Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 * Frank Haverkamp
8 */
9
10/*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19#include <linux/err.h>
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/stringify.h>
23#include <linux/namei.h>
24#include <linux/stat.h>
25#include <linux/miscdevice.h>
26#include <linux/mtd/partitions.h>
27#include <linux/log2.h>
28#include <linux/kthread.h>
29#include <linux/kernel.h>
30#include <linux/slab.h>
31#include <linux/major.h>
32#include "ubi.h"
33
34/* Maximum length of the 'mtd=' parameter */
35#define MTD_PARAM_LEN_MAX 64
36
37/* Maximum number of comma-separated items in the 'mtd=' parameter */
38#define MTD_PARAM_MAX_COUNT 6
39
40/* Maximum value for the number of bad PEBs per 1024 PEBs */
41#define MAX_MTD_UBI_BEB_LIMIT 768
42
43#ifdef CONFIG_MTD_UBI_MODULE
44#define ubi_is_module() 1
45#else
46#define ubi_is_module() 0
47#endif
48
49/**
50 * struct mtd_dev_param - MTD device parameter description data structure.
51 * @name: MTD character device node path, MTD device name, or MTD device number
52 * string
53 * @ubi_num: UBI number
54 * @vid_hdr_offs: VID header offset
55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
56 * @enable_fm: enable fastmap when value is non-zero
57 * @need_resv_pool: reserve pool->max_size pebs when value is none-zero
58 */
59struct mtd_dev_param {
60 char name[MTD_PARAM_LEN_MAX];
61 int ubi_num;
62 int vid_hdr_offs;
63 int max_beb_per1024;
64 int enable_fm;
65 int need_resv_pool;
66};
67
68/* Numbers of elements set in the @mtd_dev_param array */
69static int mtd_devs;
70
71/* MTD devices specification parameters */
72static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
73#ifdef CONFIG_MTD_UBI_FASTMAP
74/* UBI module parameter to enable fastmap automatically on non-fastmap images */
75static bool fm_autoconvert;
76static bool fm_debug;
77#endif
78
79/* Slab cache for wear-leveling entries */
80struct kmem_cache *ubi_wl_entry_slab;
81
82/* UBI control character device */
83static struct miscdevice ubi_ctrl_cdev = {
84 .minor = MISC_DYNAMIC_MINOR,
85 .name = "ubi_ctrl",
86 .fops = &ubi_ctrl_cdev_operations,
87};
88
89/* All UBI devices in system */
90static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
91
92/* Serializes UBI devices creations and removals */
93DEFINE_MUTEX(ubi_devices_mutex);
94
95/* Protects @ubi_devices and @ubi->ref_count */
96static DEFINE_SPINLOCK(ubi_devices_lock);
97
98/* "Show" method for files in '/<sysfs>/class/ubi/' */
99/* UBI version attribute ('/<sysfs>/class/ubi/version') */
100static ssize_t version_show(const struct class *class, const struct class_attribute *attr,
101 char *buf)
102{
103 return sprintf(buf, "%d\n", UBI_VERSION);
104}
105static CLASS_ATTR_RO(version);
106
107static struct attribute *ubi_class_attrs[] = {
108 &class_attr_version.attr,
109 NULL,
110};
111ATTRIBUTE_GROUPS(ubi_class);
112
113/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
114struct class ubi_class = {
115 .name = UBI_NAME_STR,
116 .class_groups = ubi_class_groups,
117};
118
119static ssize_t dev_attribute_show(struct device *dev,
120 struct device_attribute *attr, char *buf);
121
122/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
123static struct device_attribute dev_eraseblock_size =
124 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
125static struct device_attribute dev_avail_eraseblocks =
126 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
127static struct device_attribute dev_total_eraseblocks =
128 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
129static struct device_attribute dev_volumes_count =
130 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
131static struct device_attribute dev_max_ec =
132 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
133static struct device_attribute dev_reserved_for_bad =
134 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
135static struct device_attribute dev_bad_peb_count =
136 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
137static struct device_attribute dev_max_vol_count =
138 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
139static struct device_attribute dev_min_io_size =
140 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
141static struct device_attribute dev_bgt_enabled =
142 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
143static struct device_attribute dev_mtd_num =
144 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
145static struct device_attribute dev_ro_mode =
146 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
147
148/**
149 * ubi_volume_notify - send a volume change notification.
150 * @ubi: UBI device description object
151 * @vol: volume description object of the changed volume
152 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
153 *
154 * This is a helper function which notifies all subscribers about a volume
155 * change event (creation, removal, re-sizing, re-naming, updating). Returns
156 * zero in case of success and a negative error code in case of failure.
157 */
158int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
159{
160 int ret;
161 struct ubi_notification nt;
162
163 ubi_do_get_device_info(ubi, &nt.di);
164 ubi_do_get_volume_info(ubi, vol, &nt.vi);
165
166 switch (ntype) {
167 case UBI_VOLUME_ADDED:
168 case UBI_VOLUME_REMOVED:
169 case UBI_VOLUME_RESIZED:
170 case UBI_VOLUME_RENAMED:
171 ret = ubi_update_fastmap(ubi);
172 if (ret)
173 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
174 }
175
176 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
177}
178
179/**
180 * ubi_notify_all - send a notification to all volumes.
181 * @ubi: UBI device description object
182 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
183 * @nb: the notifier to call
184 *
185 * This function walks all volumes of UBI device @ubi and sends the @ntype
186 * notification for each volume. If @nb is %NULL, then all registered notifiers
187 * are called, otherwise only the @nb notifier is called. Returns the number of
188 * sent notifications.
189 */
190int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
191{
192 struct ubi_notification nt;
193 int i, count = 0;
194
195 ubi_do_get_device_info(ubi, &nt.di);
196
197 mutex_lock(&ubi->device_mutex);
198 for (i = 0; i < ubi->vtbl_slots; i++) {
199 /*
200 * Since the @ubi->device is locked, and we are not going to
201 * change @ubi->volumes, we do not have to lock
202 * @ubi->volumes_lock.
203 */
204 if (!ubi->volumes[i])
205 continue;
206
207 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
208 if (nb)
209 nb->notifier_call(nb, ntype, &nt);
210 else
211 blocking_notifier_call_chain(&ubi_notifiers, ntype,
212 &nt);
213 count += 1;
214 }
215 mutex_unlock(&ubi->device_mutex);
216
217 return count;
218}
219
220/**
221 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
222 * @nb: the notifier to call
223 *
224 * This function walks all UBI devices and volumes and sends the
225 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
226 * registered notifiers are called, otherwise only the @nb notifier is called.
227 * Returns the number of sent notifications.
228 */
229int ubi_enumerate_volumes(struct notifier_block *nb)
230{
231 int i, count = 0;
232
233 /*
234 * Since the @ubi_devices_mutex is locked, and we are not going to
235 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
236 */
237 for (i = 0; i < UBI_MAX_DEVICES; i++) {
238 struct ubi_device *ubi = ubi_devices[i];
239
240 if (!ubi)
241 continue;
242 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
243 }
244
245 return count;
246}
247
248/**
249 * ubi_get_device - get UBI device.
250 * @ubi_num: UBI device number
251 *
252 * This function returns UBI device description object for UBI device number
253 * @ubi_num, or %NULL if the device does not exist. This function increases the
254 * device reference count to prevent removal of the device. In other words, the
255 * device cannot be removed if its reference count is not zero.
256 */
257struct ubi_device *ubi_get_device(int ubi_num)
258{
259 struct ubi_device *ubi;
260
261 spin_lock(&ubi_devices_lock);
262 ubi = ubi_devices[ubi_num];
263 if (ubi) {
264 ubi_assert(ubi->ref_count >= 0);
265 ubi->ref_count += 1;
266 get_device(&ubi->dev);
267 }
268 spin_unlock(&ubi_devices_lock);
269
270 return ubi;
271}
272
273/**
274 * ubi_put_device - drop an UBI device reference.
275 * @ubi: UBI device description object
276 */
277void ubi_put_device(struct ubi_device *ubi)
278{
279 spin_lock(&ubi_devices_lock);
280 ubi->ref_count -= 1;
281 put_device(&ubi->dev);
282 spin_unlock(&ubi_devices_lock);
283}
284
285/**
286 * ubi_get_by_major - get UBI device by character device major number.
287 * @major: major number
288 *
289 * This function is similar to 'ubi_get_device()', but it searches the device
290 * by its major number.
291 */
292struct ubi_device *ubi_get_by_major(int major)
293{
294 int i;
295 struct ubi_device *ubi;
296
297 spin_lock(&ubi_devices_lock);
298 for (i = 0; i < UBI_MAX_DEVICES; i++) {
299 ubi = ubi_devices[i];
300 if (ubi && MAJOR(ubi->cdev.dev) == major) {
301 ubi_assert(ubi->ref_count >= 0);
302 ubi->ref_count += 1;
303 get_device(&ubi->dev);
304 spin_unlock(&ubi_devices_lock);
305 return ubi;
306 }
307 }
308 spin_unlock(&ubi_devices_lock);
309
310 return NULL;
311}
312
313/**
314 * ubi_major2num - get UBI device number by character device major number.
315 * @major: major number
316 *
317 * This function searches UBI device number object by its major number. If UBI
318 * device was not found, this function returns -ENODEV, otherwise the UBI device
319 * number is returned.
320 */
321int ubi_major2num(int major)
322{
323 int i, ubi_num = -ENODEV;
324
325 spin_lock(&ubi_devices_lock);
326 for (i = 0; i < UBI_MAX_DEVICES; i++) {
327 struct ubi_device *ubi = ubi_devices[i];
328
329 if (ubi && MAJOR(ubi->cdev.dev) == major) {
330 ubi_num = ubi->ubi_num;
331 break;
332 }
333 }
334 spin_unlock(&ubi_devices_lock);
335
336 return ubi_num;
337}
338
339/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
340static ssize_t dev_attribute_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
342{
343 ssize_t ret;
344 struct ubi_device *ubi;
345
346 /*
347 * The below code looks weird, but it actually makes sense. We get the
348 * UBI device reference from the contained 'struct ubi_device'. But it
349 * is unclear if the device was removed or not yet. Indeed, if the
350 * device was removed before we increased its reference count,
351 * 'ubi_get_device()' will return -ENODEV and we fail.
352 *
353 * Remember, 'struct ubi_device' is freed in the release function, so
354 * we still can use 'ubi->ubi_num'.
