Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * AMCC SoC PPC4xx Crypto Driver
   4 *
   5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
   6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
   7 *
 
 
 
 
 
 
 
 
 
 
   8 * This file implements AMCC crypto offload Linux device driver for use with
   9 * Linux CryptoAPI.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/interrupt.h>
  14#include <linux/spinlock_types.h>
  15#include <linux/random.h>
  16#include <linux/scatterlist.h>
  17#include <linux/crypto.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/platform_device.h>
  20#include <linux/init.h>
  21#include <linux/module.h>
  22#include <linux/of_address.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_platform.h>
  25#include <linux/slab.h>
  26#include <asm/dcr.h>
  27#include <asm/dcr-regs.h>
  28#include <asm/cacheflush.h>
  29#include <crypto/aead.h>
  30#include <crypto/aes.h>
  31#include <crypto/ctr.h>
  32#include <crypto/gcm.h>
  33#include <crypto/sha1.h>
  34#include <crypto/rng.h>
  35#include <crypto/scatterwalk.h>
  36#include <crypto/skcipher.h>
  37#include <crypto/internal/aead.h>
  38#include <crypto/internal/rng.h>
  39#include <crypto/internal/skcipher.h>
  40#include "crypto4xx_reg_def.h"
  41#include "crypto4xx_core.h"
  42#include "crypto4xx_sa.h"
  43#include "crypto4xx_trng.h"
  44
  45#define PPC4XX_SEC_VERSION_STR			"0.5"
  46
  47/*
  48 * PPC4xx Crypto Engine Initialization Routine
  49 */
  50static void crypto4xx_hw_init(struct crypto4xx_device *dev)
  51{
  52	union ce_ring_size ring_size;
  53	union ce_ring_control ring_ctrl;
  54	union ce_part_ring_size part_ring_size;
  55	union ce_io_threshold io_threshold;
  56	u32 rand_num;
  57	union ce_pe_dma_cfg pe_dma_cfg;
  58	u32 device_ctrl;
  59
  60	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
  61	/* setup pe dma, include reset sg, pdr and pe, then release reset */
  62	pe_dma_cfg.w = 0;
  63	pe_dma_cfg.bf.bo_sgpd_en = 1;
  64	pe_dma_cfg.bf.bo_data_en = 0;
  65	pe_dma_cfg.bf.bo_sa_en = 1;
  66	pe_dma_cfg.bf.bo_pd_en = 1;
  67	pe_dma_cfg.bf.dynamic_sa_en = 1;
  68	pe_dma_cfg.bf.reset_sg = 1;
  69	pe_dma_cfg.bf.reset_pdr = 1;
  70	pe_dma_cfg.bf.reset_pe = 1;
  71	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  72	/* un reset pe,sg and pdr */
  73	pe_dma_cfg.bf.pe_mode = 0;
  74	pe_dma_cfg.bf.reset_sg = 0;
  75	pe_dma_cfg.bf.reset_pdr = 0;
  76	pe_dma_cfg.bf.reset_pe = 0;
  77	pe_dma_cfg.bf.bo_td_en = 0;
  78	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  79	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
  80	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
  81	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
  82	get_random_bytes(&rand_num, sizeof(rand_num));
  83	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
  84	get_random_bytes(&rand_num, sizeof(rand_num));
  85	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
  86	ring_size.w = 0;
  87	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
  88	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
  89	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
  90	ring_ctrl.w = 0;
  91	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
  92	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  93	device_ctrl |= PPC4XX_DC_3DES_EN;
  94	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  95	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
  96	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
  97	part_ring_size.w = 0;
  98	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
  99	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
 100	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
 101	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
 102	io_threshold.w = 0;
 103	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
 104	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
 105	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
 106	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
 107	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
 108	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
 109	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
 110	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
 111	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
 112	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
 113	/* un reset pe,sg and pdr */
 114	pe_dma_cfg.bf.pe_mode = 1;
 115	pe_dma_cfg.bf.reset_sg = 0;
 116	pe_dma_cfg.bf.reset_pdr = 0;
 117	pe_dma_cfg.bf.reset_pe = 0;
 118	pe_dma_cfg.bf.bo_td_en = 0;
 119	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
 120	/*clear all pending interrupt*/
 121	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
 122	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 123	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 124	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
 125	if (dev->is_revb) {
 126		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
 127		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
 128		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
 129		       dev->ce_base + CRYPTO4XX_INT_EN);
 130	} else {
 131		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
 132	}
 133}
 134
 135int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
 136{
 137	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
 
 138	if (ctx->sa_in == NULL)
 139		return -ENOMEM;
 140
 141	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
 
 142	if (ctx->sa_out == NULL) {
 143		kfree(ctx->sa_in);
 144		ctx->sa_in = NULL;
 
 145		return -ENOMEM;
 146	}
 147
 
 
 148	ctx->sa_len = size;
 149
 150	return 0;
 151}
 152
 153void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
 154{
 155	kfree(ctx->sa_in);
 156	ctx->sa_in = NULL;
 157	kfree(ctx->sa_out);
 158	ctx->sa_out = NULL;
 
 
 
 
 
 159	ctx->sa_len = 0;
 160}
 161
 162/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163 * alloc memory for the gather ring
 164 * no need to alloc buf for the ring
 165 * gdr_tail, gdr_head and gdr_count are initialized by this function
 166 */
 167static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
 168{
 169	int i;
 
 170	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
 171				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 172				      &dev->pdr_pa, GFP_KERNEL);
 173	if (!dev->pdr)
 174		return -ENOMEM;
 175
 176	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
 177				 GFP_KERNEL);
 178	if (!dev->pdr_uinfo) {
 179		dma_free_coherent(dev->core_dev->device,
 180				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 181				  dev->pdr,
 182				  dev->pdr_pa);
 183		return -ENOMEM;
 184	}
 
 185	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
 186				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 187				   &dev->shadow_sa_pool_pa,
 188				   GFP_KERNEL);
 189	if (!dev->shadow_sa_pool)
 190		return -ENOMEM;
 191
 192	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
 193			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 194			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
 195	if (!dev->shadow_sr_pool)
 196		return -ENOMEM;
 197	for (i = 0; i < PPC4XX_NUM_PD; i++) {
 198		struct ce_pd *pd = &dev->pdr[i];
 199		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
 200
 201		pd->sa = dev->shadow_sa_pool_pa +
 202			sizeof(union shadow_sa_buf) * i;
 203
 204		/* alloc 256 bytes which is enough for any kind of dynamic sa */
 205		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
 
 206
 207		/* alloc state record */
 208		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
 
 209		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
 210		    sizeof(struct sa_state_record) * i;
 211	}
 212
 213	return 0;
 214}
 215
 216static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
 217{
 218	if (dev->pdr)
 219		dma_free_coherent(dev->core_dev->device,
 220				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 221				  dev->pdr, dev->pdr_pa);
 222
 223	if (dev->shadow_sa_pool)
 224		dma_free_coherent(dev->core_dev->device,
 225			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 226			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
 227
 228	if (dev->shadow_sr_pool)
 229		dma_free_coherent(dev->core_dev->device,
 230			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 231			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
 232
 233	kfree(dev->pdr_uinfo);
 234}
 235
 236static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
 237{
 238	u32 retval;
 239	u32 tmp;
 240
 241	retval = dev->pdr_head;
 242	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
 243
 244	if (tmp == dev->pdr_tail)
 245		return ERING_WAS_FULL;
 246
 247	dev->pdr_head = tmp;
 248
 249	return retval;
 250}
 251
 252static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
 253{
 254	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 255	u32 tail;
 256	unsigned long flags;
 257
 
 
 258	spin_lock_irqsave(&dev->core_dev->lock, flags);
 259	pd_uinfo->state = PD_ENTRY_FREE;
 260
 261	if (dev->pdr_tail != PPC4XX_LAST_PD)
 262		dev->pdr_tail++;
 263	else
 264		dev->pdr_tail = 0;
 265	tail = dev->pdr_tail;
 266	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 267
 268	return tail;
 269}
 270
 271/*
 
 
 
 
 
 
 
 
 272 * alloc memory for the gather ring
 273 * no need to alloc buf for the ring
 274 * gdr_tail, gdr_head and gdr_count are initialized by this function
 275 */
 276static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
 277{
 278	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
 279				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 280				      &dev->gdr_pa, GFP_KERNEL);
 281	if (!dev->gdr)
 282		return -ENOMEM;
 283
 
