Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/delay.h>
  15#include <linux/module.h>
  16#include <linux/interrupt.h>
  17#include <linux/jiffies.h>
  18#include <linux/sched.h>
  19#include <linux/mtd/mtd.h>
  20#include <linux/mtd/nand.h>
  21#include <linux/mtd/partitions.h>
  22#include <linux/omap-dma.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of.h>
  26#include <linux/of_device.h>
  27
  28#include <linux/mtd/nand_bch.h>
  29#include <linux/platform_data/elm.h>
  30
  31#include <linux/platform_data/mtd-nand-omap2.h>
  32
  33#define	DRIVER_NAME	"omap2-nand"
  34#define	OMAP_NAND_TIMEOUT_MS	5000
  35
  36#define NAND_Ecc_P1e		(1 << 0)
  37#define NAND_Ecc_P2e		(1 << 1)
  38#define NAND_Ecc_P4e		(1 << 2)
  39#define NAND_Ecc_P8e		(1 << 3)
  40#define NAND_Ecc_P16e		(1 << 4)
  41#define NAND_Ecc_P32e		(1 << 5)
  42#define NAND_Ecc_P64e		(1 << 6)
  43#define NAND_Ecc_P128e		(1 << 7)
  44#define NAND_Ecc_P256e		(1 << 8)
  45#define NAND_Ecc_P512e		(1 << 9)
  46#define NAND_Ecc_P1024e		(1 << 10)
  47#define NAND_Ecc_P2048e		(1 << 11)
  48
  49#define NAND_Ecc_P1o		(1 << 16)
  50#define NAND_Ecc_P2o		(1 << 17)
  51#define NAND_Ecc_P4o		(1 << 18)
  52#define NAND_Ecc_P8o		(1 << 19)
  53#define NAND_Ecc_P16o		(1 << 20)
  54#define NAND_Ecc_P32o		(1 << 21)
  55#define NAND_Ecc_P64o		(1 << 22)
  56#define NAND_Ecc_P128o		(1 << 23)
  57#define NAND_Ecc_P256o		(1 << 24)
  58#define NAND_Ecc_P512o		(1 << 25)
  59#define NAND_Ecc_P1024o		(1 << 26)
  60#define NAND_Ecc_P2048o		(1 << 27)
  61
  62#define TF(value)	(value ? 1 : 0)
  63
  64#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
  65#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
  66#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
  67#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
  68#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
  69#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
  70#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
  71#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
  72
  73#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
  74#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
  75#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
  76#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
  77#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
  78#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
  79#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
  80#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
  81
  82#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
  83#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
  84#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
  85#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
  86#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
  87#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
  88#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
  89#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
  90
  91#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
  92#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
  93#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
  94#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
  95#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
  96#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
  97#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
  98#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
  99
 100#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
 101#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
 102
 103#define	PREFETCH_CONFIG1_CS_SHIFT	24
 104#define	ECC_CONFIG_CS_SHIFT		1
 105#define	CS_MASK				0x7
 106#define	ENABLE_PREFETCH			(0x1 << 7)
 107#define	DMA_MPU_MODE_SHIFT		2
 108#define	ECCSIZE0_SHIFT			12
 109#define	ECCSIZE1_SHIFT			22
 110#define	ECC1RESULTSIZE			0x1
 111#define	ECCCLEAR			0x100
 112#define	ECC1				0x1
 113#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
 114#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
 115#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
 116#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
 117#define	STATUS_BUFF_EMPTY		0x00000001
 118
 119#define OMAP24XX_DMA_GPMC		4
 120
 121#define SECTOR_BYTES		512
 122/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 123#define BCH4_BIT_PAD		4
 124
 125/* GPMC ecc engine settings for read */
 126#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
 127#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
 128#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
 129#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
 130#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
 131
 132/* GPMC ecc engine settings for write */
 133#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
 134#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
 135#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
 136
 137#define BADBLOCK_MARKER_LENGTH		2
 138
 139static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 140				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 141				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 142				0x07, 0x0e};
 143static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 144	0xac, 0x6b, 0xff, 0x99, 0x7b};
 145static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 146
 147/* Shared among all NAND instances to synchronize access to the ECC Engine */
 148static struct nand_hw_control omap_gpmc_controller = {
 149	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
 150	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
 151};
 152
 153struct omap_nand_info {
 154	struct omap_nand_platform_data	*pdata;
 155	struct nand_chip		nand;
 156	struct platform_device		*pdev;
 157
 158	int				gpmc_cs;
 159	unsigned long			phys_base;
 160	enum omap_ecc			ecc_opt;
 161	struct completion		comp;
 162	struct dma_chan			*dma;
 163	int				gpmc_irq_fifo;
 164	int				gpmc_irq_count;
 165	enum {
 166		OMAP_NAND_IO_READ = 0,	/* read */
 167		OMAP_NAND_IO_WRITE,	/* write */
 168	} iomode;
 169	u_char				*buf;
 170	int					buf_len;
 171	struct gpmc_nand_regs		reg;
 172	/* generated at runtime depending on ECC algorithm and layout selected */
 173	struct nand_ecclayout		oobinfo;
 174	/* fields specific for BCHx_HW ECC scheme */
 175	struct device			*elm_dev;
 176	struct device_node		*of_node;
 177};
 178
 179static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 180{
 181	return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 182}
 183
 184/**
 185 * omap_prefetch_enable - configures and starts prefetch transfer
 186 * @cs: cs (chip select) number
 187 * @fifo_th: fifo threshold to be used for read/ write
 188 * @dma_mode: dma mode enable (1) or disable (0)
 189 * @u32_count: number of bytes to be transferred
 190 * @is_write: prefetch read(0) or write post(1) mode
 191 */
 192static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 193	unsigned int u32_count, int is_write, struct omap_nand_info *info)
 194{
 195	u32 val;
 196
 197	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 198		return -1;
 199
 200	if (readl(info->reg.gpmc_prefetch_control))
 201		return -EBUSY;
 202
 203	/* Set the amount of bytes to be prefetched */
 204	writel(u32_count, info->reg.gpmc_prefetch_config2);
 205
 206	/* Set dma/mpu mode, the prefetch read / post write and
 207	 * enable the engine. Set which cs is has requested for.
 208	 */
 209	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 210		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 211		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
 212	writel(val, info->reg.gpmc_prefetch_config1);
 213
 214	/*  Start the prefetch engine */
 215	writel(0x1, info->reg.gpmc_prefetch_control);
 216
 217	return 0;
 218}
 219
 220/**
 221 * omap_prefetch_reset - disables and stops the prefetch engine
 222 */
 223static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 224{
 225	u32 config1;
 226
 227	/* check if the same module/cs is trying to reset */
 228	config1 = readl(info->reg.gpmc_prefetch_config1);
 229	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 230		return -EINVAL;
 231
 232	/* Stop the PFPW engine */
 233	writel(0x0, info->reg.gpmc_prefetch_control);
 234
 235	/* Reset/disable the PFPW engine */
 236	writel(0x0, info->reg.gpmc_prefetch_config1);
 237
 238	return 0;
 239}
 240
 241/**
 242 * omap_hwcontrol - hardware specific access to control-lines
 243 * @mtd: MTD device structure
 244 * @cmd: command to device
 245 * @ctrl:
 246 * NAND_NCE: bit 0 -> don't care
 247 * NAND_CLE: bit 1 -> Command Latch
 248 * NAND_ALE: bit 2 -> Address Latch
 249 *
 250 * NOTE: boards may use different bits for these!!
