Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559{
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610 msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643 u32 dummy;
644
645 if (value)
646 *value = 0;
647 else
648 value = &dummy;
649
650 if (width <= 8) {
651 *value = inb(port);
652 } else if (width <= 16) {
653 *value = inw(port);
654 } else if (width <= 32) {
655 *value = inl(port);
656 } else {
657 pr_debug("%s: Access width %d not supported\n", __func__, width);
658 return AE_BAD_PARAMETER;
659 }
660
661 return AE_OK;
662}
663
664EXPORT_SYMBOL(acpi_os_read_port);
665
666acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
667{
668 if (width <= 8) {
669 outb(value, port);
670 } else if (width <= 16) {
671 outw(value, port);
672 } else if (width <= 32) {
673 outl(value, port);
674 } else {
675 pr_debug("%s: Access width %d not supported\n", __func__, width);
676 return AE_BAD_PARAMETER;
677 }
678
679 return AE_OK;
680}
681
682EXPORT_SYMBOL(acpi_os_write_port);
683
684int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685{
686
687 switch (width) {
688 case 8:
689 *(u8 *) value = readb(virt_addr);
690 break;
691 case 16:
692 *(u16 *) value = readw(virt_addr);
693 break;
694 case 32:
695 *(u32 *) value = readl(virt_addr);
696 break;
697 case 64:
698 *(u64 *) value = readq(virt_addr);
699 break;
700 default:
701 return -EINVAL;
702 }
703
704 return 0;
705}
706
707acpi_status
708acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709{
710 void __iomem *virt_addr;
711 unsigned int size = width / 8;
712 bool unmap = false;
713 u64 dummy;
714 int error;
715
716 rcu_read_lock();
717 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718 if (!virt_addr) {
719 rcu_read_unlock();
720 virt_addr = acpi_os_ioremap(phys_addr, size);
721 if (!virt_addr)
722 return AE_BAD_ADDRESS;
723 unmap = true;
724 }
725
726 if (!value)
727 value = &dummy;
728
729 error = acpi_os_read_iomem(virt_addr, value, width);
730 BUG_ON(error);
731
732 if (unmap)
733 iounmap(virt_addr);
734 else
735 rcu_read_unlock();
736
737 return AE_OK;
738}
739
740acpi_status
741acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742{
743 void __iomem *virt_addr;
744 unsigned int size = width / 8;
745 bool unmap = false;
746
747 rcu_read_lock();
748 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749 if (!virt_addr) {
750 rcu_read_unlock();
751 virt_addr = acpi_os_ioremap(phys_addr, size);
752 if (!virt_addr)
753 return AE_BAD_ADDRESS;
754 unmap = true;
755 }
756
757 switch (width) {
758 case 8:
759 writeb(value, virt_addr);
760 break;
761 case 16:
762 writew(value, virt_addr);
763 break;
764 case 32:
765 writel(value, virt_addr);
766 break;
767 case 64:
768 writeq(value, virt_addr);
769 break;
770 default:
771 BUG();
772 }
773
774 if (unmap)
775 iounmap(virt_addr);
776 else
777 rcu_read_unlock();
778
779 return AE_OK;
780}
781
782#ifdef CONFIG_PCI
783acpi_status
784acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
785 u64 *value, u32 width)
786{
787 int result, size;
788 u32 value32;
789
790 if (!value)
791 return AE_BAD_PARAMETER;
792
793 switch (width) {
794 case 8:
795 size = 1;
796 break;
797 case 16:
798 size = 2;
799 break;
800 case 32:
801 size = 4;
802 break;
803 default:
804 return AE_ERROR;
805 }
806
807 result = raw_pci_read(pci_id->segment, pci_id->bus,
808 PCI_DEVFN(pci_id->device, pci_id->function),
809 reg, size, &value32);
810 *value = value32;
811
812 return (result ? AE_ERROR : AE_OK);
813}
814
815acpi_status
816acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817 u64 value, u32 width)
818{
819 int result, size;
820
821 switch (width) {
822 case 8:
823 size = 1;
824 break;
825 case 16:
826 size = 2;
827 break;
828 case 32:
829 size = 4;
830 break;
831 default:
832 return AE_ERROR;
833 }
834
835 result = raw_pci_write(pci_id->segment, pci_id->bus,
836 PCI_DEVFN(pci_id->device, pci_id->function),
837 reg, size, value);
838
839 return (result ? AE_ERROR : AE_OK);
840}
841#endif
842
843static void acpi_os_execute_deferred(struct work_struct *work)
844{
845 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846
847 dpc->function(dpc->context);
848 kfree(dpc);
849}
850
851#ifdef CONFIG_ACPI_DEBUGGER
852static struct acpi_debugger acpi_debugger;
853static bool acpi_debugger_initialized;
854
855int acpi_register_debugger(struct module *owner,
856 const struct acpi_debugger_ops *ops)
857{
858 int ret = 0;
859
860 mutex_lock(&acpi_debugger.lock);
861 if (acpi_debugger.ops) {
862 ret = -EBUSY;
863 goto err_lock;
864 }
865
866 acpi_debugger.owner = owner;
867 acpi_debugger.ops = ops;
868
869err_lock:
870 mutex_unlock(&acpi_debugger.lock);
871 return ret;
872}
873EXPORT_SYMBOL(acpi_register_debugger);
874
875void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876{
877 mutex_lock(&acpi_debugger.lock);
878 if (ops == acpi_debugger.ops) {
879 acpi_debugger.ops = NULL;
880 acpi_debugger.owner = NULL;
881 }
882 mutex_unlock(&acpi_debugger.lock);
883}
884EXPORT_SYMBOL(acpi_unregister_debugger);
885
886int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887{
888 int ret;
889 int (*func)(acpi_osd_exec_callback, void *);
890 struct module *owner;
891
892 if (!acpi_debugger_initialized)
893 return -ENODEV;
894 mutex_lock(&acpi_debugger.lock);
895 if (!acpi_debugger.ops) {
896 ret = -ENODEV;
897 goto err_lock;
898 }
899 if (!try_module_get(acpi_debugger.owner)) {
900 ret = -ENODEV;
901 goto err_lock;
902 }
903 func = acpi_debugger.ops->create_thread;
904 owner = acpi_debugger.owner;
905 mutex_unlock(&acpi_debugger.lock);
906
907 ret = func(function, context);
908
909 mutex_lock(&acpi_debugger.lock);
910 module_put(owner);
911err_lock:
912 mutex_unlock(&acpi_debugger.lock);
913 return ret;
914}
915
916ssize_t acpi_debugger_write_log(const char *msg)
917{
918 ssize_t ret;
919 ssize_t (*func)(const char *);
920 struct module *owner;
921
922 if (!acpi_debugger_initialized)
923 return -ENODEV;
924 mutex_lock(&acpi_debugger.lock);
925 if (!acpi_debugger.ops) {
926 ret = -ENODEV;
927 goto err_lock;
928 }
929 if (!try_module_get(acpi_debugger.owner)) {
930 ret = -ENODEV;
931 goto err_lock;
932 }
933 func = acpi_debugger.ops->write_log;
934 owner = acpi_debugger.owner;
935 mutex_unlock(&acpi_debugger.lock);
936
937 ret = func(msg);
938
939 mutex_lock(&acpi_debugger.lock);
940 module_put(owner);
941err_lock:
942 mutex_unlock(&acpi_debugger.lock);
943 return ret;
944}
945
946ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947{
948 ssize_t ret;
949 ssize_t (*func)(char *, size_t);
950 struct module *owner;
951
952 if (!acpi_debugger_initialized)
953 return -ENODEV;
954 mutex_lock(&acpi_debugger.lock);
955 if (!acpi_debugger.ops) {
956 ret = -ENODEV;
957 goto err_lock;
958 }
959 if (!try_module_get(acpi_debugger.owner)) {
960 ret = -ENODEV;
961 goto err_lock;
962 }
963 func = acpi_debugger.ops->read_cmd;
964 owner = acpi_debugger.owner;
965 mutex_unlock(&acpi_debugger.lock);
966
967 ret = func(buffer, buffer_length);
968
969 mutex_lock(&acpi_debugger.lock);
970 module_put(owner);
971err_lock:
972 mutex_unlock(&acpi_debugger.lock);
973 return ret;
974}
975
976int acpi_debugger_wait_command_ready(void)
977{
978 int ret;
979 int (*func)(bool, char *, size_t);
980 struct module *owner;
981
982 if (!acpi_debugger_initialized)
983 return -ENODEV;
984 mutex_lock(&acpi_debugger.lock);
985 if (!acpi_debugger.ops) {
986 ret = -ENODEV;
987 goto err_lock;
988 }
989 if (!try_module_get(acpi_debugger.owner)) {
990 ret = -ENODEV;
991 goto err_lock;
992 }
993 func = acpi_debugger.ops->wait_command_ready;
994 owner = acpi_debugger.owner;
995 mutex_unlock(&acpi_debugger.lock);
996
997 ret = func(acpi_gbl_method_executing,
998 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999
1000 mutex_lock(&acpi_debugger.lock);
1001 module_put(owner);
1002err_lock:
1003 mutex_unlock(&acpi_debugger.lock);
1004 return ret;
1005}
1006
1007int acpi_debugger_notify_command_complete(void)
1008{
1009 int ret;
1010 int (*func)(void);
1011 struct module *owner;
1012
1013 if (!acpi_debugger_initialized)
1014 return -ENODEV;
1015 mutex_lock(&acpi_debugger.lock);
1016 if (!acpi_debugger.ops) {
1017 ret = -ENODEV;
1018 goto err_lock;
1019 }
1020 if (!try_module_get(acpi_debugger.owner)) {
1021 ret = -ENODEV;
1022 goto err_lock;
1023 }
1024 func = acpi_debugger.ops->notify_command_complete;
1025 owner = acpi_debugger.owner;
1026 mutex_unlock(&acpi_debugger.lock);
1027
1028 ret = func();
1029
1030 mutex_lock(&acpi_debugger.lock);
1031 module_put(owner);
1032err_lock:
1033 mutex_unlock(&acpi_debugger.lock);
1034 return ret;
1035}
1036
1037int __init acpi_debugger_init(void)
1038{
1039 mutex_init(&acpi_debugger.lock);
1040 acpi_debugger_initialized = true;
1041 return 0;
1042}
1043#endif
1044
1045/*******************************************************************************
1046 *
1047 * FUNCTION: acpi_os_execute
1048 *
1049 * PARAMETERS: Type - Type of the callback
1050 * Function - Function to be executed
1051 * Context - Function parameters
1052 *
1053 * RETURN: Status
1054 *
1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056 * immediately executes function on a separate thread.
