Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10#include "asm/ptrace.h"
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/sched/task_stack.h>
14#include <linux/mm.h>
15#include <linux/smp.h>
16#include <linux/errno.h>
17#include <linux/ptrace.h>
18#include <linux/user.h>
19#include <linux/security.h>
20#include <linux/audit.h>
21#include <linux/signal.h>
22#include <linux/elf.h>
23#include <linux/regset.h>
24#include <linux/seccomp.h>
25#include <linux/compat.h>
26#include <trace/syscall.h>
27#include <asm/page.h>
28#include <linux/uaccess.h>
29#include <asm/unistd.h>
30#include <asm/switch_to.h>
31#include <asm/runtime_instr.h>
32#include <asm/facility.h>
33#include <asm/fpu/api.h>
34
35#include "entry.h"
36
37#ifdef CONFIG_COMPAT
38#include "compat_ptrace.h"
39#endif
40
41void update_cr_regs(struct task_struct *task)
42{
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 union ctlreg0 cr0_old, cr0_new;
46 union ctlreg2 cr2_old, cr2_new;
47 int cr0_changed, cr2_changed;
48 union {
49 struct ctlreg regs[3];
50 struct {
51 struct ctlreg control;
52 struct ctlreg start;
53 struct ctlreg end;
54 };
55 } old, new;
56
57 local_ctl_store(0, &cr0_old.reg);
58 local_ctl_store(2, &cr2_old.reg);
59 cr0_new = cr0_old;
60 cr2_new = cr2_old;
61 /* Take care of the enable/disable of transactional execution. */
62 if (MACHINE_HAS_TE) {
63 /* Set or clear transaction execution TXC bit 8. */
64 cr0_new.tcx = 1;
65 if (task->thread.per_flags & PER_FLAG_NO_TE)
66 cr0_new.tcx = 0;
67 /* Set or clear transaction execution TDC bits 62 and 63. */
68 cr2_new.tdc = 0;
69 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
70 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
71 cr2_new.tdc = 1;
72 else
73 cr2_new.tdc = 2;
74 }
75 }
76 /* Take care of enable/disable of guarded storage. */
77 if (MACHINE_HAS_GS) {
78 cr2_new.gse = 0;
79 if (task->thread.gs_cb)
80 cr2_new.gse = 1;
81 }
82 /* Load control register 0/2 iff changed */
83 cr0_changed = cr0_new.val != cr0_old.val;
84 cr2_changed = cr2_new.val != cr2_old.val;
85 if (cr0_changed)
86 local_ctl_load(0, &cr0_new.reg);
87 if (cr2_changed)
88 local_ctl_load(2, &cr2_new.reg);
89 /* Copy user specified PER registers */
90 new.control.val = thread->per_user.control;
91 new.start.val = thread->per_user.start;
92 new.end.val = thread->per_user.end;
93
94 /* merge TIF_SINGLE_STEP into user specified PER registers. */
95 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
96 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
97 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
98 new.control.val |= PER_EVENT_BRANCH;
99 else
100 new.control.val |= PER_EVENT_IFETCH;
101 new.control.val |= PER_CONTROL_SUSPENSION;
102 new.control.val |= PER_EVENT_TRANSACTION_END;
103 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
104 new.control.val |= PER_EVENT_IFETCH;
105 new.start.val = 0;
106 new.end.val = -1UL;
107 }
108
109 /* Take care of the PER enablement bit in the PSW. */
110 if (!(new.control.val & PER_EVENT_MASK)) {
111 regs->psw.mask &= ~PSW_MASK_PER;
112 return;
113 }
114 regs->psw.mask |= PSW_MASK_PER;
115 __local_ctl_store(9, 11, old.regs);
116 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
117 __local_ctl_load(9, 11, new.regs);
118}
119
120void user_enable_single_step(struct task_struct *task)
121{
122 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
123 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
124}
125
126void user_disable_single_step(struct task_struct *task)
127{
128 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
129 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
130}
131
132void user_enable_block_step(struct task_struct *task)
133{
134 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
135 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
136}
137
138/*
139 * Called by kernel/ptrace.c when detaching..
140 *
141 * Clear all debugging related fields.
142 */
143void ptrace_disable(struct task_struct *task)
144{
145 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
146 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
147 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
148 clear_tsk_thread_flag(task, TIF_PER_TRAP);
149 task->thread.per_flags = 0;
150}
151
152#define __ADDR_MASK 7
153
154static inline unsigned long __peek_user_per(struct task_struct *child,
155 addr_t addr)
156{
157 if (addr == offsetof(struct per_struct_kernel, cr9))
158 /* Control bits of the active per set. */
159 return test_thread_flag(TIF_SINGLE_STEP) ?
160 PER_EVENT_IFETCH : child->thread.per_user.control;
161 else if (addr == offsetof(struct per_struct_kernel, cr10))
162 /* Start address of the active per set. */
163 return test_thread_flag(TIF_SINGLE_STEP) ?
164 0 : child->thread.per_user.start;
165 else if (addr == offsetof(struct per_struct_kernel, cr11))
166 /* End address of the active per set. */
167 return test_thread_flag(TIF_SINGLE_STEP) ?
168 -1UL : child->thread.per_user.end;
169 else if (addr == offsetof(struct per_struct_kernel, bits))
170 /* Single-step bit. */
171 return test_thread_flag(TIF_SINGLE_STEP) ?
172 (1UL << (BITS_PER_LONG - 1)) : 0;
173 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
174 /* Start address of the user specified per set. */
175 return child->thread.per_user.start;
176 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
177 /* End address of the user specified per set. */
178 return child->thread.per_user.end;
179 else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
180 /* PER code, ATMID and AI of the last PER trap */
181 return (unsigned long)
182 child->thread.per_event.cause << (BITS_PER_LONG - 16);
183 else if (addr == offsetof(struct per_struct_kernel, address))
184 /* Address of the last PER trap */
185 return child->thread.per_event.address;
186 else if (addr == offsetof(struct per_struct_kernel, access_id))
187 /* Access id of the last PER trap */
188 return (unsigned long)
189 child->thread.per_event.paid << (BITS_PER_LONG - 8);
190 return 0;
191}
192
193/*
194 * Read the word at offset addr from the user area of a process. The
195 * trouble here is that the information is littered over different
196 * locations. The process registers are found on the kernel stack,
197 * the floating point stuff and the trace settings are stored in
198 * the task structure. In addition the different structures in
199 * struct user contain pad bytes that should be read as zeroes.
200 * Lovely...
201 */
202static unsigned long __peek_user(struct task_struct *child, addr_t addr)
203{
204 addr_t offset, tmp;
205
206 if (addr < offsetof(struct user, regs.acrs)) {
207 /*
208 * psw and gprs are stored on the stack
209 */
210 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
211 if (addr == offsetof(struct user, regs.psw.mask)) {
212 /* Return a clean psw mask. */
213 tmp &= PSW_MASK_USER | PSW_MASK_RI;
214 tmp |= PSW_USER_BITS;
215 }
216
217 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
218 /*
219 * access registers are stored in the thread structure
220 */
221 offset = addr - offsetof(struct user, regs.acrs);
222 /*
223 * Very special case: old & broken 64 bit gdb reading
224 * from acrs[15]. Result is a 64 bit value. Read the
225 * 32 bit acrs[15] value and shift it by 32. Sick...
226 */
227 if (addr == offsetof(struct user, regs.acrs[15]))
228 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
229 else
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < offsetof(struct user, regs.fp_regs)) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
246 /*
247 * floating point control reg. is in the thread structure
248 */
249 tmp = child->thread.fpu.fpc;
250 tmp <<= BITS_PER_LONG - 32;
251
252 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
253 /*
254 * floating point regs. are either in child->thread.fpu
255 * or the child->thread.fpu.vxrs array
256 */
257 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
258 if (cpu_has_vx())
259 tmp = *(addr_t *)
260 ((addr_t) child->thread.fpu.vxrs + 2*offset);
261 else
262 tmp = *(addr_t *)
263 ((addr_t) child->thread.fpu.fprs + offset);
264
265 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
266 /*
267 * Handle access to the per_info structure.
268 */
269 addr -= offsetof(struct user, regs.per_info);
270 tmp = __peek_user_per(child, addr);
271
272 } else
273 tmp = 0;
274
275 return tmp;
276}
277
278static int
279peek_user(struct task_struct *child, addr_t addr, addr_t data)
280{
281 addr_t tmp, mask;
282
283 /*
284 * Stupid gdb peeks/pokes the access registers in 64 bit with
285 * an alignment of 4. Programmers from hell...
286 */
287 mask = __ADDR_MASK;
288 if (addr >= offsetof(struct user, regs.acrs) &&
289 addr < offsetof(struct user, regs.orig_gpr2))
290 mask = 3;
291 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
292 return -EIO;
293
294 tmp = __peek_user(child, addr);
295 return put_user(tmp, (addr_t __user *) data);
296}
297
298static inline void __poke_user_per(struct task_struct *child,
299 addr_t addr, addr_t data)
300{
301 /*
302 * There are only three fields in the per_info struct that the
303 * debugger user can write to.
304 * 1) cr9: the debugger wants to set a new PER event mask
305 * 2) starting_addr: the debugger wants to set a new starting
306 * address to use with the PER event mask.
307 * 3) ending_addr: the debugger wants to set a new ending
308 * address to use with the PER event mask.
309 * The user specified PER event mask and the start and end
310 * addresses are used only if single stepping is not in effect.
311 * Writes to any other field in per_info are ignored.
312 */
313 if (addr == offsetof(struct per_struct_kernel, cr9))
314 /* PER event mask of the user specified per set. */
315 child->thread.per_user.control =
316 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
317 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
318 /* Starting address of the user specified per set. */
319 child->thread.per_user.start = data;
320 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
321 /* Ending address of the user specified per set. */
322 child->thread.per_user.end = data;
323}
324
325/*
326 * Write a word to the user area of a process at location addr. This
327 * operation does have an additional problem compared to peek_user.
328 * Stores to the program status word and on the floating point
329 * control register needs to get checked for validity.
