Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Linux INET6 implementation
4 * Forwarding Information Database
5 *
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
8 *
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
14 */
15
16#define pr_fmt(fmt) "IPv6: " fmt
17
18#include <linux/bpf.h>
19#include <linux/errno.h>
20#include <linux/types.h>
21#include <linux/net.h>
22#include <linux/route.h>
23#include <linux/netdevice.h>
24#include <linux/in6.h>
25#include <linux/init.h>
26#include <linux/list.h>
27#include <linux/slab.h>
28
29#include <net/ip.h>
30#include <net/ipv6.h>
31#include <net/ndisc.h>
32#include <net/addrconf.h>
33#include <net/lwtunnel.h>
34#include <net/fib_notifier.h>
35
36#include <net/ip_fib.h>
37#include <net/ip6_fib.h>
38#include <net/ip6_route.h>
39
40static struct kmem_cache *fib6_node_kmem __read_mostly;
41
42struct fib6_cleaner {
43 struct fib6_walker w;
44 struct net *net;
45 int (*func)(struct fib6_info *, void *arg);
46 int sernum;
47 void *arg;
48 bool skip_notify;
49};
50
51#ifdef CONFIG_IPV6_SUBTREES
52#define FWS_INIT FWS_S
53#else
54#define FWS_INIT FWS_L
55#endif
56
57static struct fib6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63static int fib6_walk(struct net *net, struct fib6_walker *w);
64static int fib6_walk_continue(struct fib6_walker *w);
65
66/*
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
71 */
72
73static void fib6_gc_timer_cb(struct timer_list *t);
74
75#define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77
78static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79{
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
83}
84
85static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86{
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
90}
91
92static int fib6_new_sernum(struct net *net)
93{
94 int new, old = atomic_read(&net->ipv6.fib6_sernum);
95
96 do {
97 new = old < INT_MAX ? old + 1 : 1;
98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99
100 return new;
101}
102
103enum {
104 FIB6_NO_SERNUM_CHANGE = 0,
105};
106
107void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108{
109 struct fib6_node *fn;
110
111 fn = rcu_dereference_protected(f6i->fib6_node,
112 lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 if (fn)
114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115}
116
117/*
118 * Auxiliary address test functions for the radix tree.
119 *
120 * These assume a 32bit processor (although it will work on
121 * 64bit processors)
122 */
123
124/*
125 * test bit
126 */
127#if defined(__LITTLE_ENDIAN)
128# define BITOP_BE32_SWIZZLE (0x1F & ~7)
129#else
130# define BITOP_BE32_SWIZZLE 0
131#endif
132
133static __be32 addr_bit_set(const void *token, int fn_bit)
134{
135 const __be32 *addr = token;
136 /*
137 * Here,
138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 * is optimized version of
140 * htonl(1 << ((~fn_bit)&0x1F))
141 * See include/asm-generic/bitops/le.h.
142 */
143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 addr[fn_bit >> 5];
145}
146
147struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148{
149 struct fib6_info *f6i;
150 size_t sz = sizeof(*f6i);
151
152 if (with_fib6_nh)
153 sz += sizeof(struct fib6_nh);
154
155 f6i = kzalloc(sz, gfp_flags);
156 if (!f6i)
157 return NULL;
158
159 /* fib6_siblings is a union with nh_list, so this initializes both */
160 INIT_LIST_HEAD(&f6i->fib6_siblings);
161 refcount_set(&f6i->fib6_ref, 1);
162
163 return f6i;
164}
165
166void fib6_info_destroy_rcu(struct rcu_head *head)
167{
168 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
169
170 WARN_ON(f6i->fib6_node);
171
172 if (f6i->nh)
173 nexthop_put(f6i->nh);
174 else
175 fib6_nh_release(f6i->fib6_nh);
176
177 ip_fib_metrics_put(f6i->fib6_metrics);
178 kfree(f6i);
179}
180EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
181
182static struct fib6_node *node_alloc(struct net *net)
183{
184 struct fib6_node *fn;
185
186 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
187 if (fn)
188 net->ipv6.rt6_stats->fib_nodes++;
189
190 return fn;
191}
192
193static void node_free_immediate(struct net *net, struct fib6_node *fn)
194{
195 kmem_cache_free(fib6_node_kmem, fn);
196 net->ipv6.rt6_stats->fib_nodes--;
197}
198
199static void node_free_rcu(struct rcu_head *head)
200{
201 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
202
203 kmem_cache_free(fib6_node_kmem, fn);
204}
205
206static void node_free(struct net *net, struct fib6_node *fn)
207{
208 call_rcu(&fn->rcu, node_free_rcu);
209 net->ipv6.rt6_stats->fib_nodes--;
210}
211
212static void fib6_free_table(struct fib6_table *table)
213{
214 inetpeer_invalidate_tree(&table->tb6_peers);
215 kfree(table);
216}
217
218static void fib6_link_table(struct net *net, struct fib6_table *tb)
219{
220 unsigned int h;
221
222 /*
223 * Initialize table lock at a single place to give lockdep a key,
224 * tables aren't visible prior to being linked to the list.
225 */
226 spin_lock_init(&tb->tb6_lock);
227 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
228
229 /*
230 * No protection necessary, this is the only list mutatation
231 * operation, tables never disappear once they exist.
232 */
233 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
234}
235
236#ifdef CONFIG_IPV6_MULTIPLE_TABLES
237
238static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
239{
240 struct fib6_table *table;
241
242 table = kzalloc(sizeof(*table), GFP_ATOMIC);
243 if (table) {
244 table->tb6_id = id;
245 rcu_assign_pointer(table->tb6_root.leaf,
246 net->ipv6.fib6_null_entry);
247 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
248 inet_peer_base_init(&table->tb6_peers);
249 }
250
251 return table;
252}
253
254struct fib6_table *fib6_new_table(struct net *net, u32 id)
255{
256 struct fib6_table *tb;
257
258 if (id == 0)
259 id = RT6_TABLE_MAIN;
260 tb = fib6_get_table(net, id);
261 if (tb)
262 return tb;
263
264 tb = fib6_alloc_table(net, id);
265 if (tb)
266 fib6_link_table(net, tb);
267
268 return tb;
269}
270EXPORT_SYMBOL_GPL(fib6_new_table);
271
272struct fib6_table *fib6_get_table(struct net *net, u32 id)
273{
274 struct fib6_table *tb;
275 struct hlist_head *head;
276 unsigned int h;
277
278 if (id == 0)
279 id = RT6_TABLE_MAIN;
280 h = id & (FIB6_TABLE_HASHSZ - 1);
281 rcu_read_lock();
282 head = &net->ipv6.fib_table_hash[h];
283 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
284 if (tb->tb6_id == id) {
285 rcu_read_unlock();
286 return tb;
287 }
288 }
289 rcu_read_unlock();
290
291 return NULL;
292}
293EXPORT_SYMBOL_GPL(fib6_get_table);
294
295static void __net_init fib6_tables_init(struct net *net)
296{
297 fib6_link_table(net, net->ipv6.fib6_main_tbl);
298 fib6_link_table(net, net->ipv6.fib6_local_tbl);
299}
300#else
301
302struct fib6_table *fib6_new_table(struct net *net, u32 id)
303{
304 return fib6_get_table(net, id);
305}
306
307struct fib6_table *fib6_get_table(struct net *net, u32 id)
308{
309 return net->ipv6.fib6_main_tbl;
310}
311
312struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
313 const struct sk_buff *skb,
314 int flags, pol_lookup_t lookup)
315{
316 struct rt6_info *rt;
317
318 rt = pol_lookup_func(lookup,
319 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
320 if (rt->dst.error == -EAGAIN) {
321 ip6_rt_put_flags(rt, flags);
322 rt = net->ipv6.ip6_null_entry;
323 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
324 dst_hold(&rt->dst);
325 }
326
327 return &rt->dst;
328}
329
330/* called with rcu lock held; no reference taken on fib6_info */
331int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
332 struct fib6_result *res, int flags)
333{
334 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
335 res, flags);
336}
337
338static void __net_init fib6_tables_init(struct net *net)
339{
340 fib6_link_table(net, net->ipv6.fib6_main_tbl);
341}
342
343#endif
344
345unsigned int fib6_tables_seq_read(struct net *net)
346{
347 unsigned int h, fib_seq = 0;
348
349 rcu_read_lock();
350 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
351 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
352 struct fib6_table *tb;
353
354 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
355 fib_seq += tb->fib_seq;
356 }
357 rcu_read_unlock();
358
359 return fib_seq;
360}
361
362static int call_fib6_entry_notifier(struct notifier_block *nb,
363 enum fib_event_type event_type,
364 struct fib6_info *rt,
365 struct netlink_ext_ack *extack)
366{
367 struct fib6_entry_notifier_info info = {
368 .info.extack = extack,
369 .rt = rt,
370 };
371
372 return call_fib6_notifier(nb, event_type, &info.info);
373}
374
375static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
376 enum fib_event_type event_type,
377 struct fib6_info *rt,
378 unsigned int nsiblings,
379 struct netlink_ext_ack *extack)
380{
381 struct fib6_entry_notifier_info info = {
382 .info.extack = extack,
383 .rt = rt,
384 .nsiblings = nsiblings,
385 };
386
387 return call_fib6_notifier(nb, event_type, &info.info);
388}
389
390int call_fib6_entry_notifiers(struct net *net,
391 enum fib_event_type event_type,
392 struct fib6_info *rt,
393 struct netlink_ext_ack *extack)
394{
395 struct fib6_entry_notifier_info info = {
396 .info.extack = extack,
397 .rt = rt,
398 };
399
400 rt->fib6_table->fib_seq++;
401 return call_fib6_notifiers(net, event_type, &info.info);
402}
403
404int call_fib6_multipath_entry_notifiers(struct net *net,
405 enum fib_event_type event_type,
406 struct fib6_info *rt,
407 unsigned int nsiblings,
408 struct netlink_ext_ack *extack)
409{
410 struct fib6_entry_notifier_info info = {
411 .info.extack = extack,
412 .rt = rt,
413 .nsiblings = nsiblings,
414 };
415
416 rt->fib6_table->fib_seq++;
417 return call_fib6_notifiers(net, event_type, &info.info);
418}
419
420int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
421{
422 struct fib6_entry_notifier_info info = {
423 .rt = rt,
424 .nsiblings = rt->fib6_nsiblings,
425 };
426
427 rt->fib6_table->fib_seq++;
428 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
429}
430
431struct fib6_dump_arg {
432 struct net *net;
433 struct notifier_block *nb;
434 struct netlink_ext_ack *extack;
435};
436
437static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
438{
439 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
440 int err;
441
442 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
443 return 0;
444
445 if (rt->fib6_nsiblings)
446 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
447 rt,
448 rt->fib6_nsiblings,
449 arg->extack);
450 else
451 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
452 arg->extack);
453
454 return err;
455}
456
457static int fib6_node_dump(struct fib6_walker *w)
458{
459 int err;
460
461 err = fib6_rt_dump(w->leaf, w->args);
462 w->leaf = NULL;
463 return err;
464}
465
466static int fib6_table_dump(struct net *net, struct fib6_table *tb,
467 struct fib6_walker *w)
468{
469 int err;
470
471 w->root = &tb->tb6_root;
472 spin_lock_bh(&tb->tb6_lock);
473 err = fib6_walk(net, w);
474 spin_unlock_bh(&tb->tb6_lock);
475 return err;
476}
477
478/* Called with rcu_read_lock() */
479int fib6_tables_dump(struct net *net, struct notifier_block *nb,
480 struct netlink_ext_ack *extack)
481{
482 struct fib6_dump_arg arg;
483 struct fib6_walker *w;
484 unsigned int h;
485 int err = 0;
486
487 w = kzalloc(sizeof(*w), GFP_ATOMIC);
488 if (!w)
489 return -ENOMEM;
490
491 w->func = fib6_node_dump;
492 arg.net = net;
493 arg.nb = nb;
494 arg.extack = extack;
495 w->args = &arg;
496
497 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
498 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
499 struct fib6_table *tb;
500
501 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
502 err = fib6_table_dump(net, tb, w);
503 if (err)
504 goto out;
505 }
506 }
507
508out:
509 kfree(w);
510
511 /* The tree traversal function should never return a positive value. */
512 return err > 0 ? -EINVAL : err;
513}
514
515static int fib6_dump_node(struct fib6_walker *w)
516{
517 int res;
518 struct fib6_info *rt;
519
520 for_each_fib6_walker_rt(w) {
521 res = rt6_dump_route(rt, w->args, w->skip_in_node);
522 if (res >= 0) {
523 /* Frame is full, suspend walking */
524 w->leaf = rt;
525
526 /* We'll restart from this node, so if some routes were
527 * already dumped, skip them next time.
528 */
529 w->skip_in_node += res;
530
531 return 1;
532 }
533 w->skip_in_node = 0;
534
535 /* Multipath routes are dumped in one route with the
536 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
537 * last sibling of this route (no need to dump the
538 * sibling routes again)
539 */
540 if (rt->fib6_nsiblings)
541 rt = list_last_entry(&rt->fib6_siblings,
542 struct fib6_info,
543 fib6_siblings);
544 }
545 w->leaf = NULL;
546 return 0;
547}
548
549static void fib6_dump_end(struct netlink_callback *cb)
550{
551 struct net *net = sock_net(cb->skb->sk);
552 struct fib6_walker *w = (void *)cb->args[2];
553
554 if (w) {
555 if (cb->args[4]) {
556 cb->args[4] = 0;
557 fib6_walker_unlink(net, w);
558 }
559 cb->args[2] = 0;
560 kfree(w);
561 }
562 cb->done = (void *)cb->args[3];
563 cb->args[1] = 3;
564}
565
566static int fib6_dump_done(struct netlink_callback *cb)
567{
568 fib6_dump_end(cb);
569 return cb->done ? cb->done(cb) : 0;
570}
571
572static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
573 struct netlink_callback *cb)
574{
575 struct net *net = sock_net(skb->sk);
576 struct fib6_walker *w;
577 int res;
578
579 w = (void *)cb->args[2];
580 w->root = &table->tb6_root;
581
582 if (cb->args[4] == 0) {
583 w->count = 0;
584 w->skip = 0;
585 w->skip_in_node = 0;
586
587 spin_lock_bh(&table->tb6_lock);
588 res = fib6_walk(net, w);
589 spin_unlock_bh(&table->tb6_lock);
590 if (res > 0) {
591 cb->args[4] = 1;
592 cb->args[5] = READ_ONCE(w->root->fn_sernum);
593 }
594 } else {
595 int sernum = READ_ONCE(w->root->fn_sernum);
596 if (cb->args[5] != sernum) {
597 /* Begin at the root if the tree changed */
598 cb->args[5] = sernum;
599 w->state = FWS_INIT;
600 w->node = w->root;
601 w->skip = w->count;
602 w->skip_in_node = 0;
603 } else
604 w->skip = 0;
605
606 spin_lock_bh(&table->tb6_lock);
607 res = fib6_walk_continue(w);
608 spin_unlock_bh(&table->tb6_lock);
609 if (res <= 0) {
610 fib6_walker_unlink(net, w);
611 cb->args[4] = 0;
612 }
613 }
614
615 return res;
616}
617
618static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
619{
620 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
621 .filter.dump_routes = true };
622 const struct nlmsghdr *nlh = cb->nlh;
623 struct net *net = sock_net(skb->sk);
624 unsigned int h, s_h;
625 unsigned int e = 0, s_e;
626 struct fib6_walker *w;
627 struct fib6_table *tb;
628 struct hlist_head *head;
629 int res = 0;
630
631 if (cb->strict_check) {
632 int err;
633
634 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
635 if (err < 0)
636 return err;
637 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
638 struct rtmsg *rtm = nlmsg_data(nlh);
639
640 if (rtm->rtm_flags & RTM_F_PREFIX)
641 arg.filter.flags = RTM_F_PREFIX;
642 }
643
644 w = (void *)cb->args[2];
645 if (!w) {
646 /* New dump:
647 *
648 * 1. hook callback destructor.
649 */
650 cb->args[3] = (long)cb->done;
651 cb->done = fib6_dump_done;
652
653 /*
654 * 2. allocate and initialize walker.