1057 *
1058 ******************************************************************************/
1059
1060acpi_status acpi_os_execute(acpi_execute_type type,
1061 acpi_osd_exec_callback function, void *context)
1062{
1063 struct acpi_os_dpc *dpc;
1064 int ret;
1065
1066 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067 "Scheduling function [%p(%p)] for deferred execution.\n",
1068 function, context));
1069
1070 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071 ret = acpi_debugger_create_thread(function, context);
1072 if (ret) {
1073 pr_err("Kernel thread creation failed\n");
1074 return AE_ERROR;
1075 }
1076 return AE_OK;
1077 }
1078
1079 /*
1080 * Allocate/initialize DPC structure. Note that this memory will be
1081 * freed by the callee. The kernel handles the work_struct list in a
1082 * way that allows us to also free its memory inside the callee.
1083 * Because we may want to schedule several tasks with different
1084 * parameters we can't use the approach some kernel code uses of
1085 * having a static work_struct.
1086 */
1087
1088 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089 if (!dpc)
1090 return AE_NO_MEMORY;
1091
1092 dpc->function = function;
1093 dpc->context = context;
1094 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096 /*
1097 * To prevent lockdep from complaining unnecessarily, make sure that
1098 * there is a different static lockdep key for each workqueue by using
1099 * INIT_WORK() for each of them separately.
1100 */
1101 switch (type) {
1102 case OSL_NOTIFY_HANDLER:
1103 ret = queue_work(kacpi_notify_wq, &dpc->work);
1104 break;
1105 case OSL_GPE_HANDLER:
1106 /*
1107 * On some machines, a software-initiated SMI causes corruption
1108 * unless the SMI runs on CPU 0. An SMI can be initiated by
1109 * any AML, but typically it's done in GPE-related methods that
1110 * are run via workqueues, so we can avoid the known corruption
1111 * cases by always queueing on CPU 0.
1112 */
1113 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114 break;
1115 default:
1116 pr_err("Unsupported os_execute type %d.\n", type);
1117 goto err;
1118 }
1119 if (!ret) {
1120 pr_err("Unable to queue work\n");
1121 goto err;
1122 }
1123
1124 return AE_OK;
1125
1126err:
1127 kfree(dpc);
1128 return AE_ERROR;
1129}
1130EXPORT_SYMBOL(acpi_os_execute);
1131
1132void acpi_os_wait_events_complete(void)
1133{
1134 /*
1135 * Make sure the GPE handler or the fixed event handler is not used
1136 * on another CPU after removal.
1137 */
1138 if (acpi_sci_irq_valid())
1139 synchronize_hardirq(acpi_sci_irq);
1140 flush_workqueue(kacpid_wq);
1141 flush_workqueue(kacpi_notify_wq);
1142}
1143EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145struct acpi_hp_work {
1146 struct work_struct work;
1147 struct acpi_device *adev;
1148 u32 src;
1149};
1150
1151static void acpi_hotplug_work_fn(struct work_struct *work)
1152{
1153 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155 acpi_os_wait_events_complete();
1156 acpi_device_hotplug(hpw->adev, hpw->src);
1157 kfree(hpw);
1158}
1159
1160acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161{
1162 struct acpi_hp_work *hpw;
1163
1164 acpi_handle_debug(adev->handle,
1165 "Scheduling hotplug event %u for deferred handling\n",
1166 src);
1167
1168 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169 if (!hpw)
1170 return AE_NO_MEMORY;
1171
1172 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173 hpw->adev = adev;
1174 hpw->src = src;
1175 /*
1176 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177 * the hotplug code may call driver .remove() functions, which may
1178 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179 * these workqueues.
1180 */
1181 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182 kfree(hpw);
1183 return AE_ERROR;
1184 }
1185 return AE_OK;
1186}
1187
1188bool acpi_queue_hotplug_work(struct work_struct *work)
1189{
1190 return queue_work(kacpi_hotplug_wq, work);
1191}
1192
1193acpi_status
1194acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195{
1196 struct semaphore *sem = NULL;
1197
1198 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199 if (!sem)
1200 return AE_NO_MEMORY;
1201
1202 sema_init(sem, initial_units);
1203
1204 *handle = (acpi_handle *) sem;
1205
1206 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207 *handle, initial_units));
1208
1209 return AE_OK;
1210}
1211
1212/*
1213 * TODO: A better way to delete semaphores? Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers. Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
1219acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220{
1221 struct semaphore *sem = (struct semaphore *)handle;
1222
1223 if (!sem)
1224 return AE_BAD_PARAMETER;
1225
1226 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228 BUG_ON(!list_empty(&sem->wait_list));
1229 kfree(sem);
1230 sem = NULL;
1231
1232 return AE_OK;
1233}
1234
1235/*
1236 * TODO: Support for units > 1?
1237 */
1238acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239{
1240 acpi_status status = AE_OK;
1241 struct semaphore *sem = (struct semaphore *)handle;
1242 long jiffies;
1243 int ret = 0;
1244
1245 if (!acpi_os_initialized)
1246 return AE_OK;
1247
1248 if (!sem || (units < 1))
1249 return AE_BAD_PARAMETER;
1250
1251 if (units > 1)
1252 return AE_SUPPORT;
1253
1254 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255 handle, units, timeout));
1256
1257 if (timeout == ACPI_WAIT_FOREVER)
1258 jiffies = MAX_SCHEDULE_TIMEOUT;
1259 else
1260 jiffies = msecs_to_jiffies(timeout);
1261
1262 ret = down_timeout(sem, jiffies);
1263 if (ret)
1264 status = AE_TIME;
1265
1266 if (ACPI_FAILURE(status)) {
1267 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 "Failed to acquire semaphore[%p|%d|%d], %s",
1269 handle, units, timeout,
1270 acpi_format_exception(status)));
1271 } else {
1272 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273 "Acquired semaphore[%p|%d|%d]", handle,
1274 units, timeout));
1275 }
1276
1277 return status;
1278}
1279
1280/*
1281 * TODO: Support for units > 1?
1282 */
1283acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284{
1285 struct semaphore *sem = (struct semaphore *)handle;
1286
1287 if (!acpi_os_initialized)
1288 return AE_OK;
1289
1290 if (!sem || (units < 1))
1291 return AE_BAD_PARAMETER;
1292
1293 if (units > 1)
1294 return AE_SUPPORT;
1295
1296 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297 units));
1298
1299 up(sem);
1300
1301 return AE_OK;
1302}
1303
1304acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305{
1306#ifdef ENABLE_DEBUGGER
1307 if (acpi_in_debugger) {
1308 u32 chars;
1309
1310 kdb_read(buffer, buffer_length);
1311
1312 /* remove the CR kdb includes */
1313 chars = strlen(buffer) - 1;
1314 buffer[chars] = '\0';
1315 }
1316#else
1317 int ret;
1318
1319 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320 if (ret < 0)
1321 return AE_ERROR;
1322 if (bytes_read)
1323 *bytes_read = ret;
1324#endif
1325
1326 return AE_OK;
1327}
1328EXPORT_SYMBOL(acpi_os_get_line);
1329
1330acpi_status acpi_os_wait_command_ready(void)
1331{
1332 int ret;
1333
1334 ret = acpi_debugger_wait_command_ready();
1335 if (ret < 0)
1336 return AE_ERROR;
1337 return AE_OK;
1338}
1339
1340acpi_status acpi_os_notify_command_complete(void)
1341{
1342 int ret;
1343
1344 ret = acpi_debugger_notify_command_complete();
1345 if (ret < 0)
1346 return AE_ERROR;
1347 return AE_OK;
1348}
1349
1350acpi_status acpi_os_signal(u32 function, void *info)
1351{
1352 switch (function) {
1353 case ACPI_SIGNAL_FATAL:
1354 pr_err("Fatal opcode executed\n");
1355 break;
1356 case ACPI_SIGNAL_BREAKPOINT:
1357 /*
1358 * AML Breakpoint
1359 * ACPI spec. says to treat it as a NOP unless
1360 * you are debugging. So if/when we integrate
1361 * AML debugger into the kernel debugger its
1362 * hook will go here. But until then it is
1363 * not useful to print anything on breakpoints.
1364 */
1365 break;
1366 default:
1367 break;
1368 }
1369
1370 return AE_OK;
1371}
1372
1373static int __init acpi_os_name_setup(char *str)
1374{
1375 char *p = acpi_os_name;
1376 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378 if (!str || !*str)
1379 return 0;
1380
1381 for (; count-- && *str; str++) {
1382 if (isalnum(*str) || *str == ' ' || *str == ':')
1383 *p++ = *str;
1384 else if (*str == '\'' || *str == '"')
1385 continue;
1386 else
1387 break;
1388 }
1389 *p = 0;
1390
1391 return 1;
1392
1393}
1394
1395__setup("acpi_os_name=", acpi_os_name_setup);
1396
1397/*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default. It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1402 */
1403static int __init acpi_no_auto_serialize_setup(char *str)
1404{
1405 acpi_gbl_auto_serialize_methods = FALSE;
1406 pr_info("Auto-serialization disabled\n");
1407
1408 return 1;
1409}
1410
1411__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413/* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 * - strict (default) (2)
1420 * -> further driver trying to access the resources will not load
1421 * - lax (1)
1422 * -> further driver trying to access the resources will load, but you
1423 * get a system message that something might go wrong...
1424 *
1425 * - no (0)
1426 * -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429#define ENFORCE_RESOURCES_STRICT 2
1430#define ENFORCE_RESOURCES_LAX 1
1431#define ENFORCE_RESOURCES_NO 0
1432
1433static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435static int __init acpi_enforce_resources_setup(char *str)
1436{
1437 if (str == NULL || *str == '\0')
1438 return 0;
1439
1440 if (!strcmp("strict", str))
1441 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442 else if (!strcmp("lax", str))
1443 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444 else if (!strcmp("no", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447 return 1;
1448}
1449
1450__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452/* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454int acpi_check_resource_conflict(const struct resource *res)
1455{
1456 acpi_adr_space_type space_id;
1457
1458 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459 return 0;
1460
1461 if (res->flags & IORESOURCE_IO)
1462 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463 else if (res->flags & IORESOURCE_MEM)
1464 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465 else
1466 return 0;
1467
1468 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469 return 0;
1470
1471 pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474 return -EBUSY;
1475
1476 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
1479 return 0;
1480}
1481EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
1483int acpi_check_region(resource_size_t start, resource_size_t n,
1484 const char *name)
1485{
1486 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487
1488 return acpi_check_resource_conflict(&res);
1489}
1490EXPORT_SYMBOL(acpi_check_region);
1491
1492/*
1493 * Let drivers know whether the resource checks are effective
1494 */
1495int acpi_resources_are_enforced(void)
1496{
1497 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498}
1499EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501/*
1502 * Deallocate the memory for a spinlock.
1503 */
1504void acpi_os_delete_lock(acpi_spinlock handle)
1505{
1506 ACPI_FREE(handle);
1507}
1508
1509/*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
1515acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 __acquires(lockp)
1517{
1518 spin_lock(lockp);
1519 return 0;
1520}
1521
1522/*
1523 * Release a spinlock. See above.
