Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/delay.h>
  14#include <linux/module.h>
  15#include <linux/interrupt.h>
  16#include <linux/jiffies.h>
  17#include <linux/sched.h>
  18#include <linux/mtd/mtd.h>
  19#include <linux/mtd/nand.h>
  20#include <linux/mtd/partitions.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23
  24#ifdef CONFIG_MTD_NAND_OMAP_BCH
  25#include <linux/bch.h>
  26#endif
  27
  28#include <plat/dma.h>
  29#include <plat/gpmc.h>
  30#include <plat/nand.h>
  31
  32#define	DRIVER_NAME	"omap2-nand"
  33#define	OMAP_NAND_TIMEOUT_MS	5000
  34
  35#define NAND_Ecc_P1e		(1 << 0)
  36#define NAND_Ecc_P2e		(1 << 1)
  37#define NAND_Ecc_P4e		(1 << 2)
  38#define NAND_Ecc_P8e		(1 << 3)
  39#define NAND_Ecc_P16e		(1 << 4)
  40#define NAND_Ecc_P32e		(1 << 5)
  41#define NAND_Ecc_P64e		(1 << 6)
  42#define NAND_Ecc_P128e		(1 << 7)
  43#define NAND_Ecc_P256e		(1 << 8)
  44#define NAND_Ecc_P512e		(1 << 9)
  45#define NAND_Ecc_P1024e		(1 << 10)
  46#define NAND_Ecc_P2048e		(1 << 11)
  47
  48#define NAND_Ecc_P1o		(1 << 16)
  49#define NAND_Ecc_P2o		(1 << 17)
  50#define NAND_Ecc_P4o		(1 << 18)
  51#define NAND_Ecc_P8o		(1 << 19)
  52#define NAND_Ecc_P16o		(1 << 20)
  53#define NAND_Ecc_P32o		(1 << 21)
  54#define NAND_Ecc_P64o		(1 << 22)
  55#define NAND_Ecc_P128o		(1 << 23)
  56#define NAND_Ecc_P256o		(1 << 24)
  57#define NAND_Ecc_P512o		(1 << 25)
  58#define NAND_Ecc_P1024o		(1 << 26)
  59#define NAND_Ecc_P2048o		(1 << 27)
  60
  61#define TF(value)	(value ? 1 : 0)
  62
  63#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
  64#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
  65#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
  66#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
  67#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
  68#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
  69#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
  70#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
  71
  72#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
  73#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
  74#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
  75#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
  76#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
  77#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
  78#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
  79#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
  80
  81#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
  82#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
  83#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
  84#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
  85#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
  86#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
  87#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
  88#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
  89
  90#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
  91#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
  92#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
  93#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
  94#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
  95#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
  96#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
  97#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
  98
  99#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
 100#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
 101
 102/* oob info generated runtime depending on ecc algorithm and layout selected */
 103static struct nand_ecclayout omap_oobinfo;
 104/* Define some generic bad / good block scan pattern which are used
 105 * while scanning a device for factory marked good / bad blocks
 106 */
 107static uint8_t scan_ff_pattern[] = { 0xff };
 108static struct nand_bbt_descr bb_descrip_flashbased = {
 109	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
 110	.offs = 0,
 111	.len = 1,
 112	.pattern = scan_ff_pattern,
 113};
 114
 115
 116struct omap_nand_info {
 117	struct nand_hw_control		controller;
 118	struct omap_nand_platform_data	*pdata;
 119	struct mtd_info			mtd;
 120	struct nand_chip		nand;
 121	struct platform_device		*pdev;
 122
 123	int				gpmc_cs;
 124	unsigned long			phys_base;
 125	struct completion		comp;
 126	int				dma_ch;
 127	int				gpmc_irq;
 128	enum {
 129		OMAP_NAND_IO_READ = 0,	/* read */
 130		OMAP_NAND_IO_WRITE,	/* write */
 131	} iomode;
 132	u_char				*buf;
 133	int					buf_len;
 134
 135#ifdef CONFIG_MTD_NAND_OMAP_BCH
 136	struct bch_control             *bch;
 137	struct nand_ecclayout           ecclayout;
 138#endif
 139};
 140
 141/**
 142 * omap_hwcontrol - hardware specific access to control-lines
 143 * @mtd: MTD device structure
 144 * @cmd: command to device
 145 * @ctrl:
 146 * NAND_NCE: bit 0 -> don't care
 147 * NAND_CLE: bit 1 -> Command Latch
 148 * NAND_ALE: bit 2 -> Address Latch
 149 *
 150 * NOTE: boards may use different bits for these!!
