Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* e1000_hw.c
   5 * Shared functions for accessing and configuring the MAC
   6 */
   7
   8#include <linux/bitfield.h>
   9#include "e1000.h"
  10
  11static s32 e1000_check_downshift(struct e1000_hw *hw);
  12static s32 e1000_check_polarity(struct e1000_hw *hw,
  13				e1000_rev_polarity *polarity);
  14static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  15static void e1000_clear_vfta(struct e1000_hw *hw);
  16static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  17					      bool link_up);
  18static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  19static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  20static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  21static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  22				  u16 *max_length);
  23static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  24static s32 e1000_id_led_init(struct e1000_hw *hw);
  25static void e1000_init_rx_addrs(struct e1000_hw *hw);
  26static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  27				  struct e1000_phy_info *phy_info);
  28static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  29				  struct e1000_phy_info *phy_info);
  30static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  31static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  32static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  33static s32 e1000_set_phy_type(struct e1000_hw *hw);
  34static void e1000_phy_init_script(struct e1000_hw *hw);
  35static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  36static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  37static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  38static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  39static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  40static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  41static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  42static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  43static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  44static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  45static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  46				  u16 words, u16 *data);
  47static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  48					u16 words, u16 *data);
  49static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  50static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  51static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  52static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  53static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  54				  u16 phy_data);
  55static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  56				 u16 *phy_data);
  57static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  58static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  59static void e1000_release_eeprom(struct e1000_hw *hw);
  60static void e1000_standby_eeprom(struct e1000_hw *hw);
  61static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  62static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  63static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  64static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  65				u16 *data);
  66static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  67				 u16 *data);
  68
  69/* IGP cable length table */
  70static const
  71u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  72	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  73	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  74	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  75	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
  76	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
  77	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
  78	    100,
  79	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
  80	    110, 110,
  81	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
  82	    120, 120
  83};
  84
  85static DEFINE_MUTEX(e1000_eeprom_lock);
  86static DEFINE_SPINLOCK(e1000_phy_lock);
  87
  88/**
  89 * e1000_set_phy_type - Set the phy type member in the hw struct.
  90 * @hw: Struct containing variables accessed by shared code
  91 */
  92static s32 e1000_set_phy_type(struct e1000_hw *hw)
  93{
  94	if (hw->mac_type == e1000_undefined)
  95		return -E1000_ERR_PHY_TYPE;
  96
  97	switch (hw->phy_id) {
  98	case M88E1000_E_PHY_ID:
  99	case M88E1000_I_PHY_ID:
 100	case M88E1011_I_PHY_ID:
 101	case M88E1111_I_PHY_ID:
 102	case M88E1118_E_PHY_ID:
 103		hw->phy_type = e1000_phy_m88;
 104		break;
 105	case IGP01E1000_I_PHY_ID:
 106		if (hw->mac_type == e1000_82541 ||
 107		    hw->mac_type == e1000_82541_rev_2 ||
 108		    hw->mac_type == e1000_82547 ||
 109		    hw->mac_type == e1000_82547_rev_2)
 110			hw->phy_type = e1000_phy_igp;
 111		break;
 112	case RTL8211B_PHY_ID:
 113		hw->phy_type = e1000_phy_8211;
 114		break;
 115	case RTL8201N_PHY_ID:
 116		hw->phy_type = e1000_phy_8201;
 117		break;
 118	default:
 119		/* Should never have loaded on this device */
 120		hw->phy_type = e1000_phy_undefined;
 121		return -E1000_ERR_PHY_TYPE;
 122	}
 123
 124	return E1000_SUCCESS;
 125}
 126
 127/**
 128 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 129 * @hw: Struct containing variables accessed by shared code
 130 */
 131static void e1000_phy_init_script(struct e1000_hw *hw)
 132{
 
 133	u16 phy_saved_data;
 134
 135	if (hw->phy_init_script) {
 136		msleep(20);
 137
 138		/* Save off the current value of register 0x2F5B to be restored
 139		 * at the end of this routine.
 140		 */
 141		e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 142
 143		/* Disabled the PHY transmitter */
 144		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 145		msleep(20);
 146
 147		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 148		msleep(5);
 149
 150		switch (hw->mac_type) {
 151		case e1000_82541:
 152		case e1000_82547:
 153			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 154			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 155			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 156			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 157			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 158			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 159			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 160			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 161			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 162			break;
 163
 164		case e1000_82541_rev_2:
 165		case e1000_82547_rev_2:
 166			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 167			break;
 168		default:
 169			break;
 170		}
 171
 172		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 173		msleep(20);
 174
 175		/* Now enable the transmitter */
 176		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 177
 178		if (hw->mac_type == e1000_82547) {
 179			u16 fused, fine, coarse;
 180
 181			/* Move to analog registers page */
 182			e1000_read_phy_reg(hw,
 183					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 184					   &fused);
 185
 186			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 187				e1000_read_phy_reg(hw,
 188						   IGP01E1000_ANALOG_FUSE_STATUS,
 189						   &fused);
 190
 191				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 192				coarse =
 193				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 194
 195				if (coarse >
 196				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 197					coarse -=
 198					    IGP01E1000_ANALOG_FUSE_COARSE_10;
 199					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 200				} else if (coarse ==
 201					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 202					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 203
 204				fused =
 205				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 206				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 207				    (coarse &
 208				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 209
 210				e1000_write_phy_reg(hw,
 211						    IGP01E1000_ANALOG_FUSE_CONTROL,
 212						    fused);
 213				e1000_write_phy_reg(hw,
 214						    IGP01E1000_ANALOG_FUSE_BYPASS,
 215						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 216			}
 217		}
 218	}
 219}
 220
 221/**
 222 * e1000_set_mac_type - Set the mac type member in the hw struct.
 223 * @hw: Struct containing variables accessed by shared code
 224 */
 225s32 e1000_set_mac_type(struct e1000_hw *hw)
 226{
 227	switch (hw->device_id) {
 228	case E1000_DEV_ID_82542:
 229		switch (hw->revision_id) {
 230		case E1000_82542_2_0_REV_ID:
 231			hw->mac_type = e1000_82542_rev2_0;
 232			break;
 233		case E1000_82542_2_1_REV_ID:
 234			hw->mac_type = e1000_82542_rev2_1;
 235			break;
 236		default:
 237			/* Invalid 82542 revision ID */
 238			return -E1000_ERR_MAC_TYPE;
 239		}
 240		break;
 241	case E1000_DEV_ID_82543GC_FIBER:
 242	case E1000_DEV_ID_82543GC_COPPER:
 243		hw->mac_type = e1000_82543;
 244		break;
 245	case E1000_DEV_ID_82544EI_COPPER:
 246	case E1000_DEV_ID_82544EI_FIBER:
 247	case E1000_DEV_ID_82544GC_COPPER:
 248	case E1000_DEV_ID_82544GC_LOM:
 249		hw->mac_type = e1000_82544;
 250		break;
 251	case E1000_DEV_ID_82540EM:
 252	case E1000_DEV_ID_82540EM_LOM:
 253	case E1000_DEV_ID_82540EP:
 254	case E1000_DEV_ID_82540EP_LOM:
 255	case E1000_DEV_ID_82540EP_LP:
 256		hw->mac_type = e1000_82540;
 257		break;
 258	case E1000_DEV_ID_82545EM_COPPER:
 259	case E1000_DEV_ID_82545EM_FIBER:
 260		hw->mac_type = e1000_82545;
 261		break;
 262	case E1000_DEV_ID_82545GM_COPPER:
 263	case E1000_DEV_ID_82545GM_FIBER:
 264	case E1000_DEV_ID_82545GM_SERDES:
 265		hw->mac_type = e1000_82545_rev_3;
 266		break;
 267	case E1000_DEV_ID_82546EB_COPPER:
 268	case E1000_DEV_ID_82546EB_FIBER:
 269	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 270		hw->mac_type = e1000_82546;
 271		break;
 272	case E1000_DEV_ID_82546GB_COPPER:
 273	case E1000_DEV_ID_82546GB_FIBER:
 274	case E1000_DEV_ID_82546GB_SERDES:
 275	case E1000_DEV_ID_82546GB_PCIE:
 276	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 277	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 278		hw->mac_type = e1000_82546_rev_3;
 279		break;
 280	case E1000_DEV_ID_82541EI:
 281	case E1000_DEV_ID_82541EI_MOBILE:
 282	case E1000_DEV_ID_82541ER_LOM:
 283		hw->mac_type = e1000_82541;
 284		break;
 285	case E1000_DEV_ID_82541ER:
 286	case E1000_DEV_ID_82541GI:
 287	case E1000_DEV_ID_82541GI_LF:
 288	case E1000_DEV_ID_82541GI_MOBILE:
 289		hw->mac_type = e1000_82541_rev_2;
 290		break;
 291	case E1000_DEV_ID_82547EI:
 292	case E1000_DEV_ID_82547EI_MOBILE:
 293		hw->mac_type = e1000_82547;
 294		break;
 295	case E1000_DEV_ID_82547GI:
 296		hw->mac_type = e1000_82547_rev_2;
 297		break;
 298	case E1000_DEV_ID_INTEL_CE4100_GBE:
 299		hw->mac_type = e1000_ce4100;
 300		break;
 301	default:
 302		/* Should never have loaded on this device */
 303		return -E1000_ERR_MAC_TYPE;
 304	}
 305
 306	switch (hw->mac_type) {
 307	case e1000_82541:
 308	case e1000_82547:
 309	case e1000_82541_rev_2:
 310	case e1000_82547_rev_2:
 311		hw->asf_firmware_present = true;
 312		break;
 313	default:
 314		break;
 315	}
 316
 317	/* The 82543 chip does not count tx_carrier_errors properly in
 318	 * FD mode
 319	 */
 320	if (hw->mac_type == e1000_82543)
 321		hw->bad_tx_carr_stats_fd = true;
 322
 323	if (hw->mac_type > e1000_82544)
 324		hw->has_smbus = true;
 325
 326	return E1000_SUCCESS;
 327}
 328
 329/**
 330 * e1000_set_media_type - Set media type and TBI compatibility.
 331 * @hw: Struct containing variables accessed by shared code
 332 */
 333void e1000_set_media_type(struct e1000_hw *hw)
 334{
 335	u32 status;
 336
 337	if (hw->mac_type != e1000_82543) {
 338		/* tbi_compatibility is only valid on 82543 */
 339		hw->tbi_compatibility_en = false;
 340	}
 341
 342	switch (hw->device_id) {
 343	case E1000_DEV_ID_82545GM_SERDES:
 344	case E1000_DEV_ID_82546GB_SERDES:
 345		hw->media_type = e1000_media_type_internal_serdes;
 346		break;
 347	default:
 348		switch (hw->mac_type) {
 349		case e1000_82542_rev2_0:
 350		case e1000_82542_rev2_1:
 351			hw->media_type = e1000_media_type_fiber;
 352			break;
 353		case e1000_ce4100:
 354			hw->media_type = e1000_media_type_copper;
 355			break;
 356		default:
 357			status = er32(STATUS);
 358			if (status & E1000_STATUS_TBIMODE) {
 359				hw->media_type = e1000_media_type_fiber;
 360				/* tbi_compatibility not valid on fiber */
 361				hw->tbi_compatibility_en = false;
 362			} else {
 363				hw->media_type = e1000_media_type_copper;
 364			}
 365			break;
 366		}
 367	}
 368}
 369
 370/**
 371 * e1000_reset_hw - reset the hardware completely
 372 * @hw: Struct containing variables accessed by shared code
 373 *
 374 * Reset the transmit and receive units; mask and clear all interrupts.
 375 */
 376s32 e1000_reset_hw(struct e1000_hw *hw)
 377{
 378	u32 ctrl;
 379	u32 ctrl_ext;
 
 380	u32 manc;
 381	u32 led_ctrl;
 382	s32 ret_val;
 383
 384	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 385	if (hw->mac_type == e1000_82542_rev2_0) {
 386		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 387		e1000_pci_clear_mwi(hw);
 388	}
 389
 390	/* Clear interrupt mask to stop board from generating interrupts */
 391	e_dbg("Masking off all interrupts\n");
 392	ew32(IMC, 0xffffffff);
 393
 394	/* Disable the Transmit and Receive units.  Then delay to allow
 395	 * any pending transactions to complete before we hit the MAC with
 396	 * the global reset.
 397	 */
 398	ew32(RCTL, 0);
 399	ew32(TCTL, E1000_TCTL_PSP);
 400	E1000_WRITE_FLUSH();
 401
 402	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 403	hw->tbi_compatibility_on = false;
 404
 405	/* Delay to allow any outstanding PCI transactions to complete before
 406	 * resetting the device
 407	 */
 408	msleep(10);
 409
 410	ctrl = er32(CTRL);
 411
 412	/* Must reset the PHY before resetting the MAC */
 413	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 414		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 415		E1000_WRITE_FLUSH();
 416		msleep(5);
 417	}
 418
 419	/* Issue a global reset to the MAC.  This will reset the chip's
 420	 * transmit, receive, DMA, and link units.  It will not effect
 421	 * the current PCI configuration.  The global reset bit is self-
 422	 * clearing, and should clear within a microsecond.
 423	 */
 424	e_dbg("Issuing a global reset to MAC\n");
 425
 426	switch (hw->mac_type) {
 427	case e1000_82544:
 428	case e1000_82540:
 429	case e1000_82545:
 430	case e1000_82546:
 431	case e1000_82541:
 432	case e1000_82541_rev_2:
 433		/* These controllers can't ack the 64-bit write when issuing the
 434		 * reset, so use IO-mapping as a workaround to issue the reset
 435		 */
 436		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 437		break;
 438	case e1000_82545_rev_3:
 439	case e1000_82546_rev_3:
 440		/* Reset is performed on a shadow of the control register */
 441		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 442		break;
 443	case e1000_ce4100:
 444	default:
 445		ew32(CTRL, (ctrl | E1000_CTRL_RST));
 446		break;
 447	}
 448
 449	/* After MAC reset, force reload of EEPROM to restore power-on settings
 450	 * to device.  Later controllers reload the EEPROM automatically, so
 451	 * just wait for reload to complete.
 452	 */
 453	switch (hw->mac_type) {
 454	case e1000_82542_rev2_0:
 455	case e1000_82542_rev2_1:
 456	case e1000_82543:
 457	case e1000_82544:
 458		/* Wait for reset to complete */
 459		udelay(10);
 460		ctrl_ext = er32(CTRL_EXT);
 461		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 462		ew32(CTRL_EXT, ctrl_ext);
 463		E1000_WRITE_FLUSH();
 464		/* Wait for EEPROM reload */
 465		msleep(2);
 466		break;
 467	case e1000_82541:
 468	case e1000_82541_rev_2:
 469	case e1000_82547:
 470	case e1000_82547_rev_2:
 471		/* Wait for EEPROM reload */
 472		msleep(20);
 473		break;
 474	default:
 475		/* Auto read done will delay 5ms or poll based on mac type */
 476		ret_val = e1000_get_auto_rd_done(hw);
 477		if (ret_val)
 478			return ret_val;
 479		break;
 480	}
 481
 482	/* Disable HW ARPs on ASF enabled adapters */
 483	if (hw->mac_type >= e1000_82540) {
 484		manc = er32(MANC);
 485		manc &= ~(E1000_MANC_ARP_EN);
 486		ew32(MANC, manc);
 487	}
 488
 489	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 490		e1000_phy_init_script(hw);
 491
 492		/* Configure activity LED after PHY reset */
 493		led_ctrl = er32(LEDCTL);
 494		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 495		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 496		ew32(LEDCTL, led_ctrl);
 497	}
 498
 499	/* Clear interrupt mask to stop board from generating interrupts */
 500	e_dbg("Masking off all interrupts\n");
 501	ew32(IMC, 0xffffffff);
 502
 503	/* Clear any pending interrupt events. */
 504	er32(ICR);
 505
 506	/* If MWI was previously enabled, reenable it. */
 507	if (hw->mac_type == e1000_82542_rev2_0) {
 508		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 509			e1000_pci_set_mwi(hw);
 510	}
 511
 512	return E1000_SUCCESS;
 513}
 514
 515/**
 516 * e1000_init_hw - Performs basic configuration of the adapter.
 517 * @hw: Struct containing variables accessed by shared code
 518 *
 519 * Assumes that the controller has previously been reset and is in a
 520 * post-reset uninitialized state. Initializes the receive address registers,
 521 * multicast table, and VLAN filter table. Calls routines to setup link
 522 * configuration and flow control settings. Clears all on-chip counters. Leaves
 523 * the transmit and receive units disabled and uninitialized.
 524 */
 525s32 e1000_init_hw(struct e1000_hw *hw)
 526{
 527	u32 ctrl;
 528	u32 i;
 529	s32 ret_val;
 530	u32 mta_size;
 531	u32 ctrl_ext;
 532
 533	/* Initialize Identification LED */
 534	ret_val = e1000_id_led_init(hw);
 535	if (ret_val) {
 536		e_dbg("Error Initializing Identification LED\n");
 537		return ret_val;
 538	}
 539
 540	/* Set the media type and TBI compatibility */
 541	e1000_set_media_type(hw);
 542
 543	/* Disabling VLAN filtering. */
 544	e_dbg("Initializing the IEEE VLAN\n");
 545	if (hw->mac_type < e1000_82545_rev_3)
 546		ew32(VET, 0);
 547	e1000_clear_vfta(hw);
 548
 549	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 550	if (hw->mac_type == e1000_82542_rev2_0) {
 551		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 552		e1000_pci_clear_mwi(hw);
 553		ew32(RCTL, E1000_RCTL_RST);
 554		E1000_WRITE_FLUSH();
 555		msleep(5);
 556	}
 557
 558	/* Setup the receive address. This involves initializing all of the
 559	 * Receive Address Registers (RARs 0 - 15).
 560	 */
 561	e1000_init_rx_addrs(hw);
 562
 563	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 564	if (hw->mac_type == e1000_82542_rev2_0) {
 565		ew32(RCTL, 0);
 566		E1000_WRITE_FLUSH();
 567		msleep(1);
 568		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 569			e1000_pci_set_mwi(hw);
 570	}
 571
 572	/* Zero out the Multicast HASH table */
 573	e_dbg("Zeroing the MTA\n");
 574	mta_size = E1000_MC_TBL_SIZE;
 575	for (i = 0; i < mta_size; i++) {
 576		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 577		/* use write flush to prevent Memory Write Block (MWB) from
 578		 * occurring when accessing our register space
 579		 */
 580		E1000_WRITE_FLUSH();
 581	}
 582
 583	/* Set the PCI priority bit correctly in the CTRL register.  This
 584	 * determines if the adapter gives priority to receives, or if it
 585	 * gives equal priority to transmits and receives.  Valid only on
 586	 * 82542 and 82543 silicon.
 587	 */
 588	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 589		ctrl = er32(CTRL);
 590		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 591	}
 592
 593	switch (hw->mac_type) {
 594	case e1000_82545_rev_3:
 595	case e1000_82546_rev_3:
 596		break;
 597	default:
 598		/* Workaround for PCI-X problem when BIOS sets MMRBC
 599		 * incorrectly.
 600		 */
 601		if (hw->bus_type == e1000_bus_type_pcix &&
 602		    e1000_pcix_get_mmrbc(hw) > 2048)
 603			e1000_pcix_set_mmrbc(hw, 2048);
 604		break;
 605	}
 606
 607	/* Call a subroutine to configure the link and setup flow control. */
 608	ret_val = e1000_setup_link(hw);
 609
 610	/* Set the transmit descriptor write-back policy */
 611	if (hw->mac_type > e1000_82544) {
 612		ctrl = er32(TXDCTL);
 613		ctrl =
 614		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 615		    E1000_TXDCTL_FULL_TX_DESC_WB;
 616		ew32(TXDCTL, ctrl);
 617	}
 618
 619	/* Clear all of the statistics registers (clear on read).  It is
 620	 * important that we do this after we have tried to establish link
 621	 * because the symbol error count will increment wildly if there
 622	 * is no link.
 623	 */
 624	e1000_clear_hw_cntrs(hw);
 625
 626	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 627	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 628		ctrl_ext = er32(CTRL_EXT);
 629		/* Relaxed ordering must be disabled to avoid a parity
 630		 * error crash in a PCI slot.
 631		 */
 632		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 633		ew32(CTRL_EXT, ctrl_ext);
 634	}
 635
 636	return ret_val;
 637}
 638
 639/**
 640 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 641 * @hw: Struct containing variables accessed by shared code.
 642 */
 643static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 644{
 645	u16 eeprom_data;
 646	s32 ret_val;
 647
 648	if (hw->media_type != e1000_media_type_internal_serdes)
 649		return E1000_SUCCESS;
 650
 651	switch (hw->mac_type) {
 652	case e1000_82545_rev_3:
 653	case e1000_82546_rev_3:
 654		break;
 655	default:
 656		return E1000_SUCCESS;
 657	}
 658
 659	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 660				    &eeprom_data);
 661	if (ret_val)
 662		return ret_val;
 
 663
 664	if (eeprom_data != EEPROM_RESERVED_WORD) {
 665		/* Adjust SERDES output amplitude only. */
 666		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 667		ret_val =
 668		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 669		if (ret_val)
 670			return ret_val;
 671	}
 672
 673	return E1000_SUCCESS;
 674}
 675
 676/**
 677 * e1000_setup_link - Configures flow control and link settings.
 678 * @hw: Struct containing variables accessed by shared code
 679 *
 680 * Determines which flow control settings to use. Calls the appropriate media-
 681 * specific link configuration function. Configures the flow control settings.
 682 * Assuming the adapter has a valid link partner, a valid link should be
 683 * established. Assumes the hardware has previously been reset and the
 684 * transmitter and receiver are not enabled.
 685 */
 686s32 e1000_setup_link(struct e1000_hw *hw)
 687{
 688	u32 ctrl_ext;
 689	s32 ret_val;
 690	u16 eeprom_data;
 691
 692	/* Read and store word 0x0F of the EEPROM. This word contains bits
 693	 * that determine the hardware's default PAUSE (flow control) mode,
 694	 * a bit that determines whether the HW defaults to enabling or
 695	 * disabling auto-negotiation, and the direction of the
 696	 * SW defined pins. If there is no SW over-ride of the flow
 697	 * control setting, then the variable hw->fc will
 698	 * be initialized based on a value in the EEPROM.
 699	 */
 700	if (hw->fc == E1000_FC_DEFAULT) {
 701		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 702					    1, &eeprom_data);
 703		if (ret_val) {
 704			e_dbg("EEPROM Read Error\n");
 705			return -E1000_ERR_EEPROM;
 706		}
 707		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 708			hw->fc = E1000_FC_NONE;
 709		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 710			 EEPROM_WORD0F_ASM_DIR)
 711			hw->fc = E1000_FC_TX_PAUSE;
 712		else
 713			hw->fc = E1000_FC_FULL;
 714	}
 715
 716	/* We want to save off the original Flow Control configuration just
 717	 * in case we get disconnected and then reconnected into a different
 718	 * hub or switch with different Flow Control capabilities.
 719	 */
 720	if (hw->mac_type == e1000_82542_rev2_0)
 721		hw->fc &= (~E1000_FC_TX_PAUSE);
 722
 723	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 724		hw->fc &= (~E1000_FC_RX_PAUSE);
 725
 726	hw->original_fc = hw->fc;
 727
 728	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 729
 730	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 731	 * polarity value for the SW controlled pins, and setup the
 732	 * Extended Device Control reg with that info.
 733	 * This is needed because one of the SW controlled pins is used for
 734	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 735	 * or e1000_phy_setup() is called.
 736	 */
 737	if (hw->mac_type == e1000_82543) {
 738		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 739					    1, &eeprom_data);
 740		if (ret_val) {
 741			e_dbg("EEPROM Read Error\n");
 742			return -E1000_ERR_EEPROM;
 743		}
 744		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 745			    SWDPIO__EXT_SHIFT);
 746		ew32(CTRL_EXT, ctrl_ext);
 747	}
 748
 749	/* Call the necessary subroutine to configure the link. */
 750	ret_val = (hw->media_type == e1000_media_type_copper) ?
 751	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 752
 753	/* Initialize the flow control address, type, and PAUSE timer
 754	 * registers to their default values.  This is done even if flow
 755	 * control is disabled, because it does not hurt anything to
 756	 * initialize these registers.
 757	 */
 758	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 759
 760	ew32(FCT, FLOW_CONTROL_TYPE);
 761	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 762	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 763
 764	ew32(FCTTV, hw->fc_pause_time);
 765
 766	/* Set the flow control receive threshold registers.  Normally,
 767	 * these registers will be set to a default threshold that may be
 768	 * adjusted later by the driver's runtime code.  However, if the
 769	 * ability to transmit pause frames in not enabled, then these
 770	 * registers will be set to 0.
 771	 */
 772	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 773		ew32(FCRTL, 0);
 774		ew32(FCRTH, 0);
 775	} else {
 776		/* We need to set up the Receive Threshold high and low water
 777		 * marks as well as (optionally) enabling the transmission of
 778		 * XON frames.
 779		 */
 780		if (hw->fc_send_xon) {
 781			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 782			ew32(FCRTH, hw->fc_high_water);
 783		} else {
 784			ew32(FCRTL, hw->fc_low_water);
 785			ew32(FCRTH, hw->fc_high_water);
 786		}
 787	}
 788	return ret_val;
 789}
 790
 791/**
 792 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 793 * @hw: Struct containing variables accessed by shared code
 794 *
 795 * Manipulates Physical Coding Sublayer functions in order to configure
 796 * link. Assumes the hardware has been previously reset and the transmitter
 797 * and receiver are not enabled.
 798 */
 799static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 800{
 801	u32 ctrl;
 802	u32 status;
 803	u32 txcw = 0;
 804	u32 i;
 805	u32 signal = 0;
 806	s32 ret_val;
 807
 808	/* On adapters with a MAC newer than 82544, SWDP 1 will be
 809	 * set when the optics detect a signal. On older adapters, it will be
 810	 * cleared when there is a signal.  This applies to fiber media only.
 811	 * If we're on serdes media, adjust the output amplitude to value
 812	 * set in the EEPROM.
 813	 */
 814	ctrl = er32(CTRL);
 815	if (hw->media_type == e1000_media_type_fiber)
 816		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 817
 818	ret_val = e1000_adjust_serdes_amplitude(hw);
 819	if (ret_val)
 820		return ret_val;
 821
 822	/* Take the link out of reset */
 823	ctrl &= ~(E1000_CTRL_LRST);
 824
 825	/* Adjust VCO speed to improve BER performance */
 826	ret_val = e1000_set_vco_speed(hw);
 827	if (ret_val)
 828		return ret_val;
 829
 830	e1000_config_collision_dist(hw);
 831
 832	/* Check for a software override of the flow control settings, and setup
 833	 * the device accordingly.  If auto-negotiation is enabled, then
 834	 * software will have to set the "PAUSE" bits to the correct value in
 835	 * the Tranmsit Config Word Register (TXCW) and re-start
 836	 * auto-negotiation.  However, if auto-negotiation is disabled, then
 837	 * software will have to manually configure the two flow control enable
 838	 * bits in the CTRL register.
 839	 *
 840	 * The possible values of the "fc" parameter are:
 841	 *  0:  Flow control is completely disabled
 842	 *  1:  Rx flow control is enabled (we can receive pause frames, but
 843	 *      not send pause frames).
 844	 *  2:  Tx flow control is enabled (we can send pause frames but we do
 845	 *      not support receiving pause frames).
 846	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
 847	 */
 848	switch (hw->fc) {
 849	case E1000_FC_NONE:
 850		/* Flow ctrl is completely disabled by a software over-ride */
 851		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 852		break;
 853	case E1000_FC_RX_PAUSE:
 854		/* Rx Flow control is enabled and Tx Flow control is disabled by
 855		 * a software over-ride. Since there really isn't a way to
 856		 * advertise that we are capable of Rx Pause ONLY, we will
 857		 * advertise that we support both symmetric and asymmetric Rx
 858		 * PAUSE. Later, we will disable the adapter's ability to send
 859		 * PAUSE frames.
 860		 */
 861		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 862		break;
 863	case E1000_FC_TX_PAUSE:
 864		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 865		 * by a software over-ride.
 866		 */
 867		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 868		break;
 869	case E1000_FC_FULL:
 870		/* Flow control (both Rx and Tx) is enabled by a software
 871		 * over-ride.
 872		 */
 873		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 874		break;
 875	default:
 876		e_dbg("Flow control param set incorrectly\n");
 877		return -E1000_ERR_CONFIG;
 
