Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (c) International Business Machines Corp., 2006
  4 * Copyright (c) Nokia Corporation, 2006, 2007
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Author: Artem Bityutskiy (Битюцкий Артём)
  7 */
  8
  9/*
 10 * This file includes volume table manipulation code. The volume table is an
 11 * on-flash table containing volume meta-data like name, number of reserved
 12 * physical eraseblocks, type, etc. The volume table is stored in the so-called
 13 * "layout volume".
 14 *
 15 * The layout volume is an internal volume which is organized as follows. It
 16 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
 17 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
 18 * other. This redundancy guarantees robustness to unclean reboots. The volume
 19 * table is basically an array of volume table records. Each record contains
 20 * full information about the volume and protected by a CRC checksum. Note,
 21 * nowadays we use the atomic LEB change operation when updating the volume
 22 * table, so we do not really need 2 LEBs anymore, but we preserve the older
 23 * design for the backward compatibility reasons.
 24 *
 25 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
 26 * erased, and the updated volume table is written back to LEB 0. Then same for
 27 * LEB 1. This scheme guarantees recoverability from unclean reboots.
 28 *
 29 * In this UBI implementation the on-flash volume table does not contain any
 30 * information about how much data static volumes contain.
 31 *
 32 * But it would still be beneficial to store this information in the volume
 33 * table. For example, suppose we have a static volume X, and all its physical
 34 * eraseblocks became bad for some reasons. Suppose we are attaching the
 35 * corresponding MTD device, for some reason we find no logical eraseblocks
 36 * corresponding to the volume X. According to the volume table volume X does
 37 * exist. So we don't know whether it is just empty or all its physical
 38 * eraseblocks went bad. So we cannot alarm the user properly.
 39 *
 40 * The volume table also stores so-called "update marker", which is used for
 41 * volume updates. Before updating the volume, the update marker is set, and
 42 * after the update operation is finished, the update marker is cleared. So if
 43 * the update operation was interrupted (e.g. by an unclean reboot) - the
 44 * update marker is still there and we know that the volume's contents is
 45 * damaged.
 46 */
 47
 48#include <linux/crc32.h>
 49#include <linux/err.h>
 50#include <linux/slab.h>
 51#include <asm/div64.h>
 52#include "ubi.h"
 53
 54static void self_vtbl_check(const struct ubi_device *ubi);
 55
 56/* Empty volume table record */
 57static struct ubi_vtbl_record empty_vtbl_record;
 58
 59/**
 60 * ubi_update_layout_vol - helper for updatting layout volumes on flash
 61 * @ubi: UBI device description object
 62 */
 63static int ubi_update_layout_vol(struct ubi_device *ubi)
 64{
 65	struct ubi_volume *layout_vol;
 66	int i, err;
 67
 68	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
 69	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 70		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
 71						ubi->vtbl_size);
 72		if (err)
 73			return err;
 74	}
 75
 76	return 0;
 77}
 78
 79/**
 80 * ubi_change_vtbl_record - change volume table record.
 81 * @ubi: UBI device description object
 82 * @idx: table index to change
 83 * @vtbl_rec: new volume table record
 84 *
 85 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
 86 * volume table record is written. The caller does not have to calculate CRC of
 87 * the record as it is done by this function. Returns zero in case of success
 88 * and a negative error code in case of failure.
 89 */
 90int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
 91			   struct ubi_vtbl_record *vtbl_rec)
 92{
 93	int err;
 94	uint32_t crc;
 95
 96	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
 97
 98	if (!vtbl_rec)
 99		vtbl_rec = &empty_vtbl_record;
100	else {
101		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
102		vtbl_rec->crc = cpu_to_be32(crc);
103	}
104
105	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
106	err = ubi_update_layout_vol(ubi);
107
108	self_vtbl_check(ubi);
109	return err ? err : 0;
110}
111
112/**
113 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
114 * @ubi: UBI device description object
115 * @rename_list: list of &struct ubi_rename_entry objects
116 *
117 * This function re-names multiple volumes specified in @req in the volume
118 * table. Returns zero in case of success and a negative error code in case of
119 * failure.
120 */
121int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
122			    struct list_head *rename_list)
123{
124	struct ubi_rename_entry *re;
125
126	list_for_each_entry(re, rename_list, list) {
127		uint32_t crc;
128		struct ubi_volume *vol = re->desc->vol;
129		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
130
131		if (re->remove) {
132			memcpy(vtbl_rec, &empty_vtbl_record,
133			       sizeof(struct ubi_vtbl_record));
134			continue;
135		}
136
137		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
138		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
139		memset(vtbl_rec->name + re->new_name_len, 0,
140		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
141		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
142			    UBI_VTBL_RECORD_SIZE_CRC);
143		vtbl_rec->crc = cpu_to_be32(crc);
144	}
145
146	return ubi_update_layout_vol(ubi);
147}
148
149/**
150 * vtbl_check - check if volume table is not corrupted and sensible.
151 * @ubi: UBI device description object
152 * @vtbl: volume table
153 *
154 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
155 * and %-EINVAL if it contains inconsistent data.