655 */
656 w = kzalloc(sizeof(*w), GFP_ATOMIC);
657 if (!w)
658 return -ENOMEM;
659 w->func = fib6_dump_node;
660 cb->args[2] = (long)w;
661 }
662
663 arg.skb = skb;
664 arg.cb = cb;
665 arg.net = net;
666 w->args = &arg;
667
668 if (arg.filter.table_id) {
669 tb = fib6_get_table(net, arg.filter.table_id);
670 if (!tb) {
671 if (rtnl_msg_family(cb->nlh) != PF_INET6)
672 goto out;
673
674 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
675 return -ENOENT;
676 }
677
678 if (!cb->args[0]) {
679 res = fib6_dump_table(tb, skb, cb);
680 if (!res)
681 cb->args[0] = 1;
682 }
683 goto out;
684 }
685
686 s_h = cb->args[0];
687 s_e = cb->args[1];
688
689 rcu_read_lock();
690 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
691 e = 0;
692 head = &net->ipv6.fib_table_hash[h];
693 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
694 if (e < s_e)
695 goto next;
696 res = fib6_dump_table(tb, skb, cb);
697 if (res != 0)
698 goto out_unlock;
699next:
700 e++;
701 }
702 }
703out_unlock:
704 rcu_read_unlock();
705 cb->args[1] = e;
706 cb->args[0] = h;
707out:
708 res = res < 0 ? res : skb->len;
709 if (res <= 0)
710 fib6_dump_end(cb);
711 return res;
712}
713
714void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
715{
716 if (!f6i)
717 return;
718
719 if (f6i->fib6_metrics == &dst_default_metrics) {
720 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
721
722 if (!p)
723 return;
724
725 refcount_set(&p->refcnt, 1);
726 f6i->fib6_metrics = p;
727 }
728
729 f6i->fib6_metrics->metrics[metric - 1] = val;
730}
731
732/*
733 * Routing Table
734 *
735 * return the appropriate node for a routing tree "add" operation
736 * by either creating and inserting or by returning an existing
737 * node.
738 */
739
740static struct fib6_node *fib6_add_1(struct net *net,
741 struct fib6_table *table,
742 struct fib6_node *root,
743 struct in6_addr *addr, int plen,
744 int offset, int allow_create,
745 int replace_required,
746 struct netlink_ext_ack *extack)
747{
748 struct fib6_node *fn, *in, *ln;
749 struct fib6_node *pn = NULL;
750 struct rt6key *key;
751 int bit;
752 __be32 dir = 0;
753
754 RT6_TRACE("fib6_add_1\n");
755
756 /* insert node in tree */
757
758 fn = root;
759
760 do {
761 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
762 lockdep_is_held(&table->tb6_lock));
763 key = (struct rt6key *)((u8 *)leaf + offset);
764
765 /*
766 * Prefix match
767 */
768 if (plen < fn->fn_bit ||
769 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
770 if (!allow_create) {
771 if (replace_required) {
772 NL_SET_ERR_MSG(extack,
773 "Can not replace route - no match found");
774 pr_warn("Can't replace route, no match found\n");
775 return ERR_PTR(-ENOENT);
776 }
777 pr_warn("NLM_F_CREATE should be set when creating new route\n");
778 }
779 goto insert_above;
780 }
781
782 /*
783 * Exact match ?
784 */
785
786 if (plen == fn->fn_bit) {
787 /* clean up an intermediate node */
788 if (!(fn->fn_flags & RTN_RTINFO)) {
789 RCU_INIT_POINTER(fn->leaf, NULL);
790 fib6_info_release(leaf);
791 /* remove null_entry in the root node */
792 } else if (fn->fn_flags & RTN_TL_ROOT &&
793 rcu_access_pointer(fn->leaf) ==
794 net->ipv6.fib6_null_entry) {
795 RCU_INIT_POINTER(fn->leaf, NULL);
796 }
797
798 return fn;
799 }
800
801 /*
802 * We have more bits to go
803 */
804
805 /* Try to walk down on tree. */
806 dir = addr_bit_set(addr, fn->fn_bit);
807 pn = fn;
808 fn = dir ?
809 rcu_dereference_protected(fn->right,
810 lockdep_is_held(&table->tb6_lock)) :
811 rcu_dereference_protected(fn->left,
812 lockdep_is_held(&table->tb6_lock));
813 } while (fn);
814
815 if (!allow_create) {
816 /* We should not create new node because
817 * NLM_F_REPLACE was specified without NLM_F_CREATE
818 * I assume it is safe to require NLM_F_CREATE when
819 * REPLACE flag is used! Later we may want to remove the
820 * check for replace_required, because according
821 * to netlink specification, NLM_F_CREATE
822 * MUST be specified if new route is created.
823 * That would keep IPv6 consistent with IPv4
824 */
825 if (replace_required) {
826 NL_SET_ERR_MSG(extack,
827 "Can not replace route - no match found");
828 pr_warn("Can't replace route, no match found\n");
829 return ERR_PTR(-ENOENT);
830 }
831 pr_warn("NLM_F_CREATE should be set when creating new route\n");
832 }
833 /*
834 * We walked to the bottom of tree.
835 * Create new leaf node without children.
836 */
837
838 ln = node_alloc(net);
839
840 if (!ln)
841 return ERR_PTR(-ENOMEM);
842 ln->fn_bit = plen;
843 RCU_INIT_POINTER(ln->parent, pn);
844
845 if (dir)
846 rcu_assign_pointer(pn->right, ln);
847 else
848 rcu_assign_pointer(pn->left, ln);
849
850 return ln;
851
852
853insert_above:
854 /*
855 * split since we don't have a common prefix anymore or
856 * we have a less significant route.
857 * we've to insert an intermediate node on the list
858 * this new node will point to the one we need to create
859 * and the current
860 */
861
862 pn = rcu_dereference_protected(fn->parent,
863 lockdep_is_held(&table->tb6_lock));
864
865 /* find 1st bit in difference between the 2 addrs.
866
867 See comment in __ipv6_addr_diff: bit may be an invalid value,
868 but if it is >= plen, the value is ignored in any case.
869 */
870
871 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
872
873 /*
874 * (intermediate)[in]
875 * / \
876 * (new leaf node)[ln] (old node)[fn]
877 */
878 if (plen > bit) {
879 in = node_alloc(net);
880 ln = node_alloc(net);
881
882 if (!in || !ln) {
883 if (in)
884 node_free_immediate(net, in);
885 if (ln)
886 node_free_immediate(net, ln);
887 return ERR_PTR(-ENOMEM);
888 }
889
890 /*
891 * new intermediate node.
892 * RTN_RTINFO will
893 * be off since that an address that chooses one of
894 * the branches would not match less specific routes
895 * in the other branch
896 */
897
898 in->fn_bit = bit;
899
900 RCU_INIT_POINTER(in->parent, pn);
901 in->leaf = fn->leaf;
902 fib6_info_hold(rcu_dereference_protected(in->leaf,
903 lockdep_is_held(&table->tb6_lock)));
904
905 /* update parent pointer */
906 if (dir)
907 rcu_assign_pointer(pn->right, in);
908 else
909 rcu_assign_pointer(pn->left, in);
910
911 ln->fn_bit = plen;
912
913 RCU_INIT_POINTER(ln->parent, in);
914 rcu_assign_pointer(fn->parent, in);
915
916 if (addr_bit_set(addr, bit)) {
917 rcu_assign_pointer(in->right, ln);
918 rcu_assign_pointer(in->left, fn);
919 } else {
920 rcu_assign_pointer(in->left, ln);
921 rcu_assign_pointer(in->right, fn);
922 }
923 } else { /* plen <= bit */
924
925 /*
926 * (new leaf node)[ln]
927 * / \
928 * (old node)[fn] NULL
929 */
930
931 ln = node_alloc(net);
932
933 if (!ln)
934 return ERR_PTR(-ENOMEM);
935
936 ln->fn_bit = plen;
937
938 RCU_INIT_POINTER(ln->parent, pn);
939
940 if (addr_bit_set(&key->addr, plen))
941 RCU_INIT_POINTER(ln->right, fn);
942 else
943 RCU_INIT_POINTER(ln->left, fn);
944
945 rcu_assign_pointer(fn->parent, ln);
946
947 if (dir)
948 rcu_assign_pointer(pn->right, ln);
949 else
950 rcu_assign_pointer(pn->left, ln);
951 }
952 return ln;
953}
954
955static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
956 const struct fib6_info *match,
957 const struct fib6_table *table)
958{
959 int cpu;
960
961 if (!fib6_nh->rt6i_pcpu)
962 return;
963
964 /* release the reference to this fib entry from
965 * all of its cached pcpu routes
966 */
967 for_each_possible_cpu(cpu) {
968 struct rt6_info **ppcpu_rt;
969 struct rt6_info *pcpu_rt;
970
971 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
972 pcpu_rt = *ppcpu_rt;
973
974 /* only dropping the 'from' reference if the cached route
975 * is using 'match'. The cached pcpu_rt->from only changes
976 * from a fib6_info to NULL (ip6_dst_destroy); it can never
977 * change from one fib6_info reference to another
978 */
979 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
980 struct fib6_info *from;
981
982 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
983 fib6_info_release(from);
984 }
985 }
986}
987
988struct fib6_nh_pcpu_arg {
989 struct fib6_info *from;
990 const struct fib6_table *table;
991};
992
993static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
994{
995 struct fib6_nh_pcpu_arg *arg = _arg;
996
997 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
998 return 0;
999}
1000
1001static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1002 const struct fib6_table *table)
1003{
1004 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1005 * while we are cleaning them here.
1006 */
1007 f6i->fib6_destroying = 1;
1008 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1009
1010 if (f6i->nh) {
1011 struct fib6_nh_pcpu_arg arg = {
1012 .from = f6i,
1013 .table = table
1014 };
1015
1016 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1017 &arg);
1018 } else {
1019 struct fib6_nh *fib6_nh;
1020
1021 fib6_nh = f6i->fib6_nh;
1022 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1023 }
1024}
1025
1026static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1027 struct net *net)
1028{
1029 struct fib6_table *table = rt->fib6_table;
1030
1031 /* Flush all cached dst in exception table */
1032 rt6_flush_exceptions(rt);
1033 fib6_drop_pcpu_from(rt, table);
1034
1035 if (rt->nh && !list_empty(&rt->nh_list))
1036 list_del_init(&rt->nh_list);
1037
1038 if (refcount_read(&rt->fib6_ref) != 1) {
1039 /* This route is used as dummy address holder in some split
1040 * nodes. It is not leaked, but it still holds other resources,
1041 * which must be released in time. So, scan ascendant nodes
1042 * and replace dummy references to this route with references
1043 * to still alive ones.
1044 */
1045 while (fn) {
1046 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1047 lockdep_is_held(&table->tb6_lock));
1048 struct fib6_info *new_leaf;
1049 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1050 new_leaf = fib6_find_prefix(net, table, fn);
1051 fib6_info_hold(new_leaf);
1052
1053 rcu_assign_pointer(fn->leaf, new_leaf);
1054 fib6_info_release(rt);
1055 }
1056 fn = rcu_dereference_protected(fn->parent,
1057 lockdep_is_held(&table->tb6_lock));
1058 }
1059 }
1060}
1061
1062/*
1063 * Insert routing information in a node.
1064 */
1065
1066static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1067 struct nl_info *info,
1068 struct netlink_ext_ack *extack)
1069{
1070 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1071 lockdep_is_held(&rt->fib6_table->tb6_lock));
1072 struct fib6_info *iter = NULL;
1073 struct fib6_info __rcu **ins;
1074 struct fib6_info __rcu **fallback_ins = NULL;
1075 int replace = (info->nlh &&
1076 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1077 int add = (!info->nlh ||
1078 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1079 int found = 0;
1080 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1081 bool notify_sibling_rt = false;
1082 u16 nlflags = NLM_F_EXCL;
1083 int err;
1084
1085 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1086 nlflags |= NLM_F_APPEND;
1087
1088 ins = &fn->leaf;
1089
1090 for (iter = leaf; iter;
1091 iter = rcu_dereference_protected(iter->fib6_next,
1092 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1093 /*
1094 * Search for duplicates
1095 */
1096
1097 if (iter->fib6_metric == rt->fib6_metric) {
1098 /*
1099 * Same priority level
1100 */
1101 if (info->nlh &&
1102 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1103 return -EEXIST;
1104
1105 nlflags &= ~NLM_F_EXCL;
1106 if (replace) {
1107 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1108 found++;
1109 break;
1110 }
1111 fallback_ins = fallback_ins ?: ins;
1112 goto next_iter;
1113 }
1114
1115 if (rt6_duplicate_nexthop(iter, rt)) {
1116 if (rt->fib6_nsiblings)
1117 rt->fib6_nsiblings = 0;
1118 if (!(iter->fib6_flags & RTF_EXPIRES))
1119 return -EEXIST;
1120 if (!(rt->fib6_flags & RTF_EXPIRES))
1121 fib6_clean_expires(iter);
1122 else
1123 fib6_set_expires(iter, rt->expires);
1124
1125 if (rt->fib6_pmtu)
1126 fib6_metric_set(iter, RTAX_MTU,
1127 rt->fib6_pmtu);
1128 return -EEXIST;
1129 }
1130 /* If we have the same destination and the same metric,
1131 * but not the same gateway, then the route we try to
1132 * add is sibling to this route, increment our counter
1133 * of siblings, and later we will add our route to the
1134 * list.
1135 * Only static routes (which don't have flag
1136 * RTF_EXPIRES) are used for ECMPv6.
1137 *
1138 * To avoid long list, we only had siblings if the
1139 * route have a gateway.
1140 */
1141 if (rt_can_ecmp &&
1142 rt6_qualify_for_ecmp(iter))
1143 rt->fib6_nsiblings++;
1144 }
1145
1146 if (iter->fib6_metric > rt->fib6_metric)
1147 break;
1148
1149next_iter:
1150 ins = &iter->fib6_next;
1151 }
1152
1153 if (fallback_ins && !found) {
1154 /* No matching route with same ecmp-able-ness found, replace
1155 * first matching route
1156 */
1157 ins = fallback_ins;
1158 iter = rcu_dereference_protected(*ins,
1159 lockdep_is_held(&rt->fib6_table->tb6_lock));
1160 found++;
1161 }
1162
1163 /* Reset round-robin state, if necessary */
1164 if (ins == &fn->leaf)
1165 fn->rr_ptr = NULL;
1166
1167 /* Link this route to others same route. */
1168 if (rt->fib6_nsiblings) {
1169 unsigned int fib6_nsiblings;
1170 struct fib6_info *sibling, *temp_sibling;
1171
1172 /* Find the first route that have the same metric */
1173 sibling = leaf;
1174 notify_sibling_rt = true;
1175 while (sibling) {
1176 if (sibling->fib6_metric == rt->fib6_metric &&
1177 rt6_qualify_for_ecmp(sibling)) {
1178 list_add_tail(&rt->fib6_siblings,
1179 &sibling->fib6_siblings);
1180 break;
1181 }
1182 sibling = rcu_dereference_protected(sibling->fib6_next,
1183 lockdep_is_held(&rt->fib6_table->tb6_lock));
1184 notify_sibling_rt = false;
1185 }
1186 /* For each sibling in the list, increment the counter of
1187 * siblings. BUG() if counters does not match, list of siblings
1188 * is broken!
1189 */
1190 fib6_nsiblings = 0;
1191 list_for_each_entry_safe(sibling, temp_sibling,
1192 &rt->fib6_siblings, fib6_siblings) {
1193 sibling->fib6_nsiblings++;
1194 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1195 fib6_nsiblings++;
1196 }
1197 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1198 rt6_multipath_rebalance(temp_sibling);
1199 }
1200
1201 /*
1202 * insert node
1203 */
1204 if (!replace) {
1205 if (!add)
1206 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1207
1208add:
1209 nlflags |= NLM_F_CREATE;
1210
1211 /* The route should only be notified if it is the first
1212 * route in the node or if it is added as a sibling
1213 * route to the first route in the node.
1214 */
1215 if (!info->skip_notify_kernel &&
1216 (notify_sibling_rt || ins == &fn->leaf)) {
1217 enum fib_event_type fib_event;
1218
1219 if (notify_sibling_rt)
1220 fib_event = FIB_EVENT_ENTRY_APPEND;
1221 else
1222 fib_event = FIB_EVENT_ENTRY_REPLACE;
1223 err = call_fib6_entry_notifiers(info->nl_net,
1224 fib_event, rt,
1225 extack);
1226 if (err) {
1227 struct fib6_info *sibling, *next_sibling;
1228
1229 /* If the route has siblings, then it first
1230 * needs to be unlinked from them.