 151 */
 152static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 153{
 154	struct omap_nand_info *info = container_of(mtd,
 155					struct omap_nand_info, mtd);
 156
 157	if (cmd != NAND_CMD_NONE) {
 158		if (ctrl & NAND_CLE)
 159			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
 160
 161		else if (ctrl & NAND_ALE)
 162			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
 163
 164		else /* NAND_NCE */
 165			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
 166	}
 167}
 168
 169/**
 170 * omap_read_buf8 - read data from NAND controller into buffer
 171 * @mtd: MTD device structure
 172 * @buf: buffer to store date
 173 * @len: number of bytes to read
 174 */
 175static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 176{
 177	struct nand_chip *nand = mtd->priv;
 178
 179	ioread8_rep(nand->IO_ADDR_R, buf, len);
 180}
 181
 182/**
 183 * omap_write_buf8 - write buffer to NAND controller
 184 * @mtd: MTD device structure
 185 * @buf: data buffer
 186 * @len: number of bytes to write
 187 */
 188static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 189{
 190	struct omap_nand_info *info = container_of(mtd,
 191						struct omap_nand_info, mtd);
 192	u_char *p = (u_char *)buf;
 193	u32	status = 0;
 194
 195	while (len--) {
 196		iowrite8(*p++, info->nand.IO_ADDR_W);
 197		/* wait until buffer is available for write */
 198		do {
 199			status = gpmc_read_status(GPMC_STATUS_BUFFER);
 200		} while (!status);
 201	}
 202}
 203
 204/**
 205 * omap_read_buf16 - read data from NAND controller into buffer
 206 * @mtd: MTD device structure
 207 * @buf: buffer to store date
 208 * @len: number of bytes to read
 209 */
 210static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 211{
 212	struct nand_chip *nand = mtd->priv;
 213
 214	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 215}
 216
 217/**
 218 * omap_write_buf16 - write buffer to NAND controller
 219 * @mtd: MTD device structure
 220 * @buf: data buffer
 221 * @len: number of bytes to write
 222 */
 223static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 224{
 225	struct omap_nand_info *info = container_of(mtd,
 226						struct omap_nand_info, mtd);
 227	u16 *p = (u16 *) buf;
 228	u32	status = 0;
 229	/* FIXME try bursts of writesw() or DMA ... */
 230	len >>= 1;
 231
 232	while (len--) {
 233		iowrite16(*p++, info->nand.IO_ADDR_W);
 234		/* wait until buffer is available for write */
 235		do {
 236			status = gpmc_read_status(GPMC_STATUS_BUFFER);
 237		} while (!status);
 238	}
 239}
 240
 241/**
 242 * omap_read_buf_pref - read data from NAND controller into buffer
 243 * @mtd: MTD device structure
 244 * @buf: buffer to store date
 245 * @len: number of bytes to read
 246 */
 247static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 248{
 249	struct omap_nand_info *info = container_of(mtd,
 250						struct omap_nand_info, mtd);
 251	uint32_t r_count = 0;
 252	int ret = 0;
 253	u32 *p = (u32 *)buf;
 254
 255	/* take care of subpage reads */
 256	if (len % 4) {
 257		if (info->nand.options & NAND_BUSWIDTH_16)
 258			omap_read_buf16(mtd, buf, len % 4);
 259		else
 260			omap_read_buf8(mtd, buf, len % 4);
 261		p = (u32 *) (buf + len % 4);
 262		len -= len % 4;
 263	}
 264
 265	/* configure and start prefetch transfer */
 266	ret = gpmc_prefetch_enable(info->gpmc_cs,
 267			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
 268	if (ret) {
 269		/* PFPW engine is busy, use cpu copy method */
 270		if (info->nand.options & NAND_BUSWIDTH_16)
 271			omap_read_buf16(mtd, (u_char *)p, len);
 272		else
 273			omap_read_buf8(mtd, (u_char *)p, len);
 274	} else {
 275		do {
 276			r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 277			r_count = r_count >> 2;
 278			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 279			p += r_count;
 280			len -= r_count << 2;
 281		} while (len);
 282		/* disable and stop the PFPW engine */
 283		gpmc_prefetch_reset(info->gpmc_cs);
 284	}
 285}
 286
 287/**
 288 * omap_write_buf_pref - write buffer to NAND controller
 289 * @mtd: MTD device structure
 290 * @buf: data buffer
 291 * @len: number of bytes to write
 292 */
 293static void omap_write_buf_pref(struct mtd_info *mtd,
 294					const u_char *buf, int len)
 295{
 296	struct omap_nand_info *info = container_of(mtd,
 297						struct omap_nand_info, mtd);
 298	uint32_t w_count = 0;
 299	int i = 0, ret = 0;
 300	u16 *p = (u16 *)buf;
 301	unsigned long tim, limit;
 302
 303	/* take care of subpage writes */
 304	if (len % 2 != 0) {
 305		writeb(*buf, info->nand.IO_ADDR_W);
 306		p = (u16 *)(buf + 1);
 307		len--;
 308	}
 309
 310	/*  configure and start prefetch transfer */
 311	ret = gpmc_prefetch_enable(info->gpmc_cs,
 312			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
 313	if (ret) {
 314		/* PFPW engine is busy, use cpu copy method */
 315		if (info->nand.options & NAND_BUSWIDTH_16)
 316			omap_write_buf16(mtd, (u_char *)p, len);
 317		else
 318			omap_write_buf8(mtd, (u_char *)p, len);
 319	} else {
 320		while (len) {
 321			w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 322			w_count = w_count >> 1;
 323			for (i = 0; (i < w_count) && len; i++, len -= 2)
 324				iowrite16(*p++, info->nand.IO_ADDR_W);
 325		}
 326		/* wait for data to flushed-out before reset the prefetch */
 327		tim = 0;
 328		limit = (loops_per_jiffy *
 329					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 330		while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 331			cpu_relax();
 332
 333		/* disable and stop the PFPW engine */
 334		gpmc_prefetch_reset(info->gpmc_cs);
 335	}
 336}
 337
 338/*
 339 * omap_nand_dma_cb: callback on the completion of dma transfer
 340 * @lch: logical channel
 341 * @ch_satuts: channel status
 342 * @data: pointer to completion data structure
 343 */
 344static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
 345{
 346	complete((struct completion *) data);
 347}
 348
 349/*
 350 * omap_nand_dma_transfer: configer and start dma transfer
 351 * @mtd: MTD device structure
 352 * @addr: virtual address in RAM of source/destination
 353 * @len: number of data bytes to be transferred
 354 * @is_write: flag for read/write operation
 355 */
 356static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 357					unsigned int len, int is_write)
 358{
 359	struct omap_nand_info *info = container_of(mtd,
 360					struct omap_nand_info, mtd);
 361	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 362							DMA_FROM_DEVICE;
 363	dma_addr_t dma_addr;
 364	int ret;
 365	unsigned long tim, limit;
 366
 367	/* The fifo depth is 64 bytes max.