156 */
157static int vtbl_check(const struct ubi_device *ubi,
158		      const struct ubi_vtbl_record *vtbl)
159{
160	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
161	int upd_marker, err;
162	uint32_t crc;
163	const char *name;
164
165	for (i = 0; i < ubi->vtbl_slots; i++) {
166		cond_resched();
167
168		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
169		alignment = be32_to_cpu(vtbl[i].alignment);
170		data_pad = be32_to_cpu(vtbl[i].data_pad);
171		upd_marker = vtbl[i].upd_marker;
172		vol_type = vtbl[i].vol_type;
173		name_len = be16_to_cpu(vtbl[i].name_len);
174		name = &vtbl[i].name[0];
175
176		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
177		if (be32_to_cpu(vtbl[i].crc) != crc) {
178			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
179				 i, crc, be32_to_cpu(vtbl[i].crc));
180			ubi_dump_vtbl_record(&vtbl[i], i);
181			return 1;
182		}
183
184		if (reserved_pebs == 0) {
185			if (memcmp(&vtbl[i], &empty_vtbl_record,
186						UBI_VTBL_RECORD_SIZE)) {
187				err = 2;
188				goto bad;
189			}
190			continue;
191		}
192
193		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
194		    name_len < 0) {
195			err = 3;
196			goto bad;
197		}
198
199		if (alignment > ubi->leb_size || alignment == 0) {
200			err = 4;
201			goto bad;
202		}
203
204		n = alignment & (ubi->min_io_size - 1);
205		if (alignment != 1 && n) {
206			err = 5;
207			goto bad;
208		}
209
210		n = ubi->leb_size % alignment;
211		if (data_pad != n) {
212			ubi_err(ubi, "bad data_pad, has to be %d", n);
213			err = 6;
214			goto bad;
215		}
216
217		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
218			err = 7;
219			goto bad;
220		}
221
222		if (upd_marker != 0 && upd_marker != 1) {
223			err = 8;
224			goto bad;
225		}
226
227		if (reserved_pebs > ubi->good_peb_count) {
228			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
229				reserved_pebs, ubi->good_peb_count);
230			err = 9;
231			goto bad;
232		}
233
234		if (name_len > UBI_VOL_NAME_MAX) {
235			err = 10;
236			goto bad;
237		}
238
239		if (name[0] == '\0') {
240			err = 11;
241			goto bad;
242		}
243
244		if (name_len != strnlen(name, name_len + 1)) {
245			err = 12;
246			goto bad;
247		}
248	}
249
250	/* Checks that all names are unique */
251	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
252		for (n = i + 1; n < ubi->vtbl_slots; n++) {
253			int len1 = be16_to_cpu(vtbl[i].name_len);
254			int len2 = be16_to_cpu(vtbl[n].name_len);
255
256			if (len1 > 0 && len1 == len2 &&
257			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
258				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
259					i, n, vtbl[i].name);
260				ubi_dump_vtbl_record(&vtbl[i], i);
261				ubi_dump_vtbl_record(&vtbl[n], n);
262				return -EINVAL;
263			}
264		}
265	}
266
267	return 0;
268
269bad:
270	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
271	ubi_dump_vtbl_record(&vtbl[i], i);
272	return -EINVAL;
273}
274
275/**
276 * create_vtbl - create a copy of volume table.
277 * @ubi: UBI device description object
278 * @ai: attaching information
279 * @copy: number of the volume table copy
280 * @vtbl: contents of the volume table
281 *
282 * This function returns zero in case of success and a negative error code in
283 * case of failure.
284 */
285static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
286		       int copy, void *vtbl)
287{
288	int err, tries = 0;
289	struct ubi_vid_io_buf *vidb;
290	struct ubi_vid_hdr *vid_hdr;
291	struct ubi_ainf_peb *new_aeb;
292
293	dbg_gen("create volume table (copy #%d)", copy + 1);
294
295	vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
296	if (!vidb)
297		return -ENOMEM;
298
299	vid_hdr = ubi_get_vid_hdr(vidb);
300
301retry:
302	new_aeb = ubi_early_get_peb(ubi, ai);
303	if (IS_ERR(new_aeb)) {
304		err = PTR_ERR(new_aeb);
305		goto out_free;
306	}
307
308	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
309	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
310	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
311	vid_hdr->data_size = vid_hdr->used_ebs =
312			     vid_hdr->data_pad = cpu_to_be32(0);
313	vid_hdr->lnum = cpu_to_be32(copy);
314	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
315
316	/* The EC header is already there, write the VID header */
317	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb);
318	if (err)
319		goto write_error;
320
321	/* Write the layout volume contents */
322	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
323	if (err)
324		goto write_error;
325
326	/*
327	 * And add it to the attaching information. Don't delete the old version
328	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
329	 */
330	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
331	ubi_free_aeb(ai, new_aeb);
332	ubi_free_vid_buf(vidb);
333	return err;
334
335write_error:
336	if (err == -EIO && ++tries <= 5) {
337		/*
338		 * Probably this physical eraseblock went bad, try to pick
339		 * another one.
340		 */
341		list_add(&new_aeb->u.list, &ai->erase);
342		goto retry;
343	}
344	ubi_free_aeb(ai, new_aeb);
345out_free:
346	ubi_free_vid_buf(vidb);
347	return err;
348
349}
350
351/**
352 * process_lvol - process the layout volume.
353 * @ubi: UBI device description object
354 * @ai: attaching information
355 * @av: layout volume attaching information
356 *
357 * This function is responsible for reading the layout volume, ensuring it is
358 * not corrupted, and recovering from corruptions if needed. Returns volume
359 * table in case of success and a negative error code in case of failure.
360 */
361static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
362					    struct ubi_attach_info *ai,
363					    struct ubi_ainf_volume *av)
364{
365	int err;
366	struct rb_node *rb;
367	struct ubi_ainf_peb *aeb;
368	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
369	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
370
371	/*
372	 * UBI goes through the following steps when it changes the layout
373	 * volume:
374	 * a. erase LEB 0;
375	 * b. write new data to LEB 0;
376	 * c. erase LEB 1;
377	 * d. write new data to LEB 1.
378	 *
379	 * Before the change, both LEBs contain the same data.
380	 *
381	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
382	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
383	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
384	 * finally, unclean reboots may result in a situation when neither LEB
385	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
386	 * 0 contains more recent information.
387	 *
388	 * So the plan is to first check LEB 0. Then
389	 * a. if LEB 0 is OK, it must be containing the most recent data; then
390	 *    we compare it with LEB 1, and if they are different, we copy LEB
391	 *    0 to LEB 1;
392	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
393	 *    to LEB 0.
394	 */
395
396	dbg_gen("check layout volume");
397
398	/* Read both LEB 0 and LEB 1 into memory */
399	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
400		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
401		if (!leb[aeb->lnum]) {
402			err = -ENOMEM;
403			goto out_free;
404		}
405
406		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
407				       ubi->vtbl_size);
408		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
409			/*
410			 * Scrub the PEB later. Note, -EBADMSG indicates an
411			 * uncorrectable ECC error, but we have our own CRC and
412			 * the data will be checked later. If the data is OK,
413			 * the PEB will be scrubbed (because we set
414			 * aeb->scrub). If the data is not OK, the contents of
415			 * the PEB will be recovered from the second copy, and
416			 * aeb->scrub will be cleared in
417			 * 'ubi_add_to_av()'.
