Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Linux INET6 implementation
4 * Forwarding Information Database
5 *
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
8 *
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
14 */
15
16#define pr_fmt(fmt) "IPv6: " fmt
17
18#include <linux/bpf.h>
19#include <linux/errno.h>
20#include <linux/types.h>
21#include <linux/net.h>
22#include <linux/route.h>
23#include <linux/netdevice.h>
24#include <linux/in6.h>
25#include <linux/init.h>
26#include <linux/list.h>
27#include <linux/slab.h>
28
29#include <net/ip.h>
30#include <net/ipv6.h>
31#include <net/ndisc.h>
32#include <net/addrconf.h>
33#include <net/lwtunnel.h>
34#include <net/fib_notifier.h>
35
36#include <net/ip_fib.h>
37#include <net/ip6_fib.h>
38#include <net/ip6_route.h>
39
40static struct kmem_cache *fib6_node_kmem __read_mostly;
41
42struct fib6_cleaner {
43 struct fib6_walker w;
44 struct net *net;
45 int (*func)(struct fib6_info *, void *arg);
46 int sernum;
47 void *arg;
48 bool skip_notify;
49};
50
51#ifdef CONFIG_IPV6_SUBTREES
52#define FWS_INIT FWS_S
53#else
54#define FWS_INIT FWS_L
55#endif
56
57static struct fib6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63static int fib6_walk(struct net *net, struct fib6_walker *w);
64static int fib6_walk_continue(struct fib6_walker *w);
65
66/*
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
71 */
72
73static void fib6_gc_timer_cb(struct timer_list *t);
74
75#define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77
78static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79{
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
83}
84
85static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86{
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
90}
91
92static int fib6_new_sernum(struct net *net)
93{
94 int new, old = atomic_read(&net->ipv6.fib6_sernum);
95
96 do {
97 new = old < INT_MAX ? old + 1 : 1;
98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99
100 return new;
101}
102
103enum {
104 FIB6_NO_SERNUM_CHANGE = 0,
105};
106
107void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108{
109 struct fib6_node *fn;
110
111 fn = rcu_dereference_protected(f6i->fib6_node,
112 lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 if (fn)
114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115}
116
117/*
118 * Auxiliary address test functions for the radix tree.
119 *
120 * These assume a 32bit processor (although it will work on
121 * 64bit processors)
122 */
123
124/*
125 * test bit
126 */
127#if defined(__LITTLE_ENDIAN)
128# define BITOP_BE32_SWIZZLE (0x1F & ~7)
129#else
130# define BITOP_BE32_SWIZZLE 0
131#endif
132
133static __be32 addr_bit_set(const void *token, int fn_bit)
134{
135 const __be32 *addr = token;
136 /*
137 * Here,
138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 * is optimized version of
140 * htonl(1 << ((~fn_bit)&0x1F))
141 * See include/asm-generic/bitops/le.h.
142 */
143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 addr[fn_bit >> 5];
145}
146
147struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148{
149 struct fib6_info *f6i;
150 size_t sz = sizeof(*f6i);
151
152 if (with_fib6_nh)
153 sz += sizeof(struct fib6_nh);
154
155 f6i = kzalloc(sz, gfp_flags);
156 if (!f6i)
157 return NULL;
158
159 /* fib6_siblings is a union with nh_list, so this initializes both */
160 INIT_LIST_HEAD(&f6i->fib6_siblings);
161 refcount_set(&f6i->fib6_ref, 1);
162
163 return f6i;
164}
165
166void fib6_info_destroy_rcu(struct rcu_head *head)
167{
168 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
169
170 WARN_ON(f6i->fib6_node);
171
172 if (f6i->nh)
173 nexthop_put(f6i->nh);
174 else
175 fib6_nh_release(f6i->fib6_nh);
176
177 ip_fib_metrics_put(f6i->fib6_metrics);
178 kfree(f6i);
179}
180EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
181
182static struct fib6_node *node_alloc(struct net *net)
183{
184 struct fib6_node *fn;
185
186 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
187 if (fn)
188 net->ipv6.rt6_stats->fib_nodes++;
189
190 return fn;
191}
192
193static void node_free_immediate(struct net *net, struct fib6_node *fn)
194{
195 kmem_cache_free(fib6_node_kmem, fn);
196 net->ipv6.rt6_stats->fib_nodes--;
197}
198
199static void node_free_rcu(struct rcu_head *head)
200{
201 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
202
203 kmem_cache_free(fib6_node_kmem, fn);
204}
205
206static void node_free(struct net *net, struct fib6_node *fn)
207{
208 call_rcu(&fn->rcu, node_free_rcu);
209 net->ipv6.rt6_stats->fib_nodes--;
210}
211
212static void fib6_free_table(struct fib6_table *table)
213{
214 inetpeer_invalidate_tree(&table->tb6_peers);
215 kfree(table);
216}
217
218static void fib6_link_table(struct net *net, struct fib6_table *tb)
219{
220 unsigned int h;
221
222 /*
223 * Initialize table lock at a single place to give lockdep a key,
224 * tables aren't visible prior to being linked to the list.
225 */
226 spin_lock_init(&tb->tb6_lock);
227 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
228
229 /*
230 * No protection necessary, this is the only list mutatation
231 * operation, tables never disappear once they exist.
232 */
233 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
234}
235
236#ifdef CONFIG_IPV6_MULTIPLE_TABLES
237
238static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
239{
240 struct fib6_table *table;
241
242 table = kzalloc(sizeof(*table), GFP_ATOMIC);
243 if (table) {
244 table->tb6_id = id;
245 rcu_assign_pointer(table->tb6_root.leaf,
246 net->ipv6.fib6_null_entry);
247 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
248 inet_peer_base_init(&table->tb6_peers);
249 }
250
251 return table;
252}
253
254struct fib6_table *fib6_new_table(struct net *net, u32 id)
255{
256 struct fib6_table *tb;
257
258 if (id == 0)
259 id = RT6_TABLE_MAIN;
260 tb = fib6_get_table(net, id);
261 if (tb)
262 return tb;
263
264 tb = fib6_alloc_table(net, id);
265 if (tb)
266 fib6_link_table(net, tb);
267
268 return tb;
269}
270EXPORT_SYMBOL_GPL(fib6_new_table);
271
272struct fib6_table *fib6_get_table(struct net *net, u32 id)
273{
274 struct fib6_table *tb;
275 struct hlist_head *head;
276 unsigned int h;
277
278 if (id == 0)
279 id = RT6_TABLE_MAIN;
280 h = id & (FIB6_TABLE_HASHSZ - 1);
281 rcu_read_lock();
282 head = &net->ipv6.fib_table_hash[h];
283 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
284 if (tb->tb6_id == id) {
285 rcu_read_unlock();
286 return tb;
287 }
288 }
289 rcu_read_unlock();
290
291 return NULL;
292}
293EXPORT_SYMBOL_GPL(fib6_get_table);
294
295static void __net_init fib6_tables_init(struct net *net)
296{
297 fib6_link_table(net, net->ipv6.fib6_main_tbl);
298 fib6_link_table(net, net->ipv6.fib6_local_tbl);
299}
300#else
301
302struct fib6_table *fib6_new_table(struct net *net, u32 id)
303{
304 return fib6_get_table(net, id);
305}
306
307struct fib6_table *fib6_get_table(struct net *net, u32 id)
308{
309 return net->ipv6.fib6_main_tbl;
310}
311
312struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
313 const struct sk_buff *skb,
314 int flags, pol_lookup_t lookup)
315{
316 struct rt6_info *rt;
317
318 rt = pol_lookup_func(lookup,
319 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
320 if (rt->dst.error == -EAGAIN) {
321 ip6_rt_put_flags(rt, flags);
322 rt = net->ipv6.ip6_null_entry;
323 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
324 dst_hold(&rt->dst);
325 }
326
327 return &rt->dst;
328}
329
330/* called with rcu lock held; no reference taken on fib6_info */
331int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
332 struct fib6_result *res, int flags)
333{
334 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
335 res, flags);
336}
337
338static void __net_init fib6_tables_init(struct net *net)
339{
340 fib6_link_table(net, net->ipv6.fib6_main_tbl);
341}
342
343#endif
344
345unsigned int fib6_tables_seq_read(struct net *net)
346{
347 unsigned int h, fib_seq = 0;
348
349 rcu_read_lock();
350 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
351 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
352 struct fib6_table *tb;
353
354 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
355 fib_seq += tb->fib_seq;
356 }
357 rcu_read_unlock();
358
359 return fib_seq;
360}
361
362static int call_fib6_entry_notifier(struct notifier_block *nb,
363 enum fib_event_type event_type,
364 struct fib6_info *rt,
365 struct netlink_ext_ack *extack)
366{
367 struct fib6_entry_notifier_info info = {
368 .info.extack = extack,
369 .rt = rt,
370 };
371
372 return call_fib6_notifier(nb, event_type, &info.info);
373}
374
375static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
376 enum fib_event_type event_type,
377 struct fib6_info *rt,
378 unsigned int nsiblings,
379 struct netlink_ext_ack *extack)
380{
381 struct fib6_entry_notifier_info info = {
382 .info.extack = extack,
383 .rt = rt,
384 .nsiblings = nsiblings,
385 };
386
387 return call_fib6_notifier(nb, event_type, &info.info);
388}
389
390int call_fib6_entry_notifiers(struct net *net,
391 enum fib_event_type event_type,
392 struct fib6_info *rt,
393 struct netlink_ext_ack *extack)
394{
395 struct fib6_entry_notifier_info info = {
396 .info.extack = extack,
397 .rt = rt,
398 };
399
400 rt->fib6_table->fib_seq++;
401 return call_fib6_notifiers(net, event_type, &info.info);
402}
403
404int call_fib6_multipath_entry_notifiers(struct net *net,
405 enum fib_event_type event_type,
406 struct fib6_info *rt,
407 unsigned int nsiblings,
408 struct netlink_ext_ack *extack)
409{
410 struct fib6_entry_notifier_info info = {
411 .info.extack = extack,
412 .rt = rt,
413 .nsiblings = nsiblings,
414 };
415
416 rt->fib6_table->fib_seq++;
417 return call_fib6_notifiers(net, event_type, &info.info);
418}
419
420int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
421{
422 struct fib6_entry_notifier_info info = {
423 .rt = rt,
424 .nsiblings = rt->fib6_nsiblings,
425 };
426
427 rt->fib6_table->fib_seq++;
428 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
429}
430
431struct fib6_dump_arg {
432 struct net *net;
433 struct notifier_block *nb;
434 struct netlink_ext_ack *extack;
435};
436
437static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
438{
439 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
440 int err;
441
442 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
443 return 0;
444
445 if (rt->fib6_nsiblings)
446 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
447 rt,
448 rt->fib6_nsiblings,
449 arg->extack);
450 else
451 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
452 arg->extack);
453
454 return err;
455}
456
457static int fib6_node_dump(struct fib6_walker *w)
458{
459 int err;
460
461 err = fib6_rt_dump(w->leaf, w->args);
462 w->leaf = NULL;
463 return err;
464}
465
466static int fib6_table_dump(struct net *net, struct fib6_table *tb,
467 struct fib6_walker *w)
468{
469 int err;
470
471 w->root = &tb->tb6_root;
472 spin_lock_bh(&tb->tb6_lock);
473 err = fib6_walk(net, w);
474 spin_unlock_bh(&tb->tb6_lock);
475 return err;
476}
477
478/* Called with rcu_read_lock() */
479int fib6_tables_dump(struct net *net, struct notifier_block *nb,
480 struct netlink_ext_ack *extack)
481{
482 struct fib6_dump_arg arg;
483 struct fib6_walker *w;
484 unsigned int h;
485 int err = 0;
486
487 w = kzalloc(sizeof(*w), GFP_ATOMIC);
488 if (!w)
489 return -ENOMEM;
490
491 w->func = fib6_node_dump;
492 arg.net = net;
493 arg.nb = nb;
494 arg.extack = extack;
495 w->args = &arg;
496
497 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
498 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
499 struct fib6_table *tb;
500
501 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
502 err = fib6_table_dump(net, tb, w);
503 if (err)
504 goto out;
505 }
506 }
507
508out:
509 kfree(w);
510
511 /* The tree traversal function should never return a positive value. */
512 return err > 0 ? -EINVAL : err;
513}
514
515static int fib6_dump_node(struct fib6_walker *w)
516{
517 int res;
518 struct fib6_info *rt;
519
520 for_each_fib6_walker_rt(w) {
521 res = rt6_dump_route(rt, w->args, w->skip_in_node);
522 if (res >= 0) {
523 /* Frame is full, suspend walking */
524 w->leaf = rt;
525
526 /* We'll restart from this node, so if some routes were
527 * already dumped, skip them next time.
528 */
529 w->skip_in_node += res;
530
531 return 1;
532 }
533 w->skip_in_node = 0;
534
535 /* Multipath routes are dumped in one route with the
536 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
537 * last sibling of this route (no need to dump the
538 * sibling routes again)
539 */
540 if (rt->fib6_nsiblings)
541 rt = list_last_entry(&rt->fib6_siblings,
542 struct fib6_info,
543 fib6_siblings);
544 }
545 w->leaf = NULL;
546 return 0;
547}
548
549static void fib6_dump_end(struct netlink_callback *cb)
550{
551 struct net *net = sock_net(cb->skb->sk);
552 struct fib6_walker *w = (void *)cb->args[2];
553
554 if (w) {
555 if (cb->args[4]) {
556 cb->args[4] = 0;
557 fib6_walker_unlink(net, w);
558 }
559 cb->args[2] = 0;
560 kfree(w);
561 }
562 cb->done = (void *)cb->args[3];
563 cb->args[1] = 3;
564}
565
566static int fib6_dump_done(struct netlink_callback *cb)
567{
568 fib6_dump_end(cb);
569 return cb->done ? cb->done(cb) : 0;
570}
571
572static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
573 struct netlink_callback *cb)
574{
575 struct net *net = sock_net(skb->sk);
576 struct fib6_walker *w;
577 int res;
578
579 w = (void *)cb->args[2];
580 w->root = &table->tb6_root;
581
582 if (cb->args[4] == 0) {
583 w->count = 0;
584 w->skip = 0;
585 w->skip_in_node = 0;
586
587 spin_lock_bh(&table->tb6_lock);
588 res = fib6_walk(net, w);
589 spin_unlock_bh(&table->tb6_lock);
590 if (res > 0) {
591 cb->args[4] = 1;
592 cb->args[5] = READ_ONCE(w->root->fn_sernum);
593 }
594 } else {
595 int sernum = READ_ONCE(w->root->fn_sernum);
596 if (cb->args[5] != sernum) {
597 /* Begin at the root if the tree changed */
598 cb->args[5] = sernum;
599 w->state = FWS_INIT;
600 w->node = w->root;
601 w->skip = w->count;
602 w->skip_in_node = 0;
603 } else
604 w->skip = 0;
605
606 spin_lock_bh(&table->tb6_lock);
607 res = fib6_walk_continue(w);
608 spin_unlock_bh(&table->tb6_lock);
609 if (res <= 0) {
610 fib6_walker_unlink(net, w);
611 cb->args[4] = 0;
612 }
613 }
614
615 return res;
616}
617
618static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
619{
620 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
621 .filter.dump_routes = true };
622 const struct nlmsghdr *nlh = cb->nlh;
623 struct net *net = sock_net(skb->sk);
624 unsigned int h, s_h;
625 unsigned int e = 0, s_e;
626 struct fib6_walker *w;
627 struct fib6_table *tb;
628 struct hlist_head *head;
629 int res = 0;
630
631 if (cb->strict_check) {
632 int err;
633
634 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
635 if (err < 0)
636 return err;
637 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
638 struct rtmsg *rtm = nlmsg_data(nlh);
639
640 if (rtm->rtm_flags & RTM_F_PREFIX)
641 arg.filter.flags = RTM_F_PREFIX;
642 }
643
644 w = (void *)cb->args[2];
645 if (!w) {
646 /* New dump:
647 *
648 * 1. hook callback destructor.
649 */
650 cb->args[3] = (long)cb->done;
651 cb->done = fib6_dump_done;
652
653 /*
654 * 2. allocate and initialize walker.