330 */
331static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
332{
333 addr_t offset;
334
335
336 if (addr < offsetof(struct user, regs.acrs)) {
337 struct pt_regs *regs = task_pt_regs(child);
338 /*
339 * psw and gprs are stored on the stack
340 */
341 if (addr == offsetof(struct user, regs.psw.mask)) {
342 unsigned long mask = PSW_MASK_USER;
343
344 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
345 if ((data ^ PSW_USER_BITS) & ~mask)
346 /* Invalid psw mask. */
347 return -EINVAL;
348 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
349 /* Invalid address-space-control bits */
350 return -EINVAL;
351 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
352 /* Invalid addressing mode bits */
353 return -EINVAL;
354 }
355
356 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
357 addr == offsetof(struct user, regs.gprs[2])) {
358 struct pt_regs *regs = task_pt_regs(child);
359
360 regs->int_code = 0x20000 | (data & 0xffff);
361 }
362 *(addr_t *)((addr_t) ®s->psw + addr) = data;
363 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
364 /*
365 * access registers are stored in the thread structure
366 */
367 offset = addr - offsetof(struct user, regs.acrs);
368 /*
369 * Very special case: old & broken 64 bit gdb writing
370 * to acrs[15] with a 64 bit value. Ignore the lower
371 * half of the value and write the upper 32 bit to
372 * acrs[15]. Sick...
373 */
374 if (addr == offsetof(struct user, regs.acrs[15]))
375 child->thread.acrs[15] = (unsigned int) (data >> 32);
376 else
377 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
378
379 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
380 /*
381 * orig_gpr2 is stored on the kernel stack
382 */
383 task_pt_regs(child)->orig_gpr2 = data;
384
385 } else if (addr < offsetof(struct user, regs.fp_regs)) {
386 /*
387 * prevent writes of padding hole between
388 * orig_gpr2 and fp_regs on s390.
389 */
390 return 0;
391
392 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
393 /*
394 * floating point control reg. is in the thread structure
395 */
396 if ((unsigned int)data != 0)
397 return -EINVAL;
398 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
399
400 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
401 /*
402 * floating point regs. are either in child->thread.fpu
403 * or the child->thread.fpu.vxrs array
404 */
405 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
406 if (cpu_has_vx())
407 *(addr_t *)((addr_t)
408 child->thread.fpu.vxrs + 2*offset) = data;
409 else
410 *(addr_t *)((addr_t)
411 child->thread.fpu.fprs + offset) = data;
412
413 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
414 /*
415 * Handle access to the per_info structure.
416 */
417 addr -= offsetof(struct user, regs.per_info);
418 __poke_user_per(child, addr, data);
419
420 }
421
422 return 0;
423}
424
425static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
426{
427 addr_t mask;
428
429 /*
430 * Stupid gdb peeks/pokes the access registers in 64 bit with
431 * an alignment of 4. Programmers from hell indeed...
432 */
433 mask = __ADDR_MASK;
434 if (addr >= offsetof(struct user, regs.acrs) &&
435 addr < offsetof(struct user, regs.orig_gpr2))
436 mask = 3;
437 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
438 return -EIO;
439
440 return __poke_user(child, addr, data);
441}
442
443long arch_ptrace(struct task_struct *child, long request,
444 unsigned long addr, unsigned long data)
445{
446 ptrace_area parea;
447 int copied, ret;
448
449 switch (request) {
450 case PTRACE_PEEKUSR:
451 /* read the word at location addr in the USER area. */
452 return peek_user(child, addr, data);
453
454 case PTRACE_POKEUSR:
455 /* write the word at location addr in the USER area */
456 return poke_user(child, addr, data);
457
458 case PTRACE_PEEKUSR_AREA:
459 case PTRACE_POKEUSR_AREA:
460 if (copy_from_user(&parea, (void __force __user *) addr,
461 sizeof(parea)))
462 return -EFAULT;
463 addr = parea.kernel_addr;
464 data = parea.process_addr;
465 copied = 0;
466 while (copied < parea.len) {
467 if (request == PTRACE_PEEKUSR_AREA)
468 ret = peek_user(child, addr, data);
469 else {
470 addr_t utmp;
471 if (get_user(utmp,
472 (addr_t __force __user *) data))
473 return -EFAULT;
474 ret = poke_user(child, addr, utmp);
475 }
476 if (ret)
477 return ret;
478 addr += sizeof(unsigned long);
479 data += sizeof(unsigned long);
480 copied += sizeof(unsigned long);
481 }
482 return 0;
483 case PTRACE_GET_LAST_BREAK:
484 return put_user(child->thread.last_break, (unsigned long __user *)data);
485 case PTRACE_ENABLE_TE:
486 if (!MACHINE_HAS_TE)
487 return -EIO;
488 child->thread.per_flags &= ~PER_FLAG_NO_TE;
489 return 0;
490 case PTRACE_DISABLE_TE:
491 if (!MACHINE_HAS_TE)
492 return -EIO;
493 child->thread.per_flags |= PER_FLAG_NO_TE;
494 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
495 return 0;
496 case PTRACE_TE_ABORT_RAND:
497 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
498 return -EIO;
499 switch (data) {
500 case 0UL:
501 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
502 break;
503 case 1UL:
504 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
505 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
506 break;
507 case 2UL:
508 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
509 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
510 break;
511 default:
512 return -EINVAL;
513 }
514 return 0;
515 default:
516 return ptrace_request(child, request, addr, data);
517 }
518}
519
520#ifdef CONFIG_COMPAT
521/*
522 * Now the fun part starts... a 31 bit program running in the
523 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
524 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
525 * to handle, the difference to the 64 bit versions of the requests
526 * is that the access is done in multiples of 4 byte instead of
527 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
528 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
529 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
530 * is a 31 bit program too, the content of struct user can be
531 * emulated. A 31 bit program peeking into the struct user of
532 * a 64 bit program is a no-no.
533 */
534
535/*
536 * Same as peek_user_per but for a 31 bit program.
537 */
538static inline __u32 __peek_user_per_compat(struct task_struct *child,
539 addr_t addr)
540{
541 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
542 /* Control bits of the active per set. */
543 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
544 PER_EVENT_IFETCH : child->thread.per_user.control;
545 else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
546 /* Start address of the active per set. */
547 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548 0 : child->thread.per_user.start;
549 else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
550 /* End address of the active per set. */
551 return test_thread_flag(TIF_SINGLE_STEP) ?
552 PSW32_ADDR_INSN : child->thread.per_user.end;
553 else if (addr == offsetof(struct compat_per_struct_kernel, bits))
554 /* Single-step bit. */
555 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
556 0x80000000 : 0;
557 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
558 /* Start address of the user specified per set. */
559 return (__u32) child->thread.per_user.start;
560 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
561 /* End address of the user specified per set. */
562 return (__u32) child->thread.per_user.end;
563 else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
564 /* PER code, ATMID and AI of the last PER trap */
565 return (__u32) child->thread.per_event.cause << 16;
566 else if (addr == offsetof(struct compat_per_struct_kernel, address))
567 /* Address of the last PER trap */
568 return (__u32) child->thread.per_event.address;
569 else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
570 /* Access id of the last PER trap */
571 return (__u32) child->thread.per_event.paid << 24;
572 return 0;
573}
574
575/*
576 * Same as peek_user but for a 31 bit program.
577 */
578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
579{
580 addr_t offset;
581 __u32 tmp;
582
583 if (addr < offsetof(struct compat_user, regs.acrs)) {
584 struct pt_regs *regs = task_pt_regs(child);
585 /*
586 * psw and gprs are stored on the stack
587 */
588 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
589 /* Fake a 31 bit psw mask. */
590 tmp = (__u32)(regs->psw.mask >> 32);
591 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
592 tmp |= PSW32_USER_BITS;
593 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
594 /* Fake a 31 bit psw address. */
595 tmp = (__u32) regs->psw.addr |
596 (__u32)(regs->psw.mask & PSW_MASK_BA);
597 } else {
598 /* gpr 0-15 */
599 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
600 }
601 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
602 /*
603 * access registers are stored in the thread structure
604 */
605 offset = addr - offsetof(struct compat_user, regs.acrs);
606 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
607
608 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
609 /*
610 * orig_gpr2 is stored on the kernel stack
611 */
612 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
613
614 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
615 /*
616 * prevent reads of padding hole between
617 * orig_gpr2 and fp_regs on s390.
618 */
619 tmp = 0;
620
621 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
622 /*
623 * floating point control reg. is in the thread structure
624 */
625 tmp = child->thread.fpu.fpc;
626
627 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
628 /*
629 * floating point regs. are either in child->thread.fpu
630 * or the child->thread.fpu.vxrs array
631 */
632 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
633 if (cpu_has_vx())
634 tmp = *(__u32 *)
635 ((addr_t) child->thread.fpu.vxrs + 2*offset);
636 else
637 tmp = *(__u32 *)
638 ((addr_t) child->thread.fpu.fprs + offset);
639
640 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
641 /*
642 * Handle access to the per_info structure.
643 */
644 addr -= offsetof(struct compat_user, regs.per_info);
645 tmp = __peek_user_per_compat(child, addr);
646
647 } else
648 tmp = 0;
649
650 return tmp;
651}
652
653static int peek_user_compat(struct task_struct *child,
654 addr_t addr, addr_t data)
655{
656 __u32 tmp;
657
658 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
659 return -EIO;
660
661 tmp = __peek_user_compat(child, addr);
662 return put_user(tmp, (__u32 __user *) data);
663}
664
665/*
666 * Same as poke_user_per but for a 31 bit program.
667 */
668static inline void __poke_user_per_compat(struct task_struct *child,
669 addr_t addr, __u32 data)
670{
671 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
672 /* PER event mask of the user specified per set. */
673 child->thread.per_user.control =
674 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
675 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
676 /* Starting address of the user specified per set. */
677 child->thread.per_user.start = data;
678 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
679 /* Ending address of the user specified per set. */
680 child->thread.per_user.end = data;
681}
682
683/*
684 * Same as poke_user but for a 31 bit program.
685 */
686static int __poke_user_compat(struct task_struct *child,
687 addr_t addr, addr_t data)
688{
689 __u32 tmp = (__u32) data;
690 addr_t offset;
691
692 if (addr < offsetof(struct compat_user, regs.acrs)) {
693 struct pt_regs *regs = task_pt_regs(child);
694 /*
695 * psw, gprs, acrs and orig_gpr2 are stored on the stack
696 */
697 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
698 __u32 mask = PSW32_MASK_USER;
699
700 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
701 /* Build a 64 bit psw mask from 31 bit mask. */
702 if ((tmp ^ PSW32_USER_BITS) & ~mask)
703 /* Invalid psw mask. */
704 return -EINVAL;
705 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
706 /* Invalid address-space-control bits */
707 return -EINVAL;
708 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
709 (regs->psw.mask & PSW_MASK_BA) |
710 (__u64)(tmp & mask) << 32;
711 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
712 /* Build a 64 bit psw address from 31 bit address. */
713 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
714 /* Transfer 31 bit amode bit to psw mask. */
715 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
716 (__u64)(tmp & PSW32_ADDR_AMODE);
717 } else {
718 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
719 addr == offsetof(struct compat_user, regs.gprs[2])) {
720 struct pt_regs *regs = task_pt_regs(child);
721
722 regs->int_code = 0x20000 | (data & 0xffff);
723 }
724 /* gpr 0-15 */
725 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
726 }
727 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
728 /*
729 * access registers are stored in the thread structure
730 */
731 offset = addr - offsetof(struct compat_user, regs.acrs);
732 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
733
734 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
735 /*
736 * orig_gpr2 is stored on the kernel stack
737 */
738 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
739
740 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
741 /*
742 * prevent writess of padding hole between
743 * orig_gpr2 and fp_regs on s390.
