Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/sched.h>
 
   8#include <linux/bio.h>
   9#include <linux/slab.h>
 
  10#include <linux/blkdev.h>
 
 
 
 
 
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
  16#include "messages.h"
  17#include "misc.h"
  18#include "ctree.h"
 
  19#include "disk-io.h"
 
 
  20#include "volumes.h"
  21#include "raid56.h"
  22#include "async-thread.h"
  23#include "file-item.h"
  24#include "btrfs_inode.h"
  25
  26/* set when additional merges to this rbio are not allowed */
  27#define RBIO_RMW_LOCKED_BIT	1
  28
  29/*
  30 * set when this rbio is sitting in the hash, but it is just a cache
  31 * of past RMW
  32 */
  33#define RBIO_CACHE_BIT		2
  34
  35/*
  36 * set when it is safe to trust the stripe_pages for caching
  37 */
  38#define RBIO_CACHE_READY_BIT	3
  39
 
  40#define RBIO_CACHE_SIZE 1024
  41
  42#define BTRFS_STRIPE_HASH_TABLE_BITS				11
 
 
 
 
 
 
 
 
 
  43
  44/* Used by the raid56 code to lock stripes for read/modify/write */
  45struct btrfs_stripe_hash {
 
 
 
  46	struct list_head hash_list;
  47	spinlock_t lock;
  48};
  49
  50/* Used by the raid56 code to lock stripes for read/modify/write */
  51struct btrfs_stripe_hash_table {
 
  52	struct list_head stripe_cache;
  53	spinlock_t cache_lock;
  54	int cache_size;
  55	struct btrfs_stripe_hash table[];
  56};
  57
  58/*
  59 * A bvec like structure to present a sector inside a page.
  60 *
  61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
  62 */
  63struct sector_ptr {
  64	struct page *page;
  65	unsigned int pgoff:24;
  66	unsigned int uptodate:8;
  67};
  68
  69static void rmw_rbio_work(struct work_struct *work);
  70static void rmw_rbio_work_locked(struct work_struct *work);
  71static void index_rbio_pages(struct btrfs_raid_bio *rbio);
  72static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 
 
 
  73
  74static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
  75static void scrub_rbio_work_locked(struct work_struct *work);
 
 
 
 
 
  76
  77static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
  78{
  79	bitmap_free(rbio->error_bitmap);
  80	kfree(rbio->stripe_pages);
  81	kfree(rbio->bio_sectors);
  82	kfree(rbio->stripe_sectors);
  83	kfree(rbio->finish_pointers);
  84}
  85
  86static void free_raid_bio(struct btrfs_raid_bio *rbio)
  87{
  88	int i;
  89
  90	if (!refcount_dec_and_test(&rbio->refs))
  91		return;
  92
  93	WARN_ON(!list_empty(&rbio->stripe_cache));
  94	WARN_ON(!list_empty(&rbio->hash_list));
  95	WARN_ON(!bio_list_empty(&rbio->bio_list));
 
 
 
 
  96
  97	for (i = 0; i < rbio->nr_pages; i++) {
  98		if (rbio->stripe_pages[i]) {
  99			__free_page(rbio->stripe_pages[i]);
 100			rbio->stripe_pages[i] = NULL;
 101		}
 102	}
 103
 104	btrfs_put_bioc(rbio->bioc);
 105	free_raid_bio_pointers(rbio);
 106	kfree(rbio);
 107}
 108
 109static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
 110{
 111	INIT_WORK(&rbio->work, work_func);
 112	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 113}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115/*
 116 * the stripe hash table is used for locking, and to collect
 117 * bios in hopes of making a full stripe
 118 */
 119int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 120{
 121	struct btrfs_stripe_hash_table *table;
 122	struct btrfs_stripe_hash_table *x;
 123	struct btrfs_stripe_hash *cur;
 124	struct btrfs_stripe_hash *h;
 125	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 126	int i;
 
 127
 128	if (info->stripe_hash_table)
 129		return 0;
 130
 131	/*
 132	 * The table is large, starting with order 4 and can go as high as
 133	 * order 7 in case lock debugging is turned on.
 134	 *
 135	 * Try harder to allocate and fallback to vmalloc to lower the chance
 136	 * of a failing mount.
 137	 */
 138	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 139	if (!table)
 140		return -ENOMEM;
 
 
 
 
 141
 142	spin_lock_init(&table->cache_lock);
 143	INIT_LIST_HEAD(&table->stripe_cache);
 144
 145	h = table->table;
 146
 147	for (i = 0; i < num_entries; i++) {
 148		cur = h + i;
 149		INIT_LIST_HEAD(&cur->hash_list);
 150		spin_lock_init(&cur->lock);
 
 151	}
 152
 153	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 154	kvfree(x);
 
 
 
 
 
 155	return 0;
 156}
 157
 158/*
 159 * caching an rbio means to copy anything from the
 160 * bio_sectors array into the stripe_pages array.  We
 161 * use the page uptodate bit in the stripe cache array
 162 * to indicate if it has valid data
 163 *
 164 * once the caching is done, we set the cache ready
 165 * bit.
 166 */
 167static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 168{
 169	int i;
 
 
 170	int ret;
 171
 172	ret = alloc_rbio_pages(rbio);
 173	if (ret)
 174		return;
 175
 176	for (i = 0; i < rbio->nr_sectors; i++) {
 177		/* Some range not covered by bio (partial write), skip it */
 178		if (!rbio->bio_sectors[i].page) {
 179			/*
 180			 * Even if the sector is not covered by bio, if it is
 181			 * a data sector it should still be uptodate as it is
 182			 * read from disk.
 183			 */
 184			if (i < rbio->nr_data * rbio->stripe_nsectors)
 185				ASSERT(rbio->stripe_sectors[i].uptodate);
 186			continue;
 187		}
 188
 189		ASSERT(rbio->stripe_sectors[i].page);
 190		memcpy_page(rbio->stripe_sectors[i].page,
 191			    rbio->stripe_sectors[i].pgoff,
 192			    rbio->bio_sectors[i].page,
 193			    rbio->bio_sectors[i].pgoff,
 194			    rbio->bioc->fs_info->sectorsize);
 195		rbio->stripe_sectors[i].uptodate = 1;
 
 196	}
 197	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 198}
 199
 200/*
 201 * we hash on the first logical address of the stripe
 202 */
 203static int rbio_bucket(struct btrfs_raid_bio *rbio)
 204{
 205	u64 num = rbio->bioc->full_stripe_logical;
 206
 207	/*
 208	 * we shift down quite a bit.  We're using byte
 209	 * addressing, and most of the lower bits are zeros.
 210	 * This tends to upset hash_64, and it consistently
 211	 * returns just one or two different values.
 212	 *
 213	 * shifting off the lower bits fixes things.
 214	 */
 215	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 216}
 217
 218static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
 219				       unsigned int page_nr)
 220{
 221	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 222	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 223	int i;
 224
 225	ASSERT(page_nr < rbio->nr_pages);
 226
 227	for (i = sectors_per_page * page_nr;
 228	     i < sectors_per_page * page_nr + sectors_per_page;
 229	     i++) {
 230		if (!rbio->stripe_sectors[i].uptodate)
 231			return false;
 232	}
 233	return true;
 234}
 235
 236/*
 237 * Update the stripe_sectors[] array to use correct page and pgoff
 238 *
 239 * Should be called every time any page pointer in stripes_pages[] got modified.
 240 */
 241static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
 242{
 243	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 244	u32 offset;
 245	int i;
 246
 247	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
 248		int page_index = offset >> PAGE_SHIFT;
 249
 250		ASSERT(page_index < rbio->nr_pages);
 251		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
 252		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
 253	}
 254}
 255
 256static void steal_rbio_page(struct btrfs_raid_bio *src,
 257			    struct btrfs_raid_bio *dest, int page_nr)
 258{
 259	const u32 sectorsize = src->bioc->fs_info->sectorsize;
 260	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 261	int i;
 262
 263	if (dest->stripe_pages[page_nr])
 264		__free_page(dest->stripe_pages[page_nr]);
 265	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
 266	src->stripe_pages[page_nr] = NULL;
 267
 268	/* Also update the sector->uptodate bits. */
 269	for (i = sectors_per_page * page_nr;
 270	     i < sectors_per_page * page_nr + sectors_per_page; i++)
 271		dest->stripe_sectors[i].uptodate = true;
 272}
 273
 274static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
 275{
 276	const int sector_nr = (page_nr << PAGE_SHIFT) >>
 277			      rbio->bioc->fs_info->sectorsize_bits;
 278
 279	/*
 280	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
 281	 * we won't have a page which is half data half parity.
 282	 *
 283	 * Thus if the first sector of the page belongs to data stripes, then
 284	 * the full page belongs to data stripes.
 285	 */
 286	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
 287}
 288
 289/*
 290 * Stealing an rbio means taking all the uptodate pages from the stripe array
 291 * in the source rbio and putting them into the destination rbio.
 292 *
 293 * This will also update the involved stripe_sectors[] which are referring to
 294 * the old pages.
 295 */
 296static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 297{
 298	int i;
 
 
 299
 300	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 301		return;
 302
 303	for (i = 0; i < dest->nr_pages; i++) {
 304		struct page *p = src->stripe_pages[i];
 305
 306		/*
 307		 * We don't need to steal P/Q pages as they will always be
 308		 * regenerated for RMW or full write anyway.
 309		 */
 310		if (!is_data_stripe_page(src, i))
 311			continue;
 
 312
 313		/*
 314		 * If @src already has RBIO_CACHE_READY_BIT, it should have
 315		 * all data stripe pages present and uptodate.
 316		 */
 317		ASSERT(p);
 318		ASSERT(full_page_sectors_uptodate(src, i));
 319		steal_rbio_page(src, dest, i);
 320	}
 321	index_stripe_sectors(dest);
 322	index_stripe_sectors(src);
 323}
 324
 325/*
 326 * merging means we take the bio_list from the victim and
 327 * splice it into the destination.  The victim should
 328 * be discarded afterwards.
 329 *
 330 * must be called with dest->rbio_list_lock held
 331 */
 332static void merge_rbio(struct btrfs_raid_bio *dest,
 333		       struct btrfs_raid_bio *victim)
 334{
 335	bio_list_merge(&dest->bio_list, &victim->bio_list);
 336	dest->bio_list_bytes += victim->bio_list_bytes;
 337	/* Also inherit the bitmaps from @victim. */
 338	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
 339		  dest->stripe_nsectors);
 340	bio_list_init(&victim->bio_list);
 341}
 342
 343/*
 344 * used to prune items that are in the cache.  The caller
 345 * must hold the hash table lock.
 346 */
 347static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 348{
 349	int bucket = rbio_bucket(rbio);
 350	struct btrfs_stripe_hash_table *table;
 351	struct btrfs_stripe_hash *h;
 352	int freeit = 0;
 353
 354	/*
 355	 * check the bit again under the hash table lock.
 356	 */
 357	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 358		return;
 359
 360	table = rbio->bioc->fs_info->stripe_hash_table;
 361	h = table->table + bucket;
 362
 363	/* hold the lock for the bucket because we may be
 364	 * removing it from the hash table
 365	 */
 366	spin_lock(&h->lock);
 367
 368	/*
 369	 * hold the lock for the bio list because we need
 370	 * to make sure the bio list is empty
 371	 */
 372	spin_lock(&rbio->bio_list_lock);
 373
 374	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 375		list_del_init(&rbio->stripe_cache);
 376		table->cache_size -= 1;
 377		freeit = 1;
 378
 379		/* if the bio list isn't empty, this rbio is
 380		 * still involved in an IO.  We take it out
 381		 * of the cache list, and drop the ref that
 382		 * was held for the list.
 383		 *
 384		 * If the bio_list was empty, we also remove
 385		 * the rbio from the hash_table, and drop
 386		 * the corresponding ref
 387		 */
 388		if (bio_list_empty(&rbio->bio_list)) {
 389			if (!list_empty(&rbio->hash_list)) {
 390				list_del_init(&rbio->hash_list);
 391				refcount_dec(&rbio->refs);
 392				BUG_ON(!list_empty(&rbio->plug_list));
 393			}
 394		}
 395	}
 396
 397	spin_unlock(&rbio->bio_list_lock);
 398	spin_unlock(&h->lock);
 399
 400	if (freeit)
 401		free_raid_bio(rbio);
 402}
 403
 404/*
 405 * prune a given rbio from the cache
 406 */
 407static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 408{
 409	struct btrfs_stripe_hash_table *table;
 
 410
 411	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 412		return;
 413
 414	table = rbio->bioc->fs_info->stripe_hash_table;
 415
 416	spin_lock(&table->cache_lock);
 417	__remove_rbio_from_cache(rbio);
 418	spin_unlock(&table->cache_lock);
 419}
 420
 421/*
 422 * remove everything in the cache
 423 */
 424static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 425{
 426	struct btrfs_stripe_hash_table *table;
 
 427	struct btrfs_raid_bio *rbio;
 428
 429	table = info->stripe_hash_table;
 430
 431	spin_lock(&table->cache_lock);
 432	while (!list_empty(&table->stripe_cache)) {
 433		rbio = list_entry(table->stripe_cache.next,
 434				  struct btrfs_raid_bio,
 435				  stripe_cache);
 436		__remove_rbio_from_cache(rbio);
 437	}
 438	spin_unlock(&table->cache_lock);
 439}
 440
 441/*
 442 * remove all cached entries and free the hash table
 443 * used by unmount
 444 */
 445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 446{
 447	if (!info->stripe_hash_table)
 448		return;
 449	btrfs_clear_rbio_cache(info);
 450	kvfree(info->stripe_hash_table);
 
 
 