 368	 * But configure the FIFO-threahold to 32 to get a sync at each frame
 369	 * and frame length is 32 bytes.
 370	 */
 371	int buf_len = len >> 6;
 372
 373	if (addr >= high_memory) {
 374		struct page *p1;
 375
 376		if (((size_t)addr & PAGE_MASK) !=
 377			((size_t)(addr + len - 1) & PAGE_MASK))
 378			goto out_copy;
 379		p1 = vmalloc_to_page(addr);
 380		if (!p1)
 381			goto out_copy;
 382		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 383	}
 384
 385	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
 386	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
 387		dev_err(&info->pdev->dev,
 388			"Couldn't DMA map a %d byte buffer\n", len);
 389		goto out_copy;
 390	}
 391
 392	if (is_write) {
 393	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 394						info->phys_base, 0, 0);
 395	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 396							dma_addr, 0, 0);
 397	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 398					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 399					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
 400	} else {
 401	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 402						info->phys_base, 0, 0);
 403	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 404							dma_addr, 0, 0);
 405	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 406					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 407					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
 408	}
 409	/*  configure and start prefetch transfer */
 410	ret = gpmc_prefetch_enable(info->gpmc_cs,
 411			PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
 412	if (ret)
 413		/* PFPW engine is busy, use cpu copy method */
 414		goto out_copy_unmap;
 415
 416	init_completion(&info->comp);
 417
 418	omap_start_dma(info->dma_ch);
 419
 420	/* setup and start DMA using dma_addr */
 421	wait_for_completion(&info->comp);
 422	tim = 0;
 423	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 424	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 425		cpu_relax();
 426
 427	/* disable and stop the PFPW engine */
 428	gpmc_prefetch_reset(info->gpmc_cs);
 429
 430	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
 431	return 0;
 432
 433out_copy_unmap:
 434	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
 435out_copy:
 436	if (info->nand.options & NAND_BUSWIDTH_16)
 437		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 438			: omap_write_buf16(mtd, (u_char *) addr, len);
 439	else
 440		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 441			: omap_write_buf8(mtd, (u_char *) addr, len);
 442	return 0;
 443}
 444
 445/**
 446 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 447 * @mtd: MTD device structure
 448 * @buf: buffer to store date
 449 * @len: number of bytes to read
 450 */
 451static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 452{
 453	if (len <= mtd->oobsize)
 454		omap_read_buf_pref(mtd, buf, len);
 455	else
 456		/* start transfer in DMA mode */
 457		omap_nand_dma_transfer(mtd, buf, len, 0x0);
 458}
 459
 460/**
 461 * omap_write_buf_dma_pref - write buffer to NAND controller
 462 * @mtd: MTD device structure
 463 * @buf: data buffer
 464 * @len: number of bytes to write
 465 */
 466static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 467					const u_char *buf, int len)
 468{
 469	if (len <= mtd->oobsize)
 470		omap_write_buf_pref(mtd, buf, len);
 471	else
 472		/* start transfer in DMA mode */
 473		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 474}
 475
 476/*
 477 * omap_nand_irq - GMPC irq handler
 478 * @this_irq: gpmc irq number
 479 * @dev: omap_nand_info structure pointer is passed here
 480 */
 481static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 482{
 483	struct omap_nand_info *info = (struct omap_nand_info *) dev;
 484	u32 bytes;
 485	u32 irq_stat;
 486
 487	irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 488	bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 489	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 490	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 491		if (irq_stat & 0x2)
 492			goto done;
 493
 494		if (info->buf_len && (info->buf_len < bytes))
 495			bytes = info->buf_len;
 496		else if (!info->buf_len)
 497			bytes = 0;
 498		iowrite32_rep(info->nand.IO_ADDR_W,
 499						(u32 *)info->buf, bytes >> 2);
 500		info->buf = info->buf + bytes;
 501		info->buf_len -= bytes;
 502
 503	} else {
 504		ioread32_rep(info->nand.IO_ADDR_R,
 505						(u32 *)info->buf, bytes >> 2);
 506		info->buf = info->buf + bytes;
 507
 508		if (irq_stat & 0x2)
 509			goto done;
 510	}
 511	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
 512
 513	return IRQ_HANDLED;
 514
 515done:
 516	complete(&info->comp);
 517	/* disable irq */
 518	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
