Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/sched.h>
 
   8#include <linux/bio.h>
   9#include <linux/slab.h>
 
  10#include <linux/blkdev.h>
 
 
 
 
 
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
  16#include "messages.h"
  17#include "misc.h"
  18#include "ctree.h"
 
  19#include "disk-io.h"
 
 
  20#include "volumes.h"
  21#include "raid56.h"
  22#include "async-thread.h"
  23#include "file-item.h"
  24#include "btrfs_inode.h"
  25
  26/* set when additional merges to this rbio are not allowed */
  27#define RBIO_RMW_LOCKED_BIT	1
  28
  29/*
  30 * set when this rbio is sitting in the hash, but it is just a cache
  31 * of past RMW
  32 */
  33#define RBIO_CACHE_BIT		2
  34
  35/*
  36 * set when it is safe to trust the stripe_pages for caching
  37 */
  38#define RBIO_CACHE_READY_BIT	3
  39
  40#define RBIO_CACHE_SIZE 1024
  41
  42#define BTRFS_STRIPE_HASH_TABLE_BITS				11
 
 
 
 
 
  43
  44/* Used by the raid56 code to lock stripes for read/modify/write */
  45struct btrfs_stripe_hash {
 
 
 
 
 
 
 
  46	struct list_head hash_list;
  47	spinlock_t lock;
  48};
  49
  50/* Used by the raid56 code to lock stripes for read/modify/write */
  51struct btrfs_stripe_hash_table {
 
  52	struct list_head stripe_cache;
  53	spinlock_t cache_lock;
  54	int cache_size;
  55	struct btrfs_stripe_hash table[];
  56};
  57
  58/*
  59 * A bvec like structure to present a sector inside a page.
  60 *
  61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
  62 */
  63struct sector_ptr {
  64	struct page *page;
  65	unsigned int pgoff:24;
  66	unsigned int uptodate:8;
  67};
  68
  69static void rmw_rbio_work(struct work_struct *work);
  70static void rmw_rbio_work_locked(struct work_struct *work);
  71static void index_rbio_pages(struct btrfs_raid_bio *rbio);
  72static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 
 
 
  73
  74static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
  75static void scrub_rbio_work_locked(struct work_struct *work);
 
 
 
 
 
  76
  77static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
  78{
  79	bitmap_free(rbio->error_bitmap);
  80	kfree(rbio->stripe_pages);
  81	kfree(rbio->bio_sectors);
  82	kfree(rbio->stripe_sectors);
  83	kfree(rbio->finish_pointers);
  84}
  85
  86static void free_raid_bio(struct btrfs_raid_bio *rbio)
  87{
  88	int i;
  89
  90	if (!refcount_dec_and_test(&rbio->refs))
  91		return;
  92
  93	WARN_ON(!list_empty(&rbio->stripe_cache));
  94	WARN_ON(!list_empty(&rbio->hash_list));
  95	WARN_ON(!bio_list_empty(&rbio->bio_list));
  96
  97	for (i = 0; i < rbio->nr_pages; i++) {
  98		if (rbio->stripe_pages[i]) {
  99			__free_page(rbio->stripe_pages[i]);
 100			rbio->stripe_pages[i] = NULL;
 101		}
 102	}
 
 
 103
 104	btrfs_put_bioc(rbio->bioc);
 105	free_raid_bio_pointers(rbio);
 106	kfree(rbio);
 107}
 108
 109static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
 110{
 111	INIT_WORK(&rbio->work, work_func);
 112	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 113}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115/*
 116 * the stripe hash table is used for locking, and to collect
 117 * bios in hopes of making a full stripe
 118 */
 119int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 120{
 121	struct btrfs_stripe_hash_table *table;
 122	struct btrfs_stripe_hash_table *x;
 123	struct btrfs_stripe_hash *cur;
 124	struct btrfs_stripe_hash *h;
 125	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 126	int i;
 
 127
 128	if (info->stripe_hash_table)
 129		return 0;
 130
 131	/*
 132	 * The table is large, starting with order 4 and can go as high as
 133	 * order 7 in case lock debugging is turned on.
 134	 *
 135	 * Try harder to allocate and fallback to vmalloc to lower the chance
 136	 * of a failing mount.
 137	 */
 138	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 139	if (!table)
 140		return -ENOMEM;
 
 
 
 
 141
 142	spin_lock_init(&table->cache_lock);
 143	INIT_LIST_HEAD(&table->stripe_cache);
 144
 145	h = table->table;
 146
 147	for (i = 0; i < num_entries; i++) {
 148		cur = h + i;
 149		INIT_LIST_HEAD(&cur->hash_list);
 150		spin_lock_init(&cur->lock);
 
 151	}
 152
 153	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 154	kvfree(x);
 
 155	return 0;
 156}
 157
 158/*
 159 * caching an rbio means to copy anything from the
 160 * bio_sectors array into the stripe_pages array.  We
 161 * use the page uptodate bit in the stripe cache array
 162 * to indicate if it has valid data
 163 *
 164 * once the caching is done, we set the cache ready
 165 * bit.
 166 */
 167static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 168{
 169	int i;
 
 
 170	int ret;
 171
 172	ret = alloc_rbio_pages(rbio);
 173	if (ret)
 174		return;
 175
 176	for (i = 0; i < rbio->nr_sectors; i++) {
 177		/* Some range not covered by bio (partial write), skip it */
 178		if (!rbio->bio_sectors[i].page) {
 179			/*
 180			 * Even if the sector is not covered by bio, if it is
 181			 * a data sector it should still be uptodate as it is
 182			 * read from disk.
 183			 */
 184			if (i < rbio->nr_data * rbio->stripe_nsectors)
 185				ASSERT(rbio->stripe_sectors[i].uptodate);
 186			continue;
 187		}
 188
 189		ASSERT(rbio->stripe_sectors[i].page);
 190		memcpy_page(rbio->stripe_sectors[i].page,
 191			    rbio->stripe_sectors[i].pgoff,
 192			    rbio->bio_sectors[i].page,
 193			    rbio->bio_sectors[i].pgoff,
 194			    rbio->bioc->fs_info->sectorsize);
 195		rbio->stripe_sectors[i].uptodate = 1;
 
 196	}
 197	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 198}
 199
 200/*
 201 * we hash on the first logical address of the stripe
 202 */
 203static int rbio_bucket(struct btrfs_raid_bio *rbio)
 204{
 205	u64 num = rbio->bioc->full_stripe_logical;
 206
 207	/*
 208	 * we shift down quite a bit.  We're using byte
 209	 * addressing, and most of the lower bits are zeros.
 210	 * This tends to upset hash_64, and it consistently
 211	 * returns just one or two different values.
 212	 *
 213	 * shifting off the lower bits fixes things.
 214	 */
 215	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 216}
 217
 218static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
 219				       unsigned int page_nr)
 220{
 221	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 222	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 223	int i;
 224
 225	ASSERT(page_nr < rbio->nr_pages);
 226
 227	for (i = sectors_per_page * page_nr;
 228	     i < sectors_per_page * page_nr + sectors_per_page;
 229	     i++) {
 230		if (!rbio->stripe_sectors[i].uptodate)
 231			return false;
 232	}
 233	return true;
 234}
 235
 236/*
 237 * Update the stripe_sectors[] array to use correct page and pgoff
 238 *
 239 * Should be called every time any page pointer in stripes_pages[] got modified.
 240 */
 241static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
 242{
 243	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 244	u32 offset;
 245	int i;
 246
 247	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
 248		int page_index = offset >> PAGE_SHIFT;
 249
 250		ASSERT(page_index < rbio->nr_pages);
 251		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
 252		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
 253	}
 254}
 255
 256static void steal_rbio_page(struct btrfs_raid_bio *src,
 257			    struct btrfs_raid_bio *dest, int page_nr)
 258{
 259	const u32 sectorsize = src->bioc->fs_info->sectorsize;
 260	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 261	int i;
 262
 263	if (dest->stripe_pages[page_nr])
 264		__free_page(dest->stripe_pages[page_nr]);
 265	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
 266	src->stripe_pages[page_nr] = NULL;
 267
 268	/* Also update the sector->uptodate bits. */
 269	for (i = sectors_per_page * page_nr;
 270	     i < sectors_per_page * page_nr + sectors_per_page; i++)
 271		dest->stripe_sectors[i].uptodate = true;
 272}
 273
 274static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
 275{
 276	const int sector_nr = (page_nr << PAGE_SHIFT) >>
 277			      rbio->bioc->fs_info->sectorsize_bits;
 278
 279	/*
 280	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
 281	 * we won't have a page which is half data half parity.
 282	 *
 283	 * Thus if the first sector of the page belongs to data stripes, then
 284	 * the full page belongs to data stripes.
 285	 */
 286	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
 287}
 288
 289/*
 290 * Stealing an rbio means taking all the uptodate pages from the stripe array
 291 * in the source rbio and putting them into the destination rbio.
 292 *
 293 * This will also update the involved stripe_sectors[] which are referring to
 294 * the old pages.
 295 */
 296static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 297{
 298	int i;
 
 
 299
 300	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 301		return;
 302
 303	for (i = 0; i < dest->nr_pages; i++) {
 304		struct page *p = src->stripe_pages[i];
 305
 306		/*
 307		 * We don't need to steal P/Q pages as they will always be
 308		 * regenerated for RMW or full write anyway.
 309		 */
 310		if (!is_data_stripe_page(src, i))
 311			continue;
 
 312
 313		/*
 314		 * If @src already has RBIO_CACHE_READY_BIT, it should have
 315		 * all data stripe pages present and uptodate.
 316		 */
 317		ASSERT(p);
 318		ASSERT(full_page_sectors_uptodate(src, i));
 319		steal_rbio_page(src, dest, i);
 320	}
 321	index_stripe_sectors(dest);
 322	index_stripe_sectors(src);
 323}
 324
 325/*
 326 * merging means we take the bio_list from the victim and
 327 * splice it into the destination.  The victim should
 328 * be discarded afterwards.
 329 *
 330 * must be called with dest->rbio_list_lock held
 331 */
 332static void merge_rbio(struct btrfs_raid_bio *dest,
 333		       struct btrfs_raid_bio *victim)
 334{
 335	bio_list_merge(&dest->bio_list, &victim->bio_list);
 336	dest->bio_list_bytes += victim->bio_list_bytes;
 337	/* Also inherit the bitmaps from @victim. */
 338	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
 339		  dest->stripe_nsectors);
 340	bio_list_init(&victim->bio_list);
 341}
 342
 343/*
 344 * used to prune items that are in the cache.  The caller
 345 * must hold the hash table lock.
 346 */
 347static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 348{
 349	int bucket = rbio_bucket(rbio);
 350	struct btrfs_stripe_hash_table *table;
 351	struct btrfs_stripe_hash *h;
 352	int freeit = 0;
 353
 354	/*
 355	 * check the bit again under the hash table lock.
 356	 */
 357	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 358		return;
 359
 360	table = rbio->bioc->fs_info->stripe_hash_table;
 361	h = table->table + bucket;
 362
 363	/* hold the lock for the bucket because we may be
 364	 * removing it from the hash table
 365	 */
 366	spin_lock(&h->lock);
 367
 368	/*
 369	 * hold the lock for the bio list because we need
 370	 * to make sure the bio list is empty
 371	 */
 372	spin_lock(&rbio->bio_list_lock);
 373
 374	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 375		list_del_init(&rbio->stripe_cache);
 376		table->cache_size -= 1;
 377		freeit = 1;
 378
 379		/* if the bio list isn't empty, this rbio is
 380		 * still involved in an IO.  We take it out
 381		 * of the cache list, and drop the ref that
 382		 * was held for the list.
 383		 *
 384		 * If the bio_list was empty, we also remove
 385		 * the rbio from the hash_table, and drop
 386		 * the corresponding ref
 387		 */
 388		if (bio_list_empty(&rbio->bio_list)) {
 389			if (!list_empty(&rbio->hash_list)) {
 390				list_del_init(&rbio->hash_list);
 391				refcount_dec(&rbio->refs);
 392				BUG_ON(!list_empty(&rbio->plug_list));
 393			}
 394		}
 395	}
 396
 397	spin_unlock(&rbio->bio_list_lock);
 398	spin_unlock(&h->lock);
 399
 400	if (freeit)
 401		free_raid_bio(rbio);
 402}
 403
 404/*
 405 * prune a given rbio from the cache
 406 */
 407static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 408{
 409	struct btrfs_stripe_hash_table *table;
 
 410
 411	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 412		return;
 413
 414	table = rbio->bioc->fs_info->stripe_hash_table;
 415
 416	spin_lock(&table->cache_lock);
 417	__remove_rbio_from_cache(rbio);
 418	spin_unlock(&table->cache_lock);
 419}
 420
 421/*
 422 * remove everything in the cache
 423 */
 424static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 425{
 426	struct btrfs_stripe_hash_table *table;
 
 427	struct btrfs_raid_bio *rbio;
 428
 429	table = info->stripe_hash_table;
 430
 431	spin_lock(&table->cache_lock);
 432	while (!list_empty(&table->stripe_cache)) {
 433		rbio = list_entry(table->stripe_cache.next,
 434				  struct btrfs_raid_bio,
 435				  stripe_cache);
 436		__remove_rbio_from_cache(rbio);
 437	}
 438	spin_unlock(&table->cache_lock);
 439}
 440
 441/*
 442 * remove all cached entries and free the hash table
 443 * used by unmount
 444 */
 445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 446{
 447	if (!info->stripe_hash_table)
 448		return;
 449	btrfs_clear_rbio_cache(info);
 450	kvfree(info->stripe_hash_table);
 451	info->stripe_hash_table = NULL;
 452}
 453
 454/*
 455 * insert an rbio into the stripe cache.  It
 456 * must have already been prepared by calling
 457 * cache_rbio_pages
 458 *
 459 * If this rbio was already cached, it gets
 460 * moved to the front of the lru.
 461 *
 462 * If the size of the rbio cache is too big, we
 463 * prune an item.
 464 */
 465static void cache_rbio(struct btrfs_raid_bio *rbio)
 466{
 467	struct btrfs_stripe_hash_table *table;
 
 468
 469	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 470		return;
 471
 472	table = rbio->bioc->fs_info->stripe_hash_table;
 473
 474	spin_lock(&table->cache_lock);
 475	spin_lock(&rbio->bio_list_lock);
 476
 477	/* bump our ref if we were not in the list before */
 478	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 479		refcount_inc(&rbio->refs);
 480
 481	if (!list_empty(&rbio->stripe_cache)){
 482		list_move(&rbio->stripe_cache, &table->stripe_cache);
 483	} else {
 484		list_add(&rbio->stripe_cache, &table->stripe_cache);
 485		table->cache_size += 1;
 486	}
 487
 488	spin_unlock(&rbio->bio_list_lock);
 489
 490	if (table->cache_size > RBIO_CACHE_SIZE) {
 491		struct btrfs_raid_bio *found;
 492
 493		found = list_entry(table->stripe_cache.prev,
 494				  struct btrfs_raid_bio,
 495				  stripe_cache);
 496
 497		if (found != rbio)
 498			__remove_rbio_from_cache(found);
 499	}
 500
 501	spin_unlock(&table->cache_lock);
 502}
 503
 504/*
 505 * helper function to run the xor_blocks api.  It is only
 506 * able to do MAX_XOR_BLOCKS at a time, so we need to
 507 * loop through.
 508 */
 509static void run_xor(void **pages, int src_cnt, ssize_t len)
 510{
 511	int src_off = 0;
 512	int xor_src_cnt = 0;
 513	void *dest = pages[src_cnt];
 514
 515	while(src_cnt > 0) {
 516		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 517		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 518
 519		src_cnt -= xor_src_cnt;
 520		src_off += xor_src_cnt;
 521	}
 522}
 523
 524/*
 525 * Returns true if the bio list inside this rbio covers an entire stripe (no
 526 * rmw required).
 
 
 
 527 */
 528static int rbio_is_full(struct btrfs_raid_bio *rbio)
 529{
 530	unsigned long size = rbio->bio_list_bytes;
 531	int ret = 1;
 532
 533	spin_lock(&rbio->bio_list_lock);
 534	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
 535		ret = 0;
 536	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
 537	spin_unlock(&rbio->bio_list_lock);
 538
 
 
 
 
 
 
 
 
 
 
 
 
 539	return ret;
 540}
 541
 542/*
 543 * returns 1 if it is safe to merge two rbios together.
 544 * The merging is safe if the two rbios correspond to
 545 * the same stripe and if they are both going in the same
 546 * direction (read vs write), and if neither one is
 547 * locked for final IO
 548 *
 549 * The caller is responsible for locking such that
 550 * rmw_locked is safe to test
 551 */
 552static int rbio_can_merge(struct btrfs_raid_bio *last,
 553			  struct btrfs_raid_bio *cur)
 554{
 555	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 556	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 557		return 0;
 558
 559	/*
 560	 * we can't merge with cached rbios, since the
 561	 * idea is that when we merge the destination
 562	 * rbio is going to run our IO for us.  We can
 563	 * steal from cached rbios though, other functions
 564	 * handle that.
 565	 */
 566	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 567	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 568		return 0;
 569
 570	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
 
 571		return 0;
 572
 573	/* we can't merge with different operations */
 574	if (last->operation != cur->operation)
 575		return 0;
 576	/*
 577	 * We've need read the full stripe from the drive.
 578	 * check and repair the parity and write the new results.
 579	 *
 580	 * We're not allowed to add any new bios to the
 581	 * bio list here, anyone else that wants to
 582	 * change this stripe needs to do their own rmw.
 583	 */
 584	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 
 585		return 0;
 586
 587	if (last->operation == BTRFS_RBIO_READ_REBUILD)
 
 588		return 0;
 589
 590	return 1;
 591}
 592
 593static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
 594					     unsigned int stripe_nr,
 595					     unsigned int sector_nr)
 596{
 597	ASSERT(stripe_nr < rbio->real_stripes);
 598	ASSERT(sector_nr < rbio->stripe_nsectors);
 599
 600	return stripe_nr * rbio->stripe_nsectors + sector_nr;
 601}
 602
 603/* Return a sector from rbio->stripe_sectors, not from the bio list */
 604static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
 605					     unsigned int stripe_nr,
 606					     unsigned int sector_nr)
 
 
 607{
 608	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
 609							      sector_nr)];
 610}
 611
 612/* Grab a sector inside P stripe */
 613static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
 614					      unsigned int sector_nr)
 
 615{
 616	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
 617}
 618
 619/* Grab a sector inside Q stripe, return NULL if not RAID6 */
 620static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
 621					      unsigned int sector_nr)
 
 
 622{
 623	if (rbio->nr_data + 1 == rbio->real_stripes)
 624		return NULL;
 625	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
 626}
 627
 628/*
 629 * The first stripe in the table for a logical address
 630 * has the lock.  rbios are added in one of three ways:
 631 *
 632 * 1) Nobody has the stripe locked yet.  The rbio is given
 633 * the lock and 0 is returned.  The caller must start the IO
 634 * themselves.
 635 *
 636 * 2) Someone has the stripe locked, but we're able to merge
 637 * with the lock owner.  The rbio is freed and the IO will
 638 * start automatically along with the existing rbio.  1 is returned.
 639 *
 640 * 3) Someone has the stripe locked, but we're not able to merge.
 641 * The rbio is added to the lock owner's plug list, or merged into
 642 * an rbio already on the plug list.  When the lock owner unlocks,
 643 * the next rbio on the list is run and the IO is started automatically.
 644 * 1 is returned
 645 *
 646 * If we return 0, the caller still owns the rbio and must continue with
 647 * IO submission.  If we return 1, the caller must assume the rbio has
 648 * already been freed.
 649 */
 650static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 651{
 652	struct btrfs_stripe_hash *h;
 
 653	struct btrfs_raid_bio *cur;
 654	struct btrfs_raid_bio *pending;
 
 
 655	struct btrfs_raid_bio *freeit = NULL;
 656	struct btrfs_raid_bio *cache_drop = NULL;
 657	int ret = 0;
 