 451	info->stripe_hash_table = NULL;
 452}
 453
 454/*
 455 * insert an rbio into the stripe cache.  It
 456 * must have already been prepared by calling
 457 * cache_rbio_pages
 458 *
 459 * If this rbio was already cached, it gets
 460 * moved to the front of the lru.
 461 *
 462 * If the size of the rbio cache is too big, we
 463 * prune an item.
 464 */
 465static void cache_rbio(struct btrfs_raid_bio *rbio)
 466{
 467	struct btrfs_stripe_hash_table *table;
 
 468
 469	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 470		return;
 471
 472	table = rbio->bioc->fs_info->stripe_hash_table;
 473
 474	spin_lock(&table->cache_lock);
 475	spin_lock(&rbio->bio_list_lock);
 476
 477	/* bump our ref if we were not in the list before */
 478	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 479		refcount_inc(&rbio->refs);
 480
 481	if (!list_empty(&rbio->stripe_cache)){
 482		list_move(&rbio->stripe_cache, &table->stripe_cache);
 483	} else {
 484		list_add(&rbio->stripe_cache, &table->stripe_cache);
 485		table->cache_size += 1;
 486	}
 487
 488	spin_unlock(&rbio->bio_list_lock);
 489
 490	if (table->cache_size > RBIO_CACHE_SIZE) {
 491		struct btrfs_raid_bio *found;
 492
 493		found = list_entry(table->stripe_cache.prev,
 494				  struct btrfs_raid_bio,
 495				  stripe_cache);
 496
 497		if (found != rbio)
 498			__remove_rbio_from_cache(found);
 499	}
 500
 501	spin_unlock(&table->cache_lock);
 
 502}
 503
 504/*
 505 * helper function to run the xor_blocks api.  It is only
 506 * able to do MAX_XOR_BLOCKS at a time, so we need to
 507 * loop through.
 508 */
 509static void run_xor(void **pages, int src_cnt, ssize_t len)
 510{
 511	int src_off = 0;
 512	int xor_src_cnt = 0;
 513	void *dest = pages[src_cnt];
 514
 515	while(src_cnt > 0) {
 516		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 517		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 518
 519		src_cnt -= xor_src_cnt;
 520		src_off += xor_src_cnt;
 521	}
 522}
 523
 524/*
 525 * Returns true if the bio list inside this rbio covers an entire stripe (no
 526 * rmw required).
 
 
 
 527 */
 528static int rbio_is_full(struct btrfs_raid_bio *rbio)
 529{
 530	unsigned long size = rbio->bio_list_bytes;
 531	int ret = 1;
 532
 533	spin_lock(&rbio->bio_list_lock);
 534	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
 535		ret = 0;
 536	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
 537	spin_unlock(&rbio->bio_list_lock);
 538
 
 
 
 
 
 
 
 
 
 
 
 
 539	return ret;
 540}
 541
 542/*
 543 * returns 1 if it is safe to merge two rbios together.
 544 * The merging is safe if the two rbios correspond to
 545 * the same stripe and if they are both going in the same
 546 * direction (read vs write), and if neither one is
 547 * locked for final IO
 548 *
 549 * The caller is responsible for locking such that
 550 * rmw_locked is safe to test
 551 */
 552static int rbio_can_merge(struct btrfs_raid_bio *last,
 553			  struct btrfs_raid_bio *cur)
 554{
 555	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 556	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 557		return 0;
 558
 559	/*
 560	 * we can't merge with cached rbios, since the
 561	 * idea is that when we merge the destination
 562	 * rbio is going to run our IO for us.  We can
 563	 * steal from cached rbios though, other functions
 564	 * handle that.
 565	 */
 566	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 567	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 568		return 0;
 569
 570	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
 571		return 0;
 572
 573	/* we can't merge with different operations */
 574	if (last->operation != cur->operation)
 575		return 0;
 576	/*
 577	 * We've need read the full stripe from the drive.
 578	 * check and repair the parity and write the new results.
 579	 *
 580	 * We're not allowed to add any new bios to the
 581	 * bio list here, anyone else that wants to
 582	 * change this stripe needs to do their own rmw.
 583	 */
 584	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 585		return 0;
 586
 587	if (last->operation == BTRFS_RBIO_READ_REBUILD)
 
 
 588		return 0;
 
 589
 590	return 1;
 591}
 592
 593static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
 594					     unsigned int stripe_nr,
 595					     unsigned int sector_nr)
 596{
 597	ASSERT(stripe_nr < rbio->real_stripes);
 598	ASSERT(sector_nr < rbio->stripe_nsectors);
 599
 600	return stripe_nr * rbio->stripe_nsectors + sector_nr;
 601}
 602
 603/* Return a sector from rbio->stripe_sectors, not from the bio list */
 604static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
 605					     unsigned int stripe_nr,
 606					     unsigned int sector_nr)
 607{
 608	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
 609							      sector_nr)];
 610}
 611
 612/* Grab a sector inside P stripe */
 613static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
 614					      unsigned int sector_nr)
 615{
 616	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
 
 617}
 618
 619/* Grab a sector inside Q stripe, return NULL if not RAID6 */
 620static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
 621					      unsigned int sector_nr)
 
 
 622{
 623	if (rbio->nr_data + 1 == rbio->real_stripes)
 624		return NULL;
 625	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
 
 
 
 626}
 627
 628/*
 629 * The first stripe in the table for a logical address
 630 * has the lock.  rbios are added in one of three ways:
 631 *
 632 * 1) Nobody has the stripe locked yet.  The rbio is given
 633 * the lock and 0 is returned.  The caller must start the IO
 634 * themselves.
 635 *
 636 * 2) Someone has the stripe locked, but we're able to merge
 637 * with the lock owner.  The rbio is freed and the IO will
 638 * start automatically along with the existing rbio.  1 is returned.
 639 *
 640 * 3) Someone has the stripe locked, but we're not able to merge.
 641 * The rbio is added to the lock owner's plug list, or merged into
 642 * an rbio already on the plug list.  When the lock owner unlocks,
 643 * the next rbio on the list is run and the IO is started automatically.
 644 * 1 is returned
 645 *
 646 * If we return 0, the caller still owns the rbio and must continue with
 647 * IO submission.  If we return 1, the caller must assume the rbio has
 648 * already been freed.
 649 */
 650static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 651{
 652	struct btrfs_stripe_hash *h;
 
 653	struct btrfs_raid_bio *cur;
 654	struct btrfs_raid_bio *pending;
 
 
 655	struct btrfs_raid_bio *freeit = NULL;
 656	struct btrfs_raid_bio *cache_drop = NULL;
 657	int ret = 0;
 
 658
 659	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 660
 661	spin_lock(&h->lock);
 662	list_for_each_entry(cur, &h->hash_list, hash_list) {
 663		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
 664			continue;
 665
 666		spin_lock(&cur->bio_list_lock);
 667
 668		/* Can we steal this cached rbio's pages? */
 669		if (bio_list_empty(&cur->bio_list) &&
 670		    list_empty(&cur->plug_list) &&
 671		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 672		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 673			list_del_init(&cur->hash_list);
 674			refcount_dec(&cur->refs);
 675
 676			steal_rbio(cur, rbio);
 677			cache_drop = cur;
 678			spin_unlock(&cur->bio_list_lock);
 679
 680			goto lockit;
 681		}
 682
 683		/* Can we merge into the lock owner? */
 684		if (rbio_can_merge(cur, rbio)) {
 685			merge_rbio(cur, rbio);
 686			spin_unlock(&cur->bio_list_lock);
 687			freeit = rbio;
 688			ret = 1;
 689			goto out;
 690		}
 691
 
 
 692
 693		/*
 694		 * We couldn't merge with the running rbio, see if we can merge
 695		 * with the pending ones.  We don't have to check for rmw_locked
 696		 * because there is no way they are inside finish_rmw right now
 697		 */
 698		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 699			if (rbio_can_merge(pending, rbio)) {
 700				merge_rbio(pending, rbio);
 701				spin_unlock(&cur->bio_list_lock);
 702				freeit = rbio;
 703				ret = 1;
 704				goto out;
 705			}
 706		}
 707
 708		/*
 709		 * No merging, put us on the tail of the plug list, our rbio
 710		 * will be started with the currently running rbio unlocks
 711		 */
 712		list_add_tail(&rbio->plug_list, &cur->plug_list);
 713		spin_unlock(&cur->bio_list_lock);
 714		ret = 1;
 715		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716	}
 717lockit:
 718	refcount_inc(&rbio->refs);
 719	list_add(&rbio->hash_list, &h->hash_list);
 720out:
 721	spin_unlock(&h->lock);
 722	if (cache_drop)
 723		remove_rbio_from_cache(cache_drop);
 724	if (freeit)
 725		free_raid_bio(freeit);
 726	return ret;
 727}
 728
 729static void recover_rbio_work_locked(struct work_struct *work);
 730
 731/*
 732 * called as rmw or parity rebuild is completed.  If the plug list has more
 733 * rbios waiting for this stripe, the next one on the list will be started
 734 */
 735static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 736{
 737	int bucket;
 738	struct btrfs_stripe_hash *h;
 
 739	int keep_cache = 0;
 740
 741	bucket = rbio_bucket(rbio);
 742	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 743
 744	if (list_empty(&rbio->plug_list))
 745		cache_rbio(rbio);
 746
 747	spin_lock(&h->lock);
 748	spin_lock(&rbio->bio_list_lock);
 749
 750	if (!list_empty(&rbio->hash_list)) {
 751		/*
 752		 * if we're still cached and there is no other IO
 753		 * to perform, just leave this rbio here for others
 754		 * to steal from later
 755		 */
 756		if (list_empty(&rbio->plug_list) &&
 757		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 758			keep_cache = 1;
 759			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 760			BUG_ON(!bio_list_empty(&rbio->bio_list));
 761			goto done;
 762		}
 763
 764		list_del_init(&rbio->hash_list);
 765		refcount_dec(&rbio->refs);
 766
 767		/*
 768		 * we use the plug list to hold all the rbios
 769		 * waiting for the chance to lock this stripe.
 770		 * hand the lock over to one of them.
 771		 */
 772		if (!list_empty(&rbio->plug_list)) {
 773			struct btrfs_raid_bio *next;
 774			struct list_head *head = rbio->plug_list.next;
 775
 776			next = list_entry(head, struct btrfs_raid_bio,
 777					  plug_list);
 778
 779			list_del_init(&rbio->plug_list);
 780
 781			list_add(&next->hash_list, &h->hash_list);
 782			refcount_inc(&next->refs);
 783			spin_unlock(&rbio->bio_list_lock);
 784			spin_unlock(&h->lock);
 785
 786			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
 787				start_async_work(next, recover_rbio_work_locked);
 788			} else if (next->operation == BTRFS_RBIO_WRITE) {
 789				steal_rbio(rbio, next);
 790				start_async_work(next, rmw_rbio_work_locked);
 791			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 792				steal_rbio(rbio, next);
 793				start_async_work(next, scrub_rbio_work_locked);
 794			}
 795
 796			goto done_nolock;
 
 
 
 
 
 797		}
 798	}
 799done:
 800	spin_unlock(&rbio->bio_list_lock);
 801	spin_unlock(&h->lock);
 802
 803done_nolock:
 804	if (!keep_cache)
 805		remove_rbio_from_cache(rbio);
 806}
 807
 808static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 809{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810	struct bio *next;
 
 811
 812	while (cur) {
 813		next = cur->bi_next;
 814		cur->bi_next = NULL;
 815		cur->bi_status = err;
 816		bio_endio(cur);
 
 817		cur = next;
 818	}
 819}
 820
 821/*
 822 * this frees the rbio and runs through all the bios in the
 823 * bio_list and calls end_io on them
 824 */
 825static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 826{
 827	struct bio *cur = bio_list_get(&rbio->bio_list);
 828	struct bio *extra;
 829
 830	kfree(rbio->csum_buf);
 831	bitmap_free(rbio->csum_bitmap);
 832	rbio->csum_buf = NULL;
 833	rbio->csum_bitmap = NULL;
 834
 835	/*
 836	 * Clear the data bitmap, as the rbio may be cached for later usage.
 837	 * do this before before unlock_stripe() so there will be no new bio
 838	 * for this bio.
 839	 */
 840	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
 841
 842	/*
 843	 * At this moment, rbio->bio_list is empty, however since rbio does not
 844	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 845	 * hash list, rbio may be merged with others so that rbio->bio_list
 846	 * becomes non-empty.
 847	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 848	 * more and we can call bio_endio() on all queued bios.
 849	 */
 850	unlock_stripe(rbio);
 851	extra = bio_list_get(&rbio->bio_list);
 852	free_raid_bio(rbio);
 853
 854	rbio_endio_bio_list(cur, err);
 855	if (extra)
 856		rbio_endio_bio_list(extra, err);
 857}
 858
 859/*
 860 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
 
 
 
 
 
 
 
 861 *
 862 * @rbio:               The raid bio
 863 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 864 * @sector_nr:		Sector number inside the stripe,
 865 *			valid range [0, stripe_nsectors)
 866 * @bio_list_only:      Whether to use sectors inside the bio list only.
 867 *
 868 * The read/modify/write code wants to reuse the original bio page as much
 869 * as possible, and only use stripe_sectors as fallback.
 870 */
 871static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
 872					 int stripe_nr, int sector_nr,
 873					 bool bio_list_only)
 874{
 875	struct sector_ptr *sector;
 876	int index;
 877
 878	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
 879	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
 880
 881	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
 882	ASSERT(index >= 0 && index < rbio->nr_sectors);
 
 883
 884	spin_lock(&rbio->bio_list_lock);
 885	sector = &rbio->bio_sectors[index];
 886	if (sector->page || bio_list_only) {
 887		/* Don't return sector without a valid page pointer */
 888		if (!sector->page)
 889			sector = NULL;
 890		spin_unlock(&rbio->bio_list_lock);
 891		return sector;
 892	}
 893	spin_unlock(&rbio->bio_list_lock);
 894
 895	return &rbio->stripe_sectors[index];
 
