Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/memblock.h>
  22#include <linux/pgtable.h>
  23
  24#include <asm/fpu.h>
  25#include <asm/page.h>
  26#include <asm/cacheflush.h>
  27#include <asm/mmu_context.h>
  28#include <asm/pgalloc.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
 
  33
  34#define CREATE_TRACE_POINTS
  35#include "trace.h"
  36
  37#ifndef VECTORSPACING
  38#define VECTORSPACING 0x100	/* for EI/VI mode */
  39#endif
  40
  41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  42	KVM_GENERIC_VM_STATS()
  43};
  44
  45const struct kvm_stats_header kvm_vm_stats_header = {
  46	.name_size = KVM_STATS_NAME_SIZE,
  47	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  48	.id_offset = sizeof(struct kvm_stats_header),
  49	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  50	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  51		       sizeof(kvm_vm_stats_desc),
  52};
  53
  54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  55	KVM_GENERIC_VCPU_STATS(),
  56	STATS_DESC_COUNTER(VCPU, wait_exits),
  57	STATS_DESC_COUNTER(VCPU, cache_exits),
  58	STATS_DESC_COUNTER(VCPU, signal_exits),
  59	STATS_DESC_COUNTER(VCPU, int_exits),
  60	STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
  61	STATS_DESC_COUNTER(VCPU, tlbmod_exits),
  62	STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
  63	STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
  64	STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
  65	STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
  66	STATS_DESC_COUNTER(VCPU, syscall_exits),
  67	STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
  68	STATS_DESC_COUNTER(VCPU, break_inst_exits),
  69	STATS_DESC_COUNTER(VCPU, trap_inst_exits),
  70	STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
  71	STATS_DESC_COUNTER(VCPU, fpe_exits),
  72	STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
  73	STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
  74	STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
  75	STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
  76	STATS_DESC_COUNTER(VCPU, vz_hc_exits),
  77	STATS_DESC_COUNTER(VCPU, vz_grr_exits),
  78	STATS_DESC_COUNTER(VCPU, vz_gva_exits),
  79	STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
  80	STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
  81	STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
  82#ifdef CONFIG_CPU_LOONGSON64
  83	STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
  84#endif
  85};
  86
  87const struct kvm_stats_header kvm_vcpu_stats_header = {
  88	.name_size = KVM_STATS_NAME_SIZE,
  89	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  90	.id_offset = sizeof(struct kvm_stats_header),
  91	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  92	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  93		       sizeof(kvm_vcpu_stats_desc),
  94};
  95
  96bool kvm_trace_guest_mode_change;
 
 
 
  97
  98int kvm_guest_mode_change_trace_reg(void)
  99{
 100	kvm_trace_guest_mode_change = true;
 101	return 0;
 102}
 103
 104void kvm_guest_mode_change_trace_unreg(void)
 105{
 106	kvm_trace_guest_mode_change = false;
 107}
 108
 109/*
 110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 111 * Config7, so we are "runnable" if interrupts are pending
 112 */
 113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
 114{
 115	return !!(vcpu->arch.pending_exceptions);
 116}
 117
 118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 119{
 120	return false;
 121}
 122
 123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 124{
 125	return 1;
 126}
 127
 128int kvm_arch_hardware_enable(void)
 129{
 130	return kvm_mips_callbacks->hardware_enable();
 
 
 
 
 
 
 
 
 
 
 131}
 132
 133void kvm_arch_hardware_disable(void)
 134{
 135	kvm_mips_callbacks->hardware_disable();
 
 
 
 
 
 
 
 
 
 
 
 
 136}
 137
 138extern void kvm_init_loongson_ipi(struct kvm *kvm);
 
 
 
 
 
 
 
 139
 140int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 141{
 142	switch (type) {
 143	case KVM_VM_MIPS_AUTO:
 144		break;
 145	case KVM_VM_MIPS_VZ:
 146		break;
 147	default:
 148		/* Unsupported KVM type */
 149		return -EINVAL;
 150	}
 151
 152	/* Allocate page table to map GPA -> RPA */
 153	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 154	if (!kvm->arch.gpa_mm.pgd)
 155		return -ENOMEM;
 156
 157#ifdef CONFIG_CPU_LOONGSON64
 158	kvm_init_loongson_ipi(kvm);
 159#endif
 
 160
 161	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162}
 163
 164static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 165{
 166	/* It should always be safe to remove after flushing the whole range */
 167	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 168	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 
 
 169}
 170
 171void kvm_arch_destroy_vm(struct kvm *kvm)
 172{
 173	kvm_destroy_vcpus(kvm);
 174	kvm_mips_free_gpa_pt(kvm);
 
 
 
 
 
 
 175}
 176
 177long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 178			unsigned long arg)
 179{
 180	return -ENOIOCTLCMD;
 181}
 182
 183void kvm_arch_flush_shadow_all(struct kvm *kvm)
 184{
 185	/* Flush whole GPA */
 186	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 187	kvm_flush_remote_tlbs(kvm);
 188}
 189
 190void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 191				   struct kvm_memory_slot *slot)
 192{
 193	/*
 194	 * The slot has been made invalid (ready for moving or deletion), so we
 195	 * need to ensure that it can no longer be accessed by any guest VCPUs.
 196	 */
 197
 198	spin_lock(&kvm->mmu_lock);
 199	/* Flush slot from GPA */
 200	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 201			      slot->base_gfn + slot->npages - 1);
 202	kvm_flush_remote_tlbs_memslot(kvm, slot);
 203	spin_unlock(&kvm->mmu_lock);
 204}
 205
 206int kvm_arch_prepare_memory_region(struct kvm *kvm,
 207				   const struct kvm_memory_slot *old,
 208				   struct kvm_memory_slot *new,
 209				   enum kvm_mr_change change)
 210{
 211	return 0;
 212}
 213
 214void kvm_arch_commit_memory_region(struct kvm *kvm,
 215				   struct kvm_memory_slot *old,
 
 216				   const struct kvm_memory_slot *new,
 217				   enum kvm_mr_change change)
 218{
 219	int needs_flush;
 
 220
 221	/*
 222	 * If dirty page logging is enabled, write protect all pages in the slot
 223	 * ready for dirty logging.
 224	 *
 225	 * There is no need to do this in any of the following cases:
 226	 * CREATE:	No dirty mappings will already exist.
 227	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
 228	 *		kvm_arch_flush_shadow_memslot()
 229	 */
 230	if (change == KVM_MR_FLAGS_ONLY &&
 231	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 232	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 233		spin_lock(&kvm->mmu_lock);
 234		/* Write protect GPA page table entries */
 235		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 236					new->base_gfn + new->npages - 1);
 237		if (needs_flush)
 238			kvm_flush_remote_tlbs_memslot(kvm, new);
 239		spin_unlock(&kvm->mmu_lock);
 
 
 
 
 
 
 
 240	}
 241}
 242
 243static inline void dump_handler(const char *symbol, void *start, void *end)
 244{
 245	u32 *p;
 246
 247	pr_debug("LEAF(%s)\n", symbol);
 248
 249	pr_debug("\t.set push\n");
 250	pr_debug("\t.set noreorder\n");
 251
 252	for (p = start; p < (u32 *)end; ++p)
 253		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 254
 255	pr_debug("\t.set\tpop\n");
 256
 257	pr_debug("\tEND(%s)\n", symbol);
 258}
 259
 260/* low level hrtimer wake routine */
 261static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
 262{
 263	struct kvm_vcpu *vcpu;
 264
 265	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
 266
 267	kvm_mips_callbacks->queue_timer_int(vcpu);
 268
 269	vcpu->arch.wait = 0;
 270	rcuwait_wake_up(&vcpu->wait);
 271
 272	return kvm_mips_count_timeout(vcpu);
 273}
 274
 275int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 276{
 277	return 0;
 278}
 279
 280int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 281{
 282	int err, size;
 283	void *gebase, *p, *handler, *refill_start, *refill_end;
 284	int i;
 285
 286	kvm_debug("kvm @ %p: create cpu %d at %p\n",
 287		  vcpu->kvm, vcpu->vcpu_id, vcpu);
 288
 289	err = kvm_mips_callbacks->vcpu_init(vcpu);
 290	if (err)
 291		return err;
 292
 293	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
 294		     HRTIMER_MODE_REL);
 295	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
 296
 297	/*
 298	 * Allocate space for host mode exception handlers that handle
 299	 * guest mode exits
 300	 */
 301	if (cpu_has_veic || cpu_has_vint)
 302		size = 0x200 + VECTORSPACING * 64;
 303	else
 304		size = 0x4000;
 305
 
 
 
 306	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 307
 308	if (!gebase) {
 309		err = -ENOMEM;
 310		goto out_uninit_vcpu;
 311	}
 312	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 313		  ALIGN(size, PAGE_SIZE), gebase);
 314
 315	/*
 316	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 317	 * limits us to the low 512MB of physical address space. If the memory
 318	 * we allocate is out of range, just give up now.
 319	 */
 320	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 321		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 322			gebase);
 323		err = -ENOMEM;
 324		goto out_free_gebase;
 325	}
 326
 327	/* Save new ebase */
 328	vcpu->arch.guest_ebase = gebase;
 329
 330	/* Build guest exception vectors dynamically in unmapped memory */
 331	handler = gebase + 0x2000;
 332
 333	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 334	refill_start = gebase;
 335	if (IS_ENABLED(CONFIG_64BIT))
 336		refill_start += 0x080;
 337	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 338
 339	/* General Exception Entry point */
 340	kvm_mips_build_exception(gebase + 0x180, handler);
 
 341
 342	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 343	for (i = 0; i < 8; i++) {
 344		kvm_debug("L1 Vectored handler @ %p\n",
 345			  gebase + 0x200 + (i * VECTORSPACING));
 346		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 347					 handler);
 348	}
 349
 350	/* General exit handler */
 351	p = handler;
 352	p = kvm_mips_build_exit(p);
 353
 354	/* Guest entry routine */
 355	vcpu->arch.vcpu_run = p;
 356	p = kvm_mips_build_vcpu_run(p);
 357
 358	/* Dump the generated code */
 359	pr_debug("#include <asm/asm.h>\n");
 360	pr_debug("#include <asm/regdef.h>\n");
 361	pr_debug("\n");
 362	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 363	dump_handler("kvm_tlb_refill", refill_start, refill_end);
 364	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 365	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 366
 367	/* Invalidate the icache for these ranges */
 368	flush_icache_range((unsigned long)gebase,
 369			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370
 371	/* Init */
 372	vcpu->arch.last_sched_cpu = -1;
 373	vcpu->arch.last_exec_cpu = -1;
 374
 375	/* Initial guest state */
 376	err = kvm_mips_callbacks->vcpu_setup(vcpu);
 377	if (err)
 378		goto out_free_gebase;
 379
 380	return 0;
 381
 382out_free_gebase:
 383	kfree(gebase);
 384out_uninit_vcpu:
 385	kvm_mips_callbacks->vcpu_uninit(vcpu);
 386	return err;
 
 
 
 
 
 
 387}
 388
 389void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 390{
 391	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 392
 
 
 393	kvm_mips_dump_stats(vcpu);
 394
 395	kvm_mmu_free_memory_caches(vcpu);
 396	kfree(vcpu->arch.guest_ebase);
 
 
 
 397
 398	kvm_mips_callbacks->vcpu_uninit(vcpu);
 
 
 399}
 400
 401int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 402					struct kvm_guest_debug *dbg)
 403{
 404	return -ENOIOCTLCMD;
 405}
 406
 407/*
 408 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
 409 * the vCPU is running.
 410 *
 411 * This must be noinstr as instrumentation may make use of RCU, and this is not
 412 * safe during the EQS.
 413 */
 414static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
 415{
 416	int ret;
 417
 418	guest_state_enter_irqoff();
 419	ret = kvm_mips_callbacks->vcpu_run(vcpu);
 420	guest_state_exit_irqoff();
 421
 422	return ret;
 423}
 424
 425int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
 426{
 427	int r = -EINTR;
 428
 429	vcpu_load(vcpu);
 430
 431	kvm_sigset_activate(vcpu);
 