 251 */
 252static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 253{
 254	struct omap_nand_info *info = mtd_to_omap(mtd);
 255
 256	if (cmd != NAND_CMD_NONE) {
 257		if (ctrl & NAND_CLE)
 258			writeb(cmd, info->reg.gpmc_nand_command);
 259
 260		else if (ctrl & NAND_ALE)
 261			writeb(cmd, info->reg.gpmc_nand_address);
 262
 263		else /* NAND_NCE */
 264			writeb(cmd, info->reg.gpmc_nand_data);
 265	}
 266}
 267
 268/**
 269 * omap_read_buf8 - read data from NAND controller into buffer
 270 * @mtd: MTD device structure
 271 * @buf: buffer to store date
 272 * @len: number of bytes to read
 273 */
 274static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 275{
 276	struct nand_chip *nand = mtd_to_nand(mtd);
 277
 278	ioread8_rep(nand->IO_ADDR_R, buf, len);
 279}
 280
 281/**
 282 * omap_write_buf8 - write buffer to NAND controller
 283 * @mtd: MTD device structure
 284 * @buf: data buffer
 285 * @len: number of bytes to write
 286 */
 287static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 288{
 289	struct omap_nand_info *info = mtd_to_omap(mtd);
 290	u_char *p = (u_char *)buf;
 291	u32	status = 0;
 292
 293	while (len--) {
 294		iowrite8(*p++, info->nand.IO_ADDR_W);
 295		/* wait until buffer is available for write */
 296		do {
 297			status = readl(info->reg.gpmc_status) &
 298					STATUS_BUFF_EMPTY;
 299		} while (!status);
 300	}
 301}
 302
 303/**
 304 * omap_read_buf16 - read data from NAND controller into buffer
 305 * @mtd: MTD device structure
 306 * @buf: buffer to store date
 307 * @len: number of bytes to read
 308 */
 309static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 310{
 311	struct nand_chip *nand = mtd_to_nand(mtd);
 312
 313	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 314}
 315
 316/**
 317 * omap_write_buf16 - write buffer to NAND controller
 318 * @mtd: MTD device structure
 319 * @buf: data buffer
 320 * @len: number of bytes to write
 321 */
 322static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 323{
 324	struct omap_nand_info *info = mtd_to_omap(mtd);
 325	u16 *p = (u16 *) buf;
 326	u32	status = 0;
 327	/* FIXME try bursts of writesw() or DMA ... */
 328	len >>= 1;
 329
 330	while (len--) {
 331		iowrite16(*p++, info->nand.IO_ADDR_W);
 332		/* wait until buffer is available for write */
 333		do {
 334			status = readl(info->reg.gpmc_status) &
 335					STATUS_BUFF_EMPTY;
 336		} while (!status);
 337	}
 338}
 339
 340/**
 341 * omap_read_buf_pref - read data from NAND controller into buffer
 342 * @mtd: MTD device structure
 343 * @buf: buffer to store date
 344 * @len: number of bytes to read
 345 */
 346static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 347{
 348	struct omap_nand_info *info = mtd_to_omap(mtd);
 349	uint32_t r_count = 0;
 350	int ret = 0;
 351	u32 *p = (u32 *)buf;
 352
 353	/* take care of subpage reads */
 354	if (len % 4) {
 355		if (info->nand.options & NAND_BUSWIDTH_16)
 356			omap_read_buf16(mtd, buf, len % 4);
 357		else
 358			omap_read_buf8(mtd, buf, len % 4);
 359		p = (u32 *) (buf + len % 4);
 360		len -= len % 4;
 361	}
 362
 363	/* configure and start prefetch transfer */
 364	ret = omap_prefetch_enable(info->gpmc_cs,
 365			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
 366	if (ret) {
 367		/* PFPW engine is busy, use cpu copy method */
 368		if (info->nand.options & NAND_BUSWIDTH_16)
 369			omap_read_buf16(mtd, (u_char *)p, len);
 370		else
 371			omap_read_buf8(mtd, (u_char *)p, len);
 372	} else {
 373		do {
 374			r_count = readl(info->reg.gpmc_prefetch_status);
 375			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 376			r_count = r_count >> 2;
 377			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 378			p += r_count;
 379			len -= r_count << 2;
 380		} while (len);
 381		/* disable and stop the PFPW engine */
 382		omap_prefetch_reset(info->gpmc_cs, info);
 383	}
 384}
 385
 386/**
 387 * omap_write_buf_pref - write buffer to NAND controller
 388 * @mtd: MTD device structure
 389 * @buf: data buffer
 390 * @len: number of bytes to write
 391 */
 392static void omap_write_buf_pref(struct mtd_info *mtd,
 393					const u_char *buf, int len)
 394{
 395	struct omap_nand_info *info = mtd_to_omap(mtd);
 396	uint32_t w_count = 0;
 397	int i = 0, ret = 0;
 398	u16 *p = (u16 *)buf;
 399	unsigned long tim, limit;
 400	u32 val;
 401
 402	/* take care of subpage writes */
 403	if (len % 2 != 0) {
 404		writeb(*buf, info->nand.IO_ADDR_W);
 405		p = (u16 *)(buf + 1);
 406		len--;
 407	}
 408
 409	/*  configure and start prefetch transfer */
 410	ret = omap_prefetch_enable(info->gpmc_cs,
 411			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 412	if (ret) {
 413		/* PFPW engine is busy, use cpu copy method */
 414		if (info->nand.options & NAND_BUSWIDTH_16)
 415			omap_write_buf16(mtd, (u_char *)p, len);
 416		else
 417			omap_write_buf8(mtd, (u_char *)p, len);
 418	} else {
 419		while (len) {
 420			w_count = readl(info->reg.gpmc_prefetch_status);
 421			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 422			w_count = w_count >> 1;
 423			for (i = 0; (i < w_count) && len; i++, len -= 2)
 424				iowrite16(*p++, info->nand.IO_ADDR_W);
 425		}
 426		/* wait for data to flushed-out before reset the prefetch */
 427		tim = 0;
 428		limit = (loops_per_jiffy *
 429					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 430		do {
 431			cpu_relax();
 432			val = readl(info->reg.gpmc_prefetch_status);
 433			val = PREFETCH_STATUS_COUNT(val);
 434		} while (val && (tim++ < limit));
 435
 436		/* disable and stop the PFPW engine */
 437		omap_prefetch_reset(info->gpmc_cs, info);
 438	}
 439}
 440
 441/*
 442 * omap_nand_dma_callback: callback on the completion of dma transfer
 443 * @data: pointer to completion data structure
 444 */
 445static void omap_nand_dma_callback(void *data)
 446{
 447	complete((struct completion *) data);
 448}
 449
 450/*
 451 * omap_nand_dma_transfer: configure and start dma transfer
 452 * @mtd: MTD device structure
 453 * @addr: virtual address in RAM of source/destination
 454 * @len: number of data bytes to be transferred
 455 * @is_write: flag for read/write operation
 456 */
 457static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 458					unsigned int len, int is_write)
 459{
 460	struct omap_nand_info *info = mtd_to_omap(mtd);
 461	struct dma_async_tx_descriptor *tx;
 462	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 463							DMA_FROM_DEVICE;
 464	struct scatterlist sg;
 465	unsigned long tim, limit;
 466	unsigned n;
 467	int ret;
 468	u32 val;
 469
 470	if (addr >= high_memory) {
 471		struct page *p1;
 472
 473		if (((size_t)addr & PAGE_MASK) !=
 474			((size_t)(addr + len - 1) & PAGE_MASK))
 475			goto out_copy;
 476		p1 = vmalloc_to_page(addr);
 477		if (!p1)
 478			goto out_copy;
 479		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 480	}
 481
 482	sg_init_one(&sg, addr, len);
 483	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 484	if (n == 0) {
 485		dev_err(&info->pdev->dev,
 486			"Couldn't DMA map a %d byte buffer\n", len);
 487		goto out_copy;
 488	}
 489
 490	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 491		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 492		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 493	if (!tx)
 494		goto out_copy_unmap;
 495
 496	tx->callback = omap_nand_dma_callback;
 497	tx->callback_param = &info->comp;
 498	dmaengine_submit(tx);
 499
 500	/*  configure and start prefetch transfer */
 501	ret = omap_prefetch_enable(info->gpmc_cs,
 502		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 503	if (ret)
 504		/* PFPW engine is busy, use cpu copy method */
 505		goto out_copy_unmap;
 506
 507	init_completion(&info->comp);
 508	dma_async_issue_pending(info->dma);
 509
 510	/* setup and start DMA using dma_addr */
 511	wait_for_completion(&info->comp);
 512	tim = 0;
 513	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 514
 515	do {
 516		cpu_relax();
 517		val = readl(info->reg.gpmc_prefetch_status);
 518		val = PREFETCH_STATUS_COUNT(val);
 519	} while (val && (tim++ < limit));
 520
 521	/* disable and stop the PFPW engine */
 522	omap_prefetch_reset(info->gpmc_cs, info);
 523
 524	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 525	return 0;
 526
 527out_copy_unmap:
 528	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 529out_copy:
 530	if (info->nand.options & NAND_BUSWIDTH_16)
 531		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 532			: omap_write_buf16(mtd, (u_char *) addr, len);
 533	else
 534		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 535			: omap_write_buf8(mtd, (u_char *) addr, len);
 536	return 0;
 537}
 538
 539/**
 540 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 541 * @mtd: MTD device structure
 542 * @buf: buffer to store date
 543 * @len: number of bytes to read
 544 */
 545static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 546{
 547	if (len <= mtd->oobsize)
 548		omap_read_buf_pref(mtd, buf, len);
 549	else
 550		/* start transfer in DMA mode */
 551		omap_nand_dma_transfer(mtd, buf, len, 0x0);
 552}
 553
 554/**
 555 * omap_write_buf_dma_pref - write buffer to NAND controller
 556 * @mtd: MTD device structure
 557 * @buf: data buffer
 558 * @len: number of bytes to write
 559 */
 560static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 561					const u_char *buf, int len)
 562{
 563	if (len <= mtd->oobsize)
 564		omap_write_buf_pref(mtd, buf, len);