655 */
656 w = kzalloc(sizeof(*w), GFP_ATOMIC);
657 if (!w)
658 return -ENOMEM;
659 w->func = fib6_dump_node;
660 cb->args[2] = (long)w;
661 }
662
663 arg.skb = skb;
664 arg.cb = cb;
665 arg.net = net;
666 w->args = &arg;
667
668 if (arg.filter.table_id) {
669 tb = fib6_get_table(net, arg.filter.table_id);
670 if (!tb) {
671 if (rtnl_msg_family(cb->nlh) != PF_INET6)
672 goto out;
673
674 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
675 return -ENOENT;
676 }
677
678 if (!cb->args[0]) {
679 res = fib6_dump_table(tb, skb, cb);
680 if (!res)
681 cb->args[0] = 1;
682 }
683 goto out;
684 }
685
686 s_h = cb->args[0];
687 s_e = cb->args[1];
688
689 rcu_read_lock();
690 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
691 e = 0;
692 head = &net->ipv6.fib_table_hash[h];
693 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
694 if (e < s_e)
695 goto next;
696 res = fib6_dump_table(tb, skb, cb);
697 if (res != 0)
698 goto out_unlock;
699next:
700 e++;
701 }
702 }
703out_unlock:
704 rcu_read_unlock();
705 cb->args[1] = e;
706 cb->args[0] = h;
707out:
708 res = res < 0 ? res : skb->len;
709 if (res <= 0)
710 fib6_dump_end(cb);
711 return res;
712}
713
714void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
715{
716 if (!f6i)
717 return;
718
719 if (f6i->fib6_metrics == &dst_default_metrics) {
720 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
721
722 if (!p)
723 return;
724
725 refcount_set(&p->refcnt, 1);
726 f6i->fib6_metrics = p;
727 }
728
729 f6i->fib6_metrics->metrics[metric - 1] = val;
730}
731
732/*
733 * Routing Table
734 *
735 * return the appropriate node for a routing tree "add" operation
736 * by either creating and inserting or by returning an existing
737 * node.
738 */
739
740static struct fib6_node *fib6_add_1(struct net *net,
741 struct fib6_table *table,
742 struct fib6_node *root,
743 struct in6_addr *addr, int plen,
744 int offset, int allow_create,
745 int replace_required,
746 struct netlink_ext_ack *extack)
747{
748 struct fib6_node *fn, *in, *ln;
749 struct fib6_node *pn = NULL;
750 struct rt6key *key;
751 int bit;
752 __be32 dir = 0;
753
754 RT6_TRACE("fib6_add_1\n");
755
756 /* insert node in tree */
757
758 fn = root;
759
760 do {
761 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
762 lockdep_is_held(&table->tb6_lock));
763 key = (struct rt6key *)((u8 *)leaf + offset);
764
765 /*
766 * Prefix match
767 */
768 if (plen < fn->fn_bit ||
769 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
770 if (!allow_create) {
771 if (replace_required) {
772 NL_SET_ERR_MSG(extack,
773 "Can not replace route - no match found");
774 pr_warn("Can't replace route, no match found\n");
775 return ERR_PTR(-ENOENT);
776 }
777 pr_warn("NLM_F_CREATE should be set when creating new route\n");
778 }
779 goto insert_above;
780 }
781
782 /*
783 * Exact match ?
784 */
785
786 if (plen == fn->fn_bit) {
787 /* clean up an intermediate node */
788 if (!(fn->fn_flags & RTN_RTINFO)) {
789 RCU_INIT_POINTER(fn->leaf, NULL);
790 fib6_info_release(leaf);
791 /* remove null_entry in the root node */
792 } else if (fn->fn_flags & RTN_TL_ROOT &&
793 rcu_access_pointer(fn->leaf) ==
794 net->ipv6.fib6_null_entry) {
795 RCU_INIT_POINTER(fn->leaf, NULL);
796 }
797
798 return fn;
799 }
800
801 /*
802 * We have more bits to go
803 */
804
805 /* Try to walk down on tree. */
806 dir = addr_bit_set(addr, fn->fn_bit);
807 pn = fn;
808 fn = dir ?
809 rcu_dereference_protected(fn->right,
810 lockdep_is_held(&table->tb6_lock)) :
811 rcu_dereference_protected(fn->left,
812 lockdep_is_held(&table->tb6_lock));
813 } while (fn);
814
815 if (!allow_create) {
816 /* We should not create new node because
817 * NLM_F_REPLACE was specified without NLM_F_CREATE
818 * I assume it is safe to require NLM_F_CREATE when
819 * REPLACE flag is used! Later we may want to remove the
820 * check for replace_required, because according
821 * to netlink specification, NLM_F_CREATE
822 * MUST be specified if new route is created.
823 * That would keep IPv6 consistent with IPv4
824 */
825 if (replace_required) {
826 NL_SET_ERR_MSG(extack,
827 "Can not replace route - no match found");
828 pr_warn("Can't replace route, no match found\n");
829 return ERR_PTR(-ENOENT);
830 }
831 pr_warn("NLM_F_CREATE should be set when creating new route\n");
832 }
833 /*
834 * We walked to the bottom of tree.
835 * Create new leaf node without children.
836 */
837
838 ln = node_alloc(net);
839
840 if (!ln)
841 return ERR_PTR(-ENOMEM);
842 ln->fn_bit = plen;
843 RCU_INIT_POINTER(ln->parent, pn);
844
845 if (dir)
846 rcu_assign_pointer(pn->right, ln);
847 else
848 rcu_assign_pointer(pn->left, ln);
849
850 return ln;
851
852
853insert_above:
854 /*
855 * split since we don't have a common prefix anymore or
856 * we have a less significant route.
857 * we've to insert an intermediate node on the list
858 * this new node will point to the one we need to create
859 * and the current
860 */
861
862 pn = rcu_dereference_protected(fn->parent,
863 lockdep_is_held(&table->tb6_lock));
864
865 /* find 1st bit in difference between the 2 addrs.
866
867 See comment in __ipv6_addr_diff: bit may be an invalid value,
868 but if it is >= plen, the value is ignored in any case.
869 */
870
871 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
872
873 /*
874 * (intermediate)[in]
875 * / \
876 * (new leaf node)[ln] (old node)[fn]
877 */
878 if (plen > bit) {
879 in = node_alloc(net);
880 ln = node_alloc(net);
881
882 if (!in || !ln) {
883 if (in)
884 node_free_immediate(net, in);
885 if (ln)
886 node_free_immediate(net, ln);
887 return ERR_PTR(-ENOMEM);
888 }
889
890 /*
891 * new intermediate node.
892 * RTN_RTINFO will
893 * be off since that an address that chooses one of
894 * the branches would not match less specific routes
895 * in the other branch
896 */
897
898 in->fn_bit = bit;
899
900 RCU_INIT_POINTER(in->parent, pn);
901 in->leaf = fn->leaf;
902 fib6_info_hold(rcu_dereference_protected(in->leaf,
903 lockdep_is_held(&table->tb6_lock)));
904
905 /* update parent pointer */
906 if (dir)
907 rcu_assign_pointer(pn->right, in);
908 else
909 rcu_assign_pointer(pn->left, in);
910
911 ln->fn_bit = plen;
912
913 RCU_INIT_POINTER(ln->parent, in);
914 rcu_assign_pointer(fn->parent, in);
915
916 if (addr_bit_set(addr, bit)) {
917 rcu_assign_pointer(in->right, ln);
918 rcu_assign_pointer(in->left, fn);
919 } else {
920 rcu_assign_pointer(in->left, ln);
921 rcu_assign_pointer(in->right, fn);
922 }
923 } else { /* plen <= bit */
924
925 /*
926 * (new leaf node)[ln]
927 * / \
928 * (old node)[fn] NULL
929 */
930
931 ln = node_alloc(net);
932
933 if (!ln)
934 return ERR_PTR(-ENOMEM);
935
936 ln->fn_bit = plen;
937
938 RCU_INIT_POINTER(ln->parent, pn);
939
940 if (addr_bit_set(&key->addr, plen))
941 RCU_INIT_POINTER(ln->right, fn);
942 else
943 RCU_INIT_POINTER(ln->left, fn);
944
945 rcu_assign_pointer(fn->parent, ln);
946
947 if (dir)
948 rcu_assign_pointer(pn->right, ln);
949 else
950 rcu_assign_pointer(pn->left, ln);
951 }
952 return ln;
953}
954
955static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
956 const struct fib6_info *match,
957 const struct fib6_table *table)
958{
959 int cpu;
960
961 if (!fib6_nh->rt6i_pcpu)
962 return;
963
964 /* release the reference to this fib entry from
965 * all of its cached pcpu routes
966 */
967 for_each_possible_cpu(cpu) {
968 struct rt6_info **ppcpu_rt;
969 struct rt6_info *pcpu_rt;
970
971 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
972 pcpu_rt = *ppcpu_rt;
973
974 /* only dropping the 'from' reference if the cached route
975 * is using 'match'. The cached pcpu_rt->from only changes
976 * from a fib6_info to NULL (ip6_dst_destroy); it can never
977 * change from one fib6_info reference to another
978 */
979 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
980 struct fib6_info *from;
981
982 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
983 fib6_info_release(from);
984 }
985 }
986}
987
988struct fib6_nh_pcpu_arg {
989 struct fib6_info *from;
990 const struct fib6_table *table;
991};
992
993static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
994{
995 struct fib6_nh_pcpu_arg *arg = _arg;
996
997 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
998 return 0;
999}
1000
1001static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1002 const struct fib6_table *table)
1003{
1004 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1005 * while we are cleaning them here.
1006 */
1007 f6i->fib6_destroying = 1;
1008 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1009
1010 if (f6i->nh) {
1011 struct fib6_nh_pcpu_arg arg = {
1012 .from = f6i,
1013 .table = table
1014 };
1015
1016 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1017 &arg);
1018 } else {
1019 struct fib6_nh *fib6_nh;
1020
1021 fib6_nh = f6i->fib6_nh;
1022 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1023 }
1024}
1025
1026static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1027 struct net *net)
1028{
1029 struct fib6_table *table = rt->fib6_table;
1030
1031 /* Flush all cached dst in exception table */
1032 rt6_flush_exceptions(rt);
1033 fib6_drop_pcpu_from(rt, table);
1034
1035 if (rt->nh && !list_empty(&rt->nh_list))
1036 list_del_init(&rt->nh_list);
1037
1038 if (refcount_read(&rt->fib6_ref) != 1) {
1039 /* This route is used as dummy address holder in some split
1040 * nodes. It is not leaked, but it still holds other resources,
1041 * which must be released in time. So, scan ascendant nodes
1042 * and replace dummy references to this route with references
1043 * to still alive ones.
1044 */
1045 while (fn) {
1046 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1047 lockdep_is_held(&table->tb6_lock));
1048 struct fib6_info *new_leaf;
1049 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1050 new_leaf = fib6_find_prefix(net, table, fn);
1051 fib6_info_hold(new_leaf);
1052
1053 rcu_assign_pointer(fn->leaf, new_leaf);
1054 fib6_info_release(rt);
1055 }
1056 fn = rcu_dereference_protected(fn->parent,
1057 lockdep_is_held(&table->tb6_lock));
1058 }
1059 }
1060}
1061
1062/*
1063 * Insert routing information in a node.
1064 */
1065
1066static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1067 struct nl_info *info,
1068 struct netlink_ext_ack *extack)
1069{
1070 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1071 lockdep_is_held(&rt->fib6_table->tb6_lock));
1072 struct fib6_info *iter = NULL;
1073 struct fib6_info __rcu **ins;
1074 struct fib6_info __rcu **fallback_ins = NULL;
1075 int replace = (info->nlh &&
1076 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1077 int add = (!info->nlh ||
1078 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1079 int found = 0;
1080 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1081 bool notify_sibling_rt = false;
1082 u16 nlflags = NLM_F_EXCL;
1083 int err;
1084
1085 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1086 nlflags |= NLM_F_APPEND;
1087
1088 ins = &fn->leaf;
1089
1090 for (iter = leaf; iter;
1091 iter = rcu_dereference_protected(iter->fib6_next,
1092 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1093 /*
1094 * Search for duplicates
1095 */
1096
1097 if (iter->fib6_metric == rt->fib6_metric) {
1098 /*
1099 * Same priority level
1100 */
1101 if (info->nlh &&
1102 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1103 return -EEXIST;
1104
1105 nlflags &= ~NLM_F_EXCL;
1106 if (replace) {
1107 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1108 found++;
1109 break;
1110 }
1111 fallback_ins = fallback_ins ?: ins;
1112 goto next_iter;
1113 }
1114
1115 if (rt6_duplicate_nexthop(iter, rt)) {
1116 if (rt->fib6_nsiblings)
1117 rt->fib6_nsiblings = 0;
1118 if (!(iter->fib6_flags & RTF_EXPIRES))
1119 return -EEXIST;
1120 if (!(rt->fib6_flags & RTF_EXPIRES))
1121 fib6_clean_expires(iter);
1122 else
1123 fib6_set_expires(iter, rt->expires);
1124
1125 if (rt->fib6_pmtu)
1126 fib6_metric_set(iter, RTAX_MTU,
1127 rt->fib6_pmtu);
1128 return -EEXIST;
1129 }
1130 /* If we have the same destination and the same metric,
1131 * but not the same gateway, then the route we try to
1132 * add is sibling to this route, increment our counter
1133 * of siblings, and later we will add our route to the
1134 * list.
1135 * Only static routes (which don't have flag
1136 * RTF_EXPIRES) are used for ECMPv6.
1137 *
1138 * To avoid long list, we only had siblings if the
1139 * route have a gateway.
1140 */
1141 if (rt_can_ecmp &&
1142 rt6_qualify_for_ecmp(iter))
1143 rt->fib6_nsiblings++;
1144 }
1145
1146 if (iter->fib6_metric > rt->fib6_metric)
1147 break;
1148
1149next_iter:
1150 ins = &iter->fib6_next;
1151 }
1152
1153 if (fallback_ins && !found) {
1154 /* No matching route with same ecmp-able-ness found, replace
1155 * first matching route
1156 */
1157 ins = fallback_ins;
1158 iter = rcu_dereference_protected(*ins,
1159 lockdep_is_held(&rt->fib6_table->tb6_lock));
1160 found++;
1161 }
1162
1163 /* Reset round-robin state, if necessary */
1164 if (ins == &fn->leaf)
1165 fn->rr_ptr = NULL;
1166
1167 /* Link this route to others same route. */
1168 if (rt->fib6_nsiblings) {
1169 unsigned int fib6_nsiblings;
1170 struct fib6_info *sibling, *temp_sibling;
1171
1172 /* Find the first route that have the same metric */
1173 sibling = leaf;
1174 notify_sibling_rt = true;
1175 while (sibling) {
1176 if (sibling->fib6_metric == rt->fib6_metric &&
1177 rt6_qualify_for_ecmp(sibling)) {
1178 list_add_tail(&rt->fib6_siblings,
1179 &sibling->fib6_siblings);
1180 break;
1181 }
1182 sibling = rcu_dereference_protected(sibling->fib6_next,
1183 lockdep_is_held(&rt->fib6_table->tb6_lock));
1184 notify_sibling_rt = false;
1185 }
1186 /* For each sibling in the list, increment the counter of
1187 * siblings. BUG() if counters does not match, list of siblings
1188 * is broken!
1189 */
1190 fib6_nsiblings = 0;
1191 list_for_each_entry_safe(sibling, temp_sibling,
1192 &rt->fib6_siblings, fib6_siblings) {
1193 sibling->fib6_nsiblings++;
1194 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1195 fib6_nsiblings++;
1196 }
1197 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1198 rt6_multipath_rebalance(temp_sibling);
1199 }
1200
1201 /*
1202 * insert node
1203 */
1204 if (!replace) {
1205 if (!add)
1206 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1207
1208add:
1209 nlflags |= NLM_F_CREATE;
1210
1211 /* The route should only be notified if it is the first
1212 * route in the node or if it is added as a sibling
1213 * route to the first route in the node.
1214 */
1215 if (!info->skip_notify_kernel &&
1216 (notify_sibling_rt || ins == &fn->leaf)) {
1217 enum fib_event_type fib_event;
1218
1219 if (notify_sibling_rt)
1220 fib_event = FIB_EVENT_ENTRY_APPEND;
1221 else
1222 fib_event = FIB_EVENT_ENTRY_REPLACE;
1223 err = call_fib6_entry_notifiers(info->nl_net,
1224 fib_event, rt,
1225 extack);
1226 if (err) {
1227 struct fib6_info *sibling, *next_sibling;
1228
1229 /* If the route has siblings, then it first
1230 * needs to be unlinked from them.