 432
 433	if (vcpu->mmio_needed) {
 434		if (!vcpu->mmio_is_write)
 435			kvm_mips_complete_mmio_load(vcpu);
 436		vcpu->mmio_needed = 0;
 437	}
 438
 439	if (vcpu->run->immediate_exit)
 440		goto out;
 441
 442	lose_fpu(1);
 443
 444	local_irq_disable();
 445	guest_timing_enter_irqoff();
 446	trace_kvm_enter(vcpu);
 
 447
 448	/*
 449	 * Make sure the read of VCPU requests in vcpu_run() callback is not
 450	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 451	 * flush request while the requester sees the VCPU as outside of guest
 452	 * mode and not needing an IPI.
 453	 */
 454	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 455
 456	r = kvm_mips_vcpu_enter_exit(vcpu);
 
 457
 458	/*
 459	 * We must ensure that any pending interrupts are taken before
 460	 * we exit guest timing so that timer ticks are accounted as
 461	 * guest time. Transiently unmask interrupts so that any
 462	 * pending interrupts are taken.
 463	 *
 464	 * TODO: is there a barrier which ensures that pending interrupts are
 465	 * recognised? Currently this just hopes that the CPU takes any pending
 466	 * interrupts between the enable and disable.
 467	 */
 468	local_irq_enable();
 469	local_irq_disable();
 470
 471	trace_kvm_out(vcpu);
 472	guest_timing_exit_irqoff();
 473	local_irq_enable();
 474
 475out:
 476	kvm_sigset_deactivate(vcpu);
 477
 478	vcpu_put(vcpu);
 479	return r;
 480}
 481
 482int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 483			     struct kvm_mips_interrupt *irq)
 484{
 485	int intr = (int)irq->irq;
 486	struct kvm_vcpu *dvcpu = NULL;
 487
 488	if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
 489	    intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
 490	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
 491	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
 492		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 493			  (int)intr);
 494
 495	if (irq->cpu == -1)
 496		dvcpu = vcpu;
 497	else
 498		dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
 499
 500	if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
 501		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 502
 503	} else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
 504		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 505	} else {
 506		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 507			irq->cpu, irq->irq);
 508		return -EINVAL;
 509	}
 510
 511	dvcpu->arch.wait = 0;
 512
 513	rcuwait_wake_up(&dvcpu->wait);
 
 514
 515	return 0;
 516}
 517
 518int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 519				    struct kvm_mp_state *mp_state)
 520{
 521	return -ENOIOCTLCMD;
 522}
 523
 524int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 525				    struct kvm_mp_state *mp_state)
 526{
 527	return -ENOIOCTLCMD;
 528}
 529
 530static u64 kvm_mips_get_one_regs[] = {
 531	KVM_REG_MIPS_R0,
 532	KVM_REG_MIPS_R1,
 533	KVM_REG_MIPS_R2,
 534	KVM_REG_MIPS_R3,
 535	KVM_REG_MIPS_R4,
 536	KVM_REG_MIPS_R5,
 537	KVM_REG_MIPS_R6,
 538	KVM_REG_MIPS_R7,
 539	KVM_REG_MIPS_R8,
 540	KVM_REG_MIPS_R9,
 541	KVM_REG_MIPS_R10,
 542	KVM_REG_MIPS_R11,
 543	KVM_REG_MIPS_R12,
 544	KVM_REG_MIPS_R13,
 545	KVM_REG_MIPS_R14,
 546	KVM_REG_MIPS_R15,
 547	KVM_REG_MIPS_R16,
 548	KVM_REG_MIPS_R17,
 549	KVM_REG_MIPS_R18,
 550	KVM_REG_MIPS_R19,
 551	KVM_REG_MIPS_R20,
 552	KVM_REG_MIPS_R21,
 553	KVM_REG_MIPS_R22,
 554	KVM_REG_MIPS_R23,
 555	KVM_REG_MIPS_R24,
 556	KVM_REG_MIPS_R25,
 557	KVM_REG_MIPS_R26,
 558	KVM_REG_MIPS_R27,
 559	KVM_REG_MIPS_R28,
 560	KVM_REG_MIPS_R29,
 561	KVM_REG_MIPS_R30,
 562	KVM_REG_MIPS_R31,
 563
 564#ifndef CONFIG_CPU_MIPSR6
 565	KVM_REG_MIPS_HI,
 566	KVM_REG_MIPS_LO,
 567#endif
 568	KVM_REG_MIPS_PC,
 569};
 570
 571static u64 kvm_mips_get_one_regs_fpu[] = {
 572	KVM_REG_MIPS_FCR_IR,
 573	KVM_REG_MIPS_FCR_CSR,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574};
 575
 576static u64 kvm_mips_get_one_regs_msa[] = {
 577	KVM_REG_MIPS_MSA_IR,
 578	KVM_REG_MIPS_MSA_CSR,
 579};
 580
 581static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 582{
 583	unsigned long ret;
 584
 585	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 586	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 587		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 588		/* odd doubles */
 589		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 590			ret += 16;
 591	}
 592	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 593		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 594	ret += kvm_mips_callbacks->num_regs(vcpu);
 595
 596	return ret;
 597}
 598
 599static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 600{
 601	u64 index;
 602	unsigned int i;
 603
 604	if (copy_to_user(indices, kvm_mips_get_one_regs,
 605			 sizeof(kvm_mips_get_one_regs)))
 606		return -EFAULT;
 607	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 608
 609	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 610		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 611				 sizeof(kvm_mips_get_one_regs_fpu)))
 612			return -EFAULT;
 613		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 614
 615		for (i = 0; i < 32; ++i) {
 616			index = KVM_REG_MIPS_FPR_32(i);
 617			if (copy_to_user(indices, &index, sizeof(index)))
 618				return -EFAULT;
 619			++indices;
 620
 621			/* skip odd doubles if no F64 */
 622			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 623				continue;
 624
 625			index = KVM_REG_MIPS_FPR_64(i);
 626			if (copy_to_user(indices, &index, sizeof(index)))
 627				return -EFAULT;
 628			++indices;
 629		}
 630	}
 631
 632	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 633		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 634				 sizeof(kvm_mips_get_one_regs_msa)))
 635			return -EFAULT;
 636		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 637
 638		for (i = 0; i < 32; ++i) {
 639			index = KVM_REG_MIPS_VEC_128(i);
 640			if (copy_to_user(indices, &index, sizeof(index)))
 641				return -EFAULT;
 642			++indices;
 643		}
 644	}
 645
 646	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 647}
 648
 649static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 650			    const struct kvm_one_reg *reg)
 651{
 652	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 653	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 654	int ret;
 655	s64 v;
 656	s64 vs[2];
 657	unsigned int idx;
 658
 659	switch (reg->id) {
 660	/* General purpose registers */
 661	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 662		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 663		break;
 664#ifndef CONFIG_CPU_MIPSR6
 665	case KVM_REG_MIPS_HI:
 666		v = (long)vcpu->arch.hi;
 667		break;
 668	case KVM_REG_MIPS_LO:
 669		v = (long)vcpu->arch.lo;
 670		break;
 671#endif
 672	case KVM_REG_MIPS_PC:
 673		v = (long)vcpu->arch.pc;
 674		break;
 675
 676	/* Floating point registers */
 677	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 678		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 679			return -EINVAL;
 680		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 681		/* Odd singles in top of even double when FR=0 */
 682		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 683			v = get_fpr32(&fpu->fpr[idx], 0);
 684		else
 685			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 686		break;
 687	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 688		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 689			return -EINVAL;
 690		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 691		/* Can't access odd doubles in FR=0 mode */
 692		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 693			return -EINVAL;
 694		v = get_fpr64(&fpu->fpr[idx], 0);
 695		break;
 696	case KVM_REG_MIPS_FCR_IR:
 697		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 698			return -EINVAL;
 699		v = boot_cpu_data.fpu_id;
 700		break;
 701	case KVM_REG_MIPS_FCR_CSR:
 702		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 703			return -EINVAL;
 704		v = fpu->fcr31;
 705		break;
 706
 707	/* MIPS SIMD Architecture (MSA) registers */
 708	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 709		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 710			return -EINVAL;
 711		/* Can't access MSA registers in FR=0 mode */
 712		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 713			return -EINVAL;
 714		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 715#ifdef CONFIG_CPU_LITTLE_ENDIAN
 716		/* least significant byte first */
 717		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 718		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 719#else
 720		/* most significant byte first */
 721		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 722		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 723#endif
 724		break;
 725	case KVM_REG_MIPS_MSA_IR:
 726		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 727			return -EINVAL;
 728		v = boot_cpu_data.msa_id;
 729		break;
 730	case KVM_REG_MIPS_MSA_CSR:
 731		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 732			return -EINVAL;
 733		v = fpu->msacsr;
 734		break;
 735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736	/* registers to be handled specially */
 737	default:
 
 
 
 738		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 739		if (ret)
 740			return ret;
 741		break;
 
 
 742	}
 743	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 744		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 745
 746		return put_user(v, uaddr64);
 747	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 748		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 749		u32 v32 = (u32)v;
 750
 751		return put_user(v32, uaddr32);
 752	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 753		void __user *uaddr = (void __user *)(long)reg->addr;
 754
 755		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 756	} else {
 757		return -EINVAL;
 758	}
 759}
 760
 761static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 762			    const struct kvm_one_reg *reg)
 763{
 764	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 765	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 766	s64 v;
 767	s64 vs[2];
 768	unsigned int idx;
 769
 770	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 771		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 772
 773		if (get_user(v, uaddr64) != 0)
 774			return -EFAULT;
 775	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 776		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 777		s32 v32;
 778
 779		if (get_user(v32, uaddr32) != 0)
 780			return -EFAULT;
 781		v = (s64)v32;
 782	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 783		void __user *uaddr = (void __user *)(long)reg->addr;
 784
 785		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 786	} else {
 787		return -EINVAL;
 788	}
 789
 790	switch (reg->id) {
 791	/* General purpose registers */
 792	case KVM_REG_MIPS_R0:
 793		/* Silently ignore requests to set $0 */
 794		break;
 795	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 796		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 797		break;
 798#ifndef CONFIG_CPU_MIPSR6
 799	case KVM_REG_MIPS_HI:
 800		vcpu->arch.hi = v;
 801		break;
 802	case KVM_REG_MIPS_LO:
 803		vcpu->arch.lo = v;
 804		break;
 805#endif
 806	case KVM_REG_MIPS_PC:
 807		vcpu->arch.pc = v;
 808		break;
 809
 810	/* Floating point registers */
 811	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 812		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 813			return -EINVAL;
 814		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 815		/* Odd singles in top of even double when FR=0 */
 816		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 817			set_fpr32(&fpu->fpr[idx], 0, v);
 818		else
 819			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 820		break;
 821	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 822		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 823			return -EINVAL;
 824		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 825		/* Can't access odd doubles in FR=0 mode */
 826		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 827			return -EINVAL;
 828		set_fpr64(&fpu->fpr[idx], 0, v);
 829		break;
 830	case KVM_REG_MIPS_FCR_IR:
 831		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 832			return -EINVAL;
 833		/* Read-only */
 834		break;
 835	case KVM_REG_MIPS_FCR_CSR:
 836		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 837			return -EINVAL;
 838		fpu->fcr31 = v;
 839		break;
 840
 841	/* MIPS SIMD Architecture (MSA) registers */
 842	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 843		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 844			return -EINVAL;
 845		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 846#ifdef CONFIG_CPU_LITTLE_ENDIAN
 847		/* least significant byte first */
 848		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 849		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 850#else
 851		/* most significant byte first */
 852		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 853		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 854#endif
 855		break;
 856	case KVM_REG_MIPS_MSA_IR:
 857		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 858			return -EINVAL;
 859		/* Read-only */
 860		break;
 861	case KVM_REG_MIPS_MSA_CSR:
 862		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 863			return -EINVAL;
 864		fpu->msacsr = v;
 865		break;
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867	/* registers to be handled specially */
 868	default:
 