 658
 659	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 660
 661	spin_lock(&h->lock);
 662	list_for_each_entry(cur, &h->hash_list, hash_list) {
 663		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
 664			continue;
 665
 666		spin_lock(&cur->bio_list_lock);
 667
 668		/* Can we steal this cached rbio's pages? */
 669		if (bio_list_empty(&cur->bio_list) &&
 670		    list_empty(&cur->plug_list) &&
 671		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 672		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 673			list_del_init(&cur->hash_list);
 674			refcount_dec(&cur->refs);
 675
 676			steal_rbio(cur, rbio);
 677			cache_drop = cur;
 678			spin_unlock(&cur->bio_list_lock);
 679
 680			goto lockit;
 681		}
 682
 683		/* Can we merge into the lock owner? */
 684		if (rbio_can_merge(cur, rbio)) {
 685			merge_rbio(cur, rbio);
 686			spin_unlock(&cur->bio_list_lock);
 687			freeit = rbio;
 688			ret = 1;
 689			goto out;
 690		}
 691
 
 
 692
 693		/*
 694		 * We couldn't merge with the running rbio, see if we can merge
 695		 * with the pending ones.  We don't have to check for rmw_locked
 696		 * because there is no way they are inside finish_rmw right now
 697		 */
 698		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 699			if (rbio_can_merge(pending, rbio)) {
 700				merge_rbio(pending, rbio);
 701				spin_unlock(&cur->bio_list_lock);
 702				freeit = rbio;
 703				ret = 1;
 704				goto out;
 705			}
 706		}
 707
 708		/*
 709		 * No merging, put us on the tail of the plug list, our rbio
 710		 * will be started with the currently running rbio unlocks
 711		 */
 712		list_add_tail(&rbio->plug_list, &cur->plug_list);
 713		spin_unlock(&cur->bio_list_lock);
 714		ret = 1;
 715		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716	}
 717lockit:
 718	refcount_inc(&rbio->refs);
 719	list_add(&rbio->hash_list, &h->hash_list);
 720out:
 721	spin_unlock(&h->lock);
 722	if (cache_drop)
 723		remove_rbio_from_cache(cache_drop);
 724	if (freeit)
 725		free_raid_bio(freeit);
 726	return ret;
 727}
 728
 729static void recover_rbio_work_locked(struct work_struct *work);
 730
 731/*
 732 * called as rmw or parity rebuild is completed.  If the plug list has more
 733 * rbios waiting for this stripe, the next one on the list will be started
 734 */
 735static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 736{
 737	int bucket;
 738	struct btrfs_stripe_hash *h;
 
 739	int keep_cache = 0;
 740
 741	bucket = rbio_bucket(rbio);
 742	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 743
 744	if (list_empty(&rbio->plug_list))
 745		cache_rbio(rbio);
 746
 747	spin_lock(&h->lock);
 748	spin_lock(&rbio->bio_list_lock);
 749
 750	if (!list_empty(&rbio->hash_list)) {
 751		/*
 752		 * if we're still cached and there is no other IO
 753		 * to perform, just leave this rbio here for others
 754		 * to steal from later
 755		 */
 756		if (list_empty(&rbio->plug_list) &&
 757		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 758			keep_cache = 1;
 759			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 760			BUG_ON(!bio_list_empty(&rbio->bio_list));
 761			goto done;
 762		}
 763
 764		list_del_init(&rbio->hash_list);
 765		refcount_dec(&rbio->refs);
 766
 767		/*
 768		 * we use the plug list to hold all the rbios
 769		 * waiting for the chance to lock this stripe.
 770		 * hand the lock over to one of them.
 771		 */
 772		if (!list_empty(&rbio->plug_list)) {
 773			struct btrfs_raid_bio *next;
 774			struct list_head *head = rbio->plug_list.next;
 775
 776			next = list_entry(head, struct btrfs_raid_bio,
 777					  plug_list);
 778
 779			list_del_init(&rbio->plug_list);
 780
 781			list_add(&next->hash_list, &h->hash_list);
 782			refcount_inc(&next->refs);
 783			spin_unlock(&rbio->bio_list_lock);
 784			spin_unlock(&h->lock);
 785
 786			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
 787				start_async_work(next, recover_rbio_work_locked);
 
 
 
 788			} else if (next->operation == BTRFS_RBIO_WRITE) {
 789				steal_rbio(rbio, next);
 790				start_async_work(next, rmw_rbio_work_locked);
 791			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 792				steal_rbio(rbio, next);
 793				start_async_work(next, scrub_rbio_work_locked);
 794			}
 795
 796			goto done_nolock;
 
 
 
 
 
 
 
 
 
 797		}
 798	}
 799done:
 800	spin_unlock(&rbio->bio_list_lock);
 801	spin_unlock(&h->lock);
 802
 803done_nolock:
 804	if (!keep_cache)
 805		remove_rbio_from_cache(rbio);
 806}
 807
 808static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809{
 
 
 
 
 
 
 
 
 
 
 
 810	struct bio *next;
 811
 
 
 
 
 
 812	while (cur) {
 813		next = cur->bi_next;
 814		cur->bi_next = NULL;
 815		cur->bi_status = err;
 816		bio_endio(cur);
 817		cur = next;
 818	}
 819}
 820
 821/*
 822 * this frees the rbio and runs through all the bios in the
 823 * bio_list and calls end_io on them
 824 */
 825static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 826{
 827	struct bio *cur = bio_list_get(&rbio->bio_list);
 828	struct bio *extra;
 
 829
 830	kfree(rbio->csum_buf);
 831	bitmap_free(rbio->csum_bitmap);
 832	rbio->csum_buf = NULL;
 833	rbio->csum_bitmap = NULL;
 834
 835	/*
 836	 * Clear the data bitmap, as the rbio may be cached for later usage.
 837	 * do this before before unlock_stripe() so there will be no new bio
 838	 * for this bio.
 839	 */
 840	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
 841
 842	/*
 843	 * At this moment, rbio->bio_list is empty, however since rbio does not
 844	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 845	 * hash list, rbio may be merged with others so that rbio->bio_list
 846	 * becomes non-empty.
 847	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 848	 * more and we can call bio_endio() on all queued bios.
 849	 */
 850	unlock_stripe(rbio);
 851	extra = bio_list_get(&rbio->bio_list);
 852	free_raid_bio(rbio);
 853
 854	rbio_endio_bio_list(cur, err);
 855	if (extra)
 856		rbio_endio_bio_list(extra, err);
 857}
 858
 859/*
 860 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
 
 
 
 
 861 *
 862 * @rbio:               The raid bio
 863 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 864 * @sector_nr:		Sector number inside the stripe,
 865 *			valid range [0, stripe_nsectors)
 866 * @bio_list_only:      Whether to use sectors inside the bio list only.
 867 *
 868 * The read/modify/write code wants to reuse the original bio page as much
 869 * as possible, and only use stripe_sectors as fallback.
 
 
 
 870 */
 871static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
 872					 int stripe_nr, int sector_nr,
 873					 bool bio_list_only)
 874{
 875	struct sector_ptr *sector;
 876	int index;
 877
 878	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
 879	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
 880
 881	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
 882	ASSERT(index >= 0 && index < rbio->nr_sectors);
 
 883
 884	spin_lock(&rbio->bio_list_lock);
 885	sector = &rbio->bio_sectors[index];
 886	if (sector->page || bio_list_only) {
 887		/* Don't return sector without a valid page pointer */
 888		if (!sector->page)
 889			sector = NULL;
 890		spin_unlock(&rbio->bio_list_lock);
 891		return sector;
 892	}
 893	spin_unlock(&rbio->bio_list_lock);
 894
 895	return &rbio->stripe_sectors[index];
 
 
 
 
 
 
 896}
 897
 898/*
 899 * allocation and initial setup for the btrfs_raid_bio.  Not
 900 * this does not allocate any pages for rbio->pages.
 901 */
 902static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 903					 struct btrfs_io_context *bioc)
 904{
 905	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
 906	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
 907	const unsigned int num_pages = stripe_npages * real_stripes;
 908	const unsigned int stripe_nsectors =
 909		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 910	const unsigned int num_sectors = stripe_nsectors * real_stripes;
 911	struct btrfs_raid_bio *rbio;
 912
 913	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
 914	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
 915	/*
 916	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
 917	 * (at most 16) should be no larger than BITS_PER_LONG.
 918	 */
 919	ASSERT(stripe_nsectors <= BITS_PER_LONG);
 920
 921	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
 922	if (!rbio)
 923		return ERR_PTR(-ENOMEM);
 924	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
 925				     GFP_NOFS);
 926	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 927				    GFP_NOFS);
 928	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 929				       GFP_NOFS);
 930	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
 931	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
 932
 933	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
 934	    !rbio->finish_pointers || !rbio->error_bitmap) {
 935		free_raid_bio_pointers(rbio);
 936		kfree(rbio);
 937		return ERR_PTR(-ENOMEM);
 938	}
 939
 940	bio_list_init(&rbio->bio_list);
 941	init_waitqueue_head(&rbio->io_wait);
 942	INIT_LIST_HEAD(&rbio->plug_list);
 943	spin_lock_init(&rbio->bio_list_lock);
 944	INIT_LIST_HEAD(&rbio->stripe_cache);
 945	INIT_LIST_HEAD(&rbio->hash_list);
 946	btrfs_get_bioc(bioc);
 947	rbio->bioc = bioc;
 
 948	rbio->nr_pages = num_pages;
 949	rbio->nr_sectors = num_sectors;
 950	rbio->real_stripes = real_stripes;
 951	rbio->stripe_npages = stripe_npages;
 952	rbio->stripe_nsectors = stripe_nsectors;
 953	refcount_set(&rbio->refs, 1);
 
 
 954	atomic_set(&rbio->stripes_pending, 0);
 955
 956	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
 957	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 958
 
 959	return rbio;
 960}
 961
 962/* allocate pages for all the stripes in the bio, including parity */
 963static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 964{
 965	int ret;
 
 966
 967	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0);
 968	if (ret < 0)
 969		return ret;
 970	/* Mapping all sectors */
 971	index_stripe_sectors(rbio);
 
 
 
 972	return 0;
 973}
 974
 975/* only allocate pages for p/q stripes */
 976static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 977{
 978	const int data_pages = rbio->nr_data * rbio->stripe_npages;
 979	int ret;
 980
 981	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
 982				     rbio->stripe_pages + data_pages, 0);
 983	if (ret < 0)
 984		return ret;
 985
 986	index_stripe_sectors(rbio);
 987	return 0;
 988}
 989
 990/*
 991 * Return the total number of errors found in the vertical stripe of @sector_nr.
 992 *
 993 * @faila and @failb will also be updated to the first and second stripe
 994 * number of the errors.
 995 */
 996static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
 997				     int *faila, int *failb)
 998{
 999	int stripe_nr;
1000	int found_errors = 0;
1001
1002	if (faila || failb) {
1003		/*
1004		 * Both @faila and @failb should be valid pointers if any of
1005		 * them is specified.
1006		 */
1007		ASSERT(faila && failb);
1008		*faila = -1;
1009		*failb = -1;
1010	}
1011
1012	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1013		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1014
1015		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1016			found_errors++;
1017			if (faila) {
1018				/* Update faila and failb. */
1019				if (*faila < 0)
1020					*faila = stripe_nr;
1021				else if (*failb < 0)
1022					*failb = stripe_nr;
1023			}
1024		}
1025	}
1026	return found_errors;
1027}
1028
1029/*
1030 * Add a single sector @sector into our list of bios for IO.
1031 *
1032 * Return 0 if everything went well.
1033 * Return <0 for error.
1034 */
1035static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1036			      struct bio_list *bio_list,
1037			      struct sector_ptr *sector,
1038			      unsigned int stripe_nr,
1039			      unsigned int sector_nr,
1040			      enum req_op op)
1041{
1042	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1043	struct bio *last = bio_list->tail;
 
1044	int ret;
1045	struct bio *bio;
1046	struct btrfs_io_stripe *stripe;
1047	u64 disk_start;
1048
1049	/*
1050	 * Note: here stripe_nr has taken device replace into consideration,
1051	 * thus it can be larger than rbio->real_stripe.
1052	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1053	 */
1054	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1055	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1056	ASSERT(sector->page);
1057
1058	stripe = &rbio->bioc->stripes[stripe_nr];
1059	disk_start = stripe->physical + sector_nr * sectorsize;
1060
1061	/* if the device is missing, just fail this stripe */
1062	if (!stripe->dev->bdev) {
1063		int found_errors;
1064
1065		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1066			rbio->error_bitmap);
1067
1068		/* Check if we have reached tolerance early. */
1069		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1070							 NULL, NULL);
1071		if (found_errors > rbio->bioc->max_errors)
1072			return -EIO;
1073		return 0;
1074	}
1075
1076	/* see if we can add this page onto our existing bio */
1077	if (last) {
1078		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1079		last_end += last->bi_iter.bi_size;
1080
1081		/*
1082		 * we can't merge these if they are from different
1083		 * devices or if they are not contiguous
1084		 */
1085		if (last_end == disk_start && !last->bi_status &&
 
1086		    last->bi_bdev == stripe->dev->bdev) {
1087			ret = bio_add_page(last, sector->page, sectorsize,
1088					   sector->pgoff);
1089			if (ret == sectorsize)
1090				return 0;
1091		}
1092	}
1093
1094	/* put a new bio on the list */
1095	bio = bio_alloc(stripe->dev->bdev,
1096			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1097			op, GFP_NOFS);
1098	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1099	bio->bi_private = rbio;
1100
1101	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
 
 
 
 
1102	bio_list_add(bio_list, bio);
1103	return 0;
1104}
1105
1106static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1107{
1108	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1109	struct bio_vec bvec;
1110	struct bvec_iter iter;
1111	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1112		     rbio->bioc->full_stripe_logical;
1113
1114	bio_for_each_segment(bvec, bio, iter) {
1115		u32 bvec_offset;
1116
1117		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1118		     bvec_offset += sectorsize, offset += sectorsize) {
1119			int index = offset / sectorsize;
1120			struct sector_ptr *sector = &rbio->bio_sectors[index];
1121
1122			sector->page = bvec.bv_page;
1123			sector->pgoff = bvec.bv_offset + bvec_offset;
1124			ASSERT(sector->pgoff < PAGE_SIZE);
1125		}
1126	}
1127}
1128
1129/*
1130 * helper function to walk our bio list and populate the bio_pages array with
1131 * the result.  This seems expensive, but it is faster than constantly
1132 * searching through the bio list as we setup the IO in finish_rmw or stripe
1133 * reconstruction.
1134 *
1135 * This must be called before you trust the answers from page_in_rbio
1136 */
1137static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138{
1139	struct bio *bio;
1140
1141	spin_lock(&rbio->bio_list_lock);
1142	bio_list_for_each(bio, &rbio->bio_list)
1143		index_one_bio(rbio, bio);
1144
1145	spin_unlock(&rbio->bio_list_lock);
1146}
1147
1148static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1149			       struct raid56_bio_trace_info *trace_info)
1150{
1151	const struct btrfs_io_context *bioc = rbio->bioc;
1152	int i;
1153
1154	ASSERT(bioc);
1155
1156	/* We rely on bio->bi_bdev to find the stripe number. */
1157	if (!bio->bi_bdev)
1158		goto not_found;
1159
1160	for (i = 0; i < bioc->num_stripes; i++) {
1161		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1162			continue;
1163		trace_info->stripe_nr = i;
1164		trace_info->devid = bioc->stripes[i].dev->devid;
1165		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1166				     bioc->stripes[i].physical;
1167		return;
1168	}
1169
1170not_found:
1171	trace_info->devid = -1;
1172	trace_info->offset = -1;
1173	trace_info->stripe_nr = -1;
1174}
1175
1176static inline void bio_list_put(struct bio_list *bio_list)
1177{
1178	struct bio *bio;
1179
1180	while ((bio = bio_list_pop(bio_list)))
1181		bio_put(bio);
1182}
1183
1184/* Generate PQ for one vertical stripe. */
1185static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
 
 
 
 
 
 
 
1186{
1187	void **pointers = rbio->finish_pointers;
1188	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1189	struct sector_ptr *sector;
1190	int stripe;
1191	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1192
1193	/* First collect one sector from each data stripe */
1194	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1195		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1196		pointers[stripe] = kmap_local_page(sector->page) +
1197				   sector->pgoff;
1198	}
1199
1200	/* Then add the parity stripe */
1201	sector = rbio_pstripe_sector(rbio, sectornr);
1202	sector->uptodate = 1;
1203	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1204
1205	if (has_qstripe) {
1206		/*
1207		 * RAID6, add the qstripe and call the library function
1208		 * to fill in our p/q
1209		 */
1210		sector = rbio_qstripe_sector(rbio, sectornr);
1211		sector->uptodate = 1;
1212		pointers[stripe++] = kmap_local_page(sector->page) +
1213				     sector->pgoff;
1214
1215		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1216					pointers);
 
 
 
1217	} else {
1218		/* raid5 */
1219		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1220		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1221	}
1222	for (stripe = stripe - 1; stripe >= 0; stripe--)
1223		kunmap_local(pointers[stripe]);
1224}
1225
1226static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1227				   struct bio_list *bio_list)
1228{
1229	/* The total sector number inside the full stripe. */
1230	int total_sector_nr;
1231	int sectornr;
1232	int stripe;
1233	int ret;
1234
1235	ASSERT(bio_list_size(bio_list) == 0);
 
 
 
 
 
 
 
 
 
 
1236
1237	/* We should have at least one data sector. */
1238	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1239
1240	/*
1241	 * Reset errors, as we may have errors inherited from from degraded
1242	 * write.
 
 
 
 
 
1243	 */
1244	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 
 
 
 
1245
1246	/*
1247	 * Start assembly.  Make bios for everything from the higher layers (the
1248	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1249	 */
1250	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1251	     total_sector_nr++) {
1252		struct sector_ptr *sector;
1253
1254		stripe = total_sector_nr / rbio->stripe_nsectors;
1255		sectornr = total_sector_nr % rbio->stripe_nsectors;
 
 
1256
1257		/* This vertical stripe has no data, skip it. */
1258		if (!test_bit(sectornr, &rbio->dbitmap))
1259			continue;
1260
1261		if (stripe < rbio->nr_data) {
1262			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1263			if (!sector)
1264				continue;
 
 
 
 
 
 
1265		} else {
1266			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 
 
1267		}
1268
1269		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1270					 sectornr, REQ_OP_WRITE);
1271		if (ret)
1272			goto error;
1273	}
1274
1275	if (likely(!rbio->bioc->replace_nr_stripes))
1276		return 0;
 
1277
1278	/*
1279	 * Make a copy for the replace target device.
1280	 *
1281	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1282	 */
1283	ASSERT(rbio->bioc->replace_stripe_src >= 0);
 
 
 
 
 
 
 
 
 
1284
1285	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1286	     total_sector_nr++) {
1287		struct sector_ptr *sector;
 
 
 
1288
1289		stripe = total_sector_nr / rbio->stripe_nsectors;
1290		sectornr = total_sector_nr % rbio->stripe_nsectors;
1291
1292		/*
1293		 * For RAID56, there is only one device that can be replaced,
1294		 * and replace_stripe_src[0] indicates the stripe number we
1295		 * need to copy from.
1296		 */
1297		if (stripe != rbio->bioc->replace_stripe_src) {
1298			/*
1299			 * We can skip the whole stripe completely, note
1300			 * total_sector_nr will be increased by one anyway.
1301			 */
1302			ASSERT(sectornr == 0);
1303			total_sector_nr += rbio->stripe_nsectors - 1;
1304			continue;
1305		}
1306
1307		/* This vertical stripe has no data, skip it. */
1308		if (!test_bit(sectornr, &rbio->dbitmap))
1309			continue;
 
 
 
 
 
 
1310
1311		if (stripe < rbio->nr_data) {
1312			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1313			if (!sector)
1314				continue;
1315		} else {
1316			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1317		}
 
1318
1319		ret = rbio_add_io_sector(rbio, bio_list, sector,
1320					 rbio->real_stripes,
1321					 sectornr, REQ_OP_WRITE);
1322		if (ret)
1323			goto error;
 
 
 
 
 
 
 
1324	}
 
1325
1326	return 0;
1327error:
1328	bio_list_put(bio_list);
1329	return -EIO;
1330}
1331
1332static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
 
1333{
1334	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1335	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1336		     rbio->bioc->full_stripe_logical;
1337	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1338
1339	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1340
1341	bitmap_set(rbio->error_bitmap, total_nr_sector,
1342		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1343
1344	/*
1345	 * Special handling for raid56_alloc_missing_rbio() used by
1346	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1347	 * pass an empty bio here.  Thus we have to find out the missing device
1348	 * and mark the stripe error instead.
1349	 */
1350	if (bio->bi_iter.bi_size == 0) {
1351		bool found_missing = false;
1352		int stripe_nr;
1353
1354		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1355			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1356				found_missing = true;
1357				bitmap_set(rbio->error_bitmap,
1358					   stripe_nr * rbio->stripe_nsectors,
1359					   rbio->stripe_nsectors);
1360			}
1361		}
1362		ASSERT(found_missing);
1363	}
 
1364}
1365
1366/*
1367 * For subpage case, we can no longer set page Up-to-date directly for
1368 * stripe_pages[], thus we need to locate the sector.
 