1524 */
1525
1526void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527 __releases(lockp)
1528{
1529 spin_unlock(lockp);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551{
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572{
1573 kmem_cache_shrink(cache);
1574 return AE_OK;
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591{
1592 kmem_cache_destroy(cache);
1593 return AE_OK;
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611{
1612 kmem_cache_free(cache, object);
1613 return AE_OK;
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("Static SSDT installation disabled\n");
1621
1622 return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629 pr_notice("Predefined validation mechanism disabled\n");
1630 acpi_gbl_disable_auto_repair = TRUE;
1631
1632 return 1;
1633}
1634
1635__setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637acpi_status __init acpi_os_initialize(void)
1638{
1639 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642 acpi_gbl_xgpe0_block_logical_address =
1643 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644 acpi_gbl_xgpe1_block_logical_address =
1645 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648 /*
1649 * Use acpi_os_map_generic_address to pre-map the reset
1650 * register if it's in system memory.
1651 */
1652 void *rv;
1653
1654 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655 pr_debug("%s: Reset register mapping %s\n", __func__,
1656 rv ? "successful" : "failed");
1657 }
1658 acpi_os_initialized = true;
1659
1660 return AE_OK;
1661}
1662
1663acpi_status __init acpi_os_initialize1(void)
1664{
1665 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668 BUG_ON(!kacpid_wq);
1669 BUG_ON(!kacpi_notify_wq);
1670 BUG_ON(!kacpi_hotplug_wq);
1671 acpi_osi_init();
1672 return AE_OK;
1673}
1674
1675acpi_status acpi_os_terminate(void)
1676{
1677 if (acpi_irq_handler) {
1678 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679 acpi_irq_handler);
1680 }
1681
1682 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684 acpi_gbl_xgpe0_block_logical_address = 0UL;
1685 acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693 destroy_workqueue(kacpid_wq);
1694 destroy_workqueue(kacpi_notify_wq);
1695 destroy_workqueue(kacpi_hotplug_wq);
1696
1697 return AE_OK;
1698}
1699
1700acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701 u32 pm1b_control)
1702{
1703 int rc = 0;
1704
1705 if (__acpi_os_prepare_sleep)
1706 rc = __acpi_os_prepare_sleep(sleep_state,
1707 pm1a_control, pm1b_control);
1708 if (rc < 0)
1709 return AE_ERROR;
1710 else if (rc > 0)
1711 return AE_CTRL_TERMINATE;
1712
1713 return AE_OK;
1714}
1715
1716void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717 u32 pm1a_ctrl, u32 pm1b_ctrl))
1718{
1719 __acpi_os_prepare_sleep = func;
1720}
1721
1722#if (ACPI_REDUCED_HARDWARE)
1723acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724 u32 val_b)
1725{
1726 int rc = 0;
1727
1728 if (__acpi_os_prepare_extended_sleep)
1729 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730 val_a, val_b);
1731 if (rc < 0)
1732 return AE_ERROR;
1733 else if (rc > 0)
1734 return AE_CTRL_TERMINATE;
1735
1736 return AE_OK;
1737}
1738#else
1739acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740 u32 val_b)
1741{
1742 return AE_OK;
1743}
1744#endif
1745
1746void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747 u32 val_a, u32 val_b))
1748{
1749 __acpi_os_prepare_extended_sleep = func;
1750}
1751
1752acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753 u32 reg_a_value, u32 reg_b_value)
1754{
1755 acpi_status status;
1756
1757 if (acpi_gbl_reduced_hardware)
1758 status = acpi_os_prepare_extended_sleep(sleep_state,
1759 reg_a_value,
1760 reg_b_value);
1761 else
1762 status = acpi_os_prepare_sleep(sleep_state,
1763 reg_a_value, reg_b_value);
1764 return status;
1765}
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/pci.h>
32#include <linux/interrupt.h>
33#include <linux/kmod.h>
34#include <linux/delay.h>
35#include <linux/workqueue.h>
36#include <linux/nmi.h>
37#include <linux/acpi.h>
38#include <linux/efi.h>
39#include <linux/ioport.h>
40#include <linux/list.h>
41#include <linux/jiffies.h>
42#include <linux/semaphore.h>
43
44#include <asm/io.h>
45#include <asm/uaccess.h>
46#include <linux/io-64-nonatomic-lo-hi.h>
47
48#include "internal.h"
49
50#define _COMPONENT ACPI_OS_SERVICES
51ACPI_MODULE_NAME("osl");
52
53struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57};
58
59#ifdef CONFIG_ACPI_CUSTOM_DSDT
60#include CONFIG_ACPI_CUSTOM_DSDT_FILE
61#endif
62
63#ifdef ENABLE_DEBUGGER
64#include <linux/kdb.h>
65
66/* stuff for debugger support */
67int acpi_in_debugger;
68EXPORT_SYMBOL(acpi_in_debugger);
69#endif /*ENABLE_DEBUGGER */
70
71static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
72 u32 pm1b_ctrl);
73static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
74 u32 val_b);
75
76static acpi_osd_handler acpi_irq_handler;
77static void *acpi_irq_context;
78static struct workqueue_struct *kacpid_wq;
79static struct workqueue_struct *kacpi_notify_wq;
80static struct workqueue_struct *kacpi_hotplug_wq;
81static bool acpi_os_initialized;
82unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
83
84/*
85 * This list of permanent mappings is for memory that may be accessed from
86 * interrupt context, where we can't do the ioremap().
87 */
88struct acpi_ioremap {
89 struct list_head list;
90 void __iomem *virt;
91 acpi_physical_address phys;
92 acpi_size size;
93 unsigned long refcount;
94};
95
96static LIST_HEAD(acpi_ioremaps);
97static DEFINE_MUTEX(acpi_ioremap_lock);
98
99static void __init acpi_osi_setup_late(void);
100
101/*
102 * The story of _OSI(Linux)
103 *
104 * From pre-history through Linux-2.6.22,
105 * Linux responded TRUE upon a BIOS OSI(Linux) query.
106 *
107 * Unfortunately, reference BIOS writers got wind of this
108 * and put OSI(Linux) in their example code, quickly exposing
109 * this string as ill-conceived and opening the door to
110 * an un-bounded number of BIOS incompatibilities.
111 *
112 * For example, OSI(Linux) was used on resume to re-POST a
113 * video card on one system, because Linux at that time
114 * could not do a speedy restore in its native driver.
115 * But then upon gaining quick native restore capability,
116 * Linux has no way to tell the BIOS to skip the time-consuming
117 * POST -- putting Linux at a permanent performance disadvantage.
118 * On another system, the BIOS writer used OSI(Linux)
119 * to infer native OS support for IPMI! On other systems,
120 * OSI(Linux) simply got in the way of Linux claiming to
121 * be compatible with other operating systems, exposing
122 * BIOS issues such as skipped device initialization.
123 *
124 * So "Linux" turned out to be a really poor chose of
125 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
126 *
127 * BIOS writers should NOT query _OSI(Linux) on future systems.
128 * Linux will complain on the console when it sees it, and return FALSE.
129 * To get Linux to return TRUE for your system will require
130 * a kernel source update to add a DMI entry,
131 * or boot with "acpi_osi=Linux"
132 */
133
134static struct osi_linux {
135 unsigned int enable:1;
136 unsigned int dmi:1;
137 unsigned int cmdline:1;
138 unsigned int default_disabling:1;
139} osi_linux = {0, 0, 0, 0};
140
141static u32 acpi_osi_handler(acpi_string interface, u32 supported)
142{
143 if (!strcmp("Linux", interface)) {
144
145 printk_once(KERN_NOTICE FW_BUG PREFIX
146 "BIOS _OSI(Linux) query %s%s\n",
147 osi_linux.enable ? "honored" : "ignored",
148 osi_linux.cmdline ? " via cmdline" :
149 osi_linux.dmi ? " via DMI" : "");
150 }
151
152 if (!strcmp("Darwin", interface)) {
153 /*
154 * Apple firmware will behave poorly if it receives positive
155 * answers to "Darwin" and any other OS. Respond positively
156 * to Darwin and then disable all other vendor strings.
157 */
158 acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
159 supported = ACPI_UINT32_MAX;
160 }
161
162 return supported;
163}
164
165static void __init acpi_request_region (struct acpi_generic_address *gas,
166 unsigned int length, char *desc)
167{
168 u64 addr;
169
170 /* Handle possible alignment issues */
171 memcpy(&addr, &gas->address, sizeof(addr));
172 if (!addr || !length)
173 return;
174
175 /* Resources are never freed */
176 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
177 request_region(addr, length, desc);
178 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
179 request_mem_region(addr, length, desc);
180}
181
182static int __init acpi_reserve_resources(void)
183{
184 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
185 "ACPI PM1a_EVT_BLK");
186
187 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
188 "ACPI PM1b_EVT_BLK");
189
190 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
191 "ACPI PM1a_CNT_BLK");
192
193 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
194 "ACPI PM1b_CNT_BLK");
195
196 if (acpi_gbl_FADT.pm_timer_length == 4)
197 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
198
199 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
200 "ACPI PM2_CNT_BLK");
201
202 /* Length of GPE blocks must be a non-negative multiple of 2 */
203
204 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
205 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
206 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
207
208 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
209 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
210 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
211
212 return 0;
213}
214fs_initcall_sync(acpi_reserve_resources);
215
216void acpi_os_printf(const char *fmt, ...)