355 */
356 ubi = container_of(dev, struct ubi_device, dev);
357
358 if (attr == &dev_eraseblock_size)
359 ret = sprintf(buf, "%d\n", ubi->leb_size);
360 else if (attr == &dev_avail_eraseblocks)
361 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
362 else if (attr == &dev_total_eraseblocks)
363 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
364 else if (attr == &dev_volumes_count)
365 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
366 else if (attr == &dev_max_ec)
367 ret = sprintf(buf, "%d\n", ubi->max_ec);
368 else if (attr == &dev_reserved_for_bad)
369 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
370 else if (attr == &dev_bad_peb_count)
371 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
372 else if (attr == &dev_max_vol_count)
373 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
374 else if (attr == &dev_min_io_size)
375 ret = sprintf(buf, "%d\n", ubi->min_io_size);
376 else if (attr == &dev_bgt_enabled)
377 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
378 else if (attr == &dev_mtd_num)
379 ret = sprintf(buf, "%d\n", ubi->mtd->index);
380 else if (attr == &dev_ro_mode)
381 ret = sprintf(buf, "%d\n", ubi->ro_mode);
382 else
383 ret = -EINVAL;
384
385 return ret;
386}
387
388static struct attribute *ubi_dev_attrs[] = {
389 &dev_eraseblock_size.attr,
390 &dev_avail_eraseblocks.attr,
391 &dev_total_eraseblocks.attr,
392 &dev_volumes_count.attr,
393 &dev_max_ec.attr,
394 &dev_reserved_for_bad.attr,
395 &dev_bad_peb_count.attr,
396 &dev_max_vol_count.attr,
397 &dev_min_io_size.attr,
398 &dev_bgt_enabled.attr,
399 &dev_mtd_num.attr,
400 &dev_ro_mode.attr,
401 NULL
402};
403ATTRIBUTE_GROUPS(ubi_dev);
404
405static void dev_release(struct device *dev)
406{
407 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
408
409 kfree(ubi);
410}
411
412/**
413 * kill_volumes - destroy all user volumes.
414 * @ubi: UBI device description object
415 */
416static void kill_volumes(struct ubi_device *ubi)
417{
418 int i;
419
420 for (i = 0; i < ubi->vtbl_slots; i++)
421 if (ubi->volumes[i])
422 ubi_free_volume(ubi, ubi->volumes[i]);
423}
424
425/**
426 * uif_init - initialize user interfaces for an UBI device.
427 * @ubi: UBI device description object
428 *
429 * This function initializes various user interfaces for an UBI device. If the
430 * initialization fails at an early stage, this function frees all the
431 * resources it allocated, returns an error.
432 *
433 * This function returns zero in case of success and a negative error code in
434 * case of failure.
435 */
436static int uif_init(struct ubi_device *ubi)
437{
438 int i, err;
439 dev_t dev;
440
441 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
442
443 /*
444 * Major numbers for the UBI character devices are allocated
445 * dynamically. Major numbers of volume character devices are
446 * equivalent to ones of the corresponding UBI character device. Minor
447 * numbers of UBI character devices are 0, while minor numbers of
448 * volume character devices start from 1. Thus, we allocate one major
449 * number and ubi->vtbl_slots + 1 minor numbers.
450 */
451 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
452 if (err) {
453 ubi_err(ubi, "cannot register UBI character devices");
454 return err;
455 }
456
457 ubi->dev.devt = dev;
458
459 ubi_assert(MINOR(dev) == 0);
460 cdev_init(&ubi->cdev, &ubi_cdev_operations);
461 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
462 ubi->cdev.owner = THIS_MODULE;
463
464 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
465 err = cdev_device_add(&ubi->cdev, &ubi->dev);
466 if (err)
467 goto out_unreg;
468
469 for (i = 0; i < ubi->vtbl_slots; i++)
470 if (ubi->volumes[i]) {
471 err = ubi_add_volume(ubi, ubi->volumes[i]);
472 if (err) {
473 ubi_err(ubi, "cannot add volume %d", i);
474 ubi->volumes[i] = NULL;
475 goto out_volumes;
476 }
477 }
478
479 return 0;
480
481out_volumes:
482 kill_volumes(ubi);
483 cdev_device_del(&ubi->cdev, &ubi->dev);
484out_unreg:
485 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
486 ubi_err(ubi, "cannot initialize UBI %s, error %d",
487 ubi->ubi_name, err);
488 return err;
489}
490
491/**
492 * uif_close - close user interfaces for an UBI device.
493 * @ubi: UBI device description object
494 *
495 * Note, since this function un-registers UBI volume device objects (@vol->dev),
496 * the memory allocated voe the volumes is freed as well (in the release
497 * function).
498 */
499static void uif_close(struct ubi_device *ubi)
500{
501 kill_volumes(ubi);
502 cdev_device_del(&ubi->cdev, &ubi->dev);
503 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
504}
505
506/**
507 * ubi_free_volumes_from - free volumes from specific index.
508 * @ubi: UBI device description object
509 * @from: the start index used for volume free.
510 */
511static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
512{
513 int i;
514
515 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
516 if (!ubi->volumes[i])
517 continue;
518 ubi_eba_replace_table(ubi->volumes[i], NULL);
519 ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
520 kfree(ubi->volumes[i]);
521 ubi->volumes[i] = NULL;
522 }
523}
524
525/**
526 * ubi_free_all_volumes - free all volumes.
527 * @ubi: UBI device description object
528 */
529void ubi_free_all_volumes(struct ubi_device *ubi)
530{
531 ubi_free_volumes_from(ubi, 0);
532}
533
534/**
535 * ubi_free_internal_volumes - free internal volumes.
536 * @ubi: UBI device description object
537 */
538void ubi_free_internal_volumes(struct ubi_device *ubi)
539{
540 ubi_free_volumes_from(ubi, ubi->vtbl_slots);
541}
542
543static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
544{
545 int limit, device_pebs;
546 uint64_t device_size;
547
548 if (!max_beb_per1024) {
549 /*
550 * Since max_beb_per1024 has not been set by the user in either
551 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
552 * limit if it is supported by the device.
553 */
554 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
555 if (limit < 0)
556 return 0;
557 return limit;
558 }
559
560 /*
561 * Here we are using size of the entire flash chip and
562 * not just the MTD partition size because the maximum
563 * number of bad eraseblocks is a percentage of the
564 * whole device and bad eraseblocks are not fairly
565 * distributed over the flash chip. So the worst case
566 * is that all the bad eraseblocks of the chip are in
567 * the MTD partition we are attaching (ubi->mtd).
568 */
569 device_size = mtd_get_device_size(ubi->mtd);
570 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
571 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
572
573 /* Round it up */
574 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
575 limit += 1;
576
577 return limit;
578}
579
580/**
581 * io_init - initialize I/O sub-system for a given UBI device.
582 * @ubi: UBI device description object
583 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
584 *
585 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
586 * assumed:
587 * o EC header is always at offset zero - this cannot be changed;
588 * o VID header starts just after the EC header at the closest address
589 * aligned to @io->hdrs_min_io_size;
590 * o data starts just after the VID header at the closest address aligned to
591 * @io->min_io_size
592 *
593 * This function returns zero in case of success and a negative error code in
594 * case of failure.
595 */
596static int io_init(struct ubi_device *ubi, int max_beb_per1024)
597{
598 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
599 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
600
601 if (ubi->mtd->numeraseregions != 0) {
602 /*
603 * Some flashes have several erase regions. Different regions
604 * may have different eraseblock size and other
605 * characteristics. It looks like mostly multi-region flashes
606 * have one "main" region and one or more small regions to
607 * store boot loader code or boot parameters or whatever. I
608 * guess we should just pick the largest region. But this is
609 * not implemented.
610 */
611 ubi_err(ubi, "multiple regions, not implemented");
612 return -EINVAL;
613 }
614
615 if (ubi->vid_hdr_offset < 0)
616 return -EINVAL;
617
618 /*
619 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
620 * physical eraseblocks maximum.
621 */
622
623 ubi->peb_size = ubi->mtd->erasesize;
624 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
625 ubi->flash_size = ubi->mtd->size;
626
627 if (mtd_can_have_bb(ubi->mtd)) {
628 ubi->bad_allowed = 1;
629 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
630 }
631
632 if (ubi->mtd->type == MTD_NORFLASH)
633 ubi->nor_flash = 1;
634
635 ubi->min_io_size = ubi->mtd->writesize;
636 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
637
638 /*
639 * Make sure minimal I/O unit is power of 2. Note, there is no
640 * fundamental reason for this assumption. It is just an optimization
641 * which allows us to avoid costly division operations.
642 */
643 if (!is_power_of_2(ubi->min_io_size)) {
644 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
645 ubi->min_io_size);
646 return -EINVAL;
647 }
648
649 ubi_assert(ubi->hdrs_min_io_size > 0);
650 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
651 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
652
653 ubi->max_write_size = ubi->mtd->writebufsize;
654 /*
655 * Maximum write size has to be greater or equivalent to min. I/O
656 * size, and be multiple of min. I/O size.
657 */
658 if (ubi->max_write_size < ubi->min_io_size ||
659 ubi->max_write_size % ubi->min_io_size ||
660 !is_power_of_2(ubi->max_write_size)) {
661 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
662 ubi->max_write_size, ubi->min_io_size);
663 return -EINVAL;
664 }
665
666 /* Calculate default aligned sizes of EC and VID headers */
667 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
668 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
669
670 dbg_gen("min_io_size %d", ubi->min_io_size);
671 dbg_gen("max_write_size %d", ubi->max_write_size);
672 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
673 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
674 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
675
676 if (ubi->vid_hdr_offset == 0)
677 /* Default offset */
678 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
679 ubi->ec_hdr_alsize;
680 else {
681 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
682 ~(ubi->hdrs_min_io_size - 1);
683 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
684 ubi->vid_hdr_aloffset;
685 }
686
687 /*
688 * Memory allocation for VID header is ubi->vid_hdr_alsize
689 * which is described in comments in io.c.
690 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds
691 * ubi->vid_hdr_alsize, so that all vid header operations
692 * won't access memory out of bounds.
693 */
694 if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) {
695 ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)"
696 " + VID header size(%zu) > VID header aligned size(%d).",
697 ubi->vid_hdr_offset, ubi->vid_hdr_shift,
698 UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize);
699 return -EINVAL;
700 }
701
702 /* Similar for the data offset */
703 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
704 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
705
706 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
707 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
708 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
709 dbg_gen("leb_start %d", ubi->leb_start);
710
711 /* The shift must be aligned to 32-bit boundary */
712 if (ubi->vid_hdr_shift % 4) {
713 ubi_err(ubi, "unaligned VID header shift %d",
714 ubi->vid_hdr_shift);
715 return -EINVAL;
716 }
717
718 /* Check sanity */
719 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
720 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
721 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
722 ubi->leb_start & (ubi->min_io_size - 1)) {
723 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
724 ubi->vid_hdr_offset, ubi->leb_start);
725 return -EINVAL;
726 }
727
728 /*
729 * Set maximum amount of physical erroneous eraseblocks to be 10%.
730 * Erroneous PEB are those which have read errors.
731 */
732 ubi->max_erroneous = ubi->peb_count / 10;
733 if (ubi->max_erroneous < 16)
734 ubi->max_erroneous = 16;
735 dbg_gen("max_erroneous %d", ubi->max_erroneous);
736
737 /*
738 * It may happen that EC and VID headers are situated in one minimal
739 * I/O unit. In this case we can only accept this UBI image in
740 * read-only mode.
741 */
742 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
743 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
744 ubi->ro_mode = 1;
745 }
746
747 ubi->leb_size = ubi->peb_size - ubi->leb_start;
748
749 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
750 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
751 ubi->mtd->index);
752 ubi->ro_mode = 1;
753 }
754
755 /*
756 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
757 * unfortunately, MTD does not provide this information. We should loop
758 * over all physical eraseblocks and invoke mtd->block_is_bad() for
759 * each physical eraseblock. So, we leave @ubi->bad_peb_count
760 * uninitialized so far.
