Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (c) International Business Machines Corp., 2006
  4 * Copyright (c) Nokia Corporation, 2006, 2007
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Author: Artem Bityutskiy (Битюцкий Артём)
  7 */
  8
  9/*
 10 * This file includes volume table manipulation code. The volume table is an
 11 * on-flash table containing volume meta-data like name, number of reserved
 12 * physical eraseblocks, type, etc. The volume table is stored in the so-called
 13 * "layout volume".
 14 *
 15 * The layout volume is an internal volume which is organized as follows. It
 16 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
 17 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
 18 * other. This redundancy guarantees robustness to unclean reboots. The volume
 19 * table is basically an array of volume table records. Each record contains
 20 * full information about the volume and protected by a CRC checksum. Note,
 21 * nowadays we use the atomic LEB change operation when updating the volume
 22 * table, so we do not really need 2 LEBs anymore, but we preserve the older
 23 * design for the backward compatibility reasons.
 24 *
 25 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
 26 * erased, and the updated volume table is written back to LEB 0. Then same for
 27 * LEB 1. This scheme guarantees recoverability from unclean reboots.
 28 *
 29 * In this UBI implementation the on-flash volume table does not contain any
 30 * information about how much data static volumes contain.
 31 *
 32 * But it would still be beneficial to store this information in the volume
 33 * table. For example, suppose we have a static volume X, and all its physical
 34 * eraseblocks became bad for some reasons. Suppose we are attaching the
 35 * corresponding MTD device, for some reason we find no logical eraseblocks
 36 * corresponding to the volume X. According to the volume table volume X does
 37 * exist. So we don't know whether it is just empty or all its physical
 38 * eraseblocks went bad. So we cannot alarm the user properly.
 39 *
 40 * The volume table also stores so-called "update marker", which is used for
 41 * volume updates. Before updating the volume, the update marker is set, and
 42 * after the update operation is finished, the update marker is cleared. So if
 43 * the update operation was interrupted (e.g. by an unclean reboot) - the
 44 * update marker is still there and we know that the volume's contents is
 45 * damaged.
 46 */
 47
 48#include <linux/crc32.h>
 49#include <linux/err.h>
 50#include <linux/slab.h>
 51#include <asm/div64.h>
 52#include "ubi.h"
 53
 54static void self_vtbl_check(const struct ubi_device *ubi);
 55
 56/* Empty volume table record */
 57static struct ubi_vtbl_record empty_vtbl_record;
 58
 59/**
 60 * ubi_update_layout_vol - helper for updatting layout volumes on flash
 61 * @ubi: UBI device description object
 62 */
 63static int ubi_update_layout_vol(struct ubi_device *ubi)
 64{
 65	struct ubi_volume *layout_vol;
 66	int i, err;
 67
 68	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
 69	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 70		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
 71						ubi->vtbl_size);
 72		if (err)
 73			return err;
 74	}
 75
 76	return 0;
 77}
 78
 79/**
 80 * ubi_change_vtbl_record - change volume table record.
 81 * @ubi: UBI device description object
 82 * @idx: table index to change
 83 * @vtbl_rec: new volume table record
 84 *
 85 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
 86 * volume table record is written. The caller does not have to calculate CRC of
 87 * the record as it is done by this function. Returns zero in case of success
 88 * and a negative error code in case of failure.
 89 */
 90int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
 91			   struct ubi_vtbl_record *vtbl_rec)
 92{
 93	int err;
 94	uint32_t crc;
 
 95
 96	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
 
 97
 98	if (!vtbl_rec)
 99		vtbl_rec = &empty_vtbl_record;
100	else {
101		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
102		vtbl_rec->crc = cpu_to_be32(crc);
103	}
104
105	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
106	err = ubi_update_layout_vol(ubi);
 
 
 
 
 
 
 
 
 
107
108	self_vtbl_check(ubi);
109	return err ? err : 0;
110}
111
112/**
113 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
114 * @ubi: UBI device description object
115 * @rename_list: list of &struct ubi_rename_entry objects
116 *
117 * This function re-names multiple volumes specified in @req in the volume
118 * table. Returns zero in case of success and a negative error code in case of
119 * failure.
120 */
121int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
122			    struct list_head *rename_list)
123{
 
124	struct ubi_rename_entry *re;
 
125
126	list_for_each_entry(re, rename_list, list) {
127		uint32_t crc;
128		struct ubi_volume *vol = re->desc->vol;
129		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
130
131		if (re->remove) {
132			memcpy(vtbl_rec, &empty_vtbl_record,
133			       sizeof(struct ubi_vtbl_record));
134			continue;
135		}
136
137		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
138		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
139		memset(vtbl_rec->name + re->new_name_len, 0,
140		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
141		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
142			    UBI_VTBL_RECORD_SIZE_CRC);
143		vtbl_rec->crc = cpu_to_be32(crc);
144	}
145
146	return ubi_update_layout_vol(ubi);
 
 
 
 
 
 
 
 
 
 
 
