Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 * Frank Haverkamp
8 */
9
10/*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19#include <linux/err.h>
20#include <linux/module.h>
21#include <linux/moduleparam.h>
22#include <linux/stringify.h>
23#include <linux/namei.h>
24#include <linux/stat.h>
25#include <linux/miscdevice.h>
26#include <linux/mtd/partitions.h>
27#include <linux/log2.h>
28#include <linux/kthread.h>
29#include <linux/kernel.h>
30#include <linux/slab.h>
31#include <linux/major.h>
32#include "ubi.h"
33
34/* Maximum length of the 'mtd=' parameter */
35#define MTD_PARAM_LEN_MAX 64
36
37/* Maximum number of comma-separated items in the 'mtd=' parameter */
38#define MTD_PARAM_MAX_COUNT 6
39
40/* Maximum value for the number of bad PEBs per 1024 PEBs */
41#define MAX_MTD_UBI_BEB_LIMIT 768
42
43#ifdef CONFIG_MTD_UBI_MODULE
44#define ubi_is_module() 1
45#else
46#define ubi_is_module() 0
47#endif
48
49/**
50 * struct mtd_dev_param - MTD device parameter description data structure.
51 * @name: MTD character device node path, MTD device name, or MTD device number
52 * string
53 * @ubi_num: UBI number
54 * @vid_hdr_offs: VID header offset
55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
56 * @enable_fm: enable fastmap when value is non-zero
57 * @need_resv_pool: reserve pool->max_size pebs when value is none-zero
58 */
59struct mtd_dev_param {
60 char name[MTD_PARAM_LEN_MAX];
61 int ubi_num;
62 int vid_hdr_offs;
63 int max_beb_per1024;
64 int enable_fm;
65 int need_resv_pool;
66};
67
68/* Numbers of elements set in the @mtd_dev_param array */
69static int mtd_devs;
70
71/* MTD devices specification parameters */
72static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
73#ifdef CONFIG_MTD_UBI_FASTMAP
74/* UBI module parameter to enable fastmap automatically on non-fastmap images */
75static bool fm_autoconvert;
76static bool fm_debug;
77#endif
78
79/* Slab cache for wear-leveling entries */
80struct kmem_cache *ubi_wl_entry_slab;
81
82/* UBI control character device */
83static struct miscdevice ubi_ctrl_cdev = {
84 .minor = MISC_DYNAMIC_MINOR,
85 .name = "ubi_ctrl",
86 .fops = &ubi_ctrl_cdev_operations,
87};
88
89/* All UBI devices in system */
90static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
91
92/* Serializes UBI devices creations and removals */
93DEFINE_MUTEX(ubi_devices_mutex);
94
95/* Protects @ubi_devices and @ubi->ref_count */
96static DEFINE_SPINLOCK(ubi_devices_lock);
97
98/* "Show" method for files in '/<sysfs>/class/ubi/' */
99/* UBI version attribute ('/<sysfs>/class/ubi/version') */
100static ssize_t version_show(const struct class *class, const struct class_attribute *attr,
101 char *buf)
102{
103 return sprintf(buf, "%d\n", UBI_VERSION);
104}
105static CLASS_ATTR_RO(version);
106
107static struct attribute *ubi_class_attrs[] = {
108 &class_attr_version.attr,
109 NULL,
110};
111ATTRIBUTE_GROUPS(ubi_class);
112
113/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
114struct class ubi_class = {
115 .name = UBI_NAME_STR,
116 .class_groups = ubi_class_groups,
117};
118
119static ssize_t dev_attribute_show(struct device *dev,
120 struct device_attribute *attr, char *buf);
121
122/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
123static struct device_attribute dev_eraseblock_size =
124 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
125static struct device_attribute dev_avail_eraseblocks =
126 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
127static struct device_attribute dev_total_eraseblocks =
128 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
129static struct device_attribute dev_volumes_count =
130 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
131static struct device_attribute dev_max_ec =
132 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
133static struct device_attribute dev_reserved_for_bad =
134 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
135static struct device_attribute dev_bad_peb_count =
136 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
137static struct device_attribute dev_max_vol_count =
138 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
139static struct device_attribute dev_min_io_size =
140 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
141static struct device_attribute dev_bgt_enabled =
142 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
143static struct device_attribute dev_mtd_num =
144 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
145static struct device_attribute dev_ro_mode =
146 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
147
148/**
149 * ubi_volume_notify - send a volume change notification.
150 * @ubi: UBI device description object
151 * @vol: volume description object of the changed volume
152 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
153 *
154 * This is a helper function which notifies all subscribers about a volume
155 * change event (creation, removal, re-sizing, re-naming, updating). Returns
156 * zero in case of success and a negative error code in case of failure.
157 */
158int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
159{
160 int ret;
161 struct ubi_notification nt;
162
163 ubi_do_get_device_info(ubi, &nt.di);
164 ubi_do_get_volume_info(ubi, vol, &nt.vi);
165
166 switch (ntype) {
167 case UBI_VOLUME_ADDED:
168 case UBI_VOLUME_REMOVED:
169 case UBI_VOLUME_RESIZED:
170 case UBI_VOLUME_RENAMED:
171 ret = ubi_update_fastmap(ubi);
172 if (ret)
173 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
174 }
175
176 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
177}
178
179/**
180 * ubi_notify_all - send a notification to all volumes.
181 * @ubi: UBI device description object
182 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
183 * @nb: the notifier to call
184 *
185 * This function walks all volumes of UBI device @ubi and sends the @ntype
186 * notification for each volume. If @nb is %NULL, then all registered notifiers
187 * are called, otherwise only the @nb notifier is called. Returns the number of
188 * sent notifications.
189 */
190int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
191{
192 struct ubi_notification nt;
193 int i, count = 0;
194
195 ubi_do_get_device_info(ubi, &nt.di);
196
197 mutex_lock(&ubi->device_mutex);
198 for (i = 0; i < ubi->vtbl_slots; i++) {
199 /*
200 * Since the @ubi->device is locked, and we are not going to
201 * change @ubi->volumes, we do not have to lock
202 * @ubi->volumes_lock.
203 */
204 if (!ubi->volumes[i])
205 continue;
206
207 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
208 if (nb)
209 nb->notifier_call(nb, ntype, &nt);
210 else
211 blocking_notifier_call_chain(&ubi_notifiers, ntype,
212 &nt);
213 count += 1;
214 }
215 mutex_unlock(&ubi->device_mutex);
216
217 return count;
218}
219
220/**
221 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
222 * @nb: the notifier to call
223 *
224 * This function walks all UBI devices and volumes and sends the
225 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
226 * registered notifiers are called, otherwise only the @nb notifier is called.
227 * Returns the number of sent notifications.
228 */
229int ubi_enumerate_volumes(struct notifier_block *nb)
230{
231 int i, count = 0;
232
233 /*
234 * Since the @ubi_devices_mutex is locked, and we are not going to
235 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
236 */
237 for (i = 0; i < UBI_MAX_DEVICES; i++) {
238 struct ubi_device *ubi = ubi_devices[i];
239
240 if (!ubi)
241 continue;
242 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
243 }
244
245 return count;
246}
247
248/**
249 * ubi_get_device - get UBI device.
250 * @ubi_num: UBI device number
251 *
252 * This function returns UBI device description object for UBI device number
253 * @ubi_num, or %NULL if the device does not exist. This function increases the
254 * device reference count to prevent removal of the device. In other words, the
255 * device cannot be removed if its reference count is not zero.
256 */
257struct ubi_device *ubi_get_device(int ubi_num)
258{
259 struct ubi_device *ubi;
260
261 spin_lock(&ubi_devices_lock);
262 ubi = ubi_devices[ubi_num];
263 if (ubi) {
264 ubi_assert(ubi->ref_count >= 0);
265 ubi->ref_count += 1;
266 get_device(&ubi->dev);
267 }
268 spin_unlock(&ubi_devices_lock);
269
270 return ubi;
271}
272
273/**
274 * ubi_put_device - drop an UBI device reference.
275 * @ubi: UBI device description object
276 */
277void ubi_put_device(struct ubi_device *ubi)
278{
279 spin_lock(&ubi_devices_lock);
280 ubi->ref_count -= 1;
281 put_device(&ubi->dev);
282 spin_unlock(&ubi_devices_lock);
283}
284
285/**
286 * ubi_get_by_major - get UBI device by character device major number.
287 * @major: major number
288 *
289 * This function is similar to 'ubi_get_device()', but it searches the device
290 * by its major number.
291 */
292struct ubi_device *ubi_get_by_major(int major)
293{
294 int i;
295 struct ubi_device *ubi;
296
297 spin_lock(&ubi_devices_lock);
298 for (i = 0; i < UBI_MAX_DEVICES; i++) {
299 ubi = ubi_devices[i];
300 if (ubi && MAJOR(ubi->cdev.dev) == major) {
301 ubi_assert(ubi->ref_count >= 0);
302 ubi->ref_count += 1;
303 get_device(&ubi->dev);
304 spin_unlock(&ubi_devices_lock);
305 return ubi;
306 }
307 }
308 spin_unlock(&ubi_devices_lock);
309
310 return NULL;
311}
312
313/**
314 * ubi_major2num - get UBI device number by character device major number.
315 * @major: major number
316 *
317 * This function searches UBI device number object by its major number. If UBI
318 * device was not found, this function returns -ENODEV, otherwise the UBI device
319 * number is returned.
320 */
321int ubi_major2num(int major)
322{
323 int i, ubi_num = -ENODEV;
324
325 spin_lock(&ubi_devices_lock);
326 for (i = 0; i < UBI_MAX_DEVICES; i++) {
327 struct ubi_device *ubi = ubi_devices[i];
328
329 if (ubi && MAJOR(ubi->cdev.dev) == major) {
330 ubi_num = ubi->ubi_num;
331 break;
332 }
333 }
334 spin_unlock(&ubi_devices_lock);
335
336 return ubi_num;
337}
338
339/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
340static ssize_t dev_attribute_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
342{
343 ssize_t ret;
344 struct ubi_device *ubi;
345
346 /*
347 * The below code looks weird, but it actually makes sense. We get the
348 * UBI device reference from the contained 'struct ubi_device'. But it
349 * is unclear if the device was removed or not yet. Indeed, if the
350 * device was removed before we increased its reference count,
351 * 'ubi_get_device()' will return -ENODEV and we fail.
352 *
353 * Remember, 'struct ubi_device' is freed in the release function, so
354 * we still can use 'ubi->ubi_num'.