 519
 520	/* clear status */
 521	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
 522
 523	return IRQ_HANDLED;
 524}
 525
 526/*
 527 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 528 * @mtd: MTD device structure
 529 * @buf: buffer to store date
 530 * @len: number of bytes to read
 531 */
 532static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 533{
 534	struct omap_nand_info *info = container_of(mtd,
 535						struct omap_nand_info, mtd);
 536	int ret = 0;
 537
 538	if (len <= mtd->oobsize) {
 539		omap_read_buf_pref(mtd, buf, len);
 540		return;
 541	}
 542
 543	info->iomode = OMAP_NAND_IO_READ;
 544	info->buf = buf;
 545	init_completion(&info->comp);
 546
 547	/*  configure and start prefetch transfer */
 548	ret = gpmc_prefetch_enable(info->gpmc_cs,
 549			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
 550	if (ret)
 551		/* PFPW engine is busy, use cpu copy method */
 552		goto out_copy;
 553
 554	info->buf_len = len;
 555	/* enable irq */
 556	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
 557		(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
 558
 559	/* waiting for read to complete */
 560	wait_for_completion(&info->comp);
 561
 562	/* disable and stop the PFPW engine */
 563	gpmc_prefetch_reset(info->gpmc_cs);
 564	return;
 565
 566out_copy:
 567	if (info->nand.options & NAND_BUSWIDTH_16)
 568		omap_read_buf16(mtd, buf, len);
 569	else
 570		omap_read_buf8(mtd, buf, len);
 571}
 572
 573/*
 574 * omap_write_buf_irq_pref - write buffer to NAND controller
 575 * @mtd: MTD device structure
 576 * @buf: data buffer
 577 * @len: number of bytes to write
 578 */
 579static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 580					const u_char *buf, int len)
 581{
 582	struct omap_nand_info *info = container_of(mtd,
 583						struct omap_nand_info, mtd);
 584	int ret = 0;
 585	unsigned long tim, limit;
 586
 587	if (len <= mtd->oobsize) {
 588		omap_write_buf_pref(mtd, buf, len);
 589		return;
 590	}
 591
 592	info->iomode = OMAP_NAND_IO_WRITE;
 593	info->buf = (u_char *) buf;
 594	init_completion(&info->comp);
 595
 596	/* configure and start prefetch transfer : size=24 */
 597	ret = gpmc_prefetch_enable(info->gpmc_cs,
 598			(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
 599	if (ret)
 600		/* PFPW engine is busy, use cpu copy method */
 601		goto out_copy;
 602
 603	info->buf_len = len;
 604	/* enable irq */
 605	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
 606			(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
 607
 608	/* waiting for write to complete */
 609	wait_for_completion(&info->comp);
 610	/* wait for data to flushed-out before reset the prefetch */
 611	tim = 0;
 612	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 613	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 614		cpu_relax();
 615
 616	/* disable and stop the PFPW engine */
 617	gpmc_prefetch_reset(info->gpmc_cs);
 618	return;
 619
 620out_copy:
 621	if (info->nand.options & NAND_BUSWIDTH_16)
 622		omap_write_buf16(mtd, buf, len);
 623	else
 624		omap_write_buf8(mtd, buf, len);
 625}
 626
 627/**
 628 * omap_verify_buf - Verify chip data against buffer
 629 * @mtd: MTD device structure
 630 * @buf: buffer containing the data to compare
 631 * @len: number of bytes to compare
 632 */
 633static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
 634{
 635	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 636							mtd);
 637	u16 *p = (u16 *) buf;
 638
 639	len >>= 1;
 640	while (len--) {
 641		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
 642			return -EFAULT;
 643	}
 644
 645	return 0;
 646}
 647
 648/**
 649 * gen_true_ecc - This function will generate true ECC value
 650 * @ecc_buf: buffer to store ecc code
 651 *
 652 * This generated true ECC value can be used when correcting
 653 * data read from NAND flash memory core
 654 */
 655static void gen_true_ecc(u8 *ecc_buf)
 656{
 657	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 658		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 659
 660	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 661			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 662	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 663			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 664	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 665			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 666}
 667
 668/**
 669 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 670 * @ecc_data1:  ecc code from nand spare area
 671 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 672 * @page_data:  page data
 673 *
 674 * This function compares two ECC's and indicates if there is an error.
 675 * If the error can be corrected it will be corrected to the buffer.