 
147}
148
149/**
150 * vtbl_check - check if volume table is not corrupted and sensible.
151 * @ubi: UBI device description object
152 * @vtbl: volume table
153 *
154 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
155 * and %-EINVAL if it contains inconsistent data.
156 */
157static int vtbl_check(const struct ubi_device *ubi,
158		      const struct ubi_vtbl_record *vtbl)
159{
160	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
161	int upd_marker, err;
162	uint32_t crc;
163	const char *name;
164
165	for (i = 0; i < ubi->vtbl_slots; i++) {
166		cond_resched();
167
168		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
169		alignment = be32_to_cpu(vtbl[i].alignment);
170		data_pad = be32_to_cpu(vtbl[i].data_pad);
171		upd_marker = vtbl[i].upd_marker;
172		vol_type = vtbl[i].vol_type;
173		name_len = be16_to_cpu(vtbl[i].name_len);
174		name = &vtbl[i].name[0];
175
176		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
177		if (be32_to_cpu(vtbl[i].crc) != crc) {
178			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
179				 i, crc, be32_to_cpu(vtbl[i].crc));
180			ubi_dump_vtbl_record(&vtbl[i], i);
181			return 1;
182		}
183
184		if (reserved_pebs == 0) {
185			if (memcmp(&vtbl[i], &empty_vtbl_record,
186						UBI_VTBL_RECORD_SIZE)) {
187				err = 2;
188				goto bad;
189			}
190			continue;
191		}
192
193		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
194		    name_len < 0) {
195			err = 3;
196			goto bad;
197		}
198
199		if (alignment > ubi->leb_size || alignment == 0) {
200			err = 4;
201			goto bad;
202		}
203
204		n = alignment & (ubi->min_io_size - 1);
205		if (alignment != 1 && n) {
206			err = 5;
207			goto bad;
208		}
209
210		n = ubi->leb_size % alignment;
211		if (data_pad != n) {
212			ubi_err(ubi, "bad data_pad, has to be %d", n);
213			err = 6;
214			goto bad;
215		}
216
217		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
218			err = 7;
219			goto bad;
220		}
221
222		if (upd_marker != 0 && upd_marker != 1) {
223			err = 8;
224			goto bad;
225		}
226
227		if (reserved_pebs > ubi->good_peb_count) {
228			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
229				reserved_pebs, ubi->good_peb_count);
230			err = 9;
231			goto bad;
232		}
233
234		if (name_len > UBI_VOL_NAME_MAX) {
235			err = 10;
236			goto bad;
237		}
238
239		if (name[0] == '\0') {
240			err = 11;
241			goto bad;
242		}
243
244		if (name_len != strnlen(name, name_len + 1)) {
245			err = 12;
246			goto bad;
247		}
248	}
249
250	/* Checks that all names are unique */
251	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
252		for (n = i + 1; n < ubi->vtbl_slots; n++) {
253			int len1 = be16_to_cpu(vtbl[i].name_len);
254			int len2 = be16_to_cpu(vtbl[n].name_len);
255
256			if (len1 > 0 && len1 == len2 &&
257			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
258				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
259					i, n, vtbl[i].name);
260				ubi_dump_vtbl_record(&vtbl[i], i);
261				ubi_dump_vtbl_record(&vtbl[n], n);
262				return -EINVAL;
263			}
264		}
265	}
266
267	return 0;
268
269bad:
270	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
271	ubi_dump_vtbl_record(&vtbl[i], i);
272	return -EINVAL;
273}
274
275/**
276 * create_vtbl - create a copy of volume table.
277 * @ubi: UBI device description object
278 * @ai: attaching information
279 * @copy: number of the volume table copy
280 * @vtbl: contents of the volume table
281 *
282 * This function returns zero in case of success and a negative error code in
283 * case of failure.
284 */
285static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
286		       int copy, void *vtbl)
287{
288	int err, tries = 0;
289	struct ubi_vid_io_buf *vidb;
290	struct ubi_vid_hdr *vid_hdr;
291	struct ubi_ainf_peb *new_aeb;
292
293	dbg_gen("create volume table (copy #%d)", copy + 1);
294
295	vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
296	if (!vidb)
297		return -ENOMEM;
298
299	vid_hdr = ubi_get_vid_hdr(vidb);
300
301retry:
302	new_aeb = ubi_early_get_peb(ubi, ai);
303	if (IS_ERR(new_aeb)) {
304		err = PTR_ERR(new_aeb);
305		goto out_free;
306	}
307
308	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
309	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
310	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
311	vid_hdr->data_size = vid_hdr->used_ebs =
312			     vid_hdr->data_pad = cpu_to_be32(0);
313	vid_hdr->lnum = cpu_to_be32(copy);
314	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
315
316	/* The EC header is already there, write the VID header */
317	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb);
318	if (err)
319		goto write_error;
320
321	/* Write the layout volume contents */
322	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
323	if (err)
324		goto write_error;
325
326	/*
327	 * And add it to the attaching information. Don't delete the old version
328	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
329	 */
330	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
331	ubi_free_aeb(ai, new_aeb);
332	ubi_free_vid_buf(vidb);
333	return err;
334
335write_error:
336	if (err == -EIO && ++tries <= 5) {
337		/*
338		 * Probably this physical eraseblock went bad, try to pick
339		 * another one.
340		 */
341		list_add(&new_aeb->u.list, &ai->erase);
342		goto retry;
343	}
344	ubi_free_aeb(ai, new_aeb);
345out_free:
346	ubi_free_vid_buf(vidb);
347	return err;
348
349}
350
351/**
352 * process_lvol - process the layout volume.
353 * @ubi: UBI device description object
354 * @ai: attaching information
355 * @av: layout volume attaching information
356 *
357 * This function is responsible for reading the layout volume, ensuring it is
358 * not corrupted, and recovering from corruptions if needed. Returns volume
359 * table in case of success and a negative error code in case of failure.
360 */
361static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
362					    struct ubi_attach_info *ai,
363					    struct ubi_ainf_volume *av)
364{
365	int err;
366	struct rb_node *rb;
367	struct ubi_ainf_peb *aeb;
368	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
369	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
370
371	/*
372	 * UBI goes through the following steps when it changes the layout
373	 * volume:
374	 * a. erase LEB 0;
375	 * b. write new data to LEB 0;
376	 * c. erase LEB 1;
377	 * d. write new data to LEB 1.
378	 *
379	 * Before the change, both LEBs contain the same data.
380	 *
381	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
382	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
383	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
384	 * finally, unclean reboots may result in a situation when neither LEB
385	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
386	 * 0 contains more recent information.
387	 *
388	 * So the plan is to first check LEB 0. Then
389	 * a. if LEB 0 is OK, it must be containing the most recent data; then