761 */
762
763 return 0;
764}
765
766/**
767 * autoresize - re-size the volume which has the "auto-resize" flag set.
768 * @ubi: UBI device description object
769 * @vol_id: ID of the volume to re-size
770 *
771 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
772 * the volume table to the largest possible size. See comments in ubi-header.h
773 * for more description of the flag. Returns zero in case of success and a
774 * negative error code in case of failure.
775 */
776static int autoresize(struct ubi_device *ubi, int vol_id)
777{
778 struct ubi_volume_desc desc;
779 struct ubi_volume *vol = ubi->volumes[vol_id];
780 int err, old_reserved_pebs = vol->reserved_pebs;
781
782 if (ubi->ro_mode) {
783 ubi_warn(ubi, "skip auto-resize because of R/O mode");
784 return 0;
785 }
786
787 /*
788 * Clear the auto-resize flag in the volume in-memory copy of the
789 * volume table, and 'ubi_resize_volume()' will propagate this change
790 * to the flash.
791 */
792 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
793
794 if (ubi->avail_pebs == 0) {
795 struct ubi_vtbl_record vtbl_rec;
796
797 /*
798 * No available PEBs to re-size the volume, clear the flag on
799 * flash and exit.
800 */
801 vtbl_rec = ubi->vtbl[vol_id];
802 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
803 if (err)
804 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
805 vol_id);
806 } else {
807 desc.vol = vol;
808 err = ubi_resize_volume(&desc,
809 old_reserved_pebs + ubi->avail_pebs);
810 if (err)
811 ubi_err(ubi, "cannot auto-resize volume %d",
812 vol_id);
813 }
814
815 if (err)
816 return err;
817
818 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
819 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
820 return 0;
821}
822
823/**
824 * ubi_attach_mtd_dev - attach an MTD device.
825 * @mtd: MTD device description object
826 * @ubi_num: number to assign to the new UBI device
827 * @vid_hdr_offset: VID header offset
828 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
829 * @disable_fm: whether disable fastmap
830 * @need_resv_pool: whether reserve pebs to fill fm_pool
831 *
832 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
833 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
834 * which case this function finds a vacant device number and assigns it
835 * automatically. Returns the new UBI device number in case of success and a
836 * negative error code in case of failure.
837 *
838 * If @disable_fm is true, ubi doesn't create new fastmap even the module param
839 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after
840 * doing full scanning.
841 *
842 * Note, the invocations of this function has to be serialized by the
843 * @ubi_devices_mutex.
844 */
845int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
846 int vid_hdr_offset, int max_beb_per1024, bool disable_fm,
847 bool need_resv_pool)
848{
849 struct ubi_device *ubi;
850 int i, err;
851
852 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
853 return -EINVAL;
854
855 if (!max_beb_per1024)
856 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
857
858 /*
859 * Check if we already have the same MTD device attached.
860 *
861 * Note, this function assumes that UBI devices creations and deletions
862 * are serialized, so it does not take the &ubi_devices_lock.
863 */
864 for (i = 0; i < UBI_MAX_DEVICES; i++) {
865 ubi = ubi_devices[i];
866 if (ubi && mtd->index == ubi->mtd->index) {
867 pr_err("ubi: mtd%d is already attached to ubi%d\n",
868 mtd->index, i);
869 return -EEXIST;
870 }
871 }
872
873 /*
874 * Make sure this MTD device is not emulated on top of an UBI volume
875 * already. Well, generally this recursion works fine, but there are
876 * different problems like the UBI module takes a reference to itself
877 * by attaching (and thus, opening) the emulated MTD device. This
878 * results in inability to unload the module. And in general it makes
879 * no sense to attach emulated MTD devices, so we prohibit this.
880 */
881 if (mtd->type == MTD_UBIVOLUME) {
882 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
883 mtd->index);
884 return -EINVAL;
885 }
886
887 /*
888 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
889 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
890 * will die soon and you will lose all your data.
891 * Relax this rule if the partition we're attaching to operates in SLC
892 * mode.
893 */
894 if (mtd->type == MTD_MLCNANDFLASH &&
895 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
896 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
897 mtd->index);
898 return -EINVAL;
899 }
900
901 /* UBI cannot work on flashes with zero erasesize. */
902 if (!mtd->erasesize) {
903 pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n",
904 mtd->index);
905 return -EINVAL;
906 }
907
908 if (ubi_num == UBI_DEV_NUM_AUTO) {
909 /* Search for an empty slot in the @ubi_devices array */
910 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
911 if (!ubi_devices[ubi_num])
912 break;
913 if (ubi_num == UBI_MAX_DEVICES) {
914 pr_err("ubi: only %d UBI devices may be created\n",
915 UBI_MAX_DEVICES);
916 return -ENFILE;
917 }
918 } else {
919 if (ubi_num >= UBI_MAX_DEVICES)
920 return -EINVAL;
921
922 /* Make sure ubi_num is not busy */
923 if (ubi_devices[ubi_num]) {
924 pr_err("ubi: ubi%i already exists\n", ubi_num);
925 return -EEXIST;
926 }
927 }
928
929 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
930 if (!ubi)
931 return -ENOMEM;
932
933 device_initialize(&ubi->dev);
934 ubi->dev.release = dev_release;
935 ubi->dev.class = &ubi_class;
936 ubi->dev.groups = ubi_dev_groups;
937 ubi->dev.parent = &mtd->dev;
938
939 ubi->mtd = mtd;
940 ubi->ubi_num = ubi_num;
941 ubi->vid_hdr_offset = vid_hdr_offset;
942 ubi->autoresize_vol_id = -1;
943
944#ifdef CONFIG_MTD_UBI_FASTMAP
945 ubi->fm_pool.used = ubi->fm_pool.size = 0;
946 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
947
948 /*
949 * fm_pool.max_size is 5% of the total number of PEBs but it's also
950 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
951 */
952 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
953 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
954 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
955 UBI_FM_MIN_POOL_SIZE);
956
957 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
958 ubi->fm_pool_rsv_cnt = need_resv_pool ? ubi->fm_pool.max_size : 0;
959 ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0;
960 if (fm_debug)
961 ubi_enable_dbg_chk_fastmap(ubi);
962
963 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
964 <= UBI_FM_MAX_START) {
965 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
966 UBI_FM_MAX_START);
967 ubi->fm_disabled = 1;
968 }
969
970 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
971 ubi_msg(ubi, "default fastmap WL pool size: %d",
972 ubi->fm_wl_pool.max_size);
973#else
974 ubi->fm_disabled = 1;
975#endif
976 mutex_init(&ubi->buf_mutex);
977 mutex_init(&ubi->ckvol_mutex);
978 mutex_init(&ubi->device_mutex);
979 spin_lock_init(&ubi->volumes_lock);
980 init_rwsem(&ubi->fm_protect);
981 init_rwsem(&ubi->fm_eba_sem);
982
983 ubi_msg(ubi, "attaching mtd%d", mtd->index);
984
985 err = io_init(ubi, max_beb_per1024);
986 if (err)
987 goto out_free;
988
989 err = -ENOMEM;
990 ubi->peb_buf = vmalloc(ubi->peb_size);
991 if (!ubi->peb_buf)
992 goto out_free;
993
994#ifdef CONFIG_MTD_UBI_FASTMAP
995 ubi->fm_size = ubi_calc_fm_size(ubi);
996 ubi->fm_buf = vzalloc(ubi->fm_size);
997 if (!ubi->fm_buf)
998 goto out_free;
999#endif
1000 err = ubi_attach(ubi, disable_fm ? 1 : 0);
1001 if (err) {
1002 ubi_err(ubi, "failed to attach mtd%d, error %d",
1003 mtd->index, err);
1004 goto out_free;
1005 }
1006
1007 if (ubi->autoresize_vol_id != -1) {
1008 err = autoresize(ubi, ubi->autoresize_vol_id);
1009 if (err)
1010 goto out_detach;
1011 }
1012
1013 err = uif_init(ubi);
1014 if (err)
1015 goto out_detach;
1016
1017 err = ubi_debugfs_init_dev(ubi);
1018 if (err)
1019 goto out_uif;
1020
1021 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1022 if (IS_ERR(ubi->bgt_thread)) {
1023 err = PTR_ERR(ubi->bgt_thread);
1024 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1025 ubi->bgt_name, err);
1026 goto out_debugfs;
1027 }
1028
1029 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1030 mtd->index, mtd->name, ubi->flash_size >> 20);
1031 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1032 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1033 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1034 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1035 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1036 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1037 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1038 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1039 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1040 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1041 ubi->vtbl_slots);
1042 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1043 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1044 ubi->image_seq);
1045 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1046 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1047
1048 /*
1049 * The below lock makes sure we do not race with 'ubi_thread()' which
1050 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1051 */
1052 spin_lock(&ubi->wl_lock);
1053 ubi->thread_enabled = 1;
1054 wake_up_process(ubi->bgt_thread);
1055 spin_unlock(&ubi->wl_lock);
1056
1057 ubi_devices[ubi_num] = ubi;
1058 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1059 return ubi_num;
1060
1061out_debugfs:
1062 ubi_debugfs_exit_dev(ubi);
1063out_uif:
1064 uif_close(ubi);
1065out_detach:
1066 ubi_wl_close(ubi);
1067 ubi_free_all_volumes(ubi);
1068 vfree(ubi->vtbl);
1069out_free:
1070 vfree(ubi->peb_buf);
1071 vfree(ubi->fm_buf);
1072 put_device(&ubi->dev);
1073 return err;
1074}
1075
1076/**
1077 * ubi_detach_mtd_dev - detach an MTD device.
1078 * @ubi_num: UBI device number to detach from
1079 * @anyway: detach MTD even if device reference count is not zero
1080 *
1081 * This function destroys an UBI device number @ubi_num and detaches the
1082 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1083 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1084 * exist.
1085 *
1086 * Note, the invocations of this function has to be serialized by the
1087 * @ubi_devices_mutex.
1088 */
1089int ubi_detach_mtd_dev(int ubi_num, int anyway)
1090{
1091 struct ubi_device *ubi;
1092
1093 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1094 return -EINVAL;
1095
1096 ubi = ubi_get_device(ubi_num);
1097 if (!ubi)
1098 return -EINVAL;
1099
1100 spin_lock(&ubi_devices_lock);
1101 put_device(&ubi->dev);
1102 ubi->ref_count -= 1;
1103 if (ubi->ref_count) {
1104 if (!anyway) {
1105 spin_unlock(&ubi_devices_lock);
1106 return -EBUSY;
1107 }
1108 /* This may only happen if there is a bug */
1109 ubi_err(ubi, "%s reference count %d, destroy anyway",
1110 ubi->ubi_name, ubi->ref_count);
1111 }
1112 ubi_devices[ubi_num] = NULL;
1113 spin_unlock(&ubi_devices_lock);
1114
1115 ubi_assert(ubi_num == ubi->ubi_num);
1116 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1117 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1118#ifdef CONFIG_MTD_UBI_FASTMAP
1119 /* If we don't write a new fastmap at detach time we lose all
1120 * EC updates that have been made since the last written fastmap.