 676 * If there is no error, %0 is returned. If there is an error but it
 677 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 678 */
 679static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
 680			    u8 *ecc_data2,	/* read from register */
 681			    u8 *page_data)
 682{
 683	uint	i;
 684	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 685	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
 686	u8	ecc_bit[24];
 687	u8	ecc_sum = 0;
 688	u8	find_bit = 0;
 689	uint	find_byte = 0;
 690	int	isEccFF;
 691
 692	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 693
 694	gen_true_ecc(ecc_data1);
 695	gen_true_ecc(ecc_data2);
 696
 697	for (i = 0; i <= 2; i++) {
 698		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
 699		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
 700	}
 701
 702	for (i = 0; i < 8; i++) {
 703		tmp0_bit[i]     = *ecc_data1 % 2;
 704		*ecc_data1	= *ecc_data1 / 2;
 705	}
 706
 707	for (i = 0; i < 8; i++) {
 708		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
 709		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 710	}
 711
 712	for (i = 0; i < 8; i++) {
 713		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
 714		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 715	}
 716
 717	for (i = 0; i < 8; i++) {
 718		comp0_bit[i]     = *ecc_data2 % 2;
 719		*ecc_data2       = *ecc_data2 / 2;
 720	}
 721
 722	for (i = 0; i < 8; i++) {
 723		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 724		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 725	}
 726
 727	for (i = 0; i < 8; i++) {
 728		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 729		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 730	}
 731
 732	for (i = 0; i < 6; i++)
 733		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 734
 735	for (i = 0; i < 8; i++)
 736		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 737
 738	for (i = 0; i < 8; i++)
 739		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 740
 741	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 742	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 743
 744	for (i = 0; i < 24; i++)
 745		ecc_sum += ecc_bit[i];
 746
 747	switch (ecc_sum) {
 748	case 0:
 749		/* Not reached because this function is not called if
 750		 *  ECC values are equal
 751		 */
 752		return 0;
 753
 754	case 1:
 755		/* Uncorrectable error */
 756		pr_debug("ECC UNCORRECTED_ERROR 1\n");
 757		return -1;
 758
 759	case 11:
 760		/* UN-Correctable error */
 761		pr_debug("ECC UNCORRECTED_ERROR B\n");
 762		return -1;
 763
 764	case 12:
 765		/* Correctable error */
 766		find_byte = (ecc_bit[23] << 8) +
 767			    (ecc_bit[21] << 7) +
 768			    (ecc_bit[19] << 6) +
 769			    (ecc_bit[17] << 5) +
 770			    (ecc_bit[15] << 4) +
 771			    (ecc_bit[13] << 3) +
 772			    (ecc_bit[11] << 2) +
 773			    (ecc_bit[9]  << 1) +
 774			    ecc_bit[7];
 775
 776		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 777
 778		pr_debug("Correcting single bit ECC error at offset: "
 779				"%d, bit: %d\n", find_byte, find_bit);
 780
 781		page_data[find_byte] ^= (1 << find_bit);
 782
 783		return 1;
 784	default:
 785		if (isEccFF) {
 786			if (ecc_data2[0] == 0 &&
 787			    ecc_data2[1] == 0 &&
 788			    ecc_data2[2] == 0)
 789				return 0;
 790		}
 791		pr_debug("UNCORRECTED_ERROR default\n");
 792		return -1;
 793	}
 794}
 795
 796/**
 797 * omap_correct_data - Compares the ECC read with HW generated ECC
 798 * @mtd: MTD device structure
 799 * @dat: page data
 800 * @read_ecc: ecc read from nand flash
 801 * @calc_ecc: ecc read from HW ECC registers
 802 *
 803 * Compares the ecc read from nand spare area with ECC registers values
 804 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 805 * detection and correction. If there are no errors, %0 is returned. If
 806 * there were errors and all of the errors were corrected, the number of
 807 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 808 * returned.
 809 */
 810static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 811				u_char *read_ecc, u_char *calc_ecc)
 812{
 813	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 814							mtd);
 815	int blockCnt = 0, i = 0, ret = 0;
 816	int stat = 0;
 817
 818	/* Ex NAND_ECC_HW12_2048 */
 819	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 820			(info->nand.ecc.size  == 2048))
 821		blockCnt = 4;
 822	else
 823		blockCnt = 1;
 824
 825	for (i = 0; i < blockCnt; i++) {
 826		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 827			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 828			if (ret < 0)
 829				return ret;
 830			/* keep track of the number of corrected errors */
 831			stat += ret;
 832		}
 833		read_ecc += 3;
 834		calc_ecc += 3;
 835		dat      += 512;
 836	}
 837	return stat;
 838}
 839
 840/**
 841 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 842 * @mtd: MTD device structure
 843 * @dat: The pointer to data on which ecc is computed
 844 * @ecc_code: The ecc_code buffer
 845 *
 846 * Using noninverted ECC can be considered ugly since writing a blank
 847 * page ie. padding will clear the ECC bytes. This is no problem as long
 848 * nobody is trying to write data on the seemingly unused page. Reading
 849 * an erased page will produce an ECC mismatch between generated and read
 850 * ECC bytes that has to be dealt with separately.
 851 */
 852static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 853				u_char *ecc_code)
 854{
 855	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 856							mtd);
 857	return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
 858}
 859
 860/**
 861 * omap_enable_hwecc - This function enables the hardware ecc functionality
 862 * @mtd: MTD device structure
 863 * @mode: Read/Write mode
 864 */
 865static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 866{
 867	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 868							mtd);
 869	struct nand_chip *chip = mtd->priv;
 870	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 871
 872	gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
 873}
 874
 875/**
 876 * omap_wait - wait until the command is done
 877 * @mtd: MTD device structure
 878 * @chip: NAND Chip structure
 879 *
 880 * Wait function is called during Program and erase operations and
 881 * the way it is called from MTD layer, we should wait till the NAND
 882 * chip is ready after the programming/erase operation has completed.