 565	else
 566		/* start transfer in DMA mode */
 567		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 568}
 569
 570/*
 571 * omap_nand_irq - GPMC irq handler
 572 * @this_irq: gpmc irq number
 573 * @dev: omap_nand_info structure pointer is passed here
 574 */
 575static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 576{
 577	struct omap_nand_info *info = (struct omap_nand_info *) dev;
 578	u32 bytes;
 579
 580	bytes = readl(info->reg.gpmc_prefetch_status);
 581	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 582	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 583	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 584		if (this_irq == info->gpmc_irq_count)
 585			goto done;
 586
 587		if (info->buf_len && (info->buf_len < bytes))
 588			bytes = info->buf_len;
 589		else if (!info->buf_len)
 590			bytes = 0;
 591		iowrite32_rep(info->nand.IO_ADDR_W,
 592						(u32 *)info->buf, bytes >> 2);
 593		info->buf = info->buf + bytes;
 594		info->buf_len -= bytes;
 595
 596	} else {
 597		ioread32_rep(info->nand.IO_ADDR_R,
 598						(u32 *)info->buf, bytes >> 2);
 599		info->buf = info->buf + bytes;
 600
 601		if (this_irq == info->gpmc_irq_count)
 602			goto done;
 603	}
 604
 605	return IRQ_HANDLED;
 606
 607done:
 608	complete(&info->comp);
 609
 610	disable_irq_nosync(info->gpmc_irq_fifo);
 611	disable_irq_nosync(info->gpmc_irq_count);
 612
 613	return IRQ_HANDLED;
 614}
 615
 616/*
 617 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 618 * @mtd: MTD device structure
 619 * @buf: buffer to store date
 620 * @len: number of bytes to read
 621 */
 622static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 623{
 624	struct omap_nand_info *info = mtd_to_omap(mtd);
 625	int ret = 0;
 626
 627	if (len <= mtd->oobsize) {
 628		omap_read_buf_pref(mtd, buf, len);
 629		return;
 630	}
 631
 632	info->iomode = OMAP_NAND_IO_READ;
 633	info->buf = buf;
 634	init_completion(&info->comp);
 635
 636	/*  configure and start prefetch transfer */
 637	ret = omap_prefetch_enable(info->gpmc_cs,
 638			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 639	if (ret)
 640		/* PFPW engine is busy, use cpu copy method */
 641		goto out_copy;
 642
 643	info->buf_len = len;
 644
 645	enable_irq(info->gpmc_irq_count);
 646	enable_irq(info->gpmc_irq_fifo);
 647
 648	/* waiting for read to complete */
 649	wait_for_completion(&info->comp);
 650
 651	/* disable and stop the PFPW engine */
 652	omap_prefetch_reset(info->gpmc_cs, info);
 653	return;
 654
 655out_copy:
 656	if (info->nand.options & NAND_BUSWIDTH_16)
 657		omap_read_buf16(mtd, buf, len);
 658	else
 659		omap_read_buf8(mtd, buf, len);
 660}
 661
 662/*
 663 * omap_write_buf_irq_pref - write buffer to NAND controller
 664 * @mtd: MTD device structure
 665 * @buf: data buffer
 666 * @len: number of bytes to write
 667 */
 668static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 669					const u_char *buf, int len)
 670{
 671	struct omap_nand_info *info = mtd_to_omap(mtd);
 672	int ret = 0;
 673	unsigned long tim, limit;
 674	u32 val;
 675
 676	if (len <= mtd->oobsize) {
 677		omap_write_buf_pref(mtd, buf, len);
 678		return;
 679	}
 680
 681	info->iomode = OMAP_NAND_IO_WRITE;
 682	info->buf = (u_char *) buf;
 683	init_completion(&info->comp);
 684
 685	/* configure and start prefetch transfer : size=24 */
 686	ret = omap_prefetch_enable(info->gpmc_cs,
 687		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 688	if (ret)
 689		/* PFPW engine is busy, use cpu copy method */
 690		goto out_copy;
 691
 692	info->buf_len = len;
 693
 694	enable_irq(info->gpmc_irq_count);
 695	enable_irq(info->gpmc_irq_fifo);
 696
 697	/* waiting for write to complete */
 698	wait_for_completion(&info->comp);
 699
 700	/* wait for data to flushed-out before reset the prefetch */
 701	tim = 0;
 702	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 703	do {
 704		val = readl(info->reg.gpmc_prefetch_status);
 705		val = PREFETCH_STATUS_COUNT(val);
 706		cpu_relax();
 707	} while (val && (tim++ < limit));
 708
 709	/* disable and stop the PFPW engine */
 710	omap_prefetch_reset(info->gpmc_cs, info);
 711	return;
 712
 713out_copy:
 714	if (info->nand.options & NAND_BUSWIDTH_16)
 715		omap_write_buf16(mtd, buf, len);
 716	else
 717		omap_write_buf8(mtd, buf, len);
 718}
 719
 720/**
 721 * gen_true_ecc - This function will generate true ECC value
 722 * @ecc_buf: buffer to store ecc code
 723 *
 724 * This generated true ECC value can be used when correcting
 725 * data read from NAND flash memory core
 726 */
 727static void gen_true_ecc(u8 *ecc_buf)
 728{
 729	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 730		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 731
 732	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 733			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 734	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 735			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 736	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 737			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 738}
 739
 740/**
 741 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 742 * @ecc_data1:  ecc code from nand spare area
 743 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 744 * @page_data:  page data
 745 *
 746 * This function compares two ECC's and indicates if there is an error.
 747 * If the error can be corrected it will be corrected to the buffer.
 748 * If there is no error, %0 is returned. If there is an error but it
 749 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 750 */
 751static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
 752			    u8 *ecc_data2,	/* read from register */
 753			    u8 *page_data)
 754{
 755	uint	i;
 756	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 757	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
 758	u8	ecc_bit[24];
 759	u8	ecc_sum = 0;
 760	u8	find_bit = 0;
 761	uint	find_byte = 0;
 762	int	isEccFF;
 763
 764	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 765
 766	gen_true_ecc(ecc_data1);
 767	gen_true_ecc(ecc_data2);
 768
 769	for (i = 0; i <= 2; i++) {
 770		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
 771		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
 772	}
 773
 774	for (i = 0; i < 8; i++) {
 775		tmp0_bit[i]     = *ecc_data1 % 2;
 776		*ecc_data1	= *ecc_data1 / 2;
 777	}
 778
 779	for (i = 0; i < 8; i++) {
 780		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
 781		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 782	}
 783
 784	for (i = 0; i < 8; i++) {
 785		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
 786		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 787	}
 788
 789	for (i = 0; i < 8; i++) {
 790		comp0_bit[i]     = *ecc_data2 % 2;
 791		*ecc_data2       = *ecc_data2 / 2;
 792	}
 793
 794	for (i = 0; i < 8; i++) {
 795		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 796		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 797	}
 798
 799	for (i = 0; i < 8; i++) {
 800		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 801		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 802	}
 803
 804	for (i = 0; i < 6; i++)
 805		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 806
 807	for (i = 0; i < 8; i++)
 808		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 809
 810	for (i = 0; i < 8; i++)
 811		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 812
 813	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 814	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 815
 816	for (i = 0; i < 24; i++)
 817		ecc_sum += ecc_bit[i];
 818
 819	switch (ecc_sum) {
 820	case 0:
 821		/* Not reached because this function is not called if
 822		 *  ECC values are equal
 823		 */
 824		return 0;
 825
 826	case 1:
 827		/* Uncorrectable error */
 828		pr_debug("ECC UNCORRECTED_ERROR 1\n");
 829		return -EBADMSG;
 830
 831	case 11:
 832		/* UN-Correctable error */
 833		pr_debug("ECC UNCORRECTED_ERROR B\n");
 834		return -EBADMSG;
 835
 836	case 12:
 837		/* Correctable error */
 838		find_byte = (ecc_bit[23] << 8) +
 839			    (ecc_bit[21] << 7) +
 840			    (ecc_bit[19] << 6) +
 841			    (ecc_bit[17] << 5) +
 842			    (ecc_bit[15] << 4) +
 843			    (ecc_bit[13] << 3) +
 844			    (ecc_bit[11] << 2) +
 845			    (ecc_bit[9]  << 1) +
 846			    ecc_bit[7];
 847
 848		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 849
 850		pr_debug("Correcting single bit ECC error at offset: "
 851				"%d, bit: %d\n", find_byte, find_bit);
 852
 853		page_data[find_byte] ^= (1 << find_bit);
 854
 855		return 1;
 856	default:
 857		if (isEccFF) {
 858			if (ecc_data2[0] == 0 &&
 859			    ecc_data2[1] == 0 &&
 860			    ecc_data2[2] == 0)
 861				return 0;
 862		}
 863		pr_debug("UNCORRECTED_ERROR default\n");
 864		return -EBADMSG;
 865	}
 866}
 867
 868/**
 869 * omap_correct_data - Compares the ECC read with HW generated ECC
 870 * @mtd: MTD device structure
 871 * @dat: page data
 872 * @read_ecc: ecc read from nand flash
 873 * @calc_ecc: ecc read from HW ECC registers
 874 *
 875 * Compares the ecc read from nand spare area with ECC registers values
 876 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 877 * detection and correction. If there are no errors, %0 is returned. If
 878 * there were errors and all of the errors were corrected, the number of
 879 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 880 * returned.