390	 *    we compare it with LEB 1, and if they are different, we copy LEB
391	 *    0 to LEB 1;
392	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
393	 *    to LEB 0.
394	 */
395
396	dbg_gen("check layout volume");
397
398	/* Read both LEB 0 and LEB 1 into memory */
399	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
400		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
401		if (!leb[aeb->lnum]) {
402			err = -ENOMEM;
403			goto out_free;
404		}
405
406		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
407				       ubi->vtbl_size);
408		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
409			/*
410			 * Scrub the PEB later. Note, -EBADMSG indicates an
411			 * uncorrectable ECC error, but we have our own CRC and
412			 * the data will be checked later. If the data is OK,
413			 * the PEB will be scrubbed (because we set
414			 * aeb->scrub). If the data is not OK, the contents of
415			 * the PEB will be recovered from the second copy, and
416			 * aeb->scrub will be cleared in
417			 * 'ubi_add_to_av()'.
418			 */
419			aeb->scrub = 1;
420		else if (err)
421			goto out_free;
422	}
423
424	err = -EINVAL;
425	if (leb[0]) {
426		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
427		if (leb_corrupted[0] < 0)
428			goto out_free;
429	}
430
431	if (!leb_corrupted[0]) {
432		/* LEB 0 is OK */
433		if (leb[1])
434			leb_corrupted[1] = memcmp(leb[0], leb[1],
435						  ubi->vtbl_size);
436		if (leb_corrupted[1]) {
437			ubi_warn(ubi, "volume table copy #2 is corrupted");
438			err = create_vtbl(ubi, ai, 1, leb[0]);
439			if (err)
440				goto out_free;
441			ubi_msg(ubi, "volume table was restored");
442		}
443
444		/* Both LEB 1 and LEB 2 are OK and consistent */
445		vfree(leb[1]);
446		return leb[0];
447	} else {
448		/* LEB 0 is corrupted or does not exist */
449		if (leb[1]) {
450			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
451			if (leb_corrupted[1] < 0)
452				goto out_free;
453		}
454		if (leb_corrupted[1]) {
455			/* Both LEB 0 and LEB 1 are corrupted */
456			ubi_err(ubi, "both volume tables are corrupted");
457			goto out_free;
458		}
459
460		ubi_warn(ubi, "volume table copy #1 is corrupted");
461		err = create_vtbl(ubi, ai, 0, leb[1]);
462		if (err)
463			goto out_free;
464		ubi_msg(ubi, "volume table was restored");
465
466		vfree(leb[0]);
467		return leb[1];
468	}
469
470out_free:
471	vfree(leb[0]);
472	vfree(leb[1]);
473	return ERR_PTR(err);
474}
475
476/**
477 * create_empty_lvol - create empty layout volume.
478 * @ubi: UBI device description object
479 * @ai: attaching information
480 *
481 * This function returns volume table contents in case of success and a
482 * negative error code in case of failure.
483 */
484static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
485						 struct ubi_attach_info *ai)
486{
487	int i;
488	struct ubi_vtbl_record *vtbl;
489
490	vtbl = vzalloc(ubi->vtbl_size);
491	if (!vtbl)
492		return ERR_PTR(-ENOMEM);
493
494	for (i = 0; i < ubi->vtbl_slots; i++)
495		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
496
497	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
498		int err;
499
500		err = create_vtbl(ubi, ai, i, vtbl);
501		if (err) {
502			vfree(vtbl);
503			return ERR_PTR(err);
504		}
505	}
506
507	return vtbl;
508}
509
510/**
511 * init_volumes - initialize volume information for existing volumes.
512 * @ubi: UBI device description object
513 * @ai: scanning information
514 * @vtbl: volume table
515 *
516 * This function allocates volume description objects for existing volumes.
517 * Returns zero in case of success and a negative error code in case of
518 * failure.
519 */
520static int init_volumes(struct ubi_device *ubi,
521			const struct ubi_attach_info *ai,
522			const struct ubi_vtbl_record *vtbl)
523{
524	int i, err, reserved_pebs = 0;
525	struct ubi_ainf_volume *av;
526	struct ubi_volume *vol;
527
528	for (i = 0; i < ubi->vtbl_slots; i++) {
529		cond_resched();
530
531		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
532			continue; /* Empty record */
533
534		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
535		if (!vol)
536			return -ENOMEM;
537
538		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
539		vol->alignment = be32_to_cpu(vtbl[i].alignment);
540		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
541		vol->upd_marker = vtbl[i].upd_marker;
542		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
543					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
544		vol->name_len = be16_to_cpu(vtbl[i].name_len);
545		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
546		memcpy(vol->name, vtbl[i].name, vol->name_len);
547		vol->name[vol->name_len] = '\0';
548		vol->vol_id = i;
549
550		if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG)
551			vol->skip_check = 1;
552
553		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
554			/* Auto re-size flag may be set only for one volume */
555			if (ubi->autoresize_vol_id != -1) {
556				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
557					ubi->autoresize_vol_id, i);
558				kfree(vol);
559				return -EINVAL;
560			}
561
562			ubi->autoresize_vol_id = i;
563		}
564
565		ubi_assert(!ubi->volumes[i]);
566		ubi->volumes[i] = vol;
567		ubi->vol_count += 1;
568		vol->ubi = ubi;
569		reserved_pebs += vol->reserved_pebs;
570
571		/*
572		 * We use ubi->peb_count and not vol->reserved_pebs because
573		 * we want to keep the code simple. Otherwise we'd have to
574		 * resize/check the bitmap upon volume resize too.
575		 * Allocating a few bytes more does not hurt.
576		 */
577		err = ubi_fastmap_init_checkmap(vol, ubi->peb_count);
578		if (err)
579			return err;
580
581		/*
582		 * In case of dynamic volume UBI knows nothing about how many
583		 * data is stored there. So assume the whole volume is used.
584		 */
585		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
586			vol->used_ebs = vol->reserved_pebs;
587			vol->last_eb_bytes = vol->usable_leb_size;
588			vol->used_bytes =
589				(long long)vol->used_ebs * vol->usable_leb_size;
590			continue;
591		}
592
593		/* Static volumes only */
594		av = ubi_find_av(ai, i);
595		if (!av || !av->leb_count) {
596			/*
597			 * No eraseblocks belonging to this volume found. We
598			 * don't actually know whether this static volume is
599			 * completely corrupted or just contains no data. And
600			 * we cannot know this as long as data size is not
601			 * stored on flash. So we just assume the volume is
602			 * empty. FIXME: this should be handled.
603			 */
604			continue;
605		}
606
607		if (av->leb_count != av->used_ebs) {
608			/*
609			 * We found a static volume which misses several
610			 * eraseblocks. Treat it as corrupted.
611			 */
612			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
613				 av->vol_id, av->used_ebs - av->leb_count);
614			vol->corrupted = 1;
615			continue;
616		}
617
618		vol->used_ebs = av->used_ebs;
