Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/ioport.h>
  18#include <linux/irq.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
 
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
 
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 119	unsigned int reg_delay;
 120
 121	raw_spinlock_t lock; /* Protect the shared start/stop register */
 122
 123	struct sh_cmt_channel *channels;
 124	unsigned int num_channels;
 125	unsigned int hw_channels;
 126
 127	bool has_clockevent;
 128	bool has_clocksource;
 129};
 130
 131#define SH_CMT16_CMCSR_CMF		(1 << 7)
 132#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 133#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 134#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 135#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 136#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 137#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 138
 139#define SH_CMT32_CMCSR_CMF		(1 << 15)
 140#define SH_CMT32_CMCSR_OVF		(1 << 14)
 141#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 142#define SH_CMT32_CMCSR_STTF		(1 << 12)
 143#define SH_CMT32_CMCSR_STPF		(1 << 11)
 144#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 145#define SH_CMT32_CMCSR_CMS		(1 << 9)
 146#define SH_CMT32_CMCSR_CMM		(1 << 8)
 147#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 148#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 149#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 150#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 151#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 152#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 153#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 157#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 158
 159static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 160{
 161	return ioread16(base + (offs << 1));
 162}
 163
 164static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 165{
 166	return ioread32(base + (offs << 2));
 167}
 168
 169static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 
 170{
 171	iowrite16(value, base + (offs << 1));
 172}
 173
 174static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 
 175{
 176	iowrite32(value, base + (offs << 2));
 177}
 178
 179static const struct sh_cmt_info sh_cmt_info[] = {
 180	[SH_CMT_16BIT] = {
 181		.model = SH_CMT_16BIT,
 182		.width = 16,
 183		.overflow_bit = SH_CMT16_CMCSR_CMF,
 184		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 185		.read_control = sh_cmt_read16,
 186		.write_control = sh_cmt_write16,
 187		.read_count = sh_cmt_read16,
 188		.write_count = sh_cmt_write16,
 189	},
 190	[SH_CMT_32BIT] = {
 191		.model = SH_CMT_32BIT,
 192		.width = 32,
 193		.overflow_bit = SH_CMT32_CMCSR_CMF,
 194		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 195		.read_control = sh_cmt_read16,
 196		.write_control = sh_cmt_write16,
 197		.read_count = sh_cmt_read32,
 198		.write_count = sh_cmt_write32,
 199	},
 200	[SH_CMT_48BIT] = {
 201		.model = SH_CMT_48BIT,
 202		.channels_mask = 0x3f,
 203		.width = 32,
 204		.overflow_bit = SH_CMT32_CMCSR_CMF,
 205		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 206		.read_control = sh_cmt_read32,
 207		.write_control = sh_cmt_write32,
 208		.read_count = sh_cmt_read32,
 209		.write_count = sh_cmt_write32,
 210	},
 211	[SH_CMT0_RCAR_GEN2] = {
 212		.model = SH_CMT0_RCAR_GEN2,
 213		.channels_mask = 0x60,
 214		.width = 32,
 215		.overflow_bit = SH_CMT32_CMCSR_CMF,
 216		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 217		.read_control = sh_cmt_read32,
 218		.write_control = sh_cmt_write32,
 219		.read_count = sh_cmt_read32,
 220		.write_count = sh_cmt_write32,
 221	},
 222	[SH_CMT1_RCAR_GEN2] = {
 223		.model = SH_CMT1_RCAR_GEN2,
 224		.channels_mask = 0xff,
 225		.width = 32,
 226		.overflow_bit = SH_CMT32_CMCSR_CMF,
 227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228		.read_control = sh_cmt_read32,
 229		.write_control = sh_cmt_write32,
 230		.read_count = sh_cmt_read32,
 231		.write_count = sh_cmt_write32,
 232	},
 233};
 234
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 240
 241static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 242{
 243	if (ch->iostart)
 244		return ch->cmt->info->read_control(ch->iostart, 0);
 245	else
 246		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 247}
 248
 249static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 
 250{
 251	u32 old_value = sh_cmt_read_cmstr(ch);
 252
 253	if (value != old_value) {
 254		if (ch->iostart) {
 255			ch->cmt->info->write_control(ch->iostart, 0, value);
 256			udelay(ch->cmt->reg_delay);
 257		} else {
 258			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 259			udelay(ch->cmt->reg_delay);
 260		}
 261	}
 262}
 263
 264static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 265{
 266	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 267}
 268
 269static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 
 270{
 271	u32 old_value = sh_cmt_read_cmcsr(ch);
 272
 273	if (value != old_value) {
 274		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 275		udelay(ch->cmt->reg_delay);
 276	}
 277}
 278
 279static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 280{
 281	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 282}
 283
 284static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 
 285{
 286	/* Tests showed that we need to wait 3 clocks here */
 287	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
 288	u32 reg;
 289
 290	if (ch->cmt->info->model > SH_CMT_16BIT) {
 291		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
 292						   !(reg & SH_CMT32_CMCSR_WRFLG),
 293						   1, cmcnt_delay, false, ch);
 294		if (ret < 0)
 295			return ret;
 296	}
 297
 298	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 299	udelay(cmcnt_delay);
 300	return 0;
 301}
 302
 303static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 
 304{
 305	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
 306
 307	if (value != old_value) {
 308		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 309		udelay(ch->cmt->reg_delay);
 310	}
 311}
 312
 313static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 
 314{
 315	u32 v1, v2, v3;
 316	u32 o1, o2;
 317
 318	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 319
 320	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 321	do {
 322		o2 = o1;
 323		v1 = sh_cmt_read_cmcnt(ch);
 324		v2 = sh_cmt_read_cmcnt(ch);
 325		v3 = sh_cmt_read_cmcnt(ch);
 326		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 327	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 328			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 329
 330	*has_wrapped = o1;
 331	return v2;
 332}
 333
 334static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 335{
 336	unsigned long flags;
 337	u32 value;
 338
 339	/* start stop register shared by multiple timer channels */
 340	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 341	value = sh_cmt_read_cmstr(ch);
 342
 343	if (start)
 344		value |= 1 << ch->timer_bit;
 345	else
 346		value &= ~(1 << ch->timer_bit);
 347
 348	sh_cmt_write_cmstr(ch, value);
 349	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 350}
 351
 352static int sh_cmt_enable(struct sh_cmt_channel *ch)
 353{
 354	int ret;
 355
 
 356	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 357
 358	/* enable clock */
 359	ret = clk_enable(ch->cmt->clk);
 360	if (ret) {
 361		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 362			ch->index);
 363		goto err0;
 364	}
 365
 366	/* make sure channel is disabled */
 367	sh_cmt_start_stop_ch(ch, 0);
 368
 369	/* configure channel, periodic mode and maximum timeout */
 370	if (ch->cmt->info->width == 16) {
 