 
 
 
 
 
 
 896}
 897
 898/*
 899 * allocation and initial setup for the btrfs_raid_bio.  Not
 900 * this does not allocate any pages for rbio->pages.
 901 */
 902static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 903					 struct btrfs_io_context *bioc)
 
 904{
 905	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
 906	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
 907	const unsigned int num_pages = stripe_npages * real_stripes;
 908	const unsigned int stripe_nsectors =
 909		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 910	const unsigned int num_sectors = stripe_nsectors * real_stripes;
 911	struct btrfs_raid_bio *rbio;
 912
 913	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
 914	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
 915	/*
 916	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
 917	 * (at most 16) should be no larger than BITS_PER_LONG.
 918	 */
 919	ASSERT(stripe_nsectors <= BITS_PER_LONG);
 920
 921	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
 922	if (!rbio)
 923		return ERR_PTR(-ENOMEM);
 924	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
 925				     GFP_NOFS);
 926	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 927				    GFP_NOFS);
 928	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 929				       GFP_NOFS);
 930	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
 931	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
 932
 933	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
 934	    !rbio->finish_pointers || !rbio->error_bitmap) {
 935		free_raid_bio_pointers(rbio);
 936		kfree(rbio);
 937		return ERR_PTR(-ENOMEM);
 938	}
 939
 940	bio_list_init(&rbio->bio_list);
 941	init_waitqueue_head(&rbio->io_wait);
 942	INIT_LIST_HEAD(&rbio->plug_list);
 943	spin_lock_init(&rbio->bio_list_lock);
 944	INIT_LIST_HEAD(&rbio->stripe_cache);
 945	INIT_LIST_HEAD(&rbio->hash_list);
 946	btrfs_get_bioc(bioc);
 947	rbio->bioc = bioc;
 
 
 948	rbio->nr_pages = num_pages;
 949	rbio->nr_sectors = num_sectors;
 950	rbio->real_stripes = real_stripes;
 951	rbio->stripe_npages = stripe_npages;
 952	rbio->stripe_nsectors = stripe_nsectors;
 953	refcount_set(&rbio->refs, 1);
 954	atomic_set(&rbio->stripes_pending, 0);
 
 
 
 
 
 955
 956	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
 957	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
 
 
 958
 
 959	return rbio;
 960}
 961
 962/* allocate pages for all the stripes in the bio, including parity */
 963static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 964{
 965	int ret;
 
 966
 967	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0);
 968	if (ret < 0)
 969		return ret;
 970	/* Mapping all sectors */
 971	index_stripe_sectors(rbio);
 
 
 
 
 972	return 0;
 973}
 974
 975/* only allocate pages for p/q stripes */
 976static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 977{
 978	const int data_pages = rbio->nr_data * rbio->stripe_npages;
 979	int ret;
 980
 981	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
 982				     rbio->stripe_pages + data_pages, 0);
 983	if (ret < 0)
 984		return ret;
 985
 986	index_stripe_sectors(rbio);
 987	return 0;
 988}
 989
 990/*
 991 * Return the total number of errors found in the vertical stripe of @sector_nr.
 992 *
 993 * @faila and @failb will also be updated to the first and second stripe
 994 * number of the errors.
 995 */
 996static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
 997				     int *faila, int *failb)
 998{
 999	int stripe_nr;
1000	int found_errors = 0;
1001
1002	if (faila || failb) {
1003		/*
1004		 * Both @faila and @failb should be valid pointers if any of
1005		 * them is specified.
1006		 */
1007		ASSERT(faila && failb);
1008		*faila = -1;
1009		*failb = -1;
1010	}
1011
1012	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1013		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1014
1015		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1016			found_errors++;
1017			if (faila) {
1018				/* Update faila and failb. */
1019				if (*faila < 0)
1020					*faila = stripe_nr;
1021				else if (*failb < 0)
1022					*failb = stripe_nr;
1023			}
1024		}
1025	}
1026	return found_errors;
1027}
1028
1029/*
1030 * Add a single sector @sector into our list of bios for IO.
1031 *
1032 * Return 0 if everything went well.
1033 * Return <0 for error.
1034 */
1035static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1036			      struct bio_list *bio_list,
1037			      struct sector_ptr *sector,
1038			      unsigned int stripe_nr,
1039			      unsigned int sector_nr,
1040			      enum req_op op)
1041{
1042	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1043	struct bio *last = bio_list->tail;
 
1044	int ret;
1045	struct bio *bio;
1046	struct btrfs_io_stripe *stripe;
1047	u64 disk_start;
1048
1049	/*
1050	 * Note: here stripe_nr has taken device replace into consideration,
1051	 * thus it can be larger than rbio->real_stripe.
1052	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1053	 */
1054	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1055	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1056	ASSERT(sector->page);
1057
1058	stripe = &rbio->bioc->stripes[stripe_nr];
1059	disk_start = stripe->physical + sector_nr * sectorsize;
1060
1061	/* if the device is missing, just fail this stripe */
1062	if (!stripe->dev->bdev) {
1063		int found_errors;
1064
1065		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1066			rbio->error_bitmap);
1067
1068		/* Check if we have reached tolerance early. */
1069		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1070							 NULL, NULL);
1071		if (found_errors > rbio->bioc->max_errors)
1072			return -EIO;
1073		return 0;
1074	}
1075
1076	/* see if we can add this page onto our existing bio */
1077	if (last) {
1078		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1079		last_end += last->bi_iter.bi_size;
1080
1081		/*
1082		 * we can't merge these if they are from different
1083		 * devices or if they are not contiguous
1084		 */
1085		if (last_end == disk_start && !last->bi_status &&
 
1086		    last->bi_bdev == stripe->dev->bdev) {
1087			ret = bio_add_page(last, sector->page, sectorsize,
1088					   sector->pgoff);
1089			if (ret == sectorsize)
1090				return 0;
1091		}
1092	}
1093
1094	/* put a new bio on the list */
1095	bio = bio_alloc(stripe->dev->bdev,
1096			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1097			op, GFP_NOFS);
1098	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1099	bio->bi_private = rbio;
 
 
 
1100
1101	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1102	bio_list_add(bio_list, bio);
1103	return 0;
1104}
1105
1106static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1107{
1108	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1109	struct bio_vec bvec;
1110	struct bvec_iter iter;
1111	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1112		     rbio->bioc->full_stripe_logical;
1113
1114	bio_for_each_segment(bvec, bio, iter) {
1115		u32 bvec_offset;
1116
1117		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1118		     bvec_offset += sectorsize, offset += sectorsize) {
1119			int index = offset / sectorsize;
1120			struct sector_ptr *sector = &rbio->bio_sectors[index];
1121
1122			sector->page = bvec.bv_page;
1123			sector->pgoff = bvec.bv_offset + bvec_offset;
1124			ASSERT(sector->pgoff < PAGE_SIZE);
1125		}
1126	}
1127}
1128
1129/*
 
 
 
 
 
 
 
 
 
 
 
 
1130 * helper function to walk our bio list and populate the bio_pages array with
1131 * the result.  This seems expensive, but it is faster than constantly
1132 * searching through the bio list as we setup the IO in finish_rmw or stripe
1133 * reconstruction.
1134 *
1135 * This must be called before you trust the answers from page_in_rbio
1136 */
1137static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138{
1139	struct bio *bio;
1140
1141	spin_lock(&rbio->bio_list_lock);
1142	bio_list_for_each(bio, &rbio->bio_list)
1143		index_one_bio(rbio, bio);
1144
1145	spin_unlock(&rbio->bio_list_lock);
1146}
1147
1148static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1149			       struct raid56_bio_trace_info *trace_info)
1150{
1151	const struct btrfs_io_context *bioc = rbio->bioc;
1152	int i;
1153
1154	ASSERT(bioc);
 
 
 
 
1155
1156	/* We rely on bio->bi_bdev to find the stripe number. */
1157	if (!bio->bi_bdev)
1158		goto not_found;
1159
1160	for (i = 0; i < bioc->num_stripes; i++) {
1161		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1162			continue;
1163		trace_info->stripe_nr = i;
1164		trace_info->devid = bioc->stripes[i].dev->devid;
1165		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1166				     bioc->stripes[i].physical;
1167		return;
1168	}
1169
1170not_found:
1171	trace_info->devid = -1;
1172	trace_info->offset = -1;
1173	trace_info->stripe_nr = -1;
1174}
1175
1176static inline void bio_list_put(struct bio_list *bio_list)
1177{
1178	struct bio *bio;
1179
1180	while ((bio = bio_list_pop(bio_list)))
1181		bio_put(bio);
1182}
1183
1184/* Generate PQ for one vertical stripe. */
1185static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
 
 
 
 
 
 
 
1186{
1187	void **pointers = rbio->finish_pointers;
1188	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1189	struct sector_ptr *sector;
 
1190	int stripe;
1191	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1192
1193	/* First collect one sector from each data stripe */
1194	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1195		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1196		pointers[stripe] = kmap_local_page(sector->page) +
1197				   sector->pgoff;
1198	}
1199
1200	/* Then add the parity stripe */
1201	sector = rbio_pstripe_sector(rbio, sectornr);
1202	sector->uptodate = 1;
1203	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1204
1205	if (has_qstripe) {
1206		/*
1207		 * RAID6, add the qstripe and call the library function
1208		 * to fill in our p/q
1209		 */
1210		sector = rbio_qstripe_sector(rbio, sectornr);
1211		sector->uptodate = 1;
1212		pointers[stripe++] = kmap_local_page(sector->page) +
1213				     sector->pgoff;
1214
1215		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1216					pointers);
 
 
 
1217	} else {
1218		/* raid5 */
1219		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1220		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1221	}
1222	for (stripe = stripe - 1; stripe >= 0; stripe--)
1223		kunmap_local(pointers[stripe]);
1224}
1225
1226static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1227				   struct bio_list *bio_list)
1228{
1229	/* The total sector number inside the full stripe. */
1230	int total_sector_nr;
1231	int sectornr;
1232	int stripe;
1233	int ret;
1234
1235	ASSERT(bio_list_size(bio_list) == 0);
 
 
 
 
 
 
 
 
 
 
1236
1237	/* We should have at least one data sector. */
1238	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1239
1240	/*
1241	 * Reset errors, as we may have errors inherited from from degraded
1242	 * write.
 
 
 
 
 
1243	 */
1244	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 
 
 
 
1245
1246	/*
1247	 * Start assembly.  Make bios for everything from the higher layers (the
1248	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1249	 */
1250	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1251	     total_sector_nr++) {
1252		struct sector_ptr *sector;
1253
1254		stripe = total_sector_nr / rbio->stripe_nsectors;
1255		sectornr = total_sector_nr % rbio->stripe_nsectors;
 
 
1256
1257		/* This vertical stripe has no data, skip it. */
1258		if (!test_bit(sectornr, &rbio->dbitmap))
1259			continue;
1260
1261		if (stripe < rbio->nr_data) {
1262			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1263			if (!sector)
1264				continue;
 
 
 
 
 
 
1265		} else {
1266			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 
 
1267		}
1268
1269		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1270					 sectornr, REQ_OP_WRITE);
1271		if (ret)
1272			goto error;
1273	}
1274
1275	if (likely(!rbio->bioc->replace_nr_stripes))
1276		return 0;
 
1277
1278	/*
1279	 * Make a copy for the replace target device.
1280	 *
1281	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1282	 */
1283	ASSERT(rbio->bioc->replace_stripe_src >= 0);
1284
1285	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1286	     total_sector_nr++) {
1287		struct sector_ptr *sector;
1288
1289		stripe = total_sector_nr / rbio->stripe_nsectors;
1290		sectornr = total_sector_nr % rbio->stripe_nsectors;
 
 
1291
1292		/*
1293		 * For RAID56, there is only one device that can be replaced,
1294		 * and replace_stripe_src[0] indicates the stripe number we
1295		 * need to copy from.
1296		 */
1297		if (stripe != rbio->bioc->replace_stripe_src) {
1298			/*
1299			 * We can skip the whole stripe completely, note
1300			 * total_sector_nr will be increased by one anyway.
1301			 */
1302			ASSERT(sectornr == 0);
1303			total_sector_nr += rbio->stripe_nsectors - 1;
1304			continue;
1305		}
 
1306
1307		/* This vertical stripe has no data, skip it. */
1308		if (!test_bit(sectornr, &rbio->dbitmap))
1309			continue;
1310
1311		if (stripe < rbio->nr_data) {
1312			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1313			if (!sector)
1314				continue;
1315		} else {
1316			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1317		}
1318
1319		ret = rbio_add_io_sector(rbio, bio_list, sector,
1320					 rbio->real_stripes,
1321					 sectornr, REQ_OP_WRITE);
1322		if (ret)
1323			goto error;
1324	}
 
1325
1326	return 0;
1327error:
1328	bio_list_put(bio_list);
1329	return -EIO;
1330}
1331
1332static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
 
1333{
1334	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1335	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1336		     rbio->bioc->full_stripe_logical;
1337	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1338
1339	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1340
1341	bitmap_set(rbio->error_bitmap, total_nr_sector,
1342		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1343
1344	/*
1345	 * Special handling for raid56_alloc_missing_rbio() used by
1346	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1347	 * pass an empty bio here.  Thus we have to find out the missing device
1348	 * and mark the stripe error instead.
1349	 */
1350	if (bio->bi_iter.bi_size == 0) {
1351		bool found_missing = false;
1352		int stripe_nr;
1353
1354		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1355			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1356				found_missing = true;
1357				bitmap_set(rbio->error_bitmap,
1358					   stripe_nr * rbio->stripe_nsectors,
1359					   rbio->stripe_nsectors);
1360			}
1361		}
1362		ASSERT(found_missing);
1363	}
 
1364}
1365
1366/*
1367 * For subpage case, we can no longer set page Up-to-date directly for
1368 * stripe_pages[], thus we need to locate the sector.
 