619		vol->used_bytes =
620			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
621		vol->used_bytes += av->last_data_size;
622		vol->last_eb_bytes = av->last_data_size;
623	}
624
625	/* And add the layout volume */
626	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
627	if (!vol)
628		return -ENOMEM;
629
630	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
631	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
632	vol->vol_type = UBI_DYNAMIC_VOLUME;
633	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
634	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
635	vol->usable_leb_size = ubi->leb_size;
636	vol->used_ebs = vol->reserved_pebs;
637	vol->last_eb_bytes = vol->reserved_pebs;
638	vol->used_bytes =
639		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
640	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
641	vol->ref_count = 1;
642
643	ubi_assert(!ubi->volumes[i]);
644	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
645	reserved_pebs += vol->reserved_pebs;
646	ubi->vol_count += 1;
647	vol->ubi = ubi;
648	err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS);
649	if (err)
650		return err;
651
652	if (reserved_pebs > ubi->avail_pebs) {
653		ubi_err(ubi, "not enough PEBs, required %d, available %d",
654			reserved_pebs, ubi->avail_pebs);
655		if (ubi->corr_peb_count)
656			ubi_err(ubi, "%d PEBs are corrupted and not used",
657				ubi->corr_peb_count);
658		return -ENOSPC;
659	}
660	ubi->rsvd_pebs += reserved_pebs;
661	ubi->avail_pebs -= reserved_pebs;
662
663	return 0;
664}
665
666/**
667 * check_av - check volume attaching information.
668 * @vol: UBI volume description object
669 * @av: volume attaching information
670 *
671 * This function returns zero if the volume attaching information is consistent
672 * to the data read from the volume tabla, and %-EINVAL if not.
673 */
674static int check_av(const struct ubi_volume *vol,
675		    const struct ubi_ainf_volume *av)
676{
677	int err;
678
679	if (av->highest_lnum >= vol->reserved_pebs) {
680		err = 1;
681		goto bad;
682	}
683	if (av->leb_count > vol->reserved_pebs) {
684		err = 2;
685		goto bad;
686	}
687	if (av->vol_type != vol->vol_type) {
688		err = 3;
689		goto bad;
690	}
691	if (av->used_ebs > vol->reserved_pebs) {
692		err = 4;
693		goto bad;
694	}
695	if (av->data_pad != vol->data_pad) {
696		err = 5;
697		goto bad;
698	}
699	return 0;
700
701bad:
702	ubi_err(vol->ubi, "bad attaching information, error %d", err);
703	ubi_dump_av(av);
704	ubi_dump_vol_info(vol);
705	return -EINVAL;
706}
707
708/**
709 * check_attaching_info - check that attaching information.
710 * @ubi: UBI device description object
711 * @ai: attaching information
712 *
713 * Even though we protect on-flash data by CRC checksums, we still don't trust
714 * the media. This function ensures that attaching information is consistent to
715 * the information read from the volume table. Returns zero if the attaching
716 * information is OK and %-EINVAL if it is not.
717 */
718static int check_attaching_info(const struct ubi_device *ubi,
719			       struct ubi_attach_info *ai)
720{
721	int err, i;
722	struct ubi_ainf_volume *av;
723	struct ubi_volume *vol;
724
725	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
726		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
727			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
728		return -EINVAL;
729	}
730
731	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
732	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
733		ubi_err(ubi, "too large volume ID %d found",
734			ai->highest_vol_id);
735		return -EINVAL;
736	}
737
738	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
739		cond_resched();
740
741		av = ubi_find_av(ai, i);
742		vol = ubi->volumes[i];
743		if (!vol) {
744			if (av)
745				ubi_remove_av(ai, av);
746			continue;
747		}
748
749		if (vol->reserved_pebs == 0) {
750			ubi_assert(i < ubi->vtbl_slots);
751
752			if (!av)
753				continue;
754
755			/*
756			 * During attaching we found a volume which does not
757			 * exist according to the information in the volume
758			 * table. This must have happened due to an unclean
759			 * reboot while the volume was being removed. Discard
760			 * these eraseblocks.
761			 */
762			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
763			ubi_remove_av(ai, av);
764		} else if (av) {
765			err = check_av(vol, av);
766			if (err)
767				return err;
768		}
769	}
770
771	return 0;
772}
773
774/**
775 * ubi_read_volume_table - read the volume table.
776 * @ubi: UBI device description object
777 * @ai: attaching information
778 *
779 * This function reads volume table, checks it, recover from errors if needed,
780 * or creates it if needed. Returns zero in case of success and a negative
781 * error code in case of failure.
782 */
783int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
784{
785	int err;
786	struct ubi_ainf_volume *av;
787
788	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
789
790	/*
791	 * The number of supported volumes is limited by the eraseblock size
792	 * and by the UBI_MAX_VOLUMES constant.
793	 */
794	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
795	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
796		ubi->vtbl_slots = UBI_MAX_VOLUMES;
797
798	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
799	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
800
801	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
802	if (!av) {
803		/*
804		 * No logical eraseblocks belonging to the layout volume were
805		 * found. This could mean that the flash is just empty. In
806		 * this case we create empty layout volume.
807		 *
808		 * But if flash is not empty this must be a corruption or the
809		 * MTD device just contains garbage.
810		 */
811		if (ai->is_empty) {
812			ubi->vtbl = create_empty_lvol(ubi, ai);
813			if (IS_ERR(ubi->vtbl))
814				return PTR_ERR(ubi->vtbl);
815		} else {
816			ubi_err(ubi, "the layout volume was not found");
817			return -EINVAL;
818		}
819	} else {
820		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
821			/* This must not happen with proper UBI images */
822			ubi_err(ubi, "too many LEBs (%d) in layout volume",
823				av->leb_count);
824			return -EINVAL;
825		}
826
827		ubi->vtbl = process_lvol(ubi, ai, av);
828		if (IS_ERR(ubi->vtbl))
829			return PTR_ERR(ubi->vtbl);
830	}
831
832	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
833
834	/*
835	 * The layout volume is OK, initialize the corresponding in-RAM data
836	 * structures.
837	 */
838	err = init_volumes(ubi, ai, ubi->vtbl);
839	if (err)
840		goto out_free;
841
842	/*
843	 * Make sure that the attaching information is consistent to the
844	 * information stored in the volume table.
845	 */
846	err = check_attaching_info(ubi, ai);
847	if (err)
848		goto out_free;
849
850	return 0;
851
852out_free:
853	vfree(ubi->vtbl);
854	ubi_free_all_volumes(ubi);
 
