Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include "asm/ptrace.h"
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/mm.h>
  15#include <linux/smp.h>
  16#include <linux/errno.h>
  17#include <linux/ptrace.h>
  18#include <linux/user.h>
  19#include <linux/security.h>
  20#include <linux/audit.h>
  21#include <linux/signal.h>
  22#include <linux/elf.h>
  23#include <linux/regset.h>
 
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
 
  27#include <asm/page.h>
  28#include <linux/uaccess.h>
 
 
  29#include <asm/unistd.h>
  30#include <asm/switch_to.h>
  31#include <asm/runtime_instr.h>
  32#include <asm/facility.h>
  33#include <asm/fpu/api.h>
  34
  35#include "entry.h"
  36
  37#ifdef CONFIG_COMPAT
  38#include "compat_ptrace.h"
  39#endif
  40
 
 
 
  41void update_cr_regs(struct task_struct *task)
  42{
  43	struct pt_regs *regs = task_pt_regs(task);
  44	struct thread_struct *thread = &task->thread;
  45	union ctlreg0 cr0_old, cr0_new;
  46	union ctlreg2 cr2_old, cr2_new;
  47	int cr0_changed, cr2_changed;
  48	union {
  49		struct ctlreg regs[3];
  50		struct {
  51			struct ctlreg control;
  52			struct ctlreg start;
  53			struct ctlreg end;
  54		};
  55	} old, new;
  56
  57	local_ctl_store(0, &cr0_old.reg);
  58	local_ctl_store(2, &cr2_old.reg);
  59	cr0_new = cr0_old;
  60	cr2_new = cr2_old;
  61	/* Take care of the enable/disable of transactional execution. */
  62	if (MACHINE_HAS_TE) {
 
 
 
  63		/* Set or clear transaction execution TXC bit 8. */
  64		cr0_new.tcx = 1;
  65		if (task->thread.per_flags & PER_FLAG_NO_TE)
  66			cr0_new.tcx = 0;
 
 
  67		/* Set or clear transaction execution TDC bits 62 and 63. */
  68		cr2_new.tdc = 0;
 
  69		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  70			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  71				cr2_new.tdc = 1;
  72			else
  73				cr2_new.tdc = 2;
  74		}
 
 
  75	}
  76	/* Take care of enable/disable of guarded storage. */
  77	if (MACHINE_HAS_GS) {
  78		cr2_new.gse = 0;
  79		if (task->thread.gs_cb)
  80			cr2_new.gse = 1;
  81	}
  82	/* Load control register 0/2 iff changed */
  83	cr0_changed = cr0_new.val != cr0_old.val;
  84	cr2_changed = cr2_new.val != cr2_old.val;
  85	if (cr0_changed)
  86		local_ctl_load(0, &cr0_new.reg);
  87	if (cr2_changed)
  88		local_ctl_load(2, &cr2_new.reg);
  89	/* Copy user specified PER registers */
  90	new.control.val = thread->per_user.control;
  91	new.start.val = thread->per_user.start;
  92	new.end.val = thread->per_user.end;
  93
  94	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  95	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  96	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  97		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  98			new.control.val |= PER_EVENT_BRANCH;
  99		else
 100			new.control.val |= PER_EVENT_IFETCH;
 101		new.control.val |= PER_CONTROL_SUSPENSION;
 102		new.control.val |= PER_EVENT_TRANSACTION_END;
 103		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 104			new.control.val |= PER_EVENT_IFETCH;
 105		new.start.val = 0;
 106		new.end.val = -1UL;
 107	}
 108
 109	/* Take care of the PER enablement bit in the PSW. */
 110	if (!(new.control.val & PER_EVENT_MASK)) {
 111		regs->psw.mask &= ~PSW_MASK_PER;
 112		return;
 113	}
 114	regs->psw.mask |= PSW_MASK_PER;
 115	__local_ctl_store(9, 11, old.regs);
 116	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 117		__local_ctl_load(9, 11, new.regs);
 118}
 119
 120void user_enable_single_step(struct task_struct *task)
 121{
 122	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 123	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 124}
 125
 126void user_disable_single_step(struct task_struct *task)
 127{
 128	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 129	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 130}
 131
 132void user_enable_block_step(struct task_struct *task)
 133{
 134	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 135	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 136}
 137
 138/*
 139 * Called by kernel/ptrace.c when detaching..
 140 *
 141 * Clear all debugging related fields.
 142 */
 143void ptrace_disable(struct task_struct *task)
 144{
 145	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 146	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 147	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 148	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 149	task->thread.per_flags = 0;
 150}
 151
 152#define __ADDR_MASK 7
 153
 154static inline unsigned long __peek_user_per(struct task_struct *child,
 155					    addr_t addr)
 156{
 157	if (addr == offsetof(struct per_struct_kernel, cr9))
 
 
 158		/* Control bits of the active per set. */
 159		return test_thread_flag(TIF_SINGLE_STEP) ?
 160			PER_EVENT_IFETCH : child->thread.per_user.control;
 161	else if (addr == offsetof(struct per_struct_kernel, cr10))
 162		/* Start address of the active per set. */
 163		return test_thread_flag(TIF_SINGLE_STEP) ?
 164			0 : child->thread.per_user.start;
 165	else if (addr == offsetof(struct per_struct_kernel, cr11))
 166		/* End address of the active per set. */
 167		return test_thread_flag(TIF_SINGLE_STEP) ?
 168			-1UL : child->thread.per_user.end;
 169	else if (addr == offsetof(struct per_struct_kernel, bits))
 170		/* Single-step bit. */
 171		return test_thread_flag(TIF_SINGLE_STEP) ?
 172			(1UL << (BITS_PER_LONG - 1)) : 0;
 173	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 174		/* Start address of the user specified per set. */
 175		return child->thread.per_user.start;
 176	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 177		/* End address of the user specified per set. */
 178		return child->thread.per_user.end;
 179	else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
 180		/* PER code, ATMID and AI of the last PER trap */
 181		return (unsigned long)
 182			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 183	else if (addr == offsetof(struct per_struct_kernel, address))
 184		/* Address of the last PER trap */
 185		return child->thread.per_event.address;
 186	else if (addr == offsetof(struct per_struct_kernel, access_id))
 187		/* Access id of the last PER trap */
 188		return (unsigned long)
 189			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 190	return 0;
 191}
 192
 193/*
 194 * Read the word at offset addr from the user area of a process. The
 195 * trouble here is that the information is littered over different
 196 * locations. The process registers are found on the kernel stack,
 197 * the floating point stuff and the trace settings are stored in
 198 * the task structure. In addition the different structures in
 199 * struct user contain pad bytes that should be read as zeroes.
 200 * Lovely...
 201 */
 202static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 203{
 
 204	addr_t offset, tmp;
 205
 206	if (addr < offsetof(struct user, regs.acrs)) {
 207		/*
 208		 * psw and gprs are stored on the stack
 209		 */
 210		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 211		if (addr == offsetof(struct user, regs.psw.mask)) {
 212			/* Return a clean psw mask. */
 213			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 214			tmp |= PSW_USER_BITS;
 215		}
 216
 217	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 218		/*
 219		 * access registers are stored in the thread structure
 220		 */
 221		offset = addr - offsetof(struct user, regs.acrs);
 222		/*
 223		 * Very special case: old & broken 64 bit gdb reading
 224		 * from acrs[15]. Result is a 64 bit value. Read the
 225		 * 32 bit acrs[15] value and shift it by 32. Sick...
 226		 */
 227		if (addr == offsetof(struct user, regs.acrs[15]))
 228			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 229		else
 230			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 231
 232	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 245	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 246		/*
 247		 * floating point control reg. is in the thread structure
 248		 */
 249		tmp = child->thread.fpu.fpc;
 250		tmp <<= BITS_PER_LONG - 32;
 251
 252	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 253		/*
 254		 * floating point regs. are either in child->thread.fpu
 255		 * or the child->thread.fpu.vxrs array
 256		 */
 257		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 258		if (cpu_has_vx())
 259			tmp = *(addr_t *)
 260			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 261		else
 262			tmp = *(addr_t *)
 263			       ((addr_t) child->thread.fpu.fprs + offset);
 264
 265	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 266		/*
 267		 * Handle access to the per_info structure.
 268		 */
 269		addr -= offsetof(struct user, regs.per_info);
 270		tmp = __peek_user_per(child, addr);
 271
 272	} else
 273		tmp = 0;
 274
 275	return tmp;
 276}
 277
 278static int
 279peek_user(struct task_struct *child, addr_t addr, addr_t data)
 280{
 281	addr_t tmp, mask;
 282
 283	/*
 284	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 285	 * an alignment of 4. Programmers from hell...
 286	 */
 287	mask = __ADDR_MASK;
 288	if (addr >= offsetof(struct user, regs.acrs) &&
 289	    addr < offsetof(struct user, regs.orig_gpr2))
 290		mask = 3;
 291	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 292		return -EIO;
 293
 294	tmp = __peek_user(child, addr);
 295	return put_user(tmp, (addr_t __user *) data);
 296}
 297
 298static inline void __poke_user_per(struct task_struct *child,
 299				   addr_t addr, addr_t data)
 300{
 
 
 301	/*
 302	 * There are only three fields in the per_info struct that the
 303	 * debugger user can write to.
 304	 * 1) cr9: the debugger wants to set a new PER event mask
 305	 * 2) starting_addr: the debugger wants to set a new starting
 306	 *    address to use with the PER event mask.
 307	 * 3) ending_addr: the debugger wants to set a new ending
 308	 *    address to use with the PER event mask.
 309	 * The user specified PER event mask and the start and end
 310	 * addresses are used only if single stepping is not in effect.
 311	 * Writes to any other field in per_info are ignored.
 312	 */
 313	if (addr == offsetof(struct per_struct_kernel, cr9))
 314		/* PER event mask of the user specified per set. */
 315		child->thread.per_user.control =
 316			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 317	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 318		/* Starting address of the user specified per set. */
 319		child->thread.per_user.start = data;
 320	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 321		/* Ending address of the user specified per set. */
 322		child->thread.per_user.end = data;
 323}
 324
 325/*
 326 * Write a word to the user area of a process at location addr. This
 327 * operation does have an additional problem compared to peek_user.
 328 * Stores to the program status word and on the floating point
 329 * control register needs to get checked for validity.
 330 */
 331static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 332{
 
 333	addr_t offset;
 334
 335
 336	if (addr < offsetof(struct user, regs.acrs)) {
 337		struct pt_regs *regs = task_pt_regs(child);
 338		/*
 339		 * psw and gprs are stored on the stack
 340		 */
 341		if (addr == offsetof(struct user, regs.psw.mask)) {
 342			unsigned long mask = PSW_MASK_USER;
 343
 344			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 345			if ((data ^ PSW_USER_BITS) & ~mask)
 346				/* Invalid psw mask. */
 347				return -EINVAL;
 348			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 349				/* Invalid address-space-control bits */
 350				return -EINVAL;
 351			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 352				/* Invalid addressing mode bits */
 353				return -EINVAL;
 354		}
 
 355
 356		if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 357			addr == offsetof(struct user, regs.gprs[2])) {
 358			struct pt_regs *regs = task_pt_regs(child);
 359
 360			regs->int_code = 0x20000 | (data & 0xffff);
 361		}
 362		*(addr_t *)((addr_t) &regs->psw + addr) = data;
 363	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 364		/*
 365		 * access registers are stored in the thread structure
 366		 */
 367		offset = addr - offsetof(struct user, regs.acrs);
 368		/*
 369		 * Very special case: old & broken 64 bit gdb writing
 370		 * to acrs[15] with a 64 bit value. Ignore the lower
 371		 * half of the value and write the upper 32 bit to
 372		 * acrs[15]. Sick...
 373		 */
 374		if (addr == offsetof(struct user, regs.acrs[15]))
 375			child->thread.acrs[15] = (unsigned int) (data >> 32);
 376		else
 377			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 378
 379	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 380		/*
 381		 * orig_gpr2 is stored on the kernel stack
 382		 */
 383		task_pt_regs(child)->orig_gpr2 = data;
 384
 385	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 386		/*
 387		 * prevent writes of padding hole between
 388		 * orig_gpr2 and fp_regs on s390.
 389		 */
 390		return 0;
 391
 392	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 393		/*
 394		 * floating point control reg. is in the thread structure
 395		 */
 396		if ((unsigned int)data != 0)
 