 371		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 372				   SH_CMT16_CMCSR_CKS512);
 373	} else {
 374		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 375			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 376		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 377				   SH_CMT32_CMCSR_CMR_IRQ |
 378				   SH_CMT32_CMCSR_CKS_RCLK8);
 379	}
 380
 381	sh_cmt_write_cmcor(ch, 0xffffffff);
 382	ret = sh_cmt_write_cmcnt(ch, 0);
 383
 384	if (ret || sh_cmt_read_cmcnt(ch)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 386			ch->index);
 387		ret = -ETIMEDOUT;
 388		goto err1;
 389	}
 390
 391	/* enable channel */
 392	sh_cmt_start_stop_ch(ch, 1);
 393	return 0;
 394 err1:
 395	/* stop clock */
 396	clk_disable(ch->cmt->clk);
 397
 398 err0:
 399	return ret;
 400}
 401
 402static void sh_cmt_disable(struct sh_cmt_channel *ch)
 403{
 404	/* disable channel */
 405	sh_cmt_start_stop_ch(ch, 0);
 406
 407	/* disable interrupts in CMT block */
 408	sh_cmt_write_cmcsr(ch, 0);
 409
 410	/* stop clock */
 411	clk_disable(ch->cmt->clk);
 412
 413	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 
 414}
 415
 416/* private flags */
 417#define FLAG_CLOCKEVENT (1 << 0)
 418#define FLAG_CLOCKSOURCE (1 << 1)
 419#define FLAG_REPROGRAM (1 << 2)
 420#define FLAG_SKIPEVENT (1 << 3)
 421#define FLAG_IRQCONTEXT (1 << 4)
 422
 423static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 424					      int absolute)
 425{
 426	u32 value = ch->next_match_value;
 427	u32 new_match;
 428	u32 delay = 0;
 429	u32 now = 0;
 430	u32 has_wrapped;
 431
 432	now = sh_cmt_get_counter(ch, &has_wrapped);
 433	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 434
 435	if (has_wrapped) {
 436		/* we're competing with the interrupt handler.
 437		 *  -> let the interrupt handler reprogram the timer.
 438		 *  -> interrupt number two handles the event.
 439		 */
 440		ch->flags |= FLAG_SKIPEVENT;
 441		return;
 442	}
 443
 444	if (absolute)
 445		now = 0;
 446
 447	do {
 448		/* reprogram the timer hardware,
 449		 * but don't save the new match value yet.
 450		 */
 451		new_match = now + value + delay;
 452		if (new_match > ch->max_match_value)
 453			new_match = ch->max_match_value;
 454
 455		sh_cmt_write_cmcor(ch, new_match);
 456
 457		now = sh_cmt_get_counter(ch, &has_wrapped);
 458		if (has_wrapped && (new_match > ch->match_value)) {
 459			/* we are changing to a greater match value,
 460			 * so this wrap must be caused by the counter
 461			 * matching the old value.
 462			 * -> first interrupt reprograms the timer.
 463			 * -> interrupt number two handles the event.
 464			 */
 465			ch->flags |= FLAG_SKIPEVENT;
 466			break;
 467		}
 468
 469		if (has_wrapped) {
 470			/* we are changing to a smaller match value,
 471			 * so the wrap must be caused by the counter
 472			 * matching the new value.
 473			 * -> save programmed match value.
 474			 * -> let isr handle the event.
 475			 */
 476			ch->match_value = new_match;
 477			break;
 478		}
 479
 480		/* be safe: verify hardware settings */
 481		if (now < new_match) {
 482			/* timer value is below match value, all good.
 483			 * this makes sure we won't miss any match events.
 484			 * -> save programmed match value.
 485			 * -> let isr handle the event.
 486			 */
 487			ch->match_value = new_match;
 488			break;
 489		}
 490
 491		/* the counter has reached a value greater
 492		 * than our new match value. and since the
 493		 * has_wrapped flag isn't set we must have
 494		 * programmed a too close event.
 495		 * -> increase delay and retry.
 496		 */
 497		if (delay)
 498			delay <<= 1;
 499		else
 500			delay = 1;
 501
 502		if (!delay)
 503			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 504				 ch->index);
 505
 506	} while (delay);
 507}
 508
 509static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 510{
 511	if (delta > ch->max_match_value)
 512		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 513			 ch->index);
 514
 515	ch->next_match_value = delta;
 516	sh_cmt_clock_event_program_verify(ch, 0);
 517}
 518
 519static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 520{
 521	unsigned long flags;
 522
 523	raw_spin_lock_irqsave(&ch->lock, flags);
 524	__sh_cmt_set_next(ch, delta);
 525	raw_spin_unlock_irqrestore(&ch->lock, flags);
 526}
 527
 528static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 529{
 530	struct sh_cmt_channel *ch = dev_id;
 531
 532	/* clear flags */
 533	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 534			   ch->cmt->info->clear_bits);
 535
 536	/* update clock source counter to begin with if enabled
 537	 * the wrap flag should be cleared by the timer specific
 538	 * isr before we end up here.
 539	 */
 540	if (ch->flags & FLAG_CLOCKSOURCE)
 541		ch->total_cycles += ch->match_value + 1;
 542
 543	if (!(ch->flags & FLAG_REPROGRAM))
 544		ch->next_match_value = ch->max_match_value;
 545
 546	ch->flags |= FLAG_IRQCONTEXT;
 547
 548	if (ch->flags & FLAG_CLOCKEVENT) {
 549		if (!(ch->flags & FLAG_SKIPEVENT)) {
 550			if (clockevent_state_oneshot(&ch->ced)) {
 551				ch->next_match_value = ch->max_match_value;
 552				ch->flags |= FLAG_REPROGRAM;
 553			}
 554
 555			ch->ced.event_handler(&ch->ced);
 556		}
 557	}
 558
 559	ch->flags &= ~FLAG_SKIPEVENT;
 560
 561	if (ch->flags & FLAG_REPROGRAM) {
 562		ch->flags &= ~FLAG_REPROGRAM;
 563		sh_cmt_clock_event_program_verify(ch, 1);
 564
 565		if (ch->flags & FLAG_CLOCKEVENT)
 566			if ((clockevent_state_shutdown(&ch->ced))
 567			    || (ch->match_value == ch->next_match_value))
 568				ch->flags &= ~FLAG_REPROGRAM;
 569	}
 570
 571	ch->flags &= ~FLAG_IRQCONTEXT;
 572
 573	return IRQ_HANDLED;
 574}
 575
 576static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 577{
 578	int ret = 0;
 579	unsigned long flags;
 580
 581	if (flag & FLAG_CLOCKSOURCE)
 582		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 583
 584	raw_spin_lock_irqsave(&ch->lock, flags);
 585
 586	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 587		if (flag & FLAG_CLOCKEVENT)
 588			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 589		ret = sh_cmt_enable(ch);
 590	}
 591
 592	if (ret)
 593		goto out;
 594	ch->flags |= flag;
 595
 596	/* setup timeout if no clockevent */
 597	if (ch->cmt->num_channels == 1 &&
 598	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 599		__sh_cmt_set_next(ch, ch->max_match_value);
 600 out:
 601	raw_spin_unlock_irqrestore(&ch->lock, flags);
 602
 603	return ret;
 604}
 605
 606static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 607{
 608	unsigned long flags;
 609	unsigned long f;
 610
 611	raw_spin_lock_irqsave(&ch->lock, flags);
 612
 613	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 614	ch->flags &= ~flag;
 615
 616	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 617		sh_cmt_disable(ch);
 618		if (flag & FLAG_CLOCKEVENT)
 619			pm_runtime_put(&ch->cmt->pdev->dev);
 620	}
 621
 622	/* adjust the timeout to maximum if only clocksource left */
 623	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 624		__sh_cmt_set_next(ch, ch->max_match_value);
 625
 626	raw_spin_unlock_irqrestore(&ch->lock, flags);
 627
 628	if (flag & FLAG_CLOCKSOURCE)
 629		pm_runtime_put(&ch->cmt->pdev->dev);
 630}
 631
 632static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 633{
 634	return container_of(cs, struct sh_cmt_channel, cs);
 635}
 636
 637static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 638{
 639	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 640	u32 has_wrapped;
 