 881 */
 882static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 883				u_char *read_ecc, u_char *calc_ecc)
 884{
 885	struct omap_nand_info *info = mtd_to_omap(mtd);
 886	int blockCnt = 0, i = 0, ret = 0;
 887	int stat = 0;
 888
 889	/* Ex NAND_ECC_HW12_2048 */
 890	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 891			(info->nand.ecc.size  == 2048))
 892		blockCnt = 4;
 893	else
 894		blockCnt = 1;
 895
 896	for (i = 0; i < blockCnt; i++) {
 897		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 898			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 899			if (ret < 0)
 900				return ret;
 901			/* keep track of the number of corrected errors */
 902			stat += ret;
 903		}
 904		read_ecc += 3;
 905		calc_ecc += 3;
 906		dat      += 512;
 907	}
 908	return stat;
 909}
 910
 911/**
 912 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 913 * @mtd: MTD device structure
 914 * @dat: The pointer to data on which ecc is computed
 915 * @ecc_code: The ecc_code buffer
 916 *
 917 * Using noninverted ECC can be considered ugly since writing a blank
 918 * page ie. padding will clear the ECC bytes. This is no problem as long
 919 * nobody is trying to write data on the seemingly unused page. Reading
 920 * an erased page will produce an ECC mismatch between generated and read
 921 * ECC bytes that has to be dealt with separately.
 922 */
 923static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 924				u_char *ecc_code)
 925{
 926	struct omap_nand_info *info = mtd_to_omap(mtd);
 927	u32 val;
 928
 929	val = readl(info->reg.gpmc_ecc_config);
 930	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 931		return -EINVAL;
 932
 933	/* read ecc result */
 934	val = readl(info->reg.gpmc_ecc1_result);
 935	*ecc_code++ = val;          /* P128e, ..., P1e */
 936	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 937	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 938	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 939
 940	return 0;
 941}
 942
 943/**
 944 * omap_enable_hwecc - This function enables the hardware ecc functionality
 945 * @mtd: MTD device structure
 946 * @mode: Read/Write mode
 947 */
 948static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 949{
 950	struct omap_nand_info *info = mtd_to_omap(mtd);
 951	struct nand_chip *chip = mtd_to_nand(mtd);
 952	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 953	u32 val;
 954
 955	/* clear ecc and enable bits */
 956	val = ECCCLEAR | ECC1;
 957	writel(val, info->reg.gpmc_ecc_control);
 958
 959	/* program ecc and result sizes */
 960	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 961			 ECC1RESULTSIZE);
 962	writel(val, info->reg.gpmc_ecc_size_config);
 963
 964	switch (mode) {
 965	case NAND_ECC_READ:
 966	case NAND_ECC_WRITE:
 967		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 968		break;
 969	case NAND_ECC_READSYN:
 970		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 971		break;
 972	default:
 973		dev_info(&info->pdev->dev,
 974			"error: unrecognized Mode[%d]!\n", mode);
 975		break;
 976	}
 977
 978	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 979	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 980	writel(val, info->reg.gpmc_ecc_config);
 981}
 982
 983/**
 984 * omap_wait - wait until the command is done
 985 * @mtd: MTD device structure
 986 * @chip: NAND Chip structure
 987 *
 988 * Wait function is called during Program and erase operations and
 989 * the way it is called from MTD layer, we should wait till the NAND
 990 * chip is ready after the programming/erase operation has completed.
 991 *
 992 * Erase can take up to 400ms and program up to 20ms according to
 993 * general NAND and SmartMedia specs
 994 */
 995static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 996{
 997	struct nand_chip *this = mtd_to_nand(mtd);
 998	struct omap_nand_info *info = mtd_to_omap(mtd);
 999	unsigned long timeo = jiffies;
1000	int status, state = this->state;
1001
1002	if (state == FL_ERASING)
1003		timeo += msecs_to_jiffies(400);
1004	else
1005		timeo += msecs_to_jiffies(20);
1006
1007	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1008	while (time_before(jiffies, timeo)) {
1009		status = readb(info->reg.gpmc_nand_data);
1010		if (status & NAND_STATUS_READY)
1011			break;
1012		cond_resched();
1013	}
1014
1015	status = readb(info->reg.gpmc_nand_data);
1016	return status;
1017}
1018
1019/**
1020 * omap_dev_ready - calls the platform specific dev_ready function
1021 * @mtd: MTD device structure
1022 */
1023static int omap_dev_ready(struct mtd_info *mtd)
1024{
1025	unsigned int val = 0;
1026	struct omap_nand_info *info = mtd_to_omap(mtd);
1027
1028	val = readl(info->reg.gpmc_status);
1029
1030	if ((val & 0x100) == 0x100) {
1031		return 1;
1032	} else {
1033		return 0;
1034	}
1035}
1036
1037/**
1038 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1039 * @mtd: MTD device structure
1040 * @mode: Read/Write mode
1041 *
1042 * When using BCH with SW correction (i.e. no ELM), sector size is set
1043 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1044 * for both reading and writing with:
1045 * eccsize0 = 0  (no additional protected byte in spare area)
1046 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1047 */
1048static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1049{
1050	unsigned int bch_type;
1051	unsigned int dev_width, nsectors;
1052	struct omap_nand_info *info = mtd_to_omap(mtd);
1053	enum omap_ecc ecc_opt = info->ecc_opt;
1054	struct nand_chip *chip = mtd_to_nand(mtd);
1055	u32 val, wr_mode;
1056	unsigned int ecc_size1, ecc_size0;
1057
1058	/* GPMC configurations for calculating ECC */
1059	switch (ecc_opt) {
1060	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1061		bch_type = 0;
1062		nsectors = 1;
1063		wr_mode	  = BCH_WRAPMODE_6;
1064		ecc_size0 = BCH_ECC_SIZE0;
1065		ecc_size1 = BCH_ECC_SIZE1;
1066		break;
1067	case OMAP_ECC_BCH4_CODE_HW:
1068		bch_type = 0;
1069		nsectors = chip->ecc.steps;
1070		if (mode == NAND_ECC_READ) {
1071			wr_mode	  = BCH_WRAPMODE_1;
1072			ecc_size0 = BCH4R_ECC_SIZE0;
1073			ecc_size1 = BCH4R_ECC_SIZE1;
1074		} else {
1075			wr_mode   = BCH_WRAPMODE_6;
1076			ecc_size0 = BCH_ECC_SIZE0;
1077			ecc_size1 = BCH_ECC_SIZE1;
1078		}
1079		break;
1080	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1081		bch_type = 1;
1082		nsectors = 1;
1083		wr_mode	  = BCH_WRAPMODE_6;
1084		ecc_size0 = BCH_ECC_SIZE0;
1085		ecc_size1 = BCH_ECC_SIZE1;
1086		break;
1087	case OMAP_ECC_BCH8_CODE_HW:
1088		bch_type = 1;
1089		nsectors = chip->ecc.steps;
1090		if (mode == NAND_ECC_READ) {
1091			wr_mode	  = BCH_WRAPMODE_1;
1092			ecc_size0 = BCH8R_ECC_SIZE0;
1093			ecc_size1 = BCH8R_ECC_SIZE1;
1094		} else {
1095			wr_mode   = BCH_WRAPMODE_6;
1096			ecc_size0 = BCH_ECC_SIZE0;
1097			ecc_size1 = BCH_ECC_SIZE1;
1098		}
1099		break;
1100	case OMAP_ECC_BCH16_CODE_HW:
1101		bch_type = 0x2;
1102		nsectors = chip->ecc.steps;
1103		if (mode == NAND_ECC_READ) {
1104			wr_mode	  = 0x01;
1105			ecc_size0 = 52; /* ECC bits in nibbles per sector */
1106			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1107		} else {
1108			wr_mode	  = 0x01;
1109			ecc_size0 = 0;  /* extra bits in nibbles per sector */
1110			ecc_size1 = 52; /* OOB bits in nibbles per sector */
1111		}
1112		break;
1113	default:
1114		return;
1115	}
1116
1117	writel(ECC1, info->reg.gpmc_ecc_control);
1118
1119	/* Configure ecc size for BCH */
1120	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1121	writel(val, info->reg.gpmc_ecc_size_config);
1122