1369 */
1370static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1371					     struct page *page,
1372					     unsigned int pgoff)
1373{
 
 
1374	int i;
1375
1376	for (i = 0; i < rbio->nr_sectors; i++) {
1377		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1378
1379		if (sector->page == page && sector->pgoff == pgoff)
1380			return sector;
 
 
 
 
1381	}
1382	return NULL;
1383}
1384
1385/*
1386 * this sets each page in the bio uptodate.  It should only be used on private
1387 * rbio pages, nothing that comes in from the higher layers
1388 */
1389static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1390{
1391	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1392	struct bio_vec *bvec;
1393	struct bvec_iter_all iter_all;
1394
1395	ASSERT(!bio_flagged(bio, BIO_CLONED));
1396
1397	bio_for_each_segment_all(bvec, bio, iter_all) {
1398		struct sector_ptr *sector;
1399		int pgoff;
1400
1401		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1402		     pgoff += sectorsize) {
1403			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1404			ASSERT(sector);
1405			if (sector)
1406				sector->uptodate = 1;
1407		}
 
 
 
1408	}
 
 
 
 
1409}
1410
1411static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
1412{
1413	struct bio_vec *bv = bio_first_bvec_all(bio);
1414	int i;
1415
1416	for (i = 0; i < rbio->nr_sectors; i++) {
1417		struct sector_ptr *sector;
1418
1419		sector = &rbio->stripe_sectors[i];
1420		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1421			break;
1422		sector = &rbio->bio_sectors[i];
1423		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1424			break;
1425	}
1426	ASSERT(i < rbio->nr_sectors);
1427	return i;
1428}
1429
1430static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
1431{
1432	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1433	u32 bio_size = 0;
1434	struct bio_vec *bvec;
1435	int i;
 
1436
1437	bio_for_each_bvec_all(bvec, bio, i)
1438		bio_size += bvec->bv_len;
1439
1440	/*
1441	 * Since we can have multiple bios touching the error_bitmap, we cannot
1442	 * call bitmap_set() without protection.
1443	 *
1444	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1445	 */
1446	for (i = total_sector_nr; i < total_sector_nr +
1447	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1448		set_bit(i, rbio->error_bitmap);
1449}
1450
1451/* Verify the data sectors at read time. */
1452static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1453				    struct bio *bio)
 
 
 
 
 
 
1454{
1455	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1456	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1457	struct bio_vec *bvec;
1458	struct bvec_iter_all iter_all;
1459
1460	/* No data csum for the whole stripe, no need to verify. */
1461	if (!rbio->csum_bitmap || !rbio->csum_buf)
1462		return;
 
 
 
1463
1464	/* P/Q stripes, they have no data csum to verify against. */
1465	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1466		return;
1467
1468	bio_for_each_segment_all(bvec, bio, iter_all) {
1469		int bv_offset;
 
1470
1471		for (bv_offset = bvec->bv_offset;
1472		     bv_offset < bvec->bv_offset + bvec->bv_len;
1473		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1474			u8 csum_buf[BTRFS_CSUM_SIZE];
1475			u8 *expected_csum = rbio->csum_buf +
1476					    total_sector_nr * fs_info->csum_size;
1477			int ret;
1478
1479			/* No csum for this sector, skip to the next sector. */
1480			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1481				continue;
1482
1483			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1484				bv_offset, csum_buf, expected_csum);
1485			if (ret < 0)
1486				set_bit(total_sector_nr, rbio->error_bitmap);
1487		}
1488	}
1489}
1490
1491static void raid_wait_read_end_io(struct bio *bio)
1492{
1493	struct btrfs_raid_bio *rbio = bio->bi_private;
1494
1495	if (bio->bi_status) {
1496		rbio_update_error_bitmap(rbio, bio);
1497	} else {
1498		set_bio_pages_uptodate(rbio, bio);
1499		verify_bio_data_sectors(rbio, bio);
1500	}
1501
1502	bio_put(bio);
1503	if (atomic_dec_and_test(&rbio->stripes_pending))
1504		wake_up(&rbio->io_wait);
 
 
 
1505}
1506
1507static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1508			     struct bio_list *bio_list)
 
 
 
1509{
 
 
 
 
 
 
 
1510	struct bio *bio;
1511
1512	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1513	while ((bio = bio_list_pop(bio_list))) {
1514		bio->bi_end_io = raid_wait_read_end_io;
1515
1516		if (trace_raid56_read_enabled()) {
1517			struct raid56_bio_trace_info trace_info = { 0 };
 
1518
1519			bio_get_trace_info(rbio, bio, &trace_info);
1520			trace_raid56_read(rbio, bio, &trace_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521		}
1522		submit_bio(bio);
1523	}
1524
1525	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526}
1527
1528static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
 
 
 
 
1529{
1530	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1531	int ret;
1532
1533	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0);
1534	if (ret < 0)
 
1535		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536
1537	index_stripe_sectors(rbio);
 
 
1538	return 0;
1539}
1540
1541/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542 * We use plugging call backs to collect full stripes.
1543 * Any time we get a partial stripe write while plugged
1544 * we collect it into a list.  When the unplug comes down,
1545 * we sort the list by logical block number and merge
1546 * everything we can into the same rbios
1547 */
1548struct btrfs_plug_cb {
1549	struct blk_plug_cb cb;
1550	struct btrfs_fs_info *info;
1551	struct list_head rbio_list;
 
1552};
1553
1554/*
1555 * rbios on the plug list are sorted for easier merging.
1556 */
1557static int plug_cmp(void *priv, const struct list_head *a,
1558		    const struct list_head *b)
1559{
1560	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1561						       plug_list);
1562	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1563						       plug_list);
1564	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1565	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1566
1567	if (a_sector < b_sector)
1568		return -1;
1569	if (a_sector > b_sector)
1570		return 1;
1571	return 0;
1572}
1573
1574static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1575{
1576	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1577	struct btrfs_raid_bio *cur;
1578	struct btrfs_raid_bio *last = NULL;
1579
 
 
 
 
 
1580	list_sort(NULL, &plug->rbio_list, plug_cmp);
1581
1582	while (!list_empty(&plug->rbio_list)) {
1583		cur = list_entry(plug->rbio_list.next,
1584				 struct btrfs_raid_bio, plug_list);
1585		list_del_init(&cur->plug_list);
1586
1587		if (rbio_is_full(cur)) {
1588			/* We have a full stripe, queue it down. */
1589			start_async_work(cur, rmw_rbio_work);
1590			continue;
1591		}
1592		if (last) {
1593			if (rbio_can_merge(last, cur)) {
1594				merge_rbio(last, cur);
1595				free_raid_bio(cur);
1596				continue;
 
1597			}
1598			start_async_work(last, rmw_rbio_work);
1599		}
1600		last = cur;
1601	}
1602	if (last)
1603		start_async_work(last, rmw_rbio_work);
 
1604	kfree(plug);
1605}
1606
1607/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1608static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
 
 
 
1609{
1610	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1611	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1612	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1613	const u32 orig_len = orig_bio->bi_iter.bi_size;
1614	const u32 sectorsize = fs_info->sectorsize;
1615	u64 cur_logical;
1616
1617	ASSERT(orig_logical >= full_stripe_start &&
1618	       orig_logical + orig_len <= full_stripe_start +
1619	       rbio->nr_data * BTRFS_STRIPE_LEN);
1620
1621	bio_list_add(&rbio->bio_list, orig_bio);
1622	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1623
1624	/* Update the dbitmap. */
1625	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1626	     cur_logical += sectorsize) {
1627		int bit = ((u32)(cur_logical - full_stripe_start) >>
1628			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1629
1630		set_bit(bit, &rbio->dbitmap);
 
 
 
 
1631	}
 
1632}
1633
1634/*
1635 * our main entry point for writes from the rest of the FS.
1636 */
1637void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
 
 
1638{
1639	struct btrfs_fs_info *fs_info = bioc->fs_info;
1640	struct btrfs_raid_bio *rbio;
1641	struct btrfs_plug_cb *plug = NULL;
1642	struct blk_plug_cb *cb;
1643
1644	rbio = alloc_rbio(fs_info, bioc);
1645	if (IS_ERR(rbio)) {
1646		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1647		bio_endio(bio);
1648		return;
1649	}
1650	rbio->operation = BTRFS_RBIO_WRITE;
1651	rbio_add_bio(rbio, bio);
1652
1653	/*
1654	 * Don't plug on full rbios, just get them out the door
1655	 * as quickly as we can
1656	 */
1657	if (!rbio_is_full(rbio)) {
1658		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1659		if (cb) {
1660			plug = container_of(cb, struct btrfs_plug_cb, cb);
1661			if (!plug->info) {
1662				plug->info = fs_info;
1663				INIT_LIST_HEAD(&plug->rbio_list);
1664			}
1665			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1666			return;
1667		}
1668	}
1669
1670	/*
1671	 * Either we don't have any existing plug, or we're doing a full stripe,
1672	 * queue the rmw work now.
1673	 */
1674	start_async_work(rbio, rmw_rbio_work);
1675}
1676
1677static int verify_one_sector(struct btrfs_raid_bio *rbio,
1678			     int stripe_nr, int sector_nr)
1679{
1680	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1681	struct sector_ptr *sector;
1682	u8 csum_buf[BTRFS_CSUM_SIZE];
1683	u8 *csum_expected;
1684	int ret;
1685
1686	if (!rbio->csum_bitmap || !rbio->csum_buf)
1687		return 0;
1688
1689	/* No way to verify P/Q as they are not covered by data csum. */
1690	if (stripe_nr >= rbio->nr_data)
1691		return 0;
1692	/*
1693	 * If we're rebuilding a read, we have to use pages from the
1694	 * bio list if possible.
1695	 */
1696	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1697		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1698	} else {
1699		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1700	}
1701
1702	ASSERT(sector->page);
1703
1704	csum_expected = rbio->csum_buf +
1705			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1706			fs_info->csum_size;
1707	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1708				      csum_buf, csum_expected);
1709	return ret;
1710}
1711
1712/*
1713 * Recover a vertical stripe specified by @sector_nr.
1714 * @*pointers are the pre-allocated pointers by the caller, so we don't
1715 * need to allocate/free the pointers again and again.
1716 */
1717static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1718			    void **pointers, void **unmap_array)
1719{
1720	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1721	struct sector_ptr *sector;
1722	const u32 sectorsize = fs_info->sectorsize;
1723	int found_errors;
1724	int faila;
1725	int failb;
1726	int stripe_nr;
1727	int ret = 0;
1728
1729	/*
1730	 * Now we just use bitmap to mark the horizontal stripes in
1731	 * which we have data when doing parity scrub.
1732	 */
1733	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1734	    !test_bit(sector_nr, &rbio->dbitmap))
1735		return 0;
1736
1737	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1738						 &failb);
1739	/*
1740	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1741	 * which only part of a stripe failed csum check.
1742	 */
1743	if (!found_errors)
1744		return 0;
1745
1746	if (found_errors > rbio->bioc->max_errors)
1747		return -EIO;
1748
1749	/*
1750	 * Setup our array of pointers with sectors from each stripe
1751	 *
1752	 * NOTE: store a duplicate array of pointers to preserve the
1753	 * pointer order.
1754	 */
1755	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1756		/*
1757		 * If we're rebuilding a read, we have to use pages from the
1758		 * bio list if possible.
1759		 */
1760		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1761			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1762		} else {
1763			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1764		}
1765		ASSERT(sector->page);
1766		pointers[stripe_nr] = kmap_local_page(sector->page) +
1767				   sector->pgoff;
1768		unmap_array[stripe_nr] = pointers[stripe_nr];
1769	}
1770
1771	/* All raid6 handling here */
1772	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1773		/* Single failure, rebuild from parity raid5 style */
1774		if (failb < 0) {
1775			if (faila == rbio->nr_data)
1776				/*
1777				 * Just the P stripe has failed, without
1778				 * a bad data or Q stripe.
1779				 * We have nothing to do, just skip the
1780				 * recovery for this stripe.
1781				 */
1782				goto cleanup;
1783			/*
1784			 * a single failure in raid6 is rebuilt
1785			 * in the pstripe code below
1786			 */
1787			goto pstripe;
1788		}
1789
1790		/*
1791		 * If the q stripe is failed, do a pstripe reconstruction from
1792		 * the xors.
1793		 * If both the q stripe and the P stripe are failed, we're
1794		 * here due to a crc mismatch and we can't give them the
1795		 * data they want.
1796		 */
1797		if (failb == rbio->real_stripes - 1) {
1798			if (faila == rbio->real_stripes - 2)
1799				/*
1800				 * Only P and Q are corrupted.
1801				 * We only care about data stripes recovery,
1802				 * can skip this vertical stripe.
1803				 */
1804				goto cleanup;
1805			/*
1806			 * Otherwise we have one bad data stripe and
1807			 * a good P stripe.  raid5!
1808			 */
1809			goto pstripe;
1810		}
1811
1812		if (failb == rbio->real_stripes - 2) {
1813			raid6_datap_recov(rbio->real_stripes, sectorsize,
1814					  faila, pointers);
1815		} else {
1816			raid6_2data_recov(rbio->real_stripes, sectorsize,
1817					  faila, failb, pointers);
1818		}
1819	} else {
1820		void *p;
1821
1822		/* Rebuild from P stripe here (raid5 or raid6). */
1823		ASSERT(failb == -1);
1824pstripe:
1825		/* Copy parity block into failed block to start with */
1826		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1827
1828		/* Rearrange the pointer array */
1829		p = pointers[faila];
1830		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1831		     stripe_nr++)
1832			pointers[stripe_nr] = pointers[stripe_nr + 1];
1833		pointers[rbio->nr_data - 1] = p;
1834
1835		/* Xor in the rest */
1836		run_xor(pointers, rbio->nr_data - 1, sectorsize);
 