 397			return -EINVAL;
 398		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 399
 400	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 401		/*
 402		 * floating point regs. are either in child->thread.fpu
 403		 * or the child->thread.fpu.vxrs array
 404		 */
 405		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 406		if (cpu_has_vx())
 407			*(addr_t *)((addr_t)
 408				child->thread.fpu.vxrs + 2*offset) = data;
 409		else
 410			*(addr_t *)((addr_t)
 411				child->thread.fpu.fprs + offset) = data;
 412
 413	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 414		/*
 415		 * Handle access to the per_info structure.
 416		 */
 417		addr -= offsetof(struct user, regs.per_info);
 418		__poke_user_per(child, addr, data);
 419
 420	}
 421
 422	return 0;
 423}
 424
 425static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 426{
 427	addr_t mask;
 428
 429	/*
 430	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 431	 * an alignment of 4. Programmers from hell indeed...
 432	 */
 433	mask = __ADDR_MASK;
 434	if (addr >= offsetof(struct user, regs.acrs) &&
 435	    addr < offsetof(struct user, regs.orig_gpr2))
 436		mask = 3;
 437	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 438		return -EIO;
 439
 440	return __poke_user(child, addr, data);
 441}
 442
 443long arch_ptrace(struct task_struct *child, long request,
 444		 unsigned long addr, unsigned long data)
 445{
 446	ptrace_area parea; 
 447	int copied, ret;
 448
 449	switch (request) {
 450	case PTRACE_PEEKUSR:
 451		/* read the word at location addr in the USER area. */
 452		return peek_user(child, addr, data);
 453
 454	case PTRACE_POKEUSR:
 455		/* write the word at location addr in the USER area */
 456		return poke_user(child, addr, data);
 457
 458	case PTRACE_PEEKUSR_AREA:
 459	case PTRACE_POKEUSR_AREA:
 460		if (copy_from_user(&parea, (void __force __user *) addr,
 461							sizeof(parea)))
 462			return -EFAULT;
 463		addr = parea.kernel_addr;
 464		data = parea.process_addr;
 465		copied = 0;
 466		while (copied < parea.len) {
 467			if (request == PTRACE_PEEKUSR_AREA)
 468				ret = peek_user(child, addr, data);
 469			else {
 470				addr_t utmp;
 471				if (get_user(utmp,
 472					     (addr_t __force __user *) data))
 473					return -EFAULT;
 474				ret = poke_user(child, addr, utmp);
 475			}
 476			if (ret)
 477				return ret;
 478			addr += sizeof(unsigned long);
 479			data += sizeof(unsigned long);
 480			copied += sizeof(unsigned long);
 481		}
 482		return 0;
 483	case PTRACE_GET_LAST_BREAK:
 484		return put_user(child->thread.last_break, (unsigned long __user *)data);
 
 
 485	case PTRACE_ENABLE_TE:
 486		if (!MACHINE_HAS_TE)
 487			return -EIO;
 488		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 489		return 0;
 490	case PTRACE_DISABLE_TE:
 491		if (!MACHINE_HAS_TE)
 492			return -EIO;
 493		child->thread.per_flags |= PER_FLAG_NO_TE;
 494		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 495		return 0;
 496	case PTRACE_TE_ABORT_RAND:
 497		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 498			return -EIO;
 499		switch (data) {
 500		case 0UL:
 501			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 502			break;
 503		case 1UL:
 504			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 505			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 506			break;
 507		case 2UL:
 508			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 509			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 510			break;
 511		default:
 512			return -EINVAL;
 513		}
 514		return 0;
 515	default:
 516		return ptrace_request(child, request, addr, data);
 517	}
 518}
 519
 520#ifdef CONFIG_COMPAT
 521/*
 522 * Now the fun part starts... a 31 bit program running in the
 523 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 524 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 525 * to handle, the difference to the 64 bit versions of the requests
 526 * is that the access is done in multiples of 4 byte instead of
 527 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 528 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 529 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 530 * is a 31 bit program too, the content of struct user can be
 531 * emulated. A 31 bit program peeking into the struct user of
 532 * a 64 bit program is a no-no.
 533 */
 534
 535/*
 536 * Same as peek_user_per but for a 31 bit program.
 537 */
 538static inline __u32 __peek_user_per_compat(struct task_struct *child,
 539					   addr_t addr)
 540{
 541	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 542		/* Control bits of the active per set. */
 543		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 544			PER_EVENT_IFETCH : child->thread.per_user.control;
 545	else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
 546		/* Start address of the active per set. */
 547		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 548			0 : child->thread.per_user.start;
 549	else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
 550		/* End address of the active per set. */
 551		return test_thread_flag(TIF_SINGLE_STEP) ?
 552			PSW32_ADDR_INSN : child->thread.per_user.end;
 553	else if (addr == offsetof(struct compat_per_struct_kernel, bits))
 554		/* Single-step bit. */
 555		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 556			0x80000000 : 0;
 557	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 558		/* Start address of the user specified per set. */
 559		return (__u32) child->thread.per_user.start;
 560	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 561		/* End address of the user specified per set. */
 562		return (__u32) child->thread.per_user.end;
 563	else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
 564		/* PER code, ATMID and AI of the last PER trap */
 565		return (__u32) child->thread.per_event.cause << 16;
 566	else if (addr == offsetof(struct compat_per_struct_kernel, address))
 567		/* Address of the last PER trap */
 568		return (__u32) child->thread.per_event.address;
 569	else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
 570		/* Access id of the last PER trap */
 571		return (__u32) child->thread.per_event.paid << 24;
 572	return 0;
 573}
 574
 575/*
 576 * Same as peek_user but for a 31 bit program.
 577 */
 578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 579{
 
 580	addr_t offset;
 581	__u32 tmp;
 582
 583	if (addr < offsetof(struct compat_user, regs.acrs)) {
 584		struct pt_regs *regs = task_pt_regs(child);
 585		/*
 586		 * psw and gprs are stored on the stack
 587		 */
 588		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 589			/* Fake a 31 bit psw mask. */
 590			tmp = (__u32)(regs->psw.mask >> 32);
 591			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 592			tmp |= PSW32_USER_BITS;
 593		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 594			/* Fake a 31 bit psw address. */
 595			tmp = (__u32) regs->psw.addr |
 596				(__u32)(regs->psw.mask & PSW_MASK_BA);
 597		} else {
 598			/* gpr 0-15 */
 599			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 600		}
 601	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 602		/*
 603		 * access registers are stored in the thread structure
 604		 */
 605		offset = addr - offsetof(struct compat_user, regs.acrs);
 606		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 607
 608	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 609		/*
 610		 * orig_gpr2 is stored on the kernel stack
 611		 */
 612		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 613
 614	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 615		/*
 616		 * prevent reads of padding hole between
 617		 * orig_gpr2 and fp_regs on s390.
 618		 */
 619		tmp = 0;
 620
 621	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 622		/*
 623		 * floating point control reg. is in the thread structure
 624		 */
 625		tmp = child->thread.fpu.fpc;
 626
 627	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 628		/*
 629		 * floating point regs. are either in child->thread.fpu
 630		 * or the child->thread.fpu.vxrs array
 631		 */
 632		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 633		if (cpu_has_vx())
 634			tmp = *(__u32 *)
 635			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 636		else
 637			tmp = *(__u32 *)
 638			       ((addr_t) child->thread.fpu.fprs + offset);
 639
 640	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 641		/*
 642		 * Handle access to the per_info structure.
 643		 */
 644		addr -= offsetof(struct compat_user, regs.per_info);
 645		tmp = __peek_user_per_compat(child, addr);
 646
 647	} else
 648		tmp = 0;
 649
 650	return tmp;
 651}
 652
 653static int peek_user_compat(struct task_struct *child,
 654			    addr_t addr, addr_t data)
 655{
 656	__u32 tmp;
 657
 658	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 659		return -EIO;
 660
 661	tmp = __peek_user_compat(child, addr);
 662	return put_user(tmp, (__u32 __user *) data);
 663}
 664
 665/*
 666 * Same as poke_user_per but for a 31 bit program.
 667 */
 668static inline void __poke_user_per_compat(struct task_struct *child,
 669					  addr_t addr, __u32 data)
 670{
 671	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 672		/* PER event mask of the user specified per set. */
 673		child->thread.per_user.control =
 674			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 675	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 676		/* Starting address of the user specified per set. */
 677		child->thread.per_user.start = data;
 678	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 679		/* Ending address of the user specified per set. */
 680		child->thread.per_user.end = data;
 681}
 682
 683/*
 684 * Same as poke_user but for a 31 bit program.
 685 */
 686static int __poke_user_compat(struct task_struct *child,
 687			      addr_t addr, addr_t data)
 688{
 
 689	__u32 tmp = (__u32) data;
 690	addr_t offset;
 691
 692	if (addr < offsetof(struct compat_user, regs.acrs)) {
 693		struct pt_regs *regs = task_pt_regs(child);
 694		/*
 695		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 696		 */
 697		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 698			__u32 mask = PSW32_MASK_USER;
 699
 700			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 701			/* Build a 64 bit psw mask from 31 bit mask. */
 702			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 703				/* Invalid psw mask. */
 704				return -EINVAL;
 705			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 706				/* Invalid address-space-control bits */
 707				return -EINVAL;
 708			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 709				(regs->psw.mask & PSW_MASK_BA) |
 710				(__u64)(tmp & mask) << 32;
 711		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 712			/* Build a 64 bit psw address from 31 bit address. */
 713			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 714			/* Transfer 31 bit amode bit to psw mask. */
 715			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 716				(__u64)(tmp & PSW32_ADDR_AMODE);
 717		} else {
 718			if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 719				addr == offsetof(struct compat_user, regs.gprs[2])) {
 720				struct pt_regs *regs = task_pt_regs(child);
 721
 722				regs->int_code = 0x20000 | (data & 0xffff);
 723			}
 724			/* gpr 0-15 */
 725			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 726		}
 727	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 728		/*
 729		 * access registers are stored in the thread structure
 730		 */
 731		offset = addr - offsetof(struct compat_user, regs.acrs);
 732		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 733
 734	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 735		/*
 736		 * orig_gpr2 is stored on the kernel stack
 737		 */
 738		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 739
 740	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 741		/*
 742		 * prevent writess of padding hole between
 743		 * orig_gpr2 and fp_regs on s390.
 744		 */
 745		return 0;
 746
 747	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 748		/*
 749		 * floating point control reg. is in the thread structure
 750		 */
 