1123	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1124
1125	/* BCH configuration */
1126	val = ((1                        << 16) | /* enable BCH */
1127	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
1128	       (wr_mode                  <<  8) | /* wrap mode */
1129	       (dev_width                <<  7) | /* bus width */
1130	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1131	       (info->gpmc_cs            <<  1) | /* ECC CS */
1132	       (0x1));                            /* enable ECC */
1133
1134	writel(val, info->reg.gpmc_ecc_config);
1135
1136	/* Clear ecc and enable bits */
1137	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1138}
1139
1140static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1141static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1142				0x97, 0x79, 0xe5, 0x24, 0xb5};
1143
1144/**
1145 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1146 * @mtd:	MTD device structure
1147 * @dat:	The pointer to data on which ecc is computed
1148 * @ecc_code:	The ecc_code buffer
1149 *
1150 * Support calculating of BCH4/8 ecc vectors for the page
1151 */
1152static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1153					const u_char *dat, u_char *ecc_calc)
1154{
1155	struct omap_nand_info *info = mtd_to_omap(mtd);
1156	int eccbytes	= info->nand.ecc.bytes;
1157	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
1158	u8 *ecc_code;
1159	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1160	u32 val;
1161	int i, j;
1162
1163	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1164	for (i = 0; i < nsectors; i++) {
1165		ecc_code = ecc_calc;
1166		switch (info->ecc_opt) {
1167		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1168		case OMAP_ECC_BCH8_CODE_HW:
1169			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1170			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1171			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1172			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1173			*ecc_code++ = (bch_val4 & 0xFF);
1174			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1175			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1176			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1177			*ecc_code++ = (bch_val3 & 0xFF);
1178			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1179			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1180			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1181			*ecc_code++ = (bch_val2 & 0xFF);
1182			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1183			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1184			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1185			*ecc_code++ = (bch_val1 & 0xFF);
1186			break;
1187		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1188		case OMAP_ECC_BCH4_CODE_HW:
1189			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1190			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1191			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1192			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1193			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
1194				((bch_val1 >> 28) & 0xF);
1195			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1196			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1197			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1198			*ecc_code++ = ((bch_val1 & 0xF) << 4);
1199			break;
1200		case OMAP_ECC_BCH16_CODE_HW:
1201			val = readl(gpmc_regs->gpmc_bch_result6[i]);
1202			ecc_code[0]  = ((val >>  8) & 0xFF);
1203			ecc_code[1]  = ((val >>  0) & 0xFF);
1204			val = readl(gpmc_regs->gpmc_bch_result5[i]);
1205			ecc_code[2]  = ((val >> 24) & 0xFF);
1206			ecc_code[3]  = ((val >> 16) & 0xFF);
1207			ecc_code[4]  = ((val >>  8) & 0xFF);
1208			ecc_code[5]  = ((val >>  0) & 0xFF);
1209			val = readl(gpmc_regs->gpmc_bch_result4[i]);
1210			ecc_code[6]  = ((val >> 24) & 0xFF);
1211			ecc_code[7]  = ((val >> 16) & 0xFF);
1212			ecc_code[8]  = ((val >>  8) & 0xFF);
1213			ecc_code[9]  = ((val >>  0) & 0xFF);
1214			val = readl(gpmc_regs->gpmc_bch_result3[i]);
1215			ecc_code[10] = ((val >> 24) & 0xFF);
1216			ecc_code[11] = ((val >> 16) & 0xFF);
1217			ecc_code[12] = ((val >>  8) & 0xFF);
1218			ecc_code[13] = ((val >>  0) & 0xFF);
1219			val = readl(gpmc_regs->gpmc_bch_result2[i]);
1220			ecc_code[14] = ((val >> 24) & 0xFF);
1221			ecc_code[15] = ((val >> 16) & 0xFF);
1222			ecc_code[16] = ((val >>  8) & 0xFF);
1223			ecc_code[17] = ((val >>  0) & 0xFF);
1224			val = readl(gpmc_regs->gpmc_bch_result1[i]);
1225			ecc_code[18] = ((val >> 24) & 0xFF);
1226			ecc_code[19] = ((val >> 16) & 0xFF);
1227			ecc_code[20] = ((val >>  8) & 0xFF);
1228			ecc_code[21] = ((val >>  0) & 0xFF);
1229			val = readl(gpmc_regs->gpmc_bch_result0[i]);
1230			ecc_code[22] = ((val >> 24) & 0xFF);
1231			ecc_code[23] = ((val >> 16) & 0xFF);
1232			ecc_code[24] = ((val >>  8) & 0xFF);
1233			ecc_code[25] = ((val >>  0) & 0xFF);
1234			break;
1235		default:
1236			return -EINVAL;
1237		}
1238
1239		/* ECC scheme specific syndrome customizations */
1240		switch (info->ecc_opt) {
1241		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1242			/* Add constant polynomial to remainder, so that
1243			 * ECC of blank pages results in 0x0 on reading back */
1244			for (j = 0; j < eccbytes; j++)
1245				ecc_calc[j] ^= bch4_polynomial[j];
1246			break;
1247		case OMAP_ECC_BCH4_CODE_HW:
1248			/* Set  8th ECC byte as 0x0 for ROM compatibility */
1249			ecc_calc[eccbytes - 1] = 0x0;
1250			break;
1251		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1252			/* Add constant polynomial to remainder, so that
1253			 * ECC of blank pages results in 0x0 on reading back */
1254			for (j = 0; j < eccbytes; j++)
1255				ecc_calc[j] ^= bch8_polynomial[j];
1256			break;
1257		case OMAP_ECC_BCH8_CODE_HW:
1258			/* Set 14th ECC byte as 0x0 for ROM compatibility */
1259			ecc_calc[eccbytes - 1] = 0x0;
1260			break;
1261		case OMAP_ECC_BCH16_CODE_HW:
1262			break;
1263		default:
1264			return -EINVAL;
1265		}
1266
1267	ecc_calc += eccbytes;
1268	}
1269
1270	return 0;
1271}
1272
1273/**
1274 * erased_sector_bitflips - count bit flips
1275 * @data:	data sector buffer
1276 * @oob:	oob buffer
1277 * @info:	omap_nand_info
1278 *
1279 * Check the bit flips in erased page falls below correctable level.
1280 * If falls below, report the page as erased with correctable bit
1281 * flip, else report as uncorrectable page.
1282 */
1283static int erased_sector_bitflips(u_char *data, u_char *oob,
1284		struct omap_nand_info *info)
1285{
1286	int flip_bits = 0, i;
1287
1288	for (i = 0; i < info->nand.ecc.size; i++) {
1289		flip_bits += hweight8(~data[i]);
1290		if (flip_bits > info->nand.ecc.strength)
1291			return 0;
1292	}
1293
1294	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1295		flip_bits += hweight8(~oob[i]);
1296		if (flip_bits > info->nand.ecc.strength)
1297			return 0;
1298	}
1299
1300	/*
1301	 * Bit flips falls in correctable level.
1302	 * Fill data area with 0xFF
1303	 */
1304	if (flip_bits) {
1305		memset(data, 0xFF, info->nand.ecc.size);
1306		memset(oob, 0xFF, info->nand.ecc.bytes);
1307	}
1308
1309	return flip_bits;
1310}
1311
1312/**
1313 * omap_elm_correct_data - corrects page data area in case error reported
1314 * @mtd:	MTD device structure
1315 * @data:	page data
1316 * @read_ecc:	ecc read from nand flash
1317 * @calc_ecc:	ecc read from HW ECC registers
1318 *
1319 * Calculated ecc vector reported as zero in case of non-error pages.
1320 * In case of non-zero ecc vector, first filter out erased-pages, and
1321 * then process data via ELM to detect bit-flips.