 878	}
 879
 880	/* Since auto-negotiation is enabled, take the link out of reset (the
 881	 * link will be in reset, because we previously reset the chip). This
 882	 * will restart auto-negotiation.  If auto-negotiation is successful
 883	 * then the link-up status bit will be set and the flow control enable
 884	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 885	 */
 886	e_dbg("Auto-negotiation enabled\n");
 887
 888	ew32(TXCW, txcw);
 889	ew32(CTRL, ctrl);
 890	E1000_WRITE_FLUSH();
 891
 892	hw->txcw = txcw;
 893	msleep(1);
 894
 895	/* If we have a signal (the cable is plugged in) then poll for a
 896	 * "Link-Up" indication in the Device Status Register.  Time-out if a
 897	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
 898	 * complete in less than 500 milliseconds even if the other end is doing
 899	 * it in SW). For internal serdes, we just assume a signal is present,
 900	 * then poll.
 901	 */
 902	if (hw->media_type == e1000_media_type_internal_serdes ||
 903	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 904		e_dbg("Looking for Link\n");
 905		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 906			msleep(10);
 907			status = er32(STATUS);
 908			if (status & E1000_STATUS_LU)
 909				break;
 910		}
 911		if (i == (LINK_UP_TIMEOUT / 10)) {
 912			e_dbg("Never got a valid link from auto-neg!!!\n");
 913			hw->autoneg_failed = 1;
 914			/* AutoNeg failed to achieve a link, so we'll call
 915			 * e1000_check_for_link. This routine will force the
 916			 * link up if we detect a signal. This will allow us to
 917			 * communicate with non-autonegotiating link partners.
 918			 */
 919			ret_val = e1000_check_for_link(hw);
 920			if (ret_val) {
 921				e_dbg("Error while checking for link\n");
 922				return ret_val;
 923			}
 924			hw->autoneg_failed = 0;
 925		} else {
 926			hw->autoneg_failed = 0;
 927			e_dbg("Valid Link Found\n");
 928		}
 929	} else {
 930		e_dbg("No Signal Detected\n");
 931	}
 932	return E1000_SUCCESS;
 933}
 934
 935/**
 936 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 937 * @hw: Struct containing variables accessed by shared code
 938 *
 939 * Commits changes to PHY configuration by calling e1000_phy_reset().
 940 */
 941static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 942{
 943	s32 ret_val;
 944
 945	/* SW reset the PHY so all changes take effect */
 946	ret_val = e1000_phy_reset(hw);
 947	if (ret_val) {
 948		e_dbg("Error Resetting the PHY\n");
 949		return ret_val;
 950	}
 951
 952	return E1000_SUCCESS;
 953}
 954
 955static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 956{
 957	s32 ret_val;
 958	u32 ctrl_aux;
 959
 960	switch (hw->phy_type) {
 961	case e1000_phy_8211:
 962		ret_val = e1000_copper_link_rtl_setup(hw);
 963		if (ret_val) {
 964			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 965			return ret_val;
 966		}
 967		break;
 968	case e1000_phy_8201:
 969		/* Set RMII mode */
 970		ctrl_aux = er32(CTL_AUX);
 971		ctrl_aux |= E1000_CTL_AUX_RMII;
 972		ew32(CTL_AUX, ctrl_aux);
 973		E1000_WRITE_FLUSH();
 974
 975		/* Disable the J/K bits required for receive */
 976		ctrl_aux = er32(CTL_AUX);
 977		ctrl_aux |= 0x4;
 978		ctrl_aux &= ~0x2;
 979		ew32(CTL_AUX, ctrl_aux);
 980		E1000_WRITE_FLUSH();
 981		ret_val = e1000_copper_link_rtl_setup(hw);
 982
 983		if (ret_val) {
 984			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 985			return ret_val;
 986		}
 987		break;
 988	default:
 989		e_dbg("Error Resetting the PHY\n");
 990		return E1000_ERR_PHY_TYPE;
 991	}
 992
 993	return E1000_SUCCESS;
 994}
 995
 996/**
 997 * e1000_copper_link_preconfig - early configuration for copper
 998 * @hw: Struct containing variables accessed by shared code
 999 *
1000 * Make sure we have a valid PHY and change PHY mode before link setup.
1001 */
1002static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1003{
1004	u32 ctrl;
1005	s32 ret_val;
1006	u16 phy_data;
1007
1008	ctrl = er32(CTRL);
1009	/* With 82543, we need to force speed and duplex on the MAC equal to
1010	 * what the PHY speed and duplex configuration is. In addition, we need
1011	 * to perform a hardware reset on the PHY to take it out of reset.
1012	 */
1013	if (hw->mac_type > e1000_82543) {
1014		ctrl |= E1000_CTRL_SLU;
1015		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1016		ew32(CTRL, ctrl);
1017	} else {
1018		ctrl |=
1019		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1020		ew32(CTRL, ctrl);
1021		ret_val = e1000_phy_hw_reset(hw);
1022		if (ret_val)
1023			return ret_val;
1024	}
1025
1026	/* Make sure we have a valid PHY */
1027	ret_val = e1000_detect_gig_phy(hw);
1028	if (ret_val) {
1029		e_dbg("Error, did not detect valid phy.\n");
1030		return ret_val;
1031	}
1032	e_dbg("Phy ID = %x\n", hw->phy_id);
1033
1034	/* Set PHY to class A mode (if necessary) */
1035	ret_val = e1000_set_phy_mode(hw);
1036	if (ret_val)
1037		return ret_val;
1038
1039	if ((hw->mac_type == e1000_82545_rev_3) ||
1040	    (hw->mac_type == e1000_82546_rev_3)) {
1041		ret_val =
1042		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1043		phy_data |= 0x00000008;
1044		ret_val =
1045		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1046	}
1047
1048	if (hw->mac_type <= e1000_82543 ||
1049	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1050	    hw->mac_type == e1000_82541_rev_2 ||
1051	    hw->mac_type == e1000_82547_rev_2)
1052		hw->phy_reset_disable = false;
1053
1054	return E1000_SUCCESS;
1055}
1056
1057/**
1058 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1059 * @hw: Struct containing variables accessed by shared code
1060 */
1061static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1062{
1063	u32 led_ctrl;
1064	s32 ret_val;
1065	u16 phy_data;
1066
1067	if (hw->phy_reset_disable)
1068		return E1000_SUCCESS;
1069
1070	ret_val = e1000_phy_reset(hw);
1071	if (ret_val) {
1072		e_dbg("Error Resetting the PHY\n");
1073		return ret_val;
1074	}
1075
1076	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1077	msleep(15);
1078	/* Configure activity LED after PHY reset */
1079	led_ctrl = er32(LEDCTL);
1080	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1081	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1082	ew32(LEDCTL, led_ctrl);
1083
1084	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1085	if (hw->phy_type == e1000_phy_igp) {
1086		/* disable lplu d3 during driver init */
1087		ret_val = e1000_set_d3_lplu_state(hw, false);
1088		if (ret_val) {
1089			e_dbg("Error Disabling LPLU D3\n");
1090			return ret_val;
1091		}
1092	}
1093
1094	/* Configure mdi-mdix settings */
1095	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1096	if (ret_val)
1097		return ret_val;
1098
1099	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1100		hw->dsp_config_state = e1000_dsp_config_disabled;
1101		/* Force MDI for earlier revs of the IGP PHY */
1102		phy_data &=
1103		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1104		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1105		hw->mdix = 1;
1106
1107	} else {
1108		hw->dsp_config_state = e1000_dsp_config_enabled;
1109		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1110
1111		switch (hw->mdix) {
1112		case 1:
1113			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1114			break;
1115		case 2:
1116			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1117			break;
1118		case 0:
1119		default:
1120			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1121			break;
1122		}
1123	}
1124	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1125	if (ret_val)
1126		return ret_val;
1127
1128	/* set auto-master slave resolution settings */
1129	if (hw->autoneg) {
1130		e1000_ms_type phy_ms_setting = hw->master_slave;
1131
1132		if (hw->ffe_config_state == e1000_ffe_config_active)
1133			hw->ffe_config_state = e1000_ffe_config_enabled;
1134
1135		if (hw->dsp_config_state == e1000_dsp_config_activated)
1136			hw->dsp_config_state = e1000_dsp_config_enabled;
1137
1138		/* when autonegotiation advertisement is only 1000Mbps then we
1139		 * should disable SmartSpeed and enable Auto MasterSlave
1140		 * resolution as hardware default.
1141		 */
1142		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1143			/* Disable SmartSpeed */
1144			ret_val =
1145			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1146					       &phy_data);
1147			if (ret_val)
1148				return ret_val;
1149			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1150			ret_val =
1151			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1152						phy_data);
1153			if (ret_val)
1154				return ret_val;
1155			/* Set auto Master/Slave resolution process */
1156			ret_val =
1157			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1158			if (ret_val)
1159				return ret_val;
1160			phy_data &= ~CR_1000T_MS_ENABLE;
1161			ret_val =
1162			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1163			if (ret_val)
1164				return ret_val;
1165		}
1166
1167		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1168		if (ret_val)
1169			return ret_val;
1170
1171		/* load defaults for future use */
1172		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1173		    ((phy_data & CR_1000T_MS_VALUE) ?
1174		     e1000_ms_force_master :
1175		     e1000_ms_force_slave) : e1000_ms_auto;
1176
1177		switch (phy_ms_setting) {
1178		case e1000_ms_force_master:
1179			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1180			break;
1181		case e1000_ms_force_slave:
1182			phy_data |= CR_1000T_MS_ENABLE;
1183			phy_data &= ~(CR_1000T_MS_VALUE);
1184			break;
1185		case e1000_ms_auto:
1186			phy_data &= ~CR_1000T_MS_ENABLE;
1187			break;
1188		default:
1189			break;
1190		}
1191		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1192		if (ret_val)
1193			return ret_val;
1194	}
1195
1196	return E1000_SUCCESS;
1197}
1198
1199/**
1200 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1201 * @hw: Struct containing variables accessed by shared code
1202 */
1203static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1204{
1205	s32 ret_val;
1206	u16 phy_data;
1207
1208	if (hw->phy_reset_disable)
1209		return E1000_SUCCESS;
1210
1211	/* Enable CRS on TX. This must be set for half-duplex operation. */
1212	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1213	if (ret_val)
1214		return ret_val;
1215
1216	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1217
1218	/* Options:
1219	 *   MDI/MDI-X = 0 (default)
1220	 *   0 - Auto for all speeds
1221	 *   1 - MDI mode
1222	 *   2 - MDI-X mode
1223	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1224	 */
1225	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1226
1227	switch (hw->mdix) {
1228	case 1:
1229		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1230		break;
1231	case 2:
1232		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1233		break;
1234	case 3:
1235		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1236		break;
1237	case 0:
1238	default:
1239		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1240		break;
1241	}
1242
1243	/* Options:
1244	 *   disable_polarity_correction = 0 (default)
1245	 *       Automatic Correction for Reversed Cable Polarity
1246	 *   0 - Disabled
1247	 *   1 - Enabled
1248	 */
1249	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1250	if (hw->disable_polarity_correction == 1)
1251		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1252	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1253	if (ret_val)
1254		return ret_val;
1255
1256	if (hw->phy_revision < M88E1011_I_REV_4) {
1257		/* Force TX_CLK in the Extended PHY Specific Control Register
1258		 * to 25MHz clock.
1259		 */
1260		ret_val =
1261		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1262				       &phy_data);
1263		if (ret_val)
1264			return ret_val;
1265
1266		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1267
1268		if ((hw->phy_revision == E1000_REVISION_2) &&
1269		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1270			/* Vidalia Phy, set the downshift counter to 5x */
1271			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1272			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1273			ret_val = e1000_write_phy_reg(hw,
1274						      M88E1000_EXT_PHY_SPEC_CTRL,
1275						      phy_data);
1276			if (ret_val)
1277				return ret_val;
1278		} else {
1279			/* Configure Master and Slave downshift values */
1280			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1281				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1282			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1283				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1284			ret_val = e1000_write_phy_reg(hw,
1285						      M88E1000_EXT_PHY_SPEC_CTRL,
1286						      phy_data);
1287			if (ret_val)
1288				return ret_val;
1289		}
1290	}
1291
1292	/* SW Reset the PHY so all changes take effect */
1293	ret_val = e1000_phy_reset(hw);
1294	if (ret_val) {
1295		e_dbg("Error Resetting the PHY\n");
1296		return ret_val;
1297	}
1298
1299	return E1000_SUCCESS;
1300}
1301
1302/**
1303 * e1000_copper_link_autoneg - setup auto-neg
1304 * @hw: Struct containing variables accessed by shared code
1305 *
1306 * Setup auto-negotiation and flow control advertisements,
1307 * and then perform auto-negotiation.
1308 */
1309static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1310{
1311	s32 ret_val;
1312	u16 phy_data;
1313
1314	/* Perform some bounds checking on the hw->autoneg_advertised
1315	 * parameter.  If this variable is zero, then set it to the default.
1316	 */
1317	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1318
1319	/* If autoneg_advertised is zero, we assume it was not defaulted
1320	 * by the calling code so we set to advertise full capability.
1321	 */
1322	if (hw->autoneg_advertised == 0)
1323		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1324
1325	/* IFE/RTL8201N PHY only supports 10/100 */
1326	if (hw->phy_type == e1000_phy_8201)
1327		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1328
1329	e_dbg("Reconfiguring auto-neg advertisement params\n");
1330	ret_val = e1000_phy_setup_autoneg(hw);
1331	if (ret_val) {
1332		e_dbg("Error Setting up Auto-Negotiation\n");
1333		return ret_val;
1334	}
1335	e_dbg("Restarting Auto-Neg\n");
1336
1337	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1338	 * the Auto Neg Restart bit in the PHY control register.
1339	 */
1340	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1341	if (ret_val)
1342		return ret_val;
1343
1344	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1345	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1346	if (ret_val)
1347		return ret_val;
1348
1349	/* Does the user want to wait for Auto-Neg to complete here, or
1350	 * check at a later time (for example, callback routine).
1351	 */
1352	if (hw->wait_autoneg_complete) {
1353		ret_val = e1000_wait_autoneg(hw);
1354		if (ret_val) {
1355			e_dbg
1356			    ("Error while waiting for autoneg to complete\n");
1357			return ret_val;
1358		}
1359	}
1360
1361	hw->get_link_status = true;
1362
1363	return E1000_SUCCESS;
1364}
1365
1366/**
1367 * e1000_copper_link_postconfig - post link setup
1368 * @hw: Struct containing variables accessed by shared code
1369 *
1370 * Config the MAC and the PHY after link is up.
1371 *   1) Set up the MAC to the current PHY speed/duplex
1372 *      if we are on 82543.  If we
1373 *      are on newer silicon, we only need to configure
1374 *      collision distance in the Transmit Control Register.
1375 *   2) Set up flow control on the MAC to that established with
1376 *      the link partner.
1377 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1378 */
1379static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1380{
1381	s32 ret_val;
1382
1383	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1384		e1000_config_collision_dist(hw);
1385	} else {
1386		ret_val = e1000_config_mac_to_phy(hw);
1387		if (ret_val) {
1388			e_dbg("Error configuring MAC to PHY settings\n");
1389			return ret_val;
1390		}
1391	}
1392	ret_val = e1000_config_fc_after_link_up(hw);
1393	if (ret_val) {
1394		e_dbg("Error Configuring Flow Control\n");
1395		return ret_val;
1396	}
1397
1398	/* Config DSP to improve Giga link quality */
1399	if (hw->phy_type == e1000_phy_igp) {
1400		ret_val = e1000_config_dsp_after_link_change(hw, true);
1401		if (ret_val) {
1402			e_dbg("Error Configuring DSP after link up\n");
1403			return ret_val;
1404		}
1405	}
1406
1407	return E1000_SUCCESS;
1408}
1409
1410/**
1411 * e1000_setup_copper_link - phy/speed/duplex setting
1412 * @hw: Struct containing variables accessed by shared code
1413 *
1414 * Detects which PHY is present and sets up the speed and duplex
1415 */
1416static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1417{
1418	s32 ret_val;
1419	u16 i;
1420	u16 phy_data;
1421
1422	/* Check if it is a valid PHY and set PHY mode if necessary. */
1423	ret_val = e1000_copper_link_preconfig(hw);
1424	if (ret_val)
1425		return ret_val;
1426
1427	if (hw->phy_type == e1000_phy_igp) {
1428		ret_val = e1000_copper_link_igp_setup(hw);
1429		if (ret_val)
1430			return ret_val;
1431	} else if (hw->phy_type == e1000_phy_m88) {
1432		ret_val = e1000_copper_link_mgp_setup(hw);
1433		if (ret_val)
1434			return ret_val;
1435	} else {
1436		ret_val = gbe_dhg_phy_setup(hw);
1437		if (ret_val) {
1438			e_dbg("gbe_dhg_phy_setup failed!\n");
1439			return ret_val;
1440		}
1441	}
1442
1443	if (hw->autoneg) {
1444		/* Setup autoneg and flow control advertisement
1445		 * and perform autonegotiation
1446		 */
1447		ret_val = e1000_copper_link_autoneg(hw);
1448		if (ret_val)
1449			return ret_val;
1450	} else {
1451		/* PHY will be set to 10H, 10F, 100H,or 100F
1452		 * depending on value from forced_speed_duplex.
1453		 */
1454		e_dbg("Forcing speed and duplex\n");
1455		ret_val = e1000_phy_force_speed_duplex(hw);
1456		if (ret_val) {
1457			e_dbg("Error Forcing Speed and Duplex\n");
1458			return ret_val;
1459		}
1460	}
1461
1462	/* Check link status. Wait up to 100 microseconds for link to become
1463	 * valid.
1464	 */
1465	for (i = 0; i < 10; i++) {
1466		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1467		if (ret_val)
1468			return ret_val;
1469		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1470		if (ret_val)
1471			return ret_val;
1472
1473		if (phy_data & MII_SR_LINK_STATUS) {
1474			/* Config the MAC and PHY after link is up */
1475			ret_val = e1000_copper_link_postconfig(hw);
1476			if (ret_val)
1477				return ret_val;
1478
1479			e_dbg("Valid link established!!!\n");
1480			return E1000_SUCCESS;
1481		}
1482		udelay(10);
1483	}
1484
1485	e_dbg("Unable to establish link!!!\n");
1486	return E1000_SUCCESS;
1487}
1488
1489/**
1490 * e1000_phy_setup_autoneg - phy settings
1491 * @hw: Struct containing variables accessed by shared code
1492 *
1493 * Configures PHY autoneg and flow control advertisement settings
1494 */
1495s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1496{
1497	s32 ret_val;
1498	u16 mii_autoneg_adv_reg;
1499	u16 mii_1000t_ctrl_reg;
1500
1501	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1502	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1503	if (ret_val)
1504		return ret_val;
1505
1506	/* Read the MII 1000Base-T Control Register (Address 9). */
1507	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1508	if (ret_val)
1509		return ret_val;
1510	else if (hw->phy_type == e1000_phy_8201)
1511		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1512
1513	/* Need to parse both autoneg_advertised and fc and set up
1514	 * the appropriate PHY registers.  First we will parse for
1515	 * autoneg_advertised software override.  Since we can advertise
1516	 * a plethora of combinations, we need to check each bit
1517	 * individually.
1518	 */
1519
1520	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1521	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1522	 * the  1000Base-T Control Register (Address 9).
1523	 */
1524	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1525	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1526
1527	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1528
1529	/* Do we want to advertise 10 Mb Half Duplex? */
1530	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1531		e_dbg("Advertise 10mb Half duplex\n");
1532		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1533	}
1534
1535	/* Do we want to advertise 10 Mb Full Duplex? */
1536	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1537		e_dbg("Advertise 10mb Full duplex\n");
1538		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1539	}
1540
1541	/* Do we want to advertise 100 Mb Half Duplex? */
1542	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1543		e_dbg("Advertise 100mb Half duplex\n");
1544		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1545	}
1546
1547	/* Do we want to advertise 100 Mb Full Duplex? */
1548	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1549		e_dbg("Advertise 100mb Full duplex\n");
1550		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1551	}
1552
1553	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1554	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1555		e_dbg
1556		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1557	}
1558
1559	/* Do we want to advertise 1000 Mb Full Duplex? */
1560	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1561		e_dbg("Advertise 1000mb Full duplex\n");
1562		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1563	}
1564
1565	/* Check for a software override of the flow control settings, and
1566	 * setup the PHY advertisement registers accordingly.  If
1567	 * auto-negotiation is enabled, then software will have to set the
1568	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1569	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1570	 * auto-negotiation.
1571	 *
1572	 * The possible values of the "fc" parameter are:
1573	 *      0:  Flow control is completely disabled
1574	 *      1:  Rx flow control is enabled (we can receive pause frames
1575	 *          but not send pause frames).
1576	 *      2:  Tx flow control is enabled (we can send pause frames
1577	 *          but we do not support receiving pause frames).
1578	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1579	 *  other:  No software override.  The flow control configuration
1580	 *          in the EEPROM is used.
1581	 */
1582	switch (hw->fc) {
1583	case E1000_FC_NONE:	/* 0 */
1584		/* Flow control (RX & TX) is completely disabled by a
1585		 * software over-ride.
1586		 */
1587		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1588		break;
1589	case E1000_FC_RX_PAUSE:	/* 1 */
1590		/* RX Flow control is enabled, and TX Flow control is
1591		 * disabled, by a software over-ride.
1592		 */
1593		/* Since there really isn't a way to advertise that we are
1594		 * capable of RX Pause ONLY, we will advertise that we
1595		 * support both symmetric and asymmetric RX PAUSE.  Later
1596		 * (in e1000_config_fc_after_link_up) we will disable the
1597		 * hw's ability to send PAUSE frames.
1598		 */
1599		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1600		break;
1601	case E1000_FC_TX_PAUSE:	/* 2 */
1602		/* TX Flow control is enabled, and RX Flow control is
1603		 * disabled, by a software over-ride.
1604		 */
1605		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1606		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1607		break;
1608	case E1000_FC_FULL:	/* 3 */
1609		/* Flow control (both RX and TX) is enabled by a software
1610		 * over-ride.
1611		 */
1612		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613		break;
1614	default:
1615		e_dbg("Flow control param set incorrectly\n");
1616		return -E1000_ERR_CONFIG;
1617	}
1618
1619	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1620	if (ret_val)
1621		return ret_val;
1622
1623	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1624
1625	if (hw->phy_type == e1000_phy_8201) {
1626		mii_1000t_ctrl_reg = 0;
1627	} else {
1628		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1629					      mii_1000t_ctrl_reg);
1630		if (ret_val)
1631			return ret_val;
1632	}
1633
1634	return E1000_SUCCESS;
1635}
1636
1637/**
1638 * e1000_phy_force_speed_duplex - force link settings
1639 * @hw: Struct containing variables accessed by shared code
1640 *
1641 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1642 */
1643static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1644{
1645	u32 ctrl;
1646	s32 ret_val;
1647	u16 mii_ctrl_reg;
1648	u16 mii_status_reg;
1649	u16 phy_data;
1650	u16 i;
1651
1652	/* Turn off Flow control if we are forcing speed and duplex. */
1653	hw->fc = E1000_FC_NONE;
1654
1655	e_dbg("hw->fc = %d\n", hw->fc);
1656
1657	/* Read the Device Control Register. */
1658	ctrl = er32(CTRL);
1659
1660	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1661	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1662	ctrl &= ~(DEVICE_SPEED_MASK);
1663
1664	/* Clear the Auto Speed Detect Enable bit. */
1665	ctrl &= ~E1000_CTRL_ASDE;
1666
1667	/* Read the MII Control Register. */
1668	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1669	if (ret_val)
1670		return ret_val;
1671
1672	/* We need to disable autoneg in order to force link and duplex. */
1673
1674	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1675
1676	/* Are we forcing Full or Half Duplex? */
1677	if (hw->forced_speed_duplex == e1000_100_full ||
1678	    hw->forced_speed_duplex == e1000_10_full) {
1679		/* We want to force full duplex so we SET the full duplex bits
1680		 * in the Device and MII Control Registers.
1681		 */
1682		ctrl |= E1000_CTRL_FD;
1683		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1684		e_dbg("Full Duplex\n");
1685	} else {
1686		/* We want to force half duplex so we CLEAR the full duplex bits
1687		 * in the Device and MII Control Registers.
1688		 */
1689		ctrl &= ~E1000_CTRL_FD;
1690		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1691		e_dbg("Half Duplex\n");
1692	}
1693
1694	/* Are we forcing 100Mbps??? */
1695	if (hw->forced_speed_duplex == e1000_100_full ||
1696	    hw->forced_speed_duplex == e1000_100_half) {
1697		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1698		ctrl |= E1000_CTRL_SPD_100;
1699		mii_ctrl_reg |= MII_CR_SPEED_100;
1700		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1701		e_dbg("Forcing 100mb ");
1702	} else {
1703		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1704		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1705		mii_ctrl_reg |= MII_CR_SPEED_10;
1706		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1707		e_dbg("Forcing 10mb ");
1708	}
1709
1710	e1000_config_collision_dist(hw);
1711
1712	/* Write the configured values back to the Device Control Reg. */
1713	ew32(CTRL, ctrl);
1714
1715	if (hw->phy_type == e1000_phy_m88) {
1716		ret_val =
1717		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1718		if (ret_val)
1719			return ret_val;
1720
1721		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1722		 * MDI forced whenever speed are duplex are forced.
1723		 */
1724		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1725		ret_val =
1726		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1727		if (ret_val)
1728			return ret_val;
1729
1730		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1731
1732		/* Need to reset the PHY or these changes will be ignored */
1733		mii_ctrl_reg |= MII_CR_RESET;
1734
1735		/* Disable MDI-X support for 10/100 */
1736	} else {
1737		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1738		 * forced whenever speed or duplex are forced.
1739		 */
1740		ret_val =
1741		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1742		if (ret_val)
1743			return ret_val;
1744
1745		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1746		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1747
1748		ret_val =
1749		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1750		if (ret_val)
1751			return ret_val;
1752	}
1753
1754	/* Write back the modified PHY MII control register. */
1755	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1756	if (ret_val)
1757		return ret_val;
1758
1759	udelay(1);
1760
1761	/* The wait_autoneg_complete flag may be a little misleading here.
1762	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1763	 * But we do want to delay for a period while forcing only so we
1764	 * don't generate false No Link messages.  So we will wait here
1765	 * only if the user has set wait_autoneg_complete to 1, which is
1766	 * the default.
1767	 */
1768	if (hw->wait_autoneg_complete) {
1769		/* We will wait for autoneg to complete. */
1770		e_dbg("Waiting for forced speed/duplex link.\n");
1771		mii_status_reg = 0;
1772
1773		/* Wait for autoneg to complete or 4.5 seconds to expire */
1774		for (i = PHY_FORCE_TIME; i > 0; i--) {
1775			/* Read the MII Status Register and wait for Auto-Neg
1776			 * Complete bit to be set.
1777			 */
1778			ret_val =
1779			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1780			if (ret_val)
1781				return ret_val;
1782
1783			ret_val =
1784			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1785			if (ret_val)
1786				return ret_val;
1787
1788			if (mii_status_reg & MII_SR_LINK_STATUS)
1789				break;
1790			msleep(100);
1791		}
1792		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1793			/* We didn't get link.  Reset the DSP and wait again
1794			 * for link.
1795			 */
1796			ret_val = e1000_phy_reset_dsp(hw);
1797			if (ret_val) {
1798				e_dbg("Error Resetting PHY DSP\n");
1799				return ret_val;
1800			}
1801		}
1802		/* This loop will early-out if the link condition has been
1803		 * met
1804		 */
1805		for (i = PHY_FORCE_TIME; i > 0; i--) {
1806			if (mii_status_reg & MII_SR_LINK_STATUS)
1807				break;
1808			msleep(100);
1809			/* Read the MII Status Register and wait for Auto-Neg
1810			 * Complete bit to be set.
1811			 */
1812			ret_val =
1813			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1814			if (ret_val)
1815				return ret_val;
1816
1817			ret_val =
1818			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1819			if (ret_val)
1820				return ret_val;
1821		}
1822	}
1823
1824	if (hw->phy_type == e1000_phy_m88) {
1825		/* Because we reset the PHY above, we need to re-force TX_CLK in
1826		 * the Extended PHY Specific Control Register to 25MHz clock.
1827		 * This value defaults back to a 2.5MHz clock when the PHY is
1828		 * reset.
1829		 */
1830		ret_val =
1831		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1832				       &phy_data);
1833		if (ret_val)
1834			return ret_val;
1835
1836		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1837		ret_val =
1838		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1839					phy_data);
1840		if (ret_val)
1841			return ret_val;
1842
1843		/* In addition, because of the s/w reset above, we need to
1844		 * enable CRS on Tx.  This must be set for both full and half
1845		 * duplex operation.
1846		 */
1847		ret_val =
1848		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849		if (ret_val)
1850			return ret_val;
1851
1852		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1853		ret_val =
1854		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1855		if (ret_val)
1856			return ret_val;
1857
1858		if ((hw->mac_type == e1000_82544 ||
1859		     hw->mac_type == e1000_82543) &&
1860		    (!hw->autoneg) &&
1861		    (hw->forced_speed_duplex == e1000_10_full ||
1862		     hw->forced_speed_duplex == e1000_10_half)) {
1863			ret_val = e1000_polarity_reversal_workaround(hw);
1864			if (ret_val)
1865				return ret_val;
1866		}
1867	}
1868	return E1000_SUCCESS;
1869}
1870
1871/**
1872 * e1000_config_collision_dist - set collision distance register
1873 * @hw: Struct containing variables accessed by shared code
1874 *
1875 * Sets the collision distance in the Transmit Control register.
1876 * Link should have been established previously. Reads the speed and duplex
1877 * information from the Device Status register.
1878 */
1879void e1000_config_collision_dist(struct e1000_hw *hw)
1880{
1881	u32 tctl, coll_dist;
1882
1883	if (hw->mac_type < e1000_82543)
1884		coll_dist = E1000_COLLISION_DISTANCE_82542;
1885	else
1886		coll_dist = E1000_COLLISION_DISTANCE;
1887
1888	tctl = er32(TCTL);
1889
1890	tctl &= ~E1000_TCTL_COLD;
1891	tctl |= coll_dist << E1000_COLD_SHIFT;
1892
1893	ew32(TCTL, tctl);
1894	E1000_WRITE_FLUSH();
1895}
1896
1897/**
1898 * e1000_config_mac_to_phy - sync phy and mac settings
1899 * @hw: Struct containing variables accessed by shared code
 
1900 *
1901 * Sets MAC speed and duplex settings to reflect the those in the PHY
1902 * The contents of the PHY register containing the needed information need to
1903 * be passed in.
1904 */
1905static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1906{
1907	u32 ctrl;
1908	s32 ret_val;
1909	u16 phy_data;
1910
1911	/* 82544 or newer MAC, Auto Speed Detection takes care of
1912	 * MAC speed/duplex configuration.
1913	 */
1914	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1915		return E1000_SUCCESS;
1916
1917	/* Read the Device Control Register and set the bits to Force Speed
1918	 * and Duplex.
1919	 */
1920	ctrl = er32(CTRL);
1921	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1922	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1923
1924	switch (hw->phy_type) {
1925	case e1000_phy_8201:
1926		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1927		if (ret_val)
1928			return ret_val;
1929
1930		if (phy_data & RTL_PHY_CTRL_FD)
1931			ctrl |= E1000_CTRL_FD;
1932		else
1933			ctrl &= ~E1000_CTRL_FD;
1934
1935		if (phy_data & RTL_PHY_CTRL_SPD_100)
1936			ctrl |= E1000_CTRL_SPD_100;
1937		else
1938			ctrl |= E1000_CTRL_SPD_10;
1939
1940		e1000_config_collision_dist(hw);
1941		break;
1942	default:
1943		/* Set up duplex in the Device Control and Transmit Control
1944		 * registers depending on negotiated values.
1945		 */
1946		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1947					     &phy_data);
1948		if (ret_val)
1949			return ret_val;
1950
1951		if (phy_data & M88E1000_PSSR_DPLX)
1952			ctrl |= E1000_CTRL_FD;
1953		else
1954			ctrl &= ~E1000_CTRL_FD;
1955
1956		e1000_config_collision_dist(hw);
1957
1958		/* Set up speed in the Device Control register depending on
1959		 * negotiated values.
1960		 */
1961		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1962			ctrl |= E1000_CTRL_SPD_1000;
1963		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1964			 M88E1000_PSSR_100MBS)
1965			ctrl |= E1000_CTRL_SPD_100;
1966	}
1967
1968	/* Write the configured values back to the Device Control Reg. */
1969	ew32(CTRL, ctrl);
1970	return E1000_SUCCESS;
1971}
1972
1973/**
1974 * e1000_force_mac_fc - force flow control settings
1975 * @hw: Struct containing variables accessed by shared code
1976 *
1977 * Forces the MAC's flow control settings.
1978 * Sets the TFCE and RFCE bits in the device control register to reflect
1979 * the adapter settings. TFCE and RFCE need to be explicitly set by
1980 * software when a Copper PHY is used because autonegotiation is managed
1981 * by the PHY rather than the MAC. Software must also configure these
1982 * bits when link is forced on a fiber connection.
1983 */
1984s32 e1000_force_mac_fc(struct e1000_hw *hw)
1985{
1986	u32 ctrl;
1987
1988	/* Get the current configuration of the Device Control Register */
1989	ctrl = er32(CTRL);
1990
1991	/* Because we didn't get link via the internal auto-negotiation
1992	 * mechanism (we either forced link or we got link via PHY
1993	 * auto-neg), we have to manually enable/disable transmit an
1994	 * receive flow control.
1995	 *
1996	 * The "Case" statement below enables/disable flow control
1997	 * according to the "hw->fc" parameter.
1998	 *
1999	 * The possible values of the "fc" parameter are:
2000	 *      0:  Flow control is completely disabled
2001	 *      1:  Rx flow control is enabled (we can receive pause
2002	 *          frames but not send pause frames).
2003	 *      2:  Tx flow control is enabled (we can send pause frames
2004	 *          but we do not receive pause frames).
2005	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2006	 *  other:  No other values should be possible at this point.
2007	 */
2008
2009	switch (hw->fc) {
2010	case E1000_FC_NONE:
2011		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2012		break;
2013	case E1000_FC_RX_PAUSE:
2014		ctrl &= (~E1000_CTRL_TFCE);
2015		ctrl |= E1000_CTRL_RFCE;
2016		break;
2017	case E1000_FC_TX_PAUSE:
2018		ctrl &= (~E1000_CTRL_RFCE);
2019		ctrl |= E1000_CTRL_TFCE;
2020		break;
2021	case E1000_FC_FULL:
2022		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2023		break;
2024	default:
2025		e_dbg("Flow control param set incorrectly\n");
2026		return -E1000_ERR_CONFIG;
2027	}
2028
2029	/* Disable TX Flow Control for 82542 (rev 2.0) */
2030	if (hw->mac_type == e1000_82542_rev2_0)
2031		ctrl &= (~E1000_CTRL_TFCE);
2032
2033	ew32(CTRL, ctrl);
2034	return E1000_SUCCESS;
2035}
2036
2037/**
2038 * e1000_config_fc_after_link_up - configure flow control after autoneg
2039 * @hw: Struct containing variables accessed by shared code
2040 *
2041 * Configures flow control settings after link is established
2042 * Should be called immediately after a valid link has been established.
2043 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2044 * and autonegotiation is enabled, the MAC flow control settings will be set
2045 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2046 * and RFCE bits will be automatically set to the negotiated flow control mode.
2047 */
2048static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2049{
2050	s32 ret_val;
2051	u16 mii_status_reg;
2052	u16 mii_nway_adv_reg;
2053	u16 mii_nway_lp_ability_reg;
2054	u16 speed;
2055	u16 duplex;
2056
2057	/* Check for the case where we have fiber media and auto-neg failed
2058	 * so we had to force link.  In this case, we need to force the
2059	 * configuration of the MAC to match the "fc" parameter.
2060	 */
2061	if (((hw->media_type == e1000_media_type_fiber) &&
2062	     (hw->autoneg_failed)) ||
2063	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2064	     (hw->autoneg_failed)) ||
2065	    ((hw->media_type == e1000_media_type_copper) &&
2066	     (!hw->autoneg))) {
2067		ret_val = e1000_force_mac_fc(hw);
2068		if (ret_val) {
2069			e_dbg("Error forcing flow control settings\n");
2070			return ret_val;
2071		}
2072	}
2073
2074	/* Check for the case where we have copper media and auto-neg is
2075	 * enabled.  In this case, we need to check and see if Auto-Neg
2076	 * has completed, and if so, how the PHY and link partner has
2077	 * flow control configured.
2078	 */
2079	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2080		/* Read the MII Status Register and check to see if AutoNeg
2081		 * has completed.  We read this twice because this reg has
2082		 * some "sticky" (latched) bits.
2083		 */
2084		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2085		if (ret_val)
2086			return ret_val;
2087		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2088		if (ret_val)
2089			return ret_val;
2090
2091		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2092			/* The AutoNeg process has completed, so we now need to
2093			 * read both the Auto Negotiation Advertisement Register
2094			 * (Address 4) and the Auto_Negotiation Base Page
2095			 * Ability Register (Address 5) to determine how flow
2096			 * control was negotiated.
2097			 */
2098			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2099						     &mii_nway_adv_reg);
2100			if (ret_val)
2101				return ret_val;
2102			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2103						     &mii_nway_lp_ability_reg);
2104			if (ret_val)
2105				return ret_val;
2106
2107			/* Two bits in the Auto Negotiation Advertisement
2108			 * Register (Address 4) and two bits in the Auto
2109			 * Negotiation Base Page Ability Register (Address 5)
2110			 * determine flow control for both the PHY and the link
2111			 * partner.  The following table, taken out of the IEEE
2112			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2113			 * PAUSE resolution bits and how flow control is
2114			 * determined based upon these settings.
2115			 * NOTE:  DC = Don't Care
2116			 *
2117			 *   LOCAL DEVICE  |   LINK PARTNER
2118			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2119			 *-------|---------|-------|---------|------------------
2120			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2121			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2122			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2123			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2124			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2125			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2126			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2127			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2128			 *
2129			 */
2130			/* Are both PAUSE bits set to 1?  If so, this implies
2131			 * Symmetric Flow Control is enabled at both ends.  The
2132			 * ASM_DIR bits are irrelevant per the spec.
2133			 *
2134			 * For Symmetric Flow Control:
2135			 *
2136			 *   LOCAL DEVICE  |   LINK PARTNER
2137			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2138			 *-------|---------|-------|---------|------------------
2139			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2140			 *
2141			 */
2142			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2143			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2144				/* Now we need to check if the user selected Rx
2145				 * ONLY of pause frames.  In this case, we had
2146				 * to advertise FULL flow control because we
2147				 * could not advertise Rx ONLY. Hence, we must
2148				 * now check to see if we need to turn OFF the
2149				 * TRANSMISSION of PAUSE frames.
2150				 */
2151				if (hw->original_fc == E1000_FC_FULL) {
2152					hw->fc = E1000_FC_FULL;
2153					e_dbg("Flow Control = FULL.\n");
2154				} else {
2155					hw->fc = E1000_FC_RX_PAUSE;
2156					e_dbg
2157					    ("Flow Control = RX PAUSE frames only.\n");
2158				}
2159			}
2160			/* For receiving PAUSE frames ONLY.
2161			 *
2162			 *   LOCAL DEVICE  |   LINK PARTNER
2163			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164			 *-------|---------|-------|---------|------------------
2165			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2166			 *
2167			 */
2168			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2170				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2171				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 
2172				hw->fc = E1000_FC_TX_PAUSE;
2173				e_dbg
2174				    ("Flow Control = TX PAUSE frames only.\n");
2175			}
2176			/* For transmitting PAUSE frames ONLY.
2177			 *
2178			 *   LOCAL DEVICE  |   LINK PARTNER
2179			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2180			 *-------|---------|-------|---------|------------------
2181			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2182			 *
2183			 */
2184			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2185				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2186				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2187				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 
2188				hw->fc = E1000_FC_RX_PAUSE;
2189				e_dbg
2190				    ("Flow Control = RX PAUSE frames only.\n");
2191			}
2192			/* Per the IEEE spec, at this point flow control should
2193			 * be disabled.  However, we want to consider that we
2194			 * could be connected to a legacy switch that doesn't
2195			 * advertise desired flow control, but can be forced on
2196			 * the link partner.  So if we advertised no flow
2197			 * control, that is what we will resolve to.  If we
2198			 * advertised some kind of receive capability (Rx Pause
2199			 * Only or Full Flow Control) and the link partner
2200			 * advertised none, we will configure ourselves to
2201			 * enable Rx Flow Control only.  We can do this safely
2202			 * for two reasons:  If the link partner really
2203			 * didn't want flow control enabled, and we enable Rx,
2204			 * no harm done since we won't be receiving any PAUSE
2205			 * frames anyway.  If the intent on the link partner was
2206			 * to have flow control enabled, then by us enabling Rx
2207			 * only, we can at least receive pause frames and
2208			 * process them. This is a good idea because in most
2209			 * cases, since we are predominantly a server NIC, more
2210			 * times than not we will be asked to delay transmission
2211			 * of packets than asking our link partner to pause
2212			 * transmission of frames.
2213			 */
2214			else if ((hw->original_fc == E1000_FC_NONE ||
2215				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2216				 hw->fc_strict_ieee) {
2217				hw->fc = E1000_FC_NONE;
2218				e_dbg("Flow Control = NONE.\n");
2219			} else {
2220				hw->fc = E1000_FC_RX_PAUSE;
2221				e_dbg
2222				    ("Flow Control = RX PAUSE frames only.\n");
2223			}
2224
2225			/* Now we need to do one last check...  If we auto-
2226			 * negotiated to HALF DUPLEX, flow control should not be
2227			 * enabled per IEEE 802.3 spec.
2228			 */
2229			ret_val =
2230			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2231			if (ret_val) {
2232				e_dbg
2233				    ("Error getting link speed and duplex\n");
2234				return ret_val;
2235			}
2236
2237			if (duplex == HALF_DUPLEX)
2238				hw->fc = E1000_FC_NONE;
2239
2240			/* Now we call a subroutine to actually force the MAC
2241			 * controller to use the correct flow control settings.
2242			 */
2243			ret_val = e1000_force_mac_fc(hw);
2244			if (ret_val) {
2245				e_dbg
2246				    ("Error forcing flow control settings\n");
2247				return ret_val;
2248			}
2249		} else {
2250			e_dbg
2251			    ("Copper PHY and Auto Neg has not completed.\n");
2252		}
2253	}
2254	return E1000_SUCCESS;
2255}
2256
2257/**
2258 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2259 * @hw: pointer to the HW structure
2260 *
2261 * Checks for link up on the hardware.  If link is not up and we have
2262 * a signal, then we need to force link up.
2263 */
2264static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2265{
2266	u32 rxcw;
2267	u32 ctrl;
2268	u32 status;
2269	s32 ret_val = E1000_SUCCESS;
2270
2271	ctrl = er32(CTRL);
2272	status = er32(STATUS);
2273	rxcw = er32(RXCW);
2274
2275	/* If we don't have link (auto-negotiation failed or link partner
2276	 * cannot auto-negotiate), and our link partner is not trying to
2277	 * auto-negotiate with us (we are receiving idles or data),
2278	 * we need to force link up. We also need to give auto-negotiation
2279	 * time to complete.
2280	 */
2281	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2282	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2283		if (hw->autoneg_failed == 0) {
2284			hw->autoneg_failed = 1;
2285			goto out;
2286		}
2287		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2288
2289		/* Disable auto-negotiation in the TXCW register */
2290		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2291
2292		/* Force link-up and also force full-duplex. */
2293		ctrl = er32(CTRL);
2294		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2295		ew32(CTRL, ctrl);
2296
2297		/* Configure Flow Control after forcing link up. */
2298		ret_val = e1000_config_fc_after_link_up(hw);
2299		if (ret_val) {
2300			e_dbg("Error configuring flow control\n");
2301			goto out;
2302		}
2303	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2304		/* If we are forcing link and we are receiving /C/ ordered
2305		 * sets, re-enable auto-negotiation in the TXCW register
2306		 * and disable forced link in the Device Control register
2307		 * in an attempt to auto-negotiate with our link partner.
2308		 */
2309		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2310		ew32(TXCW, hw->txcw);
2311		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2312
2313		hw->serdes_has_link = true;
2314	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2315		/* If we force link for non-auto-negotiation switch, check
2316		 * link status based on MAC synchronization for internal
2317		 * serdes media type.
2318		 */
2319		/* SYNCH bit and IV bit are sticky. */
2320		udelay(10);
2321		rxcw = er32(RXCW);
2322		if (rxcw & E1000_RXCW_SYNCH) {
2323			if (!(rxcw & E1000_RXCW_IV)) {
2324				hw->serdes_has_link = true;
2325				e_dbg("SERDES: Link up - forced.\n");
2326			}
2327		} else {
2328			hw->serdes_has_link = false;
2329			e_dbg("SERDES: Link down - force failed.\n");
2330		}
2331	}
2332
2333	if (E1000_TXCW_ANE & er32(TXCW)) {
2334		status = er32(STATUS);
2335		if (status & E1000_STATUS_LU) {
2336			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2337			udelay(10);
2338			rxcw = er32(RXCW);
2339			if (rxcw & E1000_RXCW_SYNCH) {
2340				if (!(rxcw & E1000_RXCW_IV)) {
2341					hw->serdes_has_link = true;
2342					e_dbg("SERDES: Link up - autoneg "
2343						 "completed successfully.\n");
2344				} else {
2345					hw->serdes_has_link = false;
2346					e_dbg("SERDES: Link down - invalid"
2347						 "codewords detected in autoneg.\n");
2348				}
2349			} else {
2350				hw->serdes_has_link = false;
2351				e_dbg("SERDES: Link down - no sync.\n");
2352			}
2353		} else {
2354			hw->serdes_has_link = false;
2355			e_dbg("SERDES: Link down - autoneg failed\n");
2356		}
2357	}
2358
2359      out:
2360	return ret_val;
2361}
2362
2363/**
2364 * e1000_check_for_link
2365 * @hw: Struct containing variables accessed by shared code
2366 *
2367 * Checks to see if the link status of the hardware has changed.
2368 * Called by any function that needs to check the link status of the adapter.
2369 */
2370s32 e1000_check_for_link(struct e1000_hw *hw)
2371{
 
 
2372	u32 status;
2373	u32 rctl;
2374	u32 icr;
 
2375	s32 ret_val;
2376	u16 phy_data;
2377
2378	er32(CTRL);
2379	status = er32(STATUS);
2380
2381	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2382	 * set when the optics detect a signal. On older adapters, it will be
2383	 * cleared when there is a signal.  This applies to fiber media only.
2384	 */
2385	if ((hw->media_type == e1000_media_type_fiber) ||
2386	    (hw->media_type == e1000_media_type_internal_serdes)) {
2387		er32(RXCW);
2388
2389		if (hw->media_type == e1000_media_type_fiber) {
 
 
 
2390			if (status & E1000_STATUS_LU)
2391				hw->get_link_status = false;
2392		}
2393	}
2394
2395	/* If we have a copper PHY then we only want to go out to the PHY
2396	 * registers to see if Auto-Neg has completed and/or if our link
2397	 * status has changed.  The get_link_status flag will be set if we
2398	 * receive a Link Status Change interrupt or we have Rx Sequence
2399	 * Errors.
2400	 */
2401	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2402		/* First we want to see if the MII Status Register reports
2403		 * link.  If so, then we want to get the current speed/duplex
2404		 * of the PHY.
2405		 * Read the register twice since the link bit is sticky.
2406		 */
2407		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2408		if (ret_val)
2409			return ret_val;
2410		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2411		if (ret_val)
2412			return ret_val;
2413
2414		if (phy_data & MII_SR_LINK_STATUS) {
2415			hw->get_link_status = false;
2416			/* Check if there was DownShift, must be checked
2417			 * immediately after link-up
2418			 */
2419			e1000_check_downshift(hw);
2420
2421			/* If we are on 82544 or 82543 silicon and speed/duplex
2422			 * are forced to 10H or 10F, then we will implement the
2423			 * polarity reversal workaround.  We disable interrupts
2424			 * first, and upon returning, place the devices
2425			 * interrupt state to its previous value except for the
2426			 * link status change interrupt which will
2427			 * happen due to the execution of this workaround.
2428			 */
2429
2430			if ((hw->mac_type == e1000_82544 ||
2431			     hw->mac_type == e1000_82543) &&
2432			    (!hw->autoneg) &&
2433			    (hw->forced_speed_duplex == e1000_10_full ||
2434			     hw->forced_speed_duplex == e1000_10_half)) {
2435				ew32(IMC, 0xffffffff);
2436				ret_val =
2437				    e1000_polarity_reversal_workaround(hw);
2438				icr = er32(ICR);
2439				ew32(ICS, (icr & ~E1000_ICS_LSC));
2440				ew32(IMS, IMS_ENABLE_MASK);
2441			}
2442
2443		} else {
2444			/* No link detected */
2445			e1000_config_dsp_after_link_change(hw, false);
2446			return 0;
2447		}
2448
2449		/* If we are forcing speed/duplex, then we simply return since
2450		 * we have already determined whether we have link or not.
2451		 */
2452		if (!hw->autoneg)
2453			return -E1000_ERR_CONFIG;
2454
2455		/* optimize the dsp settings for the igp phy */
2456		e1000_config_dsp_after_link_change(hw, true);
2457
2458		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2459		 * have Si on board that is 82544 or newer, Auto
2460		 * Speed Detection takes care of MAC speed/duplex
2461		 * configuration.  So we only need to configure Collision
2462		 * Distance in the MAC.  Otherwise, we need to force
2463		 * speed/duplex on the MAC to the current PHY speed/duplex
2464		 * settings.
2465		 */
2466		if ((hw->mac_type >= e1000_82544) &&
2467		    (hw->mac_type != e1000_ce4100))
2468			e1000_config_collision_dist(hw);
2469		else {
2470			ret_val = e1000_config_mac_to_phy(hw);
2471			if (ret_val) {
2472				e_dbg
2473				    ("Error configuring MAC to PHY settings\n");
2474				return ret_val;
2475			}
2476		}
2477
2478		/* Configure Flow Control now that Auto-Neg has completed.
2479		 * First, we need to restore the desired flow control settings
2480		 * because we may have had to re-autoneg with a different link
2481		 * partner.
2482		 */
2483		ret_val = e1000_config_fc_after_link_up(hw);
2484		if (ret_val) {
2485			e_dbg("Error configuring flow control\n");
2486			return ret_val;
2487		}
2488
2489		/* At this point we know that we are on copper and we have
2490		 * auto-negotiated link.  These are conditions for checking the
2491		 * link partner capability register.  We use the link speed to
2492		 * determine if TBI compatibility needs to be turned on or off.
2493		 * If the link is not at gigabit speed, then TBI compatibility
2494		 * is not needed.  If we are at gigabit speed, we turn on TBI
2495		 * compatibility.
2496		 */
2497		if (hw->tbi_compatibility_en) {
2498			u16 speed, duplex;
2499
2500			ret_val =
2501			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2502
2503			if (ret_val) {
2504				e_dbg
2505				    ("Error getting link speed and duplex\n");
2506				return ret_val;
2507			}
2508			if (speed != SPEED_1000) {
2509				/* If link speed is not set to gigabit speed, we
2510				 * do not need to enable TBI compatibility.
2511				 */
2512				if (hw->tbi_compatibility_on) {
2513					/* If we previously were in the mode,
2514					 * turn it off.
2515					 */
2516					rctl = er32(RCTL);
2517					rctl &= ~E1000_RCTL_SBP;
2518					ew32(RCTL, rctl);
2519					hw->tbi_compatibility_on = false;
2520				}
2521			} else {
2522				/* If TBI compatibility is was previously off,
2523				 * turn it on. For compatibility with a TBI link
2524				 * partner, we will store bad packets. Some
2525				 * frames have an additional byte on the end and
2526				 * will look like CRC errors to the hardware.
2527				 */
2528				if (!hw->tbi_compatibility_on) {
2529					hw->tbi_compatibility_on = true;
2530					rctl = er32(RCTL);
2531					rctl |= E1000_RCTL_SBP;
2532					ew32(RCTL, rctl);
2533				}
2534			}
2535		}
2536	}
2537
2538	if ((hw->media_type == e1000_media_type_fiber) ||
2539	    (hw->media_type == e1000_media_type_internal_serdes))
2540		e1000_check_for_serdes_link_generic(hw);
2541
2542	return E1000_SUCCESS;
2543}
2544
2545/**
2546 * e1000_get_speed_and_duplex
2547 * @hw: Struct containing variables accessed by shared code
2548 * @speed: Speed of the connection
2549 * @duplex: Duplex setting of the connection
2550 *
2551 * Detects the current speed and duplex settings of the hardware.
2552 */
2553s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2554{
2555	u32 status;
2556	s32 ret_val;
2557	u16 phy_data;
2558
2559	if (hw->mac_type >= e1000_82543) {
2560		status = er32(STATUS);
2561		if (status & E1000_STATUS_SPEED_1000) {
2562			*speed = SPEED_1000;
2563			e_dbg("1000 Mbs, ");
2564		} else if (status & E1000_STATUS_SPEED_100) {
2565			*speed = SPEED_100;
2566			e_dbg("100 Mbs, ");
2567		} else {
2568			*speed = SPEED_10;
2569			e_dbg("10 Mbs, ");
2570		}
2571
2572		if (status & E1000_STATUS_FD) {
2573			*duplex = FULL_DUPLEX;
2574			e_dbg("Full Duplex\n");
2575		} else {
2576			*duplex = HALF_DUPLEX;
2577			e_dbg(" Half Duplex\n");
2578		}
2579	} else {
2580		e_dbg("1000 Mbs, Full Duplex\n");
2581		*speed = SPEED_1000;
2582		*duplex = FULL_DUPLEX;
2583	}
2584
2585	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2586	 * even if it is operating at half duplex.  Here we set the duplex
2587	 * settings to match the duplex in the link partner's capabilities.
2588	 */
2589	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2590		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2591		if (ret_val)
2592			return ret_val;
2593
2594		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2595			*duplex = HALF_DUPLEX;
2596		else {
2597			ret_val =
2598			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2599			if (ret_val)
2600				return ret_val;
2601			if ((*speed == SPEED_100 &&
2602			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2603			    (*speed == SPEED_10 &&
2604			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2605				*duplex = HALF_DUPLEX;
2606		}
2607	}
2608
2609	return E1000_SUCCESS;
2610}
2611
2612/**
2613 * e1000_wait_autoneg
2614 * @hw: Struct containing variables accessed by shared code
2615 *
2616 * Blocks until autoneg completes or times out (~4.5 seconds)
2617 */
2618static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2619{
2620	s32 ret_val;
2621	u16 i;
2622	u16 phy_data;
2623
2624	e_dbg("Waiting for Auto-Neg to complete.\n");
2625
2626	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2627	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2628		/* Read the MII Status Register and wait for Auto-Neg
2629		 * Complete bit to be set.
2630		 */
2631		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2632		if (ret_val)
2633			return ret_val;
2634		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2635		if (ret_val)
2636			return ret_val;
2637		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2638			return E1000_SUCCESS;
2639
2640		msleep(100);
2641	}
2642	return E1000_SUCCESS;
2643}
2644
2645/**
2646 * e1000_raise_mdi_clk - Raises the Management Data Clock
2647 * @hw: Struct containing variables accessed by shared code
2648 * @ctrl: Device control register's current value
2649 */
2650static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2651{
2652	/* Raise the clock input to the Management Data Clock (by setting the
2653	 * MDC bit), and then delay 10 microseconds.
2654	 */
2655	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2656	E1000_WRITE_FLUSH();
2657	udelay(10);
2658}
2659
2660/**
2661 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2662 * @hw: Struct containing variables accessed by shared code
2663 * @ctrl: Device control register's current value
2664 */
2665static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2666{
2667	/* Lower the clock input to the Management Data Clock (by clearing the
2668	 * MDC bit), and then delay 10 microseconds.
2669	 */
2670	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2671	E1000_WRITE_FLUSH();
2672	udelay(10);
2673}
2674
2675/**
2676 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2677 * @hw: Struct containing variables accessed by shared code
2678 * @data: Data to send out to the PHY
2679 * @count: Number of bits to shift out
2680 *
2681 * Bits are shifted out in MSB to LSB order.
2682 */
2683static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2684{
2685	u32 ctrl;
2686	u32 mask;
2687
2688	/* We need to shift "count" number of bits out to the PHY. So, the value
2689	 * in the "data" parameter will be shifted out to the PHY one bit at a
2690	 * time. In order to do this, "data" must be broken down into bits.
2691	 */
2692	mask = 0x01;
2693	mask <<= (count - 1);
2694
2695	ctrl = er32(CTRL);
2696
2697	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2698	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2699
2700	while (mask) {
2701		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2702		 * "1" and then raising and lowering the Management Data Clock.
2703		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2704		 * "0" and then raising and lowering the clock.
2705		 */
2706		if (data & mask)
2707			ctrl |= E1000_CTRL_MDIO;
2708		else
2709			ctrl &= ~E1000_CTRL_MDIO;
2710
2711		ew32(CTRL, ctrl);
2712		E1000_WRITE_FLUSH();
2713
2714		udelay(10);
2715
2716		e1000_raise_mdi_clk(hw, &ctrl);
2717		e1000_lower_mdi_clk(hw, &ctrl);
2718
2719		mask = mask >> 1;
2720	}
2721}
2722
2723/**
2724 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2725 * @hw: Struct containing variables accessed by shared code
2726 *
2727 * Bits are shifted in MSB to LSB order.
2728 */
2729static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2730{
2731	u32 ctrl;
2732	u16 data = 0;
2733	u8 i;
2734
2735	/* In order to read a register from the PHY, we need to shift in a total
2736	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2737	 * used to avoid contention on the MDIO pin when a read operation is
2738	 * performed. These two bits are ignored by us and thrown away. Bits are
2739	 * "shifted in" by raising the input to the Management Data Clock
2740	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2741	 */
2742	ctrl = er32(CTRL);
2743
2744	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2745	 * input.
2746	 */
2747	ctrl &= ~E1000_CTRL_MDIO_DIR;
2748	ctrl &= ~E1000_CTRL_MDIO;
2749
2750	ew32(CTRL, ctrl);
2751	E1000_WRITE_FLUSH();
2752
2753	/* Raise and Lower the clock before reading in the data. This accounts
2754	 * for the turnaround bits. The first clock occurred when we clocked out
2755	 * the last bit of the Register Address.
2756	 */
2757	e1000_raise_mdi_clk(hw, &ctrl);
2758	e1000_lower_mdi_clk(hw, &ctrl);
2759
2760	for (data = 0, i = 0; i < 16; i++) {
2761		data = data << 1;
2762		e1000_raise_mdi_clk(hw, &ctrl);
2763		ctrl = er32(CTRL);
2764		/* Check to see if we shifted in a "1". */
2765		if (ctrl & E1000_CTRL_MDIO)
2766			data |= 1;
2767		e1000_lower_mdi_clk(hw, &ctrl);
2768	}
2769
2770	e1000_raise_mdi_clk(hw, &ctrl);
2771	e1000_lower_mdi_clk(hw, &ctrl);
2772
2773	return data;
2774}
2775
 
