link is established,
3353 * and it stored in the hw->speed_downgraded parameter.
3354 */
3355 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3356
3357 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3358 if (ret_val)
3359 return ret_val;
3360
3361 phy_info->extended_10bt_distance =
3362 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3363 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3364 e1000_10bt_ext_dist_enable_lower :
3365 e1000_10bt_ext_dist_enable_normal;
3366
3367 phy_info->polarity_correction =
3368 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3369 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3370 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3371
3372 /* Check polarity status */
3373 ret_val = e1000_check_polarity(hw, &polarity);
3374 if (ret_val)
3375 return ret_val;
3376 phy_info->cable_polarity = polarity;
3377
3378 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3379 if (ret_val)
3380 return ret_val;
3381
3382 phy_info->mdix_mode =
3383 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3384 M88E1000_PSSR_MDIX_SHIFT);
3385
3386 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3387 /* Cable Length Estimation and Local/Remote Receiver Information
3388 * are only valid at 1000 Mbps.
3389 */
3390 phy_info->cable_length =
3391 (e1000_cable_length) ((phy_data &
3392 M88E1000_PSSR_CABLE_LENGTH) >>
3393 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3394
3395 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3396 if (ret_val)
3397 return ret_val;
3398
3399 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3400 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3401 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3402 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3403 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3404 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3405 }
3406
3407 return E1000_SUCCESS;
3408}
3409
3410/**
3411 * e1000_phy_get_info - request phy info
3412 * @hw: Struct containing variables accessed by shared code
3413 * @phy_info: PHY information structure
3414 *
3415 * Get PHY information from various PHY registers
3416 */
3417s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3418{
3419 s32 ret_val;
3420 u16 phy_data;
3421
3422 phy_info->cable_length = e1000_cable_length_undefined;
3423 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3424 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3425 phy_info->downshift = e1000_downshift_undefined;
3426 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3427 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3428 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3429 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3430
3431 if (hw->media_type != e1000_media_type_copper) {
3432 e_dbg("PHY info is only valid for copper media\n");
3433 return -E1000_ERR_CONFIG;
3434 }
3435
3436 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3437 if (ret_val)
3438 return ret_val;
3439
3440 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3441 if (ret_val)
3442 return ret_val;
3443
3444 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3445 e_dbg("PHY info is only valid if link is up\n");
3446 return -E1000_ERR_CONFIG;
3447 }
3448
3449 if (hw->phy_type == e1000_phy_igp)
3450 return e1000_phy_igp_get_info(hw, phy_info);
3451 else if ((hw->phy_type == e1000_phy_8211) ||
3452 (hw->phy_type == e1000_phy_8201))
3453 return E1000_SUCCESS;
3454 else
3455 return e1000_phy_m88_get_info(hw, phy_info);
3456}
3457
3458s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3459{
3460 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3461 e_dbg("Invalid MDI setting detected\n");
3462 hw->mdix = 1;
3463 return -E1000_ERR_CONFIG;
3464 }
3465 return E1000_SUCCESS;
3466}
3467
3468/**
3469 * e1000_init_eeprom_params - initialize sw eeprom vars
3470 * @hw: Struct containing variables accessed by shared code
3471 *
3472 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3473 * is configured.
3474 */
3475s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3476{
3477 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3478 u32 eecd = er32(EECD);
3479 s32 ret_val = E1000_SUCCESS;
3480 u16 eeprom_size;
3481
3482 switch (hw->mac_type) {
3483 case e1000_82542_rev2_0:
3484 case e1000_82542_rev2_1:
3485 case e1000_82543:
3486 case e1000_82544:
3487 eeprom->type = e1000_eeprom_microwire;
3488 eeprom->word_size = 64;
3489 eeprom->opcode_bits = 3;
3490 eeprom->address_bits = 6;
3491 eeprom->delay_usec = 50;
3492 break;
3493 case e1000_82540:
3494 case e1000_82545:
3495 case e1000_82545_rev_3:
3496 case e1000_82546:
3497 case e1000_82546_rev_3:
3498 eeprom->type = e1000_eeprom_microwire;
3499 eeprom->opcode_bits = 3;
3500 eeprom->delay_usec = 50;
3501 if (eecd & E1000_EECD_SIZE) {
3502 eeprom->word_size = 256;
3503 eeprom->address_bits = 8;
3504 } else {
3505 eeprom->word_size = 64;
3506 eeprom->address_bits = 6;
3507 }
3508 break;
3509 case e1000_82541:
3510 case e1000_82541_rev_2:
3511 case e1000_82547:
3512 case e1000_82547_rev_2:
3513 if (eecd & E1000_EECD_TYPE) {
3514 eeprom->type = e1000_eeprom_spi;
3515 eeprom->opcode_bits = 8;
3516 eeprom->delay_usec = 1;
3517 if (eecd & E1000_EECD_ADDR_BITS) {
3518 eeprom->page_size = 32;
3519 eeprom->address_bits = 16;
3520 } else {
3521 eeprom->page_size = 8;
3522 eeprom->address_bits = 8;
3523 }
3524 } else {
3525 eeprom->type = e1000_eeprom_microwire;
3526 eeprom->opcode_bits = 3;
3527 eeprom->delay_usec = 50;
3528 if (eecd & E1000_EECD_ADDR_BITS) {
3529 eeprom->word_size = 256;
3530 eeprom->address_bits = 8;
3531 } else {
3532 eeprom->word_size = 64;
3533 eeprom->address_bits = 6;
3534 }
3535 }
3536 break;
3537 default:
3538 break;
3539 }
3540
3541 if (eeprom->type == e1000_eeprom_spi) {
3542 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3543 * 128B to 32KB (incremented by powers of 2).
3544 */
3545 /* Set to default value for initial eeprom read. */
3546 eeprom->word_size = 64;
3547 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3548 if (ret_val)
3549 return ret_val;
3550 eeprom_size =
3551 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3552 /* 256B eeprom size was not supported in earlier hardware, so we
3553 * bump eeprom_size up one to ensure that "1" (which maps to
3554 * 256B) is never the result used in the shifting logic below.
3555 */
3556 if (eeprom_size)
3557 eeprom_size++;
3558
3559 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3560 }
3561 return ret_val;
3562}
3563
3564/**
3565 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3566 * @hw: Struct containing variables accessed by shared code
3567 * @eecd: EECD's current value
3568 */
3569static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3570{
3571 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3572 * wait <delay> microseconds.
3573 */
3574 *eecd = *eecd | E1000_EECD_SK;
3575 ew32(EECD, *eecd);
3576 E1000_WRITE_FLUSH();
3577 udelay(hw->eeprom.delay_usec);
3578}
3579
3580/**
3581 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3582 * @hw: Struct containing variables accessed by shared code
3583 * @eecd: EECD's current value
3584 */
3585static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3586{
3587 /* Lower the clock input to the EEPROM (by clearing the SK bit), and
3588 * then wait 50 microseconds.
3589 */
3590 *eecd = *eecd & ~E1000_EECD_SK;
3591 ew32(EECD, *eecd);
3592 E1000_WRITE_FLUSH();
3593 udelay(hw->eeprom.delay_usec);
3594}
3595
3596/**
3597 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3598 * @hw: Struct containing variables accessed by shared code
3599 * @data: data to send to the EEPROM
3600 * @count: number of bits to shift out
3601 */
3602static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3603{
3604 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3605 u32 eecd;
3606 u32 mask;
3607
3608 /* We need to shift "count" bits out to the EEPROM. So, value in the
3609 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3610 * In order to do this, "data" must be broken down into bits.
3611 */
3612 mask = 0x01 << (count - 1);
3613 eecd = er32(EECD);
3614 if (eeprom->type == e1000_eeprom_microwire)
3615 eecd &= ~E1000_EECD_DO;
3616 else if (eeprom->type == e1000_eeprom_spi)
3617 eecd |= E1000_EECD_DO;
3618
3619 do {
3620 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3621 * "1", and then raising and then lowering the clock (the SK bit
3622 * controls the clock input to the EEPROM). A "0" is shifted
3623 * out to the EEPROM by setting "DI" to "0" and then raising and
3624 * then lowering the clock.