1322 */
1323static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1324				u_char *read_ecc, u_char *calc_ecc)
1325{
1326	struct omap_nand_info *info = mtd_to_omap(mtd);
1327	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1328	int eccsteps = info->nand.ecc.steps;
1329	int i , j, stat = 0;
1330	int eccflag, actual_eccbytes;
1331	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1332	u_char *ecc_vec = calc_ecc;
1333	u_char *spare_ecc = read_ecc;
1334	u_char *erased_ecc_vec;
1335	u_char *buf;
1336	int bitflip_count;
1337	bool is_error_reported = false;
1338	u32 bit_pos, byte_pos, error_max, pos;
1339	int err;
1340
1341	switch (info->ecc_opt) {
1342	case OMAP_ECC_BCH4_CODE_HW:
1343		/* omit  7th ECC byte reserved for ROM code compatibility */
1344		actual_eccbytes = ecc->bytes - 1;
1345		erased_ecc_vec = bch4_vector;
1346		break;
1347	case OMAP_ECC_BCH8_CODE_HW:
1348		/* omit 14th ECC byte reserved for ROM code compatibility */
1349		actual_eccbytes = ecc->bytes - 1;
1350		erased_ecc_vec = bch8_vector;
1351		break;
1352	case OMAP_ECC_BCH16_CODE_HW:
1353		actual_eccbytes = ecc->bytes;
1354		erased_ecc_vec = bch16_vector;
1355		break;
1356	default:
1357		dev_err(&info->pdev->dev, "invalid driver configuration\n");
1358		return -EINVAL;
1359	}
1360
1361	/* Initialize elm error vector to zero */
1362	memset(err_vec, 0, sizeof(err_vec));
1363
1364	for (i = 0; i < eccsteps ; i++) {
1365		eccflag = 0;	/* initialize eccflag */
1366
1367		/*
1368		 * Check any error reported,
1369		 * In case of error, non zero ecc reported.
1370		 */
1371		for (j = 0; j < actual_eccbytes; j++) {
1372			if (calc_ecc[j] != 0) {
1373				eccflag = 1; /* non zero ecc, error present */
1374				break;
1375			}
1376		}
1377
1378		if (eccflag == 1) {
1379			if (memcmp(calc_ecc, erased_ecc_vec,
1380						actual_eccbytes) == 0) {
1381				/*
1382				 * calc_ecc[] matches pattern for ECC(all 0xff)
1383				 * so this is definitely an erased-page
1384				 */
1385			} else {
1386				buf = &data[info->nand.ecc.size * i];
1387				/*
1388				 * count number of 0-bits in read_buf.
1389				 * This check can be removed once a similar
1390				 * check is introduced in generic NAND driver
1391				 */
1392				bitflip_count = erased_sector_bitflips(
1393						buf, read_ecc, info);
1394				if (bitflip_count) {
1395					/*
1396					 * number of 0-bits within ECC limits
1397					 * So this may be an erased-page
1398					 */
1399					stat += bitflip_count;
1400				} else {
1401					/*
1402					 * Too many 0-bits. It may be a
1403					 * - programmed-page, OR
1404					 * - erased-page with many bit-flips
1405					 * So this page requires check by ELM
1406					 */
1407					err_vec[i].error_reported = true;
1408					is_error_reported = true;
1409				}
1410			}
1411		}
1412
1413		/* Update the ecc vector */
1414		calc_ecc += ecc->bytes;
1415		read_ecc += ecc->bytes;
1416	}
1417
1418	/* Check if any error reported */
1419	if (!is_error_reported)
1420		return stat;
1421
1422	/* Decode BCH error using ELM module */
1423	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1424
1425	err = 0;
1426	for (i = 0; i < eccsteps; i++) {
1427		if (err_vec[i].error_uncorrectable) {
1428			dev_err(&info->pdev->dev,
1429				"uncorrectable bit-flips found\n");
1430			err = -EBADMSG;
1431		} else if (err_vec[i].error_reported) {
1432			for (j = 0; j < err_vec[i].error_count; j++) {
1433				switch (info->ecc_opt) {
1434				case OMAP_ECC_BCH4_CODE_HW:
1435					/* Add 4 bits to take care of padding */
1436					pos = err_vec[i].error_loc[j] +
1437						BCH4_BIT_PAD;
1438					break;
1439				case OMAP_ECC_BCH8_CODE_HW:
1440				case OMAP_ECC_BCH16_CODE_HW:
1441					pos = err_vec[i].error_loc[j];
1442					break;
1443				default:
1444					return -EINVAL;
1445				}
1446				error_max = (ecc->size + actual_eccbytes) * 8;
1447				/* Calculate bit position of error */
1448				bit_pos = pos % 8;
1449
1450				/* Calculate byte position of error */
1451				byte_pos = (error_max - pos - 1) / 8;
1452
1453				if (pos < error_max) {
1454					if (byte_pos < 512) {
1455						pr_debug("bitflip@dat[%d]=%x\n",
1456						     byte_pos, data[byte_pos]);
1457						data[byte_pos] ^= 1 << bit_pos;
1458					} else {
1459						pr_debug("bitflip@oob[%d]=%x\n",
1460							(byte_pos - 512),
1461						     spare_ecc[byte_pos - 512]);
1462						spare_ecc[byte_pos - 512] ^=
1463							1 << bit_pos;
1464					}
1465				} else {
1466					dev_err(&info->pdev->dev,
1467						"invalid bit-flip @ %d:%d\n",
1468						byte_pos, bit_pos);
1469					err = -EBADMSG;
1470				}
1471			}
1472		}
1473
1474		/* Update number of correctable errors */
1475		stat += err_vec[i].error_count;
1476
1477		/* Update page data with sector size */
1478		data += ecc->size;
1479		spare_ecc += ecc->bytes;
1480	}
1481
1482	return (err) ? err : stat;
1483}
1484
1485/**
1486 * omap_write_page_bch - BCH ecc based write page function for entire page
1487 * @mtd:		mtd info structure
1488 * @chip:		nand chip info structure
1489 * @buf:		data buffer
1490 * @oob_required:	must write chip->oob_poi to OOB
1491 * @page:		page
1492 *
1493 * Custom write page method evolved to support multi sector writing in one shot
1494 */
1495static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1496			       const uint8_t *buf, int oob_required, int page)
1497{
1498	int i;
1499	uint8_t *ecc_calc = chip->buffers->ecccalc;
1500	uint32_t *eccpos = chip->ecc.layout->eccpos;
1501
1502	/* Enable GPMC ecc engine */
1503	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1504
1505	/* Write data */
1506	chip->write_buf(mtd, buf, mtd->writesize);
1507
1508	/* Update ecc vector from GPMC result registers */
1509	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1510
1511	for (i = 0; i < chip->ecc.total; i++)
1512		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1513
1514	/* Write ecc vector to OOB area */
1515	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1516	return 0;
1517}
1518
1519/**
1520 * omap_read_page_bch - BCH ecc based page read function for entire page
1521 * @mtd:		mtd info structure
1522 * @chip:		nand chip info structure
1523 * @buf:		buffer to store read data
1524 * @oob_required:	caller requires OOB data read to chip->oob_poi
1525 * @page:		page number to read
1526 *
1527 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1528 * used for error correction.
1529 * Custom method evolved to support ELM error correction & multi sector
1530 * reading. On reading page data area is read along with OOB data with
1531 * ecc engine enabled. ecc vector updated after read of OOB data.
1532 * For non error pages ecc vector reported as zero.