2776/**
2777 * e1000_read_phy_reg - read a phy register
2778 * @hw: Struct containing variables accessed by shared code
2779 * @reg_addr: address of the PHY register to read
2780 * @phy_data: pointer to the value on the PHY register
2781 *
2782 * Reads the value from a PHY register, if the value is on a specific non zero
2783 * page, sets the page first.
2784 */
2785s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2786{
2787	u32 ret_val;
2788	unsigned long flags;
2789
2790	spin_lock_irqsave(&e1000_phy_lock, flags);
2791
2792	if ((hw->phy_type == e1000_phy_igp) &&
2793	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2794		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2795						 (u16) reg_addr);
2796		if (ret_val)
2797			goto out;
 
 
2798	}
2799
2800	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2801					phy_data);
2802out:
2803	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2804
2805	return ret_val;
2806}
2807
2808static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2809				 u16 *phy_data)
2810{
2811	u32 i;
2812	u32 mdic = 0;
2813	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2814
2815	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2816		e_dbg("PHY Address %d is out of range\n", reg_addr);
2817		return -E1000_ERR_PARAM;
2818	}
2819
2820	if (hw->mac_type > e1000_82543) {
2821		/* Set up Op-code, Phy Address, and register address in the MDI
2822		 * Control register.  The MAC will take care of interfacing with
2823		 * the PHY to retrieve the desired data.
2824		 */
2825		if (hw->mac_type == e1000_ce4100) {
2826			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2827				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2828				(INTEL_CE_GBE_MDIC_OP_READ) |
2829				(INTEL_CE_GBE_MDIC_GO));
2830
2831			writel(mdic, E1000_MDIO_CMD);
2832
2833			/* Poll the ready bit to see if the MDI read
2834			 * completed
2835			 */
2836			for (i = 0; i < 64; i++) {
2837				udelay(50);
2838				mdic = readl(E1000_MDIO_CMD);
2839				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2840					break;
2841			}
2842
2843			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2844				e_dbg("MDI Read did not complete\n");
2845				return -E1000_ERR_PHY;
2846			}
2847
2848			mdic = readl(E1000_MDIO_STS);
2849			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2850				e_dbg("MDI Read Error\n");
2851				return -E1000_ERR_PHY;
2852			}
2853			*phy_data = (u16)mdic;
2854		} else {
2855			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2856				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2857				(E1000_MDIC_OP_READ));
2858
2859			ew32(MDIC, mdic);
2860
2861			/* Poll the ready bit to see if the MDI read
2862			 * completed
2863			 */
2864			for (i = 0; i < 64; i++) {
2865				udelay(50);
2866				mdic = er32(MDIC);
2867				if (mdic & E1000_MDIC_READY)
2868					break;
2869			}
2870			if (!(mdic & E1000_MDIC_READY)) {
2871				e_dbg("MDI Read did not complete\n");
2872				return -E1000_ERR_PHY;
2873			}
2874			if (mdic & E1000_MDIC_ERROR) {
2875				e_dbg("MDI Error\n");
2876				return -E1000_ERR_PHY;
2877			}
2878			*phy_data = (u16)mdic;
2879		}
2880	} else {
2881		/* We must first send a preamble through the MDIO pin to signal
2882		 * the beginning of an MII instruction.  This is done by sending
2883		 * 32 consecutive "1" bits.
2884		 */
2885		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2886
2887		/* Now combine the next few fields that are required for a read
2888		 * operation.  We use this method instead of calling the
2889		 * e1000_shift_out_mdi_bits routine five different times. The
2890		 * format of a MII read instruction consists of a shift out of
2891		 * 14 bits and is defined as follows:
2892		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2893		 * followed by a shift in of 18 bits.  This first two bits
2894		 * shifted in are TurnAround bits used to avoid contention on
2895		 * the MDIO pin when a READ operation is performed.  These two
2896		 * bits are thrown away followed by a shift in of 16 bits which
2897		 * contains the desired data.
2898		 */
2899		mdic = ((reg_addr) | (phy_addr << 5) |
2900			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2901
2902		e1000_shift_out_mdi_bits(hw, mdic, 14);
2903
2904		/* Now that we've shifted out the read command to the MII, we
2905		 * need to "shift in" the 16-bit value (18 total bits) of the
2906		 * requested PHY register address.
2907		 */
2908		*phy_data = e1000_shift_in_mdi_bits(hw);
2909	}
2910	return E1000_SUCCESS;
2911}
2912
2913/**
2914 * e1000_write_phy_reg - write a phy register
2915 *
2916 * @hw: Struct containing variables accessed by shared code
2917 * @reg_addr: address of the PHY register to write
2918 * @phy_data: data to write to the PHY
2919 *
2920 * Writes a value to a PHY register
2921 */
2922s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2923{
2924	u32 ret_val;
2925	unsigned long flags;
2926
2927	spin_lock_irqsave(&e1000_phy_lock, flags);
2928
2929	if ((hw->phy_type == e1000_phy_igp) &&
2930	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2931		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2932						 (u16)reg_addr);
2933		if (ret_val) {
2934			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2935			return ret_val;
2936		}
2937	}
2938
2939	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2940					 phy_data);
2941	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2942
2943	return ret_val;
2944}
2945
2946static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2947				  u16 phy_data)
2948{
2949	u32 i;
2950	u32 mdic = 0;
2951	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2952
2953	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2954		e_dbg("PHY Address %d is out of range\n", reg_addr);
2955		return -E1000_ERR_PARAM;
2956	}
2957
2958	if (hw->mac_type > e1000_82543) {
2959		/* Set up Op-code, Phy Address, register address, and data
2960		 * intended for the PHY register in the MDI Control register.
2961		 * The MAC will take care of interfacing with the PHY to send
2962		 * the desired data.
2963		 */
2964		if (hw->mac_type == e1000_ce4100) {
2965			mdic = (((u32)phy_data) |
2966				(reg_addr << E1000_MDIC_REG_SHIFT) |
2967				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2968				(INTEL_CE_GBE_MDIC_OP_WRITE) |
2969				(INTEL_CE_GBE_MDIC_GO));
2970
2971			writel(mdic, E1000_MDIO_CMD);
2972
2973			/* Poll the ready bit to see if the MDI read
2974			 * completed
2975			 */
2976			for (i = 0; i < 640; i++) {
2977				udelay(5);
2978				mdic = readl(E1000_MDIO_CMD);
2979				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2980					break;
2981			}
2982			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2983				e_dbg("MDI Write did not complete\n");
2984				return -E1000_ERR_PHY;
2985			}
2986		} else {
2987			mdic = (((u32)phy_data) |
2988				(reg_addr << E1000_MDIC_REG_SHIFT) |
2989				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2990				(E1000_MDIC_OP_WRITE));
2991
2992			ew32(MDIC, mdic);
2993
2994			/* Poll the ready bit to see if the MDI read
2995			 * completed
2996			 */
2997			for (i = 0; i < 641; i++) {
2998				udelay(5);
2999				mdic = er32(MDIC);
3000				if (mdic & E1000_MDIC_READY)
3001					break;
3002			}
3003			if (!(mdic & E1000_MDIC_READY)) {
3004				e_dbg("MDI Write did not complete\n");
3005				return -E1000_ERR_PHY;
3006			}
3007		}
3008	} else {
3009		/* We'll need to use the SW defined pins to shift the write
3010		 * command out to the PHY. We first send a preamble to the PHY
3011		 * to signal the beginning of the MII instruction.  This is done
3012		 * by sending 32 consecutive "1" bits.
3013		 */
3014		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3015
3016		/* Now combine the remaining required fields that will indicate
3017		 * a write operation. We use this method instead of calling the
3018		 * e1000_shift_out_mdi_bits routine for each field in the
3019		 * command. The format of a MII write instruction is as follows:
3020		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3021		 */
3022		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3023			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3024		mdic <<= 16;
3025		mdic |= (u32)phy_data;
3026
3027		e1000_shift_out_mdi_bits(hw, mdic, 32);
3028	}
3029
3030	return E1000_SUCCESS;
3031}
3032
3033/**
3034 * e1000_phy_hw_reset - reset the phy, hardware style
3035 * @hw: Struct containing variables accessed by shared code
3036 *
3037 * Returns the PHY to the power-on reset state
3038 */
3039s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3040{
3041	u32 ctrl, ctrl_ext;
3042	u32 led_ctrl;
3043
3044	e_dbg("Resetting Phy...\n");
3045
3046	if (hw->mac_type > e1000_82543) {
3047		/* Read the device control register and assert the
3048		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3049		 * For e1000 hardware, we delay for 10ms between the assert
3050		 * and de-assert.
3051		 */
3052		ctrl = er32(CTRL);
3053		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3054		E1000_WRITE_FLUSH();
3055
3056		msleep(10);
3057
3058		ew32(CTRL, ctrl);
3059		E1000_WRITE_FLUSH();
3060
3061	} else {
3062		/* Read the Extended Device Control Register, assert the
3063		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3064		 * out of reset.
3065		 */
3066		ctrl_ext = er32(CTRL_EXT);
3067		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3068		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3069		ew32(CTRL_EXT, ctrl_ext);
3070		E1000_WRITE_FLUSH();
3071		msleep(10);
3072		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3073		ew32(CTRL_EXT, ctrl_ext);
3074		E1000_WRITE_FLUSH();
3075	}
3076	udelay(150);
3077
3078	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3079		/* Configure activity LED after PHY reset */
3080		led_ctrl = er32(LEDCTL);
3081		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3082		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3083		ew32(LEDCTL, led_ctrl);
3084	}
3085
3086	/* Wait for FW to finish PHY configuration. */
3087	return e1000_get_phy_cfg_done(hw);
3088}
3089
3090/**
3091 * e1000_phy_reset - reset the phy to commit settings
3092 * @hw: Struct containing variables accessed by shared code
3093 *
3094 * Resets the PHY
3095 * Sets bit 15 of the MII Control register
3096 */
3097s32 e1000_phy_reset(struct e1000_hw *hw)
3098{
3099	s32 ret_val;
3100	u16 phy_data;
3101
3102	switch (hw->phy_type) {
3103	case e1000_phy_igp:
3104		ret_val = e1000_phy_hw_reset(hw);
3105		if (ret_val)
3106			return ret_val;
3107		break;
3108	default:
3109		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3110		if (ret_val)
3111			return ret_val;
3112
3113		phy_data |= MII_CR_RESET;
3114		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3115		if (ret_val)
3116			return ret_val;
3117
3118		udelay(1);
3119		break;
3120	}
3121
3122	if (hw->phy_type == e1000_phy_igp)
3123		e1000_phy_init_script(hw);
3124
3125	return E1000_SUCCESS;
3126}
3127
3128/**
3129 * e1000_detect_gig_phy - check the phy type
3130 * @hw: Struct containing variables accessed by shared code
3131 *
3132 * Probes the expected PHY address for known PHY IDs
3133 */
3134static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3135{
3136	s32 phy_init_status, ret_val;
3137	u16 phy_id_high, phy_id_low;
3138	bool match = false;
3139
3140	if (hw->phy_id != 0)
3141		return E1000_SUCCESS;
3142
3143	/* Read the PHY ID Registers to identify which PHY is onboard. */
3144	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3145	if (ret_val)
3146		return ret_val;
3147
3148	hw->phy_id = (u32)(phy_id_high << 16);
3149	udelay(20);
3150	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3151	if (ret_val)
3152		return ret_val;
3153
3154	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3155	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3156
3157	switch (hw->mac_type) {
3158	case e1000_82543:
3159		if (hw->phy_id == M88E1000_E_PHY_ID)
3160			match = true;
3161		break;
3162	case e1000_82544:
3163		if (hw->phy_id == M88E1000_I_PHY_ID)
3164			match = true;
3165		break;
3166	case e1000_82540:
3167	case e1000_82545:
3168	case e1000_82545_rev_3:
3169	case e1000_82546:
3170	case e1000_82546_rev_3:
3171		if (hw->phy_id == M88E1011_I_PHY_ID)
3172			match = true;
3173		break;
3174	case e1000_ce4100:
3175		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3176		    (hw->phy_id == RTL8201N_PHY_ID) ||
3177		    (hw->phy_id == M88E1118_E_PHY_ID))
3178			match = true;
3179		break;
3180	case e1000_82541:
3181	case e1000_82541_rev_2:
3182	case e1000_82547:
3183	case e1000_82547_rev_2:
3184		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3185			match = true;
3186		break;
3187	default:
3188		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3189		return -E1000_ERR_CONFIG;
3190	}
3191	phy_init_status = e1000_set_phy_type(hw);
3192
3193	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3194		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3195		return E1000_SUCCESS;
3196	}
3197	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3198	return -E1000_ERR_PHY;
3199}
3200
3201/**
3202 * e1000_phy_reset_dsp - reset DSP
3203 * @hw: Struct containing variables accessed by shared code
3204 *
3205 * Resets the PHY's DSP
3206 */
3207static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3208{
3209	s32 ret_val;
3210
3211	do {
3212		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3213		if (ret_val)
3214			break;
3215		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3216		if (ret_val)
3217			break;
3218		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3219		if (ret_val)
3220			break;
3221		ret_val = E1000_SUCCESS;
3222	} while (0);
3223
3224	return ret_val;
3225}
3226
3227/**
3228 * e1000_phy_igp_get_info - get igp specific registers
3229 * @hw: Struct containing variables accessed by shared code
3230 * @phy_info: PHY information structure
3231 *
3232 * Get PHY information from various PHY registers for igp PHY only.
3233 */
3234static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3235				  struct e1000_phy_info *phy_info)
3236{
3237	s32 ret_val;
3238	u16 phy_data, min_length, max_length, average;
3239	e1000_rev_polarity polarity;
3240
3241	/* The downshift status is checked only once, after link is established,
3242	 * and it stored in the hw->speed_downgraded parameter.
3243	 */
3244	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3245
3246	/* IGP01E1000 does not need to support it. */
3247	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3248
3249	/* IGP01E1000 always correct polarity reversal */
3250	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3251
3252	/* Check polarity status */
3253	ret_val = e1000_check_polarity(hw, &polarity);
3254	if (ret_val)
3255		return ret_val;
3256
3257	phy_info->cable_polarity = polarity;
3258
3259	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3260	if (ret_val)
3261		return ret_val;
3262
3263	phy_info->mdix_mode =
3264	    (e1000_auto_x_mode)FIELD_GET(IGP01E1000_PSSR_MDIX, phy_data);
 
3265
3266	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3267	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3268		/* Local/Remote Receiver Information are only valid @ 1000
3269		 * Mbps
3270		 */
3271		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3272		if (ret_val)
3273			return ret_val;
3274
3275		phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3276					       phy_data) ?
3277		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3278		phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3279						phy_data) ?
3280		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3281
3282		/* Get cable length */
3283		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3284		if (ret_val)
3285			return ret_val;
3286
3287		/* Translate to old method */
3288		average = (max_length + min_length) / 2;
3289
3290		if (average <= e1000_igp_cable_length_50)
3291			phy_info->cable_length = e1000_cable_length_50;
3292		else if (average <= e1000_igp_cable_length_80)
3293			phy_info->cable_length = e1000_cable_length_50_80;
3294		else if (average <= e1000_igp_cable_length_110)
3295			phy_info->cable_length = e1000_cable_length_80_110;
3296		else if (average <= e1000_igp_cable_length_140)
3297			phy_info->cable_length = e1000_cable_length_110_140;
3298		else
3299			phy_info->cable_length = e1000_cable_length_140;
3300	}
3301
3302	return E1000_SUCCESS;
3303}
3304
3305/**
3306 * e1000_phy_m88_get_info - get m88 specific registers
3307 * @hw: Struct containing variables accessed by shared code
3308 * @phy_info: PHY information structure
3309 *
3310 * Get PHY information from various PHY registers for m88 PHY only.
3311 */
3312static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3313				  struct e1000_phy_info *phy_info)
3314{
3315	s32 ret_val;
3316	u16 phy_data;
3317	e1000_rev_polarity polarity;
3318
3319	/* The downshift status is checked only once, after link is established,
3320	 * and it stored in the hw->speed_downgraded parameter.
3321	 */
3322	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3323
3324	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3325	if (ret_val)
3326		return ret_val;
3327
3328	phy_info->extended_10bt_distance =
3329	    FIELD_GET(M88E1000_PSCR_10BT_EXT_DIST_ENABLE, phy_data) ?
 
3330	    e1000_10bt_ext_dist_enable_lower :
3331	    e1000_10bt_ext_dist_enable_normal;
3332
3333	phy_info->polarity_correction =
3334	    FIELD_GET(M88E1000_PSCR_POLARITY_REVERSAL, phy_data) ?
 
3335	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3336
3337	/* Check polarity status */
3338	ret_val = e1000_check_polarity(hw, &polarity);
3339	if (ret_val)
3340		return ret_val;
3341	phy_info->cable_polarity = polarity;
3342
3343	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3344	if (ret_val)
3345		return ret_val;
3346
3347	phy_info->mdix_mode =
3348	    (e1000_auto_x_mode)FIELD_GET(M88E1000_PSSR_MDIX, phy_data);
 
3349
3350	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3351		/* Cable Length Estimation and Local/Remote Receiver Information
3352		 * are only valid at 1000 Mbps.
3353		 */
3354		phy_info->cable_length =
3355		    (e1000_cable_length)FIELD_GET(M88E1000_PSSR_CABLE_LENGTH,
3356						  phy_data);
 
3357
3358		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3359		if (ret_val)
3360			return ret_val;
3361
3362		phy_info->local_rx = FIELD_GET(SR_1000T_LOCAL_RX_STATUS,
3363					       phy_data) ?
3364		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3365		phy_info->remote_rx = FIELD_GET(SR_1000T_REMOTE_RX_STATUS,
3366						phy_data) ?
3367		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3368	}
3369
3370	return E1000_SUCCESS;
3371}
3372
3373/**
3374 * e1000_phy_get_info - request phy info
3375 * @hw: Struct containing variables accessed by shared code
3376 * @phy_info: PHY information structure
3377 *
3378 * Get PHY information from various PHY registers
3379 */
3380s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3381{
3382	s32 ret_val;
3383	u16 phy_data;
3384
3385	phy_info->cable_length = e1000_cable_length_undefined;
3386	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3387	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3388	phy_info->downshift = e1000_downshift_undefined;
3389	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3390	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3391	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3392	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3393
3394	if (hw->media_type != e1000_media_type_copper) {
3395		e_dbg("PHY info is only valid for copper media\n");
3396		return -E1000_ERR_CONFIG;
3397	}
3398
3399	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3400	if (ret_val)
3401		return ret_val;
3402
3403	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3404	if (ret_val)
3405		return ret_val;
3406
3407	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3408		e_dbg("PHY info is only valid if link is up\n");
3409		return -E1000_ERR_CONFIG;
3410	}
3411
3412	if (hw->phy_type == e1000_phy_igp)
3413		return e1000_phy_igp_get_info(hw, phy_info);
3414	else if ((hw->phy_type == e1000_phy_8211) ||
3415		 (hw->phy_type == e1000_phy_8201))
3416		return E1000_SUCCESS;
3417	else
3418		return e1000_phy_m88_get_info(hw, phy_info);
3419}
3420
3421s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3422{
3423	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3424		e_dbg("Invalid MDI setting detected\n");
3425		hw->mdix = 1;
3426		return -E1000_ERR_CONFIG;
3427	}
3428	return E1000_SUCCESS;
3429}
3430
3431/**
3432 * e1000_init_eeprom_params - initialize sw eeprom vars
3433 * @hw: Struct containing variables accessed by shared code
3434 *
3435 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3436 * is configured.
3437 */
3438s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3439{
3440	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3441	u32 eecd = er32(EECD);
3442	s32 ret_val = E1000_SUCCESS;
3443	u16 eeprom_size;
3444
3445	switch (hw->mac_type) {
3446	case e1000_82542_rev2_0:
3447	case e1000_82542_rev2_1:
3448	case e1000_82543:
3449	case e1000_82544:
3450		eeprom->type = e1000_eeprom_microwire;
3451		eeprom->word_size = 64;
3452		eeprom->opcode_bits = 3;
3453		eeprom->address_bits = 6;
3454		eeprom->delay_usec = 50;
3455		break;
3456	case e1000_82540:
3457	case e1000_82545:
3458	case e1000_82545_rev_3:
3459	case e1000_82546:
3460	case e1000_82546_rev_3:
3461		eeprom->type = e1000_eeprom_microwire;
3462		eeprom->opcode_bits = 3;
3463		eeprom->delay_usec = 50;
3464		if (eecd & E1000_EECD_SIZE) {
3465			eeprom->word_size = 256;
3466			eeprom->address_bits = 8;
3467		} else {
3468			eeprom->word_size = 64;
3469			eeprom->address_bits = 6;
3470		}
3471		break;
3472	case e1000_82541:
3473	case e1000_82541_rev_2:
3474	case e1000_82547:
3475	case e1000_82547_rev_2:
3476		if (eecd & E1000_EECD_TYPE) {
3477			eeprom->type = e1000_eeprom_spi;
3478			eeprom->opcode_bits = 8;
3479			eeprom->delay_usec = 1;
3480			if (eecd & E1000_EECD_ADDR_BITS) {
3481				eeprom->page_size = 32;
3482				eeprom->address_bits = 16;
3483			} else {
3484				eeprom->page_size = 8;
3485				eeprom->address_bits = 8;
3486			}
3487		} else {
3488			eeprom->type = e1000_eeprom_microwire;
3489			eeprom->opcode_bits = 3;
3490			eeprom->delay_usec = 50;
3491			if (eecd & E1000_EECD_ADDR_BITS) {
3492				eeprom->word_size = 256;
3493				eeprom->address_bits = 8;
3494			} else {
3495				eeprom->word_size = 64;
3496				eeprom->address_bits = 6;
3497			}
3498		}
3499		break;
3500	default:
3501		break;
3502	}
3503
3504	if (eeprom->type == e1000_eeprom_spi) {
3505		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3506		 * 128B to 32KB (incremented by powers of 2).
3507		 */
3508		/* Set to default value for initial eeprom read. */
3509		eeprom->word_size = 64;
3510		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3511		if (ret_val)
3512			return ret_val;
3513		eeprom_size =
3514		    FIELD_GET(EEPROM_SIZE_MASK, eeprom_size);
3515		/* 256B eeprom size was not supported in earlier hardware, so we
3516		 * bump eeprom_size up one to ensure that "1" (which maps to
3517		 * 256B) is never the result used in the shifting logic below.
3518		 */
3519		if (eeprom_size)
3520			eeprom_size++;
3521
3522		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3523	}
3524	return ret_val;
3525}
3526
3527/**
3528 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3529 * @hw: Struct containing variables accessed by shared code
3530 * @eecd: EECD's current value
3531 */
3532static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3533{
3534	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3535	 * wait <delay> microseconds.
3536	 */
3537	*eecd = *eecd | E1000_EECD_SK;
3538	ew32(EECD, *eecd);
3539	E1000_WRITE_FLUSH();
3540	udelay(hw->eeprom.delay_usec);
3541}
3542
3543/**
3544 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3545 * @hw: Struct containing variables accessed by shared code
3546 * @eecd: EECD's current value
3547 */
3548static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3549{
3550	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3551	 * then wait 50 microseconds.
3552	 */
3553	*eecd = *eecd & ~E1000_EECD_SK;
3554	ew32(EECD, *eecd);
3555	E1000_WRITE_FLUSH();
3556	udelay(hw->eeprom.delay_usec);
3557}
3558
3559/**
3560 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3561 * @hw: Struct containing variables accessed by shared code
3562 * @data: data to send to the EEPROM
3563 * @count: number of bits to shift out
3564 */
3565static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3566{
3567	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3568	u32 eecd;
3569	u32 mask;
3570
3571	/* We need to shift "count" bits out to the EEPROM. So, value in the
3572	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3573	 * In order to do this, "data" must be broken down into bits.
3574	 */
3575	mask = 0x01 << (count - 1);
3576	eecd = er32(EECD);
3577	if (eeprom->type == e1000_eeprom_microwire)
3578		eecd &= ~E1000_EECD_DO;
3579	else if (eeprom->type == e1000_eeprom_spi)
3580		eecd |= E1000_EECD_DO;
3581
3582	do {
3583		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3584		 * "1", and then raising and then lowering the clock (the SK bit
3585		 * controls the clock input to the EEPROM).  A "0" is shifted
3586		 * out to the EEPROM by setting "DI" to "0" and then raising and
3587		 * then lowering the clock.
3588		 */
3589		eecd &= ~E1000_EECD_DI;
3590
3591		if (data & mask)
3592			eecd |= E1000_EECD_DI;
3593
3594		ew32(EECD, eecd);
3595		E1000_WRITE_FLUSH();
3596
3597		udelay(eeprom->delay_usec);
3598
3599		e1000_raise_ee_clk(hw, &eecd);
3600		e1000_lower_ee_clk(hw, &eecd);
3601
3602		mask = mask >> 1;
3603
3604	} while (mask);
3605
3606	/* We leave the "DI" bit set to "0" when we leave this routine. */
3607	eecd &= ~E1000_EECD_DI;
3608	ew32(EECD, eecd);
3609}
3610
3611/**
3612 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3613 * @hw: Struct containing variables accessed by shared code
3614 * @count: number of bits to shift in
3615 */
3616static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3617{
3618	u32 eecd;
3619	u32 i;
3620	u16 data;
3621
3622	/* In order to read a register from the EEPROM, we need to shift 'count'
3623	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3624	 * input to the EEPROM (setting the SK bit), and then reading the value
3625	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3626	 * should always be clear.
3627	 */
3628
3629	eecd = er32(EECD);
3630
3631	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3632	data = 0;
3633
3634	for (i = 0; i < count; i++) {
3635		data = data << 1;
3636		e1000_raise_ee_clk(hw, &eecd);
3637
3638		eecd = er32(EECD);
3639
3640		eecd &= ~(E1000_EECD_DI);
3641		if (eecd & E1000_EECD_DO)
3642			data |= 1;
3643
3644		e1000_lower_ee_clk(hw, &eecd);
3645	}
3646
3647	return data;
3648}
3649
3650/**
3651 * e1000_acquire_eeprom - Prepares EEPROM for access
3652 * @hw: Struct containing variables accessed by shared code
3653 *
3654 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3655 * function should be called before issuing a command to the EEPROM.
3656 */
3657static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3658{
3659	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3660	u32 eecd, i = 0;
3661
3662	eecd = er32(EECD);
3663
3664	/* Request EEPROM Access */
3665	if (hw->mac_type > e1000_82544) {
3666		eecd |= E1000_EECD_REQ;
3667		ew32(EECD, eecd);
3668		eecd = er32(EECD);
3669		while ((!(eecd & E1000_EECD_GNT)) &&
3670		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3671			i++;
3672			udelay(5);
3673			eecd = er32(EECD);
3674		}
3675		if (!(eecd & E1000_EECD_GNT)) {
3676			eecd &= ~E1000_EECD_REQ;
3677			ew32(EECD, eecd);
3678			e_dbg("Could not acquire EEPROM grant\n");
3679			return -E1000_ERR_EEPROM;
3680		}
3681	}
3682
3683	/* Setup EEPROM for Read/Write */
3684
3685	if (eeprom->type == e1000_eeprom_microwire) {
3686		/* Clear SK and DI */
3687		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3688		ew32(EECD, eecd);
3689
3690		/* Set CS */
3691		eecd |= E1000_EECD_CS;
3692		ew32(EECD, eecd);
3693	} else if (eeprom->type == e1000_eeprom_spi) {
3694		/* Clear SK and CS */
3695		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3696		ew32(EECD, eecd);
3697		E1000_WRITE_FLUSH();
3698		udelay(1);
3699	}
3700
3701	return E1000_SUCCESS;
3702}
3703
3704/**
3705 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3706 * @hw: Struct containing variables accessed by shared code
3707 */
3708static void e1000_standby_eeprom(struct e1000_hw *hw)
3709{
3710	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3711	u32 eecd;
3712
3713	eecd = er32(EECD);
3714
3715	if (eeprom->type == e1000_eeprom_microwire) {
3716		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3717		ew32(EECD, eecd);
3718		E1000_WRITE_FLUSH();
3719		udelay(eeprom->delay_usec);
3720
3721		/* Clock high */
3722		eecd |= E1000_EECD_SK;
3723		ew32(EECD, eecd);
3724		E1000_WRITE_FLUSH();
3725		udelay(eeprom->delay_usec);
3726
3727		/* Select EEPROM */
3728		eecd |= E1000_EECD_CS;
3729		ew32(EECD, eecd);
3730		E1000_WRITE_FLUSH();
3731		udelay(eeprom->delay_usec);
3732
3733		/* Clock low */
3734		eecd &= ~E1000_EECD_SK;
3735		ew32(EECD, eecd);
3736		E1000_WRITE_FLUSH();
3737		udelay(eeprom->delay_usec);
3738	} else if (eeprom->type == e1000_eeprom_spi) {
3739		/* Toggle CS to flush commands */
3740		eecd |= E1000_EECD_CS;
3741		ew32(EECD, eecd);
3742		E1000_WRITE_FLUSH();
3743		udelay(eeprom->delay_usec);
3744		eecd &= ~E1000_EECD_CS;
3745		ew32(EECD, eecd);
3746		E1000_WRITE_FLUSH();
3747		udelay(eeprom->delay_usec);
3748	}
3749}
3750
3751/**
3752 * e1000_release_eeprom - drop chip select
3753 * @hw: Struct containing variables accessed by shared code
3754 *
3755 * Terminates a command by inverting the EEPROM's chip select pin
3756 */
3757static void e1000_release_eeprom(struct e1000_hw *hw)
3758{
3759	u32 eecd;
3760
3761	eecd = er32(EECD);
3762
3763	if (hw->eeprom.type == e1000_eeprom_spi) {
3764		eecd |= E1000_EECD_CS;	/* Pull CS high */
3765		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3766
3767		ew32(EECD, eecd);
3768		E1000_WRITE_FLUSH();
3769
3770		udelay(hw->eeprom.delay_usec);
3771	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3772		/* cleanup eeprom */
3773
3774		/* CS on Microwire is active-high */
3775		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3776
3777		ew32(EECD, eecd);
3778
3779		/* Rising edge of clock */
3780		eecd |= E1000_EECD_SK;
3781		ew32(EECD, eecd);
3782		E1000_WRITE_FLUSH();
3783		udelay(hw->eeprom.delay_usec);
3784
3785		/* Falling edge of clock */
3786		eecd &= ~E1000_EECD_SK;
3787		ew32(EECD, eecd);
3788		E1000_WRITE_FLUSH();
3789		udelay(hw->eeprom.delay_usec);
3790	}
3791
3792	/* Stop requesting EEPROM access */
3793	if (hw->mac_type > e1000_82544) {
3794		eecd &= ~E1000_EECD_REQ;
3795		ew32(EECD, eecd);
3796	}
3797}
3798
3799/**
3800 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3801 * @hw: Struct containing variables accessed by shared code
3802 */
3803static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3804{
3805	u16 retry_count = 0;
3806	u8 spi_stat_reg;
3807
3808	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3809	 * EEPROM will signal that the command has been completed by clearing
3810	 * bit 0 of the internal status register.  If it's not cleared within
3811	 * 5 milliseconds, then error out.
3812	 */
3813	retry_count = 0;
3814	do {
3815		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3816					hw->eeprom.opcode_bits);
3817		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3818		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3819			break;
3820
3821		udelay(5);
3822		retry_count += 5;
3823
3824		e1000_standby_eeprom(hw);
3825	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3826
3827	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3828	 * only 0-5mSec on 5V devices)
3829	 */
3830	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3831		e_dbg("SPI EEPROM Status error\n");
3832		return -E1000_ERR_EEPROM;
3833	}
3834
3835	return E1000_SUCCESS;
3836}
3837
3838/**
3839 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3840 * @hw: Struct containing variables accessed by shared code
3841 * @offset: offset of  word in the EEPROM to read
3842 * @data: word read from the EEPROM
3843 * @words: number of words to read
3844 */
3845s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3846{
3847	s32 ret;
3848
3849	mutex_lock(&e1000_eeprom_lock);
3850	ret = e1000_do_read_eeprom(hw, offset, words, data);
3851	mutex_unlock(&e1000_eeprom_lock);
3852	return ret;
3853}
3854
3855static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3856				u16 *data)
3857{
3858	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3859	u32 i = 0;
3860
3861	if (hw->mac_type == e1000_ce4100) {
3862		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3863				      data);
3864		return E1000_SUCCESS;
3865	}
3866
 
 
 
 
3867	/* A check for invalid values:  offset too large, too many words, and
3868	 * not enough words.
3869	 */
3870	if ((offset >= eeprom->word_size) ||
3871	    (words > eeprom->word_size - offset) ||
3872	    (words == 0)) {
3873		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3874		      "size = %d\n", offset, eeprom->word_size);
3875		return -E1000_ERR_EEPROM;
3876	}
3877
3878	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3879	 * directly. In this case, we need to acquire the EEPROM so that
3880	 * FW or other port software does not interrupt.
3881	 */
3882	/* Prepare the EEPROM for bit-bang reading */
3883	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3884		return -E1000_ERR_EEPROM;
3885
3886	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3887	 * acquired the EEPROM at this point, so any returns should release it
3888	 */
3889	if (eeprom->type == e1000_eeprom_spi) {
3890		u16 word_in;
3891		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3892
3893		if (e1000_spi_eeprom_ready(hw)) {
3894			e1000_release_eeprom(hw);
3895			return -E1000_ERR_EEPROM;
3896		}
3897
3898		e1000_standby_eeprom(hw);
3899
3900		/* Some SPI eeproms use the 8th address bit embedded in the
3901		 * opcode
3902		 */
3903		if ((eeprom->address_bits == 8) && (offset >= 128))
3904			read_opcode |= EEPROM_A8_OPCODE_SPI;
3905
3906		/* Send the READ command (opcode + addr)  */
3907		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3908		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3909					eeprom->address_bits);
3910
3911		/* Read the data.  The address of the eeprom internally
3912		 * increments with each byte (spi) being read, saving on the
3913		 * overhead of eeprom setup and tear-down.  The address counter
3914		 * will roll over if reading beyond the size of the eeprom, thus
3915		 * allowing the entire memory to be read starting from any
3916		 * offset.
3917		 */
3918		for (i = 0; i < words; i++) {
3919			word_in = e1000_shift_in_ee_bits(hw, 16);
3920			data[i] = (word_in >> 8) | (word_in << 8);
3921		}
3922	} else if (eeprom->type == e1000_eeprom_microwire) {
3923		for (i = 0; i < words; i++) {
3924			/* Send the READ command (opcode + addr)  */
3925			e1000_shift_out_ee_bits(hw,
3926						EEPROM_READ_OPCODE_MICROWIRE,
3927						eeprom->opcode_bits);
3928			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3929						eeprom->address_bits);
3930
3931			/* Read the data.  For microwire, each word requires the
3932			 * overhead of eeprom setup and tear-down.
3933			 */
3934			data[i] = e1000_shift_in_ee_bits(hw, 16);
3935			e1000_standby_eeprom(hw);
3936			cond_resched();
3937		}
3938	}
3939
3940	/* End this read operation */
3941	e1000_release_eeprom(hw);
3942
3943	return E1000_SUCCESS;
3944}
3945
3946/**
3947 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3948 * @hw: Struct containing variables accessed by shared code
3949 *
3950 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3951 * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3952 * valid.
3953 */
3954s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3955{
3956	u16 checksum = 0;
3957	u16 i, eeprom_data;
3958
3959	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3960		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3961			e_dbg("EEPROM Read Error\n");
3962			return -E1000_ERR_EEPROM;
3963		}
3964		checksum += eeprom_data;
3965	}
3966
3967#ifdef CONFIG_PARISC
3968	/* This is a signature and not a checksum on HP c8000 */
3969	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
3970		return E1000_SUCCESS;
3971
3972#endif
3973	if (checksum == (u16)EEPROM_SUM)
3974		return E1000_SUCCESS;
3975	else {
3976		e_dbg("EEPROM Checksum Invalid\n");
3977		return -E1000_ERR_EEPROM;
3978	}
3979}
3980
3981/**
3982 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
3983 * @hw: Struct containing variables accessed by shared code
3984 *
3985 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
3986 * Writes the difference to word offset 63 of the EEPROM.
3987 */
3988s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
3989{
3990	u16 checksum = 0;
3991	u16 i, eeprom_data;
3992
3993	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
3994		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3995			e_dbg("EEPROM Read Error\n");
3996			return -E1000_ERR_EEPROM;
3997		}
3998		checksum += eeprom_data;
3999	}
4000	checksum = (u16)EEPROM_SUM - checksum;
4001	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4002		e_dbg("EEPROM Write Error\n");
4003		return -E1000_ERR_EEPROM;
4004	}
4005	return E1000_SUCCESS;
4006}
4007
4008/**
4009 * e1000_write_eeprom - write words to the different EEPROM types.
4010 * @hw: Struct containing variables accessed by shared code
4011 * @offset: offset within the EEPROM to be written to
4012 * @words: number of words to write
4013 * @data: 16 bit word to be written to the EEPROM
4014 *
4015 * If e1000_update_eeprom_checksum is not called after this function, the
4016 * EEPROM will most likely contain an invalid checksum.
4017 */
4018s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4019{
4020	s32 ret;
4021
4022	mutex_lock(&e1000_eeprom_lock);
4023	ret = e1000_do_write_eeprom(hw, offset, words, data);
4024	mutex_unlock(&e1000_eeprom_lock);
4025	return ret;
4026}
4027
4028static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4029				 u16 *data)
4030{
4031	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4032	s32 status = 0;
4033
4034	if (hw->mac_type == e1000_ce4100) {
4035		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4036				       data);
4037		return E1000_SUCCESS;
4038	}
4039
 
 
 