3625 */
3626 eecd &= ~E1000_EECD_DI;
3627
3628 if (data & mask)
3629 eecd |= E1000_EECD_DI;
3630
3631 ew32(EECD, eecd);
3632 E1000_WRITE_FLUSH();
3633
3634 udelay(eeprom->delay_usec);
3635
3636 e1000_raise_ee_clk(hw, &eecd);
3637 e1000_lower_ee_clk(hw, &eecd);
3638
3639 mask = mask >> 1;
3640
3641 } while (mask);
3642
3643 /* We leave the "DI" bit set to "0" when we leave this routine. */
3644 eecd &= ~E1000_EECD_DI;
3645 ew32(EECD, eecd);
3646}
3647
3648/**
3649 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3650 * @hw: Struct containing variables accessed by shared code
3651 * @count: number of bits to shift in
3652 */
3653static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3654{
3655 u32 eecd;
3656 u32 i;
3657 u16 data;
3658
3659 /* In order to read a register from the EEPROM, we need to shift 'count'
3660 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3661 * input to the EEPROM (setting the SK bit), and then reading the value
3662 * of the "DO" bit. During this "shifting in" process the "DI" bit
3663 * should always be clear.
3664 */
3665
3666 eecd = er32(EECD);
3667
3668 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3669 data = 0;
3670
3671 for (i = 0; i < count; i++) {
3672 data = data << 1;
3673 e1000_raise_ee_clk(hw, &eecd);
3674
3675 eecd = er32(EECD);
3676
3677 eecd &= ~(E1000_EECD_DI);
3678 if (eecd & E1000_EECD_DO)
3679 data |= 1;
3680
3681 e1000_lower_ee_clk(hw, &eecd);
3682 }
3683
3684 return data;
3685}
3686
3687/**
3688 * e1000_acquire_eeprom - Prepares EEPROM for access
3689 * @hw: Struct containing variables accessed by shared code
3690 *
3691 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3692 * function should be called before issuing a command to the EEPROM.
3693 */
3694static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3695{
3696 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3697 u32 eecd, i = 0;
3698
3699 eecd = er32(EECD);
3700
3701 /* Request EEPROM Access */
3702 if (hw->mac_type > e1000_82544) {
3703 eecd |= E1000_EECD_REQ;
3704 ew32(EECD, eecd);
3705 eecd = er32(EECD);
3706 while ((!(eecd & E1000_EECD_GNT)) &&
3707 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3708 i++;
3709 udelay(5);
3710 eecd = er32(EECD);
3711 }
3712 if (!(eecd & E1000_EECD_GNT)) {
3713 eecd &= ~E1000_EECD_REQ;
3714 ew32(EECD, eecd);
3715 e_dbg("Could not acquire EEPROM grant\n");
3716 return -E1000_ERR_EEPROM;
3717 }
3718 }
3719
3720 /* Setup EEPROM for Read/Write */
3721
3722 if (eeprom->type == e1000_eeprom_microwire) {
3723 /* Clear SK and DI */
3724 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3725 ew32(EECD, eecd);
3726
3727 /* Set CS */
3728 eecd |= E1000_EECD_CS;
3729 ew32(EECD, eecd);
3730 } else if (eeprom->type == e1000_eeprom_spi) {
3731 /* Clear SK and CS */
3732 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3733 ew32(EECD, eecd);
3734 E1000_WRITE_FLUSH();
3735 udelay(1);
3736 }
3737
3738 return E1000_SUCCESS;
3739}
3740
3741/**
3742 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3743 * @hw: Struct containing variables accessed by shared code
3744 */
3745static void e1000_standby_eeprom(struct e1000_hw *hw)
3746{
3747 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3748 u32 eecd;
3749
3750 eecd = er32(EECD);
3751
3752 if (eeprom->type == e1000_eeprom_microwire) {
3753 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3754 ew32(EECD, eecd);
3755 E1000_WRITE_FLUSH();
3756 udelay(eeprom->delay_usec);
3757
3758 /* Clock high */
3759 eecd |= E1000_EECD_SK;
3760 ew32(EECD, eecd);
3761 E1000_WRITE_FLUSH();
3762 udelay(eeprom->delay_usec);
3763
3764 /* Select EEPROM */
3765 eecd |= E1000_EECD_CS;
3766 ew32(EECD, eecd);
3767 E1000_WRITE_FLUSH();
3768 udelay(eeprom->delay_usec);
3769
3770 /* Clock low */
3771 eecd &= ~E1000_EECD_SK;
3772 ew32(EECD, eecd);
3773 E1000_WRITE_FLUSH();
3774 udelay(eeprom->delay_usec);
3775 } else if (eeprom->type == e1000_eeprom_spi) {
3776 /* Toggle CS to flush commands */
3777 eecd |= E1000_EECD_CS;
3778 ew32(EECD, eecd);
3779 E1000_WRITE_FLUSH();
3780 udelay(eeprom->delay_usec);
3781 eecd &= ~E1000_EECD_CS;
3782 ew32(EECD, eecd);
3783 E1000_WRITE_FLUSH();
3784 udelay(eeprom->delay_usec);
3785 }
3786}
3787
3788/**
3789 * e1000_release_eeprom - drop chip select
3790 * @hw: Struct containing variables accessed by shared code
3791 *
3792 * Terminates a command by inverting the EEPROM's chip select pin
3793 */
3794static void e1000_release_eeprom(struct e1000_hw *hw)
3795{
3796 u32 eecd;
3797
3798 eecd = er32(EECD);
3799
3800 if (hw->eeprom.type == e1000_eeprom_spi) {
3801 eecd |= E1000_EECD_CS; /* Pull CS high */
3802 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3803
3804 ew32(EECD, eecd);
3805 E1000_WRITE_FLUSH();
3806
3807 udelay(hw->eeprom.delay_usec);
3808 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3809 /* cleanup eeprom */
3810
3811 /* CS on Microwire is active-high */
3812 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3813
3814 ew32(EECD, eecd);
3815
3816 /* Rising edge of clock */
3817 eecd |= E1000_EECD_SK;
3818 ew32(EECD, eecd);
3819 E1000_WRITE_FLUSH();
3820 udelay(hw->eeprom.delay_usec);
3821
3822 /* Falling edge of clock */
3823 eecd &= ~E1000_EECD_SK;
3824 ew32(EECD, eecd);
3825 E1000_WRITE_FLUSH();
3826 udelay(hw->eeprom.delay_usec);
3827 }
3828
3829 /* Stop requesting EEPROM access */
3830 if (hw->mac_type > e1000_82544) {
3831 eecd &= ~E1000_EECD_REQ;
3832 ew32(EECD, eecd);
3833 }
3834}
3835
3836/**
3837 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3838 * @hw: Struct containing variables accessed by shared code
3839 */
3840static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3841{
3842 u16 retry_count = 0;
3843 u8 spi_stat_reg;
3844
3845 /* Read "Status Register" repeatedly until the LSB is cleared. The
3846 * EEPROM will signal that the command has been completed by clearing
3847 * bit 0 of the internal status register. If it's not cleared within
3848 * 5 milliseconds, then error out.
3849 */
3850 retry_count = 0;
3851 do {
3852 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3853 hw->eeprom.opcode_bits);
3854 spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3855 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3856 break;
3857
3858 udelay(5);
3859 retry_count += 5;
3860
3861 e1000_standby_eeprom(hw);
3862 } while (retry_count < EEPROM_MAX_RETRY_SPI);
3863
3864 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3865 * only 0-5mSec on 5V devices)
3866 */
3867 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3868 e_dbg("SPI EEPROM Status error\n");
3869 return -E1000_ERR_EEPROM;
3870 }
3871
3872 return E1000_SUCCESS;
3873}
3874
3875/**
3876 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3877 * @hw: Struct containing variables accessed by shared code
3878 * @offset: offset of word in the EEPROM to read
3879 * @data: word read from the EEPROM
3880 * @words: number of words to read
3881 */
3882s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3883{
3884 s32 ret;
3885
3886 mutex_lock(&e1000_eeprom_lock);
3887 ret = e1000_do_read_eeprom(hw, offset, words, data);
3888 mutex_unlock(&e1000_eeprom_lock);
3889 return ret;
3890}
3891
3892static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3893 u16 *data)
3894{
3895 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3896 u32 i = 0;
3897
3898 if (hw->mac_type == e1000_ce4100) {
3899 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3900 data);
3901 return E1000_SUCCESS;
3902 }
3903
3904 /* A check for invalid values: offset too large, too many words, and
3905 * not enough words.
3906 */
3907 if ((offset >= eeprom->word_size) ||
3908 (words > eeprom->word_size - offset) ||
3909 (words == 0)) {
3910 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3911 "size = %d\n", offset, eeprom->word_size);
3912 return -E1000_ERR_EEPROM;
3913 }
3914
3915 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3916 * directly. In this case, we need to acquire the EEPROM so that
3917 * FW or other port software does not interrupt.