744 */
745 return 0;
746
747 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
748 /*
749 * floating point control reg. is in the thread structure
750 */
751 child->thread.fpu.fpc = data;
752
753 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
754 /*
755 * floating point regs. are either in child->thread.fpu
756 * or the child->thread.fpu.vxrs array
757 */
758 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
759 if (cpu_has_vx())
760 *(__u32 *)((addr_t)
761 child->thread.fpu.vxrs + 2*offset) = tmp;
762 else
763 *(__u32 *)((addr_t)
764 child->thread.fpu.fprs + offset) = tmp;
765
766 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
767 /*
768 * Handle access to the per_info structure.
769 */
770 addr -= offsetof(struct compat_user, regs.per_info);
771 __poke_user_per_compat(child, addr, data);
772 }
773
774 return 0;
775}
776
777static int poke_user_compat(struct task_struct *child,
778 addr_t addr, addr_t data)
779{
780 if (!is_compat_task() || (addr & 3) ||
781 addr > sizeof(struct compat_user) - 3)
782 return -EIO;
783
784 return __poke_user_compat(child, addr, data);
785}
786
787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
788 compat_ulong_t caddr, compat_ulong_t cdata)
789{
790 unsigned long addr = caddr;
791 unsigned long data = cdata;
792 compat_ptrace_area parea;
793 int copied, ret;
794
795 switch (request) {
796 case PTRACE_PEEKUSR:
797 /* read the word at location addr in the USER area. */
798 return peek_user_compat(child, addr, data);
799
800 case PTRACE_POKEUSR:
801 /* write the word at location addr in the USER area */
802 return poke_user_compat(child, addr, data);
803
804 case PTRACE_PEEKUSR_AREA:
805 case PTRACE_POKEUSR_AREA:
806 if (copy_from_user(&parea, (void __force __user *) addr,
807 sizeof(parea)))
808 return -EFAULT;
809 addr = parea.kernel_addr;
810 data = parea.process_addr;
811 copied = 0;
812 while (copied < parea.len) {
813 if (request == PTRACE_PEEKUSR_AREA)
814 ret = peek_user_compat(child, addr, data);
815 else {
816 __u32 utmp;
817 if (get_user(utmp,
818 (__u32 __force __user *) data))
819 return -EFAULT;
820 ret = poke_user_compat(child, addr, utmp);
821 }
822 if (ret)
823 return ret;
824 addr += sizeof(unsigned int);
825 data += sizeof(unsigned int);
826 copied += sizeof(unsigned int);
827 }
828 return 0;
829 case PTRACE_GET_LAST_BREAK:
830 return put_user(child->thread.last_break, (unsigned int __user *)data);
831 }
832 return compat_ptrace_request(child, request, addr, data);
833}
834#endif
835
836/*
837 * user_regset definitions.
838 */
839
840static int s390_regs_get(struct task_struct *target,
841 const struct user_regset *regset,
842 struct membuf to)
843{
844 unsigned pos;
845 if (target == current)
846 save_access_regs(target->thread.acrs);
847
848 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
849 membuf_store(&to, __peek_user(target, pos));
850 return 0;
851}
852
853static int s390_regs_set(struct task_struct *target,
854 const struct user_regset *regset,
855 unsigned int pos, unsigned int count,
856 const void *kbuf, const void __user *ubuf)
857{
858 int rc = 0;
859
860 if (target == current)
861 save_access_regs(target->thread.acrs);
862
863 if (kbuf) {
864 const unsigned long *k = kbuf;
865 while (count > 0 && !rc) {
866 rc = __poke_user(target, pos, *k++);
867 count -= sizeof(*k);
868 pos += sizeof(*k);
869 }
870 } else {
871 const unsigned long __user *u = ubuf;
872 while (count > 0 && !rc) {
873 unsigned long word;
874 rc = __get_user(word, u++);
875 if (rc)
876 break;
877 rc = __poke_user(target, pos, word);
878 count -= sizeof(*u);
879 pos += sizeof(*u);
880 }
881 }
882
883 if (rc == 0 && target == current)
884 restore_access_regs(target->thread.acrs);
885
886 return rc;
887}
888
889static int s390_fpregs_get(struct task_struct *target,
890 const struct user_regset *regset,
891 struct membuf to)
892{
893 _s390_fp_regs fp_regs;
894
895 if (target == current)
896 save_fpu_regs();
897
898 fp_regs.fpc = target->thread.fpu.fpc;
899 fpregs_store(&fp_regs, &target->thread.fpu);
900
901 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
902}
903
904static int s390_fpregs_set(struct task_struct *target,
905 const struct user_regset *regset, unsigned int pos,
906 unsigned int count, const void *kbuf,
907 const void __user *ubuf)
908{
909 int rc = 0;
910 freg_t fprs[__NUM_FPRS];
911
912 if (target == current)
913 save_fpu_regs();
914
915 if (cpu_has_vx())
916 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
917 else
918 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
919
920 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
921 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
922 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
923 0, offsetof(s390_fp_regs, fprs));
924 if (rc)
925 return rc;
926 if (ufpc[1] != 0)
927 return -EINVAL;
928 target->thread.fpu.fpc = ufpc[0];
929 }
930
931 if (rc == 0 && count > 0)
932 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
933 fprs, offsetof(s390_fp_regs, fprs), -1);
934 if (rc)
935 return rc;
936
937 if (cpu_has_vx())
938 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
939 else
940 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
941
942 return rc;
943}
944
945static int s390_last_break_get(struct task_struct *target,
946 const struct user_regset *regset,
947 struct membuf to)
948{
949 return membuf_store(&to, target->thread.last_break);
950}
951
952static int s390_last_break_set(struct task_struct *target,
953 const struct user_regset *regset,
954 unsigned int pos, unsigned int count,
955 const void *kbuf, const void __user *ubuf)
956{
957 return 0;
958}
959
960static int s390_tdb_get(struct task_struct *target,
961 const struct user_regset *regset,
962 struct membuf to)
963{
964 struct pt_regs *regs = task_pt_regs(target);
965 size_t size;
966
967 if (!(regs->int_code & 0x200))
968 return -ENODATA;
969 size = sizeof(target->thread.trap_tdb.data);
970 return membuf_write(&to, target->thread.trap_tdb.data, size);
971}
972
973static int s390_tdb_set(struct task_struct *target,
974 const struct user_regset *regset,
975 unsigned int pos, unsigned int count,
976 const void *kbuf, const void __user *ubuf)
977{
978 return 0;
979}
980
981static int s390_vxrs_low_get(struct task_struct *target,
982 const struct user_regset *regset,
983 struct membuf to)
984{
985 __u64 vxrs[__NUM_VXRS_LOW];
986 int i;
987
988 if (!cpu_has_vx())
989 return -ENODEV;
990 if (target == current)
991 save_fpu_regs();
992 for (i = 0; i < __NUM_VXRS_LOW; i++)
993 vxrs[i] = target->thread.fpu.vxrs[i].low;
994 return membuf_write(&to, vxrs, sizeof(vxrs));
995}
996
997static int s390_vxrs_low_set(struct task_struct *target,
998 const struct user_regset *regset,
999 unsigned int pos, unsigned int count,
1000 const void *kbuf, const void __user *ubuf)
1001{
1002 __u64 vxrs[__NUM_VXRS_LOW];
1003 int i, rc;
1004
1005 if (!cpu_has_vx())
1006 return -ENODEV;
1007 if (target == current)
1008 save_fpu_regs();
1009
1010 for (i = 0; i < __NUM_VXRS_LOW; i++)
1011 vxrs[i] = target->thread.fpu.vxrs[i].low;
1012
1013 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014 if (rc == 0)
1015 for (i = 0; i < __NUM_VXRS_LOW; i++)
1016 target->thread.fpu.vxrs[i].low = vxrs[i];
1017
1018 return rc;
1019}
1020
1021static int s390_vxrs_high_get(struct task_struct *target,
1022 const struct user_regset *regset,
1023 struct membuf to)
1024{
1025 if (!cpu_has_vx())
1026 return -ENODEV;
1027 if (target == current)
1028 save_fpu_regs();
1029 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030 __NUM_VXRS_HIGH * sizeof(__vector128));
1031}
1032
1033static int s390_vxrs_high_set(struct task_struct *target,
1034 const struct user_regset *regset,
1035 unsigned int pos, unsigned int count,
1036 const void *kbuf, const void __user *ubuf)
1037{
1038 int rc;
1039
1040 if (!cpu_has_vx())
1041 return -ENODEV;
1042 if (target == current)
1043 save_fpu_regs();
1044
1045 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047 return rc;
1048}
1049
1050static int s390_system_call_get(struct task_struct *target,
1051 const struct user_regset *regset,
1052 struct membuf to)
1053{
1054 return membuf_store(&to, target->thread.system_call);
1055}
1056
1057static int s390_system_call_set(struct task_struct *target,
1058 const struct user_regset *regset,
1059 unsigned int pos, unsigned int count,
1060 const void *kbuf, const void __user *ubuf)
1061{
1062 unsigned int *data = &target->thread.system_call;
1063 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064 data, 0, sizeof(unsigned int));
1065}
1066
1067static int s390_gs_cb_get(struct task_struct *target,
1068 const struct user_regset *regset,
1069 struct membuf to)
1070{
1071 struct gs_cb *data = target->thread.gs_cb;
1072
1073 if (!MACHINE_HAS_GS)
1074 return -ENODEV;
1075 if (!data)
1076 return -ENODATA;
1077 if (target == current)
1078 save_gs_cb(data);
1079 return membuf_write(&to, data, sizeof(struct gs_cb));
1080}
1081
1082static int s390_gs_cb_set(struct task_struct *target,
1083 const struct user_regset *regset,
1084 unsigned int pos, unsigned int count,
1085 const void *kbuf, const void __user *ubuf)
1086{
1087 struct gs_cb gs_cb = { }, *data = NULL;
1088 int rc;
1089
1090 if (!MACHINE_HAS_GS)
1091 return -ENODEV;
1092 if (!target->thread.gs_cb) {