355 */
356 ubi = container_of(dev, struct ubi_device, dev);
357
358 if (attr == &dev_eraseblock_size)
359 ret = sprintf(buf, "%d\n", ubi->leb_size);
360 else if (attr == &dev_avail_eraseblocks)
361 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
362 else if (attr == &dev_total_eraseblocks)
363 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
364 else if (attr == &dev_volumes_count)
365 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
366 else if (attr == &dev_max_ec)
367 ret = sprintf(buf, "%d\n", ubi->max_ec);
368 else if (attr == &dev_reserved_for_bad)
369 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
370 else if (attr == &dev_bad_peb_count)
371 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
372 else if (attr == &dev_max_vol_count)
373 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
374 else if (attr == &dev_min_io_size)
375 ret = sprintf(buf, "%d\n", ubi->min_io_size);
376 else if (attr == &dev_bgt_enabled)
377 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
378 else if (attr == &dev_mtd_num)
379 ret = sprintf(buf, "%d\n", ubi->mtd->index);
380 else if (attr == &dev_ro_mode)
381 ret = sprintf(buf, "%d\n", ubi->ro_mode);
382 else
383 ret = -EINVAL;
384
385 return ret;
386}
387
388static struct attribute *ubi_dev_attrs[] = {
389 &dev_eraseblock_size.attr,
390 &dev_avail_eraseblocks.attr,
391 &dev_total_eraseblocks.attr,
392 &dev_volumes_count.attr,
393 &dev_max_ec.attr,
394 &dev_reserved_for_bad.attr,
395 &dev_bad_peb_count.attr,
396 &dev_max_vol_count.attr,
397 &dev_min_io_size.attr,
398 &dev_bgt_enabled.attr,
399 &dev_mtd_num.attr,
400 &dev_ro_mode.attr,
401 NULL
402};
403ATTRIBUTE_GROUPS(ubi_dev);
404
405static void dev_release(struct device *dev)
406{
407 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
408
409 kfree(ubi);
410}
411
412/**
413 * kill_volumes - destroy all user volumes.
414 * @ubi: UBI device description object
415 */
416static void kill_volumes(struct ubi_device *ubi)
417{
418 int i;
419
420 for (i = 0; i < ubi->vtbl_slots; i++)
421 if (ubi->volumes[i])
422 ubi_free_volume(ubi, ubi->volumes[i]);
423}
424
425/**
426 * uif_init - initialize user interfaces for an UBI device.
427 * @ubi: UBI device description object
428 *
429 * This function initializes various user interfaces for an UBI device. If the
430 * initialization fails at an early stage, this function frees all the
431 * resources it allocated, returns an error.
432 *
433 * This function returns zero in case of success and a negative error code in
434 * case of failure.
435 */
436static int uif_init(struct ubi_device *ubi)
437{
438 int i, err;
439 dev_t dev;
440
441 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
442
443 /*
444 * Major numbers for the UBI character devices are allocated
445 * dynamically. Major numbers of volume character devices are
446 * equivalent to ones of the corresponding UBI character device. Minor
447 * numbers of UBI character devices are 0, while minor numbers of
448 * volume character devices start from 1. Thus, we allocate one major
449 * number and ubi->vtbl_slots + 1 minor numbers.
450 */
451 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
452 if (err) {
453 ubi_err(ubi, "cannot register UBI character devices");
454 return err;
455 }
456
457 ubi->dev.devt = dev;
458
459 ubi_assert(MINOR(dev) == 0);
460 cdev_init(&ubi->cdev, &ubi_cdev_operations);
461 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
462 ubi->cdev.owner = THIS_MODULE;
463
464 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
465 err = cdev_device_add(&ubi->cdev, &ubi->dev);
466 if (err)
467 goto out_unreg;
468
469 for (i = 0; i < ubi->vtbl_slots; i++)
470 if (ubi->volumes[i]) {
471 err = ubi_add_volume(ubi, ubi->volumes[i]);
472 if (err) {
473 ubi_err(ubi, "cannot add volume %d", i);
474 ubi->volumes[i] = NULL;
475 goto out_volumes;
476 }
477 }
478
479 return 0;
480
481out_volumes:
482 kill_volumes(ubi);
483 cdev_device_del(&ubi->cdev, &ubi->dev);
484out_unreg:
485 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
486 ubi_err(ubi, "cannot initialize UBI %s, error %d",
487 ubi->ubi_name, err);
488 return err;
489}
490
491/**
492 * uif_close - close user interfaces for an UBI device.
493 * @ubi: UBI device description object
494 *
495 * Note, since this function un-registers UBI volume device objects (@vol->dev),
496 * the memory allocated voe the volumes is freed as well (in the release
497 * function).
498 */
499static void uif_close(struct ubi_device *ubi)
500{
501 kill_volumes(ubi);
502 cdev_device_del(&ubi->cdev, &ubi->dev);
503 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
504}
505
506/**
507 * ubi_free_volumes_from - free volumes from specific index.
508 * @ubi: UBI device description object
509 * @from: the start index used for volume free.
510 */
511static void ubi_free_volumes_from(struct ubi_device *ubi, int from)
512{
513 int i;
514
515 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
516 if (!ubi->volumes[i])
517 continue;
518 ubi_eba_replace_table(ubi->volumes[i], NULL);
519 ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
520 kfree(ubi->volumes[i]);
521 ubi->volumes[i] = NULL;
522 }
523}
524
525/**
526 * ubi_free_all_volumes - free all volumes.
527 * @ubi: UBI device description object
528 */
529void ubi_free_all_volumes(struct ubi_device *ubi)
530{
531 ubi_free_volumes_from(ubi, 0);
532}
533
534/**
535 * ubi_free_internal_volumes - free internal volumes.
536 * @ubi: UBI device description object
537 */
538void ubi_free_internal_volumes(struct ubi_device *ubi)
539{
540 ubi_free_volumes_from(ubi, ubi->vtbl_slots);
541}
542
543static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
544{
545 int limit, device_pebs;
546 uint64_t device_size;
547
548 if (!max_beb_per1024) {
549 /*
550 * Since max_beb_per1024 has not been set by the user in either
551 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
552 * limit if it is supported by the device.
553 */
554 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
555 if (limit < 0)
556 return 0;
557 return limit;
558 }
559
560 /*
561 * Here we are using size of the entire flash chip and
562 * not just the MTD partition size because the maximum
563 * number of bad eraseblocks is a percentage of the
564 * whole device and bad eraseblocks are not fairly
565 * distributed over the flash chip. So the worst case
566 * is that all the bad eraseblocks of the chip are in
567 * the MTD partition we are attaching (ubi->mtd).
568 */
569 device_size = mtd_get_device_size(ubi->mtd);
570 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
571 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
572
573 /* Round it up */
574 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
575 limit += 1;
576
577 return limit;
578}
579
580/**
581 * io_init - initialize I/O sub-system for a given UBI device.
582 * @ubi: UBI device description object
583 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
584 *
585 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
586 * assumed:
587 * o EC header is always at offset zero - this cannot be changed;
588 * o VID header starts just after the EC header at the closest address
589 * aligned to @io->hdrs_min_io_size;
590 * o data starts just after the VID header at the closest address aligned to
591 * @io->min_io_size
592 *
593 * This function returns zero in case of success and a negative error code in
594 * case of failure.
595 */
596static int io_init(struct ubi_device *ubi, int max_beb_per1024)
597{
598 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
599 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
600
601 if (ubi->mtd->numeraseregions != 0) {
602 /*
603 * Some flashes have several erase regions. Different regions
604 * may have different eraseblock size and other
605 * characteristics. It looks like mostly multi-region flashes
606 * have one "main" region and one or more small regions to
607 * store boot loader code or boot parameters or whatever. I
608 * guess we should just pick the largest region. But this is
609 * not implemented.
610 */
611 ubi_err(ubi, "multiple regions, not implemented");
612 return -EINVAL;
613 }
614
615 if (ubi->vid_hdr_offset < 0)
616 return -EINVAL;
617
618 /*
619 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
620 * physical eraseblocks maximum.
621 */
622
623 ubi->peb_size = ubi->mtd->erasesize;
624 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
625 ubi->flash_size = ubi->mtd->size;
626
627 if (mtd_can_have_bb(ubi->mtd)) {
628 ubi->bad_allowed = 1;
629 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
630 }
631
632 if (ubi->mtd->type == MTD_NORFLASH)
633 ubi->nor_flash = 1;
634
635 ubi->min_io_size = ubi->mtd->writesize;
636 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
637
638 /*
639 * Make sure minimal I/O unit is power of 2. Note, there is no
640 * fundamental reason for this assumption. It is just an optimization
641 * which allows us to avoid costly division operations.
642 */
643 if (!is_power_of_2(ubi->min_io_size)) {
644 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
645 ubi->min_io_size);
646 return -EINVAL;
647 }
648
649 ubi_assert(ubi->hdrs_min_io_size > 0);
650 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
651 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
652
653 ubi->max_write_size = ubi->mtd->writebufsize;
654 /*
655 * Maximum write size has to be greater or equivalent to min. I/O
656 * size, and be multiple of min. I/O size.
657 */
658 if (ubi->max_write_size < ubi->min_io_size ||
659 ubi->max_write_size % ubi->min_io_size ||
660 !is_power_of_2(ubi->max_write_size)) {
661 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
662 ubi->max_write_size, ubi->min_io_size);
663 return -EINVAL;
664 }
665
666 /* Calculate default aligned sizes of EC and VID headers */
667 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
668 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
669
670 dbg_gen("min_io_size %d", ubi->min_io_size);
671 dbg_gen("max_write_size %d", ubi->max_write_size);
672 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
673 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
674 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
675
676 if (ubi->vid_hdr_offset == 0)
677 /* Default offset */
678 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
679 ubi->ec_hdr_alsize;
680 else {
681 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
682 ~(ubi->hdrs_min_io_size - 1);
683 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
684 ubi->vid_hdr_aloffset;
685 }
686
687 /*
688 * Memory allocation for VID header is ubi->vid_hdr_alsize
689 * which is described in comments in io.c.
690 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds
691 * ubi->vid_hdr_alsize, so that all vid header operations
692 * won't access memory out of bounds.
693 */
694 if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) {
695 ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)"
696 " + VID header size(%zu) > VID header aligned size(%d).",
697 ubi->vid_hdr_offset, ubi->vid_hdr_shift,
698 UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize);
699 return -EINVAL;
700 }
701
702 /* Similar for the data offset */
703 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
704 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
705
706 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
707 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
708 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
709 dbg_gen("leb_start %d", ubi->leb_start);
710
711 /* The shift must be aligned to 32-bit boundary */
712 if (ubi->vid_hdr_shift % 4) {
713 ubi_err(ubi, "unaligned VID header shift %d",
714 ubi->vid_hdr_shift);
715 return -EINVAL;
716 }
717
718 /* Check sanity */
719 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
720 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
721 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
722 ubi->leb_start & (ubi->min_io_size - 1)) {
723 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
724 ubi->vid_hdr_offset, ubi->leb_start);
725 return -EINVAL;
726 }
727
728 /*
729 * Set maximum amount of physical erroneous eraseblocks to be 10%.
730 * Erroneous PEB are those which have read errors.
731 */
732 ubi->max_erroneous = ubi->peb_count / 10;
733 if (ubi->max_erroneous < 16)
734 ubi->max_erroneous = 16;
735 dbg_gen("max_erroneous %d", ubi->max_erroneous);
736
737 /*
738 * It may happen that EC and VID headers are situated in one minimal
739 * I/O unit. In this case we can only accept this UBI image in
740 * read-only mode.
741 */
742 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
743 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
744 ubi->ro_mode = 1;
745 }
746
747 ubi->leb_size = ubi->peb_size - ubi->leb_start;
748
749 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
750 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
751 ubi->mtd->index);
752 ubi->ro_mode = 1;
753 }
754
755 /*
756 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
757 * unfortunately, MTD does not provide this information. We should loop
758 * over all physical eraseblocks and invoke mtd->block_is_bad() for
759 * each physical eraseblock. So, we leave @ubi->bad_peb_count
760 * uninitialized so far.