 
 751		child->thread.fpu.fpc = data;
 752
 753	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 754		/*
 755		 * floating point regs. are either in child->thread.fpu
 756		 * or the child->thread.fpu.vxrs array
 757		 */
 758		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 759		if (cpu_has_vx())
 760			*(__u32 *)((addr_t)
 761				child->thread.fpu.vxrs + 2*offset) = tmp;
 762		else
 763			*(__u32 *)((addr_t)
 764				child->thread.fpu.fprs + offset) = tmp;
 765
 766	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 767		/*
 768		 * Handle access to the per_info structure.
 769		 */
 770		addr -= offsetof(struct compat_user, regs.per_info);
 771		__poke_user_per_compat(child, addr, data);
 772	}
 773
 774	return 0;
 775}
 776
 777static int poke_user_compat(struct task_struct *child,
 778			    addr_t addr, addr_t data)
 779{
 780	if (!is_compat_task() || (addr & 3) ||
 781	    addr > sizeof(struct compat_user) - 3)
 782		return -EIO;
 783
 784	return __poke_user_compat(child, addr, data);
 785}
 786
 787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 788			compat_ulong_t caddr, compat_ulong_t cdata)
 789{
 790	unsigned long addr = caddr;
 791	unsigned long data = cdata;
 792	compat_ptrace_area parea;
 793	int copied, ret;
 794
 795	switch (request) {
 796	case PTRACE_PEEKUSR:
 797		/* read the word at location addr in the USER area. */
 798		return peek_user_compat(child, addr, data);
 799
 800	case PTRACE_POKEUSR:
 801		/* write the word at location addr in the USER area */
 802		return poke_user_compat(child, addr, data);
 803
 804	case PTRACE_PEEKUSR_AREA:
 805	case PTRACE_POKEUSR_AREA:
 806		if (copy_from_user(&parea, (void __force __user *) addr,
 807							sizeof(parea)))
 808			return -EFAULT;
 809		addr = parea.kernel_addr;
 810		data = parea.process_addr;
 811		copied = 0;
 812		while (copied < parea.len) {
 813			if (request == PTRACE_PEEKUSR_AREA)
 814				ret = peek_user_compat(child, addr, data);
 815			else {
 816				__u32 utmp;
 817				if (get_user(utmp,
 818					     (__u32 __force __user *) data))
 819					return -EFAULT;
 820				ret = poke_user_compat(child, addr, utmp);
 821			}
 822			if (ret)
 823				return ret;
 824			addr += sizeof(unsigned int);
 825			data += sizeof(unsigned int);
 826			copied += sizeof(unsigned int);
 827		}
 828		return 0;
 829	case PTRACE_GET_LAST_BREAK:
 830		return put_user(child->thread.last_break, (unsigned int __user *)data);
 
 
 831	}
 832	return compat_ptrace_request(child, request, addr, data);
 833}
 834#endif
 835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836/*
 837 * user_regset definitions.
 838 */
 839
 840static int s390_regs_get(struct task_struct *target,
 841			 const struct user_regset *regset,
 842			 struct membuf to)
 
 843{
 844	unsigned pos;
 845	if (target == current)
 846		save_access_regs(target->thread.acrs);
 847
 848	for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 849		membuf_store(&to, __peek_user(target, pos));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	return 0;
 851}
 852
 853static int s390_regs_set(struct task_struct *target,
 854			 const struct user_regset *regset,
 855			 unsigned int pos, unsigned int count,
 856			 const void *kbuf, const void __user *ubuf)
 857{
 858	int rc = 0;
 859
 860	if (target == current)
 861		save_access_regs(target->thread.acrs);
 862
 863	if (kbuf) {
 864		const unsigned long *k = kbuf;
 865		while (count > 0 && !rc) {
 866			rc = __poke_user(target, pos, *k++);
 867			count -= sizeof(*k);
 868			pos += sizeof(*k);
 869		}
 870	} else {
 871		const unsigned long  __user *u = ubuf;
 872		while (count > 0 && !rc) {
 873			unsigned long word;
 874			rc = __get_user(word, u++);
 875			if (rc)
 876				break;
 877			rc = __poke_user(target, pos, word);
 878			count -= sizeof(*u);
 879			pos += sizeof(*u);
 880		}
 881	}
 882
 883	if (rc == 0 && target == current)
 884		restore_access_regs(target->thread.acrs);
 885
 886	return rc;
 887}
 888
 889static int s390_fpregs_get(struct task_struct *target,
 890			   const struct user_regset *regset,
 891			   struct membuf to)
 892{
 893	_s390_fp_regs fp_regs;
 894
 895	if (target == current)
 896		save_fpu_regs();
 897
 898	fp_regs.fpc = target->thread.fpu.fpc;
 899	fpregs_store(&fp_regs, &target->thread.fpu);
 900
 901	return membuf_write(&to, &fp_regs, sizeof(fp_regs));
 
 902}
 903
 904static int s390_fpregs_set(struct task_struct *target,
 905			   const struct user_regset *regset, unsigned int pos,
 906			   unsigned int count, const void *kbuf,
 907			   const void __user *ubuf)
 908{
 909	int rc = 0;
 910	freg_t fprs[__NUM_FPRS];
 911
 912	if (target == current)
 913		save_fpu_regs();
 914
 915	if (cpu_has_vx())
 916		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 917	else
 918		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 919
 920	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 921		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 922		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 923					0, offsetof(s390_fp_regs, fprs));
 924		if (rc)
 925			return rc;
 926		if (ufpc[1] != 0)
 927			return -EINVAL;
 928		target->thread.fpu.fpc = ufpc[0];
 929	}
 930
 931	if (rc == 0 && count > 0)
 932		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 933					fprs, offsetof(s390_fp_regs, fprs), -1);
 934	if (rc)
 935		return rc;
 936
 937	if (cpu_has_vx())
 938		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 939	else
 940		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 941
 942	return rc;
 943}
 944
 945static int s390_last_break_get(struct task_struct *target,
 946			       const struct user_regset *regset,
 947			       struct membuf to)
 
 948{
 949	return membuf_store(&to, target->thread.last_break);
 
 
 
 
 
 
 
 
 
 
 950}
 951
 952static int s390_last_break_set(struct task_struct *target,
 953			       const struct user_regset *regset,
 954			       unsigned int pos, unsigned int count,
 955			       const void *kbuf, const void __user *ubuf)
 956{
 957	return 0;
 958}
 959
 960static int s390_tdb_get(struct task_struct *target,
 961			const struct user_regset *regset,
 962			struct membuf to)
 
 963{
 964	struct pt_regs *regs = task_pt_regs(target);
 965	size_t size;
 966
 967	if (!(regs->int_code & 0x200))
 968		return -ENODATA;
 969	size = sizeof(target->thread.trap_tdb.data);
 970	return membuf_write(&to, target->thread.trap_tdb.data, size);
 971}
 972
 973static int s390_tdb_set(struct task_struct *target,
 974			const struct user_regset *regset,
 975			unsigned int pos, unsigned int count,
 976			const void *kbuf, const void __user *ubuf)
 977{
 978	return 0;
 979}
 980
 981static int s390_vxrs_low_get(struct task_struct *target,
 982			     const struct user_regset *regset,
 983			     struct membuf to)
 
 984{
 985	__u64 vxrs[__NUM_VXRS_LOW];
 986	int i;
 987
 988	if (!cpu_has_vx())
 989		return -ENODEV;
 990	if (target == current)
 991		save_fpu_regs();
 992	for (i = 0; i < __NUM_VXRS_LOW; i++)
 993		vxrs[i] = target->thread.fpu.vxrs[i].low;
 994	return membuf_write(&to, vxrs, sizeof(vxrs));
 995}
 996
 997static int s390_vxrs_low_set(struct task_struct *target,
 998			     const struct user_regset *regset,
 999			     unsigned int pos, unsigned int count,
1000			     const void *kbuf, const void __user *ubuf)
1001{
1002	__u64 vxrs[__NUM_VXRS_LOW];
1003	int i, rc;
1004
1005	if (!cpu_has_vx())
1006		return -ENODEV;
1007	if (target == current)
1008		save_fpu_regs();
1009
1010	for (i = 0; i < __NUM_VXRS_LOW; i++)
1011		vxrs[i] = target->thread.fpu.vxrs[i].low;
1012
1013	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014	if (rc == 0)
1015		for (i = 0; i < __NUM_VXRS_LOW; i++)
1016			target->thread.fpu.vxrs[i].low = vxrs[i];
1017
1018	return rc;
1019}
1020
1021static int s390_vxrs_high_get(struct task_struct *target,
1022			      const struct user_regset *regset,
1023			      struct membuf to)
 
1024{
1025	if (!cpu_has_vx())
 
 
1026		return -ENODEV;
1027	if (target == current)
1028		save_fpu_regs();
1029	return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030			    __NUM_VXRS_HIGH * sizeof(__vector128));
 
1031}
1032
1033static int s390_vxrs_high_set(struct task_struct *target,
1034			      const struct user_regset *regset,
1035			      unsigned int pos, unsigned int count,
1036			      const void *kbuf, const void __user *ubuf)
1037{
1038	int rc;
1039
1040	if (!cpu_has_vx())
1041		return -ENODEV;
1042	if (target == current)
1043		save_fpu_regs();
1044
1045	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047	return rc;
1048}
1049
1050static int s390_system_call_get(struct task_struct *target,
1051				const struct user_regset *regset,
1052				struct membuf to)
 
1053{
1054	return membuf_store(&to, target->thread.system_call);
 