3918 */
3919 /* Prepare the EEPROM for bit-bang reading */
3920 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3921 return -E1000_ERR_EEPROM;
3922
3923 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
3924 * acquired the EEPROM at this point, so any returns should release it
3925 */
3926 if (eeprom->type == e1000_eeprom_spi) {
3927 u16 word_in;
3928 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3929
3930 if (e1000_spi_eeprom_ready(hw)) {
3931 e1000_release_eeprom(hw);
3932 return -E1000_ERR_EEPROM;
3933 }
3934
3935 e1000_standby_eeprom(hw);
3936
3937 /* Some SPI eeproms use the 8th address bit embedded in the
3938 * opcode
3939 */
3940 if ((eeprom->address_bits == 8) && (offset >= 128))
3941 read_opcode |= EEPROM_A8_OPCODE_SPI;
3942
3943 /* Send the READ command (opcode + addr) */
3944 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3945 e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3946 eeprom->address_bits);
3947
3948 /* Read the data. The address of the eeprom internally
3949 * increments with each byte (spi) being read, saving on the
3950 * overhead of eeprom setup and tear-down. The address counter
3951 * will roll over if reading beyond the size of the eeprom, thus
3952 * allowing the entire memory to be read starting from any
3953 * offset.
3954 */
3955 for (i = 0; i < words; i++) {
3956 word_in = e1000_shift_in_ee_bits(hw, 16);
3957 data[i] = (word_in >> 8) | (word_in << 8);
3958 }
3959 } else if (eeprom->type == e1000_eeprom_microwire) {
3960 for (i = 0; i < words; i++) {
3961 /* Send the READ command (opcode + addr) */
3962 e1000_shift_out_ee_bits(hw,
3963 EEPROM_READ_OPCODE_MICROWIRE,
3964 eeprom->opcode_bits);
3965 e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3966 eeprom->address_bits);
3967
3968 /* Read the data. For microwire, each word requires the
3969 * overhead of eeprom setup and tear-down.
3970 */
3971 data[i] = e1000_shift_in_ee_bits(hw, 16);
3972 e1000_standby_eeprom(hw);
3973 cond_resched();
3974 }
3975 }
3976
3977 /* End this read operation */
3978 e1000_release_eeprom(hw);
3979
3980 return E1000_SUCCESS;
3981}
3982
3983/**
3984 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3985 * @hw: Struct containing variables accessed by shared code
3986 *
3987 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3988 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3989 * valid.
3990 */
3991s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3992{
3993 u16 checksum = 0;
3994 u16 i, eeprom_data;
3995
3996 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3997 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3998 e_dbg("EEPROM Read Error\n");
3999 return -E1000_ERR_EEPROM;
4000 }
4001 checksum += eeprom_data;
4002 }
4003
4004#ifdef CONFIG_PARISC
4005 /* This is a signature and not a checksum on HP c8000 */
4006 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4007 return E1000_SUCCESS;
4008
4009#endif
4010 if (checksum == (u16)EEPROM_SUM)
4011 return E1000_SUCCESS;
4012 else {
4013 e_dbg("EEPROM Checksum Invalid\n");
4014 return -E1000_ERR_EEPROM;
4015 }
4016}
4017
4018/**
4019 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4020 * @hw: Struct containing variables accessed by shared code
4021 *
4022 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4023 * Writes the difference to word offset 63 of the EEPROM.
4024 */
4025s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4026{
4027 u16 checksum = 0;
4028 u16 i, eeprom_data;
4029
4030 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4031 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4032 e_dbg("EEPROM Read Error\n");
4033 return -E1000_ERR_EEPROM;
4034 }
4035 checksum += eeprom_data;
4036 }
4037 checksum = (u16)EEPROM_SUM - checksum;
4038 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4039 e_dbg("EEPROM Write Error\n");
4040 return -E1000_ERR_EEPROM;
4041 }
4042 return E1000_SUCCESS;
4043}
4044
4045/**
4046 * e1000_write_eeprom - write words to the different EEPROM types.
4047 * @hw: Struct containing variables accessed by shared code
4048 * @offset: offset within the EEPROM to be written to
4049 * @words: number of words to write
4050 * @data: 16 bit word to be written to the EEPROM
4051 *
4052 * If e1000_update_eeprom_checksum is not called after this function, the
4053 * EEPROM will most likely contain an invalid checksum.
4054 */
4055s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4056{
4057 s32 ret;
4058
4059 mutex_lock(&e1000_eeprom_lock);
4060 ret = e1000_do_write_eeprom(hw, offset, words, data);
4061 mutex_unlock(&e1000_eeprom_lock);
4062 return ret;
4063}
4064
4065static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4066 u16 *data)
4067{
4068 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4069 s32 status = 0;
4070
4071 if (hw->mac_type == e1000_ce4100) {
4072 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4073 data);
4074 return E1000_SUCCESS;
4075 }
4076
4077 /* A check for invalid values: offset too large, too many words, and
4078 * not enough words.
4079 */
4080 if ((offset >= eeprom->word_size) ||
4081 (words > eeprom->word_size - offset) ||
4082 (words == 0)) {
4083 e_dbg("\"words\" parameter out of bounds\n");
4084 return -E1000_ERR_EEPROM;
4085 }
4086
4087 /* Prepare the EEPROM for writing */
4088 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4089 return -E1000_ERR_EEPROM;
4090
4091 if (eeprom->type == e1000_eeprom_microwire) {
4092 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4093 } else {
4094 status = e1000_write_eeprom_spi(hw, offset, words, data);
4095 msleep(10);
4096 }
4097
4098 /* Done with writing */
4099 e1000_release_eeprom(hw);
4100
4101 return status;
4102}
4103
4104/**
4105 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4106 * @hw: Struct containing variables accessed by shared code
4107 * @offset: offset within the EEPROM to be written to
4108 * @words: number of words to write
4109 * @data: pointer to array of 8 bit words to be written to the EEPROM
4110 */
4111static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4112 u16 *data)
4113{
4114 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4115 u16 widx = 0;
4116
4117 while (widx < words) {
4118 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4119
4120 if (e1000_spi_eeprom_ready(hw))
4121 return -E1000_ERR_EEPROM;
4122
4123 e1000_standby_eeprom(hw);
4124 cond_resched();
4125
4126 /* Send the WRITE ENABLE command (8 bit opcode ) */
4127 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4128 eeprom->opcode_bits);
4129
4130 e1000_standby_eeprom(hw);
4131
4132 /* Some SPI eeproms use the 8th address bit embedded in the
4133 * opcode
4134 */
4135 if ((eeprom->address_bits == 8) && (offset >= 128))
4136 write_opcode |= EEPROM_A8_OPCODE_SPI;
4137
4138 /* Send the Write command (8-bit opcode + addr) */
4139 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4140
4141 e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4142 eeprom->address_bits);
4143
4144 /* Send the data */
4145
4146 /* Loop to allow for up to whole page write (32 bytes) of
4147 * eeprom
4148 */
4149 while (widx < words) {
4150 u16 word_out = data[widx];
4151
4152 word_out = (word_out >> 8) | (word_out << 8);
4153 e1000_shift_out_ee_bits(hw, word_out, 16);
4154 widx++;
4155
4156 /* Some larger eeprom sizes are capable of a 32-byte
4157 * PAGE WRITE operation, while the smaller eeproms are
4158 * capable of an 8-byte PAGE WRITE operation. Break the
4159 * inner loop to pass new address
4160 */
4161 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4162 e1000_standby_eeprom(hw);
4163 break;
4164 }
4165 }
4166 }
4167
4168 return E1000_SUCCESS;
4169}
4170
4171/**
4172 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4173 * @hw: Struct containing variables accessed by shared code
4174 * @offset: offset within the EEPROM to be written to
4175 * @words: number of words to write
4176 * @data: pointer to array of 8 bit words to be written to the EEPROM
4177 */
4178static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4179 u16 words, u16 *data)
4180{
4181 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4182 u32 eecd;
4183 u16 words_written = 0;
4184 u16 i = 0;
4185
4186 /* Send the write enable command to the EEPROM (3-bit opcode plus
4187 * 6/8-bit dummy address beginning with 11). It's less work to include
4188 * the 11 of the dummy address as part of the opcode than it is to shift
4189 * it over the correct number of bits for the address. This puts the
4190 * EEPROM into write/erase mode.
4191 */
4192 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4193 (u16)(eeprom->opcode_bits + 2));
4194
4195 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4196
4197 /* Prepare the EEPROM */
4198 e1000_standby_eeprom(hw);
4199
4200 while (words_written < words) {
4201 /* Send the Write command (3-bit opcode + addr) */
4202 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4203 eeprom->opcode_bits);
4204
4205 e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4206 eeprom->address_bits);
4207
4208 /* Send the data */
4209 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4210
4211 /* Toggle the CS line. This in effect tells the EEPROM to
4212 * execute the previous command.
4213 */
4214 e1000_standby_eeprom(hw);
4215
4216 /* Read DO repeatedly until it is high (equal to '1'). The
4217 * EEPROM will signal that the command has been completed by
4218 * raising the DO signal. If DO does not go high in 10
4219 * milliseconds, then error out.