 
4040	/* A check for invalid values:  offset too large, too many words, and
4041	 * not enough words.
4042	 */
4043	if ((offset >= eeprom->word_size) ||
4044	    (words > eeprom->word_size - offset) ||
4045	    (words == 0)) {
4046		e_dbg("\"words\" parameter out of bounds\n");
4047		return -E1000_ERR_EEPROM;
4048	}
4049
4050	/* Prepare the EEPROM for writing  */
4051	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4052		return -E1000_ERR_EEPROM;
4053
4054	if (eeprom->type == e1000_eeprom_microwire) {
4055		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4056	} else {
4057		status = e1000_write_eeprom_spi(hw, offset, words, data);
4058		msleep(10);
4059	}
4060
4061	/* Done with writing */
4062	e1000_release_eeprom(hw);
4063
4064	return status;
4065}
4066
4067/**
4068 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4069 * @hw: Struct containing variables accessed by shared code
4070 * @offset: offset within the EEPROM to be written to
4071 * @words: number of words to write
4072 * @data: pointer to array of 8 bit words to be written to the EEPROM
4073 */
4074static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4075				  u16 *data)
4076{
4077	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4078	u16 widx = 0;
4079
4080	while (widx < words) {
4081		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4082
4083		if (e1000_spi_eeprom_ready(hw))
4084			return -E1000_ERR_EEPROM;
4085
4086		e1000_standby_eeprom(hw);
4087		cond_resched();
4088
4089		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4090		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4091					eeprom->opcode_bits);
4092
4093		e1000_standby_eeprom(hw);
4094
4095		/* Some SPI eeproms use the 8th address bit embedded in the
4096		 * opcode
4097		 */
4098		if ((eeprom->address_bits == 8) && (offset >= 128))
4099			write_opcode |= EEPROM_A8_OPCODE_SPI;
4100
4101		/* Send the Write command (8-bit opcode + addr) */
4102		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4103
4104		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4105					eeprom->address_bits);
4106
4107		/* Send the data */
4108
4109		/* Loop to allow for up to whole page write (32 bytes) of
4110		 * eeprom
4111		 */
4112		while (widx < words) {
4113			u16 word_out = data[widx];
4114
4115			word_out = (word_out >> 8) | (word_out << 8);
4116			e1000_shift_out_ee_bits(hw, word_out, 16);
4117			widx++;
4118
4119			/* Some larger eeprom sizes are capable of a 32-byte
4120			 * PAGE WRITE operation, while the smaller eeproms are
4121			 * capable of an 8-byte PAGE WRITE operation.  Break the
4122			 * inner loop to pass new address
4123			 */
4124			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4125				e1000_standby_eeprom(hw);
4126				break;
4127			}
4128		}
4129	}
4130
4131	return E1000_SUCCESS;
4132}
4133
4134/**
4135 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4136 * @hw: Struct containing variables accessed by shared code
4137 * @offset: offset within the EEPROM to be written to
4138 * @words: number of words to write
4139 * @data: pointer to array of 8 bit words to be written to the EEPROM
4140 */
4141static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4142					u16 words, u16 *data)
4143{
4144	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4145	u32 eecd;
4146	u16 words_written = 0;
4147	u16 i = 0;
4148
4149	/* Send the write enable command to the EEPROM (3-bit opcode plus
4150	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4151	 * the 11 of the dummy address as part of the opcode than it is to shift
4152	 * it over the correct number of bits for the address.  This puts the
4153	 * EEPROM into write/erase mode.
4154	 */
4155	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4156				(u16)(eeprom->opcode_bits + 2));
4157
4158	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4159
4160	/* Prepare the EEPROM */
4161	e1000_standby_eeprom(hw);
4162
4163	while (words_written < words) {
4164		/* Send the Write command (3-bit opcode + addr) */
4165		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4166					eeprom->opcode_bits);
4167
4168		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4169					eeprom->address_bits);
4170
4171		/* Send the data */
4172		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4173
4174		/* Toggle the CS line.  This in effect tells the EEPROM to
4175		 * execute the previous command.
4176		 */
4177		e1000_standby_eeprom(hw);
4178
4179		/* Read DO repeatedly until it is high (equal to '1').  The
4180		 * EEPROM will signal that the command has been completed by
4181		 * raising the DO signal. If DO does not go high in 10
4182		 * milliseconds, then error out.
4183		 */
4184		for (i = 0; i < 200; i++) {
4185			eecd = er32(EECD);
4186			if (eecd & E1000_EECD_DO)
4187				break;
4188			udelay(50);
4189		}
4190		if (i == 200) {
4191			e_dbg("EEPROM Write did not complete\n");
4192			return -E1000_ERR_EEPROM;
4193		}
4194
4195		/* Recover from write */
4196		e1000_standby_eeprom(hw);
4197		cond_resched();
4198
4199		words_written++;
4200	}
4201
4202	/* Send the write disable command to the EEPROM (3-bit opcode plus
4203	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4204	 * the 10 of the dummy address as part of the opcode than it is to shift
4205	 * it over the correct number of bits for the address.  This takes the
4206	 * EEPROM out of write/erase mode.
4207	 */
4208	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4209				(u16)(eeprom->opcode_bits + 2));
4210
4211	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4212
4213	return E1000_SUCCESS;
4214}
4215
4216/**
4217 * e1000_read_mac_addr - read the adapters MAC from eeprom
4218 * @hw: Struct containing variables accessed by shared code
4219 *
4220 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4221 * second function of dual function devices
4222 */
4223s32 e1000_read_mac_addr(struct e1000_hw *hw)
4224{
4225	u16 offset;
4226	u16 eeprom_data, i;
4227
4228	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4229		offset = i >> 1;
4230		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4231			e_dbg("EEPROM Read Error\n");
4232			return -E1000_ERR_EEPROM;
4233		}
4234		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4235		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4236	}
4237
4238	switch (hw->mac_type) {
4239	default:
4240		break;
4241	case e1000_82546:
4242	case e1000_82546_rev_3:
4243		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4244			hw->perm_mac_addr[5] ^= 0x01;
4245		break;
4246	}
4247
4248	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4249		hw->mac_addr[i] = hw->perm_mac_addr[i];
4250	return E1000_SUCCESS;
4251}
4252
4253/**
4254 * e1000_init_rx_addrs - Initializes receive address filters.
4255 * @hw: Struct containing variables accessed by shared code
4256 *
4257 * Places the MAC address in receive address register 0 and clears the rest
4258 * of the receive address registers. Clears the multicast table. Assumes
4259 * the receiver is in reset when the routine is called.
4260 */
4261static void e1000_init_rx_addrs(struct e1000_hw *hw)
4262{
4263	u32 i;
4264	u32 rar_num;
4265
4266	/* Setup the receive address. */
4267	e_dbg("Programming MAC Address into RAR[0]\n");
4268
4269	e1000_rar_set(hw, hw->mac_addr, 0);
4270
4271	rar_num = E1000_RAR_ENTRIES;
4272
4273	/* Zero out the following 14 receive addresses. RAR[15] is for
4274	 * manageability
4275	 */
4276	e_dbg("Clearing RAR[1-14]\n");
4277	for (i = 1; i < rar_num; i++) {
4278		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4279		E1000_WRITE_FLUSH();
4280		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4281		E1000_WRITE_FLUSH();
4282	}
4283}
4284
4285/**
4286 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4287 * @hw: Struct containing variables accessed by shared code
4288 * @mc_addr: the multicast address to hash
4289 */
4290u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4291{
4292	u32 hash_value = 0;
4293
4294	/* The portion of the address that is used for the hash table is
4295	 * determined by the mc_filter_type setting.
4296	 */
4297	switch (hw->mc_filter_type) {
4298		/* [0] [1] [2] [3] [4] [5]
4299		 * 01  AA  00  12  34  56
4300		 * LSB                 MSB
4301		 */
4302	case 0:
4303		/* [47:36] i.e. 0x563 for above example address */
4304		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4305		break;
4306	case 1:
4307		/* [46:35] i.e. 0xAC6 for above example address */
4308		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4309		break;
4310	case 2:
4311		/* [45:34] i.e. 0x5D8 for above example address */
4312		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4313		break;
4314	case 3:
4315		/* [43:32] i.e. 0x634 for above example address */
4316		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4317		break;
4318	}
4319
4320	hash_value &= 0xFFF;
4321	return hash_value;
4322}
4323
4324/**
4325 * e1000_rar_set - Puts an ethernet address into a receive address register.
4326 * @hw: Struct containing variables accessed by shared code
4327 * @addr: Address to put into receive address register
4328 * @index: Receive address register to write
4329 */
4330void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4331{
4332	u32 rar_low, rar_high;
4333
4334	/* HW expects these in little endian so we reverse the byte order
4335	 * from network order (big endian) to little endian
4336	 */
4337	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4338		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4339	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4340
4341	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4342	 * unit hang.
4343	 *
4344	 * Description:
4345	 * If there are any Rx frames queued up or otherwise present in the HW
4346	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4347	 * hang.  To work around this issue, we have to disable receives and
4348	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4349	 * redirect all Rx traffic to manageability and then reset the HW.
4350	 * This flushes away Rx frames, and (since the redirections to
4351	 * manageability persists across resets) keeps new ones from coming in
4352	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4353	 * addresses and undo the re-direction to manageability.
4354	 * Now, frames are coming in again, but the MAC won't accept them, so
4355	 * far so good.  We now proceed to initialize RSS (if necessary) and
4356	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4357	 * on our merry way.
4358	 */
4359	switch (hw->mac_type) {
4360	default:
4361		/* Indicate to hardware the Address is Valid. */
4362		rar_high |= E1000_RAH_AV;
4363		break;
4364	}
4365
4366	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4367	E1000_WRITE_FLUSH();
4368	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4369	E1000_WRITE_FLUSH();
4370}
4371
4372/**
4373 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4374 * @hw: Struct containing variables accessed by shared code
4375 * @offset: Offset in VLAN filter table to write
4376 * @value: Value to write into VLAN filter table
4377 */
4378void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4379{
4380	u32 temp;
4381
4382	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4383		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4384		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4385		E1000_WRITE_FLUSH();
4386		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4387		E1000_WRITE_FLUSH();
4388	} else {
4389		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4390		E1000_WRITE_FLUSH();
4391	}
4392}
4393
4394/**
4395 * e1000_clear_vfta - Clears the VLAN filter table
4396 * @hw: Struct containing variables accessed by shared code
4397 */
4398static void e1000_clear_vfta(struct e1000_hw *hw)
4399{
4400	u32 offset;
 
 
 
4401
4402	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4403		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
 
 
 
 
 
4404		E1000_WRITE_FLUSH();
4405	}
4406}
4407
4408static s32 e1000_id_led_init(struct e1000_hw *hw)
4409{
4410	u32 ledctl;
4411	const u32 ledctl_mask = 0x000000FF;
4412	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4413	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4414	u16 eeprom_data, i, temp;
4415	const u16 led_mask = 0x0F;
4416
4417	if (hw->mac_type < e1000_82540) {
4418		/* Nothing to do */
4419		return E1000_SUCCESS;
4420	}
4421
4422	ledctl = er32(LEDCTL);
4423	hw->ledctl_default = ledctl;
4424	hw->ledctl_mode1 = hw->ledctl_default;
4425	hw->ledctl_mode2 = hw->ledctl_default;
4426
4427	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4428		e_dbg("EEPROM Read Error\n");
4429		return -E1000_ERR_EEPROM;
4430	}
4431
4432	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4433	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4434		eeprom_data = ID_LED_DEFAULT;
4435	}
4436
4437	for (i = 0; i < 4; i++) {
4438		temp = (eeprom_data >> (i << 2)) & led_mask;
4439		switch (temp) {
4440		case ID_LED_ON1_DEF2:
4441		case ID_LED_ON1_ON2:
4442		case ID_LED_ON1_OFF2:
4443			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4444			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4445			break;
4446		case ID_LED_OFF1_DEF2:
4447		case ID_LED_OFF1_ON2:
4448		case ID_LED_OFF1_OFF2:
4449			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4450			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4451			break;
4452		default:
4453			/* Do nothing */
4454			break;
4455		}
4456		switch (temp) {
4457		case ID_LED_DEF1_ON2:
4458		case ID_LED_ON1_ON2:
4459		case ID_LED_OFF1_ON2:
4460			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4461			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4462			break;
4463		case ID_LED_DEF1_OFF2:
4464		case ID_LED_ON1_OFF2:
4465		case ID_LED_OFF1_OFF2:
4466			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4467			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4468			break;
4469		default:
4470			/* Do nothing */
4471			break;
4472		}
4473	}
4474	return E1000_SUCCESS;
4475}
4476
4477/**
4478 * e1000_setup_led
4479 * @hw: Struct containing variables accessed by shared code
4480 *
4481 * Prepares SW controlable LED for use and saves the current state of the LED.
4482 */
4483s32 e1000_setup_led(struct e1000_hw *hw)
4484{
4485	u32 ledctl;
4486	s32 ret_val = E1000_SUCCESS;
4487
4488	switch (hw->mac_type) {
4489	case e1000_82542_rev2_0:
4490	case e1000_82542_rev2_1:
4491	case e1000_82543:
4492	case e1000_82544:
4493		/* No setup necessary */
4494		break;
4495	case e1000_82541:
4496	case e1000_82547:
4497	case e1000_82541_rev_2:
4498	case e1000_82547_rev_2:
4499		/* Turn off PHY Smart Power Down (if enabled) */
4500		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4501					     &hw->phy_spd_default);
4502		if (ret_val)
4503			return ret_val;
4504		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4505					      (u16)(hw->phy_spd_default &
4506						     ~IGP01E1000_GMII_SPD));
4507		if (ret_val)
4508			return ret_val;
4509		fallthrough;
4510	default:
4511		if (hw->media_type == e1000_media_type_fiber) {
4512			ledctl = er32(LEDCTL);
4513			/* Save current LEDCTL settings */
4514			hw->ledctl_default = ledctl;
4515			/* Turn off LED0 */
4516			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4517				    E1000_LEDCTL_LED0_BLINK |
4518				    E1000_LEDCTL_LED0_MODE_MASK);
4519			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4520				   E1000_LEDCTL_LED0_MODE_SHIFT);
4521			ew32(LEDCTL, ledctl);
4522		} else if (hw->media_type == e1000_media_type_copper)
4523			ew32(LEDCTL, hw->ledctl_mode1);
4524		break;
4525	}
4526
4527	return E1000_SUCCESS;
4528}
4529
4530/**
4531 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4532 * @hw: Struct containing variables accessed by shared code
4533 */
4534s32 e1000_cleanup_led(struct e1000_hw *hw)
4535{
4536	s32 ret_val = E1000_SUCCESS;
4537
4538	switch (hw->mac_type) {
4539	case e1000_82542_rev2_0:
4540	case e1000_82542_rev2_1:
4541	case e1000_82543:
4542	case e1000_82544:
4543		/* No cleanup necessary */
4544		break;
4545	case e1000_82541:
4546	case e1000_82547:
4547	case e1000_82541_rev_2:
4548	case e1000_82547_rev_2:
4549		/* Turn on PHY Smart Power Down (if previously enabled) */
4550		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4551					      hw->phy_spd_default);
4552		if (ret_val)
4553			return ret_val;
4554		fallthrough;
4555	default:
4556		/* Restore LEDCTL settings */
4557		ew32(LEDCTL, hw->ledctl_default);
4558		break;
4559	}
4560
4561	return E1000_SUCCESS;
4562}
4563
4564/**
4565 * e1000_led_on - Turns on the software controllable LED
4566 * @hw: Struct containing variables accessed by shared code
4567 */
4568s32 e1000_led_on(struct e1000_hw *hw)
4569{
4570	u32 ctrl = er32(CTRL);
4571
4572	switch (hw->mac_type) {
4573	case e1000_82542_rev2_0:
4574	case e1000_82542_rev2_1:
4575	case e1000_82543:
4576		/* Set SW Defineable Pin 0 to turn on the LED */
4577		ctrl |= E1000_CTRL_SWDPIN0;
4578		ctrl |= E1000_CTRL_SWDPIO0;
4579		break;
4580	case e1000_82544:
4581		if (hw->media_type == e1000_media_type_fiber) {
4582			/* Set SW Defineable Pin 0 to turn on the LED */
4583			ctrl |= E1000_CTRL_SWDPIN0;
4584			ctrl |= E1000_CTRL_SWDPIO0;
4585		} else {
4586			/* Clear SW Defineable Pin 0 to turn on the LED */
4587			ctrl &= ~E1000_CTRL_SWDPIN0;
4588			ctrl |= E1000_CTRL_SWDPIO0;
4589		}
4590		break;
4591	default:
4592		if (hw->media_type == e1000_media_type_fiber) {
4593			/* Clear SW Defineable Pin 0 to turn on the LED */
4594			ctrl &= ~E1000_CTRL_SWDPIN0;
4595			ctrl |= E1000_CTRL_SWDPIO0;
4596		} else if (hw->media_type == e1000_media_type_copper) {
4597			ew32(LEDCTL, hw->ledctl_mode2);
4598			return E1000_SUCCESS;
4599		}
4600		break;
4601	}
4602
4603	ew32(CTRL, ctrl);
4604
4605	return E1000_SUCCESS;
4606}
4607
4608/**
4609 * e1000_led_off - Turns off the software controllable LED
4610 * @hw: Struct containing variables accessed by shared code
4611 */
4612s32 e1000_led_off(struct e1000_hw *hw)
4613{
4614	u32 ctrl = er32(CTRL);
4615
4616	switch (hw->mac_type) {
4617	case e1000_82542_rev2_0:
4618	case e1000_82542_rev2_1:
4619	case e1000_82543:
4620		/* Clear SW Defineable Pin 0 to turn off the LED */
4621		ctrl &= ~E1000_CTRL_SWDPIN0;
4622		ctrl |= E1000_CTRL_SWDPIO0;
4623		break;
4624	case e1000_82544:
4625		if (hw->media_type == e1000_media_type_fiber) {
4626			/* Clear SW Defineable Pin 0 to turn off the LED */
4627			ctrl &= ~E1000_CTRL_SWDPIN0;
4628			ctrl |= E1000_CTRL_SWDPIO0;
4629		} else {
4630			/* Set SW Defineable Pin 0 to turn off the LED */
4631			ctrl |= E1000_CTRL_SWDPIN0;
4632			ctrl |= E1000_CTRL_SWDPIO0;
4633		}
4634		break;
4635	default:
4636		if (hw->media_type == e1000_media_type_fiber) {
4637			/* Set SW Defineable Pin 0 to turn off the LED */
4638			ctrl |= E1000_CTRL_SWDPIN0;
4639			ctrl |= E1000_CTRL_SWDPIO0;
4640		} else if (hw->media_type == e1000_media_type_copper) {
4641			ew32(LEDCTL, hw->ledctl_mode1);
4642			return E1000_SUCCESS;
4643		}
4644		break;
4645	}
4646
4647	ew32(CTRL, ctrl);
4648
4649	return E1000_SUCCESS;
4650}
4651
4652/**
4653 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4654 * @hw: Struct containing variables accessed by shared code
4655 */
4656static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4657{
4658	er32(CRCERRS);
4659	er32(SYMERRS);
4660	er32(MPC);
4661	er32(SCC);
4662	er32(ECOL);
4663	er32(MCC);
4664	er32(LATECOL);
4665	er32(COLC);
4666	er32(DC);
4667	er32(SEC);
4668	er32(RLEC);
4669	er32(XONRXC);
4670	er32(XONTXC);
4671	er32(XOFFRXC);
4672	er32(XOFFTXC);
4673	er32(FCRUC);
4674
4675	er32(PRC64);
4676	er32(PRC127);
4677	er32(PRC255);
4678	er32(PRC511);
4679	er32(PRC1023);
4680	er32(PRC1522);
4681
4682	er32(GPRC);
4683	er32(BPRC);
4684	er32(MPRC);
4685	er32(GPTC);
4686	er32(GORCL);
4687	er32(GORCH);
4688	er32(GOTCL);
4689	er32(GOTCH);
4690	er32(RNBC);
4691	er32(RUC);
4692	er32(RFC);
4693	er32(ROC);
4694	er32(RJC);
4695	er32(TORL);
4696	er32(TORH);
4697	er32(TOTL);
4698	er32(TOTH);
4699	er32(TPR);
4700	er32(TPT);
4701
4702	er32(PTC64);
4703	er32(PTC127);
4704	er32(PTC255);
4705	er32(PTC511);
4706	er32(PTC1023);
4707	er32(PTC1522);
 
 
4708
4709	er32(MPTC);
4710	er32(BPTC);
4711
4712	if (hw->mac_type < e1000_82543)
4713		return;
4714
4715	er32(ALGNERRC);
4716	er32(RXERRC);
4717	er32(TNCRS);
4718	er32(CEXTERR);
4719	er32(TSCTC);
4720	er32(TSCTFC);
4721
4722	if (hw->mac_type <= e1000_82544)
4723		return;
4724
4725	er32(MGTPRC);
4726	er32(MGTPDC);
4727	er32(MGTPTC);
4728}
4729
4730/**
4731 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4732 * @hw: Struct containing variables accessed by shared code
4733 *
4734 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4735 * hw->ifs_params_forced to true. However, you must initialize hw->
4736 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4737 * before calling this function.
4738 */
4739void e1000_reset_adaptive(struct e1000_hw *hw)
4740{
4741	if (hw->adaptive_ifs) {
4742		if (!hw->ifs_params_forced) {
4743			hw->current_ifs_val = 0;
4744			hw->ifs_min_val = IFS_MIN;
4745			hw->ifs_max_val = IFS_MAX;
4746			hw->ifs_step_size = IFS_STEP;
4747			hw->ifs_ratio = IFS_RATIO;
4748		}
4749		hw->in_ifs_mode = false;
4750		ew32(AIT, 0);
4751	} else {
4752		e_dbg("Not in Adaptive IFS mode!\n");
4753	}
4754}
4755
4756/**
4757 * e1000_update_adaptive - update adaptive IFS
4758 * @hw: Struct containing variables accessed by shared code
 
 
4759 *
4760 * Called during the callback/watchdog routine to update IFS value based on
4761 * the ratio of transmits to collisions.
4762 */
4763void e1000_update_adaptive(struct e1000_hw *hw)
4764{
4765	if (hw->adaptive_ifs) {
4766		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4767			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4768				hw->in_ifs_mode = true;
4769				if (hw->current_ifs_val < hw->ifs_max_val) {
4770					if (hw->current_ifs_val == 0)
4771						hw->current_ifs_val =
4772						    hw->ifs_min_val;
4773					else
4774						hw->current_ifs_val +=
4775						    hw->ifs_step_size;
4776					ew32(AIT, hw->current_ifs_val);
4777				}
4778			}
4779		} else {
4780			if (hw->in_ifs_mode &&
4781			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4782				hw->current_ifs_val = 0;
4783				hw->in_ifs_mode = false;
4784				ew32(AIT, 0);
4785			}
4786		}
4787	} else {
4788		e_dbg("Not in Adaptive IFS mode!\n");
4789	}
4790}
4791
4792/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4793 * e1000_get_bus_info
4794 * @hw: Struct containing variables accessed by shared code
4795 *
4796 * Gets the current PCI bus type, speed, and width of the hardware
4797 */
4798void e1000_get_bus_info(struct e1000_hw *hw)
4799{
4800	u32 status;
4801
4802	switch (hw->mac_type) {
4803	case e1000_82542_rev2_0:
4804	case e1000_82542_rev2_1:
4805		hw->bus_type = e1000_bus_type_pci;
4806		hw->bus_speed = e1000_bus_speed_unknown;
4807		hw->bus_width = e1000_bus_width_unknown;
4808		break;
4809	default:
4810		status = er32(STATUS);
4811		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4812		    e1000_bus_type_pcix : e1000_bus_type_pci;
4813
4814		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4815			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4816			    e1000_bus_speed_66 : e1000_bus_speed_120;
4817		} else if (hw->bus_type == e1000_bus_type_pci) {
4818			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4819			    e1000_bus_speed_66 : e1000_bus_speed_33;
4820		} else {
4821			switch (status & E1000_STATUS_PCIX_SPEED) {
4822			case E1000_STATUS_PCIX_SPEED_66:
4823				hw->bus_speed = e1000_bus_speed_66;
4824				break;
4825			case E1000_STATUS_PCIX_SPEED_100:
4826				hw->bus_speed = e1000_bus_speed_100;
4827				break;
4828			case E1000_STATUS_PCIX_SPEED_133:
4829				hw->bus_speed = e1000_bus_speed_133;
4830				break;
4831			default:
4832				hw->bus_speed = e1000_bus_speed_reserved;
4833				break;
4834			}
4835		}
4836		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4837		    e1000_bus_width_64 : e1000_bus_width_32;
4838		break;
4839	}
4840}
4841
4842/**
4843 * e1000_write_reg_io
4844 * @hw: Struct containing variables accessed by shared code
4845 * @offset: offset to write to
4846 * @value: value to write
4847 *
4848 * Writes a value to one of the devices registers using port I/O (as opposed to
4849 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4850 */
4851static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4852{
4853	unsigned long io_addr = hw->io_base;
4854	unsigned long io_data = hw->io_base + 4;
4855
4856	e1000_io_write(hw, io_addr, offset);
4857	e1000_io_write(hw, io_data, value);
4858}
4859
4860/**
4861 * e1000_get_cable_length - Estimates the cable length.
4862 * @hw: Struct containing variables accessed by shared code
4863 * @min_length: The estimated minimum length
4864 * @max_length: The estimated maximum length
4865 *
4866 * returns: - E1000_ERR_XXX
4867 *            E1000_SUCCESS
4868 *
4869 * This function always returns a ranged length (minimum & maximum).
4870 * So for M88 phy's, this function interprets the one value returned from the
4871 * register to the minimum and maximum range.
4872 * For IGP phy's, the function calculates the range by the AGC registers.
4873 */
4874static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4875				  u16 *max_length)
4876{
4877	s32 ret_val;
4878	u16 agc_value = 0;
4879	u16 i, phy_data;
4880	u16 cable_length;
4881
4882	*min_length = *max_length = 0;
4883
4884	/* Use old method for Phy older than IGP */
4885	if (hw->phy_type == e1000_phy_m88) {
 
4886		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4887					     &phy_data);
4888		if (ret_val)
4889			return ret_val;
4890		cable_length = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
 
4891
4892		/* Convert the enum value to ranged values */
4893		switch (cable_length) {
4894		case e1000_cable_length_50:
4895			*min_length = 0;
4896			*max_length = e1000_igp_cable_length_50;
4897			break;
4898		case e1000_cable_length_50_80:
4899			*min_length = e1000_igp_cable_length_50;
4900			*max_length = e1000_igp_cable_length_80;
4901			break;
4902		case e1000_cable_length_80_110:
4903			*min_length = e1000_igp_cable_length_80;
4904			*max_length = e1000_igp_cable_length_110;
4905			break;
4906		case e1000_cable_length_110_140:
4907			*min_length = e1000_igp_cable_length_110;
4908			*max_length = e1000_igp_cable_length_140;
4909			break;
4910		case e1000_cable_length_140:
4911			*min_length = e1000_igp_cable_length_140;
4912			*max_length = e1000_igp_cable_length_170;
4913			break;
4914		default:
4915			return -E1000_ERR_PHY;
 
4916		}
4917	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4918		u16 cur_agc_value;
4919		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4920		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4921		       IGP01E1000_PHY_AGC_A,
4922		       IGP01E1000_PHY_AGC_B,
4923		       IGP01E1000_PHY_AGC_C,
4924		       IGP01E1000_PHY_AGC_D
4925		};
4926		/* Read the AGC registers for all channels */
4927		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
 
4928			ret_val =
4929			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4930			if (ret_val)
4931				return ret_val;
4932
4933			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4934
4935			/* Value bound check. */
4936			if ((cur_agc_value >=
4937			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4938			    (cur_agc_value == 0))
4939				return -E1000_ERR_PHY;
4940
4941			agc_value += cur_agc_value;
4942
4943			/* Update minimal AGC value. */
4944			if (min_agc_value > cur_agc_value)
4945				min_agc_value = cur_agc_value;
4946		}
4947
4948		/* Remove the minimal AGC result for length < 50m */
4949		if (agc_value <
4950		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4951			agc_value -= min_agc_value;
4952
4953			/* Get the average length of the remaining 3 channels */
4954			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4955		} else {
4956			/* Get the average length of all the 4 channels. */
4957			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4958		}
4959
4960		/* Set the range of the calculated length. */
4961		*min_length = ((e1000_igp_cable_length_table[agc_value] -
4962				IGP01E1000_AGC_RANGE) > 0) ?
4963		    (e1000_igp_cable_length_table[agc_value] -
4964		     IGP01E1000_AGC_RANGE) : 0;
4965		*max_length = e1000_igp_cable_length_table[agc_value] +
4966		    IGP01E1000_AGC_RANGE;
4967	}
4968
4969	return E1000_SUCCESS;
4970}
4971
4972/**
4973 * e1000_check_polarity - Check the cable polarity
4974 * @hw: Struct containing variables accessed by shared code
4975 * @polarity: output parameter : 0 - Polarity is not reversed
4976 *                               1 - Polarity is reversed.
4977 *
4978 * returns: - E1000_ERR_XXX
4979 *            E1000_SUCCESS
4980 *
4981 * For phy's older than IGP, this function simply reads the polarity bit in the
4982 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
4983 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
4984 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
4985 * IGP01E1000_PHY_PCS_INIT_REG.
4986 */
4987static s32 e1000_check_polarity(struct e1000_hw *hw,
4988				e1000_rev_polarity *polarity)
4989{
4990	s32 ret_val;
4991	u16 phy_data;
4992
4993	if (hw->phy_type == e1000_phy_m88) {
4994		/* return the Polarity bit in the Status register. */
4995		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4996					     &phy_data);
4997		if (ret_val)
4998			return ret_val;
4999		*polarity = FIELD_GET(M88E1000_PSSR_REV_POLARITY, phy_data) ?
 
5000		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5001
5002	} else if (hw->phy_type == e1000_phy_igp) {
5003		/* Read the Status register to check the speed */
5004		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5005					     &phy_data);
5006		if (ret_val)
5007			return ret_val;
5008
5009		/* If speed is 1000 Mbps, must read the
5010		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5011		 */
5012		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5013		    IGP01E1000_PSSR_SPEED_1000MBPS) {
 
5014			/* Read the GIG initialization PCS register (0x00B4) */
5015			ret_val =
5016			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5017					       &phy_data);
5018			if (ret_val)
5019				return ret_val;
5020
5021			/* Check the polarity bits */
5022			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5023			    e1000_rev_polarity_reversed :
5024			    e1000_rev_polarity_normal;
5025		} else {
5026			/* For 10 Mbps, read the polarity bit in the status
5027			 * register. (for 100 Mbps this bit is always 0)
5028			 */
5029			*polarity =
5030			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5031			    e1000_rev_polarity_reversed :
5032			    e1000_rev_polarity_normal;
5033		}
5034	}
5035	return E1000_SUCCESS;
5036}
5037
5038/**
5039 * e1000_check_downshift - Check if Downshift occurred
5040 * @hw: Struct containing variables accessed by shared code
 
 
5041 *
5042 * returns: - E1000_ERR_XXX
5043 *            E1000_SUCCESS
5044 *
5045 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5046 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5047 * Link Health register.  In IGP this bit is latched high, so the driver must
5048 * read it immediately after link is established.
5049 */
5050static s32 e1000_check_downshift(struct e1000_hw *hw)
5051{
5052	s32 ret_val;
5053	u16 phy_data;
5054
5055	if (hw->phy_type == e1000_phy_igp) {
5056		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5057					     &phy_data);
5058		if (ret_val)
5059			return ret_val;
5060
5061		hw->speed_downgraded =
5062		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5063	} else if (hw->phy_type == e1000_phy_m88) {
5064		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5065					     &phy_data);
5066		if (ret_val)
5067			return ret_val;
5068
5069		hw->speed_downgraded = FIELD_GET(M88E1000_PSSR_DOWNSHIFT,
5070						 phy_data);
5071	}
5072
5073	return E1000_SUCCESS;
5074}
5075
5076static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5077	IGP01E1000_PHY_AGC_PARAM_A,
5078	IGP01E1000_PHY_AGC_PARAM_B,
5079	IGP01E1000_PHY_AGC_PARAM_C,
5080	IGP01E1000_PHY_AGC_PARAM_D
5081};
5082
5083static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5084{
5085	u16 min_length, max_length;
5086	u16 phy_data, i;
5087	s32 ret_val;
5088
5089	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5090	if (ret_val)
5091		return ret_val;
5092
5093	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5094		return 0;
5095
5096	if (min_length >= e1000_igp_cable_length_50) {
5097		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5098			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5099						     &phy_data);
5100			if (ret_val)
5101				return ret_val;
5102
5103			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5104
5105			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5106						      phy_data);
5107			if (ret_val)
5108				return ret_val;
5109		}
5110		hw->dsp_config_state = e1000_dsp_config_activated;
5111	} else {
5112		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5113		u32 idle_errs = 0;
5114
5115		/* clear previous idle error counts */
5116		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5117		if (ret_val)
5118			return ret_val;
5119
5120		for (i = 0; i < ffe_idle_err_timeout; i++) {
5121			udelay(1000);
5122			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5123						     &phy_data);
5124			if (ret_val)
5125				return ret_val;
5126
5127			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5128			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5129				hw->ffe_config_state = e1000_ffe_config_active;
5130
5131				ret_val = e1000_write_phy_reg(hw,
5132							      IGP01E1000_PHY_DSP_FFE,
5133							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5134				if (ret_val)
5135					return ret_val;
5136				break;
5137			}
5138
5139			if (idle_errs)
5140				ffe_idle_err_timeout =
5141					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5142		}
5143	}
5144
5145	return 0;
5146}
5147
5148/**
5149 * e1000_config_dsp_after_link_change
5150 * @hw: Struct containing variables accessed by shared code
5151 * @link_up: was link up at the time this was called
5152 *
5153 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5154 *            E1000_SUCCESS at any other case.
5155 *
5156 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5157 * gigabit link is achieved to improve link quality.
5158 */
5159
5160static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5161{
5162	s32 ret_val;
5163	u16 phy_data, phy_saved_data, speed, duplex, i;
5164
5165	if (hw->phy_type != e1000_phy_igp)
5166		return E1000_SUCCESS;
5167
5168	if (link_up) {
5169		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5170		if (ret_val) {
5171			e_dbg("Error getting link speed and duplex\n");
5172			return ret_val;
5173		}
5174
5175		if (speed == SPEED_1000) {
5176			ret_val = e1000_1000Mb_check_cable_length(hw);
5177			if (ret_val)
5178				return ret_val;
5179		}
5180	} else {
5181		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5182			/* Save off the current value of register 0x2F5B to be
5183			 * restored at the end of the routines.
5184			 */
5185			ret_val =
5186			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5187
5188			if (ret_val)
5189				return ret_val;
5190
5191			/* Disable the PHY transmitter */
5192			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5193
5194			if (ret_val)
5195				return ret_val;
5196
5197			msleep(20);
5198
5199			ret_val = e1000_write_phy_reg(hw, 0x0000,
5200						      IGP01E1000_IEEE_FORCE_GIGA);
5201			if (ret_val)
5202				return ret_val;
5203			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5204				ret_val =
5205				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5206						       &phy_data);
5207				if (ret_val)
5208					return ret_val;
5209
5210				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5211				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5212
5213				ret_val =
5214				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5215							phy_data);
5216				if (ret_val)
5217					return ret_val;
5218			}
5219
5220			ret_val = e1000_write_phy_reg(hw, 0x0000,
5221						      IGP01E1000_IEEE_RESTART_AUTONEG);
5222			if (ret_val)
5223				return ret_val;
5224
5225			msleep(20);
5226
5227			/* Now enable the transmitter */
5228			ret_val =
5229			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5230
5231			if (ret_val)
5232				return ret_val;
5233
5234			hw->dsp_config_state = e1000_dsp_config_enabled;
5235		}
5236
5237		if (hw->ffe_config_state == e1000_ffe_config_active) {
5238			/* Save off the current value of register 0x2F5B to be
5239			 * restored at the end of the routines.
5240			 */
5241			ret_val =
5242			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5243
5244			if (ret_val)
5245				return ret_val;
5246
5247			/* Disable the PHY transmitter */
5248			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5249
5250			if (ret_val)
5251				return ret_val;
5252
5253			msleep(20);
5254
5255			ret_val = e1000_write_phy_reg(hw, 0x0000,
5256						      IGP01E1000_IEEE_FORCE_GIGA);
5257			if (ret_val)
5258				return ret_val;
5259			ret_val =
5260			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5261						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5262			if (ret_val)
5263				return ret_val;
5264
5265			ret_val = e1000_write_phy_reg(hw, 0x0000,
5266						      IGP01E1000_IEEE_RESTART_AUTONEG);
5267			if (ret_val)
5268				return ret_val;
5269
5270			msleep(20);
5271
5272			/* Now enable the transmitter */
5273			ret_val =
5274			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5275
5276			if (ret_val)
5277				return ret_val;
5278
5279			hw->ffe_config_state = e1000_ffe_config_enabled;
5280		}
5281	}
5282	return E1000_SUCCESS;
5283}
5284
5285/**
5286 * e1000_set_phy_mode - Set PHY to class A mode
5287 * @hw: Struct containing variables accessed by shared code
5288 *
5289 * Assumes the following operations will follow to enable the new class mode.
5290 *  1. Do a PHY soft reset
5291 *  2. Restart auto-negotiation or force link.
5292 */
5293static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5294{
5295	s32 ret_val;
5296	u16 eeprom_data;
5297
5298	if ((hw->mac_type == e1000_82545_rev_3) &&
5299	    (hw->media_type == e1000_media_type_copper)) {
5300		ret_val =
5301		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5302				      &eeprom_data);
5303		if (ret_val)
5304			return ret_val;
 
5305
5306		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5307		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5308			ret_val =
5309			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5310						0x000B);
5311			if (ret_val)
5312				return ret_val;
5313			ret_val =
5314			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5315						0x8104);
5316			if (ret_val)
5317				return ret_val;
5318
5319			hw->phy_reset_disable = false;
5320		}
5321	}
5322
5323	return E1000_SUCCESS;
5324}
5325
5326/**
5327 * e1000_set_d3_lplu_state - set d3 link power state
5328 * @hw: Struct containing variables accessed by shared code
5329 * @active: true to enable lplu false to disable lplu.
5330 *
5331 * This function sets the lplu state according to the active flag.  When
5332 * activating lplu this function also disables smart speed and vise versa.
5333 * lplu will not be activated unless the device autonegotiation advertisement
5334 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5335 *
5336 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5337 *            E1000_SUCCESS at any other case.
5338 */
5339static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5340{
5341	s32 ret_val;
5342	u16 phy_data;
5343
5344	if (hw->phy_type != e1000_phy_igp)
5345		return E1000_SUCCESS;
5346
5347	/* During driver activity LPLU should not be used or it will attain link
5348	 * from the lowest speeds starting from 10Mbps. The capability is used
5349	 * for Dx transitions and states
5350	 */
5351	if (hw->mac_type == e1000_82541_rev_2 ||
5352	    hw->mac_type == e1000_82547_rev_2) {
5353		ret_val =
5354		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5355		if (ret_val)
5356			return ret_val;
5357	}
5358
5359	if (!active) {
5360		if (hw->mac_type == e1000_82541_rev_2 ||
5361		    hw->mac_type == e1000_82547_rev_2) {
5362			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5363			ret_val =
5364			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5365						phy_data);
5366			if (ret_val)
5367				return ret_val;
5368		}
5369
5370		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5371		 * during Dx states where the power conservation is most
5372		 * important.  During driver activity we should enable
5373		 * SmartSpeed, so performance is maintained.
5374		 */
5375		if (hw->smart_speed == e1000_smart_speed_on) {
5376			ret_val =
5377			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5378					       &phy_data);
5379			if (ret_val)
5380				return ret_val;
5381
5382			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5383			ret_val =
5384			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5385						phy_data);
5386			if (ret_val)
5387				return ret_val;
5388		} else if (hw->smart_speed == e1000_smart_speed_off) {
5389			ret_val =
5390			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5391					       &phy_data);
5392			if (ret_val)
5393				return ret_val;
5394
5395			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5396			ret_val =
5397			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5398						phy_data);
5399			if (ret_val)
5400				return ret_val;
5401		}
5402	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5403		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5404		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
 
 
5405		if (hw->mac_type == e1000_82541_rev_2 ||
5406		    hw->mac_type == e1000_82547_rev_2) {
5407			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5408			ret_val =
5409			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5410						phy_data);
5411			if (ret_val)
5412				return ret_val;
5413		}
5414
5415		/* When LPLU is enabled we should disable SmartSpeed */
5416		ret_val =
5417		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5418				       &phy_data);
5419		if (ret_val)
5420			return ret_val;
5421
5422		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5423		ret_val =
5424		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5425					phy_data);
5426		if (ret_val)
5427			return ret_val;
 
5428	}
5429	return E1000_SUCCESS;
5430}
5431
5432/**
5433 * e1000_set_vco_speed
5434 * @hw: Struct containing variables accessed by shared code
5435 *
5436 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5437 */
5438static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5439{
5440	s32 ret_val;
5441	u16 default_page = 0;
5442	u16 phy_data;
5443
5444	switch (hw->mac_type) {
5445	case e1000_82545_rev_3:
5446	case e1000_82546_rev_3:
5447		break;
5448	default:
5449		return E1000_SUCCESS;
5450	}
5451
5452	/* Set PHY register 30, page 5, bit 8 to 0 */
5453
5454	ret_val =
5455	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5456	if (ret_val)
5457		return ret_val;
5458
5459	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5460	if (ret_val)
5461		return ret_val;
5462
5463	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5464	if (ret_val)
5465		return ret_val;
5466
5467	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5468	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5469	if (ret_val)
5470		return ret_val;
5471
5472	/* Set PHY register 30, page 4, bit 11 to 1 */
5473
5474	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5475	if (ret_val)
5476		return ret_val;
5477
5478	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5479	if (ret_val)
5480		return ret_val;
5481
5482	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5483	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5484	if (ret_val)
5485		return ret_val;
5486
5487	ret_val =
5488	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5489	if (ret_val)
5490		return ret_val;
5491
5492	return E1000_SUCCESS;
5493}
 
5494
5495/**
5496 * e1000_enable_mng_pass_thru - check for bmc pass through
5497 * @hw: Struct containing variables accessed by shared code
5498 *
5499 * Verifies the hardware needs to allow ARPs to be processed by the host
5500 * returns: - true/false
5501 */
5502u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5503{
5504	u32 manc;
5505
5506	if (hw->asf_firmware_present) {
5507		manc = er32(MANC);
5508
5509		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5510		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5511			return false;
5512		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5513			return true;
5514	}
5515	return false;
5516}
5517
5518static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5519{
5520	s32 ret_val;
5521	u16 mii_status_reg;
5522	u16 i;
5523
5524	/* Polarity reversal workaround for forced 10F/10H links. */
5525
5526	/* Disable the transmitter on the PHY */
5527
5528	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5529	if (ret_val)
5530		return ret_val;
5531	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5532	if (ret_val)
5533		return ret_val;
5534
5535	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5536	if (ret_val)
5537		return ret_val;
5538
5539	/* This loop will early-out if the NO link condition has been met. */
5540	for (i = PHY_FORCE_TIME; i > 0; i--) {
5541		/* Read the MII Status Register and wait for Link Status bit
5542		 * to be clear.
5543		 */
5544
5545		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5546		if (ret_val)
5547			return ret_val;
5548
5549		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5550		if (ret_val)
5551			return ret_val;
5552
5553		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5554			break;
5555		msleep(100);
5556	}
5557
5558	/* Recommended delay time after link has been lost */
5559	msleep(1000);
5560
5561	/* Now we will re-enable th transmitter on the PHY */
5562
5563	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5564	if (ret_val)
5565		return ret_val;
5566	msleep(50);
5567	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5568	if (ret_val)
5569		return ret_val;
5570	msleep(50);
5571	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5572	if (ret_val)
5573		return ret_val;
5574	msleep(50);
5575	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5576	if (ret_val)
5577		return ret_val;
5578
5579	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5580	if (ret_val)
5581		return ret_val;
5582
5583	/* This loop will early-out if the link condition has been met. */
5584	for (i = PHY_FORCE_TIME; i > 0; i--) {
5585		/* Read the MII Status Register and wait for Link Status bit
5586		 * to be set.
5587		 */
5588
5589		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5590		if (ret_val)
5591			return ret_val;
5592
5593		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5594		if (ret_val)
5595			return ret_val;
5596
5597		if (mii_status_reg & MII_SR_LINK_STATUS)
5598			break;
5599		msleep(100);
5600	}
5601	return E1000_SUCCESS;
5602}
5603
5604/**
5605 * e1000_get_auto_rd_done
5606 * @hw: Struct containing variables accessed by shared code
5607 *
5608 * Check for EEPROM Auto Read bit done.
5609 * returns: - E1000_ERR_RESET if fail to reset MAC
5610 *            E1000_SUCCESS at any other case.
5611 */
5612static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5613{
5614	msleep(5);
5615	return E1000_SUCCESS;
5616}
5617
5618/**
5619 * e1000_get_phy_cfg_done
5620 * @hw: Struct containing variables accessed by shared code
5621 *
5622 * Checks if the PHY configuration is done
5623 * returns: - E1000_ERR_RESET if fail to reset MAC
5624 *            E1000_SUCCESS at any other case.
5625 */
5626static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5627{
5628	msleep(10);
5629	return E1000_SUCCESS;
5630}
v3.15
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27 */
  28
  29/* e1000_hw.c
  30 * Shared functions for accessing and configuring the MAC
  31 */
  32
 