761 */
762
763 return 0;
764}
765
766/**
767 * autoresize - re-size the volume which has the "auto-resize" flag set.
768 * @ubi: UBI device description object
769 * @vol_id: ID of the volume to re-size
770 *
771 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
772 * the volume table to the largest possible size. See comments in ubi-header.h
773 * for more description of the flag. Returns zero in case of success and a
774 * negative error code in case of failure.
775 */
776static int autoresize(struct ubi_device *ubi, int vol_id)
777{
778 struct ubi_volume_desc desc;
779 struct ubi_volume *vol = ubi->volumes[vol_id];
780 int err, old_reserved_pebs = vol->reserved_pebs;
781
782 if (ubi->ro_mode) {
783 ubi_warn(ubi, "skip auto-resize because of R/O mode");
784 return 0;
785 }
786
787 /*
788 * Clear the auto-resize flag in the volume in-memory copy of the
789 * volume table, and 'ubi_resize_volume()' will propagate this change
790 * to the flash.
791 */
792 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
793
794 if (ubi->avail_pebs == 0) {
795 struct ubi_vtbl_record vtbl_rec;
796
797 /*
798 * No available PEBs to re-size the volume, clear the flag on
799 * flash and exit.
800 */
801 vtbl_rec = ubi->vtbl[vol_id];
802 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
803 if (err)
804 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
805 vol_id);
806 } else {
807 desc.vol = vol;
808 err = ubi_resize_volume(&desc,
809 old_reserved_pebs + ubi->avail_pebs);
810 if (err)
811 ubi_err(ubi, "cannot auto-resize volume %d",
812 vol_id);
813 }
814
815 if (err)
816 return err;
817
818 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
819 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
820 return 0;
821}
822
823/**
824 * ubi_attach_mtd_dev - attach an MTD device.
825 * @mtd: MTD device description object
826 * @ubi_num: number to assign to the new UBI device
827 * @vid_hdr_offset: VID header offset
828 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
829 * @disable_fm: whether disable fastmap
830 * @need_resv_pool: whether reserve pebs to fill fm_pool
831 *
832 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
833 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
834 * which case this function finds a vacant device number and assigns it
835 * automatically. Returns the new UBI device number in case of success and a
836 * negative error code in case of failure.
837 *
838 * If @disable_fm is true, ubi doesn't create new fastmap even the module param
839 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after
840 * doing full scanning.
841 *
842 * Note, the invocations of this function has to be serialized by the
843 * @ubi_devices_mutex.
844 */
845int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
846 int vid_hdr_offset, int max_beb_per1024, bool disable_fm,
847 bool need_resv_pool)
848{
849 struct ubi_device *ubi;
850 int i, err;
851
852 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
853 return -EINVAL;
854
855 if (!max_beb_per1024)
856 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
857
858 /*
859 * Check if we already have the same MTD device attached.
860 *
861 * Note, this function assumes that UBI devices creations and deletions
862 * are serialized, so it does not take the &ubi_devices_lock.
863 */
864 for (i = 0; i < UBI_MAX_DEVICES; i++) {
865 ubi = ubi_devices[i];
866 if (ubi && mtd->index == ubi->mtd->index) {
867 pr_err("ubi: mtd%d is already attached to ubi%d\n",
868 mtd->index, i);
869 return -EEXIST;
870 }
871 }
872
873 /*
874 * Make sure this MTD device is not emulated on top of an UBI volume
875 * already. Well, generally this recursion works fine, but there are
876 * different problems like the UBI module takes a reference to itself
877 * by attaching (and thus, opening) the emulated MTD device. This
878 * results in inability to unload the module. And in general it makes
879 * no sense to attach emulated MTD devices, so we prohibit this.
880 */
881 if (mtd->type == MTD_UBIVOLUME) {
882 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
883 mtd->index);
884 return -EINVAL;
885 }
886
887 /*
888 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
889 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
890 * will die soon and you will lose all your data.
891 * Relax this rule if the partition we're attaching to operates in SLC
892 * mode.
893 */
894 if (mtd->type == MTD_MLCNANDFLASH &&
895 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) {
896 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
897 mtd->index);
898 return -EINVAL;
899 }
900
901 /* UBI cannot work on flashes with zero erasesize. */
902 if (!mtd->erasesize) {
903 pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n",
904 mtd->index);
905 return -EINVAL;
906 }
907
908 if (ubi_num == UBI_DEV_NUM_AUTO) {
909 /* Search for an empty slot in the @ubi_devices array */
910 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
911 if (!ubi_devices[ubi_num])
912 break;
913 if (ubi_num == UBI_MAX_DEVICES) {
914 pr_err("ubi: only %d UBI devices may be created\n",
915 UBI_MAX_DEVICES);
916 return -ENFILE;
917 }
918 } else {
919 if (ubi_num >= UBI_MAX_DEVICES)
920 return -EINVAL;
921
922 /* Make sure ubi_num is not busy */
923 if (ubi_devices[ubi_num]) {
924 pr_err("ubi: ubi%i already exists\n", ubi_num);
925 return -EEXIST;
926 }
927 }
928
929 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
930 if (!ubi)
931 return -ENOMEM;
932
933 device_initialize(&ubi->dev);
934 ubi->dev.release = dev_release;
935 ubi->dev.class = &ubi_class;
936 ubi->dev.groups = ubi_dev_groups;
937 ubi->dev.parent = &mtd->dev;
938
939 ubi->mtd = mtd;
940 ubi->ubi_num = ubi_num;
941 ubi->vid_hdr_offset = vid_hdr_offset;
942 ubi->autoresize_vol_id = -1;
943
944#ifdef CONFIG_MTD_UBI_FASTMAP
945 ubi->fm_pool.used = ubi->fm_pool.size = 0;
946 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
947
948 /*
949 * fm_pool.max_size is 5% of the total number of PEBs but it's also
950 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
951 */
952 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
953 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
954 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
955 UBI_FM_MIN_POOL_SIZE);
956
957 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
958 ubi->fm_pool_rsv_cnt = need_resv_pool ? ubi->fm_pool.max_size : 0;
959 ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0;
960 if (fm_debug)
961 ubi_enable_dbg_chk_fastmap(ubi);
962
963 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
964 <= UBI_FM_MAX_START) {
965 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
966 UBI_FM_MAX_START);
967 ubi->fm_disabled = 1;
968 }
969
970 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
971 ubi_msg(ubi, "default fastmap WL pool size: %d",
972 ubi->fm_wl_pool.max_size);
973#else
974 ubi->fm_disabled = 1;
975#endif
976 mutex_init(&ubi->buf_mutex);
977 mutex_init(&ubi->ckvol_mutex);
978 mutex_init(&ubi->device_mutex);
979 spin_lock_init(&ubi->volumes_lock);
980 init_rwsem(&ubi->fm_protect);
981 init_rwsem(&ubi->fm_eba_sem);
982
983 ubi_msg(ubi, "attaching mtd%d", mtd->index);
984
985 err = io_init(ubi, max_beb_per1024);
986 if (err)
987 goto out_free;
988
989 err = -ENOMEM;
990 ubi->peb_buf = vmalloc(ubi->peb_size);
991 if (!ubi->peb_buf)
992 goto out_free;
993
994#ifdef CONFIG_MTD_UBI_FASTMAP
995 ubi->fm_size = ubi_calc_fm_size(ubi);
996 ubi->fm_buf = vzalloc(ubi->fm_size);
997 if (!ubi->fm_buf)
998 goto out_free;
999#endif
1000 err = ubi_attach(ubi, disable_fm ? 1 : 0);
1001 if (err) {
1002 ubi_err(ubi, "failed to attach mtd%d, error %d",
1003 mtd->index, err);
1004 goto out_free;
1005 }
1006
1007 if (ubi->autoresize_vol_id != -1) {
1008 err = autoresize(ubi, ubi->autoresize_vol_id);
1009 if (err)
1010 goto out_detach;
1011 }
1012
1013 err = uif_init(ubi);
1014 if (err)
1015 goto out_detach;
1016
1017 err = ubi_debugfs_init_dev(ubi);
1018 if (err)
1019 goto out_uif;
1020
1021 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1022 if (IS_ERR(ubi->bgt_thread)) {
1023 err = PTR_ERR(ubi->bgt_thread);
1024 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1025 ubi->bgt_name, err);
1026 goto out_debugfs;
1027 }
1028
1029 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1030 mtd->index, mtd->name, ubi->flash_size >> 20);
1031 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1032 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1033 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1034 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1035 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1036 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1037 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1038 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1039 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1040 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1041 ubi->vtbl_slots);
1042 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1043 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1044 ubi->image_seq);
1045 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1046 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1047
1048 /*
1049 * The below lock makes sure we do not race with 'ubi_thread()' which
1050 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1051 */
1052 spin_lock(&ubi->wl_lock);
1053 ubi->thread_enabled = 1;
1054 wake_up_process(ubi->bgt_thread);
1055 spin_unlock(&ubi->wl_lock);
1056
1057 ubi_devices[ubi_num] = ubi;
1058 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1059 return ubi_num;
1060
1061out_debugfs:
1062 ubi_debugfs_exit_dev(ubi);
1063out_uif:
1064 uif_close(ubi);
1065out_detach:
1066 ubi_wl_close(ubi);
1067 ubi_free_all_volumes(ubi);
1068 vfree(ubi->vtbl);
1069out_free:
1070 vfree(ubi->peb_buf);
1071 vfree(ubi->fm_buf);
1072 put_device(&ubi->dev);
1073 return err;
1074}
1075
1076/**
1077 * ubi_detach_mtd_dev - detach an MTD device.
1078 * @ubi_num: UBI device number to detach from
1079 * @anyway: detach MTD even if device reference count is not zero
1080 *
1081 * This function destroys an UBI device number @ubi_num and detaches the
1082 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1083 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1084 * exist.
1085 *
1086 * Note, the invocations of this function has to be serialized by the
1087 * @ubi_devices_mutex.
1088 */
1089int ubi_detach_mtd_dev(int ubi_num, int anyway)
1090{
1091 struct ubi_device *ubi;
1092
1093 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1094 return -EINVAL;
1095
1096 ubi = ubi_get_device(ubi_num);
1097 if (!ubi)
1098 return -EINVAL;
1099
1100 spin_lock(&ubi_devices_lock);
1101 put_device(&ubi->dev);
1102 ubi->ref_count -= 1;
1103 if (ubi->ref_count) {
1104 if (!anyway) {
1105 spin_unlock(&ubi_devices_lock);
1106 return -EBUSY;
1107 }
1108 /* This may only happen if there is a bug */
1109 ubi_err(ubi, "%s reference count %d, destroy anyway",
1110 ubi->ubi_name, ubi->ref_count);
1111 }
1112 ubi_devices[ubi_num] = NULL;
1113 spin_unlock(&ubi_devices_lock);
1114
1115 ubi_assert(ubi_num == ubi->ubi_num);
1116 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1117 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1118#ifdef CONFIG_MTD_UBI_FASTMAP
1119 /* If we don't write a new fastmap at detach time we lose all
1120 * EC updates that have been made since the last written fastmap.