 
 641
 642	if (ch->cmt->num_channels == 1) {
 643		unsigned long flags;
 644		u64 value;
 645		u32 raw;
 646
 647		raw_spin_lock_irqsave(&ch->lock, flags);
 648		value = ch->total_cycles;
 649		raw = sh_cmt_get_counter(ch, &has_wrapped);
 650
 651		if (unlikely(has_wrapped))
 652			raw += ch->match_value + 1;
 653		raw_spin_unlock_irqrestore(&ch->lock, flags);
 654
 655		return value + raw;
 656	}
 
 657
 658	return sh_cmt_get_counter(ch, &has_wrapped);
 659}
 660
 661static int sh_cmt_clocksource_enable(struct clocksource *cs)
 662{
 663	int ret;
 664	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 665
 666	WARN_ON(ch->cs_enabled);
 667
 668	ch->total_cycles = 0;
 669
 670	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 671	if (!ret)
 
 672		ch->cs_enabled = true;
 673
 674	return ret;
 675}
 676
 677static void sh_cmt_clocksource_disable(struct clocksource *cs)
 678{
 679	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 680
 681	WARN_ON(!ch->cs_enabled);
 682
 683	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 684	ch->cs_enabled = false;
 685}
 686
 687static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 688{
 689	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 690
 691	if (!ch->cs_enabled)
 692		return;
 693
 694	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 695	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 696}
 697
 698static void sh_cmt_clocksource_resume(struct clocksource *cs)
 699{
 700	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 701
 702	if (!ch->cs_enabled)
 703		return;
 704
 705	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 706	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 707}
 708
 709static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 710				       const char *name)
 711{
 712	struct clocksource *cs = &ch->cs;
 713
 714	cs->name = name;
 715	cs->rating = 125;
 716	cs->read = sh_cmt_clocksource_read;
 717	cs->enable = sh_cmt_clocksource_enable;
 718	cs->disable = sh_cmt_clocksource_disable;
 719	cs->suspend = sh_cmt_clocksource_suspend;
 720	cs->resume = sh_cmt_clocksource_resume;
 721	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 722	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 723
 724	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 725		 ch->index);
 726
 727	clocksource_register_hz(cs, ch->cmt->rate);
 
 728	return 0;
 729}
 730
 731static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 732{
 733	return container_of(ced, struct sh_cmt_channel, ced);
 734}
 735
 736static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 737{
 
 
 738	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 739
 
 
 
 
 
 
 
 740	if (periodic)
 741		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 742	else
 743		sh_cmt_set_next(ch, ch->max_match_value);
 744}
 745
 746static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 747{
 748	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 749
 750	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 751	return 0;
 752}
 753
 754static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 755					int periodic)
 756{
 757	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 758
 759	/* deal with old setting first */
 760	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 761		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 762
 763	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 764		 ch->index, periodic ? "periodic" : "oneshot");
 765	sh_cmt_clock_event_start(ch, periodic);
 766	return 0;
 767}
 768
 769static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 770{
 771	return sh_cmt_clock_event_set_state(ced, 0);
 772}
 773
 774static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 775{
 776	return sh_cmt_clock_event_set_state(ced, 1);
 777}
 778
 779static int sh_cmt_clock_event_next(unsigned long delta,
 780				   struct clock_event_device *ced)
 781{
 782	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 783
 784	BUG_ON(!clockevent_state_oneshot(ced));
 785	if (likely(ch->flags & FLAG_IRQCONTEXT))
 786		ch->next_match_value = delta - 1;
 787	else
 788		sh_cmt_set_next(ch, delta - 1);
 789
 790	return 0;
 791}
 792
 793static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 794{
 795	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 796
 797	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 798	clk_unprepare(ch->cmt->clk);
 799}
 800
 801static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 802{
 803	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 804
 805	clk_prepare(ch->cmt->clk);
 806	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 807}
 808
 809static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 810				      const char *name)
 811{
 812	struct clock_event_device *ced = &ch->ced;
 813	int irq;
 814	int ret;
 815
 816	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 817	if (irq < 0)
 
 
 818		return irq;
 
 819
 820	ret = request_irq(irq, sh_cmt_interrupt,
 821			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 822			  dev_name(&ch->cmt->pdev->dev), ch);
 823	if (ret) {
 824		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 825			ch->index, irq);
 826		return ret;
 827	}
 828
 829	ced->name = name;
 830	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 831	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 832	ced->rating = 125;
 833	ced->cpumask = cpu_possible_mask;
 834	ced->set_next_event = sh_cmt_clock_event_next;
 835	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 836	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 837	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 838	ced->suspend = sh_cmt_clock_event_suspend;
 839	ced->resume = sh_cmt_clock_event_resume;
 840
 841	/* TODO: calculate good shift from rate and counter bit width */
 842	ced->shift = 32;
 843	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 844	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 845	ced->max_delta_ticks = ch->max_match_value;
 846	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 847	ced->min_delta_ticks = 0x1f;
 848
 849	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 850		 ch->index);
 851	clockevents_register_device(ced);
 852
 853	return 0;
 854}
 855
 856static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 857			   bool clockevent, bool clocksource)
 858{
 859	int ret;
 860
 861	if (clockevent) {
 862		ch->cmt->has_clockevent = true;
 863		ret = sh_cmt_register_clockevent(ch, name);
 864		if (ret < 0)
 865			return ret;
 866	}
 867
 868	if (clocksource) {
 869		ch->cmt->has_clocksource = true;
 870		sh_cmt_register_clocksource(ch, name);
 871	}
 872
 873	return 0;
 874}
 875
 876static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 877				unsigned int hwidx, bool clockevent,
 878				bool clocksource, struct sh_cmt_device *cmt)
 879{
 880	u32 value;
 881	int ret;
 882
 883	/* Skip unused channels. */
 884	if (!clockevent && !clocksource)
 885		return 0;
 886
 887	ch->cmt = cmt;
 888	ch->index = index;
 889	ch->hwidx = hwidx;
 890	ch->timer_bit = hwidx;
 891
 892	/*
 893	 * Compute the address of the channel control register block. For the
 894	 * timers with a per-channel start/stop register, compute its address
 895	 * as well.
 896	 */
 897	switch (cmt->info->model) {
 898	case SH_CMT_16BIT:
 899		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 900		break;
 901	case SH_CMT_32BIT:
 902	case SH_CMT_48BIT:
 903		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 904		break;
 905	case SH_CMT0_RCAR_GEN2:
 906	case SH_CMT1_RCAR_GEN2:
 
 
 
 
 
 
 907		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 908		ch->ioctrl = ch->iostart + 0x10;
 909		ch->timer_bit = 0;
 910
 911		/* Enable the clock supply to the channel */
 912		value = ioread32(cmt->mapbase + CMCLKE);
 913		value |= BIT(hwidx);
 914		iowrite32(value, cmt->mapbase + CMCLKE);
 915		break;
 916	}
 917
 918	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 919		ch->max_match_value = ~0;
 920	else
 921		ch->max_match_value = (1 << cmt->info->width) - 1;
 922
 923	ch->match_value = ch->max_match_value;
 924	raw_spin_lock_init(&ch->lock);
 925
 