 
 284	return 0;
 285}
 286
 287static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
 288{
 289	if (dev->gdr)
 290		dma_free_coherent(dev->core_dev->device,
 291			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 292			  dev->gdr, dev->gdr_pa);
 293}
 294
 295/*
 296 * when this function is called.
 297 * preemption or interrupt must be disabled
 298 */
 299static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
 300{
 301	u32 retval;
 302	u32 tmp;
 303
 304	if (n >= PPC4XX_NUM_GD)
 305		return ERING_WAS_FULL;
 306
 307	retval = dev->gdr_head;
 308	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
 309	if (dev->gdr_head > dev->gdr_tail) {
 310		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
 311			return ERING_WAS_FULL;
 312	} else if (dev->gdr_head < dev->gdr_tail) {
 313		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
 314			return ERING_WAS_FULL;
 315	}
 316	dev->gdr_head = tmp;
 317
 318	return retval;
 319}
 320
 321static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
 322{
 323	unsigned long flags;
 324
 325	spin_lock_irqsave(&dev->core_dev->lock, flags);
 326	if (dev->gdr_tail == dev->gdr_head) {
 327		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 328		return 0;
 329	}
 330
 331	if (dev->gdr_tail != PPC4XX_LAST_GD)
 332		dev->gdr_tail++;
 333	else
 334		dev->gdr_tail = 0;
 335
 336	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 337
 338	return 0;
 339}
 340
 341static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
 342					      dma_addr_t *gd_dma, u32 idx)
 343{
 344	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
 345
 346	return &dev->gdr[idx];
 347}
 348
 349/*
 350 * alloc memory for the scatter ring
 351 * need to alloc buf for the ring
 352 * sdr_tail, sdr_head and sdr_count are initialized by this function
 353 */
 354static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
 355{
 356	int i;
 357
 358	dev->scatter_buffer_va =
 359		dma_alloc_coherent(dev->core_dev->device,
 360			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 361			&dev->scatter_buffer_pa, GFP_KERNEL);
 362	if (!dev->scatter_buffer_va)
 363		return -ENOMEM;
 364
 365	/* alloc memory for scatter descriptor ring */
 366	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
 367				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 368				      &dev->sdr_pa, GFP_KERNEL);
 369	if (!dev->sdr)
 370		return -ENOMEM;
 371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372	for (i = 0; i < PPC4XX_NUM_SD; i++) {
 373		dev->sdr[i].ptr = dev->scatter_buffer_pa +
 374				  PPC4XX_SD_BUFFER_SIZE * i;
 375	}
 376
 377	return 0;
 378}
 379
 380static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
 381{
 382	if (dev->sdr)
 383		dma_free_coherent(dev->core_dev->device,
 384				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 385				  dev->sdr, dev->sdr_pa);
 386
 387	if (dev->scatter_buffer_va)
 388		dma_free_coherent(dev->core_dev->device,
 389				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 390				  dev->scatter_buffer_va,
 391				  dev->scatter_buffer_pa);
 392}
 393
 394/*
 395 * when this function is called.
 396 * preemption or interrupt must be disabled
 397 */
 398static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
 399{
 400	u32 retval;
 401	u32 tmp;
 402
 403	if (n >= PPC4XX_NUM_SD)
 404		return ERING_WAS_FULL;
 405
 406	retval = dev->sdr_head;
 407	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
 408	if (dev->sdr_head > dev->gdr_tail) {
 409		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
 410			return ERING_WAS_FULL;
 411	} else if (dev->sdr_head < dev->sdr_tail) {
 412		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
 413			return ERING_WAS_FULL;
 414	} /* the head = tail, or empty case is already take cared */
 415	dev->sdr_head = tmp;
 416
 417	return retval;
 418}
 419
 420static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
 421{
 422	unsigned long flags;
 423
 424	spin_lock_irqsave(&dev->core_dev->lock, flags);
 425	if (dev->sdr_tail == dev->sdr_head) {
 426		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 427		return 0;
 428	}
 429	if (dev->sdr_tail != PPC4XX_LAST_SD)
 430		dev->sdr_tail++;
 431	else
 432		dev->sdr_tail = 0;
 433	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 434
 435	return 0;
 436}
 437
 438static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
 439					      dma_addr_t *sd_dma, u32 idx)
 440{
 441	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
 442
 443	return &dev->sdr[idx];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444}
 445
 446static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
 447				      struct ce_pd *pd,
 448				      struct pd_uinfo *pd_uinfo,
 449				      u32 nbytes,
 450				      struct scatterlist *dst)
 451{
 452	unsigned int first_sd = pd_uinfo->first_sd;
 453	unsigned int last_sd;
 454	unsigned int overflow = 0;
 455	unsigned int to_copy;
 456	unsigned int dst_start = 0;
 457
 458	/*
 459	 * Because the scatter buffers are all neatly organized in one
 460	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
 461	 * be instructed to copy a range of buffers in one go.
 462	 */
 463
 464	last_sd = (first_sd + pd_uinfo->num_sd);
 465	if (last_sd > PPC4XX_LAST_SD) {
 466		last_sd = PPC4XX_LAST_SD;
 467		overflow = last_sd % PPC4XX_NUM_SD;
 468	}
 469
 470	while (nbytes) {
 471		void *buf = dev->scatter_buffer_va +
 472			first_sd * PPC4XX_SD_BUFFER_SIZE;
 473
 474		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
 475				      (1 + last_sd - first_sd));
 476		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
 477		nbytes -= to_copy;
 478
 479		if (overflow) {
 480			first_sd = 0;
 481			last_sd = overflow;
 482			dst_start += to_copy;
 483			overflow = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484		}
 485	}
 486}
 487
 488static void crypto4xx_copy_digest_to_dst(void *dst,
 489					struct pd_uinfo *pd_uinfo,
 490					struct crypto4xx_ctx *ctx)
 491{
 492	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
 
 
 493
 494	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
 495		memcpy(dst, pd_uinfo->sr_va->save_digest,
 496		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
 497	}
 
 
 498}
 499
 500static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
 501				  struct pd_uinfo *pd_uinfo)
 502{
 503	int i;
 504	if (pd_uinfo->num_gd) {
 505		for (i = 0; i < pd_uinfo->num_gd; i++)
 506			crypto4xx_put_gd_to_gdr(dev);
 507		pd_uinfo->first_gd = 0xffffffff;
 508		pd_uinfo->num_gd = 0;
 509	}
 510	if (pd_uinfo->num_sd) {
 511		for (i = 0; i < pd_uinfo->num_sd; i++)
 512			crypto4xx_put_sd_to_sdr(dev);
 513
 514		pd_uinfo->first_sd = 0xffffffff;
 515		pd_uinfo->num_sd = 0;
 516	}
 517}
 518
 519static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
 520				     struct pd_uinfo *pd_uinfo,
 521				     struct ce_pd *pd)
 522{
 523	struct skcipher_request *req;
 
 524	struct scatterlist *dst;
 
 525
 526	req = skcipher_request_cast(pd_uinfo->async_req);
 
 527
 528	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 529		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 530					  req->cryptlen, req->dst);
 531	} else {
 532		dst = pd_uinfo->dest_va;
 533		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
 534			       DMA_FROM_DEVICE);
 535	}
 536
 537	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
 538		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 539
 540		crypto4xx_memcpy_from_le32((u32 *)req->iv,
 541			pd_uinfo->sr_va->save_iv,
 542			crypto_skcipher_ivsize(skcipher));
 543	}
 544
 545	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 
 
 546
 547	if (pd_uinfo->state & PD_ENTRY_BUSY)
 548		skcipher_request_complete(req, -EINPROGRESS);
 549	skcipher_request_complete(req, 0);
 550}
 551
 552static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
 553				struct pd_uinfo *pd_uinfo)
 554{
 555	struct crypto4xx_ctx *ctx;
 556	struct ahash_request *ahash_req;
 557
 558	ahash_req = ahash_request_cast(pd_uinfo->async_req);
 559	ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
 560
 561	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
 562	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 563
 564	if (pd_uinfo->state & PD_ENTRY_BUSY)
 565		ahash_request_complete(ahash_req, -EINPROGRESS);
 566	ahash_request_complete(ahash_req, 0);
 567}
 568
 569static void crypto4xx_aead_done(struct crypto4xx_device *dev,
 570				struct pd_uinfo *pd_uinfo,
 571				struct ce_pd *pd)
 572{
 573	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
 574		struct aead_request, base);
 575	struct scatterlist *dst = pd_uinfo->dest_va;
 576	size_t cp_len = crypto_aead_authsize(
 577		crypto_aead_reqtfm(aead_req));
 578	u32 icv[AES_BLOCK_SIZE];
 579	int err = 0;
 580
 581	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 582		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 583					  pd->pd_ctl_len.bf.pkt_len,
 584					  dst);
 585	} else {
 586		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
 587				DMA_FROM_DEVICE);
 588	}
 589
 590	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
 591		/* append icv at the end */
 592		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
 593					   sizeof(icv));
 594
 595		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
 596					 cp_len, 1);
 597	} else {
 598		/* check icv at the end */
 599		scatterwalk_map_and_copy(icv, aead_req->src,
 600			aead_req->assoclen + aead_req->cryptlen -
 601			cp_len, cp_len, 0);
 602
 603		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
 604
 605		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
 606			err = -EBADMSG;
 607	}
 608
 
 
 609	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 
 
 
 610
 611	if (pd->pd_ctl.bf.status & 0xff) {
 612		if (!__ratelimit(&dev->aead_ratelimit)) {
 613			if (pd->pd_ctl.bf.status & 2)
 614				pr_err("pad fail error\n");
 615			if (pd->pd_ctl.bf.status & 4)
 616				pr_err("seqnum fail\n");
 617			if (pd->pd_ctl.bf.status & 8)
 618				pr_err("error _notify\n");
 619			pr_err("aead return err status = 0x%02x\n",
 620				pd->pd_ctl.bf.status & 0xff);
 621			pr_err("pd pad_ctl = 0x%08x\n",
 622				pd->pd_ctl.bf.pd_pad_ctl);
 623		}
 624		err = -EINVAL;
 625	}
 626
 627	if (pd_uinfo->state & PD_ENTRY_BUSY)
 628		aead_request_complete(aead_req, -EINPROGRESS);
 629
 630	aead_request_complete(aead_req, err);
 631}
 632
 633static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
 634{
 635	struct ce_pd *pd = &dev->pdr[idx];
 636	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 637
 638	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
 639	case CRYPTO_ALG_TYPE_SKCIPHER:
 640		crypto4xx_cipher_done(dev, pd_uinfo, pd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641		break;
 642	case CRYPTO_ALG_TYPE_AEAD:
 643		crypto4xx_aead_done(dev, pd_uinfo, pd);
 
 
 
 644		break;
 645	case CRYPTO_ALG_TYPE_AHASH:
 646		crypto4xx_ahash_done(dev, pd_uinfo);
 
 
 
 
 
 647		break;
 648	}
 649}
 650
 651static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
 652{
 653	crypto4xx_destroy_pdr(core_dev->dev);
 654	crypto4xx_destroy_gdr(core_dev->dev);
 655	crypto4xx_destroy_sdr(core_dev->dev);
 656	iounmap(core_dev->dev->ce_base);
 657	kfree(core_dev->dev);
 658	kfree(core_dev);
 659}
 660
 
 
 
 
 
 
 
 
 
 
 
 661static u32 get_next_gd(u32 current)
 662{
 663	if (current != PPC4XX_LAST_GD)
 664		return current + 1;
 665	else
 666		return 0;
 667}
 668
 669static u32 get_next_sd(u32 current)
 670{
 671	if (current != PPC4XX_LAST_SD)
 672		return current + 1;
 673	else
 674		return 0;
 675}
 676
 677int crypto4xx_build_pd(struct crypto_async_request *req,
 678		       struct crypto4xx_ctx *ctx,
 679		       struct scatterlist *src,
 680		       struct scatterlist *dst,
 681		       const unsigned int datalen,
 682		       const __le32 *iv, const u32 iv_len,
 683		       const struct dynamic_sa_ctl *req_sa,
 684		       const unsigned int sa_len,
 685		       const unsigned int assoclen,
 686		       struct scatterlist *_dst)
 687{
 688	struct crypto4xx_device *dev = ctx->dev;
 
 689	struct dynamic_sa_ctl *sa;
 