  33#include "e1000.h"
  34
  35static s32 e1000_check_downshift(struct e1000_hw *hw);
  36static s32 e1000_check_polarity(struct e1000_hw *hw,
  37				e1000_rev_polarity *polarity);
  38static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
  39static void e1000_clear_vfta(struct e1000_hw *hw);
  40static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
  41					      bool link_up);
  42static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
  43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
  44static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
  45static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
  46				  u16 *max_length);
  47static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  48static s32 e1000_id_led_init(struct e1000_hw *hw);
  49static void e1000_init_rx_addrs(struct e1000_hw *hw);
  50static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
  51				  struct e1000_phy_info *phy_info);
  52static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
  53				  struct e1000_phy_info *phy_info);
  54static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
  55static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
  57static s32 e1000_set_phy_type(struct e1000_hw *hw);
  58static void e1000_phy_init_script(struct e1000_hw *hw);
  59static s32 e1000_setup_copper_link(struct e1000_hw *hw);
  60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
  61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
  62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
  64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
  66static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
  67static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
  68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
  69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
  70				  u16 words, u16 *data);
  71static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
  72					u16 words, u16 *data);
  73static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
  74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
  75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
  76static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
  77static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  78				  u16 phy_data);
  79static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
  80				 u16 *phy_data);
  81static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
  82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
  83static void e1000_release_eeprom(struct e1000_hw *hw);
  84static void e1000_standby_eeprom(struct e1000_hw *hw);
  85static s32 e1000_set_vco_speed(struct e1000_hw *hw);
  86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
  87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
  88static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  89				u16 *data);
  90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
  91				 u16 *data);
  92
  93/* IGP cable length table */
  94static const
  95u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
  96	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
  98	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
  99	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
 100	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
 101	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 102	    100,
 103	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
 104	    110, 110,
 105	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
 106	    120, 120
 107};
 108
 109static DEFINE_SPINLOCK(e1000_eeprom_lock);
 110static DEFINE_SPINLOCK(e1000_phy_lock);
 111
 112/**
 113 * e1000_set_phy_type - Set the phy type member in the hw struct.
 114 * @hw: Struct containing variables accessed by shared code
 115 */
 116static s32 e1000_set_phy_type(struct e1000_hw *hw)
 117{
 118	if (hw->mac_type == e1000_undefined)
 119		return -E1000_ERR_PHY_TYPE;
 120
 121	switch (hw->phy_id) {
 122	case M88E1000_E_PHY_ID:
 123	case M88E1000_I_PHY_ID:
 124	case M88E1011_I_PHY_ID:
 125	case M88E1111_I_PHY_ID:
 126	case M88E1118_E_PHY_ID:
 127		hw->phy_type = e1000_phy_m88;
 128		break;
 129	case IGP01E1000_I_PHY_ID:
 130		if (hw->mac_type == e1000_82541 ||
 131		    hw->mac_type == e1000_82541_rev_2 ||
 132		    hw->mac_type == e1000_82547 ||
 133		    hw->mac_type == e1000_82547_rev_2)
 134			hw->phy_type = e1000_phy_igp;
 135		break;
 136	case RTL8211B_PHY_ID:
 137		hw->phy_type = e1000_phy_8211;
 138		break;
 139	case RTL8201N_PHY_ID:
 140		hw->phy_type = e1000_phy_8201;
 141		break;
 142	default:
 143		/* Should never have loaded on this device */
 144		hw->phy_type = e1000_phy_undefined;
 145		return -E1000_ERR_PHY_TYPE;
 146	}
 147
 148	return E1000_SUCCESS;
 149}
 150
 151/**
 152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
 153 * @hw: Struct containing variables accessed by shared code
 154 */
 155static void e1000_phy_init_script(struct e1000_hw *hw)
 156{
 157	u32 ret_val;
 158	u16 phy_saved_data;
 159
 160	if (hw->phy_init_script) {
 161		msleep(20);
 162
 163		/* Save off the current value of register 0x2F5B to be restored
 164		 * at the end of this routine.
 165		 */
 166		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 167
 168		/* Disabled the PHY transmitter */
 169		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 170		msleep(20);
 171
 172		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 173		msleep(5);
 174
 175		switch (hw->mac_type) {
 176		case e1000_82541:
 177		case e1000_82547:
 178			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 179			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 180			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 181			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 182			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 183			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 184			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 185			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 186			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 187			break;
 188
 189		case e1000_82541_rev_2:
 190		case e1000_82547_rev_2:
 191			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 192			break;
 193		default:
 194			break;
 195		}
 196
 197		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 198		msleep(20);
 199
 200		/* Now enable the transmitter */
 201		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 202
 203		if (hw->mac_type == e1000_82547) {
 204			u16 fused, fine, coarse;
 205
 206			/* Move to analog registers page */
 207			e1000_read_phy_reg(hw,
 208					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
 209					   &fused);
 210
 211			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 212				e1000_read_phy_reg(hw,
 213						   IGP01E1000_ANALOG_FUSE_STATUS,
 214						   &fused);
 215
 216				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 217				coarse =
 218				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 219
 220				if (coarse >
 221				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 222					coarse -=
 223					    IGP01E1000_ANALOG_FUSE_COARSE_10;
 224					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 225				} else if (coarse ==
 226					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 227					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 228
 229				fused =
 230				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 231				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 232				    (coarse &
 233				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 234
 235				e1000_write_phy_reg(hw,
 236						    IGP01E1000_ANALOG_FUSE_CONTROL,
 237						    fused);
 238				e1000_write_phy_reg(hw,
 239						    IGP01E1000_ANALOG_FUSE_BYPASS,
 240						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 241			}
 242		}
 243	}
 244}
 245
 246/**
 247 * e1000_set_mac_type - Set the mac type member in the hw struct.
 248 * @hw: Struct containing variables accessed by shared code
 249 */
 250s32 e1000_set_mac_type(struct e1000_hw *hw)
 251{
 252	switch (hw->device_id) {
 253	case E1000_DEV_ID_82542:
 254		switch (hw->revision_id) {
 255		case E1000_82542_2_0_REV_ID:
 256			hw->mac_type = e1000_82542_rev2_0;
 257			break;
 258		case E1000_82542_2_1_REV_ID:
 259			hw->mac_type = e1000_82542_rev2_1;
 260			break;
 261		default:
 262			/* Invalid 82542 revision ID */
 263			return -E1000_ERR_MAC_TYPE;
 264		}
 265		break;
 266	case E1000_DEV_ID_82543GC_FIBER:
 267	case E1000_DEV_ID_82543GC_COPPER:
 268		hw->mac_type = e1000_82543;
 269		break;
 270	case E1000_DEV_ID_82544EI_COPPER:
 271	case E1000_DEV_ID_82544EI_FIBER:
 272	case E1000_DEV_ID_82544GC_COPPER:
 273	case E1000_DEV_ID_82544GC_LOM:
 274		hw->mac_type = e1000_82544;
 275		break;
 276	case E1000_DEV_ID_82540EM:
 277	case E1000_DEV_ID_82540EM_LOM:
 278	case E1000_DEV_ID_82540EP:
 279	case E1000_DEV_ID_82540EP_LOM:
 280	case E1000_DEV_ID_82540EP_LP:
 281		hw->mac_type = e1000_82540;
 282		break;
 283	case E1000_DEV_ID_82545EM_COPPER:
 284	case E1000_DEV_ID_82545EM_FIBER:
 285		hw->mac_type = e1000_82545;
 286		break;
 287	case E1000_DEV_ID_82545GM_COPPER:
 288	case E1000_DEV_ID_82545GM_FIBER:
 289	case E1000_DEV_ID_82545GM_SERDES:
 290		hw->mac_type = e1000_82545_rev_3;
 291		break;
 292	case E1000_DEV_ID_82546EB_COPPER:
 293	case E1000_DEV_ID_82546EB_FIBER:
 294	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 295		hw->mac_type = e1000_82546;
 296		break;
 297	case E1000_DEV_ID_82546GB_COPPER:
 298	case E1000_DEV_ID_82546GB_FIBER:
 299	case E1000_DEV_ID_82546GB_SERDES:
 300	case E1000_DEV_ID_82546GB_PCIE:
 301	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 302	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 303		hw->mac_type = e1000_82546_rev_3;
 304		break;
 305	case E1000_DEV_ID_82541EI:
 306	case E1000_DEV_ID_82541EI_MOBILE:
 307	case E1000_DEV_ID_82541ER_LOM:
 308		hw->mac_type = e1000_82541;
 309		break;
 310	case E1000_DEV_ID_82541ER:
 311	case E1000_DEV_ID_82541GI:
 312	case E1000_DEV_ID_82541GI_LF:
 313	case E1000_DEV_ID_82541GI_MOBILE:
 314		hw->mac_type = e1000_82541_rev_2;
 315		break;
 316	case E1000_DEV_ID_82547EI:
 317	case E1000_DEV_ID_82547EI_MOBILE:
 318		hw->mac_type = e1000_82547;
 319		break;
 320	case E1000_DEV_ID_82547GI:
 321		hw->mac_type = e1000_82547_rev_2;
 322		break;
 323	case E1000_DEV_ID_INTEL_CE4100_GBE:
 324		hw->mac_type = e1000_ce4100;
 325		break;
 326	default:
 327		/* Should never have loaded on this device */
 328		return -E1000_ERR_MAC_TYPE;
 329	}
 330
 331	switch (hw->mac_type) {
 332	case e1000_82541:
 333	case e1000_82547:
 334	case e1000_82541_rev_2:
 335	case e1000_82547_rev_2:
 336		hw->asf_firmware_present = true;
 337		break;
 338	default:
 339		break;
 340	}
 341
 342	/* The 82543 chip does not count tx_carrier_errors properly in
 343	 * FD mode
 344	 */
 345	if (hw->mac_type == e1000_82543)
 346		hw->bad_tx_carr_stats_fd = true;
 347
 348	if (hw->mac_type > e1000_82544)
 349		hw->has_smbus = true;
 350
 351	return E1000_SUCCESS;
 352}
 353
 354/**
 355 * e1000_set_media_type - Set media type and TBI compatibility.
 356 * @hw: Struct containing variables accessed by shared code
 357 */
 358void e1000_set_media_type(struct e1000_hw *hw)
 359{
 360	u32 status;
 361
 362	if (hw->mac_type != e1000_82543) {
 363		/* tbi_compatibility is only valid on 82543 */
 364		hw->tbi_compatibility_en = false;
 365	}
 366
 367	switch (hw->device_id) {
 368	case E1000_DEV_ID_82545GM_SERDES:
 369	case E1000_DEV_ID_82546GB_SERDES:
 370		hw->media_type = e1000_media_type_internal_serdes;
 371		break;
 372	default:
 373		switch (hw->mac_type) {
 374		case e1000_82542_rev2_0:
 375		case e1000_82542_rev2_1:
 376			hw->media_type = e1000_media_type_fiber;
 377			break;
 378		case e1000_ce4100:
 379			hw->media_type = e1000_media_type_copper;
 380			break;
 381		default:
 382			status = er32(STATUS);
 383			if (status & E1000_STATUS_TBIMODE) {
 384				hw->media_type = e1000_media_type_fiber;
 385				/* tbi_compatibility not valid on fiber */
 386				hw->tbi_compatibility_en = false;
 387			} else {
 388				hw->media_type = e1000_media_type_copper;
 389			}
 390			break;
 391		}
 392	}
 393}
 394
 395/**
 396 * e1000_reset_hw - reset the hardware completely
 397 * @hw: Struct containing variables accessed by shared code
 398 *
 399 * Reset the transmit and receive units; mask and clear all interrupts.
 400 */
 401s32 e1000_reset_hw(struct e1000_hw *hw)
 402{
 403	u32 ctrl;
 404	u32 ctrl_ext;
 405	u32 icr;
 406	u32 manc;
 407	u32 led_ctrl;
 408	s32 ret_val;
 409
 410	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 411	if (hw->mac_type == e1000_82542_rev2_0) {
 412		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 413		e1000_pci_clear_mwi(hw);
 414	}
 415
 416	/* Clear interrupt mask to stop board from generating interrupts */
 417	e_dbg("Masking off all interrupts\n");
 418	ew32(IMC, 0xffffffff);
 419
 420	/* Disable the Transmit and Receive units.  Then delay to allow
 421	 * any pending transactions to complete before we hit the MAC with
 422	 * the global reset.
 423	 */
 424	ew32(RCTL, 0);
 425	ew32(TCTL, E1000_TCTL_PSP);
 426	E1000_WRITE_FLUSH();
 427
 428	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 429	hw->tbi_compatibility_on = false;
 430
 431	/* Delay to allow any outstanding PCI transactions to complete before
 432	 * resetting the device
 433	 */
 434	msleep(10);
 435
 436	ctrl = er32(CTRL);
 437
 438	/* Must reset the PHY before resetting the MAC */
 439	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 440		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
 441		E1000_WRITE_FLUSH();
 442		msleep(5);
 443	}
 444
 445	/* Issue a global reset to the MAC.  This will reset the chip's
 446	 * transmit, receive, DMA, and link units.  It will not effect
 447	 * the current PCI configuration.  The global reset bit is self-
 448	 * clearing, and should clear within a microsecond.
 449	 */
 450	e_dbg("Issuing a global reset to MAC\n");
 451
 452	switch (hw->mac_type) {
 453	case e1000_82544:
 454	case e1000_82540:
 455	case e1000_82545:
 456	case e1000_82546:
 457	case e1000_82541:
 458	case e1000_82541_rev_2:
 459		/* These controllers can't ack the 64-bit write when issuing the
 460		 * reset, so use IO-mapping as a workaround to issue the reset
 461		 */
 462		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
 463		break;
 464	case e1000_82545_rev_3:
 465	case e1000_82546_rev_3:
 466		/* Reset is performed on a shadow of the control register */
 467		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
 468		break;
 469	case e1000_ce4100:
 470	default:
 471		ew32(CTRL, (ctrl | E1000_CTRL_RST));
 472		break;
 473	}
 474
 475	/* After MAC reset, force reload of EEPROM to restore power-on settings
 476	 * to device.  Later controllers reload the EEPROM automatically, so
 477	 * just wait for reload to complete.
 478	 */
 479	switch (hw->mac_type) {
 480	case e1000_82542_rev2_0:
 481	case e1000_82542_rev2_1:
 482	case e1000_82543:
 483	case e1000_82544:
 484		/* Wait for reset to complete */
 485		udelay(10);
 486		ctrl_ext = er32(CTRL_EXT);
 487		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 488		ew32(CTRL_EXT, ctrl_ext);
 489		E1000_WRITE_FLUSH();
 490		/* Wait for EEPROM reload */
 491		msleep(2);
 492		break;
 493	case e1000_82541:
 494	case e1000_82541_rev_2:
 495	case e1000_82547:
 496	case e1000_82547_rev_2:
 497		/* Wait for EEPROM reload */
 498		msleep(20);
 499		break;
 500	default:
 501		/* Auto read done will delay 5ms or poll based on mac type */
 502		ret_val = e1000_get_auto_rd_done(hw);
 503		if (ret_val)
 504			return ret_val;
 505		break;
 506	}
 507
 508	/* Disable HW ARPs on ASF enabled adapters */
 509	if (hw->mac_type >= e1000_82540) {
 510		manc = er32(MANC);
 511		manc &= ~(E1000_MANC_ARP_EN);
 512		ew32(MANC, manc);
 513	}
 514
 515	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 516		e1000_phy_init_script(hw);
 517
 518		/* Configure activity LED after PHY reset */
 519		led_ctrl = er32(LEDCTL);
 520		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 521		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 522		ew32(LEDCTL, led_ctrl);
 523	}
 524
 525	/* Clear interrupt mask to stop board from generating interrupts */
 526	e_dbg("Masking off all interrupts\n");
 527	ew32(IMC, 0xffffffff);
 528
 529	/* Clear any pending interrupt events. */
 530	icr = er32(ICR);
 531
 532	/* If MWI was previously enabled, reenable it. */
 533	if (hw->mac_type == e1000_82542_rev2_0) {
 534		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 535			e1000_pci_set_mwi(hw);
 536	}
 537
 538	return E1000_SUCCESS;
 539}
 540
 541/**
 542 * e1000_init_hw - Performs basic configuration of the adapter.
 543 * @hw: Struct containing variables accessed by shared code
 544 *
 545 * Assumes that the controller has previously been reset and is in a
 546 * post-reset uninitialized state. Initializes the receive address registers,
 547 * multicast table, and VLAN filter table. Calls routines to setup link
 548 * configuration and flow control settings. Clears all on-chip counters. Leaves
 549 * the transmit and receive units disabled and uninitialized.
 550 */
 551s32 e1000_init_hw(struct e1000_hw *hw)
 552{
 553	u32 ctrl;
 554	u32 i;
 555	s32 ret_val;
 556	u32 mta_size;
 557	u32 ctrl_ext;
 558
 559	/* Initialize Identification LED */
 560	ret_val = e1000_id_led_init(hw);
 561	if (ret_val) {
 562		e_dbg("Error Initializing Identification LED\n");
 563		return ret_val;
 564	}
 565
 566	/* Set the media type and TBI compatibility */
 567	e1000_set_media_type(hw);
 568
 569	/* Disabling VLAN filtering. */
 570	e_dbg("Initializing the IEEE VLAN\n");
 571	if (hw->mac_type < e1000_82545_rev_3)
 572		ew32(VET, 0);
 573	e1000_clear_vfta(hw);
 574
 575	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 576	if (hw->mac_type == e1000_82542_rev2_0) {
 577		e_dbg("Disabling MWI on 82542 rev 2.0\n");
 578		e1000_pci_clear_mwi(hw);
 579		ew32(RCTL, E1000_RCTL_RST);
 580		E1000_WRITE_FLUSH();
 581		msleep(5);
 582	}
 583
 584	/* Setup the receive address. This involves initializing all of the
 585	 * Receive Address Registers (RARs 0 - 15).
 586	 */
 587	e1000_init_rx_addrs(hw);
 588
 589	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 590	if (hw->mac_type == e1000_82542_rev2_0) {
 591		ew32(RCTL, 0);
 592		E1000_WRITE_FLUSH();
 593		msleep(1);
 594		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 595			e1000_pci_set_mwi(hw);
 596	}
 597
 598	/* Zero out the Multicast HASH table */
 599	e_dbg("Zeroing the MTA\n");
 600	mta_size = E1000_MC_TBL_SIZE;
 601	for (i = 0; i < mta_size; i++) {
 602		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 603		/* use write flush to prevent Memory Write Block (MWB) from
 604		 * occurring when accessing our register space
 605		 */
 606		E1000_WRITE_FLUSH();
 607	}
 608
 609	/* Set the PCI priority bit correctly in the CTRL register.  This
 610	 * determines if the adapter gives priority to receives, or if it
 611	 * gives equal priority to transmits and receives.  Valid only on
 612	 * 82542 and 82543 silicon.
 613	 */
 614	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
 615		ctrl = er32(CTRL);
 616		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
 617	}
 618
 619	switch (hw->mac_type) {
 620	case e1000_82545_rev_3:
 621	case e1000_82546_rev_3:
 622		break;
 623	default:
 624		/* Workaround for PCI-X problem when BIOS sets MMRBC
 625		 * incorrectly.
 626		 */
 627		if (hw->bus_type == e1000_bus_type_pcix
 628		    && e1000_pcix_get_mmrbc(hw) > 2048)
 629			e1000_pcix_set_mmrbc(hw, 2048);
 630		break;
 631	}
 632
 633	/* Call a subroutine to configure the link and setup flow control. */
 634	ret_val = e1000_setup_link(hw);
 635
 636	/* Set the transmit descriptor write-back policy */
 637	if (hw->mac_type > e1000_82544) {
 638		ctrl = er32(TXDCTL);
 639		ctrl =
 640		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 641		    E1000_TXDCTL_FULL_TX_DESC_WB;
 642		ew32(TXDCTL, ctrl);
 643	}
 644
 645	/* Clear all of the statistics registers (clear on read).  It is
 646	 * important that we do this after we have tried to establish link
 647	 * because the symbol error count will increment wildly if there
 648	 * is no link.
 649	 */
 650	e1000_clear_hw_cntrs(hw);
 651
 652	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 653	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 654		ctrl_ext = er32(CTRL_EXT);
 655		/* Relaxed ordering must be disabled to avoid a parity
 656		 * error crash in a PCI slot.
 657		 */
 658		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 659		ew32(CTRL_EXT, ctrl_ext);
 660	}
 661
 662	return ret_val;
 663}
 664
 665/**
 666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
 667 * @hw: Struct containing variables accessed by shared code.
 668 */
 669static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 670{
 671	u16 eeprom_data;
 672	s32 ret_val;
 673
 674	if (hw->media_type != e1000_media_type_internal_serdes)
 675		return E1000_SUCCESS;
 676
 677	switch (hw->mac_type) {
 678	case e1000_82545_rev_3:
 679	case e1000_82546_rev_3:
 680		break;
 681	default:
 682		return E1000_SUCCESS;
 683	}
 684
 685	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
 686	                            &eeprom_data);
 687	if (ret_val) {
 688		return ret_val;
 689	}
 690
 691	if (eeprom_data != EEPROM_RESERVED_WORD) {
 692		/* Adjust SERDES output amplitude only. */
 693		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
 694		ret_val =
 695		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
 696		if (ret_val)
 697			return ret_val;
 698	}
 699
 700	return E1000_SUCCESS;
 701}
 702
 703/**
 704 * e1000_setup_link - Configures flow control and link settings.
 705 * @hw: Struct containing variables accessed by shared code
 706 *
 707 * Determines which flow control settings to use. Calls the appropriate media-
 708 * specific link configuration function. Configures the flow control settings.
 709 * Assuming the adapter has a valid link partner, a valid link should be
 710 * established. Assumes the hardware has previously been reset and the
 711 * transmitter and receiver are not enabled.
 712 */
 713s32 e1000_setup_link(struct e1000_hw *hw)
 714{
 715	u32 ctrl_ext;
 716	s32 ret_val;
 717	u16 eeprom_data;
 718
 719	/* Read and store word 0x0F of the EEPROM. This word contains bits
 720	 * that determine the hardware's default PAUSE (flow control) mode,
 721	 * a bit that determines whether the HW defaults to enabling or
 722	 * disabling auto-negotiation, and the direction of the
 723	 * SW defined pins. If there is no SW over-ride of the flow
 724	 * control setting, then the variable hw->fc will
 725	 * be initialized based on a value in the EEPROM.
 726	 */
 727	if (hw->fc == E1000_FC_DEFAULT) {
 728		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 729					    1, &eeprom_data);
 730		if (ret_val) {
 731			e_dbg("EEPROM Read Error\n");
 732			return -E1000_ERR_EEPROM;
 733		}
 734		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 735			hw->fc = E1000_FC_NONE;
 736		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 737			 EEPROM_WORD0F_ASM_DIR)
 738			hw->fc = E1000_FC_TX_PAUSE;
 739		else
 740			hw->fc = E1000_FC_FULL;
 741	}
 742
 743	/* We want to save off the original Flow Control configuration just
 744	 * in case we get disconnected and then reconnected into a different
 745	 * hub or switch with different Flow Control capabilities.
 746	 */
 747	if (hw->mac_type == e1000_82542_rev2_0)
 748		hw->fc &= (~E1000_FC_TX_PAUSE);
 749
 750	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 751		hw->fc &= (~E1000_FC_RX_PAUSE);
 752
 753	hw->original_fc = hw->fc;
 754
 755	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
 756
 757	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 758	 * polarity value for the SW controlled pins, and setup the
 759	 * Extended Device Control reg with that info.
 760	 * This is needed because one of the SW controlled pins is used for
 761	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 762	 * or e1000_phy_setup() is called.
 763	 */
 764	if (hw->mac_type == e1000_82543) {
 765		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
 766					    1, &eeprom_data);
 767		if (ret_val) {
 768			e_dbg("EEPROM Read Error\n");
 769			return -E1000_ERR_EEPROM;
 770		}
 771		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 772			    SWDPIO__EXT_SHIFT);
 773		ew32(CTRL_EXT, ctrl_ext);
 774	}
 775
 776	/* Call the necessary subroutine to configure the link. */
 777	ret_val = (hw->media_type == e1000_media_type_copper) ?
 778	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 779
 780	/* Initialize the flow control address, type, and PAUSE timer
 781	 * registers to their default values.  This is done even if flow
 782	 * control is disabled, because it does not hurt anything to
 783	 * initialize these registers.
 784	 */
 785	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 786
 787	ew32(FCT, FLOW_CONTROL_TYPE);
 788	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 789	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 790
 791	ew32(FCTTV, hw->fc_pause_time);
 792
 793	/* Set the flow control receive threshold registers.  Normally,
 794	 * these registers will be set to a default threshold that may be
 795	 * adjusted later by the driver's runtime code.  However, if the
 796	 * ability to transmit pause frames in not enabled, then these
 797	 * registers will be set to 0.
 798	 */
 799	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
 800		ew32(FCRTL, 0);
 801		ew32(FCRTH, 0);
 802	} else {
 803		/* We need to set up the Receive Threshold high and low water
 804		 * marks as well as (optionally) enabling the transmission of
 805		 * XON frames.
 806		 */
 807		if (hw->fc_send_xon) {
 808			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
 809			ew32(FCRTH, hw->fc_high_water);
 810		} else {
 811			ew32(FCRTL, hw->fc_low_water);
 812			ew32(FCRTH, hw->fc_high_water);
 813		}
 814	}
 815	return ret_val;
 816}
 817
 818/**
 819 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
 820 * @hw: Struct containing variables accessed by shared code
 821 *
 822 * Manipulates Physical Coding Sublayer functions in order to configure
 823 * link. Assumes the hardware has been previously reset and the transmitter
 824 * and receiver are not enabled.
 825 */
 826static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 827{
 828	u32 ctrl;
 829	u32 status;
 830	u32 txcw = 0;
 831	u32 i;
 832	u32 signal = 0;
 833	s32 ret_val;
 834
 835	/* On adapters with a MAC newer than 82544, SWDP 1 will be
 836	 * set when the optics detect a signal. On older adapters, it will be
 837	 * cleared when there is a signal.  This applies to fiber media only.
 838	 * If we're on serdes media, adjust the output amplitude to value
 839	 * set in the EEPROM.
 840	 */
 841	ctrl = er32(CTRL);
 842	if (hw->media_type == e1000_media_type_fiber)
 843		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
 844
 845	ret_val = e1000_adjust_serdes_amplitude(hw);
 846	if (ret_val)
 847		return ret_val;
 848
 849	/* Take the link out of reset */
 850	ctrl &= ~(E1000_CTRL_LRST);
 851
 852	/* Adjust VCO speed to improve BER performance */
 853	ret_val = e1000_set_vco_speed(hw);
 854	if (ret_val)
 855		return ret_val;
 856
 857	e1000_config_collision_dist(hw);
 858
 859	/* Check for a software override of the flow control settings, and setup
 860	 * the device accordingly.  If auto-negotiation is enabled, then
 861	 * software will have to set the "PAUSE" bits to the correct value in
 862	 * the Tranmsit Config Word Register (TXCW) and re-start
 863	 * auto-negotiation.  However, if auto-negotiation is disabled, then
 864	 * software will have to manually configure the two flow control enable
 865	 * bits in the CTRL register.
 866	 *
 867	 * The possible values of the "fc" parameter are:
 868	 *  0:  Flow control is completely disabled
 869	 *  1:  Rx flow control is enabled (we can receive pause frames, but
 870	 *      not send pause frames).
 871	 *  2:  Tx flow control is enabled (we can send pause frames but we do
 872	 *      not support receiving pause frames).
 873	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
 874	 */
 875	switch (hw->fc) {
 876	case E1000_FC_NONE:
 877		/* Flow ctrl is completely disabled by a software over-ride */
 878		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 879		break;
 880	case E1000_FC_RX_PAUSE:
 881		/* Rx Flow control is enabled and Tx Flow control is disabled by
 882		 * a software over-ride. Since there really isn't a way to
 883		 * advertise that we are capable of Rx Pause ONLY, we will
 884		 * advertise that we support both symmetric and asymmetric Rx
 885		 * PAUSE. Later, we will disable the adapter's ability to send
 886		 * PAUSE frames.
 887		 */
 888		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 889		break;
 890	case E1000_FC_TX_PAUSE:
 891		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 892		 * by a software over-ride.
 893		 */
 894		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 895		break;
 896	case E1000_FC_FULL:
 897		/* Flow control (both Rx and Tx) is enabled by a software
 898		 * over-ride.
 899		 */
 900		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 901		break;
 902	default:
 903		e_dbg("Flow control param set incorrectly\n");
 904		return -E1000_ERR_CONFIG;
 905		break;
 906	}
 907
 908	/* Since auto-negotiation is enabled, take the link out of reset (the
 909	 * link will be in reset, because we previously reset the chip). This
 910	 * will restart auto-negotiation.  If auto-negotiation is successful
 911	 * then the link-up status bit will be set and the flow control enable
 912	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 913	 */
 914	e_dbg("Auto-negotiation enabled\n");
 915
 916	ew32(TXCW, txcw);
 917	ew32(CTRL, ctrl);
 918	E1000_WRITE_FLUSH();
 919
 920	hw->txcw = txcw;
 921	msleep(1);
 922
 923	/* If we have a signal (the cable is plugged in) then poll for a
 924	 * "Link-Up" indication in the Device Status Register.  Time-out if a
 925	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
 926	 * complete in less than 500 milliseconds even if the other end is doing
 927	 * it in SW). For internal serdes, we just assume a signal is present,
 928	 * then poll.
 929	 */
 930	if (hw->media_type == e1000_media_type_internal_serdes ||
 931	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 932		e_dbg("Looking for Link\n");
 933		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 934			msleep(10);
 935			status = er32(STATUS);
 936			if (status & E1000_STATUS_LU)
 937				break;
 938		}
 939		if (i == (LINK_UP_TIMEOUT / 10)) {
 940			e_dbg("Never got a valid link from auto-neg!!!\n");
 941			hw->autoneg_failed = 1;
 942			/* AutoNeg failed to achieve a link, so we'll call
 943			 * e1000_check_for_link. This routine will force the
 944			 * link up if we detect a signal. This will allow us to
 945			 * communicate with non-autonegotiating link partners.
 946			 */
 947			ret_val = e1000_check_for_link(hw);
 948			if (ret_val) {
 949				e_dbg("Error while checking for link\n");
 950				return ret_val;
 951			}
 952			hw->autoneg_failed = 0;
 953		} else {
 954			hw->autoneg_failed = 0;
 955			e_dbg("Valid Link Found\n");
 956		}
 957	} else {
 958		e_dbg("No Signal Detected\n");
 959	}
 960	return E1000_SUCCESS;
 961}
 962
 963/**
 964 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
 965 * @hw: Struct containing variables accessed by shared code
 966 *
 967 * Commits changes to PHY configuration by calling e1000_phy_reset().
 968 */
 969static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
 970{
 971	s32 ret_val;
 972
 973	/* SW reset the PHY so all changes take effect */
 974	ret_val = e1000_phy_reset(hw);
 975	if (ret_val) {
 976		e_dbg("Error Resetting the PHY\n");
 977		return ret_val;
 978	}
 979
 980	return E1000_SUCCESS;
 981}
 982
 983static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
 984{
 985	s32 ret_val;
 986	u32 ctrl_aux;
 987
 988	switch (hw->phy_type) {
 989	case e1000_phy_8211:
 990		ret_val = e1000_copper_link_rtl_setup(hw);
 991		if (ret_val) {
 992			e_dbg("e1000_copper_link_rtl_setup failed!\n");
 993			return ret_val;
 994		}
 995		break;
 996	case e1000_phy_8201:
 997		/* Set RMII mode */
 998		ctrl_aux = er32(CTL_AUX);
 999		ctrl_aux |= E1000_CTL_AUX_RMII;
1000		ew32(CTL_AUX, ctrl_aux);
1001		E1000_WRITE_FLUSH();
1002
1003		/* Disable the J/K bits required for receive */
1004		ctrl_aux = er32(CTL_AUX);
1005		ctrl_aux |= 0x4;
1006		ctrl_aux &= ~0x2;
1007		ew32(CTL_AUX, ctrl_aux);
1008		E1000_WRITE_FLUSH();
1009		ret_val = e1000_copper_link_rtl_setup(hw);
1010
1011		if (ret_val) {
1012			e_dbg("e1000_copper_link_rtl_setup failed!\n");
1013			return ret_val;
1014		}
1015		break;
1016	default:
1017		e_dbg("Error Resetting the PHY\n");
1018		return E1000_ERR_PHY_TYPE;
1019	}
1020
1021	return E1000_SUCCESS;
1022}
1023
1024/**
1025 * e1000_copper_link_preconfig - early configuration for copper
1026 * @hw: Struct containing variables accessed by shared code
1027 *
1028 * Make sure we have a valid PHY and change PHY mode before link setup.
1029 */
1030static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1031{
1032	u32 ctrl;
1033	s32 ret_val;
1034	u16 phy_data;
1035
1036	ctrl = er32(CTRL);
1037	/* With 82543, we need to force speed and duplex on the MAC equal to
1038	 * what the PHY speed and duplex configuration is. In addition, we need
1039	 * to perform a hardware reset on the PHY to take it out of reset.
1040	 */
1041	if (hw->mac_type > e1000_82543) {
1042		ctrl |= E1000_CTRL_SLU;
1043		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1044		ew32(CTRL, ctrl);
1045	} else {
1046		ctrl |=
1047		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1048		ew32(CTRL, ctrl);
1049		ret_val = e1000_phy_hw_reset(hw);
1050		if (ret_val)
1051			return ret_val;
1052	}
1053
1054	/* Make sure we have a valid PHY */
1055	ret_val = e1000_detect_gig_phy(hw);
1056	if (ret_val) {
1057		e_dbg("Error, did not detect valid phy.\n");
1058		return ret_val;
1059	}
1060	e_dbg("Phy ID = %x\n", hw->phy_id);
1061
1062	/* Set PHY to class A mode (if necessary) */
1063	ret_val = e1000_set_phy_mode(hw);
1064	if (ret_val)
1065		return ret_val;
1066
1067	if ((hw->mac_type == e1000_82545_rev_3) ||
1068	    (hw->mac_type == e1000_82546_rev_3)) {
1069		ret_val =
1070		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1071		phy_data |= 0x00000008;
1072		ret_val =
1073		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1074	}
1075
1076	if (hw->mac_type <= e1000_82543 ||
1077	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1078	    hw->mac_type == e1000_82541_rev_2
1079	    || hw->mac_type == e1000_82547_rev_2)
1080		hw->phy_reset_disable = false;
1081
1082	return E1000_SUCCESS;
1083}
1084
1085/**
1086 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1087 * @hw: Struct containing variables accessed by shared code
1088 */
1089static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1090{
1091	u32 led_ctrl;
1092	s32 ret_val;
1093	u16 phy_data;
1094
1095	if (hw->phy_reset_disable)
1096		return E1000_SUCCESS;
1097
1098	ret_val = e1000_phy_reset(hw);
1099	if (ret_val) {
1100		e_dbg("Error Resetting the PHY\n");
1101		return ret_val;
1102	}
1103
1104	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1105	msleep(15);
1106	/* Configure activity LED after PHY reset */
1107	led_ctrl = er32(LEDCTL);
1108	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1109	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1110	ew32(LEDCTL, led_ctrl);
1111
1112	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1113	if (hw->phy_type == e1000_phy_igp) {
1114		/* disable lplu d3 during driver init */
1115		ret_val = e1000_set_d3_lplu_state(hw, false);
1116		if (ret_val) {
1117			e_dbg("Error Disabling LPLU D3\n");
1118			return ret_val;
1119		}
1120	}
1121
1122	/* Configure mdi-mdix settings */
1123	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1124	if (ret_val)
1125		return ret_val;
1126
1127	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1128		hw->dsp_config_state = e1000_dsp_config_disabled;
1129		/* Force MDI for earlier revs of the IGP PHY */
1130		phy_data &=
1131		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1132		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1133		hw->mdix = 1;
1134
1135	} else {
1136		hw->dsp_config_state = e1000_dsp_config_enabled;
1137		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1138
1139		switch (hw->mdix) {
1140		case 1:
1141			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1142			break;
1143		case 2:
1144			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1145			break;
1146		case 0:
1147		default:
1148			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1149			break;
1150		}
1151	}
1152	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1153	if (ret_val)
1154		return ret_val;
1155
1156	/* set auto-master slave resolution settings */
1157	if (hw->autoneg) {
1158		e1000_ms_type phy_ms_setting = hw->master_slave;
1159
1160		if (hw->ffe_config_state == e1000_ffe_config_active)
1161			hw->ffe_config_state = e1000_ffe_config_enabled;
1162
1163		if (hw->dsp_config_state == e1000_dsp_config_activated)
1164			hw->dsp_config_state = e1000_dsp_config_enabled;
1165
1166		/* when autonegotiation advertisement is only 1000Mbps then we
1167		 * should disable SmartSpeed and enable Auto MasterSlave
1168		 * resolution as hardware default.
1169		 */
1170		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1171			/* Disable SmartSpeed */
1172			ret_val =
1173			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1174					       &phy_data);
1175			if (ret_val)
1176				return ret_val;
1177			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1178			ret_val =
1179			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1180						phy_data);
1181			if (ret_val)
1182				return ret_val;
1183			/* Set auto Master/Slave resolution process */
1184			ret_val =
1185			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1186			if (ret_val)
1187				return ret_val;
1188			phy_data &= ~CR_1000T_MS_ENABLE;
1189			ret_val =
1190			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1191			if (ret_val)
1192				return ret_val;
1193		}
1194
1195		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1196		if (ret_val)
1197			return ret_val;
1198
1199		/* load defaults for future use */
1200		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1201		    ((phy_data & CR_1000T_MS_VALUE) ?
1202		     e1000_ms_force_master :
1203		     e1000_ms_force_slave) : e1000_ms_auto;
1204
1205		switch (phy_ms_setting) {
1206		case e1000_ms_force_master:
1207			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1208			break;
1209		case e1000_ms_force_slave:
1210			phy_data |= CR_1000T_MS_ENABLE;
1211			phy_data &= ~(CR_1000T_MS_VALUE);
1212			break;
1213		case e1000_ms_auto:
1214			phy_data &= ~CR_1000T_MS_ENABLE;
 