217{
218 va_list args;
219 va_start(args, fmt);
220 acpi_os_vprintf(fmt, args);
221 va_end(args);
222}
223EXPORT_SYMBOL(acpi_os_printf);
224
225void acpi_os_vprintf(const char *fmt, va_list args)
226{
227 static char buffer[512];
228
229 vsprintf(buffer, fmt, args);
230
231#ifdef ENABLE_DEBUGGER
232 if (acpi_in_debugger) {
233 kdb_printf("%s", buffer);
234 } else {
235 printk(KERN_CONT "%s", buffer);
236 }
237#else
238 if (acpi_debugger_write_log(buffer) < 0)
239 printk(KERN_CONT "%s", buffer);
240#endif
241}
242
243#ifdef CONFIG_KEXEC
244static unsigned long acpi_rsdp;
245static int __init setup_acpi_rsdp(char *arg)
246{
247 if (kstrtoul(arg, 16, &acpi_rsdp))
248 return -EINVAL;
249 return 0;
250}
251early_param("acpi_rsdp", setup_acpi_rsdp);
252#endif
253
254acpi_physical_address __init acpi_os_get_root_pointer(void)
255{
256#ifdef CONFIG_KEXEC
257 if (acpi_rsdp)
258 return acpi_rsdp;
259#endif
260
261 if (efi_enabled(EFI_CONFIG_TABLES)) {
262 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
263 return efi.acpi20;
264 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
265 return efi.acpi;
266 else {
267 printk(KERN_ERR PREFIX
268 "System description tables not found\n");
269 return 0;
270 }
271 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
272 acpi_physical_address pa = 0;
273
274 acpi_find_root_pointer(&pa);
275 return pa;
276 }
277
278 return 0;
279}
280
281/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
282static struct acpi_ioremap *
283acpi_map_lookup(acpi_physical_address phys, acpi_size size)
284{
285 struct acpi_ioremap *map;
286
287 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
288 if (map->phys <= phys &&
289 phys + size <= map->phys + map->size)
290 return map;
291
292 return NULL;
293}
294
295/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
296static void __iomem *
297acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
298{
299 struct acpi_ioremap *map;
300
301 map = acpi_map_lookup(phys, size);
302 if (map)
303 return map->virt + (phys - map->phys);
304
305 return NULL;
306}
307
308void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
309{
310 struct acpi_ioremap *map;
311 void __iomem *virt = NULL;
312
313 mutex_lock(&acpi_ioremap_lock);
314 map = acpi_map_lookup(phys, size);
315 if (map) {
316 virt = map->virt + (phys - map->phys);
317 map->refcount++;
318 }
319 mutex_unlock(&acpi_ioremap_lock);
320 return virt;
321}
322EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
323
324/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
325static struct acpi_ioremap *
326acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
327{
328 struct acpi_ioremap *map;
329
330 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
331 if (map->virt <= virt &&
332 virt + size <= map->virt + map->size)
333 return map;
334
335 return NULL;
336}
337
338#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
339/* ioremap will take care of cache attributes */
340#define should_use_kmap(pfn) 0
341#else
342#define should_use_kmap(pfn) page_is_ram(pfn)
343#endif
344
345static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
346{
347 unsigned long pfn;
348
349 pfn = pg_off >> PAGE_SHIFT;
350 if (should_use_kmap(pfn)) {
351 if (pg_sz > PAGE_SIZE)
352 return NULL;
353 return (void __iomem __force *)kmap(pfn_to_page(pfn));
354 } else
355 return acpi_os_ioremap(pg_off, pg_sz);
356}
357
358static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
359{
360 unsigned long pfn;
361
362 pfn = pg_off >> PAGE_SHIFT;
363 if (should_use_kmap(pfn))
364 kunmap(pfn_to_page(pfn));
365 else
366 iounmap(vaddr);
367}
368
369/**
370 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
371 * @phys: Start of the physical address range to map.
372 * @size: Size of the physical address range to map.
373 *
374 * Look up the given physical address range in the list of existing ACPI memory
375 * mappings. If found, get a reference to it and return a pointer to it (its
376 * virtual address). If not found, map it, add it to that list and return a
377 * pointer to it.
378 *
379 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
380 * routine simply calls __acpi_map_table() to get the job done.
381 */
382void __iomem *__init_refok
383acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
384{
385 struct acpi_ioremap *map;
386 void __iomem *virt;
387 acpi_physical_address pg_off;
388 acpi_size pg_sz;
389
390 if (phys > ULONG_MAX) {
391 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
392 return NULL;
393 }
394
395 if (!acpi_gbl_permanent_mmap)
396 return __acpi_map_table((unsigned long)phys, size);
397
398 mutex_lock(&acpi_ioremap_lock);
399 /* Check if there's a suitable mapping already. */
400 map = acpi_map_lookup(phys, size);
401 if (map) {
402 map->refcount++;
403 goto out;
404 }
405
406 map = kzalloc(sizeof(*map), GFP_KERNEL);
407 if (!map) {
408 mutex_unlock(&acpi_ioremap_lock);
409 return NULL;
410 }
411
412 pg_off = round_down(phys, PAGE_SIZE);
413 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
414 virt = acpi_map(pg_off, pg_sz);
415 if (!virt) {
416 mutex_unlock(&acpi_ioremap_lock);
417 kfree(map);
418 return NULL;
419 }
420
421 INIT_LIST_HEAD(&map->list);
422 map->virt = virt;
423 map->phys = pg_off;
424 map->size = pg_sz;
425 map->refcount = 1;
426
427 list_add_tail_rcu(&map->list, &acpi_ioremaps);
428
429out:
430 mutex_unlock(&acpi_ioremap_lock);
431 return map->virt + (phys - map->phys);
432}
433EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
434
435void *__init_refok
436acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
437{
438 return (void *)acpi_os_map_iomem(phys, size);
439}
440EXPORT_SYMBOL_GPL(acpi_os_map_memory);
441
442static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
443{
444 if (!--map->refcount)
445 list_del_rcu(&map->list);
446}
447
448static void acpi_os_map_cleanup(struct acpi_ioremap *map)
449{
450 if (!map->refcount) {
451 synchronize_rcu_expedited();
452 acpi_unmap(map->phys, map->virt);
453 kfree(map);
454 }
455}
456
457/**
458 * acpi_os_unmap_iomem - Drop a memory mapping reference.
459 * @virt: Start of the address range to drop a reference to.
460 * @size: Size of the address range to drop a reference to.
461 *
462 * Look up the given virtual address range in the list of existing ACPI memory
463 * mappings, drop a reference to it and unmap it if there are no more active
464 * references to it.
465 *
466 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
467 * routine simply calls __acpi_unmap_table() to get the job done. Since
468 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
469 * here.
470 */
471void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
472{
473 struct acpi_ioremap *map;
474
475 if (!acpi_gbl_permanent_mmap) {
476 __acpi_unmap_table(virt, size);
477 return;
478 }
479
480 mutex_lock(&acpi_ioremap_lock);
481 map = acpi_map_lookup_virt(virt, size);
482 if (!map) {
483 mutex_unlock(&acpi_ioremap_lock);
484 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
485 return;
486 }
487 acpi_os_drop_map_ref(map);
488 mutex_unlock(&acpi_ioremap_lock);
489
490 acpi_os_map_cleanup(map);
491}
492EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
493
494void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
495{
496 return acpi_os_unmap_iomem((void __iomem *)virt, size);
497}
498EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
499
500void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
501{
502 if (!acpi_gbl_permanent_mmap)
503 __acpi_unmap_table(virt, size);
504}
505
506int acpi_os_map_generic_address(struct acpi_generic_address *gas)
507{
508 u64 addr;
509 void __iomem *virt;
510
511 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
512 return 0;
513
514 /* Handle possible alignment issues */
515 memcpy(&addr, &gas->address, sizeof(addr));
516 if (!addr || !gas->bit_width)
517 return -EINVAL;
518
519 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
520 if (!virt)
521 return -EIO;
522
523 return 0;
524}
525EXPORT_SYMBOL(acpi_os_map_generic_address);
526
527void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
528{
529 u64 addr;
530 struct acpi_ioremap *map;
531
532 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
533 return;
534
535 /* Handle possible alignment issues */
536 memcpy(&addr, &gas->address, sizeof(addr));
537 if (!addr || !gas->bit_width)
538 return;
539
540 mutex_lock(&acpi_ioremap_lock);
541 map = acpi_map_lookup(addr, gas->bit_width / 8);
542 if (!map) {
543 mutex_unlock(&acpi_ioremap_lock);
544 return;
545 }
546 acpi_os_drop_map_ref(map);
547 mutex_unlock(&acpi_ioremap_lock);
548
549 acpi_os_map_cleanup(map);
550}
551EXPORT_SYMBOL(acpi_os_unmap_generic_address);
552
553#ifdef ACPI_FUTURE_USAGE
554acpi_status
555acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
556{
557 if (!phys || !virt)
558 return AE_BAD_PARAMETER;
559
560 *phys = virt_to_phys(virt);
561
562 return AE_OK;
563}
564#endif
565
566#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
567static bool acpi_rev_override;
568
569int __init acpi_rev_override_setup(char *str)
570{
571 acpi_rev_override = true;
572 return 1;
573}
574__setup("acpi_rev_override", acpi_rev_override_setup);
575#else
576#define acpi_rev_override false
577#endif
578
579#define ACPI_MAX_OVERRIDE_LEN 100
580
581static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
582
583acpi_status
584acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
585 char **new_val)
586{
587 if (!init_val || !new_val)
588 return AE_BAD_PARAMETER;
589
590 *new_val = NULL;
591 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
592 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
593 acpi_os_name);
594 *new_val = acpi_os_name;
595 }
596
597 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
598 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
599 *new_val = (char *)5;
600 }
601
602 return AE_OK;
603}
604
605static void acpi_table_taint(struct acpi_table_header *table)
606{
607 pr_warn(PREFIX
608 "Override [%4.4s-%8.8s], this is unsafe: tainting kernel\n",
609 table->signature, table->oem_table_id);
610 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE, LOCKDEP_NOW_UNRELIABLE);
611}
612
613#ifdef CONFIG_ACPI_INITRD_TABLE_OVERRIDE
614#include <linux/earlycpio.h>
615#include <linux/memblock.h>
616
617static u64 acpi_tables_addr;
618static int all_tables_size;
619
620/* Copied from acpica/tbutils.c:acpi_tb_checksum() */
621static u8 __init acpi_table_checksum(u8 *buffer, u32 length)
622{
623 u8 sum = 0;
624 u8 *end = buffer + length;
625
626 while (buffer < end)
627 sum = (u8) (sum + *(buffer++));
628 return sum;
629}
630
631/* All but ACPI_SIG_RSDP and ACPI_SIG_FACS: */
632static const char * const table_sigs[] = {
633 ACPI_SIG_BERT, ACPI_SIG_CPEP, ACPI_SIG_ECDT, ACPI_SIG_EINJ,
634 ACPI_SIG_ERST, ACPI_SIG_HEST, ACPI_SIG_MADT, ACPI_SIG_MSCT,
635 ACPI_SIG_SBST, ACPI_SIG_SLIT, ACPI_SIG_SRAT, ACPI_SIG_ASF,
636 ACPI_SIG_BOOT, ACPI_SIG_DBGP, ACPI_SIG_DMAR, ACPI_SIG_HPET,
637 ACPI_SIG_IBFT, ACPI_SIG_IVRS, ACPI_SIG_MCFG, ACPI_SIG_MCHI,
638 ACPI_SIG_SLIC, ACPI_SIG_SPCR, ACPI_SIG_SPMI, ACPI_SIG_TCPA,
639 ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT,
640 ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT,
641 ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, NULL };
642
643#define ACPI_HEADER_SIZE sizeof(struct acpi_table_header)
644
645#define ACPI_OVERRIDE_TABLES 64
646static struct cpio_data __initdata acpi_initrd_files[ACPI_OVERRIDE_TABLES];
647static DECLARE_BITMAP(acpi_initrd_installed, ACPI_OVERRIDE_TABLES);
648
649#define MAP_CHUNK_SIZE (NR_FIX_BTMAPS << PAGE_SHIFT)
650
651void __init acpi_initrd_override(void *data, size_t size)
652{
653 int sig, no, table_nr = 0, total_offset = 0;
654 long offset = 0;
655 struct acpi_table_header *table;
656 char cpio_path[32] = "kernel/firmware/acpi/";
657 struct cpio_data file;
658
659 if (data == NULL || size == 0)
660 return;
661
662 for (no = 0; no < ACPI_OVERRIDE_TABLES; no++) {
663 file = find_cpio_data(cpio_path, data, size, &offset);
664 if (!file.data)
665 break;
666
667 data += offset;
668 size -= offset;
669
670 if (file.size < sizeof(struct acpi_table_header)) {
671 pr_err("ACPI OVERRIDE: Table smaller than ACPI header [%s%s]\n",
672 cpio_path, file.name);
673 continue;
674 }
675
676 table = file.data;
677
678 for (sig = 0; table_sigs[sig]; sig++)
679 if (!memcmp(table->signature, table_sigs[sig], 4))
680 break;
681
682 if (!table_sigs[sig]) {
683 pr_err("ACPI OVERRIDE: Unknown signature [%s%s]\n",
684 cpio_path, file.name);
685 continue;
686 }
687 if (file.size != table->length) {
688 pr_err("ACPI OVERRIDE: File length does not match table length [%s%s]\n",
689 cpio_path, file.name);
690 continue;
691 }
692 if (acpi_table_checksum(file.data, table->length)) {
693 pr_err("ACPI OVERRIDE: Bad table checksum [%s%s]\n",
694 cpio_path, file.name);
695 continue;
696 }
697
698 pr_info("%4.4s ACPI table found in initrd [%s%s][0x%x]\n",
699 table->signature, cpio_path, file.name, table->length);
700
701 all_tables_size += table->length;
702 acpi_initrd_files[table_nr].data = file.data;
703 acpi_initrd_files[table_nr].size = file.size;
704 table_nr++;
705 }
706 if (table_nr == 0)
707 return;
708
709 acpi_tables_addr =
710 memblock_find_in_range(0, max_low_pfn_mapped << PAGE_SHIFT,
711 all_tables_size, PAGE_SIZE);
712 if (!acpi_tables_addr) {
713 WARN_ON(1);
714 return;
715 }
716 /*
717 * Only calling e820_add_reserve does not work and the
718 * tables are invalid (memory got used) later.