 
 
 
 
 
 
 
 
 
 
 869		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 
 
 870	}
 871	return 0;
 872}
 873
 874static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 875				     struct kvm_enable_cap *cap)
 876{
 877	int r = 0;
 878
 879	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 880		return -EINVAL;
 881	if (cap->flags)
 882		return -EINVAL;
 883	if (cap->args[0])
 884		return -EINVAL;
 885
 886	switch (cap->cap) {
 887	case KVM_CAP_MIPS_FPU:
 888		vcpu->arch.fpu_enabled = true;
 889		break;
 890	case KVM_CAP_MIPS_MSA:
 891		vcpu->arch.msa_enabled = true;
 892		break;
 893	default:
 894		r = -EINVAL;
 895		break;
 896	}
 897
 898	return r;
 899}
 900
 901long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
 902			       unsigned long arg)
 903{
 904	struct kvm_vcpu *vcpu = filp->private_data;
 905	void __user *argp = (void __user *)arg;
 906
 907	if (ioctl == KVM_INTERRUPT) {
 908		struct kvm_mips_interrupt irq;
 909
 910		if (copy_from_user(&irq, argp, sizeof(irq)))
 911			return -EFAULT;
 912		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 913			  irq.irq);
 914
 915		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 916	}
 917
 918	return -ENOIOCTLCMD;
 919}
 920
 921long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 922			 unsigned long arg)
 923{
 924	struct kvm_vcpu *vcpu = filp->private_data;
 925	void __user *argp = (void __user *)arg;
 926	long r;
 927
 928	vcpu_load(vcpu);
 929
 930	switch (ioctl) {
 931	case KVM_SET_ONE_REG:
 932	case KVM_GET_ONE_REG: {
 933		struct kvm_one_reg reg;
 934
 935		r = -EFAULT;
 936		if (copy_from_user(&reg, argp, sizeof(reg)))
 937			break;
 938		if (ioctl == KVM_SET_ONE_REG)
 939			r = kvm_mips_set_reg(vcpu, &reg);
 940		else
 941			r = kvm_mips_get_reg(vcpu, &reg);
 942		break;
 943	}
 944	case KVM_GET_REG_LIST: {
 945		struct kvm_reg_list __user *user_list = argp;
 
 946		struct kvm_reg_list reg_list;
 947		unsigned n;
 948
 949		r = -EFAULT;
 950		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 951			break;
 952		n = reg_list.n;
 953		reg_list.n = kvm_mips_num_regs(vcpu);
 954		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 955			break;
 956		r = -E2BIG;
 957		if (n < reg_list.n)
 958			break;
 959		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 960		break;
 
 
 
 961	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962	case KVM_ENABLE_CAP: {
 963		struct kvm_enable_cap cap;
 964
 965		r = -EFAULT;
 966		if (copy_from_user(&cap, argp, sizeof(cap)))
 967			break;
 968		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 969		break;
 970	}
 971	default:
 972		r = -ENOIOCTLCMD;
 973	}
 974
 975	vcpu_put(vcpu);
 976	return r;
 977}
 978
 979void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
 
 980{
 
 
 
 
 
 
 981
 982}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983
 984int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
 985{
 986	kvm_mips_callbacks->prepare_flush_shadow(kvm);
 987	return 1;
 988}
 989
 990int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
 991{
 992	int r;
 993
 994	switch (ioctl) {
 995	default:
 996		r = -ENOIOCTLCMD;
 997	}
 998
 999	return r;
1000}
1001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1003				  struct kvm_sregs *sregs)
1004{
1005	return -ENOIOCTLCMD;
1006}
1007
1008int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1009				  struct kvm_sregs *sregs)
1010{
1011	return -ENOIOCTLCMD;
1012}
1013
1014void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1015{
1016}
1017
1018int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1019{
1020	return -ENOIOCTLCMD;
1021}
1022
1023int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1024{
1025	return -ENOIOCTLCMD;
1026}
1027
1028vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1029{
1030	return VM_FAULT_SIGBUS;
1031}
1032
1033int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1034{
1035	int r;
1036
1037	switch (ext) {
1038	case KVM_CAP_ONE_REG:
1039	case KVM_CAP_ENABLE_CAP:
1040	case KVM_CAP_READONLY_MEM:
1041	case KVM_CAP_SYNC_MMU:
1042	case KVM_CAP_IMMEDIATE_EXIT:
1043		r = 1;
1044		break;
1045	case KVM_CAP_NR_VCPUS:
1046		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1047		break;
1048	case KVM_CAP_MAX_VCPUS:
1049		r = KVM_MAX_VCPUS;
1050		break;
1051	case KVM_CAP_MAX_VCPU_ID:
1052		r = KVM_MAX_VCPU_IDS;
1053		break;
1054	case KVM_CAP_MIPS_FPU:
1055		/* We don't handle systems with inconsistent cpu_has_fpu */
1056		r = !!raw_cpu_has_fpu;
1057		break;
1058	case KVM_CAP_MIPS_MSA:
1059		/*
1060		 * We don't support MSA vector partitioning yet:
1061		 * 1) It would require explicit support which can't be tested
1062		 *    yet due to lack of support in current hardware.
1063		 * 2) It extends the state that would need to be saved/restored
1064		 *    by e.g. QEMU for migration.
1065		 *
1066		 * When vector partitioning hardware becomes available, support
1067		 * could be added by requiring a flag when enabling
1068		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1069		 * to save/restore the appropriate extra state.
1070		 */
1071		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1072		break;
1073	default:
1074		r = kvm_mips_callbacks->check_extension(kvm, ext);
1075		break;
1076	}
1077	return r;
1078}
1079
1080int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1081{
1082	return kvm_mips_pending_timer(vcpu) ||
1083		kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI;
1084}
1085
1086int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1087{
1088	int i;
1089	struct mips_coproc *cop0;
1090
1091	if (!vcpu)
1092		return -1;
1093
1094	kvm_debug("VCPU Register Dump:\n");
1095	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1096	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1097
1098	for (i = 0; i < 32; i += 4) {
1099		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1100		       vcpu->arch.gprs[i],
1101		       vcpu->arch.gprs[i + 1],
1102		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1103	}
1104	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1105	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1106
1107	cop0 = &vcpu->arch.cop0;
1108	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1109		  kvm_read_c0_guest_status(cop0),
1110		  kvm_read_c0_guest_cause(cop0));
1111
1112	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1113
1114	return 0;
1115}
1116
1117int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1118{
1119	int i;
1120
1121	vcpu_load(vcpu);
1122
1123	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1124		vcpu->arch.gprs[i] = regs->gpr[i];
1125	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1126	vcpu->arch.hi = regs->hi;
1127	vcpu->arch.lo = regs->lo;
1128	vcpu->arch.pc = regs->pc;
1129
1130	vcpu_put(vcpu);
1131	return 0;
1132}
1133
1134int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1135{
1136	int i;
1137
1138	vcpu_load(vcpu);
1139
1140	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1141		regs->gpr[i] = vcpu->arch.gprs[i];
1142
1143	regs->hi = vcpu->arch.hi;
1144	regs->lo = vcpu->arch.lo;
1145	regs->pc = vcpu->arch.pc;
1146
1147	vcpu_put(vcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148	return 0;
1149}
1150
1151int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1152				  struct kvm_translation *tr)
1153{
1154	return 0;
1155}
1156
 
 
 
 
 
 
1157static void kvm_mips_set_c0_status(void)
1158{
1159	u32 status = read_c0_status();
1160
1161	if (cpu_has_dsp)
1162		status |= (ST0_MX);
1163
1164	write_c0_status(status);
1165	ehb();
1166}
1167
1168/*
1169 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1170 */
1171static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1172{
1173	struct kvm_run *run = vcpu->run;
1174	u32 cause = vcpu->arch.host_cp0_cause;
1175	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1176	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1177	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1178	enum emulation_result er = EMULATE_DONE;
1179	u32 inst;
1180	int ret = RESUME_GUEST;
1181
1182	vcpu->mode = OUTSIDE_GUEST_MODE;
 
1183
1184	/* Set a default exit reason */
1185	run->exit_reason = KVM_EXIT_UNKNOWN;
1186	run->ready_for_interrupt_injection = 1;
1187
1188	/*
1189	 * Set the appropriate status bits based on host CPU features,
1190	 * before we hit the scheduler
1191	 */
1192	kvm_mips_set_c0_status();
1193
1194	local_irq_enable();
1195
1196	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1197			cause, opc, run, vcpu);
1198	trace_kvm_exit(vcpu, exccode);
 
 
 
 
 
 
 
 
 
 
 
 
1199
1200	switch (exccode) {
1201	case EXCCODE_INT:
1202		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1203
1204		++vcpu->stat.int_exits;
 
1205
1206		if (need_resched())
1207			cond_resched();
1208
1209		ret = RESUME_GUEST;
1210		break;
1211
1212	case EXCCODE_CPU:
1213		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1214
1215		++vcpu->stat.cop_unusable_exits;
 
1216		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1217		/* XXXKYMA: Might need to return to user space */
1218		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1219			ret = RESUME_HOST;
1220		break;
1221
1222	case EXCCODE_MOD:
1223		++vcpu->stat.tlbmod_exits;
 
1224		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1225		break;
1226
1227	case EXCCODE_TLBS:
1228		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1229			  cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc,
1230			  badvaddr);
1231
1232		++vcpu->stat.tlbmiss_st_exits;
 
1233		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1234		break;
1235
1236	case EXCCODE_TLBL:
1237		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1238			  cause, opc, badvaddr);
1239
1240		++vcpu->stat.tlbmiss_ld_exits;
 
1241		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1242		break;
1243
1244	case EXCCODE_ADES:
1245		++vcpu->stat.addrerr_st_exits;
 
1246		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1247		break;
1248
1249	case EXCCODE_ADEL:
1250		++vcpu->stat.addrerr_ld_exits;
 
1251		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1252		break;
1253
1254	case EXCCODE_SYS:
1255		++vcpu->stat.syscall_exits;
 
1256		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1257		break;
1258
1259	case EXCCODE_RI:
1260		++vcpu->stat.resvd_inst_exits;
 
1261		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1262		break;
1263
1264	case EXCCODE_BP:
1265		++vcpu->stat.break_inst_exits;
 
1266		ret = kvm_mips_callbacks->handle_break(vcpu);
1267		break;
1268
1269	case EXCCODE_TR:
1270		++vcpu->stat.trap_inst_exits;
 
1271		ret = kvm_mips_callbacks->handle_trap(vcpu);
1272		break;
1273
1274	case EXCCODE_MSAFPE:
1275		++vcpu->stat.msa_fpe_exits;
 
1276		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1277		break;
1278
1279	case EXCCODE_FPE:
1280		++vcpu->stat.fpe_exits;
 
1281		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1282		break;
1283
1284	case EXCCODE_MSADIS:
1285		++vcpu->stat.msa_disabled_exits;
 
1286		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1287		break;
1288
1289	case EXCCODE_GE:
1290		/* defer exit accounting to handler */
1291		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1292		break;
1293
1294	default:
1295		if (cause & CAUSEF_BD)
1296			opc += 1;
1297		inst = 0;
1298		kvm_get_badinstr(opc, vcpu, &inst);
1299		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1300			exccode, opc, inst, badvaddr,
1301			kvm_read_c0_guest_status(&vcpu->arch.cop0));
1302		kvm_arch_vcpu_dump_regs(vcpu);
1303		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1304		ret = RESUME_HOST;
1305		break;
1306
1307	}
1308
 