1121 * In case of fastmap debugging we omit the update to simulate an
1122 * unclean shutdown. */
1123 if (!ubi_dbg_chk_fastmap(ubi))
1124 ubi_update_fastmap(ubi);
1125#endif
1126 /*
1127 * Before freeing anything, we have to stop the background thread to
1128 * prevent it from doing anything on this device while we are freeing.
1129 */
1130 if (ubi->bgt_thread)
1131 kthread_stop(ubi->bgt_thread);
1132
1133#ifdef CONFIG_MTD_UBI_FASTMAP
1134 cancel_work_sync(&ubi->fm_work);
1135#endif
1136 ubi_debugfs_exit_dev(ubi);
1137 uif_close(ubi);
1138
1139 ubi_wl_close(ubi);
1140 ubi_free_internal_volumes(ubi);
1141 vfree(ubi->vtbl);
1142 vfree(ubi->peb_buf);
1143 vfree(ubi->fm_buf);
1144 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1145 put_mtd_device(ubi->mtd);
1146 put_device(&ubi->dev);
1147 return 0;
1148}
1149
1150/**
1151 * open_mtd_by_chdev - open an MTD device by its character device node path.
1152 * @mtd_dev: MTD character device node path
1153 *
1154 * This helper function opens an MTD device by its character node device path.
1155 * Returns MTD device description object in case of success and a negative
1156 * error code in case of failure.
1157 */
1158static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1159{
1160 int err, minor;
1161 struct path path;
1162 struct kstat stat;
1163
1164 /* Probably this is an MTD character device node path */
1165 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1166 if (err)
1167 return ERR_PTR(err);
1168
1169 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1170 path_put(&path);
1171 if (err)
1172 return ERR_PTR(err);
1173
1174 /* MTD device number is defined by the major / minor numbers */
1175 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1176 return ERR_PTR(-EINVAL);
1177
1178 minor = MINOR(stat.rdev);
1179
1180 if (minor & 1)
1181 /*
1182 * Just do not think the "/dev/mtdrX" devices support is need,
1183 * so do not support them to avoid doing extra work.
1184 */
1185 return ERR_PTR(-EINVAL);
1186
1187 return get_mtd_device(NULL, minor / 2);
1188}
1189
1190/**
1191 * open_mtd_device - open MTD device by name, character device path, or number.
1192 * @mtd_dev: name, character device node path, or MTD device device number
1193 *
1194 * This function tries to open and MTD device described by @mtd_dev string,
1195 * which is first treated as ASCII MTD device number, and if it is not true, it
1196 * is treated as MTD device name, and if that is also not true, it is treated
1197 * as MTD character device node path. Returns MTD device description object in
1198 * case of success and a negative error code in case of failure.
1199 */
1200static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1201{
1202 struct mtd_info *mtd;
1203 int mtd_num;
1204 char *endp;
1205
1206 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1207 if (*endp != '\0' || mtd_dev == endp) {
1208 /*
1209 * This does not look like an ASCII integer, probably this is
1210 * MTD device name.
1211 */
1212 mtd = get_mtd_device_nm(mtd_dev);
1213 if (PTR_ERR(mtd) == -ENODEV)
1214 /* Probably this is an MTD character device node path */
1215 mtd = open_mtd_by_chdev(mtd_dev);
1216 } else
1217 mtd = get_mtd_device(NULL, mtd_num);
1218
1219 return mtd;
1220}
1221
1222static int __init ubi_init(void)
1223{
1224 int err, i, k;
1225
1226 /* Ensure that EC and VID headers have correct size */
1227 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1228 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1229
1230 if (mtd_devs > UBI_MAX_DEVICES) {
1231 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1232 UBI_MAX_DEVICES);
1233 return -EINVAL;
1234 }
1235
1236 /* Create base sysfs directory and sysfs files */
1237 err = class_register(&ubi_class);
1238 if (err < 0)
1239 return err;
1240
1241 err = misc_register(&ubi_ctrl_cdev);
1242 if (err) {
1243 pr_err("UBI error: cannot register device\n");
1244 goto out;
1245 }
1246
1247 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1248 sizeof(struct ubi_wl_entry),
1249 0, 0, NULL);
1250 if (!ubi_wl_entry_slab) {
1251 err = -ENOMEM;
1252 goto out_dev_unreg;
1253 }
1254
1255 err = ubi_debugfs_init();
1256 if (err)
1257 goto out_slab;
1258
1259
1260 /* Attach MTD devices */
1261 for (i = 0; i < mtd_devs; i++) {
1262 struct mtd_dev_param *p = &mtd_dev_param[i];
1263 struct mtd_info *mtd;
1264
1265 cond_resched();
1266
1267 mtd = open_mtd_device(p->name);
1268 if (IS_ERR(mtd)) {
1269 err = PTR_ERR(mtd);
1270 pr_err("UBI error: cannot open mtd %s, error %d\n",
1271 p->name, err);
1272 /* See comment below re-ubi_is_module(). */
1273 if (ubi_is_module())
1274 goto out_detach;
1275 continue;
1276 }
1277
1278 mutex_lock(&ubi_devices_mutex);
1279 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1280 p->vid_hdr_offs, p->max_beb_per1024,
1281 p->enable_fm == 0,
1282 p->need_resv_pool != 0);
1283 mutex_unlock(&ubi_devices_mutex);
1284 if (err < 0) {
1285 pr_err("UBI error: cannot attach mtd%d\n",
1286 mtd->index);
1287 put_mtd_device(mtd);
1288
1289 /*
1290 * Originally UBI stopped initializing on any error.
1291 * However, later on it was found out that this
1292 * behavior is not very good when UBI is compiled into
1293 * the kernel and the MTD devices to attach are passed
1294 * through the command line. Indeed, UBI failure
1295 * stopped whole boot sequence.
1296 *
1297 * To fix this, we changed the behavior for the
1298 * non-module case, but preserved the old behavior for
1299 * the module case, just for compatibility. This is a
1300 * little inconsistent, though.
1301 */
1302 if (ubi_is_module())
1303 goto out_detach;
1304 }
1305 }
1306
1307 err = ubiblock_init();
1308 if (err) {
1309 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1310
1311 /* See comment above re-ubi_is_module(). */
1312 if (ubi_is_module())
1313 goto out_detach;
1314 }
1315
1316 return 0;
1317
1318out_detach:
1319 for (k = 0; k < i; k++)
1320 if (ubi_devices[k]) {
1321 mutex_lock(&ubi_devices_mutex);
1322 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1323 mutex_unlock(&ubi_devices_mutex);
1324 }
1325 ubi_debugfs_exit();
1326out_slab:
1327 kmem_cache_destroy(ubi_wl_entry_slab);
1328out_dev_unreg:
1329 misc_deregister(&ubi_ctrl_cdev);
1330out:
1331 class_unregister(&ubi_class);
1332 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1333 return err;
1334}
1335late_initcall(ubi_init);
1336
1337static void __exit ubi_exit(void)
1338{
1339 int i;
1340
1341 ubiblock_exit();
1342
1343 for (i = 0; i < UBI_MAX_DEVICES; i++)
1344 if (ubi_devices[i]) {
1345 mutex_lock(&ubi_devices_mutex);
1346 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1347 mutex_unlock(&ubi_devices_mutex);
1348 }
1349 ubi_debugfs_exit();
1350 kmem_cache_destroy(ubi_wl_entry_slab);
1351 misc_deregister(&ubi_ctrl_cdev);
1352 class_unregister(&ubi_class);
1353}
1354module_exit(ubi_exit);
1355
1356/**
1357 * bytes_str_to_int - convert a number of bytes string into an integer.
1358 * @str: the string to convert
1359 *
1360 * This function returns positive resulting integer in case of success and a
1361 * negative error code in case of failure.
1362 */
1363static int bytes_str_to_int(const char *str)
1364{
1365 char *endp;
1366 unsigned long result;
1367
1368 result = simple_strtoul(str, &endp, 0);
1369 if (str == endp || result >= INT_MAX) {
1370 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1371 return -EINVAL;
1372 }
1373
1374 switch (*endp) {
1375 case 'G':
1376 result *= 1024;
1377 fallthrough;
1378 case 'M':
1379 result *= 1024;
1380 fallthrough;
1381 case 'K':
1382 result *= 1024;
1383 break;
1384 case '\0':
1385 break;
1386 default:
1387 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1388 return -EINVAL;
1389 }
1390
1391 return result;
1392}
1393
1394/**
1395 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1396 * @val: the parameter value to parse
1397 * @kp: not used
1398 *
1399 * This function returns zero in case of success and a negative error code in
1400 * case of error.