1231 */
1232 if (!rt->fib6_nsiblings)
1233 return err;
1234
1235 list_for_each_entry_safe(sibling, next_sibling,
1236 &rt->fib6_siblings,
1237 fib6_siblings)
1238 sibling->fib6_nsiblings--;
1239 rt->fib6_nsiblings = 0;
1240 list_del_init(&rt->fib6_siblings);
1241 rt6_multipath_rebalance(next_sibling);
1242 return err;
1243 }
1244 }
1245
1246 rcu_assign_pointer(rt->fib6_next, iter);
1247 fib6_info_hold(rt);
1248 rcu_assign_pointer(rt->fib6_node, fn);
1249 rcu_assign_pointer(*ins, rt);
1250 if (!info->skip_notify)
1251 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1252 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1253
1254 if (!(fn->fn_flags & RTN_RTINFO)) {
1255 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1256 fn->fn_flags |= RTN_RTINFO;
1257 }
1258
1259 } else {
1260 int nsiblings;
1261
1262 if (!found) {
1263 if (add)
1264 goto add;
1265 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1266 return -ENOENT;
1267 }
1268
1269 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1270 err = call_fib6_entry_notifiers(info->nl_net,
1271 FIB_EVENT_ENTRY_REPLACE,
1272 rt, extack);
1273 if (err)
1274 return err;
1275 }
1276
1277 fib6_info_hold(rt);
1278 rcu_assign_pointer(rt->fib6_node, fn);
1279 rt->fib6_next = iter->fib6_next;
1280 rcu_assign_pointer(*ins, rt);
1281 if (!info->skip_notify)
1282 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1283 if (!(fn->fn_flags & RTN_RTINFO)) {
1284 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1285 fn->fn_flags |= RTN_RTINFO;
1286 }
1287 nsiblings = iter->fib6_nsiblings;
1288 iter->fib6_node = NULL;
1289 fib6_purge_rt(iter, fn, info->nl_net);
1290 if (rcu_access_pointer(fn->rr_ptr) == iter)
1291 fn->rr_ptr = NULL;
1292 fib6_info_release(iter);
1293
1294 if (nsiblings) {
1295 /* Replacing an ECMP route, remove all siblings */
1296 ins = &rt->fib6_next;
1297 iter = rcu_dereference_protected(*ins,
1298 lockdep_is_held(&rt->fib6_table->tb6_lock));
1299 while (iter) {
1300 if (iter->fib6_metric > rt->fib6_metric)
1301 break;
1302 if (rt6_qualify_for_ecmp(iter)) {
1303 *ins = iter->fib6_next;
1304 iter->fib6_node = NULL;
1305 fib6_purge_rt(iter, fn, info->nl_net);
1306 if (rcu_access_pointer(fn->rr_ptr) == iter)
1307 fn->rr_ptr = NULL;
1308 fib6_info_release(iter);
1309 nsiblings--;
1310 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1311 } else {
1312 ins = &iter->fib6_next;
1313 }
1314 iter = rcu_dereference_protected(*ins,
1315 lockdep_is_held(&rt->fib6_table->tb6_lock));
1316 }
1317 WARN_ON(nsiblings != 0);
1318 }
1319 }
1320
1321 return 0;
1322}
1323
1324static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1325{
1326 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1327 (rt->fib6_flags & RTF_EXPIRES))
1328 mod_timer(&net->ipv6.ip6_fib_timer,
1329 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1330}
1331
1332void fib6_force_start_gc(struct net *net)
1333{
1334 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1335 mod_timer(&net->ipv6.ip6_fib_timer,
1336 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1337}
1338
1339static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1340 int sernum)
1341{
1342 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1343 lockdep_is_held(&rt->fib6_table->tb6_lock));
1344
1345 /* paired with smp_rmb() in fib6_get_cookie_safe() */
1346 smp_wmb();
1347 while (fn) {
1348 WRITE_ONCE(fn->fn_sernum, sernum);
1349 fn = rcu_dereference_protected(fn->parent,
1350 lockdep_is_held(&rt->fib6_table->tb6_lock));
1351 }
1352}
1353
1354void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1355{
1356 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1357}
1358
1359/* allow ipv4 to update sernum via ipv6_stub */
1360void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1361{
1362 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1363 fib6_update_sernum_upto_root(net, f6i);
1364 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1365}
1366
1367/*
1368 * Add routing information to the routing tree.
1369 * <destination addr>/<source addr>
1370 * with source addr info in sub-trees
1371 * Need to own table->tb6_lock
1372 */
1373
1374int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1375 struct nl_info *info, struct netlink_ext_ack *extack)
1376{
1377 struct fib6_table *table = rt->fib6_table;
1378 struct fib6_node *fn, *pn = NULL;
1379 int err = -ENOMEM;
1380 int allow_create = 1;
1381 int replace_required = 0;
1382
1383 if (info->nlh) {
1384 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1385 allow_create = 0;
1386 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1387 replace_required = 1;
1388 }
1389 if (!allow_create && !replace_required)
1390 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1391
1392 fn = fib6_add_1(info->nl_net, table, root,
1393 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1394 offsetof(struct fib6_info, fib6_dst), allow_create,
1395 replace_required, extack);
1396 if (IS_ERR(fn)) {
1397 err = PTR_ERR(fn);
1398 fn = NULL;
1399 goto out;
1400 }
1401
1402 pn = fn;
1403
1404#ifdef CONFIG_IPV6_SUBTREES
1405 if (rt->fib6_src.plen) {
1406 struct fib6_node *sn;
1407
1408 if (!rcu_access_pointer(fn->subtree)) {
1409 struct fib6_node *sfn;
1410
1411 /*
1412 * Create subtree.
1413 *
1414 * fn[main tree]
1415 * |
1416 * sfn[subtree root]
1417 * \
1418 * sn[new leaf node]
1419 */
1420
1421 /* Create subtree root node */
1422 sfn = node_alloc(info->nl_net);
1423 if (!sfn)
1424 goto failure;
1425
1426 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1427 rcu_assign_pointer(sfn->leaf,
1428 info->nl_net->ipv6.fib6_null_entry);
1429 sfn->fn_flags = RTN_ROOT;
1430
1431 /* Now add the first leaf node to new subtree */
1432
1433 sn = fib6_add_1(info->nl_net, table, sfn,
1434 &rt->fib6_src.addr, rt->fib6_src.plen,
1435 offsetof(struct fib6_info, fib6_src),
1436 allow_create, replace_required, extack);
1437
1438 if (IS_ERR(sn)) {
1439 /* If it is failed, discard just allocated
1440 root, and then (in failure) stale node
1441 in main tree.
1442 */
1443 node_free_immediate(info->nl_net, sfn);
1444 err = PTR_ERR(sn);
1445 goto failure;
1446 }
1447
1448 /* Now link new subtree to main tree */
1449 rcu_assign_pointer(sfn->parent, fn);
1450 rcu_assign_pointer(fn->subtree, sfn);
1451 } else {
1452 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1453 &rt->fib6_src.addr, rt->fib6_src.plen,
1454 offsetof(struct fib6_info, fib6_src),
1455 allow_create, replace_required, extack);
1456
1457 if (IS_ERR(sn)) {
1458 err = PTR_ERR(sn);
1459 goto failure;
1460 }
1461 }
1462
1463 if (!rcu_access_pointer(fn->leaf)) {
1464 if (fn->fn_flags & RTN_TL_ROOT) {
1465 /* put back null_entry for root node */
1466 rcu_assign_pointer(fn->leaf,
1467 info->nl_net->ipv6.fib6_null_entry);
1468 } else {
1469 fib6_info_hold(rt);
1470 rcu_assign_pointer(fn->leaf, rt);
1471 }
1472 }
1473 fn = sn;
1474 }
1475#endif
1476
1477 err = fib6_add_rt2node(fn, rt, info, extack);
1478 if (!err) {
1479 if (rt->nh)
1480 list_add(&rt->nh_list, &rt->nh->f6i_list);
1481 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1482 fib6_start_gc(info->nl_net, rt);
1483 }
1484
1485out:
1486 if (err) {
1487#ifdef CONFIG_IPV6_SUBTREES
1488 /*
1489 * If fib6_add_1 has cleared the old leaf pointer in the
1490 * super-tree leaf node we have to find a new one for it.
1491 */
1492 if (pn != fn) {
1493 struct fib6_info *pn_leaf =
1494 rcu_dereference_protected(pn->leaf,
1495 lockdep_is_held(&table->tb6_lock));
1496 if (pn_leaf == rt) {
1497 pn_leaf = NULL;
1498 RCU_INIT_POINTER(pn->leaf, NULL);
1499 fib6_info_release(rt);
1500 }
1501 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1502 pn_leaf = fib6_find_prefix(info->nl_net, table,
1503 pn);
1504 if (!pn_leaf)
1505 pn_leaf =
1506 info->nl_net->ipv6.fib6_null_entry;
1507 fib6_info_hold(pn_leaf);
1508 rcu_assign_pointer(pn->leaf, pn_leaf);
1509 }
1510 }
1511#endif
1512 goto failure;
1513 } else if (fib6_requires_src(rt)) {
1514 fib6_routes_require_src_inc(info->nl_net);
1515 }
1516 return err;
1517
1518failure:
1519 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1520 * 1. fn is an intermediate node and we failed to add the new
1521 * route to it in both subtree creation failure and fib6_add_rt2node()
1522 * failure case.
1523 * 2. fn is the root node in the table and we fail to add the first
1524 * default route to it.
1525 */
1526 if (fn &&
1527 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1528 (fn->fn_flags & RTN_TL_ROOT &&
1529 !rcu_access_pointer(fn->leaf))))
1530 fib6_repair_tree(info->nl_net, table, fn);
1531 return err;
1532}
1533
1534/*
1535 * Routing tree lookup
1536 *
1537 */
1538
1539struct lookup_args {
1540 int offset; /* key offset on fib6_info */
1541 const struct in6_addr *addr; /* search key */
1542};
1543
1544static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1545 struct lookup_args *args)
1546{
1547 struct fib6_node *fn;
1548 __be32 dir;
1549
1550 if (unlikely(args->offset == 0))
1551 return NULL;
1552
1553 /*
1554 * Descend on a tree
1555 */
1556
1557 fn = root;
1558
1559 for (;;) {
1560 struct fib6_node *next;
1561
1562 dir = addr_bit_set(args->addr, fn->fn_bit);
1563
1564 next = dir ? rcu_dereference(fn->right) :
1565 rcu_dereference(fn->left);
1566
1567 if (next) {
1568 fn = next;
1569 continue;
1570 }
1571 break;
1572 }
1573
1574 while (fn) {
1575 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1576
1577 if (subtree || fn->fn_flags & RTN_RTINFO) {
1578 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1579 struct rt6key *key;
1580
1581 if (!leaf)
1582 goto backtrack;
1583
1584 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1585
1586 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1587#ifdef CONFIG_IPV6_SUBTREES
1588 if (subtree) {
1589 struct fib6_node *sfn;
1590 sfn = fib6_node_lookup_1(subtree,
1591 args + 1);
1592 if (!sfn)
1593 goto backtrack;
1594 fn = sfn;
1595 }
1596#endif
1597 if (fn->fn_flags & RTN_RTINFO)
1598 return fn;
1599 }
1600 }
1601backtrack:
1602 if (fn->fn_flags & RTN_ROOT)
1603 break;
1604
1605 fn = rcu_dereference(fn->parent);
1606 }
1607
1608 return NULL;
1609}
1610
1611/* called with rcu_read_lock() held
1612 */
1613struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1614 const struct in6_addr *daddr,
1615 const struct in6_addr *saddr)
1616{
1617 struct fib6_node *fn;
1618 struct lookup_args args[] = {
1619 {
1620 .offset = offsetof(struct fib6_info, fib6_dst),
1621 .addr = daddr,
1622 },
1623#ifdef CONFIG_IPV6_SUBTREES
1624 {
1625 .offset = offsetof(struct fib6_info, fib6_src),
1626 .addr = saddr,
1627 },
1628#endif
1629 {
1630 .offset = 0, /* sentinel */
1631 }
1632 };
1633
1634 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1635 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1636 fn = root;
1637
1638 return fn;
1639}
1640
1641/*
1642 * Get node with specified destination prefix (and source prefix,
1643 * if subtrees are used)
1644 * exact_match == true means we try to find fn with exact match of
1645 * the passed in prefix addr
1646 * exact_match == false means we try to find fn with longest prefix
1647 * match of the passed in prefix addr. This is useful for finding fn
1648 * for cached route as it will be stored in the exception table under
1649 * the node with longest prefix length.
1650 */
1651
1652
1653static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1654 const struct in6_addr *addr,
1655 int plen, int offset,
1656 bool exact_match)
1657{
1658 struct fib6_node *fn, *prev = NULL;
1659
1660 for (fn = root; fn ; ) {
1661 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1662 struct rt6key *key;
1663
1664 /* This node is being deleted */
1665 if (!leaf) {
1666 if (plen <= fn->fn_bit)
1667 goto out;
1668 else
1669 goto next;
1670 }
1671
1672 key = (struct rt6key *)((u8 *)leaf + offset);
1673
1674 /*
1675 * Prefix match
1676 */
1677 if (plen < fn->fn_bit ||
1678 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1679 goto out;
1680
1681 if (plen == fn->fn_bit)
1682 return fn;
1683
1684 if (fn->fn_flags & RTN_RTINFO)
1685 prev = fn;
1686
1687next:
1688 /*
1689 * We have more bits to go
1690 */
1691 if (addr_bit_set(addr, fn->fn_bit))
1692 fn = rcu_dereference(fn->right);
1693 else
1694 fn = rcu_dereference(fn->left);
1695 }
1696out:
1697 if (exact_match)
1698 return NULL;
1699 else
1700 return prev;
1701}
1702
1703struct fib6_node *fib6_locate(struct fib6_node *root,
1704 const struct in6_addr *daddr, int dst_len,
1705 const struct in6_addr *saddr, int src_len,
1706 bool exact_match)
1707{
1708 struct fib6_node *fn;
1709
1710 fn = fib6_locate_1(root, daddr, dst_len,
1711 offsetof(struct fib6_info, fib6_dst),
1712 exact_match);
1713
1714#ifdef CONFIG_IPV6_SUBTREES
1715 if (src_len) {
1716 WARN_ON(saddr == NULL);
1717 if (fn) {
1718 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1719
1720 if (subtree) {
1721 fn = fib6_locate_1(subtree, saddr, src_len,
1722 offsetof(struct fib6_info, fib6_src),
1723 exact_match);
1724 }
1725 }
1726 }
1727#endif
1728
1729 if (fn && fn->fn_flags & RTN_RTINFO)
1730 return fn;
1731
1732 return NULL;
1733}
1734
1735
1736/*
1737 * Deletion
1738 *
1739 */
1740
1741static struct fib6_info *fib6_find_prefix(struct net *net,
1742 struct fib6_table *table,
1743 struct fib6_node *fn)
1744{
1745 struct fib6_node *child_left, *child_right;
1746
1747 if (fn->fn_flags & RTN_ROOT)
1748 return net->ipv6.fib6_null_entry;
1749
1750 while (fn) {
1751 child_left = rcu_dereference_protected(fn->left,
1752 lockdep_is_held(&table->tb6_lock));
1753 child_right = rcu_dereference_protected(fn->right,
1754 lockdep_is_held(&table->tb6_lock));
1755 if (child_left)
1756 return rcu_dereference_protected(child_left->leaf,
1757 lockdep_is_held(&table->tb6_lock));
1758 if (child_right)
1759 return rcu_dereference_protected(child_right->leaf,
1760 lockdep_is_held(&table->tb6_lock));
1761
1762 fn = FIB6_SUBTREE(fn);
1763 }
1764 return NULL;
1765}
1766
1767/*
1768 * Called to trim the tree of intermediate nodes when possible. "fn"
1769 * is the node we want to try and remove.