1369 */
1370static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1371					     struct page *page,
1372					     unsigned int pgoff)
1373{
 
 
1374	int i;
1375
1376	for (i = 0; i < rbio->nr_sectors; i++) {
1377		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1378
1379		if (sector->page == page && sector->pgoff == pgoff)
1380			return sector;
 
 
 
 
1381	}
1382	return NULL;
1383}
1384
1385/*
1386 * this sets each page in the bio uptodate.  It should only be used on private
1387 * rbio pages, nothing that comes in from the higher layers
1388 */
1389static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1390{
1391	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1392	struct bio_vec *bvec;
1393	struct bvec_iter_all iter_all;
1394
1395	ASSERT(!bio_flagged(bio, BIO_CLONED));
1396
1397	bio_for_each_segment_all(bvec, bio, iter_all) {
1398		struct sector_ptr *sector;
1399		int pgoff;
1400
1401		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1402		     pgoff += sectorsize) {
1403			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1404			ASSERT(sector);
1405			if (sector)
1406				sector->uptodate = 1;
1407		}
 
 
 
1408	}
 
 
 
 
1409}
1410
1411static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
1412{
1413	struct bio_vec *bv = bio_first_bvec_all(bio);
1414	int i;
1415
1416	for (i = 0; i < rbio->nr_sectors; i++) {
1417		struct sector_ptr *sector;
1418
1419		sector = &rbio->stripe_sectors[i];
1420		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1421			break;
1422		sector = &rbio->bio_sectors[i];
1423		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1424			break;
1425	}
1426	ASSERT(i < rbio->nr_sectors);
1427	return i;
1428}
1429
1430static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
1431{
1432	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1433	u32 bio_size = 0;
1434	struct bio_vec *bvec;
1435	int i;
 
1436
1437	bio_for_each_bvec_all(bvec, bio, i)
1438		bio_size += bvec->bv_len;
1439
1440	/*
1441	 * Since we can have multiple bios touching the error_bitmap, we cannot
1442	 * call bitmap_set() without protection.
1443	 *
1444	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1445	 */
1446	for (i = total_sector_nr; i < total_sector_nr +
1447	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1448		set_bit(i, rbio->error_bitmap);
1449}
1450
1451/* Verify the data sectors at read time. */
1452static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1453				    struct bio *bio)
 
 
 
 
 
 
1454{
1455	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1456	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1457	struct bio_vec *bvec;
1458	struct bvec_iter_all iter_all;
1459
1460	/* No data csum for the whole stripe, no need to verify. */
1461	if (!rbio->csum_bitmap || !rbio->csum_buf)
1462		return;
 
1463
1464	/* P/Q stripes, they have no data csum to verify against. */
1465	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
 
1466		return;
1467
1468	bio_for_each_segment_all(bvec, bio, iter_all) {
1469		int bv_offset;
1470
1471		for (bv_offset = bvec->bv_offset;
1472		     bv_offset < bvec->bv_offset + bvec->bv_len;
1473		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1474			u8 csum_buf[BTRFS_CSUM_SIZE];
1475			u8 *expected_csum = rbio->csum_buf +
1476					    total_sector_nr * fs_info->csum_size;
1477			int ret;
1478
1479			/* No csum for this sector, skip to the next sector. */
1480			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1481				continue;
1482
1483			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1484				bv_offset, csum_buf, expected_csum);
1485			if (ret < 0)
1486				set_bit(total_sector_nr, rbio->error_bitmap);
1487		}
1488	}
1489}
1490
1491static void raid_wait_read_end_io(struct bio *bio)
1492{
1493	struct btrfs_raid_bio *rbio = bio->bi_private;
 
1494
1495	if (bio->bi_status) {
1496		rbio_update_error_bitmap(rbio, bio);
1497	} else {
1498		set_bio_pages_uptodate(rbio, bio);
1499		verify_bio_data_sectors(rbio, bio);
1500	}
1501
1502	bio_put(bio);
1503	if (atomic_dec_and_test(&rbio->stripes_pending))
1504		wake_up(&rbio->io_wait);
 
 
 
 
1505}
1506
1507static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1508			     struct bio_list *bio_list)
 
 
 
1509{
 
 
 
 
 
1510	struct bio *bio;
1511
1512	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1513	while ((bio = bio_list_pop(bio_list))) {
1514		bio->bi_end_io = raid_wait_read_end_io;
 
 
1515
1516		if (trace_raid56_read_enabled()) {
1517			struct raid56_bio_trace_info trace_info = { 0 };
1518
1519			bio_get_trace_info(rbio, bio, &trace_info);
1520			trace_raid56_read(rbio, bio, &trace_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521		}
1522		submit_bio(bio);
1523	}
1524
1525	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526}
1527
1528static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
 
 
 
 
1529{
1530	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1531	int ret;
1532
1533	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0);
1534	if (ret < 0)
 
1535		return ret;
 
1536
1537	index_stripe_sectors(rbio);
 
 
1538	return 0;
1539}
1540
1541/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542 * We use plugging call backs to collect full stripes.
1543 * Any time we get a partial stripe write while plugged
1544 * we collect it into a list.  When the unplug comes down,
1545 * we sort the list by logical block number and merge
1546 * everything we can into the same rbios
1547 */
1548struct btrfs_plug_cb {
1549	struct blk_plug_cb cb;
1550	struct btrfs_fs_info *info;
1551	struct list_head rbio_list;
 
1552};
1553
1554/*
1555 * rbios on the plug list are sorted for easier merging.
1556 */
1557static int plug_cmp(void *priv, const struct list_head *a,
1558		    const struct list_head *b)
1559{
1560	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1561						       plug_list);
1562	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1563						       plug_list);
1564	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1565	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1566
1567	if (a_sector < b_sector)
1568		return -1;
1569	if (a_sector > b_sector)
1570		return 1;
1571	return 0;
1572}
1573
1574static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1575{
1576	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1577	struct btrfs_raid_bio *cur;
1578	struct btrfs_raid_bio *last = NULL;
1579
 
 
 
 
 
1580	list_sort(NULL, &plug->rbio_list, plug_cmp);
1581
1582	while (!list_empty(&plug->rbio_list)) {
1583		cur = list_entry(plug->rbio_list.next,
1584				 struct btrfs_raid_bio, plug_list);
1585		list_del_init(&cur->plug_list);
1586
1587		if (rbio_is_full(cur)) {
1588			/* We have a full stripe, queue it down. */
1589			start_async_work(cur, rmw_rbio_work);
1590			continue;
1591		}
1592		if (last) {
1593			if (rbio_can_merge(last, cur)) {
1594				merge_rbio(last, cur);
1595				free_raid_bio(cur);
1596				continue;
 
1597			}
1598			start_async_work(last, rmw_rbio_work);
1599		}
1600		last = cur;
1601	}
1602	if (last)
1603		start_async_work(last, rmw_rbio_work);
 
1604	kfree(plug);
1605}
1606
1607/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1608static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
 
 
 
 
 
 
 
 
 
 
1609{
1610	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1611	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1612	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1613	const u32 orig_len = orig_bio->bi_iter.bi_size;
1614	const u32 sectorsize = fs_info->sectorsize;
1615	u64 cur_logical;
1616
1617	ASSERT(orig_logical >= full_stripe_start &&
1618	       orig_logical + orig_len <= full_stripe_start +
1619	       rbio->nr_data * BTRFS_STRIPE_LEN);
1620
1621	bio_list_add(&rbio->bio_list, orig_bio);
1622	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1623
1624	/* Update the dbitmap. */
1625	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1626	     cur_logical += sectorsize) {
1627		int bit = ((u32)(cur_logical - full_stripe_start) >>
1628			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1629
1630		set_bit(bit, &rbio->dbitmap);
 
 
 
 
 
1631	}
 
1632}
1633
1634/*
1635 * our main entry point for writes from the rest of the FS.
1636 */
1637void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
 
1638{
1639	struct btrfs_fs_info *fs_info = bioc->fs_info;
1640	struct btrfs_raid_bio *rbio;
1641	struct btrfs_plug_cb *plug = NULL;
1642	struct blk_plug_cb *cb;
 
1643
1644	rbio = alloc_rbio(fs_info, bioc);
1645	if (IS_ERR(rbio)) {
1646		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1647		bio_endio(bio);
1648		return;
1649	}
 
 
1650	rbio->operation = BTRFS_RBIO_WRITE;
1651	rbio_add_bio(rbio, bio);
 
 
1652
1653	/*
1654	 * Don't plug on full rbios, just get them out the door
1655	 * as quickly as we can
1656	 */
1657	if (!rbio_is_full(rbio)) {
1658		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1659		if (cb) {
1660			plug = container_of(cb, struct btrfs_plug_cb, cb);
1661			if (!plug->info) {
1662				plug->info = fs_info;
1663				INIT_LIST_HEAD(&plug->rbio_list);
1664			}
1665			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1666			return;
1667		}
1668	}
1669
1670	/*
1671	 * Either we don't have any existing plug, or we're doing a full stripe,
1672	 * queue the rmw work now.
1673	 */
1674	start_async_work(rbio, rmw_rbio_work);
1675}
1676
1677static int verify_one_sector(struct btrfs_raid_bio *rbio,
1678			     int stripe_nr, int sector_nr)
1679{
1680	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1681	struct sector_ptr *sector;
1682	u8 csum_buf[BTRFS_CSUM_SIZE];
1683	u8 *csum_expected;
1684	int ret;
1685
1686	if (!rbio->csum_bitmap || !rbio->csum_buf)
1687		return 0;
1688
1689	/* No way to verify P/Q as they are not covered by data csum. */
1690	if (stripe_nr >= rbio->nr_data)
1691		return 0;
1692	/*
1693	 * If we're rebuilding a read, we have to use pages from the
1694	 * bio list if possible.
1695	 */
1696	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1697		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1698	} else {
1699		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
 
 
1700	}
1701
1702	ASSERT(sector->page);
1703
1704	csum_expected = rbio->csum_buf +
1705			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1706			fs_info->csum_size;
1707	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1708				      csum_buf, csum_expected);
1709	return ret;
1710}
1711
1712/*
1713 * Recover a vertical stripe specified by @sector_nr.
1714 * @*pointers are the pre-allocated pointers by the caller, so we don't
1715 * need to allocate/free the pointers again and again.
1716 */
1717static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1718			    void **pointers, void **unmap_array)
1719{
1720	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1721	struct sector_ptr *sector;
1722	const u32 sectorsize = fs_info->sectorsize;
1723	int found_errors;
1724	int faila;
1725	int failb;
1726	int stripe_nr;
1727	int ret = 0;
1728
1729	/*
1730	 * Now we just use bitmap to mark the horizontal stripes in
1731	 * which we have data when doing parity scrub.
1732	 */
1733	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1734	    !test_bit(sector_nr, &rbio->dbitmap))
1735		return 0;
1736
1737	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1738						 &failb);
1739	/*
1740	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1741	 * which only part of a stripe failed csum check.
1742	 */
1743	if (!found_errors)
1744		return 0;
1745
1746	if (found_errors > rbio->bioc->max_errors)
1747		return -EIO;
 
 
 
 
1748
1749	/*
1750	 * Setup our array of pointers with sectors from each stripe
1751	 *
1752	 * NOTE: store a duplicate array of pointers to preserve the
1753	 * pointer order.
1754	 */
1755	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1756		/*
1757		 * If we're rebuilding a read, we have to use pages from the
1758		 * bio list if possible.
1759		 */
1760		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1761			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1762		} else {
1763			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1764		}
1765		ASSERT(sector->page);
1766		pointers[stripe_nr] = kmap_local_page(sector->page) +
1767				   sector->pgoff;
1768		unmap_array[stripe_nr] = pointers[stripe_nr];
1769	}
1770
1771	/* All raid6 handling here */
1772	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1773		/* Single failure, rebuild from parity raid5 style */
1774		if (failb < 0) {
1775			if (faila == rbio->nr_data)
1776				/*
1777				 * Just the P stripe has failed, without
1778				 * a bad data or Q stripe.
1779				 * We have nothing to do, just skip the
1780				 * recovery for this stripe.
1781				 */
1782				goto cleanup;
1783			/*
1784			 * a single failure in raid6 is rebuilt
1785			 * in the pstripe code below
1786			 */
1787			goto pstripe;
 
 
 
 
 
 
 
1788		}
1789
1790		/*
1791		 * If the q stripe is failed, do a pstripe reconstruction from
1792		 * the xors.
1793		 * If both the q stripe and the P stripe are failed, we're
1794		 * here due to a crc mismatch and we can't give them the
1795		 * data they want.
1796		 */
1797		if (failb == rbio->real_stripes - 1) {
1798			if (faila == rbio->real_stripes - 2)
 
 
 
 
 
 
 
1799				/*
1800				 * Only P and Q are corrupted.
1801				 * We only care about data stripes recovery,
1802				 * can skip this vertical stripe.
1803				 */
1804				goto cleanup;
1805			/*
1806			 * Otherwise we have one bad data stripe and
1807			 * a good P stripe.  raid5!
 
 
 
 
 
 
 
 
 
 
 
1808			 */
1809			goto pstripe;
1810		}
 
 
 
 
 
 
 
 
 
 
1811
1812		if (failb == rbio->real_stripes - 2) {
1813			raid6_datap_recov(rbio->real_stripes, sectorsize,
1814					  faila, pointers);
 
 
 
 
 
1815		} else {
1816			raid6_2data_recov(rbio->real_stripes, sectorsize,
1817					  faila, failb, pointers);
1818		}
1819	} else {
1820		void *p;
1821
1822		/* Rebuild from P stripe here (raid5 or raid6). */
1823		ASSERT(failb == -1);
1824pstripe:
1825		/* Copy parity block into failed block to start with */
1826		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1827
1828		/* Rearrange the pointer array */
1829		p = pointers[faila];
1830		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1831		     stripe_nr++)
1832			pointers[stripe_nr] = pointers[stripe_nr + 1];
1833		pointers[rbio->nr_data - 1] = p;
1834
1835		/* Xor in the rest */
1836		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838	}
1839
1840	/*
1841	 * No matter if this is a RMW or recovery, we should have all
1842	 * failed sectors repaired in the vertical stripe, thus they are now
1843	 * uptodate.
1844	 * Especially if we determine to cache the rbio, we need to
1845	 * have at least all data sectors uptodate.
1846	 *
1847	 * If possible, also check if the repaired sector matches its data
1848	 * checksum.
1849	 */
1850	if (faila >= 0) {
1851		ret = verify_one_sector(rbio, faila, sector_nr);
1852		if (ret < 0)
1853			goto cleanup;
1854
1855		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1856		sector->uptodate = 1;
1857	}
1858	if (failb >= 0) {
1859		ret = verify_one_sector(rbio, failb, sector_nr);
1860		if (ret < 0)
1861			goto cleanup;
1862
1863		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1864		sector->uptodate = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1865	}
1866
1867cleanup:
1868	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1869		kunmap_local(unmap_array[stripe_nr]);
1870	return ret;
1871}
1872
1873static int recover_sectors(struct btrfs_raid_bio *rbio)
 
 
 
 
1874{
1875	void **pointers = NULL;
1876	void **unmap_array = NULL;
1877	int sectornr;
1878	int ret = 0;
1879
1880	/*
1881	 * @pointers array stores the pointer for each sector.
1882	 *
1883	 * @unmap_array stores copy of pointers that does not get reordered
1884	 * during reconstruction so that kunmap_local works.
1885	 */
1886	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1887	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1888	if (!pointers || !unmap_array) {
1889		ret = -ENOMEM;
1890		goto out;
1891	}
1892
1893	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1894		spin_lock(&rbio->bio_list_lock);
1895		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1896		spin_unlock(&rbio->bio_list_lock);
1897	}
1898
1899	index_rbio_pages(rbio);
1900
1901	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1902		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1903		if (ret < 0)
1904			break;
1905	}
1906
1907out:
1908	kfree(pointers);
1909	kfree(unmap_array);
1910	return ret;
1911}
1912
1913static void recover_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
1914{
1915	struct bio_list bio_list = BIO_EMPTY_LIST;
1916	int total_sector_nr;
1917	int ret = 0;
 
 
 
1918
1919	/*
1920	 * Either we're doing recover for a read failure or degraded write,
1921	 * caller should have set error bitmap correctly.
1922	 */
1923	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1924
1925	/* For recovery, we need to read all sectors including P/Q. */
1926	ret = alloc_rbio_pages(rbio);
1927	if (ret < 0)
1928		goto out;
1929
1930	index_rbio_pages(rbio);
1931
1932	/*
1933	 * Read everything that hasn't failed. However this time we will
1934	 * not trust any cached sector.
1935	 * As we may read out some stale data but higher layer is not reading
1936	 * that stale part.
1937	 *
1938	 * So here we always re-read everything in recovery path.
1939	 */
1940	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1941	     total_sector_nr++) {
1942		int stripe = total_sector_nr / rbio->stripe_nsectors;
1943		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1944		struct sector_ptr *sector;
 
 
 
1945
1946		/*
1947		 * Skip the range which has error.  It can be a range which is
1948		 * marked error (for csum mismatch), or it can be a missing
1949		 * device.
1950		 */
1951		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1952		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1953			/*
1954			 * Also set the error bit for missing device, which
1955			 * may not yet have its error bit set.
1956			 */
1957			set_bit(total_sector_nr, rbio->error_bitmap);
1958			continue;
 
 
 
 
 
 
 
1959		}
 
1960
1961		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1962		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1963					 sectornr, REQ_OP_READ);
1964		if (ret < 0) {
1965			bio_list_put(&bio_list);
 
 
 
 
1966			goto out;
 
 
1967		}
1968	}
1969
1970	submit_read_wait_bio_list(rbio, &bio_list);
1971	ret = recover_sectors(rbio);
1972out:
1973	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
1974}
1975
1976static void recover_rbio_work(struct work_struct *work)
1977{
1978	struct btrfs_raid_bio *rbio;
1979
1980	rbio = container_of(work, struct btrfs_raid_bio, work);
1981	if (!lock_stripe_add(rbio))
1982		recover_rbio(rbio);
1983}
1984
1985static void recover_rbio_work_locked(struct work_struct *work)
1986{
1987	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
1988}
1989
1990static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
1991{
1992	bool found = false;
1993	int sector_nr;
1994
1995	/*
1996	 * This is for RAID6 extra recovery tries, thus mirror number should
1997	 * be large than 2.
1998	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
1999	 * RAID5 methods.
2000	 */
2001	ASSERT(mirror_num > 2);
2002	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2003		int found_errors;
2004		int faila;
2005		int failb;
2006
2007		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2008							 &faila, &failb);
2009		/* This vertical stripe doesn't have errors. */
2010		if (!found_errors)
2011			continue;
2012
2013		/*
2014		 * If we found errors, there should be only one error marked
2015		 * by previous set_rbio_range_error().
2016		 */
2017		ASSERT(found_errors == 1);
2018		found = true;
2019
2020		/* Now select another stripe to mark as error. */
2021		failb = rbio->real_stripes - (mirror_num - 1);
2022		if (failb <= faila)
2023			failb--;
2024
2025		/* Set the extra bit in error bitmap. */
2026		if (failb >= 0)
2027			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2028				rbio->error_bitmap);
2029	}
 
 
2030
2031	/* We should found at least one vertical stripe with error.*/
2032	ASSERT(found);
 
 
 
2033}
2034
2035/*
2036 * the main entry point for reads from the higher layers.  This
2037 * is really only called when the normal read path had a failure,
2038 * so we assume the bio they send down corresponds to a failed part
2039 * of the drive.
2040 */
2041void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2042			   int mirror_num)
 
