Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Freescale Memory Controller kernel module
  4 *
  5 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
  6 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
  7 * split out from mpc85xx_edac EDAC driver.
  8 *
  9 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
 10 *
 11 * Author: Dave Jiang <djiang@mvista.com>
 12 *
 13 * 2006-2007 (c) MontaVista Software, Inc.
 14 */
 15#include <linux/module.h>
 16#include <linux/init.h>
 17#include <linux/interrupt.h>
 18#include <linux/ctype.h>
 19#include <linux/io.h>
 20#include <linux/mod_devicetable.h>
 21#include <linux/edac.h>
 22#include <linux/smp.h>
 23#include <linux/gfp.h>
 24
 25#include <linux/of.h>
 26#include <linux/of_address.h>
 27#include "edac_module.h"
 28#include "fsl_ddr_edac.h"
 29
 30#define EDAC_MOD_STR	"fsl_ddr_edac"
 31
 32static int edac_mc_idx;
 33
 34static u32 orig_ddr_err_disable;
 35static u32 orig_ddr_err_sbe;
 36static bool little_endian;
 37
 38static inline u32 ddr_in32(void __iomem *addr)
 39{
 40	return little_endian ? ioread32(addr) : ioread32be(addr);
 41}
 42
 43static inline void ddr_out32(void __iomem *addr, u32 value)
 44{
 45	if (little_endian)
 46		iowrite32(value, addr);
 47	else
 48		iowrite32be(value, addr);
 49}
 50
 51#ifdef CONFIG_EDAC_DEBUG
 52/************************ MC SYSFS parts ***********************************/
 53
 54#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
 55
 56static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
 57					  struct device_attribute *mattr,
 58					  char *data)
 59{
 60	struct mem_ctl_info *mci = to_mci(dev);
 61	struct fsl_mc_pdata *pdata = mci->pvt_info;
 62	return sprintf(data, "0x%08x",
 63		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
 64}
 65
 66static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
 67					  struct device_attribute *mattr,
 68					      char *data)
 69{
 70	struct mem_ctl_info *mci = to_mci(dev);
 71	struct fsl_mc_pdata *pdata = mci->pvt_info;
 72	return sprintf(data, "0x%08x",
 73		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
 74}
 75
 76static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
 77				       struct device_attribute *mattr,
 78					   char *data)
 79{
 80	struct mem_ctl_info *mci = to_mci(dev);
 81	struct fsl_mc_pdata *pdata = mci->pvt_info;
 82	return sprintf(data, "0x%08x",
 83		       ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
 84}
 85
 86static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
 87					   struct device_attribute *mattr,
 88					       const char *data, size_t count)
 89{
 90	struct mem_ctl_info *mci = to_mci(dev);
 91	struct fsl_mc_pdata *pdata = mci->pvt_info;
 92	unsigned long val;
 93	int rc;
 94
 95	if (isdigit(*data)) {
 96		rc = kstrtoul(data, 0, &val);
 97		if (rc)
 98			return rc;
 99
100		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
101		return count;
102	}
103	return 0;
104}
105
106static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
107					   struct device_attribute *mattr,
108					       const char *data, size_t count)
109{
110	struct mem_ctl_info *mci = to_mci(dev);
111	struct fsl_mc_pdata *pdata = mci->pvt_info;
112	unsigned long val;
113	int rc;
114
115	if (isdigit(*data)) {
116		rc = kstrtoul(data, 0, &val);
117		if (rc)
118			return rc;
119
120		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
121		return count;
122	}
123	return 0;
124}
125
126static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
127					struct device_attribute *mattr,
128					       const char *data, size_t count)
129{
130	struct mem_ctl_info *mci = to_mci(dev);
131	struct fsl_mc_pdata *pdata = mci->pvt_info;
132	unsigned long val;
133	int rc;
134
135	if (isdigit(*data)) {
136		rc = kstrtoul(data, 0, &val);
137		if (rc)
138			return rc;
139
140		ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
141		return count;
142	}
143	return 0;
144}
145
146static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
147		   fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
148static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
149		   fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
150static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
151		   fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
152#endif /* CONFIG_EDAC_DEBUG */
153
154static struct attribute *fsl_ddr_dev_attrs[] = {
155#ifdef CONFIG_EDAC_DEBUG
156	&dev_attr_inject_data_hi.attr,
157	&dev_attr_inject_data_lo.attr,
158	&dev_attr_inject_ctrl.attr,
159#endif
160	NULL
161};
162
163ATTRIBUTE_GROUPS(fsl_ddr_dev);
164
165/**************************** MC Err device ***************************/
166
167/*
168 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
169 * MPC8572 User's Manual.  Each line represents a syndrome bit column as a
170 * 64-bit value, but split into an upper and lower 32-bit chunk.  The labels
171 * below correspond to Freescale's manuals.