4220 */
4221 for (i = 0; i < 200; i++) {
4222 eecd = er32(EECD);
4223 if (eecd & E1000_EECD_DO)
4224 break;
4225 udelay(50);
4226 }
4227 if (i == 200) {
4228 e_dbg("EEPROM Write did not complete\n");
4229 return -E1000_ERR_EEPROM;
4230 }
4231
4232 /* Recover from write */
4233 e1000_standby_eeprom(hw);
4234 cond_resched();
4235
4236 words_written++;
4237 }
4238
4239 /* Send the write disable command to the EEPROM (3-bit opcode plus
4240 * 6/8-bit dummy address beginning with 10). It's less work to include
4241 * the 10 of the dummy address as part of the opcode than it is to shift
4242 * it over the correct number of bits for the address. This takes the
4243 * EEPROM out of write/erase mode.
4244 */
4245 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4246 (u16)(eeprom->opcode_bits + 2));
4247
4248 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4249
4250 return E1000_SUCCESS;
4251}
4252
4253/**
4254 * e1000_read_mac_addr - read the adapters MAC from eeprom
4255 * @hw: Struct containing variables accessed by shared code
4256 *
4257 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4258 * second function of dual function devices
4259 */
4260s32 e1000_read_mac_addr(struct e1000_hw *hw)
4261{
4262 u16 offset;
4263 u16 eeprom_data, i;
4264
4265 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4266 offset = i >> 1;
4267 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4268 e_dbg("EEPROM Read Error\n");
4269 return -E1000_ERR_EEPROM;
4270 }
4271 hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4272 hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4273 }
4274
4275 switch (hw->mac_type) {
4276 default:
4277 break;
4278 case e1000_82546:
4279 case e1000_82546_rev_3:
4280 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4281 hw->perm_mac_addr[5] ^= 0x01;
4282 break;
4283 }
4284
4285 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4286 hw->mac_addr[i] = hw->perm_mac_addr[i];
4287 return E1000_SUCCESS;
4288}
4289
4290/**
4291 * e1000_init_rx_addrs - Initializes receive address filters.
4292 * @hw: Struct containing variables accessed by shared code
4293 *
4294 * Places the MAC address in receive address register 0 and clears the rest
4295 * of the receive address registers. Clears the multicast table. Assumes
4296 * the receiver is in reset when the routine is called.
4297 */
4298static void e1000_init_rx_addrs(struct e1000_hw *hw)
4299{
4300 u32 i;
4301 u32 rar_num;
4302
4303 /* Setup the receive address. */
4304 e_dbg("Programming MAC Address into RAR[0]\n");
4305
4306 e1000_rar_set(hw, hw->mac_addr, 0);
4307
4308 rar_num = E1000_RAR_ENTRIES;
4309
4310 /* Zero out the other 15 receive addresses. */
4311 e_dbg("Clearing RAR[1-15]\n");
4312 for (i = 1; i < rar_num; i++) {
4313 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4314 E1000_WRITE_FLUSH();
4315 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4316 E1000_WRITE_FLUSH();
4317 }
4318}
4319
4320/**
4321 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4322 * @hw: Struct containing variables accessed by shared code
4323 * @mc_addr: the multicast address to hash
4324 */
4325u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4326{
4327 u32 hash_value = 0;
4328
4329 /* The portion of the address that is used for the hash table is
4330 * determined by the mc_filter_type setting.
4331 */
4332 switch (hw->mc_filter_type) {
4333 /* [0] [1] [2] [3] [4] [5]
4334 * 01 AA 00 12 34 56
4335 * LSB MSB
4336 */
4337 case 0:
4338 /* [47:36] i.e. 0x563 for above example address */
4339 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4340 break;
4341 case 1:
4342 /* [46:35] i.e. 0xAC6 for above example address */
4343 hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4344 break;
4345 case 2:
4346 /* [45:34] i.e. 0x5D8 for above example address */
4347 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4348 break;
4349 case 3:
4350 /* [43:32] i.e. 0x634 for above example address */
4351 hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4352 break;
4353 }
4354
4355 hash_value &= 0xFFF;
4356 return hash_value;
4357}
4358
4359/**
4360 * e1000_rar_set - Puts an ethernet address into a receive address register.
4361 * @hw: Struct containing variables accessed by shared code
4362 * @addr: Address to put into receive address register
4363 * @index: Receive address register to write
4364 */
4365void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4366{
4367 u32 rar_low, rar_high;
4368
4369 /* HW expects these in little endian so we reverse the byte order
4370 * from network order (big endian) to little endian
4371 */
4372 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4373 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4374 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4375
4376 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4377 * unit hang.
4378 *
4379 * Description:
4380 * If there are any Rx frames queued up or otherwise present in the HW
4381 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4382 * hang. To work around this issue, we have to disable receives and
4383 * flush out all Rx frames before we enable RSS. To do so, we modify we
4384 * redirect all Rx traffic to manageability and then reset the HW.
4385 * This flushes away Rx frames, and (since the redirections to
4386 * manageability persists across resets) keeps new ones from coming in
4387 * while we work. Then, we clear the Address Valid AV bit for all MAC
4388 * addresses and undo the re-direction to manageability.
4389 * Now, frames are coming in again, but the MAC won't accept them, so
4390 * far so good. We now proceed to initialize RSS (if necessary) and
4391 * configure the Rx unit. Last, we re-enable the AV bits and continue
4392 * on our merry way.
4393 */
4394 switch (hw->mac_type) {
4395 default:
4396 /* Indicate to hardware the Address is Valid. */
4397 rar_high |= E1000_RAH_AV;
4398 break;
4399 }
4400
4401 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4402 E1000_WRITE_FLUSH();
4403 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4404 E1000_WRITE_FLUSH();
4405}
4406
4407/**
4408 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4409 * @hw: Struct containing variables accessed by shared code
4410 * @offset: Offset in VLAN filer table to write
4411 * @value: Value to write into VLAN filter table
4412 */
4413void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4414{
4415 u32 temp;
4416
4417 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4418 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4419 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4420 E1000_WRITE_FLUSH();
4421 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4422 E1000_WRITE_FLUSH();
4423 } else {
4424 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4425 E1000_WRITE_FLUSH();
4426 }
4427}
4428
4429/**
4430 * e1000_clear_vfta - Clears the VLAN filer table
4431 * @hw: Struct containing variables accessed by shared code
4432 */
4433static void e1000_clear_vfta(struct e1000_hw *hw)
4434{
4435 u32 offset;
4436 u32 vfta_value = 0;
4437 u32 vfta_offset = 0;
4438 u32 vfta_bit_in_reg = 0;
4439
4440 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4441 /* If the offset we want to clear is the same offset of the
4442 * manageability VLAN ID, then clear all bits except that of the
4443 * manageability unit
4444 */
4445 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4446 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4447 E1000_WRITE_FLUSH();
4448 }
4449}
4450
4451static s32 e1000_id_led_init(struct e1000_hw *hw)
4452{
4453 u32 ledctl;
4454 const u32 ledctl_mask = 0x000000FF;
4455 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4456 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4457 u16 eeprom_data, i, temp;
4458 const u16 led_mask = 0x0F;
4459
4460 if (hw->mac_type < e1000_82540) {
4461 /* Nothing to do */
4462 return E1000_SUCCESS;
4463 }
4464
4465 ledctl = er32(LEDCTL);
4466 hw->ledctl_default = ledctl;
4467 hw->ledctl_mode1 = hw->ledctl_default;
4468 hw->ledctl_mode2 = hw->ledctl_default;
4469
4470 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4471 e_dbg("EEPROM Read Error\n");
4472 return -E1000_ERR_EEPROM;
4473 }
4474
4475 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4476 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4477 eeprom_data = ID_LED_DEFAULT;
4478 }
4479
4480 for (i = 0; i < 4; i++) {
4481 temp = (eeprom_data >> (i << 2)) & led_mask;
4482 switch (temp) {
4483 case ID_LED_ON1_DEF2:
4484 case ID_LED_ON1_ON2:
4485 case ID_LED_ON1_OFF2:
4486 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4487 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4488 break;
4489 case ID_LED_OFF1_DEF2:
4490 case ID_LED_OFF1_ON2:
4491 case ID_LED_OFF1_OFF2:
4492 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4493 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4494 break;
4495 default:
4496 /* Do nothing */
4497 break;
4498 }
4499 switch (temp) {
4500 case ID_LED_DEF1_ON2:
4501 case ID_LED_ON1_ON2:
4502 case ID_LED_OFF1_ON2:
4503 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4504 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4505 break;
4506 case ID_LED_DEF1_OFF2:
4507 case ID_LED_ON1_OFF2:
4508 case ID_LED_OFF1_OFF2:
4509 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4510 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4511 break;
4512 default:
4513 /* Do nothing */
4514 break;
4515 }
4516 }
4517 return E1000_SUCCESS;
4518}
4519
4520/**
4521 * e1000_setup_led
4522 * @hw: Struct containing variables accessed by shared code
4523 *
4524 * Prepares SW controlable LED for use and saves the current state of the LED.