1770 * Need to own table->tb6_lock
1771 */
1772
1773static struct fib6_node *fib6_repair_tree(struct net *net,
1774 struct fib6_table *table,
1775 struct fib6_node *fn)
1776{
1777 int children;
1778 int nstate;
1779 struct fib6_node *child;
1780 struct fib6_walker *w;
1781 int iter = 0;
1782
1783 /* Set fn->leaf to null_entry for root node. */
1784 if (fn->fn_flags & RTN_TL_ROOT) {
1785 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1786 return fn;
1787 }
1788
1789 for (;;) {
1790 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1791 lockdep_is_held(&table->tb6_lock));
1792 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1793 lockdep_is_held(&table->tb6_lock));
1794 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1795 lockdep_is_held(&table->tb6_lock));
1796 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1797 lockdep_is_held(&table->tb6_lock));
1798 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1799 lockdep_is_held(&table->tb6_lock));
1800 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1801 lockdep_is_held(&table->tb6_lock));
1802 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1803 lockdep_is_held(&table->tb6_lock));
1804 struct fib6_info *new_fn_leaf;
1805
1806 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1807 iter++;
1808
1809 WARN_ON(fn->fn_flags & RTN_RTINFO);
1810 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1811 WARN_ON(fn_leaf);
1812
1813 children = 0;
1814 child = NULL;
1815 if (fn_r) {
1816 child = fn_r;
1817 children |= 1;
1818 }
1819 if (fn_l) {
1820 child = fn_l;
1821 children |= 2;
1822 }
1823
1824 if (children == 3 || FIB6_SUBTREE(fn)
1825#ifdef CONFIG_IPV6_SUBTREES
1826 /* Subtree root (i.e. fn) may have one child */
1827 || (children && fn->fn_flags & RTN_ROOT)
1828#endif
1829 ) {
1830 new_fn_leaf = fib6_find_prefix(net, table, fn);
1831#if RT6_DEBUG >= 2
1832 if (!new_fn_leaf) {
1833 WARN_ON(!new_fn_leaf);
1834 new_fn_leaf = net->ipv6.fib6_null_entry;
1835 }
1836#endif
1837 fib6_info_hold(new_fn_leaf);
1838 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1839 return pn;
1840 }
1841
1842#ifdef CONFIG_IPV6_SUBTREES
1843 if (FIB6_SUBTREE(pn) == fn) {
1844 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1845 RCU_INIT_POINTER(pn->subtree, NULL);
1846 nstate = FWS_L;
1847 } else {
1848 WARN_ON(fn->fn_flags & RTN_ROOT);
1849#endif
1850 if (pn_r == fn)
1851 rcu_assign_pointer(pn->right, child);
1852 else if (pn_l == fn)
1853 rcu_assign_pointer(pn->left, child);
1854#if RT6_DEBUG >= 2
1855 else
1856 WARN_ON(1);
1857#endif
1858 if (child)
1859 rcu_assign_pointer(child->parent, pn);
1860 nstate = FWS_R;
1861#ifdef CONFIG_IPV6_SUBTREES
1862 }
1863#endif
1864
1865 read_lock(&net->ipv6.fib6_walker_lock);
1866 FOR_WALKERS(net, w) {
1867 if (!child) {
1868 if (w->node == fn) {
1869 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1870 w->node = pn;
1871 w->state = nstate;
1872 }
1873 } else {
1874 if (w->node == fn) {
1875 w->node = child;
1876 if (children&2) {
1877 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1878 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1879 } else {
1880 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1881 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1882 }
1883 }
1884 }
1885 }
1886 read_unlock(&net->ipv6.fib6_walker_lock);
1887
1888 node_free(net, fn);
1889 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1890 return pn;
1891
1892 RCU_INIT_POINTER(pn->leaf, NULL);
1893 fib6_info_release(pn_leaf);
1894 fn = pn;
1895 }
1896}
1897
1898static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1899 struct fib6_info __rcu **rtp, struct nl_info *info)
1900{
1901 struct fib6_info *leaf, *replace_rt = NULL;
1902 struct fib6_walker *w;
1903 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1904 lockdep_is_held(&table->tb6_lock));
1905 struct net *net = info->nl_net;
1906 bool notify_del = false;
1907
1908 RT6_TRACE("fib6_del_route\n");
1909
1910 /* If the deleted route is the first in the node and it is not part of
1911 * a multipath route, then we need to replace it with the next route
1912 * in the node, if exists.
1913 */
1914 leaf = rcu_dereference_protected(fn->leaf,
1915 lockdep_is_held(&table->tb6_lock));
1916 if (leaf == rt && !rt->fib6_nsiblings) {
1917 if (rcu_access_pointer(rt->fib6_next))
1918 replace_rt = rcu_dereference_protected(rt->fib6_next,
1919 lockdep_is_held(&table->tb6_lock));
1920 else
1921 notify_del = true;
1922 }
1923
1924 /* Unlink it */
1925 *rtp = rt->fib6_next;
1926 rt->fib6_node = NULL;
1927 net->ipv6.rt6_stats->fib_rt_entries--;
1928 net->ipv6.rt6_stats->fib_discarded_routes++;
1929
1930 /* Reset round-robin state, if necessary */
1931 if (rcu_access_pointer(fn->rr_ptr) == rt)
1932 fn->rr_ptr = NULL;
1933
1934 /* Remove this entry from other siblings */
1935 if (rt->fib6_nsiblings) {
1936 struct fib6_info *sibling, *next_sibling;
1937
1938 /* The route is deleted from a multipath route. If this
1939 * multipath route is the first route in the node, then we need
1940 * to emit a delete notification. Otherwise, we need to skip
1941 * the notification.
1942 */
1943 if (rt->fib6_metric == leaf->fib6_metric &&
1944 rt6_qualify_for_ecmp(leaf))
1945 notify_del = true;
1946 list_for_each_entry_safe(sibling, next_sibling,
1947 &rt->fib6_siblings, fib6_siblings)
1948 sibling->fib6_nsiblings--;
1949 rt->fib6_nsiblings = 0;
1950 list_del_init(&rt->fib6_siblings);
1951 rt6_multipath_rebalance(next_sibling);
1952 }
1953
1954 /* Adjust walkers */
1955 read_lock(&net->ipv6.fib6_walker_lock);
1956 FOR_WALKERS(net, w) {
1957 if (w->state == FWS_C && w->leaf == rt) {
1958 RT6_TRACE("walker %p adjusted by delroute\n", w);
1959 w->leaf = rcu_dereference_protected(rt->fib6_next,
1960 lockdep_is_held(&table->tb6_lock));
1961 if (!w->leaf)
1962 w->state = FWS_U;
1963 }
1964 }
1965 read_unlock(&net->ipv6.fib6_walker_lock);
1966
1967 /* If it was last route, call fib6_repair_tree() to:
1968 * 1. For root node, put back null_entry as how the table was created.
1969 * 2. For other nodes, expunge its radix tree node.
1970 */
1971 if (!rcu_access_pointer(fn->leaf)) {
1972 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1973 fn->fn_flags &= ~RTN_RTINFO;
1974 net->ipv6.rt6_stats->fib_route_nodes--;
1975 }
1976 fn = fib6_repair_tree(net, table, fn);
1977 }
1978
1979 fib6_purge_rt(rt, fn, net);
1980
1981 if (!info->skip_notify_kernel) {
1982 if (notify_del)
1983 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1984 rt, NULL);
1985 else if (replace_rt)
1986 call_fib6_entry_notifiers_replace(net, replace_rt);
1987 }
1988 if (!info->skip_notify)
1989 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1990
1991 fib6_info_release(rt);
1992}
1993
1994/* Need to own table->tb6_lock */
1995int fib6_del(struct fib6_info *rt, struct nl_info *info)
1996{
1997 struct net *net = info->nl_net;
1998 struct fib6_info __rcu **rtp;
1999 struct fib6_info __rcu **rtp_next;
2000 struct fib6_table *table;
2001 struct fib6_node *fn;
2002
2003 if (rt == net->ipv6.fib6_null_entry)
2004 return -ENOENT;
2005
2006 table = rt->fib6_table;
2007 fn = rcu_dereference_protected(rt->fib6_node,
2008 lockdep_is_held(&table->tb6_lock));
2009 if (!fn)
2010 return -ENOENT;
2011
2012 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2013
2014 /*
2015 * Walk the leaf entries looking for ourself
2016 */
2017
2018 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2019 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2020 lockdep_is_held(&table->tb6_lock));
2021 if (rt == cur) {
2022 if (fib6_requires_src(cur))
2023 fib6_routes_require_src_dec(info->nl_net);
2024 fib6_del_route(table, fn, rtp, info);
2025 return 0;
2026 }
2027 rtp_next = &cur->fib6_next;
2028 }
2029 return -ENOENT;
2030}
2031
2032/*
2033 * Tree traversal function.
2034 *
2035 * Certainly, it is not interrupt safe.
2036 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2037 * It means, that we can modify tree during walking
2038 * and use this function for garbage collection, clone pruning,
2039 * cleaning tree when a device goes down etc. etc.
2040 *
2041 * It guarantees that every node will be traversed,
2042 * and that it will be traversed only once.
2043 *
2044 * Callback function w->func may return:
2045 * 0 -> continue walking.
2046 * positive value -> walking is suspended (used by tree dumps,
2047 * and probably by gc, if it will be split to several slices)
2048 * negative value -> terminate walking.
2049 *
2050 * The function itself returns:
2051 * 0 -> walk is complete.
2052 * >0 -> walk is incomplete (i.e. suspended)
2053 * <0 -> walk is terminated by an error.
2054 *
2055 * This function is called with tb6_lock held.
2056 */
2057
2058static int fib6_walk_continue(struct fib6_walker *w)
2059{
2060 struct fib6_node *fn, *pn, *left, *right;
2061
2062 /* w->root should always be table->tb6_root */
2063 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2064
2065 for (;;) {
2066 fn = w->node;
2067 if (!fn)
2068 return 0;
2069
2070 switch (w->state) {
2071#ifdef CONFIG_IPV6_SUBTREES
2072 case FWS_S:
2073 if (FIB6_SUBTREE(fn)) {
2074 w->node = FIB6_SUBTREE(fn);
2075 continue;
2076 }
2077 w->state = FWS_L;
2078 fallthrough;
2079#endif
2080 case FWS_L:
2081 left = rcu_dereference_protected(fn->left, 1);
2082 if (left) {
2083 w->node = left;
2084 w->state = FWS_INIT;
2085 continue;
2086 }
2087 w->state = FWS_R;
2088 fallthrough;
2089 case FWS_R:
2090 right = rcu_dereference_protected(fn->right, 1);
2091 if (right) {
2092 w->node = right;
2093 w->state = FWS_INIT;
2094 continue;
2095 }
2096 w->state = FWS_C;
2097 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2098 fallthrough;
2099 case FWS_C:
2100 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2101 int err;
2102
2103 if (w->skip) {
2104 w->skip--;
2105 goto skip;
2106 }
2107
2108 err = w->func(w);
2109 if (err)
2110 return err;
2111
2112 w->count++;
2113 continue;
2114 }
2115skip:
2116 w->state = FWS_U;
2117 fallthrough;
2118 case FWS_U:
2119 if (fn == w->root)
2120 return 0;
2121 pn = rcu_dereference_protected(fn->parent, 1);
2122 left = rcu_dereference_protected(pn->left, 1);
2123 right = rcu_dereference_protected(pn->right, 1);
2124 w->node = pn;
2125#ifdef CONFIG_IPV6_SUBTREES
2126 if (FIB6_SUBTREE(pn) == fn) {
2127 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2128 w->state = FWS_L;
2129 continue;
2130 }
2131#endif
2132 if (left == fn) {
2133 w->state = FWS_R;
2134 continue;
2135 }
2136 if (right == fn) {
2137 w->state = FWS_C;
2138 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2139 continue;
2140 }
2141#if RT6_DEBUG >= 2
2142 WARN_ON(1);
2143#endif
2144 }
2145 }
2146}
2147
2148static int fib6_walk(struct net *net, struct fib6_walker *w)
2149{
2150 int res;
2151
2152 w->state = FWS_INIT;
2153 w->node = w->root;
2154
2155 fib6_walker_link(net, w);
2156 res = fib6_walk_continue(w);
2157 if (res <= 0)
2158 fib6_walker_unlink(net, w);
2159 return res;
2160}
2161
2162static int fib6_clean_node(struct fib6_walker *w)
2163{
2164 int res;
2165 struct fib6_info *rt;
2166 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2167 struct nl_info info = {
2168 .nl_net = c->net,
2169 .skip_notify = c->skip_notify,
2170 };
2171
2172 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2173 READ_ONCE(w->node->fn_sernum) != c->sernum)
2174 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2175
2176 if (!c->func) {
2177 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2178 w->leaf = NULL;
2179 return 0;
2180 }
2181
2182 for_each_fib6_walker_rt(w) {
2183 res = c->func(rt, c->arg);
2184 if (res == -1) {
2185 w->leaf = rt;
2186 res = fib6_del(rt, &info);
2187 if (res) {
2188#if RT6_DEBUG >= 2
2189 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2190 __func__, rt,
2191 rcu_access_pointer(rt->fib6_node),
2192 res);
2193#endif
2194 continue;
2195 }
2196 return 0;
2197 } else if (res == -2) {
2198 if (WARN_ON(!rt->fib6_nsiblings))
2199 continue;
2200 rt = list_last_entry(&rt->fib6_siblings,
2201 struct fib6_info, fib6_siblings);
2202 continue;
2203 }
2204 WARN_ON(res != 0);
2205 }
2206 w->leaf = rt;
2207 return 0;
2208}
2209
2210/*
2211 * Convenient frontend to tree walker.
2212 *
2213 * func is called on each route.
2214 * It may return -2 -> skip multipath route.
2215 * -1 -> delete this route.
2216 * 0 -> continue walking
2217 */
2218
2219static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2220 int (*func)(struct fib6_info *, void *arg),
2221 int sernum, void *arg, bool skip_notify)
2222{
2223 struct fib6_cleaner c;
2224
2225 c.w.root = root;
2226 c.w.func = fib6_clean_node;
2227 c.w.count = 0;
2228 c.w.skip = 0;
2229 c.w.skip_in_node = 0;
2230 c.func = func;
2231 c.sernum = sernum;
2232 c.arg = arg;
2233 c.net = net;
2234 c.skip_notify = skip_notify;
2235
2236 fib6_walk(net, &c.w);
2237}
2238
2239static void __fib6_clean_all(struct net *net,
2240 int (*func)(struct fib6_info *, void *),
2241 int sernum, void *arg, bool skip_notify)
2242{
2243 struct fib6_table *table;
2244 struct hlist_head *head;
2245 unsigned int h;
2246
2247 rcu_read_lock();
2248 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2249 head = &net->ipv6.fib_table_hash[h];
2250 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2251 spin_lock_bh(&table->tb6_lock);
2252 fib6_clean_tree(net, &table->tb6_root,
2253 func, sernum, arg, skip_notify);
2254 spin_unlock_bh(&table->tb6_lock);
2255 }
2256 }
2257 rcu_read_unlock();
2258}
2259
2260void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2261 void *arg)
2262{
2263 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2264}
2265
2266void fib6_clean_all_skip_notify(struct net *net,
2267 int (*func)(struct fib6_info *, void *),
2268 void *arg)
2269{
2270 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2271}
2272
2273static void fib6_flush_trees(struct net *net)
2274{
2275 int new_sernum = fib6_new_sernum(net);
2276
2277 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2278}
2279
2280/*
2281 * Garbage collection
2282 */
2283
2284static int fib6_age(struct fib6_info *rt, void *arg)
2285{
2286 struct fib6_gc_args *gc_args = arg;
2287 unsigned long now = jiffies;
2288
2289 /*
2290 * check addrconf expiration here.
2291 * Routes are expired even if they are in use.
2292 */
2293
2294 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2295 if (time_after(now, rt->expires)) {
2296 RT6_TRACE("expiring %p\n", rt);
2297 return -1;
2298 }
2299 gc_args->more++;
2300 }
2301
2302 /* Also age clones in the exception table.
2303 * Note, that clones are aged out
2304 * only if they are not in use now.