418			 */
419			aeb->scrub = 1;
420		else if (err)
421			goto out_free;
422	}
423
424	err = -EINVAL;
425	if (leb[0]) {
426		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
427		if (leb_corrupted[0] < 0)
428			goto out_free;
429	}
430
431	if (!leb_corrupted[0]) {
432		/* LEB 0 is OK */
433		if (leb[1])
434			leb_corrupted[1] = memcmp(leb[0], leb[1],
435						  ubi->vtbl_size);
436		if (leb_corrupted[1]) {
437			ubi_warn(ubi, "volume table copy #2 is corrupted");
438			err = create_vtbl(ubi, ai, 1, leb[0]);
439			if (err)
440				goto out_free;
441			ubi_msg(ubi, "volume table was restored");
442		}
443
444		/* Both LEB 1 and LEB 2 are OK and consistent */
445		vfree(leb[1]);
446		return leb[0];
447	} else {
448		/* LEB 0 is corrupted or does not exist */
449		if (leb[1]) {
450			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
451			if (leb_corrupted[1] < 0)
452				goto out_free;
453		}
454		if (leb_corrupted[1]) {
455			/* Both LEB 0 and LEB 1 are corrupted */
456			ubi_err(ubi, "both volume tables are corrupted");
457			goto out_free;
458		}
459
460		ubi_warn(ubi, "volume table copy #1 is corrupted");
461		err = create_vtbl(ubi, ai, 0, leb[1]);
462		if (err)
463			goto out_free;
464		ubi_msg(ubi, "volume table was restored");
465
466		vfree(leb[0]);
467		return leb[1];
468	}
469
470out_free:
471	vfree(leb[0]);
472	vfree(leb[1]);
473	return ERR_PTR(err);
474}
475
476/**
477 * create_empty_lvol - create empty layout volume.
478 * @ubi: UBI device description object
479 * @ai: attaching information
480 *
481 * This function returns volume table contents in case of success and a
482 * negative error code in case of failure.
483 */
484static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
485						 struct ubi_attach_info *ai)
486{
487	int i;
488	struct ubi_vtbl_record *vtbl;
489
490	vtbl = vzalloc(ubi->vtbl_size);
491	if (!vtbl)
492		return ERR_PTR(-ENOMEM);
493
494	for (i = 0; i < ubi->vtbl_slots; i++)
495		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
496
497	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
498		int err;
499
500		err = create_vtbl(ubi, ai, i, vtbl);
501		if (err) {
502			vfree(vtbl);
503			return ERR_PTR(err);
504		}
505	}
506
507	return vtbl;
508}
509
510/**
511 * init_volumes - initialize volume information for existing volumes.
512 * @ubi: UBI device description object
513 * @ai: scanning information
514 * @vtbl: volume table
515 *
516 * This function allocates volume description objects for existing volumes.
517 * Returns zero in case of success and a negative error code in case of
518 * failure.
519 */
520static int init_volumes(struct ubi_device *ubi,
521			const struct ubi_attach_info *ai,
522			const struct ubi_vtbl_record *vtbl)
523{
524	int i, err, reserved_pebs = 0;
525	struct ubi_ainf_volume *av;
526	struct ubi_volume *vol;
527
528	for (i = 0; i < ubi->vtbl_slots; i++) {
529		cond_resched();
530
531		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
532			continue; /* Empty record */
533
534		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
535		if (!vol)
536			return -ENOMEM;
537
538		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
539		vol->alignment = be32_to_cpu(vtbl[i].alignment);
540		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
541		vol->upd_marker = vtbl[i].upd_marker;
542		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
543					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
544		vol->name_len = be16_to_cpu(vtbl[i].name_len);
545		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
546		memcpy(vol->name, vtbl[i].name, vol->name_len);
547		vol->name[vol->name_len] = '\0';
548		vol->vol_id = i;
549
550		if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG)
551			vol->skip_check = 1;
552
553		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
554			/* Auto re-size flag may be set only for one volume */
555			if (ubi->autoresize_vol_id != -1) {
556				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
557					ubi->autoresize_vol_id, i);
558				kfree(vol);
559				return -EINVAL;
560			}
561
562			ubi->autoresize_vol_id = i;
563		}
564
565		ubi_assert(!ubi->volumes[i]);
566		ubi->volumes[i] = vol;
567		ubi->vol_count += 1;
568		vol->ubi = ubi;
569		reserved_pebs += vol->reserved_pebs;
570
571		/*
572		 * We use ubi->peb_count and not vol->reserved_pebs because
573		 * we want to keep the code simple. Otherwise we'd have to
574		 * resize/check the bitmap upon volume resize too.
575		 * Allocating a few bytes more does not hurt.
576		 */
577		err = ubi_fastmap_init_checkmap(vol, ubi->peb_count);
578		if (err)
579			return err;
580
581		/*
582		 * In case of dynamic volume UBI knows nothing about how many
583		 * data is stored there. So assume the whole volume is used.
584		 */
585		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
586			vol->used_ebs = vol->reserved_pebs;
587			vol->last_eb_bytes = vol->usable_leb_size;
588			vol->used_bytes =
589				(long long)vol->used_ebs * vol->usable_leb_size;
590			continue;
591		}
592
593		/* Static volumes only */
594		av = ubi_find_av(ai, i);
595		if (!av || !av->leb_count) {
596			/*
597			 * No eraseblocks belonging to this volume found. We
598			 * don't actually know whether this static volume is
599			 * completely corrupted or just contains no data. And
600			 * we cannot know this as long as data size is not
601			 * stored on flash. So we just assume the volume is
602			 * empty. FIXME: this should be handled.
603			 */
604			continue;
605		}
606
607		if (av->leb_count != av->used_ebs) {
608			/*
609			 * We found a static volume which misses several
610			 * eraseblocks. Treat it as corrupted.