4525 */
4526s32 e1000_setup_led(struct e1000_hw *hw)
4527{
4528 u32 ledctl;
4529 s32 ret_val = E1000_SUCCESS;
4530
4531 switch (hw->mac_type) {
4532 case e1000_82542_rev2_0:
4533 case e1000_82542_rev2_1:
4534 case e1000_82543:
4535 case e1000_82544:
4536 /* No setup necessary */
4537 break;
4538 case e1000_82541:
4539 case e1000_82547:
4540 case e1000_82541_rev_2:
4541 case e1000_82547_rev_2:
4542 /* Turn off PHY Smart Power Down (if enabled) */
4543 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4544 &hw->phy_spd_default);
4545 if (ret_val)
4546 return ret_val;
4547 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4548 (u16)(hw->phy_spd_default &
4549 ~IGP01E1000_GMII_SPD));
4550 if (ret_val)
4551 return ret_val;
4552 /* Fall Through */
4553 default:
4554 if (hw->media_type == e1000_media_type_fiber) {
4555 ledctl = er32(LEDCTL);
4556 /* Save current LEDCTL settings */
4557 hw->ledctl_default = ledctl;
4558 /* Turn off LED0 */
4559 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4560 E1000_LEDCTL_LED0_BLINK |
4561 E1000_LEDCTL_LED0_MODE_MASK);
4562 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4563 E1000_LEDCTL_LED0_MODE_SHIFT);
4564 ew32(LEDCTL, ledctl);
4565 } else if (hw->media_type == e1000_media_type_copper)
4566 ew32(LEDCTL, hw->ledctl_mode1);
4567 break;
4568 }
4569
4570 return E1000_SUCCESS;
4571}
4572
4573/**
4574 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4575 * @hw: Struct containing variables accessed by shared code
4576 */
4577s32 e1000_cleanup_led(struct e1000_hw *hw)
4578{
4579 s32 ret_val = E1000_SUCCESS;
4580
4581 switch (hw->mac_type) {
4582 case e1000_82542_rev2_0:
4583 case e1000_82542_rev2_1:
4584 case e1000_82543:
4585 case e1000_82544:
4586 /* No cleanup necessary */
4587 break;
4588 case e1000_82541:
4589 case e1000_82547:
4590 case e1000_82541_rev_2:
4591 case e1000_82547_rev_2:
4592 /* Turn on PHY Smart Power Down (if previously enabled) */
4593 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4594 hw->phy_spd_default);
4595 if (ret_val)
4596 return ret_val;
4597 /* Fall Through */
4598 default:
4599 /* Restore LEDCTL settings */
4600 ew32(LEDCTL, hw->ledctl_default);
4601 break;
4602 }
4603
4604 return E1000_SUCCESS;
4605}
4606
4607/**
4608 * e1000_led_on - Turns on the software controllable LED
4609 * @hw: Struct containing variables accessed by shared code
4610 */
4611s32 e1000_led_on(struct e1000_hw *hw)
4612{
4613 u32 ctrl = er32(CTRL);
4614
4615 switch (hw->mac_type) {
4616 case e1000_82542_rev2_0:
4617 case e1000_82542_rev2_1:
4618 case e1000_82543:
4619 /* Set SW Defineable Pin 0 to turn on the LED */
4620 ctrl |= E1000_CTRL_SWDPIN0;
4621 ctrl |= E1000_CTRL_SWDPIO0;
4622 break;
4623 case e1000_82544:
4624 if (hw->media_type == e1000_media_type_fiber) {
4625 /* Set SW Defineable Pin 0 to turn on the LED */
4626 ctrl |= E1000_CTRL_SWDPIN0;
4627 ctrl |= E1000_CTRL_SWDPIO0;
4628 } else {
4629 /* Clear SW Defineable Pin 0 to turn on the LED */
4630 ctrl &= ~E1000_CTRL_SWDPIN0;
4631 ctrl |= E1000_CTRL_SWDPIO0;
4632 }
4633 break;
4634 default:
4635 if (hw->media_type == e1000_media_type_fiber) {
4636 /* Clear SW Defineable Pin 0 to turn on the LED */
4637 ctrl &= ~E1000_CTRL_SWDPIN0;
4638 ctrl |= E1000_CTRL_SWDPIO0;
4639 } else if (hw->media_type == e1000_media_type_copper) {
4640 ew32(LEDCTL, hw->ledctl_mode2);
4641 return E1000_SUCCESS;
4642 }
4643 break;
4644 }
4645
4646 ew32(CTRL, ctrl);
4647
4648 return E1000_SUCCESS;
4649}
4650
4651/**
4652 * e1000_led_off - Turns off the software controllable LED
4653 * @hw: Struct containing variables accessed by shared code
4654 */
4655s32 e1000_led_off(struct e1000_hw *hw)
4656{
4657 u32 ctrl = er32(CTRL);
4658
4659 switch (hw->mac_type) {
4660 case e1000_82542_rev2_0:
4661 case e1000_82542_rev2_1:
4662 case e1000_82543:
4663 /* Clear SW Defineable Pin 0 to turn off the LED */
4664 ctrl &= ~E1000_CTRL_SWDPIN0;
4665 ctrl |= E1000_CTRL_SWDPIO0;
4666 break;
4667 case e1000_82544:
4668 if (hw->media_type == e1000_media_type_fiber) {
4669 /* Clear SW Defineable Pin 0 to turn off the LED */
4670 ctrl &= ~E1000_CTRL_SWDPIN0;
4671 ctrl |= E1000_CTRL_SWDPIO0;
4672 } else {
4673 /* Set SW Defineable Pin 0 to turn off the LED */
4674 ctrl |= E1000_CTRL_SWDPIN0;
4675 ctrl |= E1000_CTRL_SWDPIO0;
4676 }
4677 break;
4678 default:
4679 if (hw->media_type == e1000_media_type_fiber) {
4680 /* Set SW Defineable Pin 0 to turn off the LED */
4681 ctrl |= E1000_CTRL_SWDPIN0;
4682 ctrl |= E1000_CTRL_SWDPIO0;
4683 } else if (hw->media_type == e1000_media_type_copper) {
4684 ew32(LEDCTL, hw->ledctl_mode1);
4685 return E1000_SUCCESS;
4686 }
4687 break;
4688 }
4689
4690 ew32(CTRL, ctrl);
4691
4692 return E1000_SUCCESS;
4693}
4694
4695/**
4696 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4697 * @hw: Struct containing variables accessed by shared code
4698 */
4699static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4700{
4701 volatile u32 temp;
4702
4703 temp = er32(CRCERRS);
4704 temp = er32(SYMERRS);
4705 temp = er32(MPC);
4706 temp = er32(SCC);
4707 temp = er32(ECOL);
4708 temp = er32(MCC);
4709 temp = er32(LATECOL);
4710 temp = er32(COLC);
4711 temp = er32(DC);
4712 temp = er32(SEC);
4713 temp = er32(RLEC);
4714 temp = er32(XONRXC);
4715 temp = er32(XONTXC);
4716 temp = er32(XOFFRXC);
4717 temp = er32(XOFFTXC);
4718 temp = er32(FCRUC);
4719
4720 temp = er32(PRC64);
4721 temp = er32(PRC127);
4722 temp = er32(PRC255);
4723 temp = er32(PRC511);
4724 temp = er32(PRC1023);
4725 temp = er32(PRC1522);
4726
4727 temp = er32(GPRC);
4728 temp = er32(BPRC);
4729 temp = er32(MPRC);
4730 temp = er32(GPTC);
4731 temp = er32(GORCL);
4732 temp = er32(GORCH);
4733 temp = er32(GOTCL);
4734 temp = er32(GOTCH);
4735 temp = er32(RNBC);
4736 temp = er32(RUC);
4737 temp = er32(RFC);
4738 temp = er32(ROC);
4739 temp = er32(RJC);
4740 temp = er32(TORL);
4741 temp = er32(TORH);
4742 temp = er32(TOTL);
4743 temp = er32(TOTH);
4744 temp = er32(TPR);
4745 temp = er32(TPT);
4746
4747 temp = er32(PTC64);
4748 temp = er32(PTC127);
4749 temp = er32(PTC255);
4750 temp = er32(PTC511);
4751 temp = er32(PTC1023);
4752 temp = er32(PTC1522);
4753
4754 temp = er32(MPTC);
4755 temp = er32(BPTC);
4756
4757 if (hw->mac_type < e1000_82543)
4758 return;
4759
4760 temp = er32(ALGNERRC);
4761 temp = er32(RXERRC);
4762 temp = er32(TNCRS);
4763 temp = er32(CEXTERR);
4764 temp = er32(TSCTC);
4765 temp = er32(TSCTFC);
4766
4767 if (hw->mac_type <= e1000_82544)
4768 return;
4769
4770 temp = er32(MGTPRC);
4771 temp = er32(MGTPDC);
4772 temp = er32(MGTPTC);
4773}
4774
4775/**
4776 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4777 * @hw: Struct containing variables accessed by shared code
4778 *
4779 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4780 * hw->ifs_params_forced to true. However, you must initialize hw->
4781 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4782 * before calling this function.