 
 926	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 927			      clockevent, clocksource);
 928	if (ret) {
 929		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 930			ch->index);
 931		return ret;
 932	}
 933	ch->cs_enabled = false;
 934
 935	return 0;
 936}
 937
 938static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 939{
 940	struct resource *mem;
 941
 942	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 943	if (!mem) {
 944		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 945		return -ENXIO;
 946	}
 947
 948	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 949	if (cmt->mapbase == NULL) {
 950		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 951		return -ENXIO;
 952	}
 953
 954	return 0;
 955}
 956
 957static const struct platform_device_id sh_cmt_id_table[] = {
 958	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 959	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 960	{ }
 961};
 962MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 963
 964static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 965	{
 966		/* deprecated, preserved for backward compatibility */
 967		.compatible = "renesas,cmt-48",
 968		.data = &sh_cmt_info[SH_CMT_48BIT]
 969	},
 970	{
 971		/* deprecated, preserved for backward compatibility */
 972		.compatible = "renesas,cmt-48-gen2",
 973		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 974	},
 975	{
 976		.compatible = "renesas,r8a7740-cmt1",
 977		.data = &sh_cmt_info[SH_CMT_48BIT]
 978	},
 979	{
 980		.compatible = "renesas,sh73a0-cmt1",
 981		.data = &sh_cmt_info[SH_CMT_48BIT]
 982	},
 983	{
 984		.compatible = "renesas,rcar-gen2-cmt0",
 985		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 986	},
 987	{
 988		.compatible = "renesas,rcar-gen2-cmt1",
 989		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 990	},
 991	{
 992		.compatible = "renesas,rcar-gen3-cmt0",
 993		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 994	},
 995	{
 996		.compatible = "renesas,rcar-gen3-cmt1",
 997		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 998	},
 999	{
1000		.compatible = "renesas,rcar-gen4-cmt0",
1001		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1002	},
1003	{
1004		.compatible = "renesas,rcar-gen4-cmt1",
1005		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1006	},
1007	{ }
1008};
1009MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1010
 
 
 
 
 
 
 
 
1011static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1012{
1013	unsigned int mask, i;
1014	unsigned long rate;
1015	int ret;
1016
1017	cmt->pdev = pdev;
1018	raw_spin_lock_init(&cmt->lock);
1019
1020	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1021		cmt->info = of_device_get_match_data(&pdev->dev);
1022		cmt->hw_channels = cmt->info->channels_mask;
 
 
 
 
 
 
1023	} else if (pdev->dev.platform_data) {
1024		struct sh_timer_config *cfg = pdev->dev.platform_data;
1025		const struct platform_device_id *id = pdev->id_entry;
1026
1027		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1028		cmt->hw_channels = cfg->channels_mask;
1029	} else {
1030		dev_err(&cmt->pdev->dev, "missing platform data\n");
1031		return -ENXIO;
1032	}
1033
1034	/* Get hold of clock. */
1035	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1036	if (IS_ERR(cmt->clk)) {
1037		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1038		return PTR_ERR(cmt->clk);
1039	}
1040
1041	ret = clk_prepare(cmt->clk);
1042	if (ret < 0)
1043		goto err_clk_put;
1044
1045	/* Determine clock rate. */
1046	ret = clk_enable(cmt->clk);
1047	if (ret < 0)
1048		goto err_clk_unprepare;
1049
1050	rate = clk_get_rate(cmt->clk);
1051	if (!rate) {
1052		ret = -EINVAL;
1053		goto err_clk_disable;
1054	}
1055
1056	/* We shall wait 2 input clks after register writes */
1057	if (cmt->info->model >= SH_CMT_48BIT)
1058		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1059	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1060
1061	/* Map the memory resource(s). */
1062	ret = sh_cmt_map_memory(cmt);
1063	if (ret < 0)
1064		goto err_clk_disable;
1065
1066	/* Allocate and setup the channels. */
1067	cmt->num_channels = hweight8(cmt->hw_channels);
1068	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1069				GFP_KERNEL);
1070	if (cmt->channels == NULL) {
1071		ret = -ENOMEM;
1072		goto err_unmap;
1073	}
1074
1075	/*
1076	 * Use the first channel as a clock event device and the second channel
1077	 * as a clock source. If only one channel is available use it for both.
1078	 */
1079	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1080		unsigned int hwidx = ffs(mask) - 1;
1081		bool clocksource = i == 1 || cmt->num_channels == 1;
1082		bool clockevent = i == 0;
1083
1084		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1085					   clockevent, clocksource, cmt);
1086		if (ret < 0)
1087			goto err_unmap;
1088
1089		mask &= ~(1 << hwidx);
1090	}
1091
1092	clk_disable(cmt->clk);
1093
1094	platform_set_drvdata(pdev, cmt);
1095
1096	return 0;
1097
1098err_unmap:
1099	kfree(cmt->channels);
1100	iounmap(cmt->mapbase);
1101err_clk_disable:
1102	clk_disable(cmt->clk);
1103err_clk_unprepare:
1104	clk_unprepare(cmt->clk);
1105err_clk_put:
1106	clk_put(cmt->clk);
1107	return ret;
1108}
1109
1110static int sh_cmt_probe(struct platform_device *pdev)
1111{
1112	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1113	int ret;
1114
1115	if (!is_sh_early_platform_device(pdev)) {
1116		pm_runtime_set_active(&pdev->dev);
1117		pm_runtime_enable(&pdev->dev);
1118	}
1119
1120	if (cmt) {
1121		dev_info(&pdev->dev, "kept as earlytimer\n");
1122		goto out;
1123	}
1124
1125	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1126	if (cmt == NULL)
1127		return -ENOMEM;
1128
1129	ret = sh_cmt_setup(cmt, pdev);
1130	if (ret) {
1131		kfree(cmt);
1132		pm_runtime_idle(&pdev->dev);
1133		return ret;
1134	}
1135	if (is_sh_early_platform_device(pdev))
1136		return 0;
1137
1138 out:
1139	if (cmt->has_clockevent || cmt->has_clocksource)
1140		pm_runtime_irq_safe(&pdev->dev);
1141	else
1142		pm_runtime_idle(&pdev->dev);
1143
1144	return 0;
1145}
1146
 
 
 
 
 
1147static struct platform_driver sh_cmt_device_driver = {
1148	.probe		= sh_cmt_probe,
 
1149	.driver		= {
1150		.name	= "sh_cmt",
1151		.of_match_table = of_match_ptr(sh_cmt_of_table),
1152		.suppress_bind_attrs = true,
1153	},
1154	.id_table	= sh_cmt_id_table,
1155};
1156
1157static int __init sh_cmt_init(void)
1158{
1159	return platform_driver_register(&sh_cmt_device_driver);
1160}
1161
1162static void __exit sh_cmt_exit(void)
1163{
1164	platform_driver_unregister(&sh_cmt_device_driver);
1165}
1166
1167#ifdef CONFIG_SUPERH
1168sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1169#endif
1170
1171subsys_initcall(sh_cmt_init);
1172module_exit(sh_cmt_exit);
1173
1174MODULE_AUTHOR("Magnus Damm");
1175MODULE_DESCRIPTION("SuperH CMT Timer Driver");
v4.6
 
   1/*
   2 * SuperH Timer Support - CMT
   3 *
   4 *  Copyright (C) 2008 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
 
  24#include <linux/ioport.h>
  25#include <linux/irq.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/platform_device.h>
  29#include <linux/pm_domain.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sh_timer.h>
  32#include <linux/slab.h>
  33#include <linux/spinlock.h>
  34
 
 
 