1121 * In case of fastmap debugging we omit the update to simulate an
1122 * unclean shutdown. */
1123 if (!ubi_dbg_chk_fastmap(ubi))
1124 ubi_update_fastmap(ubi);
1125#endif
1126 /*
1127 * Before freeing anything, we have to stop the background thread to
1128 * prevent it from doing anything on this device while we are freeing.
1129 */
1130 if (ubi->bgt_thread)
1131 kthread_stop(ubi->bgt_thread);
1132
1133#ifdef CONFIG_MTD_UBI_FASTMAP
1134 cancel_work_sync(&ubi->fm_work);
1135#endif
1136 ubi_debugfs_exit_dev(ubi);
1137 uif_close(ubi);
1138
1139 ubi_wl_close(ubi);
1140 ubi_free_internal_volumes(ubi);
1141 vfree(ubi->vtbl);
1142 vfree(ubi->peb_buf);
1143 vfree(ubi->fm_buf);
1144 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1145 put_mtd_device(ubi->mtd);
1146 put_device(&ubi->dev);
1147 return 0;
1148}
1149
1150/**
1151 * open_mtd_by_chdev - open an MTD device by its character device node path.
1152 * @mtd_dev: MTD character device node path
1153 *
1154 * This helper function opens an MTD device by its character node device path.
1155 * Returns MTD device description object in case of success and a negative
1156 * error code in case of failure.
1157 */
1158static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1159{
1160 int err, minor;
1161 struct path path;
1162 struct kstat stat;
1163
1164 /* Probably this is an MTD character device node path */
1165 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1166 if (err)
1167 return ERR_PTR(err);
1168
1169 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1170 path_put(&path);
1171 if (err)
1172 return ERR_PTR(err);
1173
1174 /* MTD device number is defined by the major / minor numbers */
1175 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1176 return ERR_PTR(-EINVAL);
1177
1178 minor = MINOR(stat.rdev);
1179
1180 if (minor & 1)
1181 /*
1182 * Just do not think the "/dev/mtdrX" devices support is need,
1183 * so do not support them to avoid doing extra work.
1184 */
1185 return ERR_PTR(-EINVAL);
1186
1187 return get_mtd_device(NULL, minor / 2);
1188}
1189
1190/**
1191 * open_mtd_device - open MTD device by name, character device path, or number.
1192 * @mtd_dev: name, character device node path, or MTD device device number
1193 *
1194 * This function tries to open and MTD device described by @mtd_dev string,
1195 * which is first treated as ASCII MTD device number, and if it is not true, it
1196 * is treated as MTD device name, and if that is also not true, it is treated
1197 * as MTD character device node path. Returns MTD device description object in
1198 * case of success and a negative error code in case of failure.
1199 */
1200static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1201{
1202 struct mtd_info *mtd;
1203 int mtd_num;
1204 char *endp;
1205
1206 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1207 if (*endp != '\0' || mtd_dev == endp) {
1208 /*
1209 * This does not look like an ASCII integer, probably this is
1210 * MTD device name.
1211 */
1212 mtd = get_mtd_device_nm(mtd_dev);
1213 if (PTR_ERR(mtd) == -ENODEV)
1214 /* Probably this is an MTD character device node path */
1215 mtd = open_mtd_by_chdev(mtd_dev);
1216 } else
1217 mtd = get_mtd_device(NULL, mtd_num);
1218
1219 return mtd;
1220}
1221
1222static int __init ubi_init(void)
1223{
1224 int err, i, k;
1225
1226 /* Ensure that EC and VID headers have correct size */
1227 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1228 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1229
1230 if (mtd_devs > UBI_MAX_DEVICES) {
1231 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1232 UBI_MAX_DEVICES);
1233 return -EINVAL;
1234 }
1235
1236 /* Create base sysfs directory and sysfs files */
1237 err = class_register(&ubi_class);
1238 if (err < 0)
1239 return err;
1240
1241 err = misc_register(&ubi_ctrl_cdev);
1242 if (err) {
1243 pr_err("UBI error: cannot register device\n");
1244 goto out;
1245 }
1246
1247 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1248 sizeof(struct ubi_wl_entry),
1249 0, 0, NULL);
1250 if (!ubi_wl_entry_slab) {
1251 err = -ENOMEM;
1252 goto out_dev_unreg;
1253 }
1254
1255 err = ubi_debugfs_init();
1256 if (err)
1257 goto out_slab;
1258
1259
1260 /* Attach MTD devices */
1261 for (i = 0; i < mtd_devs; i++) {
1262 struct mtd_dev_param *p = &mtd_dev_param[i];
1263 struct mtd_info *mtd;
1264
1265 cond_resched();
1266
1267 mtd = open_mtd_device(p->name);
1268 if (IS_ERR(mtd)) {
1269 err = PTR_ERR(mtd);
1270 pr_err("UBI error: cannot open mtd %s, error %d\n",
1271 p->name, err);
1272 /* See comment below re-ubi_is_module(). */
1273 if (ubi_is_module())
1274 goto out_detach;
1275 continue;
1276 }
1277
1278 mutex_lock(&ubi_devices_mutex);
1279 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1280 p->vid_hdr_offs, p->max_beb_per1024,
1281 p->enable_fm == 0,
1282 p->need_resv_pool != 0);
1283 mutex_unlock(&ubi_devices_mutex);
1284 if (err < 0) {
1285 pr_err("UBI error: cannot attach mtd%d\n",
1286 mtd->index);
1287 put_mtd_device(mtd);
1288
1289 /*
1290 * Originally UBI stopped initializing on any error.
1291 * However, later on it was found out that this
1292 * behavior is not very good when UBI is compiled into
1293 * the kernel and the MTD devices to attach are passed
1294 * through the command line. Indeed, UBI failure
1295 * stopped whole boot sequence.
1296 *
1297 * To fix this, we changed the behavior for the
1298 * non-module case, but preserved the old behavior for
1299 * the module case, just for compatibility. This is a
1300 * little inconsistent, though.
1301 */
1302 if (ubi_is_module())
1303 goto out_detach;
1304 }
1305 }
1306
1307 err = ubiblock_init();
1308 if (err) {
1309 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1310
1311 /* See comment above re-ubi_is_module(). */
1312 if (ubi_is_module())
1313 goto out_detach;
1314 }
1315
1316 return 0;
1317
1318out_detach:
1319 for (k = 0; k < i; k++)
1320 if (ubi_devices[k]) {
1321 mutex_lock(&ubi_devices_mutex);
1322 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1323 mutex_unlock(&ubi_devices_mutex);
1324 }
1325 ubi_debugfs_exit();
1326out_slab:
1327 kmem_cache_destroy(ubi_wl_entry_slab);
1328out_dev_unreg:
1329 misc_deregister(&ubi_ctrl_cdev);
1330out:
1331 class_unregister(&ubi_class);
1332 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1333 return err;
1334}
1335late_initcall(ubi_init);
1336
1337static void __exit ubi_exit(void)
1338{
1339 int i;
1340
1341 ubiblock_exit();
1342
1343 for (i = 0; i < UBI_MAX_DEVICES; i++)
1344 if (ubi_devices[i]) {
1345 mutex_lock(&ubi_devices_mutex);
1346 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1347 mutex_unlock(&ubi_devices_mutex);
1348 }
1349 ubi_debugfs_exit();
1350 kmem_cache_destroy(ubi_wl_entry_slab);
1351 misc_deregister(&ubi_ctrl_cdev);
1352 class_unregister(&ubi_class);
1353}
1354module_exit(ubi_exit);
1355
1356/**
1357 * bytes_str_to_int - convert a number of bytes string into an integer.
1358 * @str: the string to convert
1359 *
1360 * This function returns positive resulting integer in case of success and a
1361 * negative error code in case of failure.
1362 */
1363static int bytes_str_to_int(const char *str)
1364{
1365 char *endp;
1366 unsigned long result;
1367
1368 result = simple_strtoul(str, &endp, 0);
1369 if (str == endp || result >= INT_MAX) {
1370 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1371 return -EINVAL;
1372 }
1373
1374 switch (*endp) {
1375 case 'G':
1376 result *= 1024;
1377 fallthrough;
1378 case 'M':
1379 result *= 1024;
1380 fallthrough;
1381 case 'K':
1382 result *= 1024;
1383 break;
1384 case '\0':
1385 break;
1386 default:
1387 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1388 return -EINVAL;
1389 }
1390
1391 return result;
1392}
1393
1394/**
1395 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1396 * @val: the parameter value to parse
1397 * @kp: not used
1398 *
1399 * This function returns zero in case of success and a negative error code in
1400 * case of error.