1401 */
1402static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1403{
1404 int i, len;
1405 struct mtd_dev_param *p;
1406 char buf[MTD_PARAM_LEN_MAX];
1407 char *pbuf = &buf[0];
1408 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1409
1410 if (!val)
1411 return -EINVAL;
1412
1413 if (mtd_devs == UBI_MAX_DEVICES) {
1414 pr_err("UBI error: too many parameters, max. is %d\n",
1415 UBI_MAX_DEVICES);
1416 return -EINVAL;
1417 }
1418
1419 len = strnlen(val, MTD_PARAM_LEN_MAX);
1420 if (len == MTD_PARAM_LEN_MAX) {
1421 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1422 val, MTD_PARAM_LEN_MAX);
1423 return -EINVAL;
1424 }
1425
1426 if (len == 0) {
1427 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1428 return 0;
1429 }
1430
1431 strcpy(buf, val);
1432
1433 /* Get rid of the final newline */
1434 if (buf[len - 1] == '\n')
1435 buf[len - 1] = '\0';
1436
1437 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1438 tokens[i] = strsep(&pbuf, ",");
1439
1440 if (pbuf) {
1441 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1442 return -EINVAL;
1443 }
1444
1445 p = &mtd_dev_param[mtd_devs];
1446 strcpy(&p->name[0], tokens[0]);
1447
1448 token = tokens[1];
1449 if (token) {
1450 p->vid_hdr_offs = bytes_str_to_int(token);
1451
1452 if (p->vid_hdr_offs < 0)
1453 return p->vid_hdr_offs;
1454 }
1455
1456 token = tokens[2];
1457 if (token) {
1458 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1459
1460 if (err) {
1461 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n",
1462 token);
1463 return -EINVAL;
1464 }
1465 }
1466
1467 token = tokens[3];
1468 if (token) {
1469 int err = kstrtoint(token, 10, &p->ubi_num);
1470
1471 if (err) {
1472 pr_err("UBI error: bad value for ubi_num parameter: %s\n",
1473 token);
1474 return -EINVAL;
1475 }
1476 } else
1477 p->ubi_num = UBI_DEV_NUM_AUTO;
1478
1479 token = tokens[4];
1480 if (token) {
1481 int err = kstrtoint(token, 10, &p->enable_fm);
1482
1483 if (err) {
1484 pr_err("UBI error: bad value for enable_fm parameter: %s\n",
1485 token);
1486 return -EINVAL;
1487 }
1488 } else
1489 p->enable_fm = 0;
1490
1491 token = tokens[5];
1492 if (token) {
1493 int err = kstrtoint(token, 10, &p->need_resv_pool);
1494
1495 if (err) {
1496 pr_err("UBI error: bad value for need_resv_pool parameter: %s\n",
1497 token);
1498 return -EINVAL;
1499 }
1500 } else
1501 p->need_resv_pool = 0;
1502
1503 mtd_devs += 1;
1504 return 0;
1505}
1506
1507module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1508MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1509 "Multiple \"mtd\" parameters may be specified.\n"
1510 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1511 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1512 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1513 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1514 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1515 "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n"
1516 "Optional \"need_resv_pool\" parameter determines whether to reserve pool->max_size pebs during attach. If the value is non-zero, peb reservation is enabled. Default value is 0.\n"
1517 "\n"
1518 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1519 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1520 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1521 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1522 "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n"
1523 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1524#ifdef CONFIG_MTD_UBI_FASTMAP
1525module_param(fm_autoconvert, bool, 0644);
1526MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1527module_param(fm_debug, bool, 0);
1528MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1529#endif
1530MODULE_VERSION(__stringify(UBI_VERSION));
1531MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1532MODULE_AUTHOR("Artem Bityutskiy");
1533MODULE_LICENSE("GPL");
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23/*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32#include <linux/err.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/stringify.h>
36#include <linux/namei.h>
37#include <linux/stat.h>
38#include <linux/miscdevice.h>
39#include <linux/mtd/partitions.h>
40#include <linux/log2.h>
41#include <linux/kthread.h>
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/major.h>
45#include "ubi.h"
46
47/* Maximum length of the 'mtd=' parameter */
48#define MTD_PARAM_LEN_MAX 64
49
50/* Maximum number of comma-separated items in the 'mtd=' parameter */
51#define MTD_PARAM_MAX_COUNT 4
52
53/* Maximum value for the number of bad PEBs per 1024 PEBs */
54#define MAX_MTD_UBI_BEB_LIMIT 768
55
56#ifdef CONFIG_MTD_UBI_MODULE
57#define ubi_is_module() 1
58#else
59#define ubi_is_module() 0
60#endif
61
62/**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68 */
69struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
74};
75
76/* Numbers of elements set in the @mtd_dev_param array */
77static int __initdata mtd_devs;
78
79/* MTD devices specification parameters */
80static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81#ifdef CONFIG_MTD_UBI_FASTMAP
82/* UBI module parameter to enable fastmap automatically on non-fastmap images */
83static bool fm_autoconvert;
84static bool fm_debug;
85#endif
86
87/* Slab cache for wear-leveling entries */
88struct kmem_cache *ubi_wl_entry_slab;
89
90/* UBI control character device */
91static struct miscdevice ubi_ctrl_cdev = {
92 .minor = MISC_DYNAMIC_MINOR,
93 .name = "ubi_ctrl",
94 .fops = &ubi_ctrl_cdev_operations,
95};
96
97/* All UBI devices in system */
98static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
99
100/* Serializes UBI devices creations and removals */
101DEFINE_MUTEX(ubi_devices_mutex);
102
103/* Protects @ubi_devices and @ubi->ref_count */
104static DEFINE_SPINLOCK(ubi_devices_lock);
105
106/* "Show" method for files in '/<sysfs>/class/ubi/' */
107static ssize_t ubi_version_show(struct class *class,
108 struct class_attribute *attr, char *buf)
109{
110 return sprintf(buf, "%d\n", UBI_VERSION);
111}
112
113/* UBI version attribute ('/<sysfs>/class/ubi/version') */
114static struct class_attribute ubi_class_attrs[] = {
115 __ATTR(version, S_IRUGO, ubi_version_show, NULL),
116 __ATTR_NULL
117};
118
119/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
120struct class ubi_class = {
121 .name = UBI_NAME_STR,
122 .owner = THIS_MODULE,
123 .class_attrs = ubi_class_attrs,
124};
125
126static ssize_t dev_attribute_show(struct device *dev,
127 struct device_attribute *attr, char *buf);
128
129/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
130static struct device_attribute dev_eraseblock_size =
131 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
132static struct device_attribute dev_avail_eraseblocks =
133 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
134static struct device_attribute dev_total_eraseblocks =
135 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
136static struct device_attribute dev_volumes_count =
137 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
138static struct device_attribute dev_max_ec =
139 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
140static struct device_attribute dev_reserved_for_bad =
141 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
142static struct device_attribute dev_bad_peb_count =
143 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
144static struct device_attribute dev_max_vol_count =
145 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
146static struct device_attribute dev_min_io_size =
147 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
148static struct device_attribute dev_bgt_enabled =
149 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
150static struct device_attribute dev_mtd_num =
151 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
152
153/**
154 * ubi_volume_notify - send a volume change notification.
155 * @ubi: UBI device description object
156 * @vol: volume description object of the changed volume
157 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
158 *
159 * This is a helper function which notifies all subscribers about a volume
160 * change event (creation, removal, re-sizing, re-naming, updating). Returns
161 * zero in case of success and a negative error code in case of failure.
162 */
163int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
164{
165 int ret;
166 struct ubi_notification nt;
167
168 ubi_do_get_device_info(ubi, &nt.di);
169 ubi_do_get_volume_info(ubi, vol, &nt.vi);
170
171 switch (ntype) {
172 case UBI_VOLUME_ADDED:
173 case UBI_VOLUME_REMOVED:
174 case UBI_VOLUME_RESIZED:
175 case UBI_VOLUME_RENAMED:
176 ret = ubi_update_fastmap(ubi);
177 if (ret)
178 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
179 }
180
181 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
182}
183
184/**
185 * ubi_notify_all - send a notification to all volumes.
186 * @ubi: UBI device description object
187 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
188 * @nb: the notifier to call
189 *
190 * This function walks all volumes of UBI device @ubi and sends the @ntype
191 * notification for each volume. If @nb is %NULL, then all registered notifiers
192 * are called, otherwise only the @nb notifier is called. Returns the number of
193 * sent notifications.
194 */
195int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
196{
197 struct ubi_notification nt;
198 int i, count = 0;
199
200 ubi_do_get_device_info(ubi, &nt.di);
201
202 mutex_lock(&ubi->device_mutex);
203 for (i = 0; i < ubi->vtbl_slots; i++) {
204 /*
205 * Since the @ubi->device is locked, and we are not going to
206 * change @ubi->volumes, we do not have to lock
207 * @ubi->volumes_lock.
208 */
209 if (!ubi->volumes[i])
210 continue;
211
212 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
213 if (nb)
214 nb->notifier_call(nb, ntype, &nt);
215 else
216 blocking_notifier_call_chain(&ubi_notifiers, ntype,
217 &nt);
218 count += 1;
219 }
220 mutex_unlock(&ubi->device_mutex);
221
222 return count;
223}
224
225/**
226 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
227 * @nb: the notifier to call
228 *
229 * This function walks all UBI devices and volumes and sends the
230 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
231 * registered notifiers are called, otherwise only the @nb notifier is called.
232 * Returns the number of sent notifications.
233 */
234int ubi_enumerate_volumes(struct notifier_block *nb)
235{
236 int i, count = 0;
237
238 /*
239 * Since the @ubi_devices_mutex is locked, and we are not going to
240 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
241 */
242 for (i = 0; i < UBI_MAX_DEVICES; i++) {
243 struct ubi_device *ubi = ubi_devices[i];
244
245 if (!ubi)
246 continue;
247 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
248 }
249
250 return count;
251}
252
253/**
254 * ubi_get_device - get UBI device.
255 * @ubi_num: UBI device number
256 *
257 * This function returns UBI device description object for UBI device number
258 * @ubi_num, or %NULL if the device does not exist. This function increases the
259 * device reference count to prevent removal of the device. In other words, the
260 * device cannot be removed if its reference count is not zero.
261 */
262struct ubi_device *ubi_get_device(int ubi_num)
263{
264 struct ubi_device *ubi;
265
266 spin_lock(&ubi_devices_lock);
267 ubi = ubi_devices[ubi_num];
268 if (ubi) {
269 ubi_assert(ubi->ref_count >= 0);
270 ubi->ref_count += 1;
271 get_device(&ubi->dev);
272 }
273 spin_unlock(&ubi_devices_lock);
274
275 return ubi;
276}
277
278/**
279 * ubi_put_device - drop an UBI device reference.
280 * @ubi: UBI device description object
281 */
282void ubi_put_device(struct ubi_device *ubi)
283{
284 spin_lock(&ubi_devices_lock);
285 ubi->ref_count -= 1;
286 put_device(&ubi->dev);
287 spin_unlock(&ubi_devices_lock);
288}
289
290/**
291 * ubi_get_by_major - get UBI device by character device major number.
292 * @major: major number
293 *
294 * This function is similar to 'ubi_get_device()', but it searches the device
295 * by its major number.
296 */
297struct ubi_device *ubi_get_by_major(int major)
298{
299 int i;
300 struct ubi_device *ubi;
301
302 spin_lock(&ubi_devices_lock);
303 for (i = 0; i < UBI_MAX_DEVICES; i++) {
304 ubi = ubi_devices[i];
305 if (ubi && MAJOR(ubi->cdev.dev) == major) {
306 ubi_assert(ubi->ref_count >= 0);
307 ubi->ref_count += 1;
308 get_device(&ubi->dev);
309 spin_unlock(&ubi_devices_lock);
310 return ubi;
311 }
312 }
313 spin_unlock(&ubi_devices_lock);
314
315 return NULL;
316}
317
318/**
319 * ubi_major2num - get UBI device number by character device major number.
320 * @major: major number
321 *
322 * This function searches UBI device number object by its major number. If UBI
323 * device was not found, this function returns -ENODEV, otherwise the UBI device
324 * number is returned.
325 */
326int ubi_major2num(int major)
327{
328 int i, ubi_num = -ENODEV;
329
330 spin_lock(&ubi_devices_lock);
331 for (i = 0; i < UBI_MAX_DEVICES; i++) {
332 struct ubi_device *ubi = ubi_devices[i];
333
334 if (ubi && MAJOR(ubi->cdev.dev) == major) {
335 ubi_num = ubi->ubi_num;
336 break;
337 }
338 }
339 spin_unlock(&ubi_devices_lock);
340
341 return ubi_num;
342}
343
344/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
345static ssize_t dev_attribute_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
347{
348 ssize_t ret;
349 struct ubi_device *ubi;
350
351 /*
352 * The below code looks weird, but it actually makes sense. We get the
353 * UBI device reference from the contained 'struct ubi_device'. But it
354 * is unclear if the device was removed or not yet. Indeed, if the
355 * device was removed before we increased its reference count,
356 * 'ubi_get_device()' will return -ENODEV and we fail.
357 *
358 * Remember, 'struct ubi_device' is freed in the release function, so
359 * we still can use 'ubi->ubi_num'.