 
  35struct sh_cmt_device;
  36
  37/*
  38 * The CMT comes in 5 different identified flavours, depending not only on the
  39 * SoC but also on the particular instance. The following table lists the main
  40 * characteristics of those flavours.
  41 *
  42 *			16B	32B	32B-F	48B	48B-2
  43 * -----------------------------------------------------------------------------
  44 * Channels		2	1/4	1	6	2/8
  45 * Control Width	16	16	16	16	32
  46 * Counter Width	16	32	32	32/48	32/48
  47 * Shared Start/Stop	Y	Y	Y	Y	N
  48 *
  49 * The 48-bit gen2 version has a per-channel start/stop register located in the
  50 * channel registers block. All other versions have a shared start/stop register
  51 * located in the global space.
  52 *
  53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  54 * infers the start/stop bit position in the control register and the channel
  55 * registers block address. Some CMT instances have a subset of channels
  56 * available, in which case the index in the documentation doesn't match the
  57 * "real" index as implemented in hardware. This is for instance the case with
  58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  59 * in the documentation but using start/stop bit 5 and having its registers
  60 * block at 0x60.
  61 *
  62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  64 */
  65
  66enum sh_cmt_model {
  67	SH_CMT_16BIT,
  68	SH_CMT_32BIT,
  69	SH_CMT_32BIT_FAST,
  70	SH_CMT_48BIT,
  71	SH_CMT_48BIT_GEN2,
 
  72};
  73
  74struct sh_cmt_info {
  75	enum sh_cmt_model model;
  76
 
 
  77	unsigned long width; /* 16 or 32 bit version of hardware block */
  78	unsigned long overflow_bit;
  79	unsigned long clear_bits;
  80
  81	/* callbacks for CMSTR and CMCSR access */
  82	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
  83	void (*write_control)(void __iomem *base, unsigned long offs,
  84			      unsigned long value);
  85
  86	/* callbacks for CMCNT and CMCOR access */
  87	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
  88	void (*write_count)(void __iomem *base, unsigned long offs,
  89			    unsigned long value);
  90};
  91
  92struct sh_cmt_channel {
  93	struct sh_cmt_device *cmt;
  94
  95	unsigned int index;	/* Index in the documentation */
  96	unsigned int hwidx;	/* Real hardware index */
  97
  98	void __iomem *iostart;
  99	void __iomem *ioctrl;
 100
 101	unsigned int timer_bit;
 102	unsigned long flags;
 103	unsigned long match_value;
 104	unsigned long next_match_value;
 105	unsigned long max_match_value;
 106	unsigned long rate;
 107	raw_spinlock_t lock;
 108	struct clock_event_device ced;
 109	struct clocksource cs;
 110	unsigned long total_cycles;
 111	bool cs_enabled;
 112};
 113
 114struct sh_cmt_device {
 115	struct platform_device *pdev;
 116
 117	const struct sh_cmt_info *info;
 118
 119	void __iomem *mapbase;
 120	struct clk *clk;
 
 
 121
 122	raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124	struct sh_cmt_channel *channels;
 125	unsigned int num_channels;
 126	unsigned int hw_channels;
 127
 128	bool has_clockevent;
 129	bool has_clocksource;
 130};
 131
 132#define SH_CMT16_CMCSR_CMF		(1 << 7)
 133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF		(1 << 15)
 141#define SH_CMT32_CMCSR_OVF		(1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 143#define SH_CMT32_CMCSR_STTF		(1 << 12)
 144#define SH_CMT32_CMCSR_STPF		(1 << 11)
 145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 146#define SH_CMT32_CMCSR_CMS		(1 << 9)
 147#define SH_CMT32_CMCSR_CMM		(1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 159
 160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162	return ioread16(base + (offs << 1));
 163}
 164
 165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167	return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 171			   unsigned long value)
 172{
 173	iowrite16(value, base + (offs << 1));
 174}
 175
 176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 177			   unsigned long value)
 178{
 179	iowrite32(value, base + (offs << 2));
 180}
 181
 182static const struct sh_cmt_info sh_cmt_info[] = {
 183	[SH_CMT_16BIT] = {
 184		.model = SH_CMT_16BIT,
 185		.width = 16,
 186		.overflow_bit = SH_CMT16_CMCSR_CMF,
 187		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 188		.read_control = sh_cmt_read16,
 189		.write_control = sh_cmt_write16,
 190		.read_count = sh_cmt_read16,
 191		.write_count = sh_cmt_write16,
 192	},
 193	[SH_CMT_32BIT] = {
 194		.model = SH_CMT_32BIT,
 195		.width = 32,
 196		.overflow_bit = SH_CMT32_CMCSR_CMF,
 197		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 198		.read_control = sh_cmt_read16,
 199		.write_control = sh_cmt_write16,
 200		.read_count = sh_cmt_read32,
 201		.write_count = sh_cmt_write32,
 202	},
 203	[SH_CMT_32BIT_FAST] = {
 204		.model = SH_CMT_32BIT_FAST,
 
 205		.width = 32,
 206		.overflow_bit = SH_CMT32_CMCSR_CMF,
 207		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 208		.read_control = sh_cmt_read16,
 209		.write_control = sh_cmt_write16,
 210		.read_count = sh_cmt_read32,
 211		.write_count = sh_cmt_write32,
 212	},
 213	[SH_CMT_48BIT] = {
 214		.model = SH_CMT_48BIT,
 
 215		.width = 32,
 216		.overflow_bit = SH_CMT32_CMCSR_CMF,
 217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218		.read_control = sh_cmt_read32,
 219		.write_control = sh_cmt_write32,
 220		.read_count = sh_cmt_read32,
 221		.write_count = sh_cmt_write32,
 222	},
 223	[SH_CMT_48BIT_GEN2] = {
 224		.model = SH_CMT_48BIT_GEN2,
 
 225		.width = 32,
 226		.overflow_bit = SH_CMT32_CMCSR_CMF,
 227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228		.read_control = sh_cmt_read32,
 229		.write_control = sh_cmt_write32,
 230		.read_count = sh_cmt_read32,
 231		.write_count = sh_cmt_write32,
 232	},
 233};
 234
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 
 
 240{
 241	if (ch->iostart)
 242		return ch->cmt->info->read_control(ch->iostart, 0);
 243	else
 244		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 245}
 246
 247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 248				      unsigned long value)
 249{
 250	if (ch->iostart)
 251		ch->cmt->info->write_control(ch->iostart, 0, value);
 252	else
 253		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 
 
 
 
 
 
 
 254}
 255
 256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 257{
 258	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 259}
 260
 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 262				      unsigned long value)
 263{
 264	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 
 
 
 
 
 265}
 266
 267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 268{
 269	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 270}
 271
 272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 273				      unsigned long value)
 274{
 
 
 
 
 
 
 
 
 
 
 
 
 275	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 
 
 276}
 277
 278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 279				      unsigned long value)
 280{
 281	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 
 
 
 
 
 282}
 283
 284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 285					int *has_wrapped)
 286{
 287	unsigned long v1, v2, v3;
 288	int o1, o2;
 289
 290	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 291
 292	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 293	do {
 294		o2 = o1;
 295		v1 = sh_cmt_read_cmcnt(ch);
 296		v2 = sh_cmt_read_cmcnt(ch);
 297		v3 = sh_cmt_read_cmcnt(ch);
 298		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 299	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 300			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 301
 302	*has_wrapped = o1;
 303	return v2;
 304}
 305
 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 307{
 308	unsigned long flags, value;
 