4783 */
4784void e1000_reset_adaptive(struct e1000_hw *hw)
4785{
4786 if (hw->adaptive_ifs) {
4787 if (!hw->ifs_params_forced) {
4788 hw->current_ifs_val = 0;
4789 hw->ifs_min_val = IFS_MIN;
4790 hw->ifs_max_val = IFS_MAX;
4791 hw->ifs_step_size = IFS_STEP;
4792 hw->ifs_ratio = IFS_RATIO;
4793 }
4794 hw->in_ifs_mode = false;
4795 ew32(AIT, 0);
4796 } else {
4797 e_dbg("Not in Adaptive IFS mode!\n");
4798 }
4799}
4800
4801/**
4802 * e1000_update_adaptive - update adaptive IFS
4803 * @hw: Struct containing variables accessed by shared code
4804 * @tx_packets: Number of transmits since last callback
4805 * @total_collisions: Number of collisions since last callback
4806 *
4807 * Called during the callback/watchdog routine to update IFS value based on
4808 * the ratio of transmits to collisions.
4809 */
4810void e1000_update_adaptive(struct e1000_hw *hw)
4811{
4812 if (hw->adaptive_ifs) {
4813 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4814 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4815 hw->in_ifs_mode = true;
4816 if (hw->current_ifs_val < hw->ifs_max_val) {
4817 if (hw->current_ifs_val == 0)
4818 hw->current_ifs_val =
4819 hw->ifs_min_val;
4820 else
4821 hw->current_ifs_val +=
4822 hw->ifs_step_size;
4823 ew32(AIT, hw->current_ifs_val);
4824 }
4825 }
4826 } else {
4827 if (hw->in_ifs_mode &&
4828 (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4829 hw->current_ifs_val = 0;
4830 hw->in_ifs_mode = false;
4831 ew32(AIT, 0);
4832 }
4833 }
4834 } else {
4835 e_dbg("Not in Adaptive IFS mode!\n");
4836 }
4837}
4838
4839/**
4840 * e1000_get_bus_info
4841 * @hw: Struct containing variables accessed by shared code
4842 *
4843 * Gets the current PCI bus type, speed, and width of the hardware
4844 */
4845void e1000_get_bus_info(struct e1000_hw *hw)
4846{
4847 u32 status;
4848
4849 switch (hw->mac_type) {
4850 case e1000_82542_rev2_0:
4851 case e1000_82542_rev2_1:
4852 hw->bus_type = e1000_bus_type_pci;
4853 hw->bus_speed = e1000_bus_speed_unknown;
4854 hw->bus_width = e1000_bus_width_unknown;
4855 break;
4856 default:
4857 status = er32(STATUS);
4858 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4859 e1000_bus_type_pcix : e1000_bus_type_pci;
4860
4861 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4862 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4863 e1000_bus_speed_66 : e1000_bus_speed_120;
4864 } else if (hw->bus_type == e1000_bus_type_pci) {
4865 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4866 e1000_bus_speed_66 : e1000_bus_speed_33;
4867 } else {
4868 switch (status & E1000_STATUS_PCIX_SPEED) {
4869 case E1000_STATUS_PCIX_SPEED_66:
4870 hw->bus_speed = e1000_bus_speed_66;
4871 break;
4872 case E1000_STATUS_PCIX_SPEED_100:
4873 hw->bus_speed = e1000_bus_speed_100;
4874 break;
4875 case E1000_STATUS_PCIX_SPEED_133:
4876 hw->bus_speed = e1000_bus_speed_133;
4877 break;
4878 default:
4879 hw->bus_speed = e1000_bus_speed_reserved;
4880 break;
4881 }
4882 }
4883 hw->bus_width = (status & E1000_STATUS_BUS64) ?
4884 e1000_bus_width_64 : e1000_bus_width_32;
4885 break;
4886 }
4887}
4888
4889/**
4890 * e1000_write_reg_io
4891 * @hw: Struct containing variables accessed by shared code
4892 * @offset: offset to write to
4893 * @value: value to write
4894 *
4895 * Writes a value to one of the devices registers using port I/O (as opposed to
4896 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4897 */
4898static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4899{
4900 unsigned long io_addr = hw->io_base;
4901 unsigned long io_data = hw->io_base + 4;
4902
4903 e1000_io_write(hw, io_addr, offset);
4904 e1000_io_write(hw, io_data, value);
4905}
4906
4907/**
4908 * e1000_get_cable_length - Estimates the cable length.
4909 * @hw: Struct containing variables accessed by shared code
4910 * @min_length: The estimated minimum length
4911 * @max_length: The estimated maximum length
4912 *
4913 * returns: - E1000_ERR_XXX
4914 * E1000_SUCCESS
4915 *
4916 * This function always returns a ranged length (minimum & maximum).
4917 * So for M88 phy's, this function interprets the one value returned from the
4918 * register to the minimum and maximum range.
4919 * For IGP phy's, the function calculates the range by the AGC registers.
4920 */
4921static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4922 u16 *max_length)
4923{
4924 s32 ret_val;
4925 u16 agc_value = 0;
4926 u16 i, phy_data;
4927 u16 cable_length;
4928
4929 *min_length = *max_length = 0;
4930
4931 /* Use old method for Phy older than IGP */
4932 if (hw->phy_type == e1000_phy_m88) {
4933 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4934 &phy_data);
4935 if (ret_val)
4936 return ret_val;
4937 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4938 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4939
4940 /* Convert the enum value to ranged values */
4941 switch (cable_length) {
4942 case e1000_cable_length_50:
4943 *min_length = 0;
4944 *max_length = e1000_igp_cable_length_50;
4945 break;
4946 case e1000_cable_length_50_80:
4947 *min_length = e1000_igp_cable_length_50;
4948 *max_length = e1000_igp_cable_length_80;
4949 break;
4950 case e1000_cable_length_80_110:
4951 *min_length = e1000_igp_cable_length_80;
4952 *max_length = e1000_igp_cable_length_110;
4953 break;
4954 case e1000_cable_length_110_140:
4955 *min_length = e1000_igp_cable_length_110;
4956 *max_length = e1000_igp_cable_length_140;
4957 break;
4958 case e1000_cable_length_140:
4959 *min_length = e1000_igp_cable_length_140;
4960 *max_length = e1000_igp_cable_length_170;
4961 break;
4962 default:
4963 return -E1000_ERR_PHY;
4964 }
4965 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
4966 u16 cur_agc_value;
4967 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4968 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4969 IGP01E1000_PHY_AGC_A,
4970 IGP01E1000_PHY_AGC_B,
4971 IGP01E1000_PHY_AGC_C,
4972 IGP01E1000_PHY_AGC_D
4973 };
4974 /* Read the AGC registers for all channels */
4975 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4976 ret_val =
4977 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4978 if (ret_val)
4979 return ret_val;
4980
4981 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4982
4983 /* Value bound check. */
4984 if ((cur_agc_value >=
4985 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4986 (cur_agc_value == 0))
4987 return -E1000_ERR_PHY;
4988
4989 agc_value += cur_agc_value;
4990
4991 /* Update minimal AGC value. */
4992 if (min_agc_value > cur_agc_value)
4993 min_agc_value = cur_agc_value;
4994 }
4995
4996 /* Remove the minimal AGC result for length < 50m */
4997 if (agc_value <
4998 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4999 agc_value -= min_agc_value;
5000
5001 /* Get the average length of the remaining 3 channels */
5002 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5003 } else {
5004 /* Get the average length of all the 4 channels. */
5005 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5006 }
5007
5008 /* Set the range of the calculated length. */
5009 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5010 IGP01E1000_AGC_RANGE) > 0) ?