1309	local_irq_disable();
1310
1311	if (ret == RESUME_GUEST)
1312		kvm_vz_acquire_htimer(vcpu);
1313
1314	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1315		kvm_mips_deliver_interrupts(vcpu, cause);
1316
1317	if (!(ret & RESUME_HOST)) {
1318		/* Only check for signals if not already exiting to userspace */
1319		if (signal_pending(current)) {
1320			run->exit_reason = KVM_EXIT_INTR;
1321			ret = (-EINTR << 2) | RESUME_HOST;
1322			++vcpu->stat.signal_exits;
1323			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1324		}
1325	}
1326
1327	if (ret == RESUME_GUEST) {
1328		trace_kvm_reenter(vcpu);
1329
1330		/*
1331		 * Make sure the read of VCPU requests in vcpu_reenter()
1332		 * callback is not reordered ahead of the write to vcpu->mode,
1333		 * or we could miss a TLB flush request while the requester sees
1334		 * the VCPU as outside of guest mode and not needing an IPI.
1335		 */
1336		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1337
1338		kvm_mips_callbacks->vcpu_reenter(vcpu);
1339
1340		/*
1341		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1342		 * is live), restore FCR31 / MSACSR.
1343		 *
1344		 * This should be before returning to the guest exception
1345		 * vector, as it may well cause an [MSA] FP exception if there
1346		 * are pending exception bits unmasked. (see
1347		 * kvm_mips_csr_die_notifier() for how that is handled).
1348		 */
1349		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1350		    read_c0_status() & ST0_CU1)
1351			__kvm_restore_fcsr(&vcpu->arch);
1352
1353		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1354		    read_c0_config5() & MIPS_CONF5_MSAEN)
1355			__kvm_restore_msacsr(&vcpu->arch);
1356	}
1357	return ret;
1358}
1359
1360int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1361{
1362	int ret;
1363
1364	guest_state_exit_irqoff();
1365	ret = __kvm_mips_handle_exit(vcpu);
1366	guest_state_enter_irqoff();
1367
1368	return ret;
1369}
1370
1371/* Enable FPU for guest and restore context */
1372void kvm_own_fpu(struct kvm_vcpu *vcpu)
1373{
1374	struct mips_coproc *cop0 = &vcpu->arch.cop0;
1375	unsigned int sr, cfg5;
1376
1377	preempt_disable();
1378
1379	sr = kvm_read_c0_guest_status(cop0);
1380
1381	/*
1382	 * If MSA state is already live, it is undefined how it interacts with
1383	 * FR=0 FPU state, and we don't want to hit reserved instruction
1384	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1385	 * play it safe and save it first.
 
 
 
 
1386	 */
1387	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1388	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1389		kvm_lose_fpu(vcpu);
1390
1391	/*
1392	 * Enable FPU for guest
1393	 * We set FR and FRE according to guest context
1394	 */
1395	change_c0_status(ST0_CU1 | ST0_FR, sr);
1396	if (cpu_has_fre) {
1397		cfg5 = kvm_read_c0_guest_config5(cop0);
1398		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1399	}
1400	enable_fpu_hazard();
1401
1402	/* If guest FPU state not active, restore it now */
1403	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1404		__kvm_restore_fpu(&vcpu->arch);
1405		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1406		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1407	} else {
1408		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1409	}
1410
1411	preempt_enable();
1412}
1413
1414#ifdef CONFIG_CPU_HAS_MSA
1415/* Enable MSA for guest and restore context */
1416void kvm_own_msa(struct kvm_vcpu *vcpu)
1417{
1418	struct mips_coproc *cop0 = &vcpu->arch.cop0;
1419	unsigned int sr, cfg5;
1420
1421	preempt_disable();
1422
1423	/*
1424	 * Enable FPU if enabled in guest, since we're restoring FPU context
1425	 * anyway. We set FR and FRE according to guest context.
1426	 */
1427	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1428		sr = kvm_read_c0_guest_status(cop0);
1429
1430		/*
1431		 * If FR=0 FPU state is already live, it is undefined how it
1432		 * interacts with MSA state, so play it safe and save it first.
1433		 */
1434		if (!(sr & ST0_FR) &&
1435		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1436				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1437			kvm_lose_fpu(vcpu);
1438
1439		change_c0_status(ST0_CU1 | ST0_FR, sr);
1440		if (sr & ST0_CU1 && cpu_has_fre) {
1441			cfg5 = kvm_read_c0_guest_config5(cop0);
1442			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1443		}
1444	}
1445
1446	/* Enable MSA for guest */
1447	set_c0_config5(MIPS_CONF5_MSAEN);
1448	enable_fpu_hazard();
1449
1450	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1451	case KVM_MIPS_AUX_FPU:
1452		/*
1453		 * Guest FPU state already loaded, only restore upper MSA state
1454		 */
1455		__kvm_restore_msa_upper(&vcpu->arch);
1456		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1457		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1458		break;
1459	case 0:
1460		/* Neither FPU or MSA already active, restore full MSA state */
1461		__kvm_restore_msa(&vcpu->arch);
1462		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1463		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1464			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1465		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1466			      KVM_TRACE_AUX_FPU_MSA);
1467		break;
1468	default:
1469		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1470		break;
1471	}
1472
1473	preempt_enable();
1474}
1475#endif
1476
1477/* Drop FPU & MSA without saving it */
1478void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1479{
1480	preempt_disable();
1481	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1482		disable_msa();
1483		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1484		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1485	}
1486	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1487		clear_c0_status(ST0_CU1 | ST0_FR);
1488		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1489		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1490	}
1491	preempt_enable();
1492}
1493
1494/* Save and disable FPU & MSA */
1495void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1496{
1497	/*
1498	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1499	 * is disabled in guest context (software), but the register state in
1500	 * the hardware may still be in use.
1501	 * This is why we explicitly re-enable the hardware before saving.
1502	 */
1503
1504	preempt_disable();
1505	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
 
 
 
1506		__kvm_save_msa(&vcpu->arch);
1507		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1508
1509		/* Disable MSA & FPU */
1510		disable_msa();
1511		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1512			clear_c0_status(ST0_CU1 | ST0_FR);
1513			disable_fpu_hazard();
1514		}
1515		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1516	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
 
1517		__kvm_save_fpu(&vcpu->arch);
1518		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1519		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1520
1521		/* Disable FPU */
1522		clear_c0_status(ST0_CU1 | ST0_FR);
1523		disable_fpu_hazard();
1524	}
1525	preempt_enable();
1526}
1527
1528/*
1529 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1530 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1531 * exception if cause bits are set in the value being written.
1532 */
1533static int kvm_mips_csr_die_notify(struct notifier_block *self,
1534				   unsigned long cmd, void *ptr)
1535{
1536	struct die_args *args = (struct die_args *)ptr;
1537	struct pt_regs *regs = args->regs;
1538	unsigned long pc;
1539
1540	/* Only interested in FPE and MSAFPE */
1541	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1542		return NOTIFY_DONE;
1543
1544	/* Return immediately if guest context isn't active */
1545	if (!(current->flags & PF_VCPU))
1546		return NOTIFY_DONE;
1547
1548	/* Should never get here from user mode */
1549	BUG_ON(user_mode(regs));
1550
1551	pc = instruction_pointer(regs);
1552	switch (cmd) {
1553	case DIE_FP:
1554		/* match 2nd instruction in __kvm_restore_fcsr */
1555		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1556			return NOTIFY_DONE;
1557		break;
1558	case DIE_MSAFP:
1559		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1560		if (!cpu_has_msa ||
1561		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1562		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1563			return NOTIFY_DONE;
1564		break;
1565	}
1566
1567	/* Move PC forward a little and continue executing */
1568	instruction_pointer(regs) += 4;
1569
1570	return NOTIFY_STOP;
1571}
1572
1573static struct notifier_block kvm_mips_csr_die_notifier = {
1574	.notifier_call = kvm_mips_csr_die_notify,
1575};
1576
1577static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1578	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1579	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1580	[MIPS_EXC_INT_IPI_1] = C_IRQ1,
1581	[MIPS_EXC_INT_IPI_2] = C_IRQ2,
1582};
1583
1584static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1585	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1586	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1587	[MIPS_EXC_INT_IO_2]  = C_IRQ1,
1588	[MIPS_EXC_INT_IPI_1] = C_IRQ4,
1589};
1590
1591u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1592
1593u32 kvm_irq_to_priority(u32 irq)
1594{
1595	int i;
1596
1597	for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1598		if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1599			return i;
1600	}
1601
1602	return MIPS_EXC_MAX;
1603}
1604
1605static int __init kvm_mips_init(void)
1606{
1607	int ret;
1608
1609	if (cpu_has_mmid) {
1610		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1611		return -EOPNOTSUPP;
1612	}
1613
1614	ret = kvm_mips_entry_setup();
1615	if (ret)
1616		return ret;
1617
1618	ret = kvm_mips_emulation_init();
1619	if (ret)
1620		return ret;
1621
1622
1623	if (boot_cpu_type() == CPU_LOONGSON64)
1624		kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1625
1626	register_die_notifier(&kvm_mips_csr_die_notifier);
1627
1628	ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1629	if (ret) {
1630		unregister_die_notifier(&kvm_mips_csr_die_notifier);
1631		return ret;
1632	}
 
 
 
 
 
 
 
1633	return 0;
1634}
1635
1636static void __exit kvm_mips_exit(void)
1637{
1638	kvm_exit();
 
 
 
 
1639
1640	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1641}
1642
1643module_init(kvm_mips_init);
1644module_exit(kvm_mips_exit);
1645
1646EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
v4.6
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
 
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/kdebug.h>
  15#include <linux/module.h>
 
  16#include <linux/vmalloc.h>
 
  17#include <linux/fs.h>
  18#include <linux/bootmem.h>
 
 
  19#include <asm/fpu.h>
  20#include <asm/page.h>
  21#include <asm/cacheflush.h>
  22#include <asm/mmu_context.h>
  23#include <asm/pgtable.h>
  24
  25#include <linux/kvm_host.h>
  26
  27#include "interrupt.h"
  28#include "commpage.h"
  29
  30#define CREATE_TRACE_POINTS
  31#include "trace.h"
  32
  33#ifndef VECTORSPACING
  34#define VECTORSPACING 0x100	/* for EI/VI mode */
  35#endif
  36
  37#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  38struct kvm_stats_debugfs_item debugfs_entries[] = {
  39	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
  40	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
  41	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
  42	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
  43	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  44	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
  45	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
  46	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
  47	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
  48	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
  49	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
  50	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
  51	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
  52	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
  53	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
  54	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
  55	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  56	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  57	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  58	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  59	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
  60	{NULL}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61};
  62
  63static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  64{
  65	int i;
 
 
 
 
 
  66
  67	for_each_possible_cpu(i) {
  68		vcpu->arch.guest_kernel_asid[i] = 0;
  69		vcpu->arch.guest_user_asid[i] = 0;
  70	}
  71
 
 
 
  72	return 0;
  73}
  74
 
 
 
 
 
  75/*
  76 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  77 * Config7, so we are "runnable" if interrupts are pending
  78 */
  79int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  80{
  81	return !!(vcpu->arch.pending_exceptions);
  82}
  83
 
 
 
 
 