719 * memblock_reserve works as expected and the tables won't get modified.
720 * But it's not enough on X86 because ioremap will
721 * complain later (used by acpi_os_map_memory) that the pages
722 * that should get mapped are not marked "reserved".
723 * Both memblock_reserve and e820_add_region (via arch_reserve_mem_area)
724 * works fine.
725 */
726 memblock_reserve(acpi_tables_addr, all_tables_size);
727 arch_reserve_mem_area(acpi_tables_addr, all_tables_size);
728
729 /*
730 * early_ioremap only can remap 256k one time. If we map all
731 * tables one time, we will hit the limit. Need to map chunks
732 * one by one during copying the same as that in relocate_initrd().
733 */
734 for (no = 0; no < table_nr; no++) {
735 unsigned char *src_p = acpi_initrd_files[no].data;
736 phys_addr_t size = acpi_initrd_files[no].size;
737 phys_addr_t dest_addr = acpi_tables_addr + total_offset;
738 phys_addr_t slop, clen;
739 char *dest_p;
740
741 total_offset += size;
742
743 while (size) {
744 slop = dest_addr & ~PAGE_MASK;
745 clen = size;
746 if (clen > MAP_CHUNK_SIZE - slop)
747 clen = MAP_CHUNK_SIZE - slop;
748 dest_p = early_ioremap(dest_addr & PAGE_MASK,
749 clen + slop);
750 memcpy(dest_p + slop, src_p, clen);
751 early_iounmap(dest_p, clen + slop);
752 src_p += clen;
753 dest_addr += clen;
754 size -= clen;
755 }
756 }
757}
758
759acpi_status
760acpi_os_physical_table_override(struct acpi_table_header *existing_table,
761 acpi_physical_address *address, u32 *length)
762{
763 int table_offset = 0;
764 int table_index = 0;
765 struct acpi_table_header *table;
766 u32 table_length;
767
768 *length = 0;
769 *address = 0;
770 if (!acpi_tables_addr)
771 return AE_OK;
772
773 while (table_offset + ACPI_HEADER_SIZE <= all_tables_size) {
774 table = acpi_os_map_memory(acpi_tables_addr + table_offset,
775 ACPI_HEADER_SIZE);
776 if (table_offset + table->length > all_tables_size) {
777 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
778 WARN_ON(1);
779 return AE_OK;
780 }
781
782 table_length = table->length;
783
784 /* Only override tables matched */
785 if (test_bit(table_index, acpi_initrd_installed) ||
786 memcmp(existing_table->signature, table->signature, 4) ||
787 memcmp(table->oem_table_id, existing_table->oem_table_id,
788 ACPI_OEM_TABLE_ID_SIZE)) {
789 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
790 goto next_table;
791 }
792
793 *length = table_length;
794 *address = acpi_tables_addr + table_offset;
795 acpi_table_taint(existing_table);
796 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
797 set_bit(table_index, acpi_initrd_installed);
798 break;
799
800next_table:
801 table_offset += table_length;
802 table_index++;
803 }
804 return AE_OK;
805}
806
807void __init acpi_initrd_initialize_tables(void)
808{
809 int table_offset = 0;
810 int table_index = 0;
811 u32 table_length;
812 struct acpi_table_header *table;
813
814 if (!acpi_tables_addr)
815 return;
816
817 while (table_offset + ACPI_HEADER_SIZE <= all_tables_size) {
818 table = acpi_os_map_memory(acpi_tables_addr + table_offset,
819 ACPI_HEADER_SIZE);
820 if (table_offset + table->length > all_tables_size) {
821 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
822 WARN_ON(1);
823 return;
824 }
825
826 table_length = table->length;
827
828 /* Skip RSDT/XSDT which should only be used for override */
829 if (test_bit(table_index, acpi_initrd_installed) ||
830 ACPI_COMPARE_NAME(table->signature, ACPI_SIG_RSDT) ||
831 ACPI_COMPARE_NAME(table->signature, ACPI_SIG_XSDT)) {
832 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
833 goto next_table;
834 }
835
836 acpi_table_taint(table);
837 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
838 acpi_install_table(acpi_tables_addr + table_offset, TRUE);
839 set_bit(table_index, acpi_initrd_installed);
840next_table:
841 table_offset += table_length;
842 table_index++;
843 }
844}
845#else
846acpi_status
847acpi_os_physical_table_override(struct acpi_table_header *existing_table,
848 acpi_physical_address *address,
849 u32 *table_length)
850{
851 *table_length = 0;
852 *address = 0;
853 return AE_OK;
854}
855
856void __init acpi_initrd_initialize_tables(void)
857{
858}
859#endif /* CONFIG_ACPI_INITRD_TABLE_OVERRIDE */
860
861acpi_status
862acpi_os_table_override(struct acpi_table_header *existing_table,
863 struct acpi_table_header **new_table)
864{
865 if (!existing_table || !new_table)
866 return AE_BAD_PARAMETER;
867
868 *new_table = NULL;
869
870#ifdef CONFIG_ACPI_CUSTOM_DSDT
871 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
872 *new_table = (struct acpi_table_header *)AmlCode;
873#endif
874 if (*new_table != NULL)
875 acpi_table_taint(existing_table);
876 return AE_OK;
877}
878
879static irqreturn_t acpi_irq(int irq, void *dev_id)
880{
881 u32 handled;
882
883 handled = (*acpi_irq_handler) (acpi_irq_context);
884
885 if (handled) {
886 acpi_irq_handled++;
887 return IRQ_HANDLED;
888 } else {
889 acpi_irq_not_handled++;
890 return IRQ_NONE;
891 }
892}
893
894acpi_status
895acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
896 void *context)
897{
898 unsigned int irq;
899
900 acpi_irq_stats_init();
901
902 /*
903 * ACPI interrupts different from the SCI in our copy of the FADT are
904 * not supported.