5011 (e1000_igp_cable_length_table[agc_value] -
5012 IGP01E1000_AGC_RANGE) : 0;
5013 *max_length = e1000_igp_cable_length_table[agc_value] +
5014 IGP01E1000_AGC_RANGE;
5015 }
5016
5017 return E1000_SUCCESS;
5018}
5019
5020/**
5021 * e1000_check_polarity - Check the cable polarity
5022 * @hw: Struct containing variables accessed by shared code
5023 * @polarity: output parameter : 0 - Polarity is not reversed
5024 * 1 - Polarity is reversed.
5025 *
5026 * returns: - E1000_ERR_XXX
5027 * E1000_SUCCESS
5028 *
5029 * For phy's older than IGP, this function simply reads the polarity bit in the
5030 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5031 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5032 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5033 * IGP01E1000_PHY_PCS_INIT_REG.
5034 */
5035static s32 e1000_check_polarity(struct e1000_hw *hw,
5036 e1000_rev_polarity *polarity)
5037{
5038 s32 ret_val;
5039 u16 phy_data;
5040
5041 if (hw->phy_type == e1000_phy_m88) {
5042 /* return the Polarity bit in the Status register. */
5043 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5044 &phy_data);
5045 if (ret_val)
5046 return ret_val;
5047 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5048 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5049 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5050
5051 } else if (hw->phy_type == e1000_phy_igp) {
5052 /* Read the Status register to check the speed */
5053 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5054 &phy_data);
5055 if (ret_val)
5056 return ret_val;
5057
5058 /* If speed is 1000 Mbps, must read the
5059 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5060 */
5061 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5062 IGP01E1000_PSSR_SPEED_1000MBPS) {
5063 /* Read the GIG initialization PCS register (0x00B4) */
5064 ret_val =
5065 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5066 &phy_data);
5067 if (ret_val)
5068 return ret_val;
5069
5070 /* Check the polarity bits */
5071 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5072 e1000_rev_polarity_reversed :
5073 e1000_rev_polarity_normal;
5074 } else {
5075 /* For 10 Mbps, read the polarity bit in the status
5076 * register. (for 100 Mbps this bit is always 0)
5077 */
5078 *polarity =
5079 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5080 e1000_rev_polarity_reversed :
5081 e1000_rev_polarity_normal;
5082 }
5083 }
5084 return E1000_SUCCESS;
5085}
5086
5087/**
5088 * e1000_check_downshift - Check if Downshift occurred
5089 * @hw: Struct containing variables accessed by shared code
5090 * @downshift: output parameter : 0 - No Downshift occurred.
5091 * 1 - Downshift occurred.
5092 *
5093 * returns: - E1000_ERR_XXX
5094 * E1000_SUCCESS
5095 *
5096 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5097 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5098 * Link Health register. In IGP this bit is latched high, so the driver must
5099 * read it immediately after link is established.
5100 */
5101static s32 e1000_check_downshift(struct e1000_hw *hw)
5102{
5103 s32 ret_val;
5104 u16 phy_data;
5105
5106 if (hw->phy_type == e1000_phy_igp) {
5107 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5108 &phy_data);
5109 if (ret_val)
5110 return ret_val;
5111
5112 hw->speed_downgraded =
5113 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5114 } else if (hw->phy_type == e1000_phy_m88) {
5115 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5116 &phy_data);
5117 if (ret_val)
5118 return ret_val;
5119
5120 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5121 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5122 }
5123
5124 return E1000_SUCCESS;
5125}
5126
5127static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5128 IGP01E1000_PHY_AGC_PARAM_A,
5129 IGP01E1000_PHY_AGC_PARAM_B,
5130 IGP01E1000_PHY_AGC_PARAM_C,
5131 IGP01E1000_PHY_AGC_PARAM_D
5132};
5133
5134static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5135{
5136 u16 min_length, max_length;
5137 u16 phy_data, i;
5138 s32 ret_val;
5139
5140 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5141 if (ret_val)
5142 return ret_val;
5143
5144 if (hw->dsp_config_state != e1000_dsp_config_enabled)
5145 return 0;
5146
5147 if (min_length >= e1000_igp_cable_length_50) {
5148 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5149 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5150 &phy_data);
5151 if (ret_val)
5152 return ret_val;
5153
5154 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5155
5156 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5157 phy_data);
5158 if (ret_val)
5159 return ret_val;
5160 }
5161 hw->dsp_config_state = e1000_dsp_config_activated;
5162 } else {
5163 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5164 u32 idle_errs = 0;
5165
5166 /* clear previous idle error counts */
5167 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5168 if (ret_val)
5169 return ret_val;
5170
5171 for (i = 0; i < ffe_idle_err_timeout; i++) {
5172 udelay(1000);
5173 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5174 &phy_data);
5175 if (ret_val)
5176 return ret_val;
5177
5178 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5179 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5180 hw->ffe_config_state = e1000_ffe_config_active;
5181
5182 ret_val = e1000_write_phy_reg(hw,
5183 IGP01E1000_PHY_DSP_FFE,
5184 IGP01E1000_PHY_DSP_FFE_CM_CP);
5185 if (ret_val)
5186 return ret_val;
5187 break;
5188 }
5189
5190 if (idle_errs)
5191 ffe_idle_err_timeout =
5192 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5193 }
5194 }
5195
5196 return 0;
5197}
5198
5199/**
5200 * e1000_config_dsp_after_link_change
5201 * @hw: Struct containing variables accessed by shared code
5202 * @link_up: was link up at the time this was called
5203 *
5204 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5205 * E1000_SUCCESS at any other case.
5206 *
5207 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5208 * gigabit link is achieved to improve link quality.
5209 */
5210
5211static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5212{
5213 s32 ret_val;
5214 u16 phy_data, phy_saved_data, speed, duplex, i;
5215
5216 if (hw->phy_type != e1000_phy_igp)
5217 return E1000_SUCCESS;
5218
5219 if (link_up) {
5220 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5221 if (ret_val) {
5222 e_dbg("Error getting link speed and duplex\n");
5223 return ret_val;
5224 }
5225
5226 if (speed == SPEED_1000) {
5227 ret_val = e1000_1000Mb_check_cable_length(hw);
5228 if (ret_val)
5229 return ret_val;
5230 }
5231 } else {
5232 if (hw->dsp_config_state == e1000_dsp_config_activated) {
5233 /* Save off the current value of register 0x2F5B to be
5234 * restored at the end of the routines.
5235 */
5236 ret_val =
5237 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5238
5239 if (ret_val)
5240 return ret_val;
5241
5242 /* Disable the PHY transmitter */
5243 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5244
5245 if (ret_val)
5246 return ret_val;
5247
5248 msleep(20);
5249
5250 ret_val = e1000_write_phy_reg(hw, 0x0000,
5251 IGP01E1000_IEEE_FORCE_GIGA);
5252 if (ret_val)
5253 return ret_val;
5254 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5255 ret_val =
5256 e1000_read_phy_reg(hw, dsp_reg_array[i],
5257 &phy_data);
5258 if (ret_val)
5259 return ret_val;
5260
5261 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5262 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5263
5264 ret_val =
5265 e1000_write_phy_reg(hw, dsp_reg_array[i],
5266 phy_data);
5267 if (ret_val)
5268 return ret_val;
5269 }
5270
5271 ret_val = e1000_write_phy_reg(hw, 0x0000,
5272 IGP01E1000_IEEE_RESTART_AUTONEG);
5273 if (ret_val)
5274 return ret_val;
5275
5276 msleep(20);
5277
5278 /* Now enable the transmitter */
5279 ret_val =
5280 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5281
5282 if (ret_val)
5283 return ret_val;
5284
5285 hw->dsp_config_state = e1000_dsp_config_enabled;
5286 }
5287
5288 if (hw->ffe_config_state == e1000_ffe_config_active) {
5289 /* Save off the current value of register 0x2F5B to be
5290 * restored at the end of the routines.
5291 */
5292 ret_val =
5293 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5294
5295 if (ret_val)
5296 return ret_val;
5297
5298 /* Disable the PHY transmitter */
5299 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5300
5301 if (ret_val)
5302 return ret_val;
5303
5304 msleep(20);
5305
5306 ret_val = e1000_write_phy_reg(hw, 0x0000,
5307 IGP01E1000_IEEE_FORCE_GIGA);
5308 if (ret_val)
5309 return ret_val;
5310 ret_val =
5311 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5312 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5313 if (ret_val)
5314 return ret_val;
5315
5316 ret_val = e1000_write_phy_reg(hw, 0x0000,
5317 IGP01E1000_IEEE_RESTART_AUTONEG);
5318 if (ret_val)
5319 return ret_val;
5320
5321 msleep(20);
5322
5323 /* Now enable the transmitter */
5324 ret_val =
5325 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5326
5327 if (ret_val)
5328 return ret_val;
5329
5330 hw->ffe_config_state = e1000_ffe_config_enabled;
5331 }
5332 }
5333 return E1000_SUCCESS;
5334}
5335
5336/**
5337 * e1000_set_phy_mode - Set PHY to class A mode
5338 * @hw: Struct containing variables accessed by shared code
5339 *
5340 * Assumes the following operations will follow to enable the new class mode.