172 */
173static unsigned int ecc_table[16] = {
174	/* MSB           LSB */
175	/* [0:31]    [32:63] */
176	0xf00fe11e, 0xc33c0ff7,	/* Syndrome bit 7 */
177	0x00ff00ff, 0x00fff0ff,
178	0x0f0f0f0f, 0x0f0fff00,
179	0x11113333, 0x7777000f,
180	0x22224444, 0x8888222f,
181	0x44448888, 0xffff4441,
182	0x8888ffff, 0x11118882,
183	0xffff1111, 0x22221114,	/* Syndrome bit 0 */
184};
185
186/*
187 * Calculate the correct ECC value for a 64-bit value specified by high:low
188 */
189static u8 calculate_ecc(u32 high, u32 low)
190{
191	u32 mask_low;
192	u32 mask_high;
193	int bit_cnt;
194	u8 ecc = 0;
195	int i;
196	int j;
197
198	for (i = 0; i < 8; i++) {
199		mask_high = ecc_table[i * 2];
200		mask_low = ecc_table[i * 2 + 1];
201		bit_cnt = 0;
202
203		for (j = 0; j < 32; j++) {
204			if ((mask_high >> j) & 1)
205				bit_cnt ^= (high >> j) & 1;
206			if ((mask_low >> j) & 1)
207				bit_cnt ^= (low >> j) & 1;
208		}
209
210		ecc |= bit_cnt << i;
211	}
212
213	return ecc;
214}
215
216/*
217 * Create the syndrome code which is generated if the data line specified by
218 * 'bit' failed.  Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
219 * User's Manual and 9-61 in the MPC8572 User's Manual.
220 */
221static u8 syndrome_from_bit(unsigned int bit) {
222	int i;
223	u8 syndrome = 0;
224
225	/*
226	 * Cycle through the upper or lower 32-bit portion of each value in
227	 * ecc_table depending on if 'bit' is in the upper or lower half of
228	 * 64-bit data.
229	 */
230	for (i = bit < 32; i < 16; i += 2)
231		syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
232
233	return syndrome;
234}
235
236/*
237 * Decode data and ecc syndrome to determine what went wrong
238 * Note: This can only decode single-bit errors
239 */
240static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
241		       int *bad_data_bit, int *bad_ecc_bit)
242{
243	int i;
244	u8 syndrome;
245
246	*bad_data_bit = -1;
247	*bad_ecc_bit = -1;
248
249	/*
250	 * Calculate the ECC of the captured data and XOR it with the captured
251	 * ECC to find an ECC syndrome value we can search for
252	 */
253	syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
254
255	/* Check if a data line is stuck... */
256	for (i = 0; i < 64; i++) {
257		if (syndrome == syndrome_from_bit(i)) {
258			*bad_data_bit = i;
259			return;
260		}
261	}
262
263	/* If data is correct, check ECC bits for errors... */
264	for (i = 0; i < 8; i++) {
265		if ((syndrome >> i) & 0x1) {
266			*bad_ecc_bit = i;
267			return;
268		}
269	}
270}
271
272#define make64(high, low) (((u64)(high) << 32) | (low))
273
274static void fsl_mc_check(struct mem_ctl_info *mci)
275{
276	struct fsl_mc_pdata *pdata = mci->pvt_info;
277	struct csrow_info *csrow;
278	u32 bus_width;
279	u32 err_detect;
280	u32 syndrome;
281	u64 err_addr;
282	u32 pfn;
283	int row_index;
284	u32 cap_high;
285	u32 cap_low;
286	int bad_data_bit;
287	int bad_ecc_bit;
288
289	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
290	if (!err_detect)
291		return;
292
293	fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
294		      err_detect);
295
296	/* no more processing if not ECC bit errors */
297	if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
298		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
299		return;
300	}
301
302	syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
303
304	/* Mask off appropriate bits of syndrome based on bus width */
305	bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
306		     DSC_DBW_MASK) ? 32 : 64;
307	if (bus_width == 64)
308		syndrome &= 0xff;
309	else
310		syndrome &= 0xffff;
311
312	err_addr = make64(
313		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
314		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
315	pfn = err_addr >> PAGE_SHIFT;
316
317	for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
318		csrow = mci->csrows[row_index];
319		if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
320			break;
321	}
322
323	cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
324	cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
325
326	/*
327	 * Analyze single-bit errors on 64-bit wide buses
328	 * TODO: Add support for 32-bit wide buses
329	 */
330	if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
331		sbe_ecc_decode(cap_high, cap_low, syndrome,
332				&bad_data_bit, &bad_ecc_bit);
333
334		if (bad_data_bit != -1)
335			fsl_mc_printk(mci, KERN_ERR,
336				"Faulty Data bit: %d\n", bad_data_bit);