  84int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  85{
  86	return 1;
  87}
  88
  89int kvm_arch_hardware_enable(void)
  90{
  91	return 0;
  92}
  93
  94int kvm_arch_hardware_setup(void)
  95{
  96	return 0;
  97}
  98
  99void kvm_arch_check_processor_compat(void *rtn)
 100{
 101	*(int *)rtn = 0;
 102}
 103
 104static void kvm_mips_init_tlbs(struct kvm *kvm)
 105{
 106	unsigned long wired;
 107
 108	/*
 109	 * Add a wired entry to the TLB, it is used to map the commpage to
 110	 * the Guest kernel
 111	 */
 112	wired = read_c0_wired();
 113	write_c0_wired(wired + 1);
 114	mtc0_tlbw_hazard();
 115	kvm->arch.commpage_tlb = wired;
 116
 117	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
 118		  kvm->arch.commpage_tlb);
 119}
 120
 121static void kvm_mips_init_vm_percpu(void *arg)
 122{
 123	struct kvm *kvm = (struct kvm *)arg;
 124
 125	kvm_mips_init_tlbs(kvm);
 126	kvm_mips_callbacks->vm_init(kvm);
 127
 128}
 129
 130int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 131{
 132	if (atomic_inc_return(&kvm_mips_instance) == 1) {
 133		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
 134			  __func__);
 135		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
 
 
 
 
 136	}
 137
 138	return 0;
 139}
 
 
 140
 141void kvm_mips_free_vcpus(struct kvm *kvm)
 142{
 143	unsigned int i;
 144	struct kvm_vcpu *vcpu;
 145
 146	/* Put the pages we reserved for the guest pmap */
 147	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
 148		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
 149			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
 150	}
 151	kfree(kvm->arch.guest_pmap);
 152
 153	kvm_for_each_vcpu(i, vcpu, kvm) {
 154		kvm_arch_vcpu_free(vcpu);
 155	}
 156
 157	mutex_lock(&kvm->lock);
 158
 159	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 160		kvm->vcpus[i] = NULL;
 161
 162	atomic_set(&kvm->online_vcpus, 0);
 163
 164	mutex_unlock(&kvm->lock);
 165}
 166
 167static void kvm_mips_uninit_tlbs(void *arg)
 168{
 169	/* Restore wired count */
 170	write_c0_wired(0);
 171	mtc0_tlbw_hazard();
 172	/* Clear out all the TLBs */
 173	kvm_local_flush_tlb_all();
 174}
 175
 176void kvm_arch_destroy_vm(struct kvm *kvm)
 177{
 178	kvm_mips_free_vcpus(kvm);
 179
 180	/* If this is the last instance, restore wired count */
 181	if (atomic_dec_return(&kvm_mips_instance) == 0) {
 182		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
 183			  __func__);
 184		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
 185	}
 186}
 187
 188long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 189			unsigned long arg)
 190{
 191	return -ENOIOCTLCMD;
 192}
 193
 194int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 195			    unsigned long npages)
 
 
 
 
 
 
 
 196{
 197	return 0;
 
 
 
 
 
 
 
 
 
 
 198}
 199
 200int kvm_arch_prepare_memory_region(struct kvm *kvm,
 201				   struct kvm_memory_slot *memslot,
 202				   const struct kvm_userspace_memory_region *mem,
 203				   enum kvm_mr_change change)
 204{
 205	return 0;
 206}
 207
 208void kvm_arch_commit_memory_region(struct kvm *kvm,
 209				   const struct kvm_userspace_memory_region *mem,
 210				   const struct kvm_memory_slot *old,
 211				   const struct kvm_memory_slot *new,
 212				   enum kvm_mr_change change)
 213{
 214	unsigned long npages = 0;
 215	int i;
 216
 217	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 218		  __func__, kvm, mem->slot, mem->guest_phys_addr,
 219		  mem->memory_size, mem->userspace_addr);
 220
 221	/* Setup Guest PMAP table */
 222	if (!kvm->arch.guest_pmap) {
 223		if (mem->slot == 0)
 224			npages = mem->memory_size >> PAGE_SHIFT;
 225
 226		if (npages) {
 227			kvm->arch.guest_pmap_npages = npages;
 228			kvm->arch.guest_pmap =
 229			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
 230
 231			if (!kvm->arch.guest_pmap) {
 232				kvm_err("Failed to allocate guest PMAP\n");
 233				return;
 234			}
 235
 236			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
 237				  npages, kvm->arch.guest_pmap);
 238
 239			/* Now setup the page table */
 240			for (i = 0; i < npages; i++)
 241				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
 242		}
 243	}
 244}
 245
 246struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247{
 248	int err, size, offset;
 249	void *gebase;
 250	int i;
 
 
 
 
 
 251
 252	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 
 253
 254	if (!vcpu) {
 255		err = -ENOMEM;
 256		goto out;
 257	}
 
 
 
 
 
 
 258
 259	err = kvm_vcpu_init(vcpu, kvm, id);
 
 260
 
 261	if (err)
 262		goto out_free_cpu;
 263
 264	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 
 
 265
 266	/*
 267	 * Allocate space for host mode exception handlers that handle
 268	 * guest mode exits
 269	 */
 270	if (cpu_has_veic || cpu_has_vint)
 271		size = 0x200 + VECTORSPACING * 64;
 272	else
 273		size = 0x4000;
 274
 275	/* Save Linux EBASE */
 276	vcpu->arch.host_ebase = (void *)read_c0_ebase();
 277
 278	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 279
 280	if (!gebase) {
 281		err = -ENOMEM;
 282		goto out_uninit_cpu;
 283	}
 284	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 285		  ALIGN(size, PAGE_SIZE), gebase);
 286
 
 
 
 
 
 
 
 
 
 
 
 
 287	/* Save new ebase */
 288	vcpu->arch.guest_ebase = gebase;
 289
 290	/* Copy L1 Guest Exception handler to correct offset */
 
 291
 292	/* TLB Refill, EXL = 0 */
 293	memcpy(gebase, mips32_exception,
 294	       mips32_exceptionEnd - mips32_exception);
 
 
 295
 296	/* General Exception Entry point */
 297	memcpy(gebase + 0x180, mips32_exception,
 298	       mips32_exceptionEnd - mips32_exception);
 299
 300	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 301	for (i = 0; i < 8; i++) {
 302		kvm_debug("L1 Vectored handler @ %p\n",
 303			  gebase + 0x200 + (i * VECTORSPACING));
 304		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
 305		       mips32_exceptionEnd - mips32_exception);
 306	}
 307
 308	/* General handler, relocate to unmapped space for sanity's sake */
 309	offset = 0x2000;
 310	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
 311		  gebase + offset,
 312		  mips32_GuestExceptionEnd - mips32_GuestException);
 313
 314	memcpy(gebase + offset, mips32_GuestException,
 315	       mips32_GuestExceptionEnd - mips32_GuestException);
 
 
 
 
 
 
 
 
 316
 317	/* Invalidate the icache for these ranges */
 318	local_flush_icache_range((unsigned long)gebase,
 319				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 320
 321	/*
 322	 * Allocate comm page for guest kernel, a TLB will be reserved for
 323	 * mapping GVA @ 0xFFFF8000 to this page
 324	 */
 325	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 326
 327	if (!vcpu->arch.kseg0_commpage) {
 328		err = -ENOMEM;
 329		goto out_free_gebase;
 330	}
 331
 332	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 333	kvm_mips_commpage_init(vcpu);
 334
 335	/* Init */
 336	vcpu->arch.last_sched_cpu = -1;
 
 337
 338	/* Start off the timer */
 339	kvm_mips_init_count(vcpu);
 
 
 340
 341	return vcpu;
 342
 343out_free_gebase:
 344	kfree(gebase);
 345
 346out_uninit_cpu:
 347	kvm_vcpu_uninit(vcpu);
 348
 349out_free_cpu:
 350	kfree(vcpu);
 351
 352out:
 353	return ERR_PTR(err);
 354}
 355
 356void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 357{
 358	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 359
 360	kvm_vcpu_uninit(vcpu);
 361
 362	kvm_mips_dump_stats(vcpu);
 363
 
 364	kfree(vcpu->arch.guest_ebase);
 365	kfree(vcpu->arch.kseg0_commpage);
 366	kfree(vcpu);
 367}
 368
 369void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 370{
 371	kvm_arch_vcpu_free(vcpu);
 372}
 373
 374int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 375					struct kvm_guest_debug *dbg)
 376{
 377	return -ENOIOCTLCMD;
 378}
 379
 380int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 
 
 
 
 
 
 
 381{
 382	int r = 0;
 383	sigset_t sigsaved;
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385	if (vcpu->sigset_active)
 386		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 387
 388	if (vcpu->mmio_needed) {
 389		if (!vcpu->mmio_is_write)
 390			kvm_mips_complete_mmio_load(vcpu, run);
 391		vcpu->mmio_needed = 0;
 392	}
 393
 
 
 
 394	lose_fpu(1);
 395
 396	local_irq_disable();
 397	/* Check if we have any exceptions/interrupts pending */
 398	kvm_mips_deliver_interrupts(vcpu,
 399				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
 400
 401	__kvm_guest_enter();
 
 
 
 
 
 
 402
 403	/* Disable hardware page table walking while in guest */
 404	htw_stop();
 405
 406	r = __kvm_mips_vcpu_run(run, vcpu);
 407
 408	/* Re-enable HTW before enabling interrupts */
 409	htw_start();
 
 
 
 
 
 
 
 
 410
 411	__kvm_guest_exit();
 
 412	local_irq_enable();
 413
 414	if (vcpu->sigset_active)
 415		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 416
 
 417	return r;
 418}
 419
 420int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 421			     struct kvm_mips_interrupt *irq)
 422{
 423	int intr = (int)irq->irq;
 424	struct kvm_vcpu *dvcpu = NULL;
 425
 426	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 
 
 
 427		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 428			  (int)intr);
 429
 430	if (irq->cpu == -1)
 431		dvcpu = vcpu;
 432	else
 433		dvcpu = vcpu->kvm->vcpus[irq->cpu];
 434
 435	if (intr == 2 || intr == 3 || intr == 4) {
 436		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 437
 438	} else if (intr == -2 || intr == -3 || intr == -4) {
 439		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 440	} else {
 441		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 442			irq->cpu, irq->irq);
 443		return -EINVAL;
 444	}
 445
 446	dvcpu->arch.wait = 0;
 447
 448	if (swait_active(&dvcpu->wq))
 449		swake_up(&dvcpu->wq);
 450
 451	return 0;
 452}
 453
 454int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 455				    struct kvm_mp_state *mp_state)
 456{
 457	return -ENOIOCTLCMD;
 458}
 459
 460int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 461				    struct kvm_mp_state *mp_state)
 462{
 463	return -ENOIOCTLCMD;
 464}
 465
 466static u64 kvm_mips_get_one_regs[] = {
 467	KVM_REG_MIPS_R0,
 468	KVM_REG_MIPS_R1,
 469	KVM_REG_MIPS_R2,
 470	KVM_REG_MIPS_R3,
 471	KVM_REG_MIPS_R4,
 472	KVM_REG_MIPS_R5,
 473	KVM_REG_MIPS_R6,
 474	KVM_REG_MIPS_R7,
 475	KVM_REG_MIPS_R8,
 476	KVM_REG_MIPS_R9,
 477	KVM_REG_MIPS_R10,
 478	KVM_REG_MIPS_R11,
 479	KVM_REG_MIPS_R12,
 480	KVM_REG_MIPS_R13,
 481	KVM_REG_MIPS_R14,
 482	KVM_REG_MIPS_R15,
 483	KVM_REG_MIPS_R16,
 484	KVM_REG_MIPS_R17,
 485	KVM_REG_MIPS_R18,
 486	KVM_REG_MIPS_R19,
 487	KVM_REG_MIPS_R20,
 488	KVM_REG_MIPS_R21,
 489	KVM_REG_MIPS_R22,
 490	KVM_REG_MIPS_R23,
 491	KVM_REG_MIPS_R24,
 492	KVM_REG_MIPS_R25,
 493	KVM_REG_MIPS_R26,
 494	KVM_REG_MIPS_R27,
 495	KVM_REG_MIPS_R28,
 496	KVM_REG_MIPS_R29,
 497	KVM_REG_MIPS_R30,
 498	KVM_REG_MIPS_R31,
 499
 