1093 data = kzalloc(sizeof(*data), GFP_KERNEL);
1094 if (!data)
1095 return -ENOMEM;
1096 }
1097 if (!target->thread.gs_cb)
1098 gs_cb.gsd = 25;
1099 else if (target == current)
1100 save_gs_cb(&gs_cb);
1101 else
1102 gs_cb = *target->thread.gs_cb;
1103 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104 &gs_cb, 0, sizeof(gs_cb));
1105 if (rc) {
1106 kfree(data);
1107 return -EFAULT;
1108 }
1109 preempt_disable();
1110 if (!target->thread.gs_cb)
1111 target->thread.gs_cb = data;
1112 *target->thread.gs_cb = gs_cb;
1113 if (target == current) {
1114 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
1115 restore_gs_cb(target->thread.gs_cb);
1116 }
1117 preempt_enable();
1118 return rc;
1119}
1120
1121static int s390_gs_bc_get(struct task_struct *target,
1122 const struct user_regset *regset,
1123 struct membuf to)
1124{
1125 struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127 if (!MACHINE_HAS_GS)
1128 return -ENODEV;
1129 if (!data)
1130 return -ENODATA;
1131 return membuf_write(&to, data, sizeof(struct gs_cb));
1132}
1133
1134static int s390_gs_bc_set(struct task_struct *target,
1135 const struct user_regset *regset,
1136 unsigned int pos, unsigned int count,
1137 const void *kbuf, const void __user *ubuf)
1138{
1139 struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141 if (!MACHINE_HAS_GS)
1142 return -ENODEV;
1143 if (!data) {
1144 data = kzalloc(sizeof(*data), GFP_KERNEL);
1145 if (!data)
1146 return -ENOMEM;
1147 target->thread.gs_bc_cb = data;
1148 }
1149 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150 data, 0, sizeof(struct gs_cb));
1151}
1152
1153static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154{
1155 return (cb->rca & 0x1f) == 0 &&
1156 (cb->roa & 0xfff) == 0 &&
1157 (cb->rla & 0xfff) == 0xfff &&
1158 cb->s == 1 &&
1159 cb->k == 1 &&
1160 cb->h == 0 &&
1161 cb->reserved1 == 0 &&
1162 cb->ps == 1 &&
1163 cb->qs == 0 &&
1164 cb->pc == 1 &&
1165 cb->qc == 0 &&
1166 cb->reserved2 == 0 &&
1167 cb->reserved3 == 0 &&
1168 cb->reserved4 == 0 &&
1169 cb->reserved5 == 0 &&
1170 cb->reserved6 == 0 &&
1171 cb->reserved7 == 0 &&
1172 cb->reserved8 == 0 &&
1173 cb->rla >= cb->roa &&
1174 cb->rca >= cb->roa &&
1175 cb->rca <= cb->rla+1 &&
1176 cb->m < 3;
1177}
1178
1179static int s390_runtime_instr_get(struct task_struct *target,
1180 const struct user_regset *regset,
1181 struct membuf to)
1182{
1183 struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185 if (!test_facility(64))
1186 return -ENODEV;
1187 if (!data)
1188 return -ENODATA;
1189
1190 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1191}
1192
1193static int s390_runtime_instr_set(struct task_struct *target,
1194 const struct user_regset *regset,
1195 unsigned int pos, unsigned int count,
1196 const void *kbuf, const void __user *ubuf)
1197{
1198 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199 int rc;
1200
1201 if (!test_facility(64))
1202 return -ENODEV;
1203
1204 if (!target->thread.ri_cb) {
1205 data = kzalloc(sizeof(*data), GFP_KERNEL);
1206 if (!data)
1207 return -ENOMEM;
1208 }
1209
1210 if (target->thread.ri_cb) {
1211 if (target == current)
1212 store_runtime_instr_cb(&ri_cb);
1213 else
1214 ri_cb = *target->thread.ri_cb;
1215 }
1216
1217 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1219 if (rc) {
1220 kfree(data);
1221 return -EFAULT;
1222 }
1223
1224 if (!is_ri_cb_valid(&ri_cb)) {
1225 kfree(data);
1226 return -EINVAL;
1227 }
1228 /*
1229 * Override access key in any case, since user space should
1230 * not be able to set it, nor should it care about it.
1231 */
1232 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233 preempt_disable();
1234 if (!target->thread.ri_cb)
1235 target->thread.ri_cb = data;
1236 *target->thread.ri_cb = ri_cb;
1237 if (target == current)
1238 load_runtime_instr_cb(target->thread.ri_cb);
1239 preempt_enable();
1240
1241 return 0;
1242}
1243
1244static const struct user_regset s390_regsets[] = {
1245 {
1246 .core_note_type = NT_PRSTATUS,
1247 .n = sizeof(s390_regs) / sizeof(long),
1248 .size = sizeof(long),
1249 .align = sizeof(long),
1250 .regset_get = s390_regs_get,
1251 .set = s390_regs_set,
1252 },
1253 {
1254 .core_note_type = NT_PRFPREG,
1255 .n = sizeof(s390_fp_regs) / sizeof(long),
1256 .size = sizeof(long),
1257 .align = sizeof(long),
1258 .regset_get = s390_fpregs_get,
1259 .set = s390_fpregs_set,
1260 },
1261 {
1262 .core_note_type = NT_S390_SYSTEM_CALL,
1263 .n = 1,
1264 .size = sizeof(unsigned int),
1265 .align = sizeof(unsigned int),
1266 .regset_get = s390_system_call_get,
1267 .set = s390_system_call_set,
1268 },
1269 {
1270 .core_note_type = NT_S390_LAST_BREAK,
1271 .n = 1,
1272 .size = sizeof(long),
1273 .align = sizeof(long),
1274 .regset_get = s390_last_break_get,
1275 .set = s390_last_break_set,
1276 },
1277 {
1278 .core_note_type = NT_S390_TDB,
1279 .n = 1,
1280 .size = 256,
1281 .align = 1,
1282 .regset_get = s390_tdb_get,
1283 .set = s390_tdb_set,
1284 },
1285 {
1286 .core_note_type = NT_S390_VXRS_LOW,
1287 .n = __NUM_VXRS_LOW,
1288 .size = sizeof(__u64),
1289 .align = sizeof(__u64),
1290 .regset_get = s390_vxrs_low_get,
1291 .set = s390_vxrs_low_set,
1292 },
1293 {
1294 .core_note_type = NT_S390_VXRS_HIGH,
1295 .n = __NUM_VXRS_HIGH,
1296 .size = sizeof(__vector128),
1297 .align = sizeof(__vector128),
1298 .regset_get = s390_vxrs_high_get,
1299 .set = s390_vxrs_high_set,
1300 },
1301 {
1302 .core_note_type = NT_S390_GS_CB,
1303 .n = sizeof(struct gs_cb) / sizeof(__u64),
1304 .size = sizeof(__u64),
1305 .align = sizeof(__u64),
1306 .regset_get = s390_gs_cb_get,
1307 .set = s390_gs_cb_set,
1308 },
1309 {
1310 .core_note_type = NT_S390_GS_BC,
1311 .n = sizeof(struct gs_cb) / sizeof(__u64),
1312 .size = sizeof(__u64),
1313 .align = sizeof(__u64),
1314 .regset_get = s390_gs_bc_get,
1315 .set = s390_gs_bc_set,
1316 },
1317 {
1318 .core_note_type = NT_S390_RI_CB,
1319 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320 .size = sizeof(__u64),
1321 .align = sizeof(__u64),
1322 .regset_get = s390_runtime_instr_get,
1323 .set = s390_runtime_instr_set,
1324 },
1325};
1326
1327static const struct user_regset_view user_s390_view = {
1328 .name = "s390x",
1329 .e_machine = EM_S390,
1330 .regsets = s390_regsets,
1331 .n = ARRAY_SIZE(s390_regsets)
1332};
1333
1334#ifdef CONFIG_COMPAT
1335static int s390_compat_regs_get(struct task_struct *target,
1336 const struct user_regset *regset,
1337 struct membuf to)
1338{
1339 unsigned n;
1340
1341 if (target == current)
1342 save_access_regs(target->thread.acrs);
1343
1344 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345 membuf_store(&to, __peek_user_compat(target, n));
1346 return 0;
1347}
1348
1349static int s390_compat_regs_set(struct task_struct *target,
1350 const struct user_regset *regset,
1351 unsigned int pos, unsigned int count,
1352 const void *kbuf, const void __user *ubuf)
1353{
1354 int rc = 0;
1355
1356 if (target == current)
1357 save_access_regs(target->thread.acrs);
1358
1359 if (kbuf) {
1360 const compat_ulong_t *k = kbuf;
1361 while (count > 0 && !rc) {
1362 rc = __poke_user_compat(target, pos, *k++);
1363 count -= sizeof(*k);
1364 pos += sizeof(*k);
1365 }
1366 } else {
1367 const compat_ulong_t __user *u = ubuf;
1368 while (count > 0 && !rc) {
1369 compat_ulong_t word;
1370 rc = __get_user(word, u++);
1371 if (rc)
1372 break;
1373 rc = __poke_user_compat(target, pos, word);
1374 count -= sizeof(*u);
1375 pos += sizeof(*u);
1376 }
1377 }
1378
1379 if (rc == 0 && target == current)
1380 restore_access_regs(target->thread.acrs);
1381
1382 return rc;
1383}
1384
1385static int s390_compat_regs_high_get(struct task_struct *target,
1386 const struct user_regset *regset,
1387 struct membuf to)
1388{
1389 compat_ulong_t *gprs_high;
1390 int i;
1391
1392 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394 membuf_store(&to, *gprs_high);
1395 return 0;
1396}
1397
1398static int s390_compat_regs_high_set(struct task_struct *target,
1399 const struct user_regset *regset,
1400 unsigned int pos, unsigned int count,
1401 const void *kbuf, const void __user *ubuf)
1402{
1403 compat_ulong_t *gprs_high;
1404 int rc = 0;
1405
1406 gprs_high = (compat_ulong_t *)
1407 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408 if (kbuf) {
1409 const compat_ulong_t *k = kbuf;
1410 while (count > 0) {
1411 *gprs_high = *k++;
1412 *gprs_high += 2;
1413 count -= sizeof(*k);
1414 }
1415 } else {
1416 const compat_ulong_t __user *u = ubuf;
1417 while (count > 0 && !rc) {
1418 unsigned long word;
1419 rc = __get_user(word, u++);
1420 if (rc)
1421 break;
1422 *gprs_high = word;
1423 *gprs_high += 2;
1424 count -= sizeof(*u);
1425 }
1426 }
1427
1428 return rc;
1429}
1430
1431static int s390_compat_last_break_get(struct task_struct *target,
1432 const struct user_regset *regset,
1433 struct membuf to)
1434{
1435 compat_ulong_t last_break = target->thread.last_break;
1436
1437 return membuf_store(&to, (unsigned long)last_break);
1438}
1439
1440static int s390_compat_last_break_set(struct task_struct *target,
1441 const struct user_regset *regset,
1442 unsigned int pos, unsigned int count,
1443 const void *kbuf, const void __user *ubuf)
1444{
1445 return 0;
1446}
1447
1448static const struct user_regset s390_compat_regsets[] = {
1449 {
1450 .core_note_type = NT_PRSTATUS,
1451 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452 .size = sizeof(compat_long_t),