337		if (bad_ecc_bit != -1)
338			fsl_mc_printk(mci, KERN_ERR,
339				"Faulty ECC bit: %d\n", bad_ecc_bit);
340
341		fsl_mc_printk(mci, KERN_ERR,
342			"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
343			cap_high ^ (1 << (bad_data_bit - 32)),
344			cap_low ^ (1 << bad_data_bit),
345			syndrome ^ (1 << bad_ecc_bit));
346	}
347
348	fsl_mc_printk(mci, KERN_ERR,
349			"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
350			cap_high, cap_low, syndrome);
351	fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
352	fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
353
354	/* we are out of range */
355	if (row_index == mci->nr_csrows)
356		fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
357
358	if (err_detect & DDR_EDE_SBE)
359		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
360				     pfn, err_addr & ~PAGE_MASK, syndrome,
361				     row_index, 0, -1,
362				     mci->ctl_name, "");
363
364	if (err_detect & DDR_EDE_MBE)
365		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
366				     pfn, err_addr & ~PAGE_MASK, syndrome,
367				     row_index, 0, -1,
368				     mci->ctl_name, "");
369
370	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
371}
372
373static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
374{
375	struct mem_ctl_info *mci = dev_id;
376	struct fsl_mc_pdata *pdata = mci->pvt_info;
377	u32 err_detect;
378
379	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
380	if (!err_detect)
381		return IRQ_NONE;
382
383	fsl_mc_check(mci);
384
385	return IRQ_HANDLED;
386}
387
388static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
389{
390	struct fsl_mc_pdata *pdata = mci->pvt_info;
391	struct csrow_info *csrow;
392	struct dimm_info *dimm;
393	u32 sdram_ctl;
394	u32 sdtype;
395	enum mem_type mtype;
396	u32 cs_bnds;
397	int index;
398
399	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
400
401	sdtype = sdram_ctl & DSC_SDTYPE_MASK;
402	if (sdram_ctl & DSC_RD_EN) {
403		switch (sdtype) {
404		case 0x02000000:
405			mtype = MEM_RDDR;
406			break;
407		case 0x03000000:
408			mtype = MEM_RDDR2;
409			break;
410		case 0x07000000:
411			mtype = MEM_RDDR3;
412			break;
413		case 0x05000000:
414			mtype = MEM_RDDR4;
415			break;
416		default:
417			mtype = MEM_UNKNOWN;
418			break;
419		}
420	} else {
421		switch (sdtype) {
422		case 0x02000000:
423			mtype = MEM_DDR;
424			break;
425		case 0x03000000:
426			mtype = MEM_DDR2;
427			break;
428		case 0x07000000:
429			mtype = MEM_DDR3;
430			break;
431		case 0x05000000:
432			mtype = MEM_DDR4;
433			break;
434		default:
435			mtype = MEM_UNKNOWN;
436			break;
437		}
438	}
439
440	for (index = 0; index < mci->nr_csrows; index++) {
441		u32 start;
442		u32 end;
443
444		csrow = mci->csrows[index];
445		dimm = csrow->channels[0]->dimm;
446
447		cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
448				   (index * FSL_MC_CS_BNDS_OFS));
449
450		start = (cs_bnds & 0xffff0000) >> 16;
451		end   = (cs_bnds & 0x0000ffff);
452
453		if (start == end)
454			continue;	/* not populated */
455
456		start <<= (24 - PAGE_SHIFT);
457		end   <<= (24 - PAGE_SHIFT);
458		end    |= (1 << (24 - PAGE_SHIFT)) - 1;
459
460		csrow->first_page = start;
461		csrow->last_page = end;
462
463		dimm->nr_pages = end + 1 - start;
464		dimm->grain = 8;
465		dimm->mtype = mtype;
466		dimm->dtype = DEV_UNKNOWN;
467		if (sdram_ctl & DSC_X32_EN)
468			dimm->dtype = DEV_X32;
469		dimm->edac_mode = EDAC_SECDED;
470	}
471}
472
473int fsl_mc_err_probe(struct platform_device *op)
474{
475	struct mem_ctl_info *mci;
476	struct edac_mc_layer layers[2];
477	struct fsl_mc_pdata *pdata;
478	struct resource r;
479	u32 sdram_ctl;
480	int res;
481
482	if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
483		return -ENOMEM;
484
485	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
486	layers[0].size = 4;
487	layers[0].is_virt_csrow = true;
488	layers[1].type = EDAC_MC_LAYER_CHANNEL;
489	layers[1].size = 1;
490	layers[1].is_virt_csrow = false;
491	mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
492			    sizeof(*pdata));
493	if (!mci) {
494		devres_release_group(&op->dev, fsl_mc_err_probe);
495		return -ENOMEM;
496	}
497
498	pdata = mci->pvt_info;
499	pdata->name = "fsl_mc_err";
500	mci->pdev = &op->dev;
501	pdata->edac_idx = edac_mc_idx++;
502	dev_set_drvdata(mci->pdev, mci);
503	mci->ctl_name = pdata->name;
504	mci->dev_name = pdata->name;
505
506	/*
507	 * Get the endianness of DDR controller registers.