611			 */
612			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
613				 av->vol_id, av->used_ebs - av->leb_count);
614			vol->corrupted = 1;
615			continue;
616		}
617
618		vol->used_ebs = av->used_ebs;
619		vol->used_bytes =
620			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
621		vol->used_bytes += av->last_data_size;
622		vol->last_eb_bytes = av->last_data_size;
623	}
624
625	/* And add the layout volume */
626	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
627	if (!vol)
628		return -ENOMEM;
629
630	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
631	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
632	vol->vol_type = UBI_DYNAMIC_VOLUME;
633	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
634	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
635	vol->usable_leb_size = ubi->leb_size;
636	vol->used_ebs = vol->reserved_pebs;
637	vol->last_eb_bytes = vol->reserved_pebs;
638	vol->used_bytes =
639		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
640	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
641	vol->ref_count = 1;
642
643	ubi_assert(!ubi->volumes[i]);
644	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
645	reserved_pebs += vol->reserved_pebs;
646	ubi->vol_count += 1;
647	vol->ubi = ubi;
648	err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS);
649	if (err)
650		return err;
651
652	if (reserved_pebs > ubi->avail_pebs) {
653		ubi_err(ubi, "not enough PEBs, required %d, available %d",
654			reserved_pebs, ubi->avail_pebs);
655		if (ubi->corr_peb_count)
656			ubi_err(ubi, "%d PEBs are corrupted and not used",
657				ubi->corr_peb_count);
658		return -ENOSPC;
659	}
660	ubi->rsvd_pebs += reserved_pebs;
661	ubi->avail_pebs -= reserved_pebs;
662
663	return 0;
664}
665
666/**
667 * check_av - check volume attaching information.
668 * @vol: UBI volume description object
669 * @av: volume attaching information
670 *
671 * This function returns zero if the volume attaching information is consistent
672 * to the data read from the volume tabla, and %-EINVAL if not.
673 */
674static int check_av(const struct ubi_volume *vol,
675		    const struct ubi_ainf_volume *av)
676{
677	int err;
678
679	if (av->highest_lnum >= vol->reserved_pebs) {
680		err = 1;
681		goto bad;
682	}
683	if (av->leb_count > vol->reserved_pebs) {
684		err = 2;
685		goto bad;
686	}
687	if (av->vol_type != vol->vol_type) {
688		err = 3;
689		goto bad;
690	}
691	if (av->used_ebs > vol->reserved_pebs) {
692		err = 4;
693		goto bad;
694	}
695	if (av->data_pad != vol->data_pad) {
696		err = 5;
697		goto bad;
698	}
699	return 0;
700
701bad:
702	ubi_err(vol->ubi, "bad attaching information, error %d", err);
703	ubi_dump_av(av);
704	ubi_dump_vol_info(vol);
705	return -EINVAL;
706}
707
708/**
709 * check_attaching_info - check that attaching information.
710 * @ubi: UBI device description object
711 * @ai: attaching information
712 *
713 * Even though we protect on-flash data by CRC checksums, we still don't trust
714 * the media. This function ensures that attaching information is consistent to
715 * the information read from the volume table. Returns zero if the attaching
716 * information is OK and %-EINVAL if it is not.
717 */
718static int check_attaching_info(const struct ubi_device *ubi,
719			       struct ubi_attach_info *ai)
720{
721	int err, i;
722	struct ubi_ainf_volume *av;
723	struct ubi_volume *vol;
724
725	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
726		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
727			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
728		return -EINVAL;
729	}
730
731	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
732	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
733		ubi_err(ubi, "too large volume ID %d found",
734			ai->highest_vol_id);
735		return -EINVAL;
736	}
737
738	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
739		cond_resched();
740
741		av = ubi_find_av(ai, i);
742		vol = ubi->volumes[i];
743		if (!vol) {
744			if (av)
745				ubi_remove_av(ai, av);
746			continue;
747		}
748
749		if (vol->reserved_pebs == 0) {
750			ubi_assert(i < ubi->vtbl_slots);
751
752			if (!av)
753				continue;
754
755			/*
756			 * During attaching we found a volume which does not
757			 * exist according to the information in the volume
758			 * table. This must have happened due to an unclean
759			 * reboot while the volume was being removed. Discard
760			 * these eraseblocks.
761			 */
762			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
763			ubi_remove_av(ai, av);
764		} else if (av) {
765			err = check_av(vol, av);
766			if (err)
767				return err;
768		}
769	}
770
771	return 0;
772}
773
774/**
775 * ubi_read_volume_table - read the volume table.
776 * @ubi: UBI device description object
777 * @ai: attaching information
778 *
779 * This function reads volume table, checks it, recover from errors if needed,
780 * or creates it if needed. Returns zero in case of success and a negative
781 * error code in case of failure.
782 */
783int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
784{
785	int err;
786	struct ubi_ainf_volume *av;
787
788	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
789
790	/*
791	 * The number of supported volumes is limited by the eraseblock size
792	 * and by the UBI_MAX_VOLUMES constant.
793	 */
794	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
795	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
796		ubi->vtbl_slots = UBI_MAX_VOLUMES;
797
798	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
799	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
800
801	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
802	if (!av) {
803		/*
804		 * No logical eraseblocks belonging to the layout volume were
805		 * found. This could mean that the flash is just empty. In
806		 * this case we create empty layout volume.
807		 *
808		 * But if flash is not empty this must be a corruption or the
809		 * MTD device just contains garbage.
810		 */
811		if (ai->is_empty) {
812			ubi->vtbl = create_empty_lvol(ubi, ai);
813			if (IS_ERR(ubi->vtbl))
814				return PTR_ERR(ubi->vtbl);
815		} else {
816			ubi_err(ubi, "the layout volume was not found");
817			return -EINVAL;
818		}
819	} else {
820		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
821			/* This must not happen with proper UBI images */
822			ubi_err(ubi, "too many LEBs (%d) in layout volume",
823				av->leb_count);
824			return -EINVAL;
825		}
826
827		ubi->vtbl = process_lvol(ubi, ai, av);
828		if (IS_ERR(ubi->vtbl))
829			return PTR_ERR(ubi->vtbl);
830	}
831
832	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
833
834	/*
835	 * The layout volume is OK, initialize the corresponding in-RAM data
836	 * structures.
837	 */
838	err = init_volumes(ubi, ai, ubi->vtbl);
839	if (err)
840		goto out_free;
841
842	/*
843	 * Make sure that the attaching information is consistent to the
844	 * information stored in the volume table.
845	 */
846	err = check_attaching_info(ubi, ai);
847	if (err)
848		goto out_free;
849
850	return 0;
851
852out_free:
853	vfree(ubi->vtbl);
854	ubi_free_all_volumes(ubi);
 
 
 
855	return err;
856}
857
858/**
859 * self_vtbl_check - check volume table.