1453 .align = sizeof(compat_long_t),
1454 .regset_get = s390_compat_regs_get,
1455 .set = s390_compat_regs_set,
1456 },
1457 {
1458 .core_note_type = NT_PRFPREG,
1459 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460 .size = sizeof(compat_long_t),
1461 .align = sizeof(compat_long_t),
1462 .regset_get = s390_fpregs_get,
1463 .set = s390_fpregs_set,
1464 },
1465 {
1466 .core_note_type = NT_S390_SYSTEM_CALL,
1467 .n = 1,
1468 .size = sizeof(compat_uint_t),
1469 .align = sizeof(compat_uint_t),
1470 .regset_get = s390_system_call_get,
1471 .set = s390_system_call_set,
1472 },
1473 {
1474 .core_note_type = NT_S390_LAST_BREAK,
1475 .n = 1,
1476 .size = sizeof(long),
1477 .align = sizeof(long),
1478 .regset_get = s390_compat_last_break_get,
1479 .set = s390_compat_last_break_set,
1480 },
1481 {
1482 .core_note_type = NT_S390_TDB,
1483 .n = 1,
1484 .size = 256,
1485 .align = 1,
1486 .regset_get = s390_tdb_get,
1487 .set = s390_tdb_set,
1488 },
1489 {
1490 .core_note_type = NT_S390_VXRS_LOW,
1491 .n = __NUM_VXRS_LOW,
1492 .size = sizeof(__u64),
1493 .align = sizeof(__u64),
1494 .regset_get = s390_vxrs_low_get,
1495 .set = s390_vxrs_low_set,
1496 },
1497 {
1498 .core_note_type = NT_S390_VXRS_HIGH,
1499 .n = __NUM_VXRS_HIGH,
1500 .size = sizeof(__vector128),
1501 .align = sizeof(__vector128),
1502 .regset_get = s390_vxrs_high_get,
1503 .set = s390_vxrs_high_set,
1504 },
1505 {
1506 .core_note_type = NT_S390_HIGH_GPRS,
1507 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508 .size = sizeof(compat_long_t),
1509 .align = sizeof(compat_long_t),
1510 .regset_get = s390_compat_regs_high_get,
1511 .set = s390_compat_regs_high_set,
1512 },
1513 {
1514 .core_note_type = NT_S390_GS_CB,
1515 .n = sizeof(struct gs_cb) / sizeof(__u64),
1516 .size = sizeof(__u64),
1517 .align = sizeof(__u64),
1518 .regset_get = s390_gs_cb_get,
1519 .set = s390_gs_cb_set,
1520 },
1521 {
1522 .core_note_type = NT_S390_GS_BC,
1523 .n = sizeof(struct gs_cb) / sizeof(__u64),
1524 .size = sizeof(__u64),
1525 .align = sizeof(__u64),
1526 .regset_get = s390_gs_bc_get,
1527 .set = s390_gs_bc_set,
1528 },
1529 {
1530 .core_note_type = NT_S390_RI_CB,
1531 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532 .size = sizeof(__u64),
1533 .align = sizeof(__u64),
1534 .regset_get = s390_runtime_instr_get,
1535 .set = s390_runtime_instr_set,
1536 },
1537};
1538
1539static const struct user_regset_view user_s390_compat_view = {
1540 .name = "s390",
1541 .e_machine = EM_S390,
1542 .regsets = s390_compat_regsets,
1543 .n = ARRAY_SIZE(s390_compat_regsets)
1544};
1545#endif
1546
1547const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548{
1549#ifdef CONFIG_COMPAT
1550 if (test_tsk_thread_flag(task, TIF_31BIT))
1551 return &user_s390_compat_view;
1552#endif
1553 return &user_s390_view;
1554}
1555
1556static const char *gpr_names[NUM_GPRS] = {
1557 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1558 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559};
1560
1561unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562{
1563 if (offset >= NUM_GPRS)
1564 return 0;
1565 return regs->gprs[offset];
1566}
1567
1568int regs_query_register_offset(const char *name)
1569{
1570 unsigned long offset;
1571
1572 if (!name || *name != 'r')
1573 return -EINVAL;
1574 if (kstrtoul(name + 1, 10, &offset))
1575 return -EINVAL;
1576 if (offset >= NUM_GPRS)
1577 return -EINVAL;
1578 return offset;
1579}
1580
1581const char *regs_query_register_name(unsigned int offset)
1582{
1583 if (offset >= NUM_GPRS)
1584 return NULL;
1585 return gpr_names[offset];
1586}
1587
1588static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589{
1590 unsigned long ksp = kernel_stack_pointer(regs);
1591
1592 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593}
1594
1595/**
1596 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1597 * @regs:pt_regs which contains kernel stack pointer.
1598 * @n:stack entry number.
1599 *
1600 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1601 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1602 * this returns 0.
1603 */
1604unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605{
1606 unsigned long addr;
1607
1608 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609 if (!regs_within_kernel_stack(regs, addr))
1610 return 0;
1611 return *(unsigned long *)addr;
1612}
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999,2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <linux/compat.h>
24#include <trace/syscall.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/switch_to.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_SYSTEM_CALL,
46 REGSET_GENERAL_EXTENDED,
47};
48
49void update_per_regs(struct task_struct *task)
50{
51 struct pt_regs *regs = task_pt_regs(task);
52 struct thread_struct *thread = &task->thread;
53 struct per_regs old, new;
54
55 /* Copy user specified PER registers */
56 new.control = thread->per_user.control;
57 new.start = thread->per_user.start;
58 new.end = thread->per_user.end;
59
60 /* merge TIF_SINGLE_STEP into user specified PER registers. */
61 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
62 new.control |= PER_EVENT_IFETCH;
63 new.start = 0;
64 new.end = PSW_ADDR_INSN;
65 }
66
67 /* Take care of the PER enablement bit in the PSW. */
68 if (!(new.control & PER_EVENT_MASK)) {
69 regs->psw.mask &= ~PSW_MASK_PER;
70 return;
71 }
72 regs->psw.mask |= PSW_MASK_PER;
73 __ctl_store(old, 9, 11);
74 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
75 __ctl_load(new, 9, 11);
76}
77
78void user_enable_single_step(struct task_struct *task)
79{
80 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
81 if (task == current)
82 update_per_regs(task);
83}
84
85void user_disable_single_step(struct task_struct *task)
86{
87 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
88 if (task == current)
89 update_per_regs(task);
90}
91
92/*
93 * Called by kernel/ptrace.c when detaching..
94 *
95 * Clear all debugging related fields.
96 */
97void ptrace_disable(struct task_struct *task)
98{
99 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
100 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
101 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
102 clear_tsk_thread_flag(task, TIF_PER_TRAP);
103}
104
105#ifndef CONFIG_64BIT
106# define __ADDR_MASK 3
107#else
108# define __ADDR_MASK 7
109#endif
110
111static inline unsigned long __peek_user_per(struct task_struct *child,
112 addr_t addr)
113{
114 struct per_struct_kernel *dummy = NULL;
115
116 if (addr == (addr_t) &dummy->cr9)
117 /* Control bits of the active per set. */
118 return test_thread_flag(TIF_SINGLE_STEP) ?
119 PER_EVENT_IFETCH : child->thread.per_user.control;
120 else if (addr == (addr_t) &dummy->cr10)
121 /* Start address of the active per set. */
122 return test_thread_flag(TIF_SINGLE_STEP) ?
123 0 : child->thread.per_user.start;
124 else if (addr == (addr_t) &dummy->cr11)
125 /* End address of the active per set. */
126 return test_thread_flag(TIF_SINGLE_STEP) ?
127 PSW_ADDR_INSN : child->thread.per_user.end;
128 else if (addr == (addr_t) &dummy->bits)
129 /* Single-step bit. */
130 return test_thread_flag(TIF_SINGLE_STEP) ?
131 (1UL << (BITS_PER_LONG - 1)) : 0;
132 else if (addr == (addr_t) &dummy->starting_addr)
133 /* Start address of the user specified per set. */
134 return child->thread.per_user.start;
135 else if (addr == (addr_t) &dummy->ending_addr)
136 /* End address of the user specified per set. */
137 return child->thread.per_user.end;
138 else if (addr == (addr_t) &dummy->perc_atmid)
139 /* PER code, ATMID and AI of the last PER trap */
140 return (unsigned long)
141 child->thread.per_event.cause << (BITS_PER_LONG - 16);
142 else if (addr == (addr_t) &dummy->address)
143 /* Address of the last PER trap */
144 return child->thread.per_event.address;
145 else if (addr == (addr_t) &dummy->access_id)
146 /* Access id of the last PER trap */
147 return (unsigned long)
148 child->thread.per_event.paid << (BITS_PER_LONG - 8);
149 return 0;
150}
151
152/*
153 * Read the word at offset addr from the user area of a process. The
154 * trouble here is that the information is littered over different
155 * locations. The process registers are found on the kernel stack,
156 * the floating point stuff and the trace settings are stored in
157 * the task structure. In addition the different structures in
158 * struct user contain pad bytes that should be read as zeroes.
159 * Lovely...
160 */
161static unsigned long __peek_user(struct task_struct *child, addr_t addr)
162{
163 struct user *dummy = NULL;
164 addr_t offset, tmp;
165
166 if (addr < (addr_t) &dummy->regs.acrs) {
167 /*
168 * psw and gprs are stored on the stack
169 */
170 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
171 if (addr == (addr_t) &dummy->regs.psw.mask)
172 /* Return a clean psw mask. */
173 tmp = psw_user_bits | (tmp & PSW_MASK_USER);
174
175 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
176 /*
177 * access registers are stored in the thread structure
178 */
179 offset = addr - (addr_t) &dummy->regs.acrs;
180#ifdef CONFIG_64BIT
181 /*
182 * Very special case: old & broken 64 bit gdb reading
183 * from acrs[15]. Result is a 64 bit value. Read the
184 * 32 bit acrs[15] value and shift it by 32. Sick...