 309
 310	/* start stop register shared by multiple timer channels */
 311	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 312	value = sh_cmt_read_cmstr(ch);
 313
 314	if (start)
 315		value |= 1 << ch->timer_bit;
 316	else
 317		value &= ~(1 << ch->timer_bit);
 318
 319	sh_cmt_write_cmstr(ch, value);
 320	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 321}
 322
 323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
 324{
 325	int k, ret;
 326
 327	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 328	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 329
 330	/* enable clock */
 331	ret = clk_enable(ch->cmt->clk);
 332	if (ret) {
 333		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 334			ch->index);
 335		goto err0;
 336	}
 337
 338	/* make sure channel is disabled */
 339	sh_cmt_start_stop_ch(ch, 0);
 340
 341	/* configure channel, periodic mode and maximum timeout */
 342	if (ch->cmt->info->width == 16) {
 343		*rate = clk_get_rate(ch->cmt->clk) / 512;
 344		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 345				   SH_CMT16_CMCSR_CKS512);
 346	} else {
 347		*rate = clk_get_rate(ch->cmt->clk) / 8;
 348		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 349				   SH_CMT32_CMCSR_CMTOUT_IE |
 350				   SH_CMT32_CMCSR_CMR_IRQ |
 351				   SH_CMT32_CMCSR_CKS_RCLK8);
 352	}
 353
 354	sh_cmt_write_cmcor(ch, 0xffffffff);
 355	sh_cmt_write_cmcnt(ch, 0);
 356
 357	/*
 358	 * According to the sh73a0 user's manual, as CMCNT can be operated
 359	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 360	 * modifying CMCNT register; two RCLK cycles are necessary before
 361	 * this register is either read or any modification of the value
 362	 * it holds is reflected in the LSI's actual operation.
 363	 *
 364	 * While at it, we're supposed to clear out the CMCNT as of this
 365	 * moment, so make sure it's processed properly here.  This will
 366	 * take RCLKx2 at maximum.
 367	 */
 368	for (k = 0; k < 100; k++) {
 369		if (!sh_cmt_read_cmcnt(ch))
 370			break;
 371		udelay(1);
 372	}
 373
 374	if (sh_cmt_read_cmcnt(ch)) {
 375		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 376			ch->index);
 377		ret = -ETIMEDOUT;
 378		goto err1;
 379	}
 380
 381	/* enable channel */
 382	sh_cmt_start_stop_ch(ch, 1);
 383	return 0;
 384 err1:
 385	/* stop clock */
 386	clk_disable(ch->cmt->clk);
 387
 388 err0:
 389	return ret;
 390}
 391
 392static void sh_cmt_disable(struct sh_cmt_channel *ch)
 393{
 394	/* disable channel */
 395	sh_cmt_start_stop_ch(ch, 0);
 396
 397	/* disable interrupts in CMT block */
 398	sh_cmt_write_cmcsr(ch, 0);
 399
 400	/* stop clock */
 401	clk_disable(ch->cmt->clk);
 402
 403	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 404	pm_runtime_put(&ch->cmt->pdev->dev);
 405}
 406
 407/* private flags */
 408#define FLAG_CLOCKEVENT (1 << 0)
 409#define FLAG_CLOCKSOURCE (1 << 1)
 410#define FLAG_REPROGRAM (1 << 2)
 411#define FLAG_SKIPEVENT (1 << 3)
 412#define FLAG_IRQCONTEXT (1 << 4)
 413
 414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 415					      int absolute)
 416{
 417	unsigned long new_match;
 418	unsigned long value = ch->next_match_value;
 419	unsigned long delay = 0;
 420	unsigned long now = 0;
 421	int has_wrapped;
 422
 423	now = sh_cmt_get_counter(ch, &has_wrapped);
 424	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 425
 426	if (has_wrapped) {
 427		/* we're competing with the interrupt handler.
 428		 *  -> let the interrupt handler reprogram the timer.
 429		 *  -> interrupt number two handles the event.
 430		 */
 431		ch->flags |= FLAG_SKIPEVENT;
 432		return;
 433	}
 434
 435	if (absolute)
 436		now = 0;
 437
 438	do {
 439		/* reprogram the timer hardware,
 440		 * but don't save the new match value yet.
 441		 */
 442		new_match = now + value + delay;
 443		if (new_match > ch->max_match_value)
 444			new_match = ch->max_match_value;
 445
 446		sh_cmt_write_cmcor(ch, new_match);
 447
 448		now = sh_cmt_get_counter(ch, &has_wrapped);
 449		if (has_wrapped && (new_match > ch->match_value)) {
 450			/* we are changing to a greater match value,
 451			 * so this wrap must be caused by the counter
 452			 * matching the old value.
 453			 * -> first interrupt reprograms the timer.
 454			 * -> interrupt number two handles the event.
 455			 */
 456			ch->flags |= FLAG_SKIPEVENT;
 457			break;
 458		}
 459
 460		if (has_wrapped) {
 461			/* we are changing to a smaller match value,
 462			 * so the wrap must be caused by the counter
 463			 * matching the new value.
 464			 * -> save programmed match value.
 465			 * -> let isr handle the event.
 466			 */
 467			ch->match_value = new_match;
 468			break;
 469		}
 470
 471		/* be safe: verify hardware settings */
 472		if (now < new_match) {
 473			/* timer value is below match value, all good.
 474			 * this makes sure we won't miss any match events.
 475			 * -> save programmed match value.
 476			 * -> let isr handle the event.
 477			 */
 478			ch->match_value = new_match;
 479			break;
 480		}
 481
 482		/* the counter has reached a value greater
 483		 * than our new match value. and since the
 484		 * has_wrapped flag isn't set we must have
 485		 * programmed a too close event.
 486		 * -> increase delay and retry.
 487		 */
 488		if (delay)
 489			delay <<= 1;
 490		else
 491			delay = 1;
 492
 493		if (!delay)
 494			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 495				 ch->index);
 496
 497	} while (delay);
 498}
 499
 500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 501{
 502	if (delta > ch->max_match_value)
 503		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 504			 ch->index);
 505
 506	ch->next_match_value = delta;
 507	sh_cmt_clock_event_program_verify(ch, 0);
 508}
 509
 510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512	unsigned long flags;
 513
 514	raw_spin_lock_irqsave(&ch->lock, flags);
 515	__sh_cmt_set_next(ch, delta);
 516	raw_spin_unlock_irqrestore(&ch->lock, flags);
 517}
 518
 519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 520{
 521	struct sh_cmt_channel *ch = dev_id;
 522
 523	/* clear flags */
 524	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 525			   ch->cmt->info->clear_bits);
 526
 527	/* update clock source counter to begin with if enabled
 528	 * the wrap flag should be cleared by the timer specific
 529	 * isr before we end up here.
 530	 */
 531	if (ch->flags & FLAG_CLOCKSOURCE)
 532		ch->total_cycles += ch->match_value + 1;
 533
 534	if (!(ch->flags & FLAG_REPROGRAM))
 535		ch->next_match_value = ch->max_match_value;
 536
 537	ch->flags |= FLAG_IRQCONTEXT;
 538
 539	if (ch->flags & FLAG_CLOCKEVENT) {
 540		if (!(ch->flags & FLAG_SKIPEVENT)) {
 541			if (clockevent_state_oneshot(&ch->ced)) {
 542				ch->next_match_value = ch->max_match_value;
 543				ch->flags |= FLAG_REPROGRAM;
 544			}
 545
 546			ch->ced.event_handler(&ch->ced);
 547		}
 548	}
 549
 550	ch->flags &= ~FLAG_SKIPEVENT;
 551
 552	if (ch->flags & FLAG_REPROGRAM) {
 553		ch->flags &= ~FLAG_REPROGRAM;
 554		sh_cmt_clock_event_program_verify(ch, 1);
 555
 556		if (ch->flags & FLAG_CLOCKEVENT)
 557			if ((clockevent_state_shutdown(&ch->ced))
 558			    || (ch->match_value == ch->next_match_value))
 559				ch->flags &= ~FLAG_REPROGRAM;
 560	}
 561
 562	ch->flags &= ~FLAG_IRQCONTEXT;
 563
 564	return IRQ_HANDLED;
 565}
 566
 567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 568{
 569	int ret = 0;
 570	unsigned long flags;
 571
 