 
 
855	return err;
856}
857
858/**
859 * self_vtbl_check - check volume table.
860 * @ubi: UBI device description object
861 */
862static void self_vtbl_check(const struct ubi_device *ubi)
863{
864	if (!ubi_dbg_chk_gen(ubi))
865		return;
866
867	if (vtbl_check(ubi, ubi->vtbl)) {
868		ubi_err(ubi, "self-check failed");
869		BUG();
870	}
871}
v3.15
 
  1/*
  2 * Copyright (c) International Business Machines Corp., 2006
  3 * Copyright (c) Nokia Corporation, 2006, 2007
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License as published by
  7 * the Free Software Foundation; either version 2 of the License, or
  8 * (at your option) any later version.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
 13 * the GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 18 *
 19 * Author: Artem Bityutskiy (Битюцкий Артём)
 20 */
 21
 22/*
 23 * This file includes volume table manipulation code. The volume table is an
 24 * on-flash table containing volume meta-data like name, number of reserved
 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
 26 * "layout volume".
 27 *
 28 * The layout volume is an internal volume which is organized as follows. It
 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
 31 * other. This redundancy guarantees robustness to unclean reboots. The volume
 32 * table is basically an array of volume table records. Each record contains
 33 * full information about the volume and protected by a CRC checksum.
 
 
 
 34 *
 35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
 36 * erased, and the updated volume table is written back to LEB 0. Then same for
 37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
 38 *
 39 * In this UBI implementation the on-flash volume table does not contain any
 40 * information about how much data static volumes contain.
 41 *
 42 * But it would still be beneficial to store this information in the volume
 43 * table. For example, suppose we have a static volume X, and all its physical
 44 * eraseblocks became bad for some reasons. Suppose we are attaching the
 45 * corresponding MTD device, for some reason we find no logical eraseblocks
 46 * corresponding to the volume X. According to the volume table volume X does
 47 * exist. So we don't know whether it is just empty or all its physical
 48 * eraseblocks went bad. So we cannot alarm the user properly.
 49 *
 50 * The volume table also stores so-called "update marker", which is used for
 51 * volume updates. Before updating the volume, the update marker is set, and
 52 * after the update operation is finished, the update marker is cleared. So if
 53 * the update operation was interrupted (e.g. by an unclean reboot) - the
 54 * update marker is still there and we know that the volume's contents is
 55 * damaged.
 56 */
 57
 58#include <linux/crc32.h>
 59#include <linux/err.h>
 60#include <linux/slab.h>
 61#include <asm/div64.h>
 62#include "ubi.h"
 63
 64static void self_vtbl_check(const struct ubi_device *ubi);
 65
 66/* Empty volume table record */
 67static struct ubi_vtbl_record empty_vtbl_record;
 68
 69/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70 * ubi_change_vtbl_record - change volume table record.
 71 * @ubi: UBI device description object
 72 * @idx: table index to change
 73 * @vtbl_rec: new volume table record
 74 *
 75 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
 76 * volume table record is written. The caller does not have to calculate CRC of
 77 * the record as it is done by this function. Returns zero in case of success
 78 * and a negative error code in case of failure.
 79 */
 80int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
 81			   struct ubi_vtbl_record *vtbl_rec)
 82{
 83	int i, err;
 84	uint32_t crc;
 85	struct ubi_volume *layout_vol;
 86
 87	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
 88	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
 89
 90	if (!vtbl_rec)
 91		vtbl_rec = &empty_vtbl_record;
 92	else {
 93		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
 94		vtbl_rec->crc = cpu_to_be32(crc);
 95	}
 96
 97	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
 98	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 99		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
100		if (err)
101			return err;
102
103		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
104					ubi->vtbl_size);
105		if (err)
106			return err;
107	}
108
109	self_vtbl_check(ubi);
110	return 0;
111}
112
113/**
114 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
115 * @ubi: UBI device description object
116 * @rename_list: list of &struct ubi_rename_entry objects
117 *
118 * This function re-names multiple volumes specified in @req in the volume
119 * table. Returns zero in case of success and a negative error code in case of
120 * failure.
121 */
122int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
123			    struct list_head *rename_list)
124{
125	int i, err;
126	struct ubi_rename_entry *re;
127	struct ubi_volume *layout_vol;
128
129	list_for_each_entry(re, rename_list, list) {
130		uint32_t crc;
131		struct ubi_volume *vol = re->desc->vol;
132		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
133
134		if (re->remove) {
135			memcpy(vtbl_rec, &empty_vtbl_record,
136			       sizeof(struct ubi_vtbl_record));
137			continue;
138		}
139
140		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
141		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
142		memset(vtbl_rec->name + re->new_name_len, 0,
143		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
144		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
145			    UBI_VTBL_RECORD_SIZE_CRC);
146		vtbl_rec->crc = cpu_to_be32(crc);
147	}
148
149	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
150	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
151		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
152		if (err)
153			return err;
154
155		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
156					ubi->vtbl_size);
157		if (err)
158			return err;
159	}
160
161	return 0;
162}
163
164/**
165 * vtbl_check - check if volume table is not corrupted and sensible.
166 * @ubi: UBI device description object
167 * @vtbl: volume table
168 *
169 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
170 * and %-EINVAL if it contains inconsistent data.
171 */
172static int vtbl_check(const struct ubi_device *ubi,
173		      const struct ubi_vtbl_record *vtbl)
174{
175	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
176	int upd_marker, err;
177	uint32_t crc;
178	const char *name;
179
180	for (i = 0; i < ubi->vtbl_slots; i++) {
181		cond_resched();
182
183		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
184		alignment = be32_to_cpu(vtbl[i].alignment);
185		data_pad = be32_to_cpu(vtbl[i].data_pad);
186		upd_marker = vtbl[i].upd_marker;
187		vol_type = vtbl[i].vol_type;
188		name_len = be16_to_cpu(vtbl[i].name_len);
189		name = &vtbl[i].name[0];
190
191		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
192		if (be32_to_cpu(vtbl[i].crc) != crc) {
193			ubi_err("bad CRC at record %u: %#08x, not %#08x",
194				 i, crc, be32_to_cpu(vtbl[i].crc));
195			ubi_dump_vtbl_record(&vtbl[i], i);
196			return 1;
197		}
198
199		if (reserved_pebs == 0) {
200			if (memcmp(&vtbl[i], &empty_vtbl_record,
201						UBI_VTBL_RECORD_SIZE)) {
202				err = 2;
203				goto bad;
204			}
205			continue;
206		}
207
208		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
209		    name_len < 0) {
210			err = 3;
211			goto bad;
212		}
213
214		if (alignment > ubi->leb_size || alignment == 0) {
215			err = 4;
216			goto bad;
217		}
218
219		n = alignment & (ubi->min_io_size - 1);
220		if (alignment != 1 && n) {
221			err = 5;
222			goto bad;
223		}
224
225		n = ubi->leb_size % alignment;
226		if (data_pad != n) {
227			ubi_err("bad data_pad, has to be %d", n);
228			err = 6;
229			goto bad;
230		}
231
232		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
233			err = 7;
234			goto bad;
235		}
236
237		if (upd_marker != 0 && upd_marker != 1) {
238			err = 8;
239			goto bad;
240		}
241
242		if (reserved_pebs > ubi->good_peb_count) {
243			ubi_err("too large reserved_pebs %d, good PEBs %d",
244				reserved_pebs, ubi->good_peb_count);
245			err = 9;
246			goto bad;
247		}
248
249		if (name_len > UBI_VOL_NAME_MAX) {
250			err = 10;
251			goto bad;
252		}
253
254		if (name[0] == '\0') {
255			err = 11;
256			goto bad;
257		}
258
259		if (name_len != strnlen(name, name_len + 1)) {
260			err = 12;
261			goto bad;
262		}
263	}
264
265	/* Checks that all names are unique */
266	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
267		for (n = i + 1; n < ubi->vtbl_slots; n++) {
268			int len1 = be16_to_cpu(vtbl[i].name_len);
269			int len2 = be16_to_cpu(vtbl[n].name_len);
270
271			if (len1 > 0 && len1 == len2 &&
272			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
273				ubi_err("volumes %d and %d have the same name \"%s\"",
274					i, n, vtbl[i].name);
275				ubi_dump_vtbl_record(&vtbl[i], i);
276				ubi_dump_vtbl_record(&vtbl[n], n);
277				return -EINVAL;
278			}
279		}
280	}
281
282	return 0;
283
284bad:
285	ubi_err("volume table check failed: record %d, error %d", i, err);
286	ubi_dump_vtbl_record(&vtbl[i], i);
287	return -EINVAL;
288}
289
290/**
291 * create_vtbl - create a copy of volume table.
292 * @ubi: UBI device description object
293 * @ai: attaching information
294 * @copy: number of the volume table copy
295 * @vtbl: contents of the volume table
296 *
297 * This function returns zero in case of success and a negative error code in
298 * case of failure.
299 */
300static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
301		       int copy, void *vtbl)
302{
303	int err, tries = 0;
 