2305 */
2306 rt6_age_exceptions(rt, gc_args, now);
2307
2308 return 0;
2309}
2310
2311void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2312{
2313 struct fib6_gc_args gc_args;
2314 unsigned long now;
2315
2316 if (force) {
2317 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2318 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2319 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2320 return;
2321 }
2322 gc_args.timeout = expires ? (int)expires :
2323 net->ipv6.sysctl.ip6_rt_gc_interval;
2324 gc_args.more = 0;
2325
2326 fib6_clean_all(net, fib6_age, &gc_args);
2327 now = jiffies;
2328 net->ipv6.ip6_rt_last_gc = now;
2329
2330 if (gc_args.more)
2331 mod_timer(&net->ipv6.ip6_fib_timer,
2332 round_jiffies(now
2333 + net->ipv6.sysctl.ip6_rt_gc_interval));
2334 else
2335 del_timer(&net->ipv6.ip6_fib_timer);
2336 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2337}
2338
2339static void fib6_gc_timer_cb(struct timer_list *t)
2340{
2341 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2342
2343 fib6_run_gc(0, arg, true);
2344}
2345
2346static int __net_init fib6_net_init(struct net *net)
2347{
2348 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2349 int err;
2350
2351 err = fib6_notifier_init(net);
2352 if (err)
2353 return err;
2354
2355 /* Default to 3-tuple */
2356 net->ipv6.sysctl.multipath_hash_fields =
2357 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2358
2359 spin_lock_init(&net->ipv6.fib6_gc_lock);
2360 rwlock_init(&net->ipv6.fib6_walker_lock);
2361 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2362 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2363
2364 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2365 if (!net->ipv6.rt6_stats)
2366 goto out_notifier;
2367
2368 /* Avoid false sharing : Use at least a full cache line */
2369 size = max_t(size_t, size, L1_CACHE_BYTES);
2370
2371 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2372 if (!net->ipv6.fib_table_hash)
2373 goto out_rt6_stats;
2374
2375 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2376 GFP_KERNEL);
2377 if (!net->ipv6.fib6_main_tbl)
2378 goto out_fib_table_hash;
2379
2380 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2381 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2382 net->ipv6.fib6_null_entry);
2383 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2384 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2385 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2386
2387#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2388 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2389 GFP_KERNEL);
2390 if (!net->ipv6.fib6_local_tbl)
2391 goto out_fib6_main_tbl;
2392 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2393 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2394 net->ipv6.fib6_null_entry);
2395 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2396 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2397 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2398#endif
2399 fib6_tables_init(net);
2400
2401 return 0;
2402
2403#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2404out_fib6_main_tbl:
2405 kfree(net->ipv6.fib6_main_tbl);
2406#endif
2407out_fib_table_hash:
2408 kfree(net->ipv6.fib_table_hash);
2409out_rt6_stats:
2410 kfree(net->ipv6.rt6_stats);
2411out_notifier:
2412 fib6_notifier_exit(net);
2413 return -ENOMEM;
2414}
2415
2416static void fib6_net_exit(struct net *net)
2417{
2418 unsigned int i;
2419
2420 del_timer_sync(&net->ipv6.ip6_fib_timer);
2421
2422 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2423 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2424 struct hlist_node *tmp;
2425 struct fib6_table *tb;
2426
2427 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2428 hlist_del(&tb->tb6_hlist);
2429 fib6_free_table(tb);
2430 }
2431 }
2432
2433 kfree(net->ipv6.fib_table_hash);
2434 kfree(net->ipv6.rt6_stats);
2435 fib6_notifier_exit(net);
2436}
2437
2438static struct pernet_operations fib6_net_ops = {
2439 .init = fib6_net_init,
2440 .exit = fib6_net_exit,
2441};
2442
2443int __init fib6_init(void)
2444{
2445 int ret = -ENOMEM;
2446
2447 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2448 sizeof(struct fib6_node), 0,
2449 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT,
2450 NULL);
2451 if (!fib6_node_kmem)
2452 goto out;
2453
2454 ret = register_pernet_subsys(&fib6_net_ops);
2455 if (ret)
2456 goto out_kmem_cache_create;
2457
2458 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2459 inet6_dump_fib, 0);
2460 if (ret)
2461 goto out_unregister_subsys;
2462
2463 __fib6_flush_trees = fib6_flush_trees;
2464out:
2465 return ret;
2466
2467out_unregister_subsys:
2468 unregister_pernet_subsys(&fib6_net_ops);
2469out_kmem_cache_create:
2470 kmem_cache_destroy(fib6_node_kmem);
2471 goto out;
2472}
2473
2474void fib6_gc_cleanup(void)
2475{
2476 unregister_pernet_subsys(&fib6_net_ops);
2477 kmem_cache_destroy(fib6_node_kmem);
2478}
2479
2480#ifdef CONFIG_PROC_FS
2481static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2482{
2483 struct fib6_info *rt = v;
2484 struct ipv6_route_iter *iter = seq->private;
2485 struct fib6_nh *fib6_nh = rt->fib6_nh;
2486 unsigned int flags = rt->fib6_flags;
2487 const struct net_device *dev;
2488
2489 if (rt->nh)
2490 fib6_nh = nexthop_fib6_nh(rt->nh);
2491
2492 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2493
2494#ifdef CONFIG_IPV6_SUBTREES
2495 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2496#else
2497 seq_puts(seq, "00000000000000000000000000000000 00 ");
2498#endif
2499 if (fib6_nh->fib_nh_gw_family) {
2500 flags |= RTF_GATEWAY;
2501 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2502 } else {
2503 seq_puts(seq, "00000000000000000000000000000000");
2504 }
2505
2506 dev = fib6_nh->fib_nh_dev;
2507 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2508 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2509 flags, dev ? dev->name : "");
2510 iter->w.leaf = NULL;
2511 return 0;
2512}
2513
2514static int ipv6_route_yield(struct fib6_walker *w)
2515{
2516 struct ipv6_route_iter *iter = w->args;
2517
2518 if (!iter->skip)
2519 return 1;
2520
2521 do {
2522 iter->w.leaf = rcu_dereference_protected(
2523 iter->w.leaf->fib6_next,
2524 lockdep_is_held(&iter->tbl->tb6_lock));
2525 iter->skip--;
2526 if (!iter->skip && iter->w.leaf)
2527 return 1;
2528 } while (iter->w.leaf);
2529
2530 return 0;
2531}
2532
2533static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2534 struct net *net)
2535{
2536 memset(&iter->w, 0, sizeof(iter->w));
2537 iter->w.func = ipv6_route_yield;
2538 iter->w.root = &iter->tbl->tb6_root;
2539 iter->w.state = FWS_INIT;
2540 iter->w.node = iter->w.root;
2541 iter->w.args = iter;
2542 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2543 INIT_LIST_HEAD(&iter->w.lh);
2544 fib6_walker_link(net, &iter->w);
2545}
2546
2547static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2548 struct net *net)
2549{
2550 unsigned int h;
2551 struct hlist_node *node;
2552
2553 if (tbl) {
2554 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2555 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2556 } else {
2557 h = 0;
2558 node = NULL;
2559 }
2560
2561 while (!node && h < FIB6_TABLE_HASHSZ) {
2562 node = rcu_dereference(
2563 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2564 }
2565 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2566}
2567
2568static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2569{
2570 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2571
2572 if (iter->sernum != sernum) {
2573 iter->sernum = sernum;
2574 iter->w.state = FWS_INIT;
2575 iter->w.node = iter->w.root;
2576 WARN_ON(iter->w.skip);
2577 iter->w.skip = iter->w.count;
2578 }
2579}
2580
2581static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2582{
2583 int r;
2584 struct fib6_info *n;
2585 struct net *net = seq_file_net(seq);
2586 struct ipv6_route_iter *iter = seq->private;
2587
2588 ++(*pos);
2589 if (!v)
2590 goto iter_table;
2591
2592 n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2593 if (n)
2594 return n;
2595
2596iter_table:
2597 ipv6_route_check_sernum(iter);
2598 spin_lock_bh(&iter->tbl->tb6_lock);
2599 r = fib6_walk_continue(&iter->w);
2600 spin_unlock_bh(&iter->tbl->tb6_lock);
2601 if (r > 0) {
2602 return iter->w.leaf;
2603 } else if (r < 0) {
2604 fib6_walker_unlink(net, &iter->w);
2605 return NULL;
2606 }
2607 fib6_walker_unlink(net, &iter->w);
2608
2609 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2610 if (!iter->tbl)
2611 return NULL;
2612
2613 ipv6_route_seq_setup_walk(iter, net);
2614 goto iter_table;
2615}
2616
2617static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2618 __acquires(RCU)
2619{
2620 struct net *net = seq_file_net(seq);
2621 struct ipv6_route_iter *iter = seq->private;
2622
2623 rcu_read_lock();
2624 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2625 iter->skip = *pos;
2626
2627 if (iter->tbl) {
2628 loff_t p = 0;
2629
2630 ipv6_route_seq_setup_walk(iter, net);
2631 return ipv6_route_seq_next(seq, NULL, &p);
2632 } else {
2633 return NULL;
2634 }
2635}
2636
2637static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2638{
2639 struct fib6_walker *w = &iter->w;
2640 return w->node && !(w->state == FWS_U && w->node == w->root);
2641}
2642
2643static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2644 __releases(RCU)
2645{
2646 struct net *net = seq_file_net(seq);
2647 struct ipv6_route_iter *iter = seq->private;
2648
2649 if (ipv6_route_iter_active(iter))
2650 fib6_walker_unlink(net, &iter->w);
2651
2652 rcu_read_unlock();
2653}
2654
2655#if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2656static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2657 struct bpf_iter_meta *meta,
2658 void *v)
2659{
2660 struct bpf_iter__ipv6_route ctx;
2661
2662 ctx.meta = meta;
2663 ctx.rt = v;
2664 return bpf_iter_run_prog(prog, &ctx);
2665}
2666
2667static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2668{
2669 struct ipv6_route_iter *iter = seq->private;
2670 struct bpf_iter_meta meta;
2671 struct bpf_prog *prog;
2672 int ret;
2673
2674 meta.seq = seq;
2675 prog = bpf_iter_get_info(&meta, false);
2676 if (!prog)
2677 return ipv6_route_native_seq_show(seq, v);
2678
2679 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2680 iter->w.leaf = NULL;
2681
2682 return ret;
2683}
2684
2685static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2686{
2687 struct bpf_iter_meta meta;
2688 struct bpf_prog *prog;
2689
2690 if (!v) {
2691 meta.seq = seq;
2692 prog = bpf_iter_get_info(&meta, true);
2693 if (prog)
2694 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2695 }
2696
2697 ipv6_route_native_seq_stop(seq, v);
2698}
2699#else
2700static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2701{
2702 return ipv6_route_native_seq_show(seq, v);
2703}
2704
2705static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2706{
2707 ipv6_route_native_seq_stop(seq, v);
2708}
2709#endif
2710
2711const struct seq_operations ipv6_route_seq_ops = {
2712 .start = ipv6_route_seq_start,
2713 .next = ipv6_route_seq_next,
2714 .stop = ipv6_route_seq_stop,
2715 .show = ipv6_route_seq_show
2716};
2717#endif /* CONFIG_PROC_FS */
1/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20#define pr_fmt(fmt) "IPv6: " fmt
21
22#include <linux/errno.h>
23#include <linux/types.h>
24#include <linux/net.h>
25#include <linux/route.h>
26#include <linux/netdevice.h>
27#include <linux/in6.h>
28#include <linux/init.h>
29#include <linux/list.h>
30#include <linux/slab.h>
31
32#include <net/ipv6.h>
33#include <net/ndisc.h>
34#include <net/addrconf.h>
35#include <net/lwtunnel.h>
36
37#include <net/ip6_fib.h>
38#include <net/ip6_route.h>
39
40#define RT6_DEBUG 2
41
42#if RT6_DEBUG >= 3
43#define RT6_TRACE(x...) pr_debug(x)
44#else
45#define RT6_TRACE(x...) do { ; } while (0)
46#endif
47
48static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56};
57
58#ifdef CONFIG_IPV6_SUBTREES
59#define FWS_INIT FWS_S
60#else
61#define FWS_INIT FWS_L
62#endif
63
64static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67static int fib6_walk(struct net *net, struct fib6_walker *w);
68static int fib6_walk_continue(struct fib6_walker *w);
69
70/*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77static void fib6_gc_timer_cb(unsigned long arg);
78
79#define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83{
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87}
88
89static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90{
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94}
95
96static int fib6_new_sernum(struct net *net)
97{
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106}
107
108enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110};
111
112/*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119/*
120 * test bit
121 */
122#if defined(__LITTLE_ENDIAN)
123# define BITOP_BE32_SWIZZLE (0x1F & ~7)
124#else
125# define BITOP_BE32_SWIZZLE 0
126#endif
127
128static __be32 addr_bit_set(const void *token, int fn_bit)
129{
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140}
141
142static struct fib6_node *node_alloc(void)
143{
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149}
150
151static void node_free(struct fib6_node *fn)
152{
153 kmem_cache_free(fib6_node_kmem, fn);
154}
155
156static void rt6_rcu_free(struct rt6_info *rt)
157{
158 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159}
160
161static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162{
163 int cpu;
164
165 if (!non_pcpu_rt->rt6i_pcpu)
166 return;
167
168 for_each_possible_cpu(cpu) {
169 struct rt6_info **ppcpu_rt;
170 struct rt6_info *pcpu_rt;
171
172 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 pcpu_rt = *ppcpu_rt;
174 if (pcpu_rt) {
175 rt6_rcu_free(pcpu_rt);
176 *ppcpu_rt = NULL;
177 }
178 }
179
180 non_pcpu_rt->rt6i_pcpu = NULL;
181}
182
183static void rt6_release(struct rt6_info *rt)
184{
185 if (atomic_dec_and_test(&rt->rt6i_ref)) {
186 rt6_free_pcpu(rt);
187 rt6_rcu_free(rt);
188 }
189}
190
191static void fib6_link_table(struct net *net, struct fib6_table *tb)
192{
193 unsigned int h;
194
195 /*
196 * Initialize table lock at a single place to give lockdep a key,
197 * tables aren't visible prior to being linked to the list.
198 */
199 rwlock_init(&tb->tb6_lock);
200
201 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
202
203 /*
204 * No protection necessary, this is the only list mutatation
205 * operation, tables never disappear once they exist.