360 */
361 ubi = container_of(dev, struct ubi_device, dev);
362 ubi = ubi_get_device(ubi->ubi_num);
363 if (!ubi)
364 return -ENODEV;
365
366 if (attr == &dev_eraseblock_size)
367 ret = sprintf(buf, "%d\n", ubi->leb_size);
368 else if (attr == &dev_avail_eraseblocks)
369 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
370 else if (attr == &dev_total_eraseblocks)
371 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
372 else if (attr == &dev_volumes_count)
373 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
374 else if (attr == &dev_max_ec)
375 ret = sprintf(buf, "%d\n", ubi->max_ec);
376 else if (attr == &dev_reserved_for_bad)
377 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
378 else if (attr == &dev_bad_peb_count)
379 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
380 else if (attr == &dev_max_vol_count)
381 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
382 else if (attr == &dev_min_io_size)
383 ret = sprintf(buf, "%d\n", ubi->min_io_size);
384 else if (attr == &dev_bgt_enabled)
385 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
386 else if (attr == &dev_mtd_num)
387 ret = sprintf(buf, "%d\n", ubi->mtd->index);
388 else
389 ret = -EINVAL;
390
391 ubi_put_device(ubi);
392 return ret;
393}
394
395static struct attribute *ubi_dev_attrs[] = {
396 &dev_eraseblock_size.attr,
397 &dev_avail_eraseblocks.attr,
398 &dev_total_eraseblocks.attr,
399 &dev_volumes_count.attr,
400 &dev_max_ec.attr,
401 &dev_reserved_for_bad.attr,
402 &dev_bad_peb_count.attr,
403 &dev_max_vol_count.attr,
404 &dev_min_io_size.attr,
405 &dev_bgt_enabled.attr,
406 &dev_mtd_num.attr,
407 NULL
408};
409ATTRIBUTE_GROUPS(ubi_dev);
410
411static void dev_release(struct device *dev)
412{
413 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
414
415 kfree(ubi);
416}
417
418/**
419 * ubi_sysfs_init - initialize sysfs for an UBI device.
420 * @ubi: UBI device description object
421 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
422 * taken
423 *
424 * This function returns zero in case of success and a negative error code in
425 * case of failure.
426 */
427static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
428{
429 int err;
430
431 ubi->dev.release = dev_release;
432 ubi->dev.devt = ubi->cdev.dev;
433 ubi->dev.class = &ubi_class;
434 ubi->dev.groups = ubi_dev_groups;
435 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
436 err = device_register(&ubi->dev);
437 if (err)
438 return err;
439
440 *ref = 1;
441 return 0;
442}
443
444/**
445 * ubi_sysfs_close - close sysfs for an UBI device.
446 * @ubi: UBI device description object
447 */
448static void ubi_sysfs_close(struct ubi_device *ubi)
449{
450 device_unregister(&ubi->dev);
451}
452
453/**
454 * kill_volumes - destroy all user volumes.
455 * @ubi: UBI device description object
456 */
457static void kill_volumes(struct ubi_device *ubi)
458{
459 int i;
460
461 for (i = 0; i < ubi->vtbl_slots; i++)
462 if (ubi->volumes[i])
463 ubi_free_volume(ubi, ubi->volumes[i]);
464}
465
466/**
467 * uif_init - initialize user interfaces for an UBI device.
468 * @ubi: UBI device description object
469 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
470 * taken, otherwise set to %0
471 *
472 * This function initializes various user interfaces for an UBI device. If the
473 * initialization fails at an early stage, this function frees all the
474 * resources it allocated, returns an error, and @ref is set to %0. However,
475 * if the initialization fails after the UBI device was registered in the
476 * driver core subsystem, this function takes a reference to @ubi->dev, because
477 * otherwise the release function ('dev_release()') would free whole @ubi
478 * object. The @ref argument is set to %1 in this case. The caller has to put
479 * this reference.
480 *
481 * This function returns zero in case of success and a negative error code in
482 * case of failure.
483 */
484static int uif_init(struct ubi_device *ubi, int *ref)
485{
486 int i, err;
487 dev_t dev;
488
489 *ref = 0;
490 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
491
492 /*
493 * Major numbers for the UBI character devices are allocated
494 * dynamically. Major numbers of volume character devices are
495 * equivalent to ones of the corresponding UBI character device. Minor
496 * numbers of UBI character devices are 0, while minor numbers of
497 * volume character devices start from 1. Thus, we allocate one major
498 * number and ubi->vtbl_slots + 1 minor numbers.
499 */
500 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
501 if (err) {
502 ubi_err(ubi, "cannot register UBI character devices");
503 return err;
504 }
505
506 ubi_assert(MINOR(dev) == 0);
507 cdev_init(&ubi->cdev, &ubi_cdev_operations);
508 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
509 ubi->cdev.owner = THIS_MODULE;
510
511 err = cdev_add(&ubi->cdev, dev, 1);
512 if (err) {
513 ubi_err(ubi, "cannot add character device");
514 goto out_unreg;
515 }
516
517 err = ubi_sysfs_init(ubi, ref);
518 if (err)
519 goto out_sysfs;
520
521 for (i = 0; i < ubi->vtbl_slots; i++)
522 if (ubi->volumes[i]) {
523 err = ubi_add_volume(ubi, ubi->volumes[i]);
524 if (err) {
525 ubi_err(ubi, "cannot add volume %d", i);
526 goto out_volumes;
527 }
528 }
529
530 return 0;
531
532out_volumes:
533 kill_volumes(ubi);
534out_sysfs:
535 if (*ref)
536 get_device(&ubi->dev);
537 ubi_sysfs_close(ubi);
538 cdev_del(&ubi->cdev);
539out_unreg:
540 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
541 ubi_err(ubi, "cannot initialize UBI %s, error %d",
542 ubi->ubi_name, err);
543 return err;
544}
545
546/**
547 * uif_close - close user interfaces for an UBI device.
548 * @ubi: UBI device description object
549 *
550 * Note, since this function un-registers UBI volume device objects (@vol->dev),
551 * the memory allocated voe the volumes is freed as well (in the release
552 * function).
553 */
554static void uif_close(struct ubi_device *ubi)
555{
556 kill_volumes(ubi);
557 ubi_sysfs_close(ubi);
558 cdev_del(&ubi->cdev);
559 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
560}
561
562/**
563 * ubi_free_internal_volumes - free internal volumes.
564 * @ubi: UBI device description object
565 */
566void ubi_free_internal_volumes(struct ubi_device *ubi)
567{
568 int i;
569
570 for (i = ubi->vtbl_slots;
571 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
572 kfree(ubi->volumes[i]->eba_tbl);
573 kfree(ubi->volumes[i]);
574 }
575}
576
577static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
578{
579 int limit, device_pebs;
580 uint64_t device_size;
581
582 if (!max_beb_per1024)
583 return 0;
584
585 /*
586 * Here we are using size of the entire flash chip and
587 * not just the MTD partition size because the maximum
588 * number of bad eraseblocks is a percentage of the
589 * whole device and bad eraseblocks are not fairly
590 * distributed over the flash chip. So the worst case
591 * is that all the bad eraseblocks of the chip are in
592 * the MTD partition we are attaching (ubi->mtd).
593 */
594 device_size = mtd_get_device_size(ubi->mtd);
595 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
596 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
597
598 /* Round it up */
599 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
600 limit += 1;
601
602 return limit;
603}
604
605/**
606 * io_init - initialize I/O sub-system for a given UBI device.
607 * @ubi: UBI device description object
608 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
609 *
610 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
611 * assumed:
612 * o EC header is always at offset zero - this cannot be changed;
613 * o VID header starts just after the EC header at the closest address
614 * aligned to @io->hdrs_min_io_size;
615 * o data starts just after the VID header at the closest address aligned to
616 * @io->min_io_size
617 *
618 * This function returns zero in case of success and a negative error code in
619 * case of failure.
620 */
621static int io_init(struct ubi_device *ubi, int max_beb_per1024)
622{
623 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
624 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
625
626 if (ubi->mtd->numeraseregions != 0) {
627 /*
628 * Some flashes have several erase regions. Different regions
629 * may have different eraseblock size and other
630 * characteristics. It looks like mostly multi-region flashes
631 * have one "main" region and one or more small regions to
632 * store boot loader code or boot parameters or whatever. I
633 * guess we should just pick the largest region. But this is
634 * not implemented.
635 */
636 ubi_err(ubi, "multiple regions, not implemented");
637 return -EINVAL;
638 }
639
640 if (ubi->vid_hdr_offset < 0)
641 return -EINVAL;
642
643 /*
644 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
645 * physical eraseblocks maximum.
646 */
647
648 ubi->peb_size = ubi->mtd->erasesize;
649 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
650 ubi->flash_size = ubi->mtd->size;
651
652 if (mtd_can_have_bb(ubi->mtd)) {
653 ubi->bad_allowed = 1;
654 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
655 }
656
657 if (ubi->mtd->type == MTD_NORFLASH) {
658 ubi_assert(ubi->mtd->writesize == 1);
659 ubi->nor_flash = 1;
660 }
661
662 ubi->min_io_size = ubi->mtd->writesize;
663 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
664
665 /*
666 * Make sure minimal I/O unit is power of 2. Note, there is no
667 * fundamental reason for this assumption. It is just an optimization
668 * which allows us to avoid costly division operations.
669 */
670 if (!is_power_of_2(ubi->min_io_size)) {
671 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
672 ubi->min_io_size);
673 return -EINVAL;
674 }
675
676 ubi_assert(ubi->hdrs_min_io_size > 0);
677 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
678 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
679
680 ubi->max_write_size = ubi->mtd->writebufsize;
681 /*
682 * Maximum write size has to be greater or equivalent to min. I/O
683 * size, and be multiple of min. I/O size.
684 */
685 if (ubi->max_write_size < ubi->min_io_size ||
686 ubi->max_write_size % ubi->min_io_size ||
687 !is_power_of_2(ubi->max_write_size)) {
688 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
689 ubi->max_write_size, ubi->min_io_size);
690 return -EINVAL;
691 }
692
693 /* Calculate default aligned sizes of EC and VID headers */
694 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
695 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
696
697 dbg_gen("min_io_size %d", ubi->min_io_size);
698 dbg_gen("max_write_size %d", ubi->max_write_size);
699 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
700 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
701 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
702
703 if (ubi->vid_hdr_offset == 0)
704 /* Default offset */
705 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
706 ubi->ec_hdr_alsize;
707 else {
708 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
709 ~(ubi->hdrs_min_io_size - 1);
710 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
711 ubi->vid_hdr_aloffset;
712 }
713
714 /* Similar for the data offset */
715 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
716 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
717
718 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
719 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
720 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
721 dbg_gen("leb_start %d", ubi->leb_start);
722
723 /* The shift must be aligned to 32-bit boundary */
724 if (ubi->vid_hdr_shift % 4) {
725 ubi_err(ubi, "unaligned VID header shift %d",
726 ubi->vid_hdr_shift);
727 return -EINVAL;
728 }
729
730 /* Check sanity */
731 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
732 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
733 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
734 ubi->leb_start & (ubi->min_io_size - 1)) {
735 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
736 ubi->vid_hdr_offset, ubi->leb_start);
737 return -EINVAL;
738 }
739
740 /*
741 * Set maximum amount of physical erroneous eraseblocks to be 10%.
742 * Erroneous PEB are those which have read errors.