304	struct ubi_vid_hdr *vid_hdr;
305	struct ubi_ainf_peb *new_aeb;
306
307	dbg_gen("create volume table (copy #%d)", copy + 1);
308
309	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
310	if (!vid_hdr)
311		return -ENOMEM;
312
 
 
313retry:
314	new_aeb = ubi_early_get_peb(ubi, ai);
315	if (IS_ERR(new_aeb)) {
316		err = PTR_ERR(new_aeb);
317		goto out_free;
318	}
319
320	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
321	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
322	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
323	vid_hdr->data_size = vid_hdr->used_ebs =
324			     vid_hdr->data_pad = cpu_to_be32(0);
325	vid_hdr->lnum = cpu_to_be32(copy);
326	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
327
328	/* The EC header is already there, write the VID header */
329	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
330	if (err)
331		goto write_error;
332
333	/* Write the layout volume contents */
334	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
335	if (err)
336		goto write_error;
337
338	/*
339	 * And add it to the attaching information. Don't delete the old version
340	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
341	 */
342	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
343	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
344	ubi_free_vid_hdr(ubi, vid_hdr);
345	return err;
346
347write_error:
348	if (err == -EIO && ++tries <= 5) {
349		/*
350		 * Probably this physical eraseblock went bad, try to pick
351		 * another one.
352		 */
353		list_add(&new_aeb->u.list, &ai->erase);
354		goto retry;
355	}
356	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
357out_free:
358	ubi_free_vid_hdr(ubi, vid_hdr);
359	return err;
360
361}
362
363/**
364 * process_lvol - process the layout volume.
365 * @ubi: UBI device description object
366 * @ai: attaching information
367 * @av: layout volume attaching information
368 *
369 * This function is responsible for reading the layout volume, ensuring it is
370 * not corrupted, and recovering from corruptions if needed. Returns volume
371 * table in case of success and a negative error code in case of failure.
372 */
373static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
374					    struct ubi_attach_info *ai,
375					    struct ubi_ainf_volume *av)
376{
377	int err;
378	struct rb_node *rb;
379	struct ubi_ainf_peb *aeb;
380	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
381	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
382
383	/*
384	 * UBI goes through the following steps when it changes the layout
385	 * volume:
386	 * a. erase LEB 0;
387	 * b. write new data to LEB 0;
388	 * c. erase LEB 1;
389	 * d. write new data to LEB 1.
390	 *
391	 * Before the change, both LEBs contain the same data.
392	 *
393	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
394	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
395	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
396	 * finally, unclean reboots may result in a situation when neither LEB
397	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
398	 * 0 contains more recent information.
399	 *
400	 * So the plan is to first check LEB 0. Then
401	 * a. if LEB 0 is OK, it must be containing the most recent data; then
402	 *    we compare it with LEB 1, and if they are different, we copy LEB
403	 *    0 to LEB 1;
404	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
405	 *    to LEB 0.
406	 */
407
408	dbg_gen("check layout volume");
409
410	/* Read both LEB 0 and LEB 1 into memory */
411	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
412		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
413		if (!leb[aeb->lnum]) {
414			err = -ENOMEM;
415			goto out_free;
416		}
417
418		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
419				       ubi->vtbl_size);
420		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
421			/*
422			 * Scrub the PEB later. Note, -EBADMSG indicates an
423			 * uncorrectable ECC error, but we have our own CRC and
424			 * the data will be checked later. If the data is OK,
425			 * the PEB will be scrubbed (because we set
426			 * aeb->scrub). If the data is not OK, the contents of
427			 * the PEB will be recovered from the second copy, and
428			 * aeb->scrub will be cleared in
429			 * 'ubi_add_to_av()'.
430			 */
431			aeb->scrub = 1;
432		else if (err)
433			goto out_free;
434	}
435
436	err = -EINVAL;
437	if (leb[0]) {
438		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
439		if (leb_corrupted[0] < 0)
440			goto out_free;
441	}
442
443	if (!leb_corrupted[0]) {
444		/* LEB 0 is OK */
445		if (leb[1])
446			leb_corrupted[1] = memcmp(leb[0], leb[1],
447						  ubi->vtbl_size);
448		if (leb_corrupted[1]) {
449			ubi_warn("volume table copy #2 is corrupted");
450			err = create_vtbl(ubi, ai, 1, leb[0]);
451			if (err)
452				goto out_free;
453			ubi_msg("volume table was restored");
454		}
455
456		/* Both LEB 1 and LEB 2 are OK and consistent */
457		vfree(leb[1]);
458		return leb[0];
459	} else {
460		/* LEB 0 is corrupted or does not exist */
461		if (leb[1]) {
462			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
463			if (leb_corrupted[1] < 0)
464				goto out_free;
465		}
466		if (leb_corrupted[1]) {
467			/* Both LEB 0 and LEB 1 are corrupted */
468			ubi_err("both volume tables are corrupted");
469			goto out_free;
470		}
471