185 */
186 if (addr == (addr_t) &dummy->regs.acrs[15])
187 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
188 else
189#endif
190 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
191
192 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
193 /*
194 * orig_gpr2 is stored on the kernel stack
195 */
196 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
197
198 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
199 /*
200 * prevent reads of padding hole between
201 * orig_gpr2 and fp_regs on s390.
202 */
203 tmp = 0;
204
205 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
206 /*
207 * floating point regs. are stored in the thread structure
208 */
209 offset = addr - (addr_t) &dummy->regs.fp_regs;
210 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
211 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
212 tmp &= (unsigned long) FPC_VALID_MASK
213 << (BITS_PER_LONG - 32);
214
215 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
216 /*
217 * Handle access to the per_info structure.
218 */
219 addr -= (addr_t) &dummy->regs.per_info;
220 tmp = __peek_user_per(child, addr);
221
222 } else
223 tmp = 0;
224
225 return tmp;
226}
227
228static int
229peek_user(struct task_struct *child, addr_t addr, addr_t data)
230{
231 addr_t tmp, mask;
232
233 /*
234 * Stupid gdb peeks/pokes the access registers in 64 bit with
235 * an alignment of 4. Programmers from hell...
236 */
237 mask = __ADDR_MASK;
238#ifdef CONFIG_64BIT
239 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
240 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
241 mask = 3;
242#endif
243 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
244 return -EIO;
245
246 tmp = __peek_user(child, addr);
247 return put_user(tmp, (addr_t __user *) data);
248}
249
250static inline void __poke_user_per(struct task_struct *child,
251 addr_t addr, addr_t data)
252{
253 struct per_struct_kernel *dummy = NULL;
254
255 /*
256 * There are only three fields in the per_info struct that the
257 * debugger user can write to.
258 * 1) cr9: the debugger wants to set a new PER event mask
259 * 2) starting_addr: the debugger wants to set a new starting
260 * address to use with the PER event mask.
261 * 3) ending_addr: the debugger wants to set a new ending
262 * address to use with the PER event mask.
263 * The user specified PER event mask and the start and end
264 * addresses are used only if single stepping is not in effect.
265 * Writes to any other field in per_info are ignored.
266 */
267 if (addr == (addr_t) &dummy->cr9)
268 /* PER event mask of the user specified per set. */
269 child->thread.per_user.control =
270 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
271 else if (addr == (addr_t) &dummy->starting_addr)
272 /* Starting address of the user specified per set. */
273 child->thread.per_user.start = data;
274 else if (addr == (addr_t) &dummy->ending_addr)
275 /* Ending address of the user specified per set. */
276 child->thread.per_user.end = data;
277}
278
279/*
280 * Write a word to the user area of a process at location addr. This
281 * operation does have an additional problem compared to peek_user.
282 * Stores to the program status word and on the floating point
283 * control register needs to get checked for validity.
284 */
285static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
286{
287 struct user *dummy = NULL;
288 addr_t offset;
289
290 if (addr < (addr_t) &dummy->regs.acrs) {
291 /*
292 * psw and gprs are stored on the stack
293 */
294 if (addr == (addr_t) &dummy->regs.psw.mask &&
295 ((data & ~PSW_MASK_USER) != psw_user_bits ||
296 ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
297 /* Invalid psw mask. */
298 return -EINVAL;
299 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
300
301 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
302 /*
303 * access registers are stored in the thread structure
304 */
305 offset = addr - (addr_t) &dummy->regs.acrs;
306#ifdef CONFIG_64BIT
307 /*
308 * Very special case: old & broken 64 bit gdb writing
309 * to acrs[15] with a 64 bit value. Ignore the lower
310 * half of the value and write the upper 32 bit to
311 * acrs[15]. Sick...
312 */
313 if (addr == (addr_t) &dummy->regs.acrs[15])
314 child->thread.acrs[15] = (unsigned int) (data >> 32);
315 else
316#endif
317 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
318
319 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
320 /*
321 * orig_gpr2 is stored on the kernel stack
322 */
323 task_pt_regs(child)->orig_gpr2 = data;
324
325 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
326 /*
327 * prevent writes of padding hole between
328 * orig_gpr2 and fp_regs on s390.
329 */
330 return 0;
331
332 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
333 /*
334 * floating point regs. are stored in the thread structure
335 */
336 if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
337 (data & ~((unsigned long) FPC_VALID_MASK
338 << (BITS_PER_LONG - 32))) != 0)
339 return -EINVAL;
340 offset = addr - (addr_t) &dummy->regs.fp_regs;
341 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
342
343 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
344 /*
345 * Handle access to the per_info structure.
346 */
347 addr -= (addr_t) &dummy->regs.per_info;
348 __poke_user_per(child, addr, data);
349
350 }
351
352 return 0;
353}
354
355static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
356{
357 addr_t mask;
358
359 /*
360 * Stupid gdb peeks/pokes the access registers in 64 bit with
361 * an alignment of 4. Programmers from hell indeed...
362 */
363 mask = __ADDR_MASK;
364#ifdef CONFIG_64BIT
365 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
366 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
367 mask = 3;
368#endif
369 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
370 return -EIO;
371
372 return __poke_user(child, addr, data);
373}
374
375long arch_ptrace(struct task_struct *child, long request,
376 unsigned long addr, unsigned long data)
377{
378 ptrace_area parea;
379 int copied, ret;
380
381 switch (request) {
382 case PTRACE_PEEKUSR:
383 /* read the word at location addr in the USER area. */
384 return peek_user(child, addr, data);
385
386 case PTRACE_POKEUSR:
387 /* write the word at location addr in the USER area */
388 return poke_user(child, addr, data);
389
390 case PTRACE_PEEKUSR_AREA:
391 case PTRACE_POKEUSR_AREA:
392 if (copy_from_user(&parea, (void __force __user *) addr,
393 sizeof(parea)))
394 return -EFAULT;
395 addr = parea.kernel_addr;
396 data = parea.process_addr;
397 copied = 0;
398 while (copied < parea.len) {
399 if (request == PTRACE_PEEKUSR_AREA)
400 ret = peek_user(child, addr, data);
401 else {
402 addr_t utmp;
403 if (get_user(utmp,
404 (addr_t __force __user *) data))
405 return -EFAULT;
406 ret = poke_user(child, addr, utmp);
407 }
408 if (ret)
409 return ret;
410 addr += sizeof(unsigned long);
411 data += sizeof(unsigned long);
412 copied += sizeof(unsigned long);
413 }
414 return 0;
415 case PTRACE_GET_LAST_BREAK:
416 put_user(task_thread_info(child)->last_break,
417 (unsigned long __user *) data);
418 return 0;
419 default:
420 /* Removing high order bit from addr (only for 31 bit). */
421 addr &= PSW_ADDR_INSN;
422 return ptrace_request(child, request, addr, data);
423 }
424}
425
426#ifdef CONFIG_COMPAT
427/*
428 * Now the fun part starts... a 31 bit program running in the
429 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
430 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
431 * to handle, the difference to the 64 bit versions of the requests
432 * is that the access is done in multiples of 4 byte instead of
433 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
434 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
435 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
436 * is a 31 bit program too, the content of struct user can be
437 * emulated. A 31 bit program peeking into the struct user of
438 * a 64 bit program is a no-no.
439 */
440
441/*
442 * Same as peek_user_per but for a 31 bit program.
443 */
444static inline __u32 __peek_user_per_compat(struct task_struct *child,
445 addr_t addr)
446{
447 struct compat_per_struct_kernel *dummy32 = NULL;
448
449 if (addr == (addr_t) &dummy32->cr9)
450 /* Control bits of the active per set. */
451 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
452 PER_EVENT_IFETCH : child->thread.per_user.control;
453 else if (addr == (addr_t) &dummy32->cr10)
454 /* Start address of the active per set. */
455 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
456 0 : child->thread.per_user.start;
457 else if (addr == (addr_t) &dummy32->cr11)
458 /* End address of the active per set. */
459 return test_thread_flag(TIF_SINGLE_STEP) ?
460 PSW32_ADDR_INSN : child->thread.per_user.end;
461 else if (addr == (addr_t) &dummy32->bits)
462 /* Single-step bit. */
463 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
464 0x80000000 : 0;
465 else if (addr == (addr_t) &dummy32->starting_addr)
466 /* Start address of the user specified per set. */
467 return (__u32) child->thread.per_user.start;
468 else if (addr == (addr_t) &dummy32->ending_addr)
469 /* End address of the user specified per set. */
470 return (__u32) child->thread.per_user.end;
471 else if (addr == (addr_t) &dummy32->perc_atmid)
472 /* PER code, ATMID and AI of the last PER trap */
473 return (__u32) child->thread.per_event.cause << 16;
474 else if (addr == (addr_t) &dummy32->address)
475 /* Address of the last PER trap */
476 return (__u32) child->thread.per_event.address;
477 else if (addr == (addr_t) &dummy32->access_id)
478 /* Access id of the last PER trap */
479 return (__u32) child->thread.per_event.paid << 24;
480 return 0;
481}
482
483/*
484 * Same as peek_user but for a 31 bit program.
485 */
486static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
487{
488 struct compat_user *dummy32 = NULL;
489 addr_t offset;
490 __u32 tmp;
491
492 if (addr < (addr_t) &dummy32->regs.acrs) {
493 struct pt_regs *regs = task_pt_regs(child);
494 /*
495 * psw and gprs are stored on the stack
496 */
497 if (addr == (addr_t) &dummy32->regs.psw.mask) {
498 /* Fake a 31 bit psw mask. */
499 tmp = (__u32)(regs->psw.mask >> 32);
500 tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
501 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
502 /* Fake a 31 bit psw address. */
503 tmp = (__u32) regs->psw.addr |
504 (__u32)(regs->psw.mask & PSW_MASK_BA);
505 } else {
506 /* gpr 0-15 */
507 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
508 }
509 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
510 /*
511 * access registers are stored in the thread structure
512 */
513 offset = addr - (addr_t) &dummy32->regs.acrs;
514 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
515
516 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
517 /*
518 * orig_gpr2 is stored on the kernel stack
519 */
520 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
521
522 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
523 /*
524 * prevent reads of padding hole between
525 * orig_gpr2 and fp_regs on s390.