743 */
744 ubi->max_erroneous = ubi->peb_count / 10;
745 if (ubi->max_erroneous < 16)
746 ubi->max_erroneous = 16;
747 dbg_gen("max_erroneous %d", ubi->max_erroneous);
748
749 /*
750 * It may happen that EC and VID headers are situated in one minimal
751 * I/O unit. In this case we can only accept this UBI image in
752 * read-only mode.
753 */
754 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
755 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
756 ubi->ro_mode = 1;
757 }
758
759 ubi->leb_size = ubi->peb_size - ubi->leb_start;
760
761 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
762 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
763 ubi->mtd->index);
764 ubi->ro_mode = 1;
765 }
766
767 /*
768 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
769 * unfortunately, MTD does not provide this information. We should loop
770 * over all physical eraseblocks and invoke mtd->block_is_bad() for
771 * each physical eraseblock. So, we leave @ubi->bad_peb_count
772 * uninitialized so far.
773 */
774
775 return 0;
776}
777
778/**
779 * autoresize - re-size the volume which has the "auto-resize" flag set.
780 * @ubi: UBI device description object
781 * @vol_id: ID of the volume to re-size
782 *
783 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
784 * the volume table to the largest possible size. See comments in ubi-header.h
785 * for more description of the flag. Returns zero in case of success and a
786 * negative error code in case of failure.
787 */
788static int autoresize(struct ubi_device *ubi, int vol_id)
789{
790 struct ubi_volume_desc desc;
791 struct ubi_volume *vol = ubi->volumes[vol_id];
792 int err, old_reserved_pebs = vol->reserved_pebs;
793
794 if (ubi->ro_mode) {
795 ubi_warn(ubi, "skip auto-resize because of R/O mode");
796 return 0;
797 }
798
799 /*
800 * Clear the auto-resize flag in the volume in-memory copy of the
801 * volume table, and 'ubi_resize_volume()' will propagate this change
802 * to the flash.
803 */
804 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
805
806 if (ubi->avail_pebs == 0) {
807 struct ubi_vtbl_record vtbl_rec;
808
809 /*
810 * No available PEBs to re-size the volume, clear the flag on
811 * flash and exit.
812 */
813 vtbl_rec = ubi->vtbl[vol_id];
814 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
815 if (err)
816 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
817 vol_id);
818 } else {
819 desc.vol = vol;
820 err = ubi_resize_volume(&desc,
821 old_reserved_pebs + ubi->avail_pebs);
822 if (err)
823 ubi_err(ubi, "cannot auto-resize volume %d",
824 vol_id);
825 }
826
827 if (err)
828 return err;
829
830 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
831 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
832 return 0;
833}
834
835/**
836 * ubi_attach_mtd_dev - attach an MTD device.
837 * @mtd: MTD device description object
838 * @ubi_num: number to assign to the new UBI device
839 * @vid_hdr_offset: VID header offset
840 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
841 *
842 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
843 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
844 * which case this function finds a vacant device number and assigns it
845 * automatically. Returns the new UBI device number in case of success and a
846 * negative error code in case of failure.
847 *
848 * Note, the invocations of this function has to be serialized by the
849 * @ubi_devices_mutex.
850 */
851int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
852 int vid_hdr_offset, int max_beb_per1024)
853{
854 struct ubi_device *ubi;
855 int i, err, ref = 0;
856
857 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
858 return -EINVAL;
859
860 if (!max_beb_per1024)
861 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
862
863 /*
864 * Check if we already have the same MTD device attached.
865 *
866 * Note, this function assumes that UBI devices creations and deletions
867 * are serialized, so it does not take the &ubi_devices_lock.
868 */
869 for (i = 0; i < UBI_MAX_DEVICES; i++) {
870 ubi = ubi_devices[i];
871 if (ubi && mtd->index == ubi->mtd->index) {
872 ubi_err(ubi, "mtd%d is already attached to ubi%d",
873 mtd->index, i);
874 return -EEXIST;
875 }
876 }
877
878 /*
879 * Make sure this MTD device is not emulated on top of an UBI volume
880 * already. Well, generally this recursion works fine, but there are
881 * different problems like the UBI module takes a reference to itself
882 * by attaching (and thus, opening) the emulated MTD device. This
883 * results in inability to unload the module. And in general it makes
884 * no sense to attach emulated MTD devices, so we prohibit this.
885 */
886 if (mtd->type == MTD_UBIVOLUME) {
887 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
888 mtd->index);
889 return -EINVAL;
890 }
891
892 if (ubi_num == UBI_DEV_NUM_AUTO) {
893 /* Search for an empty slot in the @ubi_devices array */
894 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
895 if (!ubi_devices[ubi_num])
896 break;
897 if (ubi_num == UBI_MAX_DEVICES) {
898 ubi_err(ubi, "only %d UBI devices may be created",
899 UBI_MAX_DEVICES);
900 return -ENFILE;
901 }
902 } else {
903 if (ubi_num >= UBI_MAX_DEVICES)
904 return -EINVAL;
905
906 /* Make sure ubi_num is not busy */
907 if (ubi_devices[ubi_num]) {
908 ubi_err(ubi, "already exists");
909 return -EEXIST;
910 }
911 }
912
913 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
914 if (!ubi)
915 return -ENOMEM;
916
917 ubi->mtd = mtd;
918 ubi->ubi_num = ubi_num;
919 ubi->vid_hdr_offset = vid_hdr_offset;
920 ubi->autoresize_vol_id = -1;
921
922#ifdef CONFIG_MTD_UBI_FASTMAP
923 ubi->fm_pool.used = ubi->fm_pool.size = 0;
924 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
925
926 /*
927 * fm_pool.max_size is 5% of the total number of PEBs but it's also
928 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
929 */
930 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
931 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
932 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
933 UBI_FM_MIN_POOL_SIZE);
934
935 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
936 ubi->fm_disabled = !fm_autoconvert;
937 if (fm_debug)
938 ubi_enable_dbg_chk_fastmap(ubi);
939
940 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
941 <= UBI_FM_MAX_START) {
942 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
943 UBI_FM_MAX_START);
944 ubi->fm_disabled = 1;
945 }
946
947 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
948 ubi_msg(ubi, "default fastmap WL pool size: %d",
949 ubi->fm_wl_pool.max_size);
950#else
951 ubi->fm_disabled = 1;
952#endif
953 mutex_init(&ubi->buf_mutex);
954 mutex_init(&ubi->ckvol_mutex);
955 mutex_init(&ubi->device_mutex);
956 spin_lock_init(&ubi->volumes_lock);
957 init_rwsem(&ubi->fm_protect);
958 init_rwsem(&ubi->fm_eba_sem);
959
960 ubi_msg(ubi, "attaching mtd%d", mtd->index);
961
962 err = io_init(ubi, max_beb_per1024);
963 if (err)
964 goto out_free;
965
966 err = -ENOMEM;
967 ubi->peb_buf = vmalloc(ubi->peb_size);
968 if (!ubi->peb_buf)
969 goto out_free;
970
971#ifdef CONFIG_MTD_UBI_FASTMAP
972 ubi->fm_size = ubi_calc_fm_size(ubi);
973 ubi->fm_buf = vzalloc(ubi->fm_size);
974 if (!ubi->fm_buf)
975 goto out_free;
976#endif
977 err = ubi_attach(ubi, 0);
978 if (err) {
979 ubi_err(ubi, "failed to attach mtd%d, error %d",
980 mtd->index, err);
981 goto out_free;
982 }
983
984 if (ubi->autoresize_vol_id != -1) {
985 err = autoresize(ubi, ubi->autoresize_vol_id);
986 if (err)
987 goto out_detach;
988 }
989
990 err = uif_init(ubi, &ref);
991 if (err)
992 goto out_detach;
993
994 err = ubi_debugfs_init_dev(ubi);
995 if (err)
996 goto out_uif;
997
998 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
999 if (IS_ERR(ubi->bgt_thread)) {
1000 err = PTR_ERR(ubi->bgt_thread);
1001 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1002 ubi->bgt_name, err);
1003 goto out_debugfs;
1004 }
1005
1006 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1007 mtd->index, mtd->name, ubi->flash_size >> 20);
1008 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1009 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1010 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1011 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1012 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1013 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1014 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1015 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1016 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1017 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1018 ubi->vtbl_slots);
1019 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1020 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1021 ubi->image_seq);
1022 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1023 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1024
1025 /*
1026 * The below lock makes sure we do not race with 'ubi_thread()' which
1027 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1028 */
1029 spin_lock(&ubi->wl_lock);
1030 ubi->thread_enabled = 1;
1031 wake_up_process(ubi->bgt_thread);
1032 spin_unlock(&ubi->wl_lock);
1033
1034 ubi_devices[ubi_num] = ubi;
1035 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1036 return ubi_num;
1037
1038out_debugfs:
1039 ubi_debugfs_exit_dev(ubi);
1040out_uif:
1041 get_device(&ubi->dev);
1042 ubi_assert(ref);
1043 uif_close(ubi);
1044out_detach:
1045 ubi_wl_close(ubi);
1046 ubi_free_internal_volumes(ubi);
1047 vfree(ubi->vtbl);
1048out_free:
1049 vfree(ubi->peb_buf);
1050 vfree(ubi->fm_buf);
1051 if (ref)
1052 put_device(&ubi->dev);
1053 else
1054 kfree(ubi);
1055 return err;
1056}
1057
1058/**
1059 * ubi_detach_mtd_dev - detach an MTD device.
1060 * @ubi_num: UBI device number to detach from
1061 * @anyway: detach MTD even if device reference count is not zero
1062 *
1063 * This function destroys an UBI device number @ubi_num and detaches the
1064 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1065 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1066 * exist.
1067 *
1068 * Note, the invocations of this function has to be serialized by the
1069 * @ubi_devices_mutex.
1070 */
1071int ubi_detach_mtd_dev(int ubi_num, int anyway)
1072{
1073 struct ubi_device *ubi;
1074
1075 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1076 return -EINVAL;
1077
1078 ubi = ubi_get_device(ubi_num);
1079 if (!ubi)
1080 return -EINVAL;
1081
1082 spin_lock(&ubi_devices_lock);
1083 put_device(&ubi->dev);
1084 ubi->ref_count -= 1;
1085 if (ubi->ref_count) {
1086 if (!anyway) {
1087 spin_unlock(&ubi_devices_lock);
1088 return -EBUSY;
1089 }
1090 /* This may only happen if there is a bug */
1091 ubi_err(ubi, "%s reference count %d, destroy anyway",
1092 ubi->ubi_name, ubi->ref_count);
1093 }
1094 ubi_devices[ubi_num] = NULL;
1095 spin_unlock(&ubi_devices_lock);
1096
1097 ubi_assert(ubi_num == ubi->ubi_num);
1098 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1099 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1100#ifdef CONFIG_MTD_UBI_FASTMAP
1101 /* If we don't write a new fastmap at detach time we lose all
1102 * EC updates that have been made since the last written fastmap.
1103 * In case of fastmap debugging we omit the update to simulate an
1104 * unclean shutdown. */
1105 if (!ubi_dbg_chk_fastmap(ubi))
1106 ubi_update_fastmap(ubi);
1107#endif
1108 /*
1109 * Before freeing anything, we have to stop the background thread to
1110 * prevent it from doing anything on this device while we are freeing.