1231 */
1232 if (!rt->fib6_nsiblings)
1233 return err;
1234
1235 list_for_each_entry_safe(sibling, next_sibling,
1236 &rt->fib6_siblings,
1237 fib6_siblings)
1238 sibling->fib6_nsiblings--;
1239 rt->fib6_nsiblings = 0;
1240 list_del_init(&rt->fib6_siblings);
1241 rt6_multipath_rebalance(next_sibling);
1242 return err;
1243 }
1244 }
1245
1246 rcu_assign_pointer(rt->fib6_next, iter);
1247 fib6_info_hold(rt);
1248 rcu_assign_pointer(rt->fib6_node, fn);
1249 rcu_assign_pointer(*ins, rt);
1250 if (!info->skip_notify)
1251 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1252 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1253
1254 if (!(fn->fn_flags & RTN_RTINFO)) {
1255 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1256 fn->fn_flags |= RTN_RTINFO;
1257 }
1258
1259 } else {
1260 int nsiblings;
1261
1262 if (!found) {
1263 if (add)
1264 goto add;
1265 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1266 return -ENOENT;
1267 }
1268
1269 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1270 err = call_fib6_entry_notifiers(info->nl_net,
1271 FIB_EVENT_ENTRY_REPLACE,
1272 rt, extack);
1273 if (err)
1274 return err;
1275 }
1276
1277 fib6_info_hold(rt);
1278 rcu_assign_pointer(rt->fib6_node, fn);
1279 rt->fib6_next = iter->fib6_next;
1280 rcu_assign_pointer(*ins, rt);
1281 if (!info->skip_notify)
1282 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1283 if (!(fn->fn_flags & RTN_RTINFO)) {
1284 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1285 fn->fn_flags |= RTN_RTINFO;
1286 }
1287 nsiblings = iter->fib6_nsiblings;
1288 iter->fib6_node = NULL;
1289 fib6_purge_rt(iter, fn, info->nl_net);
1290 if (rcu_access_pointer(fn->rr_ptr) == iter)
1291 fn->rr_ptr = NULL;
1292 fib6_info_release(iter);
1293
1294 if (nsiblings) {
1295 /* Replacing an ECMP route, remove all siblings */
1296 ins = &rt->fib6_next;
1297 iter = rcu_dereference_protected(*ins,
1298 lockdep_is_held(&rt->fib6_table->tb6_lock));
1299 while (iter) {
1300 if (iter->fib6_metric > rt->fib6_metric)
1301 break;
1302 if (rt6_qualify_for_ecmp(iter)) {
1303 *ins = iter->fib6_next;
1304 iter->fib6_node = NULL;
1305 fib6_purge_rt(iter, fn, info->nl_net);
1306 if (rcu_access_pointer(fn->rr_ptr) == iter)
1307 fn->rr_ptr = NULL;
1308 fib6_info_release(iter);
1309 nsiblings--;
1310 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1311 } else {
1312 ins = &iter->fib6_next;
1313 }
1314 iter = rcu_dereference_protected(*ins,
1315 lockdep_is_held(&rt->fib6_table->tb6_lock));
1316 }
1317 WARN_ON(nsiblings != 0);
1318 }
1319 }
1320
1321 return 0;
1322}
1323
1324static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1325{
1326 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1327 (rt->fib6_flags & RTF_EXPIRES))
1328 mod_timer(&net->ipv6.ip6_fib_timer,
1329 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1330}
1331
1332void fib6_force_start_gc(struct net *net)
1333{
1334 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1335 mod_timer(&net->ipv6.ip6_fib_timer,
1336 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1337}
1338
1339static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1340 int sernum)
1341{
1342 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1343 lockdep_is_held(&rt->fib6_table->tb6_lock));
1344
1345 /* paired with smp_rmb() in fib6_get_cookie_safe() */
1346 smp_wmb();
1347 while (fn) {
1348 WRITE_ONCE(fn->fn_sernum, sernum);
1349 fn = rcu_dereference_protected(fn->parent,
1350 lockdep_is_held(&rt->fib6_table->tb6_lock));
1351 }
1352}
1353
1354void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1355{
1356 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1357}
1358
1359/* allow ipv4 to update sernum via ipv6_stub */
1360void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1361{
1362 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1363 fib6_update_sernum_upto_root(net, f6i);
1364 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1365}
1366
1367/*
1368 * Add routing information to the routing tree.
1369 * <destination addr>/<source addr>
1370 * with source addr info in sub-trees
1371 * Need to own table->tb6_lock
1372 */
1373
1374int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1375 struct nl_info *info, struct netlink_ext_ack *extack)
1376{
1377 struct fib6_table *table = rt->fib6_table;
1378 struct fib6_node *fn, *pn = NULL;
1379 int err = -ENOMEM;
1380 int allow_create = 1;
1381 int replace_required = 0;
1382
1383 if (info->nlh) {
1384 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1385 allow_create = 0;
1386 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1387 replace_required = 1;
1388 }
1389 if (!allow_create && !replace_required)
1390 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1391
1392 fn = fib6_add_1(info->nl_net, table, root,
1393 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1394 offsetof(struct fib6_info, fib6_dst), allow_create,
1395 replace_required, extack);
1396 if (IS_ERR(fn)) {
1397 err = PTR_ERR(fn);
1398 fn = NULL;
1399 goto out;
1400 }
1401
1402 pn = fn;
1403
1404#ifdef CONFIG_IPV6_SUBTREES
1405 if (rt->fib6_src.plen) {
1406 struct fib6_node *sn;
1407
1408 if (!rcu_access_pointer(fn->subtree)) {
1409 struct fib6_node *sfn;
1410
1411 /*
1412 * Create subtree.
1413 *
1414 * fn[main tree]
1415 * |
1416 * sfn[subtree root]
1417 * \
1418 * sn[new leaf node]
1419 */
1420
1421 /* Create subtree root node */
1422 sfn = node_alloc(info->nl_net);
1423 if (!sfn)
1424 goto failure;
1425
1426 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1427 rcu_assign_pointer(sfn->leaf,
1428 info->nl_net->ipv6.fib6_null_entry);
1429 sfn->fn_flags = RTN_ROOT;
1430
1431 /* Now add the first leaf node to new subtree */
1432
1433 sn = fib6_add_1(info->nl_net, table, sfn,
1434 &rt->fib6_src.addr, rt->fib6_src.plen,
1435 offsetof(struct fib6_info, fib6_src),
1436 allow_create, replace_required, extack);
1437
1438 if (IS_ERR(sn)) {
1439 /* If it is failed, discard just allocated
1440 root, and then (in failure) stale node
1441 in main tree.
1442 */
1443 node_free_immediate(info->nl_net, sfn);
1444 err = PTR_ERR(sn);
1445 goto failure;
1446 }
1447
1448 /* Now link new subtree to main tree */
1449 rcu_assign_pointer(sfn->parent, fn);
1450 rcu_assign_pointer(fn->subtree, sfn);
1451 } else {
1452 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1453 &rt->fib6_src.addr, rt->fib6_src.plen,
1454 offsetof(struct fib6_info, fib6_src),
1455 allow_create, replace_required, extack);
1456
1457 if (IS_ERR(sn)) {
1458 err = PTR_ERR(sn);
1459 goto failure;
1460 }
1461 }
1462
1463 if (!rcu_access_pointer(fn->leaf)) {
1464 if (fn->fn_flags & RTN_TL_ROOT) {
1465 /* put back null_entry for root node */
1466 rcu_assign_pointer(fn->leaf,
1467 info->nl_net->ipv6.fib6_null_entry);
1468 } else {
1469 fib6_info_hold(rt);
1470 rcu_assign_pointer(fn->leaf, rt);
1471 }
1472 }
1473 fn = sn;
1474 }
1475#endif
1476
1477 err = fib6_add_rt2node(fn, rt, info, extack);
1478 if (!err) {
1479 if (rt->nh)
1480 list_add(&rt->nh_list, &rt->nh->f6i_list);
1481 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1482 fib6_start_gc(info->nl_net, rt);
1483 }
1484
1485out:
1486 if (err) {
1487#ifdef CONFIG_IPV6_SUBTREES
1488 /*
1489 * If fib6_add_1 has cleared the old leaf pointer in the
1490 * super-tree leaf node we have to find a new one for it.
1491 */
1492 if (pn != fn) {
1493 struct fib6_info *pn_leaf =
1494 rcu_dereference_protected(pn->leaf,
1495 lockdep_is_held(&table->tb6_lock));
1496 if (pn_leaf == rt) {
1497 pn_leaf = NULL;
1498 RCU_INIT_POINTER(pn->leaf, NULL);
1499 fib6_info_release(rt);
1500 }
1501 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1502 pn_leaf = fib6_find_prefix(info->nl_net, table,
1503 pn);
1504 if (!pn_leaf)
1505 pn_leaf =
1506 info->nl_net->ipv6.fib6_null_entry;
1507 fib6_info_hold(pn_leaf);
1508 rcu_assign_pointer(pn->leaf, pn_leaf);
1509 }
1510 }
1511#endif
1512 goto failure;
1513 } else if (fib6_requires_src(rt)) {
1514 fib6_routes_require_src_inc(info->nl_net);
1515 }
1516 return err;
1517
1518failure:
1519 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1520 * 1. fn is an intermediate node and we failed to add the new
1521 * route to it in both subtree creation failure and fib6_add_rt2node()
1522 * failure case.
1523 * 2. fn is the root node in the table and we fail to add the first
1524 * default route to it.
1525 */
1526 if (fn &&
1527 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1528 (fn->fn_flags & RTN_TL_ROOT &&
1529 !rcu_access_pointer(fn->leaf))))
1530 fib6_repair_tree(info->nl_net, table, fn);
1531 return err;
1532}
1533
1534/*
1535 * Routing tree lookup
1536 *
1537 */
1538
1539struct lookup_args {
1540 int offset; /* key offset on fib6_info */
1541 const struct in6_addr *addr; /* search key */
1542};
1543
1544static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1545 struct lookup_args *args)
1546{
1547 struct fib6_node *fn;
1548 __be32 dir;
1549
1550 if (unlikely(args->offset == 0))
1551 return NULL;
1552
1553 /*
1554 * Descend on a tree
1555 */
1556
1557 fn = root;
1558
1559 for (;;) {
1560 struct fib6_node *next;
1561
1562 dir = addr_bit_set(args->addr, fn->fn_bit);
1563
1564 next = dir ? rcu_dereference(fn->right) :
1565 rcu_dereference(fn->left);
1566
1567 if (next) {
1568 fn = next;
1569 continue;
1570 }
1571 break;
1572 }
1573
1574 while (fn) {
1575 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1576
1577 if (subtree || fn->fn_flags & RTN_RTINFO) {
1578 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1579 struct rt6key *key;
1580
1581 if (!leaf)
1582 goto backtrack;
1583
1584 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1585
1586 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1587#ifdef CONFIG_IPV6_SUBTREES
1588 if (subtree) {
1589 struct fib6_node *sfn;
1590 sfn = fib6_node_lookup_1(subtree,
1591 args + 1);
1592 if (!sfn)
1593 goto backtrack;
1594 fn = sfn;
1595 }
1596#endif
1597 if (fn->fn_flags & RTN_RTINFO)
1598 return fn;
1599 }
1600 }
1601backtrack:
1602 if (fn->fn_flags & RTN_ROOT)
1603 break;
1604
1605 fn = rcu_dereference(fn->parent);
1606 }
1607
1608 return NULL;
1609}
1610
1611/* called with rcu_read_lock() held
1612 */
1613struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1614 const struct in6_addr *daddr,
1615 const struct in6_addr *saddr)
1616{
1617 struct fib6_node *fn;
1618 struct lookup_args args[] = {
1619 {
1620 .offset = offsetof(struct fib6_info, fib6_dst),
1621 .addr = daddr,
1622 },
1623#ifdef CONFIG_IPV6_SUBTREES
1624 {
1625 .offset = offsetof(struct fib6_info, fib6_src),
1626 .addr = saddr,
1627 },
1628#endif
1629 {
1630 .offset = 0, /* sentinel */
1631 }
1632 };
1633
1634 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1635 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1636 fn = root;
1637
1638 return fn;
1639}
1640
1641/*
1642 * Get node with specified destination prefix (and source prefix,
1643 * if subtrees are used)
1644 * exact_match == true means we try to find fn with exact match of
1645 * the passed in prefix addr
1646 * exact_match == false means we try to find fn with longest prefix
1647 * match of the passed in prefix addr. This is useful for finding fn
1648 * for cached route as it will be stored in the exception table under
1649 * the node with longest prefix length.
1650 */
1651
1652
1653static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1654 const struct in6_addr *addr,
1655 int plen, int offset,
1656 bool exact_match)
1657{
1658 struct fib6_node *fn, *prev = NULL;
1659
1660 for (fn = root; fn ; ) {
1661 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1662 struct rt6key *key;
1663
1664 /* This node is being deleted */
1665 if (!leaf) {
1666 if (plen <= fn->fn_bit)
1667 goto out;
1668 else
1669 goto next;
1670 }
1671
1672 key = (struct rt6key *)((u8 *)leaf + offset);
1673
1674 /*
1675 * Prefix match
1676 */
1677 if (plen < fn->fn_bit ||
1678 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1679 goto out;
1680
1681 if (plen == fn->fn_bit)
1682 return fn;
1683
1684 if (fn->fn_flags & RTN_RTINFO)
1685 prev = fn;
1686
1687next:
1688 /*
1689 * We have more bits to go
1690 */
1691 if (addr_bit_set(addr, fn->fn_bit))
1692 fn = rcu_dereference(fn->right);
1693 else
1694 fn = rcu_dereference(fn->left);
1695 }
1696out:
1697 if (exact_match)
1698 return NULL;
1699 else
1700 return prev;
1701}
1702
1703struct fib6_node *fib6_locate(struct fib6_node *root,
1704 const struct in6_addr *daddr, int dst_len,
1705 const struct in6_addr *saddr, int src_len,
1706 bool exact_match)
1707{
1708 struct fib6_node *fn;
1709
1710 fn = fib6_locate_1(root, daddr, dst_len,
1711 offsetof(struct fib6_info, fib6_dst),
1712 exact_match);
1713
1714#ifdef CONFIG_IPV6_SUBTREES
1715 if (src_len) {
1716 WARN_ON(saddr == NULL);
1717 if (fn) {
1718 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1719
1720 if (subtree) {
1721 fn = fib6_locate_1(subtree, saddr, src_len,
1722 offsetof(struct fib6_info, fib6_src),
1723 exact_match);
1724 }
1725 }
1726 }
1727#endif
1728
1729 if (fn && fn->fn_flags & RTN_RTINFO)
1730 return fn;
1731
1732 return NULL;
1733}
1734
1735
1736/*
1737 * Deletion
1738 *
1739 */
1740
1741static struct fib6_info *fib6_find_prefix(struct net *net,
1742 struct fib6_table *table,
1743 struct fib6_node *fn)
1744{
1745 struct fib6_node *child_left, *child_right;
1746
1747 if (fn->fn_flags & RTN_ROOT)
1748 return net->ipv6.fib6_null_entry;
1749
1750 while (fn) {
1751 child_left = rcu_dereference_protected(fn->left,
1752 lockdep_is_held(&table->tb6_lock));
1753 child_right = rcu_dereference_protected(fn->right,
1754 lockdep_is_held(&table->tb6_lock));
1755 if (child_left)
1756 return rcu_dereference_protected(child_left->leaf,
1757 lockdep_is_held(&table->tb6_lock));
1758 if (child_right)
1759 return rcu_dereference_protected(child_right->leaf,
1760 lockdep_is_held(&table->tb6_lock));
1761
1762 fn = FIB6_SUBTREE(fn);
1763 }
1764 return NULL;
1765}
1766
1767/*
1768 * Called to trim the tree of intermediate nodes when possible. "fn"
1769 * is the node we want to try and remove.