 690	struct ce_gd *gd;
 691	struct ce_pd *pd;
 692	u32 num_gd, num_sd;
 693	u32 fst_gd = 0xffffffff;
 694	u32 fst_sd = 0xffffffff;
 695	u32 pd_entry;
 696	unsigned long flags;
 697	struct pd_uinfo *pd_uinfo;
 698	unsigned int nbytes = datalen;
 699	size_t offset_to_sr_ptr;
 700	u32 gd_idx = 0;
 701	int tmp;
 702	bool is_busy, force_sd;
 703
 704	/*
 705	 * There's a very subtile/disguised "bug" in the hardware that
 706	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
 707	 * of the hardware spec:
 708	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
 709	 * operation modes for >>> "Block ciphers" <<<.
 710	 *
 711	 * To workaround this issue and stop the hardware from causing
 712	 * "overran dst buffer" on crypttexts that are not a multiple
 713	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
 714	 * scatter buffers.
 715	 */
 716	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
 717		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
 718		&& (datalen % AES_BLOCK_SIZE);
 719
 720	/* figure how many gd are needed */
 721	tmp = sg_nents_for_len(src, assoclen + datalen);
 722	if (tmp < 0) {
 723		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
 724		return tmp;
 725	}
 726	if (tmp == 1)
 727		tmp = 0;
 728	num_gd = tmp;
 729
 730	if (assoclen) {
 731		nbytes += assoclen;
 732		dst = scatterwalk_ffwd(_dst, dst, assoclen);
 733	}
 734
 735	/* figure how many sd are needed */
 736	if (sg_is_last(dst) && force_sd == false) {
 737		num_sd = 0;
 738	} else {
 739		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
 740			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
 741			if (datalen % PPC4XX_SD_BUFFER_SIZE)
 742				num_sd++;
 743		} else {
 744			num_sd = 1;
 745		}
 746	}
 747
 748	/*
 749	 * The follow section of code needs to be protected
 750	 * The gather ring and scatter ring needs to be consecutive
 751	 * In case of run out of any kind of descriptor, the descriptor
 752	 * already got must be return the original place.
 753	 */
 754	spin_lock_irqsave(&dev->core_dev->lock, flags);
 755	/*
 756	 * Let the caller know to slow down, once more than 13/16ths = 81%
 757	 * of the available data contexts are being used simultaneously.
 758	 *
 759	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
 760	 * 31 more contexts. Before new requests have to be rejected.
 761	 */
 762	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
 763		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 764			((PPC4XX_NUM_PD * 13) / 16);
 765	} else {
 766		/*
 767		 * To fix contention issues between ipsec (no blacklog) and
 768		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
 769		 * data contexts.
 770		 */
 771		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 772			((PPC4XX_NUM_PD * 15) / 16);
 773
 774		if (is_busy) {
 775			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 776			return -EBUSY;
 777		}
 778	}
 779
 780	if (num_gd) {
 781		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
 782		if (fst_gd == ERING_WAS_FULL) {
 783			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 784			return -EAGAIN;
 785		}
 786	}
 787	if (num_sd) {
 788		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
 789		if (fst_sd == ERING_WAS_FULL) {
 790			if (num_gd)
 791				dev->gdr_head = fst_gd;
 792			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 793			return -EAGAIN;
 794		}
 795	}
 796	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
 797	if (pd_entry == ERING_WAS_FULL) {
 798		if (num_gd)
 799			dev->gdr_head = fst_gd;
 800		if (num_sd)
 801			dev->sdr_head = fst_sd;
 802		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 803		return -EAGAIN;
 804	}
 805	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 806
 807	pd = &dev->pdr[pd_entry];
 808	pd->sa_len = sa_len;
 809
 810	pd_uinfo = &dev->pdr_uinfo[pd_entry];
 811	pd_uinfo->num_gd = num_gd;
 812	pd_uinfo->num_sd = num_sd;
 813	pd_uinfo->dest_va = dst;
 814	pd_uinfo->async_req = req;
 815
 816	if (iv_len)
 817		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
 818
 819	sa = pd_uinfo->sa_va;
 820	memcpy(sa, req_sa, sa_len * 4);
 
 
 
 821
 822	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
 823	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
 824	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
 825
 
 
 
 
 
 
 
 
 
 
 
 
 826	if (num_gd) {
 827		dma_addr_t gd_dma;
 828		struct scatterlist *sg;
 829
 830		/* get first gd we are going to use */
 831		gd_idx = fst_gd;
 832		pd_uinfo->first_gd = fst_gd;
 
 833		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 834		pd->src = gd_dma;
 835		/* enable gather */
 836		sa->sa_command_0.bf.gather = 1;
 
 
 837		/* walk the sg, and setup gather array */
 838
 839		sg = src;
 840		while (nbytes) {
 841			size_t len;
 842
 843			len = min(sg->length, nbytes);
 844			gd->ptr = dma_map_page(dev->core_dev->device,
 845				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
 846			gd->ctl_len.len = len;
 847			gd->ctl_len.done = 0;
 848			gd->ctl_len.ready = 1;
 849			if (len >= nbytes)
 850				break;
 851
 852			nbytes -= sg->length;
 853			gd_idx = get_next_gd(gd_idx);
 854			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 855			sg = sg_next(sg);
 856		}
 857	} else {
 858		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
 859				src->offset, min(nbytes, src->length),
 860				DMA_TO_DEVICE);
 861		/*
 862		 * Disable gather in sa command
 863		 */
 864		sa->sa_command_0.bf.gather = 0;
 865		/*
 866		 * Indicate gather array is not used
 867		 */
 868		pd_uinfo->first_gd = 0xffffffff;
 
 869	}
 870	if (!num_sd) {
 871		/*
 872		 * we know application give us dst a whole piece of memory
 873		 * no need to use scatter ring.
 
 874		 */
 
 875		pd_uinfo->first_sd = 0xffffffff;
 
 
 876		sa->sa_command_0.bf.scatter = 0;
 877		pd->dest = (u32)dma_map_page(dev->core_dev->device,
 878					     sg_page(dst), dst->offset,
 879					     min(datalen, dst->length),
 880					     DMA_TO_DEVICE);
 
 
 881	} else {
 882		dma_addr_t sd_dma;
 883		struct ce_sd *sd = NULL;
 884
 885		u32 sd_idx = fst_sd;
 886		nbytes = datalen;
 887		sa->sa_command_0.bf.scatter = 1;
 
 
 888		pd_uinfo->first_sd = fst_sd;
 
 889		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 890		pd->dest = sd_dma;
 891		/* setup scatter descriptor */
 892		sd->ctl.done = 0;
 893		sd->ctl.rdy = 1;
 894		/* sd->ptr should be setup by sd_init routine*/
 
 895		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
 896			nbytes -= PPC4XX_SD_BUFFER_SIZE;
 897		else
 898			nbytes = 0;
 899		while (nbytes) {
 900			sd_idx = get_next_sd(sd_idx);
 901			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 902			/* setup scatter descriptor */
 903			sd->ctl.done = 0;
 904			sd->ctl.rdy = 1;
 905			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
 906				nbytes -= PPC4XX_SD_BUFFER_SIZE;
 907			} else {
 908				/*
 909				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
 910				 * which is more than nbytes, so done.
 911				 */
 912				nbytes = 0;
 913			}
 914		}
 915	}
 916
 917	pd->pd_ctl.w = PD_CTL_HOST_READY |
 918		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
 919		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
 920			PD_CTL_HASH_FINAL : 0);
 921	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
 922	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
 923
 924	wmb();
 925	/* write any value to push engine to read a pd */
 926	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 927	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 928	return is_busy ? -EBUSY : -EINPROGRESS;
 929}
 930
 931/*
 932 * Algorithm Registration Functions
 933 */
 934static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
 935			       struct crypto4xx_ctx *ctx)
 936{
 
 
 
 
 937	ctx->dev = amcc_alg->dev;
 938	ctx->sa_in = NULL;
 939	ctx->sa_out = NULL;
 
 
 940	ctx->sa_len = 0;
 941}
 942
 943static int crypto4xx_sk_init(struct crypto_skcipher *sk)
 944{
 945	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
 946	struct crypto4xx_alg *amcc_alg;
 947	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 948
 949	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
 950		ctx->sw_cipher.cipher =
 951			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
 952					      CRYPTO_ALG_NEED_FALLBACK);
 953		if (IS_ERR(ctx->sw_cipher.cipher))
 954			return PTR_ERR(ctx->sw_cipher.cipher);
 955	}
 956
 957	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
 958	crypto4xx_ctx_init(amcc_alg, ctx);
 959	return 0;
 960}
 961
 962static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
 963{
 964	crypto4xx_free_sa(ctx);
 965}
 966
 967static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
 968{
 969	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 970
 971	crypto4xx_common_exit(ctx);
 972	if (ctx->sw_cipher.cipher)
 973		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
 974}
 975
 976static int crypto4xx_aead_init(struct crypto_aead *tfm)
 977{
 978	struct aead_alg *alg = crypto_aead_alg(tfm);
 979	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
 980	struct crypto4xx_alg *amcc_alg;
 981
 982	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
 983						CRYPTO_ALG_NEED_FALLBACK |
 984						CRYPTO_ALG_ASYNC);
 985	if (IS_ERR(ctx->sw_cipher.aead))
 986		return PTR_ERR(ctx->sw_cipher.aead);
 987
 988	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
 989	crypto4xx_ctx_init(amcc_alg, ctx);
 990	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
 991				crypto_aead_reqsize(ctx->sw_cipher.aead),
 992				sizeof(struct crypto4xx_aead_reqctx)));
 993	return 0;
 994}
 995
 996static void crypto4xx_aead_exit(struct crypto_aead *tfm)
 997{
 998	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
 999
1000	crypto4xx_common_exit(ctx);
1001	crypto_free_aead(ctx->sw_cipher.aead);
1002}
1003
1004static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1005				  struct crypto4xx_alg_common *crypto_alg,
1006				  int array_size)
1007{
1008	struct crypto4xx_alg *alg;
1009	int i;
1010	int rc = 0;
1011
1012	for (i = 0; i < array_size; i++) {
1013		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1014		if (!alg)
1015			return -ENOMEM;
1016
1017		alg->alg = crypto_alg[i];
1018		alg->dev = sec_dev;
1019
1020		switch (alg->alg.type) {
1021		case CRYPTO_ALG_TYPE_AEAD:
1022			rc = crypto_register_aead(&alg->alg.u.aead);
1023			break;
1024
1025		case CRYPTO_ALG_TYPE_AHASH:
1026			rc = crypto_register_ahash(&alg->alg.u.hash);
1027			break;
1028
1029		case CRYPTO_ALG_TYPE_RNG:
1030			rc = crypto_register_rng(&alg->alg.u.rng);
1031			break;
1032
1033		default:
1034			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1035			break;
1036		}
1037
1038		if (rc)
 
1039			kfree(alg);
1040		else
1041			list_add_tail(&alg->entry, &sec_dev->alg_list);
 
1042	}
1043
1044	return 0;
1045}
1046
1047static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1048{
1049	struct crypto4xx_alg *alg, *tmp;
1050
1051	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1052		list_del(&alg->entry);
1053		switch (alg->alg.type) {
1054		case CRYPTO_ALG_TYPE_AHASH:
1055			crypto_unregister_ahash(&alg->alg.u.hash);
1056			break;
1057
1058		case CRYPTO_ALG_TYPE_AEAD:
1059			crypto_unregister_aead(&alg->alg.u.aead);
1060			break;
1061
1062		case CRYPTO_ALG_TYPE_RNG:
1063			crypto_unregister_rng(&alg->alg.u.rng);
1064			break;
1065
1066		default:
1067			crypto_unregister_skcipher(&alg->alg.u.cipher);
1068		}
1069		kfree(alg);
1070	}
1071}
1072
1073static void crypto4xx_bh_tasklet_cb(unsigned long data)
1074{
1075	struct device *dev = (struct device *)data;
1076	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1077	struct pd_uinfo *pd_uinfo;
1078	struct ce_pd *pd;
1079	u32 tail = core_dev->dev->pdr_tail;
1080	u32 head = core_dev->dev->pdr_head;
1081
1082	do {
1083		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1084		pd = &core_dev->dev->pdr[tail];
1085		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1086		     ((READ_ONCE(pd->pd_ctl.w) &
1087		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1088		       PD_CTL_PE_DONE)) {
 