 
1055}
1056
1057static int s390_system_call_set(struct task_struct *target,
1058				const struct user_regset *regset,
1059				unsigned int pos, unsigned int count,
1060				const void *kbuf, const void __user *ubuf)
1061{
1062	unsigned int *data = &target->thread.system_call;
1063	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064				  data, 0, sizeof(unsigned int));
1065}
1066
1067static int s390_gs_cb_get(struct task_struct *target,
1068			  const struct user_regset *regset,
1069			  struct membuf to)
1070{
1071	struct gs_cb *data = target->thread.gs_cb;
1072
1073	if (!MACHINE_HAS_GS)
1074		return -ENODEV;
1075	if (!data)
1076		return -ENODATA;
1077	if (target == current)
1078		save_gs_cb(data);
1079	return membuf_write(&to, data, sizeof(struct gs_cb));
1080}
1081
1082static int s390_gs_cb_set(struct task_struct *target,
1083			  const struct user_regset *regset,
1084			  unsigned int pos, unsigned int count,
1085			  const void *kbuf, const void __user *ubuf)
1086{
1087	struct gs_cb gs_cb = { }, *data = NULL;
1088	int rc;
1089
1090	if (!MACHINE_HAS_GS)
1091		return -ENODEV;
1092	if (!target->thread.gs_cb) {
1093		data = kzalloc(sizeof(*data), GFP_KERNEL);
1094		if (!data)
1095			return -ENOMEM;
1096	}
1097	if (!target->thread.gs_cb)
1098		gs_cb.gsd = 25;
1099	else if (target == current)
1100		save_gs_cb(&gs_cb);
1101	else
1102		gs_cb = *target->thread.gs_cb;
1103	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104				&gs_cb, 0, sizeof(gs_cb));
1105	if (rc) {
1106		kfree(data);
1107		return -EFAULT;
1108	}
1109	preempt_disable();
1110	if (!target->thread.gs_cb)
1111		target->thread.gs_cb = data;
1112	*target->thread.gs_cb = gs_cb;
1113	if (target == current) {
1114		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
1115		restore_gs_cb(target->thread.gs_cb);
1116	}
1117	preempt_enable();
1118	return rc;
1119}
1120
1121static int s390_gs_bc_get(struct task_struct *target,
1122			  const struct user_regset *regset,
1123			  struct membuf to)
1124{
1125	struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127	if (!MACHINE_HAS_GS)
1128		return -ENODEV;
1129	if (!data)
1130		return -ENODATA;
1131	return membuf_write(&to, data, sizeof(struct gs_cb));
1132}
1133
1134static int s390_gs_bc_set(struct task_struct *target,
1135			  const struct user_regset *regset,
1136			  unsigned int pos, unsigned int count,
1137			  const void *kbuf, const void __user *ubuf)
1138{
1139	struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141	if (!MACHINE_HAS_GS)
1142		return -ENODEV;
1143	if (!data) {
1144		data = kzalloc(sizeof(*data), GFP_KERNEL);
1145		if (!data)
1146			return -ENOMEM;
1147		target->thread.gs_bc_cb = data;
1148	}
1149	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150				  data, 0, sizeof(struct gs_cb));
1151}
1152
1153static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154{
1155	return (cb->rca & 0x1f) == 0 &&
1156		(cb->roa & 0xfff) == 0 &&
1157		(cb->rla & 0xfff) == 0xfff &&
1158		cb->s == 1 &&
1159		cb->k == 1 &&
1160		cb->h == 0 &&
1161		cb->reserved1 == 0 &&
1162		cb->ps == 1 &&
1163		cb->qs == 0 &&
1164		cb->pc == 1 &&
1165		cb->qc == 0 &&
1166		cb->reserved2 == 0 &&
1167		cb->reserved3 == 0 &&
1168		cb->reserved4 == 0 &&
1169		cb->reserved5 == 0 &&
1170		cb->reserved6 == 0 &&
1171		cb->reserved7 == 0 &&
1172		cb->reserved8 == 0 &&
1173		cb->rla >= cb->roa &&
1174		cb->rca >= cb->roa &&
1175		cb->rca <= cb->rla+1 &&
1176		cb->m < 3;
1177}
1178
1179static int s390_runtime_instr_get(struct task_struct *target,
1180				const struct user_regset *regset,
1181				struct membuf to)
1182{
1183	struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185	if (!test_facility(64))
1186		return -ENODEV;
1187	if (!data)
1188		return -ENODATA;
1189
1190	return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1191}
1192
1193static int s390_runtime_instr_set(struct task_struct *target,
1194				  const struct user_regset *regset,
1195				  unsigned int pos, unsigned int count,
1196				  const void *kbuf, const void __user *ubuf)
1197{
1198	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199	int rc;
1200
1201	if (!test_facility(64))
1202		return -ENODEV;
1203
1204	if (!target->thread.ri_cb) {
1205		data = kzalloc(sizeof(*data), GFP_KERNEL);
1206		if (!data)
1207			return -ENOMEM;
1208	}
1209
1210	if (target->thread.ri_cb) {
1211		if (target == current)
1212			store_runtime_instr_cb(&ri_cb);
1213		else
1214			ri_cb = *target->thread.ri_cb;
1215	}
1216
1217	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1219	if (rc) {
1220		kfree(data);
1221		return -EFAULT;
1222	}
1223
1224	if (!is_ri_cb_valid(&ri_cb)) {
1225		kfree(data);
1226		return -EINVAL;
1227	}
1228	/*
1229	 * Override access key in any case, since user space should
1230	 * not be able to set it, nor should it care about it.
1231	 */
1232	ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233	preempt_disable();
1234	if (!target->thread.ri_cb)
1235		target->thread.ri_cb = data;
1236	*target->thread.ri_cb = ri_cb;
1237	if (target == current)
1238		load_runtime_instr_cb(target->thread.ri_cb);
1239	preempt_enable();
1240
1241	return 0;
1242}
1243
1244static const struct user_regset s390_regsets[] = {
1245	{
1246		.core_note_type = NT_PRSTATUS,
1247		.n = sizeof(s390_regs) / sizeof(long),
1248		.size = sizeof(long),
1249		.align = sizeof(long),
1250		.regset_get = s390_regs_get,
1251		.set = s390_regs_set,
1252	},
1253	{
1254		.core_note_type = NT_PRFPREG,
1255		.n = sizeof(s390_fp_regs) / sizeof(long),
1256		.size = sizeof(long),
1257		.align = sizeof(long),
1258		.regset_get = s390_fpregs_get,
1259		.set = s390_fpregs_set,
1260	},
1261	{
1262		.core_note_type = NT_S390_SYSTEM_CALL,
1263		.n = 1,
1264		.size = sizeof(unsigned int),
1265		.align = sizeof(unsigned int),
1266		.regset_get = s390_system_call_get,
1267		.set = s390_system_call_set,
1268	},
1269	{
1270		.core_note_type = NT_S390_LAST_BREAK,
1271		.n = 1,
1272		.size = sizeof(long),
1273		.align = sizeof(long),
1274		.regset_get = s390_last_break_get,
1275		.set = s390_last_break_set,
1276	},
1277	{
1278		.core_note_type = NT_S390_TDB,
1279		.n = 1,
1280		.size = 256,
1281		.align = 1,
1282		.regset_get = s390_tdb_get,
1283		.set = s390_tdb_set,
1284	},
1285	{
1286		.core_note_type = NT_S390_VXRS_LOW,
1287		.n = __NUM_VXRS_LOW,
1288		.size = sizeof(__u64),
1289		.align = sizeof(__u64),
1290		.regset_get = s390_vxrs_low_get,
1291		.set = s390_vxrs_low_set,
1292	},
1293	{
1294		.core_note_type = NT_S390_VXRS_HIGH,
1295		.n = __NUM_VXRS_HIGH,
1296		.size = sizeof(__vector128),
1297		.align = sizeof(__vector128),
1298		.regset_get = s390_vxrs_high_get,
1299		.set = s390_vxrs_high_set,
1300	},
1301	{
1302		.core_note_type = NT_S390_GS_CB,
1303		.n = sizeof(struct gs_cb) / sizeof(__u64),
1304		.size = sizeof(__u64),
1305		.align = sizeof(__u64),
1306		.regset_get = s390_gs_cb_get,
1307		.set = s390_gs_cb_set,
1308	},
1309	{
1310		.core_note_type = NT_S390_GS_BC,
1311		.n = sizeof(struct gs_cb) / sizeof(__u64),
1312		.size = sizeof(__u64),
1313		.align = sizeof(__u64),
1314		.regset_get = s390_gs_bc_get,
1315		.set = s390_gs_bc_set,
1316	},
1317	{
1318		.core_note_type = NT_S390_RI_CB,
1319		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320		.size = sizeof(__u64),
1321		.align = sizeof(__u64),
1322		.regset_get = s390_runtime_instr_get,
1323		.set = s390_runtime_instr_set,
1324	},
1325};
1326
1327static const struct user_regset_view user_s390_view = {
1328	.name = "s390x",
1329	.e_machine = EM_S390,
1330	.regsets = s390_regsets,
1331	.n = ARRAY_SIZE(s390_regsets)
1332};
1333
1334#ifdef CONFIG_COMPAT
1335static int s390_compat_regs_get(struct task_struct *target,
1336				const struct user_regset *regset,
1337				struct membuf to)
 
1338{
1339	unsigned n;
1340
1341	if (target == current)
1342		save_access_regs(target->thread.acrs);
1343
1344	for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345		membuf_store(&to, __peek_user_compat(target, n));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346	return 0;
1347}
1348
1349static int s390_compat_regs_set(struct task_struct *target,
1350				const struct user_regset *regset,
1351				unsigned int pos, unsigned int count,
1352				const void *kbuf, const void __user *ubuf)
1353{
1354	int rc = 0;
1355
1356	if (target == current)
1357		save_access_regs(target->thread.acrs);
1358
1359	if (kbuf) {
1360		const compat_ulong_t *k = kbuf;
1361		while (count > 0 && !rc) {
1362			rc = __poke_user_compat(target, pos, *k++);
1363			count -= sizeof(*k);
1364			pos += sizeof(*k);
1365		}
1366	} else {
1367		const compat_ulong_t  __user *u = ubuf;
1368		while (count > 0 && !rc) {
1369			compat_ulong_t word;
1370			rc = __get_user(word, u++);
1371			if (rc)
1372				break;
1373			rc = __poke_user_compat(target, pos, word);
1374			count -= sizeof(*u);
1375			pos += sizeof(*u);
1376		}
1377	}
1378
1379	if (rc == 0 && target == current)
1380		restore_access_regs(target->thread.acrs);
1381
1382	return rc;
1383}
1384
1385static int s390_compat_regs_high_get(struct task_struct *target,
1386				     const struct user_regset *regset,
1387				     struct membuf to)
 
1388{
1389	compat_ulong_t *gprs_high;
1390	int i;
1391
1392	gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393	for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394		membuf_store(&to, *gprs_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395	return 0;
1396}
1397
1398static int s390_compat_regs_high_set(struct task_struct *target,
1399				     const struct user_regset *regset,
1400				     unsigned int pos, unsigned int count,
1401				     const void *kbuf, const void __user *ubuf)
1402{
1403	compat_ulong_t *gprs_high;
1404	int rc = 0;
1405
1406	gprs_high = (compat_ulong_t *)
1407		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408	if (kbuf) {
1409		const compat_ulong_t *k = kbuf;
1410		while (count > 0) {
1411			*gprs_high = *k++;
1412			*gprs_high += 2;
1413			count -= sizeof(*k);
1414		}
1415	} else {
1416		const compat_ulong_t  __user *u = ubuf;
1417		while (count > 0 && !rc) {
1418			unsigned long word;
1419			rc = __get_user(word, u++);
1420			if (rc)
1421				break;
1422			*gprs_high = word;
1423			*gprs_high += 2;
1424			count -= sizeof(*u);
1425		}
1426	}
1427
1428	return rc;
1429}
1430
1431static int s390_compat_last_break_get(struct task_struct *target,
1432				      const struct user_regset *regset,
1433				      struct membuf to)
 
1434{
1435	compat_ulong_t last_break = target->thread.last_break;
1436
1437	return membuf_store(&to, (unsigned long)last_break);
 
 
 
 
 
 
 
 
 
 
 
1438}
1439
1440static int s390_compat_last_break_set(struct task_struct *target,
1441				      const struct user_regset *regset,
1442				      unsigned int pos, unsigned int count,
1443				      const void *kbuf, const void __user *ubuf)
1444{
1445	return 0;
1446}
1447
1448static const struct user_regset s390_compat_regsets[] = {
1449	{
1450		.core_note_type = NT_PRSTATUS,
1451		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452		.size = sizeof(compat_long_t),
1453		.align = sizeof(compat_long_t),
1454		.regset_get = s390_compat_regs_get,
1455		.set = s390_compat_regs_set,
1456	},
1457	{
1458		.core_note_type = NT_PRFPREG,
1459		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460		.size = sizeof(compat_long_t),
1461		.align = sizeof(compat_long_t),
1462		.regset_get = s390_fpregs_get,
1463		.set = s390_fpregs_set,
1464	},
1465	{
1466		.core_note_type = NT_S390_SYSTEM_CALL,
1467		.n = 1,
1468		.size = sizeof(compat_uint_t),
1469		.align = sizeof(compat_uint_t),
1470		.regset_get = s390_system_call_get,
1471		.set = s390_system_call_set,
1472	},
1473	{
1474		.core_note_type = NT_S390_LAST_BREAK,
1475		.n = 1,
1476		.size = sizeof(long),
1477		.align = sizeof(long),
1478		.regset_get = s390_compat_last_break_get,
1479		.set = s390_compat_last_break_set,
1480	},
1481	{
1482		.core_note_type = NT_S390_TDB,
1483		.n = 1,
1484		.size = 256,
1485		.align = 1,
1486		.regset_get = s390_tdb_get,
1487		.set = s390_tdb_set,
1488	},
1489	{
1490		.core_note_type = NT_S390_VXRS_LOW,
1491		.n = __NUM_VXRS_LOW,
1492		.size = sizeof(__u64),
1493		.align = sizeof(__u64),
1494		.regset_get = s390_vxrs_low_get,
1495		.set = s390_vxrs_low_set,
1496	},
1497	{
1498		.core_note_type = NT_S390_VXRS_HIGH,
1499		.n = __NUM_VXRS_HIGH,
1500		.size = sizeof(__vector128),
1501		.align = sizeof(__vector128),
1502		.regset_get = s390_vxrs_high_get,
1503		.set = s390_vxrs_high_set,
1504	},
1505	{
1506		.core_note_type = NT_S390_HIGH_GPRS,
1507		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508		.size = sizeof(compat_long_t),
1509		.align = sizeof(compat_long_t),
1510		.regset_get = s390_compat_regs_high_get,
1511		.set = s390_compat_regs_high_set,
1512	},
1513	{
1514		.core_note_type = NT_S390_GS_CB,
1515		.n = sizeof(struct gs_cb) / sizeof(__u64),
1516		.size = sizeof(__u64),
1517		.align = sizeof(__u64),
1518		.regset_get = s390_gs_cb_get,
1519		.set = s390_gs_cb_set,
1520	},
1521	{
1522		.core_note_type = NT_S390_GS_BC,
1523		.n = sizeof(struct gs_cb) / sizeof(__u64),
1524		.size = sizeof(__u64),
1525		.align = sizeof(__u64),
1526		.regset_get = s390_gs_bc_get,
1527		.set = s390_gs_bc_set,
1528	},
1529	{
1530		.core_note_type = NT_S390_RI_CB,
1531		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532		.size = sizeof(__u64),
1533		.align = sizeof(__u64),
1534		.regset_get = s390_runtime_instr_get,
1535		.set = s390_runtime_instr_set,
1536	},
1537};
1538
1539static const struct user_regset_view user_s390_compat_view = {
1540	.name = "s390",
1541	.e_machine = EM_S390,
1542	.regsets = s390_compat_regsets,
1543	.n = ARRAY_SIZE(s390_compat_regsets)
1544};
1545#endif
1546
1547const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548{
1549#ifdef CONFIG_COMPAT
1550	if (test_tsk_thread_flag(task, TIF_31BIT))
1551		return &user_s390_compat_view;
1552#endif
1553	return &user_s390_view;
1554}
1555
1556static const char *gpr_names[NUM_GPRS] = {
1557	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1558	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559};
1560
1561unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562{
1563	if (offset >= NUM_GPRS)
1564		return 0;
1565	return regs->gprs[offset];
1566}
1567
1568int regs_query_register_offset(const char *name)
1569{
1570	unsigned long offset;
1571
1572	if (!name || *name != 'r')
1573		return -EINVAL;
1574	if (kstrtoul(name + 1, 10, &offset))
1575		return -EINVAL;
1576	if (offset >= NUM_GPRS)
1577		return -EINVAL;
1578	return offset;
1579}
1580
1581const char *regs_query_register_name(unsigned int offset)
1582{
1583	if (offset >= NUM_GPRS)
1584		return NULL;
1585	return gpr_names[offset];
1586}
1587
1588static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589{
1590	unsigned long ksp = kernel_stack_pointer(regs);
1591
1592	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593}
1594
1595/**
1596 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1597 * @regs:pt_regs which contains kernel stack pointer.
1598 * @n:stack entry number.
1599 *
1600 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1601 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1602 * this returns 0.
1603 */
1604unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605{
1606	unsigned long addr;
1607
1608	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609	if (!regs_within_kernel_stack(regs, addr))
1610		return 0;
1611	return *(unsigned long *)addr;
1612}
v4.6
 