526 */
527 tmp = 0;
528
529 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
530 /*
531 * floating point regs. are stored in the thread structure
532 */
533 offset = addr - (addr_t) &dummy32->regs.fp_regs;
534 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
535
536 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
537 /*
538 * Handle access to the per_info structure.
539 */
540 addr -= (addr_t) &dummy32->regs.per_info;
541 tmp = __peek_user_per_compat(child, addr);
542
543 } else
544 tmp = 0;
545
546 return tmp;
547}
548
549static int peek_user_compat(struct task_struct *child,
550 addr_t addr, addr_t data)
551{
552 __u32 tmp;
553
554 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
555 return -EIO;
556
557 tmp = __peek_user_compat(child, addr);
558 return put_user(tmp, (__u32 __user *) data);
559}
560
561/*
562 * Same as poke_user_per but for a 31 bit program.
563 */
564static inline void __poke_user_per_compat(struct task_struct *child,
565 addr_t addr, __u32 data)
566{
567 struct compat_per_struct_kernel *dummy32 = NULL;
568
569 if (addr == (addr_t) &dummy32->cr9)
570 /* PER event mask of the user specified per set. */
571 child->thread.per_user.control =
572 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
573 else if (addr == (addr_t) &dummy32->starting_addr)
574 /* Starting address of the user specified per set. */
575 child->thread.per_user.start = data;
576 else if (addr == (addr_t) &dummy32->ending_addr)
577 /* Ending address of the user specified per set. */
578 child->thread.per_user.end = data;
579}
580
581/*
582 * Same as poke_user but for a 31 bit program.
583 */
584static int __poke_user_compat(struct task_struct *child,
585 addr_t addr, addr_t data)
586{
587 struct compat_user *dummy32 = NULL;
588 __u32 tmp = (__u32) data;
589 addr_t offset;
590
591 if (addr < (addr_t) &dummy32->regs.acrs) {
592 struct pt_regs *regs = task_pt_regs(child);
593 /*
594 * psw, gprs, acrs and orig_gpr2 are stored on the stack
595 */
596 if (addr == (addr_t) &dummy32->regs.psw.mask) {
597 /* Build a 64 bit psw mask from 31 bit mask. */
598 if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
599 /* Invalid psw mask. */
600 return -EINVAL;
601 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
602 (regs->psw.mask & PSW_MASK_BA) |
603 (__u64)(tmp & PSW32_MASK_USER) << 32;
604 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
605 /* Build a 64 bit psw address from 31 bit address. */
606 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
607 /* Transfer 31 bit amode bit to psw mask. */
608 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
609 (__u64)(tmp & PSW32_ADDR_AMODE);
610 } else {
611 /* gpr 0-15 */
612 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
613 }
614 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
615 /*
616 * access registers are stored in the thread structure
617 */
618 offset = addr - (addr_t) &dummy32->regs.acrs;
619 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
620
621 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
622 /*
623 * orig_gpr2 is stored on the kernel stack
624 */
625 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
626
627 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
628 /*
629 * prevent writess of padding hole between
630 * orig_gpr2 and fp_regs on s390.
631 */
632 return 0;
633
634 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
635 /*
636 * floating point regs. are stored in the thread structure
637 */
638 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
639 (tmp & ~FPC_VALID_MASK) != 0)
640 /* Invalid floating point control. */
641 return -EINVAL;
642 offset = addr - (addr_t) &dummy32->regs.fp_regs;
643 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
644
645 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
646 /*
647 * Handle access to the per_info structure.
648 */
649 addr -= (addr_t) &dummy32->regs.per_info;
650 __poke_user_per_compat(child, addr, data);
651 }
652
653 return 0;
654}
655
656static int poke_user_compat(struct task_struct *child,
657 addr_t addr, addr_t data)
658{
659 if (!is_compat_task() || (addr & 3) ||
660 addr > sizeof(struct compat_user) - 3)
661 return -EIO;
662
663 return __poke_user_compat(child, addr, data);
664}
665
666long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
667 compat_ulong_t caddr, compat_ulong_t cdata)
668{
669 unsigned long addr = caddr;
670 unsigned long data = cdata;
671 compat_ptrace_area parea;
672 int copied, ret;
673
674 switch (request) {
675 case PTRACE_PEEKUSR:
676 /* read the word at location addr in the USER area. */
677 return peek_user_compat(child, addr, data);
678
679 case PTRACE_POKEUSR:
680 /* write the word at location addr in the USER area */
681 return poke_user_compat(child, addr, data);
682
683 case PTRACE_PEEKUSR_AREA:
684 case PTRACE_POKEUSR_AREA:
685 if (copy_from_user(&parea, (void __force __user *) addr,
686 sizeof(parea)))
687 return -EFAULT;
688 addr = parea.kernel_addr;
689 data = parea.process_addr;
690 copied = 0;
691 while (copied < parea.len) {
692 if (request == PTRACE_PEEKUSR_AREA)
693 ret = peek_user_compat(child, addr, data);
694 else {
695 __u32 utmp;
696 if (get_user(utmp,
697 (__u32 __force __user *) data))
698 return -EFAULT;
699 ret = poke_user_compat(child, addr, utmp);
700 }
701 if (ret)
702 return ret;
703 addr += sizeof(unsigned int);
704 data += sizeof(unsigned int);
705 copied += sizeof(unsigned int);
706 }
707 return 0;
708 case PTRACE_GET_LAST_BREAK:
709 put_user(task_thread_info(child)->last_break,
710 (unsigned int __user *) data);
711 return 0;
712 }
713 return compat_ptrace_request(child, request, addr, data);
714}
715#endif
716
717asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
718{
719 long ret = 0;
720
721 /* Do the secure computing check first. */
722 secure_computing_strict(regs->gprs[2]);
723
724 /*
725 * The sysc_tracesys code in entry.S stored the system
726 * call number to gprs[2].
727 */
728 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
729 (tracehook_report_syscall_entry(regs) ||
730 regs->gprs[2] >= NR_syscalls)) {
731 /*
732 * Tracing decided this syscall should not happen or the
733 * debugger stored an invalid system call number. Skip
734 * the system call and the system call restart handling.
735 */
736 clear_thread_flag(TIF_SYSCALL);
737 ret = -1;
738 }
739
740 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
741 trace_sys_enter(regs, regs->gprs[2]);
742
743 audit_syscall_entry(is_compat_task() ?
744 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
745 regs->gprs[2], regs->orig_gpr2,
746 regs->gprs[3], regs->gprs[4],
747 regs->gprs[5]);
748 return ret ?: regs->gprs[2];
749}
750
751asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
752{
753 audit_syscall_exit(regs);
754
755 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
756 trace_sys_exit(regs, regs->gprs[2]);
757
758 if (test_thread_flag(TIF_SYSCALL_TRACE))
759 tracehook_report_syscall_exit(regs, 0);
760}
761
762/*
763 * user_regset definitions.
764 */
765
766static int s390_regs_get(struct task_struct *target,
767 const struct user_regset *regset,
768 unsigned int pos, unsigned int count,
769 void *kbuf, void __user *ubuf)
770{
771 if (target == current)
772 save_access_regs(target->thread.acrs);
773
774 if (kbuf) {
775 unsigned long *k = kbuf;
776 while (count > 0) {
777 *k++ = __peek_user(target, pos);
778 count -= sizeof(*k);
779 pos += sizeof(*k);
780 }
781 } else {
782 unsigned long __user *u = ubuf;
783 while (count > 0) {
784 if (__put_user(__peek_user(target, pos), u++))
785 return -EFAULT;
786 count -= sizeof(*u);
787 pos += sizeof(*u);
788 }
789 }
790 return 0;
791}
792
793static int s390_regs_set(struct task_struct *target,
794 const struct user_regset *regset,
795 unsigned int pos, unsigned int count,
796 const void *kbuf, const void __user *ubuf)
797{
798 int rc = 0;
799
800 if (target == current)
801 save_access_regs(target->thread.acrs);
802
803 if (kbuf) {
804 const unsigned long *k = kbuf;
805 while (count > 0 && !rc) {
806 rc = __poke_user(target, pos, *k++);
807 count -= sizeof(*k);
808 pos += sizeof(*k);
809 }
810 } else {
811 const unsigned long __user *u = ubuf;
812 while (count > 0 && !rc) {
813 unsigned long word;
814 rc = __get_user(word, u++);
815 if (rc)
816 break;
817 rc = __poke_user(target, pos, word);
818 count -= sizeof(*u);
819 pos += sizeof(*u);
820 }
821 }
822
823 if (rc == 0 && target == current)
824 restore_access_regs(target->thread.acrs);
825
826 return rc;
827}
828
829static int s390_fpregs_get(struct task_struct *target,
830 const struct user_regset *regset, unsigned int pos,
831 unsigned int count, void *kbuf, void __user *ubuf)
832{
833 if (target == current)
834 save_fp_regs(&target->thread.fp_regs);
835
836 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
837 &target->thread.fp_regs, 0, -1);
838}
839
840static int s390_fpregs_set(struct task_struct *target,
841 const struct user_regset *regset, unsigned int pos,
842 unsigned int count, const void *kbuf,
843 const void __user *ubuf)
844{
845 int rc = 0;
846
847 if (target == current)
848 save_fp_regs(&target->thread.fp_regs);
849
850 /* If setting FPC, must validate it first. */
851 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
852 u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
853 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
854 0, offsetof(s390_fp_regs, fprs));
855 if (rc)
856 return rc;
857 if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
858 return -EINVAL;
859 target->thread.fp_regs.fpc = fpc[0];
860 }
861
862 if (rc == 0 && count > 0)
863 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
864 target->thread.fp_regs.fprs,
865 offsetof(s390_fp_regs, fprs), -1);
866
867 if (rc == 0 && target == current)
868 restore_fp_regs(&target->thread.fp_regs);