1770 * Need to own table->tb6_lock
1771 */
1772
1773static struct fib6_node *fib6_repair_tree(struct net *net,
1774 struct fib6_table *table,
1775 struct fib6_node *fn)
1776{
1777 int children;
1778 int nstate;
1779 struct fib6_node *child;
1780 struct fib6_walker *w;
1781 int iter = 0;
1782
1783 /* Set fn->leaf to null_entry for root node. */
1784 if (fn->fn_flags & RTN_TL_ROOT) {
1785 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1786 return fn;
1787 }
1788
1789 for (;;) {
1790 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1791 lockdep_is_held(&table->tb6_lock));
1792 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1793 lockdep_is_held(&table->tb6_lock));
1794 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1795 lockdep_is_held(&table->tb6_lock));
1796 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1797 lockdep_is_held(&table->tb6_lock));
1798 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1799 lockdep_is_held(&table->tb6_lock));
1800 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1801 lockdep_is_held(&table->tb6_lock));
1802 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1803 lockdep_is_held(&table->tb6_lock));
1804 struct fib6_info *new_fn_leaf;
1805
1806 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1807 iter++;
1808
1809 WARN_ON(fn->fn_flags & RTN_RTINFO);
1810 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1811 WARN_ON(fn_leaf);
1812
1813 children = 0;
1814 child = NULL;
1815 if (fn_r) {
1816 child = fn_r;
1817 children |= 1;
1818 }
1819 if (fn_l) {
1820 child = fn_l;
1821 children |= 2;
1822 }
1823
1824 if (children == 3 || FIB6_SUBTREE(fn)
1825#ifdef CONFIG_IPV6_SUBTREES
1826 /* Subtree root (i.e. fn) may have one child */
1827 || (children && fn->fn_flags & RTN_ROOT)
1828#endif
1829 ) {
1830 new_fn_leaf = fib6_find_prefix(net, table, fn);
1831#if RT6_DEBUG >= 2
1832 if (!new_fn_leaf) {
1833 WARN_ON(!new_fn_leaf);
1834 new_fn_leaf = net->ipv6.fib6_null_entry;
1835 }
1836#endif
1837 fib6_info_hold(new_fn_leaf);
1838 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1839 return pn;
1840 }
1841
1842#ifdef CONFIG_IPV6_SUBTREES
1843 if (FIB6_SUBTREE(pn) == fn) {
1844 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1845 RCU_INIT_POINTER(pn->subtree, NULL);
1846 nstate = FWS_L;
1847 } else {
1848 WARN_ON(fn->fn_flags & RTN_ROOT);
1849#endif
1850 if (pn_r == fn)
1851 rcu_assign_pointer(pn->right, child);
1852 else if (pn_l == fn)
1853 rcu_assign_pointer(pn->left, child);
1854#if RT6_DEBUG >= 2
1855 else
1856 WARN_ON(1);
1857#endif
1858 if (child)
1859 rcu_assign_pointer(child->parent, pn);
1860 nstate = FWS_R;
1861#ifdef CONFIG_IPV6_SUBTREES
1862 }
1863#endif
1864
1865 read_lock(&net->ipv6.fib6_walker_lock);
1866 FOR_WALKERS(net, w) {
1867 if (!child) {
1868 if (w->node == fn) {
1869 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1870 w->node = pn;
1871 w->state = nstate;
1872 }
1873 } else {
1874 if (w->node == fn) {
1875 w->node = child;
1876 if (children&2) {
1877 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1878 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1879 } else {
1880 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1881 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1882 }
1883 }
1884 }
1885 }
1886 read_unlock(&net->ipv6.fib6_walker_lock);
1887
1888 node_free(net, fn);
1889 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1890 return pn;
1891
1892 RCU_INIT_POINTER(pn->leaf, NULL);
1893 fib6_info_release(pn_leaf);
1894 fn = pn;
1895 }
1896}
1897
1898static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1899 struct fib6_info __rcu **rtp, struct nl_info *info)
1900{
1901 struct fib6_info *leaf, *replace_rt = NULL;
1902 struct fib6_walker *w;
1903 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1904 lockdep_is_held(&table->tb6_lock));
1905 struct net *net = info->nl_net;
1906 bool notify_del = false;
1907
1908 RT6_TRACE("fib6_del_route\n");
1909
1910 /* If the deleted route is the first in the node and it is not part of
1911 * a multipath route, then we need to replace it with the next route
1912 * in the node, if exists.
1913 */
1914 leaf = rcu_dereference_protected(fn->leaf,
1915 lockdep_is_held(&table->tb6_lock));
1916 if (leaf == rt && !rt->fib6_nsiblings) {
1917 if (rcu_access_pointer(rt->fib6_next))
1918 replace_rt = rcu_dereference_protected(rt->fib6_next,
1919 lockdep_is_held(&table->tb6_lock));
1920 else
1921 notify_del = true;
1922 }
1923
1924 /* Unlink it */
1925 *rtp = rt->fib6_next;
1926 rt->fib6_node = NULL;
1927 net->ipv6.rt6_stats->fib_rt_entries--;
1928 net->ipv6.rt6_stats->fib_discarded_routes++;
1929
1930 /* Reset round-robin state, if necessary */
1931 if (rcu_access_pointer(fn->rr_ptr) == rt)
1932 fn->rr_ptr = NULL;
1933
1934 /* Remove this entry from other siblings */
1935 if (rt->fib6_nsiblings) {
1936 struct fib6_info *sibling, *next_sibling;
1937
1938 /* The route is deleted from a multipath route. If this
1939 * multipath route is the first route in the node, then we need
1940 * to emit a delete notification. Otherwise, we need to skip
1941 * the notification.
1942 */
1943 if (rt->fib6_metric == leaf->fib6_metric &&
1944 rt6_qualify_for_ecmp(leaf))
1945 notify_del = true;
1946 list_for_each_entry_safe(sibling, next_sibling,
1947 &rt->fib6_siblings, fib6_siblings)
1948 sibling->fib6_nsiblings--;
1949 rt->fib6_nsiblings = 0;
1950 list_del_init(&rt->fib6_siblings);
1951 rt6_multipath_rebalance(next_sibling);
1952 }
1953
1954 /* Adjust walkers */
1955 read_lock(&net->ipv6.fib6_walker_lock);
1956 FOR_WALKERS(net, w) {
1957 if (w->state == FWS_C && w->leaf == rt) {
1958 RT6_TRACE("walker %p adjusted by delroute\n", w);
1959 w->leaf = rcu_dereference_protected(rt->fib6_next,
1960 lockdep_is_held(&table->tb6_lock));
1961 if (!w->leaf)
1962 w->state = FWS_U;
1963 }
1964 }
1965 read_unlock(&net->ipv6.fib6_walker_lock);
1966
1967 /* If it was last route, call fib6_repair_tree() to:
1968 * 1. For root node, put back null_entry as how the table was created.
1969 * 2. For other nodes, expunge its radix tree node.
1970 */
1971 if (!rcu_access_pointer(fn->leaf)) {
1972 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1973 fn->fn_flags &= ~RTN_RTINFO;
1974 net->ipv6.rt6_stats->fib_route_nodes--;
1975 }
1976 fn = fib6_repair_tree(net, table, fn);
1977 }
1978
1979 fib6_purge_rt(rt, fn, net);
1980
1981 if (!info->skip_notify_kernel) {
1982 if (notify_del)
1983 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1984 rt, NULL);
1985 else if (replace_rt)
1986 call_fib6_entry_notifiers_replace(net, replace_rt);
1987 }
1988 if (!info->skip_notify)
1989 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1990
1991 fib6_info_release(rt);
1992}
1993
1994/* Need to own table->tb6_lock */
1995int fib6_del(struct fib6_info *rt, struct nl_info *info)
1996{
1997 struct net *net = info->nl_net;
1998 struct fib6_info __rcu **rtp;
1999 struct fib6_info __rcu **rtp_next;
2000 struct fib6_table *table;
2001 struct fib6_node *fn;
2002
2003 if (rt == net->ipv6.fib6_null_entry)
2004 return -ENOENT;
2005
2006 table = rt->fib6_table;
2007 fn = rcu_dereference_protected(rt->fib6_node,
2008 lockdep_is_held(&table->tb6_lock));
2009 if (!fn)
2010 return -ENOENT;
2011
2012 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2013
2014 /*
2015 * Walk the leaf entries looking for ourself
2016 */
2017
2018 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2019 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2020 lockdep_is_held(&table->tb6_lock));
2021 if (rt == cur) {
2022 if (fib6_requires_src(cur))
2023 fib6_routes_require_src_dec(info->nl_net);
2024 fib6_del_route(table, fn, rtp, info);
2025 return 0;
2026 }
2027 rtp_next = &cur->fib6_next;
2028 }
2029 return -ENOENT;
2030}
2031
2032/*
2033 * Tree traversal function.
2034 *
2035 * Certainly, it is not interrupt safe.
2036 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2037 * It means, that we can modify tree during walking
2038 * and use this function for garbage collection, clone pruning,
2039 * cleaning tree when a device goes down etc. etc.
2040 *
2041 * It guarantees that every node will be traversed,
2042 * and that it will be traversed only once.
2043 *
2044 * Callback function w->func may return:
2045 * 0 -> continue walking.
2046 * positive value -> walking is suspended (used by tree dumps,
2047 * and probably by gc, if it will be split to several slices)
2048 * negative value -> terminate walking.
2049 *
2050 * The function itself returns:
2051 * 0 -> walk is complete.
2052 * >0 -> walk is incomplete (i.e. suspended)
2053 * <0 -> walk is terminated by an error.
2054 *
2055 * This function is called with tb6_lock held.
2056 */
2057
2058static int fib6_walk_continue(struct fib6_walker *w)
2059{
2060 struct fib6_node *fn, *pn, *left, *right;
2061
2062 /* w->root should always be table->tb6_root */
2063 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2064
2065 for (;;) {
2066 fn = w->node;
2067 if (!fn)
2068 return 0;
2069
2070 switch (w->state) {
2071#ifdef CONFIG_IPV6_SUBTREES
2072 case FWS_S:
2073 if (FIB6_SUBTREE(fn)) {
2074 w->node = FIB6_SUBTREE(fn);
2075 continue;
2076 }
2077 w->state = FWS_L;
2078 fallthrough;
2079#endif
2080 case FWS_L:
2081 left = rcu_dereference_protected(fn->left, 1);
2082 if (left) {
2083 w->node = left;
2084 w->state = FWS_INIT;
2085 continue;
2086 }
2087 w->state = FWS_R;
2088 fallthrough;
2089 case FWS_R:
2090 right = rcu_dereference_protected(fn->right, 1);
2091 if (right) {
2092 w->node = right;
2093 w->state = FWS_INIT;
2094 continue;
2095 }
2096 w->state = FWS_C;
2097 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2098 fallthrough;
2099 case FWS_C:
2100 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2101 int err;
2102
2103 if (w->skip) {
2104 w->skip--;
2105 goto skip;
2106 }
2107
2108 err = w->func(w);
2109 if (err)
2110 return err;
2111
2112 w->count++;
2113 continue;
2114 }
2115skip:
2116 w->state = FWS_U;
2117 fallthrough;
2118 case FWS_U:
2119 if (fn == w->root)
2120 return 0;
2121 pn = rcu_dereference_protected(fn->parent, 1);
2122 left = rcu_dereference_protected(pn->left, 1);
2123 right = rcu_dereference_protected(pn->right, 1);
2124 w->node = pn;
2125#ifdef CONFIG_IPV6_SUBTREES
2126 if (FIB6_SUBTREE(pn) == fn) {
2127 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2128 w->state = FWS_L;
2129 continue;
2130 }
2131#endif
2132 if (left == fn) {
2133 w->state = FWS_R;
2134 continue;
2135 }
2136 if (right == fn) {
2137 w->state = FWS_C;
2138 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2139 continue;
2140 }
2141#if RT6_DEBUG >= 2
2142 WARN_ON(1);
2143#endif
2144 }
2145 }
2146}
2147
2148static int fib6_walk(struct net *net, struct fib6_walker *w)
2149{
2150 int res;
2151
2152 w->state = FWS_INIT;
2153 w->node = w->root;
2154
2155 fib6_walker_link(net, w);
2156 res = fib6_walk_continue(w);
2157 if (res <= 0)
2158 fib6_walker_unlink(net, w);
2159 return res;
2160}
2161
2162static int fib6_clean_node(struct fib6_walker *w)
2163{
2164 int res;
2165 struct fib6_info *rt;
2166 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2167 struct nl_info info = {
2168 .nl_net = c->net,
2169 .skip_notify = c->skip_notify,
2170 };
2171
2172 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2173 READ_ONCE(w->node->fn_sernum) != c->sernum)
2174 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2175
2176 if (!c->func) {
2177 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2178 w->leaf = NULL;
2179 return 0;
2180 }
2181
2182 for_each_fib6_walker_rt(w) {
2183 res = c->func(rt, c->arg);
2184 if (res == -1) {
2185 w->leaf = rt;
2186 res = fib6_del(rt, &info);
2187 if (res) {
2188#if RT6_DEBUG >= 2
2189 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2190 __func__, rt,
2191 rcu_access_pointer(rt->fib6_node),
2192 res);
2193#endif
2194 continue;
2195 }
2196 return 0;
2197 } else if (res == -2) {
2198 if (WARN_ON(!rt->fib6_nsiblings))
2199 continue;
2200 rt = list_last_entry(&rt->fib6_siblings,
2201 struct fib6_info, fib6_siblings);
2202 continue;
2203 }
2204 WARN_ON(res != 0);
2205 }
2206 w->leaf = rt;
2207 return 0;
2208}
2209
2210/*
2211 * Convenient frontend to tree walker.
2212 *
2213 * func is called on each route.
2214 * It may return -2 -> skip multipath route.
2215 * -1 -> delete this route.
2216 * 0 -> continue walking
2217 */
2218
2219static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2220 int (*func)(struct fib6_info *, void *arg),
2221 int sernum, void *arg, bool skip_notify)
2222{
2223 struct fib6_cleaner c;
2224
2225 c.w.root = root;
2226 c.w.func = fib6_clean_node;
2227 c.w.count = 0;
2228 c.w.skip = 0;
2229 c.w.skip_in_node = 0;
2230 c.func = func;
2231 c.sernum = sernum;
2232 c.arg = arg;
2233 c.net = net;
2234 c.skip_notify = skip_notify;
2235
2236 fib6_walk(net, &c.w);
2237}
2238
2239static void __fib6_clean_all(struct net *net,
2240 int (*func)(struct fib6_info *, void *),
2241 int sernum, void *arg, bool skip_notify)
2242{
2243 struct fib6_table *table;
2244 struct hlist_head *head;
2245 unsigned int h;
2246
2247 rcu_read_lock();
2248 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2249 head = &net->ipv6.fib_table_hash[h];
2250 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2251 spin_lock_bh(&table->tb6_lock);
2252 fib6_clean_tree(net, &table->tb6_root,
2253 func, sernum, arg, skip_notify);
2254 spin_unlock_bh(&table->tb6_lock);
2255 }
2256 }
2257 rcu_read_unlock();
2258}
2259
2260void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2261 void *arg)
2262{
2263 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2264}
2265
2266void fib6_clean_all_skip_notify(struct net *net,
2267 int (*func)(struct fib6_info *, void *),
2268 void *arg)
2269{
2270 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2271}
2272
2273static void fib6_flush_trees(struct net *net)
2274{
2275 int new_sernum = fib6_new_sernum(net);
2276
2277 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2278}
2279
2280/*
2281 * Garbage collection
2282 */
2283
2284static int fib6_age(struct fib6_info *rt, void *arg)
2285{
2286 struct fib6_gc_args *gc_args = arg;
2287 unsigned long now = jiffies;
2288
2289 /*
2290 * check addrconf expiration here.
2291 * Routes are expired even if they are in use.
2292 */
2293
2294 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2295 if (time_after(now, rt->expires)) {
2296 RT6_TRACE("expiring %p\n", rt);
2297 return -1;
2298 }
2299 gc_args->more++;
2300 }
2301
2302 /* Also age clones in the exception table.
2303 * Note, that clones are aged out
2304 * only if they are not in use now.