206 */
207 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
208}
209
210#ifdef CONFIG_IPV6_MULTIPLE_TABLES
211
212static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
213{
214 struct fib6_table *table;
215
216 table = kzalloc(sizeof(*table), GFP_ATOMIC);
217 if (table) {
218 table->tb6_id = id;
219 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
220 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
221 inet_peer_base_init(&table->tb6_peers);
222 }
223
224 return table;
225}
226
227struct fib6_table *fib6_new_table(struct net *net, u32 id)
228{
229 struct fib6_table *tb;
230
231 if (id == 0)
232 id = RT6_TABLE_MAIN;
233 tb = fib6_get_table(net, id);
234 if (tb)
235 return tb;
236
237 tb = fib6_alloc_table(net, id);
238 if (tb)
239 fib6_link_table(net, tb);
240
241 return tb;
242}
243
244struct fib6_table *fib6_get_table(struct net *net, u32 id)
245{
246 struct fib6_table *tb;
247 struct hlist_head *head;
248 unsigned int h;
249
250 if (id == 0)
251 id = RT6_TABLE_MAIN;
252 h = id & (FIB6_TABLE_HASHSZ - 1);
253 rcu_read_lock();
254 head = &net->ipv6.fib_table_hash[h];
255 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
256 if (tb->tb6_id == id) {
257 rcu_read_unlock();
258 return tb;
259 }
260 }
261 rcu_read_unlock();
262
263 return NULL;
264}
265EXPORT_SYMBOL_GPL(fib6_get_table);
266
267static void __net_init fib6_tables_init(struct net *net)
268{
269 fib6_link_table(net, net->ipv6.fib6_main_tbl);
270 fib6_link_table(net, net->ipv6.fib6_local_tbl);
271}
272#else
273
274struct fib6_table *fib6_new_table(struct net *net, u32 id)
275{
276 return fib6_get_table(net, id);
277}
278
279struct fib6_table *fib6_get_table(struct net *net, u32 id)
280{
281 return net->ipv6.fib6_main_tbl;
282}
283
284struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
285 int flags, pol_lookup_t lookup)
286{
287 struct rt6_info *rt;
288
289 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
290 if (rt->rt6i_flags & RTF_REJECT &&
291 rt->dst.error == -EAGAIN) {
292 ip6_rt_put(rt);
293 rt = net->ipv6.ip6_null_entry;
294 dst_hold(&rt->dst);
295 }
296
297 return &rt->dst;
298}
299
300static void __net_init fib6_tables_init(struct net *net)
301{
302 fib6_link_table(net, net->ipv6.fib6_main_tbl);
303}
304
305#endif
306
307static int fib6_dump_node(struct fib6_walker *w)
308{
309 int res;
310 struct rt6_info *rt;
311
312 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
313 res = rt6_dump_route(rt, w->args);
314 if (res < 0) {
315 /* Frame is full, suspend walking */
316 w->leaf = rt;
317 return 1;
318 }
319 }
320 w->leaf = NULL;
321 return 0;
322}
323
324static void fib6_dump_end(struct netlink_callback *cb)
325{
326 struct net *net = sock_net(cb->skb->sk);
327 struct fib6_walker *w = (void *)cb->args[2];
328
329 if (w) {
330 if (cb->args[4]) {
331 cb->args[4] = 0;
332 fib6_walker_unlink(net, w);
333 }
334 cb->args[2] = 0;
335 kfree(w);
336 }
337 cb->done = (void *)cb->args[3];
338 cb->args[1] = 3;
339}
340
341static int fib6_dump_done(struct netlink_callback *cb)
342{
343 fib6_dump_end(cb);
344 return cb->done ? cb->done(cb) : 0;
345}
346
347static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
348 struct netlink_callback *cb)
349{
350 struct net *net = sock_net(skb->sk);
351 struct fib6_walker *w;
352 int res;
353
354 w = (void *)cb->args[2];
355 w->root = &table->tb6_root;
356
357 if (cb->args[4] == 0) {
358 w->count = 0;
359 w->skip = 0;
360
361 read_lock_bh(&table->tb6_lock);
362 res = fib6_walk(net, w);
363 read_unlock_bh(&table->tb6_lock);
364 if (res > 0) {
365 cb->args[4] = 1;
366 cb->args[5] = w->root->fn_sernum;
367 }
368 } else {
369 if (cb->args[5] != w->root->fn_sernum) {
370 /* Begin at the root if the tree changed */
371 cb->args[5] = w->root->fn_sernum;
372 w->state = FWS_INIT;
373 w->node = w->root;
374 w->skip = w->count;
375 } else
376 w->skip = 0;
377
378 read_lock_bh(&table->tb6_lock);
379 res = fib6_walk_continue(w);
380 read_unlock_bh(&table->tb6_lock);
381 if (res <= 0) {
382 fib6_walker_unlink(net, w);
383 cb->args[4] = 0;
384 }
385 }
386
387 return res;
388}
389
390static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
391{
392 struct net *net = sock_net(skb->sk);
393 unsigned int h, s_h;
394 unsigned int e = 0, s_e;
395 struct rt6_rtnl_dump_arg arg;
396 struct fib6_walker *w;
397 struct fib6_table *tb;
398 struct hlist_head *head;
399 int res = 0;
400
401 s_h = cb->args[0];
402 s_e = cb->args[1];
403
404 w = (void *)cb->args[2];
405 if (!w) {
406 /* New dump:
407 *
408 * 1. hook callback destructor.
409 */
410 cb->args[3] = (long)cb->done;
411 cb->done = fib6_dump_done;
412
413 /*
414 * 2. allocate and initialize walker.
415 */
416 w = kzalloc(sizeof(*w), GFP_ATOMIC);
417 if (!w)
418 return -ENOMEM;
419 w->func = fib6_dump_node;
420 cb->args[2] = (long)w;
421 }
422
423 arg.skb = skb;
424 arg.cb = cb;
425 arg.net = net;
426 w->args = &arg;
427
428 rcu_read_lock();
429 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
430 e = 0;
431 head = &net->ipv6.fib_table_hash[h];
432 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
433 if (e < s_e)
434 goto next;
435 res = fib6_dump_table(tb, skb, cb);
436 if (res != 0)
437 goto out;
438next:
439 e++;
440 }
441 }
442out:
443 rcu_read_unlock();
444 cb->args[1] = e;
445 cb->args[0] = h;
446
447 res = res < 0 ? res : skb->len;
448 if (res <= 0)
449 fib6_dump_end(cb);
450 return res;
451}
452
453/*
454 * Routing Table
455 *
456 * return the appropriate node for a routing tree "add" operation
457 * by either creating and inserting or by returning an existing
458 * node.
459 */
460
461static struct fib6_node *fib6_add_1(struct fib6_node *root,
462 struct in6_addr *addr, int plen,
463 int offset, int allow_create,
464 int replace_required, int sernum)
465{
466 struct fib6_node *fn, *in, *ln;
467 struct fib6_node *pn = NULL;
468 struct rt6key *key;
469 int bit;
470 __be32 dir = 0;
471
472 RT6_TRACE("fib6_add_1\n");
473
474 /* insert node in tree */
475
476 fn = root;
477
478 do {
479 key = (struct rt6key *)((u8 *)fn->leaf + offset);
480
481 /*
482 * Prefix match
483 */
484 if (plen < fn->fn_bit ||
485 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
486 if (!allow_create) {
487 if (replace_required) {
488 pr_warn("Can't replace route, no match found\n");
489 return ERR_PTR(-ENOENT);
490 }
491 pr_warn("NLM_F_CREATE should be set when creating new route\n");
492 }
493 goto insert_above;
494 }
495
496 /*
497 * Exact match ?
498 */
499
500 if (plen == fn->fn_bit) {
501 /* clean up an intermediate node */
502 if (!(fn->fn_flags & RTN_RTINFO)) {
503 rt6_release(fn->leaf);
504 fn->leaf = NULL;
505 }
506
507 fn->fn_sernum = sernum;
508
509 return fn;
510 }
511
512 /*
513 * We have more bits to go
514 */
515
516 /* Try to walk down on tree. */
517 fn->fn_sernum = sernum;
518 dir = addr_bit_set(addr, fn->fn_bit);
519 pn = fn;
520 fn = dir ? fn->right : fn->left;
521 } while (fn);
522
523 if (!allow_create) {
524 /* We should not create new node because
525 * NLM_F_REPLACE was specified without NLM_F_CREATE
526 * I assume it is safe to require NLM_F_CREATE when
527 * REPLACE flag is used! Later we may want to remove the
528 * check for replace_required, because according
529 * to netlink specification, NLM_F_CREATE
530 * MUST be specified if new route is created.
531 * That would keep IPv6 consistent with IPv4
532 */
533 if (replace_required) {
534 pr_warn("Can't replace route, no match found\n");
535 return ERR_PTR(-ENOENT);
536 }
537 pr_warn("NLM_F_CREATE should be set when creating new route\n");
538 }
539 /*
540 * We walked to the bottom of tree.
541 * Create new leaf node without children.
542 */
543
544 ln = node_alloc();
545
546 if (!ln)
547 return ERR_PTR(-ENOMEM);
548 ln->fn_bit = plen;
549
550 ln->parent = pn;
551 ln->fn_sernum = sernum;
552
553 if (dir)
554 pn->right = ln;
555 else
556 pn->left = ln;
557
558 return ln;
559
560
561insert_above:
562 /*
563 * split since we don't have a common prefix anymore or
564 * we have a less significant route.
565 * we've to insert an intermediate node on the list
566 * this new node will point to the one we need to create
567 * and the current
568 */
569
570 pn = fn->parent;
571
572 /* find 1st bit in difference between the 2 addrs.
573
574 See comment in __ipv6_addr_diff: bit may be an invalid value,
575 but if it is >= plen, the value is ignored in any case.
576 */
577
578 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
579
580 /*
581 * (intermediate)[in]
582 * / \
583 * (new leaf node)[ln] (old node)[fn]
584 */
585 if (plen > bit) {
586 in = node_alloc();
587 ln = node_alloc();
588
589 if (!in || !ln) {
590 if (in)
591 node_free(in);
592 if (ln)
593 node_free(ln);
594 return ERR_PTR(-ENOMEM);
595 }
596
597 /*
598 * new intermediate node.
599 * RTN_RTINFO will
600 * be off since that an address that chooses one of
601 * the branches would not match less specific routes
602 * in the other branch
603 */
604
605 in->fn_bit = bit;
606
607 in->parent = pn;
608 in->leaf = fn->leaf;
609 atomic_inc(&in->leaf->rt6i_ref);
610
611 in->fn_sernum = sernum;
612
613 /* update parent pointer */
614 if (dir)
615 pn->right = in;
616 else
617 pn->left = in;
618
619 ln->fn_bit = plen;
620
621 ln->parent = in;
622 fn->parent = in;
623
624 ln->fn_sernum = sernum;
625
626 if (addr_bit_set(addr, bit)) {
627 in->right = ln;
628 in->left = fn;
629 } else {
630 in->left = ln;
631 in->right = fn;
632 }
633 } else { /* plen <= bit */
634
635 /*
636 * (new leaf node)[ln]
637 * / \
638 * (old node)[fn] NULL
639 */
640
641 ln = node_alloc();
642
643 if (!ln)
644 return ERR_PTR(-ENOMEM);
645
646 ln->fn_bit = plen;
647
648 ln->parent = pn;
649
650 ln->fn_sernum = sernum;
651
652 if (dir)
653 pn->right = ln;
654 else
655 pn->left = ln;
656
657 if (addr_bit_set(&key->addr, plen))
658 ln->right = fn;
659 else
660 ln->left = fn;
661
662 fn->parent = ln;
663 }
664 return ln;
665}
666
667static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
668{
669 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
670 RTF_GATEWAY;
671}
672
673static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
674{
675 int i;
676
677 for (i = 0; i < RTAX_MAX; i++) {
678 if (test_bit(i, mxc->mx_valid))
679 mp[i] = mxc->mx[i];
680 }
681}
682
683static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
684{
685 if (!mxc->mx)
686 return 0;
687
688 if (dst->flags & DST_HOST) {
689 u32 *mp = dst_metrics_write_ptr(dst);
690
691 if (unlikely(!mp))
692 return -ENOMEM;
693
694 fib6_copy_metrics(mp, mxc);
695 } else {
696 dst_init_metrics(dst, mxc->mx, false);
697
698 /* We've stolen mx now. */
699 mxc->mx = NULL;
700 }
701
702 return 0;
703}
704
705static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
706 struct net *net)
707{
708 if (atomic_read(&rt->rt6i_ref) != 1) {
709 /* This route is used as dummy address holder in some split
710 * nodes. It is not leaked, but it still holds other resources,
711 * which must be released in time. So, scan ascendant nodes
712 * and replace dummy references to this route with references
713 * to still alive ones.
714 */
715 while (fn) {
716 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
717 fn->leaf = fib6_find_prefix(net, fn);
718 atomic_inc(&fn->leaf->rt6i_ref);
719 rt6_release(rt);
720 }
721 fn = fn->parent;
722 }
723 /* No more references are possible at this point. */
724 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
725 }
726}
727
728/*
729 * Insert routing information in a node.
730 */
731
732static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
733 struct nl_info *info, struct mx6_config *mxc)
734{
735 struct rt6_info *iter = NULL;
736 struct rt6_info **ins;
737 struct rt6_info **fallback_ins = NULL;
738 int replace = (info->nlh &&
739 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
740 int add = (!info->nlh ||
741 (info->nlh->nlmsg_flags & NLM_F_CREATE));
742 int found = 0;
743 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
744 int err;
745
746 ins = &fn->leaf;
747
748 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
749 /*
750 * Search for duplicates
751 */
752
753 if (iter->rt6i_metric == rt->rt6i_metric) {
754 /*
755 * Same priority level
756 */
757 if (info->nlh &&
758 (info->nlh->nlmsg_flags & NLM_F_EXCL))
759 return -EEXIST;
760 if (replace) {
761 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
762 found++;
763 break;
764 }
765 if (rt_can_ecmp)
766 fallback_ins = fallback_ins ?: ins;
767 goto next_iter;
768 }
769
770 if (iter->dst.dev == rt->dst.dev &&
771 iter->rt6i_idev == rt->rt6i_idev &&
772 ipv6_addr_equal(&iter->rt6i_gateway,
773 &rt->rt6i_gateway)) {
774 if (rt->rt6i_nsiblings)
775 rt->rt6i_nsiblings = 0;
776 if (!(iter->rt6i_flags & RTF_EXPIRES))
777 return -EEXIST;
778 if (!(rt->rt6i_flags & RTF_EXPIRES))
779 rt6_clean_expires(iter);
780 else
781 rt6_set_expires(iter, rt->dst.expires);
782 iter->rt6i_pmtu = rt->rt6i_pmtu;
783 return -EEXIST;
784 }
785 /* If we have the same destination and the same metric,
786 * but not the same gateway, then the route we try to
787 * add is sibling to this route, increment our counter
788 * of siblings, and later we will add our route to the
789 * list.
790 * Only static routes (which don't have flag
791 * RTF_EXPIRES) are used for ECMPv6.
792 *
793 * To avoid long list, we only had siblings if the
794 * route have a gateway.
795 */
796 if (rt_can_ecmp &&
797 rt6_qualify_for_ecmp(iter))
798 rt->rt6i_nsiblings++;
799 }
800
801 if (iter->rt6i_metric > rt->rt6i_metric)
802 break;
803
804next_iter:
805 ins = &iter->dst.rt6_next;
806 }
807
808 if (fallback_ins && !found) {
809 /* No ECMP-able route found, replace first non-ECMP one */
810 ins = fallback_ins;
811 iter = *ins;
812 found++;
813 }
814
815 /* Reset round-robin state, if necessary */
816 if (ins == &fn->leaf)
817 fn->rr_ptr = NULL;
818
819 /* Link this route to others same route. */
820 if (rt->rt6i_nsiblings) {
821 unsigned int rt6i_nsiblings;
822 struct rt6_info *sibling, *temp_sibling;
823
824 /* Find the first route that have the same metric */
825 sibling = fn->leaf;
826 while (sibling) {
827 if (sibling->rt6i_metric == rt->rt6i_metric &&
828 rt6_qualify_for_ecmp(sibling)) {
829 list_add_tail(&rt->rt6i_siblings,
830 &sibling->rt6i_siblings);
831 break;
832 }
833 sibling = sibling->dst.rt6_next;
834 }
835 /* For each sibling in the list, increment the counter of
836 * siblings. BUG() if counters does not match, list of siblings
837 * is broken!
838 */
839 rt6i_nsiblings = 0;
840 list_for_each_entry_safe(sibling, temp_sibling,
841 &rt->rt6i_siblings, rt6i_siblings) {
842 sibling->rt6i_nsiblings++;
843 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
844 rt6i_nsiblings++;
845 }
846 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
847 }
848
849 /*
850 * insert node
851 */
852 if (!replace) {
853 if (!add)
854 pr_warn("NLM_F_CREATE should be set when creating new route\n");
855
856add:
857 err = fib6_commit_metrics(&rt->dst, mxc);
858 if (err)
859 return err;
860
861 rt->dst.rt6_next = iter;
862 *ins = rt;
863 rt->rt6i_node = fn;
864 atomic_inc(&rt->rt6i_ref);
865 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
866 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
867
868 if (!(fn->fn_flags & RTN_RTINFO)) {
869 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
870 fn->fn_flags |= RTN_RTINFO;
871 }
872
873 } else {
874 int nsiblings;
875
876 if (!found) {
877 if (add)
878 goto add;
879 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
880 return -ENOENT;
881 }
882
883 err = fib6_commit_metrics(&rt->dst, mxc);
884 if (err)
885 return err;
886
887 *ins = rt;
888 rt->rt6i_node = fn;
889 rt->dst.rt6_next = iter->dst.rt6_next;
890 atomic_inc(&rt->rt6i_ref);
891 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
892 if (!(fn->fn_flags & RTN_RTINFO)) {
893 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
894 fn->fn_flags |= RTN_RTINFO;
895 }
896 nsiblings = iter->rt6i_nsiblings;
897 fib6_purge_rt(iter, fn, info->nl_net);
898 rt6_release(iter);
899
900 if (nsiblings) {
901 /* Replacing an ECMP route, remove all siblings */
902 ins = &rt->dst.rt6_next;
903 iter = *ins;
904 while (iter) {
905 if (rt6_qualify_for_ecmp(iter)) {
906 *ins = iter->dst.rt6_next;
907 fib6_purge_rt(iter, fn, info->nl_net);
908 rt6_release(iter);
909 nsiblings--;
910 } else {
911 ins = &iter->dst.rt6_next;
912 }
913 iter = *ins;
914 }
915 WARN_ON(nsiblings != 0);
916 }
917 }
918
919 return 0;
920}
921
922static void fib6_start_gc(struct net *net, struct rt6_info *rt)
923{
924 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
925 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
926 mod_timer(&net->ipv6.ip6_fib_timer,
927 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
928}
929
930void fib6_force_start_gc(struct net *net)
931{
932 if (!timer_pending(&net->ipv6.ip6_fib_timer))
933 mod_timer(&net->ipv6.ip6_fib_timer,
934 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
935}
936
937/*
938 * Add routing information to the routing tree.