2043{
2044	struct btrfs_fs_info *fs_info = bioc->fs_info;
2045	struct btrfs_raid_bio *rbio;
 
2046
2047	rbio = alloc_rbio(fs_info, bioc);
2048	if (IS_ERR(rbio)) {
2049		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2050		bio_endio(bio);
2051		return;
2052	}
2053
2054	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2055	rbio_add_bio(rbio, bio);
2056
2057	set_rbio_range_error(rbio, bio);
2058
2059	/*
2060	 * Loop retry:
2061	 * for 'mirror == 2', reconstruct from all other stripes.
2062	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2063	 */
2064	if (mirror_num > 2)
2065		set_rbio_raid6_extra_error(rbio, mirror_num);
2066
2067	start_async_work(rbio, recover_rbio_work);
2068}
2069
2070static void fill_data_csums(struct btrfs_raid_bio *rbio)
2071{
2072	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2073	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2074						       rbio->bioc->full_stripe_logical);
2075	const u64 start = rbio->bioc->full_stripe_logical;
2076	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2077			fs_info->sectorsize_bits;
2078	int ret;
2079
2080	/* The rbio should not have its csum buffer initialized. */
2081	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2082
2083	/*
2084	 * Skip the csum search if:
2085	 *
2086	 * - The rbio doesn't belong to data block groups
2087	 *   Then we are doing IO for tree blocks, no need to search csums.
2088	 *
2089	 * - The rbio belongs to mixed block groups
2090	 *   This is to avoid deadlock, as we're already holding the full
2091	 *   stripe lock, if we trigger a metadata read, and it needs to do
2092	 *   raid56 recovery, we will deadlock.
2093	 */
2094	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2095	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2096		return;
2097
2098	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2099				 fs_info->csum_size, GFP_NOFS);
2100	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2101					  GFP_NOFS);
2102	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2103		ret = -ENOMEM;
2104		goto error;
2105	}
2106
2107	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2108					rbio->csum_buf, rbio->csum_bitmap);
2109	if (ret < 0)
2110		goto error;
2111	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2112		goto no_csum;
2113	return;
2114
2115error:
2116	/*
2117	 * We failed to allocate memory or grab the csum, but it's not fatal,
2118	 * we can still continue.  But better to warn users that RMW is no
2119	 * longer safe for this particular sub-stripe write.
2120	 */
2121	btrfs_warn_rl(fs_info,
2122"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2123			rbio->bioc->full_stripe_logical, ret);
2124no_csum:
2125	kfree(rbio->csum_buf);
2126	bitmap_free(rbio->csum_bitmap);
2127	rbio->csum_buf = NULL;
2128	rbio->csum_bitmap = NULL;
2129}
2130
2131static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2132{
2133	struct bio_list bio_list = BIO_EMPTY_LIST;
2134	int total_sector_nr;
2135	int ret = 0;
2136
2137	/*
2138	 * Fill the data csums we need for data verification.  We need to fill
2139	 * the csum_bitmap/csum_buf first, as our endio function will try to
2140	 * verify the data sectors.
2141	 */
2142	fill_data_csums(rbio);
2143
2144	/*
2145	 * Build a list of bios to read all sectors (including data and P/Q).
2146	 *
2147	 * This behavior is to compensate the later csum verification and recovery.
2148	 */
2149	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2150	     total_sector_nr++) {
2151		struct sector_ptr *sector;
2152		int stripe = total_sector_nr / rbio->stripe_nsectors;
2153		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2154
2155		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2156		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2157			       stripe, sectornr, REQ_OP_READ);
2158		if (ret) {
2159			bio_list_put(&bio_list);
2160			return ret;
2161		}
2162	}
2163
2164	/*
2165	 * We may or may not have any corrupted sectors (including missing dev
2166	 * and csum mismatch), just let recover_sectors() to handle them all.
2167	 */
2168	submit_read_wait_bio_list(rbio, &bio_list);
2169	return recover_sectors(rbio);
2170}
2171
2172static void raid_wait_write_end_io(struct bio *bio)
2173{
2174	struct btrfs_raid_bio *rbio = bio->bi_private;
2175	blk_status_t err = bio->bi_status;
2176
2177	if (err)
2178		rbio_update_error_bitmap(rbio, bio);
2179	bio_put(bio);
2180	if (atomic_dec_and_test(&rbio->stripes_pending))
2181		wake_up(&rbio->io_wait);
2182}
2183
2184static void submit_write_bios(struct btrfs_raid_bio *rbio,
2185			      struct bio_list *bio_list)
2186{
2187	struct bio *bio;
2188
2189	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2190	while ((bio = bio_list_pop(bio_list))) {
2191		bio->bi_end_io = raid_wait_write_end_io;
2192
2193		if (trace_raid56_write_enabled()) {
2194			struct raid56_bio_trace_info trace_info = { 0 };
2195
2196			bio_get_trace_info(rbio, bio, &trace_info);
2197			trace_raid56_write(rbio, bio, &trace_info);
2198		}
2199		submit_bio(bio);
 
 
 
2200	}
2201}
2202
2203/*
2204 * To determine if we need to read any sector from the disk.
2205 * Should only be utilized in RMW path, to skip cached rbio.
2206 */
2207static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2208{
2209	int i;
2210
2211	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2212		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2213
2214		/*
2215		 * We have a sector which doesn't have page nor uptodate,
2216		 * thus this rbio can not be cached one, as cached one must
2217		 * have all its data sectors present and uptodate.
2218		 */
2219		if (!sector->page || !sector->uptodate)
2220			return true;
2221	}
2222	return false;
2223}
2224
2225static void rmw_rbio(struct btrfs_raid_bio *rbio)
2226{
2227	struct bio_list bio_list;
2228	int sectornr;
2229	int ret = 0;
2230
2231	/*
2232	 * Allocate the pages for parity first, as P/Q pages will always be
2233	 * needed for both full-stripe and sub-stripe writes.
2234	 */
2235	ret = alloc_rbio_parity_pages(rbio);
2236	if (ret < 0)
2237		goto out;
2238
2239	/*
2240	 * Either full stripe write, or we have every data sector already
2241	 * cached, can go to write path immediately.
2242	 */
2243	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2244		/*
2245		 * Now we're doing sub-stripe write, also need all data stripes
2246		 * to do the full RMW.
2247		 */
2248		ret = alloc_rbio_data_pages(rbio);
2249		if (ret < 0)
2250			goto out;
2251
2252		index_rbio_pages(rbio);
2253
2254		ret = rmw_read_wait_recover(rbio);
2255		if (ret < 0)
2256			goto out;
2257	}
2258
2259	/*
2260	 * At this stage we're not allowed to add any new bios to the
2261	 * bio list any more, anyone else that wants to change this stripe
2262	 * needs to do their own rmw.
 
 
2263	 */
2264	spin_lock(&rbio->bio_list_lock);
2265	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2266	spin_unlock(&rbio->bio_list_lock);
2267
2268	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2269
2270	index_rbio_pages(rbio);
2271
2272	/*
2273	 * We don't cache full rbios because we're assuming
2274	 * the higher layers are unlikely to use this area of
2275	 * the disk again soon.  If they do use it again,
2276	 * hopefully they will send another full bio.
2277	 */
2278	if (!rbio_is_full(rbio))
2279		cache_rbio_pages(rbio);
2280	else
2281		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2282
2283	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2284		generate_pq_vertical(rbio, sectornr);
2285
2286	bio_list_init(&bio_list);
2287	ret = rmw_assemble_write_bios(rbio, &bio_list);
2288	if (ret < 0)
2289		goto out;
2290
2291	/* We should have at least one bio assembled. */
2292	ASSERT(bio_list_size(&bio_list));
2293	submit_write_bios(rbio, &bio_list);
2294	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2295
2296	/* We may have more errors than our tolerance during the read. */
2297	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2298		int found_errors;
2299
2300		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2301		if (found_errors > rbio->bioc->max_errors) {
2302			ret = -EIO;
2303			break;
2304		}
2305	}
2306out:
2307	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2308}
2309
2310static void rmw_rbio_work(struct work_struct *work)
2311{
2312	struct btrfs_raid_bio *rbio;
2313
2314	rbio = container_of(work, struct btrfs_raid_bio, work);
2315	if (lock_stripe_add(rbio) == 0)
2316		rmw_rbio(rbio);
2317}
2318
2319static void rmw_rbio_work_locked(struct work_struct *work)
2320{
2321	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
 
 
 
2322}
2323
2324/*
2325 * The following code is used to scrub/replace the parity stripe
2326 *
2327 * Caller must have already increased bio_counter for getting @bioc.
2328 *
2329 * Note: We need make sure all the pages that add into the scrub/replace
2330 * raid bio are correct and not be changed during the scrub/replace. That
2331 * is those pages just hold metadata or file data with checksum.
2332 */
2333
2334struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2335				struct btrfs_io_context *bioc,
2336				struct btrfs_device *scrub_dev,
2337				unsigned long *dbitmap, int stripe_nsectors)
 
2338{
2339	struct btrfs_fs_info *fs_info = bioc->fs_info;
2340	struct btrfs_raid_bio *rbio;
2341	int i;
2342
2343	rbio = alloc_rbio(fs_info, bioc);
2344	if (IS_ERR(rbio))
2345		return NULL;
2346	bio_list_add(&rbio->bio_list, bio);
2347	/*
2348	 * This is a special bio which is used to hold the completion handler
2349	 * and make the scrub rbio is similar to the other types
2350	 */
2351	ASSERT(!bio->bi_iter.bi_size);
2352	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2353
2354	/*
2355	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2356	 * to the end position, so this search can start from the first parity
2357	 * stripe.
2358	 */
2359	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2360		if (bioc->stripes[i].dev == scrub_dev) {
2361			rbio->scrubp = i;
2362			break;
2363		}
2364	}
2365	ASSERT(i < rbio->real_stripes);
2366
2367	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
 
 
 
 
2368	return rbio;
2369}
2370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371/*
2372 * We just scrub the parity that we have correct data on the same horizontal,
2373 * so we needn't allocate all pages for all the stripes.
2374 */
2375static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2376{
2377	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2378	int total_sector_nr;
 
 
2379
2380	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2381	     total_sector_nr++) {
2382		struct page *page;
2383		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2384		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2385
2386		if (!test_bit(sectornr, &rbio->dbitmap))
2387			continue;
2388		if (rbio->stripe_pages[index])
2389			continue;
2390		page = alloc_page(GFP_NOFS);
2391		if (!page)
2392			return -ENOMEM;
2393		rbio->stripe_pages[index] = page;
2394	}
2395	index_stripe_sectors(rbio);
2396	return 0;
2397}
2398
2399static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
 
2400{
2401	struct btrfs_io_context *bioc = rbio->bioc;
2402	const u32 sectorsize = bioc->fs_info->sectorsize;
2403	void **pointers = rbio->finish_pointers;
2404	unsigned long *pbitmap = &rbio->finish_pbitmap;
2405	int nr_data = rbio->nr_data;
2406	int stripe;
2407	int sectornr;
2408	bool has_qstripe;
2409	struct sector_ptr p_sector = { 0 };
2410	struct sector_ptr q_sector = { 0 };
 
2411	struct bio_list bio_list;
 
2412	int is_replace = 0;
2413	int ret;
2414
2415	bio_list_init(&bio_list);
2416
2417	if (rbio->real_stripes - rbio->nr_data == 1)
2418		has_qstripe = false;
2419	else if (rbio->real_stripes - rbio->nr_data == 2)
2420		has_qstripe = true;
2421	else
 
2422		BUG();
 
2423
2424	/*
2425	 * Replace is running and our P/Q stripe is being replaced, then we
2426	 * need to duplicate the final write to replace target.
2427	 */
2428	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2429		is_replace = 1;
2430		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2431	}
2432
2433	/*
2434	 * Because the higher layers(scrubber) are unlikely to
2435	 * use this area of the disk again soon, so don't cache
2436	 * it.
2437	 */
2438	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2439
2440	p_sector.page = alloc_page(GFP_NOFS);
2441	if (!p_sector.page)
2442		return -ENOMEM;
2443	p_sector.pgoff = 0;
2444	p_sector.uptodate = 1;
2445
2446	if (has_qstripe) {
2447		/* RAID6, allocate and map temp space for the Q stripe */
2448		q_sector.page = alloc_page(GFP_NOFS);
2449		if (!q_sector.page) {
2450			__free_page(p_sector.page);
2451			p_sector.page = NULL;
2452			return -ENOMEM;
 
 
 
2453		}
2454		q_sector.pgoff = 0;
2455		q_sector.uptodate = 1;
2456		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2457	}
2458
2459	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2460
2461	/* Map the parity stripe just once */
2462	pointers[nr_data] = kmap_local_page(p_sector.page);
2463
2464	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2465		struct sector_ptr *sector;
2466		void *parity;
2467
2468		/* first collect one page from each data stripe */
2469		for (stripe = 0; stripe < nr_data; stripe++) {
2470			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2471			pointers[stripe] = kmap_local_page(sector->page) +
2472					   sector->pgoff;
2473		}
2474
2475		if (has_qstripe) {
2476			/* RAID6, call the library function to fill in our P/Q */
2477			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
 
 
 
 
 
 
 
 
 
2478						pointers);
2479		} else {
2480			/* raid5 */
2481			memcpy(pointers[nr_data], pointers[0], sectorsize);
2482			run_xor(pointers + 1, nr_data - 1, sectorsize);
2483		}
2484
2485		/* Check scrubbing parity and repair it */
2486		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2487		parity = kmap_local_page(sector->page) + sector->pgoff;
2488		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2489			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2490		else
2491			/* Parity is right, needn't writeback */
2492			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2493		kunmap_local(parity);
2494
2495		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2496			kunmap_local(pointers[stripe]);
2497	}
2498
2499	kunmap_local(pointers[nr_data]);
2500	__free_page(p_sector.page);
2501	p_sector.page = NULL;
2502	if (q_sector.page) {
2503		kunmap_local(pointers[rbio->real_stripes - 1]);
2504		__free_page(q_sector.page);
2505		q_sector.page = NULL;
2506	}
2507
 
2508	/*
2509	 * time to start writing.  Make bios for everything from the
2510	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2511	 * everything else.
2512	 */
2513	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2514		struct sector_ptr *sector;
2515
2516		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2517		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2518					 sectornr, REQ_OP_WRITE);
2519		if (ret)
2520			goto cleanup;
2521	}
2522
2523	if (!is_replace)
2524		goto submit_write;
2525
2526	/*
2527	 * Replace is running and our parity stripe needs to be duplicated to
2528	 * the target device.  Check we have a valid source stripe number.
2529	 */
2530	ASSERT(rbio->bioc->replace_stripe_src >= 0);
2531	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2532		struct sector_ptr *sector;
2533
2534		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2535		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2536					 rbio->real_stripes,
2537					 sectornr, REQ_OP_WRITE);
2538		if (ret)
2539			goto cleanup;
2540	}
2541
2542submit_write:
2543	submit_write_bios(rbio, &bio_list);
2544	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2545
2546cleanup:
2547	bio_list_put(&bio_list);
2548	return ret;
2549}
2550
2551static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2552{
2553	if (stripe >= 0 && stripe < rbio->nr_data)
2554		return 1;
2555	return 0;
2556}
2557
2558static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
2559{
2560	void **pointers = NULL;
2561	void **unmap_array = NULL;
2562	int sector_nr;
2563	int ret = 0;
2564
2565	/*
2566	 * @pointers array stores the pointer for each sector.
2567	 *
2568	 * @unmap_array stores copy of pointers that does not get reordered
2569	 * during reconstruction so that kunmap_local works.
2570	 */
2571	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2572	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2573	if (!pointers || !unmap_array) {
2574		ret = -ENOMEM;
2575		goto out;
2576	}
2577
2578	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2579		int dfail = 0, failp = -1;
2580		int faila;
2581		int failb;
2582		int found_errors;
2583
2584		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2585							 &faila, &failb);
2586		if (found_errors > rbio->bioc->max_errors) {
2587			ret = -EIO;
2588			goto out;
2589		}
2590		if (found_errors == 0)
2591			continue;
2592
2593		/* We should have at least one error here. */
2594		ASSERT(faila >= 0 || failb >= 0);
2595
2596		if (is_data_stripe(rbio, faila))
2597			dfail++;
2598		else if (is_parity_stripe(faila))
2599			failp = faila;
2600
2601		if (is_data_stripe(rbio, failb))
2602			dfail++;
2603		else if (is_parity_stripe(failb))
2604			failp = failb;
 
2605		/*
2606		 * Because we can not use a scrubbing parity to repair the
2607		 * data, so the capability of the repair is declined.  (In the
2608		 * case of RAID5, we can not repair anything.)
2609		 */
2610		if (dfail > rbio->bioc->max_errors - 1) {
2611			ret = -EIO;
2612			goto out;
2613		}
2614		/*
2615		 * If all data is good, only parity is correctly, just repair
2616		 * the parity, no need to recover data stripes.
2617		 */
2618		if (dfail == 0)
2619			continue;
 
 
2620
2621		/*
2622		 * Here means we got one corrupted data stripe and one
2623		 * corrupted parity on RAID6, if the corrupted parity is
2624		 * scrubbing parity, luckily, use the other one to repair the
2625		 * data, or we can not repair the data stripe.
2626		 */
2627		if (failp != rbio->scrubp) {
2628			ret = -EIO;
2629			goto out;
2630		}
2631
2632		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2633		if (ret < 0)
2634			goto out;
2635	}
2636out:
2637	kfree(pointers);
2638	kfree(unmap_array);
2639	return ret;
2640}
2641
2642static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
2643{
2644	struct bio_list bio_list = BIO_EMPTY_LIST;
2645	int total_sector_nr;
2646	int ret = 0;
2647
2648	/* Build a list of bios to read all the missing parts. */
2649	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2650	     total_sector_nr++) {
2651		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2652		int stripe = total_sector_nr / rbio->stripe_nsectors;
2653		struct sector_ptr *sector;
2654
2655		/* No data in the vertical stripe, no need to read. */
2656		if (!test_bit(sectornr, &rbio->dbitmap))
2657			continue;
2658
2659		/*
2660		 * We want to find all the sectors missing from the rbio and
2661		 * read them from the disk. If sector_in_rbio() finds a sector
2662		 * in the bio list we don't need to read it off the stripe.
2663		 */
2664		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2665		if (sector)
2666			continue;
2667
2668		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2669		/*
2670		 * The bio cache may have handed us an uptodate sector.  If so,
2671		 * use it.
2672		 */
2673		if (sector->uptodate)
2674			continue;
2675
2676		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2677					 sectornr, REQ_OP_READ);
2678		if (ret) {
2679			bio_list_put(&bio_list);
2680			return ret;
2681		}
2682	}
2683
2684	submit_read_wait_bio_list(rbio, &bio_list);
2685	return 0;
 
 
 
 
2686}
2687
2688static void scrub_rbio(struct btrfs_raid_bio *rbio)
2689{
2690	int sector_nr;
 
2691	int ret;
 
 
 
2692
2693	ret = alloc_rbio_essential_pages(rbio);
2694	if (ret)
2695		goto out;
2696
2697	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2698
2699	ret = scrub_assemble_read_bios(rbio);
2700	if (ret < 0)
2701		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702
2703	/* We may have some failures, recover the failed sectors first. */
2704	ret = recover_scrub_rbio(rbio);
2705	if (ret < 0)
2706		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707
2708	/*
2709	 * We have every sector properly prepared. Can finish the scrub
2710	 * and writeback the good content.
2711	 */
2712	ret = finish_parity_scrub(rbio);
2713	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2714	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2715		int found_errors;
2716
2717		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2718		if (found_errors > rbio->bioc->max_errors) {
2719			ret = -EIO;
2720			break;
2721		}
 
 
 
 
 
 
 
2722	}
2723out:
2724	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 
 
 
 
 
 
 
2725}
2726
2727static void scrub_rbio_work_locked(struct work_struct *work)
2728{
2729	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
 
 
 
 
 
 
 
 
 
 
 