 
1089			crypto4xx_pd_done(core_dev->dev, tail);
1090			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
 
1091		} else {
1092			/* if tail not done, break */
1093			break;
1094		}
1095	} while (head != tail);
1096}
1097
1098/*
1099 * Top Half of isr.
1100 */
1101static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1102						      u32 clr_val)
1103{
1104	struct device *dev = data;
1105	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1106
1107	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
 
 
 
 
1108	tasklet_schedule(&core_dev->tasklet);
1109
1110	return IRQ_HANDLED;
1111}
1112
1113static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1114{
1115	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1116}
1117
1118static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1119{
1120	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1121		PPC4XX_TMO_ERR_INT);
1122}
1123
1124static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1125				 u8 *data, unsigned int max)
1126{
1127	unsigned int i, curr = 0;
1128	u32 val[2];
1129
1130	do {
1131		/* trigger PRN generation */
1132		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1133		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1134
1135		for (i = 0; i < 1024; i++) {
1136			/* usually 19 iterations are enough */
1137			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1138			     CRYPTO4XX_PRNG_STAT_BUSY))
1139				continue;
1140
1141			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1142			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1143			break;
1144		}
1145		if (i == 1024)
1146			return -ETIMEDOUT;
1147
1148		if ((max - curr) >= 8) {
1149			memcpy(data, &val, 8);
1150			data += 8;
1151			curr += 8;
1152		} else {
1153			/* copy only remaining bytes */
1154			memcpy(data, &val, max - curr);
1155			break;
1156		}
1157	} while (curr < max);
1158
1159	return curr;
1160}
1161
1162static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1163				   const u8 *src, unsigned int slen,
1164				   u8 *dstn, unsigned int dlen)
1165{
1166	struct rng_alg *alg = crypto_rng_alg(tfm);
1167	struct crypto4xx_alg *amcc_alg;
1168	struct crypto4xx_device *dev;
1169	int ret;
1170
1171	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1172	dev = amcc_alg->dev;
1173
1174	mutex_lock(&dev->core_dev->rng_lock);
1175	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1176	mutex_unlock(&dev->core_dev->rng_lock);
1177	return ret;
1178}
1179
1180
1181static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1182			unsigned int slen)
1183{
1184	return 0;
1185}
1186
1187/*
1188 * Supported Crypto Algorithms
1189 */
1190static struct crypto4xx_alg_common crypto4xx_alg[] = {
1191	/* Crypto AES modes */
1192	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1193		.base = {
1194			.cra_name = "cbc(aes)",
1195			.cra_driver_name = "cbc-aes-ppc4xx",
1196			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1197			.cra_flags = CRYPTO_ALG_ASYNC |
1198				CRYPTO_ALG_KERN_DRIVER_ONLY,
1199			.cra_blocksize = AES_BLOCK_SIZE,
1200			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1201			.cra_module = THIS_MODULE,
1202		},
1203		.min_keysize = AES_MIN_KEY_SIZE,
1204		.max_keysize = AES_MAX_KEY_SIZE,
1205		.ivsize	= AES_IV_SIZE,
1206		.setkey = crypto4xx_setkey_aes_cbc,
1207		.encrypt = crypto4xx_encrypt_iv_block,
1208		.decrypt = crypto4xx_decrypt_iv_block,
1209		.init = crypto4xx_sk_init,
1210		.exit = crypto4xx_sk_exit,
1211	} },
1212	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1213		.base = {
1214			.cra_name = "ctr(aes)",
1215			.cra_driver_name = "ctr-aes-ppc4xx",
1216			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1217			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1218				CRYPTO_ALG_ASYNC |
1219				CRYPTO_ALG_KERN_DRIVER_ONLY,
1220			.cra_blocksize = 1,
1221			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1222			.cra_module = THIS_MODULE,
1223		},
1224		.min_keysize = AES_MIN_KEY_SIZE,
1225		.max_keysize = AES_MAX_KEY_SIZE,
1226		.ivsize	= AES_IV_SIZE,
1227		.setkey	= crypto4xx_setkey_aes_ctr,
1228		.encrypt = crypto4xx_encrypt_ctr,
1229		.decrypt = crypto4xx_decrypt_ctr,
1230		.init = crypto4xx_sk_init,
1231		.exit = crypto4xx_sk_exit,
1232	} },
1233	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1234		.base = {
1235			.cra_name = "rfc3686(ctr(aes))",
1236			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1237			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1238			.cra_flags = CRYPTO_ALG_ASYNC |
1239				CRYPTO_ALG_KERN_DRIVER_ONLY,
1240			.cra_blocksize = 1,
1241			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1242			.cra_module = THIS_MODULE,
1243		},
1244		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1245		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1246		.ivsize	= CTR_RFC3686_IV_SIZE,
1247		.setkey = crypto4xx_setkey_rfc3686,
1248		.encrypt = crypto4xx_rfc3686_encrypt,
1249		.decrypt = crypto4xx_rfc3686_decrypt,
1250		.init = crypto4xx_sk_init,
1251		.exit = crypto4xx_sk_exit,
1252	} },
1253	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1254		.base = {
1255			.cra_name = "ecb(aes)",
1256			.cra_driver_name = "ecb-aes-ppc4xx",
1257			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1258			.cra_flags = CRYPTO_ALG_ASYNC |
1259				CRYPTO_ALG_KERN_DRIVER_ONLY,
1260			.cra_blocksize = AES_BLOCK_SIZE,
1261			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1262			.cra_module = THIS_MODULE,
1263		},
1264		.min_keysize = AES_MIN_KEY_SIZE,
1265		.max_keysize = AES_MAX_KEY_SIZE,
1266		.setkey	= crypto4xx_setkey_aes_ecb,
1267		.encrypt = crypto4xx_encrypt_noiv_block,
1268		.decrypt = crypto4xx_decrypt_noiv_block,
1269		.init = crypto4xx_sk_init,
1270		.exit = crypto4xx_sk_exit,
1271	} },
1272
1273	/* AEAD */
1274	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1275		.setkey		= crypto4xx_setkey_aes_ccm,
1276		.setauthsize	= crypto4xx_setauthsize_aead,
1277		.encrypt	= crypto4xx_encrypt_aes_ccm,
1278		.decrypt	= crypto4xx_decrypt_aes_ccm,
1279		.init		= crypto4xx_aead_init,
1280		.exit		= crypto4xx_aead_exit,
1281		.ivsize		= AES_BLOCK_SIZE,
1282		.maxauthsize    = 16,
1283		.base = {
1284			.cra_name	= "ccm(aes)",
1285			.cra_driver_name = "ccm-aes-ppc4xx",
1286			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1287			.cra_flags	= CRYPTO_ALG_ASYNC |
1288					  CRYPTO_ALG_NEED_FALLBACK |
1289					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1290			.cra_blocksize	= 1,
1291			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1292			.cra_module	= THIS_MODULE,
1293		},
1294	} },
1295	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1296		.setkey		= crypto4xx_setkey_aes_gcm,
1297		.setauthsize	= crypto4xx_setauthsize_aead,
1298		.encrypt	= crypto4xx_encrypt_aes_gcm,
1299		.decrypt	= crypto4xx_decrypt_aes_gcm,
1300		.init		= crypto4xx_aead_init,
1301		.exit		= crypto4xx_aead_exit,
1302		.ivsize		= GCM_AES_IV_SIZE,
1303		.maxauthsize	= 16,
1304		.base = {
1305			.cra_name	= "gcm(aes)",
1306			.cra_driver_name = "gcm-aes-ppc4xx",
1307			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1308			.cra_flags	= CRYPTO_ALG_ASYNC |
1309					  CRYPTO_ALG_NEED_FALLBACK |
1310					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1311			.cra_blocksize	= 1,
1312			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1313			.cra_module	= THIS_MODULE,
1314		},
1315	} },
1316	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1317		.base = {
1318			.cra_name		= "stdrng",
1319			.cra_driver_name        = "crypto4xx_rng",
1320			.cra_priority		= 300,
1321			.cra_ctxsize		= 0,
1322			.cra_module		= THIS_MODULE,
1323		},
1324		.generate               = crypto4xx_prng_generate,
1325		.seed                   = crypto4xx_prng_seed,
1326		.seedsize               = 0,
1327	} },
1328};
1329
1330/*
1331 * Module Initialization Routine
1332 */
1333static int crypto4xx_probe(struct platform_device *ofdev)
1334{
1335	int rc;
1336	struct resource res;
1337	struct device *dev = &ofdev->dev;
1338	struct crypto4xx_core_device *core_dev;
1339	struct device_node *np;
1340	u32 pvr;
1341	bool is_revb = true;
1342
1343	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1344	if (rc)
1345		return -ENODEV;
1346
1347	np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1348	if (np) {
1349		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1350		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1351		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1352		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
1353	} else {
1354		np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1355		if (np) {
1356			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1357				   mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1358			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1359				   mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1360			is_revb = false;
1361		} else {
1362			np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1363			if (np) {
1364				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1365					mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1366				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1367					mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1368			} else {
1369				printk(KERN_ERR "Crypto Function Not supported!\n");
1370				return -EINVAL;
1371			}
1372		}
1373	}
1374
1375	of_node_put(np);
1376
1377	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1378	if (!core_dev)
1379		return -ENOMEM;
1380
1381	dev_set_drvdata(dev, core_dev);
1382	core_dev->ofdev = ofdev;
1383	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1384	rc = -ENOMEM;
1385	if (!core_dev->dev)
1386		goto err_alloc_dev;
1387
1388	/*
1389	 * Older version of 460EX/GT have a hardware bug.
1390	 * Hence they do not support H/W based security intr coalescing
1391	 */
1392	pvr = mfspr(SPRN_PVR);
1393	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1394		u32 min = PVR_MIN(pvr);
1395
1396		if (min < 4) {
1397			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1398			is_revb = false;
1399		}
1400	}
1401
1402	core_dev->dev->core_dev = core_dev;
1403	core_dev->dev->is_revb = is_revb;
1404	core_dev->device = dev;
1405	mutex_init(&core_dev->rng_lock);
1406	spin_lock_init(&core_dev->lock);
1407	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1408	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1409	rc = crypto4xx_build_sdr(core_dev->dev);
1410	if (rc)
1411		goto err_build_sdr;
1412	rc = crypto4xx_build_pdr(core_dev->dev);
1413	if (rc)
1414		goto err_build_sdr;
1415
1416	rc = crypto4xx_build_gdr(core_dev->dev);
1417	if (rc)
 
 
 
 
1418		goto err_build_sdr;
1419
1420	/* Init tasklet for bottom half processing */
1421	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1422		     (unsigned long) dev);
1423
 