1401 */
1402static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1403{
1404 int i, len;
1405 struct mtd_dev_param *p;
1406 char buf[MTD_PARAM_LEN_MAX];
1407 char *pbuf = &buf[0];
1408 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1409
1410 if (!val)
1411 return -EINVAL;
1412
1413 if (mtd_devs == UBI_MAX_DEVICES) {
1414 pr_err("UBI error: too many parameters, max. is %d\n",
1415 UBI_MAX_DEVICES);
1416 return -EINVAL;
1417 }
1418
1419 len = strnlen(val, MTD_PARAM_LEN_MAX);
1420 if (len == MTD_PARAM_LEN_MAX) {
1421 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1422 val, MTD_PARAM_LEN_MAX);
1423 return -EINVAL;
1424 }
1425
1426 if (len == 0) {
1427 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1428 return 0;
1429 }
1430
1431 strcpy(buf, val);
1432
1433 /* Get rid of the final newline */
1434 if (buf[len - 1] == '\n')
1435 buf[len - 1] = '\0';
1436
1437 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1438 tokens[i] = strsep(&pbuf, ",");
1439
1440 if (pbuf) {
1441 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1442 return -EINVAL;
1443 }
1444
1445 p = &mtd_dev_param[mtd_devs];
1446 strcpy(&p->name[0], tokens[0]);
1447
1448 token = tokens[1];
1449 if (token) {
1450 p->vid_hdr_offs = bytes_str_to_int(token);
1451
1452 if (p->vid_hdr_offs < 0)
1453 return p->vid_hdr_offs;
1454 }
1455
1456 token = tokens[2];
1457 if (token) {
1458 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1459
1460 if (err) {
1461 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n",
1462 token);
1463 return -EINVAL;
1464 }
1465 }
1466
1467 token = tokens[3];
1468 if (token) {
1469 int err = kstrtoint(token, 10, &p->ubi_num);
1470
1471 if (err) {
1472 pr_err("UBI error: bad value for ubi_num parameter: %s\n",
1473 token);
1474 return -EINVAL;
1475 }
1476 } else
1477 p->ubi_num = UBI_DEV_NUM_AUTO;
1478
1479 token = tokens[4];
1480 if (token) {
1481 int err = kstrtoint(token, 10, &p->enable_fm);
1482
1483 if (err) {
1484 pr_err("UBI error: bad value for enable_fm parameter: %s\n",
1485 token);
1486 return -EINVAL;
1487 }
1488 } else
1489 p->enable_fm = 0;
1490
1491 token = tokens[5];
1492 if (token) {
1493 int err = kstrtoint(token, 10, &p->need_resv_pool);
1494
1495 if (err) {
1496 pr_err("UBI error: bad value for need_resv_pool parameter: %s\n",
1497 token);
1498 return -EINVAL;
1499 }
1500 } else
1501 p->need_resv_pool = 0;
1502
1503 mtd_devs += 1;
1504 return 0;
1505}
1506
1507module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1508MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1509 "Multiple \"mtd\" parameters may be specified.\n"
1510 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1511 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1512 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1513 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1514 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1515 "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n"
1516 "Optional \"need_resv_pool\" parameter determines whether to reserve pool->max_size pebs during attach. If the value is non-zero, peb reservation is enabled. Default value is 0.\n"
1517 "\n"
1518 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1519 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1520 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1521 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1522 "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n"
1523 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1524#ifdef CONFIG_MTD_UBI_FASTMAP
1525module_param(fm_autoconvert, bool, 0644);
1526MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1527module_param(fm_debug, bool, 0);
1528MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1529#endif
1530MODULE_VERSION(__stringify(UBI_VERSION));
1531MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1532MODULE_AUTHOR("Artem Bityutskiy");
1533MODULE_LICENSE("GPL");
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23/*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32#include <linux/err.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/stringify.h>
36#include <linux/namei.h>
37#include <linux/stat.h>
38#include <linux/miscdevice.h>
39#include <linux/mtd/partitions.h>
40#include <linux/log2.h>
41#include <linux/kthread.h>
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/major.h>
45#include "ubi.h"
46
47/* Maximum length of the 'mtd=' parameter */
48#define MTD_PARAM_LEN_MAX 64
49
50/* Maximum number of comma-separated items in the 'mtd=' parameter */
51#define MTD_PARAM_MAX_COUNT 4
52
53/* Maximum value for the number of bad PEBs per 1024 PEBs */
54#define MAX_MTD_UBI_BEB_LIMIT 768
55
56#ifdef CONFIG_MTD_UBI_MODULE
57#define ubi_is_module() 1
58#else
59#define ubi_is_module() 0
60#endif
61
62/**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68 */
69struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
74};
75
76/* Numbers of elements set in the @mtd_dev_param array */
77static int __initdata mtd_devs;
78
79/* MTD devices specification parameters */
80static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81#ifdef CONFIG_MTD_UBI_FASTMAP
82/* UBI module parameter to enable fastmap automatically on non-fastmap images */
83static bool fm_autoconvert;
84static bool fm_debug;
85#endif
86
87/* Slab cache for wear-leveling entries */
88struct kmem_cache *ubi_wl_entry_slab;
89
90/* UBI control character device */
91static struct miscdevice ubi_ctrl_cdev = {
92 .minor = MISC_DYNAMIC_MINOR,
93 .name = "ubi_ctrl",
94 .fops = &ubi_ctrl_cdev_operations,
95};
96
97/* All UBI devices in system */
98static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
99
100/* Serializes UBI devices creations and removals */
101DEFINE_MUTEX(ubi_devices_mutex);
102
103/* Protects @ubi_devices and @ubi->ref_count */
104static DEFINE_SPINLOCK(ubi_devices_lock);
105
106/* "Show" method for files in '/<sysfs>/class/ubi/' */
107static ssize_t ubi_version_show(struct class *class,
108 struct class_attribute *attr, char *buf)
109{
110 return sprintf(buf, "%d\n", UBI_VERSION);
111}
112
113/* UBI version attribute ('/<sysfs>/class/ubi/version') */
114static struct class_attribute ubi_class_attrs[] = {
115 __ATTR(version, S_IRUGO, ubi_version_show, NULL),
116 __ATTR_NULL
117};
118
119/* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
120struct class ubi_class = {
121 .name = UBI_NAME_STR,
122 .owner = THIS_MODULE,
123 .class_attrs = ubi_class_attrs,
124};
125
126static ssize_t dev_attribute_show(struct device *dev,
127 struct device_attribute *attr, char *buf);
128
129/* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
130static struct device_attribute dev_eraseblock_size =
131 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
132static struct device_attribute dev_avail_eraseblocks =
133 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
134static struct device_attribute dev_total_eraseblocks =
135 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
136static struct device_attribute dev_volumes_count =
137 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
138static struct device_attribute dev_max_ec =
139 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
140static struct device_attribute dev_reserved_for_bad =
141 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
142static struct device_attribute dev_bad_peb_count =
143 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
144static struct device_attribute dev_max_vol_count =
145 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
146static struct device_attribute dev_min_io_size =
147 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
148static struct device_attribute dev_bgt_enabled =
149 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
150static struct device_attribute dev_mtd_num =
151 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
152static struct device_attribute dev_ro_mode =
153 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
154
155/**
156 * ubi_volume_notify - send a volume change notification.
157 * @ubi: UBI device description object
158 * @vol: volume description object of the changed volume
159 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
160 *
161 * This is a helper function which notifies all subscribers about a volume
162 * change event (creation, removal, re-sizing, re-naming, updating). Returns
163 * zero in case of success and a negative error code in case of failure.
164 */
165int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
166{
167 int ret;
168 struct ubi_notification nt;
169
170 ubi_do_get_device_info(ubi, &nt.di);
171 ubi_do_get_volume_info(ubi, vol, &nt.vi);
172
173 switch (ntype) {
174 case UBI_VOLUME_ADDED:
175 case UBI_VOLUME_REMOVED:
176 case UBI_VOLUME_RESIZED:
177 case UBI_VOLUME_RENAMED:
178 ret = ubi_update_fastmap(ubi);
179 if (ret)
180 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
181 }
182
183 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
184}
185
186/**
187 * ubi_notify_all - send a notification to all volumes.
188 * @ubi: UBI device description object
189 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
190 * @nb: the notifier to call
191 *
192 * This function walks all volumes of UBI device @ubi and sends the @ntype
193 * notification for each volume. If @nb is %NULL, then all registered notifiers
194 * are called, otherwise only the @nb notifier is called. Returns the number of
195 * sent notifications.
196 */
197int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
198{
199 struct ubi_notification nt;
200 int i, count = 0;
201
202 ubi_do_get_device_info(ubi, &nt.di);
203
204 mutex_lock(&ubi->device_mutex);
205 for (i = 0; i < ubi->vtbl_slots; i++) {
206 /*
207 * Since the @ubi->device is locked, and we are not going to
208 * change @ubi->volumes, we do not have to lock
209 * @ubi->volumes_lock.
210 */
211 if (!ubi->volumes[i])
212 continue;
213
214 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
215 if (nb)
216 nb->notifier_call(nb, ntype, &nt);
217 else
218 blocking_notifier_call_chain(&ubi_notifiers, ntype,
219 &nt);
220 count += 1;
221 }
222 mutex_unlock(&ubi->device_mutex);
223
224 return count;
225}
226
227/**
228 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
229 * @nb: the notifier to call
230 *
231 * This function walks all UBI devices and volumes and sends the
232 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
233 * registered notifiers are called, otherwise only the @nb notifier is called.
234 * Returns the number of sent notifications.
235 */
236int ubi_enumerate_volumes(struct notifier_block *nb)
237{
238 int i, count = 0;
239
240 /*
241 * Since the @ubi_devices_mutex is locked, and we are not going to
242 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
243 */
244 for (i = 0; i < UBI_MAX_DEVICES; i++) {
245 struct ubi_device *ubi = ubi_devices[i];
246
247 if (!ubi)
248 continue;
249 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
250 }
251
252 return count;
253}
254
255/**
256 * ubi_get_device - get UBI device.
257 * @ubi_num: UBI device number
258 *
259 * This function returns UBI device description object for UBI device number
260 * @ubi_num, or %NULL if the device does not exist. This function increases the
261 * device reference count to prevent removal of the device. In other words, the
262 * device cannot be removed if its reference count is not zero.
263 */
264struct ubi_device *ubi_get_device(int ubi_num)
265{
266 struct ubi_device *ubi;
267
268 spin_lock(&ubi_devices_lock);
269 ubi = ubi_devices[ubi_num];
270 if (ubi) {
271 ubi_assert(ubi->ref_count >= 0);
272 ubi->ref_count += 1;
273 get_device(&ubi->dev);
274 }
275 spin_unlock(&ubi_devices_lock);
276
277 return ubi;
278}
279
280/**
281 * ubi_put_device - drop an UBI device reference.
282 * @ubi: UBI device description object
283 */
284void ubi_put_device(struct ubi_device *ubi)
285{
286 spin_lock(&ubi_devices_lock);
287 ubi->ref_count -= 1;
288 put_device(&ubi->dev);
289 spin_unlock(&ubi_devices_lock);
290}
291
292/**
293 * ubi_get_by_major - get UBI device by character device major number.
294 * @major: major number
295 *
296 * This function is similar to 'ubi_get_device()', but it searches the device
297 * by its major number.
298 */
299struct ubi_device *ubi_get_by_major(int major)
300{
301 int i;
302 struct ubi_device *ubi;
303
304 spin_lock(&ubi_devices_lock);
305 for (i = 0; i < UBI_MAX_DEVICES; i++) {
306 ubi = ubi_devices[i];
307 if (ubi && MAJOR(ubi->cdev.dev) == major) {
308 ubi_assert(ubi->ref_count >= 0);
309 ubi->ref_count += 1;
310 get_device(&ubi->dev);
311 spin_unlock(&ubi_devices_lock);
312 return ubi;
313 }
314 }
315 spin_unlock(&ubi_devices_lock);
316
317 return NULL;
318}
319
320/**
321 * ubi_major2num - get UBI device number by character device major number.
322 * @major: major number
323 *
324 * This function searches UBI device number object by its major number. If UBI
325 * device was not found, this function returns -ENODEV, otherwise the UBI device
326 * number is returned.
327 */
328int ubi_major2num(int major)
329{
330 int i, ubi_num = -ENODEV;
331
332 spin_lock(&ubi_devices_lock);
333 for (i = 0; i < UBI_MAX_DEVICES; i++) {
334 struct ubi_device *ubi = ubi_devices[i];
335
336 if (ubi && MAJOR(ubi->cdev.dev) == major) {
337 ubi_num = ubi->ubi_num;
338 break;
339 }
340 }
341 spin_unlock(&ubi_devices_lock);
342
343 return ubi_num;
344}
345
346/* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
347static ssize_t dev_attribute_show(struct device *dev,
348 struct device_attribute *attr, char *buf)
349{
350 ssize_t ret;
351 struct ubi_device *ubi;
352
353 /*
354 * The below code looks weird, but it actually makes sense. We get the
355 * UBI device reference from the contained 'struct ubi_device'. But it
356 * is unclear if the device was removed or not yet. Indeed, if the
357 * device was removed before we increased its reference count,
358 * 'ubi_get_device()' will return -ENODEV and we fail.
359 *
360 * Remember, 'struct ubi_device' is freed in the release function, so
361 * we still can use 'ubi->ubi_num'.