472		ubi_warn("volume table copy #1 is corrupted");
473		err = create_vtbl(ubi, ai, 0, leb[1]);
474		if (err)
475			goto out_free;
476		ubi_msg("volume table was restored");
477
478		vfree(leb[0]);
479		return leb[1];
480	}
481
482out_free:
483	vfree(leb[0]);
484	vfree(leb[1]);
485	return ERR_PTR(err);
486}
487
488/**
489 * create_empty_lvol - create empty layout volume.
490 * @ubi: UBI device description object
491 * @ai: attaching information
492 *
493 * This function returns volume table contents in case of success and a
494 * negative error code in case of failure.
495 */
496static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
497						 struct ubi_attach_info *ai)
498{
499	int i;
500	struct ubi_vtbl_record *vtbl;
501
502	vtbl = vzalloc(ubi->vtbl_size);
503	if (!vtbl)
504		return ERR_PTR(-ENOMEM);
505
506	for (i = 0; i < ubi->vtbl_slots; i++)
507		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
508
509	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
510		int err;
511
512		err = create_vtbl(ubi, ai, i, vtbl);
513		if (err) {
514			vfree(vtbl);
515			return ERR_PTR(err);
516		}
517	}
518
519	return vtbl;
520}
521
522/**
523 * init_volumes - initialize volume information for existing volumes.
524 * @ubi: UBI device description object
525 * @ai: scanning information
526 * @vtbl: volume table
527 *
528 * This function allocates volume description objects for existing volumes.
529 * Returns zero in case of success and a negative error code in case of
530 * failure.
531 */
532static int init_volumes(struct ubi_device *ubi,
533			const struct ubi_attach_info *ai,
534			const struct ubi_vtbl_record *vtbl)
535{
536	int i, reserved_pebs = 0;
537	struct ubi_ainf_volume *av;
538	struct ubi_volume *vol;
539
540	for (i = 0; i < ubi->vtbl_slots; i++) {
541		cond_resched();
542
543		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
544			continue; /* Empty record */
545
546		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
547		if (!vol)
548			return -ENOMEM;
549
550		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
551		vol->alignment = be32_to_cpu(vtbl[i].alignment);
552		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
553		vol->upd_marker = vtbl[i].upd_marker;
554		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
555					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
556		vol->name_len = be16_to_cpu(vtbl[i].name_len);
557		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
558		memcpy(vol->name, vtbl[i].name, vol->name_len);
559		vol->name[vol->name_len] = '\0';
560		vol->vol_id = i;
561
 
 
 
562		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
563			/* Auto re-size flag may be set only for one volume */
564			if (ubi->autoresize_vol_id != -1) {
565				ubi_err("more than one auto-resize volume (%d and %d)",
566					ubi->autoresize_vol_id, i);
567				kfree(vol);
568				return -EINVAL;
569			}
570
571			ubi->autoresize_vol_id = i;
572		}
573
574		ubi_assert(!ubi->volumes[i]);
575		ubi->volumes[i] = vol;
576		ubi->vol_count += 1;
577		vol->ubi = ubi;
578		reserved_pebs += vol->reserved_pebs;
579
580		/*
 
 
 
 
 
 
 
 
 
 
581		 * In case of dynamic volume UBI knows nothing about how many
582		 * data is stored there. So assume the whole volume is used.
583		 */
584		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
585			vol->used_ebs = vol->reserved_pebs;
586			vol->last_eb_bytes = vol->usable_leb_size;
587			vol->used_bytes =
588				(long long)vol->used_ebs * vol->usable_leb_size;
589			continue;
590		}
591
592		/* Static volumes only */
593		av = ubi_find_av(ai, i);
594		if (!av) {
595			/*
596			 * No eraseblocks belonging to this volume found. We
597			 * don't actually know whether this static volume is
598			 * completely corrupted or just contains no data. And
599			 * we cannot know this as long as data size is not
600			 * stored on flash. So we just assume the volume is
601			 * empty. FIXME: this should be handled.
602			 */
603			continue;
604		}
605
606		if (av->leb_count != av->used_ebs) {
607			/*
608			 * We found a static volume which misses several
609			 * eraseblocks. Treat it as corrupted.
610			 */
611			ubi_warn("static volume %d misses %d LEBs - corrupted",
612				 av->vol_id, av->used_ebs - av->leb_count);
613			vol->corrupted = 1;
614			continue;
615		}
616
617		vol->used_ebs = av->used_ebs;
618		vol->used_bytes =
619			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
620		vol->used_bytes += av->last_data_size;
621		vol->last_eb_bytes = av->last_data_size;
622	}
623
624	/* And add the layout volume */
625	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
626	if (!vol)
627		return -ENOMEM;
628
629	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
630	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
631	vol->vol_type = UBI_DYNAMIC_VOLUME;
632	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
633	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
634	vol->usable_leb_size = ubi->leb_size;
635	vol->used_ebs = vol->reserved_pebs;
636	vol->last_eb_bytes = vol->reserved_pebs;
637	vol->used_bytes =
638		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
639	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
640	vol->ref_count = 1;
641
642	ubi_assert(!ubi->volumes[i]);
643	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
644	reserved_pebs += vol->reserved_pebs;
645	ubi->vol_count += 1;
646	vol->ubi = ubi;
 