1215		default:
1216			break;
1217		}
1218		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1219		if (ret_val)
1220			return ret_val;
1221	}
1222
1223	return E1000_SUCCESS;
1224}
1225
1226/**
1227 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1228 * @hw: Struct containing variables accessed by shared code
1229 */
1230static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1231{
1232	s32 ret_val;
1233	u16 phy_data;
1234
1235	if (hw->phy_reset_disable)
1236		return E1000_SUCCESS;
1237
1238	/* Enable CRS on TX. This must be set for half-duplex operation. */
1239	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1240	if (ret_val)
1241		return ret_val;
1242
1243	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1244
1245	/* Options:
1246	 *   MDI/MDI-X = 0 (default)
1247	 *   0 - Auto for all speeds
1248	 *   1 - MDI mode
1249	 *   2 - MDI-X mode
1250	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1251	 */
1252	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1253
1254	switch (hw->mdix) {
1255	case 1:
1256		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1257		break;
1258	case 2:
1259		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1260		break;
1261	case 3:
1262		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1263		break;
1264	case 0:
1265	default:
1266		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1267		break;
1268	}
1269
1270	/* Options:
1271	 *   disable_polarity_correction = 0 (default)
1272	 *       Automatic Correction for Reversed Cable Polarity
1273	 *   0 - Disabled
1274	 *   1 - Enabled
1275	 */
1276	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1277	if (hw->disable_polarity_correction == 1)
1278		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1279	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1280	if (ret_val)
1281		return ret_val;
1282
1283	if (hw->phy_revision < M88E1011_I_REV_4) {
1284		/* Force TX_CLK in the Extended PHY Specific Control Register
1285		 * to 25MHz clock.
1286		 */
1287		ret_val =
1288		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1289				       &phy_data);
1290		if (ret_val)
1291			return ret_val;
1292
1293		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1294
1295		if ((hw->phy_revision == E1000_REVISION_2) &&
1296		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1297			/* Vidalia Phy, set the downshift counter to 5x */
1298			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1299			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1300			ret_val = e1000_write_phy_reg(hw,
1301						      M88E1000_EXT_PHY_SPEC_CTRL,
1302						      phy_data);
1303			if (ret_val)
1304				return ret_val;
1305		} else {
1306			/* Configure Master and Slave downshift values */
1307			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1308				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1309			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1310				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1311			ret_val = e1000_write_phy_reg(hw,
1312						      M88E1000_EXT_PHY_SPEC_CTRL,
1313						      phy_data);
1314			if (ret_val)
1315				return ret_val;
1316		}
1317	}
1318
1319	/* SW Reset the PHY so all changes take effect */
1320	ret_val = e1000_phy_reset(hw);
1321	if (ret_val) {
1322		e_dbg("Error Resetting the PHY\n");
1323		return ret_val;
1324	}
1325
1326	return E1000_SUCCESS;
1327}
1328
1329/**
1330 * e1000_copper_link_autoneg - setup auto-neg
1331 * @hw: Struct containing variables accessed by shared code
1332 *
1333 * Setup auto-negotiation and flow control advertisements,
1334 * and then perform auto-negotiation.
1335 */
1336static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1337{
1338	s32 ret_val;
1339	u16 phy_data;
1340
1341	/* Perform some bounds checking on the hw->autoneg_advertised
1342	 * parameter.  If this variable is zero, then set it to the default.
1343	 */
1344	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1345
1346	/* If autoneg_advertised is zero, we assume it was not defaulted
1347	 * by the calling code so we set to advertise full capability.
1348	 */
1349	if (hw->autoneg_advertised == 0)
1350		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1351
1352	/* IFE/RTL8201N PHY only supports 10/100 */
1353	if (hw->phy_type == e1000_phy_8201)
1354		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1355
1356	e_dbg("Reconfiguring auto-neg advertisement params\n");
1357	ret_val = e1000_phy_setup_autoneg(hw);
1358	if (ret_val) {
1359		e_dbg("Error Setting up Auto-Negotiation\n");
1360		return ret_val;
1361	}
1362	e_dbg("Restarting Auto-Neg\n");
1363
1364	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1365	 * the Auto Neg Restart bit in the PHY control register.
1366	 */
1367	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1368	if (ret_val)
1369		return ret_val;
1370
1371	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1372	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1373	if (ret_val)
1374		return ret_val;
1375
1376	/* Does the user want to wait for Auto-Neg to complete here, or
1377	 * check at a later time (for example, callback routine).
1378	 */
1379	if (hw->wait_autoneg_complete) {
1380		ret_val = e1000_wait_autoneg(hw);
1381		if (ret_val) {
1382			e_dbg
1383			    ("Error while waiting for autoneg to complete\n");
1384			return ret_val;
1385		}
1386	}
1387
1388	hw->get_link_status = true;
1389
1390	return E1000_SUCCESS;
1391}
1392
1393/**
1394 * e1000_copper_link_postconfig - post link setup
1395 * @hw: Struct containing variables accessed by shared code
1396 *
1397 * Config the MAC and the PHY after link is up.
1398 *   1) Set up the MAC to the current PHY speed/duplex
1399 *      if we are on 82543.  If we
1400 *      are on newer silicon, we only need to configure
1401 *      collision distance in the Transmit Control Register.
1402 *   2) Set up flow control on the MAC to that established with
1403 *      the link partner.
1404 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1405 */
1406static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1407{
1408	s32 ret_val;
1409
1410	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1411		e1000_config_collision_dist(hw);
1412	} else {
1413		ret_val = e1000_config_mac_to_phy(hw);
1414		if (ret_val) {
1415			e_dbg("Error configuring MAC to PHY settings\n");
1416			return ret_val;
1417		}
1418	}
1419	ret_val = e1000_config_fc_after_link_up(hw);
1420	if (ret_val) {
1421		e_dbg("Error Configuring Flow Control\n");
1422		return ret_val;
1423	}
1424
1425	/* Config DSP to improve Giga link quality */
1426	if (hw->phy_type == e1000_phy_igp) {
1427		ret_val = e1000_config_dsp_after_link_change(hw, true);
1428		if (ret_val) {
1429			e_dbg("Error Configuring DSP after link up\n");
1430			return ret_val;
1431		}
1432	}
1433
1434	return E1000_SUCCESS;
1435}
1436
1437/**
1438 * e1000_setup_copper_link - phy/speed/duplex setting
1439 * @hw: Struct containing variables accessed by shared code
1440 *
1441 * Detects which PHY is present and sets up the speed and duplex
1442 */
1443static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1444{
1445	s32 ret_val;
1446	u16 i;
1447	u16 phy_data;
1448
1449	/* Check if it is a valid PHY and set PHY mode if necessary. */
1450	ret_val = e1000_copper_link_preconfig(hw);
1451	if (ret_val)
1452		return ret_val;
1453
1454	if (hw->phy_type == e1000_phy_igp) {
1455		ret_val = e1000_copper_link_igp_setup(hw);
1456		if (ret_val)
1457			return ret_val;
1458	} else if (hw->phy_type == e1000_phy_m88) {
1459		ret_val = e1000_copper_link_mgp_setup(hw);
1460		if (ret_val)
1461			return ret_val;
1462	} else {
1463		ret_val = gbe_dhg_phy_setup(hw);
1464		if (ret_val) {
1465			e_dbg("gbe_dhg_phy_setup failed!\n");
1466			return ret_val;
1467		}
1468	}
1469
1470	if (hw->autoneg) {
1471		/* Setup autoneg and flow control advertisement
1472		 * and perform autonegotiation
1473		 */
1474		ret_val = e1000_copper_link_autoneg(hw);
1475		if (ret_val)
1476			return ret_val;
1477	} else {
1478		/* PHY will be set to 10H, 10F, 100H,or 100F
1479		 * depending on value from forced_speed_duplex.
1480		 */
1481		e_dbg("Forcing speed and duplex\n");
1482		ret_val = e1000_phy_force_speed_duplex(hw);
1483		if (ret_val) {
1484			e_dbg("Error Forcing Speed and Duplex\n");
1485			return ret_val;
1486		}
1487	}
1488
1489	/* Check link status. Wait up to 100 microseconds for link to become
1490	 * valid.
1491	 */
1492	for (i = 0; i < 10; i++) {
1493		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1494		if (ret_val)
1495			return ret_val;
1496		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1497		if (ret_val)
1498			return ret_val;
1499
1500		if (phy_data & MII_SR_LINK_STATUS) {
1501			/* Config the MAC and PHY after link is up */
1502			ret_val = e1000_copper_link_postconfig(hw);
1503			if (ret_val)
1504				return ret_val;
1505
1506			e_dbg("Valid link established!!!\n");
1507			return E1000_SUCCESS;
1508		}
1509		udelay(10);
1510	}
1511
1512	e_dbg("Unable to establish link!!!\n");
1513	return E1000_SUCCESS;
1514}
1515
1516/**
1517 * e1000_phy_setup_autoneg - phy settings
1518 * @hw: Struct containing variables accessed by shared code
1519 *
1520 * Configures PHY autoneg and flow control advertisement settings
1521 */
1522s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1523{
1524	s32 ret_val;
1525	u16 mii_autoneg_adv_reg;
1526	u16 mii_1000t_ctrl_reg;
1527
1528	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1529	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1530	if (ret_val)
1531		return ret_val;
1532
1533	/* Read the MII 1000Base-T Control Register (Address 9). */
1534	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1535	if (ret_val)
1536		return ret_val;
1537	else if (hw->phy_type == e1000_phy_8201)
1538		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1539
1540	/* Need to parse both autoneg_advertised and fc and set up
1541	 * the appropriate PHY registers.  First we will parse for
1542	 * autoneg_advertised software override.  Since we can advertise
1543	 * a plethora of combinations, we need to check each bit
1544	 * individually.
1545	 */
1546
1547	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1548	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1549	 * the  1000Base-T Control Register (Address 9).
1550	 */
1551	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1552	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1553
1554	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1555
1556	/* Do we want to advertise 10 Mb Half Duplex? */
1557	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1558		e_dbg("Advertise 10mb Half duplex\n");
1559		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1560	}
1561
1562	/* Do we want to advertise 10 Mb Full Duplex? */
1563	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1564		e_dbg("Advertise 10mb Full duplex\n");
1565		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1566	}
1567
1568	/* Do we want to advertise 100 Mb Half Duplex? */
1569	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1570		e_dbg("Advertise 100mb Half duplex\n");
1571		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1572	}
1573
1574	/* Do we want to advertise 100 Mb Full Duplex? */
1575	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1576		e_dbg("Advertise 100mb Full duplex\n");
1577		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1578	}
1579
1580	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1581	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1582		e_dbg
1583		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1584	}
1585
1586	/* Do we want to advertise 1000 Mb Full Duplex? */
1587	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1588		e_dbg("Advertise 1000mb Full duplex\n");
1589		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1590	}
1591
1592	/* Check for a software override of the flow control settings, and
1593	 * setup the PHY advertisement registers accordingly.  If
1594	 * auto-negotiation is enabled, then software will have to set the
1595	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1596	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1597	 * auto-negotiation.
1598	 *
1599	 * The possible values of the "fc" parameter are:
1600	 *      0:  Flow control is completely disabled
1601	 *      1:  Rx flow control is enabled (we can receive pause frames
1602	 *          but not send pause frames).
1603	 *      2:  Tx flow control is enabled (we can send pause frames
1604	 *          but we do not support receiving pause frames).
1605	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1606	 *  other:  No software override.  The flow control configuration
1607	 *          in the EEPROM is used.
1608	 */
1609	switch (hw->fc) {
1610	case E1000_FC_NONE:	/* 0 */
1611		/* Flow control (RX & TX) is completely disabled by a
1612		 * software over-ride.
1613		 */
1614		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1615		break;
1616	case E1000_FC_RX_PAUSE:	/* 1 */
1617		/* RX Flow control is enabled, and TX Flow control is
1618		 * disabled, by a software over-ride.
1619		 */
1620		/* Since there really isn't a way to advertise that we are
1621		 * capable of RX Pause ONLY, we will advertise that we
1622		 * support both symmetric and asymmetric RX PAUSE.  Later
1623		 * (in e1000_config_fc_after_link_up) we will disable the
1624		 * hw's ability to send PAUSE frames.
1625		 */
1626		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1627		break;
1628	case E1000_FC_TX_PAUSE:	/* 2 */
1629		/* TX Flow control is enabled, and RX Flow control is
1630		 * disabled, by a software over-ride.
1631		 */
1632		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1633		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1634		break;
1635	case E1000_FC_FULL:	/* 3 */
1636		/* Flow control (both RX and TX) is enabled by a software
1637		 * over-ride.
1638		 */
1639		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1640		break;
1641	default:
1642		e_dbg("Flow control param set incorrectly\n");
1643		return -E1000_ERR_CONFIG;
1644	}
1645
1646	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1647	if (ret_val)
1648		return ret_val;
1649
1650	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1651
1652	if (hw->phy_type == e1000_phy_8201) {
1653		mii_1000t_ctrl_reg = 0;
1654	} else {
1655		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1656		                              mii_1000t_ctrl_reg);
1657		if (ret_val)
1658			return ret_val;
1659	}
1660
1661	return E1000_SUCCESS;
1662}
1663
1664/**
1665 * e1000_phy_force_speed_duplex - force link settings
1666 * @hw: Struct containing variables accessed by shared code
1667 *
1668 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1669 */
1670static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1671{
1672	u32 ctrl;
1673	s32 ret_val;
1674	u16 mii_ctrl_reg;
1675	u16 mii_status_reg;
1676	u16 phy_data;
1677	u16 i;
1678
1679	/* Turn off Flow control if we are forcing speed and duplex. */
1680	hw->fc = E1000_FC_NONE;
1681
1682	e_dbg("hw->fc = %d\n", hw->fc);
1683
1684	/* Read the Device Control Register. */
1685	ctrl = er32(CTRL);
1686
1687	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1688	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1689	ctrl &= ~(DEVICE_SPEED_MASK);
1690
1691	/* Clear the Auto Speed Detect Enable bit. */
1692	ctrl &= ~E1000_CTRL_ASDE;
1693
1694	/* Read the MII Control Register. */
1695	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1696	if (ret_val)
1697		return ret_val;
1698
1699	/* We need to disable autoneg in order to force link and duplex. */
1700
1701	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1702
1703	/* Are we forcing Full or Half Duplex? */
1704	if (hw->forced_speed_duplex == e1000_100_full ||
1705	    hw->forced_speed_duplex == e1000_10_full) {
1706		/* We want to force full duplex so we SET the full duplex bits
1707		 * in the Device and MII Control Registers.
1708		 */
1709		ctrl |= E1000_CTRL_FD;
1710		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1711		e_dbg("Full Duplex\n");
1712	} else {
1713		/* We want to force half duplex so we CLEAR the full duplex bits
1714		 * in the Device and MII Control Registers.
1715		 */
1716		ctrl &= ~E1000_CTRL_FD;
1717		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1718		e_dbg("Half Duplex\n");
1719	}
1720
1721	/* Are we forcing 100Mbps??? */
1722	if (hw->forced_speed_duplex == e1000_100_full ||
1723	    hw->forced_speed_duplex == e1000_100_half) {
1724		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1725		ctrl |= E1000_CTRL_SPD_100;
1726		mii_ctrl_reg |= MII_CR_SPEED_100;
1727		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1728		e_dbg("Forcing 100mb ");
1729	} else {
1730		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1731		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1732		mii_ctrl_reg |= MII_CR_SPEED_10;
1733		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1734		e_dbg("Forcing 10mb ");
1735	}
1736
1737	e1000_config_collision_dist(hw);
1738
1739	/* Write the configured values back to the Device Control Reg. */
1740	ew32(CTRL, ctrl);
1741
1742	if (hw->phy_type == e1000_phy_m88) {
1743		ret_val =
1744		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1745		if (ret_val)
1746			return ret_val;
1747
1748		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1749		 * MDI forced whenever speed are duplex are forced.
1750		 */
1751		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1752		ret_val =
1753		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1754		if (ret_val)
1755			return ret_val;
1756
1757		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1758
1759		/* Need to reset the PHY or these changes will be ignored */
1760		mii_ctrl_reg |= MII_CR_RESET;
1761
1762		/* Disable MDI-X support for 10/100 */
1763	} else {
1764		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1765		 * forced whenever speed or duplex are forced.
1766		 */
1767		ret_val =
1768		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1769		if (ret_val)
1770			return ret_val;
1771
1772		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1773		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1774
1775		ret_val =
1776		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1777		if (ret_val)
1778			return ret_val;
1779	}
1780
1781	/* Write back the modified PHY MII control register. */
1782	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1783	if (ret_val)
1784		return ret_val;
1785
1786	udelay(1);
1787
1788	/* The wait_autoneg_complete flag may be a little misleading here.
1789	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1790	 * But we do want to delay for a period while forcing only so we
1791	 * don't generate false No Link messages.  So we will wait here
1792	 * only if the user has set wait_autoneg_complete to 1, which is
1793	 * the default.
1794	 */
1795	if (hw->wait_autoneg_complete) {
1796		/* We will wait for autoneg to complete. */
1797		e_dbg("Waiting for forced speed/duplex link.\n");
1798		mii_status_reg = 0;
1799
1800		/* Wait for autoneg to complete or 4.5 seconds to expire */
1801		for (i = PHY_FORCE_TIME; i > 0; i--) {
1802			/* Read the MII Status Register and wait for Auto-Neg
1803			 * Complete bit to be set.
1804			 */
1805			ret_val =
1806			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1807			if (ret_val)
1808				return ret_val;
1809
1810			ret_val =
1811			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1812			if (ret_val)
1813				return ret_val;
1814
1815			if (mii_status_reg & MII_SR_LINK_STATUS)
1816				break;
1817			msleep(100);
1818		}
1819		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1820			/* We didn't get link.  Reset the DSP and wait again
1821			 * for link.
1822			 */
1823			ret_val = e1000_phy_reset_dsp(hw);
1824			if (ret_val) {
1825				e_dbg("Error Resetting PHY DSP\n");
1826				return ret_val;
1827			}
1828		}
1829		/* This loop will early-out if the link condition has been
1830		 * met
1831		 */
1832		for (i = PHY_FORCE_TIME; i > 0; i--) {
1833			if (mii_status_reg & MII_SR_LINK_STATUS)
1834				break;
1835			msleep(100);
1836			/* Read the MII Status Register and wait for Auto-Neg
1837			 * Complete bit to be set.
1838			 */
1839			ret_val =
1840			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1841			if (ret_val)
1842				return ret_val;
1843
1844			ret_val =
1845			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1846			if (ret_val)
1847				return ret_val;
1848		}
1849	}
1850
1851	if (hw->phy_type == e1000_phy_m88) {
1852		/* Because we reset the PHY above, we need to re-force TX_CLK in
1853		 * the Extended PHY Specific Control Register to 25MHz clock.
1854		 * This value defaults back to a 2.5MHz clock when the PHY is
1855		 * reset.
1856		 */
1857		ret_val =
1858		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1859				       &phy_data);
1860		if (ret_val)
1861			return ret_val;
1862
1863		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1864		ret_val =
1865		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1866					phy_data);
1867		if (ret_val)
1868			return ret_val;
1869
1870		/* In addition, because of the s/w reset above, we need to
1871		 * enable CRS on Tx.  This must be set for both full and half
1872		 * duplex operation.
1873		 */
1874		ret_val =
1875		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1876		if (ret_val)
1877			return ret_val;
1878
1879		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1880		ret_val =
1881		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1882		if (ret_val)
1883			return ret_val;
1884
1885		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1886		    && (!hw->autoneg)
1887		    && (hw->forced_speed_duplex == e1000_10_full
1888			|| hw->forced_speed_duplex == e1000_10_half)) {
 
1889			ret_val = e1000_polarity_reversal_workaround(hw);
1890			if (ret_val)
1891				return ret_val;
1892		}
1893	}
1894	return E1000_SUCCESS;
1895}
1896
1897/**
1898 * e1000_config_collision_dist - set collision distance register
1899 * @hw: Struct containing variables accessed by shared code
1900 *
1901 * Sets the collision distance in the Transmit Control register.
1902 * Link should have been established previously. Reads the speed and duplex
1903 * information from the Device Status register.
1904 */
1905void e1000_config_collision_dist(struct e1000_hw *hw)
1906{
1907	u32 tctl, coll_dist;
1908
1909	if (hw->mac_type < e1000_82543)
1910		coll_dist = E1000_COLLISION_DISTANCE_82542;
1911	else
1912		coll_dist = E1000_COLLISION_DISTANCE;
1913
1914	tctl = er32(TCTL);
1915
1916	tctl &= ~E1000_TCTL_COLD;
1917	tctl |= coll_dist << E1000_COLD_SHIFT;
1918
1919	ew32(TCTL, tctl);
1920	E1000_WRITE_FLUSH();
1921}
1922
1923/**
1924 * e1000_config_mac_to_phy - sync phy and mac settings
1925 * @hw: Struct containing variables accessed by shared code
1926 * @mii_reg: data to write to the MII control register
1927 *
1928 * Sets MAC speed and duplex settings to reflect the those in the PHY
1929 * The contents of the PHY register containing the needed information need to
1930 * be passed in.
1931 */
1932static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1933{
1934	u32 ctrl;
1935	s32 ret_val;
1936	u16 phy_data;
1937
1938	/* 82544 or newer MAC, Auto Speed Detection takes care of
1939	 * MAC speed/duplex configuration.
1940	 */
1941	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1942		return E1000_SUCCESS;
1943
1944	/* Read the Device Control Register and set the bits to Force Speed
1945	 * and Duplex.
1946	 */
1947	ctrl = er32(CTRL);
1948	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1949	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1950
1951	switch (hw->phy_type) {
1952	case e1000_phy_8201:
1953		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1954		if (ret_val)
1955			return ret_val;
1956
1957		if (phy_data & RTL_PHY_CTRL_FD)
1958			ctrl |= E1000_CTRL_FD;
1959		else
1960			ctrl &= ~E1000_CTRL_FD;
1961
1962		if (phy_data & RTL_PHY_CTRL_SPD_100)
1963			ctrl |= E1000_CTRL_SPD_100;
1964		else
1965			ctrl |= E1000_CTRL_SPD_10;
1966
1967		e1000_config_collision_dist(hw);
1968		break;
1969	default:
1970		/* Set up duplex in the Device Control and Transmit Control
1971		 * registers depending on negotiated values.
1972		 */
1973		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1974					     &phy_data);
1975		if (ret_val)
1976			return ret_val;
1977
1978		if (phy_data & M88E1000_PSSR_DPLX)
1979			ctrl |= E1000_CTRL_FD;
1980		else
1981			ctrl &= ~E1000_CTRL_FD;
1982
1983		e1000_config_collision_dist(hw);
1984
1985		/* Set up speed in the Device Control register depending on
1986		 * negotiated values.
1987		 */
1988		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1989			ctrl |= E1000_CTRL_SPD_1000;
1990		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1991			 M88E1000_PSSR_100MBS)
1992			ctrl |= E1000_CTRL_SPD_100;
1993	}
1994
1995	/* Write the configured values back to the Device Control Reg. */
1996	ew32(CTRL, ctrl);
1997	return E1000_SUCCESS;
1998}
1999
2000/**
2001 * e1000_force_mac_fc - force flow control settings
2002 * @hw: Struct containing variables accessed by shared code
2003 *
2004 * Forces the MAC's flow control settings.
2005 * Sets the TFCE and RFCE bits in the device control register to reflect
2006 * the adapter settings. TFCE and RFCE need to be explicitly set by
2007 * software when a Copper PHY is used because autonegotiation is managed
2008 * by the PHY rather than the MAC. Software must also configure these
2009 * bits when link is forced on a fiber connection.
2010 */
2011s32 e1000_force_mac_fc(struct e1000_hw *hw)
2012{
2013	u32 ctrl;
2014
2015	/* Get the current configuration of the Device Control Register */
2016	ctrl = er32(CTRL);
2017
2018	/* Because we didn't get link via the internal auto-negotiation
2019	 * mechanism (we either forced link or we got link via PHY
2020	 * auto-neg), we have to manually enable/disable transmit an
2021	 * receive flow control.
2022	 *
2023	 * The "Case" statement below enables/disable flow control
2024	 * according to the "hw->fc" parameter.
2025	 *
2026	 * The possible values of the "fc" parameter are:
2027	 *      0:  Flow control is completely disabled
2028	 *      1:  Rx flow control is enabled (we can receive pause
2029	 *          frames but not send pause frames).
2030	 *      2:  Tx flow control is enabled (we can send pause frames
2031	 *          frames but we do not receive pause frames).
2032	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2033	 *  other:  No other values should be possible at this point.
2034	 */
2035
2036	switch (hw->fc) {
2037	case E1000_FC_NONE:
2038		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2039		break;
2040	case E1000_FC_RX_PAUSE:
2041		ctrl &= (~E1000_CTRL_TFCE);
2042		ctrl |= E1000_CTRL_RFCE;
2043		break;
2044	case E1000_FC_TX_PAUSE:
2045		ctrl &= (~E1000_CTRL_RFCE);
2046		ctrl |= E1000_CTRL_TFCE;
2047		break;
2048	case E1000_FC_FULL:
2049		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2050		break;
2051	default:
2052		e_dbg("Flow control param set incorrectly\n");
2053		return -E1000_ERR_CONFIG;
2054	}
2055
2056	/* Disable TX Flow Control for 82542 (rev 2.0) */
2057	if (hw->mac_type == e1000_82542_rev2_0)
2058		ctrl &= (~E1000_CTRL_TFCE);
2059
2060	ew32(CTRL, ctrl);
2061	return E1000_SUCCESS;
2062}
2063
2064/**
2065 * e1000_config_fc_after_link_up - configure flow control after autoneg
2066 * @hw: Struct containing variables accessed by shared code
2067 *
2068 * Configures flow control settings after link is established
2069 * Should be called immediately after a valid link has been established.
2070 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2071 * and autonegotiation is enabled, the MAC flow control settings will be set
2072 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2073 * and RFCE bits will be automatically set to the negotiated flow control mode.
2074 */
2075static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2076{
2077	s32 ret_val;
2078	u16 mii_status_reg;
2079	u16 mii_nway_adv_reg;
2080	u16 mii_nway_lp_ability_reg;
2081	u16 speed;
2082	u16 duplex;
2083
2084	/* Check for the case where we have fiber media and auto-neg failed
2085	 * so we had to force link.  In this case, we need to force the
2086	 * configuration of the MAC to match the "fc" parameter.
2087	 */
2088	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2089	    || ((hw->media_type == e1000_media_type_internal_serdes)
2090		&& (hw->autoneg_failed))
2091	    || ((hw->media_type == e1000_media_type_copper)
2092		&& (!hw->autoneg))) {
 
2093		ret_val = e1000_force_mac_fc(hw);
2094		if (ret_val) {
2095			e_dbg("Error forcing flow control settings\n");
2096			return ret_val;
2097		}
2098	}
2099
2100	/* Check for the case where we have copper media and auto-neg is
2101	 * enabled.  In this case, we need to check and see if Auto-Neg
2102	 * has completed, and if so, how the PHY and link partner has
2103	 * flow control configured.
2104	 */
2105	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2106		/* Read the MII Status Register and check to see if AutoNeg
2107		 * has completed.  We read this twice because this reg has
2108		 * some "sticky" (latched) bits.
2109		 */
2110		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2111		if (ret_val)
2112			return ret_val;
2113		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2114		if (ret_val)
2115			return ret_val;
2116
2117		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2118			/* The AutoNeg process has completed, so we now need to
2119			 * read both the Auto Negotiation Advertisement Register
2120			 * (Address 4) and the Auto_Negotiation Base Page
2121			 * Ability Register (Address 5) to determine how flow
2122			 * control was negotiated.
2123			 */
2124			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2125						     &mii_nway_adv_reg);
2126			if (ret_val)
2127				return ret_val;
2128			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2129						     &mii_nway_lp_ability_reg);
2130			if (ret_val)
2131				return ret_val;
2132
2133			/* Two bits in the Auto Negotiation Advertisement
2134			 * Register (Address 4) and two bits in the Auto
2135			 * Negotiation Base Page Ability Register (Address 5)
2136			 * determine flow control for both the PHY and the link
2137			 * partner.  The following table, taken out of the IEEE
2138			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2139			 * PAUSE resolution bits and how flow control is
2140			 * determined based upon these settings.
2141			 * NOTE:  DC = Don't Care
2142			 *
2143			 *   LOCAL DEVICE  |   LINK PARTNER
2144			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2145			 *-------|---------|-------|---------|------------------
2146			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2147			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2148			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2149			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2150			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2151			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2152			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2153			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2154			 *
2155			 */
2156			/* Are both PAUSE bits set to 1?  If so, this implies
2157			 * Symmetric Flow Control is enabled at both ends.  The
2158			 * ASM_DIR bits are irrelevant per the spec.
2159			 *
2160			 * For Symmetric Flow Control:
2161			 *
2162			 *   LOCAL DEVICE  |   LINK PARTNER
2163			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2164			 *-------|---------|-------|---------|------------------
2165			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2166			 *
2167			 */
2168			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2169			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2170				/* Now we need to check if the user selected Rx
2171				 * ONLY of pause frames.  In this case, we had
2172				 * to advertise FULL flow control because we
2173				 * could not advertise Rx ONLY. Hence, we must
2174				 * now check to see if we need to turn OFF the
2175				 * TRANSMISSION of PAUSE frames.
2176				 */
2177				if (hw->original_fc == E1000_FC_FULL) {
2178					hw->fc = E1000_FC_FULL;
2179					e_dbg("Flow Control = FULL.\n");
2180				} else {
2181					hw->fc = E1000_FC_RX_PAUSE;
2182					e_dbg
2183					    ("Flow Control = RX PAUSE frames only.\n");
2184				}
2185			}
2186			/* For receiving PAUSE frames ONLY.
2187			 *
2188			 *   LOCAL DEVICE  |   LINK PARTNER
2189			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2190			 *-------|---------|-------|---------|------------------
2191			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2192			 *
2193			 */
2194			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2195				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2196				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2197				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2198			{
2199				hw->fc = E1000_FC_TX_PAUSE;
2200				e_dbg
2201				    ("Flow Control = TX PAUSE frames only.\n");
2202			}
2203			/* For transmitting PAUSE frames ONLY.
2204			 *
2205			 *   LOCAL DEVICE  |   LINK PARTNER
2206			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2207			 *-------|---------|-------|---------|------------------
2208			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2209			 *
2210			 */
2211			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2212				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2213				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2214				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2215			{
2216				hw->fc = E1000_FC_RX_PAUSE;
2217				e_dbg
2218				    ("Flow Control = RX PAUSE frames only.\n");
2219			}
2220			/* Per the IEEE spec, at this point flow control should
2221			 * be disabled.  However, we want to consider that we
2222			 * could be connected to a legacy switch that doesn't
2223			 * advertise desired flow control, but can be forced on
2224			 * the link partner.  So if we advertised no flow
2225			 * control, that is what we will resolve to.  If we
2226			 * advertised some kind of receive capability (Rx Pause
2227			 * Only or Full Flow Control) and the link partner
2228			 * advertised none, we will configure ourselves to
2229			 * enable Rx Flow Control only.  We can do this safely
2230			 * for two reasons:  If the link partner really
2231			 * didn't want flow control enabled, and we enable Rx,
2232			 * no harm done since we won't be receiving any PAUSE
2233			 * frames anyway.  If the intent on the link partner was
2234			 * to have flow control enabled, then by us enabling Rx
2235			 * only, we can at least receive pause frames and
2236			 * process them. This is a good idea because in most
2237			 * cases, since we are predominantly a server NIC, more
2238			 * times than not we will be asked to delay transmission
2239			 * of packets than asking our link partner to pause
2240			 * transmission of frames.
2241			 */
2242			else if ((hw->original_fc == E1000_FC_NONE ||
2243				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2244				 hw->fc_strict_ieee) {
2245				hw->fc = E1000_FC_NONE;
2246				e_dbg("Flow Control = NONE.\n");
2247			} else {
2248				hw->fc = E1000_FC_RX_PAUSE;
2249				e_dbg
2250				    ("Flow Control = RX PAUSE frames only.\n");
2251			}
2252
2253			/* Now we need to do one last check...  If we auto-
2254			 * negotiated to HALF DUPLEX, flow control should not be
2255			 * enabled per IEEE 802.3 spec.
2256			 */
2257			ret_val =
2258			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2259			if (ret_val) {
2260				e_dbg
2261				    ("Error getting link speed and duplex\n");
2262				return ret_val;
2263			}
2264
2265			if (duplex == HALF_DUPLEX)
2266				hw->fc = E1000_FC_NONE;
2267
2268			/* Now we call a subroutine to actually force the MAC
2269			 * controller to use the correct flow control settings.
2270			 */
2271			ret_val = e1000_force_mac_fc(hw);
2272			if (ret_val) {
2273				e_dbg
2274				    ("Error forcing flow control settings\n");
2275				return ret_val;
2276			}
2277		} else {
2278			e_dbg
2279			    ("Copper PHY and Auto Neg has not completed.\n");
2280		}
2281	}
2282	return E1000_SUCCESS;
2283}
2284
2285/**
2286 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2287 * @hw: pointer to the HW structure
2288 *
2289 * Checks for link up on the hardware.  If link is not up and we have
2290 * a signal, then we need to force link up.
2291 */
2292static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2293{
2294	u32 rxcw;
2295	u32 ctrl;
2296	u32 status;
2297	s32 ret_val = E1000_SUCCESS;
2298
2299	ctrl = er32(CTRL);
2300	status = er32(STATUS);
2301	rxcw = er32(RXCW);
2302
2303	/* If we don't have link (auto-negotiation failed or link partner
2304	 * cannot auto-negotiate), and our link partner is not trying to
2305	 * auto-negotiate with us (we are receiving idles or data),
2306	 * we need to force link up. We also need to give auto-negotiation
2307	 * time to complete.
2308	 */
2309	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2310	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2311		if (hw->autoneg_failed == 0) {
2312			hw->autoneg_failed = 1;
2313			goto out;
2314		}
2315		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2316
2317		/* Disable auto-negotiation in the TXCW register */
2318		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2319
2320		/* Force link-up and also force full-duplex. */
2321		ctrl = er32(CTRL);
2322		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2323		ew32(CTRL, ctrl);
2324
2325		/* Configure Flow Control after forcing link up. */
2326		ret_val = e1000_config_fc_after_link_up(hw);
2327		if (ret_val) {
2328			e_dbg("Error configuring flow control\n");
2329			goto out;
2330		}
2331	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2332		/* If we are forcing link and we are receiving /C/ ordered
2333		 * sets, re-enable auto-negotiation in the TXCW register
2334		 * and disable forced link in the Device Control register
2335		 * in an attempt to auto-negotiate with our link partner.
2336		 */
2337		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2338		ew32(TXCW, hw->txcw);
2339		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2340
2341		hw->serdes_has_link = true;
2342	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2343		/* If we force link for non-auto-negotiation switch, check
2344		 * link status based on MAC synchronization for internal
2345		 * serdes media type.
2346		 */
2347		/* SYNCH bit and IV bit are sticky. */
2348		udelay(10);
2349		rxcw = er32(RXCW);
2350		if (rxcw & E1000_RXCW_SYNCH) {
2351			if (!(rxcw & E1000_RXCW_IV)) {
2352				hw->serdes_has_link = true;
2353				e_dbg("SERDES: Link up - forced.\n");
2354			}
2355		} else {
2356			hw->serdes_has_link = false;
2357			e_dbg("SERDES: Link down - force failed.\n");
2358		}
2359	}
2360
2361	if (E1000_TXCW_ANE & er32(TXCW)) {
2362		status = er32(STATUS);
2363		if (status & E1000_STATUS_LU) {
2364			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2365			udelay(10);
2366			rxcw = er32(RXCW);
2367			if (rxcw & E1000_RXCW_SYNCH) {
2368				if (!(rxcw & E1000_RXCW_IV)) {
2369					hw->serdes_has_link = true;
2370					e_dbg("SERDES: Link up - autoneg "
2371						 "completed successfully.\n");
2372				} else {
2373					hw->serdes_has_link = false;
2374					e_dbg("SERDES: Link down - invalid"
2375						 "codewords detected in autoneg.\n");
2376				}
2377			} else {
2378				hw->serdes_has_link = false;
2379				e_dbg("SERDES: Link down - no sync.\n");
2380			}
2381		} else {
2382			hw->serdes_has_link = false;
2383			e_dbg("SERDES: Link down - autoneg failed\n");
2384		}
2385	}
2386
2387      out:
2388	return ret_val;
2389}
2390
2391/**
2392 * e1000_check_for_link
2393 * @hw: Struct containing variables accessed by shared code
2394 *
2395 * Checks to see if the link status of the hardware has changed.
2396 * Called by any function that needs to check the link status of the adapter.
2397 */
2398s32 e1000_check_for_link(struct e1000_hw *hw)
2399{
2400	u32 rxcw = 0;
2401	u32 ctrl;
2402	u32 status;
2403	u32 rctl;
2404	u32 icr;
2405	u32 signal = 0;
2406	s32 ret_val;
2407	u16 phy_data;
2408
2409	ctrl = er32(CTRL);
2410	status = er32(STATUS);
2411
2412	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2413	 * set when the optics detect a signal. On older adapters, it will be
2414	 * cleared when there is a signal.  This applies to fiber media only.
2415	 */
2416	if ((hw->media_type == e1000_media_type_fiber) ||
2417	    (hw->media_type == e1000_media_type_internal_serdes)) {
2418		rxcw = er32(RXCW);
2419
2420		if (hw->media_type == e1000_media_type_fiber) {
2421			signal =
2422			    (hw->mac_type >
2423			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2424			if (status & E1000_STATUS_LU)
2425				hw->get_link_status = false;
2426		}
2427	}
2428
2429	/* If we have a copper PHY then we only want to go out to the PHY
2430	 * registers to see if Auto-Neg has completed and/or if our link
2431	 * status has changed.  The get_link_status flag will be set if we
2432	 * receive a Link Status Change interrupt or we have Rx Sequence
2433	 * Errors.
2434	 */
2435	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2436		/* First we want to see if the MII Status Register reports
2437		 * link.  If so, then we want to get the current speed/duplex
2438		 * of the PHY.
2439		 * Read the register twice since the link bit is sticky.
2440		 */
2441		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2442		if (ret_val)
2443			return ret_val;
2444		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2445		if (ret_val)
2446			return ret_val;
2447
2448		if (phy_data & MII_SR_LINK_STATUS) {
2449			hw->get_link_status = false;
2450			/* Check if there was DownShift, must be checked
2451			 * immediately after link-up
2452			 */
2453			e1000_check_downshift(hw);
2454
2455			/* If we are on 82544 or 82543 silicon and speed/duplex
2456			 * are forced to 10H or 10F, then we will implement the
2457			 * polarity reversal workaround.  We disable interrupts
2458			 * first, and upon returning, place the devices
2459			 * interrupt state to its previous value except for the
2460			 * link status change interrupt which will
2461			 * happen due to the execution of this workaround.
2462			 */
2463
2464			if ((hw->mac_type == e1000_82544
2465			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
2466			    && (hw->forced_speed_duplex == e1000_10_full
2467				|| hw->forced_speed_duplex == e1000_10_half)) {
 
2468				ew32(IMC, 0xffffffff);
2469				ret_val =
2470				    e1000_polarity_reversal_workaround(hw);
2471				icr = er32(ICR);
2472				ew32(ICS, (icr & ~E1000_ICS_LSC));
2473				ew32(IMS, IMS_ENABLE_MASK);
2474			}
2475
2476		} else {
2477			/* No link detected */
2478			e1000_config_dsp_after_link_change(hw, false);
2479			return 0;
2480		}
2481
2482		/* If we are forcing speed/duplex, then we simply return since
2483		 * we have already determined whether we have link or not.
2484		 */
2485		if (!hw->autoneg)
2486			return -E1000_ERR_CONFIG;
2487
2488		/* optimize the dsp settings for the igp phy */
2489		e1000_config_dsp_after_link_change(hw, true);
2490
2491		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2492		 * have Si on board that is 82544 or newer, Auto
2493		 * Speed Detection takes care of MAC speed/duplex
2494		 * configuration.  So we only need to configure Collision
2495		 * Distance in the MAC.  Otherwise, we need to force
2496		 * speed/duplex on the MAC to the current PHY speed/duplex
2497		 * settings.
2498		 */
2499		if ((hw->mac_type >= e1000_82544) &&
2500		    (hw->mac_type != e1000_ce4100))
2501			e1000_config_collision_dist(hw);
2502		else {
2503			ret_val = e1000_config_mac_to_phy(hw);
2504			if (ret_val) {
2505				e_dbg
2506				    ("Error configuring MAC to PHY settings\n");
2507				return ret_val;
2508			}
2509		}
2510
2511		/* Configure Flow Control now that Auto-Neg has completed.
2512		 * First, we need to restore the desired flow control settings
2513		 * because we may have had to re-autoneg with a different link
2514		 * partner.
2515		 */
2516		ret_val = e1000_config_fc_after_link_up(hw);
2517		if (ret_val) {
2518			e_dbg("Error configuring flow control\n");
2519			return ret_val;
2520		}
2521
2522		/* At this point we know that we are on copper and we have
2523		 * auto-negotiated link.  These are conditions for checking the
2524		 * link partner capability register.  We use the link speed to
2525		 * determine if TBI compatibility needs to be turned on or off.
2526		 * If the link is not at gigabit speed, then TBI compatibility
2527		 * is not needed.  If we are at gigabit speed, we turn on TBI
2528		 * compatibility.
2529		 */
2530		if (hw->tbi_compatibility_en) {
2531			u16 speed, duplex;
 
2532			ret_val =
2533			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
 
2534			if (ret_val) {
2535				e_dbg
2536				    ("Error getting link speed and duplex\n");
2537				return ret_val;
2538			}
2539			if (speed != SPEED_1000) {
2540				/* If link speed is not set to gigabit speed, we
2541				 * do not need to enable TBI compatibility.
2542				 */
2543				if (hw->tbi_compatibility_on) {
2544					/* If we previously were in the mode,
2545					 * turn it off.
2546					 */
2547					rctl = er32(RCTL);
2548					rctl &= ~E1000_RCTL_SBP;
2549					ew32(RCTL, rctl);
2550					hw->tbi_compatibility_on = false;
2551				}
2552			} else {
2553				/* If TBI compatibility is was previously off,
2554				 * turn it on. For compatibility with a TBI link
2555				 * partner, we will store bad packets. Some
2556				 * frames have an additional byte on the end and
2557				 * will look like CRC errors to to the hardware.
2558				 */
2559				if (!hw->tbi_compatibility_on) {
2560					hw->tbi_compatibility_on = true;
2561					rctl = er32(RCTL);
2562					rctl |= E1000_RCTL_SBP;
2563					ew32(RCTL, rctl);
2564				}
2565			}
2566		}
2567	}
2568
2569	if ((hw->media_type == e1000_media_type_fiber) ||
2570	    (hw->media_type == e1000_media_type_internal_serdes))
2571		e1000_check_for_serdes_link_generic(hw);
2572
2573	return E1000_SUCCESS;
2574}
2575
2576/**
2577 * e1000_get_speed_and_duplex
2578 * @hw: Struct containing variables accessed by shared code
2579 * @speed: Speed of the connection
2580 * @duplex: Duplex setting of the connection
2581 *
2582 * Detects the current speed and duplex settings of the hardware.
2583 */
2584s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2585{
2586	u32 status;
2587	s32 ret_val;
2588	u16 phy_data;
2589
2590	if (hw->mac_type >= e1000_82543) {
2591		status = er32(STATUS);
2592		if (status & E1000_STATUS_SPEED_1000) {
2593			*speed = SPEED_1000;
2594			e_dbg("1000 Mbs, ");
2595		} else if (status & E1000_STATUS_SPEED_100) {
2596			*speed = SPEED_100;
2597			e_dbg("100 Mbs, ");
2598		} else {
2599			*speed = SPEED_10;
2600			e_dbg("10 Mbs, ");
2601		}
2602
2603		if (status & E1000_STATUS_FD) {
2604			*duplex = FULL_DUPLEX;
2605			e_dbg("Full Duplex\n");
2606		} else {
2607			*duplex = HALF_DUPLEX;
2608			e_dbg(" Half Duplex\n");
2609		}
2610	} else {
2611		e_dbg("1000 Mbs, Full Duplex\n");
2612		*speed = SPEED_1000;
2613		*duplex = FULL_DUPLEX;
2614	}
2615
2616	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2617	 * even if it is operating at half duplex.  Here we set the duplex
2618	 * settings to match the duplex in the link partner's capabilities.
2619	 */
2620	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2621		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2622		if (ret_val)
2623			return ret_val;
2624
2625		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2626			*duplex = HALF_DUPLEX;
2627		else {
2628			ret_val =
2629			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2630			if (ret_val)
2631				return ret_val;
2632			if ((*speed == SPEED_100
2633			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2634			    || (*speed == SPEED_10
2635				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2636				*duplex = HALF_DUPLEX;
2637		}
2638	}
2639
2640	return E1000_SUCCESS;
2641}
2642
2643/**
2644 * e1000_wait_autoneg
2645 * @hw: Struct containing variables accessed by shared code
2646 *
2647 * Blocks until autoneg completes or times out (~4.5 seconds)
2648 */
2649static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2650{
2651	s32 ret_val;
2652	u16 i;
2653	u16 phy_data;
2654
2655	e_dbg("Waiting for Auto-Neg to complete.\n");
2656
2657	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2658	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2659		/* Read the MII Status Register and wait for Auto-Neg
2660		 * Complete bit to be set.
2661		 */
2662		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2663		if (ret_val)
2664			return ret_val;
2665		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2666		if (ret_val)
2667			return ret_val;
2668		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2669			return E1000_SUCCESS;
2670		}
2671		msleep(100);
2672	}
2673	return E1000_SUCCESS;
2674}
2675
2676/**
2677 * e1000_raise_mdi_clk - Raises the Management Data Clock
2678 * @hw: Struct containing variables accessed by shared code
2679 * @ctrl: Device control register's current value
2680 */
2681static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2682{
2683	/* Raise the clock input to the Management Data Clock (by setting the
2684	 * MDC bit), and then delay 10 microseconds.
2685	 */
2686	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2687	E1000_WRITE_FLUSH();
2688	udelay(10);
2689}
2690
2691/**
2692 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2693 * @hw: Struct containing variables accessed by shared code
2694 * @ctrl: Device control register's current value
2695 */
2696static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2697{
2698	/* Lower the clock input to the Management Data Clock (by clearing the
2699	 * MDC bit), and then delay 10 microseconds.
2700	 */
2701	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2702	E1000_WRITE_FLUSH();
2703	udelay(10);
2704}
2705
2706/**
2707 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2708 * @hw: Struct containing variables accessed by shared code
2709 * @data: Data to send out to the PHY
2710 * @count: Number of bits to shift out
2711 *
2712 * Bits are shifted out in MSB to LSB order.
2713 */
2714static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2715{
2716	u32 ctrl;
2717	u32 mask;
2718
2719	/* We need to shift "count" number of bits out to the PHY. So, the value
2720	 * in the "data" parameter will be shifted out to the PHY one bit at a
2721	 * time. In order to do this, "data" must be broken down into bits.
2722	 */
2723	mask = 0x01;
2724	mask <<= (count - 1);
2725
2726	ctrl = er32(CTRL);
2727
2728	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2729	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2730
2731	while (mask) {
2732		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2733		 * "1" and then raising and lowering the Management Data Clock.
2734		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2735		 * "0" and then raising and lowering the clock.
2736		 */
2737		if (data & mask)
2738			ctrl |= E1000_CTRL_MDIO;
2739		else
2740			ctrl &= ~E1000_CTRL_MDIO;
2741
2742		ew32(CTRL, ctrl);
2743		E1000_WRITE_FLUSH();
2744
2745		udelay(10);
2746
2747		e1000_raise_mdi_clk(hw, &ctrl);
2748		e1000_lower_mdi_clk(hw, &ctrl);
2749
2750		mask = mask >> 1;
2751	}
2752}
2753
2754/**
2755 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2756 * @hw: Struct containing variables accessed by shared code
2757 *
2758 * Bits are shifted in in MSB to LSB order.
2759 */
2760static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2761{
2762	u32 ctrl;
2763	u16 data = 0;
2764	u8 i;
2765
2766	/* In order to read a register from the PHY, we need to shift in a total
2767	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2768	 * used to avoid contention on the MDIO pin when a read operation is
2769	 * performed. These two bits are ignored by us and thrown away. Bits are
2770	 * "shifted in" by raising the input to the Management Data Clock
2771	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2772	 */
2773	ctrl = er32(CTRL);
2774
2775	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2776	 * input.
2777	 */
2778	ctrl &= ~E1000_CTRL_MDIO_DIR;
2779	ctrl &= ~E1000_CTRL_MDIO;
2780
2781	ew32(CTRL, ctrl);
2782	E1000_WRITE_FLUSH();
2783
2784	/* Raise and Lower the clock before reading in the data. This accounts
2785	 * for the turnaround bits. The first clock occurred when we clocked out
2786	 * the last bit of the Register Address.
2787	 */
2788	e1000_raise_mdi_clk(hw, &ctrl);
2789	e1000_lower_mdi_clk(hw, &ctrl);
2790
2791	for (data = 0, i = 0; i < 16; i++) {
2792		data = data << 1;
2793		e1000_raise_mdi_clk(hw, &ctrl);
2794		ctrl = er32(CTRL);
2795		/* Check to see if we shifted in a "1". */
2796		if (ctrl & E1000_CTRL_MDIO)
2797			data |= 1;
2798		e1000_lower_mdi_clk(hw, &ctrl);
2799	}
2800
2801	e1000_raise_mdi_clk(hw, &ctrl);
2802	e1000_lower_mdi_clk(hw, &ctrl);
2803
2804	return data;
2805}
2806
2807
2808/**
2809 * e1000_read_phy_reg - read a phy register
2810 * @hw: Struct containing variables accessed by shared code
2811 * @reg_addr: address of the PHY register to read
 