362 */
363 ubi = container_of(dev, struct ubi_device, dev);
364 ubi = ubi_get_device(ubi->ubi_num);
365 if (!ubi)
366 return -ENODEV;
367
368 if (attr == &dev_eraseblock_size)
369 ret = sprintf(buf, "%d\n", ubi->leb_size);
370 else if (attr == &dev_avail_eraseblocks)
371 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
372 else if (attr == &dev_total_eraseblocks)
373 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
374 else if (attr == &dev_volumes_count)
375 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
376 else if (attr == &dev_max_ec)
377 ret = sprintf(buf, "%d\n", ubi->max_ec);
378 else if (attr == &dev_reserved_for_bad)
379 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
380 else if (attr == &dev_bad_peb_count)
381 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
382 else if (attr == &dev_max_vol_count)
383 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
384 else if (attr == &dev_min_io_size)
385 ret = sprintf(buf, "%d\n", ubi->min_io_size);
386 else if (attr == &dev_bgt_enabled)
387 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
388 else if (attr == &dev_mtd_num)
389 ret = sprintf(buf, "%d\n", ubi->mtd->index);
390 else if (attr == &dev_ro_mode)
391 ret = sprintf(buf, "%d\n", ubi->ro_mode);
392 else
393 ret = -EINVAL;
394
395 ubi_put_device(ubi);
396 return ret;
397}
398
399static struct attribute *ubi_dev_attrs[] = {
400 &dev_eraseblock_size.attr,
401 &dev_avail_eraseblocks.attr,
402 &dev_total_eraseblocks.attr,
403 &dev_volumes_count.attr,
404 &dev_max_ec.attr,
405 &dev_reserved_for_bad.attr,
406 &dev_bad_peb_count.attr,
407 &dev_max_vol_count.attr,
408 &dev_min_io_size.attr,
409 &dev_bgt_enabled.attr,
410 &dev_mtd_num.attr,
411 &dev_ro_mode.attr,
412 NULL
413};
414ATTRIBUTE_GROUPS(ubi_dev);
415
416static void dev_release(struct device *dev)
417{
418 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
419
420 kfree(ubi);
421}
422
423/**
424 * ubi_sysfs_init - initialize sysfs for an UBI device.
425 * @ubi: UBI device description object
426 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
427 * taken
428 *
429 * This function returns zero in case of success and a negative error code in
430 * case of failure.
431 */
432static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
433{
434 int err;
435
436 ubi->dev.release = dev_release;
437 ubi->dev.devt = ubi->cdev.dev;
438 ubi->dev.class = &ubi_class;
439 ubi->dev.groups = ubi_dev_groups;
440 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
441 err = device_register(&ubi->dev);
442 if (err)
443 return err;
444
445 *ref = 1;
446 return 0;
447}
448
449/**
450 * ubi_sysfs_close - close sysfs for an UBI device.
451 * @ubi: UBI device description object
452 */
453static void ubi_sysfs_close(struct ubi_device *ubi)
454{
455 device_unregister(&ubi->dev);
456}
457
458/**
459 * kill_volumes - destroy all user volumes.
460 * @ubi: UBI device description object
461 */
462static void kill_volumes(struct ubi_device *ubi)
463{
464 int i;
465
466 for (i = 0; i < ubi->vtbl_slots; i++)
467 if (ubi->volumes[i])
468 ubi_free_volume(ubi, ubi->volumes[i]);
469}
470
471/**
472 * uif_init - initialize user interfaces for an UBI device.
473 * @ubi: UBI device description object
474 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
475 * taken, otherwise set to %0
476 *
477 * This function initializes various user interfaces for an UBI device. If the
478 * initialization fails at an early stage, this function frees all the
479 * resources it allocated, returns an error, and @ref is set to %0. However,
480 * if the initialization fails after the UBI device was registered in the
481 * driver core subsystem, this function takes a reference to @ubi->dev, because
482 * otherwise the release function ('dev_release()') would free whole @ubi
483 * object. The @ref argument is set to %1 in this case. The caller has to put
484 * this reference.
485 *
486 * This function returns zero in case of success and a negative error code in
487 * case of failure.
488 */
489static int uif_init(struct ubi_device *ubi, int *ref)
490{
491 int i, err;
492 dev_t dev;
493
494 *ref = 0;
495 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
496
497 /*
498 * Major numbers for the UBI character devices are allocated
499 * dynamically. Major numbers of volume character devices are
500 * equivalent to ones of the corresponding UBI character device. Minor
501 * numbers of UBI character devices are 0, while minor numbers of
502 * volume character devices start from 1. Thus, we allocate one major
503 * number and ubi->vtbl_slots + 1 minor numbers.
504 */
505 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
506 if (err) {
507 ubi_err(ubi, "cannot register UBI character devices");
508 return err;
509 }
510
511 ubi_assert(MINOR(dev) == 0);
512 cdev_init(&ubi->cdev, &ubi_cdev_operations);
513 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
514 ubi->cdev.owner = THIS_MODULE;
515
516 err = cdev_add(&ubi->cdev, dev, 1);
517 if (err) {
518 ubi_err(ubi, "cannot add character device");
519 goto out_unreg;
520 }
521
522 err = ubi_sysfs_init(ubi, ref);
523 if (err)
524 goto out_sysfs;
525
526 for (i = 0; i < ubi->vtbl_slots; i++)
527 if (ubi->volumes[i]) {
528 err = ubi_add_volume(ubi, ubi->volumes[i]);
529 if (err) {
530 ubi_err(ubi, "cannot add volume %d", i);
531 goto out_volumes;
532 }
533 }
534
535 return 0;
536
537out_volumes:
538 kill_volumes(ubi);
539out_sysfs:
540 if (*ref)
541 get_device(&ubi->dev);
542 ubi_sysfs_close(ubi);
543 cdev_del(&ubi->cdev);
544out_unreg:
545 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
546 ubi_err(ubi, "cannot initialize UBI %s, error %d",
547 ubi->ubi_name, err);
548 return err;
549}
550
551/**
552 * uif_close - close user interfaces for an UBI device.
553 * @ubi: UBI device description object
554 *
555 * Note, since this function un-registers UBI volume device objects (@vol->dev),
556 * the memory allocated voe the volumes is freed as well (in the release
557 * function).
558 */
559static void uif_close(struct ubi_device *ubi)
560{
561 kill_volumes(ubi);
562 ubi_sysfs_close(ubi);
563 cdev_del(&ubi->cdev);
564 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
565}
566
567/**
568 * ubi_free_internal_volumes - free internal volumes.
569 * @ubi: UBI device description object
570 */
571void ubi_free_internal_volumes(struct ubi_device *ubi)
572{
573 int i;
574
575 for (i = ubi->vtbl_slots;
576 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
577 ubi_eba_replace_table(ubi->volumes[i], NULL);
578 kfree(ubi->volumes[i]);
579 }
580}
581
582static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
583{
584 int limit, device_pebs;
585 uint64_t device_size;
586
587 if (!max_beb_per1024)
588 return 0;
589
590 /*
591 * Here we are using size of the entire flash chip and
592 * not just the MTD partition size because the maximum
593 * number of bad eraseblocks is a percentage of the
594 * whole device and bad eraseblocks are not fairly
595 * distributed over the flash chip. So the worst case
596 * is that all the bad eraseblocks of the chip are in
597 * the MTD partition we are attaching (ubi->mtd).
598 */
599 device_size = mtd_get_device_size(ubi->mtd);
600 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
601 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
602
603 /* Round it up */
604 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
605 limit += 1;
606
607 return limit;
608}
609
610/**
611 * io_init - initialize I/O sub-system for a given UBI device.
612 * @ubi: UBI device description object
613 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
614 *
615 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
616 * assumed:
617 * o EC header is always at offset zero - this cannot be changed;
618 * o VID header starts just after the EC header at the closest address
619 * aligned to @io->hdrs_min_io_size;
620 * o data starts just after the VID header at the closest address aligned to
621 * @io->min_io_size
622 *
623 * This function returns zero in case of success and a negative error code in
624 * case of failure.
625 */
626static int io_init(struct ubi_device *ubi, int max_beb_per1024)
627{
628 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
629 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
630
631 if (ubi->mtd->numeraseregions != 0) {
632 /*
633 * Some flashes have several erase regions. Different regions
634 * may have different eraseblock size and other
635 * characteristics. It looks like mostly multi-region flashes
636 * have one "main" region and one or more small regions to
637 * store boot loader code or boot parameters or whatever. I
638 * guess we should just pick the largest region. But this is
639 * not implemented.
640 */
641 ubi_err(ubi, "multiple regions, not implemented");
642 return -EINVAL;
643 }
644
645 if (ubi->vid_hdr_offset < 0)
646 return -EINVAL;
647
648 /*
649 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
650 * physical eraseblocks maximum.
651 */
652
653 ubi->peb_size = ubi->mtd->erasesize;
654 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
655 ubi->flash_size = ubi->mtd->size;
656
657 if (mtd_can_have_bb(ubi->mtd)) {
658 ubi->bad_allowed = 1;
659 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
660 }
661
662 if (ubi->mtd->type == MTD_NORFLASH) {
663 ubi_assert(ubi->mtd->writesize == 1);
664 ubi->nor_flash = 1;
665 }
666
667 ubi->min_io_size = ubi->mtd->writesize;
668 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
669
670 /*
671 * Make sure minimal I/O unit is power of 2. Note, there is no
672 * fundamental reason for this assumption. It is just an optimization
673 * which allows us to avoid costly division operations.
674 */
675 if (!is_power_of_2(ubi->min_io_size)) {
676 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
677 ubi->min_io_size);
678 return -EINVAL;
679 }
680
681 ubi_assert(ubi->hdrs_min_io_size > 0);
682 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
683 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
684
685 ubi->max_write_size = ubi->mtd->writebufsize;
686 /*
687 * Maximum write size has to be greater or equivalent to min. I/O
688 * size, and be multiple of min. I/O size.
689 */
690 if (ubi->max_write_size < ubi->min_io_size ||
691 ubi->max_write_size % ubi->min_io_size ||
692 !is_power_of_2(ubi->max_write_size)) {
693 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
694 ubi->max_write_size, ubi->min_io_size);
695 return -EINVAL;
696 }
697
698 /* Calculate default aligned sizes of EC and VID headers */
699 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
700 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
701
702 dbg_gen("min_io_size %d", ubi->min_io_size);
703 dbg_gen("max_write_size %d", ubi->max_write_size);
704 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
705 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
706 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
707
708 if (ubi->vid_hdr_offset == 0)
709 /* Default offset */
710 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
711 ubi->ec_hdr_alsize;
712 else {
713 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
714 ~(ubi->hdrs_min_io_size - 1);
715 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
716 ubi->vid_hdr_aloffset;
717 }
718
719 /* Similar for the data offset */
720 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
721 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
722
723 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
724 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
725 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
726 dbg_gen("leb_start %d", ubi->leb_start);
727
728 /* The shift must be aligned to 32-bit boundary */
729 if (ubi->vid_hdr_shift % 4) {
730 ubi_err(ubi, "unaligned VID header shift %d",
731 ubi->vid_hdr_shift);
732 return -EINVAL;
733 }
734
735 /* Check sanity */
736 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
737 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
738 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
739 ubi->leb_start & (ubi->min_io_size - 1)) {
740 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
741 ubi->vid_hdr_offset, ubi->leb_start);
742 return -EINVAL;
743 }
744
745 /*
746 * Set maximum amount of physical erroneous eraseblocks to be 10%.
747 * Erroneous PEB are those which have read errors.