869
870 return rc;
871}
872
873#ifdef CONFIG_64BIT
874
875static int s390_last_break_get(struct task_struct *target,
876 const struct user_regset *regset,
877 unsigned int pos, unsigned int count,
878 void *kbuf, void __user *ubuf)
879{
880 if (count > 0) {
881 if (kbuf) {
882 unsigned long *k = kbuf;
883 *k = task_thread_info(target)->last_break;
884 } else {
885 unsigned long __user *u = ubuf;
886 if (__put_user(task_thread_info(target)->last_break, u))
887 return -EFAULT;
888 }
889 }
890 return 0;
891}
892
893static int s390_last_break_set(struct task_struct *target,
894 const struct user_regset *regset,
895 unsigned int pos, unsigned int count,
896 const void *kbuf, const void __user *ubuf)
897{
898 return 0;
899}
900
901#endif
902
903static int s390_system_call_get(struct task_struct *target,
904 const struct user_regset *regset,
905 unsigned int pos, unsigned int count,
906 void *kbuf, void __user *ubuf)
907{
908 unsigned int *data = &task_thread_info(target)->system_call;
909 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
910 data, 0, sizeof(unsigned int));
911}
912
913static int s390_system_call_set(struct task_struct *target,
914 const struct user_regset *regset,
915 unsigned int pos, unsigned int count,
916 const void *kbuf, const void __user *ubuf)
917{
918 unsigned int *data = &task_thread_info(target)->system_call;
919 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
920 data, 0, sizeof(unsigned int));
921}
922
923static const struct user_regset s390_regsets[] = {
924 [REGSET_GENERAL] = {
925 .core_note_type = NT_PRSTATUS,
926 .n = sizeof(s390_regs) / sizeof(long),
927 .size = sizeof(long),
928 .align = sizeof(long),
929 .get = s390_regs_get,
930 .set = s390_regs_set,
931 },
932 [REGSET_FP] = {
933 .core_note_type = NT_PRFPREG,
934 .n = sizeof(s390_fp_regs) / sizeof(long),
935 .size = sizeof(long),
936 .align = sizeof(long),
937 .get = s390_fpregs_get,
938 .set = s390_fpregs_set,
939 },
940#ifdef CONFIG_64BIT
941 [REGSET_LAST_BREAK] = {
942 .core_note_type = NT_S390_LAST_BREAK,
943 .n = 1,
944 .size = sizeof(long),
945 .align = sizeof(long),
946 .get = s390_last_break_get,
947 .set = s390_last_break_set,
948 },
949#endif
950 [REGSET_SYSTEM_CALL] = {
951 .core_note_type = NT_S390_SYSTEM_CALL,
952 .n = 1,
953 .size = sizeof(unsigned int),
954 .align = sizeof(unsigned int),
955 .get = s390_system_call_get,
956 .set = s390_system_call_set,
957 },
958};
959
960static const struct user_regset_view user_s390_view = {
961 .name = UTS_MACHINE,
962 .e_machine = EM_S390,
963 .regsets = s390_regsets,
964 .n = ARRAY_SIZE(s390_regsets)
965};
966
967#ifdef CONFIG_COMPAT
968static int s390_compat_regs_get(struct task_struct *target,
969 const struct user_regset *regset,
970 unsigned int pos, unsigned int count,
971 void *kbuf, void __user *ubuf)
972{
973 if (target == current)
974 save_access_regs(target->thread.acrs);
975
976 if (kbuf) {
977 compat_ulong_t *k = kbuf;
978 while (count > 0) {
979 *k++ = __peek_user_compat(target, pos);
980 count -= sizeof(*k);
981 pos += sizeof(*k);
982 }
983 } else {
984 compat_ulong_t __user *u = ubuf;
985 while (count > 0) {
986 if (__put_user(__peek_user_compat(target, pos), u++))
987 return -EFAULT;
988 count -= sizeof(*u);
989 pos += sizeof(*u);
990 }
991 }
992 return 0;
993}
994
995static int s390_compat_regs_set(struct task_struct *target,
996 const struct user_regset *regset,
997 unsigned int pos, unsigned int count,
998 const void *kbuf, const void __user *ubuf)
999{
1000 int rc = 0;
1001
1002 if (target == current)
1003 save_access_regs(target->thread.acrs);
1004
1005 if (kbuf) {
1006 const compat_ulong_t *k = kbuf;
1007 while (count > 0 && !rc) {
1008 rc = __poke_user_compat(target, pos, *k++);
1009 count -= sizeof(*k);
1010 pos += sizeof(*k);
1011 }
1012 } else {
1013 const compat_ulong_t __user *u = ubuf;
1014 while (count > 0 && !rc) {
1015 compat_ulong_t word;
1016 rc = __get_user(word, u++);
1017 if (rc)
1018 break;
1019 rc = __poke_user_compat(target, pos, word);
1020 count -= sizeof(*u);
1021 pos += sizeof(*u);
1022 }
1023 }
1024
1025 if (rc == 0 && target == current)
1026 restore_access_regs(target->thread.acrs);
1027
1028 return rc;
1029}
1030
1031static int s390_compat_regs_high_get(struct task_struct *target,
1032 const struct user_regset *regset,
1033 unsigned int pos, unsigned int count,
1034 void *kbuf, void __user *ubuf)
1035{
1036 compat_ulong_t *gprs_high;
1037
1038 gprs_high = (compat_ulong_t *)
1039 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1040 if (kbuf) {
1041 compat_ulong_t *k = kbuf;
1042 while (count > 0) {
1043 *k++ = *gprs_high;
1044 gprs_high += 2;
1045 count -= sizeof(*k);
1046 }
1047 } else {
1048 compat_ulong_t __user *u = ubuf;
1049 while (count > 0) {
1050 if (__put_user(*gprs_high, u++))
1051 return -EFAULT;
1052 gprs_high += 2;
1053 count -= sizeof(*u);
1054 }
1055 }
1056 return 0;
1057}
1058
1059static int s390_compat_regs_high_set(struct task_struct *target,
1060 const struct user_regset *regset,
1061 unsigned int pos, unsigned int count,
1062 const void *kbuf, const void __user *ubuf)
1063{
1064 compat_ulong_t *gprs_high;
1065 int rc = 0;
1066
1067 gprs_high = (compat_ulong_t *)
1068 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1069 if (kbuf) {
1070 const compat_ulong_t *k = kbuf;
1071 while (count > 0) {
1072 *gprs_high = *k++;
1073 *gprs_high += 2;
1074 count -= sizeof(*k);
1075 }
1076 } else {
1077 const compat_ulong_t __user *u = ubuf;
1078 while (count > 0 && !rc) {
1079 unsigned long word;
1080 rc = __get_user(word, u++);
1081 if (rc)
1082 break;
1083 *gprs_high = word;
1084 *gprs_high += 2;
1085 count -= sizeof(*u);
1086 }
1087 }
1088
1089 return rc;
1090}
1091
1092static int s390_compat_last_break_get(struct task_struct *target,
1093 const struct user_regset *regset,
1094 unsigned int pos, unsigned int count,
1095 void *kbuf, void __user *ubuf)
1096{
1097 compat_ulong_t last_break;
1098
1099 if (count > 0) {
1100 last_break = task_thread_info(target)->last_break;
1101 if (kbuf) {
1102 unsigned long *k = kbuf;
1103 *k = last_break;
1104 } else {
1105 unsigned long __user *u = ubuf;
1106 if (__put_user(last_break, u))
1107 return -EFAULT;
1108 }
1109 }
1110 return 0;
1111}
1112
1113static int s390_compat_last_break_set(struct task_struct *target,
1114 const struct user_regset *regset,
1115 unsigned int pos, unsigned int count,
1116 const void *kbuf, const void __user *ubuf)
1117{
1118 return 0;
1119}
1120
1121static const struct user_regset s390_compat_regsets[] = {
1122 [REGSET_GENERAL] = {
1123 .core_note_type = NT_PRSTATUS,
1124 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1125 .size = sizeof(compat_long_t),
1126 .align = sizeof(compat_long_t),
1127 .get = s390_compat_regs_get,
1128 .set = s390_compat_regs_set,
1129 },
1130 [REGSET_FP] = {
1131 .core_note_type = NT_PRFPREG,
1132 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1133 .size = sizeof(compat_long_t),
1134 .align = sizeof(compat_long_t),
1135 .get = s390_fpregs_get,
1136 .set = s390_fpregs_set,
1137 },
1138 [REGSET_LAST_BREAK] = {
1139 .core_note_type = NT_S390_LAST_BREAK,
1140 .n = 1,
1141 .size = sizeof(long),
1142 .align = sizeof(long),
1143 .get = s390_compat_last_break_get,
1144 .set = s390_compat_last_break_set,
1145 },
1146 [REGSET_SYSTEM_CALL] = {
1147 .core_note_type = NT_S390_SYSTEM_CALL,
1148 .n = 1,
1149 .size = sizeof(compat_uint_t),
1150 .align = sizeof(compat_uint_t),
1151 .get = s390_system_call_get,
1152 .set = s390_system_call_set,
1153 },
1154 [REGSET_GENERAL_EXTENDED] = {
1155 .core_note_type = NT_S390_HIGH_GPRS,
1156 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1157 .size = sizeof(compat_long_t),
1158 .align = sizeof(compat_long_t),
1159 .get = s390_compat_regs_high_get,
1160 .set = s390_compat_regs_high_set,
1161 },
1162};
1163
1164static const struct user_regset_view user_s390_compat_view = {
1165 .name = "s390",
1166 .e_machine = EM_S390,
1167 .regsets = s390_compat_regsets,
1168 .n = ARRAY_SIZE(s390_compat_regsets)
1169};
1170#endif
1171
1172const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1173{
1174#ifdef CONFIG_COMPAT
1175 if (test_tsk_thread_flag(task, TIF_31BIT))
1176 return &user_s390_compat_view;
1177#endif
1178 return &user_s390_view;
1179}
1180
1181static const char *gpr_names[NUM_GPRS] = {
1182 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1183 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1184};
1185
1186unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1187{
1188 if (offset >= NUM_GPRS)
1189 return 0;
1190 return regs->gprs[offset];
1191}
1192
1193int regs_query_register_offset(const char *name)
1194{
1195 unsigned long offset;
1196
1197 if (!name || *name != 'r')
1198 return -EINVAL;
1199 if (strict_strtoul(name + 1, 10, &offset))
1200 return -EINVAL;
1201 if (offset >= NUM_GPRS)
1202 return -EINVAL;
1203 return offset;
1204}
1205
1206const char *regs_query_register_name(unsigned int offset)
1207{
1208 if (offset >= NUM_GPRS)
1209 return NULL;
1210 return gpr_names[offset];
1211}
1212
1213static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1214{
1215 unsigned long ksp = kernel_stack_pointer(regs);
1216
1217 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1218}
1219
1220/**
1221 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1222 * @regs:pt_regs which contains kernel stack pointer.
1223 * @n:stack entry number.
1224 *
1225 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1226 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1227 * this returns 0.
1228 */
1229unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1230{
1231 unsigned long addr;
1232
1233 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1234 if (!regs_within_kernel_stack(regs, addr))
1235 return 0;
1236 return *(unsigned long *)addr;
1237}