 883 *
 884 * Erase can take up to 400ms and program up to 20ms according to
 885 * general NAND and SmartMedia specs
 886 */
 887static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 888{
 889	struct nand_chip *this = mtd->priv;
 890	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 891							mtd);
 892	unsigned long timeo = jiffies;
 893	int status, state = this->state;
 894
 895	if (state == FL_ERASING)
 896		timeo += (HZ * 400) / 1000;
 897	else
 898		timeo += (HZ * 20) / 1000;
 899
 900	gpmc_nand_write(info->gpmc_cs,
 901			GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
 902	while (time_before(jiffies, timeo)) {
 903		status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
 904		if (status & NAND_STATUS_READY)
 905			break;
 906		cond_resched();
 907	}
 908
 909	status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
 910	return status;
 911}
 912
 913/**
 914 * omap_dev_ready - calls the platform specific dev_ready function
 915 * @mtd: MTD device structure
 916 */
 917static int omap_dev_ready(struct mtd_info *mtd)
 918{
 919	unsigned int val = 0;
 920	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 921							mtd);
 922
 923	val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 924	if ((val & 0x100) == 0x100) {
 925		/* Clear IRQ Interrupt */
 926		val |= 0x100;
 927		val &= ~(0x0);
 928		gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
 929	} else {
 930		unsigned int cnt = 0;
 931		while (cnt++ < 0x1FF) {
 932			if  ((val & 0x100) == 0x100)
 933				return 0;
 934			val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 935		}
 936	}
 937
 938	return 1;
 939}
 940
 941#ifdef CONFIG_MTD_NAND_OMAP_BCH
 942
 943/**
 944 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
 945 * @mtd: MTD device structure
 946 * @mode: Read/Write mode
 947 */
 948static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
 949{
 950	int nerrors;
 951	unsigned int dev_width;
 952	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 953						   mtd);
 954	struct nand_chip *chip = mtd->priv;
 955
 956	nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
 957	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 958	/*
 959	 * Program GPMC to perform correction on one 512-byte sector at a time.
 960	 * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
 961	 * gives a slight (5%) performance gain (but requires additional code).
 962	 */
 963	(void)gpmc_enable_hwecc_bch(info->gpmc_cs, mode, dev_width, 1, nerrors);
 964}
 965
 966/**
 967 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
 968 * @mtd: MTD device structure
 969 * @dat: The pointer to data on which ecc is computed
 970 * @ecc_code: The ecc_code buffer
 971 */
 972static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
 973				    u_char *ecc_code)
 974{
 975	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 976						   mtd);
 977	return gpmc_calculate_ecc_bch4(info->gpmc_cs, dat, ecc_code);
 978}
 979
 980/**
 981 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
 982 * @mtd: MTD device structure
 983 * @dat: The pointer to data on which ecc is computed
 984 * @ecc_code: The ecc_code buffer
 985 */
 986static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
 987				    u_char *ecc_code)
 988{
 989	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 990						   mtd);
 991	return gpmc_calculate_ecc_bch8(info->gpmc_cs, dat, ecc_code);
 992}
 993
 994/**
 995 * omap3_correct_data_bch - Decode received data and correct errors
 996 * @mtd: MTD device structure
 997 * @data: page data
 998 * @read_ecc: ecc read from nand flash
 999 * @calc_ecc: ecc read from HW ECC registers
1000 */
1001static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1002				  u_char *read_ecc, u_char *calc_ecc)
1003{
1004	int i, count;
1005	/* cannot correct more than 8 errors */
1006	unsigned int errloc[8];
1007	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1008						   mtd);
1009
1010	count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1011			   errloc);
1012	if (count > 0) {
1013		/* correct errors */
1014		for (i = 0; i < count; i++) {
1015			/* correct data only, not ecc bytes */
1016			if (errloc[i] < 8*512)
1017				data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1018			pr_debug("corrected bitflip %u\n", errloc[i]);
1019		}
1020	} else if (count < 0) {
1021		pr_err("ecc unrecoverable error\n");
1022	}
1023	return count;
1024}
1025
1026/**
1027 * omap3_free_bch - Release BCH ecc resources
1028 * @mtd: MTD device structure
1029 */
1030static void omap3_free_bch(struct mtd_info *mtd)
1031{
1032	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1033						   mtd);
1034	if (info->bch) {
1035		free_bch(info->bch);
1036		info->bch = NULL;
1037	}
1038}
1039
1040/**
1041 * omap3_init_bch - Initialize BCH ECC
1042 * @mtd: MTD device structure
1043 * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1044 */
1045static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1046{
1047	int ret, max_errors;
1048	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1049						   mtd);
1050#ifdef CONFIG_MTD_NAND_OMAP_BCH8
1051	const int hw_errors = 8;
1052#else
1053	const int hw_errors = 4;
1054#endif
1055	info->bch = NULL;
1056
1057	max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
1058	if (max_errors != hw_errors) {
1059		pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1060		       max_errors, hw_errors);
1061		goto fail;
1062	}
1063
1064	/* initialize GPMC BCH engine */
1065	ret = gpmc_init_hwecc_bch(info->gpmc_cs, 1, max_errors);
1066	if (ret)
1067		goto fail;
1068
1069	/* software bch library is only used to detect and locate errors */
1070	info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
1071	if (!info->bch)
1072		goto fail;
1073
1074	info->nand.ecc.size    = 512;
1075	info->nand.ecc.hwctl   = omap3_enable_hwecc_bch;
1076	info->nand.ecc.correct = omap3_correct_data_bch;
1077	info->nand.ecc.mode    = NAND_ECC_HW;
1078
1079	/*
1080	 * The number of corrected errors in an ecc block that will trigger
1081	 * block scrubbing defaults to the ecc strength (4 or 8).
1082	 * Set mtd->bitflip_threshold here to define a custom threshold.