 
 
 572	raw_spin_lock_irqsave(&ch->lock, flags);
 573
 574	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 575		ret = sh_cmt_enable(ch, &ch->rate);
 
 
 
 576
 577	if (ret)
 578		goto out;
 579	ch->flags |= flag;
 580
 581	/* setup timeout if no clockevent */
 582	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 
 583		__sh_cmt_set_next(ch, ch->max_match_value);
 584 out:
 585	raw_spin_unlock_irqrestore(&ch->lock, flags);
 586
 587	return ret;
 588}
 589
 590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 591{
 592	unsigned long flags;
 593	unsigned long f;
 594
 595	raw_spin_lock_irqsave(&ch->lock, flags);
 596
 597	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 598	ch->flags &= ~flag;
 599
 600	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 601		sh_cmt_disable(ch);
 
 
 
 602
 603	/* adjust the timeout to maximum if only clocksource left */
 604	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 605		__sh_cmt_set_next(ch, ch->max_match_value);
 606
 607	raw_spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 608}
 609
 610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 611{
 612	return container_of(cs, struct sh_cmt_channel, cs);
 613}
 614
 615static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
 616{
 617	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 618	unsigned long flags, raw;
 619	unsigned long value;
 620	int has_wrapped;
 621
 622	raw_spin_lock_irqsave(&ch->lock, flags);
 623	value = ch->total_cycles;
 624	raw = sh_cmt_get_counter(ch, &has_wrapped);
 
 
 
 
 
 
 
 
 
 625
 626	if (unlikely(has_wrapped))
 627		raw += ch->match_value + 1;
 628	raw_spin_unlock_irqrestore(&ch->lock, flags);
 629
 630	return value + raw;
 631}
 632
 633static int sh_cmt_clocksource_enable(struct clocksource *cs)
 634{
 635	int ret;
 636	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 637
 638	WARN_ON(ch->cs_enabled);
 639
 640	ch->total_cycles = 0;
 641
 642	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 643	if (!ret) {
 644		__clocksource_update_freq_hz(cs, ch->rate);
 645		ch->cs_enabled = true;
 646	}
 647	return ret;
 648}
 649
 650static void sh_cmt_clocksource_disable(struct clocksource *cs)
 651{
 652	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 653
 654	WARN_ON(!ch->cs_enabled);
 655
 656	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 657	ch->cs_enabled = false;
 658}
 659
 660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 661{
 662	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 663
 664	if (!ch->cs_enabled)
 665		return;
 666
 667	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 668	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 669}
 670
 671static void sh_cmt_clocksource_resume(struct clocksource *cs)
 672{
 673	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 674
 675	if (!ch->cs_enabled)
 676		return;
 677
 678	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 679	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 680}
 681
 682static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 683				       const char *name)
 684{
 685	struct clocksource *cs = &ch->cs;
 686
 687	cs->name = name;
 688	cs->rating = 125;
 689	cs->read = sh_cmt_clocksource_read;
 690	cs->enable = sh_cmt_clocksource_enable;
 691	cs->disable = sh_cmt_clocksource_disable;
 692	cs->suspend = sh_cmt_clocksource_suspend;
 693	cs->resume = sh_cmt_clocksource_resume;
 694	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 695	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 696
 697	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 698		 ch->index);
 699
 700	/* Register with dummy 1 Hz value, gets updated in ->enable() */
 701	clocksource_register_hz(cs, 1);
 702	return 0;
 703}
 704
 705static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 706{
 707	return container_of(ced, struct sh_cmt_channel, ced);
 708}
 709
 710static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 711{
 712	struct clock_event_device *ced = &ch->ced;
 713
 714	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 715
 716	/* TODO: calculate good shift from rate and counter bit width */
 717
 718	ced->shift = 32;
 719	ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
 720	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 721	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 722
 723	if (periodic)
 724		sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
 725	else
 726		sh_cmt_set_next(ch, ch->max_match_value);
 727}
 728
 729static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 730{
 731	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 732
 733	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 734	return 0;
 735}
 736
 737static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 738					int periodic)
 739{
 740	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 741
 742	/* deal with old setting first */
 743	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 744		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 745
 746	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 747		 ch->index, periodic ? "periodic" : "oneshot");
 748	sh_cmt_clock_event_start(ch, periodic);
 749	return 0;
 750}
 751
 752static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 753{
 754	return sh_cmt_clock_event_set_state(ced, 0);
 755}
 756
 757static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 758{
 759	return sh_cmt_clock_event_set_state(ced, 1);
 760}
 761
 762static int sh_cmt_clock_event_next(unsigned long delta,
 763				   struct clock_event_device *ced)
 764{
 765	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 766
 767	BUG_ON(!clockevent_state_oneshot(ced));
 768	if (likely(ch->flags & FLAG_IRQCONTEXT))
 769		ch->next_match_value = delta - 1;
 770	else
 771		sh_cmt_set_next(ch, delta - 1);
 772
 773	return 0;
 774}
 775
 776static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 777{
 778	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 779
 780	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 781	clk_unprepare(ch->cmt->clk);
 782}
 783
 784static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 785{
 786	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 787
 788	clk_prepare(ch->cmt->clk);
 789	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 790}
 791
 792static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 793				      const char *name)
 794{
 795	struct clock_event_device *ced = &ch->ced;
 796	int irq;
 797	int ret;
 798
 799	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 800	if (irq < 0) {
 801		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 802			ch->index);
 803		return irq;
 804	}
 805
 806	ret = request_irq(irq, sh_cmt_interrupt,
 807			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 808			  dev_name(&ch->cmt->pdev->dev), ch);
 809	if (ret) {
 810		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 811			ch->index, irq);
 812		return ret;
 813	}
 814
 815	ced->name = name;
 816	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 817	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 818	ced->rating = 125;
 819	ced->cpumask = cpu_possible_mask;
 820	ced->set_next_event = sh_cmt_clock_event_next;
 821	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 822	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 823	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 824	ced->suspend = sh_cmt_clock_event_suspend;
 825	ced->resume = sh_cmt_clock_event_resume;
 826
 
 
 
 
 
 
 
 
 827	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 828		 ch->index);
 829	clockevents_register_device(ced);
 830
 831	return 0;
 832}
 833
 834static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 835			   bool clockevent, bool clocksource)
 836{
 837	int ret;
 838
 839	if (clockevent) {
 840		ch->cmt->has_clockevent = true;
 841		ret = sh_cmt_register_clockevent(ch, name);
 842		if (ret < 0)
 843			return ret;
 844	}
 845
 846	if (clocksource) {
 847		ch->cmt->has_clocksource = true;
 848		sh_cmt_register_clocksource(ch, name);
 849	}
 850
 851	return 0;
 852}
 853
 854static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 855				unsigned int hwidx, bool clockevent,
 856				bool clocksource, struct sh_cmt_device *cmt)
 857{
 