860 * @ubi: UBI device description object
861 */
862static void self_vtbl_check(const struct ubi_device *ubi)
863{
864	if (!ubi_dbg_chk_gen(ubi))
865		return;
866
867	if (vtbl_check(ubi, ubi->vtbl)) {
868		ubi_err(ubi, "self-check failed");
869		BUG();
870	}
871}
v4.6
 
  1/*
  2 * Copyright (c) International Business Machines Corp., 2006
  3 * Copyright (c) Nokia Corporation, 2006, 2007
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License as published by
  7 * the Free Software Foundation; either version 2 of the License, or
  8 * (at your option) any later version.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
 13 * the GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 18 *
 19 * Author: Artem Bityutskiy (Битюцкий Артём)
 20 */
 21
 22/*
 23 * This file includes volume table manipulation code. The volume table is an
 24 * on-flash table containing volume meta-data like name, number of reserved
 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
 26 * "layout volume".
 27 *
 28 * The layout volume is an internal volume which is organized as follows. It
 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
 31 * other. This redundancy guarantees robustness to unclean reboots. The volume
 32 * table is basically an array of volume table records. Each record contains
 33 * full information about the volume and protected by a CRC checksum. Note,
 34 * nowadays we use the atomic LEB change operation when updating the volume
 35 * table, so we do not really need 2 LEBs anymore, but we preserve the older
 36 * design for the backward compatibility reasons.
 37 *
 38 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
 39 * erased, and the updated volume table is written back to LEB 0. Then same for
 40 * LEB 1. This scheme guarantees recoverability from unclean reboots.
 41 *
 42 * In this UBI implementation the on-flash volume table does not contain any
 43 * information about how much data static volumes contain.
 44 *
 45 * But it would still be beneficial to store this information in the volume
 46 * table. For example, suppose we have a static volume X, and all its physical
 47 * eraseblocks became bad for some reasons. Suppose we are attaching the
 48 * corresponding MTD device, for some reason we find no logical eraseblocks
 49 * corresponding to the volume X. According to the volume table volume X does
 50 * exist. So we don't know whether it is just empty or all its physical
 51 * eraseblocks went bad. So we cannot alarm the user properly.
 52 *
 53 * The volume table also stores so-called "update marker", which is used for
 54 * volume updates. Before updating the volume, the update marker is set, and
 55 * after the update operation is finished, the update marker is cleared. So if
 56 * the update operation was interrupted (e.g. by an unclean reboot) - the
 57 * update marker is still there and we know that the volume's contents is
 58 * damaged.
 59 */
 60
 61#include <linux/crc32.h>
 62#include <linux/err.h>
 63#include <linux/slab.h>
 64#include <asm/div64.h>
 65#include "ubi.h"
 66
 67static void self_vtbl_check(const struct ubi_device *ubi);
 68
 69/* Empty volume table record */
 70static struct ubi_vtbl_record empty_vtbl_record;
 71
 72/**
 73 * ubi_update_layout_vol - helper for updatting layout volumes on flash
 74 * @ubi: UBI device description object
 75 */
 76static int ubi_update_layout_vol(struct ubi_device *ubi)
 77{
 78	struct ubi_volume *layout_vol;
 79	int i, err;
 80
 81	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
 82	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 83		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
 84						ubi->vtbl_size);
 85		if (err)
 86			return err;
 87	}
 88
 89	return 0;
 90}
 91
 92/**
 93 * ubi_change_vtbl_record - change volume table record.
 94 * @ubi: UBI device description object
 95 * @idx: table index to change
 96 * @vtbl_rec: new volume table record
 97 *
 98 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
 99 * volume table record is written. The caller does not have to calculate CRC of
100 * the record as it is done by this function. Returns zero in case of success
101 * and a negative error code in case of failure.
102 */
103int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
104			   struct ubi_vtbl_record *vtbl_rec)
105{
106	int err;
107	uint32_t crc;
108
109	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
110
111	if (!vtbl_rec)
112		vtbl_rec = &empty_vtbl_record;
113	else {
114		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
115		vtbl_rec->crc = cpu_to_be32(crc);
116	}
117
118	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
119	err = ubi_update_layout_vol(ubi);
120
121	self_vtbl_check(ubi);
122	return err ? err : 0;
123}
124
125/**
126 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
127 * @ubi: UBI device description object
128 * @rename_list: list of &struct ubi_rename_entry objects
129 *
130 * This function re-names multiple volumes specified in @req in the volume
131 * table. Returns zero in case of success and a negative error code in case of
132 * failure.
133 */
134int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
135			    struct list_head *rename_list)
136{
137	struct ubi_rename_entry *re;
138
139	list_for_each_entry(re, rename_list, list) {
140		uint32_t crc;
141		struct ubi_volume *vol = re->desc->vol;
142		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
143
144		if (re->remove) {
145			memcpy(vtbl_rec, &empty_vtbl_record,
146			       sizeof(struct ubi_vtbl_record));
147			continue;
148		}
149
150		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
151		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
152		memset(vtbl_rec->name + re->new_name_len, 0,
153		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
154		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
155			    UBI_VTBL_RECORD_SIZE_CRC);
156		vtbl_rec->crc = cpu_to_be32(crc);
157	}
158
159	return ubi_update_layout_vol(ubi);
160}
161
162/**
163 * vtbl_check - check if volume table is not corrupted and sensible.
164 * @ubi: UBI device description object
165 * @vtbl: volume table
166 *
167 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
168 * and %-EINVAL if it contains inconsistent data.