1533 */
1534static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1535				uint8_t *buf, int oob_required, int page)
1536{
1537	uint8_t *ecc_calc = chip->buffers->ecccalc;
1538	uint8_t *ecc_code = chip->buffers->ecccode;
1539	uint32_t *eccpos = chip->ecc.layout->eccpos;
1540	uint8_t *oob = &chip->oob_poi[eccpos[0]];
1541	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1542	int stat;
1543	unsigned int max_bitflips = 0;
1544
1545	/* Enable GPMC ecc engine */
1546	chip->ecc.hwctl(mtd, NAND_ECC_READ);
1547
1548	/* Read data */
1549	chip->read_buf(mtd, buf, mtd->writesize);
1550
1551	/* Read oob bytes */
1552	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1553	chip->read_buf(mtd, oob, chip->ecc.total);
1554
1555	/* Calculate ecc bytes */
1556	chip->ecc.calculate(mtd, buf, ecc_calc);
1557
1558	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1559
1560	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1561
1562	if (stat < 0) {
1563		mtd->ecc_stats.failed++;
1564	} else {
1565		mtd->ecc_stats.corrected += stat;
1566		max_bitflips = max_t(unsigned int, max_bitflips, stat);
1567	}
1568
1569	return max_bitflips;
1570}
1571
1572/**
1573 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1574 * @omap_nand_info: NAND device structure containing platform data
1575 */
1576static bool is_elm_present(struct omap_nand_info *info,
1577			   struct device_node *elm_node)
1578{
1579	struct platform_device *pdev;
1580
1581	/* check whether elm-id is passed via DT */
1582	if (!elm_node) {
1583		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1584		return false;
1585	}
1586	pdev = of_find_device_by_node(elm_node);
1587	/* check whether ELM device is registered */
1588	if (!pdev) {
1589		dev_err(&info->pdev->dev, "ELM device not found\n");
1590		return false;
1591	}
1592	/* ELM module available, now configure it */
1593	info->elm_dev = &pdev->dev;
1594	return true;
1595}
1596
1597static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1598				 struct omap_nand_platform_data	*pdata)
1599{
1600	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1601
1602	switch (info->ecc_opt) {
1603	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1604	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1605		ecc_needs_omap_bch = false;
1606		ecc_needs_bch = true;
1607		ecc_needs_elm = false;
1608		break;
1609	case OMAP_ECC_BCH4_CODE_HW:
1610	case OMAP_ECC_BCH8_CODE_HW:
1611	case OMAP_ECC_BCH16_CODE_HW:
1612		ecc_needs_omap_bch = true;
1613		ecc_needs_bch = false;
1614		ecc_needs_elm = true;
1615		break;
1616	default:
1617		ecc_needs_omap_bch = false;
1618		ecc_needs_bch = false;
1619		ecc_needs_elm = false;
1620		break;
1621	}
1622
1623	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1624		dev_err(&info->pdev->dev,
1625			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1626		return false;
1627	}
1628	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1629		dev_err(&info->pdev->dev,
1630			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1631		return false;
1632	}
1633	if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
1634		dev_err(&info->pdev->dev, "ELM not available\n");
1635		return false;
1636	}
1637
1638	return true;
1639}
1640
1641static int omap_nand_probe(struct platform_device *pdev)
1642{
1643	struct omap_nand_info		*info;
1644	struct omap_nand_platform_data	*pdata;
1645	struct mtd_info			*mtd;
1646	struct nand_chip		*nand_chip;
1647	struct nand_ecclayout		*ecclayout;
1648	int				err;
1649	int				i;
1650	dma_cap_mask_t			mask;
1651	unsigned			sig;
1652	unsigned			oob_index;
1653	struct resource			*res;
1654
1655	pdata = dev_get_platdata(&pdev->dev);
1656	if (pdata == NULL) {
1657		dev_err(&pdev->dev, "platform data missing\n");
1658		return -ENODEV;
1659	}
1660
1661	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1662				GFP_KERNEL);
1663	if (!info)
1664		return -ENOMEM;
1665
1666	platform_set_drvdata(pdev, info);
1667
1668	info->pdev		= pdev;
1669	info->gpmc_cs		= pdata->cs;
1670	info->reg		= pdata->reg;
1671	info->of_node		= pdata->of_node;
1672	info->ecc_opt		= pdata->ecc_opt;
1673	nand_chip		= &info->nand;
1674	mtd			= nand_to_mtd(nand_chip);
1675	mtd->dev.parent		= &pdev->dev;
1676	nand_chip->ecc.priv	= NULL;
1677	nand_set_flash_node(nand_chip, pdata->of_node);
1678
1679	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1680	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1681	if (IS_ERR(nand_chip->IO_ADDR_R))
1682		return PTR_ERR(nand_chip->IO_ADDR_R);
1683
1684	info->phys_base = res->start;
1685
1686	nand_chip->controller = &omap_gpmc_controller;
1687
1688	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1689	nand_chip->cmd_ctrl  = omap_hwcontrol;
1690
1691	/*
1692	 * If RDY/BSY line is connected to OMAP then use the omap ready
1693	 * function and the generic nand_wait function which reads the status
1694	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1695	 * chip delay which is slightly more than tR (AC Timing) of the NAND
1696	 * device and read status register until you get a failure or success
1697	 */
1698	if (pdata->dev_ready) {
1699		nand_chip->dev_ready = omap_dev_ready;
1700		nand_chip->chip_delay = 0;
1701	} else {
1702		nand_chip->waitfunc = omap_wait;
1703		nand_chip->chip_delay = 50;
1704	}
1705
1706	if (pdata->flash_bbt)
1707		nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1708	else
1709		nand_chip->options |= NAND_SKIP_BBTSCAN;
1710
1711	/* scan NAND device connected to chip controller */
1712	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1713	if (nand_scan_ident(mtd, 1, NULL)) {
1714		dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
1715		err = -ENXIO;
1716		goto return_error;
1717	}
1718
1719	/* re-populate low-level callbacks based on xfer modes */
1720	switch (pdata->xfer_type) {
1721	case NAND_OMAP_PREFETCH_POLLED:
1722		nand_chip->read_buf   = omap_read_buf_pref;
1723		nand_chip->write_buf  = omap_write_buf_pref;
1724		break;
1725
1726	case NAND_OMAP_POLLED:
1727		/* Use nand_base defaults for {read,write}_buf */
1728		break;
1729
1730	case NAND_OMAP_PREFETCH_DMA:
1731		dma_cap_zero(mask);
1732		dma_cap_set(DMA_SLAVE, mask);
1733		sig = OMAP24XX_DMA_GPMC;
1734		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1735		if (!info->dma) {
1736			dev_err(&pdev->dev, "DMA engine request failed\n");
1737			err = -ENXIO;
1738			goto return_error;
1739		} else {
1740			struct dma_slave_config cfg;
1741
1742			memset(&cfg, 0, sizeof(cfg));
1743			cfg.src_addr = info->phys_base;
1744			cfg.dst_addr = info->phys_base;
1745			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1746			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1747			cfg.src_maxburst = 16;
1748			cfg.dst_maxburst = 16;
1749			err = dmaengine_slave_config(info->dma, &cfg);
1750			if (err) {
1751				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1752					err);
1753				goto return_error;
1754			}
1755			nand_chip->read_buf   = omap_read_buf_dma_pref;
1756			nand_chip->write_buf  = omap_write_buf_dma_pref;
1757		}
1758		break;
1759
1760	case NAND_OMAP_PREFETCH_IRQ:
1761		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1762		if (info->gpmc_irq_fifo <= 0) {
1763			dev_err(&pdev->dev, "error getting fifo irq\n");
1764			err = -ENODEV;
1765			goto return_error;
1766		}
1767		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1768					omap_nand_irq, IRQF_SHARED,
1769					"gpmc-nand-fifo", info);
1770		if (err) {
1771			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1772						info->gpmc_irq_fifo, err);
1773			info->gpmc_irq_fifo = 0;
1774			goto return_error;
1775		}
1776
1777		info->gpmc_irq_count = platform_get_irq(pdev, 1);
1778		if (info->gpmc_irq_count <= 0) {
1779			dev_err(&pdev->dev, "error getting count irq\n");
1780			err = -ENODEV;
1781			goto return_error;
1782		}
1783		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1784					omap_nand_irq, IRQF_SHARED,
1785					"gpmc-nand-count", info);
1786		if (err) {
1787			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1788						info->gpmc_irq_count, err);
1789			info->gpmc_irq_count = 0;
1790			goto return_error;
1791		}
1792
1793		nand_chip->read_buf  = omap_read_buf_irq_pref;
1794		nand_chip->write_buf = omap_write_buf_irq_pref;
1795
1796		break;
1797
1798	default:
1799		dev_err(&pdev->dev,
1800			"xfer_type(%d) not supported!\n", pdata->xfer_type);
1801		err = -EINVAL;
1802		goto return_error;
1803	}
1804
1805	if (!omap2_nand_ecc_check(info, pdata)) {
1806		err = -EINVAL;
1807		goto return_error;
1808	}
1809
1810	/*
1811	 * Bail out earlier to let NAND_ECC_SOFT code create its own
1812	 * ecclayout instead of using ours.