2812 *
2813 * Reads the value from a PHY register, if the value is on a specific non zero
2814 * page, sets the page first.
2815 */
2816s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2817{
2818	u32 ret_val;
2819	unsigned long flags;
2820
2821	spin_lock_irqsave(&e1000_phy_lock, flags);
2822
2823	if ((hw->phy_type == e1000_phy_igp) &&
2824	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2825		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2826						 (u16) reg_addr);
2827		if (ret_val) {
2828			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2829			return ret_val;
2830		}
2831	}
2832
2833	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2834					phy_data);
 
2835	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2836
2837	return ret_val;
2838}
2839
2840static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2841				 u16 *phy_data)
2842{
2843	u32 i;
2844	u32 mdic = 0;
2845	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2846
2847	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2848		e_dbg("PHY Address %d is out of range\n", reg_addr);
2849		return -E1000_ERR_PARAM;
2850	}
2851
2852	if (hw->mac_type > e1000_82543) {
2853		/* Set up Op-code, Phy Address, and register address in the MDI
2854		 * Control register.  The MAC will take care of interfacing with
2855		 * the PHY to retrieve the desired data.
2856		 */
2857		if (hw->mac_type == e1000_ce4100) {
2858			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2859				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2860				(INTEL_CE_GBE_MDIC_OP_READ) |
2861				(INTEL_CE_GBE_MDIC_GO));
2862
2863			writel(mdic, E1000_MDIO_CMD);
2864
2865			/* Poll the ready bit to see if the MDI read
2866			 * completed
2867			 */
2868			for (i = 0; i < 64; i++) {
2869				udelay(50);
2870				mdic = readl(E1000_MDIO_CMD);
2871				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2872					break;
2873			}
2874
2875			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2876				e_dbg("MDI Read did not complete\n");
2877				return -E1000_ERR_PHY;
2878			}
2879
2880			mdic = readl(E1000_MDIO_STS);
2881			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2882				e_dbg("MDI Read Error\n");
2883				return -E1000_ERR_PHY;
2884			}
2885			*phy_data = (u16) mdic;
2886		} else {
2887			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2888				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2889				(E1000_MDIC_OP_READ));
2890
2891			ew32(MDIC, mdic);
2892
2893			/* Poll the ready bit to see if the MDI read
2894			 * completed
2895			 */
2896			for (i = 0; i < 64; i++) {
2897				udelay(50);
2898				mdic = er32(MDIC);
2899				if (mdic & E1000_MDIC_READY)
2900					break;
2901			}
2902			if (!(mdic & E1000_MDIC_READY)) {
2903				e_dbg("MDI Read did not complete\n");
2904				return -E1000_ERR_PHY;
2905			}
2906			if (mdic & E1000_MDIC_ERROR) {
2907				e_dbg("MDI Error\n");
2908				return -E1000_ERR_PHY;
2909			}
2910			*phy_data = (u16) mdic;
2911		}
2912	} else {
2913		/* We must first send a preamble through the MDIO pin to signal
2914		 * the beginning of an MII instruction.  This is done by sending
2915		 * 32 consecutive "1" bits.
2916		 */
2917		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2918
2919		/* Now combine the next few fields that are required for a read
2920		 * operation.  We use this method instead of calling the
2921		 * e1000_shift_out_mdi_bits routine five different times. The
2922		 * format of a MII read instruction consists of a shift out of
2923		 * 14 bits and is defined as follows:
2924		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2925		 * followed by a shift in of 18 bits.  This first two bits
2926		 * shifted in are TurnAround bits used to avoid contention on
2927		 * the MDIO pin when a READ operation is performed.  These two
2928		 * bits are thrown away followed by a shift in of 16 bits which
2929		 * contains the desired data.
2930		 */
2931		mdic = ((reg_addr) | (phy_addr << 5) |
2932			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2933
2934		e1000_shift_out_mdi_bits(hw, mdic, 14);
2935
2936		/* Now that we've shifted out the read command to the MII, we
2937		 * need to "shift in" the 16-bit value (18 total bits) of the
2938		 * requested PHY register address.
2939		 */
2940		*phy_data = e1000_shift_in_mdi_bits(hw);
2941	}
2942	return E1000_SUCCESS;
2943}
2944
2945/**
2946 * e1000_write_phy_reg - write a phy register
2947 *
2948 * @hw: Struct containing variables accessed by shared code
2949 * @reg_addr: address of the PHY register to write
2950 * @data: data to write to the PHY
2951 *
2952 * Writes a value to a PHY register
2953 */
2954s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2955{
2956	u32 ret_val;
2957	unsigned long flags;
2958
2959	spin_lock_irqsave(&e1000_phy_lock, flags);
2960
2961	if ((hw->phy_type == e1000_phy_igp) &&
2962	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2963		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2964						 (u16) reg_addr);
2965		if (ret_val) {
2966			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2967			return ret_val;
2968		}
2969	}
2970
2971	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2972					 phy_data);
2973	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2974
2975	return ret_val;
2976}
2977
2978static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2979				  u16 phy_data)
2980{
2981	u32 i;
2982	u32 mdic = 0;
2983	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2984
2985	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2986		e_dbg("PHY Address %d is out of range\n", reg_addr);
2987		return -E1000_ERR_PARAM;
2988	}
2989
2990	if (hw->mac_type > e1000_82543) {
2991		/* Set up Op-code, Phy Address, register address, and data
2992		 * intended for the PHY register in the MDI Control register.
2993		 * The MAC will take care of interfacing with the PHY to send
2994		 * the desired data.
2995		 */
2996		if (hw->mac_type == e1000_ce4100) {
2997			mdic = (((u32) phy_data) |
2998				(reg_addr << E1000_MDIC_REG_SHIFT) |
2999				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3000				(INTEL_CE_GBE_MDIC_OP_WRITE) |
3001				(INTEL_CE_GBE_MDIC_GO));
3002
3003			writel(mdic, E1000_MDIO_CMD);
3004
3005			/* Poll the ready bit to see if the MDI read
3006			 * completed
3007			 */
3008			for (i = 0; i < 640; i++) {
3009				udelay(5);
3010				mdic = readl(E1000_MDIO_CMD);
3011				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3012					break;
3013			}
3014			if (mdic & INTEL_CE_GBE_MDIC_GO) {
3015				e_dbg("MDI Write did not complete\n");
3016				return -E1000_ERR_PHY;
3017			}
3018		} else {
3019			mdic = (((u32) phy_data) |
3020				(reg_addr << E1000_MDIC_REG_SHIFT) |
3021				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3022				(E1000_MDIC_OP_WRITE));
3023
3024			ew32(MDIC, mdic);
3025
3026			/* Poll the ready bit to see if the MDI read
3027			 * completed
3028			 */
3029			for (i = 0; i < 641; i++) {
3030				udelay(5);
3031				mdic = er32(MDIC);
3032				if (mdic & E1000_MDIC_READY)
3033					break;
3034			}
3035			if (!(mdic & E1000_MDIC_READY)) {
3036				e_dbg("MDI Write did not complete\n");
3037				return -E1000_ERR_PHY;
3038			}
3039		}
3040	} else {
3041		/* We'll need to use the SW defined pins to shift the write
3042		 * command out to the PHY. We first send a preamble to the PHY
3043		 * to signal the beginning of the MII instruction.  This is done
3044		 * by sending 32 consecutive "1" bits.
3045		 */
3046		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3047
3048		/* Now combine the remaining required fields that will indicate
3049		 * a write operation. We use this method instead of calling the
3050		 * e1000_shift_out_mdi_bits routine for each field in the
3051		 * command. The format of a MII write instruction is as follows:
3052		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3053		 */
3054		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3055			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3056		mdic <<= 16;
3057		mdic |= (u32) phy_data;
3058
3059		e1000_shift_out_mdi_bits(hw, mdic, 32);
3060	}
3061
3062	return E1000_SUCCESS;
3063}
3064
3065/**
3066 * e1000_phy_hw_reset - reset the phy, hardware style
3067 * @hw: Struct containing variables accessed by shared code
3068 *
3069 * Returns the PHY to the power-on reset state
3070 */
3071s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3072{
3073	u32 ctrl, ctrl_ext;
3074	u32 led_ctrl;
3075
3076	e_dbg("Resetting Phy...\n");
3077
3078	if (hw->mac_type > e1000_82543) {
3079		/* Read the device control register and assert the
3080		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3081		 * For e1000 hardware, we delay for 10ms between the assert
3082		 * and de-assert.
3083		 */
3084		ctrl = er32(CTRL);
3085		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3086		E1000_WRITE_FLUSH();
3087
3088		msleep(10);
3089
3090		ew32(CTRL, ctrl);
3091		E1000_WRITE_FLUSH();
3092
3093	} else {
3094		/* Read the Extended Device Control Register, assert the
3095		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3096		 * out of reset.
3097		 */
3098		ctrl_ext = er32(CTRL_EXT);
3099		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3100		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3101		ew32(CTRL_EXT, ctrl_ext);
3102		E1000_WRITE_FLUSH();
3103		msleep(10);
3104		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3105		ew32(CTRL_EXT, ctrl_ext);
3106		E1000_WRITE_FLUSH();
3107	}
3108	udelay(150);
3109
3110	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3111		/* Configure activity LED after PHY reset */
3112		led_ctrl = er32(LEDCTL);
3113		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3114		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3115		ew32(LEDCTL, led_ctrl);
3116	}
3117
3118	/* Wait for FW to finish PHY configuration. */
3119	return e1000_get_phy_cfg_done(hw);
3120}
3121
3122/**
3123 * e1000_phy_reset - reset the phy to commit settings
3124 * @hw: Struct containing variables accessed by shared code
3125 *
3126 * Resets the PHY
3127 * Sets bit 15 of the MII Control register
3128 */
3129s32 e1000_phy_reset(struct e1000_hw *hw)
3130{
3131	s32 ret_val;
3132	u16 phy_data;
3133
3134	switch (hw->phy_type) {
3135	case e1000_phy_igp:
3136		ret_val = e1000_phy_hw_reset(hw);
3137		if (ret_val)
3138			return ret_val;
3139		break;
3140	default:
3141		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3142		if (ret_val)
3143			return ret_val;
3144
3145		phy_data |= MII_CR_RESET;
3146		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3147		if (ret_val)
3148			return ret_val;
3149
3150		udelay(1);
3151		break;
3152	}
3153
3154	if (hw->phy_type == e1000_phy_igp)
3155		e1000_phy_init_script(hw);
3156
3157	return E1000_SUCCESS;
3158}
3159
3160/**
3161 * e1000_detect_gig_phy - check the phy type
3162 * @hw: Struct containing variables accessed by shared code
3163 *
3164 * Probes the expected PHY address for known PHY IDs
3165 */
3166static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3167{
3168	s32 phy_init_status, ret_val;
3169	u16 phy_id_high, phy_id_low;
3170	bool match = false;
3171
3172	if (hw->phy_id != 0)
3173		return E1000_SUCCESS;
3174
3175	/* Read the PHY ID Registers to identify which PHY is onboard. */
3176	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3177	if (ret_val)
3178		return ret_val;
3179
3180	hw->phy_id = (u32) (phy_id_high << 16);
3181	udelay(20);
3182	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3183	if (ret_val)
3184		return ret_val;
3185
3186	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3187	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3188
3189	switch (hw->mac_type) {
3190	case e1000_82543:
3191		if (hw->phy_id == M88E1000_E_PHY_ID)
3192			match = true;
3193		break;
3194	case e1000_82544:
3195		if (hw->phy_id == M88E1000_I_PHY_ID)
3196			match = true;
3197		break;
3198	case e1000_82540:
3199	case e1000_82545:
3200	case e1000_82545_rev_3:
3201	case e1000_82546:
3202	case e1000_82546_rev_3:
3203		if (hw->phy_id == M88E1011_I_PHY_ID)
3204			match = true;
3205		break;
3206	case e1000_ce4100:
3207		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3208		    (hw->phy_id == RTL8201N_PHY_ID) ||
3209		    (hw->phy_id == M88E1118_E_PHY_ID))
3210			match = true;
3211		break;
3212	case e1000_82541:
3213	case e1000_82541_rev_2:
3214	case e1000_82547:
3215	case e1000_82547_rev_2:
3216		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3217			match = true;
3218		break;
3219	default:
3220		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3221		return -E1000_ERR_CONFIG;
3222	}
3223	phy_init_status = e1000_set_phy_type(hw);
3224
3225	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3226		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3227		return E1000_SUCCESS;
3228	}
3229	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3230	return -E1000_ERR_PHY;
3231}
3232
3233/**
3234 * e1000_phy_reset_dsp - reset DSP
3235 * @hw: Struct containing variables accessed by shared code
3236 *
3237 * Resets the PHY's DSP
3238 */
3239static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3240{
3241	s32 ret_val;
3242
3243	do {
3244		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3245		if (ret_val)
3246			break;
3247		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3248		if (ret_val)
3249			break;
3250		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3251		if (ret_val)
3252			break;
3253		ret_val = E1000_SUCCESS;
3254	} while (0);
3255
3256	return ret_val;
3257}
3258
3259/**
3260 * e1000_phy_igp_get_info - get igp specific registers
3261 * @hw: Struct containing variables accessed by shared code
3262 * @phy_info: PHY information structure
3263 *
3264 * Get PHY information from various PHY registers for igp PHY only.
3265 */
3266static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3267				  struct e1000_phy_info *phy_info)
3268{
3269	s32 ret_val;
3270	u16 phy_data, min_length, max_length, average;
3271	e1000_rev_polarity polarity;
3272
3273	/* The downshift status is checked only once, after link is established,
3274	 * and it stored in the hw->speed_downgraded parameter.
3275	 */
3276	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3277
3278	/* IGP01E1000 does not need to support it. */
3279	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3280
3281	/* IGP01E1000 always correct polarity reversal */
3282	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3283
3284	/* Check polarity status */
3285	ret_val = e1000_check_polarity(hw, &polarity);
3286	if (ret_val)
3287		return ret_val;
3288
3289	phy_info->cable_polarity = polarity;
3290
3291	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3292	if (ret_val)
3293		return ret_val;
3294
3295	phy_info->mdix_mode =
3296	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3297				 IGP01E1000_PSSR_MDIX_SHIFT);
3298
3299	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3300	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3301		/* Local/Remote Receiver Information are only valid @ 1000
3302		 * Mbps
3303		 */
3304		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3305		if (ret_val)
3306			return ret_val;
3307
3308		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3309				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3310		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3311		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3312				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3313		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3314
3315		/* Get cable length */
3316		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3317		if (ret_val)
3318			return ret_val;
3319
3320		/* Translate to old method */
3321		average = (max_length + min_length) / 2;
3322
3323		if (average <= e1000_igp_cable_length_50)
3324			phy_info->cable_length = e1000_cable_length_50;
3325		else if (average <= e1000_igp_cable_length_80)
3326			phy_info->cable_length = e1000_cable_length_50_80;
3327		else if (average <= e1000_igp_cable_length_110)
3328			phy_info->cable_length = e1000_cable_length_80_110;
3329		else if (average <= e1000_igp_cable_length_140)
3330			phy_info->cable_length = e1000_cable_length_110_140;
3331		else
3332			phy_info->cable_length = e1000_cable_length_140;
3333	}
3334
3335	return E1000_SUCCESS;
3336}
3337
3338/**
3339 * e1000_phy_m88_get_info - get m88 specific registers
3340 * @hw: Struct containing variables accessed by shared code
3341 * @phy_info: PHY information structure
3342 *
3343 * Get PHY information from various PHY registers for m88 PHY only.
3344 */
3345static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3346				  struct e1000_phy_info *phy_info)
3347{
3348	s32 ret_val;
3349	u16 phy_data;
3350	e1000_rev_polarity polarity;
3351
3352	/* The downshift status is checked only once, after link is established,
3353	 * and it stored in the hw->speed_downgraded parameter.
3354	 */
3355	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3356
3357	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3358	if (ret_val)
3359		return ret_val;
3360
3361	phy_info->extended_10bt_distance =
3362	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3363	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3364	    e1000_10bt_ext_dist_enable_lower :
3365	    e1000_10bt_ext_dist_enable_normal;
3366
3367	phy_info->polarity_correction =
3368	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3369	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3370	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3371
3372	/* Check polarity status */
3373	ret_val = e1000_check_polarity(hw, &polarity);
3374	if (ret_val)
3375		return ret_val;
3376	phy_info->cable_polarity = polarity;
3377
3378	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3379	if (ret_val)
3380		return ret_val;
3381
3382	phy_info->mdix_mode =
3383	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3384				 M88E1000_PSSR_MDIX_SHIFT);
3385
3386	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3387		/* Cable Length Estimation and Local/Remote Receiver Information
3388		 * are only valid at 1000 Mbps.
3389		 */
3390		phy_info->cable_length =
3391		    (e1000_cable_length) ((phy_data &
3392					   M88E1000_PSSR_CABLE_LENGTH) >>
3393					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3394
3395		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3396		if (ret_val)
3397			return ret_val;
3398
3399		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3400				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3401		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3402		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3403				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3404		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3405
3406	}
3407
3408	return E1000_SUCCESS;
3409}
3410
3411/**
3412 * e1000_phy_get_info - request phy info
3413 * @hw: Struct containing variables accessed by shared code
3414 * @phy_info: PHY information structure
3415 *
3416 * Get PHY information from various PHY registers
3417 */
3418s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3419{
3420	s32 ret_val;
3421	u16 phy_data;
3422
3423	phy_info->cable_length = e1000_cable_length_undefined;
3424	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3425	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3426	phy_info->downshift = e1000_downshift_undefined;
3427	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3428	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3429	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3430	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3431
3432	if (hw->media_type != e1000_media_type_copper) {
3433		e_dbg("PHY info is only valid for copper media\n");
3434		return -E1000_ERR_CONFIG;
3435	}
3436
3437	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3438	if (ret_val)
3439		return ret_val;
3440
3441	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3442	if (ret_val)
3443		return ret_val;
3444
3445	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3446		e_dbg("PHY info is only valid if link is up\n");
3447		return -E1000_ERR_CONFIG;
3448	}
3449
3450	if (hw->phy_type == e1000_phy_igp)
3451		return e1000_phy_igp_get_info(hw, phy_info);
3452	else if ((hw->phy_type == e1000_phy_8211) ||
3453	         (hw->phy_type == e1000_phy_8201))
3454		return E1000_SUCCESS;
3455	else
3456		return e1000_phy_m88_get_info(hw, phy_info);
3457}
3458
3459s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3460{
3461	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3462		e_dbg("Invalid MDI setting detected\n");
3463		hw->mdix = 1;
3464		return -E1000_ERR_CONFIG;
3465	}
3466	return E1000_SUCCESS;
3467}
3468
3469/**
3470 * e1000_init_eeprom_params - initialize sw eeprom vars
3471 * @hw: Struct containing variables accessed by shared code
3472 *
3473 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3474 * is configured.
3475 */
3476s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3477{
3478	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3479	u32 eecd = er32(EECD);
3480	s32 ret_val = E1000_SUCCESS;
3481	u16 eeprom_size;
3482
3483	switch (hw->mac_type) {
3484	case e1000_82542_rev2_0:
3485	case e1000_82542_rev2_1:
3486	case e1000_82543:
3487	case e1000_82544:
3488		eeprom->type = e1000_eeprom_microwire;
3489		eeprom->word_size = 64;
3490		eeprom->opcode_bits = 3;
3491		eeprom->address_bits = 6;
3492		eeprom->delay_usec = 50;
3493		break;
3494	case e1000_82540:
3495	case e1000_82545:
3496	case e1000_82545_rev_3:
3497	case e1000_82546:
3498	case e1000_82546_rev_3:
3499		eeprom->type = e1000_eeprom_microwire;
3500		eeprom->opcode_bits = 3;
3501		eeprom->delay_usec = 50;
3502		if (eecd & E1000_EECD_SIZE) {
3503			eeprom->word_size = 256;
3504			eeprom->address_bits = 8;
3505		} else {
3506			eeprom->word_size = 64;
3507			eeprom->address_bits = 6;
3508		}
3509		break;
3510	case e1000_82541:
3511	case e1000_82541_rev_2:
3512	case e1000_82547:
3513	case e1000_82547_rev_2:
3514		if (eecd & E1000_EECD_TYPE) {
3515			eeprom->type = e1000_eeprom_spi;
3516			eeprom->opcode_bits = 8;
3517			eeprom->delay_usec = 1;
3518			if (eecd & E1000_EECD_ADDR_BITS) {
3519				eeprom->page_size = 32;
3520				eeprom->address_bits = 16;
3521			} else {
3522				eeprom->page_size = 8;
3523				eeprom->address_bits = 8;
3524			}
3525		} else {
3526			eeprom->type = e1000_eeprom_microwire;
3527			eeprom->opcode_bits = 3;
3528			eeprom->delay_usec = 50;
3529			if (eecd & E1000_EECD_ADDR_BITS) {
3530				eeprom->word_size = 256;
3531				eeprom->address_bits = 8;
3532			} else {
3533				eeprom->word_size = 64;
3534				eeprom->address_bits = 6;
3535			}
3536		}
3537		break;
3538	default:
3539		break;
3540	}
3541
3542	if (eeprom->type == e1000_eeprom_spi) {
3543		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3544		 * 128B to 32KB (incremented by powers of 2).
3545		 */
3546		/* Set to default value for initial eeprom read. */
3547		eeprom->word_size = 64;
3548		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3549		if (ret_val)
3550			return ret_val;
3551		eeprom_size =
3552		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3553		/* 256B eeprom size was not supported in earlier hardware, so we
3554		 * bump eeprom_size up one to ensure that "1" (which maps to
3555		 * 256B) is never the result used in the shifting logic below.
3556		 */
3557		if (eeprom_size)
3558			eeprom_size++;
3559
3560		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3561	}
3562	return ret_val;
3563}
3564
3565/**
3566 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3567 * @hw: Struct containing variables accessed by shared code
3568 * @eecd: EECD's current value
3569 */
3570static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3571{
3572	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3573	 * wait <delay> microseconds.
3574	 */
3575	*eecd = *eecd | E1000_EECD_SK;
3576	ew32(EECD, *eecd);
3577	E1000_WRITE_FLUSH();
3578	udelay(hw->eeprom.delay_usec);
3579}
3580
3581/**
3582 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3583 * @hw: Struct containing variables accessed by shared code
3584 * @eecd: EECD's current value
3585 */
3586static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3587{
3588	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3589	 * then wait 50 microseconds.
3590	 */
3591	*eecd = *eecd & ~E1000_EECD_SK;
3592	ew32(EECD, *eecd);
3593	E1000_WRITE_FLUSH();
3594	udelay(hw->eeprom.delay_usec);
3595}
3596
3597/**
3598 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3599 * @hw: Struct containing variables accessed by shared code
3600 * @data: data to send to the EEPROM
3601 * @count: number of bits to shift out
3602 */
3603static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3604{
3605	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3606	u32 eecd;
3607	u32 mask;
3608
3609	/* We need to shift "count" bits out to the EEPROM. So, value in the
3610	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3611	 * In order to do this, "data" must be broken down into bits.
3612	 */
3613	mask = 0x01 << (count - 1);
3614	eecd = er32(EECD);
3615	if (eeprom->type == e1000_eeprom_microwire) {
3616		eecd &= ~E1000_EECD_DO;
3617	} else if (eeprom->type == e1000_eeprom_spi) {
3618		eecd |= E1000_EECD_DO;
3619	}
3620	do {
3621		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3622		 * "1", and then raising and then lowering the clock (the SK bit
3623		 * controls the clock input to the EEPROM).  A "0" is shifted
3624		 * out to the EEPROM by setting "DI" to "0" and then raising and
3625		 * then lowering the clock.
3626		 */
3627		eecd &= ~E1000_EECD_DI;
3628
3629		if (data & mask)
3630			eecd |= E1000_EECD_DI;
3631
3632		ew32(EECD, eecd);
3633		E1000_WRITE_FLUSH();
3634
3635		udelay(eeprom->delay_usec);
3636
3637		e1000_raise_ee_clk(hw, &eecd);
3638		e1000_lower_ee_clk(hw, &eecd);
3639
3640		mask = mask >> 1;
3641
3642	} while (mask);
3643
3644	/* We leave the "DI" bit set to "0" when we leave this routine. */
3645	eecd &= ~E1000_EECD_DI;
3646	ew32(EECD, eecd);
3647}
3648
3649/**
3650 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3651 * @hw: Struct containing variables accessed by shared code
3652 * @count: number of bits to shift in
3653 */
3654static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3655{
3656	u32 eecd;
3657	u32 i;
3658	u16 data;
3659
3660	/* In order to read a register from the EEPROM, we need to shift 'count'
3661	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3662	 * input to the EEPROM (setting the SK bit), and then reading the value
3663	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3664	 * should always be clear.
3665	 */
3666
3667	eecd = er32(EECD);
3668
3669	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3670	data = 0;
3671
3672	for (i = 0; i < count; i++) {
3673		data = data << 1;
3674		e1000_raise_ee_clk(hw, &eecd);
3675
3676		eecd = er32(EECD);
3677
3678		eecd &= ~(E1000_EECD_DI);
3679		if (eecd & E1000_EECD_DO)
3680			data |= 1;
3681
3682		e1000_lower_ee_clk(hw, &eecd);
3683	}
3684
3685	return data;
3686}
3687
3688/**
3689 * e1000_acquire_eeprom - Prepares EEPROM for access
3690 * @hw: Struct containing variables accessed by shared code
3691 *
3692 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3693 * function should be called before issuing a command to the EEPROM.
3694 */
3695static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3696{
3697	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3698	u32 eecd, i = 0;
3699
3700	eecd = er32(EECD);
3701
3702	/* Request EEPROM Access */
3703	if (hw->mac_type > e1000_82544) {
3704		eecd |= E1000_EECD_REQ;
3705		ew32(EECD, eecd);
3706		eecd = er32(EECD);
3707		while ((!(eecd & E1000_EECD_GNT)) &&
3708		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3709			i++;
3710			udelay(5);
3711			eecd = er32(EECD);
3712		}
3713		if (!(eecd & E1000_EECD_GNT)) {
3714			eecd &= ~E1000_EECD_REQ;
3715			ew32(EECD, eecd);
3716			e_dbg("Could not acquire EEPROM grant\n");
3717			return -E1000_ERR_EEPROM;
3718		}
3719	}
3720
3721	/* Setup EEPROM for Read/Write */
3722
3723	if (eeprom->type == e1000_eeprom_microwire) {
3724		/* Clear SK and DI */
3725		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3726		ew32(EECD, eecd);
3727
3728		/* Set CS */
3729		eecd |= E1000_EECD_CS;
3730		ew32(EECD, eecd);
3731	} else if (eeprom->type == e1000_eeprom_spi) {
3732		/* Clear SK and CS */
3733		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3734		ew32(EECD, eecd);
3735		E1000_WRITE_FLUSH();
3736		udelay(1);
3737	}
3738
3739	return E1000_SUCCESS;
3740}
3741
3742/**
3743 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3744 * @hw: Struct containing variables accessed by shared code
3745 */
3746static void e1000_standby_eeprom(struct e1000_hw *hw)
3747{
3748	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3749	u32 eecd;
3750
3751	eecd = er32(EECD);
3752
3753	if (eeprom->type == e1000_eeprom_microwire) {
3754		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3755		ew32(EECD, eecd);
3756		E1000_WRITE_FLUSH();
3757		udelay(eeprom->delay_usec);
3758
3759		/* Clock high */
3760		eecd |= E1000_EECD_SK;
3761		ew32(EECD, eecd);
3762		E1000_WRITE_FLUSH();
3763		udelay(eeprom->delay_usec);
3764
3765		/* Select EEPROM */
3766		eecd |= E1000_EECD_CS;
3767		ew32(EECD, eecd);
3768		E1000_WRITE_FLUSH();
3769		udelay(eeprom->delay_usec);
3770
3771		/* Clock low */
3772		eecd &= ~E1000_EECD_SK;
3773		ew32(EECD, eecd);
3774		E1000_WRITE_FLUSH();
3775		udelay(eeprom->delay_usec);
3776	} else if (eeprom->type == e1000_eeprom_spi) {
3777		/* Toggle CS to flush commands */
3778		eecd |= E1000_EECD_CS;
3779		ew32(EECD, eecd);
3780		E1000_WRITE_FLUSH();
3781		udelay(eeprom->delay_usec);
3782		eecd &= ~E1000_EECD_CS;
3783		ew32(EECD, eecd);
3784		E1000_WRITE_FLUSH();
3785		udelay(eeprom->delay_usec);
3786	}
3787}
3788
3789/**
3790 * e1000_release_eeprom - drop chip select
3791 * @hw: Struct containing variables accessed by shared code
3792 *
3793 * Terminates a command by inverting the EEPROM's chip select pin
3794 */
3795static void e1000_release_eeprom(struct e1000_hw *hw)
3796{
3797	u32 eecd;
3798
3799	eecd = er32(EECD);
3800
3801	if (hw->eeprom.type == e1000_eeprom_spi) {
3802		eecd |= E1000_EECD_CS;	/* Pull CS high */
3803		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3804
3805		ew32(EECD, eecd);
3806		E1000_WRITE_FLUSH();
3807
3808		udelay(hw->eeprom.delay_usec);
3809	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3810		/* cleanup eeprom */
3811
3812		/* CS on Microwire is active-high */
3813		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3814
3815		ew32(EECD, eecd);
3816
3817		/* Rising edge of clock */
3818		eecd |= E1000_EECD_SK;
3819		ew32(EECD, eecd);
3820		E1000_WRITE_FLUSH();
3821		udelay(hw->eeprom.delay_usec);
3822
3823		/* Falling edge of clock */
3824		eecd &= ~E1000_EECD_SK;
3825		ew32(EECD, eecd);
3826		E1000_WRITE_FLUSH();
3827		udelay(hw->eeprom.delay_usec);
3828	}
3829
3830	/* Stop requesting EEPROM access */
3831	if (hw->mac_type > e1000_82544) {
3832		eecd &= ~E1000_EECD_REQ;
3833		ew32(EECD, eecd);
3834	}
3835}
3836
3837/**
3838 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3839 * @hw: Struct containing variables accessed by shared code
3840 */
3841static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3842{
3843	u16 retry_count = 0;
3844	u8 spi_stat_reg;
3845
3846	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3847	 * EEPROM will signal that the command has been completed by clearing
3848	 * bit 0 of the internal status register.  If it's not cleared within
3849	 * 5 milliseconds, then error out.
3850	 */
3851	retry_count = 0;
3852	do {
3853		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3854					hw->eeprom.opcode_bits);
3855		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3856		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3857			break;
3858
3859		udelay(5);
3860		retry_count += 5;
3861
3862		e1000_standby_eeprom(hw);
3863	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3864
3865	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3866	 * only 0-5mSec on 5V devices)
3867	 */
3868	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3869		e_dbg("SPI EEPROM Status error\n");
3870		return -E1000_ERR_EEPROM;
3871	}
3872
3873	return E1000_SUCCESS;
3874}
3875
3876/**
3877 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3878 * @hw: Struct containing variables accessed by shared code
3879 * @offset: offset of  word in the EEPROM to read
3880 * @data: word read from the EEPROM
3881 * @words: number of words to read
3882 */
3883s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3884{
3885	s32 ret;
3886	spin_lock(&e1000_eeprom_lock);
 
3887	ret = e1000_do_read_eeprom(hw, offset, words, data);
3888	spin_unlock(&e1000_eeprom_lock);
3889	return ret;
3890}
3891
3892static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3893				u16 *data)
3894{
3895	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3896	u32 i = 0;
3897
3898	if (hw->mac_type == e1000_ce4100) {
3899		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3900		                      data);
3901		return E1000_SUCCESS;
3902	}
3903
3904	/* If eeprom is not yet detected, do so now */
3905	if (eeprom->word_size == 0)
3906		e1000_init_eeprom_params(hw);
3907
3908	/* A check for invalid values:  offset too large, too many words, and
3909	 * not enough words.
3910	 */
3911	if ((offset >= eeprom->word_size)
3912	    || (words > eeprom->word_size - offset) || (words == 0)) {
 
3913		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3914		      "size = %d\n", offset, eeprom->word_size);
3915		return -E1000_ERR_EEPROM;
3916	}
3917
3918	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3919	 * directly. In this case, we need to acquire the EEPROM so that
3920	 * FW or other port software does not interrupt.
3921	 */
3922	/* Prepare the EEPROM for bit-bang reading */
3923	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3924		return -E1000_ERR_EEPROM;
3925
3926	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3927	 * acquired the EEPROM at this point, so any returns should release it
3928	 */
3929	if (eeprom->type == e1000_eeprom_spi) {
3930		u16 word_in;
3931		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3932
3933		if (e1000_spi_eeprom_ready(hw)) {
3934			e1000_release_eeprom(hw);
3935			return -E1000_ERR_EEPROM;
3936		}
3937
3938		e1000_standby_eeprom(hw);
3939
3940		/* Some SPI eeproms use the 8th address bit embedded in the
3941		 * opcode
3942		 */
3943		if ((eeprom->address_bits == 8) && (offset >= 128))
3944			read_opcode |= EEPROM_A8_OPCODE_SPI;
3945
3946		/* Send the READ command (opcode + addr)  */
3947		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3948		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3949					eeprom->address_bits);
3950
3951		/* Read the data.  The address of the eeprom internally
3952		 * increments with each byte (spi) being read, saving on the
3953		 * overhead of eeprom setup and tear-down.  The address counter
3954		 * will roll over if reading beyond the size of the eeprom, thus
3955		 * allowing the entire memory to be read starting from any
3956		 * offset.
3957		 */
3958		for (i = 0; i < words; i++) {
3959			word_in = e1000_shift_in_ee_bits(hw, 16);
3960			data[i] = (word_in >> 8) | (word_in << 8);
3961		}
3962	} else if (eeprom->type == e1000_eeprom_microwire) {
3963		for (i = 0; i < words; i++) {
3964			/* Send the READ command (opcode + addr)  */
3965			e1000_shift_out_ee_bits(hw,
3966						EEPROM_READ_OPCODE_MICROWIRE,
3967						eeprom->opcode_bits);
3968			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3969						eeprom->address_bits);
3970
3971			/* Read the data.  For microwire, each word requires the
3972			 * overhead of eeprom setup and tear-down.
3973			 */
3974			data[i] = e1000_shift_in_ee_bits(hw, 16);
3975			e1000_standby_eeprom(hw);
 
3976		}
3977	}
3978
3979	/* End this read operation */
3980	e1000_release_eeprom(hw);
3981
3982	return E1000_SUCCESS;
3983}
3984
3985/**
3986 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3987 * @hw: Struct containing variables accessed by shared code
3988 *
3989 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3990 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3991 * valid.
3992 */
3993s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3994{
3995	u16 checksum = 0;
3996	u16 i, eeprom_data;
3997
3998	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3999		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4000			e_dbg("EEPROM Read Error\n");
4001			return -E1000_ERR_EEPROM;
4002		}
4003		checksum += eeprom_data;
4004	}
4005
4006#ifdef CONFIG_PARISC
4007	/* This is a signature and not a checksum on HP c8000 */
4008	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4009		return E1000_SUCCESS;
4010
4011#endif
4012	if (checksum == (u16) EEPROM_SUM)
4013		return E1000_SUCCESS;
4014	else {
4015		e_dbg("EEPROM Checksum Invalid\n");
4016		return -E1000_ERR_EEPROM;
4017	}
4018}
4019
4020/**
4021 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4022 * @hw: Struct containing variables accessed by shared code
4023 *
4024 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4025 * Writes the difference to word offset 63 of the EEPROM.
4026 */
4027s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4028{
4029	u16 checksum = 0;
4030	u16 i, eeprom_data;
4031
4032	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4033		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4034			e_dbg("EEPROM Read Error\n");
4035			return -E1000_ERR_EEPROM;
4036		}
4037		checksum += eeprom_data;
4038	}
4039	checksum = (u16) EEPROM_SUM - checksum;
4040	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4041		e_dbg("EEPROM Write Error\n");
4042		return -E1000_ERR_EEPROM;
4043	}
4044	return E1000_SUCCESS;
4045}
4046
4047/**
4048 * e1000_write_eeprom - write words to the different EEPROM types.
4049 * @hw: Struct containing variables accessed by shared code
4050 * @offset: offset within the EEPROM to be written to
4051 * @words: number of words to write
4052 * @data: 16 bit word to be written to the EEPROM
4053 *
4054 * If e1000_update_eeprom_checksum is not called after this function, the
4055 * EEPROM will most likely contain an invalid checksum.
4056 */
4057s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4058{
4059	s32 ret;
4060	spin_lock(&e1000_eeprom_lock);
 
4061	ret = e1000_do_write_eeprom(hw, offset, words, data);
4062	spin_unlock(&e1000_eeprom_lock);
4063	return ret;
4064}
4065
4066static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4067				 u16 *data)
4068{
4069	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4070	s32 status = 0;
4071
4072	if (hw->mac_type == e1000_ce4100) {
4073		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4074		                       data);
4075		return E1000_SUCCESS;
4076	}
4077
4078	/* If eeprom is not yet detected, do so now */
4079	if (eeprom->word_size == 0)
4080		e1000_init_eeprom_params(hw);
4081
4082	/* A check for invalid values:  offset too large, too many words, and
4083	 * not enough words.
4084	 */
4085	if ((offset >= eeprom->word_size)
4086	    || (words > eeprom->word_size - offset) || (words == 0)) {
 
4087		e_dbg("\"words\" parameter out of bounds\n");
4088		return -E1000_ERR_EEPROM;
4089	}
4090
4091	/* Prepare the EEPROM for writing  */
4092	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4093		return -E1000_ERR_EEPROM;
4094
4095	if (eeprom->type == e1000_eeprom_microwire) {
4096		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4097	} else {
4098		status = e1000_write_eeprom_spi(hw, offset, words, data);
4099		msleep(10);
4100	}
4101
4102	/* Done with writing */
4103	e1000_release_eeprom(hw);
4104
4105	return status;
4106}
4107
4108/**
4109 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4110 * @hw: Struct containing variables accessed by shared code
4111 * @offset: offset within the EEPROM to be written to
4112 * @words: number of words to write
4113 * @data: pointer to array of 8 bit words to be written to the EEPROM
4114 */
4115static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4116				  u16 *data)
4117{
4118	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4119	u16 widx = 0;
4120
4121	while (widx < words) {
4122		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4123
4124		if (e1000_spi_eeprom_ready(hw))
4125			return -E1000_ERR_EEPROM;
4126
4127		e1000_standby_eeprom(hw);
 
4128
4129		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4130		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4131					eeprom->opcode_bits);
4132
4133		e1000_standby_eeprom(hw);
4134
4135		/* Some SPI eeproms use the 8th address bit embedded in the
4136		 * opcode
4137		 */
4138		if ((eeprom->address_bits == 8) && (offset >= 128))
4139			write_opcode |= EEPROM_A8_OPCODE_SPI;
4140
4141		/* Send the Write command (8-bit opcode + addr) */
4142		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4143
4144		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4145					eeprom->address_bits);
4146
4147		/* Send the data */
4148
4149		/* Loop to allow for up to whole page write (32 bytes) of
4150		 * eeprom
4151		 */
4152		while (widx < words) {
4153			u16 word_out = data[widx];
 
4154			word_out = (word_out >> 8) | (word_out << 8);
4155			e1000_shift_out_ee_bits(hw, word_out, 16);
4156			widx++;
4157
4158			/* Some larger eeprom sizes are capable of a 32-byte
4159			 * PAGE WRITE operation, while the smaller eeproms are
4160			 * capable of an 8-byte PAGE WRITE operation.  Break the
4161			 * inner loop to pass new address
4162			 */
4163			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4164				e1000_standby_eeprom(hw);
4165				break;
4166			}
4167		}
4168	}
4169
4170	return E1000_SUCCESS;
4171}
4172
4173/**
4174 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4175 * @hw: Struct containing variables accessed by shared code
4176 * @offset: offset within the EEPROM to be written to
4177 * @words: number of words to write
4178 * @data: pointer to array of 8 bit words to be written to the EEPROM
4179 */
4180static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4181					u16 words, u16 *data)
4182{
4183	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4184	u32 eecd;
4185	u16 words_written = 0;
4186	u16 i = 0;
4187
4188	/* Send the write enable command to the EEPROM (3-bit opcode plus
4189	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4190	 * the 11 of the dummy address as part of the opcode than it is to shift
4191	 * it over the correct number of bits for the address.  This puts the
4192	 * EEPROM into write/erase mode.
4193	 */
4194	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4195				(u16) (eeprom->opcode_bits + 2));
4196
4197	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4198
4199	/* Prepare the EEPROM */
4200	e1000_standby_eeprom(hw);
4201
4202	while (words_written < words) {
4203		/* Send the Write command (3-bit opcode + addr) */
4204		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4205					eeprom->opcode_bits);
4206
4207		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4208					eeprom->address_bits);
4209
4210		/* Send the data */
4211		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4212
4213		/* Toggle the CS line.  This in effect tells the EEPROM to
4214		 * execute the previous command.
4215		 */
4216		e1000_standby_eeprom(hw);
4217
4218		/* Read DO repeatedly until it is high (equal to '1').  The
4219		 * EEPROM will signal that the command has been completed by
4220		 * raising the DO signal. If DO does not go high in 10
4221		 * milliseconds, then error out.
4222		 */
4223		for (i = 0; i < 200; i++) {
4224			eecd = er32(EECD);
4225			if (eecd & E1000_EECD_DO)
4226				break;
4227			udelay(50);
4228		}
4229		if (i == 200) {
4230			e_dbg("EEPROM Write did not complete\n");
4231			return -E1000_ERR_EEPROM;
4232		}
4233
4234		/* Recover from write */
4235		e1000_standby_eeprom(hw);
 