939 * <destination addr>/<source addr>
940 * with source addr info in sub-trees
941 */
942
943int fib6_add(struct fib6_node *root, struct rt6_info *rt,
944 struct nl_info *info, struct mx6_config *mxc)
945{
946 struct fib6_node *fn, *pn = NULL;
947 int err = -ENOMEM;
948 int allow_create = 1;
949 int replace_required = 0;
950 int sernum = fib6_new_sernum(info->nl_net);
951
952 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
953 !atomic_read(&rt->dst.__refcnt)))
954 return -EINVAL;
955
956 if (info->nlh) {
957 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
958 allow_create = 0;
959 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
960 replace_required = 1;
961 }
962 if (!allow_create && !replace_required)
963 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
964
965 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
966 offsetof(struct rt6_info, rt6i_dst), allow_create,
967 replace_required, sernum);
968 if (IS_ERR(fn)) {
969 err = PTR_ERR(fn);
970 fn = NULL;
971 goto out;
972 }
973
974 pn = fn;
975
976#ifdef CONFIG_IPV6_SUBTREES
977 if (rt->rt6i_src.plen) {
978 struct fib6_node *sn;
979
980 if (!fn->subtree) {
981 struct fib6_node *sfn;
982
983 /*
984 * Create subtree.
985 *
986 * fn[main tree]
987 * |
988 * sfn[subtree root]
989 * \
990 * sn[new leaf node]
991 */
992
993 /* Create subtree root node */
994 sfn = node_alloc();
995 if (!sfn)
996 goto st_failure;
997
998 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
999 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1000 sfn->fn_flags = RTN_ROOT;
1001 sfn->fn_sernum = sernum;
1002
1003 /* Now add the first leaf node to new subtree */
1004
1005 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1006 rt->rt6i_src.plen,
1007 offsetof(struct rt6_info, rt6i_src),
1008 allow_create, replace_required, sernum);
1009
1010 if (IS_ERR(sn)) {
1011 /* If it is failed, discard just allocated
1012 root, and then (in st_failure) stale node
1013 in main tree.
1014 */
1015 node_free(sfn);
1016 err = PTR_ERR(sn);
1017 goto st_failure;
1018 }
1019
1020 /* Now link new subtree to main tree */
1021 sfn->parent = fn;
1022 fn->subtree = sfn;
1023 } else {
1024 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1025 rt->rt6i_src.plen,
1026 offsetof(struct rt6_info, rt6i_src),
1027 allow_create, replace_required, sernum);
1028
1029 if (IS_ERR(sn)) {
1030 err = PTR_ERR(sn);
1031 goto st_failure;
1032 }
1033 }
1034
1035 if (!fn->leaf) {
1036 fn->leaf = rt;
1037 atomic_inc(&rt->rt6i_ref);
1038 }
1039 fn = sn;
1040 }
1041#endif
1042
1043 err = fib6_add_rt2node(fn, rt, info, mxc);
1044 if (!err) {
1045 fib6_start_gc(info->nl_net, rt);
1046 if (!(rt->rt6i_flags & RTF_CACHE))
1047 fib6_prune_clones(info->nl_net, pn);
1048 rt->dst.flags &= ~DST_NOCACHE;
1049 }
1050
1051out:
1052 if (err) {
1053#ifdef CONFIG_IPV6_SUBTREES
1054 /*
1055 * If fib6_add_1 has cleared the old leaf pointer in the
1056 * super-tree leaf node we have to find a new one for it.
1057 */
1058 if (pn != fn && pn->leaf == rt) {
1059 pn->leaf = NULL;
1060 atomic_dec(&rt->rt6i_ref);
1061 }
1062 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1063 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1064#if RT6_DEBUG >= 2
1065 if (!pn->leaf) {
1066 WARN_ON(pn->leaf == NULL);
1067 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1068 }
1069#endif
1070 atomic_inc(&pn->leaf->rt6i_ref);
1071 }
1072#endif
1073 if (!(rt->dst.flags & DST_NOCACHE))
1074 dst_free(&rt->dst);
1075 }
1076 return err;
1077
1078#ifdef CONFIG_IPV6_SUBTREES
1079 /* Subtree creation failed, probably main tree node
1080 is orphan. If it is, shoot it.
1081 */
1082st_failure:
1083 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1084 fib6_repair_tree(info->nl_net, fn);
1085 if (!(rt->dst.flags & DST_NOCACHE))
1086 dst_free(&rt->dst);
1087 return err;
1088#endif
1089}
1090
1091/*
1092 * Routing tree lookup
1093 *
1094 */
1095
1096struct lookup_args {
1097 int offset; /* key offset on rt6_info */
1098 const struct in6_addr *addr; /* search key */
1099};
1100
1101static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1102 struct lookup_args *args)
1103{
1104 struct fib6_node *fn;
1105 __be32 dir;
1106
1107 if (unlikely(args->offset == 0))
1108 return NULL;
1109
1110 /*
1111 * Descend on a tree
1112 */
1113
1114 fn = root;
1115
1116 for (;;) {
1117 struct fib6_node *next;
1118
1119 dir = addr_bit_set(args->addr, fn->fn_bit);
1120
1121 next = dir ? fn->right : fn->left;
1122
1123 if (next) {
1124 fn = next;
1125 continue;
1126 }
1127 break;
1128 }
1129
1130 while (fn) {
1131 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1132 struct rt6key *key;
1133
1134 key = (struct rt6key *) ((u8 *) fn->leaf +
1135 args->offset);
1136
1137 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1138#ifdef CONFIG_IPV6_SUBTREES
1139 if (fn->subtree) {
1140 struct fib6_node *sfn;
1141 sfn = fib6_lookup_1(fn->subtree,
1142 args + 1);
1143 if (!sfn)
1144 goto backtrack;
1145 fn = sfn;
1146 }
1147#endif
1148 if (fn->fn_flags & RTN_RTINFO)
1149 return fn;
1150 }
1151 }
1152#ifdef CONFIG_IPV6_SUBTREES
1153backtrack:
1154#endif
1155 if (fn->fn_flags & RTN_ROOT)
1156 break;
1157
1158 fn = fn->parent;
1159 }
1160
1161 return NULL;
1162}
1163
1164struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1165 const struct in6_addr *saddr)
1166{
1167 struct fib6_node *fn;
1168 struct lookup_args args[] = {
1169 {
1170 .offset = offsetof(struct rt6_info, rt6i_dst),
1171 .addr = daddr,
1172 },
1173#ifdef CONFIG_IPV6_SUBTREES
1174 {
1175 .offset = offsetof(struct rt6_info, rt6i_src),
1176 .addr = saddr,
1177 },
1178#endif
1179 {
1180 .offset = 0, /* sentinel */
1181 }
1182 };
1183
1184 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1185 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1186 fn = root;
1187
1188 return fn;
1189}
1190
1191/*
1192 * Get node with specified destination prefix (and source prefix,
1193 * if subtrees are used)
1194 */
1195
1196
1197static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1198 const struct in6_addr *addr,
1199 int plen, int offset)
1200{
1201 struct fib6_node *fn;
1202
1203 for (fn = root; fn ; ) {
1204 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1205
1206 /*
1207 * Prefix match
1208 */
1209 if (plen < fn->fn_bit ||
1210 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1211 return NULL;
1212
1213 if (plen == fn->fn_bit)
1214 return fn;
1215
1216 /*
1217 * We have more bits to go
1218 */
1219 if (addr_bit_set(addr, fn->fn_bit))
1220 fn = fn->right;
1221 else
1222 fn = fn->left;
1223 }
1224 return NULL;
1225}
1226
1227struct fib6_node *fib6_locate(struct fib6_node *root,
1228 const struct in6_addr *daddr, int dst_len,
1229 const struct in6_addr *saddr, int src_len)
1230{
1231 struct fib6_node *fn;
1232
1233 fn = fib6_locate_1(root, daddr, dst_len,
1234 offsetof(struct rt6_info, rt6i_dst));
1235
1236#ifdef CONFIG_IPV6_SUBTREES
1237 if (src_len) {
1238 WARN_ON(saddr == NULL);
1239 if (fn && fn->subtree)
1240 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1241 offsetof(struct rt6_info, rt6i_src));
1242 }
1243#endif
1244
1245 if (fn && fn->fn_flags & RTN_RTINFO)
1246 return fn;
1247
1248 return NULL;
1249}
1250
1251
1252/*
1253 * Deletion
1254 *
1255 */
1256
1257static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1258{
1259 if (fn->fn_flags & RTN_ROOT)
1260 return net->ipv6.ip6_null_entry;
1261
1262 while (fn) {
1263 if (fn->left)
1264 return fn->left->leaf;
1265 if (fn->right)
1266 return fn->right->leaf;
1267
1268 fn = FIB6_SUBTREE(fn);
1269 }
1270 return NULL;
1271}
1272
1273/*
1274 * Called to trim the tree of intermediate nodes when possible. "fn"
1275 * is the node we want to try and remove.
1276 */
1277
1278static struct fib6_node *fib6_repair_tree(struct net *net,
1279 struct fib6_node *fn)
1280{
1281 int children;
1282 int nstate;
1283 struct fib6_node *child, *pn;
1284 struct fib6_walker *w;
1285 int iter = 0;
1286
1287 for (;;) {
1288 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1289 iter++;
1290
1291 WARN_ON(fn->fn_flags & RTN_RTINFO);
1292 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1293 WARN_ON(fn->leaf);
1294
1295 children = 0;
1296 child = NULL;
1297 if (fn->right)
1298 child = fn->right, children |= 1;
1299 if (fn->left)
1300 child = fn->left, children |= 2;
1301
1302 if (children == 3 || FIB6_SUBTREE(fn)
1303#ifdef CONFIG_IPV6_SUBTREES
1304 /* Subtree root (i.e. fn) may have one child */
1305 || (children && fn->fn_flags & RTN_ROOT)
1306#endif
1307 ) {
1308 fn->leaf = fib6_find_prefix(net, fn);
1309#if RT6_DEBUG >= 2
1310 if (!fn->leaf) {
1311 WARN_ON(!fn->leaf);
1312 fn->leaf = net->ipv6.ip6_null_entry;
1313 }
1314#endif
1315 atomic_inc(&fn->leaf->rt6i_ref);
1316 return fn->parent;
1317 }
1318
1319 pn = fn->parent;
1320#ifdef CONFIG_IPV6_SUBTREES
1321 if (FIB6_SUBTREE(pn) == fn) {
1322 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1323 FIB6_SUBTREE(pn) = NULL;
1324 nstate = FWS_L;
1325 } else {
1326 WARN_ON(fn->fn_flags & RTN_ROOT);
1327#endif
1328 if (pn->right == fn)
1329 pn->right = child;
1330 else if (pn->left == fn)
1331 pn->left = child;
1332#if RT6_DEBUG >= 2
1333 else
1334 WARN_ON(1);
1335#endif
1336 if (child)
1337 child->parent = pn;
1338 nstate = FWS_R;
1339#ifdef CONFIG_IPV6_SUBTREES
1340 }
1341#endif
1342
1343 read_lock(&net->ipv6.fib6_walker_lock);
1344 FOR_WALKERS(net, w) {
1345 if (!child) {
1346 if (w->root == fn) {
1347 w->root = w->node = NULL;
1348 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1349 } else if (w->node == fn) {
1350 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1351 w->node = pn;
1352 w->state = nstate;
1353 }
1354 } else {
1355 if (w->root == fn) {
1356 w->root = child;
1357 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1358 }
1359 if (w->node == fn) {
1360 w->node = child;
1361 if (children&2) {
1362 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1363 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1364 } else {
1365 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1366 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1367 }
1368 }
1369 }
1370 }
1371 read_unlock(&net->ipv6.fib6_walker_lock);
1372
1373 node_free(fn);
1374 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1375 return pn;
1376
1377 rt6_release(pn->leaf);
1378 pn->leaf = NULL;
1379 fn = pn;
1380 }
1381}
1382
1383static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1384 struct nl_info *info)
1385{
1386 struct fib6_walker *w;
1387 struct rt6_info *rt = *rtp;
1388 struct net *net = info->nl_net;
1389
1390 RT6_TRACE("fib6_del_route\n");
1391
1392 /* Unlink it */
1393 *rtp = rt->dst.rt6_next;
1394 rt->rt6i_node = NULL;
1395 net->ipv6.rt6_stats->fib_rt_entries--;
1396 net->ipv6.rt6_stats->fib_discarded_routes++;
1397
1398 /* Reset round-robin state, if necessary */
1399 if (fn->rr_ptr == rt)
1400 fn->rr_ptr = NULL;
1401
1402 /* Remove this entry from other siblings */
1403 if (rt->rt6i_nsiblings) {
1404 struct rt6_info *sibling, *next_sibling;
1405
1406 list_for_each_entry_safe(sibling, next_sibling,
1407 &rt->rt6i_siblings, rt6i_siblings)
1408 sibling->rt6i_nsiblings--;
1409 rt->rt6i_nsiblings = 0;
1410 list_del_init(&rt->rt6i_siblings);
1411 }
1412
1413 /* Adjust walkers */
1414 read_lock(&net->ipv6.fib6_walker_lock);
1415 FOR_WALKERS(net, w) {
1416 if (w->state == FWS_C && w->leaf == rt) {
1417 RT6_TRACE("walker %p adjusted by delroute\n", w);
1418 w->leaf = rt->dst.rt6_next;
1419 if (!w->leaf)
1420 w->state = FWS_U;
1421 }
1422 }
1423 read_unlock(&net->ipv6.fib6_walker_lock);
1424
1425 rt->dst.rt6_next = NULL;
1426
1427 /* If it was last route, expunge its radix tree node */
1428 if (!fn->leaf) {
1429 fn->fn_flags &= ~RTN_RTINFO;
1430 net->ipv6.rt6_stats->fib_route_nodes--;
1431 fn = fib6_repair_tree(net, fn);
1432 }
1433
1434 fib6_purge_rt(rt, fn, net);
1435
1436 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1437 rt6_release(rt);
1438}
1439
1440int fib6_del(struct rt6_info *rt, struct nl_info *info)
1441{
1442 struct net *net = info->nl_net;
1443 struct fib6_node *fn = rt->rt6i_node;
1444 struct rt6_info **rtp;
1445
1446#if RT6_DEBUG >= 2
1447 if (rt->dst.obsolete > 0) {
1448 WARN_ON(fn);
1449 return -ENOENT;
1450 }
1451#endif
1452 if (!fn || rt == net->ipv6.ip6_null_entry)
1453 return -ENOENT;
1454
1455 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1456
1457 if (!(rt->rt6i_flags & RTF_CACHE)) {
1458 struct fib6_node *pn = fn;
1459#ifdef CONFIG_IPV6_SUBTREES
1460 /* clones of this route might be in another subtree */
1461 if (rt->rt6i_src.plen) {
1462 while (!(pn->fn_flags & RTN_ROOT))
1463 pn = pn->parent;
1464 pn = pn->parent;
1465 }
1466#endif
1467 fib6_prune_clones(info->nl_net, pn);
1468 }
1469
1470 /*
1471 * Walk the leaf entries looking for ourself
1472 */
1473
1474 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1475 if (*rtp == rt) {
1476 fib6_del_route(fn, rtp, info);
1477 return 0;
1478 }
1479 }
1480 return -ENOENT;
1481}
1482
1483/*
1484 * Tree traversal function.
1485 *
1486 * Certainly, it is not interrupt safe.
1487 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1488 * It means, that we can modify tree during walking
1489 * and use this function for garbage collection, clone pruning,
1490 * cleaning tree when a device goes down etc. etc.
1491 *
1492 * It guarantees that every node will be traversed,
1493 * and that it will be traversed only once.
1494 *
1495 * Callback function w->func may return:
1496 * 0 -> continue walking.
1497 * positive value -> walking is suspended (used by tree dumps,
1498 * and probably by gc, if it will be split to several slices)
1499 * negative value -> terminate walking.
1500 *
1501 * The function itself returns:
1502 * 0 -> walk is complete.
1503 * >0 -> walk is incomplete (i.e. suspended)
1504 * <0 -> walk is terminated by an error.