1837
1838	}
1839
1840	/*
1841	 * No matter if this is a RMW or recovery, we should have all
1842	 * failed sectors repaired in the vertical stripe, thus they are now
1843	 * uptodate.
1844	 * Especially if we determine to cache the rbio, we need to
1845	 * have at least all data sectors uptodate.
1846	 *
1847	 * If possible, also check if the repaired sector matches its data
1848	 * checksum.
1849	 */
1850	if (faila >= 0) {
1851		ret = verify_one_sector(rbio, faila, sector_nr);
1852		if (ret < 0)
1853			goto cleanup;
1854
1855		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1856		sector->uptodate = 1;
1857	}
1858	if (failb >= 0) {
1859		ret = verify_one_sector(rbio, failb, sector_nr);
1860		if (ret < 0)
1861			goto cleanup;
1862
1863		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1864		sector->uptodate = 1;
1865	}
1866
1867cleanup:
1868	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1869		kunmap_local(unmap_array[stripe_nr]);
1870	return ret;
1871}
1872
1873static int recover_sectors(struct btrfs_raid_bio *rbio)
1874{
1875	void **pointers = NULL;
1876	void **unmap_array = NULL;
1877	int sectornr;
1878	int ret = 0;
1879
1880	/*
1881	 * @pointers array stores the pointer for each sector.
1882	 *
1883	 * @unmap_array stores copy of pointers that does not get reordered
1884	 * during reconstruction so that kunmap_local works.
1885	 */
1886	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1887	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1888	if (!pointers || !unmap_array) {
1889		ret = -ENOMEM;
1890		goto out;
1891	}
1892
1893	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1894		spin_lock(&rbio->bio_list_lock);
1895		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1896		spin_unlock(&rbio->bio_list_lock);
1897	}
1898
1899	index_rbio_pages(rbio);
1900
1901	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1902		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1903		if (ret < 0)
1904			break;
1905	}
1906
1907out:
1908	kfree(pointers);
1909	kfree(unmap_array);
1910	return ret;
1911}
1912
1913static void recover_rbio(struct btrfs_raid_bio *rbio)
1914{
1915	struct bio_list bio_list = BIO_EMPTY_LIST;
1916	int total_sector_nr;
1917	int ret = 0;
1918
1919	/*
1920	 * Either we're doing recover for a read failure or degraded write,
1921	 * caller should have set error bitmap correctly.
1922	 */
1923	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1924
1925	/* For recovery, we need to read all sectors including P/Q. */
1926	ret = alloc_rbio_pages(rbio);
1927	if (ret < 0)
1928		goto out;
 
 
1929
1930	index_rbio_pages(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931
1932	/*
1933	 * Read everything that hasn't failed. However this time we will
1934	 * not trust any cached sector.
1935	 * As we may read out some stale data but higher layer is not reading
1936	 * that stale part.
1937	 *
1938	 * So here we always re-read everything in recovery path.
1939	 */
1940	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1941	     total_sector_nr++) {
1942		int stripe = total_sector_nr / rbio->stripe_nsectors;
1943		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1944		struct sector_ptr *sector;
1945
1946		/*
1947		 * Skip the range which has error.  It can be a range which is
1948		 * marked error (for csum mismatch), or it can be a missing
1949		 * device.
1950		 */
1951		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1952		    test_bit(total_sector_nr, rbio->error_bitmap)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1953			/*
1954			 * Also set the error bit for missing device, which
1955			 * may not yet have its error bit set.
1956			 */
1957			set_bit(total_sector_nr, rbio->error_bitmap);
1958			continue;
1959		}
1960
1961		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1962		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1963					 sectornr, REQ_OP_READ);
1964		if (ret < 0) {
1965			bio_list_put(&bio_list);
1966			goto out;
1967		}
1968	}
1969
1970	submit_read_wait_bio_list(rbio, &bio_list);
1971	ret = recover_sectors(rbio);
1972out:
1973	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
1974}
1975
1976static void recover_rbio_work(struct work_struct *work)
1977{
1978	struct btrfs_raid_bio *rbio;
1979
1980	rbio = container_of(work, struct btrfs_raid_bio, work);
1981	if (!lock_stripe_add(rbio))
1982		recover_rbio(rbio);
1983}
1984
1985static void recover_rbio_work_locked(struct work_struct *work)
1986{
1987	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
1988}
1989
1990static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
1991{
1992	bool found = false;
1993	int sector_nr;
1994
1995	/*
1996	 * This is for RAID6 extra recovery tries, thus mirror number should
1997	 * be large than 2.
1998	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
1999	 * RAID5 methods.
2000	 */
2001	ASSERT(mirror_num > 2);
2002	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2003		int found_errors;
2004		int faila;
2005		int failb;
2006
2007		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2008							 &faila, &failb);
2009		/* This vertical stripe doesn't have errors. */
2010		if (!found_errors)
2011			continue;
2012
2013		/*
2014		 * If we found errors, there should be only one error marked
2015		 * by previous set_rbio_range_error().
2016		 */
2017		ASSERT(found_errors == 1);
2018		found = true;
2019
2020		/* Now select another stripe to mark as error. */
2021		failb = rbio->real_stripes - (mirror_num - 1);
2022		if (failb <= faila)
2023			failb--;
2024
2025		/* Set the extra bit in error bitmap. */
2026		if (failb >= 0)
2027			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2028				rbio->error_bitmap);
2029	}
2030
2031	/* We should found at least one vertical stripe with error.*/
2032	ASSERT(found);
2033}
2034
2035/*
2036 * the main entry point for reads from the higher layers.  This
2037 * is really only called when the normal read path had a failure,
2038 * so we assume the bio they send down corresponds to a failed part
2039 * of the drive.
2040 */
2041void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2042			   int mirror_num)
2043{
2044	struct btrfs_fs_info *fs_info = bioc->fs_info;
2045	struct btrfs_raid_bio *rbio;
2046
2047	rbio = alloc_rbio(fs_info, bioc);
2048	if (IS_ERR(rbio)) {
2049		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2050		bio_endio(bio);
2051		return;
2052	}
2053
2054	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2055	rbio_add_bio(rbio, bio);
2056
2057	set_rbio_range_error(rbio, bio);
2058
2059	/*
2060	 * Loop retry:
2061	 * for 'mirror == 2', reconstruct from all other stripes.
2062	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2063	 */
2064	if (mirror_num > 2)
2065		set_rbio_raid6_extra_error(rbio, mirror_num);
2066
2067	start_async_work(rbio, recover_rbio_work);
2068}
2069
2070static void fill_data_csums(struct btrfs_raid_bio *rbio)
2071{
2072	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2073	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2074						       rbio->bioc->full_stripe_logical);
2075	const u64 start = rbio->bioc->full_stripe_logical;
2076	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2077			fs_info->sectorsize_bits;
2078	int ret;
2079
2080	/* The rbio should not have its csum buffer initialized. */
2081	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2082
2083	/*
2084	 * Skip the csum search if:
2085	 *
2086	 * - The rbio doesn't belong to data block groups
2087	 *   Then we are doing IO for tree blocks, no need to search csums.
2088	 *
2089	 * - The rbio belongs to mixed block groups
2090	 *   This is to avoid deadlock, as we're already holding the full
2091	 *   stripe lock, if we trigger a metadata read, and it needs to do
2092	 *   raid56 recovery, we will deadlock.
2093	 */
2094	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2095	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2096		return;
2097
2098	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2099				 fs_info->csum_size, GFP_NOFS);
2100	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2101					  GFP_NOFS);
2102	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2103		ret = -ENOMEM;
2104		goto error;
2105	}
2106
2107	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2108					rbio->csum_buf, rbio->csum_bitmap);
2109	if (ret < 0)
2110		goto error;
2111	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2112		goto no_csum;
2113	return;
2114
2115error:
2116	/*
2117	 * We failed to allocate memory or grab the csum, but it's not fatal,
2118	 * we can still continue.  But better to warn users that RMW is no
2119	 * longer safe for this particular sub-stripe write.
2120	 */
2121	btrfs_warn_rl(fs_info,
2122"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2123			rbio->bioc->full_stripe_logical, ret);
2124no_csum:
2125	kfree(rbio->csum_buf);
2126	bitmap_free(rbio->csum_bitmap);
2127	rbio->csum_buf = NULL;
2128	rbio->csum_bitmap = NULL;
2129}
2130
2131static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
2132{
2133	struct bio_list bio_list = BIO_EMPTY_LIST;
2134	int total_sector_nr;
2135	int ret = 0;
 
 
 
 
 
2136
2137	/*
2138	 * Fill the data csums we need for data verification.  We need to fill
2139	 * the csum_bitmap/csum_buf first, as our endio function will try to
2140	 * verify the data sectors.
2141	 */
2142	fill_data_csums(rbio);
2143
2144	/*
2145	 * Build a list of bios to read all sectors (including data and P/Q).
2146	 *
2147	 * This behavior is to compensate the later csum verification and recovery.
2148	 */
2149	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2150	     total_sector_nr++) {
2151		struct sector_ptr *sector;
2152		int stripe = total_sector_nr / rbio->stripe_nsectors;
2153		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2154
2155		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2156		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2157			       stripe, sectornr, REQ_OP_READ);
2158		if (ret) {
2159			bio_list_put(&bio_list);
2160			return ret;
2161		}
2162	}
2163
2164	/*
2165	 * We may or may not have any corrupted sectors (including missing dev
2166	 * and csum mismatch), just let recover_sectors() to handle them all.
 
2167	 */
2168	submit_read_wait_bio_list(rbio, &bio_list);
2169	return recover_sectors(rbio);
2170}
2171
2172static void raid_wait_write_end_io(struct bio *bio)
2173{
2174	struct btrfs_raid_bio *rbio = bio->bi_private;
2175	blk_status_t err = bio->bi_status;
2176
2177	if (err)
2178		rbio_update_error_bitmap(rbio, bio);
2179	bio_put(bio);
2180	if (atomic_dec_and_test(&rbio->stripes_pending))
2181		wake_up(&rbio->io_wait);
2182}
2183
2184static void submit_write_bios(struct btrfs_raid_bio *rbio,
2185			      struct bio_list *bio_list)
2186{
2187	struct bio *bio;
2188
2189	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2190	while ((bio = bio_list_pop(bio_list))) {
2191		bio->bi_end_io = raid_wait_write_end_io;
2192
2193		if (trace_raid56_write_enabled()) {
2194			struct raid56_bio_trace_info trace_info = { 0 };
 
 
 
 
 
2195
2196			bio_get_trace_info(rbio, bio, &trace_info);
2197			trace_raid56_write(rbio, bio, &trace_info);
 
 
 
2198		}
2199		submit_bio(bio);
2200	}
2201}
2202
2203/*
2204 * To determine if we need to read any sector from the disk.
2205 * Should only be utilized in RMW path, to skip cached rbio.
2206 */
2207static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2208{
2209	int i;
2210
2211	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2212		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2213
 
 
2214		/*
2215		 * We have a sector which doesn't have page nor uptodate,
2216		 * thus this rbio can not be cached one, as cached one must
2217		 * have all its data sectors present and uptodate.
2218		 */
2219		if (!sector->page || !sector->uptodate)
2220			return true;
2221	}
2222	return false;
2223}
2224
2225static void rmw_rbio(struct btrfs_raid_bio *rbio)
2226{
2227	struct bio_list bio_list;
2228	int sectornr;
2229	int ret = 0;
2230
2231	/*
2232	 * Allocate the pages for parity first, as P/Q pages will always be
2233	 * needed for both full-stripe and sub-stripe writes.
2234	 */
2235	ret = alloc_rbio_parity_pages(rbio);
2236	if (ret < 0)
2237		goto out;
2238
2239	/*
2240	 * Either full stripe write, or we have every data sector already
2241	 * cached, can go to write path immediately.
2242	 */
2243	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2244		/*
2245		 * Now we're doing sub-stripe write, also need all data stripes
2246		 * to do the full RMW.
2247		 */
2248		ret = alloc_rbio_data_pages(rbio);
2249		if (ret < 0)
2250			goto out;
2251
2252		index_rbio_pages(rbio);
2253
2254		ret = rmw_read_wait_recover(rbio);
2255		if (ret < 0)
2256			goto out;
 
 
 
2257	}
2258
2259	/*
2260	 * At this stage we're not allowed to add any new bios to the
2261	 * bio list any more, anyone else that wants to change this stripe
2262	 * needs to do their own rmw.
2263	 */
2264	spin_lock(&rbio->bio_list_lock);
2265	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2266	spin_unlock(&rbio->bio_list_lock);
2267
2268	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2269
2270	index_rbio_pages(rbio);
2271
2272	/*
2273	 * We don't cache full rbios because we're assuming
2274	 * the higher layers are unlikely to use this area of
2275	 * the disk again soon.  If they do use it again,
2276	 * hopefully they will send another full bio.
2277	 */
2278	if (!rbio_is_full(rbio))
2279		cache_rbio_pages(rbio);
2280	else
2281		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2282
2283	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2284		generate_pq_vertical(rbio, sectornr);
2285
2286	bio_list_init(&bio_list);
2287	ret = rmw_assemble_write_bios(rbio, &bio_list);
2288	if (ret < 0)
2289		goto out;
2290
2291	/* We should have at least one bio assembled. */
2292	ASSERT(bio_list_size(&bio_list));
2293	submit_write_bios(rbio, &bio_list);
2294	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2295
2296	/* We may have more errors than our tolerance during the read. */
2297	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2298		int found_errors;
2299
2300		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2301		if (found_errors > rbio->bioc->max_errors) {
2302			ret = -EIO;
2303			break;
2304		}
2305	}
2306out:
2307	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2308}
2309
2310static void rmw_rbio_work(struct work_struct *work)
2311{
2312	struct btrfs_raid_bio *rbio;
2313
2314	rbio = container_of(work, struct btrfs_raid_bio, work);
2315	if (lock_stripe_add(rbio) == 0)
2316		rmw_rbio(rbio);
2317}
2318
2319static void rmw_rbio_work_locked(struct work_struct *work)
2320{
2321	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
 