 
 
 
 
 
 
1424	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1425	if (!core_dev->dev->ce_base) {
1426		dev_err(dev, "failed to of_iomap\n");
1427		rc = -ENOMEM;
1428		goto err_iomap;
1429	}
1430
1431	/* Register for Crypto isr, Crypto Engine IRQ */
1432	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1433	rc = request_irq(core_dev->irq, is_revb ?
1434			 crypto4xx_ce_interrupt_handler_revb :
1435			 crypto4xx_ce_interrupt_handler, 0,
1436			 KBUILD_MODNAME, dev);
1437	if (rc)
1438		goto err_request_irq;
1439
1440	/* need to setup pdr, rdr, gdr and sdr before this */
1441	crypto4xx_hw_init(core_dev->dev);
1442
1443	/* Register security algorithms with Linux CryptoAPI */
1444	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1445			       ARRAY_SIZE(crypto4xx_alg));
1446	if (rc)
1447		goto err_start_dev;
1448
1449	ppc4xx_trng_probe(core_dev);
1450	return 0;
1451
1452err_start_dev:
 
 
1453	free_irq(core_dev->irq, dev);
1454err_request_irq:
1455	irq_dispose_mapping(core_dev->irq);
1456	iounmap(core_dev->dev->ce_base);
1457err_iomap:
1458	tasklet_kill(&core_dev->tasklet);
1459err_build_sdr:
1460	crypto4xx_destroy_sdr(core_dev->dev);
 
1461	crypto4xx_destroy_gdr(core_dev->dev);
 
1462	crypto4xx_destroy_pdr(core_dev->dev);
 
1463	kfree(core_dev->dev);
1464err_alloc_dev:
1465	kfree(core_dev);
1466
1467	return rc;
1468}
1469
1470static void crypto4xx_remove(struct platform_device *ofdev)
1471{
1472	struct device *dev = &ofdev->dev;
1473	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1474
1475	ppc4xx_trng_remove(core_dev);
1476
1477	free_irq(core_dev->irq, dev);
1478	irq_dispose_mapping(core_dev->irq);
1479
1480	tasklet_kill(&core_dev->tasklet);
1481	/* Un-register with Linux CryptoAPI */
1482	crypto4xx_unregister_alg(core_dev->dev);
1483	mutex_destroy(&core_dev->rng_lock);
1484	/* Free all allocated memory */
1485	crypto4xx_stop_all(core_dev);
 
 
1486}
1487
1488static const struct of_device_id crypto4xx_match[] = {
1489	{ .compatible      = "amcc,ppc4xx-crypto",},
1490	{ },
1491};
1492MODULE_DEVICE_TABLE(of, crypto4xx_match);
1493
1494static struct platform_driver crypto4xx_driver = {
1495	.driver = {
1496		.name = KBUILD_MODNAME,
1497		.of_match_table = crypto4xx_match,
1498	},
1499	.probe		= crypto4xx_probe,
1500	.remove_new	= crypto4xx_remove,
1501};
1502
1503module_platform_driver(crypto4xx_driver);
1504
1505MODULE_LICENSE("GPL");
1506MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1507MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
v4.6
   1/**
 
   2 * AMCC SoC PPC4xx Crypto Driver
   3 *
   4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
   5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * This file implements AMCC crypto offload Linux device driver for use with
  18 * Linux CryptoAPI.
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/interrupt.h>
  23#include <linux/spinlock_types.h>
  24#include <linux/random.h>
  25#include <linux/scatterlist.h>
  26#include <linux/crypto.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/platform_device.h>
  29#include <linux/init.h>
  30#include <linux/module.h>
  31#include <linux/of_address.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_platform.h>
  34#include <linux/slab.h>
  35#include <asm/dcr.h>
  36#include <asm/dcr-regs.h>
  37#include <asm/cacheflush.h>
 
  38#include <crypto/aes.h>
  39#include <crypto/sha.h>
 
 
 
 
 
 
 
 
  40#include "crypto4xx_reg_def.h"
  41#include "crypto4xx_core.h"
  42#include "crypto4xx_sa.h"
 
  43
  44#define PPC4XX_SEC_VERSION_STR			"0.5"
  45
  46/**
  47 * PPC4xx Crypto Engine Initialization Routine
  48 */
  49static void crypto4xx_hw_init(struct crypto4xx_device *dev)
  50{
  51	union ce_ring_size ring_size;
  52	union ce_ring_contol ring_ctrl;
  53	union ce_part_ring_size part_ring_size;
  54	union ce_io_threshold io_threshold;
  55	u32 rand_num;
  56	union ce_pe_dma_cfg pe_dma_cfg;
  57	u32 device_ctrl;
  58
  59	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
  60	/* setup pe dma, include reset sg, pdr and pe, then release reset */
  61	pe_dma_cfg.w = 0;
  62	pe_dma_cfg.bf.bo_sgpd_en = 1;
  63	pe_dma_cfg.bf.bo_data_en = 0;
  64	pe_dma_cfg.bf.bo_sa_en = 1;
  65	pe_dma_cfg.bf.bo_pd_en = 1;
  66	pe_dma_cfg.bf.dynamic_sa_en = 1;
  67	pe_dma_cfg.bf.reset_sg = 1;
  68	pe_dma_cfg.bf.reset_pdr = 1;
  69	pe_dma_cfg.bf.reset_pe = 1;
  70	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  71	/* un reset pe,sg and pdr */
  72	pe_dma_cfg.bf.pe_mode = 0;
  73	pe_dma_cfg.bf.reset_sg = 0;
  74	pe_dma_cfg.bf.reset_pdr = 0;
  75	pe_dma_cfg.bf.reset_pe = 0;
  76	pe_dma_cfg.bf.bo_td_en = 0;
  77	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  78	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
  79	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
  80	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
  81	get_random_bytes(&rand_num, sizeof(rand_num));
  82	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
  83	get_random_bytes(&rand_num, sizeof(rand_num));
  84	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
  85	ring_size.w = 0;
  86	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
  87	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
  88	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
  89	ring_ctrl.w = 0;
  90	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
  91	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  92	device_ctrl |= PPC4XX_DC_3DES_EN;
  93	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  94	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
  95	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
  96	part_ring_size.w = 0;
  97	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
  98	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
  99	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
 100	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
 101	io_threshold.w = 0;
 102	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
 103	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
 104	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
 105	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
 106	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
 107	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
 108	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
 109	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
 110	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
 111	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
 112	/* un reset pe,sg and pdr */
 113	pe_dma_cfg.bf.pe_mode = 1;
 114	pe_dma_cfg.bf.reset_sg = 0;
 115	pe_dma_cfg.bf.reset_pdr = 0;
 116	pe_dma_cfg.bf.reset_pe = 0;
 117	pe_dma_cfg.bf.bo_td_en = 0;
 118	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
 119	/*clear all pending interrupt*/
 120	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
 121	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 122	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 123	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
 124	writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
 
 
 
 
 
 
 
 125}
 126
 127int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
 128{
 129	ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
 130					&ctx->sa_in_dma_addr, GFP_ATOMIC);
 131	if (ctx->sa_in == NULL)
 132		return -ENOMEM;
 133
 134	ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
 135					 &ctx->sa_out_dma_addr, GFP_ATOMIC);
 136	if (ctx->sa_out == NULL) {
 137		dma_free_coherent(ctx->dev->core_dev->device,
 138				  ctx->sa_len * 4,
 139				  ctx->sa_in, ctx->sa_in_dma_addr);
 140		return -ENOMEM;
 141	}
 142
 143	memset(ctx->sa_in, 0, size * 4);
 144	memset(ctx->sa_out, 0, size * 4);
 145	ctx->sa_len = size;
 146
 147	return 0;
 148}
 149
 150void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
 151{
 152	if (ctx->sa_in != NULL)
 153		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
 154				  ctx->sa_in, ctx->sa_in_dma_addr);
 155	if (ctx->sa_out != NULL)
 156		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
 157				  ctx->sa_out, ctx->sa_out_dma_addr);
 158
 159	ctx->sa_in_dma_addr = 0;
 160	ctx->sa_out_dma_addr = 0;
 161	ctx->sa_len = 0;
 162}
 163
 164u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
 165{
 166	ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
 167				sizeof(struct sa_state_record),
 168				&ctx->state_record_dma_addr, GFP_ATOMIC);
 169	if (!ctx->state_record_dma_addr)
 170		return -ENOMEM;
 171	memset(ctx->state_record, 0, sizeof(struct sa_state_record));
 172
 173	return 0;
 174}
 175
 176void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
 177{
 178	if (ctx->state_record != NULL)
 179		dma_free_coherent(ctx->dev->core_dev->device,
 180				  sizeof(struct sa_state_record),
 181				  ctx->state_record,
 182				  ctx->state_record_dma_addr);
 183	ctx->state_record_dma_addr = 0;
 184}
 185
 186/**
 187 * alloc memory for the gather ring
 188 * no need to alloc buf for the ring
 189 * gdr_tail, gdr_head and gdr_count are initialized by this function
 190 */
 191static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
 192{
 193	int i;
 194	struct pd_uinfo *pd_uinfo;
 195	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
 196				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 197				      &dev->pdr_pa, GFP_ATOMIC);
 198	if (!dev->pdr)
 199		return -ENOMEM;
 200
 201	dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
 202				GFP_KERNEL);
 203	if (!dev->pdr_uinfo) {
 204		dma_free_coherent(dev->core_dev->device,
 205				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 206				  dev->pdr,
 207				  dev->pdr_pa);
 208		return -ENOMEM;
 209	}
 210	memset(dev->pdr, 0,  sizeof(struct ce_pd) * PPC4XX_NUM_PD);
 211	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
 212				   256 * PPC4XX_NUM_PD,
 213				   &dev->shadow_sa_pool_pa,
 214				   GFP_ATOMIC);
 215	if (!dev->shadow_sa_pool)
 216		return -ENOMEM;
 217
 218	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
 219			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 220			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
 221	if (!dev->shadow_sr_pool)
 222		return -ENOMEM;
 223	for (i = 0; i < PPC4XX_NUM_PD; i++) {
 224		pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
 225						sizeof(struct pd_uinfo) * i);
 
 
 
 226
 227		/* alloc 256 bytes which is enough for any kind of dynamic sa */
 228		pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
 229		pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
 230
 231		/* alloc state record */
 232		pd_uinfo->sr_va = dev->shadow_sr_pool +
 233		    sizeof(struct sa_state_record) * i;
 234		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
 235		    sizeof(struct sa_state_record) * i;
 236	}
 237
 238	return 0;
 239}
 240
 241static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
 242{
 243	if (dev->pdr != NULL)
 244		dma_free_coherent(dev->core_dev->device,
 245				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 246				  dev->pdr, dev->pdr_pa);
 
 247	if (dev->shadow_sa_pool)
 248		dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
 249				  dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
 