1813	 */
1814	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1815		nand_chip->ecc.mode = NAND_ECC_SOFT;
1816		goto scan_tail;
1817	}
1818
1819	/* populate MTD interface based on ECC scheme */
1820	ecclayout		= &info->oobinfo;
1821	nand_chip->ecc.layout	= ecclayout;
1822	switch (info->ecc_opt) {
1823	case OMAP_ECC_HAM1_CODE_HW:
1824		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1825		nand_chip->ecc.mode             = NAND_ECC_HW;
1826		nand_chip->ecc.bytes            = 3;
1827		nand_chip->ecc.size             = 512;
1828		nand_chip->ecc.strength         = 1;
1829		nand_chip->ecc.calculate        = omap_calculate_ecc;
1830		nand_chip->ecc.hwctl            = omap_enable_hwecc;
1831		nand_chip->ecc.correct          = omap_correct_data;
1832		/* define ECC layout */
1833		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1834							(mtd->writesize /
1835							nand_chip->ecc.size);
1836		if (nand_chip->options & NAND_BUSWIDTH_16)
1837			oob_index		= BADBLOCK_MARKER_LENGTH;
1838		else
1839			oob_index		= 1;
1840		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1841			ecclayout->eccpos[i]	= oob_index;
1842		/* no reserved-marker in ecclayout for this ecc-scheme */
1843		ecclayout->oobfree->offset	=
1844				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1845		break;
1846
1847	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1848		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1849		nand_chip->ecc.mode		= NAND_ECC_HW;
1850		nand_chip->ecc.size		= 512;
1851		nand_chip->ecc.bytes		= 7;
1852		nand_chip->ecc.strength		= 4;
1853		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1854		nand_chip->ecc.correct		= nand_bch_correct_data;
1855		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1856		/* define ECC layout */
1857		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1858							(mtd->writesize /
1859							nand_chip->ecc.size);
1860		oob_index			= BADBLOCK_MARKER_LENGTH;
1861		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1862			ecclayout->eccpos[i] = oob_index;
1863			if (((i + 1) % nand_chip->ecc.bytes) == 0)
1864				oob_index++;
1865		}
1866		/* include reserved-marker in ecclayout->oobfree calculation */
1867		ecclayout->oobfree->offset	= 1 +
1868				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1869		/* software bch library is used for locating errors */
1870		nand_chip->ecc.priv		= nand_bch_init(mtd);
1871		if (!nand_chip->ecc.priv) {
1872			dev_err(&info->pdev->dev, "unable to use BCH library\n");
1873			err = -EINVAL;
1874			goto return_error;
1875		}
1876		break;
1877
1878	case OMAP_ECC_BCH4_CODE_HW:
1879		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1880		nand_chip->ecc.mode		= NAND_ECC_HW;
1881		nand_chip->ecc.size		= 512;
1882		/* 14th bit is kept reserved for ROM-code compatibility */
1883		nand_chip->ecc.bytes		= 7 + 1;
1884		nand_chip->ecc.strength		= 4;
1885		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1886		nand_chip->ecc.correct		= omap_elm_correct_data;
1887		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1888		nand_chip->ecc.read_page	= omap_read_page_bch;
1889		nand_chip->ecc.write_page	= omap_write_page_bch;
1890		/* define ECC layout */
1891		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1892							(mtd->writesize /
1893							nand_chip->ecc.size);
1894		oob_index			= BADBLOCK_MARKER_LENGTH;
1895		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1896			ecclayout->eccpos[i]	= oob_index;
1897		/* reserved marker already included in ecclayout->eccbytes */
1898		ecclayout->oobfree->offset	=
1899				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1900
1901		err = elm_config(info->elm_dev, BCH4_ECC,
1902				 mtd->writesize / nand_chip->ecc.size,
1903				 nand_chip->ecc.size, nand_chip->ecc.bytes);
1904		if (err < 0)
1905			goto return_error;
1906		break;
1907
1908	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1909		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1910		nand_chip->ecc.mode		= NAND_ECC_HW;
1911		nand_chip->ecc.size		= 512;
1912		nand_chip->ecc.bytes		= 13;
1913		nand_chip->ecc.strength		= 8;
1914		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1915		nand_chip->ecc.correct		= nand_bch_correct_data;
1916		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1917		/* define ECC layout */
1918		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1919							(mtd->writesize /
1920							nand_chip->ecc.size);
1921		oob_index			= BADBLOCK_MARKER_LENGTH;
1922		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1923			ecclayout->eccpos[i] = oob_index;
1924			if (((i + 1) % nand_chip->ecc.bytes) == 0)
1925				oob_index++;
1926		}
1927		/* include reserved-marker in ecclayout->oobfree calculation */
1928		ecclayout->oobfree->offset	= 1 +
1929				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1930		/* software bch library is used for locating errors */
1931		nand_chip->ecc.priv		= nand_bch_init(mtd);
1932		if (!nand_chip->ecc.priv) {
1933			dev_err(&info->pdev->dev, "unable to use BCH library\n");
1934			err = -EINVAL;
1935			goto return_error;
1936		}
1937		break;
1938
1939	case OMAP_ECC_BCH8_CODE_HW:
1940		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1941		nand_chip->ecc.mode		= NAND_ECC_HW;
1942		nand_chip->ecc.size		= 512;
1943		/* 14th bit is kept reserved for ROM-code compatibility */
1944		nand_chip->ecc.bytes		= 13 + 1;
1945		nand_chip->ecc.strength		= 8;
1946		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1947		nand_chip->ecc.correct		= omap_elm_correct_data;
1948		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1949		nand_chip->ecc.read_page	= omap_read_page_bch;
1950		nand_chip->ecc.write_page	= omap_write_page_bch;
1951
1952		err = elm_config(info->elm_dev, BCH8_ECC,
1953				 mtd->writesize / nand_chip->ecc.size,
1954				 nand_chip->ecc.size, nand_chip->ecc.bytes);
1955		if (err < 0)
1956			goto return_error;
1957
1958		/* define ECC layout */
1959		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1960							(mtd->writesize /
1961							nand_chip->ecc.size);
1962		oob_index			= BADBLOCK_MARKER_LENGTH;
1963		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1964			ecclayout->eccpos[i]	= oob_index;
1965		/* reserved marker already included in ecclayout->eccbytes */
1966		ecclayout->oobfree->offset	=
1967				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1968		break;
1969
1970	case OMAP_ECC_BCH16_CODE_HW:
1971		pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1972		nand_chip->ecc.mode		= NAND_ECC_HW;
1973		nand_chip->ecc.size		= 512;
1974		nand_chip->ecc.bytes		= 26;
1975		nand_chip->ecc.strength		= 16;
1976		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1977		nand_chip->ecc.correct		= omap_elm_correct_data;
1978		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1979		nand_chip->ecc.read_page	= omap_read_page_bch;
1980		nand_chip->ecc.write_page	= omap_write_page_bch;
1981
1982		err = elm_config(info->elm_dev, BCH16_ECC,
1983				 mtd->writesize / nand_chip->ecc.size,
1984				 nand_chip->ecc.size, nand_chip->ecc.bytes);
1985		if (err < 0)
1986			goto return_error;
1987
1988		/* define ECC layout */
1989		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1990							(mtd->writesize /
1991							nand_chip->ecc.size);
1992		oob_index			= BADBLOCK_MARKER_LENGTH;
1993		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1994			ecclayout->eccpos[i]	= oob_index;
1995		/* reserved marker already included in ecclayout->eccbytes */
1996		ecclayout->oobfree->offset	=
1997				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1998		break;
1999	default:
2000		dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2001		err = -EINVAL;
2002		goto return_error;
2003	}
2004
2005	/* all OOB bytes from oobfree->offset till end off OOB are free */
2006	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2007	/* check if NAND device's OOB is enough to store ECC signatures */
2008	if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
2009		dev_err(&info->pdev->dev,
2010			"not enough OOB bytes required = %d, available=%d\n",
2011			ecclayout->eccbytes, mtd->oobsize);
2012		err = -EINVAL;
2013		goto return_error;
2014	}
2015
2016scan_tail:
2017	/* second phase scan */
2018	if (nand_scan_tail(mtd)) {
2019		err = -ENXIO;
2020		goto return_error;
2021	}
2022
2023	mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2024
2025	platform_set_drvdata(pdev, mtd);
2026
2027	return 0;
2028
2029return_error:
2030	if (info->dma)
2031		dma_release_channel(info->dma);
2032	if (nand_chip->ecc.priv) {
2033		nand_bch_free(nand_chip->ecc.priv);
2034		nand_chip->ecc.priv = NULL;
2035	}
2036	return err;
2037}
2038
2039static int omap_nand_remove(struct platform_device *pdev)
2040{
2041	struct mtd_info *mtd = platform_get_drvdata(pdev);
2042	struct nand_chip *nand_chip = mtd_to_nand(mtd);
2043	struct omap_nand_info *info = mtd_to_omap(mtd);
2044	if (nand_chip->ecc.priv) {
2045		nand_bch_free(nand_chip->ecc.priv);
2046		nand_chip->ecc.priv = NULL;
2047	}
2048	if (info->dma)
2049		dma_release_channel(info->dma);
2050	nand_release(mtd);
2051	return 0;
2052}
2053
2054static struct platform_driver omap_nand_driver = {
2055	.probe		= omap_nand_probe,
2056	.remove		= omap_nand_remove,
2057	.driver		= {
2058		.name	= DRIVER_NAME,
2059	},
2060};
2061
2062module_platform_driver(omap_nand_driver);
2063
2064MODULE_ALIAS("platform:" DRIVER_NAME);
2065MODULE_LICENSE("GPL");
2066MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");