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999, 2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
 
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
 
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
  23#include <linux/compat.h>
  24#include <trace/syscall.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/uaccess.h>
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
 
 
 
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41void update_cr_regs(struct task_struct *task)
  42{
  43	struct pt_regs *regs = task_pt_regs(task);
  44	struct thread_struct *thread = &task->thread;
  45	struct per_regs old, new;
  46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47	/* Take care of the enable/disable of transactional execution. */
  48	if (MACHINE_HAS_TE) {
  49		unsigned long cr, cr_new;
  50
  51		__ctl_store(cr, 0, 0);
  52		/* Set or clear transaction execution TXC bit 8. */
  53		cr_new = cr | (1UL << 55);
  54		if (task->thread.per_flags & PER_FLAG_NO_TE)
  55			cr_new &= ~(1UL << 55);
  56		if (cr_new != cr)
  57			__ctl_load(cr_new, 0, 0);
  58		/* Set or clear transaction execution TDC bits 62 and 63. */
  59		__ctl_store(cr, 2, 2);
  60		cr_new = cr & ~3UL;
  61		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  62			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  63				cr_new |= 1UL;
  64			else
  65				cr_new |= 2UL;
  66		}
  67		if (cr_new != cr)
  68			__ctl_load(cr_new, 2, 2);
  69	}
 
 
 
 
 
 
 
 
 
 
 
 
 
  70	/* Copy user specified PER registers */
  71	new.control = thread->per_user.control;
  72	new.start = thread->per_user.start;
  73	new.end = thread->per_user.end;
  74
  75	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  76	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  77	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  78		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  79			new.control |= PER_EVENT_BRANCH;
  80		else
  81			new.control |= PER_EVENT_IFETCH;
  82		new.control |= PER_CONTROL_SUSPENSION;
  83		new.control |= PER_EVENT_TRANSACTION_END;
  84		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
  85			new.control |= PER_EVENT_IFETCH;
  86		new.start = 0;
  87		new.end = -1UL;
  88	}
  89
  90	/* Take care of the PER enablement bit in the PSW. */
  91	if (!(new.control & PER_EVENT_MASK)) {
  92		regs->psw.mask &= ~PSW_MASK_PER;
  93		return;
  94	}
  95	regs->psw.mask |= PSW_MASK_PER;
  96	__ctl_store(old, 9, 11);
  97	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
  98		__ctl_load(new, 9, 11);
  99}
 100
 101void user_enable_single_step(struct task_struct *task)
 102{
 103	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 104	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 105}
 106
 107void user_disable_single_step(struct task_struct *task)
 108{
 109	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 110	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 111}
 112
 113void user_enable_block_step(struct task_struct *task)
 114{
 115	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 116	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 117}
 118
 119/*
 120 * Called by kernel/ptrace.c when detaching..
 121 *
 122 * Clear all debugging related fields.
 123 */
 124void ptrace_disable(struct task_struct *task)
 125{
 126	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 127	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 128	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 129	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 130	task->thread.per_flags = 0;
 131}
 132
 133#define __ADDR_MASK 7
 134
 135static inline unsigned long __peek_user_per(struct task_struct *child,
 136					    addr_t addr)
 137{
 138	struct per_struct_kernel *dummy = NULL;
 139
 140	if (addr == (addr_t) &dummy->cr9)
 141		/* Control bits of the active per set. */
 142		return test_thread_flag(TIF_SINGLE_STEP) ?
 143			PER_EVENT_IFETCH : child->thread.per_user.control;
 144	else if (addr == (addr_t) &dummy->cr10)
 145		/* Start address of the active per set. */
 146		return test_thread_flag(TIF_SINGLE_STEP) ?
 147			0 : child->thread.per_user.start;
 148	else if (addr == (addr_t) &dummy->cr11)
 149		/* End address of the active per set. */
 150		return test_thread_flag(TIF_SINGLE_STEP) ?
 151			-1UL : child->thread.per_user.end;
 152	else if (addr == (addr_t) &dummy->bits)
 153		/* Single-step bit. */
 154		return test_thread_flag(TIF_SINGLE_STEP) ?
 155			(1UL << (BITS_PER_LONG - 1)) : 0;
 156	else if (addr == (addr_t) &dummy->starting_addr)
 157		/* Start address of the user specified per set. */
 158		return child->thread.per_user.start;
 159	else if (addr == (addr_t) &dummy->ending_addr)
 160		/* End address of the user specified per set. */
 161		return child->thread.per_user.end;
 162	else if (addr == (addr_t) &dummy->perc_atmid)
 163		/* PER code, ATMID and AI of the last PER trap */
 164		return (unsigned long)
 165			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 166	else if (addr == (addr_t) &dummy->address)
 167		/* Address of the last PER trap */
 168		return child->thread.per_event.address;
 169	else if (addr == (addr_t) &dummy->access_id)
 170		/* Access id of the last PER trap */
 171		return (unsigned long)
 172			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 173	return 0;
 174}
 175
 176/*
 177 * Read the word at offset addr from the user area of a process. The
 178 * trouble here is that the information is littered over different
 179 * locations. The process registers are found on the kernel stack,
 180 * the floating point stuff and the trace settings are stored in
 181 * the task structure. In addition the different structures in
 182 * struct user contain pad bytes that should be read as zeroes.
 183 * Lovely...
 184 */
 185static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 186{
 187	struct user *dummy = NULL;
 188	addr_t offset, tmp;
 189
 190	if (addr < (addr_t) &dummy->regs.acrs) {
 191		/*
 192		 * psw and gprs are stored on the stack
 193		 */
 194		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 195		if (addr == (addr_t) &dummy->regs.psw.mask) {
 196			/* Return a clean psw mask. */
 197			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 198			tmp |= PSW_USER_BITS;
 199		}
 200
 201	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 202		/*
 203		 * access registers are stored in the thread structure
 204		 */
 205		offset = addr - (addr_t) &dummy->regs.acrs;
 206		/*
 207		 * Very special case: old & broken 64 bit gdb reading
 208		 * from acrs[15]. Result is a 64 bit value. Read the
 209		 * 32 bit acrs[15] value and shift it by 32. Sick...
 210		 */
 211		if (addr == (addr_t) &dummy->regs.acrs[15])
 212			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 213		else
 214			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 215
 216	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 217		/*
 218		 * orig_gpr2 is stored on the kernel stack
 219		 */
 220		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 221
 222	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 223		/*
 224		 * prevent reads of padding hole between
 225		 * orig_gpr2 and fp_regs on s390.
 226		 */
 227		tmp = 0;
 228
 229	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 230		/*
 231		 * floating point control reg. is in the thread structure
 232		 */
 233		tmp = child->thread.fpu.fpc;
 234		tmp <<= BITS_PER_LONG - 32;
 235
 236	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 237		/*
 238		 * floating point regs. are either in child->thread.fpu
 239		 * or the child->thread.fpu.vxrs array
 240		 */
 241		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 242		if (MACHINE_HAS_VX)
 243			tmp = *(addr_t *)
 244			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 245		else
 246			tmp = *(addr_t *)
 247			       ((addr_t) child->thread.fpu.fprs + offset);
 248
 249	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 250		/*
 251		 * Handle access to the per_info structure.
 252		 */
 253		addr -= (addr_t) &dummy->regs.per_info;
 254		tmp = __peek_user_per(child, addr);
 255
 256	} else
 257		tmp = 0;
 258
 259	return tmp;
 260}
 261
 262static int
 263peek_user(struct task_struct *child, addr_t addr, addr_t data)
 264{
 265	addr_t tmp, mask;
 266
 267	/*
 268	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 269	 * an alignment of 4. Programmers from hell...
 270	 */
 271	mask = __ADDR_MASK;
 272	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 273	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 274		mask = 3;
 275	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 276		return -EIO;
 277
 278	tmp = __peek_user(child, addr);
 279	return put_user(tmp, (addr_t __user *) data);
 280}
 281
 282static inline void __poke_user_per(struct task_struct *child,
 283				   addr_t addr, addr_t data)
 284{
 285	struct per_struct_kernel *dummy = NULL;
 286
 287	/*
 288	 * There are only three fields in the per_info struct that the
 289	 * debugger user can write to.
 290	 * 1) cr9: the debugger wants to set a new PER event mask
 291	 * 2) starting_addr: the debugger wants to set a new starting
 292	 *    address to use with the PER event mask.
 293	 * 3) ending_addr: the debugger wants to set a new ending
 294	 *    address to use with the PER event mask.
 295	 * The user specified PER event mask and the start and end
 296	 * addresses are used only if single stepping is not in effect.
 297	 * Writes to any other field in per_info are ignored.
 298	 */
 299	if (addr == (addr_t) &dummy->cr9)
 300		/* PER event mask of the user specified per set. */
 301		child->thread.per_user.control =
 302			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 303	else if (addr == (addr_t) &dummy->starting_addr)
 304		/* Starting address of the user specified per set. */
 305		child->thread.per_user.start = data;
 306	else if (addr == (addr_t) &dummy->ending_addr)
 307		/* Ending address of the user specified per set. */
 308		child->thread.per_user.end = data;
 309}
 310
 311/*
 312 * Write a word to the user area of a process at location addr. This
 313 * operation does have an additional problem compared to peek_user.
 314 * Stores to the program status word and on the floating point
 315 * control register needs to get checked for validity.
 316 */
 317static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 318{
 319	struct user *dummy = NULL;
 320	addr_t offset;
 321
 322	if (addr < (addr_t) &dummy->regs.acrs) {
 