905 */
906 if (gsi != acpi_gbl_FADT.sci_interrupt)
907 return AE_BAD_PARAMETER;
908
909 if (acpi_irq_handler)
910 return AE_ALREADY_ACQUIRED;
911
912 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
913 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
914 gsi);
915 return AE_OK;
916 }
917
918 acpi_irq_handler = handler;
919 acpi_irq_context = context;
920 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
921 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
922 acpi_irq_handler = NULL;
923 return AE_NOT_ACQUIRED;
924 }
925 acpi_sci_irq = irq;
926
927 return AE_OK;
928}
929
930acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
931{
932 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
933 return AE_BAD_PARAMETER;
934
935 free_irq(acpi_sci_irq, acpi_irq);
936 acpi_irq_handler = NULL;
937 acpi_sci_irq = INVALID_ACPI_IRQ;
938
939 return AE_OK;
940}
941
942/*
943 * Running in interpreter thread context, safe to sleep
944 */
945
946void acpi_os_sleep(u64 ms)
947{
948 msleep(ms);
949}
950
951void acpi_os_stall(u32 us)
952{
953 while (us) {
954 u32 delay = 1000;
955
956 if (delay > us)
957 delay = us;
958 udelay(delay);
959 touch_nmi_watchdog();
960 us -= delay;
961 }
962}
963
964/*
965 * Support ACPI 3.0 AML Timer operand
966 * Returns 64-bit free-running, monotonically increasing timer
967 * with 100ns granularity
968 */
969u64 acpi_os_get_timer(void)
970{
971 u64 time_ns = ktime_to_ns(ktime_get());
972 do_div(time_ns, 100);
973 return time_ns;
974}
975
976acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
977{
978 u32 dummy;
979
980 if (!value)
981 value = &dummy;
982
983 *value = 0;
984 if (width <= 8) {
985 *(u8 *) value = inb(port);
986 } else if (width <= 16) {
987 *(u16 *) value = inw(port);
988 } else if (width <= 32) {
989 *(u32 *) value = inl(port);
990 } else {
991 BUG();
992 }
993
994 return AE_OK;
995}
996
997EXPORT_SYMBOL(acpi_os_read_port);
998
999acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
1000{
1001 if (width <= 8) {
1002 outb(value, port);
1003 } else if (width <= 16) {
1004 outw(value, port);
1005 } else if (width <= 32) {
1006 outl(value, port);
1007 } else {
1008 BUG();
1009 }
1010
1011 return AE_OK;
1012}
1013
1014EXPORT_SYMBOL(acpi_os_write_port);
1015
1016acpi_status
1017acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
1018{
1019 void __iomem *virt_addr;
1020 unsigned int size = width / 8;
1021 bool unmap = false;
1022 u64 dummy;
1023
1024 rcu_read_lock();
1025 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
1026 if (!virt_addr) {
1027 rcu_read_unlock();
1028 virt_addr = acpi_os_ioremap(phys_addr, size);
1029 if (!virt_addr)
1030 return AE_BAD_ADDRESS;
1031 unmap = true;
1032 }
1033
1034 if (!value)
1035 value = &dummy;
1036
1037 switch (width) {
1038 case 8:
1039 *(u8 *) value = readb(virt_addr);
1040 break;
1041 case 16:
1042 *(u16 *) value = readw(virt_addr);
1043 break;
1044 case 32:
1045 *(u32 *) value = readl(virt_addr);
1046 break;
1047 case 64:
1048 *(u64 *) value = readq(virt_addr);
1049 break;
1050 default:
1051 BUG();
1052 }
1053
1054 if (unmap)
1055 iounmap(virt_addr);
1056 else
1057 rcu_read_unlock();
1058
1059 return AE_OK;
1060}
1061
1062acpi_status
1063acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
1064{
1065 void __iomem *virt_addr;
1066 unsigned int size = width / 8;
1067 bool unmap = false;
1068
1069 rcu_read_lock();
1070 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
1071 if (!virt_addr) {
1072 rcu_read_unlock();
1073 virt_addr = acpi_os_ioremap(phys_addr, size);
1074 if (!virt_addr)
1075 return AE_BAD_ADDRESS;
1076 unmap = true;
1077 }
1078
1079 switch (width) {
1080 case 8:
1081 writeb(value, virt_addr);
1082 break;
1083 case 16:
1084 writew(value, virt_addr);
1085 break;
1086 case 32:
1087 writel(value, virt_addr);
1088 break;
1089 case 64:
1090 writeq(value, virt_addr);
1091 break;
1092 default:
1093 BUG();
1094 }
1095
1096 if (unmap)
1097 iounmap(virt_addr);
1098 else
1099 rcu_read_unlock();
1100
1101 return AE_OK;
1102}
1103
1104acpi_status
1105acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
1106 u64 *value, u32 width)
1107{
1108 int result, size;
1109 u32 value32;
1110
1111 if (!value)
1112 return AE_BAD_PARAMETER;
1113
1114 switch (width) {
1115 case 8:
1116 size = 1;
1117 break;
1118 case 16:
1119 size = 2;
1120 break;
1121 case 32:
1122 size = 4;
1123 break;
1124 default:
1125 return AE_ERROR;
1126 }
1127
1128 result = raw_pci_read(pci_id->segment, pci_id->bus,
1129 PCI_DEVFN(pci_id->device, pci_id->function),
1130 reg, size, &value32);
1131 *value = value32;
1132
1133 return (result ? AE_ERROR : AE_OK);
1134}
1135
1136acpi_status
1137acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
1138 u64 value, u32 width)
1139{
1140 int result, size;
1141
1142 switch (width) {
1143 case 8:
1144 size = 1;
1145 break;
1146 case 16:
1147 size = 2;
1148 break;
1149 case 32:
1150 size = 4;
1151 break;
1152 default:
1153 return AE_ERROR;
1154 }
1155
1156 result = raw_pci_write(pci_id->segment, pci_id->bus,
1157 PCI_DEVFN(pci_id->device, pci_id->function),
1158 reg, size, value);
1159
1160 return (result ? AE_ERROR : AE_OK);
1161}
1162
1163static void acpi_os_execute_deferred(struct work_struct *work)
1164{
1165 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
1166
1167 dpc->function(dpc->context);
1168 kfree(dpc);
1169}
1170
1171#ifdef CONFIG_ACPI_DEBUGGER
1172static struct acpi_debugger acpi_debugger;
1173static bool acpi_debugger_initialized;
1174
1175int acpi_register_debugger(struct module *owner,
1176 const struct acpi_debugger_ops *ops)
1177{
1178 int ret = 0;
1179
1180 mutex_lock(&acpi_debugger.lock);
1181 if (acpi_debugger.ops) {
1182 ret = -EBUSY;
1183 goto err_lock;
1184 }
1185
1186 acpi_debugger.owner = owner;
1187 acpi_debugger.ops = ops;
1188
1189err_lock:
1190 mutex_unlock(&acpi_debugger.lock);
1191 return ret;
1192}
1193EXPORT_SYMBOL(acpi_register_debugger);
1194
1195void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
1196{
1197 mutex_lock(&acpi_debugger.lock);
1198 if (ops == acpi_debugger.ops) {
1199 acpi_debugger.ops = NULL;
1200 acpi_debugger.owner = NULL;
1201 }
1202 mutex_unlock(&acpi_debugger.lock);
1203}
1204EXPORT_SYMBOL(acpi_unregister_debugger);
1205
1206int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
1207{
1208 int ret;
1209 int (*func)(acpi_osd_exec_callback, void *);
1210 struct module *owner;
1211
1212 if (!acpi_debugger_initialized)
1213 return -ENODEV;
1214 mutex_lock(&acpi_debugger.lock);
1215 if (!acpi_debugger.ops) {
1216 ret = -ENODEV;
1217 goto err_lock;
1218 }
1219 if (!try_module_get(acpi_debugger.owner)) {
1220 ret = -ENODEV;
1221 goto err_lock;
1222 }
1223 func = acpi_debugger.ops->create_thread;
1224 owner = acpi_debugger.owner;
1225 mutex_unlock(&acpi_debugger.lock);
1226
1227 ret = func(function, context);
1228
1229 mutex_lock(&acpi_debugger.lock);
1230 module_put(owner);
1231err_lock:
1232 mutex_unlock(&acpi_debugger.lock);
1233 return ret;
1234}
1235
1236ssize_t acpi_debugger_write_log(const char *msg)
1237{
1238 ssize_t ret;
1239 ssize_t (*func)(const char *);
1240 struct module *owner;
1241
1242 if (!acpi_debugger_initialized)
1243 return -ENODEV;
1244 mutex_lock(&acpi_debugger.lock);
1245 if (!acpi_debugger.ops) {
1246 ret = -ENODEV;
1247 goto err_lock;
1248 }
1249 if (!try_module_get(acpi_debugger.owner)) {
1250 ret = -ENODEV;
1251 goto err_lock;
1252 }
1253 func = acpi_debugger.ops->write_log;
1254 owner = acpi_debugger.owner;
1255 mutex_unlock(&acpi_debugger.lock);
1256
1257 ret = func(msg);
1258
1259 mutex_lock(&acpi_debugger.lock);
1260 module_put(owner);
1261err_lock:
1262 mutex_unlock(&acpi_debugger.lock);
1263 return ret;
1264}
1265
1266ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
1267{
1268 ssize_t ret;
1269 ssize_t (*func)(char *, size_t);
1270 struct module *owner;
1271
1272 if (!acpi_debugger_initialized)
1273 return -ENODEV;
1274 mutex_lock(&acpi_debugger.lock);
1275 if (!acpi_debugger.ops) {
1276 ret = -ENODEV;
1277 goto err_lock;
1278 }
1279 if (!try_module_get(acpi_debugger.owner)) {
1280 ret = -ENODEV;
1281 goto err_lock;
1282 }
1283 func = acpi_debugger.ops->read_cmd;
1284 owner = acpi_debugger.owner;
1285 mutex_unlock(&acpi_debugger.lock);
1286
1287 ret = func(buffer, buffer_length);
1288
1289 mutex_lock(&acpi_debugger.lock);
1290 module_put(owner);
1291err_lock:
1292 mutex_unlock(&acpi_debugger.lock);
1293 return ret;
1294}
1295
1296int acpi_debugger_wait_command_ready(void)
1297{
1298 int ret;
1299 int (*func)(bool, char *, size_t);
1300 struct module *owner;
1301
1302 if (!acpi_debugger_initialized)
1303 return -ENODEV;
1304 mutex_lock(&acpi_debugger.lock);
1305 if (!acpi_debugger.ops) {
1306 ret = -ENODEV;
1307 goto err_lock;
1308 }
1309 if (!try_module_get(acpi_debugger.owner)) {
1310 ret = -ENODEV;
1311 goto err_lock;
1312 }
1313 func = acpi_debugger.ops->wait_command_ready;
1314 owner = acpi_debugger.owner;
1315 mutex_unlock(&acpi_debugger.lock);
1316
1317 ret = func(acpi_gbl_method_executing,
1318 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1319
1320 mutex_lock(&acpi_debugger.lock);
1321 module_put(owner);
1322err_lock:
1323 mutex_unlock(&acpi_debugger.lock);
1324 return ret;
1325}
1326
1327int acpi_debugger_notify_command_complete(void)
1328{
1329 int ret;
1330 int (*func)(void);
1331 struct module *owner;
1332
1333 if (!acpi_debugger_initialized)
1334 return -ENODEV;
1335 mutex_lock(&acpi_debugger.lock);
1336 if (!acpi_debugger.ops) {
1337 ret = -ENODEV;
1338 goto err_lock;
1339 }
1340 if (!try_module_get(acpi_debugger.owner)) {
1341 ret = -ENODEV;
1342 goto err_lock;
1343 }
1344 func = acpi_debugger.ops->notify_command_complete;
1345 owner = acpi_debugger.owner;
1346 mutex_unlock(&acpi_debugger.lock);
1347
1348 ret = func();
1349
1350 mutex_lock(&acpi_debugger.lock);
1351 module_put(owner);
1352err_lock:
1353 mutex_unlock(&acpi_debugger.lock);
1354 return ret;
1355}
1356
1357int __init acpi_debugger_init(void)
1358{
1359 mutex_init(&acpi_debugger.lock);
1360 acpi_debugger_initialized = true;
1361 return 0;
1362}
1363#endif
1364
1365/*******************************************************************************
1366 *
1367 * FUNCTION: acpi_os_execute
1368 *
1369 * PARAMETERS: Type - Type of the callback
1370 * Function - Function to be executed
1371 * Context - Function parameters
1372 *
1373 * RETURN: Status
1374 *
1375 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1376 * immediately executes function on a separate thread.
1377 *
1378 ******************************************************************************/
1379
1380acpi_status acpi_os_execute(acpi_execute_type type,
1381 acpi_osd_exec_callback function, void *context)
1382{
1383 acpi_status status = AE_OK;
1384 struct acpi_os_dpc *dpc;
1385 struct workqueue_struct *queue;
1386 int ret;
1387 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1388 "Scheduling function [%p(%p)] for deferred execution.\n",
1389 function, context));
1390
1391 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1392 ret = acpi_debugger_create_thread(function, context);
1393 if (ret) {
1394 pr_err("Call to kthread_create() failed.\n");
1395 status = AE_ERROR;
1396 }
1397 goto out_thread;
1398 }
1399
1400 /*
1401 * Allocate/initialize DPC structure. Note that this memory will be
1402 * freed by the callee. The kernel handles the work_struct list in a
1403 * way that allows us to also free its memory inside the callee.