1111 */
1112 if (ubi->bgt_thread)
1113 kthread_stop(ubi->bgt_thread);
1114
1115 /*
1116 * Get a reference to the device in order to prevent 'dev_release()'
1117 * from freeing the @ubi object.
1118 */
1119 get_device(&ubi->dev);
1120
1121 ubi_debugfs_exit_dev(ubi);
1122 uif_close(ubi);
1123
1124 ubi_wl_close(ubi);
1125 ubi_free_internal_volumes(ubi);
1126 vfree(ubi->vtbl);
1127 put_mtd_device(ubi->mtd);
1128 vfree(ubi->peb_buf);
1129 vfree(ubi->fm_buf);
1130 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1131 put_device(&ubi->dev);
1132 return 0;
1133}
1134
1135/**
1136 * open_mtd_by_chdev - open an MTD device by its character device node path.
1137 * @mtd_dev: MTD character device node path
1138 *
1139 * This helper function opens an MTD device by its character node device path.
1140 * Returns MTD device description object in case of success and a negative
1141 * error code in case of failure.
1142 */
1143static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1144{
1145 int err, major, minor, mode;
1146 struct path path;
1147
1148 /* Probably this is an MTD character device node path */
1149 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1150 if (err)
1151 return ERR_PTR(err);
1152
1153 /* MTD device number is defined by the major / minor numbers */
1154 major = imajor(d_backing_inode(path.dentry));
1155 minor = iminor(d_backing_inode(path.dentry));
1156 mode = d_backing_inode(path.dentry)->i_mode;
1157 path_put(&path);
1158 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1159 return ERR_PTR(-EINVAL);
1160
1161 if (minor & 1)
1162 /*
1163 * Just do not think the "/dev/mtdrX" devices support is need,
1164 * so do not support them to avoid doing extra work.
1165 */
1166 return ERR_PTR(-EINVAL);
1167
1168 return get_mtd_device(NULL, minor / 2);
1169}
1170
1171/**
1172 * open_mtd_device - open MTD device by name, character device path, or number.
1173 * @mtd_dev: name, character device node path, or MTD device device number
1174 *
1175 * This function tries to open and MTD device described by @mtd_dev string,
1176 * which is first treated as ASCII MTD device number, and if it is not true, it
1177 * is treated as MTD device name, and if that is also not true, it is treated
1178 * as MTD character device node path. Returns MTD device description object in
1179 * case of success and a negative error code in case of failure.
1180 */
1181static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1182{
1183 struct mtd_info *mtd;
1184 int mtd_num;
1185 char *endp;
1186
1187 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1188 if (*endp != '\0' || mtd_dev == endp) {
1189 /*
1190 * This does not look like an ASCII integer, probably this is
1191 * MTD device name.
1192 */
1193 mtd = get_mtd_device_nm(mtd_dev);
1194 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1195 /* Probably this is an MTD character device node path */
1196 mtd = open_mtd_by_chdev(mtd_dev);
1197 } else
1198 mtd = get_mtd_device(NULL, mtd_num);
1199
1200 return mtd;
1201}
1202
1203static int __init ubi_init(void)
1204{
1205 int err, i, k;
1206
1207 /* Ensure that EC and VID headers have correct size */
1208 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1209 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1210
1211 if (mtd_devs > UBI_MAX_DEVICES) {
1212 pr_err("UBI error: too many MTD devices, maximum is %d",
1213 UBI_MAX_DEVICES);
1214 return -EINVAL;
1215 }
1216
1217 /* Create base sysfs directory and sysfs files */
1218 err = class_register(&ubi_class);
1219 if (err < 0)
1220 return err;
1221
1222 err = misc_register(&ubi_ctrl_cdev);
1223 if (err) {
1224 pr_err("UBI error: cannot register device");
1225 goto out;
1226 }
1227
1228 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1229 sizeof(struct ubi_wl_entry),
1230 0, 0, NULL);
1231 if (!ubi_wl_entry_slab) {
1232 err = -ENOMEM;
1233 goto out_dev_unreg;
1234 }
1235
1236 err = ubi_debugfs_init();
1237 if (err)
1238 goto out_slab;
1239
1240
1241 /* Attach MTD devices */
1242 for (i = 0; i < mtd_devs; i++) {
1243 struct mtd_dev_param *p = &mtd_dev_param[i];
1244 struct mtd_info *mtd;
1245
1246 cond_resched();
1247
1248 mtd = open_mtd_device(p->name);
1249 if (IS_ERR(mtd)) {
1250 err = PTR_ERR(mtd);
1251 pr_err("UBI error: cannot open mtd %s, error %d",
1252 p->name, err);
1253 /* See comment below re-ubi_is_module(). */
1254 if (ubi_is_module())
1255 goto out_detach;
1256 continue;
1257 }
1258
1259 mutex_lock(&ubi_devices_mutex);
1260 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1261 p->vid_hdr_offs, p->max_beb_per1024);
1262 mutex_unlock(&ubi_devices_mutex);
1263 if (err < 0) {
1264 pr_err("UBI error: cannot attach mtd%d",
1265 mtd->index);
1266 put_mtd_device(mtd);
1267
1268 /*
1269 * Originally UBI stopped initializing on any error.
1270 * However, later on it was found out that this
1271 * behavior is not very good when UBI is compiled into
1272 * the kernel and the MTD devices to attach are passed
1273 * through the command line. Indeed, UBI failure
1274 * stopped whole boot sequence.
1275 *
1276 * To fix this, we changed the behavior for the
1277 * non-module case, but preserved the old behavior for
1278 * the module case, just for compatibility. This is a
1279 * little inconsistent, though.
1280 */
1281 if (ubi_is_module())
1282 goto out_detach;
1283 }
1284 }
1285
1286 err = ubiblock_init();
1287 if (err) {
1288 pr_err("UBI error: block: cannot initialize, error %d", err);
1289
1290 /* See comment above re-ubi_is_module(). */
1291 if (ubi_is_module())
1292 goto out_detach;
1293 }
1294
1295 return 0;
1296
1297out_detach:
1298 for (k = 0; k < i; k++)
1299 if (ubi_devices[k]) {
1300 mutex_lock(&ubi_devices_mutex);
1301 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1302 mutex_unlock(&ubi_devices_mutex);
1303 }
1304 ubi_debugfs_exit();
1305out_slab:
1306 kmem_cache_destroy(ubi_wl_entry_slab);
1307out_dev_unreg:
1308 misc_deregister(&ubi_ctrl_cdev);
1309out:
1310 class_unregister(&ubi_class);
1311 pr_err("UBI error: cannot initialize UBI, error %d", err);
1312 return err;
1313}
1314late_initcall(ubi_init);
1315
1316static void __exit ubi_exit(void)
1317{
1318 int i;
1319
1320 ubiblock_exit();
1321
1322 for (i = 0; i < UBI_MAX_DEVICES; i++)
1323 if (ubi_devices[i]) {
1324 mutex_lock(&ubi_devices_mutex);
1325 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1326 mutex_unlock(&ubi_devices_mutex);
1327 }
1328 ubi_debugfs_exit();
1329 kmem_cache_destroy(ubi_wl_entry_slab);
1330 misc_deregister(&ubi_ctrl_cdev);
1331 class_unregister(&ubi_class);
1332}
1333module_exit(ubi_exit);
1334
1335/**
1336 * bytes_str_to_int - convert a number of bytes string into an integer.
1337 * @str: the string to convert
1338 *
1339 * This function returns positive resulting integer in case of success and a
1340 * negative error code in case of failure.
1341 */
1342static int __init bytes_str_to_int(const char *str)
1343{
1344 char *endp;
1345 unsigned long result;
1346
1347 result = simple_strtoul(str, &endp, 0);
1348 if (str == endp || result >= INT_MAX) {
1349 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1350 return -EINVAL;
1351 }
1352
1353 switch (*endp) {
1354 case 'G':
1355 result *= 1024;
1356 case 'M':
1357 result *= 1024;
1358 case 'K':
1359 result *= 1024;
1360 if (endp[1] == 'i' && endp[2] == 'B')
1361 endp += 2;
1362 case '\0':
1363 break;
1364 default:
1365 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1366 return -EINVAL;
1367 }
1368
1369 return result;
1370}
1371
1372/**
1373 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1374 * @val: the parameter value to parse
1375 * @kp: not used
1376 *
1377 * This function returns zero in case of success and a negative error code in
1378 * case of error.
1379 */
1380static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1381{
1382 int i, len;
1383 struct mtd_dev_param *p;
1384 char buf[MTD_PARAM_LEN_MAX];
1385 char *pbuf = &buf[0];
1386 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1387
1388 if (!val)
1389 return -EINVAL;
1390
1391 if (mtd_devs == UBI_MAX_DEVICES) {
1392 pr_err("UBI error: too many parameters, max. is %d\n",
1393 UBI_MAX_DEVICES);
1394 return -EINVAL;
1395 }
1396
1397 len = strnlen(val, MTD_PARAM_LEN_MAX);
1398 if (len == MTD_PARAM_LEN_MAX) {
1399 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1400 val, MTD_PARAM_LEN_MAX);
1401 return -EINVAL;
1402 }
1403
1404 if (len == 0) {
1405 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1406 return 0;
1407 }
1408
1409 strcpy(buf, val);
1410
1411 /* Get rid of the final newline */
1412 if (buf[len - 1] == '\n')
1413 buf[len - 1] = '\0';
1414
1415 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1416 tokens[i] = strsep(&pbuf, ",");
1417
1418 if (pbuf) {
1419 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1420 return -EINVAL;
1421 }
1422
1423 p = &mtd_dev_param[mtd_devs];
1424 strcpy(&p->name[0], tokens[0]);
1425
1426 token = tokens[1];
1427 if (token) {
1428 p->vid_hdr_offs = bytes_str_to_int(token);
1429
1430 if (p->vid_hdr_offs < 0)
1431 return p->vid_hdr_offs;
1432 }
1433
1434 token = tokens[2];
1435 if (token) {
1436 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1437
1438 if (err) {
1439 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1440 token);
1441 return -EINVAL;
1442 }
1443 }
1444
1445 token = tokens[3];
1446 if (token) {
1447 int err = kstrtoint(token, 10, &p->ubi_num);
1448
1449 if (err) {
1450 pr_err("UBI error: bad value for ubi_num parameter: %s",
1451 token);
1452 return -EINVAL;
1453 }
1454 } else
1455 p->ubi_num = UBI_DEV_NUM_AUTO;
1456
1457 mtd_devs += 1;
1458 return 0;
1459}
1460
1461module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1462MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1463 "Multiple \"mtd\" parameters may be specified.\n"
1464 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1465 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1466 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1467 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1468 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1469 "\n"
1470 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1471 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1472 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1473 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1474 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1475#ifdef CONFIG_MTD_UBI_FASTMAP
1476module_param(fm_autoconvert, bool, 0644);
1477MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1478module_param(fm_debug, bool, 0);
1479MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1480#endif
1481MODULE_VERSION(__stringify(UBI_VERSION));
1482MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1483MODULE_AUTHOR("Artem Bityutskiy");
1484MODULE_LICENSE("GPL");