 858	int ret;
 859
 860	/* Skip unused channels. */
 861	if (!clockevent && !clocksource)
 862		return 0;
 863
 864	ch->cmt = cmt;
 865	ch->index = index;
 866	ch->hwidx = hwidx;
 
 867
 868	/*
 869	 * Compute the address of the channel control register block. For the
 870	 * timers with a per-channel start/stop register, compute its address
 871	 * as well.
 872	 */
 873	switch (cmt->info->model) {
 874	case SH_CMT_16BIT:
 875		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 876		break;
 877	case SH_CMT_32BIT:
 878	case SH_CMT_48BIT:
 879		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 880		break;
 881	case SH_CMT_32BIT_FAST:
 882		/*
 883		 * The 32-bit "fast" timer has a single channel at hwidx 5 but
 884		 * is located at offset 0x40 instead of 0x60 for some reason.
 885		 */
 886		ch->ioctrl = cmt->mapbase + 0x40;
 887		break;
 888	case SH_CMT_48BIT_GEN2:
 889		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 890		ch->ioctrl = ch->iostart + 0x10;
 
 
 
 
 
 
 891		break;
 892	}
 893
 894	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 895		ch->max_match_value = ~0;
 896	else
 897		ch->max_match_value = (1 << cmt->info->width) - 1;
 898
 899	ch->match_value = ch->max_match_value;
 900	raw_spin_lock_init(&ch->lock);
 901
 902	ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
 903
 904	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 905			      clockevent, clocksource);
 906	if (ret) {
 907		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 908			ch->index);
 909		return ret;
 910	}
 911	ch->cs_enabled = false;
 912
 913	return 0;
 914}
 915
 916static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 917{
 918	struct resource *mem;
 919
 920	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 921	if (!mem) {
 922		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 923		return -ENXIO;
 924	}
 925
 926	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 927	if (cmt->mapbase == NULL) {
 928		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 929		return -ENXIO;
 930	}
 931
 932	return 0;
 933}
 934
 935static const struct platform_device_id sh_cmt_id_table[] = {
 936	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 937	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 938	{ }
 939};
 940MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 941
 942static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 943	{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
 944	{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
 945	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 946	{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947	{ }
 948};
 949MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 950
 951static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
 952{
 953	struct device_node *np = cmt->pdev->dev.of_node;
 954
 955	return of_property_read_u32(np, "renesas,channels-mask",
 956				    &cmt->hw_channels);
 957}
 958
 959static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 960{
 961	unsigned int mask;
 962	unsigned int i;
 963	int ret;
 964
 965	cmt->pdev = pdev;
 966	raw_spin_lock_init(&cmt->lock);
 967
 968	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 969		const struct of_device_id *id;
 970
 971		id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
 972		cmt->info = id->data;
 973
 974		ret = sh_cmt_parse_dt(cmt);
 975		if (ret < 0)
 976			return ret;
 977	} else if (pdev->dev.platform_data) {
 978		struct sh_timer_config *cfg = pdev->dev.platform_data;
 979		const struct platform_device_id *id = pdev->id_entry;
 980
 981		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 982		cmt->hw_channels = cfg->channels_mask;
 983	} else {
 984		dev_err(&cmt->pdev->dev, "missing platform data\n");
 985		return -ENXIO;
 986	}
 987
 988	/* Get hold of clock. */
 989	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 990	if (IS_ERR(cmt->clk)) {
 991		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 992		return PTR_ERR(cmt->clk);
 993	}
 994
 995	ret = clk_prepare(cmt->clk);
 996	if (ret < 0)
 997		goto err_clk_put;
 998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999	/* Map the memory resource(s). */
1000	ret = sh_cmt_map_memory(cmt);
1001	if (ret < 0)
1002		goto err_clk_unprepare;
1003
1004	/* Allocate and setup the channels. */
1005	cmt->num_channels = hweight8(cmt->hw_channels);
1006	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1007				GFP_KERNEL);
1008	if (cmt->channels == NULL) {
1009		ret = -ENOMEM;
1010		goto err_unmap;
1011	}
1012
1013	/*
1014	 * Use the first channel as a clock event device and the second channel
1015	 * as a clock source. If only one channel is available use it for both.
1016	 */
1017	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1018		unsigned int hwidx = ffs(mask) - 1;
1019		bool clocksource = i == 1 || cmt->num_channels == 1;
1020		bool clockevent = i == 0;
1021
1022		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1023					   clockevent, clocksource, cmt);
1024		if (ret < 0)
1025			goto err_unmap;
1026
1027		mask &= ~(1 << hwidx);
1028	}
1029
 
 
1030	platform_set_drvdata(pdev, cmt);
1031
1032	return 0;
1033
1034err_unmap:
1035	kfree(cmt->channels);
1036	iounmap(cmt->mapbase);
 
 
1037err_clk_unprepare:
1038	clk_unprepare(cmt->clk);
1039err_clk_put:
1040	clk_put(cmt->clk);
1041	return ret;
1042}
1043
1044static int sh_cmt_probe(struct platform_device *pdev)
1045{
1046	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1047	int ret;
1048
1049	if (!is_early_platform_device(pdev)) {
1050		pm_runtime_set_active(&pdev->dev);
1051		pm_runtime_enable(&pdev->dev);
1052	}
1053
1054	if (cmt) {
1055		dev_info(&pdev->dev, "kept as earlytimer\n");
1056		goto out;
1057	}
1058
1059	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1060	if (cmt == NULL)
1061		return -ENOMEM;
1062
1063	ret = sh_cmt_setup(cmt, pdev);
1064	if (ret) {
1065		kfree(cmt);
1066		pm_runtime_idle(&pdev->dev);
1067		return ret;
1068	}
1069	if (is_early_platform_device(pdev))
1070		return 0;
1071
1072 out:
1073	if (cmt->has_clockevent || cmt->has_clocksource)
1074		pm_runtime_irq_safe(&pdev->dev);
1075	else
1076		pm_runtime_idle(&pdev->dev);
1077
1078	return 0;
1079}
1080
1081static int sh_cmt_remove(struct platform_device *pdev)
1082{
1083	return -EBUSY; /* cannot unregister clockevent and clocksource */
1084}
1085
1086static struct platform_driver sh_cmt_device_driver = {
1087	.probe		= sh_cmt_probe,
1088	.remove		= sh_cmt_remove,
1089	.driver		= {
1090		.name	= "sh_cmt",
1091		.of_match_table = of_match_ptr(sh_cmt_of_table),
 
1092	},
1093	.id_table	= sh_cmt_id_table,
1094};
1095
1096static int __init sh_cmt_init(void)
1097{
1098	return platform_driver_register(&sh_cmt_device_driver);
1099}
1100
1101static void __exit sh_cmt_exit(void)
1102{
1103	platform_driver_unregister(&sh_cmt_device_driver);
1104}
1105
1106early_platform_init("earlytimer", &sh_cmt_device_driver);
 
 
 
1107subsys_initcall(sh_cmt_init);
1108module_exit(sh_cmt_exit);
1109
1110MODULE_AUTHOR("Magnus Damm");
1111MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1112MODULE_LICENSE("GPL v2");