1083	 */
1084
1085	if (max_errors == 8) {
1086		info->nand.ecc.strength  = 8;
1087		info->nand.ecc.bytes     = 13;
1088		info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
1089	} else {
1090		info->nand.ecc.strength  = 4;
1091		info->nand.ecc.bytes     = 7;
1092		info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
1093	}
1094
1095	pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
1096	return 0;
1097fail:
1098	omap3_free_bch(mtd);
1099	return -1;
1100}
1101
1102/**
1103 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1104 * @mtd: MTD device structure
1105 */
1106static int omap3_init_bch_tail(struct mtd_info *mtd)
1107{
1108	int i, steps;
1109	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1110						   mtd);
1111	struct nand_ecclayout *layout = &info->ecclayout;
1112
1113	/* build oob layout */
1114	steps = mtd->writesize/info->nand.ecc.size;
1115	layout->eccbytes = steps*info->nand.ecc.bytes;
1116
1117	/* do not bother creating special oob layouts for small page devices */
1118	if (mtd->oobsize < 64) {
1119		pr_err("BCH ecc is not supported on small page devices\n");
1120		goto fail;
1121	}
1122
1123	/* reserve 2 bytes for bad block marker */
1124	if (layout->eccbytes+2 > mtd->oobsize) {
1125		pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1126		       mtd->oobsize, layout->eccbytes);
1127		goto fail;
1128	}
1129
1130	/* put ecc bytes at oob tail */
1131	for (i = 0; i < layout->eccbytes; i++)
1132		layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
1133
1134	layout->oobfree[0].offset = 2;
1135	layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1136	info->nand.ecc.layout = layout;
1137
1138	if (!(info->nand.options & NAND_BUSWIDTH_16))
1139		info->nand.badblock_pattern = &bb_descrip_flashbased;
1140	return 0;
1141fail:
1142	omap3_free_bch(mtd);
1143	return -1;
1144}
1145
1146#else
1147static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
1148{
1149	pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1150	return -1;
1151}
1152static int omap3_init_bch_tail(struct mtd_info *mtd)
1153{
1154	return -1;
1155}
1156static void omap3_free_bch(struct mtd_info *mtd)
1157{
1158}
1159#endif /* CONFIG_MTD_NAND_OMAP_BCH */
1160
1161static int __devinit omap_nand_probe(struct platform_device *pdev)
1162{
1163	struct omap_nand_info		*info;
1164	struct omap_nand_platform_data	*pdata;
1165	int				err;
1166	int				i, offset;
1167
1168	pdata = pdev->dev.platform_data;
1169	if (pdata == NULL) {
1170		dev_err(&pdev->dev, "platform data missing\n");
1171		return -ENODEV;
1172	}
1173
1174	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1175	if (!info)
1176		return -ENOMEM;
1177
1178	platform_set_drvdata(pdev, info);
1179
1180	spin_lock_init(&info->controller.lock);
1181	init_waitqueue_head(&info->controller.wq);
1182
1183	info->pdev = pdev;
1184
1185	info->gpmc_cs		= pdata->cs;
1186	info->phys_base		= pdata->phys_base;
1187
1188	info->mtd.priv		= &info->nand;
1189	info->mtd.name		= dev_name(&pdev->dev);
1190	info->mtd.owner		= THIS_MODULE;
1191
1192	info->nand.options	= pdata->devsize;
1193	info->nand.options	|= NAND_SKIP_BBTSCAN;
1194
1195	/* NAND write protect off */
1196	gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
1197
1198	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
1199				pdev->dev.driver->name)) {
1200		err = -EBUSY;
1201		goto out_free_info;
1202	}
1203
1204	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
1205	if (!info->nand.IO_ADDR_R) {
1206		err = -ENOMEM;
1207		goto out_release_mem_region;
1208	}
1209
1210	info->nand.controller = &info->controller;
1211
1212	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
1213	info->nand.cmd_ctrl  = omap_hwcontrol;
1214
1215	/*
1216	 * If RDY/BSY line is connected to OMAP then use the omap ready
1217	 * funcrtion and the generic nand_wait function which reads the status
1218	 * register after monitoring the RDY/BSY line.Otherwise use a standard
1219	 * chip delay which is slightly more than tR (AC Timing) of the NAND
1220	 * device and read status register until you get a failure or success
1221	 */
1222	if (pdata->dev_ready) {
1223		info->nand.dev_ready = omap_dev_ready;
1224		info->nand.chip_delay = 0;
1225	} else {
1226		info->nand.waitfunc = omap_wait;
1227		info->nand.chip_delay = 50;
1228	}
1229
1230	switch (pdata->xfer_type) {
1231	case NAND_OMAP_PREFETCH_POLLED:
1232		info->nand.read_buf   = omap_read_buf_pref;
1233		info->nand.write_buf  = omap_write_buf_pref;
1234		break;
1235
1236	case NAND_OMAP_POLLED:
1237		if (info->nand.options & NAND_BUSWIDTH_16) {
1238			info->nand.read_buf   = omap_read_buf16;
1239			info->nand.write_buf  = omap_write_buf16;
1240		} else {
1241			info->nand.read_buf   = omap_read_buf8;
1242			info->nand.write_buf  = omap_write_buf8;
1243		}
1244		break;
1245
1246	case NAND_OMAP_PREFETCH_DMA:
1247		err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1248				omap_nand_dma_cb, &info->comp, &info->dma_ch);
1249		if (err < 0) {
1250			info->dma_ch = -1;
1251			dev_err(&pdev->dev, "DMA request failed!\n");
1252			goto out_release_mem_region;
1253		} else {
1254			omap_set_dma_dest_burst_mode(info->dma_ch,
1255					OMAP_DMA_DATA_BURST_16);
1256			omap_set_dma_src_burst_mode(info->dma_ch,
1257					OMAP_DMA_DATA_BURST_16);
1258
1259			info->nand.read_buf   = omap_read_buf_dma_pref;
1260			info->nand.write_buf  = omap_write_buf_dma_pref;
1261		}
1262		break;
1263
1264	case NAND_OMAP_PREFETCH_IRQ:
1265		err = request_irq(pdata->gpmc_irq,
1266				omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1267		if (err) {
1268			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1269							pdata->gpmc_irq, err);
1270			goto out_release_mem_region;
1271		} else {
1272			info->gpmc_irq	     = pdata->gpmc_irq;
1273			info->nand.read_buf  = omap_read_buf_irq_pref;
1274			info->nand.write_buf = omap_write_buf_irq_pref;
1275		}
1276		break;
1277
1278	default:
1279		dev_err(&pdev->dev,
1280			"xfer_type(%d) not supported!\n", pdata->xfer_type);
1281		err = -EINVAL;
1282		goto out_release_mem_region;
1283	}
1284
1285	info->nand.verify_buf = omap_verify_buf;
1286
1287	/* selsect the ecc type */
1288	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1289		info->nand.ecc.mode = NAND_ECC_SOFT;
1290	else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1291		(pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1292		info->nand.ecc.bytes            = 3;
1293		info->nand.ecc.size             = 512;
1294		info->nand.ecc.strength         = 1;
1295		info->nand.ecc.calculate        = omap_calculate_ecc;
1296		info->nand.ecc.hwctl            = omap_enable_hwecc;
1297		info->nand.ecc.correct          = omap_correct_data;
1298		info->nand.ecc.mode             = NAND_ECC_HW;
1299	} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1300		   (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1301		err = omap3_init_bch(&info->mtd, pdata->ecc_opt);
1302		if (err) {
1303			err = -EINVAL;
1304			goto out_release_mem_region;
1305		}
1306	}
1307
1308	/* DIP switches on some boards change between 8 and 16 bit
1309	 * bus widths for flash.  Try the other width if the first try fails.
1310	 */
1311	if (nand_scan_ident(&info->mtd, 1, NULL)) {
1312		info->nand.options ^= NAND_BUSWIDTH_16;
1313		if (nand_scan_ident(&info->mtd, 1, NULL)) {
1314			err = -ENXIO;
1315			goto out_release_mem_region;
1316		}
1317	}
1318
1319	/* rom code layout */
1320	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1321
1322		if (info->nand.options & NAND_BUSWIDTH_16)
1323			offset = 2;
1324		else {
1325			offset = 1;
1326			info->nand.badblock_pattern = &bb_descrip_flashbased;
1327		}
1328		omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1329		for (i = 0; i < omap_oobinfo.eccbytes; i++)
1330			omap_oobinfo.eccpos[i] = i+offset;
1331
1332		omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1333		omap_oobinfo.oobfree->length = info->mtd.oobsize -
1334					(offset + omap_oobinfo.eccbytes);
1335
1336		info->nand.ecc.layout = &omap_oobinfo;
1337	} else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
1338		   (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
1339		/* build OOB layout for BCH ECC correction */
1340		err = omap3_init_bch_tail(&info->mtd);
1341		if (err) {
1342			err = -EINVAL;
1343			goto out_release_mem_region;
1344		}
1345	}
1346
1347	/* second phase scan */
1348	if (nand_scan_tail(&info->mtd)) {
1349		err = -ENXIO;
1350		goto out_release_mem_region;
1351	}
1352
1353	mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1354				  pdata->nr_parts);
1355
1356	platform_set_drvdata(pdev, &info->mtd);
1357
1358	return 0;
1359
1360out_release_mem_region:
1361	release_mem_region(info->phys_base, NAND_IO_SIZE);
1362out_free_info:
1363	kfree(info);
1364
1365	return err;
1366}
1367
1368static int omap_nand_remove(struct platform_device *pdev)
1369{
1370	struct mtd_info *mtd = platform_get_drvdata(pdev);
1371	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1372							mtd);
1373	omap3_free_bch(&info->mtd);
1374
1375	platform_set_drvdata(pdev, NULL);
1376	if (info->dma_ch != -1)
1377		omap_free_dma(info->dma_ch);
1378
1379	if (info->gpmc_irq)
1380		free_irq(info->gpmc_irq, info);
1381
1382	/* Release NAND device, its internal structures and partitions */
1383	nand_release(&info->mtd);
1384	iounmap(info->nand.IO_ADDR_R);
1385	kfree(&info->mtd);
1386	return 0;
1387}
1388
1389static struct platform_driver omap_nand_driver = {
1390	.probe		= omap_nand_probe,
1391	.remove		= omap_nand_remove,
1392	.driver		= {
1393		.name	= DRIVER_NAME,
1394		.owner	= THIS_MODULE,
1395	},
1396};
1397
1398module_platform_driver(omap_nand_driver);
1399
1400MODULE_ALIAS("platform:" DRIVER_NAME);
1401MODULE_LICENSE("GPL");
1402MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");