 
 250	if (dev->shadow_sr_pool)
 251		dma_free_coherent(dev->core_dev->device,
 252			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 253			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
 254
 255	kfree(dev->pdr_uinfo);
 256}
 257
 258static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
 259{
 260	u32 retval;
 261	u32 tmp;
 262
 263	retval = dev->pdr_head;
 264	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
 265
 266	if (tmp == dev->pdr_tail)
 267		return ERING_WAS_FULL;
 268
 269	dev->pdr_head = tmp;
 270
 271	return retval;
 272}
 273
 274static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
 275{
 276	struct pd_uinfo *pd_uinfo;
 
 277	unsigned long flags;
 278
 279	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
 280				       sizeof(struct pd_uinfo) * idx);
 281	spin_lock_irqsave(&dev->core_dev->lock, flags);
 
 
 282	if (dev->pdr_tail != PPC4XX_LAST_PD)
 283		dev->pdr_tail++;
 284	else
 285		dev->pdr_tail = 0;
 286	pd_uinfo->state = PD_ENTRY_FREE;
 287	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 288
 289	return 0;
 290}
 291
 292static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
 293				       dma_addr_t *pd_dma, u32 idx)
 294{
 295	*pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
 296
 297	return dev->pdr + sizeof(struct ce_pd) * idx;
 298}
 299
 300/**
 301 * alloc memory for the gather ring
 302 * no need to alloc buf for the ring
 303 * gdr_tail, gdr_head and gdr_count are initialized by this function
 304 */
 305static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
 306{
 307	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
 308				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 309				      &dev->gdr_pa, GFP_ATOMIC);
 310	if (!dev->gdr)
 311		return -ENOMEM;
 312
 313	memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
 314
 315	return 0;
 316}
 317
 318static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
 319{
 320	dma_free_coherent(dev->core_dev->device,
 
 321			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 322			  dev->gdr, dev->gdr_pa);
 323}
 324
 325/*
 326 * when this function is called.
 327 * preemption or interrupt must be disabled
 328 */
 329u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
 330{
 331	u32 retval;
 332	u32 tmp;
 
 333	if (n >= PPC4XX_NUM_GD)
 334		return ERING_WAS_FULL;
 335
 336	retval = dev->gdr_head;
 337	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
 338	if (dev->gdr_head > dev->gdr_tail) {
 339		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
 340			return ERING_WAS_FULL;
 341	} else if (dev->gdr_head < dev->gdr_tail) {
 342		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
 343			return ERING_WAS_FULL;
 344	}
 345	dev->gdr_head = tmp;
 346
 347	return retval;
 348}
 349
 350static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
 351{
 352	unsigned long flags;
 353
 354	spin_lock_irqsave(&dev->core_dev->lock, flags);
 355	if (dev->gdr_tail == dev->gdr_head) {
 356		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 357		return 0;
 358	}
 359
 360	if (dev->gdr_tail != PPC4XX_LAST_GD)
 361		dev->gdr_tail++;
 362	else
 363		dev->gdr_tail = 0;
 364
 365	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 366
 367	return 0;
 368}
 369
 370static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
 371					      dma_addr_t *gd_dma, u32 idx)
 372{
 373	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
 374
 375	return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
 376}
 377
 378/**
 379 * alloc memory for the scatter ring
 380 * need to alloc buf for the ring
 381 * sdr_tail, sdr_head and sdr_count are initialized by this function
 382 */
 383static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
 384{
 385	int i;
 386	struct ce_sd *sd_array;
 
 
 
 
 
 
 387
 388	/* alloc memory for scatter descriptor ring */
 389	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
 390				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 391				      &dev->sdr_pa, GFP_ATOMIC);
 392	if (!dev->sdr)
 393		return -ENOMEM;
 394
 395	dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
 396	dev->scatter_buffer_va =
 397		dma_alloc_coherent(dev->core_dev->device,
 398			dev->scatter_buffer_size * PPC4XX_NUM_SD,
 399			&dev->scatter_buffer_pa, GFP_ATOMIC);
 400	if (!dev->scatter_buffer_va) {
 401		dma_free_coherent(dev->core_dev->device,
 402				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 403				  dev->sdr, dev->sdr_pa);
 404		return -ENOMEM;
 405	}
 406
 407	sd_array = dev->sdr;
 408
 409	for (i = 0; i < PPC4XX_NUM_SD; i++) {
 410		sd_array[i].ptr = dev->scatter_buffer_pa +
 411				  dev->scatter_buffer_size * i;
 412	}
 413
 414	return 0;
 415}
 416
 417static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
 418{
 419	if (dev->sdr != NULL)
 420		dma_free_coherent(dev->core_dev->device,
 421				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 422				  dev->sdr, dev->sdr_pa);
 423
 424	if (dev->scatter_buffer_va != NULL)
 425		dma_free_coherent(dev->core_dev->device,
 426				  dev->scatter_buffer_size * PPC4XX_NUM_SD,
 427				  dev->scatter_buffer_va,
 428				  dev->scatter_buffer_pa);
 429}
 430
 431/*
 432 * when this function is called.
 433 * preemption or interrupt must be disabled
 434 */
 435static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
 436{
 437	u32 retval;
 438	u32 tmp;
 439
 440	if (n >= PPC4XX_NUM_SD)
 441		return ERING_WAS_FULL;
 442
 443	retval = dev->sdr_head;
 444	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
 445	if (dev->sdr_head > dev->gdr_tail) {
 446		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
 447			return ERING_WAS_FULL;
 448	} else if (dev->sdr_head < dev->sdr_tail) {
 449		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
 450			return ERING_WAS_FULL;
 451	} /* the head = tail, or empty case is already take cared */
 452	dev->sdr_head = tmp;
 453
 454	return retval;
 455}
 456
 457static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
 458{
 459	unsigned long flags;
 460
 461	spin_lock_irqsave(&dev->core_dev->lock, flags);
 462	if (dev->sdr_tail == dev->sdr_head) {
 463		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 464		return 0;
 465	}
 466	if (dev->sdr_tail != PPC4XX_LAST_SD)
 467		dev->sdr_tail++;
 468	else
 469		dev->sdr_tail = 0;
 470	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 471
 472	return 0;
 473}
 474
 475static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
 476					      dma_addr_t *sd_dma, u32 idx)
 477{
 478	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
 479
 480	return  (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
 481}
 482
 483static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
 484				   dma_addr_t *addr, u32 *length,
 485				   u32 *idx, u32 *offset, u32 *nbytes)
 486{
 487	u32 len;
 488
 489	if (*length > dev->scatter_buffer_size) {
 490		memcpy(phys_to_virt(*addr),
 491			dev->scatter_buffer_va +
 492			*idx * dev->scatter_buffer_size + *offset,
 493			dev->scatter_buffer_size);
 494		*offset = 0;
 495		*length -= dev->scatter_buffer_size;
 496		*nbytes -= dev->scatter_buffer_size;
 497		if (*idx == PPC4XX_LAST_SD)
 498			*idx = 0;
 499		else
 500			(*idx)++;
 501		*addr = *addr +  dev->scatter_buffer_size;
 502		return 1;
 503	} else if (*length < dev->scatter_buffer_size) {
 504		memcpy(phys_to_virt(*addr),
 505			dev->scatter_buffer_va +
 506			*idx * dev->scatter_buffer_size + *offset, *length);
 507		if ((*offset + *length) == dev->scatter_buffer_size) {
 508			if (*idx == PPC4XX_LAST_SD)
 509				*idx = 0;
 510			else
 511				(*idx)++;
 512			*nbytes -= *length;
 513			*offset = 0;
 514		} else {
 515			*nbytes -= *length;
 516			*offset += *length;
 517		}
 518
 519		return 0;
 520	} else {
 521		len = (*nbytes <= dev->scatter_buffer_size) ?
 522				(*nbytes) : dev->scatter_buffer_size;
 523		memcpy(phys_to_virt(*addr),
 524			dev->scatter_buffer_va +
 525			*idx * dev->scatter_buffer_size + *offset,
 526			len);
 527		*offset = 0;
 528		*nbytes -= len;
 529
 530		if (*idx == PPC4XX_LAST_SD)
 531			*idx = 0;
 532		else
 533			(*idx)++;
 534
 535		return 0;
 536    }
 537}
 538
 539static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
 540				      struct ce_pd *pd,
 541				      struct pd_uinfo *pd_uinfo,
 542				      u32 nbytes,
 543				      struct scatterlist *dst)
 544{
 545	dma_addr_t addr;
 546	u32 this_sd;
 547	u32 offset;
 548	u32 len;
 549	u32 i;
 550	u32 sg_len;
 551	struct scatterlist *sg;
 552
 553	this_sd = pd_uinfo->first_sd;
 554	offset = 0;
 555	i = 0;
 
 
 
 
 
 
 556
 557	while (nbytes) {
 558		sg = &dst[i];
 559		sg_len = sg->length;
 560		addr = dma_map_page(dev->core_dev->device, sg_page(sg),
 561				sg->offset, sg->length, DMA_TO_DEVICE);
 562
 563		if (offset == 0) {
 564			len = (nbytes <= sg->length) ? nbytes : sg->length;
 565			while (crypto4xx_fill_one_page(dev, &addr, &len,
 566				&this_sd, &offset, &nbytes))
 567				;
 568			if (!nbytes)
 569				return;
 570			i++;
 571		} else {
 572			len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
 573				nbytes : (dev->scatter_buffer_size - offset);
 574			len = (sg->length < len) ? sg->length : len;
 575			while (crypto4xx_fill_one_page(dev, &addr, &len,
 576					       &this_sd, &offset, &nbytes))
 577				;
 578			if (!nbytes)
 579				return;
 580			sg_len -= len;
 581			if (sg_len) {
 582				addr += len;
 583				while (crypto4xx_fill_one_page(dev, &addr,
 584					&sg_len, &this_sd, &offset, &nbytes))
 585					;
 586			}
 587			i++;
 588		}
 589	}
 590}
 591
 592static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
 
 593					struct crypto4xx_ctx *ctx)
 594{
 595	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
 596	struct sa_state_record *state_record =
 597				(struct sa_state_record *) pd_uinfo->sr_va;
 598
 599	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
 600		memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
 601		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
 602	}
 603
 604	return 0;
 605}
 606
 607static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
 608				  struct pd_uinfo *pd_uinfo)
 609{
 610	int i;
 611	if (pd_uinfo->num_gd) {
 612		for (i = 0; i < pd_uinfo->num_gd; i++)
 613			crypto4xx_put_gd_to_gdr(dev);
 614		pd_uinfo->first_gd = 0xffffffff;
 615		pd_uinfo->num_gd = 0;
 616	}
 617	if (pd_uinfo->num_sd) {
 618		for (i = 0; i < pd_uinfo->num_sd; i++)
 619			crypto4xx_put_sd_to_sdr(dev);
 620
 621		pd_uinfo->first_sd = 0xffffffff;
 622		pd_uinfo->num_sd = 0;
 623	}
 624}
 625
 626static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
 627				     struct pd_uinfo *pd_uinfo,
 628				     struct ce_pd *pd)
 629{
 630	struct crypto4xx_ctx *ctx;
 631	struct ablkcipher_request *ablk_req;
 632	struct scatterlist *dst;
 633	dma_addr_t addr;
 634
 635	ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
 636	ctx  = crypto_tfm_ctx(ablk_req->base.tfm);
 637
 638	if (pd_uinfo->using_sd) {
 639		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
 640					  ablk_req->dst);
 641	} else {
 642		dst = pd_uinfo->dest_va;
 643		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
 644				    dst->offset, dst->length, DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 645	}
 