 
2730}
2731
2732void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2733{
2734	if (!lock_stripe_add(rbio))
2735		start_async_work(rbio, scrub_rbio_work_locked);
2736}
2737
2738/*
2739 * This is for scrub call sites where we already have correct data contents.
2740 * This allows us to avoid reading data stripes again.
2741 *
2742 * Unfortunately here we have to do page copy, other than reusing the pages.
2743 * This is due to the fact rbio has its own page management for its cache.
2744 */
2745void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2746				    struct page **data_pages, u64 data_logical)
2747{
2748	const u64 offset_in_full_stripe = data_logical -
2749					  rbio->bioc->full_stripe_logical;
2750	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2751	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2752	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2753	int ret;
2754
 
 
2755	/*
2756	 * If we hit ENOMEM temporarily, but later at
2757	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2758	 * the extra read, not a big deal.
2759	 *
2760	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2761	 * the bio would got proper error number set.
2762	 */
2763	ret = alloc_rbio_data_pages(rbio);
2764	if (ret < 0)
2765		return;
2766
2767	/* data_logical must be at stripe boundary and inside the full stripe. */
2768	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2769	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2770
2771	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2772		struct page *dst = rbio->stripe_pages[page_nr + page_index];
2773		struct page *src = data_pages[page_nr];
2774
2775		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2776		for (int sector_nr = sectors_per_page * page_index;
2777		     sector_nr < sectors_per_page * (page_index + 1);
2778		     sector_nr++)
2779			rbio->stripe_sectors[sector_nr].uptodate = true;
2780	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2781}
v4.6
 
   1/*
   2 * Copyright (C) 2012 Fusion-io  All rights reserved.
   3 * Copyright (C) 2012 Intel Corp. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
 
  19#include <linux/sched.h>
  20#include <linux/wait.h>
  21#include <linux/bio.h>
  22#include <linux/slab.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/random.h>
  26#include <linux/iocontext.h>
  27#include <linux/capability.h>
  28#include <linux/ratelimit.h>
  29#include <linux/kthread.h>
  30#include <linux/raid/pq.h>
  31#include <linux/hash.h>
  32#include <linux/list_sort.h>
  33#include <linux/raid/xor.h>
  34#include <linux/vmalloc.h>
  35#include <asm/div64.h>
 
  36#include "ctree.h"
  37#include "extent_map.h"
  38#include "disk-io.h"
  39#include "transaction.h"
  40#include "print-tree.h"
  41#include "volumes.h"
  42#include "raid56.h"
  43#include "async-thread.h"
  44#include "check-integrity.h"
  45#include "rcu-string.h"
  46
  47/* set when additional merges to this rbio are not allowed */
  48#define RBIO_RMW_LOCKED_BIT	1
  49
  50/*
  51 * set when this rbio is sitting in the hash, but it is just a cache
  52 * of past RMW
  53 */
  54#define RBIO_CACHE_BIT		2
  55
  56/*
  57 * set when it is safe to trust the stripe_pages for caching
  58 */
  59#define RBIO_CACHE_READY_BIT	3
  60
  61#define RBIO_CACHE_SIZE 1024
  62
  63enum btrfs_rbio_ops {
  64	BTRFS_RBIO_WRITE,
  65	BTRFS_RBIO_READ_REBUILD,
  66	BTRFS_RBIO_PARITY_SCRUB,
  67	BTRFS_RBIO_REBUILD_MISSING,
  68};
  69
  70struct btrfs_raid_bio {
  71	struct btrfs_fs_info *fs_info;
  72	struct btrfs_bio *bbio;
  73
  74	/* while we're doing rmw on a stripe
  75	 * we put it into a hash table so we can
  76	 * lock the stripe and merge more rbios
  77	 * into it.
  78	 */
  79	struct list_head hash_list;
 
 
  80
  81	/*
  82	 * LRU list for the stripe cache
  83	 */
  84	struct list_head stripe_cache;
 
 
 
 
  85
  86	/*
  87	 * for scheduling work in the helper threads
  88	 */
  89	struct btrfs_work work;
 
 
 
 
 
 
  90
  91	/*
  92	 * bio list and bio_list_lock are used
  93	 * to add more bios into the stripe
  94	 * in hopes of avoiding the full rmw
  95	 */
  96	struct bio_list bio_list;
  97	spinlock_t bio_list_lock;
  98
  99	/* also protected by the bio_list_lock, the
 100	 * plug list is used by the plugging code
 101	 * to collect partial bios while plugged.  The
 102	 * stripe locking code also uses it to hand off
 103	 * the stripe lock to the next pending IO
 104	 */
 105	struct list_head plug_list;
 106
 107	/*
 108	 * flags that tell us if it is safe to
 109	 * merge with this bio
 110	 */
 111	unsigned long flags;
 
 
 
 112
 113	/* size of each individual stripe on disk */
 114	int stripe_len;
 
 115
 116	/* number of data stripes (no p/q) */
 117	int nr_data;
 118
 119	int real_stripes;
 
 
 120
 121	int stripe_npages;
 122	/*
 123	 * set if we're doing a parity rebuild
 124	 * for a read from higher up, which is handled
 125	 * differently from a parity rebuild as part of
 126	 * rmw
 127	 */
 128	enum btrfs_rbio_ops operation;
 129
 130	/* first bad stripe */
 131	int faila;
 
 
 132
 133	/* second bad stripe (for raid6 use) */
 134	int failb;
 135
 136	int scrubp;
 137	/*
 138	 * number of pages needed to represent the full
 139	 * stripe
 140	 */
 141	int nr_pages;
 142
 143	/*
 144	 * size of all the bios in the bio_list.  This
 145	 * helps us decide if the rbio maps to a full
 146	 * stripe or not
 147	 */
 148	int bio_list_bytes;
 149
 150	int generic_bio_cnt;
 151
 152	atomic_t refs;
 153
 154	atomic_t stripes_pending;
 155
 156	atomic_t error;
 157	/*
 158	 * these are two arrays of pointers.  We allocate the
 159	 * rbio big enough to hold them both and setup their
 160	 * locations when the rbio is allocated
 161	 */
 162
 163	/* pointers to pages that we allocated for
 164	 * reading/writing stripes directly from the disk (including P/Q)
 165	 */
 166	struct page **stripe_pages;
 167
 168	/*
 169	 * pointers to the pages in the bio_list.  Stored
 170	 * here for faster lookup
 171	 */
 172	struct page **bio_pages;
 173
 174	/*
 175	 * bitmap to record which horizontal stripe has data
 176	 */
 177	unsigned long *dbitmap;
 178};
 179
 180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 182static void rmw_work(struct btrfs_work *work);
 183static void read_rebuild_work(struct btrfs_work *work);
 184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 191
 192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 193					 int need_check);
 194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
 195
 196/*
 197 * the stripe hash table is used for locking, and to collect
 198 * bios in hopes of making a full stripe
 199 */
 200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 201{
 202	struct btrfs_stripe_hash_table *table;
 203	struct btrfs_stripe_hash_table *x;
 204	struct btrfs_stripe_hash *cur;
 205	struct btrfs_stripe_hash *h;
 206	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 207	int i;
 208	int table_size;
 209
 210	if (info->stripe_hash_table)
 211		return 0;
 212
 213	/*
 214	 * The table is large, starting with order 4 and can go as high as
 215	 * order 7 in case lock debugging is turned on.
 216	 *
 217	 * Try harder to allocate and fallback to vmalloc to lower the chance
 218	 * of a failing mount.
 219	 */
 220	table_size = sizeof(*table) + sizeof(*h) * num_entries;
 221	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
 222	if (!table) {
 223		table = vzalloc(table_size);
 224		if (!table)
 225			return -ENOMEM;
 226	}
 227
 228	spin_lock_init(&table->cache_lock);
 229	INIT_LIST_HEAD(&table->stripe_cache);
 230
 231	h = table->table;
 232
 233	for (i = 0; i < num_entries; i++) {
 234		cur = h + i;
 235		INIT_LIST_HEAD(&cur->hash_list);
 236		spin_lock_init(&cur->lock);
 237		init_waitqueue_head(&cur->wait);
 238	}
 239
 240	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 241	if (x)
 242		kvfree(x);
 243	return 0;
 244}
 245
 246/*
 247 * caching an rbio means to copy anything from the
 248 * bio_pages array into the stripe_pages array.  We
 249 * use the page uptodate bit in the stripe cache array
 250 * to indicate if it has valid data
 251 *
 252 * once the caching is done, we set the cache ready
 253 * bit.
 254 */
 255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 256{
 257	int i;
 258	char *s;
 259	char *d;
 260	int ret;
 261
 262	ret = alloc_rbio_pages(rbio);
 263	if (ret)
 264		return;
 265
 266	for (i = 0; i < rbio->nr_pages; i++) {
 267		if (!rbio->bio_pages[i])
 
 
 
 
 
 
 
 
 268			continue;
 
 269
 270		s = kmap(rbio->bio_pages[i]);
 271		d = kmap(rbio->stripe_pages[i]);
 272
 273		memcpy(d, s, PAGE_SIZE);
 274
 275		kunmap(rbio->bio_pages[i]);
 276		kunmap(rbio->stripe_pages[i]);
 277		SetPageUptodate(rbio->stripe_pages[i]);
 278	}
 279	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 280}
 281
 282/*
 283 * we hash on the first logical address of the stripe
 284 */
 285static int rbio_bucket(struct btrfs_raid_bio *rbio)
 286{
 287	u64 num = rbio->bbio->raid_map[0];
 288
 289	/*
 290	 * we shift down quite a bit.  We're using byte
 291	 * addressing, and most of the lower bits are zeros.
 292	 * This tends to upset hash_64, and it consistently
 293	 * returns just one or two different values.
 294	 *
 295	 * shifting off the lower bits fixes things.
 296	 */
 297	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 298}
 299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300/*
 301 * stealing an rbio means taking all the uptodate pages from the stripe
 302 * array in the source rbio and putting them into the destination rbio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303 */
 304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 305{
 306	int i;
 307	struct page *s;
 308	struct page *d;
 309
 310	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 311		return;
 312
 313	for (i = 0; i < dest->nr_pages; i++) {
 314		s = src->stripe_pages[i];
 315		if (!s || !PageUptodate(s)) {
 
 
 
 
 
 316			continue;
 317		}
 318
 319		d = dest->stripe_pages[i];
 320		if (d)
 321			__free_page(d);
 322
 323		dest->stripe_pages[i] = s;
 324		src->stripe_pages[i] = NULL;
 
 325	}
 
 
 326}
 327
 328/*
 329 * merging means we take the bio_list from the victim and
 330 * splice it into the destination.  The victim should
 331 * be discarded afterwards.
 332 *
 333 * must be called with dest->rbio_list_lock held
 334 */
 335static void merge_rbio(struct btrfs_raid_bio *dest,
 336		       struct btrfs_raid_bio *victim)
 337{
 338	bio_list_merge(&dest->bio_list, &victim->bio_list);
 339	dest->bio_list_bytes += victim->bio_list_bytes;
 340	dest->generic_bio_cnt += victim->generic_bio_cnt;
 
 
 341	bio_list_init(&victim->bio_list);
 342}
 343
 344/*
 345 * used to prune items that are in the cache.  The caller
 346 * must hold the hash table lock.
 347 */
 348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 349{
 350	int bucket = rbio_bucket(rbio);
 351	struct btrfs_stripe_hash_table *table;
 352	struct btrfs_stripe_hash *h;
 353	int freeit = 0;
 354
 355	/*
 356	 * check the bit again under the hash table lock.
 357	 */
 358	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 359		return;
 360
 361	table = rbio->fs_info->stripe_hash_table;
 362	h = table->table + bucket;
 363
 364	/* hold the lock for the bucket because we may be
 365	 * removing it from the hash table
 366	 */
 367	spin_lock(&h->lock);
 368
 369	/*
 370	 * hold the lock for the bio list because we need
 371	 * to make sure the bio list is empty
 372	 */
 373	spin_lock(&rbio->bio_list_lock);
 374
 375	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 376		list_del_init(&rbio->stripe_cache);
 377		table->cache_size -= 1;
 378		freeit = 1;
 379
 380		/* if the bio list isn't empty, this rbio is
 381		 * still involved in an IO.  We take it out
 382		 * of the cache list, and drop the ref that
 383		 * was held for the list.
 384		 *
 385		 * If the bio_list was empty, we also remove
 386		 * the rbio from the hash_table, and drop
 387		 * the corresponding ref
 388		 */
 389		if (bio_list_empty(&rbio->bio_list)) {
 390			if (!list_empty(&rbio->hash_list)) {
 391				list_del_init(&rbio->hash_list);
 392				atomic_dec(&rbio->refs);
 393				BUG_ON(!list_empty(&rbio->plug_list));
 394			}
 395		}
 396	}
 397
 398	spin_unlock(&rbio->bio_list_lock);
 399	spin_unlock(&h->lock);
 400
 401	if (freeit)
 402		__free_raid_bio(rbio);
 403}
 404
 405/*
 406 * prune a given rbio from the cache
 407 */
 408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 409{
 410	struct btrfs_stripe_hash_table *table;
 411	unsigned long flags;
 412
 413	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 414		return;
 415
 416	table = rbio->fs_info->stripe_hash_table;
 417
 418	spin_lock_irqsave(&table->cache_lock, flags);
 419	__remove_rbio_from_cache(rbio);
 420	spin_unlock_irqrestore(&table->cache_lock, flags);
 421}
 422
 423/*
 424 * remove everything in the cache
 425 */
 426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 427{
 428	struct btrfs_stripe_hash_table *table;
 429	unsigned long flags;
 430	struct btrfs_raid_bio *rbio;
 431
 432	table = info->stripe_hash_table;
 433
 434	spin_lock_irqsave(&table->cache_lock, flags);
 435	while (!list_empty(&table->stripe_cache)) {
 436		rbio = list_entry(table->stripe_cache.next,
 437				  struct btrfs_raid_bio,
 438				  stripe_cache);
 439		__remove_rbio_from_cache(rbio);
 440	}
 441	spin_unlock_irqrestore(&table->cache_lock, flags);
 442}
 443
 444/*
 445 * remove all cached entries and free the hash table
 446 * used by unmount
 447 */
 448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 449{
 450	if (!info->stripe_hash_table)
 451		return;
 452	btrfs_clear_rbio_cache(info);
 453	kvfree(info->stripe_hash_table);
 454	info->stripe_hash_table = NULL;
 455}
 456
 457/*
 458 * insert an rbio into the stripe cache.  It
 459 * must have already been prepared by calling
 460 * cache_rbio_pages
 461 *
 462 * If this rbio was already cached, it gets
 463 * moved to the front of the lru.
 464 *
 465 * If the size of the rbio cache is too big, we
 466 * prune an item.
 467 */
 468static void cache_rbio(struct btrfs_raid_bio *rbio)
 469{
 470	struct btrfs_stripe_hash_table *table;
 471	unsigned long flags;
 472
 473	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 474		return;
 475
 476	table = rbio->fs_info->stripe_hash_table;
 477
 478	spin_lock_irqsave(&table->cache_lock, flags);
 479	spin_lock(&rbio->bio_list_lock);
 480
 481	/* bump our ref if we were not in the list before */
 482	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 483		atomic_inc(&rbio->refs);
 484
 485	if (!list_empty(&rbio->stripe_cache)){
 486		list_move(&rbio->stripe_cache, &table->stripe_cache);
 487	} else {
 488		list_add(&rbio->stripe_cache, &table->stripe_cache);
 489		table->cache_size += 1;
 490	}
 491
 492	spin_unlock(&rbio->bio_list_lock);
 493
 494	if (table->cache_size > RBIO_CACHE_SIZE) {
 495		struct btrfs_raid_bio *found;
 496
 497		found = list_entry(table->stripe_cache.prev,
 498				  struct btrfs_raid_bio,
 499				  stripe_cache);
 500
 501		if (found != rbio)
 502			__remove_rbio_from_cache(found);
 503	}
 504
 505	spin_unlock_irqrestore(&table->cache_lock, flags);
 506}
 507
 508/*
 509 * helper function to run the xor_blocks api.  It is only
 510 * able to do MAX_XOR_BLOCKS at a time, so we need to
 511 * loop through.
 512 */
 513static void run_xor(void **pages, int src_cnt, ssize_t len)
 514{
 515	int src_off = 0;
 516	int xor_src_cnt = 0;
 517	void *dest = pages[src_cnt];
 518
 519	while(src_cnt > 0) {
 520		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 521		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 522
 523		src_cnt -= xor_src_cnt;
 524		src_off += xor_src_cnt;
 525	}
 526}
 527
 528/*
 529 * returns true if the bio list inside this rbio
 530 * covers an entire stripe (no rmw required).
 531 * Must be called with the bio list lock held, or
 532 * at a time when you know it is impossible to add
 533 * new bios into the list
 534 */
 535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 536{
 537	unsigned long size = rbio->bio_list_bytes;
 538	int ret = 1;
 539
 540	if (size != rbio->nr_data * rbio->stripe_len)
 
 541		ret = 0;
 
 
 542
 543	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 544	return ret;
 545}
 546
 547static int rbio_is_full(struct btrfs_raid_bio *rbio)
 548{
 549	unsigned long flags;
 550	int ret;
 551
 552	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 553	ret = __rbio_is_full(rbio);
 554	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 555	return ret;
 556}
 557
 558/*
 559 * returns 1 if it is safe to merge two rbios together.
 560 * The merging is safe if the two rbios correspond to
 561 * the same stripe and if they are both going in the same
 562 * direction (read vs write), and if neither one is
 563 * locked for final IO
 564 *
 565 * The caller is responsible for locking such that
 566 * rmw_locked is safe to test
 567 */
 568static int rbio_can_merge(struct btrfs_raid_bio *last,
 569			  struct btrfs_raid_bio *cur)
 570{
 571	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 572	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 573		return 0;
 574
 575	/*
 576	 * we can't merge with cached rbios, since the
 577	 * idea is that when we merge the destination
 578	 * rbio is going to run our IO for us.  We can
 579	 * steal from cached rbio's though, other functions
 580	 * handle that.
 581	 */
 582	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 583	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 584		return 0;
 585
 586	if (last->bbio->raid_map[0] !=
 587	    cur->bbio->raid_map[0])
 588		return 0;
 589
 590	/* we can't merge with different operations */
 591	if (last->operation != cur->operation)
 592		return 0;
 593	/*
 594	 * We've need read the full stripe from the drive.
 595	 * check and repair the parity and write the new results.
 596	 *
 597	 * We're not allowed to add any new bios to the
 598	 * bio list here, anyone else that wants to
 599	 * change this stripe needs to do their own rmw.
 600	 */
 601	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
 602	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
 603		return 0;
 604
 605	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
 606	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
 607		return 0;
 608
 609	return 1;
 610}
 611
 612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 613				  int index)
 
 614{
 615	return stripe * rbio->stripe_npages + index;
 
 
 
 616}
 617
 618/*
 619 * these are just the pages from the rbio array, not from anything
 620 * the FS sent down to us
 621 */
 622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 623				     int index)
 624{
 625	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 
 626}
 627
 628/*
 629 * helper to index into the pstripe
 630 */
 631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 632{
 633	return rbio_stripe_page(rbio, rbio->nr_data, index);
 634}
 635
 636/*
 637 * helper to index into the qstripe, returns null
 638 * if there is no qstripe
 639 */
 640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 641{
 642	if (rbio->nr_data + 1 == rbio->real_stripes)
 643		return NULL;
 644	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 645}
 646
 647/*
 648 * The first stripe in the table for a logical address
 649 * has the lock.  rbios are added in one of three ways:
 650 *
 651 * 1) Nobody has the stripe locked yet.  The rbio is given
 652 * the lock and 0 is returned.  The caller must start the IO
 653 * themselves.
 654 *
 655 * 2) Someone has the stripe locked, but we're able to merge
 656 * with the lock owner.  The rbio is freed and the IO will
 657 * start automatically along with the existing rbio.  1 is returned.
 658 *
 659 * 3) Someone has the stripe locked, but we're not able to merge.
 660 * The rbio is added to the lock owner's plug list, or merged into
 661 * an rbio already on the plug list.  When the lock owner unlocks,
 662 * the next rbio on the list is run and the IO is started automatically.
 663 * 1 is returned
 664 *
 665 * If we return 0, the caller still owns the rbio and must continue with
 666 * IO submission.  If we return 1, the caller must assume the rbio has
 667 * already been freed.
 668 */
 669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 670{
 671	int bucket = rbio_bucket(rbio);
 672	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 673	struct btrfs_raid_bio *cur;
 674	struct btrfs_raid_bio *pending;
 675	unsigned long flags;
 676	DEFINE_WAIT(wait);
 677	struct btrfs_raid_bio *freeit = NULL;
 678	struct btrfs_raid_bio *cache_drop = NULL;
 679	int ret = 0;
 680	int walk = 0;
 681
 682	spin_lock_irqsave(&h->lock, flags);
 