1404 * Because we may want to schedule several tasks with different
1405 * parameters we can't use the approach some kernel code uses of
1406 * having a static work_struct.
1407 */
1408
1409 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1410 if (!dpc)
1411 return AE_NO_MEMORY;
1412
1413 dpc->function = function;
1414 dpc->context = context;
1415
1416 /*
1417 * To prevent lockdep from complaining unnecessarily, make sure that
1418 * there is a different static lockdep key for each workqueue by using
1419 * INIT_WORK() for each of them separately.
1420 */
1421 if (type == OSL_NOTIFY_HANDLER) {
1422 queue = kacpi_notify_wq;
1423 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1424 } else if (type == OSL_GPE_HANDLER) {
1425 queue = kacpid_wq;
1426 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1427 } else {
1428 pr_err("Unsupported os_execute type %d.\n", type);
1429 status = AE_ERROR;
1430 }
1431
1432 if (ACPI_FAILURE(status))
1433 goto err_workqueue;
1434
1435 /*
1436 * On some machines, a software-initiated SMI causes corruption unless
1437 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1438 * typically it's done in GPE-related methods that are run via
1439 * workqueues, so we can avoid the known corruption cases by always
1440 * queueing on CPU 0.
1441 */
1442 ret = queue_work_on(0, queue, &dpc->work);
1443 if (!ret) {
1444 printk(KERN_ERR PREFIX
1445 "Call to queue_work() failed.\n");
1446 status = AE_ERROR;
1447 }
1448err_workqueue:
1449 if (ACPI_FAILURE(status))
1450 kfree(dpc);
1451out_thread:
1452 return status;
1453}
1454EXPORT_SYMBOL(acpi_os_execute);
1455
1456void acpi_os_wait_events_complete(void)
1457{
1458 /*
1459 * Make sure the GPE handler or the fixed event handler is not used
1460 * on another CPU after removal.
1461 */
1462 if (acpi_sci_irq_valid())
1463 synchronize_hardirq(acpi_sci_irq);
1464 flush_workqueue(kacpid_wq);
1465 flush_workqueue(kacpi_notify_wq);
1466}
1467
1468struct acpi_hp_work {
1469 struct work_struct work;
1470 struct acpi_device *adev;
1471 u32 src;
1472};
1473
1474static void acpi_hotplug_work_fn(struct work_struct *work)
1475{
1476 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1477
1478 acpi_os_wait_events_complete();
1479 acpi_device_hotplug(hpw->adev, hpw->src);
1480 kfree(hpw);
1481}
1482
1483acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1484{
1485 struct acpi_hp_work *hpw;
1486
1487 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1488 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1489 adev, src));
1490
1491 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1492 if (!hpw)
1493 return AE_NO_MEMORY;
1494
1495 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1496 hpw->adev = adev;
1497 hpw->src = src;
1498 /*
1499 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1500 * the hotplug code may call driver .remove() functions, which may
1501 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1502 * these workqueues.
1503 */
1504 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1505 kfree(hpw);
1506 return AE_ERROR;
1507 }
1508 return AE_OK;
1509}
1510
1511bool acpi_queue_hotplug_work(struct work_struct *work)
1512{
1513 return queue_work(kacpi_hotplug_wq, work);
1514}
1515
1516acpi_status
1517acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1518{
1519 struct semaphore *sem = NULL;
1520
1521 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1522 if (!sem)
1523 return AE_NO_MEMORY;
1524
1525 sema_init(sem, initial_units);
1526
1527 *handle = (acpi_handle *) sem;
1528
1529 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1530 *handle, initial_units));
1531
1532 return AE_OK;
1533}
1534
1535/*
1536 * TODO: A better way to delete semaphores? Linux doesn't have a
1537 * 'delete_semaphore()' function -- may result in an invalid
1538 * pointer dereference for non-synchronized consumers. Should
1539 * we at least check for blocked threads and signal/cancel them?
1540 */
1541
1542acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1543{
1544 struct semaphore *sem = (struct semaphore *)handle;
1545
1546 if (!sem)
1547 return AE_BAD_PARAMETER;
1548
1549 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1550
1551 BUG_ON(!list_empty(&sem->wait_list));
1552 kfree(sem);
1553 sem = NULL;
1554
1555 return AE_OK;
1556}
1557
1558/*
1559 * TODO: Support for units > 1?
1560 */
1561acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1562{
1563 acpi_status status = AE_OK;
1564 struct semaphore *sem = (struct semaphore *)handle;
1565 long jiffies;
1566 int ret = 0;
1567
1568 if (!acpi_os_initialized)
1569 return AE_OK;
1570
1571 if (!sem || (units < 1))
1572 return AE_BAD_PARAMETER;
1573
1574 if (units > 1)
1575 return AE_SUPPORT;
1576
1577 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1578 handle, units, timeout));
1579
1580 if (timeout == ACPI_WAIT_FOREVER)
1581 jiffies = MAX_SCHEDULE_TIMEOUT;
1582 else
1583 jiffies = msecs_to_jiffies(timeout);
1584
1585 ret = down_timeout(sem, jiffies);
1586 if (ret)
1587 status = AE_TIME;
1588
1589 if (ACPI_FAILURE(status)) {
1590 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1591 "Failed to acquire semaphore[%p|%d|%d], %s",
1592 handle, units, timeout,
1593 acpi_format_exception(status)));
1594 } else {
1595 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1596 "Acquired semaphore[%p|%d|%d]", handle,
1597 units, timeout));
1598 }
1599
1600 return status;
1601}
1602
1603/*
1604 * TODO: Support for units > 1?
1605 */
1606acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1607{
1608 struct semaphore *sem = (struct semaphore *)handle;
1609
1610 if (!acpi_os_initialized)
1611 return AE_OK;
1612
1613 if (!sem || (units < 1))
1614 return AE_BAD_PARAMETER;
1615
1616 if (units > 1)
1617 return AE_SUPPORT;
1618
1619 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1620 units));
1621
1622 up(sem);
1623
1624 return AE_OK;
1625}
1626
1627acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1628{
1629#ifdef ENABLE_DEBUGGER
1630 if (acpi_in_debugger) {
1631 u32 chars;
1632
1633 kdb_read(buffer, buffer_length);
1634
1635 /* remove the CR kdb includes */
1636 chars = strlen(buffer) - 1;
1637 buffer[chars] = '\0';
1638 }
1639#else
1640 int ret;
1641
1642 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1643 if (ret < 0)
1644 return AE_ERROR;
1645 if (bytes_read)
1646 *bytes_read = ret;
1647#endif
1648
1649 return AE_OK;
1650}
1651EXPORT_SYMBOL(acpi_os_get_line);
1652
1653acpi_status acpi_os_wait_command_ready(void)
1654{
1655 int ret;
1656
1657 ret = acpi_debugger_wait_command_ready();
1658 if (ret < 0)
1659 return AE_ERROR;
1660 return AE_OK;
1661}
1662
1663acpi_status acpi_os_notify_command_complete(void)
1664{
1665 int ret;
1666
1667 ret = acpi_debugger_notify_command_complete();
1668 if (ret < 0)
1669 return AE_ERROR;
1670 return AE_OK;
1671}
1672
1673acpi_status acpi_os_signal(u32 function, void *info)
1674{
1675 switch (function) {
1676 case ACPI_SIGNAL_FATAL:
1677 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1678 break;
1679 case ACPI_SIGNAL_BREAKPOINT:
1680 /*
1681 * AML Breakpoint
1682 * ACPI spec. says to treat it as a NOP unless
1683 * you are debugging. So if/when we integrate
1684 * AML debugger into the kernel debugger its
1685 * hook will go here. But until then it is
1686 * not useful to print anything on breakpoints.
1687 */
1688 break;
1689 default:
1690 break;
1691 }
1692
1693 return AE_OK;
1694}
1695
1696static int __init acpi_os_name_setup(char *str)
1697{
1698 char *p = acpi_os_name;
1699 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1700
1701 if (!str || !*str)
1702 return 0;
1703
1704 for (; count-- && *str; str++) {
1705 if (isalnum(*str) || *str == ' ' || *str == ':')
1706 *p++ = *str;
1707 else if (*str == '\'' || *str == '"')
1708 continue;
1709 else
1710 break;
1711 }
1712 *p = 0;
1713
1714 return 1;
1715
1716}
1717
1718__setup("acpi_os_name=", acpi_os_name_setup);
1719
1720#define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1721#define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1722
1723struct osi_setup_entry {
1724 char string[OSI_STRING_LENGTH_MAX];
1725 bool enable;
1726};
1727
1728static struct osi_setup_entry
1729 osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = {
1730 {"Module Device", true},
1731 {"Processor Device", true},
1732 {"3.0 _SCP Extensions", true},
1733 {"Processor Aggregator Device", true},
1734};
1735
1736void __init acpi_osi_setup(char *str)
1737{
1738 struct osi_setup_entry *osi;
1739 bool enable = true;
1740 int i;
1741
1742 if (!acpi_gbl_create_osi_method)
1743 return;
1744
1745 if (str == NULL || *str == '\0') {
1746 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1747 acpi_gbl_create_osi_method = FALSE;
1748 return;
1749 }
1750
1751 if (*str == '!') {
1752 str++;
1753 if (*str == '\0') {
1754 osi_linux.default_disabling = 1;
1755 return;
1756 } else if (*str == '*') {
1757 acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS);
1758 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1759 osi = &osi_setup_entries[i];
1760 osi->enable = false;
1761 }
1762 return;
1763 }
1764 enable = false;
1765 }
1766
1767 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1768 osi = &osi_setup_entries[i];
1769 if (!strcmp(osi->string, str)) {
1770 osi->enable = enable;
1771 break;
1772 } else if (osi->string[0] == '\0') {
1773 osi->enable = enable;
1774 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1775 break;
1776 }
1777 }
1778}
1779
1780static void __init set_osi_linux(unsigned int enable)
1781{
1782 if (osi_linux.enable != enable)
1783 osi_linux.enable = enable;
1784
1785 if (osi_linux.enable)
1786 acpi_osi_setup("Linux");
1787 else
1788 acpi_osi_setup("!Linux");
1789
1790 return;
1791}
1792
1793static void __init acpi_cmdline_osi_linux(unsigned int enable)
1794{
1795 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1796 osi_linux.dmi = 0;
1797 set_osi_linux(enable);
1798
1799 return;
1800}
1801
1802void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1803{
1804 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1805
1806 if (enable == -1)
1807 return;
1808
1809 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1810 set_osi_linux(enable);
1811
1812 return;
1813}
1814
1815/*
1816 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1817 *
1818 * empty string disables _OSI
1819 * string starting with '!' disables that string
1820 * otherwise string is added to list, augmenting built-in strings
1821 */
1822static void __init acpi_osi_setup_late(void)
1823{
1824 struct osi_setup_entry *osi;
1825 char *str;
1826 int i;
1827 acpi_status status;
1828
1829 if (osi_linux.default_disabling) {
1830 status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
1831
1832 if (ACPI_SUCCESS(status))
1833 printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n");
1834 }
1835
1836 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1837 osi = &osi_setup_entries[i];
1838 str = osi->string;
1839
1840 if (*str == '\0')
1841 break;
1842 if (osi->enable) {
1843 status = acpi_install_interface(str);
1844
1845 if (ACPI_SUCCESS(status))
1846 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1847 } else {
1848 status = acpi_remove_interface(str);
1849
1850 if (ACPI_SUCCESS(status))
1851 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1852 }
1853 }
1854}
1855
1856static int __init osi_setup(char *str)
1857{
1858 if (str && !strcmp("Linux", str))
1859 acpi_cmdline_osi_linux(1);
1860 else if (str && !strcmp("!Linux", str))
1861 acpi_cmdline_osi_linux(0);
1862 else
1863 acpi_osi_setup(str);
1864
1865 return 1;
1866}
1867
1868__setup("acpi_osi=", osi_setup);
1869
1870/*
1871 * Disable the auto-serialization of named objects creation methods.