 
 323		/*
 324		 * psw and gprs are stored on the stack
 325		 */
 326		if (addr == (addr_t) &dummy->regs.psw.mask) {
 327			unsigned long mask = PSW_MASK_USER;
 328
 329			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 330			if ((data ^ PSW_USER_BITS) & ~mask)
 331				/* Invalid psw mask. */
 332				return -EINVAL;
 333			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 334				/* Invalid address-space-control bits */
 335				return -EINVAL;
 336			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 337				/* Invalid addressing mode bits */
 338				return -EINVAL;
 339		}
 340		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 341
 342	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 
 
 
 
 
 
 
 343		/*
 344		 * access registers are stored in the thread structure
 345		 */
 346		offset = addr - (addr_t) &dummy->regs.acrs;
 347		/*
 348		 * Very special case: old & broken 64 bit gdb writing
 349		 * to acrs[15] with a 64 bit value. Ignore the lower
 350		 * half of the value and write the upper 32 bit to
 351		 * acrs[15]. Sick...
 352		 */
 353		if (addr == (addr_t) &dummy->regs.acrs[15])
 354			child->thread.acrs[15] = (unsigned int) (data >> 32);
 355		else
 356			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 357
 358	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 359		/*
 360		 * orig_gpr2 is stored on the kernel stack
 361		 */
 362		task_pt_regs(child)->orig_gpr2 = data;
 363
 364	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 365		/*
 366		 * prevent writes of padding hole between
 367		 * orig_gpr2 and fp_regs on s390.
 368		 */
 369		return 0;
 370
 371	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 372		/*
 373		 * floating point control reg. is in the thread structure
 374		 */
 375		if ((unsigned int) data != 0 ||
 376		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 377			return -EINVAL;
 378		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 379
 380	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 381		/*
 382		 * floating point regs. are either in child->thread.fpu
 383		 * or the child->thread.fpu.vxrs array
 384		 */
 385		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 386		if (MACHINE_HAS_VX)
 387			*(addr_t *)((addr_t)
 388				child->thread.fpu.vxrs + 2*offset) = data;
 389		else
 390			*(addr_t *)((addr_t)
 391				child->thread.fpu.fprs + offset) = data;
 392
 393	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 394		/*
 395		 * Handle access to the per_info structure.
 396		 */
 397		addr -= (addr_t) &dummy->regs.per_info;
 398		__poke_user_per(child, addr, data);
 399
 400	}
 401
 402	return 0;
 403}
 404
 405static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 406{
 407	addr_t mask;
 408
 409	/*
 410	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 411	 * an alignment of 4. Programmers from hell indeed...
 412	 */
 413	mask = __ADDR_MASK;
 414	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 415	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 416		mask = 3;
 417	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 418		return -EIO;
 419
 420	return __poke_user(child, addr, data);
 421}
 422
 423long arch_ptrace(struct task_struct *child, long request,
 424		 unsigned long addr, unsigned long data)
 425{
 426	ptrace_area parea; 
 427	int copied, ret;
 428
 429	switch (request) {
 430	case PTRACE_PEEKUSR:
 431		/* read the word at location addr in the USER area. */
 432		return peek_user(child, addr, data);
 433
 434	case PTRACE_POKEUSR:
 435		/* write the word at location addr in the USER area */
 436		return poke_user(child, addr, data);
 437
 438	case PTRACE_PEEKUSR_AREA:
 439	case PTRACE_POKEUSR_AREA:
 440		if (copy_from_user(&parea, (void __force __user *) addr,
 441							sizeof(parea)))
 442			return -EFAULT;
 443		addr = parea.kernel_addr;
 444		data = parea.process_addr;
 445		copied = 0;
 446		while (copied < parea.len) {
 447			if (request == PTRACE_PEEKUSR_AREA)
 448				ret = peek_user(child, addr, data);
 449			else {
 450				addr_t utmp;
 451				if (get_user(utmp,
 452					     (addr_t __force __user *) data))
 453					return -EFAULT;
 454				ret = poke_user(child, addr, utmp);
 455			}
 456			if (ret)
 457				return ret;
 458			addr += sizeof(unsigned long);
 459			data += sizeof(unsigned long);
 460			copied += sizeof(unsigned long);
 461		}
 462		return 0;
 463	case PTRACE_GET_LAST_BREAK:
 464		put_user(task_thread_info(child)->last_break,
 465			 (unsigned long __user *) data);
 466		return 0;
 467	case PTRACE_ENABLE_TE:
 468		if (!MACHINE_HAS_TE)
 469			return -EIO;
 470		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 471		return 0;
 472	case PTRACE_DISABLE_TE:
 473		if (!MACHINE_HAS_TE)
 474			return -EIO;
 475		child->thread.per_flags |= PER_FLAG_NO_TE;
 476		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 477		return 0;
 478	case PTRACE_TE_ABORT_RAND:
 479		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 480			return -EIO;
 481		switch (data) {
 482		case 0UL:
 483			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 484			break;
 485		case 1UL:
 486			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 487			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 488			break;
 489		case 2UL:
 490			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 491			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 492			break;
 493		default:
 494			return -EINVAL;
 495		}
 496		return 0;
 497	default:
 498		return ptrace_request(child, request, addr, data);
 499	}
 500}
 501
 502#ifdef CONFIG_COMPAT
 503/*
 504 * Now the fun part starts... a 31 bit program running in the
 505 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 506 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 507 * to handle, the difference to the 64 bit versions of the requests
 508 * is that the access is done in multiples of 4 byte instead of
 509 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 510 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 511 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 512 * is a 31 bit program too, the content of struct user can be
 513 * emulated. A 31 bit program peeking into the struct user of
 514 * a 64 bit program is a no-no.
 515 */
 516
 517/*
 518 * Same as peek_user_per but for a 31 bit program.
 519 */
 520static inline __u32 __peek_user_per_compat(struct task_struct *child,
 521					   addr_t addr)
 522{
 523	struct compat_per_struct_kernel *dummy32 = NULL;
 524
 525	if (addr == (addr_t) &dummy32->cr9)
 526		/* Control bits of the active per set. */
 527		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 528			PER_EVENT_IFETCH : child->thread.per_user.control;
 529	else if (addr == (addr_t) &dummy32->cr10)
 530		/* Start address of the active per set. */
 531		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 532			0 : child->thread.per_user.start;
 533	else if (addr == (addr_t) &dummy32->cr11)
 534		/* End address of the active per set. */
 535		return test_thread_flag(TIF_SINGLE_STEP) ?
 536			PSW32_ADDR_INSN : child->thread.per_user.end;
 537	else if (addr == (addr_t) &dummy32->bits)
 538		/* Single-step bit. */
 539		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 540			0x80000000 : 0;
 541	else if (addr == (addr_t) &dummy32->starting_addr)
 542		/* Start address of the user specified per set. */
 543		return (__u32) child->thread.per_user.start;
 544	else if (addr == (addr_t) &dummy32->ending_addr)
 545		/* End address of the user specified per set. */
 546		return (__u32) child->thread.per_user.end;
 547	else if (addr == (addr_t) &dummy32->perc_atmid)
 548		/* PER code, ATMID and AI of the last PER trap */
 549		return (__u32) child->thread.per_event.cause << 16;
 550	else if (addr == (addr_t) &dummy32->address)
 551		/* Address of the last PER trap */
 552		return (__u32) child->thread.per_event.address;
 553	else if (addr == (addr_t) &dummy32->access_id)
 554		/* Access id of the last PER trap */
 555		return (__u32) child->thread.per_event.paid << 24;
 556	return 0;
 557}
 558
 559/*
 560 * Same as peek_user but for a 31 bit program.
 561 */
 562static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 563{
 564	struct compat_user *dummy32 = NULL;
 565	addr_t offset;
 566	__u32 tmp;
 567
 568	if (addr < (addr_t) &dummy32->regs.acrs) {
 569		struct pt_regs *regs = task_pt_regs(child);
 570		/*
 571		 * psw and gprs are stored on the stack
 572		 */
 573		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 574			/* Fake a 31 bit psw mask. */
 575			tmp = (__u32)(regs->psw.mask >> 32);
 576			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 577			tmp |= PSW32_USER_BITS;
 578		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 579			/* Fake a 31 bit psw address. */
 580			tmp = (__u32) regs->psw.addr |
 581				(__u32)(regs->psw.mask & PSW_MASK_BA);
 582		} else {
 583			/* gpr 0-15 */
 584			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 585		}
 586	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 587		/*
 588		 * access registers are stored in the thread structure
 589		 */
 590		offset = addr - (addr_t) &dummy32->regs.acrs;
 591		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 592
 593	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 594		/*
 595		 * orig_gpr2 is stored on the kernel stack
 596		 */
 597		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 598
 599	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 600		/*
 601		 * prevent reads of padding hole between
 602		 * orig_gpr2 and fp_regs on s390.
 603		 */
 604		tmp = 0;
 605
 606	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 607		/*
 608		 * floating point control reg. is in the thread structure
 609		 */
 610		tmp = child->thread.fpu.fpc;
 611
 612	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 613		/*
 614		 * floating point regs. are either in child->thread.fpu
 615		 * or the child->thread.fpu.vxrs array
 616		 */
 617		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 618		if (MACHINE_HAS_VX)
 619			tmp = *(__u32 *)
 620			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 621		else
 622			tmp = *(__u32 *)
 623			       ((addr_t) child->thread.fpu.fprs + offset);
 624
 625	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 626		/*
 627		 * Handle access to the per_info structure.
 628		 */
 629		addr -= (addr_t) &dummy32->regs.per_info;
 630		tmp = __peek_user_per_compat(child, addr);
 631
 632	} else
 633		tmp = 0;
 634
 635	return tmp;
 636}
 637
 638static int peek_user_compat(struct task_struct *child,
 639			    addr_t addr, addr_t data)
 640{
 641	__u32 tmp;
 642
 643	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 644		return -EIO;
 645
 646	tmp = __peek_user_compat(child, addr);
 647	return put_user(tmp, (__u32 __user *) data);
 648}
 649
 650/*
 651 * Same as poke_user_per but for a 31 bit program.
 652 */
 653static inline void __poke_user_per_compat(struct task_struct *child,
 654					  addr_t addr, __u32 data)
 655{
 656	struct compat_per_struct_kernel *dummy32 = NULL;
 657
 658	if (addr == (addr_t) &dummy32->cr9)
 659		/* PER event mask of the user specified per set. */
 660		child->thread.per_user.control =
 661			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 662	else if (addr == (addr_t) &dummy32->starting_addr)
 663		/* Starting address of the user specified per set. */
 664		child->thread.per_user.start = data;
 665	else if (addr == (addr_t) &dummy32->ending_addr)
 666		/* Ending address of the user specified per set. */
 667		child->thread.per_user.end = data;
 668}
 669
 670/*
 671 * Same as poke_user but for a 31 bit program.
 672 */
 673static int __poke_user_compat(struct task_struct *child,
 674			      addr_t addr, addr_t data)
 675{
 676	struct compat_user *dummy32 = NULL;
 677	__u32 tmp = (__u32) data;
 678	addr_t offset;
 679
 680	if (addr < (addr_t) &dummy32->regs.acrs) {
 681		struct pt_regs *regs = task_pt_regs(child);
 682		/*
 683		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 684		 */
 685		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 686			__u32 mask = PSW32_MASK_USER;
 687
 688			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 689			/* Build a 64 bit psw mask from 31 bit mask. */
 690			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 691				/* Invalid psw mask. */
 692				return -EINVAL;
 693			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 694				/* Invalid address-space-control bits */
 695				return -EINVAL;
 696			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 697				(regs->psw.mask & PSW_MASK_BA) |
 698				(__u64)(tmp & mask) << 32;
 699		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 700			/* Build a 64 bit psw address from 31 bit address. */
 701			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 702			/* Transfer 31 bit amode bit to psw mask. */
 703			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 704				(__u64)(tmp & PSW32_ADDR_AMODE);
 705		} else {
 
 
 
 
 