 646	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 647	if (ablk_req->base.complete != NULL)
 648		ablk_req->base.complete(&ablk_req->base, 0);
 649
 650	return 0;
 
 
 651}
 652
 653static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
 654				struct pd_uinfo *pd_uinfo)
 655{
 656	struct crypto4xx_ctx *ctx;
 657	struct ahash_request *ahash_req;
 658
 659	ahash_req = ahash_request_cast(pd_uinfo->async_req);
 660	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661
 662	crypto4xx_copy_digest_to_dst(pd_uinfo,
 663				     crypto_tfm_ctx(ahash_req->base.tfm));
 664	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 665	/* call user provided callback function x */
 666	if (ahash_req->base.complete != NULL)
 667		ahash_req->base.complete(&ahash_req->base, 0);
 668
 669	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670}
 671
 672static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
 673{
 674	struct ce_pd *pd;
 675	struct pd_uinfo *pd_uinfo;
 676
 677	pd =  dev->pdr + sizeof(struct ce_pd)*idx;
 678	pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
 679	if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
 680			CRYPTO_ALG_TYPE_ABLKCIPHER)
 681		return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
 682	else
 683		return crypto4xx_ahash_done(dev, pd_uinfo);
 684}
 685
 686/**
 687 * Note: Only use this function to copy items that is word aligned.
 688 */
 689void crypto4xx_memcpy_le(unsigned int *dst,
 690			 const unsigned char *buf,
 691			 int len)
 692{
 693	u8 *tmp;
 694	for (; len >= 4; buf += 4, len -= 4)
 695		*dst++ = cpu_to_le32(*(unsigned int *) buf);
 696
 697	tmp = (u8 *)dst;
 698	switch (len) {
 699	case 3:
 700		*tmp++ = 0;
 701		*tmp++ = *(buf+2);
 702		*tmp++ = *(buf+1);
 703		*tmp++ = *buf;
 704		break;
 705	case 2:
 706		*tmp++ = 0;
 707		*tmp++ = 0;
 708		*tmp++ = *(buf+1);
 709		*tmp++ = *buf;
 710		break;
 711	case 1:
 712		*tmp++ = 0;
 713		*tmp++ = 0;
 714		*tmp++ = 0;
 715		*tmp++ = *buf;
 716		break;
 717	default:
 718		break;
 719	}
 720}
 721
 722static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
 723{
 724	crypto4xx_destroy_pdr(core_dev->dev);
 725	crypto4xx_destroy_gdr(core_dev->dev);
 726	crypto4xx_destroy_sdr(core_dev->dev);
 727	iounmap(core_dev->dev->ce_base);
 728	kfree(core_dev->dev);
 729	kfree(core_dev);
 730}
 731
 732void crypto4xx_return_pd(struct crypto4xx_device *dev,
 733			 u32 pd_entry, struct ce_pd *pd,
 734			 struct pd_uinfo *pd_uinfo)
 735{
 736	/* irq should be already disabled */
 737	dev->pdr_head = pd_entry;
 738	pd->pd_ctl.w = 0;
 739	pd->pd_ctl_len.w = 0;
 740	pd_uinfo->state = PD_ENTRY_FREE;
 741}
 742
 743static u32 get_next_gd(u32 current)
 744{
 745	if (current != PPC4XX_LAST_GD)
 746		return current + 1;
 747	else
 748		return 0;
 749}
 750
 751static u32 get_next_sd(u32 current)
 752{
 753	if (current != PPC4XX_LAST_SD)
 754		return current + 1;
 755	else
 756		return 0;
 757}
 758
 759u32 crypto4xx_build_pd(struct crypto_async_request *req,
 760		       struct crypto4xx_ctx *ctx,
 761		       struct scatterlist *src,
 762		       struct scatterlist *dst,
 763		       unsigned int datalen,
 764		       void *iv, u32 iv_len)
 
 
 
 
 765{
 766	struct crypto4xx_device *dev = ctx->dev;
 767	dma_addr_t addr, pd_dma, sd_dma, gd_dma;
 768	struct dynamic_sa_ctl *sa;
 769	struct scatterlist *sg;
 770	struct ce_gd *gd;
 771	struct ce_pd *pd;
 772	u32 num_gd, num_sd;
 773	u32 fst_gd = 0xffffffff;
 774	u32 fst_sd = 0xffffffff;
 775	u32 pd_entry;
 776	unsigned long flags;
 777	struct pd_uinfo *pd_uinfo = NULL;
 778	unsigned int nbytes = datalen, idx;
 779	unsigned int ivlen = 0;
 780	u32 gd_idx = 0;
 
 
 781
 782	/* figure how many gd is needed */
 783	num_gd = sg_nents_for_len(src, datalen);
 784	if ((int)num_gd < 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
 786		return -EINVAL;
 787	}
 788	if (num_gd == 1)
 789		num_gd = 0;
 
 790
 791	/* figure how many sd is needed */
 792	if (sg_is_last(dst) || ctx->is_hash) {
 
 
 
 
 
 793		num_sd = 0;
 794	} else {
 795		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
 796			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
 797			if (datalen % PPC4XX_SD_BUFFER_SIZE)
 798				num_sd++;
 799		} else {
 800			num_sd = 1;
 801		}
 802	}
 803
 804	/*
 805	 * The follow section of code needs to be protected
 806	 * The gather ring and scatter ring needs to be consecutive
 807	 * In case of run out of any kind of descriptor, the descriptor
 808	 * already got must be return the original place.
 809	 */
 810	spin_lock_irqsave(&dev->core_dev->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811	if (num_gd) {
 812		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
 813		if (fst_gd == ERING_WAS_FULL) {
 814			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 815			return -EAGAIN;
 816		}
 817	}
 818	if (num_sd) {
 819		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
 820		if (fst_sd == ERING_WAS_FULL) {
 821			if (num_gd)
 822				dev->gdr_head = fst_gd;
 823			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 824			return -EAGAIN;
 825		}
 826	}
 827	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
 828	if (pd_entry == ERING_WAS_FULL) {
 829		if (num_gd)
 830			dev->gdr_head = fst_gd;
 831		if (num_sd)
 832			dev->sdr_head = fst_sd;
 833		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 834		return -EAGAIN;
 835	}
 836	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 837
 838	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
 839				       sizeof(struct pd_uinfo) * pd_entry);
 840	pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
 841	pd_uinfo->async_req = req;
 842	pd_uinfo->num_gd = num_gd;
 843	pd_uinfo->num_sd = num_sd;
 
 
 844
 845	if (iv_len || ctx->is_hash) {
 846		ivlen = iv_len;
 847		pd->sa = pd_uinfo->sa_pa;
 848		sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
 849		if (ctx->direction == DIR_INBOUND)
 850			memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
 851		else
 852			memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
 853
 854		memcpy((void *) sa + ctx->offset_to_sr_ptr,
 855			&pd_uinfo->sr_pa, 4);
 
 856
 857		if (iv_len)
 858			crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
 859	} else {
 860		if (ctx->direction == DIR_INBOUND) {
 861			pd->sa = ctx->sa_in_dma_addr;
 862			sa = (struct dynamic_sa_ctl *) ctx->sa_in;
 863		} else {
 864			pd->sa = ctx->sa_out_dma_addr;
 865			sa = (struct dynamic_sa_ctl *) ctx->sa_out;
 866		}
 867	}
 868	pd->sa_len = ctx->sa_len;
 869	if (num_gd) {
 
 
 
 870		/* get first gd we are going to use */
 871		gd_idx = fst_gd;
 872		pd_uinfo->first_gd = fst_gd;
 873		pd_uinfo->num_gd = num_gd;
 874		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 875		pd->src = gd_dma;
 876		/* enable gather */
 877		sa->sa_command_0.bf.gather = 1;
 878		idx = 0;
 879		src = &src[0];
 880		/* walk the sg, and setup gather array */
 
 
 881		while (nbytes) {
 882			sg = &src[idx];
 883			addr = dma_map_page(dev->core_dev->device, sg_page(sg),
 884				    sg->offset, sg->length, DMA_TO_DEVICE);
 885			gd->ptr = addr;
 886			gd->ctl_len.len = sg->length;
 
 887			gd->ctl_len.done = 0;
 888			gd->ctl_len.ready = 1;
 889			if (sg->length >= nbytes)
 890				break;
 
 891			nbytes -= sg->length;
 892			gd_idx = get_next_gd(gd_idx);
 893			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 894			idx++;
 895		}
 896	} else {
 897		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
 898				src->offset, src->length, DMA_TO_DEVICE);
 
 899		/*
 900		 * Disable gather in sa command
 901		 */
 902		sa->sa_command_0.bf.gather = 0;
 903		/*
 904		 * Indicate gather array is not used
 905		 */
 906		pd_uinfo->first_gd = 0xffffffff;
 907		pd_uinfo->num_gd = 0;
 908	}
 909	if (ctx->is_hash || sg_is_last(dst)) {
 910		/*
 911		 * we know application give us dst a whole piece of memory
 912		 * no need to use scatter ring.
 913		 * In case of is_hash, the icv is always at end of src data.
 914		 */
 915		pd_uinfo->using_sd = 0;
 916		pd_uinfo->first_sd = 0xffffffff;
 917		pd_uinfo->num_sd = 0;
 918		pd_uinfo->dest_va = dst;
 919		sa->sa_command_0.bf.scatter = 0;
 920		if (ctx->is_hash)
 921			pd->dest = virt_to_phys((void *)dst);
 922		else
 923			pd->dest = (u32)dma_map_page(dev->core_dev->device,
 924					sg_page(dst), dst->offset,
 925					dst->length, DMA_TO_DEVICE);
 926	} else {
 
 927		struct ce_sd *sd = NULL;
 
 928		u32 sd_idx = fst_sd;
 929		nbytes = datalen;
 930		sa->sa_command_0.bf.scatter = 1;
 931		pd_uinfo->using_sd = 1;
 932		pd_uinfo->dest_va = dst;
 933		pd_uinfo->first_sd = fst_sd;
 934		pd_uinfo->num_sd = num_sd;
 935		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 936		pd->dest = sd_dma;
 937		/* setup scatter descriptor */
 938		sd->ctl.done = 0;
 939		sd->ctl.rdy = 1;
 940		/* sd->ptr should be setup by sd_init routine*/
 941		idx = 0;
 942		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
 943			nbytes -= PPC4XX_SD_BUFFER_SIZE;
 944		else
 945			nbytes = 0;
 946		while (nbytes) {
 947			sd_idx = get_next_sd(sd_idx);
 948			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 949			/* setup scatter descriptor */
 950			sd->ctl.done = 0;
 951			sd->ctl.rdy = 1;
 952			if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
 953				nbytes -= PPC4XX_SD_BUFFER_SIZE;
 954			else
 955				/*
 956				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
 957				 * which is more than nbytes, so done.
 958				 */
 959				nbytes = 0;
 