4236
4237		words_written++;
4238	}
4239
4240	/* Send the write disable command to the EEPROM (3-bit opcode plus
4241	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4242	 * the 10 of the dummy address as part of the opcode than it is to shift
4243	 * it over the correct number of bits for the address.  This takes the
4244	 * EEPROM out of write/erase mode.
4245	 */
4246	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4247				(u16) (eeprom->opcode_bits + 2));
4248
4249	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4250
4251	return E1000_SUCCESS;
4252}
4253
4254/**
4255 * e1000_read_mac_addr - read the adapters MAC from eeprom
4256 * @hw: Struct containing variables accessed by shared code
4257 *
4258 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4259 * second function of dual function devices
4260 */
4261s32 e1000_read_mac_addr(struct e1000_hw *hw)
4262{
4263	u16 offset;
4264	u16 eeprom_data, i;
4265
4266	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4267		offset = i >> 1;
4268		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4269			e_dbg("EEPROM Read Error\n");
4270			return -E1000_ERR_EEPROM;
4271		}
4272		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4273		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4274	}
4275
4276	switch (hw->mac_type) {
4277	default:
4278		break;
4279	case e1000_82546:
4280	case e1000_82546_rev_3:
4281		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4282			hw->perm_mac_addr[5] ^= 0x01;
4283		break;
4284	}
4285
4286	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4287		hw->mac_addr[i] = hw->perm_mac_addr[i];
4288	return E1000_SUCCESS;
4289}
4290
4291/**
4292 * e1000_init_rx_addrs - Initializes receive address filters.
4293 * @hw: Struct containing variables accessed by shared code
4294 *
4295 * Places the MAC address in receive address register 0 and clears the rest
4296 * of the receive address registers. Clears the multicast table. Assumes
4297 * the receiver is in reset when the routine is called.
4298 */
4299static void e1000_init_rx_addrs(struct e1000_hw *hw)
4300{
4301	u32 i;
4302	u32 rar_num;
4303
4304	/* Setup the receive address. */
4305	e_dbg("Programming MAC Address into RAR[0]\n");
4306
4307	e1000_rar_set(hw, hw->mac_addr, 0);
4308
4309	rar_num = E1000_RAR_ENTRIES;
4310
4311	/* Zero out the other 15 receive addresses. */
4312	e_dbg("Clearing RAR[1-15]\n");
 
 
4313	for (i = 1; i < rar_num; i++) {
4314		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4315		E1000_WRITE_FLUSH();
4316		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4317		E1000_WRITE_FLUSH();
4318	}
4319}
4320
4321/**
4322 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4323 * @hw: Struct containing variables accessed by shared code
4324 * @mc_addr: the multicast address to hash
4325 */
4326u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4327{
4328	u32 hash_value = 0;
4329
4330	/* The portion of the address that is used for the hash table is
4331	 * determined by the mc_filter_type setting.
4332	 */
4333	switch (hw->mc_filter_type) {
4334		/* [0] [1] [2] [3] [4] [5]
4335		 * 01  AA  00  12  34  56
4336		 * LSB                 MSB
4337		 */
4338	case 0:
4339		/* [47:36] i.e. 0x563 for above example address */
4340		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4341		break;
4342	case 1:
4343		/* [46:35] i.e. 0xAC6 for above example address */
4344		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4345		break;
4346	case 2:
4347		/* [45:34] i.e. 0x5D8 for above example address */
4348		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4349		break;
4350	case 3:
4351		/* [43:32] i.e. 0x634 for above example address */
4352		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4353		break;
4354	}
4355
4356	hash_value &= 0xFFF;
4357	return hash_value;
4358}
4359
4360/**
4361 * e1000_rar_set - Puts an ethernet address into a receive address register.
4362 * @hw: Struct containing variables accessed by shared code
4363 * @addr: Address to put into receive address register
4364 * @index: Receive address register to write
4365 */
4366void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4367{
4368	u32 rar_low, rar_high;
4369
4370	/* HW expects these in little endian so we reverse the byte order
4371	 * from network order (big endian) to little endian
4372	 */
4373	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4374		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4375	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4376
4377	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4378	 * unit hang.
4379	 *
4380	 * Description:
4381	 * If there are any Rx frames queued up or otherwise present in the HW
4382	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4383	 * hang.  To work around this issue, we have to disable receives and
4384	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4385	 * redirect all Rx traffic to manageability and then reset the HW.
4386	 * This flushes away Rx frames, and (since the redirections to
4387	 * manageability persists across resets) keeps new ones from coming in
4388	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4389	 * addresses and undo the re-direction to manageability.
4390	 * Now, frames are coming in again, but the MAC won't accept them, so
4391	 * far so good.  We now proceed to initialize RSS (if necessary) and
4392	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4393	 * on our merry way.
4394	 */
4395	switch (hw->mac_type) {
4396	default:
4397		/* Indicate to hardware the Address is Valid. */
4398		rar_high |= E1000_RAH_AV;
4399		break;
4400	}
4401
4402	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4403	E1000_WRITE_FLUSH();
4404	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4405	E1000_WRITE_FLUSH();
4406}
4407
4408/**
4409 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4410 * @hw: Struct containing variables accessed by shared code
4411 * @offset: Offset in VLAN filer table to write
4412 * @value: Value to write into VLAN filter table
4413 */
4414void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4415{
4416	u32 temp;
4417
4418	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4419		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4420		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4421		E1000_WRITE_FLUSH();
4422		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4423		E1000_WRITE_FLUSH();
4424	} else {
4425		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4426		E1000_WRITE_FLUSH();
4427	}
4428}
4429
4430/**
4431 * e1000_clear_vfta - Clears the VLAN filer table
4432 * @hw: Struct containing variables accessed by shared code
4433 */
4434static void e1000_clear_vfta(struct e1000_hw *hw)
4435{
4436	u32 offset;
4437	u32 vfta_value = 0;
4438	u32 vfta_offset = 0;
4439	u32 vfta_bit_in_reg = 0;
4440
4441	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4442		/* If the offset we want to clear is the same offset of the
4443		 * manageability VLAN ID, then clear all bits except that of the
4444		 * manageability unit
4445		 */
4446		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4447		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4448		E1000_WRITE_FLUSH();
4449	}
4450}
4451
4452static s32 e1000_id_led_init(struct e1000_hw *hw)
4453{
4454	u32 ledctl;
4455	const u32 ledctl_mask = 0x000000FF;
4456	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4457	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4458	u16 eeprom_data, i, temp;
4459	const u16 led_mask = 0x0F;
4460
4461	if (hw->mac_type < e1000_82540) {
4462		/* Nothing to do */
4463		return E1000_SUCCESS;
4464	}
4465
4466	ledctl = er32(LEDCTL);
4467	hw->ledctl_default = ledctl;
4468	hw->ledctl_mode1 = hw->ledctl_default;
4469	hw->ledctl_mode2 = hw->ledctl_default;
4470
4471	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4472		e_dbg("EEPROM Read Error\n");
4473		return -E1000_ERR_EEPROM;
4474	}
4475
4476	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4477	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4478		eeprom_data = ID_LED_DEFAULT;
4479	}
4480
4481	for (i = 0; i < 4; i++) {
4482		temp = (eeprom_data >> (i << 2)) & led_mask;
4483		switch (temp) {
4484		case ID_LED_ON1_DEF2:
4485		case ID_LED_ON1_ON2:
4486		case ID_LED_ON1_OFF2:
4487			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4488			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4489			break;
4490		case ID_LED_OFF1_DEF2:
4491		case ID_LED_OFF1_ON2:
4492		case ID_LED_OFF1_OFF2:
4493			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4494			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4495			break;
4496		default:
4497			/* Do nothing */
4498			break;
4499		}
4500		switch (temp) {
4501		case ID_LED_DEF1_ON2:
4502		case ID_LED_ON1_ON2:
4503		case ID_LED_OFF1_ON2:
4504			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4505			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4506			break;
4507		case ID_LED_DEF1_OFF2:
4508		case ID_LED_ON1_OFF2:
4509		case ID_LED_OFF1_OFF2:
4510			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4511			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4512			break;
4513		default:
4514			/* Do nothing */
4515			break;
4516		}
4517	}
4518	return E1000_SUCCESS;
4519}
4520
4521/**
4522 * e1000_setup_led
4523 * @hw: Struct containing variables accessed by shared code
4524 *
4525 * Prepares SW controlable LED for use and saves the current state of the LED.
4526 */
4527s32 e1000_setup_led(struct e1000_hw *hw)
4528{
4529	u32 ledctl;
4530	s32 ret_val = E1000_SUCCESS;
4531
4532	switch (hw->mac_type) {
4533	case e1000_82542_rev2_0:
4534	case e1000_82542_rev2_1:
4535	case e1000_82543:
4536	case e1000_82544:
4537		/* No setup necessary */
4538		break;
4539	case e1000_82541:
4540	case e1000_82547:
4541	case e1000_82541_rev_2:
4542	case e1000_82547_rev_2:
4543		/* Turn off PHY Smart Power Down (if enabled) */
4544		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4545					     &hw->phy_spd_default);
4546		if (ret_val)
4547			return ret_val;
4548		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4549					      (u16) (hw->phy_spd_default &
4550						     ~IGP01E1000_GMII_SPD));
4551		if (ret_val)
4552			return ret_val;
4553		/* Fall Through */
4554	default:
4555		if (hw->media_type == e1000_media_type_fiber) {
4556			ledctl = er32(LEDCTL);
4557			/* Save current LEDCTL settings */
4558			hw->ledctl_default = ledctl;
4559			/* Turn off LED0 */
4560			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4561				    E1000_LEDCTL_LED0_BLINK |
4562				    E1000_LEDCTL_LED0_MODE_MASK);
4563			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4564				   E1000_LEDCTL_LED0_MODE_SHIFT);
4565			ew32(LEDCTL, ledctl);
4566		} else if (hw->media_type == e1000_media_type_copper)
4567			ew32(LEDCTL, hw->ledctl_mode1);
4568		break;
4569	}
4570
4571	return E1000_SUCCESS;
4572}
4573
4574/**
4575 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4576 * @hw: Struct containing variables accessed by shared code
4577 */
4578s32 e1000_cleanup_led(struct e1000_hw *hw)
4579{
4580	s32 ret_val = E1000_SUCCESS;
4581
4582	switch (hw->mac_type) {
4583	case e1000_82542_rev2_0:
4584	case e1000_82542_rev2_1:
4585	case e1000_82543:
4586	case e1000_82544:
4587		/* No cleanup necessary */
4588		break;
4589	case e1000_82541:
4590	case e1000_82547:
4591	case e1000_82541_rev_2:
4592	case e1000_82547_rev_2:
4593		/* Turn on PHY Smart Power Down (if previously enabled) */
4594		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4595					      hw->phy_spd_default);
4596		if (ret_val)
4597			return ret_val;
4598		/* Fall Through */
4599	default:
4600		/* Restore LEDCTL settings */
4601		ew32(LEDCTL, hw->ledctl_default);
4602		break;
4603	}
4604
4605	return E1000_SUCCESS;
4606}
4607
4608/**
4609 * e1000_led_on - Turns on the software controllable LED
4610 * @hw: Struct containing variables accessed by shared code
4611 */
4612s32 e1000_led_on(struct e1000_hw *hw)
4613{
4614	u32 ctrl = er32(CTRL);
4615
4616	switch (hw->mac_type) {
4617	case e1000_82542_rev2_0:
4618	case e1000_82542_rev2_1:
4619	case e1000_82543:
4620		/* Set SW Defineable Pin 0 to turn on the LED */
4621		ctrl |= E1000_CTRL_SWDPIN0;
4622		ctrl |= E1000_CTRL_SWDPIO0;
4623		break;
4624	case e1000_82544:
4625		if (hw->media_type == e1000_media_type_fiber) {
4626			/* Set SW Defineable Pin 0 to turn on the LED */
4627			ctrl |= E1000_CTRL_SWDPIN0;
4628			ctrl |= E1000_CTRL_SWDPIO0;
4629		} else {
4630			/* Clear SW Defineable Pin 0 to turn on the LED */
4631			ctrl &= ~E1000_CTRL_SWDPIN0;
4632			ctrl |= E1000_CTRL_SWDPIO0;
4633		}
4634		break;
4635	default:
4636		if (hw->media_type == e1000_media_type_fiber) {
4637			/* Clear SW Defineable Pin 0 to turn on the LED */
4638			ctrl &= ~E1000_CTRL_SWDPIN0;
4639			ctrl |= E1000_CTRL_SWDPIO0;
4640		} else if (hw->media_type == e1000_media_type_copper) {
4641			ew32(LEDCTL, hw->ledctl_mode2);
4642			return E1000_SUCCESS;
4643		}
4644		break;
4645	}
4646
4647	ew32(CTRL, ctrl);
4648
4649	return E1000_SUCCESS;
4650}
4651
4652/**
4653 * e1000_led_off - Turns off the software controllable LED
4654 * @hw: Struct containing variables accessed by shared code
4655 */
4656s32 e1000_led_off(struct e1000_hw *hw)
4657{
4658	u32 ctrl = er32(CTRL);
4659
4660	switch (hw->mac_type) {
4661	case e1000_82542_rev2_0:
4662	case e1000_82542_rev2_1:
4663	case e1000_82543:
4664		/* Clear SW Defineable Pin 0 to turn off the LED */
4665		ctrl &= ~E1000_CTRL_SWDPIN0;
4666		ctrl |= E1000_CTRL_SWDPIO0;
4667		break;
4668	case e1000_82544:
4669		if (hw->media_type == e1000_media_type_fiber) {
4670			/* Clear SW Defineable Pin 0 to turn off the LED */
4671			ctrl &= ~E1000_CTRL_SWDPIN0;
4672			ctrl |= E1000_CTRL_SWDPIO0;
4673		} else {
4674			/* Set SW Defineable Pin 0 to turn off the LED */
4675			ctrl |= E1000_CTRL_SWDPIN0;
4676			ctrl |= E1000_CTRL_SWDPIO0;
4677		}
4678		break;
4679	default:
4680		if (hw->media_type == e1000_media_type_fiber) {
4681			/* Set SW Defineable Pin 0 to turn off the LED */
4682			ctrl |= E1000_CTRL_SWDPIN0;
4683			ctrl |= E1000_CTRL_SWDPIO0;
4684		} else if (hw->media_type == e1000_media_type_copper) {
4685			ew32(LEDCTL, hw->ledctl_mode1);
4686			return E1000_SUCCESS;
4687		}
4688		break;
4689	}
4690
4691	ew32(CTRL, ctrl);
4692
4693	return E1000_SUCCESS;
4694}
4695
4696/**
4697 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4698 * @hw: Struct containing variables accessed by shared code
4699 */
4700static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4701{
4702	volatile u32 temp;
4703
4704	temp = er32(CRCERRS);
4705	temp = er32(SYMERRS);
4706	temp = er32(MPC);
4707	temp = er32(SCC);
4708	temp = er32(ECOL);
4709	temp = er32(MCC);
4710	temp = er32(LATECOL);
4711	temp = er32(COLC);
4712	temp = er32(DC);
4713	temp = er32(SEC);
4714	temp = er32(RLEC);
4715	temp = er32(XONRXC);
4716	temp = er32(XONTXC);
4717	temp = er32(XOFFRXC);
4718	temp = er32(XOFFTXC);
4719	temp = er32(FCRUC);
4720
4721	temp = er32(PRC64);
4722	temp = er32(PRC127);
4723	temp = er32(PRC255);
4724	temp = er32(PRC511);
4725	temp = er32(PRC1023);
4726	temp = er32(PRC1522);
4727
4728	temp = er32(GPRC);
4729	temp = er32(BPRC);
4730	temp = er32(MPRC);
4731	temp = er32(GPTC);
4732	temp = er32(GORCL);
4733	temp = er32(GORCH);
4734	temp = er32(GOTCL);
4735	temp = er32(GOTCH);
4736	temp = er32(RNBC);
4737	temp = er32(RUC);
4738	temp = er32(RFC);
4739	temp = er32(ROC);
4740	temp = er32(RJC);
4741	temp = er32(TORL);
4742	temp = er32(TORH);
4743	temp = er32(TOTL);
4744	temp = er32(TOTH);
4745	temp = er32(TPR);
4746	temp = er32(TPT);
4747
4748	temp = er32(PTC64);
4749	temp = er32(PTC127);
4750	temp = er32(PTC255);
4751	temp = er32(PTC511);
4752	temp = er32(PTC1023);
4753	temp = er32(PTC1522);
4754
4755	temp = er32(MPTC);
4756	temp = er32(BPTC);
4757
4758	if (hw->mac_type < e1000_82543)
4759		return;
4760
4761	temp = er32(ALGNERRC);
4762	temp = er32(RXERRC);
4763	temp = er32(TNCRS);
4764	temp = er32(CEXTERR);
4765	temp = er32(TSCTC);
4766	temp = er32(TSCTFC);
4767
4768	if (hw->mac_type <= e1000_82544)
4769		return;
4770
4771	temp = er32(MGTPRC);
4772	temp = er32(MGTPDC);
4773	temp = er32(MGTPTC);
4774}
4775
4776/**
4777 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4778 * @hw: Struct containing variables accessed by shared code
4779 *
4780 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4781 * hw->ifs_params_forced to true. However, you must initialize hw->
4782 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4783 * before calling this function.
4784 */
4785void e1000_reset_adaptive(struct e1000_hw *hw)
4786{
4787	if (hw->adaptive_ifs) {
4788		if (!hw->ifs_params_forced) {
4789			hw->current_ifs_val = 0;
4790			hw->ifs_min_val = IFS_MIN;
4791			hw->ifs_max_val = IFS_MAX;
4792			hw->ifs_step_size = IFS_STEP;
4793			hw->ifs_ratio = IFS_RATIO;
4794		}
4795		hw->in_ifs_mode = false;
4796		ew32(AIT, 0);
4797	} else {
4798		e_dbg("Not in Adaptive IFS mode!\n");
4799	}
4800}
4801
4802/**
4803 * e1000_update_adaptive - update adaptive IFS
4804 * @hw: Struct containing variables accessed by shared code
4805 * @tx_packets: Number of transmits since last callback
4806 * @total_collisions: Number of collisions since last callback
4807 *
4808 * Called during the callback/watchdog routine to update IFS value based on
4809 * the ratio of transmits to collisions.
4810 */
4811void e1000_update_adaptive(struct e1000_hw *hw)
4812{
4813	if (hw->adaptive_ifs) {
4814		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4815			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4816				hw->in_ifs_mode = true;
4817				if (hw->current_ifs_val < hw->ifs_max_val) {
4818					if (hw->current_ifs_val == 0)
4819						hw->current_ifs_val =
4820						    hw->ifs_min_val;
4821					else
4822						hw->current_ifs_val +=
4823						    hw->ifs_step_size;
4824					ew32(AIT, hw->current_ifs_val);
4825				}
4826			}
4827		} else {
4828			if (hw->in_ifs_mode
4829			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4830				hw->current_ifs_val = 0;
4831				hw->in_ifs_mode = false;
4832				ew32(AIT, 0);
4833			}
4834		}
4835	} else {
4836		e_dbg("Not in Adaptive IFS mode!\n");
4837	}
4838}
4839
4840/**
4841 * e1000_tbi_adjust_stats
4842 * @hw: Struct containing variables accessed by shared code
4843 * @frame_len: The length of the frame in question
4844 * @mac_addr: The Ethernet destination address of the frame in question
4845 *
4846 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4847 */
4848void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4849			    u32 frame_len, u8 *mac_addr)
4850{
4851	u64 carry_bit;
4852
4853	/* First adjust the frame length. */
4854	frame_len--;
4855	/* We need to adjust the statistics counters, since the hardware
4856	 * counters overcount this packet as a CRC error and undercount
4857	 * the packet as a good packet
4858	 */
4859	/* This packet should not be counted as a CRC error. */
4860	stats->crcerrs--;
4861	/* This packet does count as a Good Packet Received. */
4862	stats->gprc++;
4863
4864	/* Adjust the Good Octets received counters */
4865	carry_bit = 0x80000000 & stats->gorcl;
4866	stats->gorcl += frame_len;
4867	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4868	 * Received Count) was one before the addition,
4869	 * AND it is zero after, then we lost the carry out,
4870	 * need to add one to Gorch (Good Octets Received Count High).
4871	 * This could be simplified if all environments supported
4872	 * 64-bit integers.
4873	 */
4874	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4875		stats->gorch++;
4876	/* Is this a broadcast or multicast?  Check broadcast first,
4877	 * since the test for a multicast frame will test positive on
4878	 * a broadcast frame.
4879	 */
4880	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
4881		/* Broadcast packet */
4882		stats->bprc++;
4883	else if (*mac_addr & 0x01)
4884		/* Multicast packet */
4885		stats->mprc++;
4886
4887	if (frame_len == hw->max_frame_size) {
4888		/* In this case, the hardware has overcounted the number of
4889		 * oversize frames.
4890		 */
4891		if (stats->roc > 0)
4892			stats->roc--;
4893	}
4894
4895	/* Adjust the bin counters when the extra byte put the frame in the
4896	 * wrong bin. Remember that the frame_len was adjusted above.
4897	 */
4898	if (frame_len == 64) {
4899		stats->prc64++;
4900		stats->prc127--;
4901	} else if (frame_len == 127) {
4902		stats->prc127++;
4903		stats->prc255--;
4904	} else if (frame_len == 255) {
4905		stats->prc255++;
4906		stats->prc511--;
4907	} else if (frame_len == 511) {
4908		stats->prc511++;
4909		stats->prc1023--;
4910	} else if (frame_len == 1023) {
4911		stats->prc1023++;
4912		stats->prc1522--;
4913	} else if (frame_len == 1522) {
4914		stats->prc1522++;
4915	}
4916}
4917
4918/**
4919 * e1000_get_bus_info
4920 * @hw: Struct containing variables accessed by shared code
4921 *
4922 * Gets the current PCI bus type, speed, and width of the hardware
4923 */
4924void e1000_get_bus_info(struct e1000_hw *hw)
4925{
4926	u32 status;
4927
4928	switch (hw->mac_type) {
4929	case e1000_82542_rev2_0:
4930	case e1000_82542_rev2_1:
4931		hw->bus_type = e1000_bus_type_pci;
4932		hw->bus_speed = e1000_bus_speed_unknown;
4933		hw->bus_width = e1000_bus_width_unknown;
4934		break;
4935	default:
4936		status = er32(STATUS);
4937		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4938		    e1000_bus_type_pcix : e1000_bus_type_pci;
4939
4940		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4941			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4942			    e1000_bus_speed_66 : e1000_bus_speed_120;
4943		} else if (hw->bus_type == e1000_bus_type_pci) {
4944			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4945			    e1000_bus_speed_66 : e1000_bus_speed_33;
4946		} else {
4947			switch (status & E1000_STATUS_PCIX_SPEED) {
4948			case E1000_STATUS_PCIX_SPEED_66:
4949				hw->bus_speed = e1000_bus_speed_66;
4950				break;
4951			case E1000_STATUS_PCIX_SPEED_100:
4952				hw->bus_speed = e1000_bus_speed_100;
4953				break;
4954			case E1000_STATUS_PCIX_SPEED_133:
4955				hw->bus_speed = e1000_bus_speed_133;
4956				break;
4957			default:
4958				hw->bus_speed = e1000_bus_speed_reserved;
4959				break;
4960			}
4961		}
4962		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4963		    e1000_bus_width_64 : e1000_bus_width_32;
4964		break;
4965	}
4966}
4967
4968/**
4969 * e1000_write_reg_io
4970 * @hw: Struct containing variables accessed by shared code
4971 * @offset: offset to write to
4972 * @value: value to write
4973 *
4974 * Writes a value to one of the devices registers using port I/O (as opposed to
4975 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4976 */
4977static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4978{
4979	unsigned long io_addr = hw->io_base;
4980	unsigned long io_data = hw->io_base + 4;
4981
4982	e1000_io_write(hw, io_addr, offset);
4983	e1000_io_write(hw, io_data, value);
4984}
4985
4986/**
4987 * e1000_get_cable_length - Estimates the cable length.
4988 * @hw: Struct containing variables accessed by shared code
4989 * @min_length: The estimated minimum length
4990 * @max_length: The estimated maximum length
4991 *
4992 * returns: - E1000_ERR_XXX
4993 *            E1000_SUCCESS
4994 *
4995 * This function always returns a ranged length (minimum & maximum).
4996 * So for M88 phy's, this function interprets the one value returned from the
4997 * register to the minimum and maximum range.
4998 * For IGP phy's, the function calculates the range by the AGC registers.
4999 */
5000static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5001				  u16 *max_length)
5002{
5003	s32 ret_val;
5004	u16 agc_value = 0;
5005	u16 i, phy_data;
5006	u16 cable_length;
5007
5008	*min_length = *max_length = 0;
5009
5010	/* Use old method for Phy older than IGP */
5011	if (hw->phy_type == e1000_phy_m88) {
5012
5013		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5014					     &phy_data);
5015		if (ret_val)
5016			return ret_val;
5017		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5018		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5019
5020		/* Convert the enum value to ranged values */
5021		switch (cable_length) {
5022		case e1000_cable_length_50:
5023			*min_length = 0;
5024			*max_length = e1000_igp_cable_length_50;
5025			break;
5026		case e1000_cable_length_50_80:
5027			*min_length = e1000_igp_cable_length_50;
5028			*max_length = e1000_igp_cable_length_80;
5029			break;
5030		case e1000_cable_length_80_110:
5031			*min_length = e1000_igp_cable_length_80;
5032			*max_length = e1000_igp_cable_length_110;
5033			break;
5034		case e1000_cable_length_110_140:
5035			*min_length = e1000_igp_cable_length_110;
5036			*max_length = e1000_igp_cable_length_140;
5037			break;
5038		case e1000_cable_length_140:
5039			*min_length = e1000_igp_cable_length_140;
5040			*max_length = e1000_igp_cable_length_170;
5041			break;
5042		default:
5043			return -E1000_ERR_PHY;
5044			break;
5045		}
5046	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
5047		u16 cur_agc_value;
5048		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5049		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5050		       IGP01E1000_PHY_AGC_A,
5051		       IGP01E1000_PHY_AGC_B,
5052		       IGP01E1000_PHY_AGC_C,
5053		       IGP01E1000_PHY_AGC_D
5054		};
5055		/* Read the AGC registers for all channels */
5056		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5057
5058			ret_val =
5059			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5060			if (ret_val)
5061				return ret_val;
5062
5063			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5064
5065			/* Value bound check. */
5066			if ((cur_agc_value >=
5067			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5068			    || (cur_agc_value == 0))
5069				return -E1000_ERR_PHY;
5070
5071			agc_value += cur_agc_value;
5072
5073			/* Update minimal AGC value. */
5074			if (min_agc_value > cur_agc_value)
5075				min_agc_value = cur_agc_value;
5076		}
5077
5078		/* Remove the minimal AGC result for length < 50m */
5079		if (agc_value <
5080		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5081			agc_value -= min_agc_value;
5082
5083			/* Get the average length of the remaining 3 channels */
5084			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5085		} else {
5086			/* Get the average length of all the 4 channels. */
5087			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5088		}
5089
5090		/* Set the range of the calculated length. */
5091		*min_length = ((e1000_igp_cable_length_table[agc_value] -
5092				IGP01E1000_AGC_RANGE) > 0) ?
5093		    (e1000_igp_cable_length_table[agc_value] -
5094		     IGP01E1000_AGC_RANGE) : 0;
5095		*max_length = e1000_igp_cable_length_table[agc_value] +
5096		    IGP01E1000_AGC_RANGE;
5097	}
5098
5099	return E1000_SUCCESS;
5100}
5101
5102/**
5103 * e1000_check_polarity - Check the cable polarity
5104 * @hw: Struct containing variables accessed by shared code
5105 * @polarity: output parameter : 0 - Polarity is not reversed
5106 *                               1 - Polarity is reversed.
5107 *
5108 * returns: - E1000_ERR_XXX
5109 *            E1000_SUCCESS
5110 *
5111 * For phy's older than IGP, this function simply reads the polarity bit in the
5112 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5113 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5114 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5115 * IGP01E1000_PHY_PCS_INIT_REG.
5116 */
5117static s32 e1000_check_polarity(struct e1000_hw *hw,
5118				e1000_rev_polarity *polarity)
5119{
5120	s32 ret_val;
5121	u16 phy_data;
5122
5123	if (hw->phy_type == e1000_phy_m88) {
5124		/* return the Polarity bit in the Status register. */
5125		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5126					     &phy_data);
5127		if (ret_val)
5128			return ret_val;
5129		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5130			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5131		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5132
5133	} else if (hw->phy_type == e1000_phy_igp) {
5134		/* Read the Status register to check the speed */
5135		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5136					     &phy_data);
5137		if (ret_val)
5138			return ret_val;
5139
5140		/* If speed is 1000 Mbps, must read the
5141		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5142		 */
5143		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5144		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5145
5146			/* Read the GIG initialization PCS register (0x00B4) */
5147			ret_val =
5148			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5149					       &phy_data);
5150			if (ret_val)
5151				return ret_val;
5152
5153			/* Check the polarity bits */
5154			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5155			    e1000_rev_polarity_reversed :
5156			    e1000_rev_polarity_normal;
5157		} else {
5158			/* For 10 Mbps, read the polarity bit in the status
5159			 * register. (for 100 Mbps this bit is always 0)
5160			 */
5161			*polarity =
5162			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5163			    e1000_rev_polarity_reversed :
5164			    e1000_rev_polarity_normal;
5165		}
5166	}
5167	return E1000_SUCCESS;
5168}
5169
5170/**
5171 * e1000_check_downshift - Check if Downshift occurred
5172 * @hw: Struct containing variables accessed by shared code
5173 * @downshift: output parameter : 0 - No Downshift occurred.
5174 *                                1 - Downshift occurred.
5175 *
5176 * returns: - E1000_ERR_XXX
5177 *            E1000_SUCCESS
5178 *
5179 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5180 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5181 * Link Health register.  In IGP this bit is latched high, so the driver must
5182 * read it immediately after link is established.
5183 */
5184static s32 e1000_check_downshift(struct e1000_hw *hw)
5185{
5186	s32 ret_val;
5187	u16 phy_data;
5188
5189	if (hw->phy_type == e1000_phy_igp) {
5190		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5191					     &phy_data);
5192		if (ret_val)
5193			return ret_val;
5194
5195		hw->speed_downgraded =
5196		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5197	} else if (hw->phy_type == e1000_phy_m88) {
5198		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5199					     &phy_data);
5200		if (ret_val)
5201			return ret_val;
5202
5203		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5204		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5205	}
5206
5207	return E1000_SUCCESS;
5208}
5209
5210static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5211	IGP01E1000_PHY_AGC_PARAM_A,
5212	IGP01E1000_PHY_AGC_PARAM_B,
5213	IGP01E1000_PHY_AGC_PARAM_C,
5214	IGP01E1000_PHY_AGC_PARAM_D
5215};
5216
5217static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5218{
5219	u16 min_length, max_length;
5220	u16 phy_data, i;
5221	s32 ret_val;
5222
5223	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5224	if (ret_val)
5225		return ret_val;
5226
5227	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5228		return 0;
5229
5230	if (min_length >= e1000_igp_cable_length_50) {
5231		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5232			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5233						     &phy_data);
5234			if (ret_val)
5235				return ret_val;
5236
5237			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5238
5239			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5240						      phy_data);
5241			if (ret_val)
5242				return ret_val;
5243		}
5244		hw->dsp_config_state = e1000_dsp_config_activated;
5245	} else {
5246		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5247		u32 idle_errs = 0;
5248
5249		/* clear previous idle error counts */
5250		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5251		if (ret_val)
5252			return ret_val;
5253
5254		for (i = 0; i < ffe_idle_err_timeout; i++) {
5255			udelay(1000);
5256			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5257						     &phy_data);
5258			if (ret_val)
5259				return ret_val;
5260
5261			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5262			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5263				hw->ffe_config_state = e1000_ffe_config_active;
5264
5265				ret_val = e1000_write_phy_reg(hw,
5266					      IGP01E1000_PHY_DSP_FFE,
5267					      IGP01E1000_PHY_DSP_FFE_CM_CP);
5268				if (ret_val)
5269					return ret_val;
5270				break;
5271			}
5272
5273			if (idle_errs)
5274				ffe_idle_err_timeout =
5275					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5276		}
5277	}
5278
5279	return 0;
5280}
5281
5282/**
5283 * e1000_config_dsp_after_link_change
5284 * @hw: Struct containing variables accessed by shared code
5285 * @link_up: was link up at the time this was called
5286 *
5287 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5288 *            E1000_SUCCESS at any other case.
5289 *
5290 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5291 * gigabit link is achieved to improve link quality.
5292 */
5293
5294static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5295{
5296	s32 ret_val;
5297	u16 phy_data, phy_saved_data, speed, duplex, i;
5298
5299	if (hw->phy_type != e1000_phy_igp)
5300		return E1000_SUCCESS;
5301
5302	if (link_up) {
5303		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5304		if (ret_val) {
5305			e_dbg("Error getting link speed and duplex\n");
5306			return ret_val;
5307		}
5308
5309		if (speed == SPEED_1000) {
5310			ret_val = e1000_1000Mb_check_cable_length(hw);
5311			if (ret_val)
5312				return ret_val;
5313		}
5314	} else {
5315		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5316			/* Save off the current value of register 0x2F5B to be
5317			 * restored at the end of the routines.
5318			 */
5319			ret_val =
5320			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5321
5322			if (ret_val)
5323				return ret_val;
5324
5325			/* Disable the PHY transmitter */
5326			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5327
5328			if (ret_val)
5329				return ret_val;
5330
5331			msleep(20);
5332
5333			ret_val = e1000_write_phy_reg(hw, 0x0000,
5334						    IGP01E1000_IEEE_FORCE_GIGA);
5335			if (ret_val)
5336				return ret_val;
5337			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5338				ret_val =
5339				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5340						       &phy_data);
5341				if (ret_val)
5342					return ret_val;
5343
5344				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5345				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5346
5347				ret_val =
5348				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5349							phy_data);
5350				if (ret_val)
5351					return ret_val;
5352			}
5353
5354			ret_val = e1000_write_phy_reg(hw, 0x0000,
5355					IGP01E1000_IEEE_RESTART_AUTONEG);
5356			if (ret_val)
5357				return ret_val;
5358
5359			msleep(20);
5360
5361			/* Now enable the transmitter */
5362			ret_val =
5363			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5364
5365			if (ret_val)
5366				return ret_val;
5367
5368			hw->dsp_config_state = e1000_dsp_config_enabled;
5369		}
5370
5371		if (hw->ffe_config_state == e1000_ffe_config_active) {
5372			/* Save off the current value of register 0x2F5B to be
5373			 * restored at the end of the routines.
5374			 */
5375			ret_val =
5376			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5377
5378			if (ret_val)
5379				return ret_val;
5380
5381			/* Disable the PHY transmitter */
5382			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5383
5384			if (ret_val)
5385				return ret_val;
5386
5387			msleep(20);
5388
5389			ret_val = e1000_write_phy_reg(hw, 0x0000,
5390						    IGP01E1000_IEEE_FORCE_GIGA);
5391			if (ret_val)
5392				return ret_val;
5393			ret_val =
5394			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5395						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5396			if (ret_val)
5397				return ret_val;
5398
5399			ret_val = e1000_write_phy_reg(hw, 0x0000,
5400					IGP01E1000_IEEE_RESTART_AUTONEG);
5401			if (ret_val)
5402				return ret_val;
5403
5404			msleep(20);
5405
5406			/* Now enable the transmitter */
5407			ret_val =
5408			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5409
5410			if (ret_val)
5411				return ret_val;
5412
5413			hw->ffe_config_state = e1000_ffe_config_enabled;
5414		}
5415	}
5416	return E1000_SUCCESS;
5417}
5418
5419/**
5420 * e1000_set_phy_mode - Set PHY to class A mode
5421 * @hw: Struct containing variables accessed by shared code
5422 *
5423 * Assumes the following operations will follow to enable the new class mode.
5424 *  1. Do a PHY soft reset
5425 *  2. Restart auto-negotiation or force link.
5426 */
5427static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5428{
5429	s32 ret_val;
5430	u16 eeprom_data;
5431
5432	if ((hw->mac_type == e1000_82545_rev_3) &&
5433	    (hw->media_type == e1000_media_type_copper)) {
5434		ret_val =
5435		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5436				      &eeprom_data);
5437		if (ret_val) {
5438			return ret_val;
5439		}
5440
5441		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5442		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5443			ret_val =
5444			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5445						0x000B);
5446			if (ret_val)
5447				return ret_val;
5448			ret_val =
5449			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5450						0x8104);
5451			if (ret_val)
5452				return ret_val;
5453
5454			hw->phy_reset_disable = false;
5455		}
5456	}
5457
5458	return E1000_SUCCESS;
5459}
5460
5461/**
5462 * e1000_set_d3_lplu_state - set d3 link power state
5463 * @hw: Struct containing variables accessed by shared code
5464 * @active: true to enable lplu false to disable lplu.
5465 *
5466 * This function sets the lplu state according to the active flag.  When
5467 * activating lplu this function also disables smart speed and vise versa.
5468 * lplu will not be activated unless the device autonegotiation advertisement
5469 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5470 *
5471 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5472 *            E1000_SUCCESS at any other case.
5473 */
5474static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5475{
5476	s32 ret_val;
5477	u16 phy_data;
5478
5479	if (hw->phy_type != e1000_phy_igp)
5480		return E1000_SUCCESS;
5481
5482	/* During driver activity LPLU should not be used or it will attain link
5483	 * from the lowest speeds starting from 10Mbps. The capability is used
5484	 * for Dx transitions and states
5485	 */
5486	if (hw->mac_type == e1000_82541_rev_2
5487	    || hw->mac_type == e1000_82547_rev_2) {
5488		ret_val =
5489		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5490		if (ret_val)
5491			return ret_val;
5492	}
5493
5494	if (!active) {
5495		if (hw->mac_type == e1000_82541_rev_2 ||
5496		    hw->mac_type == e1000_82547_rev_2) {
5497			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5498			ret_val =
5499			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5500						phy_data);
5501			if (ret_val)
5502				return ret_val;
5503		}
5504
5505		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5506		 * during Dx states where the power conservation is most
5507		 * important.  During driver activity we should enable
5508		 * SmartSpeed, so performance is maintained.
5509		 */
5510		if (hw->smart_speed == e1000_smart_speed_on) {
5511			ret_val =
5512			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5513					       &phy_data);
5514			if (ret_val)
5515				return ret_val;
5516
5517			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5518			ret_val =
5519			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5520						phy_data);
5521			if (ret_val)
5522				return ret_val;
5523		} else if (hw->smart_speed == e1000_smart_speed_off) {
5524			ret_val =
5525			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5526					       &phy_data);
5527			if (ret_val)
5528				return ret_val;
5529
5530			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5531			ret_val =
5532			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5533						phy_data);
5534			if (ret_val)
5535				return ret_val;
5536		}
5537	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5538		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5539		   || (hw->autoneg_advertised ==
5540		       AUTONEG_ADVERTISE_10_100_ALL)) {
5541
5542		if (hw->mac_type == e1000_82541_rev_2 ||
5543		    hw->mac_type == e1000_82547_rev_2) {
5544			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5545			ret_val =
5546			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5547						phy_data);
5548			if (ret_val)
5549				return ret_val;
5550		}
5551
5552		/* When LPLU is enabled we should disable SmartSpeed */
5553		ret_val =
5554		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5555				       &phy_data);
5556		if (ret_val)
5557			return ret_val;
5558
5559		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5560		ret_val =
5561		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5562					phy_data);
5563		if (ret_val)
5564			return ret_val;
5565
5566	}
5567	return E1000_SUCCESS;
5568}
5569
5570/**
5571 * e1000_set_vco_speed
5572 * @hw: Struct containing variables accessed by shared code
5573 *
5574 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5575 */
5576static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5577{
5578	s32 ret_val;
5579	u16 default_page = 0;
5580	u16 phy_data;
5581
5582	switch (hw->mac_type) {
5583	case e1000_82545_rev_3:
5584	case e1000_82546_rev_3:
5585		break;
5586	default:
5587		return E1000_SUCCESS;
5588	}
5589
5590	/* Set PHY register 30, page 5, bit 8 to 0 */
5591
5592	ret_val =
5593	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5594	if (ret_val)
5595		return ret_val;
5596
5597	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5598	if (ret_val)
5599		return ret_val;
5600
5601	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5602	if (ret_val)
5603		return ret_val;
5604
5605	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5606	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5607	if (ret_val)
5608		return ret_val;
5609
5610	/* Set PHY register 30, page 4, bit 11 to 1 */
5611
5612	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5613	if (ret_val)
5614		return ret_val;
5615
5616	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5617	if (ret_val)
5618		return ret_val;
5619
5620	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5621	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5622	if (ret_val)
5623		return ret_val;
5624
5625	ret_val =
5626	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5627	if (ret_val)
5628		return ret_val;
5629
5630	return E1000_SUCCESS;
5631}
5632
5633
5634/**
5635 * e1000_enable_mng_pass_thru - check for bmc pass through
5636 * @hw: Struct containing variables accessed by shared code
5637 *
5638 * Verifies the hardware needs to allow ARPs to be processed by the host
5639 * returns: - true/false
5640 */
5641u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5642{
5643	u32 manc;
5644
5645	if (hw->asf_firmware_present) {
5646		manc = er32(MANC);
5647
5648		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5649		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5650			return false;
5651		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5652			return true;
5653	}
5654	return false;
5655}
5656
5657static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5658{
5659	s32 ret_val;
5660	u16 mii_status_reg;
5661	u16 i;
5662
5663	/* Polarity reversal workaround for forced 10F/10H links. */
5664
5665	/* Disable the transmitter on the PHY */
5666
5667	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5668	if (ret_val)
5669		return ret_val;
5670	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5671	if (ret_val)
5672		return ret_val;
5673
5674	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5675	if (ret_val)
5676		return ret_val;
5677
5678	/* This loop will early-out if the NO link condition has been met. */
5679	for (i = PHY_FORCE_TIME; i > 0; i--) {
5680		/* Read the MII Status Register and wait for Link Status bit
5681		 * to be clear.
5682		 */
5683
5684		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5685		if (ret_val)
5686			return ret_val;
5687
5688		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5689		if (ret_val)
5690			return ret_val;
5691
5692		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5693			break;
5694		msleep(100);
5695	}
5696
5697	/* Recommended delay time after link has been lost */
5698	msleep(1000);
5699
5700	/* Now we will re-enable th transmitter on the PHY */
5701
5702	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5703	if (ret_val)
5704		return ret_val;
5705	msleep(50);
5706	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5707	if (ret_val)
5708		return ret_val;
5709	msleep(50);
5710	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5711	if (ret_val)
5712		return ret_val;
5713	msleep(50);
5714	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5715	if (ret_val)
5716		return ret_val;
5717
5718	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5719	if (ret_val)
5720		return ret_val;
5721
5722	/* This loop will early-out if the link condition has been met. */
5723	for (i = PHY_FORCE_TIME; i > 0; i--) {
5724		/* Read the MII Status Register and wait for Link Status bit
5725		 * to be set.
5726		 */
5727
5728		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5729		if (ret_val)
5730			return ret_val;
5731
5732		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5733		if (ret_val)
5734			return ret_val;
5735
5736		if (mii_status_reg & MII_SR_LINK_STATUS)
5737			break;
5738		msleep(100);
5739	}
5740	return E1000_SUCCESS;
5741}
5742
5743/**
5744 * e1000_get_auto_rd_done
5745 * @hw: Struct containing variables accessed by shared code
5746 *
5747 * Check for EEPROM Auto Read bit done.
5748 * returns: - E1000_ERR_RESET if fail to reset MAC
5749 *            E1000_SUCCESS at any other case.
5750 */
5751static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5752{
5753	msleep(5);
5754	return E1000_SUCCESS;
5755}
5756
5757/**
5758 * e1000_get_phy_cfg_done
5759 * @hw: Struct containing variables accessed by shared code
5760 *
5761 * Checks if the PHY configuration is done
5762 * returns: - E1000_ERR_RESET if fail to reset MAC
5763 *            E1000_SUCCESS at any other case.
5764 */
5765static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5766{
5767	msleep(10);
5768	return E1000_SUCCESS;
5769}