2322}
2323
2324/*
2325 * The following code is used to scrub/replace the parity stripe
2326 *
2327 * Caller must have already increased bio_counter for getting @bioc.
2328 *
2329 * Note: We need make sure all the pages that add into the scrub/replace
2330 * raid bio are correct and not be changed during the scrub/replace. That
2331 * is those pages just hold metadata or file data with checksum.
2332 */
2333
2334struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2335				struct btrfs_io_context *bioc,
2336				struct btrfs_device *scrub_dev,
2337				unsigned long *dbitmap, int stripe_nsectors)
2338{
2339	struct btrfs_fs_info *fs_info = bioc->fs_info;
2340	struct btrfs_raid_bio *rbio;
2341	int i;
2342
2343	rbio = alloc_rbio(fs_info, bioc);
2344	if (IS_ERR(rbio))
2345		return NULL;
2346	bio_list_add(&rbio->bio_list, bio);
2347	/*
2348	 * This is a special bio which is used to hold the completion handler
2349	 * and make the scrub rbio is similar to the other types
2350	 */
2351	ASSERT(!bio->bi_iter.bi_size);
2352	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2353
2354	/*
2355	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2356	 * to the end position, so this search can start from the first parity
2357	 * stripe.
2358	 */
2359	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2360		if (bioc->stripes[i].dev == scrub_dev) {
2361			rbio->scrubp = i;
2362			break;
2363		}
2364	}
2365	ASSERT(i < rbio->real_stripes);
2366
2367	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2368	return rbio;
2369}
2370
2371/*
2372 * We just scrub the parity that we have correct data on the same horizontal,
2373 * so we needn't allocate all pages for all the stripes.
2374 */
2375static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2376{
2377	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2378	int total_sector_nr;
2379
2380	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2381	     total_sector_nr++) {
2382		struct page *page;
2383		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2384		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2385
2386		if (!test_bit(sectornr, &rbio->dbitmap))
2387			continue;
2388		if (rbio->stripe_pages[index])
2389			continue;
2390		page = alloc_page(GFP_NOFS);
2391		if (!page)
2392			return -ENOMEM;
2393		rbio->stripe_pages[index] = page;
2394	}
2395	index_stripe_sectors(rbio);
2396	return 0;
2397}
2398
2399static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2400{
2401	struct btrfs_io_context *bioc = rbio->bioc;
2402	const u32 sectorsize = bioc->fs_info->sectorsize;
2403	void **pointers = rbio->finish_pointers;
2404	unsigned long *pbitmap = &rbio->finish_pbitmap;
2405	int nr_data = rbio->nr_data;
2406	int stripe;
2407	int sectornr;
2408	bool has_qstripe;
2409	struct sector_ptr p_sector = { 0 };
2410	struct sector_ptr q_sector = { 0 };
2411	struct bio_list bio_list;
2412	int is_replace = 0;
2413	int ret;
2414
2415	bio_list_init(&bio_list);
2416
2417	if (rbio->real_stripes - rbio->nr_data == 1)
2418		has_qstripe = false;
2419	else if (rbio->real_stripes - rbio->nr_data == 2)
2420		has_qstripe = true;
2421	else
2422		BUG();
2423
2424	/*
2425	 * Replace is running and our P/Q stripe is being replaced, then we
2426	 * need to duplicate the final write to replace target.
2427	 */
2428	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2429		is_replace = 1;
2430		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2431	}
2432
2433	/*
2434	 * Because the higher layers(scrubber) are unlikely to
2435	 * use this area of the disk again soon, so don't cache
2436	 * it.
2437	 */
2438	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2439
2440	p_sector.page = alloc_page(GFP_NOFS);
2441	if (!p_sector.page)
2442		return -ENOMEM;
2443	p_sector.pgoff = 0;
2444	p_sector.uptodate = 1;
2445
2446	if (has_qstripe) {
2447		/* RAID6, allocate and map temp space for the Q stripe */
2448		q_sector.page = alloc_page(GFP_NOFS);
2449		if (!q_sector.page) {
2450			__free_page(p_sector.page);
2451			p_sector.page = NULL;
2452			return -ENOMEM;
2453		}
2454		q_sector.pgoff = 0;
2455		q_sector.uptodate = 1;
2456		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2457	}
2458
2459	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2460
2461	/* Map the parity stripe just once */
2462	pointers[nr_data] = kmap_local_page(p_sector.page);
2463
2464	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2465		struct sector_ptr *sector;
2466		void *parity;
2467
2468		/* first collect one page from each data stripe */
2469		for (stripe = 0; stripe < nr_data; stripe++) {
2470			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2471			pointers[stripe] = kmap_local_page(sector->page) +
2472					   sector->pgoff;
2473		}
2474
2475		if (has_qstripe) {
2476			/* RAID6, call the library function to fill in our P/Q */
2477			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2478						pointers);
2479		} else {
2480			/* raid5 */
2481			memcpy(pointers[nr_data], pointers[0], sectorsize);
2482			run_xor(pointers + 1, nr_data - 1, sectorsize);
2483		}
2484
2485		/* Check scrubbing parity and repair it */
2486		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2487		parity = kmap_local_page(sector->page) + sector->pgoff;
2488		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2489			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2490		else
2491			/* Parity is right, needn't writeback */
2492			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2493		kunmap_local(parity);
2494
2495		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2496			kunmap_local(pointers[stripe]);
2497	}
2498
2499	kunmap_local(pointers[nr_data]);
2500	__free_page(p_sector.page);
2501	p_sector.page = NULL;
2502	if (q_sector.page) {
2503		kunmap_local(pointers[rbio->real_stripes - 1]);
2504		__free_page(q_sector.page);
2505		q_sector.page = NULL;
2506	}
2507
2508	/*
2509	 * time to start writing.  Make bios for everything from the
2510	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2511	 * everything else.
2512	 */
2513	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2514		struct sector_ptr *sector;
2515
2516		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2517		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2518					 sectornr, REQ_OP_WRITE);
2519		if (ret)
2520			goto cleanup;
2521	}
2522
2523	if (!is_replace)
2524		goto submit_write;
2525
2526	/*
2527	 * Replace is running and our parity stripe needs to be duplicated to
2528	 * the target device.  Check we have a valid source stripe number.
 
 
 
2529	 */
2530	ASSERT(rbio->bioc->replace_stripe_src >= 0);
2531	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2532		struct sector_ptr *sector;
2533
2534		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2535		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2536					 rbio->real_stripes,
2537					 sectornr, REQ_OP_WRITE);
2538		if (ret)
2539			goto cleanup;
2540	}
2541
2542submit_write:
2543	submit_write_bios(rbio, &bio_list);
2544	return 0;
2545
2546cleanup:
2547	bio_list_put(&bio_list);
2548	return ret;
2549}
2550
2551static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2552{
2553	if (stripe >= 0 && stripe < rbio->nr_data)
2554		return 1;
2555	return 0;
2556}
2557
2558static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2559{
2560	void **pointers = NULL;
2561	void **unmap_array = NULL;
2562	int sector_nr;
2563	int ret = 0;
2564
2565	/*
2566	 * @pointers array stores the pointer for each sector.
2567	 *
2568	 * @unmap_array stores copy of pointers that does not get reordered
2569	 * during reconstruction so that kunmap_local works.
2570	 */
2571	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2572	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2573	if (!pointers || !unmap_array) {
2574		ret = -ENOMEM;
2575		goto out;
2576	}
2577
2578	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2579		int dfail = 0, failp = -1;
2580		int faila;
2581		int failb;
2582		int found_errors;
2583
2584		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2585							 &faila, &failb);
2586		if (found_errors > rbio->bioc->max_errors) {
2587			ret = -EIO;
2588			goto out;
2589		}
2590		if (found_errors == 0)
2591			continue;
2592
2593		/* We should have at least one error here. */
2594		ASSERT(faila >= 0 || failb >= 0);
2595
2596		if (is_data_stripe(rbio, faila))
2597			dfail++;
2598		else if (is_parity_stripe(faila))
2599			failp = faila;
2600
2601		if (is_data_stripe(rbio, failb))
2602			dfail++;
2603		else if (is_parity_stripe(failb))
2604			failp = failb;
2605		/*
2606		 * Because we can not use a scrubbing parity to repair the
2607		 * data, so the capability of the repair is declined.  (In the
2608		 * case of RAID5, we can not repair anything.)
2609		 */
2610		if (dfail > rbio->bioc->max_errors - 1) {
2611			ret = -EIO;
2612			goto out;
2613		}
2614		/*
2615		 * If all data is good, only parity is correctly, just repair
2616		 * the parity, no need to recover data stripes.
2617		 */
2618		if (dfail == 0)
2619			continue;
2620
2621		/*
2622		 * Here means we got one corrupted data stripe and one
2623		 * corrupted parity on RAID6, if the corrupted parity is
2624		 * scrubbing parity, luckily, use the other one to repair the
2625		 * data, or we can not repair the data stripe.
2626		 */
2627		if (failp != rbio->scrubp) {
2628			ret = -EIO;
2629			goto out;
2630		}
2631
2632		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2633		if (ret < 0)
2634			goto out;
2635	}
2636out:
2637	kfree(pointers);
2638	kfree(unmap_array);
2639	return ret;
2640}
2641
2642static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2643{
2644	struct bio_list bio_list = BIO_EMPTY_LIST;
2645	int total_sector_nr;
2646	int ret = 0;
2647
2648	/* Build a list of bios to read all the missing parts. */
2649	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2650	     total_sector_nr++) {
2651		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2652		int stripe = total_sector_nr / rbio->stripe_nsectors;
2653		struct sector_ptr *sector;
2654
2655		/* No data in the vertical stripe, no need to read. */
2656		if (!test_bit(sectornr, &rbio->dbitmap))
2657			continue;
2658
2659		/*
2660		 * We want to find all the sectors missing from the rbio and
2661		 * read them from the disk. If sector_in_rbio() finds a sector
2662		 * in the bio list we don't need to read it off the stripe.
2663		 */
2664		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2665		if (sector)
2666			continue;
2667
2668		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2669		/*
2670		 * The bio cache may have handed us an uptodate sector.  If so,
2671		 * use it.
2672		 */
2673		if (sector->uptodate)
2674			continue;
2675
2676		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2677					 sectornr, REQ_OP_READ);
2678		if (ret) {
2679			bio_list_put(&bio_list);
2680			return ret;
2681		}
2682	}
2683
2684	submit_read_wait_bio_list(rbio, &bio_list);
2685	return 0;
2686}
2687
2688static void scrub_rbio(struct btrfs_raid_bio *rbio)
2689{
2690	int sector_nr;
2691	int ret;
2692
2693	ret = alloc_rbio_essential_pages(rbio);
2694	if (ret)
2695		goto out;
2696
2697	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2698
2699	ret = scrub_assemble_read_bios(rbio);
2700	if (ret < 0)
2701		goto out;
2702
2703	/* We may have some failures, recover the failed sectors first. */
2704	ret = recover_scrub_rbio(rbio);
2705	if (ret < 0)
2706		goto out;
2707
2708	/*
2709	 * We have every sector properly prepared. Can finish the scrub
2710	 * and writeback the good content.
2711	 */
2712	ret = finish_parity_scrub(rbio);
2713	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2714	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2715		int found_errors;
2716
2717		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2718		if (found_errors > rbio->bioc->max_errors) {
2719			ret = -EIO;
2720			break;
2721		}
2722	}
2723out:
2724	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2725}
2726
2727static void scrub_rbio_work_locked(struct work_struct *work)
2728{
2729	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2730}
2731
2732void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2733{
2734	if (!lock_stripe_add(rbio))
2735		start_async_work(rbio, scrub_rbio_work_locked);
2736}
2737
2738/*
2739 * This is for scrub call sites where we already have correct data contents.
2740 * This allows us to avoid reading data stripes again.
2741 *
2742 * Unfortunately here we have to do page copy, other than reusing the pages.
2743 * This is due to the fact rbio has its own page management for its cache.
2744 */
2745void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2746				    struct page **data_pages, u64 data_logical)
2747{
2748	const u64 offset_in_full_stripe = data_logical -
2749					  rbio->bioc->full_stripe_logical;
2750	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2751	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2752	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2753	int ret;
2754
2755	/*
2756	 * If we hit ENOMEM temporarily, but later at
2757	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2758	 * the extra read, not a big deal.
2759	 *
2760	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2761	 * the bio would got proper error number set.
2762	 */
2763	ret = alloc_rbio_data_pages(rbio);
2764	if (ret < 0)
2765		return;
2766
2767	/* data_logical must be at stripe boundary and inside the full stripe. */
2768	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2769	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2770
2771	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2772		struct page *dst = rbio->stripe_pages[page_nr + page_index];
2773		struct page *src = data_pages[page_nr];
2774
2775		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2776		for (int sector_nr = sectors_per_page * page_index;
2777		     sector_nr < sectors_per_page * (page_index + 1);
2778		     sector_nr++)
2779			rbio->stripe_sectors[sector_nr].uptodate = true;
2780	}
2781}
v3.15
 
   1/*
   2 * Copyright (C) 2012 Fusion-io  All rights reserved.
   3 * Copyright (C) 2012 Intel Corp. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
 
  19#include <linux/sched.h>
  20#include <linux/wait.h>
  21#include <linux/bio.h>
  22#include <linux/slab.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/random.h>
  26#include <linux/iocontext.h>
  27#include <linux/capability.h>
  28#include <linux/ratelimit.h>
  29#include <linux/kthread.h>
  30#include <linux/raid/pq.h>
  31#include <linux/hash.h>
  32#include <linux/list_sort.h>
  33#include <linux/raid/xor.h>
  34#include <linux/vmalloc.h>
  35#include <asm/div64.h>
 