 500	KVM_REG_MIPS_HI,
 501	KVM_REG_MIPS_LO,
 
 502	KVM_REG_MIPS_PC,
 
 503
 504	KVM_REG_MIPS_CP0_INDEX,
 505	KVM_REG_MIPS_CP0_CONTEXT,
 506	KVM_REG_MIPS_CP0_USERLOCAL,
 507	KVM_REG_MIPS_CP0_PAGEMASK,
 508	KVM_REG_MIPS_CP0_WIRED,
 509	KVM_REG_MIPS_CP0_HWRENA,
 510	KVM_REG_MIPS_CP0_BADVADDR,
 511	KVM_REG_MIPS_CP0_COUNT,
 512	KVM_REG_MIPS_CP0_ENTRYHI,
 513	KVM_REG_MIPS_CP0_COMPARE,
 514	KVM_REG_MIPS_CP0_STATUS,
 515	KVM_REG_MIPS_CP0_CAUSE,
 516	KVM_REG_MIPS_CP0_EPC,
 517	KVM_REG_MIPS_CP0_PRID,
 518	KVM_REG_MIPS_CP0_CONFIG,
 519	KVM_REG_MIPS_CP0_CONFIG1,
 520	KVM_REG_MIPS_CP0_CONFIG2,
 521	KVM_REG_MIPS_CP0_CONFIG3,
 522	KVM_REG_MIPS_CP0_CONFIG4,
 523	KVM_REG_MIPS_CP0_CONFIG5,
 524	KVM_REG_MIPS_CP0_CONFIG7,
 525	KVM_REG_MIPS_CP0_ERROREPC,
 526
 527	KVM_REG_MIPS_COUNT_CTL,
 528	KVM_REG_MIPS_COUNT_RESUME,
 529	KVM_REG_MIPS_COUNT_HZ,
 530};
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 533			    const struct kvm_one_reg *reg)
 534{
 535	struct mips_coproc *cop0 = vcpu->arch.cop0;
 536	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 537	int ret;
 538	s64 v;
 539	s64 vs[2];
 540	unsigned int idx;
 541
 542	switch (reg->id) {
 543	/* General purpose registers */
 544	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 545		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 546		break;
 
 547	case KVM_REG_MIPS_HI:
 548		v = (long)vcpu->arch.hi;
 549		break;
 550	case KVM_REG_MIPS_LO:
 551		v = (long)vcpu->arch.lo;
 552		break;
 
 553	case KVM_REG_MIPS_PC:
 554		v = (long)vcpu->arch.pc;
 555		break;
 556
 557	/* Floating point registers */
 558	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 559		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 560			return -EINVAL;
 561		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 562		/* Odd singles in top of even double when FR=0 */
 563		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 564			v = get_fpr32(&fpu->fpr[idx], 0);
 565		else
 566			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 567		break;
 568	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 569		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 570			return -EINVAL;
 571		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 572		/* Can't access odd doubles in FR=0 mode */
 573		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 574			return -EINVAL;
 575		v = get_fpr64(&fpu->fpr[idx], 0);
 576		break;
 577	case KVM_REG_MIPS_FCR_IR:
 578		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 579			return -EINVAL;
 580		v = boot_cpu_data.fpu_id;
 581		break;
 582	case KVM_REG_MIPS_FCR_CSR:
 583		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 584			return -EINVAL;
 585		v = fpu->fcr31;
 586		break;
 587
 588	/* MIPS SIMD Architecture (MSA) registers */
 589	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 590		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 591			return -EINVAL;
 592		/* Can't access MSA registers in FR=0 mode */
 593		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 594			return -EINVAL;
 595		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 596#ifdef CONFIG_CPU_LITTLE_ENDIAN
 597		/* least significant byte first */
 598		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 599		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 600#else
 601		/* most significant byte first */
 602		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 603		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 604#endif
 605		break;
 606	case KVM_REG_MIPS_MSA_IR:
 607		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 608			return -EINVAL;
 609		v = boot_cpu_data.msa_id;
 610		break;
 611	case KVM_REG_MIPS_MSA_CSR:
 612		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 613			return -EINVAL;
 614		v = fpu->msacsr;
 615		break;
 616
 617	/* Co-processor 0 registers */
 618	case KVM_REG_MIPS_CP0_INDEX:
 619		v = (long)kvm_read_c0_guest_index(cop0);
 620		break;
 621	case KVM_REG_MIPS_CP0_CONTEXT:
 622		v = (long)kvm_read_c0_guest_context(cop0);
 623		break;
 624	case KVM_REG_MIPS_CP0_USERLOCAL:
 625		v = (long)kvm_read_c0_guest_userlocal(cop0);
 626		break;
 627	case KVM_REG_MIPS_CP0_PAGEMASK:
 628		v = (long)kvm_read_c0_guest_pagemask(cop0);
 629		break;
 630	case KVM_REG_MIPS_CP0_WIRED:
 631		v = (long)kvm_read_c0_guest_wired(cop0);
 632		break;
 633	case KVM_REG_MIPS_CP0_HWRENA:
 634		v = (long)kvm_read_c0_guest_hwrena(cop0);
 635		break;
 636	case KVM_REG_MIPS_CP0_BADVADDR:
 637		v = (long)kvm_read_c0_guest_badvaddr(cop0);
 638		break;
 639	case KVM_REG_MIPS_CP0_ENTRYHI:
 640		v = (long)kvm_read_c0_guest_entryhi(cop0);
 641		break;
 642	case KVM_REG_MIPS_CP0_COMPARE:
 643		v = (long)kvm_read_c0_guest_compare(cop0);
 644		break;
 645	case KVM_REG_MIPS_CP0_STATUS:
 646		v = (long)kvm_read_c0_guest_status(cop0);
 647		break;
 648	case KVM_REG_MIPS_CP0_CAUSE:
 649		v = (long)kvm_read_c0_guest_cause(cop0);
 650		break;
 651	case KVM_REG_MIPS_CP0_EPC:
 652		v = (long)kvm_read_c0_guest_epc(cop0);
 653		break;
 654	case KVM_REG_MIPS_CP0_PRID:
 655		v = (long)kvm_read_c0_guest_prid(cop0);
 656		break;
 657	case KVM_REG_MIPS_CP0_CONFIG:
 658		v = (long)kvm_read_c0_guest_config(cop0);
 659		break;
 660	case KVM_REG_MIPS_CP0_CONFIG1:
 661		v = (long)kvm_read_c0_guest_config1(cop0);
 662		break;
 663	case KVM_REG_MIPS_CP0_CONFIG2:
 664		v = (long)kvm_read_c0_guest_config2(cop0);
 665		break;
 666	case KVM_REG_MIPS_CP0_CONFIG3:
 667		v = (long)kvm_read_c0_guest_config3(cop0);
 668		break;
 669	case KVM_REG_MIPS_CP0_CONFIG4:
 670		v = (long)kvm_read_c0_guest_config4(cop0);
 671		break;
 672	case KVM_REG_MIPS_CP0_CONFIG5:
 673		v = (long)kvm_read_c0_guest_config5(cop0);
 674		break;
 675	case KVM_REG_MIPS_CP0_CONFIG7:
 676		v = (long)kvm_read_c0_guest_config7(cop0);
 677		break;
 678	case KVM_REG_MIPS_CP0_ERROREPC:
 679		v = (long)kvm_read_c0_guest_errorepc(cop0);
 680		break;
 681	/* registers to be handled specially */
 682	case KVM_REG_MIPS_CP0_COUNT:
 683	case KVM_REG_MIPS_COUNT_CTL:
 684	case KVM_REG_MIPS_COUNT_RESUME:
 685	case KVM_REG_MIPS_COUNT_HZ:
 686		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 687		if (ret)
 688			return ret;
 689		break;
 690	default:
 691		return -EINVAL;
 692	}
 693	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 694		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 695
 696		return put_user(v, uaddr64);
 697	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 698		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 699		u32 v32 = (u32)v;
 700
 701		return put_user(v32, uaddr32);
 702	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 703		void __user *uaddr = (void __user *)(long)reg->addr;
 704
 705		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 706	} else {
 707		return -EINVAL;
 708	}
 709}
 710
 711static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 712			    const struct kvm_one_reg *reg)
 713{
 714	struct mips_coproc *cop0 = vcpu->arch.cop0;
 715	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 716	s64 v;
 717	s64 vs[2];
 718	unsigned int idx;
 719
 720	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 721		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 722
 723		if (get_user(v, uaddr64) != 0)
 724			return -EFAULT;
 725	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 726		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 727		s32 v32;
 728
 729		if (get_user(v32, uaddr32) != 0)
 730			return -EFAULT;
 731		v = (s64)v32;
 732	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 733		void __user *uaddr = (void __user *)(long)reg->addr;
 734
 735		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 736	} else {
 737		return -EINVAL;
 738	}
 739
 740	switch (reg->id) {
 741	/* General purpose registers */
 742	case KVM_REG_MIPS_R0:
 743		/* Silently ignore requests to set $0 */
 744		break;
 745	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 746		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 747		break;
 
 748	case KVM_REG_MIPS_HI:
 749		vcpu->arch.hi = v;
 750		break;
 751	case KVM_REG_MIPS_LO:
 752		vcpu->arch.lo = v;
 753		break;
 
 754	case KVM_REG_MIPS_PC:
 755		vcpu->arch.pc = v;
 756		break;
 757
 758	/* Floating point registers */
 759	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 760		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 761			return -EINVAL;
 762		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 763		/* Odd singles in top of even double when FR=0 */
 764		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 765			set_fpr32(&fpu->fpr[idx], 0, v);
 766		else
 767			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 768		break;
 769	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 770		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 771			return -EINVAL;
 772		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 773		/* Can't access odd doubles in FR=0 mode */
 774		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 775			return -EINVAL;
 776		set_fpr64(&fpu->fpr[idx], 0, v);
 777		break;
 778	case KVM_REG_MIPS_FCR_IR:
 779		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 780			return -EINVAL;
 781		/* Read-only */
 782		break;
 783	case KVM_REG_MIPS_FCR_CSR:
 784		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 785			return -EINVAL;
 786		fpu->fcr31 = v;
 787		break;
 788
 789	/* MIPS SIMD Architecture (MSA) registers */
 790	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 791		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 792			return -EINVAL;
 793		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 794#ifdef CONFIG_CPU_LITTLE_ENDIAN
 795		/* least significant byte first */
 796		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 797		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 798#else
 799		/* most significant byte first */
 800		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 801		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 802#endif
 803		break;
 804	case KVM_REG_MIPS_MSA_IR:
 805		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 806			return -EINVAL;
 807		/* Read-only */
 808		break;
 809	case KVM_REG_MIPS_MSA_CSR:
 810		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 811			return -EINVAL;
 812		fpu->msacsr = v;
 813		break;
 814
 815	/* Co-processor 0 registers */
 816	case KVM_REG_MIPS_CP0_INDEX:
 817		kvm_write_c0_guest_index(cop0, v);
 818		break;
 819	case KVM_REG_MIPS_CP0_CONTEXT:
 820		kvm_write_c0_guest_context(cop0, v);
 821		break;
 822	case KVM_REG_MIPS_CP0_USERLOCAL:
 823		kvm_write_c0_guest_userlocal(cop0, v);
 824		break;
 825	case KVM_REG_MIPS_CP0_PAGEMASK:
 826		kvm_write_c0_guest_pagemask(cop0, v);
 827		break;
 828	case KVM_REG_MIPS_CP0_WIRED:
 829		kvm_write_c0_guest_wired(cop0, v);
 830		break;
 831	case KVM_REG_MIPS_CP0_HWRENA:
 832		kvm_write_c0_guest_hwrena(cop0, v);
 833		break;
 834	case KVM_REG_MIPS_CP0_BADVADDR:
 835		kvm_write_c0_guest_badvaddr(cop0, v);
 836		break;
 837	case KVM_REG_MIPS_CP0_ENTRYHI:
 838		kvm_write_c0_guest_entryhi(cop0, v);
 839		break;
 840	case KVM_REG_MIPS_CP0_STATUS:
 841		kvm_write_c0_guest_status(cop0, v);
 842		break;
 843	case KVM_REG_MIPS_CP0_EPC:
 844		kvm_write_c0_guest_epc(cop0, v);
 845		break;
 846	case KVM_REG_MIPS_CP0_PRID:
 847		kvm_write_c0_guest_prid(cop0, v);
 848		break;
 849	case KVM_REG_MIPS_CP0_ERROREPC:
 850		kvm_write_c0_guest_errorepc(cop0, v);
 851		break;
 852	/* registers to be handled specially */
 853	case KVM_REG_MIPS_CP0_COUNT:
 854	case KVM_REG_MIPS_CP0_COMPARE:
 855	case KVM_REG_MIPS_CP0_CAUSE:
 856	case KVM_REG_MIPS_CP0_CONFIG:
 857	case KVM_REG_MIPS_CP0_CONFIG1:
 858	case KVM_REG_MIPS_CP0_CONFIG2:
 859	case KVM_REG_MIPS_CP0_CONFIG3:
 860	case KVM_REG_MIPS_CP0_CONFIG4:
 861	case KVM_REG_MIPS_CP0_CONFIG5:
 862	case KVM_REG_MIPS_COUNT_CTL:
 863	case KVM_REG_MIPS_COUNT_RESUME:
 864	case KVM_REG_MIPS_COUNT_HZ:
 865		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 866	default:
 867		return -EINVAL;
 868	}
 869	return 0;
 870}
 871
 872static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 873				     struct kvm_enable_cap *cap)
 874{
 875	int r = 0;
 876
 877	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 878		return -EINVAL;
 879	if (cap->flags)
 880		return -EINVAL;
 881	if (cap->args[0])
 882		return -EINVAL;
 883
 884	switch (cap->cap) {
 885	case KVM_CAP_MIPS_FPU:
 886		vcpu->arch.fpu_enabled = true;
 887		break;
 888	case KVM_CAP_MIPS_MSA:
 889		vcpu->arch.msa_enabled = true;
 890		break;
 891	default:
 892		r = -EINVAL;
 893		break;
 894	}
 895
 896	return r;
 897}
 898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 900			 unsigned long arg)
 901{
 902	struct kvm_vcpu *vcpu = filp->private_data;
 903	void __user *argp = (void __user *)arg;
 904	long r;
 905
 