2305 */
2306 rt6_age_exceptions(rt, gc_args, now);
2307
2308 return 0;
2309}
2310
2311void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2312{
2313 struct fib6_gc_args gc_args;
2314 unsigned long now;
2315
2316 if (force) {
2317 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2318 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2319 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2320 return;
2321 }
2322 gc_args.timeout = expires ? (int)expires :
2323 net->ipv6.sysctl.ip6_rt_gc_interval;
2324 gc_args.more = 0;
2325
2326 fib6_clean_all(net, fib6_age, &gc_args);
2327 now = jiffies;
2328 net->ipv6.ip6_rt_last_gc = now;
2329
2330 if (gc_args.more)
2331 mod_timer(&net->ipv6.ip6_fib_timer,
2332 round_jiffies(now
2333 + net->ipv6.sysctl.ip6_rt_gc_interval));
2334 else
2335 del_timer(&net->ipv6.ip6_fib_timer);
2336 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2337}
2338
2339static void fib6_gc_timer_cb(struct timer_list *t)
2340{
2341 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2342
2343 fib6_run_gc(0, arg, true);
2344}
2345
2346static int __net_init fib6_net_init(struct net *net)
2347{
2348 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2349 int err;
2350
2351 err = fib6_notifier_init(net);
2352 if (err)
2353 return err;
2354
2355 /* Default to 3-tuple */
2356 net->ipv6.sysctl.multipath_hash_fields =
2357 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2358
2359 spin_lock_init(&net->ipv6.fib6_gc_lock);
2360 rwlock_init(&net->ipv6.fib6_walker_lock);
2361 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2362 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2363
2364 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2365 if (!net->ipv6.rt6_stats)
2366 goto out_notifier;
2367
2368 /* Avoid false sharing : Use at least a full cache line */
2369 size = max_t(size_t, size, L1_CACHE_BYTES);
2370
2371 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2372 if (!net->ipv6.fib_table_hash)
2373 goto out_rt6_stats;
2374
2375 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2376 GFP_KERNEL);
2377 if (!net->ipv6.fib6_main_tbl)
2378 goto out_fib_table_hash;
2379
2380 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2381 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2382 net->ipv6.fib6_null_entry);
2383 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2384 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2385 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2386
2387#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2388 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2389 GFP_KERNEL);
2390 if (!net->ipv6.fib6_local_tbl)
2391 goto out_fib6_main_tbl;
2392 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2393 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2394 net->ipv6.fib6_null_entry);
2395 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2396 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2397 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2398#endif
2399 fib6_tables_init(net);
2400
2401 return 0;
2402
2403#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2404out_fib6_main_tbl:
2405 kfree(net->ipv6.fib6_main_tbl);
2406#endif
2407out_fib_table_hash:
2408 kfree(net->ipv6.fib_table_hash);
2409out_rt6_stats:
2410 kfree(net->ipv6.rt6_stats);
2411out_notifier:
2412 fib6_notifier_exit(net);
2413 return -ENOMEM;
2414}
2415
2416static void fib6_net_exit(struct net *net)
2417{
2418 unsigned int i;
2419
2420 del_timer_sync(&net->ipv6.ip6_fib_timer);
2421
2422 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2423 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2424 struct hlist_node *tmp;
2425 struct fib6_table *tb;
2426
2427 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2428 hlist_del(&tb->tb6_hlist);
2429 fib6_free_table(tb);
2430 }
2431 }
2432
2433 kfree(net->ipv6.fib_table_hash);
2434 kfree(net->ipv6.rt6_stats);
2435 fib6_notifier_exit(net);
2436}
2437
2438static struct pernet_operations fib6_net_ops = {
2439 .init = fib6_net_init,
2440 .exit = fib6_net_exit,
2441};
2442
2443int __init fib6_init(void)
2444{
2445 int ret = -ENOMEM;
2446
2447 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2448 sizeof(struct fib6_node), 0,
2449 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT,
2450 NULL);
2451 if (!fib6_node_kmem)
2452 goto out;
2453
2454 ret = register_pernet_subsys(&fib6_net_ops);
2455 if (ret)
2456 goto out_kmem_cache_create;
2457
2458 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2459 inet6_dump_fib, 0);
2460 if (ret)
2461 goto out_unregister_subsys;
2462
2463 __fib6_flush_trees = fib6_flush_trees;
2464out:
2465 return ret;
2466
2467out_unregister_subsys:
2468 unregister_pernet_subsys(&fib6_net_ops);
2469out_kmem_cache_create:
2470 kmem_cache_destroy(fib6_node_kmem);
2471 goto out;
2472}
2473
2474void fib6_gc_cleanup(void)
2475{
2476 unregister_pernet_subsys(&fib6_net_ops);
2477 kmem_cache_destroy(fib6_node_kmem);
2478}
2479
2480#ifdef CONFIG_PROC_FS
2481static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2482{
2483 struct fib6_info *rt = v;
2484 struct ipv6_route_iter *iter = seq->private;
2485 struct fib6_nh *fib6_nh = rt->fib6_nh;
2486 unsigned int flags = rt->fib6_flags;
2487 const struct net_device *dev;
2488
2489 if (rt->nh)
2490 fib6_nh = nexthop_fib6_nh(rt->nh);
2491
2492 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2493
2494#ifdef CONFIG_IPV6_SUBTREES
2495 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2496#else
2497 seq_puts(seq, "00000000000000000000000000000000 00 ");
2498#endif
2499 if (fib6_nh->fib_nh_gw_family) {
2500 flags |= RTF_GATEWAY;
2501 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2502 } else {
2503 seq_puts(seq, "00000000000000000000000000000000");
2504 }
2505
2506 dev = fib6_nh->fib_nh_dev;
2507 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2508 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2509 flags, dev ? dev->name : "");
2510 iter->w.leaf = NULL;
2511 return 0;
2512}
2513
2514static int ipv6_route_yield(struct fib6_walker *w)
2515{
2516 struct ipv6_route_iter *iter = w->args;
2517
2518 if (!iter->skip)
2519 return 1;
2520
2521 do {
2522 iter->w.leaf = rcu_dereference_protected(
2523 iter->w.leaf->fib6_next,
2524 lockdep_is_held(&iter->tbl->tb6_lock));
2525 iter->skip--;
2526 if (!iter->skip && iter->w.leaf)
2527 return 1;
2528 } while (iter->w.leaf);
2529
2530 return 0;
2531}
2532
2533static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2534 struct net *net)
2535{
2536 memset(&iter->w, 0, sizeof(iter->w));
2537 iter->w.func = ipv6_route_yield;
2538 iter->w.root = &iter->tbl->tb6_root;
2539 iter->w.state = FWS_INIT;
2540 iter->w.node = iter->w.root;
2541 iter->w.args = iter;
2542 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2543 INIT_LIST_HEAD(&iter->w.lh);
2544 fib6_walker_link(net, &iter->w);
2545}
2546
2547static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2548 struct net *net)
2549{
2550 unsigned int h;
2551 struct hlist_node *node;
2552
2553 if (tbl) {
2554 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2555 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2556 } else {
2557 h = 0;
2558 node = NULL;
2559 }
2560
2561 while (!node && h < FIB6_TABLE_HASHSZ) {
2562 node = rcu_dereference(
2563 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2564 }
2565 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2566}
2567
2568static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2569{
2570 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2571
2572 if (iter->sernum != sernum) {
2573 iter->sernum = sernum;
2574 iter->w.state = FWS_INIT;
2575 iter->w.node = iter->w.root;
2576 WARN_ON(iter->w.skip);
2577 iter->w.skip = iter->w.count;
2578 }
2579}
2580
2581static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2582{
2583 int r;
2584 struct fib6_info *n;
2585 struct net *net = seq_file_net(seq);
2586 struct ipv6_route_iter *iter = seq->private;
2587
2588 ++(*pos);
2589 if (!v)
2590 goto iter_table;
2591
2592 n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2593 if (n)
2594 return n;
2595
2596iter_table:
2597 ipv6_route_check_sernum(iter);
2598 spin_lock_bh(&iter->tbl->tb6_lock);
2599 r = fib6_walk_continue(&iter->w);
2600 spin_unlock_bh(&iter->tbl->tb6_lock);
2601 if (r > 0) {
2602 return iter->w.leaf;
2603 } else if (r < 0) {
2604 fib6_walker_unlink(net, &iter->w);
2605 return NULL;
2606 }
2607 fib6_walker_unlink(net, &iter->w);
2608
2609 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2610 if (!iter->tbl)
2611 return NULL;
2612
2613 ipv6_route_seq_setup_walk(iter, net);
2614 goto iter_table;
2615}
2616
2617static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2618 __acquires(RCU)
2619{
2620 struct net *net = seq_file_net(seq);
2621 struct ipv6_route_iter *iter = seq->private;
2622
2623 rcu_read_lock();
2624 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2625 iter->skip = *pos;
2626
2627 if (iter->tbl) {
2628 loff_t p = 0;
2629
2630 ipv6_route_seq_setup_walk(iter, net);
2631 return ipv6_route_seq_next(seq, NULL, &p);
2632 } else {
2633 return NULL;
2634 }
2635}
2636
2637static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2638{
2639 struct fib6_walker *w = &iter->w;
2640 return w->node && !(w->state == FWS_U && w->node == w->root);
2641}
2642
2643static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2644 __releases(RCU)
2645{
2646 struct net *net = seq_file_net(seq);
2647 struct ipv6_route_iter *iter = seq->private;
2648
2649 if (ipv6_route_iter_active(iter))
2650 fib6_walker_unlink(net, &iter->w);
2651
2652 rcu_read_unlock();
2653}
2654
2655#if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2656static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2657 struct bpf_iter_meta *meta,
2658 void *v)
2659{
2660 struct bpf_iter__ipv6_route ctx;
2661
2662 ctx.meta = meta;
2663 ctx.rt = v;
2664 return bpf_iter_run_prog(prog, &ctx);
2665}
2666
2667static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2668{
2669 struct ipv6_route_iter *iter = seq->private;
2670 struct bpf_iter_meta meta;
2671 struct bpf_prog *prog;
2672 int ret;
2673
2674 meta.seq = seq;
2675 prog = bpf_iter_get_info(&meta, false);
2676 if (!prog)
2677 return ipv6_route_native_seq_show(seq, v);
2678
2679 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2680 iter->w.leaf = NULL;
2681
2682 return ret;
2683}
2684
2685static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2686{
2687 struct bpf_iter_meta meta;
2688 struct bpf_prog *prog;
2689
2690 if (!v) {
2691 meta.seq = seq;
2692 prog = bpf_iter_get_info(&meta, true);
2693 if (prog)
2694 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2695 }
2696
2697 ipv6_route_native_seq_stop(seq, v);
2698}
2699#else
2700static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2701{
2702 return ipv6_route_native_seq_show(seq, v);
2703}
2704
2705static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2706{
2707 ipv6_route_native_seq_stop(seq, v);
2708}
2709#endif
2710
2711const struct seq_operations ipv6_route_seq_ops = {
2712 .start = ipv6_route_seq_start,
2713 .next = ipv6_route_seq_next,
2714 .stop = ipv6_route_seq_stop,
2715 .show = ipv6_route_seq_show
2716};
2717#endif /* CONFIG_PROC_FS */
1/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20#define pr_fmt(fmt) "IPv6: " fmt
21
22#include <linux/errno.h>
23#include <linux/types.h>
24#include <linux/net.h>
25#include <linux/route.h>
26#include <linux/netdevice.h>
27#include <linux/in6.h>
28#include <linux/init.h>
29#include <linux/list.h>
30#include <linux/slab.h>
31
32#include <net/ipv6.h>
33#include <net/ndisc.h>
34#include <net/addrconf.h>
35#include <net/lwtunnel.h>
36
37#include <net/ip6_fib.h>
38#include <net/ip6_route.h>
39
40#define RT6_DEBUG 2
41
42#if RT6_DEBUG >= 3
43#define RT6_TRACE(x...) pr_debug(x)
44#else
45#define RT6_TRACE(x...) do { ; } while (0)
46#endif
47
48static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56};
57
58#ifdef CONFIG_IPV6_SUBTREES
59#define FWS_INIT FWS_S
60#else
61#define FWS_INIT FWS_L
62#endif
63
64static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67static int fib6_walk(struct net *net, struct fib6_walker *w);
68static int fib6_walk_continue(struct fib6_walker *w);
69
70/*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77static void fib6_gc_timer_cb(unsigned long arg);
78
79#define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83{
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87}
88
89static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90{
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94}
95
96static int fib6_new_sernum(struct net *net)
97{
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106}
107
108enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110};
111
112/*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119/*
120 * test bit
121 */
122#if defined(__LITTLE_ENDIAN)
123# define BITOP_BE32_SWIZZLE (0x1F & ~7)
124#else
125# define BITOP_BE32_SWIZZLE 0
126#endif
127
128static __be32 addr_bit_set(const void *token, int fn_bit)
129{
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140}
141
142static struct fib6_node *node_alloc(void)
143{
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149}
150
151static void node_free(struct fib6_node *fn)
152{
153 kmem_cache_free(fib6_node_kmem, fn);
154}
155
156static void rt6_rcu_free(struct rt6_info *rt)
157{
158 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159}
160
161static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162{
163 int cpu;
164
165 if (!non_pcpu_rt->rt6i_pcpu)
166 return;
167
168 for_each_possible_cpu(cpu) {
169 struct rt6_info **ppcpu_rt;
170 struct rt6_info *pcpu_rt;
171
172 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 pcpu_rt = *ppcpu_rt;
174 if (pcpu_rt) {
175 rt6_rcu_free(pcpu_rt);
176 *ppcpu_rt = NULL;
177 }
178 }
179
180 free_percpu(non_pcpu_rt->rt6i_pcpu);
181 non_pcpu_rt->rt6i_pcpu = NULL;
182}
183
184static void rt6_release(struct rt6_info *rt)
185{
186 if (atomic_dec_and_test(&rt->rt6i_ref)) {
187 rt6_free_pcpu(rt);
188 rt6_rcu_free(rt);
189 }
190}
191
192static void fib6_link_table(struct net *net, struct fib6_table *tb)
193{
194 unsigned int h;
195
196 /*
197 * Initialize table lock at a single place to give lockdep a key,
198 * tables aren't visible prior to being linked to the list.
199 */
200 rwlock_init(&tb->tb6_lock);
201
202 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
203
204 /*
205 * No protection necessary, this is the only list mutatation
206 * operation, tables never disappear once they exist.
207 */
208 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
209}
210
211#ifdef CONFIG_IPV6_MULTIPLE_TABLES
212
213static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
214{
215 struct fib6_table *table;
216
217 table = kzalloc(sizeof(*table), GFP_ATOMIC);
218 if (table) {
219 table->tb6_id = id;
220 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
221 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
222 inet_peer_base_init(&table->tb6_peers);
223 }
224
225 return table;
226}
227
228struct fib6_table *fib6_new_table(struct net *net, u32 id)
229{
230 struct fib6_table *tb;
231
232 if (id == 0)
233 id = RT6_TABLE_MAIN;
234 tb = fib6_get_table(net, id);
235 if (tb)
236 return tb;
237
238 tb = fib6_alloc_table(net, id);
239 if (tb)
240 fib6_link_table(net, tb);
241
242 return tb;
243}
244EXPORT_SYMBOL_GPL(fib6_new_table);
245
246struct fib6_table *fib6_get_table(struct net *net, u32 id)
247{
248 struct fib6_table *tb;
249 struct hlist_head *head;
250 unsigned int h;
251
252 if (id == 0)
253 id = RT6_TABLE_MAIN;
254 h = id & (FIB6_TABLE_HASHSZ - 1);
255 rcu_read_lock();
256 head = &net->ipv6.fib_table_hash[h];
257 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 if (tb->tb6_id == id) {
259 rcu_read_unlock();
260 return tb;
261 }
262 }
263 rcu_read_unlock();
264
265 return NULL;
266}
267EXPORT_SYMBOL_GPL(fib6_get_table);
268
269static void __net_init fib6_tables_init(struct net *net)
270{
271 fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 fib6_link_table(net, net->ipv6.fib6_local_tbl);
273}
274#else
275
276struct fib6_table *fib6_new_table(struct net *net, u32 id)
277{
278 return fib6_get_table(net, id);
279}
280
281struct fib6_table *fib6_get_table(struct net *net, u32 id)
282{
283 return net->ipv6.fib6_main_tbl;
284}
285
286struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287 int flags, pol_lookup_t lookup)
288{
289 struct rt6_info *rt;
290
291 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292 if (rt->rt6i_flags & RTF_REJECT &&
293 rt->dst.error == -EAGAIN) {
294 ip6_rt_put(rt);
295 rt = net->ipv6.ip6_null_entry;
296 dst_hold(&rt->dst);
297 }
298
299 return &rt->dst;
300}
301
302static void __net_init fib6_tables_init(struct net *net)
303{
304 fib6_link_table(net, net->ipv6.fib6_main_tbl);
305}
306
307#endif
308
309static int fib6_dump_node(struct fib6_walker *w)
310{
311 int res;
312 struct rt6_info *rt;
313
314 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315 res = rt6_dump_route(rt, w->args);
316 if (res < 0) {
317 /* Frame is full, suspend walking */
318 w->leaf = rt;
319 return 1;
320 }
321 }
322 w->leaf = NULL;
323 return 0;
324}
325
326static void fib6_dump_end(struct netlink_callback *cb)
327{
328 struct net *net = sock_net(cb->skb->sk);
329 struct fib6_walker *w = (void *)cb->args[2];
330
331 if (w) {
332 if (cb->args[4]) {
333 cb->args[4] = 0;
334 fib6_walker_unlink(net, w);
335 }
336 cb->args[2] = 0;
337 kfree(w);
338 }
339 cb->done = (void *)cb->args[3];
340 cb->args[1] = 3;
341}
342
343static int fib6_dump_done(struct netlink_callback *cb)
344{
345 fib6_dump_end(cb);
346 return cb->done ? cb->done(cb) : 0;
347}
348
349static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
350 struct netlink_callback *cb)
351{
352 struct net *net = sock_net(skb->sk);
353 struct fib6_walker *w;
354 int res;
355
356 w = (void *)cb->args[2];
357 w->root = &table->tb6_root;
358
359 if (cb->args[4] == 0) {
360 w->count = 0;
361 w->skip = 0;
362
363 read_lock_bh(&table->tb6_lock);
364 res = fib6_walk(net, w);
365 read_unlock_bh(&table->tb6_lock);
366 if (res > 0) {
367 cb->args[4] = 1;
368 cb->args[5] = w->root->fn_sernum;
369 }
370 } else {
371 if (cb->args[5] != w->root->fn_sernum) {
372 /* Begin at the root if the tree changed */
373 cb->args[5] = w->root->fn_sernum;
374 w->state = FWS_INIT;
375 w->node = w->root;
376 w->skip = w->count;
377 } else
378 w->skip = 0;
379
380 read_lock_bh(&table->tb6_lock);
381 res = fib6_walk_continue(w);
382 read_unlock_bh(&table->tb6_lock);
383 if (res <= 0) {
384 fib6_walker_unlink(net, w);
385 cb->args[4] = 0;
386 }
387 }
388
389 return res;
390}
391
392static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
393{
394 struct net *net = sock_net(skb->sk);
395 unsigned int h, s_h;
396 unsigned int e = 0, s_e;
397 struct rt6_rtnl_dump_arg arg;
398 struct fib6_walker *w;
399 struct fib6_table *tb;
400 struct hlist_head *head;
401 int res = 0;
402
403 s_h = cb->args[0];
404 s_e = cb->args[1];
405
406 w = (void *)cb->args[2];
407 if (!w) {
408 /* New dump:
409 *
410 * 1. hook callback destructor.