 
 683	list_for_each_entry(cur, &h->hash_list, hash_list) {
 684		walk++;
 685		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
 686			spin_lock(&cur->bio_list_lock);
 687
 688			/* can we steal this cached rbio's pages? */
 689			if (bio_list_empty(&cur->bio_list) &&
 690			    list_empty(&cur->plug_list) &&
 691			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 692			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 693				list_del_init(&cur->hash_list);
 694				atomic_dec(&cur->refs);
 
 
 
 
 
 695
 696				steal_rbio(cur, rbio);
 697				cache_drop = cur;
 698				spin_unlock(&cur->bio_list_lock);
 
 
 
 
 
 
 
 
 699
 700				goto lockit;
 701			}
 702
 703			/* can we merge into the lock owner? */
 704			if (rbio_can_merge(cur, rbio)) {
 705				merge_rbio(cur, rbio);
 
 
 
 
 
 706				spin_unlock(&cur->bio_list_lock);
 707				freeit = rbio;
 708				ret = 1;
 709				goto out;
 710			}
 
 711
 712
 713			/*
 714			 * we couldn't merge with the running
 715			 * rbio, see if we can merge with the
 716			 * pending ones.  We don't have to
 717			 * check for rmw_locked because there
 718			 * is no way they are inside finish_rmw
 719			 * right now
 720			 */
 721			list_for_each_entry(pending, &cur->plug_list,
 722					    plug_list) {
 723				if (rbio_can_merge(pending, rbio)) {
 724					merge_rbio(pending, rbio);
 725					spin_unlock(&cur->bio_list_lock);
 726					freeit = rbio;
 727					ret = 1;
 728					goto out;
 729				}
 730			}
 731
 732			/* no merging, put us on the tail of the plug list,
 733			 * our rbio will be started with the currently
 734			 * running rbio unlocks
 735			 */
 736			list_add_tail(&rbio->plug_list, &cur->plug_list);
 737			spin_unlock(&cur->bio_list_lock);
 738			ret = 1;
 739			goto out;
 740		}
 741	}
 742lockit:
 743	atomic_inc(&rbio->refs);
 744	list_add(&rbio->hash_list, &h->hash_list);
 745out:
 746	spin_unlock_irqrestore(&h->lock, flags);
 747	if (cache_drop)
 748		remove_rbio_from_cache(cache_drop);
 749	if (freeit)
 750		__free_raid_bio(freeit);
 751	return ret;
 752}
 753
 
 
 754/*
 755 * called as rmw or parity rebuild is completed.  If the plug list has more
 756 * rbios waiting for this stripe, the next one on the list will be started
 757 */
 758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 759{
 760	int bucket;
 761	struct btrfs_stripe_hash *h;
 762	unsigned long flags;
 763	int keep_cache = 0;
 764
 765	bucket = rbio_bucket(rbio);
 766	h = rbio->fs_info->stripe_hash_table->table + bucket;
 767
 768	if (list_empty(&rbio->plug_list))
 769		cache_rbio(rbio);
 770
 771	spin_lock_irqsave(&h->lock, flags);
 772	spin_lock(&rbio->bio_list_lock);
 773
 774	if (!list_empty(&rbio->hash_list)) {
 775		/*
 776		 * if we're still cached and there is no other IO
 777		 * to perform, just leave this rbio here for others
 778		 * to steal from later
 779		 */
 780		if (list_empty(&rbio->plug_list) &&
 781		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 782			keep_cache = 1;
 783			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 784			BUG_ON(!bio_list_empty(&rbio->bio_list));
 785			goto done;
 786		}
 787
 788		list_del_init(&rbio->hash_list);
 789		atomic_dec(&rbio->refs);
 790
 791		/*
 792		 * we use the plug list to hold all the rbios
 793		 * waiting for the chance to lock this stripe.
 794		 * hand the lock over to one of them.
 795		 */
 796		if (!list_empty(&rbio->plug_list)) {
 797			struct btrfs_raid_bio *next;
 798			struct list_head *head = rbio->plug_list.next;
 799
 800			next = list_entry(head, struct btrfs_raid_bio,
 801					  plug_list);
 802
 803			list_del_init(&rbio->plug_list);
 804
 805			list_add(&next->hash_list, &h->hash_list);
 806			atomic_inc(&next->refs);
 807			spin_unlock(&rbio->bio_list_lock);
 808			spin_unlock_irqrestore(&h->lock, flags);
 809
 810			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 811				async_read_rebuild(next);
 812			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 813				steal_rbio(rbio, next);
 814				async_read_rebuild(next);
 815			} else if (next->operation == BTRFS_RBIO_WRITE) {
 816				steal_rbio(rbio, next);
 817				async_rmw_stripe(next);
 818			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 819				steal_rbio(rbio, next);
 820				async_scrub_parity(next);
 821			}
 822
 823			goto done_nolock;
 824			/*
 825			 * The barrier for this waitqueue_active is not needed,
 826			 * we're protected by h->lock and can't miss a wakeup.
 827			 */
 828		} else if (waitqueue_active(&h->wait)) {
 829			spin_unlock(&rbio->bio_list_lock);
 830			spin_unlock_irqrestore(&h->lock, flags);
 831			wake_up(&h->wait);
 832			goto done_nolock;
 833		}
 834	}
 835done:
 836	spin_unlock(&rbio->bio_list_lock);
 837	spin_unlock_irqrestore(&h->lock, flags);
 838
 839done_nolock:
 840	if (!keep_cache)
 841		remove_rbio_from_cache(rbio);
 842}
 843
 844static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 845{
 846	int i;
 847
 848	WARN_ON(atomic_read(&rbio->refs) < 0);
 849	if (!atomic_dec_and_test(&rbio->refs))
 850		return;
 851
 852	WARN_ON(!list_empty(&rbio->stripe_cache));
 853	WARN_ON(!list_empty(&rbio->hash_list));
 854	WARN_ON(!bio_list_empty(&rbio->bio_list));
 855
 856	for (i = 0; i < rbio->nr_pages; i++) {
 857		if (rbio->stripe_pages[i]) {
 858			__free_page(rbio->stripe_pages[i]);
 859			rbio->stripe_pages[i] = NULL;
 860		}
 861	}
 862
 863	btrfs_put_bbio(rbio->bbio);
 864	kfree(rbio);
 865}
 866
 867static void free_raid_bio(struct btrfs_raid_bio *rbio)
 868{
 869	unlock_stripe(rbio);
 870	__free_raid_bio(rbio);
 871}
 872
 873/*
 874 * this frees the rbio and runs through all the bios in the
 875 * bio_list and calls end_io on them
 876 */
 877static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
 878{
 879	struct bio *cur = bio_list_get(&rbio->bio_list);
 880	struct bio *next;
 881
 882	if (rbio->generic_bio_cnt)
 883		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 884
 885	free_raid_bio(rbio);
 886
 887	while (cur) {
 888		next = cur->bi_next;
 889		cur->bi_next = NULL;
 890		cur->bi_error = err;
 891		bio_endio(cur);
 892		cur = next;
 893	}
 894}
 895
 896/*
 897 * end io function used by finish_rmw.  When we finally
 898 * get here, we've written a full stripe
 899 */
 900static void raid_write_end_io(struct bio *bio)
 901{
 902	struct btrfs_raid_bio *rbio = bio->bi_private;
 903	int err = bio->bi_error;
 904	int max_errors;
 905
 906	if (err)
 907		fail_bio_stripe(rbio, bio);
 
 
 908
 909	bio_put(bio);
 
 
 
 
 
 910
 911	if (!atomic_dec_and_test(&rbio->stripes_pending))
 912		return;
 913
 914	err = 0;
 915
 916	/* OK, we have read all the stripes we need to. */
 917	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 918		     0 : rbio->bbio->max_errors;
 919	if (atomic_read(&rbio->error) > max_errors)
 920		err = -EIO;
 
 921
 922	rbio_orig_end_io(rbio, err);
 
 
 923}
 924
 925/*
 926 * the read/modify/write code wants to use the original bio for
 927 * any pages it included, and then use the rbio for everything
 928 * else.  This function decides if a given index (stripe number)
 929 * and page number in that stripe fall inside the original bio
 930 * or the rbio.
 931 *
 932 * if you set bio_list_only, you'll get a NULL back for any ranges
 933 * that are outside the bio_list
 
 
 
 934 *
 935 * This doesn't take any refs on anything, you get a bare page pointer
 936 * and the caller must bump refs as required.
 937 *
 938 * You must call index_rbio_pages once before you can trust
 939 * the answers from this function.
 940 */
 941static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 942				 int index, int pagenr, int bio_list_only)
 
 943{
 944	int chunk_page;
 945	struct page *p = NULL;
 946
 947	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 
 948
 949	spin_lock_irq(&rbio->bio_list_lock);
 950	p = rbio->bio_pages[chunk_page];
 951	spin_unlock_irq(&rbio->bio_list_lock);
 952
 953	if (p || bio_list_only)
 954		return p;
 955
 956	return rbio->stripe_pages[chunk_page];
 957}
 
 
 
 
 
 958
 959/*
 960 * number of pages we need for the entire stripe across all the
 961 * drives
 962 */
 963static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 964{
 965	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 966}
 967
 968/*
 969 * allocation and initial setup for the btrfs_raid_bio.  Not
 970 * this does not allocate any pages for rbio->pages.
 971 */
 972static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
 973			  struct btrfs_bio *bbio, u64 stripe_len)
 974{
 
 
 
 
 
 
 975	struct btrfs_raid_bio *rbio;
 976	int nr_data = 0;
 977	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 978	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 979	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 980	void *p;
 981
 982	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
 983		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
 984		       sizeof(long), GFP_NOFS);
 
 985	if (!rbio)
 986		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987
 988	bio_list_init(&rbio->bio_list);
 
 989	INIT_LIST_HEAD(&rbio->plug_list);
 990	spin_lock_init(&rbio->bio_list_lock);
 991	INIT_LIST_HEAD(&rbio->stripe_cache);
 992	INIT_LIST_HEAD(&rbio->hash_list);
 993	rbio->bbio = bbio;
 994	rbio->fs_info = root->fs_info;
 995	rbio->stripe_len = stripe_len;
 996	rbio->nr_pages = num_pages;
 
 997	rbio->real_stripes = real_stripes;
 998	rbio->stripe_npages = stripe_npages;
 999	rbio->faila = -1;
1000	rbio->failb = -1;
1001	atomic_set(&rbio->refs, 1);
1002	atomic_set(&rbio->error, 0);
1003	atomic_set(&rbio->stripes_pending, 0);
1004
1005	/*
1006	 * the stripe_pages and bio_pages array point to the extra
1007	 * memory we allocated past the end of the rbio
1008	 */
1009	p = rbio + 1;
1010	rbio->stripe_pages = p;
1011	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1012	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1013
1014	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015		nr_data = real_stripes - 1;
1016	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017		nr_data = real_stripes - 2;
1018	else
1019		BUG();
1020
1021	rbio->nr_data = nr_data;
1022	return rbio;
1023}
1024
1025/* allocate pages for all the stripes in the bio, including parity */
1026static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027{
1028	int i;
1029	struct page *page;
1030
1031	for (i = 0; i < rbio->nr_pages; i++) {
1032		if (rbio->stripe_pages[i])
1033			continue;
1034		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035		if (!page)
1036			return -ENOMEM;
1037		rbio->stripe_pages[i] = page;
1038	}
1039	return 0;
1040}
1041
1042/* only allocate pages for p/q stripes */
1043static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044{
1045	int i;
1046	struct page *page;
 
 
 
 
 
 
 
 
 
1047
1048	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
 
 
 
 
 
 
 
 
 
 
1049
1050	for (; i < rbio->nr_pages; i++) {
1051		if (rbio->stripe_pages[i])
1052			continue;
1053		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054		if (!page)
1055			return -ENOMEM;
1056		rbio->stripe_pages[i] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	}
1058	return 0;
1059}
1060
1061/*
1062 * add a single page from a specific stripe into our list of bios for IO
1063 * this will try to merge into existing bios if possible, and returns
1064 * zero if all went well.
1065 */
1066static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067			    struct bio_list *bio_list,
1068			    struct page *page,
1069			    int stripe_nr,
1070			    unsigned long page_index,
1071			    unsigned long bio_max_len)
 
1072{
 
1073	struct bio *last = bio_list->tail;
1074	u64 last_end = 0;
1075	int ret;
1076	struct bio *bio;
1077	struct btrfs_bio_stripe *stripe;
1078	u64 disk_start;
1079
1080	stripe = &rbio->bbio->stripes[stripe_nr];
1081	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
1082
1083	/* if the device is missing, just fail this stripe */
1084	if (!stripe->dev->bdev)
1085		return fail_rbio_index(rbio, stripe_nr);
 
 
 
 
 
 
 
 
 
 
 
1086
1087	/* see if we can add this page onto our existing bio */
1088	if (last) {
1089		last_end = (u64)last->bi_iter.bi_sector << 9;
1090		last_end += last->bi_iter.bi_size;
1091
1092		/*
1093		 * we can't merge these if they are from different
1094		 * devices or if they are not contiguous
1095		 */
1096		if (last_end == disk_start && stripe->dev->bdev &&
1097		    !last->bi_error &&
1098		    last->bi_bdev == stripe->dev->bdev) {
1099			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1100			if (ret == PAGE_SIZE)
 
1101				return 0;
1102		}
1103	}
1104
1105	/* put a new bio on the list */
1106	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1107	if (!bio)
1108		return -ENOMEM;
 
 
1109
1110	bio->bi_iter.bi_size = 0;
1111	bio->bi_bdev = stripe->dev->bdev;
1112	bio->bi_iter.bi_sector = disk_start >> 9;
1113
1114	bio_add_page(bio, page, PAGE_SIZE, 0);
1115	bio_list_add(bio_list, bio);
1116	return 0;
1117}
1118
1119/*
1120 * while we're doing the read/modify/write cycle, we could
1121 * have errors in reading pages off the disk.  This checks
1122 * for errors and if we're not able to read the page it'll
1123 * trigger parity reconstruction.  The rmw will be finished
1124 * after we've reconstructed the failed stripes
1125 */
1126static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127{
1128	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130		__raid56_parity_recover(rbio);
1131	} else {
1132		finish_rmw(rbio);
 
 
 
 
 
 
1133	}
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result.  This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146	struct bio *bio;
1147	u64 start;
1148	unsigned long stripe_offset;
1149	unsigned long page_index;
1150	struct page *p;
 
 
 
 
 
 
 
 
1151	int i;
1152
1153	spin_lock_irq(&rbio->bio_list_lock);
1154	bio_list_for_each(bio, &rbio->bio_list) {
1155		start = (u64)bio->bi_iter.bi_sector << 9;
1156		stripe_offset = start - rbio->bbio->raid_map[0];
1157		page_index = stripe_offset >> PAGE_SHIFT;
1158
1159		for (i = 0; i < bio->bi_vcnt; i++) {
1160			p = bio->bi_io_vec[i].bv_page;
1161			rbio->bio_pages[page_index + i] = p;
1162		}
 
 
 
 
1163	}
1164	spin_unlock_irq(&rbio->bio_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1165}
1166
1167/*
1168 * this is called from one of two situations.  We either
1169 * have a full stripe from the higher layers, or we've read all
1170 * the missing bits off disk.
1171 *
1172 * This will calculate the parity and then send down any
1173 * changed blocks.
1174 */
1175static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1176{
1177	struct btrfs_bio *bbio = rbio->bbio;
1178	void *pointers[rbio->real_stripes];
1179	int nr_data = rbio->nr_data;
1180	int stripe;
1181	int pagenr;
1182	int p_stripe = -1;
1183	int q_stripe = -1;
1184	struct bio_list bio_list;
1185	struct bio *bio;
1186	int ret;
 
 
 
 
 
 
 
1187
1188	bio_list_init(&bio_list);
 
 
 
 
 
 
 
 
1189
1190	if (rbio->real_stripes - rbio->nr_data == 1) {
1191		p_stripe = rbio->real_stripes - 1;
1192	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1193		p_stripe = rbio->real_stripes - 2;
1194		q_stripe = rbio->real_stripes - 1;
1195	} else {
1196		BUG();
 
 
1197	}
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199	/* at this point we either have a full stripe,
1200	 * or we've read the full stripe from the drive.
1201	 * recalculate the parity and write the new results.
1202	 *
1203	 * We're not allowed to add any new bios to the
1204	 * bio list here, anyone else that wants to
1205	 * change this stripe needs to do their own rmw.
1206	 */
1207	spin_lock_irq(&rbio->bio_list_lock);
1208	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1209	spin_unlock_irq(&rbio->bio_list_lock);
1210
1211	atomic_set(&rbio->error, 0);
 
1212
1213	/*
1214	 * now that we've set rmw_locked, run through the
1215	 * bio list one last time and map the page pointers
1216	 *
1217	 * We don't cache full rbios because we're assuming
1218	 * the higher layers are unlikely to use this area of
1219	 * the disk again soon.  If they do use it again,
1220	 * hopefully they will send another full bio.
1221	 */
1222	index_rbio_pages(rbio);
1223	if (!rbio_is_full(rbio))
1224		cache_rbio_pages(rbio);
1225	else
1226		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1227
1228	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1229		struct page *p;
1230		/* first collect one page from each data stripe */
1231		for (stripe = 0; stripe < nr_data; stripe++) {
1232			p = page_in_rbio(rbio, stripe, pagenr, 0);
1233			pointers[stripe] = kmap(p);
1234		}
1235
1236		/* then add the parity stripe */
1237		p = rbio_pstripe_page(rbio, pagenr);
1238		SetPageUptodate(p);
1239		pointers[stripe++] = kmap(p);
1240
1241		if (q_stripe != -1) {
 
 
1242
1243			/*
1244			 * raid6, add the qstripe and call the
1245			 * library function to fill in our p/q
1246			 */
1247			p = rbio_qstripe_page(rbio, pagenr);
1248			SetPageUptodate(p);
1249			pointers[stripe++] = kmap(p);
1250
1251			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1252						pointers);
1253		} else {
1254			/* raid5 */
1255			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1256			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1257		}
1258
 
 
 
 
 
1259
1260		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1261			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1262	}
1263
1264	/*
1265	 * time to start writing.  Make bios for everything from the
1266	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267	 * everything else.
1268	 */
1269	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271			struct page *page;
1272			if (stripe < rbio->nr_data) {
1273				page = page_in_rbio(rbio, stripe, pagenr, 1);
1274				if (!page)
1275					continue;
1276			} else {
1277			       page = rbio_stripe_page(rbio, stripe, pagenr);
1278			}
1279
1280			ret = rbio_add_io_page(rbio, &bio_list,
1281				       page, stripe, pagenr, rbio->stripe_len);
1282			if (ret)
1283				goto cleanup;
1284		}
1285	}
1286
1287	if (likely(!bbio->num_tgtdevs))
1288		goto write_data;
1289
1290	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291		if (!bbio->tgtdev_map[stripe])
 
 
 
 
 
 
 
 
 
 
1292			continue;
 
1293
1294		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295			struct page *page;
1296			if (stripe < rbio->nr_data) {
1297				page = page_in_rbio(rbio, stripe, pagenr, 1);
1298				if (!page)
1299					continue;
1300			} else {
1301			       page = rbio_stripe_page(rbio, stripe, pagenr);
1302			}
1303
1304			ret = rbio_add_io_page(rbio, &bio_list, page,
1305					       rbio->bbio->tgtdev_map[stripe],
1306					       pagenr, rbio->stripe_len);
1307			if (ret)
1308				goto cleanup;
 
1309		}
1310	}
1311
1312write_data:
1313	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315
1316	while (1) {
1317		bio = bio_list_pop(&bio_list);
1318		if (!bio)
1319			break;
1320
1321		bio->bi_private = rbio;
1322		bio->bi_end_io = raid_write_end_io;
1323		submit_bio(WRITE, bio);
1324	}
1325	return;
1326
1327cleanup:
1328	rbio_orig_end_io(rbio, -EIO);
 