 
 
647
648	if (reserved_pebs > ubi->avail_pebs) {
649		ubi_err("not enough PEBs, required %d, available %d",
650			reserved_pebs, ubi->avail_pebs);
651		if (ubi->corr_peb_count)
652			ubi_err("%d PEBs are corrupted and not used",
653				ubi->corr_peb_count);
 
654	}
655	ubi->rsvd_pebs += reserved_pebs;
656	ubi->avail_pebs -= reserved_pebs;
657
658	return 0;
659}
660
661/**
662 * check_av - check volume attaching information.
663 * @vol: UBI volume description object
664 * @av: volume attaching information
665 *
666 * This function returns zero if the volume attaching information is consistent
667 * to the data read from the volume tabla, and %-EINVAL if not.
668 */
669static int check_av(const struct ubi_volume *vol,
670		    const struct ubi_ainf_volume *av)
671{
672	int err;
673
674	if (av->highest_lnum >= vol->reserved_pebs) {
675		err = 1;
676		goto bad;
677	}
678	if (av->leb_count > vol->reserved_pebs) {
679		err = 2;
680		goto bad;
681	}
682	if (av->vol_type != vol->vol_type) {
683		err = 3;
684		goto bad;
685	}
686	if (av->used_ebs > vol->reserved_pebs) {
687		err = 4;
688		goto bad;
689	}
690	if (av->data_pad != vol->data_pad) {
691		err = 5;
692		goto bad;
693	}
694	return 0;
695
696bad:
697	ubi_err("bad attaching information, error %d", err);
698	ubi_dump_av(av);
699	ubi_dump_vol_info(vol);
700	return -EINVAL;
701}
702
703/**
704 * check_attaching_info - check that attaching information.
705 * @ubi: UBI device description object
706 * @ai: attaching information
707 *
708 * Even though we protect on-flash data by CRC checksums, we still don't trust
709 * the media. This function ensures that attaching information is consistent to
710 * the information read from the volume table. Returns zero if the attaching
711 * information is OK and %-EINVAL if it is not.
712 */
713static int check_attaching_info(const struct ubi_device *ubi,
714			       struct ubi_attach_info *ai)
715{
716	int err, i;
717	struct ubi_ainf_volume *av;
718	struct ubi_volume *vol;
719
720	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
721		ubi_err("found %d volumes while attaching, maximum is %d + %d",
722			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
723		return -EINVAL;
724	}
725
726	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
727	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
728		ubi_err("too large volume ID %d found", ai->highest_vol_id);
 
729		return -EINVAL;
730	}
731
732	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
733		cond_resched();
734
735		av = ubi_find_av(ai, i);
736		vol = ubi->volumes[i];
737		if (!vol) {
738			if (av)
739				ubi_remove_av(ai, av);
740			continue;
741		}
742
743		if (vol->reserved_pebs == 0) {
744			ubi_assert(i < ubi->vtbl_slots);
745
746			if (!av)
747				continue;
748
749			/*
750			 * During attaching we found a volume which does not
751			 * exist according to the information in the volume
752			 * table. This must have happened due to an unclean
753			 * reboot while the volume was being removed. Discard
754			 * these eraseblocks.
755			 */
756			ubi_msg("finish volume %d removal", av->vol_id);
757			ubi_remove_av(ai, av);
758		} else if (av) {
759			err = check_av(vol, av);
760			if (err)
761				return err;
762		}
763	}
764
765	return 0;
766}
767
768/**
769 * ubi_read_volume_table - read the volume table.
770 * @ubi: UBI device description object
771 * @ai: attaching information
772 *
773 * This function reads volume table, checks it, recover from errors if needed,
774 * or creates it if needed. Returns zero in case of success and a negative
775 * error code in case of failure.
776 */
777int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
778{
779	int i, err;
780	struct ubi_ainf_volume *av;
781
782	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
783
784	/*
785	 * The number of supported volumes is limited by the eraseblock size
786	 * and by the UBI_MAX_VOLUMES constant.
787	 */
788	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
789	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
790		ubi->vtbl_slots = UBI_MAX_VOLUMES;
791
792	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
793	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
794
795	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
796	if (!av) {
797		/*
798		 * No logical eraseblocks belonging to the layout volume were
799		 * found. This could mean that the flash is just empty. In
800		 * this case we create empty layout volume.
801		 *
802		 * But if flash is not empty this must be a corruption or the
803		 * MTD device just contains garbage.
804		 */
805		if (ai->is_empty) {
806			ubi->vtbl = create_empty_lvol(ubi, ai);
807			if (IS_ERR(ubi->vtbl))
808				return PTR_ERR(ubi->vtbl);
809		} else {
810			ubi_err("the layout volume was not found");
811			return -EINVAL;
812		}
813	} else {
814		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
815			/* This must not happen with proper UBI images */
816			ubi_err("too many LEBs (%d) in layout volume",
817				av->leb_count);
818			return -EINVAL;
819		}
820
821		ubi->vtbl = process_lvol(ubi, ai, av);
822		if (IS_ERR(ubi->vtbl))
823			return PTR_ERR(ubi->vtbl);
824	}
825
826	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
827
828	/*
829	 * The layout volume is OK, initialize the corresponding in-RAM data
830	 * structures.
831	 */
832	err = init_volumes(ubi, ai, ubi->vtbl);
833	if (err)
834		goto out_free;
835
836	/*
837	 * Make sure that the attaching information is consistent to the
838	 * information stored in the volume table.
839	 */
840	err = check_attaching_info(ubi, ai);
841	if (err)
842		goto out_free;
843
844	return 0;
845
846out_free:
847	vfree(ubi->vtbl);
848	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
849		kfree(ubi->volumes[i]);
850		ubi->volumes[i] = NULL;
851	}
852	return err;
853}
854
855/**
856 * self_vtbl_check - check volume table.
857 * @ubi: UBI device description object
858 */
859static void self_vtbl_check(const struct ubi_device *ubi)
860{
861	if (!ubi_dbg_chk_gen(ubi))
862		return;
863
864	if (vtbl_check(ubi, ubi->vtbl)) {
865		ubi_err("self-check failed");
866		BUG();
867	}
868}