 960		}
 961	}
 962
 963	sa->sa_command_1.bf.hash_crypto_offset = 0;
 964	pd->pd_ctl.w = ctx->pd_ctl;
 965	pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
 966	pd_uinfo->state = PD_ENTRY_INUSE;
 
 
 
 967	wmb();
 968	/* write any value to push engine to read a pd */
 
 969	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 970	return -EINPROGRESS;
 971}
 972
 973/**
 974 * Algorithm Registration Functions
 975 */
 976static int crypto4xx_alg_init(struct crypto_tfm *tfm)
 
 977{
 978	struct crypto_alg *alg = tfm->__crt_alg;
 979	struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
 980	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
 981
 982	ctx->dev = amcc_alg->dev;
 983	ctx->sa_in = NULL;
 984	ctx->sa_out = NULL;
 985	ctx->sa_in_dma_addr = 0;
 986	ctx->sa_out_dma_addr = 0;
 987	ctx->sa_len = 0;
 
 988
 989	switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
 990	default:
 991		tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
 992		break;
 993	case CRYPTO_ALG_TYPE_AHASH:
 994		crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 995					 sizeof(struct crypto4xx_ctx));
 996		break;
 
 
 
 
 997	}
 998
 
 
 999	return 0;
1000}
1001
1002static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003{
1004	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
 
 
 
 
 
 
1005
1006	crypto4xx_free_sa(ctx);
1007	crypto4xx_free_state_record(ctx);
 
 
 
 
 
 
 
 
 
 
 
 
1008}
1009
1010int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1011			   struct crypto4xx_alg_common *crypto_alg,
1012			   int array_size)
1013{
1014	struct crypto4xx_alg *alg;
1015	int i;
1016	int rc = 0;
1017
1018	for (i = 0; i < array_size; i++) {
1019		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1020		if (!alg)
1021			return -ENOMEM;
1022
1023		alg->alg = crypto_alg[i];
1024		alg->dev = sec_dev;
1025
1026		switch (alg->alg.type) {
 
 
 
 
1027		case CRYPTO_ALG_TYPE_AHASH:
1028			rc = crypto_register_ahash(&alg->alg.u.hash);
1029			break;
1030
 
 
 
 
1031		default:
1032			rc = crypto_register_alg(&alg->alg.u.cipher);
1033			break;
1034		}
1035
1036		if (rc) {
1037			list_del(&alg->entry);
1038			kfree(alg);
1039		} else {
1040			list_add_tail(&alg->entry, &sec_dev->alg_list);
1041		}
1042	}
1043
1044	return 0;
1045}
1046
1047static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1048{
1049	struct crypto4xx_alg *alg, *tmp;
1050
1051	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1052		list_del(&alg->entry);
1053		switch (alg->alg.type) {
1054		case CRYPTO_ALG_TYPE_AHASH:
1055			crypto_unregister_ahash(&alg->alg.u.hash);
1056			break;
1057
 
 
 
 
 
 
 
 
1058		default:
1059			crypto_unregister_alg(&alg->alg.u.cipher);
1060		}
1061		kfree(alg);
1062	}
1063}
1064
1065static void crypto4xx_bh_tasklet_cb(unsigned long data)
1066{
1067	struct device *dev = (struct device *)data;
1068	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1069	struct pd_uinfo *pd_uinfo;
1070	struct ce_pd *pd;
1071	u32 tail;
 
1072
1073	while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1074		tail = core_dev->dev->pdr_tail;
1075		pd_uinfo = core_dev->dev->pdr_uinfo +
1076			sizeof(struct pd_uinfo)*tail;
1077		pd =  core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1078		if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1079				   pd->pd_ctl.bf.pe_done &&
1080				   !pd->pd_ctl.bf.host_ready) {
1081			pd->pd_ctl.bf.pe_done = 0;
1082			crypto4xx_pd_done(core_dev->dev, tail);
1083			crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1084			pd_uinfo->state = PD_ENTRY_FREE;
1085		} else {
1086			/* if tail not done, break */
1087			break;
1088		}
1089	}
1090}
1091
1092/**
1093 * Top Half of isr.
1094 */
1095static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
 
1096{
1097	struct device *dev = (struct device *)data;
1098	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1099
1100	if (!core_dev->dev->ce_base)
1101		return 0;
1102
1103	writel(PPC4XX_INTERRUPT_CLR,
1104	       core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1105	tasklet_schedule(&core_dev->tasklet);
1106
1107	return IRQ_HANDLED;
1108}
1109
1110/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111 * Supported Crypto Algorithms
1112 */
1113struct crypto4xx_alg_common crypto4xx_alg[] = {
1114	/* Crypto AES modes */
1115	{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1116		.cra_name 	= "cbc(aes)",
1117		.cra_driver_name = "cbc-aes-ppc4xx",
1118		.cra_priority 	= CRYPTO4XX_CRYPTO_PRIORITY,
1119		.cra_flags 	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1120		.cra_blocksize 	= AES_BLOCK_SIZE,
1121		.cra_ctxsize 	= sizeof(struct crypto4xx_ctx),
1122		.cra_type 	= &crypto_ablkcipher_type,
1123		.cra_init	= crypto4xx_alg_init,
1124		.cra_exit	= crypto4xx_alg_exit,
1125		.cra_module 	= THIS_MODULE,
1126		.cra_u 		= {
1127			.ablkcipher = {
1128				.min_keysize 	= AES_MIN_KEY_SIZE,
1129				.max_keysize 	= AES_MAX_KEY_SIZE,
1130				.ivsize		= AES_IV_SIZE,
1131				.setkey 	= crypto4xx_setkey_aes_cbc,
1132				.encrypt 	= crypto4xx_encrypt,
1133				.decrypt 	= crypto4xx_decrypt,
1134			}
1135		}
1136	}},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137};
1138
1139/**
1140 * Module Initialization Routine
1141 */
1142static int crypto4xx_probe(struct platform_device *ofdev)
1143{
1144	int rc;
1145	struct resource res;
1146	struct device *dev = &ofdev->dev;
1147	struct crypto4xx_core_device *core_dev;
 
 
 
1148
1149	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1150	if (rc)
1151		return -ENODEV;
1152
1153	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
 
1154		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1155		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1156		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1157		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1158	} else if (of_find_compatible_node(NULL, NULL,
1159			"amcc,ppc405ex-crypto")) {
1160		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1161		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1162		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1163		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1164	} else if (of_find_compatible_node(NULL, NULL,
1165			"amcc,ppc460sx-crypto")) {
1166		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1167		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1168		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1169		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1170	} else {
1171		printk(KERN_ERR "Crypto Function Not supported!\n");
1172		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173	}
1174
 
 
1175	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1176	if (!core_dev)
1177		return -ENOMEM;
1178
1179	dev_set_drvdata(dev, core_dev);
1180	core_dev->ofdev = ofdev;
1181	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
 
1182	if (!core_dev->dev)
1183		goto err_alloc_dev;
1184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	core_dev->dev->core_dev = core_dev;
 
1186	core_dev->device = dev;
 
1187	spin_lock_init(&core_dev->lock);
1188	INIT_LIST_HEAD(&core_dev->dev->alg_list);
 
 
 
 
1189	rc = crypto4xx_build_pdr(core_dev->dev);
1190	if (rc)
1191		goto err_build_pdr;
1192
1193	rc = crypto4xx_build_gdr(core_dev->dev);
1194	if (rc)
1195		goto err_build_gdr;
1196
1197	rc = crypto4xx_build_sdr(core_dev->dev);
1198	if (rc)
1199		goto err_build_sdr;
1200
1201	/* Init tasklet for bottom half processing */
1202	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1203		     (unsigned long) dev);
1204
1205	/* Register for Crypto isr, Crypto Engine IRQ */
1206	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1207	rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1208			 core_dev->dev->name, dev);
1209	if (rc)
1210		goto err_request_irq;
1211
1212	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1213	if (!core_dev->dev->ce_base) {
1214		dev_err(dev, "failed to of_iomap\n");
1215		rc = -ENOMEM;
1216		goto err_iomap;
1217	}
1218
 
 
 
 
 
 
 
 
 
1219	/* need to setup pdr, rdr, gdr and sdr before this */
1220	crypto4xx_hw_init(core_dev->dev);
1221
1222	/* Register security algorithms with Linux CryptoAPI */
1223	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1224			       ARRAY_SIZE(crypto4xx_alg));
1225	if (rc)
1226		goto err_start_dev;
1227
 
1228	return 0;
1229
1230err_start_dev:
1231	iounmap(core_dev->dev->ce_base);
1232err_iomap:
1233	free_irq(core_dev->irq, dev);
1234err_request_irq:
1235	irq_dispose_mapping(core_dev->irq);
 
 
1236	tasklet_kill(&core_dev->tasklet);
 
1237	crypto4xx_destroy_sdr(core_dev->dev);
1238err_build_sdr:
1239	crypto4xx_destroy_gdr(core_dev->dev);
1240err_build_gdr:
1241	crypto4xx_destroy_pdr(core_dev->dev);
1242err_build_pdr:
1243	kfree(core_dev->dev);
1244err_alloc_dev:
1245	kfree(core_dev);
1246
1247	return rc;
1248}
1249
1250static int crypto4xx_remove(struct platform_device *ofdev)
1251{
1252	struct device *dev = &ofdev->dev;
1253	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1254
 
 
1255	free_irq(core_dev->irq, dev);
1256	irq_dispose_mapping(core_dev->irq);
1257
1258	tasklet_kill(&core_dev->tasklet);
1259	/* Un-register with Linux CryptoAPI */
1260	crypto4xx_unregister_alg(core_dev->dev);
 
1261	/* Free all allocated memory */
1262	crypto4xx_stop_all(core_dev);
1263
1264	return 0;
1265}
1266
1267static const struct of_device_id crypto4xx_match[] = {
1268	{ .compatible      = "amcc,ppc4xx-crypto",},
1269	{ },
1270};
1271MODULE_DEVICE_TABLE(of, crypto4xx_match);
1272
1273static struct platform_driver crypto4xx_driver = {
1274	.driver = {
1275		.name = "crypto4xx",
1276		.of_match_table = crypto4xx_match,
1277	},
1278	.probe		= crypto4xx_probe,
1279	.remove		= crypto4xx_remove,
1280};
1281
1282module_platform_driver(crypto4xx_driver);
1283
1284MODULE_LICENSE("GPL");
1285MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1286MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1287