748 */
749 ubi->max_erroneous = ubi->peb_count / 10;
750 if (ubi->max_erroneous < 16)
751 ubi->max_erroneous = 16;
752 dbg_gen("max_erroneous %d", ubi->max_erroneous);
753
754 /*
755 * It may happen that EC and VID headers are situated in one minimal
756 * I/O unit. In this case we can only accept this UBI image in
757 * read-only mode.
758 */
759 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
760 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
761 ubi->ro_mode = 1;
762 }
763
764 ubi->leb_size = ubi->peb_size - ubi->leb_start;
765
766 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
767 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
768 ubi->mtd->index);
769 ubi->ro_mode = 1;
770 }
771
772 /*
773 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
774 * unfortunately, MTD does not provide this information. We should loop
775 * over all physical eraseblocks and invoke mtd->block_is_bad() for
776 * each physical eraseblock. So, we leave @ubi->bad_peb_count
777 * uninitialized so far.
778 */
779
780 return 0;
781}
782
783/**
784 * autoresize - re-size the volume which has the "auto-resize" flag set.
785 * @ubi: UBI device description object
786 * @vol_id: ID of the volume to re-size
787 *
788 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
789 * the volume table to the largest possible size. See comments in ubi-header.h
790 * for more description of the flag. Returns zero in case of success and a
791 * negative error code in case of failure.
792 */
793static int autoresize(struct ubi_device *ubi, int vol_id)
794{
795 struct ubi_volume_desc desc;
796 struct ubi_volume *vol = ubi->volumes[vol_id];
797 int err, old_reserved_pebs = vol->reserved_pebs;
798
799 if (ubi->ro_mode) {
800 ubi_warn(ubi, "skip auto-resize because of R/O mode");
801 return 0;
802 }
803
804 /*
805 * Clear the auto-resize flag in the volume in-memory copy of the
806 * volume table, and 'ubi_resize_volume()' will propagate this change
807 * to the flash.
808 */
809 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
810
811 if (ubi->avail_pebs == 0) {
812 struct ubi_vtbl_record vtbl_rec;
813
814 /*
815 * No available PEBs to re-size the volume, clear the flag on
816 * flash and exit.
817 */
818 vtbl_rec = ubi->vtbl[vol_id];
819 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
820 if (err)
821 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
822 vol_id);
823 } else {
824 desc.vol = vol;
825 err = ubi_resize_volume(&desc,
826 old_reserved_pebs + ubi->avail_pebs);
827 if (err)
828 ubi_err(ubi, "cannot auto-resize volume %d",
829 vol_id);
830 }
831
832 if (err)
833 return err;
834
835 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
836 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
837 return 0;
838}
839
840/**
841 * ubi_attach_mtd_dev - attach an MTD device.
842 * @mtd: MTD device description object
843 * @ubi_num: number to assign to the new UBI device
844 * @vid_hdr_offset: VID header offset
845 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
846 *
847 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
848 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
849 * which case this function finds a vacant device number and assigns it
850 * automatically. Returns the new UBI device number in case of success and a
851 * negative error code in case of failure.
852 *
853 * Note, the invocations of this function has to be serialized by the
854 * @ubi_devices_mutex.
855 */
856int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
857 int vid_hdr_offset, int max_beb_per1024)
858{
859 struct ubi_device *ubi;
860 int i, err, ref = 0;
861
862 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
863 return -EINVAL;
864
865 if (!max_beb_per1024)
866 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
867
868 /*
869 * Check if we already have the same MTD device attached.
870 *
871 * Note, this function assumes that UBI devices creations and deletions
872 * are serialized, so it does not take the &ubi_devices_lock.
873 */
874 for (i = 0; i < UBI_MAX_DEVICES; i++) {
875 ubi = ubi_devices[i];
876 if (ubi && mtd->index == ubi->mtd->index) {
877 pr_err("ubi: mtd%d is already attached to ubi%d",
878 mtd->index, i);
879 return -EEXIST;
880 }
881 }
882
883 /*
884 * Make sure this MTD device is not emulated on top of an UBI volume
885 * already. Well, generally this recursion works fine, but there are
886 * different problems like the UBI module takes a reference to itself
887 * by attaching (and thus, opening) the emulated MTD device. This
888 * results in inability to unload the module. And in general it makes
889 * no sense to attach emulated MTD devices, so we prohibit this.
890 */
891 if (mtd->type == MTD_UBIVOLUME) {
892 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI",
893 mtd->index);
894 return -EINVAL;
895 }
896
897 if (ubi_num == UBI_DEV_NUM_AUTO) {
898 /* Search for an empty slot in the @ubi_devices array */
899 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
900 if (!ubi_devices[ubi_num])
901 break;
902 if (ubi_num == UBI_MAX_DEVICES) {
903 pr_err("ubi: only %d UBI devices may be created",
904 UBI_MAX_DEVICES);
905 return -ENFILE;
906 }
907 } else {
908 if (ubi_num >= UBI_MAX_DEVICES)
909 return -EINVAL;
910
911 /* Make sure ubi_num is not busy */
912 if (ubi_devices[ubi_num]) {
913 pr_err("ubi: ubi%i already exists", ubi_num);
914 return -EEXIST;
915 }
916 }
917
918 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
919 if (!ubi)
920 return -ENOMEM;
921
922 ubi->mtd = mtd;
923 ubi->ubi_num = ubi_num;
924 ubi->vid_hdr_offset = vid_hdr_offset;
925 ubi->autoresize_vol_id = -1;
926
927#ifdef CONFIG_MTD_UBI_FASTMAP
928 ubi->fm_pool.used = ubi->fm_pool.size = 0;
929 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
930
931 /*
932 * fm_pool.max_size is 5% of the total number of PEBs but it's also
933 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
934 */
935 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
936 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
937 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
938 UBI_FM_MIN_POOL_SIZE);
939
940 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
941 ubi->fm_disabled = !fm_autoconvert;
942 if (fm_debug)
943 ubi_enable_dbg_chk_fastmap(ubi);
944
945 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
946 <= UBI_FM_MAX_START) {
947 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
948 UBI_FM_MAX_START);
949 ubi->fm_disabled = 1;
950 }
951
952 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
953 ubi_msg(ubi, "default fastmap WL pool size: %d",
954 ubi->fm_wl_pool.max_size);
955#else
956 ubi->fm_disabled = 1;
957#endif
958 mutex_init(&ubi->buf_mutex);
959 mutex_init(&ubi->ckvol_mutex);
960 mutex_init(&ubi->device_mutex);
961 spin_lock_init(&ubi->volumes_lock);
962 init_rwsem(&ubi->fm_protect);
963 init_rwsem(&ubi->fm_eba_sem);
964
965 ubi_msg(ubi, "attaching mtd%d", mtd->index);
966
967 err = io_init(ubi, max_beb_per1024);
968 if (err)
969 goto out_free;
970
971 err = -ENOMEM;
972 ubi->peb_buf = vmalloc(ubi->peb_size);
973 if (!ubi->peb_buf)
974 goto out_free;
975
976#ifdef CONFIG_MTD_UBI_FASTMAP
977 ubi->fm_size = ubi_calc_fm_size(ubi);
978 ubi->fm_buf = vzalloc(ubi->fm_size);
979 if (!ubi->fm_buf)
980 goto out_free;
981#endif
982 err = ubi_attach(ubi, 0);
983 if (err) {
984 ubi_err(ubi, "failed to attach mtd%d, error %d",
985 mtd->index, err);
986 goto out_free;
987 }
988
989 if (ubi->autoresize_vol_id != -1) {
990 err = autoresize(ubi, ubi->autoresize_vol_id);
991 if (err)
992 goto out_detach;
993 }
994
995 /* Make device "available" before it becomes accessible via sysfs */
996 ubi_devices[ubi_num] = ubi;
997
998 err = uif_init(ubi, &ref);
999 if (err)
1000 goto out_detach;
1001
1002 err = ubi_debugfs_init_dev(ubi);
1003 if (err)
1004 goto out_uif;
1005
1006 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1007 if (IS_ERR(ubi->bgt_thread)) {
1008 err = PTR_ERR(ubi->bgt_thread);
1009 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1010 ubi->bgt_name, err);
1011 goto out_debugfs;
1012 }
1013
1014 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1015 mtd->index, mtd->name, ubi->flash_size >> 20);
1016 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1017 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1018 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1019 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1020 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1021 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1022 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1023 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1024 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1025 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1026 ubi->vtbl_slots);
1027 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1028 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1029 ubi->image_seq);
1030 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1031 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1032
1033 /*
1034 * The below lock makes sure we do not race with 'ubi_thread()' which
1035 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1036 */
1037 spin_lock(&ubi->wl_lock);
1038 ubi->thread_enabled = 1;
1039 wake_up_process(ubi->bgt_thread);
1040 spin_unlock(&ubi->wl_lock);
1041
1042 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1043 return ubi_num;
1044
1045out_debugfs:
1046 ubi_debugfs_exit_dev(ubi);
1047out_uif:
1048 get_device(&ubi->dev);
1049 ubi_assert(ref);
1050 uif_close(ubi);
1051out_detach:
1052 ubi_devices[ubi_num] = NULL;
1053 ubi_wl_close(ubi);
1054 ubi_free_internal_volumes(ubi);
1055 vfree(ubi->vtbl);
1056out_free:
1057 vfree(ubi->peb_buf);
1058 vfree(ubi->fm_buf);
1059 if (ref)
1060 put_device(&ubi->dev);
1061 else
1062 kfree(ubi);
1063 return err;
1064}
1065
1066/**
1067 * ubi_detach_mtd_dev - detach an MTD device.
1068 * @ubi_num: UBI device number to detach from
1069 * @anyway: detach MTD even if device reference count is not zero
1070 *
1071 * This function destroys an UBI device number @ubi_num and detaches the
1072 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1073 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1074 * exist.
1075 *
1076 * Note, the invocations of this function has to be serialized by the
1077 * @ubi_devices_mutex.
1078 */
1079int ubi_detach_mtd_dev(int ubi_num, int anyway)
1080{
1081 struct ubi_device *ubi;
1082
1083 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1084 return -EINVAL;
1085
1086 ubi = ubi_get_device(ubi_num);
1087 if (!ubi)
1088 return -EINVAL;
1089
1090 spin_lock(&ubi_devices_lock);
1091 put_device(&ubi->dev);
1092 ubi->ref_count -= 1;
1093 if (ubi->ref_count) {
1094 if (!anyway) {
1095 spin_unlock(&ubi_devices_lock);
1096 return -EBUSY;
1097 }
1098 /* This may only happen if there is a bug */
1099 ubi_err(ubi, "%s reference count %d, destroy anyway",
1100 ubi->ubi_name, ubi->ref_count);
1101 }
1102 ubi_devices[ubi_num] = NULL;
1103 spin_unlock(&ubi_devices_lock);
1104
1105 ubi_assert(ubi_num == ubi->ubi_num);
1106 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1107 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1108#ifdef CONFIG_MTD_UBI_FASTMAP
1109 /* If we don't write a new fastmap at detach time we lose all
1110 * EC updates that have been made since the last written fastmap.
1111 * In case of fastmap debugging we omit the update to simulate an
1112 * unclean shutdown. */
1113 if (!ubi_dbg_chk_fastmap(ubi))
1114 ubi_update_fastmap(ubi);
1115#endif
1116 /*
1117 * Before freeing anything, we have to stop the background thread to
1118 * prevent it from doing anything on this device while we are freeing.