 
 906	switch (ioctl) {
 907	case KVM_SET_ONE_REG:
 908	case KVM_GET_ONE_REG: {
 909		struct kvm_one_reg reg;
 910
 
 911		if (copy_from_user(&reg, argp, sizeof(reg)))
 912			return -EFAULT;
 913		if (ioctl == KVM_SET_ONE_REG)
 914			return kvm_mips_set_reg(vcpu, &reg);
 915		else
 916			return kvm_mips_get_reg(vcpu, &reg);
 
 917	}
 918	case KVM_GET_REG_LIST: {
 919		struct kvm_reg_list __user *user_list = argp;
 920		u64 __user *reg_dest;
 921		struct kvm_reg_list reg_list;
 922		unsigned n;
 923
 
 924		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 925			return -EFAULT;
 926		n = reg_list.n;
 927		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
 928		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 929			return -EFAULT;
 
 930		if (n < reg_list.n)
 931			return -E2BIG;
 932		reg_dest = user_list->reg;
 933		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
 934				 sizeof(kvm_mips_get_one_regs)))
 935			return -EFAULT;
 936		return 0;
 937	}
 938	case KVM_NMI:
 939		/* Treat the NMI as a CPU reset */
 940		r = kvm_mips_reset_vcpu(vcpu);
 941		break;
 942	case KVM_INTERRUPT:
 943		{
 944			struct kvm_mips_interrupt irq;
 945
 946			r = -EFAULT;
 947			if (copy_from_user(&irq, argp, sizeof(irq)))
 948				goto out;
 949
 950			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 951				  irq.irq);
 952
 953			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 954			break;
 955		}
 956	case KVM_ENABLE_CAP: {
 957		struct kvm_enable_cap cap;
 958
 959		r = -EFAULT;
 960		if (copy_from_user(&cap, argp, sizeof(cap)))
 961			goto out;
 962		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 963		break;
 964	}
 965	default:
 966		r = -ENOIOCTLCMD;
 967	}
 968
 969out:
 970	return r;
 971}
 972
 973/* Get (and clear) the dirty memory log for a memory slot. */
 974int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 975{
 976	struct kvm_memslots *slots;
 977	struct kvm_memory_slot *memslot;
 978	unsigned long ga, ga_end;
 979	int is_dirty = 0;
 980	int r;
 981	unsigned long n;
 982
 983	mutex_lock(&kvm->slots_lock);
 984
 985	r = kvm_get_dirty_log(kvm, log, &is_dirty);
 986	if (r)
 987		goto out;
 988
 989	/* If nothing is dirty, don't bother messing with page tables. */
 990	if (is_dirty) {
 991		slots = kvm_memslots(kvm);
 992		memslot = id_to_memslot(slots, log->slot);
 993
 994		ga = memslot->base_gfn << PAGE_SHIFT;
 995		ga_end = ga + (memslot->npages << PAGE_SHIFT);
 996
 997		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
 998			 ga_end);
 999
1000		n = kvm_dirty_bitmap_bytes(memslot);
1001		memset(memslot->dirty_bitmap, 0, n);
1002	}
1003
1004	r = 0;
1005out:
1006	mutex_unlock(&kvm->slots_lock);
1007	return r;
1008
 
 
 
 
1009}
1010
1011long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1012{
1013	long r;
1014
1015	switch (ioctl) {
1016	default:
1017		r = -ENOIOCTLCMD;
1018	}
1019
1020	return r;
1021}
1022
1023int kvm_arch_init(void *opaque)
1024{
1025	if (kvm_mips_callbacks) {
1026		kvm_err("kvm: module already exists\n");
1027		return -EEXIST;
1028	}
1029
1030	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1031}
1032
1033void kvm_arch_exit(void)
1034{
1035	kvm_mips_callbacks = NULL;
1036}
1037
1038int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1039				  struct kvm_sregs *sregs)
1040{
1041	return -ENOIOCTLCMD;
1042}
1043
1044int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1045				  struct kvm_sregs *sregs)
1046{
1047	return -ENOIOCTLCMD;
1048}
1049
1050void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1051{
1052}
1053
1054int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056	return -ENOIOCTLCMD;
1057}
1058
1059int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1060{
1061	return -ENOIOCTLCMD;
1062}
1063
1064int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1065{
1066	return VM_FAULT_SIGBUS;
1067}
1068
1069int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1070{
1071	int r;
1072
1073	switch (ext) {
1074	case KVM_CAP_ONE_REG:
1075	case KVM_CAP_ENABLE_CAP:
 
 
 
1076		r = 1;
1077		break;
1078	case KVM_CAP_COALESCED_MMIO:
1079		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 
 
 
 
 
 
1080		break;
1081	case KVM_CAP_MIPS_FPU:
1082		r = !!cpu_has_fpu;
 
1083		break;
1084	case KVM_CAP_MIPS_MSA:
1085		/*
1086		 * We don't support MSA vector partitioning yet:
1087		 * 1) It would require explicit support which can't be tested
1088		 *    yet due to lack of support in current hardware.
1089		 * 2) It extends the state that would need to be saved/restored
1090		 *    by e.g. QEMU for migration.
1091		 *
1092		 * When vector partitioning hardware becomes available, support
1093		 * could be added by requiring a flag when enabling
1094		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1095		 * to save/restore the appropriate extra state.
1096		 */
1097		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1098		break;
1099	default:
1100		r = 0;
1101		break;
1102	}
1103	return r;
1104}
1105
1106int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1107{
1108	return kvm_mips_pending_timer(vcpu);
 
1109}
1110
1111int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1112{
1113	int i;
1114	struct mips_coproc *cop0;
1115
1116	if (!vcpu)
1117		return -1;
1118
1119	kvm_debug("VCPU Register Dump:\n");
1120	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1121	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1122
1123	for (i = 0; i < 32; i += 4) {
1124		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1125		       vcpu->arch.gprs[i],
1126		       vcpu->arch.gprs[i + 1],
1127		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1128	}
1129	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1130	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1131
1132	cop0 = vcpu->arch.cop0;
1133	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1134		  kvm_read_c0_guest_status(cop0),
1135		  kvm_read_c0_guest_cause(cop0));
1136
1137	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1138
1139	return 0;
1140}
1141
1142int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1143{
1144	int i;
1145
 
 
1146	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1147		vcpu->arch.gprs[i] = regs->gpr[i];
1148	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1149	vcpu->arch.hi = regs->hi;
1150	vcpu->arch.lo = regs->lo;
1151	vcpu->arch.pc = regs->pc;
1152
 
1153	return 0;
1154}
1155
1156int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1157{
1158	int i;
1159
 
 
1160	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1161		regs->gpr[i] = vcpu->arch.gprs[i];
1162
1163	regs->hi = vcpu->arch.hi;
1164	regs->lo = vcpu->arch.lo;
1165	regs->pc = vcpu->arch.pc;
1166
1167	return 0;
1168}
1169
1170static void kvm_mips_comparecount_func(unsigned long data)
1171{
1172	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1173
1174	kvm_mips_callbacks->queue_timer_int(vcpu);
1175
1176	vcpu->arch.wait = 0;
1177	if (swait_active(&vcpu->wq))
1178		swake_up(&vcpu->wq);
1179}
1180
1181/* low level hrtimer wake routine */
1182static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1183{
1184	struct kvm_vcpu *vcpu;
1185
1186	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1187	kvm_mips_comparecount_func((unsigned long) vcpu);
1188	return kvm_mips_count_timeout(vcpu);
1189}
1190
1191int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1192{
1193	kvm_mips_callbacks->vcpu_init(vcpu);
1194	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1195		     HRTIMER_MODE_REL);
1196	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1197	return 0;
1198}
1199
1200int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1201				  struct kvm_translation *tr)
1202{
1203	return 0;
1204}
1205
1206/* Initial guest state */
1207int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1208{
1209	return kvm_mips_callbacks->vcpu_setup(vcpu);
1210}
1211
1212static void kvm_mips_set_c0_status(void)
1213{
1214	uint32_t status = read_c0_status();
1215
1216	if (cpu_has_dsp)
1217		status |= (ST0_MX);
1218
1219	write_c0_status(status);
1220	ehb();
1221}
1222
1223/*
1224 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1225 */
1226int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1227{
1228	uint32_t cause = vcpu->arch.host_cp0_cause;
1229	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1230	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
 
1231	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1232	enum emulation_result er = EMULATE_DONE;
 