1872 *
1873 * This feature is enabled by default. It marks the AML control methods
1874 * that contain the opcodes to create named objects as "Serialized".
1875 */
1876static int __init acpi_no_auto_serialize_setup(char *str)
1877{
1878 acpi_gbl_auto_serialize_methods = FALSE;
1879 pr_info("ACPI: auto-serialization disabled\n");
1880
1881 return 1;
1882}
1883
1884__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1885
1886/* Check of resource interference between native drivers and ACPI
1887 * OperationRegions (SystemIO and System Memory only).
1888 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1889 * in arbitrary AML code and can interfere with legacy drivers.
1890 * acpi_enforce_resources= can be set to:
1891 *
1892 * - strict (default) (2)
1893 * -> further driver trying to access the resources will not load
1894 * - lax (1)
1895 * -> further driver trying to access the resources will load, but you
1896 * get a system message that something might go wrong...
1897 *
1898 * - no (0)
1899 * -> ACPI Operation Region resources will not be registered
1900 *
1901 */
1902#define ENFORCE_RESOURCES_STRICT 2
1903#define ENFORCE_RESOURCES_LAX 1
1904#define ENFORCE_RESOURCES_NO 0
1905
1906static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1907
1908static int __init acpi_enforce_resources_setup(char *str)
1909{
1910 if (str == NULL || *str == '\0')
1911 return 0;
1912
1913 if (!strcmp("strict", str))
1914 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1915 else if (!strcmp("lax", str))
1916 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1917 else if (!strcmp("no", str))
1918 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1919
1920 return 1;
1921}
1922
1923__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1924
1925/* Check for resource conflicts between ACPI OperationRegions and native
1926 * drivers */
1927int acpi_check_resource_conflict(const struct resource *res)
1928{
1929 acpi_adr_space_type space_id;
1930 acpi_size length;
1931 u8 warn = 0;
1932 int clash = 0;
1933
1934 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1935 return 0;
1936 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1937 return 0;
1938
1939 if (res->flags & IORESOURCE_IO)
1940 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1941 else
1942 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1943
1944 length = resource_size(res);
1945 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1946 warn = 1;
1947 clash = acpi_check_address_range(space_id, res->start, length, warn);
1948
1949 if (clash) {
1950 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1951 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1952 printk(KERN_NOTICE "ACPI: This conflict may"
1953 " cause random problems and system"
1954 " instability\n");
1955 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1956 " for this device, you should use it instead of"
1957 " the native driver\n");
1958 }
1959 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1960 return -EBUSY;
1961 }
1962 return 0;
1963}
1964EXPORT_SYMBOL(acpi_check_resource_conflict);
1965
1966int acpi_check_region(resource_size_t start, resource_size_t n,
1967 const char *name)
1968{
1969 struct resource res = {
1970 .start = start,
1971 .end = start + n - 1,
1972 .name = name,
1973 .flags = IORESOURCE_IO,
1974 };
1975
1976 return acpi_check_resource_conflict(&res);
1977}
1978EXPORT_SYMBOL(acpi_check_region);
1979
1980/*
1981 * Let drivers know whether the resource checks are effective
1982 */
1983int acpi_resources_are_enforced(void)
1984{
1985 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1986}
1987EXPORT_SYMBOL(acpi_resources_are_enforced);
1988
1989bool acpi_osi_is_win8(void)
1990{
1991 return acpi_gbl_osi_data >= ACPI_OSI_WIN_8;
1992}
1993EXPORT_SYMBOL(acpi_osi_is_win8);
1994
1995/*
1996 * Deallocate the memory for a spinlock.
1997 */
1998void acpi_os_delete_lock(acpi_spinlock handle)
1999{
2000 ACPI_FREE(handle);
2001}
2002
2003/*
2004 * Acquire a spinlock.
2005 *
2006 * handle is a pointer to the spinlock_t.
2007 */
2008
2009acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
2010{
2011 acpi_cpu_flags flags;
2012 spin_lock_irqsave(lockp, flags);
2013 return flags;
2014}
2015
2016/*
2017 * Release a spinlock. See above.
2018 */
2019
2020void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
2021{
2022 spin_unlock_irqrestore(lockp, flags);
2023}
2024
2025#ifndef ACPI_USE_LOCAL_CACHE
2026
2027/*******************************************************************************
2028 *
2029 * FUNCTION: acpi_os_create_cache
2030 *
2031 * PARAMETERS: name - Ascii name for the cache
2032 * size - Size of each cached object
2033 * depth - Maximum depth of the cache (in objects) <ignored>
2034 * cache - Where the new cache object is returned
2035 *
2036 * RETURN: status
2037 *
2038 * DESCRIPTION: Create a cache object
2039 *
2040 ******************************************************************************/
2041
2042acpi_status
2043acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
2044{
2045 *cache = kmem_cache_create(name, size, 0, 0, NULL);
2046 if (*cache == NULL)
2047 return AE_ERROR;
2048 else
2049 return AE_OK;
2050}
2051
2052/*******************************************************************************
2053 *
2054 * FUNCTION: acpi_os_purge_cache
2055 *
2056 * PARAMETERS: Cache - Handle to cache object
2057 *
2058 * RETURN: Status
2059 *
2060 * DESCRIPTION: Free all objects within the requested cache.
2061 *
2062 ******************************************************************************/
2063
2064acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
2065{
2066 kmem_cache_shrink(cache);
2067 return (AE_OK);
2068}
2069
2070/*******************************************************************************
2071 *
2072 * FUNCTION: acpi_os_delete_cache
2073 *
2074 * PARAMETERS: Cache - Handle to cache object
2075 *
2076 * RETURN: Status
2077 *
2078 * DESCRIPTION: Free all objects within the requested cache and delete the
2079 * cache object.
2080 *
2081 ******************************************************************************/
2082
2083acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
2084{
2085 kmem_cache_destroy(cache);
2086 return (AE_OK);
2087}
2088
2089/*******************************************************************************
2090 *
2091 * FUNCTION: acpi_os_release_object
2092 *
2093 * PARAMETERS: Cache - Handle to cache object
2094 * Object - The object to be released
2095 *
2096 * RETURN: None
2097 *
2098 * DESCRIPTION: Release an object to the specified cache. If cache is full,
2099 * the object is deleted.
2100 *
2101 ******************************************************************************/
2102
2103acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
2104{
2105 kmem_cache_free(cache, object);
2106 return (AE_OK);
2107}
2108#endif
2109
2110static int __init acpi_no_static_ssdt_setup(char *s)
2111{
2112 acpi_gbl_disable_ssdt_table_install = TRUE;
2113 pr_info("ACPI: static SSDT installation disabled\n");
2114
2115 return 0;
2116}
2117
2118early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
2119
2120static int __init acpi_disable_return_repair(char *s)
2121{
2122 printk(KERN_NOTICE PREFIX
2123 "ACPI: Predefined validation mechanism disabled\n");
2124 acpi_gbl_disable_auto_repair = TRUE;
2125
2126 return 1;
2127}
2128
2129__setup("acpica_no_return_repair", acpi_disable_return_repair);
2130
2131acpi_status __init acpi_os_initialize(void)
2132{
2133 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
2134 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
2135 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
2136 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
2137 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
2138 /*
2139 * Use acpi_os_map_generic_address to pre-map the reset
2140 * register if it's in system memory.
2141 */
2142 int rv;
2143
2144 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
2145 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
2146 }
2147 acpi_os_initialized = true;
2148
2149 return AE_OK;
2150}
2151
2152acpi_status __init acpi_os_initialize1(void)
2153{
2154 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
2155 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
2156 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
2157 BUG_ON(!kacpid_wq);
2158 BUG_ON(!kacpi_notify_wq);
2159 BUG_ON(!kacpi_hotplug_wq);
2160 acpi_install_interface_handler(acpi_osi_handler);
2161 acpi_osi_setup_late();
2162 return AE_OK;
2163}
2164
2165acpi_status acpi_os_terminate(void)
2166{
2167 if (acpi_irq_handler) {
2168 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
2169 acpi_irq_handler);
2170 }
2171
2172 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
2173 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
2174 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
2175 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
2176 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
2177 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
2178
2179 destroy_workqueue(kacpid_wq);
2180 destroy_workqueue(kacpi_notify_wq);
2181 destroy_workqueue(kacpi_hotplug_wq);
2182
2183 return AE_OK;
2184}
2185
2186acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
2187 u32 pm1b_control)
2188{
2189 int rc = 0;
2190 if (__acpi_os_prepare_sleep)
2191 rc = __acpi_os_prepare_sleep(sleep_state,
2192 pm1a_control, pm1b_control);
2193 if (rc < 0)
2194 return AE_ERROR;
2195 else if (rc > 0)
2196 return AE_CTRL_SKIP;
2197
2198 return AE_OK;
2199}
2200
2201void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
2202 u32 pm1a_ctrl, u32 pm1b_ctrl))
2203{
2204 __acpi_os_prepare_sleep = func;
2205}
2206
2207acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
2208 u32 val_b)
2209{
2210 int rc = 0;
2211 if (__acpi_os_prepare_extended_sleep)
2212 rc = __acpi_os_prepare_extended_sleep(sleep_state,
2213 val_a, val_b);
2214 if (rc < 0)
2215 return AE_ERROR;
2216 else if (rc > 0)
2217 return AE_CTRL_SKIP;
2218
2219 return AE_OK;
2220}
2221
2222void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
2223 u32 val_a, u32 val_b))
2224{
2225 __acpi_os_prepare_extended_sleep = func;
2226}