169 */
170static int vtbl_check(const struct ubi_device *ubi,
171		      const struct ubi_vtbl_record *vtbl)
172{
173	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
174	int upd_marker, err;
175	uint32_t crc;
176	const char *name;
177
178	for (i = 0; i < ubi->vtbl_slots; i++) {
179		cond_resched();
180
181		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
182		alignment = be32_to_cpu(vtbl[i].alignment);
183		data_pad = be32_to_cpu(vtbl[i].data_pad);
184		upd_marker = vtbl[i].upd_marker;
185		vol_type = vtbl[i].vol_type;
186		name_len = be16_to_cpu(vtbl[i].name_len);
187		name = &vtbl[i].name[0];
188
189		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
190		if (be32_to_cpu(vtbl[i].crc) != crc) {
191			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
192				 i, crc, be32_to_cpu(vtbl[i].crc));
193			ubi_dump_vtbl_record(&vtbl[i], i);
194			return 1;
195		}
196
197		if (reserved_pebs == 0) {
198			if (memcmp(&vtbl[i], &empty_vtbl_record,
199						UBI_VTBL_RECORD_SIZE)) {
200				err = 2;
201				goto bad;
202			}
203			continue;
204		}
205
206		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
207		    name_len < 0) {
208			err = 3;
209			goto bad;
210		}
211
212		if (alignment > ubi->leb_size || alignment == 0) {
213			err = 4;
214			goto bad;
215		}
216
217		n = alignment & (ubi->min_io_size - 1);
218		if (alignment != 1 && n) {
219			err = 5;
220			goto bad;
221		}
222
223		n = ubi->leb_size % alignment;
224		if (data_pad != n) {
225			ubi_err(ubi, "bad data_pad, has to be %d", n);
226			err = 6;
227			goto bad;
228		}
229
230		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
231			err = 7;
232			goto bad;
233		}
234
235		if (upd_marker != 0 && upd_marker != 1) {
236			err = 8;
237			goto bad;
238		}
239
240		if (reserved_pebs > ubi->good_peb_count) {
241			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
242				reserved_pebs, ubi->good_peb_count);
243			err = 9;
244			goto bad;
245		}
246
247		if (name_len > UBI_VOL_NAME_MAX) {
248			err = 10;
249			goto bad;
250		}
251
252		if (name[0] == '\0') {
253			err = 11;
254			goto bad;
255		}
256
257		if (name_len != strnlen(name, name_len + 1)) {
258			err = 12;
259			goto bad;
260		}
261	}
262
263	/* Checks that all names are unique */
264	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
265		for (n = i + 1; n < ubi->vtbl_slots; n++) {
266			int len1 = be16_to_cpu(vtbl[i].name_len);
267			int len2 = be16_to_cpu(vtbl[n].name_len);
268
269			if (len1 > 0 && len1 == len2 &&
270			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
271				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
272					i, n, vtbl[i].name);
273				ubi_dump_vtbl_record(&vtbl[i], i);
274				ubi_dump_vtbl_record(&vtbl[n], n);
275				return -EINVAL;
276			}
277		}
278	}
279
280	return 0;
281
282bad:
283	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
284	ubi_dump_vtbl_record(&vtbl[i], i);
285	return -EINVAL;
286}
287
288/**
289 * create_vtbl - create a copy of volume table.
290 * @ubi: UBI device description object
291 * @ai: attaching information
292 * @copy: number of the volume table copy
293 * @vtbl: contents of the volume table
294 *
295 * This function returns zero in case of success and a negative error code in
296 * case of failure.
297 */
298static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
299		       int copy, void *vtbl)
300{
301	int err, tries = 0;
 
302	struct ubi_vid_hdr *vid_hdr;
303	struct ubi_ainf_peb *new_aeb;
304
305	dbg_gen("create volume table (copy #%d)", copy + 1);
306
307	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
308	if (!vid_hdr)
309		return -ENOMEM;
310
 
 
311retry:
312	new_aeb = ubi_early_get_peb(ubi, ai);
313	if (IS_ERR(new_aeb)) {
314		err = PTR_ERR(new_aeb);
315		goto out_free;
316	}
317
318	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
319	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
320	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
321	vid_hdr->data_size = vid_hdr->used_ebs =
322			     vid_hdr->data_pad = cpu_to_be32(0);
323	vid_hdr->lnum = cpu_to_be32(copy);
324	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
325
326	/* The EC header is already there, write the VID header */
327	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
328	if (err)
329		goto write_error;
330
331	/* Write the layout volume contents */
332	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
333	if (err)
334		goto write_error;
335
336	/*
337	 * And add it to the attaching information. Don't delete the old version
338	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
339	 */
340	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
341	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
342	ubi_free_vid_hdr(ubi, vid_hdr);
343	return err;
344
345write_error:
346	if (err == -EIO && ++tries <= 5) {
347		/*
348		 * Probably this physical eraseblock went bad, try to pick
349		 * another one.
350		 */
351		list_add(&new_aeb->u.list, &ai->erase);
352		goto retry;
353	}
354	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
355out_free:
356	ubi_free_vid_hdr(ubi, vid_hdr);
357	return err;
358
359}
360
361/**
362 * process_lvol - process the layout volume.
363 * @ubi: UBI device description object
364 * @ai: attaching information
365 * @av: layout volume attaching information
366 *
367 * This function is responsible for reading the layout volume, ensuring it is
368 * not corrupted, and recovering from corruptions if needed. Returns volume
369 * table in case of success and a negative error code in case of failure.
370 */
371static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
372					    struct ubi_attach_info *ai,
373					    struct ubi_ainf_volume *av)
374{
375	int err;
376	struct rb_node *rb;
377	struct ubi_ainf_peb *aeb;
378	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
379	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
380
381	/*
382	 * UBI goes through the following steps when it changes the layout
383	 * volume:
384	 * a. erase LEB 0;
385	 * b. write new data to LEB 0;
386	 * c. erase LEB 1;
387	 * d. write new data to LEB 1.
388	 *
389	 * Before the change, both LEBs contain the same data.
390	 *
391	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
392	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
393	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
394	 * finally, unclean reboots may result in a situation when neither LEB
395	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
396	 * 0 contains more recent information.
397	 *
398	 * So the plan is to first check LEB 0. Then
399	 * a. if LEB 0 is OK, it must be containing the most recent data; then
400	 *    we compare it with LEB 1, and if they are different, we copy LEB
401	 *    0 to LEB 1;
402	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
403	 *    to LEB 0.
404	 */
405
406	dbg_gen("check layout volume");
407
408	/* Read both LEB 0 and LEB 1 into memory */
409	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
410		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
411		if (!leb[aeb->lnum]) {
412			err = -ENOMEM;
413			goto out_free;
414		}
415
416		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
417				       ubi->vtbl_size);
418		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
419			/*
420			 * Scrub the PEB later. Note, -EBADMSG indicates an
421			 * uncorrectable ECC error, but we have our own CRC and
422			 * the data will be checked later. If the data is OK,
423			 * the PEB will be scrubbed (because we set
424			 * aeb->scrub). If the data is not OK, the contents of
425			 * the PEB will be recovered from the second copy, and
426			 * aeb->scrub will be cleared in
427			 * 'ubi_add_to_av()'.