5341 * 1. Do a PHY soft reset
5342 * 2. Restart auto-negotiation or force link.
5343 */
5344static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5345{
5346 s32 ret_val;
5347 u16 eeprom_data;
5348
5349 if ((hw->mac_type == e1000_82545_rev_3) &&
5350 (hw->media_type == e1000_media_type_copper)) {
5351 ret_val =
5352 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5353 &eeprom_data);
5354 if (ret_val)
5355 return ret_val;
5356
5357 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5358 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5359 ret_val =
5360 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5361 0x000B);
5362 if (ret_val)
5363 return ret_val;
5364 ret_val =
5365 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5366 0x8104);
5367 if (ret_val)
5368 return ret_val;
5369
5370 hw->phy_reset_disable = false;
5371 }
5372 }
5373
5374 return E1000_SUCCESS;
5375}
5376
5377/**
5378 * e1000_set_d3_lplu_state - set d3 link power state
5379 * @hw: Struct containing variables accessed by shared code
5380 * @active: true to enable lplu false to disable lplu.
5381 *
5382 * This function sets the lplu state according to the active flag. When
5383 * activating lplu this function also disables smart speed and vise versa.
5384 * lplu will not be activated unless the device autonegotiation advertisement
5385 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5386 *
5387 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5388 * E1000_SUCCESS at any other case.
5389 */
5390static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5391{
5392 s32 ret_val;
5393 u16 phy_data;
5394
5395 if (hw->phy_type != e1000_phy_igp)
5396 return E1000_SUCCESS;
5397
5398 /* During driver activity LPLU should not be used or it will attain link
5399 * from the lowest speeds starting from 10Mbps. The capability is used
5400 * for Dx transitions and states
5401 */
5402 if (hw->mac_type == e1000_82541_rev_2 ||
5403 hw->mac_type == e1000_82547_rev_2) {
5404 ret_val =
5405 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5406 if (ret_val)
5407 return ret_val;
5408 }
5409
5410 if (!active) {
5411 if (hw->mac_type == e1000_82541_rev_2 ||
5412 hw->mac_type == e1000_82547_rev_2) {
5413 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5414 ret_val =
5415 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5416 phy_data);
5417 if (ret_val)
5418 return ret_val;
5419 }
5420
5421 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
5422 * during Dx states where the power conservation is most
5423 * important. During driver activity we should enable
5424 * SmartSpeed, so performance is maintained.
5425 */
5426 if (hw->smart_speed == e1000_smart_speed_on) {
5427 ret_val =
5428 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5429 &phy_data);
5430 if (ret_val)
5431 return ret_val;
5432
5433 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5434 ret_val =
5435 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5436 phy_data);
5437 if (ret_val)
5438 return ret_val;
5439 } else if (hw->smart_speed == e1000_smart_speed_off) {
5440 ret_val =
5441 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5442 &phy_data);
5443 if (ret_val)
5444 return ret_val;
5445
5446 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5447 ret_val =
5448 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5449 phy_data);
5450 if (ret_val)
5451 return ret_val;
5452 }
5453 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5454 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5455 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5456 if (hw->mac_type == e1000_82541_rev_2 ||
5457 hw->mac_type == e1000_82547_rev_2) {
5458 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5459 ret_val =
5460 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5461 phy_data);
5462 if (ret_val)
5463 return ret_val;
5464 }
5465
5466 /* When LPLU is enabled we should disable SmartSpeed */
5467 ret_val =
5468 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5469 &phy_data);
5470 if (ret_val)
5471 return ret_val;
5472
5473 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5474 ret_val =
5475 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5476 phy_data);
5477 if (ret_val)
5478 return ret_val;
5479 }
5480 return E1000_SUCCESS;
5481}
5482
5483/**
5484 * e1000_set_vco_speed
5485 * @hw: Struct containing variables accessed by shared code
5486 *
5487 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5488 */
5489static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5490{
5491 s32 ret_val;
5492 u16 default_page = 0;
5493 u16 phy_data;
5494
5495 switch (hw->mac_type) {
5496 case e1000_82545_rev_3:
5497 case e1000_82546_rev_3:
5498 break;
5499 default:
5500 return E1000_SUCCESS;
5501 }
5502
5503 /* Set PHY register 30, page 5, bit 8 to 0 */
5504
5505 ret_val =
5506 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5507 if (ret_val)
5508 return ret_val;
5509
5510 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5511 if (ret_val)
5512 return ret_val;
5513
5514 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5515 if (ret_val)
5516 return ret_val;
5517
5518 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5519 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5520 if (ret_val)
5521 return ret_val;
5522
5523 /* Set PHY register 30, page 4, bit 11 to 1 */
5524
5525 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5526 if (ret_val)
5527 return ret_val;
5528
5529 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5530 if (ret_val)
5531 return ret_val;
5532
5533 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5534 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5535 if (ret_val)
5536 return ret_val;
5537
5538 ret_val =
5539 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5540 if (ret_val)
5541 return ret_val;
5542
5543 return E1000_SUCCESS;
5544}
5545
5546/**
5547 * e1000_enable_mng_pass_thru - check for bmc pass through
5548 * @hw: Struct containing variables accessed by shared code
5549 *
5550 * Verifies the hardware needs to allow ARPs to be processed by the host
5551 * returns: - true/false
5552 */
5553u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5554{
5555 u32 manc;
5556
5557 if (hw->asf_firmware_present) {
5558 manc = er32(MANC);
5559
5560 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5561 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5562 return false;
5563 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5564 return true;
5565 }
5566 return false;
5567}
5568
5569static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5570{
5571 s32 ret_val;
5572 u16 mii_status_reg;
5573 u16 i;
5574
5575 /* Polarity reversal workaround for forced 10F/10H links. */
5576
5577 /* Disable the transmitter on the PHY */
5578
5579 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5580 if (ret_val)
5581 return ret_val;
5582 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5583 if (ret_val)
5584 return ret_val;
5585
5586 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5587 if (ret_val)
5588 return ret_val;
5589
5590 /* This loop will early-out if the NO link condition has been met. */
5591 for (i = PHY_FORCE_TIME; i > 0; i--) {
5592 /* Read the MII Status Register and wait for Link Status bit
5593 * to be clear.
5594 */
5595
5596 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5597 if (ret_val)
5598 return ret_val;
5599
5600 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5601 if (ret_val)
5602 return ret_val;
5603
5604 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5605 break;
5606 msleep(100);
5607 }
5608
5609 /* Recommended delay time after link has been lost */
5610 msleep(1000);
5611
5612 /* Now we will re-enable th transmitter on the PHY */
5613
5614 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5615 if (ret_val)
5616 return ret_val;
5617 msleep(50);
5618 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5619 if (ret_val)
5620 return ret_val;
5621 msleep(50);
5622 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5623 if (ret_val)
5624 return ret_val;
5625 msleep(50);
5626 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5627 if (ret_val)
5628 return ret_val;
5629
5630 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5631 if (ret_val)
5632 return ret_val;
5633
5634 /* This loop will early-out if the link condition has been met. */
5635 for (i = PHY_FORCE_TIME; i > 0; i--) {
5636 /* Read the MII Status Register and wait for Link Status bit
5637 * to be set.
5638 */
5639
5640 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5641 if (ret_val)
5642 return ret_val;
5643
5644 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5645 if (ret_val)
5646 return ret_val;
5647
5648 if (mii_status_reg & MII_SR_LINK_STATUS)
5649 break;
5650 msleep(100);
5651 }
5652 return E1000_SUCCESS;
5653}
5654
5655/**
5656 * e1000_get_auto_rd_done
5657 * @hw: Struct containing variables accessed by shared code
5658 *
5659 * Check for EEPROM Auto Read bit done.
5660 * returns: - E1000_ERR_RESET if fail to reset MAC
5661 * E1000_SUCCESS at any other case.
5662 */
5663static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5664{
5665 msleep(5);
5666 return E1000_SUCCESS;
5667}
5668
5669/**
5670 * e1000_get_phy_cfg_done
5671 * @hw: Struct containing variables accessed by shared code
5672 *
5673 * Checks if the PHY configuration is done
5674 * returns: - E1000_ERR_RESET if fail to reset MAC
5675 * E1000_SUCCESS at any other case.
5676 */
5677static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5678{
5679 msleep(10);
5680 return E1000_SUCCESS;
5681}