1233	int ret = RESUME_GUEST;
1234
1235	/* re-enable HTW before enabling interrupts */
1236	htw_start();
1237
1238	/* Set a default exit reason */
1239	run->exit_reason = KVM_EXIT_UNKNOWN;
1240	run->ready_for_interrupt_injection = 1;
1241
1242	/*
1243	 * Set the appropriate status bits based on host CPU features,
1244	 * before we hit the scheduler
1245	 */
1246	kvm_mips_set_c0_status();
1247
1248	local_irq_enable();
1249
1250	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1251			cause, opc, run, vcpu);
1252
1253	/*
1254	 * Do a privilege check, if in UM most of these exit conditions end up
1255	 * causing an exception to be delivered to the Guest Kernel
1256	 */
1257	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1258	if (er == EMULATE_PRIV_FAIL) {
1259		goto skip_emul;
1260	} else if (er == EMULATE_FAIL) {
1261		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1262		ret = RESUME_HOST;
1263		goto skip_emul;
1264	}
1265
1266	switch (exccode) {
1267	case EXCCODE_INT:
1268		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1269
1270		++vcpu->stat.int_exits;
1271		trace_kvm_exit(vcpu, INT_EXITS);
1272
1273		if (need_resched())
1274			cond_resched();
1275
1276		ret = RESUME_GUEST;
1277		break;
1278
1279	case EXCCODE_CPU:
1280		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1281
1282		++vcpu->stat.cop_unusable_exits;
1283		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1284		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1285		/* XXXKYMA: Might need to return to user space */
1286		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1287			ret = RESUME_HOST;
1288		break;
1289
1290	case EXCCODE_MOD:
1291		++vcpu->stat.tlbmod_exits;
1292		trace_kvm_exit(vcpu, TLBMOD_EXITS);
1293		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1294		break;
1295
1296	case EXCCODE_TLBS:
1297		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1298			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1299			  badvaddr);
1300
1301		++vcpu->stat.tlbmiss_st_exits;
1302		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1303		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1304		break;
1305
1306	case EXCCODE_TLBL:
1307		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1308			  cause, opc, badvaddr);
1309
1310		++vcpu->stat.tlbmiss_ld_exits;
1311		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1312		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1313		break;
1314
1315	case EXCCODE_ADES:
1316		++vcpu->stat.addrerr_st_exits;
1317		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1318		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1319		break;
1320
1321	case EXCCODE_ADEL:
1322		++vcpu->stat.addrerr_ld_exits;
1323		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1324		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1325		break;
1326
1327	case EXCCODE_SYS:
1328		++vcpu->stat.syscall_exits;
1329		trace_kvm_exit(vcpu, SYSCALL_EXITS);
1330		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1331		break;
1332
1333	case EXCCODE_RI:
1334		++vcpu->stat.resvd_inst_exits;
1335		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1336		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1337		break;
1338
1339	case EXCCODE_BP:
1340		++vcpu->stat.break_inst_exits;
1341		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1342		ret = kvm_mips_callbacks->handle_break(vcpu);
1343		break;
1344
1345	case EXCCODE_TR:
1346		++vcpu->stat.trap_inst_exits;
1347		trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1348		ret = kvm_mips_callbacks->handle_trap(vcpu);
1349		break;
1350
1351	case EXCCODE_MSAFPE:
1352		++vcpu->stat.msa_fpe_exits;
1353		trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1354		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1355		break;
1356
1357	case EXCCODE_FPE:
1358		++vcpu->stat.fpe_exits;
1359		trace_kvm_exit(vcpu, FPE_EXITS);
1360		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1361		break;
1362
1363	case EXCCODE_MSADIS:
1364		++vcpu->stat.msa_disabled_exits;
1365		trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1366		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1367		break;
1368
 
 
 
 
 
1369	default:
1370		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1371			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1372			kvm_read_c0_guest_status(vcpu->arch.cop0));
 
 
 
 
1373		kvm_arch_vcpu_dump_regs(vcpu);
1374		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1375		ret = RESUME_HOST;
1376		break;
1377
1378	}
1379
1380skip_emul:
1381	local_irq_disable();
1382
 
 
 
1383	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1384		kvm_mips_deliver_interrupts(vcpu, cause);
1385
1386	if (!(ret & RESUME_HOST)) {
1387		/* Only check for signals if not already exiting to userspace */
1388		if (signal_pending(current)) {
1389			run->exit_reason = KVM_EXIT_INTR;
1390			ret = (-EINTR << 2) | RESUME_HOST;
1391			++vcpu->stat.signal_exits;
1392			trace_kvm_exit(vcpu, SIGNAL_EXITS);
1393		}
1394	}
1395
1396	if (ret == RESUME_GUEST) {
 
 
 
 
 
 
 
 
 
 
 
 
1397		/*
1398		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1399		 * is live), restore FCR31 / MSACSR.
1400		 *
1401		 * This should be before returning to the guest exception
1402		 * vector, as it may well cause an [MSA] FP exception if there
1403		 * are pending exception bits unmasked. (see
1404		 * kvm_mips_csr_die_notifier() for how that is handled).
1405		 */
1406		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1407		    read_c0_status() & ST0_CU1)
1408			__kvm_restore_fcsr(&vcpu->arch);
1409
1410		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1411		    read_c0_config5() & MIPS_CONF5_MSAEN)
1412			__kvm_restore_msacsr(&vcpu->arch);
1413	}
 
 
1414
1415	/* Disable HTW before returning to guest or host */
1416	htw_stop();
 
 
 
 
 
1417
1418	return ret;
1419}
1420
1421/* Enable FPU for guest and restore context */
1422void kvm_own_fpu(struct kvm_vcpu *vcpu)
1423{
1424	struct mips_coproc *cop0 = vcpu->arch.cop0;
1425	unsigned int sr, cfg5;
1426
1427	preempt_disable();
1428
1429	sr = kvm_read_c0_guest_status(cop0);
1430
1431	/*
1432	 * If MSA state is already live, it is undefined how it interacts with
1433	 * FR=0 FPU state, and we don't want to hit reserved instruction
1434	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1435	 * play it safe and save it first.
1436	 *
1437	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1438	 * get called when guest CU1 is set, however we can't trust the guest
1439	 * not to clobber the status register directly via the commpage.
1440	 */
1441	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1442	    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1443		kvm_lose_fpu(vcpu);
1444
1445	/*
1446	 * Enable FPU for guest
1447	 * We set FR and FRE according to guest context
1448	 */
1449	change_c0_status(ST0_CU1 | ST0_FR, sr);
1450	if (cpu_has_fre) {
1451		cfg5 = kvm_read_c0_guest_config5(cop0);
1452		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1453	}
1454	enable_fpu_hazard();
1455
1456	/* If guest FPU state not active, restore it now */
1457	if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1458		__kvm_restore_fpu(&vcpu->arch);
1459		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
 
 
 
1460	}
1461
1462	preempt_enable();
1463}
1464
1465#ifdef CONFIG_CPU_HAS_MSA
1466/* Enable MSA for guest and restore context */
1467void kvm_own_msa(struct kvm_vcpu *vcpu)
1468{
1469	struct mips_coproc *cop0 = vcpu->arch.cop0;
1470	unsigned int sr, cfg5;
1471
1472	preempt_disable();
1473
1474	/*
1475	 * Enable FPU if enabled in guest, since we're restoring FPU context
1476	 * anyway. We set FR and FRE according to guest context.
1477	 */
1478	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1479		sr = kvm_read_c0_guest_status(cop0);
1480
1481		/*
1482		 * If FR=0 FPU state is already live, it is undefined how it
1483		 * interacts with MSA state, so play it safe and save it first.
1484		 */
1485		if (!(sr & ST0_FR) &&
1486		    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1487				KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1488			kvm_lose_fpu(vcpu);
1489
1490		change_c0_status(ST0_CU1 | ST0_FR, sr);
1491		if (sr & ST0_CU1 && cpu_has_fre) {
1492			cfg5 = kvm_read_c0_guest_config5(cop0);
1493			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1494		}
1495	}
1496
1497	/* Enable MSA for guest */
1498	set_c0_config5(MIPS_CONF5_MSAEN);
1499	enable_fpu_hazard();
1500
1501	switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1502	case KVM_MIPS_FPU_FPU:
1503		/*
1504		 * Guest FPU state already loaded, only restore upper MSA state
1505		 */
1506		__kvm_restore_msa_upper(&vcpu->arch);
1507		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
 
1508		break;
1509	case 0:
1510		/* Neither FPU or MSA already active, restore full MSA state */
1511		__kvm_restore_msa(&vcpu->arch);
1512		vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1513		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1514			vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
 
 
1515		break;
1516	default:
 
1517		break;
1518	}
1519
1520	preempt_enable();
1521}
1522#endif
1523
1524/* Drop FPU & MSA without saving it */
1525void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1526{
1527	preempt_disable();
1528	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1529		disable_msa();
1530		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
 
1531	}
1532	if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1533		clear_c0_status(ST0_CU1 | ST0_FR);
1534		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
 
1535	}
1536	preempt_enable();
1537}
1538
1539/* Save and disable FPU & MSA */
1540void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1541{
1542	/*
1543	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1544	 * in guest context (software), but the register state in the hardware
1545	 * may still be in use. This is why we explicitly re-enable the hardware
1546	 * before saving.
1547	 */
1548
1549	preempt_disable();
1550	if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1551		set_c0_config5(MIPS_CONF5_MSAEN);
1552		enable_fpu_hazard();
1553
1554		__kvm_save_msa(&vcpu->arch);
 
1555
1556		/* Disable MSA & FPU */
1557		disable_msa();
1558		if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1559			clear_c0_status(ST0_CU1 | ST0_FR);
1560		vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1561	} else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1562		set_c0_status(ST0_CU1);
1563		enable_fpu_hazard();
1564
1565		__kvm_save_fpu(&vcpu->arch);
1566		vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
 
1567
1568		/* Disable FPU */
1569		clear_c0_status(ST0_CU1 | ST0_FR);
 
1570	}
1571	preempt_enable();
1572}
1573
1574/*
1575 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1576 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1577 * exception if cause bits are set in the value being written.
1578 */
1579static int kvm_mips_csr_die_notify(struct notifier_block *self,
1580				   unsigned long cmd, void *ptr)
1581{
1582	struct die_args *args = (struct die_args *)ptr;
1583	struct pt_regs *regs = args->regs;
1584	unsigned long pc;
1585
1586	/* Only interested in FPE and MSAFPE */
1587	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1588		return NOTIFY_DONE;
1589
1590	/* Return immediately if guest context isn't active */
1591	if (!(current->flags & PF_VCPU))
1592		return NOTIFY_DONE;
1593
1594	/* Should never get here from user mode */
1595	BUG_ON(user_mode(regs));
1596
1597	pc = instruction_pointer(regs);
1598	switch (cmd) {
1599	case DIE_FP:
1600		/* match 2nd instruction in __kvm_restore_fcsr */
1601		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1602			return NOTIFY_DONE;
1603		break;
1604	case DIE_MSAFP:
1605		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1606		if (!cpu_has_msa ||
1607		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1608		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1609			return NOTIFY_DONE;
1610		break;
1611	}
1612
1613	/* Move PC forward a little and continue executing */
1614	instruction_pointer(regs) += 4;
1615
1616	return NOTIFY_STOP;
1617}
1618
1619static struct notifier_block kvm_mips_csr_die_notifier = {
1620	.notifier_call = kvm_mips_csr_die_notify,
1621};
1622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623static int __init kvm_mips_init(void)
1624{
1625	int ret;
1626
1627	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
 
 
 
1628
 
1629	if (ret)
1630		return ret;
1631
 
 
 
 
 
 
 
 
1632	register_die_notifier(&kvm_mips_csr_die_notifier);
1633
1634	/*
1635	 * On MIPS, kernel modules are executed from "mapped space", which
1636	 * requires TLBs. The TLB handling code is statically linked with
1637	 * the rest of the kernel (tlb.c) to avoid the possibility of
1638	 * double faulting. The issue is that the TLB code references
1639	 * routines that are part of the the KVM module, which are only
1640	 * available once the module is loaded.
1641	 */
1642	kvm_mips_gfn_to_pfn = gfn_to_pfn;
1643	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1644	kvm_mips_is_error_pfn = is_error_pfn;
1645
1646	return 0;
1647}
1648
1649static void __exit kvm_mips_exit(void)
1650{
1651	kvm_exit();
1652
1653	kvm_mips_gfn_to_pfn = NULL;
1654	kvm_mips_release_pfn_clean = NULL;
1655	kvm_mips_is_error_pfn = NULL;
1656
1657	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1658}
1659
1660module_init(kvm_mips_init);
1661module_exit(kvm_mips_exit);
1662
1663EXPORT_TRACEPOINT_SYMBOL(kvm_exit);