 
 706			/* gpr 0-15 */
 707			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 708		}
 709	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 710		/*
 711		 * access registers are stored in the thread structure
 712		 */
 713		offset = addr - (addr_t) &dummy32->regs.acrs;
 714		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 715
 716	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 717		/*
 718		 * orig_gpr2 is stored on the kernel stack
 719		 */
 720		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 721
 722	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 723		/*
 724		 * prevent writess of padding hole between
 725		 * orig_gpr2 and fp_regs on s390.
 726		 */
 727		return 0;
 728
 729	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 730		/*
 731		 * floating point control reg. is in the thread structure
 732		 */
 733		if (test_fp_ctl(tmp))
 734			return -EINVAL;
 735		child->thread.fpu.fpc = data;
 736
 737	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 738		/*
 739		 * floating point regs. are either in child->thread.fpu
 740		 * or the child->thread.fpu.vxrs array
 741		 */
 742		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 743		if (MACHINE_HAS_VX)
 744			*(__u32 *)((addr_t)
 745				child->thread.fpu.vxrs + 2*offset) = tmp;
 746		else
 747			*(__u32 *)((addr_t)
 748				child->thread.fpu.fprs + offset) = tmp;
 749
 750	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 751		/*
 752		 * Handle access to the per_info structure.
 753		 */
 754		addr -= (addr_t) &dummy32->regs.per_info;
 755		__poke_user_per_compat(child, addr, data);
 756	}
 757
 758	return 0;
 759}
 760
 761static int poke_user_compat(struct task_struct *child,
 762			    addr_t addr, addr_t data)
 763{
 764	if (!is_compat_task() || (addr & 3) ||
 765	    addr > sizeof(struct compat_user) - 3)
 766		return -EIO;
 767
 768	return __poke_user_compat(child, addr, data);
 769}
 770
 771long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 772			compat_ulong_t caddr, compat_ulong_t cdata)
 773{
 774	unsigned long addr = caddr;
 775	unsigned long data = cdata;
 776	compat_ptrace_area parea;
 777	int copied, ret;
 778
 779	switch (request) {
 780	case PTRACE_PEEKUSR:
 781		/* read the word at location addr in the USER area. */
 782		return peek_user_compat(child, addr, data);
 783
 784	case PTRACE_POKEUSR:
 785		/* write the word at location addr in the USER area */
 786		return poke_user_compat(child, addr, data);
 787
 788	case PTRACE_PEEKUSR_AREA:
 789	case PTRACE_POKEUSR_AREA:
 790		if (copy_from_user(&parea, (void __force __user *) addr,
 791							sizeof(parea)))
 792			return -EFAULT;
 793		addr = parea.kernel_addr;
 794		data = parea.process_addr;
 795		copied = 0;
 796		while (copied < parea.len) {
 797			if (request == PTRACE_PEEKUSR_AREA)
 798				ret = peek_user_compat(child, addr, data);
 799			else {
 800				__u32 utmp;
 801				if (get_user(utmp,
 802					     (__u32 __force __user *) data))
 803					return -EFAULT;
 804				ret = poke_user_compat(child, addr, utmp);
 805			}
 806			if (ret)
 807				return ret;
 808			addr += sizeof(unsigned int);
 809			data += sizeof(unsigned int);
 810			copied += sizeof(unsigned int);
 811		}
 812		return 0;
 813	case PTRACE_GET_LAST_BREAK:
 814		put_user(task_thread_info(child)->last_break,
 815			 (unsigned int __user *) data);
 816		return 0;
 817	}
 818	return compat_ptrace_request(child, request, addr, data);
 819}
 820#endif
 821
 822asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 823{
 824	long ret = 0;
 825
 826	/* Do the secure computing check first. */
 827	if (secure_computing()) {
 828		/* seccomp failures shouldn't expose any additional code. */
 829		ret = -1;
 830		goto out;
 831	}
 832
 833	/*
 834	 * The sysc_tracesys code in entry.S stored the system
 835	 * call number to gprs[2].
 836	 */
 837	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 838	    (tracehook_report_syscall_entry(regs) ||
 839	     regs->gprs[2] >= NR_syscalls)) {
 840		/*
 841		 * Tracing decided this syscall should not happen or the
 842		 * debugger stored an invalid system call number. Skip
 843		 * the system call and the system call restart handling.
 844		 */
 845		clear_pt_regs_flag(regs, PIF_SYSCALL);
 846		ret = -1;
 847	}
 848
 849	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 850		trace_sys_enter(regs, regs->gprs[2]);
 851
 852	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
 853			    regs->gprs[3], regs->gprs[4],
 854			    regs->gprs[5]);
 855out:
 856	return ret ?: regs->gprs[2];
 857}
 858
 859asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 860{
 861	audit_syscall_exit(regs);
 862
 863	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 864		trace_sys_exit(regs, regs->gprs[2]);
 865
 866	if (test_thread_flag(TIF_SYSCALL_TRACE))
 867		tracehook_report_syscall_exit(regs, 0);
 868}
 869
 870/*
 871 * user_regset definitions.
 872 */
 873
 874static int s390_regs_get(struct task_struct *target,
 875			 const struct user_regset *regset,
 876			 unsigned int pos, unsigned int count,
 877			 void *kbuf, void __user *ubuf)
 878{
 
 879	if (target == current)
 880		save_access_regs(target->thread.acrs);
 881
 882	if (kbuf) {
 883		unsigned long *k = kbuf;
 884		while (count > 0) {
 885			*k++ = __peek_user(target, pos);
 886			count -= sizeof(*k);
 887			pos += sizeof(*k);
 888		}
 889	} else {
 890		unsigned long __user *u = ubuf;
 891		while (count > 0) {
 892			if (__put_user(__peek_user(target, pos), u++))
 893				return -EFAULT;
 894			count -= sizeof(*u);
 895			pos += sizeof(*u);
 896		}
 897	}
 898	return 0;
 899}
 900
 901static int s390_regs_set(struct task_struct *target,
 902			 const struct user_regset *regset,
 903			 unsigned int pos, unsigned int count,
 904			 const void *kbuf, const void __user *ubuf)
 905{
 906	int rc = 0;
 907
 908	if (target == current)
 909		save_access_regs(target->thread.acrs);
 910
 911	if (kbuf) {
 912		const unsigned long *k = kbuf;
 913		while (count > 0 && !rc) {
 914			rc = __poke_user(target, pos, *k++);
 915			count -= sizeof(*k);
 916			pos += sizeof(*k);
 917		}
 918	} else {
 919		const unsigned long  __user *u = ubuf;
 920		while (count > 0 && !rc) {
 921			unsigned long word;
 922			rc = __get_user(word, u++);
 923			if (rc)
 924				break;
 925			rc = __poke_user(target, pos, word);
 926			count -= sizeof(*u);
 927			pos += sizeof(*u);
 928		}
 929	}
 930
 931	if (rc == 0 && target == current)
 932		restore_access_regs(target->thread.acrs);
 933
 934	return rc;
 935}
 936
 937static int s390_fpregs_get(struct task_struct *target,
 938			   const struct user_regset *regset, unsigned int pos,
 939			   unsigned int count, void *kbuf, void __user *ubuf)
 940{
 941	_s390_fp_regs fp_regs;
 942
 943	if (target == current)
 944		save_fpu_regs();
 945
 946	fp_regs.fpc = target->thread.fpu.fpc;
 947	fpregs_store(&fp_regs, &target->thread.fpu);
 948
 949	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 950				   &fp_regs, 0, -1);
 951}
 952
 953static int s390_fpregs_set(struct task_struct *target,
 954			   const struct user_regset *regset, unsigned int pos,
 955			   unsigned int count, const void *kbuf,
 956			   const void __user *ubuf)
 957{
 958	int rc = 0;
 959	freg_t fprs[__NUM_FPRS];
 960
 961	if (target == current)
 962		save_fpu_regs();
 963
 964	/* If setting FPC, must validate it first. */
 
 
 
 
 965	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 966		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 967		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 968					0, offsetof(s390_fp_regs, fprs));
 969		if (rc)
 970			return rc;
 971		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 972			return -EINVAL;
 973		target->thread.fpu.fpc = ufpc[0];
 974	}
 975
 976	if (rc == 0 && count > 0)
 977		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 978					fprs, offsetof(s390_fp_regs, fprs), -1);
 979	if (rc)
 980		return rc;
 981
 982	if (MACHINE_HAS_VX)
 983		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 984	else
 985		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 986
 987	return rc;
 988}
 989
 990static int s390_last_break_get(struct task_struct *target,
 991			       const struct user_regset *regset,
 992			       unsigned int pos, unsigned int count,
 993			       void *kbuf, void __user *ubuf)
 994{
 995	if (count > 0) {
 996		if (kbuf) {
 997			unsigned long *k = kbuf;
 998			*k = task_thread_info(target)->last_break;
 999		} else {
1000			unsigned long  __user *u = ubuf;
1001			if (__put_user(task_thread_info(target)->last_break, u))
1002				return -EFAULT;
1003		}
1004	}
1005	return 0;
1006}
1007
1008static int s390_last_break_set(struct task_struct *target,
1009			       const struct user_regset *regset,
1010			       unsigned int pos, unsigned int count,
1011			       const void *kbuf, const void __user *ubuf)
1012{
1013	return 0;
1014}
1015
1016static int s390_tdb_get(struct task_struct *target,
1017			const struct user_regset *regset,
1018			unsigned int pos, unsigned int count,
1019			void *kbuf, void __user *ubuf)
1020{
1021	struct pt_regs *regs = task_pt_regs(target);
1022	unsigned char *data;
1023
1024	if (!(regs->int_code & 0x200))
1025		return -ENODATA;
1026	data = target->thread.trap_tdb;
1027	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1028}
1029
1030static int s390_tdb_set(struct task_struct *target,
1031			const struct user_regset *regset,
1032			unsigned int pos, unsigned int count,
1033			const void *kbuf, const void __user *ubuf)
1034{
1035	return 0;
1036}
1037
1038static int s390_vxrs_low_get(struct task_struct *target,
1039			     const struct user_regset *regset,
1040			     unsigned int pos, unsigned int count,
1041			     void *kbuf, void __user *ubuf)
1042{
1043	__u64 vxrs[__NUM_VXRS_LOW];
1044	int i;
1045
1046	if (!MACHINE_HAS_VX)
1047		return -ENODEV;
1048	if (target == current)
1049		save_fpu_regs();
1050	for (i = 0; i < __NUM_VXRS_LOW; i++)
1051		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1052	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1053}
1054
1055static int s390_vxrs_low_set(struct task_struct *target,
1056			     const struct user_regset *regset,
1057			     unsigned int pos, unsigned int count,
1058			     const void *kbuf, const void __user *ubuf)
1059{
1060	__u64 vxrs[__NUM_VXRS_LOW];
1061	int i, rc;
1062
1063	if (!MACHINE_HAS_VX)
1064		return -ENODEV;
1065	if (target == current)
1066		save_fpu_regs();
1067
 
 
 