  36#include "ctree.h"
  37#include "extent_map.h"
  38#include "disk-io.h"
  39#include "transaction.h"
  40#include "print-tree.h"
  41#include "volumes.h"
  42#include "raid56.h"
  43#include "async-thread.h"
  44#include "check-integrity.h"
  45#include "rcu-string.h"
  46
  47/* set when additional merges to this rbio are not allowed */
  48#define RBIO_RMW_LOCKED_BIT	1
  49
  50/*
  51 * set when this rbio is sitting in the hash, but it is just a cache
  52 * of past RMW
  53 */
  54#define RBIO_CACHE_BIT		2
  55
  56/*
  57 * set when it is safe to trust the stripe_pages for caching
  58 */
  59#define RBIO_CACHE_READY_BIT	3
  60
  61
  62#define RBIO_CACHE_SIZE 1024
  63
  64struct btrfs_raid_bio {
  65	struct btrfs_fs_info *fs_info;
  66	struct btrfs_bio *bbio;
  67
  68	/*
  69	 * logical block numbers for the start of each stripe
  70	 * The last one or two are p/q.  These are sorted,
  71	 * so raid_map[0] is the start of our full stripe
  72	 */
  73	u64 *raid_map;
  74
  75	/* while we're doing rmw on a stripe
  76	 * we put it into a hash table so we can
  77	 * lock the stripe and merge more rbios
  78	 * into it.
  79	 */
  80	struct list_head hash_list;
 
 
  81
  82	/*
  83	 * LRU list for the stripe cache
  84	 */
  85	struct list_head stripe_cache;
 
 
 
 
  86
  87	/*
  88	 * for scheduling work in the helper threads
  89	 */
  90	struct btrfs_work work;
 
 
 
 
 
 
  91
  92	/*
  93	 * bio list and bio_list_lock are used
  94	 * to add more bios into the stripe
  95	 * in hopes of avoiding the full rmw
  96	 */
  97	struct bio_list bio_list;
  98	spinlock_t bio_list_lock;
  99
 100	/* also protected by the bio_list_lock, the
 101	 * plug list is used by the plugging code
 102	 * to collect partial bios while plugged.  The
 103	 * stripe locking code also uses it to hand off
 104	 * the stripe lock to the next pending IO
 105	 */
 106	struct list_head plug_list;
 107
 108	/*
 109	 * flags that tell us if it is safe to
 110	 * merge with this bio
 111	 */
 112	unsigned long flags;
 
 
 
 113
 114	/* size of each individual stripe on disk */
 115	int stripe_len;
 
 116
 117	/* number of data stripes (no p/q) */
 118	int nr_data;
 119
 120	/*
 121	 * set if we're doing a parity rebuild
 122	 * for a read from higher up, which is handled
 123	 * differently from a parity rebuild as part of
 124	 * rmw
 125	 */
 126	int read_rebuild;
 127
 128	/* first bad stripe */
 129	int faila;
 
 
 
 
 130
 131	/* second bad stripe (for raid6 use) */
 132	int failb;
 
 
 133
 134	/*
 135	 * number of pages needed to represent the full
 136	 * stripe
 137	 */
 138	int nr_pages;
 139
 140	/*
 141	 * size of all the bios in the bio_list.  This
 142	 * helps us decide if the rbio maps to a full
 143	 * stripe or not
 144	 */
 145	int bio_list_bytes;
 146
 147	atomic_t refs;
 148
 149	/*
 150	 * these are two arrays of pointers.  We allocate the
 151	 * rbio big enough to hold them both and setup their
 152	 * locations when the rbio is allocated
 153	 */
 154
 155	/* pointers to pages that we allocated for
 156	 * reading/writing stripes directly from the disk (including P/Q)
 157	 */
 158	struct page **stripe_pages;
 159
 160	/*
 161	 * pointers to the pages in the bio_list.  Stored
 162	 * here for faster lookup
 163	 */
 164	struct page **bio_pages;
 165};
 166
 167static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 168static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 169static void rmw_work(struct btrfs_work *work);
 170static void read_rebuild_work(struct btrfs_work *work);
 171static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 172static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 173static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 174static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 175static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 176static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 177static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 178
 179/*
 180 * the stripe hash table is used for locking, and to collect
 181 * bios in hopes of making a full stripe
 182 */
 183int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 184{
 185	struct btrfs_stripe_hash_table *table;
 186	struct btrfs_stripe_hash_table *x;
 187	struct btrfs_stripe_hash *cur;
 188	struct btrfs_stripe_hash *h;
 189	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 190	int i;
 191	int table_size;
 192
 193	if (info->stripe_hash_table)
 194		return 0;
 195
 196	/*
 197	 * The table is large, starting with order 4 and can go as high as
 198	 * order 7 in case lock debugging is turned on.
 199	 *
 200	 * Try harder to allocate and fallback to vmalloc to lower the chance
 201	 * of a failing mount.
 202	 */
 203	table_size = sizeof(*table) + sizeof(*h) * num_entries;
 204	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
 205	if (!table) {
 206		table = vzalloc(table_size);
 207		if (!table)
 208			return -ENOMEM;
 209	}
 210
 211	spin_lock_init(&table->cache_lock);
 212	INIT_LIST_HEAD(&table->stripe_cache);
 213
 214	h = table->table;
 215
 216	for (i = 0; i < num_entries; i++) {
 217		cur = h + i;
 218		INIT_LIST_HEAD(&cur->hash_list);
 219		spin_lock_init(&cur->lock);
 220		init_waitqueue_head(&cur->wait);
 221	}
 222
 223	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 224	if (x) {
 225		if (is_vmalloc_addr(x))
 226			vfree(x);
 227		else
 228			kfree(x);
 229	}
 230	return 0;
 231}
 232
 233/*
 234 * caching an rbio means to copy anything from the
 235 * bio_pages array into the stripe_pages array.  We
 236 * use the page uptodate bit in the stripe cache array
 237 * to indicate if it has valid data
 238 *
 239 * once the caching is done, we set the cache ready
 240 * bit.
 241 */
 242static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 243{
 244	int i;
 245	char *s;
 246	char *d;
 247	int ret;
 248
 249	ret = alloc_rbio_pages(rbio);
 250	if (ret)
 251		return;
 252
 253	for (i = 0; i < rbio->nr_pages; i++) {
 254		if (!rbio->bio_pages[i])
 
 
 
 
 
 
 
 
 255			continue;
 
 256
 257		s = kmap(rbio->bio_pages[i]);
 258		d = kmap(rbio->stripe_pages[i]);
 259
 260		memcpy(d, s, PAGE_CACHE_SIZE);
 261
 262		kunmap(rbio->bio_pages[i]);
 263		kunmap(rbio->stripe_pages[i]);
 264		SetPageUptodate(rbio->stripe_pages[i]);
 265	}
 266	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 267}
 268
 269/*
 270 * we hash on the first logical address of the stripe
 271 */
 272static int rbio_bucket(struct btrfs_raid_bio *rbio)
 273{
 274	u64 num = rbio->raid_map[0];
 275
 276	/*
 277	 * we shift down quite a bit.  We're using byte
 278	 * addressing, and most of the lower bits are zeros.
 279	 * This tends to upset hash_64, and it consistently
 280	 * returns just one or two different values.
 281	 *
 282	 * shifting off the lower bits fixes things.
 283	 */
 284	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 285}
 286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287/*
 288 * stealing an rbio means taking all the uptodate pages from the stripe
 289 * array in the source rbio and putting them into the destination rbio
 
 
 
 290 */
 291static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 292{
 293	int i;
 294	struct page *s;
 295	struct page *d;
 296
 297	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 298		return;
 299
 300	for (i = 0; i < dest->nr_pages; i++) {
 301		s = src->stripe_pages[i];
 302		if (!s || !PageUptodate(s)) {
 
 
 
 
 
 303			continue;
 304		}
 305
 306		d = dest->stripe_pages[i];
 307		if (d)
 308			__free_page(d);
 309
 310		dest->stripe_pages[i] = s;
 311		src->stripe_pages[i] = NULL;
 
 312	}
 
 
 313}
 314
 315/*
 316 * merging means we take the bio_list from the victim and
 317 * splice it into the destination.  The victim should
 318 * be discarded afterwards.
 319 *
 320 * must be called with dest->rbio_list_lock held
 321 */
 322static void merge_rbio(struct btrfs_raid_bio *dest,
 323		       struct btrfs_raid_bio *victim)
 324{
 325	bio_list_merge(&dest->bio_list, &victim->bio_list);
 326	dest->bio_list_bytes += victim->bio_list_bytes;
 
 
 
 327	bio_list_init(&victim->bio_list);
 328}
 329
 330/*
 331 * used to prune items that are in the cache.  The caller
 332 * must hold the hash table lock.
 333 */
 334static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 335{
 336	int bucket = rbio_bucket(rbio);
 337	struct btrfs_stripe_hash_table *table;
 338	struct btrfs_stripe_hash *h;
 339	int freeit = 0;
 340
 341	/*
 342	 * check the bit again under the hash table lock.
 343	 */
 344	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 345		return;
 346
 347	table = rbio->fs_info->stripe_hash_table;
 348	h = table->table + bucket;
 349
 350	/* hold the lock for the bucket because we may be
 351	 * removing it from the hash table
 352	 */
 353	spin_lock(&h->lock);
 354
 355	/*
 356	 * hold the lock for the bio list because we need
 357	 * to make sure the bio list is empty
 358	 */
 359	spin_lock(&rbio->bio_list_lock);
 360
 361	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 362		list_del_init(&rbio->stripe_cache);
 363		table->cache_size -= 1;
 364		freeit = 1;
 365
 366		/* if the bio list isn't empty, this rbio is
 367		 * still involved in an IO.  We take it out
 368		 * of the cache list, and drop the ref that
 369		 * was held for the list.
 370		 *
 371		 * If the bio_list was empty, we also remove
 372		 * the rbio from the hash_table, and drop
 373		 * the corresponding ref
 374		 */
 375		if (bio_list_empty(&rbio->bio_list)) {
 376			if (!list_empty(&rbio->hash_list)) {
 377				list_del_init(&rbio->hash_list);
 378				atomic_dec(&rbio->refs);
 379				BUG_ON(!list_empty(&rbio->plug_list));
 380			}
 381		}
 382	}
 383
 384	spin_unlock(&rbio->bio_list_lock);
 385	spin_unlock(&h->lock);
 386
 387	if (freeit)
 388		__free_raid_bio(rbio);
 389}
 390
 391/*
 392 * prune a given rbio from the cache
 393 */
 394static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 395{
 396	struct btrfs_stripe_hash_table *table;
 397	unsigned long flags;
 398
 399	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 400		return;
 401
 402	table = rbio->fs_info->stripe_hash_table;
 403
 404	spin_lock_irqsave(&table->cache_lock, flags);
 405	__remove_rbio_from_cache(rbio);
 406	spin_unlock_irqrestore(&table->cache_lock, flags);
 407}
 408
 409/*
 410 * remove everything in the cache
 411 */
 412static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 413{
 414	struct btrfs_stripe_hash_table *table;
 415	unsigned long flags;
 416	struct btrfs_raid_bio *rbio;
 417
 418	table = info->stripe_hash_table;
 419
 420	spin_lock_irqsave(&table->cache_lock, flags);
 421	while (!list_empty(&table->stripe_cache)) {
 422		rbio = list_entry(table->stripe_cache.next,
 423				  struct btrfs_raid_bio,
 424				  stripe_cache);
 425		__remove_rbio_from_cache(rbio);
 426	}
 427	spin_unlock_irqrestore(&table->cache_lock, flags);
 428}
 429
 430/*
 431 * remove all cached entries and free the hash table
 432 * used by unmount
 433 */
 434void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 435{
 436	if (!info->stripe_hash_table)
 437		return;
 438	btrfs_clear_rbio_cache(info);
 439	if (is_vmalloc_addr(info->stripe_hash_table))
 440		vfree(info->stripe_hash_table);
 441	else
 442		kfree(info->stripe_hash_table);
 443	info->stripe_hash_table = NULL;
 444}
 445
 446/*
 447 * insert an rbio into the stripe cache.  It
 448 * must have already been prepared by calling
 449 * cache_rbio_pages
 450 *
 451 * If this rbio was already cached, it gets
 452 * moved to the front of the lru.
 453 *
 454 * If the size of the rbio cache is too big, we
 455 * prune an item.
 456 */
 457static void cache_rbio(struct btrfs_raid_bio *rbio)
 458{
 459	struct btrfs_stripe_hash_table *table;
 460	unsigned long flags;
 461
 462	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 463		return;
 464
 465	table = rbio->fs_info->stripe_hash_table;
 466
 467	spin_lock_irqsave(&table->cache_lock, flags);
 468	spin_lock(&rbio->bio_list_lock);
 469
 470	/* bump our ref if we were not in the list before */
 471	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 472		atomic_inc(&rbio->refs);
 473
 474	if (!list_empty(&rbio->stripe_cache)){
 475		list_move(&rbio->stripe_cache, &table->stripe_cache);
 476	} else {
 477		list_add(&rbio->stripe_cache, &table->stripe_cache);
 478		table->cache_size += 1;
 479	}
 480
 481	spin_unlock(&rbio->bio_list_lock);
 482
 483	if (table->cache_size > RBIO_CACHE_SIZE) {
 484		struct btrfs_raid_bio *found;
 485
 486		found = list_entry(table->stripe_cache.prev,
 487				  struct btrfs_raid_bio,
 488				  stripe_cache);
 489
 490		if (found != rbio)
 491			__remove_rbio_from_cache(found);
 492	}
 493
 494	spin_unlock_irqrestore(&table->cache_lock, flags);
 495	return;
 496}
 497
 498/*
 499 * helper function to run the xor_blocks api.  It is only
 500 * able to do MAX_XOR_BLOCKS at a time, so we need to
 501 * loop through.
 502 */
 503static void run_xor(void **pages, int src_cnt, ssize_t len)
 504{
 505	int src_off = 0;
 506	int xor_src_cnt = 0;
 507	void *dest = pages[src_cnt];
 508
 509	while(src_cnt > 0) {
 510		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 511		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 512
 513		src_cnt -= xor_src_cnt;
 514		src_off += xor_src_cnt;
 515	}
 516}
 517
 518/*
 519 * returns true if the bio list inside this rbio
 520 * covers an entire stripe (no rmw required).
 521 * Must be called with the bio list lock held, or
 522 * at a time when you know it is impossible to add
 523 * new bios into the list
 524 */
 525static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 526{
 527	unsigned long size = rbio->bio_list_bytes;
 528	int ret = 1;
 529
 530	if (size != rbio->nr_data * rbio->stripe_len)
 