508	 * Default is big endian.
509	 */
510	little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
511
512	res = of_address_to_resource(op->dev.of_node, 0, &r);
513	if (res) {
514		pr_err("%s: Unable to get resource for MC err regs\n",
515		       __func__);
516		goto err;
517	}
518
519	if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
520				     pdata->name)) {
521		pr_err("%s: Error while requesting mem region\n",
522		       __func__);
523		res = -EBUSY;
524		goto err;
525	}
526
527	pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
528	if (!pdata->mc_vbase) {
529		pr_err("%s: Unable to setup MC err regs\n", __func__);
530		res = -ENOMEM;
531		goto err;
532	}
533
534	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
535	if (!(sdram_ctl & DSC_ECC_EN)) {
536		/* no ECC */
537		pr_warn("%s: No ECC DIMMs discovered\n", __func__);
538		res = -ENODEV;
539		goto err;
540	}
541
542	edac_dbg(3, "init mci\n");
543	mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
544			 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
545			 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
546			 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
547	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
548	mci->edac_cap = EDAC_FLAG_SECDED;
549	mci->mod_name = EDAC_MOD_STR;
550
551	if (edac_op_state == EDAC_OPSTATE_POLL)
552		mci->edac_check = fsl_mc_check;
553
554	mci->ctl_page_to_phys = NULL;
555
556	mci->scrub_mode = SCRUB_SW_SRC;
557
558	fsl_ddr_init_csrows(mci);
559
560	/* store the original error disable bits */
561	orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
562	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
563
564	/* clear all error bits */
565	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
566
567	res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
568	if (res) {
569		edac_dbg(3, "failed edac_mc_add_mc()\n");
570		goto err;
571	}
572
573	if (edac_op_state == EDAC_OPSTATE_INT) {
574		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
575			  DDR_EIE_MBEE | DDR_EIE_SBEE);
576
577		/* store the original error management threshold */
578		orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
579					    FSL_MC_ERR_SBE) & 0xff0000;
580
581		/* set threshold to 1 error per interrupt */
582		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
583
584		/* register interrupts */
585		pdata->irq = platform_get_irq(op, 0);
586		res = devm_request_irq(&op->dev, pdata->irq,
587				       fsl_mc_isr,
588				       IRQF_SHARED,
589				       "[EDAC] MC err", mci);
590		if (res < 0) {
591			pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
592			       __func__, pdata->irq);
593			res = -ENODEV;
594			goto err2;
595		}
596
597		pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
598		       pdata->irq);
599	}
600
601	devres_remove_group(&op->dev, fsl_mc_err_probe);
602	edac_dbg(3, "success\n");
603	pr_info(EDAC_MOD_STR " MC err registered\n");
604
605	return 0;
606
607err2:
608	edac_mc_del_mc(&op->dev);
609err:
610	devres_release_group(&op->dev, fsl_mc_err_probe);
611	edac_mc_free(mci);
612	return res;
613}
614
615void fsl_mc_err_remove(struct platform_device *op)
616{
617	struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
618	struct fsl_mc_pdata *pdata = mci->pvt_info;
619
620	edac_dbg(0, "\n");
621
622	if (edac_op_state == EDAC_OPSTATE_INT) {
623		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
624	}
625
626	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
627		  orig_ddr_err_disable);
628	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
629
630	edac_mc_del_mc(&op->dev);
631	edac_mc_free(mci);
632}