 
1329}
1330
1331/*
1332 * helper to find the stripe number for a given bio.  Used to figure out which
1333 * stripe has failed.  This expects the bio to correspond to a physical disk,
1334 * so it looks up based on physical sector numbers.
1335 */
1336static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337			   struct bio *bio)
1338{
1339	u64 physical = bio->bi_iter.bi_sector;
1340	u64 stripe_start;
1341	int i;
1342	struct btrfs_bio_stripe *stripe;
1343
1344	physical <<= 9;
1345
1346	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347		stripe = &rbio->bbio->stripes[i];
1348		stripe_start = stripe->physical;
1349		if (physical >= stripe_start &&
1350		    physical < stripe_start + rbio->stripe_len &&
1351		    bio->bi_bdev == stripe->dev->bdev) {
1352			return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
1353		}
 
1354	}
1355	return -1;
1356}
1357
1358/*
1359 * helper to find the stripe number for a given
1360 * bio (before mapping).  Used to figure out which stripe has
1361 * failed.  This looks up based on logical block numbers.
1362 */
1363static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1364				   struct bio *bio)
 
1365{
1366	u64 logical = bio->bi_iter.bi_sector;
1367	u64 stripe_start;
1368	int i;
1369
1370	logical <<= 9;
 
1371
1372	for (i = 0; i < rbio->nr_data; i++) {
1373		stripe_start = rbio->bbio->raid_map[i];
1374		if (logical >= stripe_start &&
1375		    logical < stripe_start + rbio->stripe_len) {
1376			return i;
1377		}
1378	}
1379	return -1;
1380}
1381
1382/*
1383 * returns -EIO if we had too many failures
 
1384 */
1385static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1386{
1387	unsigned long flags;
1388	int ret = 0;
 
1389
1390	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1391
1392	/* we already know this stripe is bad, move on */
1393	if (rbio->faila == failed || rbio->failb == failed)
1394		goto out;
1395
1396	if (rbio->faila == -1) {
1397		/* first failure on this rbio */
1398		rbio->faila = failed;
1399		atomic_inc(&rbio->error);
1400	} else if (rbio->failb == -1) {
1401		/* second failure on this rbio */
1402		rbio->failb = failed;
1403		atomic_inc(&rbio->error);
1404	} else {
1405		ret = -EIO;
1406	}
1407out:
1408	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1409
1410	return ret;
1411}
1412
1413/*
1414 * helper to fail a stripe based on a physical disk
1415 * bio.
1416 */
1417static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1418			   struct bio *bio)
1419{
1420	int failed = find_bio_stripe(rbio, bio);
 
1421
1422	if (failed < 0)
1423		return -EIO;
1424
1425	return fail_rbio_index(rbio, failed);
 
 
 
 
 
 
 
 
1426}
1427
1428/*
1429 * this sets each page in the bio uptodate.  It should only be used on private
1430 * rbio pages, nothing that comes in from the higher layers
1431 */
1432static void set_bio_pages_uptodate(struct bio *bio)
1433{
 
 
 
1434	int i;
1435	struct page *p;
1436
1437	for (i = 0; i < bio->bi_vcnt; i++) {
1438		p = bio->bi_io_vec[i].bv_page;
1439		SetPageUptodate(p);
1440	}
 
 
 
 
 
 
 
 
1441}
1442
1443/*
1444 * end io for the read phase of the rmw cycle.  All the bios here are physical
1445 * stripe bios we've read from the disk so we can recalculate the parity of the
1446 * stripe.
1447 *
1448 * This will usually kick off finish_rmw once all the bios are read in, but it
1449 * may trigger parity reconstruction if we had any errors along the way
1450 */
1451static void raid_rmw_end_io(struct bio *bio)
1452{
1453	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
1454
1455	if (bio->bi_error)
1456		fail_bio_stripe(rbio, bio);
1457	else
1458		set_bio_pages_uptodate(bio);
1459
1460	bio_put(bio);
1461
1462	if (!atomic_dec_and_test(&rbio->stripes_pending))
1463		return;
1464
1465	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1466		goto cleanup;
1467
1468	/*
1469	 * this will normally call finish_rmw to start our write
1470	 * but if there are any failed stripes we'll reconstruct
1471	 * from parity first
1472	 */
1473	validate_rbio_for_rmw(rbio);
1474	return;
1475
1476cleanup:
 
 
1477
1478	rbio_orig_end_io(rbio, -EIO);
 
 
 
 
 
1479}
1480
1481static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1482{
1483	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1484			rmw_work, NULL, NULL);
1485
1486	btrfs_queue_work(rbio->fs_info->rmw_workers,
1487			 &rbio->work);
1488}
 
 
 
1489
1490static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1491{
1492	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1493			read_rebuild_work, NULL, NULL);
1494
1495	btrfs_queue_work(rbio->fs_info->rmw_workers,
1496			 &rbio->work);
1497}
1498
1499/*
1500 * the stripe must be locked by the caller.  It will
1501 * unlock after all the writes are done
1502 */
1503static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1504{
1505	int bios_to_read = 0;
1506	struct bio_list bio_list;
1507	int ret;
1508	int pagenr;
1509	int stripe;
1510	struct bio *bio;
1511
1512	bio_list_init(&bio_list);
1513
1514	ret = alloc_rbio_pages(rbio);
1515	if (ret)
1516		goto cleanup;
1517
1518	index_rbio_pages(rbio);
 
1519
1520	atomic_set(&rbio->error, 0);
1521	/*
1522	 * build a list of bios to read all the missing parts of this
1523	 * stripe
1524	 */
1525	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1526		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1527			struct page *page;
1528			/*
1529			 * we want to find all the pages missing from
1530			 * the rbio and read them from the disk.  If
1531			 * page_in_rbio finds a page in the bio list
1532			 * we don't need to read it off the stripe.
1533			 */
1534			page = page_in_rbio(rbio, stripe, pagenr, 1);
1535			if (page)
1536				continue;
1537
1538			page = rbio_stripe_page(rbio, stripe, pagenr);
1539			/*
1540			 * the bio cache may have handed us an uptodate
1541			 * page.  If so, be happy and use it
1542			 */
1543			if (PageUptodate(page))
1544				continue;
1545
1546			ret = rbio_add_io_page(rbio, &bio_list, page,
1547				       stripe, pagenr, rbio->stripe_len);
1548			if (ret)
1549				goto cleanup;
1550		}
 
1551	}
1552
1553	bios_to_read = bio_list_size(&bio_list);
1554	if (!bios_to_read) {
1555		/*
1556		 * this can happen if others have merged with
1557		 * us, it means there is nothing left to read.
1558		 * But if there are missing devices it may not be
1559		 * safe to do the full stripe write yet.
1560		 */
1561		goto finish;
1562	}
1563
1564	/*
1565	 * the bbio may be freed once we submit the last bio.  Make sure
1566	 * not to touch it after that
1567	 */
1568	atomic_set(&rbio->stripes_pending, bios_to_read);
1569	while (1) {
1570		bio = bio_list_pop(&bio_list);
1571		if (!bio)
1572			break;
1573
1574		bio->bi_private = rbio;
1575		bio->bi_end_io = raid_rmw_end_io;
1576
1577		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1578				    BTRFS_WQ_ENDIO_RAID56);
1579
1580		submit_bio(READ, bio);
1581	}
1582	/* the actual write will happen once the reads are done */
1583	return 0;
1584
1585cleanup:
1586	rbio_orig_end_io(rbio, -EIO);
1587	return -EIO;
1588
1589finish:
1590	validate_rbio_for_rmw(rbio);
1591	return 0;
1592}
1593
1594/*
1595 * if the upper layers pass in a full stripe, we thank them by only allocating
1596 * enough pages to hold the parity, and sending it all down quickly.
1597 */
1598static int full_stripe_write(struct btrfs_raid_bio *rbio)
1599{
 
1600	int ret;
1601
1602	ret = alloc_rbio_parity_pages(rbio);
1603	if (ret) {
1604		__free_raid_bio(rbio);
1605		return ret;
1606	}
1607
1608	ret = lock_stripe_add(rbio);
1609	if (ret == 0)
1610		finish_rmw(rbio);
1611	return 0;
1612}
1613
1614/*
1615 * partial stripe writes get handed over to async helpers.
1616 * We're really hoping to merge a few more writes into this
1617 * rbio before calculating new parity
1618 */
1619static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1620{
1621	int ret;
1622
1623	ret = lock_stripe_add(rbio);
1624	if (ret == 0)
1625		async_rmw_stripe(rbio);
1626	return 0;
1627}
1628
1629/*
1630 * sometimes while we were reading from the drive to
1631 * recalculate parity, enough new bios come into create
1632 * a full stripe.  So we do a check here to see if we can
1633 * go directly to finish_rmw
1634 */
1635static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1636{
1637	/* head off into rmw land if we don't have a full stripe */
1638	if (!rbio_is_full(rbio))
1639		return partial_stripe_write(rbio);
1640	return full_stripe_write(rbio);
1641}
1642
1643/*
1644 * We use plugging call backs to collect full stripes.
1645 * Any time we get a partial stripe write while plugged
1646 * we collect it into a list.  When the unplug comes down,
1647 * we sort the list by logical block number and merge
1648 * everything we can into the same rbios
1649 */
1650struct btrfs_plug_cb {
1651	struct blk_plug_cb cb;
1652	struct btrfs_fs_info *info;
1653	struct list_head rbio_list;
1654	struct btrfs_work work;
1655};
1656
1657/*
1658 * rbios on the plug list are sorted for easier merging.
1659 */
1660static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
 
1661{
1662	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1663						 plug_list);
1664	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1665						 plug_list);
1666	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1667	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1668
1669	if (a_sector < b_sector)
1670		return -1;
1671	if (a_sector > b_sector)
1672		return 1;
1673	return 0;
1674}
1675
1676static void run_plug(struct btrfs_plug_cb *plug)
1677{
 
1678	struct btrfs_raid_bio *cur;
1679	struct btrfs_raid_bio *last = NULL;
1680
1681	/*
1682	 * sort our plug list then try to merge
1683	 * everything we can in hopes of creating full
1684	 * stripes.
1685	 */
1686	list_sort(NULL, &plug->rbio_list, plug_cmp);
 
1687	while (!list_empty(&plug->rbio_list)) {
1688		cur = list_entry(plug->rbio_list.next,
1689				 struct btrfs_raid_bio, plug_list);
1690		list_del_init(&cur->plug_list);
1691
1692		if (rbio_is_full(cur)) {
1693			/* we have a full stripe, send it down */
1694			full_stripe_write(cur);
1695			continue;
1696		}
1697		if (last) {
1698			if (rbio_can_merge(last, cur)) {
1699				merge_rbio(last, cur);
1700				__free_raid_bio(cur);
1701				continue;
1702
1703			}
1704			__raid56_parity_write(last);
1705		}
1706		last = cur;
1707	}
1708	if (last) {
1709		__raid56_parity_write(last);
1710	}
1711	kfree(plug);
1712}
1713
1714/*
1715 * if the unplug comes from schedule, we have to push the
1716 * work off to a helper thread
1717 */
1718static void unplug_work(struct btrfs_work *work)
1719{
1720	struct btrfs_plug_cb *plug;
1721	plug = container_of(work, struct btrfs_plug_cb, work);
1722	run_plug(plug);
1723}
1724
1725static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1726{
1727	struct btrfs_plug_cb *plug;
1728	plug = container_of(cb, struct btrfs_plug_cb, cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729
1730	if (from_schedule) {
1731		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1732				unplug_work, NULL, NULL);
1733		btrfs_queue_work(plug->info->rmw_workers,
1734				 &plug->work);
1735		return;
1736	}
1737	run_plug(plug);
1738}
1739
1740/*
1741 * our main entry point for writes from the rest of the FS.
1742 */
1743int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1744			struct btrfs_bio *bbio, u64 stripe_len)
1745{
 
1746	struct btrfs_raid_bio *rbio;
1747	struct btrfs_plug_cb *plug = NULL;
1748	struct blk_plug_cb *cb;
1749	int ret;
1750
1751	rbio = alloc_rbio(root, bbio, stripe_len);
1752	if (IS_ERR(rbio)) {
1753		btrfs_put_bbio(bbio);
1754		return PTR_ERR(rbio);
 
1755	}
1756	bio_list_add(&rbio->bio_list, bio);
1757	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1758	rbio->operation = BTRFS_RBIO_WRITE;
1759
1760	btrfs_bio_counter_inc_noblocked(root->fs_info);
1761	rbio->generic_bio_cnt = 1;
1762
1763	/*
1764	 * don't plug on full rbios, just get them out the door
1765	 * as quickly as we can
1766	 */
1767	if (rbio_is_full(rbio)) {
1768		ret = full_stripe_write(rbio);
1769		if (ret)
1770			btrfs_bio_counter_dec(root->fs_info);
1771		return ret;
 
 
 
 
 
 
1772	}
1773
1774	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1775			       sizeof(*plug));
1776	if (cb) {
1777		plug = container_of(cb, struct btrfs_plug_cb, cb);
1778		if (!plug->info) {
1779			plug->info = root->fs_info;
1780			INIT_LIST_HEAD(&plug->rbio_list);
1781		}
1782		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1783		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	} else {
1785		ret = __raid56_parity_write(rbio);
1786		if (ret)
1787			btrfs_bio_counter_dec(root->fs_info);
1788	}
 
 
 
 
 
 
 
 
1789	return ret;
1790}
1791
1792/*
1793 * all parity reconstruction happens here.  We've read in everything
1794 * we can find from the drives and this does the heavy lifting of
1795 * sorting the good from the bad.
1796 */
1797static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1798{
1799	int pagenr, stripe;
1800	void **pointers;
1801	int faila = -1, failb = -1;
1802	struct page *page;
1803	int err;
1804	int i;
 
 
 
1805
1806	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1807	if (!pointers) {
1808		err = -ENOMEM;
1809		goto cleanup_io;
1810	}
 
 
1811
1812	faila = rbio->faila;
1813	failb = rbio->failb;
 
 
 
 
 
 
1814
1815	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1816	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1817		spin_lock_irq(&rbio->bio_list_lock);
1818		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1819		spin_unlock_irq(&rbio->bio_list_lock);
1820	}
1821
1822	index_rbio_pages(rbio);
1823
1824	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
 
 
 
 
1825		/*
1826		 * Now we just use bitmap to mark the horizontal stripes in
1827		 * which we have data when doing parity scrub.
1828		 */
1829		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1830		    !test_bit(pagenr, rbio->dbitmap))
1831			continue;
 
 
 
 
 
 
 
1832
1833		/* setup our array of pointers with pages
1834		 * from each stripe
1835		 */
1836		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 
 
 
 
 
 
 
 
1837			/*
1838			 * if we're rebuilding a read, we have to use
1839			 * pages from the bio list
1840			 */
1841			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1842			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1843			    (stripe == faila || stripe == failb)) {
1844				page = page_in_rbio(rbio, stripe, pagenr, 0);
1845			} else {
1846				page = rbio_stripe_page(rbio, stripe, pagenr);
1847			}
1848			pointers[stripe] = kmap(page);
1849		}
1850
1851		/* all raid6 handling here */
1852		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1853			/*
1854			 * single failure, rebuild from parity raid5
1855			 * style
1856			 */
1857			if (failb < 0) {
1858				if (faila == rbio->nr_data) {
1859					/*
1860					 * Just the P stripe has failed, without
1861					 * a bad data or Q stripe.
1862					 * TODO, we should redo the xor here.
1863					 */
1864					err = -EIO;
1865					goto cleanup;
1866				}
1867				/*
1868				 * a single failure in raid6 is rebuilt
1869				 * in the pstripe code below
 
1870				 */
1871				goto pstripe;
1872			}
1873
1874			/* make sure our ps and qs are in order */
1875			if (faila > failb) {
1876				int tmp = failb;
1877				failb = faila;
1878				faila = tmp;
1879			}
1880
1881			/* if the q stripe is failed, do a pstripe reconstruction
1882			 * from the xors.
1883			 * If both the q stripe and the P stripe are failed, we're
1884			 * here due to a crc mismatch and we can't give them the
1885			 * data they want
1886			 */
1887			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1888				if (rbio->bbio->raid_map[faila] ==
1889				    RAID5_P_STRIPE) {
1890					err = -EIO;
1891					goto cleanup;
1892				}
1893				/*
1894				 * otherwise we have one bad data stripe and
1895				 * a good P stripe.  raid5!
1896				 */
1897				goto pstripe;
1898			}
1899
1900			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1901				raid6_datap_recov(rbio->real_stripes,
1902						  PAGE_SIZE, faila, pointers);
1903			} else {
1904				raid6_2data_recov(rbio->real_stripes,
1905						  PAGE_SIZE, faila, failb,
1906						  pointers);
1907			}
1908		} else {
1909			void *p;
 
 
 
 
1910
1911			/* rebuild from P stripe here (raid5 or raid6) */
1912			BUG_ON(failb != -1);
1913pstripe:
1914			/* Copy parity block into failed block to start with */
1915			memcpy(pointers[faila],
1916			       pointers[rbio->nr_data],
1917			       PAGE_SIZE);
1918
1919			/* rearrange the pointer array */
1920			p = pointers[faila];
1921			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1922				pointers[stripe] = pointers[stripe + 1];
1923			pointers[rbio->nr_data - 1] = p;
1924
1925			/* xor in the rest */
1926			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1927		}
1928		/* if we're doing this rebuild as part of an rmw, go through
1929		 * and set all of our private rbio pages in the
1930		 * failed stripes as uptodate.  This way finish_rmw will
1931		 * know they can be trusted.  If this was a read reconstruction,
1932		 * other endio functions will fiddle the uptodate bits
1933		 */
1934		if (rbio->operation == BTRFS_RBIO_WRITE) {
1935			for (i = 0;  i < rbio->stripe_npages; i++) {
1936				if (faila != -1) {
1937					page = rbio_stripe_page(rbio, faila, i);
1938					SetPageUptodate(page);
1939				}
1940				if (failb != -1) {
1941					page = rbio_stripe_page(rbio, failb, i);
1942					SetPageUptodate(page);
1943				}
1944			}
1945		}
1946		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1947			/*
1948			 * if we're rebuilding a read, we have to use
1949			 * pages from the bio list
1950			 */
1951			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1952			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1953			    (stripe == faila || stripe == failb)) {
1954				page = page_in_rbio(rbio, stripe, pagenr, 0);
1955			} else {
1956				page = rbio_stripe_page(rbio, stripe, pagenr);
1957			}
1958			kunmap(page);
1959		}
1960	}
1961
1962	err = 0;
1963cleanup:
1964	kfree(pointers);
 
 
 
 
 
 
 
 
 
 
 
1965
1966cleanup_io:
1967	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1968		if (err == 0)
1969			cache_rbio_pages(rbio);
1970		else
1971			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 
1972
1973		rbio_orig_end_io(rbio, err);
1974	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1975		rbio_orig_end_io(rbio, err);
1976	} else if (err == 0) {
1977		rbio->faila = -1;
1978		rbio->failb = -1;
1979
1980		if (rbio->operation == BTRFS_RBIO_WRITE)
1981			finish_rmw(rbio);
1982		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1983			finish_parity_scrub(rbio, 0);
1984		else
1985			BUG();
1986	} else {
1987		rbio_orig_end_io(rbio, err);
1988	}
 
 
 
 
 
1989}
1990
1991/*
1992 * This is called only for stripes we've read from disk to
1993 * reconstruct the parity.
1994 */
1995static void raid_recover_end_io(struct bio *bio)
1996{
1997	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
1998
1999	/*
2000	 * we only read stripe pages off the disk, set them
2001	 * up to date if there were no errors
 
 
2002	 */
2003	if (bio->bi_error)
2004		fail_bio_stripe(rbio, bio);
2005	else
2006		set_bio_pages_uptodate(bio);
2007	bio_put(bio);
 
 
 
 
 
 
 
 
 
2008
2009	if (!atomic_dec_and_test(&rbio->stripes_pending))
2010		return;
 
 
 
2011
2012	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2013		rbio_orig_end_io(rbio, -EIO);
2014	else
2015		__raid_recover_end_io(rbio);
2016}
2017
2018/*
2019 * reads everything we need off the disk to reconstruct
2020 * the parity. endio handlers trigger final reconstruction
2021 * when the IO is done.
2022 *
2023 * This is used both for reads from the higher layers and for
2024 * parity construction required to finish a rmw cycle.
2025 */
2026static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2027{
2028	int bios_to_read = 0;
2029	struct bio_list bio_list;
2030	int ret;
2031	int pagenr;
2032	int stripe;
2033	struct bio *bio;
2034
2035	bio_list_init(&bio_list);
 
 
 
 
2036
 
2037	ret = alloc_rbio_pages(rbio);
2038	if (ret)
2039		goto cleanup;
2040
2041	atomic_set(&rbio->error, 0);
2042
2043	/*
2044	 * read everything that hasn't failed.  Thanks to the
2045	 * stripe cache, it is possible that some or all of these
2046	 * pages are going to be uptodate.
 