411 */
412 cb->args[3] = (long)cb->done;
413 cb->done = fib6_dump_done;
414
415 /*
416 * 2. allocate and initialize walker.
417 */
418 w = kzalloc(sizeof(*w), GFP_ATOMIC);
419 if (!w)
420 return -ENOMEM;
421 w->func = fib6_dump_node;
422 cb->args[2] = (long)w;
423 }
424
425 arg.skb = skb;
426 arg.cb = cb;
427 arg.net = net;
428 w->args = &arg;
429
430 rcu_read_lock();
431 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
432 e = 0;
433 head = &net->ipv6.fib_table_hash[h];
434 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
435 if (e < s_e)
436 goto next;
437 res = fib6_dump_table(tb, skb, cb);
438 if (res != 0)
439 goto out;
440next:
441 e++;
442 }
443 }
444out:
445 rcu_read_unlock();
446 cb->args[1] = e;
447 cb->args[0] = h;
448
449 res = res < 0 ? res : skb->len;
450 if (res <= 0)
451 fib6_dump_end(cb);
452 return res;
453}
454
455/*
456 * Routing Table
457 *
458 * return the appropriate node for a routing tree "add" operation
459 * by either creating and inserting or by returning an existing
460 * node.
461 */
462
463static struct fib6_node *fib6_add_1(struct fib6_node *root,
464 struct in6_addr *addr, int plen,
465 int offset, int allow_create,
466 int replace_required, int sernum)
467{
468 struct fib6_node *fn, *in, *ln;
469 struct fib6_node *pn = NULL;
470 struct rt6key *key;
471 int bit;
472 __be32 dir = 0;
473
474 RT6_TRACE("fib6_add_1\n");
475
476 /* insert node in tree */
477
478 fn = root;
479
480 do {
481 key = (struct rt6key *)((u8 *)fn->leaf + offset);
482
483 /*
484 * Prefix match
485 */
486 if (plen < fn->fn_bit ||
487 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
488 if (!allow_create) {
489 if (replace_required) {
490 pr_warn("Can't replace route, no match found\n");
491 return ERR_PTR(-ENOENT);
492 }
493 pr_warn("NLM_F_CREATE should be set when creating new route\n");
494 }
495 goto insert_above;
496 }
497
498 /*
499 * Exact match ?
500 */
501
502 if (plen == fn->fn_bit) {
503 /* clean up an intermediate node */
504 if (!(fn->fn_flags & RTN_RTINFO)) {
505 rt6_release(fn->leaf);
506 fn->leaf = NULL;
507 }
508
509 fn->fn_sernum = sernum;
510
511 return fn;
512 }
513
514 /*
515 * We have more bits to go
516 */
517
518 /* Try to walk down on tree. */
519 fn->fn_sernum = sernum;
520 dir = addr_bit_set(addr, fn->fn_bit);
521 pn = fn;
522 fn = dir ? fn->right : fn->left;
523 } while (fn);
524
525 if (!allow_create) {
526 /* We should not create new node because
527 * NLM_F_REPLACE was specified without NLM_F_CREATE
528 * I assume it is safe to require NLM_F_CREATE when
529 * REPLACE flag is used! Later we may want to remove the
530 * check for replace_required, because according
531 * to netlink specification, NLM_F_CREATE
532 * MUST be specified if new route is created.
533 * That would keep IPv6 consistent with IPv4
534 */
535 if (replace_required) {
536 pr_warn("Can't replace route, no match found\n");
537 return ERR_PTR(-ENOENT);
538 }
539 pr_warn("NLM_F_CREATE should be set when creating new route\n");
540 }
541 /*
542 * We walked to the bottom of tree.
543 * Create new leaf node without children.
544 */
545
546 ln = node_alloc();
547
548 if (!ln)
549 return ERR_PTR(-ENOMEM);
550 ln->fn_bit = plen;
551
552 ln->parent = pn;
553 ln->fn_sernum = sernum;
554
555 if (dir)
556 pn->right = ln;
557 else
558 pn->left = ln;
559
560 return ln;
561
562
563insert_above:
564 /*
565 * split since we don't have a common prefix anymore or
566 * we have a less significant route.
567 * we've to insert an intermediate node on the list
568 * this new node will point to the one we need to create
569 * and the current
570 */
571
572 pn = fn->parent;
573
574 /* find 1st bit in difference between the 2 addrs.
575
576 See comment in __ipv6_addr_diff: bit may be an invalid value,
577 but if it is >= plen, the value is ignored in any case.
578 */
579
580 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
581
582 /*
583 * (intermediate)[in]
584 * / \
585 * (new leaf node)[ln] (old node)[fn]
586 */
587 if (plen > bit) {
588 in = node_alloc();
589 ln = node_alloc();
590
591 if (!in || !ln) {
592 if (in)
593 node_free(in);
594 if (ln)
595 node_free(ln);
596 return ERR_PTR(-ENOMEM);
597 }
598
599 /*
600 * new intermediate node.
601 * RTN_RTINFO will
602 * be off since that an address that chooses one of
603 * the branches would not match less specific routes
604 * in the other branch
605 */
606
607 in->fn_bit = bit;
608
609 in->parent = pn;
610 in->leaf = fn->leaf;
611 atomic_inc(&in->leaf->rt6i_ref);
612
613 in->fn_sernum = sernum;
614
615 /* update parent pointer */
616 if (dir)
617 pn->right = in;
618 else
619 pn->left = in;
620
621 ln->fn_bit = plen;
622
623 ln->parent = in;
624 fn->parent = in;
625
626 ln->fn_sernum = sernum;
627
628 if (addr_bit_set(addr, bit)) {
629 in->right = ln;
630 in->left = fn;
631 } else {
632 in->left = ln;
633 in->right = fn;
634 }
635 } else { /* plen <= bit */
636
637 /*
638 * (new leaf node)[ln]
639 * / \
640 * (old node)[fn] NULL
641 */
642
643 ln = node_alloc();
644
645 if (!ln)
646 return ERR_PTR(-ENOMEM);
647
648 ln->fn_bit = plen;
649
650 ln->parent = pn;
651
652 ln->fn_sernum = sernum;
653
654 if (dir)
655 pn->right = ln;
656 else
657 pn->left = ln;
658
659 if (addr_bit_set(&key->addr, plen))
660 ln->right = fn;
661 else
662 ln->left = fn;
663
664 fn->parent = ln;
665 }
666 return ln;
667}
668
669static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
670{
671 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
672 RTF_GATEWAY;
673}
674
675static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
676{
677 int i;
678
679 for (i = 0; i < RTAX_MAX; i++) {
680 if (test_bit(i, mxc->mx_valid))
681 mp[i] = mxc->mx[i];
682 }
683}
684
685static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
686{
687 if (!mxc->mx)
688 return 0;
689
690 if (dst->flags & DST_HOST) {
691 u32 *mp = dst_metrics_write_ptr(dst);
692
693 if (unlikely(!mp))
694 return -ENOMEM;
695
696 fib6_copy_metrics(mp, mxc);
697 } else {
698 dst_init_metrics(dst, mxc->mx, false);
699
700 /* We've stolen mx now. */
701 mxc->mx = NULL;
702 }
703
704 return 0;
705}
706
707static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
708 struct net *net)
709{
710 if (atomic_read(&rt->rt6i_ref) != 1) {
711 /* This route is used as dummy address holder in some split
712 * nodes. It is not leaked, but it still holds other resources,
713 * which must be released in time. So, scan ascendant nodes
714 * and replace dummy references to this route with references
715 * to still alive ones.
716 */
717 while (fn) {
718 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
719 fn->leaf = fib6_find_prefix(net, fn);
720 atomic_inc(&fn->leaf->rt6i_ref);
721 rt6_release(rt);
722 }
723 fn = fn->parent;
724 }
725 /* No more references are possible at this point. */
726 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
727 }
728}
729
730/*
731 * Insert routing information in a node.
732 */
733
734static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
735 struct nl_info *info, struct mx6_config *mxc)
736{
737 struct rt6_info *iter = NULL;
738 struct rt6_info **ins;
739 struct rt6_info **fallback_ins = NULL;
740 int replace = (info->nlh &&
741 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
742 int add = (!info->nlh ||
743 (info->nlh->nlmsg_flags & NLM_F_CREATE));
744 int found = 0;
745 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
746 u16 nlflags = NLM_F_EXCL;
747 int err;
748
749 ins = &fn->leaf;
750
751 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
752 /*
753 * Search for duplicates
754 */
755
756 if (iter->rt6i_metric == rt->rt6i_metric) {
757 /*
758 * Same priority level
759 */
760 if (info->nlh &&
761 (info->nlh->nlmsg_flags & NLM_F_EXCL))
762 return -EEXIST;
763
764 nlflags &= ~NLM_F_EXCL;
765 if (replace) {
766 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
767 found++;
768 break;
769 }
770 if (rt_can_ecmp)
771 fallback_ins = fallback_ins ?: ins;
772 goto next_iter;
773 }
774
775 if (iter->dst.dev == rt->dst.dev &&
776 iter->rt6i_idev == rt->rt6i_idev &&
777 ipv6_addr_equal(&iter->rt6i_gateway,
778 &rt->rt6i_gateway)) {
779 if (rt->rt6i_nsiblings)
780 rt->rt6i_nsiblings = 0;
781 if (!(iter->rt6i_flags & RTF_EXPIRES))
782 return -EEXIST;
783 if (!(rt->rt6i_flags & RTF_EXPIRES))
784 rt6_clean_expires(iter);
785 else
786 rt6_set_expires(iter, rt->dst.expires);
787 iter->rt6i_pmtu = rt->rt6i_pmtu;
788 return -EEXIST;
789 }
790 /* If we have the same destination and the same metric,
791 * but not the same gateway, then the route we try to
792 * add is sibling to this route, increment our counter
793 * of siblings, and later we will add our route to the
794 * list.
795 * Only static routes (which don't have flag
796 * RTF_EXPIRES) are used for ECMPv6.
797 *
798 * To avoid long list, we only had siblings if the
799 * route have a gateway.
800 */
801 if (rt_can_ecmp &&
802 rt6_qualify_for_ecmp(iter))
803 rt->rt6i_nsiblings++;
804 }
805
806 if (iter->rt6i_metric > rt->rt6i_metric)
807 break;
808
809next_iter:
810 ins = &iter->dst.rt6_next;
811 }
812
813 if (fallback_ins && !found) {
814 /* No ECMP-able route found, replace first non-ECMP one */
815 ins = fallback_ins;
816 iter = *ins;
817 found++;
818 }
819
820 /* Reset round-robin state, if necessary */
821 if (ins == &fn->leaf)
822 fn->rr_ptr = NULL;
823
824 /* Link this route to others same route. */
825 if (rt->rt6i_nsiblings) {
826 unsigned int rt6i_nsiblings;
827 struct rt6_info *sibling, *temp_sibling;
828
829 /* Find the first route that have the same metric */
830 sibling = fn->leaf;
831 while (sibling) {
832 if (sibling->rt6i_metric == rt->rt6i_metric &&
833 rt6_qualify_for_ecmp(sibling)) {
834 list_add_tail(&rt->rt6i_siblings,
835 &sibling->rt6i_siblings);
836 break;
837 }
838 sibling = sibling->dst.rt6_next;
839 }
840 /* For each sibling in the list, increment the counter of
841 * siblings. BUG() if counters does not match, list of siblings
842 * is broken!
843 */
844 rt6i_nsiblings = 0;
845 list_for_each_entry_safe(sibling, temp_sibling,
846 &rt->rt6i_siblings, rt6i_siblings) {
847 sibling->rt6i_nsiblings++;
848 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
849 rt6i_nsiblings++;
850 }
851 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
852 }
853
854 /*
855 * insert node
856 */
857 if (!replace) {
858 if (!add)
859 pr_warn("NLM_F_CREATE should be set when creating new route\n");
860
861add:
862 nlflags |= NLM_F_CREATE;
863 err = fib6_commit_metrics(&rt->dst, mxc);
864 if (err)
865 return err;
866
867 rt->dst.rt6_next = iter;
868 *ins = rt;
869 rt->rt6i_node = fn;
870 atomic_inc(&rt->rt6i_ref);
871 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
872 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
873
874 if (!(fn->fn_flags & RTN_RTINFO)) {
875 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
876 fn->fn_flags |= RTN_RTINFO;
877 }
878
879 } else {
880 int nsiblings;
881
882 if (!found) {
883 if (add)
884 goto add;
885 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
886 return -ENOENT;
887 }
888
889 err = fib6_commit_metrics(&rt->dst, mxc);
890 if (err)
891 return err;
892
893 *ins = rt;
894 rt->rt6i_node = fn;
895 rt->dst.rt6_next = iter->dst.rt6_next;
896 atomic_inc(&rt->rt6i_ref);
897 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
898 if (!(fn->fn_flags & RTN_RTINFO)) {
899 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
900 fn->fn_flags |= RTN_RTINFO;
901 }
902 nsiblings = iter->rt6i_nsiblings;
903 fib6_purge_rt(iter, fn, info->nl_net);
904 rt6_release(iter);
905
906 if (nsiblings) {
907 /* Replacing an ECMP route, remove all siblings */
908 ins = &rt->dst.rt6_next;
909 iter = *ins;
910 while (iter) {
911 if (iter->rt6i_metric > rt->rt6i_metric)
912 break;
913 if (rt6_qualify_for_ecmp(iter)) {
914 *ins = iter->dst.rt6_next;
915 fib6_purge_rt(iter, fn, info->nl_net);
916 rt6_release(iter);
917 nsiblings--;
918 } else {
919 ins = &iter->dst.rt6_next;
920 }
921 iter = *ins;
922 }
923 WARN_ON(nsiblings != 0);
924 }
925 }
926
927 return 0;
928}
929
930static void fib6_start_gc(struct net *net, struct rt6_info *rt)
931{
932 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
933 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
934 mod_timer(&net->ipv6.ip6_fib_timer,
935 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
936}
937
938void fib6_force_start_gc(struct net *net)
939{
940 if (!timer_pending(&net->ipv6.ip6_fib_timer))
941 mod_timer(&net->ipv6.ip6_fib_timer,
942 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
943}
944
945/*
946 * Add routing information to the routing tree.