1505 */
1506
1507static int fib6_walk_continue(struct fib6_walker *w)
1508{
1509 struct fib6_node *fn, *pn;
1510
1511 for (;;) {
1512 fn = w->node;
1513 if (!fn)
1514 return 0;
1515
1516 if (w->prune && fn != w->root &&
1517 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1518 w->state = FWS_C;
1519 w->leaf = fn->leaf;
1520 }
1521 switch (w->state) {
1522#ifdef CONFIG_IPV6_SUBTREES
1523 case FWS_S:
1524 if (FIB6_SUBTREE(fn)) {
1525 w->node = FIB6_SUBTREE(fn);
1526 continue;
1527 }
1528 w->state = FWS_L;
1529#endif
1530 case FWS_L:
1531 if (fn->left) {
1532 w->node = fn->left;
1533 w->state = FWS_INIT;
1534 continue;
1535 }
1536 w->state = FWS_R;
1537 case FWS_R:
1538 if (fn->right) {
1539 w->node = fn->right;
1540 w->state = FWS_INIT;
1541 continue;
1542 }
1543 w->state = FWS_C;
1544 w->leaf = fn->leaf;
1545 case FWS_C:
1546 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1547 int err;
1548
1549 if (w->skip) {
1550 w->skip--;
1551 goto skip;
1552 }
1553
1554 err = w->func(w);
1555 if (err)
1556 return err;
1557
1558 w->count++;
1559 continue;
1560 }
1561skip:
1562 w->state = FWS_U;
1563 case FWS_U:
1564 if (fn == w->root)
1565 return 0;
1566 pn = fn->parent;
1567 w->node = pn;
1568#ifdef CONFIG_IPV6_SUBTREES
1569 if (FIB6_SUBTREE(pn) == fn) {
1570 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1571 w->state = FWS_L;
1572 continue;
1573 }
1574#endif
1575 if (pn->left == fn) {
1576 w->state = FWS_R;
1577 continue;
1578 }
1579 if (pn->right == fn) {
1580 w->state = FWS_C;
1581 w->leaf = w->node->leaf;
1582 continue;
1583 }
1584#if RT6_DEBUG >= 2
1585 WARN_ON(1);
1586#endif
1587 }
1588 }
1589}
1590
1591static int fib6_walk(struct net *net, struct fib6_walker *w)
1592{
1593 int res;
1594
1595 w->state = FWS_INIT;
1596 w->node = w->root;
1597
1598 fib6_walker_link(net, w);
1599 res = fib6_walk_continue(w);
1600 if (res <= 0)
1601 fib6_walker_unlink(net, w);
1602 return res;
1603}
1604
1605static int fib6_clean_node(struct fib6_walker *w)
1606{
1607 int res;
1608 struct rt6_info *rt;
1609 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1610 struct nl_info info = {
1611 .nl_net = c->net,
1612 };
1613
1614 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1615 w->node->fn_sernum != c->sernum)
1616 w->node->fn_sernum = c->sernum;
1617
1618 if (!c->func) {
1619 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1620 w->leaf = NULL;
1621 return 0;
1622 }
1623
1624 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1625 res = c->func(rt, c->arg);
1626 if (res < 0) {
1627 w->leaf = rt;
1628 res = fib6_del(rt, &info);
1629 if (res) {
1630#if RT6_DEBUG >= 2
1631 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1632 __func__, rt, rt->rt6i_node, res);
1633#endif
1634 continue;
1635 }
1636 return 0;
1637 }
1638 WARN_ON(res != 0);
1639 }
1640 w->leaf = rt;
1641 return 0;
1642}
1643
1644/*
1645 * Convenient frontend to tree walker.
1646 *
1647 * func is called on each route.
1648 * It may return -1 -> delete this route.
1649 * 0 -> continue walking
1650 *
1651 * prune==1 -> only immediate children of node (certainly,
1652 * ignoring pure split nodes) will be scanned.
1653 */
1654
1655static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1656 int (*func)(struct rt6_info *, void *arg),
1657 bool prune, int sernum, void *arg)
1658{
1659 struct fib6_cleaner c;
1660
1661 c.w.root = root;
1662 c.w.func = fib6_clean_node;
1663 c.w.prune = prune;
1664 c.w.count = 0;
1665 c.w.skip = 0;
1666 c.func = func;
1667 c.sernum = sernum;
1668 c.arg = arg;
1669 c.net = net;
1670
1671 fib6_walk(net, &c.w);
1672}
1673
1674static void __fib6_clean_all(struct net *net,
1675 int (*func)(struct rt6_info *, void *),
1676 int sernum, void *arg)
1677{
1678 struct fib6_table *table;
1679 struct hlist_head *head;
1680 unsigned int h;
1681
1682 rcu_read_lock();
1683 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1684 head = &net->ipv6.fib_table_hash[h];
1685 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1686 write_lock_bh(&table->tb6_lock);
1687 fib6_clean_tree(net, &table->tb6_root,
1688 func, false, sernum, arg);
1689 write_unlock_bh(&table->tb6_lock);
1690 }
1691 }
1692 rcu_read_unlock();
1693}
1694
1695void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1696 void *arg)
1697{
1698 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1699}
1700
1701static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1702{
1703 if (rt->rt6i_flags & RTF_CACHE) {
1704 RT6_TRACE("pruning clone %p\n", rt);
1705 return -1;
1706 }
1707
1708 return 0;
1709}
1710
1711static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1712{
1713 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1714 FIB6_NO_SERNUM_CHANGE, NULL);
1715}
1716
1717static void fib6_flush_trees(struct net *net)
1718{
1719 int new_sernum = fib6_new_sernum(net);
1720
1721 __fib6_clean_all(net, NULL, new_sernum, NULL);
1722}
1723
1724/*
1725 * Garbage collection
1726 */
1727
1728struct fib6_gc_args
1729{
1730 int timeout;
1731 int more;
1732};
1733
1734static int fib6_age(struct rt6_info *rt, void *arg)
1735{
1736 struct fib6_gc_args *gc_args = arg;
1737 unsigned long now = jiffies;
1738
1739 /*
1740 * check addrconf expiration here.
1741 * Routes are expired even if they are in use.
1742 *
1743 * Also age clones. Note, that clones are aged out
1744 * only if they are not in use now.
1745 */
1746
1747 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1748 if (time_after(now, rt->dst.expires)) {
1749 RT6_TRACE("expiring %p\n", rt);
1750 return -1;
1751 }
1752 gc_args->more++;
1753 } else if (rt->rt6i_flags & RTF_CACHE) {
1754 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1755 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1756 RT6_TRACE("aging clone %p\n", rt);
1757 return -1;
1758 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1759 struct neighbour *neigh;
1760 __u8 neigh_flags = 0;
1761
1762 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1763 if (neigh) {
1764 neigh_flags = neigh->flags;
1765 neigh_release(neigh);
1766 }
1767 if (!(neigh_flags & NTF_ROUTER)) {
1768 RT6_TRACE("purging route %p via non-router but gateway\n",
1769 rt);
1770 return -1;
1771 }
1772 }
1773 gc_args->more++;
1774 }
1775
1776 return 0;
1777}
1778
1779void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1780{
1781 struct fib6_gc_args gc_args;
1782 unsigned long now;
1783
1784 if (force) {
1785 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1786 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1787 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1788 return;
1789 }
1790 gc_args.timeout = expires ? (int)expires :
1791 net->ipv6.sysctl.ip6_rt_gc_interval;
1792
1793 gc_args.more = icmp6_dst_gc();
1794
1795 fib6_clean_all(net, fib6_age, &gc_args);
1796 now = jiffies;
1797 net->ipv6.ip6_rt_last_gc = now;
1798
1799 if (gc_args.more)
1800 mod_timer(&net->ipv6.ip6_fib_timer,
1801 round_jiffies(now
1802 + net->ipv6.sysctl.ip6_rt_gc_interval));
1803 else
1804 del_timer(&net->ipv6.ip6_fib_timer);
1805 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1806}
1807
1808static void fib6_gc_timer_cb(unsigned long arg)
1809{
1810 fib6_run_gc(0, (struct net *)arg, true);
1811}
1812
1813static int __net_init fib6_net_init(struct net *net)
1814{
1815 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1816
1817 spin_lock_init(&net->ipv6.fib6_gc_lock);
1818 rwlock_init(&net->ipv6.fib6_walker_lock);
1819 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1820 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1821
1822 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1823 if (!net->ipv6.rt6_stats)
1824 goto out_timer;
1825
1826 /* Avoid false sharing : Use at least a full cache line */
1827 size = max_t(size_t, size, L1_CACHE_BYTES);
1828
1829 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1830 if (!net->ipv6.fib_table_hash)
1831 goto out_rt6_stats;
1832
1833 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1834 GFP_KERNEL);
1835 if (!net->ipv6.fib6_main_tbl)
1836 goto out_fib_table_hash;
1837
1838 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1839 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1840 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1841 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1842 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1843
1844#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1845 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1846 GFP_KERNEL);
1847 if (!net->ipv6.fib6_local_tbl)
1848 goto out_fib6_main_tbl;
1849 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1850 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1851 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1852 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1853 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1854#endif
1855 fib6_tables_init(net);
1856
1857 return 0;
1858
1859#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1860out_fib6_main_tbl:
1861 kfree(net->ipv6.fib6_main_tbl);
1862#endif
1863out_fib_table_hash:
1864 kfree(net->ipv6.fib_table_hash);
1865out_rt6_stats:
1866 kfree(net->ipv6.rt6_stats);
1867out_timer:
1868 return -ENOMEM;
1869}
1870
1871static void fib6_net_exit(struct net *net)
1872{
1873 rt6_ifdown(net, NULL);
1874 del_timer_sync(&net->ipv6.ip6_fib_timer);
1875
1876#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1877 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1878 kfree(net->ipv6.fib6_local_tbl);
1879#endif
1880 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1881 kfree(net->ipv6.fib6_main_tbl);
1882 kfree(net->ipv6.fib_table_hash);
1883 kfree(net->ipv6.rt6_stats);
1884}
1885
1886static struct pernet_operations fib6_net_ops = {
1887 .init = fib6_net_init,
1888 .exit = fib6_net_exit,
1889};
1890
1891int __init fib6_init(void)
1892{
1893 int ret = -ENOMEM;
1894
1895 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1896 sizeof(struct fib6_node),
1897 0, SLAB_HWCACHE_ALIGN,
1898 NULL);
1899 if (!fib6_node_kmem)
1900 goto out;
1901
1902 ret = register_pernet_subsys(&fib6_net_ops);
1903 if (ret)
1904 goto out_kmem_cache_create;
1905
1906 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1907 NULL);
1908 if (ret)
1909 goto out_unregister_subsys;
1910
1911 __fib6_flush_trees = fib6_flush_trees;
1912out:
1913 return ret;
1914
1915out_unregister_subsys:
1916 unregister_pernet_subsys(&fib6_net_ops);
1917out_kmem_cache_create:
1918 kmem_cache_destroy(fib6_node_kmem);
1919 goto out;
1920}
1921
1922void fib6_gc_cleanup(void)
1923{
1924 unregister_pernet_subsys(&fib6_net_ops);
1925 kmem_cache_destroy(fib6_node_kmem);
1926}
1927
1928#ifdef CONFIG_PROC_FS
1929
1930struct ipv6_route_iter {
1931 struct seq_net_private p;
1932 struct fib6_walker w;
1933 loff_t skip;
1934 struct fib6_table *tbl;
1935 int sernum;
1936};
1937
1938static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1939{
1940 struct rt6_info *rt = v;
1941 struct ipv6_route_iter *iter = seq->private;
1942
1943 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1944
1945#ifdef CONFIG_IPV6_SUBTREES
1946 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1947#else
1948 seq_puts(seq, "00000000000000000000000000000000 00 ");
1949#endif
1950 if (rt->rt6i_flags & RTF_GATEWAY)
1951 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1952 else
1953 seq_puts(seq, "00000000000000000000000000000000");
1954
1955 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1956 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1957 rt->dst.__use, rt->rt6i_flags,
1958 rt->dst.dev ? rt->dst.dev->name : "");
1959 iter->w.leaf = NULL;
1960 return 0;
1961}
1962
1963static int ipv6_route_yield(struct fib6_walker *w)
1964{
1965 struct ipv6_route_iter *iter = w->args;
1966
1967 if (!iter->skip)
1968 return 1;
1969
1970 do {
1971 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1972 iter->skip--;
1973 if (!iter->skip && iter->w.leaf)
1974 return 1;
1975 } while (iter->w.leaf);
1976
1977 return 0;
1978}
1979
1980static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1981 struct net *net)
1982{
1983 memset(&iter->w, 0, sizeof(iter->w));
1984 iter->w.func = ipv6_route_yield;
1985 iter->w.root = &iter->tbl->tb6_root;
1986 iter->w.state = FWS_INIT;
1987 iter->w.node = iter->w.root;
1988 iter->w.args = iter;
1989 iter->sernum = iter->w.root->fn_sernum;
1990 INIT_LIST_HEAD(&iter->w.lh);
1991 fib6_walker_link(net, &iter->w);
1992}
1993
1994static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1995 struct net *net)
1996{
1997 unsigned int h;
1998 struct hlist_node *node;
1999
2000 if (tbl) {
2001 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2002 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2003 } else {
2004 h = 0;
2005 node = NULL;
2006 }
2007
2008 while (!node && h < FIB6_TABLE_HASHSZ) {
2009 node = rcu_dereference_bh(
2010 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2011 }
2012 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2013}
2014
2015static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2016{
2017 if (iter->sernum != iter->w.root->fn_sernum) {
2018 iter->sernum = iter->w.root->fn_sernum;
2019 iter->w.state = FWS_INIT;
2020 iter->w.node = iter->w.root;
2021 WARN_ON(iter->w.skip);
2022 iter->w.skip = iter->w.count;
2023 }
2024}
2025
2026static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2027{
2028 int r;
2029 struct rt6_info *n;
2030 struct net *net = seq_file_net(seq);
2031 struct ipv6_route_iter *iter = seq->private;
2032
2033 if (!v)
2034 goto iter_table;
2035
2036 n = ((struct rt6_info *)v)->dst.rt6_next;
2037 if (n) {
2038 ++*pos;
2039 return n;
2040 }
2041
2042iter_table:
2043 ipv6_route_check_sernum(iter);
2044 read_lock(&iter->tbl->tb6_lock);
2045 r = fib6_walk_continue(&iter->w);
2046 read_unlock(&iter->tbl->tb6_lock);
2047 if (r > 0) {
2048 if (v)
2049 ++*pos;
2050 return iter->w.leaf;
2051 } else if (r < 0) {
2052 fib6_walker_unlink(net, &iter->w);
2053 return NULL;
2054 }
2055 fib6_walker_unlink(net, &iter->w);
2056
2057 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2058 if (!iter->tbl)
2059 return NULL;
2060
2061 ipv6_route_seq_setup_walk(iter, net);
2062 goto iter_table;
2063}
2064
2065static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2066 __acquires(RCU_BH)
2067{
2068 struct net *net = seq_file_net(seq);
2069 struct ipv6_route_iter *iter = seq->private;
2070
2071 rcu_read_lock_bh();
2072 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2073 iter->skip = *pos;
2074
2075 if (iter->tbl) {
2076 ipv6_route_seq_setup_walk(iter, net);
2077 return ipv6_route_seq_next(seq, NULL, pos);
2078 } else {
2079 return NULL;
2080 }
2081}
2082
2083static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2084{
2085 struct fib6_walker *w = &iter->w;
2086 return w->node && !(w->state == FWS_U && w->node == w->root);
2087}
2088
2089static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2090 __releases(RCU_BH)
2091{
2092 struct net *net = seq_file_net(seq);
2093 struct ipv6_route_iter *iter = seq->private;
2094
2095 if (ipv6_route_iter_active(iter))
2096 fib6_walker_unlink(net, &iter->w);
2097
2098 rcu_read_unlock_bh();
2099}
2100
2101static const struct seq_operations ipv6_route_seq_ops = {
2102 .start = ipv6_route_seq_start,
2103 .next = ipv6_route_seq_next,
2104 .stop = ipv6_route_seq_stop,
2105 .show = ipv6_route_seq_show
2106};
2107
2108int ipv6_route_open(struct inode *inode, struct file *file)
2109{
2110 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2111 sizeof(struct ipv6_route_iter));
2112}
2113
2114#endif /* CONFIG_PROC_FS */