 
 
2047	 */
2048	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2049		if (rbio->faila == stripe || rbio->failb == stripe) {
2050			atomic_inc(&rbio->error);
2051			continue;
2052		}
2053
2054		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2055			struct page *p;
2056
 
 
 
 
 
 
 
2057			/*
2058			 * the rmw code may have already read this
2059			 * page in
2060			 */
2061			p = rbio_stripe_page(rbio, stripe, pagenr);
2062			if (PageUptodate(p))
2063				continue;
2064
2065			ret = rbio_add_io_page(rbio, &bio_list,
2066				       rbio_stripe_page(rbio, stripe, pagenr),
2067				       stripe, pagenr, rbio->stripe_len);
2068			if (ret < 0)
2069				goto cleanup;
2070		}
2071	}
2072
2073	bios_to_read = bio_list_size(&bio_list);
2074	if (!bios_to_read) {
2075		/*
2076		 * we might have no bios to read just because the pages
2077		 * were up to date, or we might have no bios to read because
2078		 * the devices were gone.
2079		 */
2080		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2081			__raid_recover_end_io(rbio);
2082			goto out;
2083		} else {
2084			goto cleanup;
2085		}
2086	}
2087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2088	/*
2089	 * the bbio may be freed once we submit the last bio.  Make sure
2090	 * not to touch it after that
 
 
2091	 */
2092	atomic_set(&rbio->stripes_pending, bios_to_read);
2093	while (1) {
2094		bio = bio_list_pop(&bio_list);
2095		if (!bio)
2096			break;
2097
2098		bio->bi_private = rbio;
2099		bio->bi_end_io = raid_recover_end_io;
 
 
 
2100
2101		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2102				    BTRFS_WQ_ENDIO_RAID56);
 
 
 
 
2103
2104		submit_bio(READ, bio);
 
 
 
 
 
 
 
 
2105	}
2106out:
2107	return 0;
2108
2109cleanup:
2110	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2111	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2112		rbio_orig_end_io(rbio, -EIO);
2113	return -EIO;
2114}
2115
2116/*
2117 * the main entry point for reads from the higher layers.  This
2118 * is really only called when the normal read path had a failure,
2119 * so we assume the bio they send down corresponds to a failed part
2120 * of the drive.
2121 */
2122int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2123			  struct btrfs_bio *bbio, u64 stripe_len,
2124			  int mirror_num, int generic_io)
2125{
 
2126	struct btrfs_raid_bio *rbio;
2127	int ret;
2128
2129	rbio = alloc_rbio(root, bbio, stripe_len);
2130	if (IS_ERR(rbio)) {
2131		if (generic_io)
2132			btrfs_put_bbio(bbio);
2133		return PTR_ERR(rbio);
2134	}
2135
2136	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2137	bio_list_add(&rbio->bio_list, bio);
2138	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139
2140	rbio->faila = find_logical_bio_stripe(rbio, bio);
2141	if (rbio->faila == -1) {
2142		BUG();
2143		if (generic_io)
2144			btrfs_put_bbio(bbio);
2145		kfree(rbio);
2146		return -EIO;
2147	}
 
 
 
 
 
 
 
 
 
2148
2149	if (generic_io) {
2150		btrfs_bio_counter_inc_noblocked(root->fs_info);
2151		rbio->generic_bio_cnt = 1;
2152	} else {
2153		btrfs_get_bbio(bbio);
 
 
 
 
 
2154	}
 
 
 
 
 
 
 
 
2155
2156	/*
2157	 * reconstruct from the q stripe if they are
2158	 * asking for mirror 3
2159	 */
2160	if (mirror_num == 3)
2161		rbio->failb = rbio->real_stripes - 2;
 
2162
2163	ret = lock_stripe_add(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164
2165	/*
2166	 * __raid56_parity_recover will end the bio with
2167	 * any errors it hits.  We don't want to return
2168	 * its error value up the stack because our caller
2169	 * will end up calling bio_endio with any nonzero
2170	 * return
2171	 */
2172	if (ret == 0)
2173		__raid56_parity_recover(rbio);
 
 
 
 
 
 
2174	/*
2175	 * our rbio has been added to the list of
2176	 * rbios that will be handled after the
2177	 * currently lock owner is done
 
2178	 */
2179	return 0;
 
 
 
 
 
 
 
 
 
 
 
2180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181}
2182
2183static void rmw_work(struct btrfs_work *work)
2184{
2185	struct btrfs_raid_bio *rbio;
2186
2187	rbio = container_of(work, struct btrfs_raid_bio, work);
2188	raid56_rmw_stripe(rbio);
 
2189}
2190
2191static void read_rebuild_work(struct btrfs_work *work)
2192{
2193	struct btrfs_raid_bio *rbio;
2194
2195	rbio = container_of(work, struct btrfs_raid_bio, work);
2196	__raid56_parity_recover(rbio);
2197}
2198
2199/*
2200 * The following code is used to scrub/replace the parity stripe
2201 *
 
 
2202 * Note: We need make sure all the pages that add into the scrub/replace
2203 * raid bio are correct and not be changed during the scrub/replace. That
2204 * is those pages just hold metadata or file data with checksum.
2205 */
2206
2207struct btrfs_raid_bio *
2208raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2209			       struct btrfs_bio *bbio, u64 stripe_len,
2210			       struct btrfs_device *scrub_dev,
2211			       unsigned long *dbitmap, int stripe_nsectors)
2212{
 
2213	struct btrfs_raid_bio *rbio;
2214	int i;
2215
2216	rbio = alloc_rbio(root, bbio, stripe_len);
2217	if (IS_ERR(rbio))
2218		return NULL;
2219	bio_list_add(&rbio->bio_list, bio);
2220	/*
2221	 * This is a special bio which is used to hold the completion handler
2222	 * and make the scrub rbio is similar to the other types
2223	 */
2224	ASSERT(!bio->bi_iter.bi_size);
2225	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2226
2227	for (i = 0; i < rbio->real_stripes; i++) {
2228		if (bbio->stripes[i].dev == scrub_dev) {
 
 
 
 
 
2229			rbio->scrubp = i;
2230			break;
2231		}
2232	}
 
2233
2234	/* Now we just support the sectorsize equals to page size */
2235	ASSERT(root->sectorsize == PAGE_SIZE);
2236	ASSERT(rbio->stripe_npages == stripe_nsectors);
2237	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2238
2239	return rbio;
2240}
2241
2242/* Used for both parity scrub and missing. */
2243void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2244			    u64 logical)
2245{
2246	int stripe_offset;
2247	int index;
2248
2249	ASSERT(logical >= rbio->bbio->raid_map[0]);
2250	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2251				rbio->stripe_len * rbio->nr_data);
2252	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2253	index = stripe_offset >> PAGE_SHIFT;
2254	rbio->bio_pages[index] = page;
2255}
2256
2257/*
2258 * We just scrub the parity that we have correct data on the same horizontal,
2259 * so we needn't allocate all pages for all the stripes.
2260 */
2261static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2262{
2263	int i;
2264	int bit;
2265	int index;
2266	struct page *page;
2267
2268	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2269		for (i = 0; i < rbio->real_stripes; i++) {
2270			index = i * rbio->stripe_npages + bit;
2271			if (rbio->stripe_pages[index])
2272				continue;
2273
2274			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2275			if (!page)
2276				return -ENOMEM;
2277			rbio->stripe_pages[index] = page;
2278		}
 
 
 
2279	}
 
2280	return 0;
2281}
2282
2283static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2284					 int need_check)
2285{
2286	struct btrfs_bio *bbio = rbio->bbio;
2287	void *pointers[rbio->real_stripes];
2288	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
 
2289	int nr_data = rbio->nr_data;
2290	int stripe;
2291	int pagenr;
2292	int p_stripe = -1;
2293	int q_stripe = -1;
2294	struct page *p_page = NULL;
2295	struct page *q_page = NULL;
2296	struct bio_list bio_list;
2297	struct bio *bio;
2298	int is_replace = 0;
2299	int ret;
2300
2301	bio_list_init(&bio_list);
2302
2303	if (rbio->real_stripes - rbio->nr_data == 1) {
2304		p_stripe = rbio->real_stripes - 1;
2305	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2306		p_stripe = rbio->real_stripes - 2;
2307		q_stripe = rbio->real_stripes - 1;
2308	} else {
2309		BUG();
2310	}
2311
2312	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
 
 
 
 
2313		is_replace = 1;
2314		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2315	}
2316
2317	/*
2318	 * Because the higher layers(scrubber) are unlikely to
2319	 * use this area of the disk again soon, so don't cache
2320	 * it.
2321	 */
2322	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2323
2324	if (!need_check)
2325		goto writeback;
 
 
 
2326
2327	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2328	if (!p_page)
2329		goto cleanup;
2330	SetPageUptodate(p_page);
2331
2332	if (q_stripe != -1) {
2333		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2334		if (!q_page) {
2335			__free_page(p_page);
2336			goto cleanup;
2337		}
2338		SetPageUptodate(q_page);
 
 
2339	}
2340
2341	atomic_set(&rbio->error, 0);
 
 
 
2342
2343	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2344		struct page *p;
2345		void *parity;
 
2346		/* first collect one page from each data stripe */
2347		for (stripe = 0; stripe < nr_data; stripe++) {
2348			p = page_in_rbio(rbio, stripe, pagenr, 0);
2349			pointers[stripe] = kmap(p);
 
2350		}
2351
2352		/* then add the parity stripe */
2353		pointers[stripe++] = kmap(p_page);
2354
2355		if (q_stripe != -1) {
2356
2357			/*
2358			 * raid6, add the qstripe and call the
2359			 * library function to fill in our p/q
2360			 */
2361			pointers[stripe++] = kmap(q_page);
2362
2363			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2364						pointers);
2365		} else {
2366			/* raid5 */
2367			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2368			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2369		}
2370
2371		/* Check scrubbing pairty and repair it */
2372		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2373		parity = kmap(p);
2374		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2375			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2376		else
2377			/* Parity is right, needn't writeback */
2378			bitmap_clear(rbio->dbitmap, pagenr, 1);
2379		kunmap(p);
2380
2381		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2382			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2383	}
2384
2385	__free_page(p_page);
2386	if (q_page)
2387		__free_page(q_page);
 
 
 
 
 
2388
2389writeback:
2390	/*
2391	 * time to start writing.  Make bios for everything from the
2392	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2393	 * everything else.
2394	 */
2395	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2396		struct page *page;
2397
2398		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2399		ret = rbio_add_io_page(rbio, &bio_list,
2400			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2401		if (ret)
2402			goto cleanup;
2403	}
2404
2405	if (!is_replace)
2406		goto submit_write;
2407
2408	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2409		struct page *page;
2410
2411		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412		ret = rbio_add_io_page(rbio, &bio_list, page,
2413				       bbio->tgtdev_map[rbio->scrubp],
2414				       pagenr, rbio->stripe_len);
 
 
 
 
 
2415		if (ret)
2416			goto cleanup;
2417	}
2418
2419submit_write:
2420	nr_data = bio_list_size(&bio_list);
2421	if (!nr_data) {
2422		/* Every parity is right */
2423		rbio_orig_end_io(rbio, 0);
2424		return;
2425	}
2426
2427	atomic_set(&rbio->stripes_pending, nr_data);
2428
2429	while (1) {
2430		bio = bio_list_pop(&bio_list);
2431		if (!bio)
2432			break;
2433
2434		bio->bi_private = rbio;
2435		bio->bi_end_io = raid_write_end_io;
2436		submit_bio(WRITE, bio);
2437	}
2438	return;
2439
2440cleanup:
2441	rbio_orig_end_io(rbio, -EIO);
 
2442}
2443
2444static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2445{
2446	if (stripe >= 0 && stripe < rbio->nr_data)
2447		return 1;
2448	return 0;
2449}
2450
2451/*
2452 * While we're doing the parity check and repair, we could have errors
2453 * in reading pages off the disk.  This checks for errors and if we're
2454 * not able to read the page it'll trigger parity reconstruction.  The
2455 * parity scrub will be finished after we've reconstructed the failed
2456 * stripes
2457 */
2458static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2459{
2460	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2461		goto cleanup;
 
 
2462
2463	if (rbio->faila >= 0 || rbio->failb >= 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2464		int dfail = 0, failp = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465
2466		if (is_data_stripe(rbio, rbio->faila))
2467			dfail++;
2468		else if (is_parity_stripe(rbio->faila))
2469			failp = rbio->faila;
2470
2471		if (is_data_stripe(rbio, rbio->failb))
2472			dfail++;
2473		else if (is_parity_stripe(rbio->failb))
2474			failp = rbio->failb;
2475
2476		/*
2477		 * Because we can not use a scrubbing parity to repair
2478		 * the data, so the capability of the repair is declined.
2479		 * (In the case of RAID5, we can not repair anything)
2480		 */
2481		if (dfail > rbio->bbio->max_errors - 1)
2482			goto cleanup;
2483
 
2484		/*
2485		 * If all data is good, only parity is correctly, just
2486		 * repair the parity.
2487		 */
2488		if (dfail == 0) {
2489			finish_parity_scrub(rbio, 0);
2490			return;
2491		}
2492
2493		/*
2494		 * Here means we got one corrupted data stripe and one
2495		 * corrupted parity on RAID6, if the corrupted parity
2496		 * is scrubbing parity, luckly, use the other one to repair
2497		 * the data, or we can not repair the data stripe.
2498		 */
2499		if (failp != rbio->scrubp)
2500			goto cleanup;
 
 
2501
2502		__raid_recover_end_io(rbio);
2503	} else {
2504		finish_parity_scrub(rbio, 1);
2505	}
2506	return;
2507
2508cleanup:
2509	rbio_orig_end_io(rbio, -EIO);
2510}
2511
2512/*
2513 * end io for the read phase of the rmw cycle.  All the bios here are physical
2514 * stripe bios we've read from the disk so we can recalculate the parity of the
2515 * stripe.
2516 *
2517 * This will usually kick off finish_rmw once all the bios are read in, but it
2518 * may trigger parity reconstruction if we had any errors along the way
2519 */
2520static void raid56_parity_scrub_end_io(struct bio *bio)
2521{
2522	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
2523
2524	if (bio->bi_error)
2525		fail_bio_stripe(rbio, bio);
2526	else
2527		set_bio_pages_uptodate(bio);
 
 
 
 
2528
2529	bio_put(bio);
 
 
 
 
 
 
2530
2531	if (!atomic_dec_and_test(&rbio->stripes_pending))
2532		return;
 
 
 
 
 
2533
2534	/*
2535	 * this will normally call finish_rmw to start our write
2536	 * but if there are any failed stripes we'll reconstruct
2537	 * from parity first
2538	 */
2539	validate_rbio_for_parity_scrub(rbio);
2540}
2541
2542static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2543{
2544	int bios_to_read = 0;
2545	struct bio_list bio_list;
2546	int ret;
2547	int pagenr;
2548	int stripe;
2549	struct bio *bio;
2550
2551	ret = alloc_rbio_essential_pages(rbio);
2552	if (ret)
2553		goto cleanup;
2554
2555	bio_list_init(&bio_list);
2556
2557	atomic_set(&rbio->error, 0);
2558	/*
2559	 * build a list of bios to read all the missing parts of this
2560	 * stripe
2561	 */
2562	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2563		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2564			struct page *page;
2565			/*
2566			 * we want to find all the pages missing from
2567			 * the rbio and read them from the disk.  If
2568			 * page_in_rbio finds a page in the bio list
2569			 * we don't need to read it off the stripe.
2570			 */
2571			page = page_in_rbio(rbio, stripe, pagenr, 1);
2572			if (page)
2573				continue;
2574
2575			page = rbio_stripe_page(rbio, stripe, pagenr);
2576			/*
2577			 * the bio cache may have handed us an uptodate
2578			 * page.  If so, be happy and use it
2579			 */
2580			if (PageUptodate(page))
2581				continue;
2582
2583			ret = rbio_add_io_page(rbio, &bio_list, page,
2584				       stripe, pagenr, rbio->stripe_len);
2585			if (ret)
2586				goto cleanup;
2587		}
2588	}
2589
2590	bios_to_read = bio_list_size(&bio_list);
2591	if (!bios_to_read) {
2592		/*
2593		 * this can happen if others have merged with
2594		 * us, it means there is nothing left to read.
2595		 * But if there are missing devices it may not be
2596		 * safe to do the full stripe write yet.
2597		 */
2598		goto finish;
2599	}
2600
2601	/*
2602	 * the bbio may be freed once we submit the last bio.  Make sure
2603	 * not to touch it after that
2604	 */
2605	atomic_set(&rbio->stripes_pending, bios_to_read);
2606	while (1) {
2607		bio = bio_list_pop(&bio_list);
2608		if (!bio)
 
 
 
 
2609			break;
2610
2611		bio->bi_private = rbio;
2612		bio->bi_end_io = raid56_parity_scrub_end_io;
2613
2614		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2615				    BTRFS_WQ_ENDIO_RAID56);
2616
2617		submit_bio(READ, bio);
2618	}
2619	/* the actual write will happen once the reads are done */
2620	return;
2621
2622cleanup:
2623	rbio_orig_end_io(rbio, -EIO);
2624	return;
2625
2626finish:
2627	validate_rbio_for_parity_scrub(rbio);
2628}
2629
2630static void scrub_parity_work(struct btrfs_work *work)
2631{
2632	struct btrfs_raid_bio *rbio;
2633
2634	rbio = container_of(work, struct btrfs_raid_bio, work);
2635	raid56_parity_scrub_stripe(rbio);
2636}
2637
2638static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2639{
2640	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2641			scrub_parity_work, NULL, NULL);
2642
2643	btrfs_queue_work(rbio->fs_info->rmw_workers,
2644			 &rbio->work);
2645}
2646
2647void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2648{
2649	if (!lock_stripe_add(rbio))
2650		async_scrub_parity(rbio);
2651}
2652
2653/* The following code is used for dev replace of a missing RAID 5/6 device. */
2654
2655struct btrfs_raid_bio *
2656raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2657			  struct btrfs_bio *bbio, u64 length)
 
 
 
 
2658{
2659	struct btrfs_raid_bio *rbio;
2660
2661	rbio = alloc_rbio(root, bbio, length);
2662	if (IS_ERR(rbio))
2663		return NULL;
 
2664
2665	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2666	bio_list_add(&rbio->bio_list, bio);
2667	/*
2668	 * This is a special bio which is used to hold the completion handler
2669	 * and make the scrub rbio is similar to the other types
 
 
 
 
2670	 */
2671	ASSERT(!bio->bi_iter.bi_size);
 
 
2672
2673	rbio->faila = find_logical_bio_stripe(rbio, bio);
2674	if (rbio->faila == -1) {
2675		BUG();
2676		kfree(rbio);
2677		return NULL;
 
 
 
 
 
 
 
 
2678	}
2679
2680	return rbio;
2681}
2682
2683static void missing_raid56_work(struct btrfs_work *work)
2684{
2685	struct btrfs_raid_bio *rbio;
2686
2687	rbio = container_of(work, struct btrfs_raid_bio, work);
2688	__raid56_parity_recover(rbio);
2689}
2690
2691static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2692{
2693	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2694			missing_raid56_work, NULL, NULL);
2695
2696	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2697}
2698
2699void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2700{
2701	if (!lock_stripe_add(rbio))
2702		async_missing_raid56(rbio);
2703}