947 * <destination addr>/<source addr>
948 * with source addr info in sub-trees
949 */
950
951int fib6_add(struct fib6_node *root, struct rt6_info *rt,
952 struct nl_info *info, struct mx6_config *mxc)
953{
954 struct fib6_node *fn, *pn = NULL;
955 int err = -ENOMEM;
956 int allow_create = 1;
957 int replace_required = 0;
958 int sernum = fib6_new_sernum(info->nl_net);
959
960 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
961 !atomic_read(&rt->dst.__refcnt)))
962 return -EINVAL;
963
964 if (info->nlh) {
965 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
966 allow_create = 0;
967 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
968 replace_required = 1;
969 }
970 if (!allow_create && !replace_required)
971 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
972
973 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
974 offsetof(struct rt6_info, rt6i_dst), allow_create,
975 replace_required, sernum);
976 if (IS_ERR(fn)) {
977 err = PTR_ERR(fn);
978 fn = NULL;
979 goto out;
980 }
981
982 pn = fn;
983
984#ifdef CONFIG_IPV6_SUBTREES
985 if (rt->rt6i_src.plen) {
986 struct fib6_node *sn;
987
988 if (!fn->subtree) {
989 struct fib6_node *sfn;
990
991 /*
992 * Create subtree.
993 *
994 * fn[main tree]
995 * |
996 * sfn[subtree root]
997 * \
998 * sn[new leaf node]
999 */
1000
1001 /* Create subtree root node */
1002 sfn = node_alloc();
1003 if (!sfn)
1004 goto st_failure;
1005
1006 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1007 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1008 sfn->fn_flags = RTN_ROOT;
1009 sfn->fn_sernum = sernum;
1010
1011 /* Now add the first leaf node to new subtree */
1012
1013 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1014 rt->rt6i_src.plen,
1015 offsetof(struct rt6_info, rt6i_src),
1016 allow_create, replace_required, sernum);
1017
1018 if (IS_ERR(sn)) {
1019 /* If it is failed, discard just allocated
1020 root, and then (in st_failure) stale node
1021 in main tree.
1022 */
1023 node_free(sfn);
1024 err = PTR_ERR(sn);
1025 goto st_failure;
1026 }
1027
1028 /* Now link new subtree to main tree */
1029 sfn->parent = fn;
1030 fn->subtree = sfn;
1031 } else {
1032 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1033 rt->rt6i_src.plen,
1034 offsetof(struct rt6_info, rt6i_src),
1035 allow_create, replace_required, sernum);
1036
1037 if (IS_ERR(sn)) {
1038 err = PTR_ERR(sn);
1039 goto st_failure;
1040 }
1041 }
1042
1043 if (!fn->leaf) {
1044 fn->leaf = rt;
1045 atomic_inc(&rt->rt6i_ref);
1046 }
1047 fn = sn;
1048 }
1049#endif
1050
1051 err = fib6_add_rt2node(fn, rt, info, mxc);
1052 if (!err) {
1053 fib6_start_gc(info->nl_net, rt);
1054 if (!(rt->rt6i_flags & RTF_CACHE))
1055 fib6_prune_clones(info->nl_net, pn);
1056 rt->dst.flags &= ~DST_NOCACHE;
1057 }
1058
1059out:
1060 if (err) {
1061#ifdef CONFIG_IPV6_SUBTREES
1062 /*
1063 * If fib6_add_1 has cleared the old leaf pointer in the
1064 * super-tree leaf node we have to find a new one for it.
1065 */
1066 if (pn != fn && pn->leaf == rt) {
1067 pn->leaf = NULL;
1068 atomic_dec(&rt->rt6i_ref);
1069 }
1070 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1071 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1072#if RT6_DEBUG >= 2
1073 if (!pn->leaf) {
1074 WARN_ON(pn->leaf == NULL);
1075 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1076 }
1077#endif
1078 atomic_inc(&pn->leaf->rt6i_ref);
1079 }
1080#endif
1081 if (!(rt->dst.flags & DST_NOCACHE))
1082 dst_free(&rt->dst);
1083 }
1084 return err;
1085
1086#ifdef CONFIG_IPV6_SUBTREES
1087 /* Subtree creation failed, probably main tree node
1088 is orphan. If it is, shoot it.
1089 */
1090st_failure:
1091 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1092 fib6_repair_tree(info->nl_net, fn);
1093 if (!(rt->dst.flags & DST_NOCACHE))
1094 dst_free(&rt->dst);
1095 return err;
1096#endif
1097}
1098
1099/*
1100 * Routing tree lookup
1101 *
1102 */
1103
1104struct lookup_args {
1105 int offset; /* key offset on rt6_info */
1106 const struct in6_addr *addr; /* search key */
1107};
1108
1109static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1110 struct lookup_args *args)
1111{
1112 struct fib6_node *fn;
1113 __be32 dir;
1114
1115 if (unlikely(args->offset == 0))
1116 return NULL;
1117
1118 /*
1119 * Descend on a tree
1120 */
1121
1122 fn = root;
1123
1124 for (;;) {
1125 struct fib6_node *next;
1126
1127 dir = addr_bit_set(args->addr, fn->fn_bit);
1128
1129 next = dir ? fn->right : fn->left;
1130
1131 if (next) {
1132 fn = next;
1133 continue;
1134 }
1135 break;
1136 }
1137
1138 while (fn) {
1139 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1140 struct rt6key *key;
1141
1142 key = (struct rt6key *) ((u8 *) fn->leaf +
1143 args->offset);
1144
1145 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1146#ifdef CONFIG_IPV6_SUBTREES
1147 if (fn->subtree) {
1148 struct fib6_node *sfn;
1149 sfn = fib6_lookup_1(fn->subtree,
1150 args + 1);
1151 if (!sfn)
1152 goto backtrack;
1153 fn = sfn;
1154 }
1155#endif
1156 if (fn->fn_flags & RTN_RTINFO)
1157 return fn;
1158 }
1159 }
1160#ifdef CONFIG_IPV6_SUBTREES
1161backtrack:
1162#endif
1163 if (fn->fn_flags & RTN_ROOT)
1164 break;
1165
1166 fn = fn->parent;
1167 }
1168
1169 return NULL;
1170}
1171
1172struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1173 const struct in6_addr *saddr)
1174{
1175 struct fib6_node *fn;
1176 struct lookup_args args[] = {
1177 {
1178 .offset = offsetof(struct rt6_info, rt6i_dst),
1179 .addr = daddr,
1180 },
1181#ifdef CONFIG_IPV6_SUBTREES
1182 {
1183 .offset = offsetof(struct rt6_info, rt6i_src),
1184 .addr = saddr,
1185 },
1186#endif
1187 {
1188 .offset = 0, /* sentinel */
1189 }
1190 };
1191
1192 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1193 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1194 fn = root;
1195
1196 return fn;
1197}
1198
1199/*
1200 * Get node with specified destination prefix (and source prefix,
1201 * if subtrees are used)
1202 */
1203
1204
1205static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1206 const struct in6_addr *addr,
1207 int plen, int offset)
1208{
1209 struct fib6_node *fn;
1210
1211 for (fn = root; fn ; ) {
1212 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1213
1214 /*
1215 * Prefix match
1216 */
1217 if (plen < fn->fn_bit ||
1218 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1219 return NULL;
1220
1221 if (plen == fn->fn_bit)
1222 return fn;
1223
1224 /*
1225 * We have more bits to go
1226 */
1227 if (addr_bit_set(addr, fn->fn_bit))
1228 fn = fn->right;
1229 else
1230 fn = fn->left;
1231 }
1232 return NULL;
1233}
1234
1235struct fib6_node *fib6_locate(struct fib6_node *root,
1236 const struct in6_addr *daddr, int dst_len,
1237 const struct in6_addr *saddr, int src_len)
1238{
1239 struct fib6_node *fn;
1240
1241 fn = fib6_locate_1(root, daddr, dst_len,
1242 offsetof(struct rt6_info, rt6i_dst));
1243
1244#ifdef CONFIG_IPV6_SUBTREES
1245 if (src_len) {
1246 WARN_ON(saddr == NULL);
1247 if (fn && fn->subtree)
1248 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1249 offsetof(struct rt6_info, rt6i_src));
1250 }
1251#endif
1252
1253 if (fn && fn->fn_flags & RTN_RTINFO)
1254 return fn;
1255
1256 return NULL;
1257}
1258
1259
1260/*
1261 * Deletion
1262 *
1263 */
1264
1265static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1266{
1267 if (fn->fn_flags & RTN_ROOT)
1268 return net->ipv6.ip6_null_entry;
1269
1270 while (fn) {
1271 if (fn->left)
1272 return fn->left->leaf;
1273 if (fn->right)
1274 return fn->right->leaf;
1275
1276 fn = FIB6_SUBTREE(fn);
1277 }
1278 return NULL;
1279}
1280
1281/*
1282 * Called to trim the tree of intermediate nodes when possible. "fn"
1283 * is the node we want to try and remove.
1284 */
1285
1286static struct fib6_node *fib6_repair_tree(struct net *net,
1287 struct fib6_node *fn)
1288{
1289 int children;
1290 int nstate;
1291 struct fib6_node *child, *pn;
1292 struct fib6_walker *w;
1293 int iter = 0;
1294
1295 for (;;) {
1296 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1297 iter++;
1298
1299 WARN_ON(fn->fn_flags & RTN_RTINFO);
1300 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1301 WARN_ON(fn->leaf);
1302
1303 children = 0;
1304 child = NULL;
1305 if (fn->right)
1306 child = fn->right, children |= 1;
1307 if (fn->left)
1308 child = fn->left, children |= 2;
1309
1310 if (children == 3 || FIB6_SUBTREE(fn)
1311#ifdef CONFIG_IPV6_SUBTREES
1312 /* Subtree root (i.e. fn) may have one child */
1313 || (children && fn->fn_flags & RTN_ROOT)
1314#endif
1315 ) {
1316 fn->leaf = fib6_find_prefix(net, fn);
1317#if RT6_DEBUG >= 2
1318 if (!fn->leaf) {
1319 WARN_ON(!fn->leaf);
1320 fn->leaf = net->ipv6.ip6_null_entry;
1321 }
1322#endif
1323 atomic_inc(&fn->leaf->rt6i_ref);
1324 return fn->parent;
1325 }
1326
1327 pn = fn->parent;
1328#ifdef CONFIG_IPV6_SUBTREES
1329 if (FIB6_SUBTREE(pn) == fn) {
1330 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1331 FIB6_SUBTREE(pn) = NULL;
1332 nstate = FWS_L;
1333 } else {
1334 WARN_ON(fn->fn_flags & RTN_ROOT);
1335#endif
1336 if (pn->right == fn)
1337 pn->right = child;
1338 else if (pn->left == fn)
1339 pn->left = child;
1340#if RT6_DEBUG >= 2
1341 else
1342 WARN_ON(1);
1343#endif
1344 if (child)
1345 child->parent = pn;
1346 nstate = FWS_R;
1347#ifdef CONFIG_IPV6_SUBTREES
1348 }
1349#endif
1350
1351 read_lock(&net->ipv6.fib6_walker_lock);
1352 FOR_WALKERS(net, w) {
1353 if (!child) {
1354 if (w->root == fn) {
1355 w->root = w->node = NULL;
1356 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1357 } else if (w->node == fn) {
1358 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1359 w->node = pn;
1360 w->state = nstate;
1361 }
1362 } else {
1363 if (w->root == fn) {
1364 w->root = child;
1365 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1366 }
1367 if (w->node == fn) {
1368 w->node = child;
1369 if (children&2) {
1370 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1371 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1372 } else {
1373 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1374 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1375 }
1376 }
1377 }
1378 }
1379 read_unlock(&net->ipv6.fib6_walker_lock);
1380
1381 node_free(fn);
1382 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1383 return pn;
1384
1385 rt6_release(pn->leaf);
1386 pn->leaf = NULL;
1387 fn = pn;
1388 }
1389}
1390
1391static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1392 struct nl_info *info)
1393{
1394 struct fib6_walker *w;
1395 struct rt6_info *rt = *rtp;
1396 struct net *net = info->nl_net;
1397
1398 RT6_TRACE("fib6_del_route\n");
1399
1400 /* Unlink it */
1401 *rtp = rt->dst.rt6_next;
1402 rt->rt6i_node = NULL;
1403 net->ipv6.rt6_stats->fib_rt_entries--;
1404 net->ipv6.rt6_stats->fib_discarded_routes++;
1405
1406 /* Reset round-robin state, if necessary */
1407 if (fn->rr_ptr == rt)
1408 fn->rr_ptr = NULL;
1409
1410 /* Remove this entry from other siblings */
1411 if (rt->rt6i_nsiblings) {
1412 struct rt6_info *sibling, *next_sibling;
1413
1414 list_for_each_entry_safe(sibling, next_sibling,
1415 &rt->rt6i_siblings, rt6i_siblings)
1416 sibling->rt6i_nsiblings--;
1417 rt->rt6i_nsiblings = 0;
1418 list_del_init(&rt->rt6i_siblings);
1419 }
1420
1421 /* Adjust walkers */
1422 read_lock(&net->ipv6.fib6_walker_lock);
1423 FOR_WALKERS(net, w) {
1424 if (w->state == FWS_C && w->leaf == rt) {
1425 RT6_TRACE("walker %p adjusted by delroute\n", w);
1426 w->leaf = rt->dst.rt6_next;
1427 if (!w->leaf)
1428 w->state = FWS_U;
1429 }
1430 }
1431 read_unlock(&net->ipv6.fib6_walker_lock);
1432
1433 rt->dst.rt6_next = NULL;
1434
1435 /* If it was last route, expunge its radix tree node */
1436 if (!fn->leaf) {
1437 fn->fn_flags &= ~RTN_RTINFO;
1438 net->ipv6.rt6_stats->fib_route_nodes--;
1439 fn = fib6_repair_tree(net, fn);
1440 }
1441
1442 fib6_purge_rt(rt, fn, net);
1443
1444 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1445 rt6_release(rt);
1446}
1447
1448int fib6_del(struct rt6_info *rt, struct nl_info *info)
1449{
1450 struct net *net = info->nl_net;
1451 struct fib6_node *fn = rt->rt6i_node;
1452 struct rt6_info **rtp;
1453
1454#if RT6_DEBUG >= 2
1455 if (rt->dst.obsolete > 0) {
1456 WARN_ON(fn);
1457 return -ENOENT;
1458 }
1459#endif
1460 if (!fn || rt == net->ipv6.ip6_null_entry)
1461 return -ENOENT;
1462
1463 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1464
1465 if (!(rt->rt6i_flags & RTF_CACHE)) {
1466 struct fib6_node *pn = fn;
1467#ifdef CONFIG_IPV6_SUBTREES
1468 /* clones of this route might be in another subtree */
1469 if (rt->rt6i_src.plen) {
1470 while (!(pn->fn_flags & RTN_ROOT))
1471 pn = pn->parent;
1472 pn = pn->parent;
1473 }
1474#endif
1475 fib6_prune_clones(info->nl_net, pn);
1476 }
1477
1478 /*
1479 * Walk the leaf entries looking for ourself
1480 */
1481
1482 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1483 if (*rtp == rt) {
1484 fib6_del_route(fn, rtp, info);
1485 return 0;
1486 }
1487 }
1488 return -ENOENT;
1489}
1490
1491/*
1492 * Tree traversal function.
1493 *
1494 * Certainly, it is not interrupt safe.
1495 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1496 * It means, that we can modify tree during walking
1497 * and use this function for garbage collection, clone pruning,
1498 * cleaning tree when a device goes down etc. etc.
1499 *
1500 * It guarantees that every node will be traversed,
1501 * and that it will be traversed only once.
1502 *
1503 * Callback function w->func may return:
1504 * 0 -> continue walking.
1505 * positive value -> walking is suspended (used by tree dumps,
1506 * and probably by gc, if it will be split to several slices)
1507 * negative value -> terminate walking.
1508 *
1509 * The function itself returns:
1510 * 0 -> walk is complete.
1511 * >0 -> walk is incomplete (i.e. suspended)
1512 * <0 -> walk is terminated by an error.