428			 */
429			aeb->scrub = 1;
430		else if (err)
431			goto out_free;
432	}
433
434	err = -EINVAL;
435	if (leb[0]) {
436		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
437		if (leb_corrupted[0] < 0)
438			goto out_free;
439	}
440
441	if (!leb_corrupted[0]) {
442		/* LEB 0 is OK */
443		if (leb[1])
444			leb_corrupted[1] = memcmp(leb[0], leb[1],
445						  ubi->vtbl_size);
446		if (leb_corrupted[1]) {
447			ubi_warn(ubi, "volume table copy #2 is corrupted");
448			err = create_vtbl(ubi, ai, 1, leb[0]);
449			if (err)
450				goto out_free;
451			ubi_msg(ubi, "volume table was restored");
452		}
453
454		/* Both LEB 1 and LEB 2 are OK and consistent */
455		vfree(leb[1]);
456		return leb[0];
457	} else {
458		/* LEB 0 is corrupted or does not exist */
459		if (leb[1]) {
460			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
461			if (leb_corrupted[1] < 0)
462				goto out_free;
463		}
464		if (leb_corrupted[1]) {
465			/* Both LEB 0 and LEB 1 are corrupted */
466			ubi_err(ubi, "both volume tables are corrupted");
467			goto out_free;
468		}
469
470		ubi_warn(ubi, "volume table copy #1 is corrupted");
471		err = create_vtbl(ubi, ai, 0, leb[1]);
472		if (err)
473			goto out_free;
474		ubi_msg(ubi, "volume table was restored");
475
476		vfree(leb[0]);
477		return leb[1];
478	}
479
480out_free:
481	vfree(leb[0]);
482	vfree(leb[1]);
483	return ERR_PTR(err);
484}
485
486/**
487 * create_empty_lvol - create empty layout volume.
488 * @ubi: UBI device description object
489 * @ai: attaching information
490 *
491 * This function returns volume table contents in case of success and a
492 * negative error code in case of failure.
493 */
494static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
495						 struct ubi_attach_info *ai)
496{
497	int i;
498	struct ubi_vtbl_record *vtbl;
499
500	vtbl = vzalloc(ubi->vtbl_size);
501	if (!vtbl)
502		return ERR_PTR(-ENOMEM);
503
504	for (i = 0; i < ubi->vtbl_slots; i++)
505		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
506
507	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
508		int err;
509
510		err = create_vtbl(ubi, ai, i, vtbl);
511		if (err) {
512			vfree(vtbl);
513			return ERR_PTR(err);
514		}
515	}
516
517	return vtbl;
518}
519
520/**
521 * init_volumes - initialize volume information for existing volumes.
522 * @ubi: UBI device description object
523 * @ai: scanning information
524 * @vtbl: volume table
525 *
526 * This function allocates volume description objects for existing volumes.
527 * Returns zero in case of success and a negative error code in case of
528 * failure.
529 */
530static int init_volumes(struct ubi_device *ubi,
531			const struct ubi_attach_info *ai,
532			const struct ubi_vtbl_record *vtbl)
533{
534	int i, reserved_pebs = 0;
535	struct ubi_ainf_volume *av;
536	struct ubi_volume *vol;
537
538	for (i = 0; i < ubi->vtbl_slots; i++) {
539		cond_resched();
540
541		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
542			continue; /* Empty record */
543
544		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
545		if (!vol)
546			return -ENOMEM;
547
548		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
549		vol->alignment = be32_to_cpu(vtbl[i].alignment);
550		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
551		vol->upd_marker = vtbl[i].upd_marker;
552		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
553					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
554		vol->name_len = be16_to_cpu(vtbl[i].name_len);
555		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
556		memcpy(vol->name, vtbl[i].name, vol->name_len);
557		vol->name[vol->name_len] = '\0';
558		vol->vol_id = i;
559
 
 
 
560		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
561			/* Auto re-size flag may be set only for one volume */
562			if (ubi->autoresize_vol_id != -1) {
563				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
564					ubi->autoresize_vol_id, i);
565				kfree(vol);
566				return -EINVAL;
567			}
568
569			ubi->autoresize_vol_id = i;
570		}
571
572		ubi_assert(!ubi->volumes[i]);
573		ubi->volumes[i] = vol;
574		ubi->vol_count += 1;
575		vol->ubi = ubi;
576		reserved_pebs += vol->reserved_pebs;
577
578		/*
 
 
 
 
 
 
 
 
 
 
579		 * In case of dynamic volume UBI knows nothing about how many
580		 * data is stored there. So assume the whole volume is used.
581		 */
582		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
583			vol->used_ebs = vol->reserved_pebs;
584			vol->last_eb_bytes = vol->usable_leb_size;
585			vol->used_bytes =
586				(long long)vol->used_ebs * vol->usable_leb_size;
587			continue;
588		}
589
590		/* Static volumes only */
591		av = ubi_find_av(ai, i);
592		if (!av || !av->leb_count) {
593			/*
594			 * No eraseblocks belonging to this volume found. We
595			 * don't actually know whether this static volume is
596			 * completely corrupted or just contains no data. And
597			 * we cannot know this as long as data size is not
598			 * stored on flash. So we just assume the volume is
599			 * empty. FIXME: this should be handled.
600			 */
601			continue;
602		}
603
604		if (av->leb_count != av->used_ebs) {
605			/*
606			 * We found a static volume which misses several
607			 * eraseblocks. Treat it as corrupted.
608			 */
609			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
610				 av->vol_id, av->used_ebs - av->leb_count);
611			vol->corrupted = 1;
612			continue;
613		}
614
615		vol->used_ebs = av->used_ebs;
616		vol->used_bytes =
617			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
618		vol->used_bytes += av->last_data_size;
619		vol->last_eb_bytes = av->last_data_size;
620	}
621
622	/* And add the layout volume */
623	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
624	if (!vol)
625		return -ENOMEM;
626
627	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
628	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
629	vol->vol_type = UBI_DYNAMIC_VOLUME;
630	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
631	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
632	vol->usable_leb_size = ubi->leb_size;
633	vol->used_ebs = vol->reserved_pebs;
634	vol->last_eb_bytes = vol->reserved_pebs;
635	vol->used_bytes =
636		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
637	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
638	vol->ref_count = 1;
639
640	ubi_assert(!ubi->volumes[i]);
641	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
642	reserved_pebs += vol->reserved_pebs;
643	ubi->vol_count += 1;
644	vol->ubi = ubi;
 
 
 
645
646	if (reserved_pebs > ubi->avail_pebs) {
647		ubi_err(ubi, "not enough PEBs, required %d, available %d",
648			reserved_pebs, ubi->avail_pebs);
649		if (ubi->corr_peb_count)
650			ubi_err(ubi, "%d PEBs are corrupted and not used",
651				ubi->corr_peb_count);
652		return -ENOSPC;
653	}
654	ubi->rsvd_pebs += reserved_pebs;
655	ubi->avail_pebs -= reserved_pebs;
656
657	return 0;
658}
659
660/**
661 * check_av - check volume attaching information.