1068	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1069	if (rc == 0)
1070		for (i = 0; i < __NUM_VXRS_LOW; i++)
1071			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1072
1073	return rc;
1074}
1075
1076static int s390_vxrs_high_get(struct task_struct *target,
1077			      const struct user_regset *regset,
1078			      unsigned int pos, unsigned int count,
1079			      void *kbuf, void __user *ubuf)
1080{
1081	__vector128 vxrs[__NUM_VXRS_HIGH];
1082
1083	if (!MACHINE_HAS_VX)
1084		return -ENODEV;
1085	if (target == current)
1086		save_fpu_regs();
1087	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1088
1089	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1090}
1091
1092static int s390_vxrs_high_set(struct task_struct *target,
1093			      const struct user_regset *regset,
1094			      unsigned int pos, unsigned int count,
1095			      const void *kbuf, const void __user *ubuf)
1096{
1097	int rc;
1098
1099	if (!MACHINE_HAS_VX)
1100		return -ENODEV;
1101	if (target == current)
1102		save_fpu_regs();
1103
1104	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1105				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1106	return rc;
1107}
1108
1109static int s390_system_call_get(struct task_struct *target,
1110				const struct user_regset *regset,
1111				unsigned int pos, unsigned int count,
1112				void *kbuf, void __user *ubuf)
1113{
1114	unsigned int *data = &task_thread_info(target)->system_call;
1115	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1116				   data, 0, sizeof(unsigned int));
1117}
1118
1119static int s390_system_call_set(struct task_struct *target,
1120				const struct user_regset *regset,
1121				unsigned int pos, unsigned int count,
1122				const void *kbuf, const void __user *ubuf)
1123{
1124	unsigned int *data = &task_thread_info(target)->system_call;
1125	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1126				  data, 0, sizeof(unsigned int));
1127}
1128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129static const struct user_regset s390_regsets[] = {
1130	{
1131		.core_note_type = NT_PRSTATUS,
1132		.n = sizeof(s390_regs) / sizeof(long),
1133		.size = sizeof(long),
1134		.align = sizeof(long),
1135		.get = s390_regs_get,
1136		.set = s390_regs_set,
1137	},
1138	{
1139		.core_note_type = NT_PRFPREG,
1140		.n = sizeof(s390_fp_regs) / sizeof(long),
1141		.size = sizeof(long),
1142		.align = sizeof(long),
1143		.get = s390_fpregs_get,
1144		.set = s390_fpregs_set,
1145	},
1146	{
1147		.core_note_type = NT_S390_SYSTEM_CALL,
1148		.n = 1,
1149		.size = sizeof(unsigned int),
1150		.align = sizeof(unsigned int),
1151		.get = s390_system_call_get,
1152		.set = s390_system_call_set,
1153	},
1154	{
1155		.core_note_type = NT_S390_LAST_BREAK,
1156		.n = 1,
1157		.size = sizeof(long),
1158		.align = sizeof(long),
1159		.get = s390_last_break_get,
1160		.set = s390_last_break_set,
1161	},
1162	{
1163		.core_note_type = NT_S390_TDB,
1164		.n = 1,
1165		.size = 256,
1166		.align = 1,
1167		.get = s390_tdb_get,
1168		.set = s390_tdb_set,
1169	},
1170	{
1171		.core_note_type = NT_S390_VXRS_LOW,
1172		.n = __NUM_VXRS_LOW,
1173		.size = sizeof(__u64),
1174		.align = sizeof(__u64),
1175		.get = s390_vxrs_low_get,
1176		.set = s390_vxrs_low_set,
1177	},
1178	{
1179		.core_note_type = NT_S390_VXRS_HIGH,
1180		.n = __NUM_VXRS_HIGH,
1181		.size = sizeof(__vector128),
1182		.align = sizeof(__vector128),
1183		.get = s390_vxrs_high_get,
1184		.set = s390_vxrs_high_set,
1185	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186};
1187
1188static const struct user_regset_view user_s390_view = {
1189	.name = UTS_MACHINE,
1190	.e_machine = EM_S390,
1191	.regsets = s390_regsets,
1192	.n = ARRAY_SIZE(s390_regsets)
1193};
1194
1195#ifdef CONFIG_COMPAT
1196static int s390_compat_regs_get(struct task_struct *target,
1197				const struct user_regset *regset,
1198				unsigned int pos, unsigned int count,
1199				void *kbuf, void __user *ubuf)
1200{
 
 
1201	if (target == current)
1202		save_access_regs(target->thread.acrs);
1203
1204	if (kbuf) {
1205		compat_ulong_t *k = kbuf;
1206		while (count > 0) {
1207			*k++ = __peek_user_compat(target, pos);
1208			count -= sizeof(*k);
1209			pos += sizeof(*k);
1210		}
1211	} else {
1212		compat_ulong_t __user *u = ubuf;
1213		while (count > 0) {
1214			if (__put_user(__peek_user_compat(target, pos), u++))
1215				return -EFAULT;
1216			count -= sizeof(*u);
1217			pos += sizeof(*u);
1218		}
1219	}
1220	return 0;
1221}
1222
1223static int s390_compat_regs_set(struct task_struct *target,
1224				const struct user_regset *regset,
1225				unsigned int pos, unsigned int count,
1226				const void *kbuf, const void __user *ubuf)
1227{
1228	int rc = 0;
1229
1230	if (target == current)
1231		save_access_regs(target->thread.acrs);
1232
1233	if (kbuf) {
1234		const compat_ulong_t *k = kbuf;
1235		while (count > 0 && !rc) {
1236			rc = __poke_user_compat(target, pos, *k++);
1237			count -= sizeof(*k);
1238			pos += sizeof(*k);
1239		}
1240	} else {
1241		const compat_ulong_t  __user *u = ubuf;
1242		while (count > 0 && !rc) {
1243			compat_ulong_t word;
1244			rc = __get_user(word, u++);
1245			if (rc)
1246				break;
1247			rc = __poke_user_compat(target, pos, word);
1248			count -= sizeof(*u);
1249			pos += sizeof(*u);
1250		}
1251	}
1252
1253	if (rc == 0 && target == current)
1254		restore_access_regs(target->thread.acrs);
1255
1256	return rc;
1257}
1258
1259static int s390_compat_regs_high_get(struct task_struct *target,
1260				     const struct user_regset *regset,
1261				     unsigned int pos, unsigned int count,
1262				     void *kbuf, void __user *ubuf)
1263{
1264	compat_ulong_t *gprs_high;
 
1265
1266	gprs_high = (compat_ulong_t *)
1267		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1268	if (kbuf) {
1269		compat_ulong_t *k = kbuf;
1270		while (count > 0) {
1271			*k++ = *gprs_high;
1272			gprs_high += 2;
1273			count -= sizeof(*k);
1274		}
1275	} else {
1276		compat_ulong_t __user *u = ubuf;
1277		while (count > 0) {
1278			if (__put_user(*gprs_high, u++))
1279				return -EFAULT;
1280			gprs_high += 2;
1281			count -= sizeof(*u);
1282		}
1283	}
1284	return 0;
1285}
1286
1287static int s390_compat_regs_high_set(struct task_struct *target,
1288				     const struct user_regset *regset,
1289				     unsigned int pos, unsigned int count,
1290				     const void *kbuf, const void __user *ubuf)
1291{
1292	compat_ulong_t *gprs_high;
1293	int rc = 0;
1294
1295	gprs_high = (compat_ulong_t *)
1296		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1297	if (kbuf) {
1298		const compat_ulong_t *k = kbuf;
1299		while (count > 0) {
1300			*gprs_high = *k++;
1301			*gprs_high += 2;
1302			count -= sizeof(*k);
1303		}
1304	} else {
1305		const compat_ulong_t  __user *u = ubuf;
1306		while (count > 0 && !rc) {
1307			unsigned long word;
1308			rc = __get_user(word, u++);
1309			if (rc)
1310				break;
1311			*gprs_high = word;
1312			*gprs_high += 2;
1313			count -= sizeof(*u);
1314		}
1315	}
1316
1317	return rc;
1318}
1319
1320static int s390_compat_last_break_get(struct task_struct *target,
1321				      const struct user_regset *regset,
1322				      unsigned int pos, unsigned int count,
1323				      void *kbuf, void __user *ubuf)
1324{
1325	compat_ulong_t last_break;
1326
1327	if (count > 0) {
1328		last_break = task_thread_info(target)->last_break;
1329		if (kbuf) {
1330			unsigned long *k = kbuf;
1331			*k = last_break;
1332		} else {
1333			unsigned long  __user *u = ubuf;
1334			if (__put_user(last_break, u))
1335				return -EFAULT;
1336		}
1337	}
1338	return 0;
1339}
1340
1341static int s390_compat_last_break_set(struct task_struct *target,
1342				      const struct user_regset *regset,
1343				      unsigned int pos, unsigned int count,
1344				      const void *kbuf, const void __user *ubuf)
1345{
1346	return 0;
1347}
1348
1349static const struct user_regset s390_compat_regsets[] = {
1350	{
1351		.core_note_type = NT_PRSTATUS,
1352		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1353		.size = sizeof(compat_long_t),
1354		.align = sizeof(compat_long_t),
1355		.get = s390_compat_regs_get,
1356		.set = s390_compat_regs_set,
1357	},
1358	{
1359		.core_note_type = NT_PRFPREG,
1360		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1361		.size = sizeof(compat_long_t),
1362		.align = sizeof(compat_long_t),
1363		.get = s390_fpregs_get,
1364		.set = s390_fpregs_set,
1365	},
1366	{
1367		.core_note_type = NT_S390_SYSTEM_CALL,
1368		.n = 1,
1369		.size = sizeof(compat_uint_t),
1370		.align = sizeof(compat_uint_t),
1371		.get = s390_system_call_get,
1372		.set = s390_system_call_set,
1373	},
1374	{
1375		.core_note_type = NT_S390_LAST_BREAK,
1376		.n = 1,
1377		.size = sizeof(long),
1378		.align = sizeof(long),
1379		.get = s390_compat_last_break_get,
1380		.set = s390_compat_last_break_set,
1381	},
1382	{
1383		.core_note_type = NT_S390_TDB,
1384		.n = 1,
1385		.size = 256,
1386		.align = 1,
1387		.get = s390_tdb_get,
1388		.set = s390_tdb_set,
1389	},
1390	{
1391		.core_note_type = NT_S390_VXRS_LOW,
1392		.n = __NUM_VXRS_LOW,
1393		.size = sizeof(__u64),
1394		.align = sizeof(__u64),
1395		.get = s390_vxrs_low_get,
1396		.set = s390_vxrs_low_set,
1397	},
1398	{
1399		.core_note_type = NT_S390_VXRS_HIGH,
1400		.n = __NUM_VXRS_HIGH,
1401		.size = sizeof(__vector128),
1402		.align = sizeof(__vector128),
1403		.get = s390_vxrs_high_get,
1404		.set = s390_vxrs_high_set,
1405	},
1406	{
1407		.core_note_type = NT_S390_HIGH_GPRS,
1408		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1409		.size = sizeof(compat_long_t),
1410		.align = sizeof(compat_long_t),
1411		.get = s390_compat_regs_high_get,
1412		.set = s390_compat_regs_high_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413	},
1414};
1415
1416static const struct user_regset_view user_s390_compat_view = {
1417	.name = "s390",
1418	.e_machine = EM_S390,
1419	.regsets = s390_compat_regsets,
1420	.n = ARRAY_SIZE(s390_compat_regsets)
1421};
1422#endif
1423
1424const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1425{
1426#ifdef CONFIG_COMPAT
1427	if (test_tsk_thread_flag(task, TIF_31BIT))
1428		return &user_s390_compat_view;
1429#endif
1430	return &user_s390_view;
1431}
1432
1433static const char *gpr_names[NUM_GPRS] = {
1434	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1435	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1436};
1437
1438unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1439{
1440	if (offset >= NUM_GPRS)
1441		return 0;
1442	return regs->gprs[offset];
1443}
1444
1445int regs_query_register_offset(const char *name)
1446{
1447	unsigned long offset;
1448
1449	if (!name || *name != 'r')
1450		return -EINVAL;
1451	if (kstrtoul(name + 1, 10, &offset))
1452		return -EINVAL;
1453	if (offset >= NUM_GPRS)
1454		return -EINVAL;
1455	return offset;
1456}
1457
1458const char *regs_query_register_name(unsigned int offset)
1459{
1460	if (offset >= NUM_GPRS)
1461		return NULL;
1462	return gpr_names[offset];
1463}
1464
1465static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1466{
1467	unsigned long ksp = kernel_stack_pointer(regs);
1468
1469	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1470}
1471
1472/**
1473 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1474 * @regs:pt_regs which contains kernel stack pointer.
1475 * @n:stack entry number.
1476 *
1477 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1478 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1479 * this returns 0.
1480 */
1481unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1482{
1483	unsigned long addr;
1484
1485	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1486	if (!regs_within_kernel_stack(regs, addr))
1487		return 0;
1488	return *(unsigned long *)addr;
1489}