1513 */
1514
1515static int fib6_walk_continue(struct fib6_walker *w)
1516{
1517 struct fib6_node *fn, *pn;
1518
1519 for (;;) {
1520 fn = w->node;
1521 if (!fn)
1522 return 0;
1523
1524 if (w->prune && fn != w->root &&
1525 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1526 w->state = FWS_C;
1527 w->leaf = fn->leaf;
1528 }
1529 switch (w->state) {
1530#ifdef CONFIG_IPV6_SUBTREES
1531 case FWS_S:
1532 if (FIB6_SUBTREE(fn)) {
1533 w->node = FIB6_SUBTREE(fn);
1534 continue;
1535 }
1536 w->state = FWS_L;
1537#endif
1538 case FWS_L:
1539 if (fn->left) {
1540 w->node = fn->left;
1541 w->state = FWS_INIT;
1542 continue;
1543 }
1544 w->state = FWS_R;
1545 case FWS_R:
1546 if (fn->right) {
1547 w->node = fn->right;
1548 w->state = FWS_INIT;
1549 continue;
1550 }
1551 w->state = FWS_C;
1552 w->leaf = fn->leaf;
1553 case FWS_C:
1554 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1555 int err;
1556
1557 if (w->skip) {
1558 w->skip--;
1559 goto skip;
1560 }
1561
1562 err = w->func(w);
1563 if (err)
1564 return err;
1565
1566 w->count++;
1567 continue;
1568 }
1569skip:
1570 w->state = FWS_U;
1571 case FWS_U:
1572 if (fn == w->root)
1573 return 0;
1574 pn = fn->parent;
1575 w->node = pn;
1576#ifdef CONFIG_IPV6_SUBTREES
1577 if (FIB6_SUBTREE(pn) == fn) {
1578 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1579 w->state = FWS_L;
1580 continue;
1581 }
1582#endif
1583 if (pn->left == fn) {
1584 w->state = FWS_R;
1585 continue;
1586 }
1587 if (pn->right == fn) {
1588 w->state = FWS_C;
1589 w->leaf = w->node->leaf;
1590 continue;
1591 }
1592#if RT6_DEBUG >= 2
1593 WARN_ON(1);
1594#endif
1595 }
1596 }
1597}
1598
1599static int fib6_walk(struct net *net, struct fib6_walker *w)
1600{
1601 int res;
1602
1603 w->state = FWS_INIT;
1604 w->node = w->root;
1605
1606 fib6_walker_link(net, w);
1607 res = fib6_walk_continue(w);
1608 if (res <= 0)
1609 fib6_walker_unlink(net, w);
1610 return res;
1611}
1612
1613static int fib6_clean_node(struct fib6_walker *w)
1614{
1615 int res;
1616 struct rt6_info *rt;
1617 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1618 struct nl_info info = {
1619 .nl_net = c->net,
1620 };
1621
1622 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1623 w->node->fn_sernum != c->sernum)
1624 w->node->fn_sernum = c->sernum;
1625
1626 if (!c->func) {
1627 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1628 w->leaf = NULL;
1629 return 0;
1630 }
1631
1632 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1633 res = c->func(rt, c->arg);
1634 if (res < 0) {
1635 w->leaf = rt;
1636 res = fib6_del(rt, &info);
1637 if (res) {
1638#if RT6_DEBUG >= 2
1639 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1640 __func__, rt, rt->rt6i_node, res);
1641#endif
1642 continue;
1643 }
1644 return 0;
1645 }
1646 WARN_ON(res != 0);
1647 }
1648 w->leaf = rt;
1649 return 0;
1650}
1651
1652/*
1653 * Convenient frontend to tree walker.
1654 *
1655 * func is called on each route.
1656 * It may return -1 -> delete this route.
1657 * 0 -> continue walking
1658 *
1659 * prune==1 -> only immediate children of node (certainly,
1660 * ignoring pure split nodes) will be scanned.
1661 */
1662
1663static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1664 int (*func)(struct rt6_info *, void *arg),
1665 bool prune, int sernum, void *arg)
1666{
1667 struct fib6_cleaner c;
1668
1669 c.w.root = root;
1670 c.w.func = fib6_clean_node;
1671 c.w.prune = prune;
1672 c.w.count = 0;
1673 c.w.skip = 0;
1674 c.func = func;
1675 c.sernum = sernum;
1676 c.arg = arg;
1677 c.net = net;
1678
1679 fib6_walk(net, &c.w);
1680}
1681
1682static void __fib6_clean_all(struct net *net,
1683 int (*func)(struct rt6_info *, void *),
1684 int sernum, void *arg)
1685{
1686 struct fib6_table *table;
1687 struct hlist_head *head;
1688 unsigned int h;
1689
1690 rcu_read_lock();
1691 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1692 head = &net->ipv6.fib_table_hash[h];
1693 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1694 write_lock_bh(&table->tb6_lock);
1695 fib6_clean_tree(net, &table->tb6_root,
1696 func, false, sernum, arg);
1697 write_unlock_bh(&table->tb6_lock);
1698 }
1699 }
1700 rcu_read_unlock();
1701}
1702
1703void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1704 void *arg)
1705{
1706 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1707}
1708
1709static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1710{
1711 if (rt->rt6i_flags & RTF_CACHE) {
1712 RT6_TRACE("pruning clone %p\n", rt);
1713 return -1;
1714 }
1715
1716 return 0;
1717}
1718
1719static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1720{
1721 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1722 FIB6_NO_SERNUM_CHANGE, NULL);
1723}
1724
1725static void fib6_flush_trees(struct net *net)
1726{
1727 int new_sernum = fib6_new_sernum(net);
1728
1729 __fib6_clean_all(net, NULL, new_sernum, NULL);
1730}
1731
1732/*
1733 * Garbage collection
1734 */
1735
1736struct fib6_gc_args
1737{
1738 int timeout;
1739 int more;
1740};
1741
1742static int fib6_age(struct rt6_info *rt, void *arg)
1743{
1744 struct fib6_gc_args *gc_args = arg;
1745 unsigned long now = jiffies;
1746
1747 /*
1748 * check addrconf expiration here.
1749 * Routes are expired even if they are in use.
1750 *
1751 * Also age clones. Note, that clones are aged out
1752 * only if they are not in use now.
1753 */
1754
1755 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1756 if (time_after(now, rt->dst.expires)) {
1757 RT6_TRACE("expiring %p\n", rt);
1758 return -1;
1759 }
1760 gc_args->more++;
1761 } else if (rt->rt6i_flags & RTF_CACHE) {
1762 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1763 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1764 RT6_TRACE("aging clone %p\n", rt);
1765 return -1;
1766 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1767 struct neighbour *neigh;
1768 __u8 neigh_flags = 0;
1769
1770 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1771 if (neigh) {
1772 neigh_flags = neigh->flags;
1773 neigh_release(neigh);
1774 }
1775 if (!(neigh_flags & NTF_ROUTER)) {
1776 RT6_TRACE("purging route %p via non-router but gateway\n",
1777 rt);
1778 return -1;
1779 }
1780 }
1781 gc_args->more++;
1782 }
1783
1784 return 0;
1785}
1786
1787void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1788{
1789 struct fib6_gc_args gc_args;
1790 unsigned long now;
1791
1792 if (force) {
1793 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1794 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1795 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1796 return;
1797 }
1798 gc_args.timeout = expires ? (int)expires :
1799 net->ipv6.sysctl.ip6_rt_gc_interval;
1800
1801 gc_args.more = icmp6_dst_gc();
1802
1803 fib6_clean_all(net, fib6_age, &gc_args);
1804 now = jiffies;
1805 net->ipv6.ip6_rt_last_gc = now;
1806
1807 if (gc_args.more)
1808 mod_timer(&net->ipv6.ip6_fib_timer,
1809 round_jiffies(now
1810 + net->ipv6.sysctl.ip6_rt_gc_interval));
1811 else
1812 del_timer(&net->ipv6.ip6_fib_timer);
1813 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1814}
1815
1816static void fib6_gc_timer_cb(unsigned long arg)
1817{
1818 fib6_run_gc(0, (struct net *)arg, true);
1819}
1820
1821static int __net_init fib6_net_init(struct net *net)
1822{
1823 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1824
1825 spin_lock_init(&net->ipv6.fib6_gc_lock);
1826 rwlock_init(&net->ipv6.fib6_walker_lock);
1827 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1828 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1829
1830 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1831 if (!net->ipv6.rt6_stats)
1832 goto out_timer;
1833
1834 /* Avoid false sharing : Use at least a full cache line */
1835 size = max_t(size_t, size, L1_CACHE_BYTES);
1836
1837 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1838 if (!net->ipv6.fib_table_hash)
1839 goto out_rt6_stats;
1840
1841 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1842 GFP_KERNEL);
1843 if (!net->ipv6.fib6_main_tbl)
1844 goto out_fib_table_hash;
1845
1846 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1847 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1848 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1849 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1850 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1851
1852#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1853 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1854 GFP_KERNEL);
1855 if (!net->ipv6.fib6_local_tbl)
1856 goto out_fib6_main_tbl;
1857 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1858 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1859 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1860 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1861 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1862#endif
1863 fib6_tables_init(net);
1864
1865 return 0;
1866
1867#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1868out_fib6_main_tbl:
1869 kfree(net->ipv6.fib6_main_tbl);
1870#endif
1871out_fib_table_hash:
1872 kfree(net->ipv6.fib_table_hash);
1873out_rt6_stats:
1874 kfree(net->ipv6.rt6_stats);
1875out_timer:
1876 return -ENOMEM;
1877}
1878
1879static void fib6_net_exit(struct net *net)
1880{
1881 rt6_ifdown(net, NULL);
1882 del_timer_sync(&net->ipv6.ip6_fib_timer);
1883
1884#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1885 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1886 kfree(net->ipv6.fib6_local_tbl);
1887#endif
1888 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1889 kfree(net->ipv6.fib6_main_tbl);
1890 kfree(net->ipv6.fib_table_hash);
1891 kfree(net->ipv6.rt6_stats);
1892}
1893
1894static struct pernet_operations fib6_net_ops = {
1895 .init = fib6_net_init,
1896 .exit = fib6_net_exit,
1897};
1898
1899int __init fib6_init(void)
1900{
1901 int ret = -ENOMEM;
1902
1903 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1904 sizeof(struct fib6_node),
1905 0, SLAB_HWCACHE_ALIGN,
1906 NULL);
1907 if (!fib6_node_kmem)
1908 goto out;
1909
1910 ret = register_pernet_subsys(&fib6_net_ops);
1911 if (ret)
1912 goto out_kmem_cache_create;
1913
1914 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1915 NULL);
1916 if (ret)
1917 goto out_unregister_subsys;
1918
1919 __fib6_flush_trees = fib6_flush_trees;
1920out:
1921 return ret;
1922
1923out_unregister_subsys:
1924 unregister_pernet_subsys(&fib6_net_ops);
1925out_kmem_cache_create:
1926 kmem_cache_destroy(fib6_node_kmem);
1927 goto out;
1928}
1929
1930void fib6_gc_cleanup(void)
1931{
1932 unregister_pernet_subsys(&fib6_net_ops);
1933 kmem_cache_destroy(fib6_node_kmem);
1934}
1935
1936#ifdef CONFIG_PROC_FS
1937
1938struct ipv6_route_iter {
1939 struct seq_net_private p;
1940 struct fib6_walker w;
1941 loff_t skip;
1942 struct fib6_table *tbl;
1943 int sernum;
1944};
1945
1946static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1947{
1948 struct rt6_info *rt = v;
1949 struct ipv6_route_iter *iter = seq->private;
1950
1951 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1952
1953#ifdef CONFIG_IPV6_SUBTREES
1954 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1955#else
1956 seq_puts(seq, "00000000000000000000000000000000 00 ");
1957#endif
1958 if (rt->rt6i_flags & RTF_GATEWAY)
1959 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1960 else
1961 seq_puts(seq, "00000000000000000000000000000000");
1962
1963 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1964 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1965 rt->dst.__use, rt->rt6i_flags,
1966 rt->dst.dev ? rt->dst.dev->name : "");
1967 iter->w.leaf = NULL;
1968 return 0;
1969}
1970
1971static int ipv6_route_yield(struct fib6_walker *w)
1972{
1973 struct ipv6_route_iter *iter = w->args;
1974
1975 if (!iter->skip)
1976 return 1;
1977
1978 do {
1979 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1980 iter->skip--;
1981 if (!iter->skip && iter->w.leaf)
1982 return 1;
1983 } while (iter->w.leaf);
1984
1985 return 0;
1986}
1987
1988static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1989 struct net *net)
1990{
1991 memset(&iter->w, 0, sizeof(iter->w));
1992 iter->w.func = ipv6_route_yield;
1993 iter->w.root = &iter->tbl->tb6_root;
1994 iter->w.state = FWS_INIT;
1995 iter->w.node = iter->w.root;
1996 iter->w.args = iter;
1997 iter->sernum = iter->w.root->fn_sernum;
1998 INIT_LIST_HEAD(&iter->w.lh);
1999 fib6_walker_link(net, &iter->w);
2000}
2001
2002static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2003 struct net *net)
2004{
2005 unsigned int h;
2006 struct hlist_node *node;
2007
2008 if (tbl) {
2009 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2010 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2011 } else {
2012 h = 0;
2013 node = NULL;
2014 }
2015
2016 while (!node && h < FIB6_TABLE_HASHSZ) {
2017 node = rcu_dereference_bh(
2018 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2019 }
2020 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2021}
2022
2023static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2024{
2025 if (iter->sernum != iter->w.root->fn_sernum) {
2026 iter->sernum = iter->w.root->fn_sernum;
2027 iter->w.state = FWS_INIT;
2028 iter->w.node = iter->w.root;
2029 WARN_ON(iter->w.skip);
2030 iter->w.skip = iter->w.count;
2031 }
2032}
2033
2034static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2035{
2036 int r;
2037 struct rt6_info *n;
2038 struct net *net = seq_file_net(seq);
2039 struct ipv6_route_iter *iter = seq->private;
2040
2041 if (!v)
2042 goto iter_table;
2043
2044 n = ((struct rt6_info *)v)->dst.rt6_next;
2045 if (n) {
2046 ++*pos;
2047 return n;
2048 }
2049
2050iter_table:
2051 ipv6_route_check_sernum(iter);
2052 read_lock(&iter->tbl->tb6_lock);
2053 r = fib6_walk_continue(&iter->w);
2054 read_unlock(&iter->tbl->tb6_lock);
2055 if (r > 0) {
2056 if (v)
2057 ++*pos;
2058 return iter->w.leaf;
2059 } else if (r < 0) {
2060 fib6_walker_unlink(net, &iter->w);
2061 return NULL;
2062 }
2063 fib6_walker_unlink(net, &iter->w);
2064
2065 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2066 if (!iter->tbl)
2067 return NULL;
2068
2069 ipv6_route_seq_setup_walk(iter, net);
2070 goto iter_table;
2071}
2072
2073static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2074 __acquires(RCU_BH)
2075{
2076 struct net *net = seq_file_net(seq);
2077 struct ipv6_route_iter *iter = seq->private;
2078
2079 rcu_read_lock_bh();
2080 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2081 iter->skip = *pos;
2082
2083 if (iter->tbl) {
2084 ipv6_route_seq_setup_walk(iter, net);
2085 return ipv6_route_seq_next(seq, NULL, pos);
2086 } else {
2087 return NULL;
2088 }
2089}
2090
2091static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2092{
2093 struct fib6_walker *w = &iter->w;
2094 return w->node && !(w->state == FWS_U && w->node == w->root);
2095}
2096
2097static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2098 __releases(RCU_BH)
2099{
2100 struct net *net = seq_file_net(seq);
2101 struct ipv6_route_iter *iter = seq->private;
2102
2103 if (ipv6_route_iter_active(iter))
2104 fib6_walker_unlink(net, &iter->w);
2105
2106 rcu_read_unlock_bh();
2107}
2108
2109static const struct seq_operations ipv6_route_seq_ops = {
2110 .start = ipv6_route_seq_start,
2111 .next = ipv6_route_seq_next,
2112 .stop = ipv6_route_seq_stop,
2113 .show = ipv6_route_seq_show
2114};
2115
2116int ipv6_route_open(struct inode *inode, struct file *file)
2117{
2118 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2119 sizeof(struct ipv6_route_iter));
2120}
2121
2122#endif /* CONFIG_PROC_FS */