662 * @vol: UBI volume description object
663 * @av: volume attaching information
664 *
665 * This function returns zero if the volume attaching information is consistent
666 * to the data read from the volume tabla, and %-EINVAL if not.
667 */
668static int check_av(const struct ubi_volume *vol,
669		    const struct ubi_ainf_volume *av)
670{
671	int err;
672
673	if (av->highest_lnum >= vol->reserved_pebs) {
674		err = 1;
675		goto bad;
676	}
677	if (av->leb_count > vol->reserved_pebs) {
678		err = 2;
679		goto bad;
680	}
681	if (av->vol_type != vol->vol_type) {
682		err = 3;
683		goto bad;
684	}
685	if (av->used_ebs > vol->reserved_pebs) {
686		err = 4;
687		goto bad;
688	}
689	if (av->data_pad != vol->data_pad) {
690		err = 5;
691		goto bad;
692	}
693	return 0;
694
695bad:
696	ubi_err(vol->ubi, "bad attaching information, error %d", err);
697	ubi_dump_av(av);
698	ubi_dump_vol_info(vol);
699	return -EINVAL;
700}
701
702/**
703 * check_attaching_info - check that attaching information.
704 * @ubi: UBI device description object
705 * @ai: attaching information
706 *
707 * Even though we protect on-flash data by CRC checksums, we still don't trust
708 * the media. This function ensures that attaching information is consistent to
709 * the information read from the volume table. Returns zero if the attaching
710 * information is OK and %-EINVAL if it is not.
711 */
712static int check_attaching_info(const struct ubi_device *ubi,
713			       struct ubi_attach_info *ai)
714{
715	int err, i;
716	struct ubi_ainf_volume *av;
717	struct ubi_volume *vol;
718
719	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
720		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
721			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
722		return -EINVAL;
723	}
724
725	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
726	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
727		ubi_err(ubi, "too large volume ID %d found",
728			ai->highest_vol_id);
729		return -EINVAL;
730	}
731
732	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
733		cond_resched();
734
735		av = ubi_find_av(ai, i);
736		vol = ubi->volumes[i];
737		if (!vol) {
738			if (av)
739				ubi_remove_av(ai, av);
740			continue;
741		}
742
743		if (vol->reserved_pebs == 0) {
744			ubi_assert(i < ubi->vtbl_slots);
745
746			if (!av)
747				continue;
748
749			/*
750			 * During attaching we found a volume which does not
751			 * exist according to the information in the volume
752			 * table. This must have happened due to an unclean
753			 * reboot while the volume was being removed. Discard
754			 * these eraseblocks.
755			 */
756			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
757			ubi_remove_av(ai, av);
758		} else if (av) {
759			err = check_av(vol, av);
760			if (err)
761				return err;
762		}
763	}
764
765	return 0;
766}
767
768/**
769 * ubi_read_volume_table - read the volume table.
770 * @ubi: UBI device description object
771 * @ai: attaching information
772 *
773 * This function reads volume table, checks it, recover from errors if needed,
774 * or creates it if needed. Returns zero in case of success and a negative
775 * error code in case of failure.
776 */
777int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
778{
779	int i, err;
780	struct ubi_ainf_volume *av;
781
782	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
783
784	/*
785	 * The number of supported volumes is limited by the eraseblock size
786	 * and by the UBI_MAX_VOLUMES constant.
787	 */
788	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
789	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
790		ubi->vtbl_slots = UBI_MAX_VOLUMES;
791
792	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
793	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
794
795	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
796	if (!av) {
797		/*
798		 * No logical eraseblocks belonging to the layout volume were
799		 * found. This could mean that the flash is just empty. In
800		 * this case we create empty layout volume.
801		 *
802		 * But if flash is not empty this must be a corruption or the
803		 * MTD device just contains garbage.
804		 */
805		if (ai->is_empty) {
806			ubi->vtbl = create_empty_lvol(ubi, ai);
807			if (IS_ERR(ubi->vtbl))
808				return PTR_ERR(ubi->vtbl);
809		} else {
810			ubi_err(ubi, "the layout volume was not found");
811			return -EINVAL;
812		}
813	} else {
814		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
815			/* This must not happen with proper UBI images */
816			ubi_err(ubi, "too many LEBs (%d) in layout volume",
817				av->leb_count);
818			return -EINVAL;
819		}
820
821		ubi->vtbl = process_lvol(ubi, ai, av);
822		if (IS_ERR(ubi->vtbl))
823			return PTR_ERR(ubi->vtbl);
824	}
825
826	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
827
828	/*
829	 * The layout volume is OK, initialize the corresponding in-RAM data
830	 * structures.
831	 */
832	err = init_volumes(ubi, ai, ubi->vtbl);
833	if (err)
834		goto out_free;
835
836	/*
837	 * Make sure that the attaching information is consistent to the
838	 * information stored in the volume table.
839	 */
840	err = check_attaching_info(ubi, ai);
841	if (err)
842		goto out_free;
843
844	return 0;
845
846out_free:
847	vfree(ubi->vtbl);
848	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
849		kfree(ubi->volumes[i]);
850		ubi->volumes[i] = NULL;
851	}
852	return err;
853}
854
855/**
856 * self_vtbl_check - check volume table.
857 * @ubi: UBI device description object
858 */
859static void self_vtbl_check(const struct ubi_device *ubi)
860{
861	if (!ubi_dbg_chk_gen(ubi))
862		return;
863
864	if (vtbl_check(ubi, ubi->vtbl)) {
865		ubi_err(ubi, "self-check failed");
866		BUG();
867	}
868}