1119 */
1120 if (ubi->bgt_thread)
1121 kthread_stop(ubi->bgt_thread);
1122
1123 /*
1124 * Get a reference to the device in order to prevent 'dev_release()'
1125 * from freeing the @ubi object.
1126 */
1127 get_device(&ubi->dev);
1128
1129 ubi_debugfs_exit_dev(ubi);
1130 uif_close(ubi);
1131
1132 ubi_wl_close(ubi);
1133 ubi_free_internal_volumes(ubi);
1134 vfree(ubi->vtbl);
1135 put_mtd_device(ubi->mtd);
1136 vfree(ubi->peb_buf);
1137 vfree(ubi->fm_buf);
1138 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1139 put_device(&ubi->dev);
1140 return 0;
1141}
1142
1143/**
1144 * open_mtd_by_chdev - open an MTD device by its character device node path.
1145 * @mtd_dev: MTD character device node path
1146 *
1147 * This helper function opens an MTD device by its character node device path.
1148 * Returns MTD device description object in case of success and a negative
1149 * error code in case of failure.
1150 */
1151static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1152{
1153 int err, minor;
1154 struct path path;
1155 struct kstat stat;
1156
1157 /* Probably this is an MTD character device node path */
1158 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1159 if (err)
1160 return ERR_PTR(err);
1161
1162 err = vfs_getattr(&path, &stat);
1163 path_put(&path);
1164 if (err)
1165 return ERR_PTR(err);
1166
1167 /* MTD device number is defined by the major / minor numbers */
1168 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1169 return ERR_PTR(-EINVAL);
1170
1171 minor = MINOR(stat.rdev);
1172
1173 if (minor & 1)
1174 /*
1175 * Just do not think the "/dev/mtdrX" devices support is need,
1176 * so do not support them to avoid doing extra work.
1177 */
1178 return ERR_PTR(-EINVAL);
1179
1180 return get_mtd_device(NULL, minor / 2);
1181}
1182
1183/**
1184 * open_mtd_device - open MTD device by name, character device path, or number.
1185 * @mtd_dev: name, character device node path, or MTD device device number
1186 *
1187 * This function tries to open and MTD device described by @mtd_dev string,
1188 * which is first treated as ASCII MTD device number, and if it is not true, it
1189 * is treated as MTD device name, and if that is also not true, it is treated
1190 * as MTD character device node path. Returns MTD device description object in
1191 * case of success and a negative error code in case of failure.
1192 */
1193static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1194{
1195 struct mtd_info *mtd;
1196 int mtd_num;
1197 char *endp;
1198
1199 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1200 if (*endp != '\0' || mtd_dev == endp) {
1201 /*
1202 * This does not look like an ASCII integer, probably this is
1203 * MTD device name.
1204 */
1205 mtd = get_mtd_device_nm(mtd_dev);
1206 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1207 /* Probably this is an MTD character device node path */
1208 mtd = open_mtd_by_chdev(mtd_dev);
1209 } else
1210 mtd = get_mtd_device(NULL, mtd_num);
1211
1212 return mtd;
1213}
1214
1215static int __init ubi_init(void)
1216{
1217 int err, i, k;
1218
1219 /* Ensure that EC and VID headers have correct size */
1220 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1221 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1222
1223 if (mtd_devs > UBI_MAX_DEVICES) {
1224 pr_err("UBI error: too many MTD devices, maximum is %d",
1225 UBI_MAX_DEVICES);
1226 return -EINVAL;
1227 }
1228
1229 /* Create base sysfs directory and sysfs files */
1230 err = class_register(&ubi_class);
1231 if (err < 0)
1232 return err;
1233
1234 err = misc_register(&ubi_ctrl_cdev);
1235 if (err) {
1236 pr_err("UBI error: cannot register device");
1237 goto out;
1238 }
1239
1240 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1241 sizeof(struct ubi_wl_entry),
1242 0, 0, NULL);
1243 if (!ubi_wl_entry_slab) {
1244 err = -ENOMEM;
1245 goto out_dev_unreg;
1246 }
1247
1248 err = ubi_debugfs_init();
1249 if (err)
1250 goto out_slab;
1251
1252
1253 /* Attach MTD devices */
1254 for (i = 0; i < mtd_devs; i++) {
1255 struct mtd_dev_param *p = &mtd_dev_param[i];
1256 struct mtd_info *mtd;
1257
1258 cond_resched();
1259
1260 mtd = open_mtd_device(p->name);
1261 if (IS_ERR(mtd)) {
1262 err = PTR_ERR(mtd);
1263 pr_err("UBI error: cannot open mtd %s, error %d",
1264 p->name, err);
1265 /* See comment below re-ubi_is_module(). */
1266 if (ubi_is_module())
1267 goto out_detach;
1268 continue;
1269 }
1270
1271 mutex_lock(&ubi_devices_mutex);
1272 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1273 p->vid_hdr_offs, p->max_beb_per1024);
1274 mutex_unlock(&ubi_devices_mutex);
1275 if (err < 0) {
1276 pr_err("UBI error: cannot attach mtd%d",
1277 mtd->index);
1278 put_mtd_device(mtd);
1279
1280 /*
1281 * Originally UBI stopped initializing on any error.
1282 * However, later on it was found out that this
1283 * behavior is not very good when UBI is compiled into
1284 * the kernel and the MTD devices to attach are passed
1285 * through the command line. Indeed, UBI failure
1286 * stopped whole boot sequence.
1287 *
1288 * To fix this, we changed the behavior for the
1289 * non-module case, but preserved the old behavior for
1290 * the module case, just for compatibility. This is a
1291 * little inconsistent, though.
1292 */
1293 if (ubi_is_module())
1294 goto out_detach;
1295 }
1296 }
1297
1298 err = ubiblock_init();
1299 if (err) {
1300 pr_err("UBI error: block: cannot initialize, error %d", err);
1301
1302 /* See comment above re-ubi_is_module(). */
1303 if (ubi_is_module())
1304 goto out_detach;
1305 }
1306
1307 return 0;
1308
1309out_detach:
1310 for (k = 0; k < i; k++)
1311 if (ubi_devices[k]) {
1312 mutex_lock(&ubi_devices_mutex);
1313 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1314 mutex_unlock(&ubi_devices_mutex);
1315 }
1316 ubi_debugfs_exit();
1317out_slab:
1318 kmem_cache_destroy(ubi_wl_entry_slab);
1319out_dev_unreg:
1320 misc_deregister(&ubi_ctrl_cdev);
1321out:
1322 class_unregister(&ubi_class);
1323 pr_err("UBI error: cannot initialize UBI, error %d", err);
1324 return err;
1325}
1326late_initcall(ubi_init);
1327
1328static void __exit ubi_exit(void)
1329{
1330 int i;
1331
1332 ubiblock_exit();
1333
1334 for (i = 0; i < UBI_MAX_DEVICES; i++)
1335 if (ubi_devices[i]) {
1336 mutex_lock(&ubi_devices_mutex);
1337 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1338 mutex_unlock(&ubi_devices_mutex);
1339 }
1340 ubi_debugfs_exit();
1341 kmem_cache_destroy(ubi_wl_entry_slab);
1342 misc_deregister(&ubi_ctrl_cdev);
1343 class_unregister(&ubi_class);
1344}
1345module_exit(ubi_exit);
1346
1347/**
1348 * bytes_str_to_int - convert a number of bytes string into an integer.
1349 * @str: the string to convert
1350 *
1351 * This function returns positive resulting integer in case of success and a
1352 * negative error code in case of failure.
1353 */
1354static int __init bytes_str_to_int(const char *str)
1355{
1356 char *endp;
1357 unsigned long result;
1358
1359 result = simple_strtoul(str, &endp, 0);
1360 if (str == endp || result >= INT_MAX) {
1361 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1362 return -EINVAL;
1363 }
1364
1365 switch (*endp) {
1366 case 'G':
1367 result *= 1024;
1368 case 'M':
1369 result *= 1024;
1370 case 'K':
1371 result *= 1024;
1372 if (endp[1] == 'i' && endp[2] == 'B')
1373 endp += 2;
1374 case '\0':
1375 break;
1376 default:
1377 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1378 return -EINVAL;
1379 }
1380
1381 return result;
1382}
1383
1384/**
1385 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1386 * @val: the parameter value to parse
1387 * @kp: not used
1388 *
1389 * This function returns zero in case of success and a negative error code in
1390 * case of error.
1391 */
1392static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1393{
1394 int i, len;
1395 struct mtd_dev_param *p;
1396 char buf[MTD_PARAM_LEN_MAX];
1397 char *pbuf = &buf[0];
1398 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1399
1400 if (!val)
1401 return -EINVAL;
1402
1403 if (mtd_devs == UBI_MAX_DEVICES) {
1404 pr_err("UBI error: too many parameters, max. is %d\n",
1405 UBI_MAX_DEVICES);
1406 return -EINVAL;
1407 }
1408
1409 len = strnlen(val, MTD_PARAM_LEN_MAX);
1410 if (len == MTD_PARAM_LEN_MAX) {
1411 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1412 val, MTD_PARAM_LEN_MAX);
1413 return -EINVAL;
1414 }
1415
1416 if (len == 0) {
1417 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1418 return 0;
1419 }
1420
1421 strcpy(buf, val);
1422
1423 /* Get rid of the final newline */
1424 if (buf[len - 1] == '\n')
1425 buf[len - 1] = '\0';
1426
1427 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1428 tokens[i] = strsep(&pbuf, ",");
1429
1430 if (pbuf) {
1431 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1432 return -EINVAL;
1433 }
1434
1435 p = &mtd_dev_param[mtd_devs];
1436 strcpy(&p->name[0], tokens[0]);
1437
1438 token = tokens[1];
1439 if (token) {
1440 p->vid_hdr_offs = bytes_str_to_int(token);
1441
1442 if (p->vid_hdr_offs < 0)
1443 return p->vid_hdr_offs;
1444 }
1445
1446 token = tokens[2];
1447 if (token) {
1448 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1449
1450 if (err) {
1451 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1452 token);
1453 return -EINVAL;
1454 }
1455 }
1456
1457 token = tokens[3];
1458 if (token) {
1459 int err = kstrtoint(token, 10, &p->ubi_num);
1460
1461 if (err) {
1462 pr_err("UBI error: bad value for ubi_num parameter: %s",
1463 token);
1464 return -EINVAL;
1465 }
1466 } else
1467 p->ubi_num = UBI_DEV_NUM_AUTO;
1468
1469 mtd_devs += 1;
1470 return 0;
1471}
1472
1473module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1474MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1475 "Multiple \"mtd\" parameters may be specified.\n"
1476 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1477 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1478 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1479 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1480 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1481 "\n"
1482 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1483 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1484 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1485 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1486 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1487#ifdef CONFIG_MTD_UBI_FASTMAP
1488module_param(fm_autoconvert, bool, 0644);
1489MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1490module_param(fm_debug, bool, 0);
1491MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1492#endif
1493MODULE_VERSION(__stringify(UBI_VERSION));
1494MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1495MODULE_AUTHOR("Artem Bityutskiy");
1496MODULE_LICENSE("GPL");