 531		ret = 0;
 
 
 532
 533	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 534	return ret;
 535}
 536
 537static int rbio_is_full(struct btrfs_raid_bio *rbio)
 538{
 539	unsigned long flags;
 540	int ret;
 541
 542	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 543	ret = __rbio_is_full(rbio);
 544	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 545	return ret;
 546}
 547
 548/*
 549 * returns 1 if it is safe to merge two rbios together.
 550 * The merging is safe if the two rbios correspond to
 551 * the same stripe and if they are both going in the same
 552 * direction (read vs write), and if neither one is
 553 * locked for final IO
 554 *
 555 * The caller is responsible for locking such that
 556 * rmw_locked is safe to test
 557 */
 558static int rbio_can_merge(struct btrfs_raid_bio *last,
 559			  struct btrfs_raid_bio *cur)
 560{
 561	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 562	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 563		return 0;
 564
 565	/*
 566	 * we can't merge with cached rbios, since the
 567	 * idea is that when we merge the destination
 568	 * rbio is going to run our IO for us.  We can
 569	 * steal from cached rbio's though, other functions
 570	 * handle that.
 571	 */
 572	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 573	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 574		return 0;
 575
 576	if (last->raid_map[0] !=
 577	    cur->raid_map[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 578		return 0;
 579
 580	/* reads can't merge with writes */
 581	if (last->read_rebuild !=
 582	    cur->read_rebuild) {
 583		return 0;
 584	}
 585
 586	return 1;
 587}
 588
 589/*
 590 * helper to index into the pstripe
 591 */
 592static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593{
 594	index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
 595	return rbio->stripe_pages[index];
 596}
 597
 598/*
 599 * helper to index into the qstripe, returns null
 600 * if there is no qstripe
 601 */
 602static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 603{
 604	if (rbio->nr_data + 1 == rbio->bbio->num_stripes)
 605		return NULL;
 606
 607	index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
 608		PAGE_CACHE_SHIFT;
 609	return rbio->stripe_pages[index];
 610}
 611
 612/*
 613 * The first stripe in the table for a logical address
 614 * has the lock.  rbios are added in one of three ways:
 615 *
 616 * 1) Nobody has the stripe locked yet.  The rbio is given
 617 * the lock and 0 is returned.  The caller must start the IO
 618 * themselves.
 619 *
 620 * 2) Someone has the stripe locked, but we're able to merge
 621 * with the lock owner.  The rbio is freed and the IO will
 622 * start automatically along with the existing rbio.  1 is returned.
 623 *
 624 * 3) Someone has the stripe locked, but we're not able to merge.
 625 * The rbio is added to the lock owner's plug list, or merged into
 626 * an rbio already on the plug list.  When the lock owner unlocks,
 627 * the next rbio on the list is run and the IO is started automatically.
 628 * 1 is returned
 629 *
 630 * If we return 0, the caller still owns the rbio and must continue with
 631 * IO submission.  If we return 1, the caller must assume the rbio has
 632 * already been freed.
 633 */
 634static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 635{
 636	int bucket = rbio_bucket(rbio);
 637	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 638	struct btrfs_raid_bio *cur;
 639	struct btrfs_raid_bio *pending;
 640	unsigned long flags;
 641	DEFINE_WAIT(wait);
 642	struct btrfs_raid_bio *freeit = NULL;
 643	struct btrfs_raid_bio *cache_drop = NULL;
 644	int ret = 0;
 645	int walk = 0;
 646
 647	spin_lock_irqsave(&h->lock, flags);
 
 
 648	list_for_each_entry(cur, &h->hash_list, hash_list) {
 649		walk++;
 650		if (cur->raid_map[0] == rbio->raid_map[0]) {
 651			spin_lock(&cur->bio_list_lock);
 652
 653			/* can we steal this cached rbio's pages? */
 654			if (bio_list_empty(&cur->bio_list) &&
 655			    list_empty(&cur->plug_list) &&
 656			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 657			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 658				list_del_init(&cur->hash_list);
 659				atomic_dec(&cur->refs);
 
 
 
 
 
 
 
 
 660
 661				steal_rbio(cur, rbio);
 662				cache_drop = cur;
 663				spin_unlock(&cur->bio_list_lock);
 
 
 
 
 
 664
 665				goto lockit;
 666			}
 667
 668			/* can we merge into the lock owner? */
 669			if (rbio_can_merge(cur, rbio)) {
 670				merge_rbio(cur, rbio);
 
 
 
 
 
 671				spin_unlock(&cur->bio_list_lock);
 672				freeit = rbio;
 673				ret = 1;
 674				goto out;
 675			}
 
 676
 677
 678			/*
 679			 * we couldn't merge with the running
 680			 * rbio, see if we can merge with the
 681			 * pending ones.  We don't have to
 682			 * check for rmw_locked because there
 683			 * is no way they are inside finish_rmw
 684			 * right now
 685			 */
 686			list_for_each_entry(pending, &cur->plug_list,
 687					    plug_list) {
 688				if (rbio_can_merge(pending, rbio)) {
 689					merge_rbio(pending, rbio);
 690					spin_unlock(&cur->bio_list_lock);
 691					freeit = rbio;
 692					ret = 1;
 693					goto out;
 694				}
 695			}
 696
 697			/* no merging, put us on the tail of the plug list,
 698			 * our rbio will be started with the currently
 699			 * running rbio unlocks
 700			 */
 701			list_add_tail(&rbio->plug_list, &cur->plug_list);
 702			spin_unlock(&cur->bio_list_lock);
 703			ret = 1;
 704			goto out;
 705		}
 706	}
 707lockit:
 708	atomic_inc(&rbio->refs);
 709	list_add(&rbio->hash_list, &h->hash_list);
 710out:
 711	spin_unlock_irqrestore(&h->lock, flags);
 712	if (cache_drop)
 713		remove_rbio_from_cache(cache_drop);
 714	if (freeit)
 715		__free_raid_bio(freeit);
 716	return ret;
 717}
 718
 
 
 719/*
 720 * called as rmw or parity rebuild is completed.  If the plug list has more
 721 * rbios waiting for this stripe, the next one on the list will be started
 722 */
 723static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 724{
 725	int bucket;
 726	struct btrfs_stripe_hash *h;
 727	unsigned long flags;
 728	int keep_cache = 0;
 729
 730	bucket = rbio_bucket(rbio);
 731	h = rbio->fs_info->stripe_hash_table->table + bucket;
 732
 733	if (list_empty(&rbio->plug_list))
 734		cache_rbio(rbio);
 735
 736	spin_lock_irqsave(&h->lock, flags);
 737	spin_lock(&rbio->bio_list_lock);
 738
 739	if (!list_empty(&rbio->hash_list)) {
 740		/*
 741		 * if we're still cached and there is no other IO
 742		 * to perform, just leave this rbio here for others
 743		 * to steal from later
 744		 */
 745		if (list_empty(&rbio->plug_list) &&
 746		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 747			keep_cache = 1;
 748			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 749			BUG_ON(!bio_list_empty(&rbio->bio_list));
 750			goto done;
 751		}
 752
 753		list_del_init(&rbio->hash_list);
 754		atomic_dec(&rbio->refs);
 755
 756		/*
 757		 * we use the plug list to hold all the rbios
 758		 * waiting for the chance to lock this stripe.
 759		 * hand the lock over to one of them.
 760		 */
 761		if (!list_empty(&rbio->plug_list)) {
 762			struct btrfs_raid_bio *next;
 763			struct list_head *head = rbio->plug_list.next;
 764
 765			next = list_entry(head, struct btrfs_raid_bio,
 766					  plug_list);
 767
 768			list_del_init(&rbio->plug_list);
 769
 770			list_add(&next->hash_list, &h->hash_list);
 771			atomic_inc(&next->refs);
 772			spin_unlock(&rbio->bio_list_lock);
 773			spin_unlock_irqrestore(&h->lock, flags);
 774
 775			if (next->read_rebuild)
 776				async_read_rebuild(next);
 777			else {
 778				steal_rbio(rbio, next);
 779				async_rmw_stripe(next);
 
 
 
 780			}
 781
 782			goto done_nolock;
 783		} else  if (waitqueue_active(&h->wait)) {
 784			spin_unlock(&rbio->bio_list_lock);
 785			spin_unlock_irqrestore(&h->lock, flags);
 786			wake_up(&h->wait);
 787			goto done_nolock;
 788		}
 789	}
 790done:
 791	spin_unlock(&rbio->bio_list_lock);
 792	spin_unlock_irqrestore(&h->lock, flags);
 793
 794done_nolock:
 795	if (!keep_cache)
 796		remove_rbio_from_cache(rbio);
 797}
 798
 799static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 800{
 801	int i;
 802
 803	WARN_ON(atomic_read(&rbio->refs) < 0);
 804	if (!atomic_dec_and_test(&rbio->refs))
 805		return;
 806
 807	WARN_ON(!list_empty(&rbio->stripe_cache));
 808	WARN_ON(!list_empty(&rbio->hash_list));
 809	WARN_ON(!bio_list_empty(&rbio->bio_list));
 810
 811	for (i = 0; i < rbio->nr_pages; i++) {
 812		if (rbio->stripe_pages[i]) {
 813			__free_page(rbio->stripe_pages[i]);
 814			rbio->stripe_pages[i] = NULL;
 815		}
 816	}
 817	kfree(rbio->raid_map);
 818	kfree(rbio->bbio);
 819	kfree(rbio);
 820}
 821
 822static void free_raid_bio(struct btrfs_raid_bio *rbio)
 823{
 824	unlock_stripe(rbio);
 825	__free_raid_bio(rbio);
 826}
 827
 828/*
 829 * this frees the rbio and runs through all the bios in the
 830 * bio_list and calls end_io on them
 831 */
 832static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
 833{
 834	struct bio *cur = bio_list_get(&rbio->bio_list);
 835	struct bio *next;
 836	free_raid_bio(rbio);
 837
 838	while (cur) {
 839		next = cur->bi_next;
 840		cur->bi_next = NULL;
 841		if (uptodate)
 842			set_bit(BIO_UPTODATE, &cur->bi_flags);
 843		bio_endio(cur, err);
 844		cur = next;
 845	}
 846}
 847
 848/*
 849 * end io function used by finish_rmw.  When we finally
 850 * get here, we've written a full stripe
 851 */
 852static void raid_write_end_io(struct bio *bio, int err)
 853{
 854	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 855
 856	if (err)
 857		fail_bio_stripe(rbio, bio);
 
 
 858
 859	bio_put(bio);
 
 
 
 
 
 860
 861	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
 862		return;
 863
 864	err = 0;
 865
 866	/* OK, we have read all the stripes we need to. */
 867	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
 868		err = -EIO;
 
 
 
 869
 870	rbio_orig_end_io(rbio, err, 0);
 871	return;
 
 872}
 873
 874/*
 875 * the read/modify/write code wants to use the original bio for
 876 * any pages it included, and then use the rbio for everything
 877 * else.  This function decides if a given index (stripe number)
 878 * and page number in that stripe fall inside the original bio
 879 * or the rbio.
 880 *
 881 * if you set bio_list_only, you'll get a NULL back for any ranges
 882 * that are outside the bio_list
 883 *
 884 * This doesn't take any refs on anything, you get a bare page pointer
 885 * and the caller must bump refs as required.
 
 
 
 886 *
 887 * You must call index_rbio_pages once before you can trust
 888 * the answers from this function.
 889 */
 890static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 891				 int index, int pagenr, int bio_list_only)
 
 892{
 893	int chunk_page;
 894	struct page *p = NULL;
 895
 896	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 
 897
 898	spin_lock_irq(&rbio->bio_list_lock);
 899	p = rbio->bio_pages[chunk_page];
 900	spin_unlock_irq(&rbio->bio_list_lock);
 901
 902	if (p || bio_list_only)
 903		return p;
 904
 905	return rbio->stripe_pages[chunk_page];
 906}
 
 
 
 
 
 907
 908/*
 909 * number of pages we need for the entire stripe across all the
 910 * drives
 911 */
 912static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 913{
 914	unsigned long nr = stripe_len * nr_stripes;
 915	return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 916}
 917
 918/*
 919 * allocation and initial setup for the btrfs_raid_bio.  Not
 920 * this does not allocate any pages for rbio->pages.
 921 */
 922static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
 923			  struct btrfs_bio *bbio, u64 *raid_map,
 924			  u64 stripe_len)
 925{
 
 
 
 
 
 
 926	struct btrfs_raid_bio *rbio;
 927	int nr_data = 0;
 928	int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes);
 929	void *p;
 930
 931	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2,
 932			GFP_NOFS);
 933	if (!rbio) {
 934		kfree(raid_map);
 935		kfree(bbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936		return ERR_PTR(-ENOMEM);
 937	}
 938
 939	bio_list_init(&rbio->bio_list);
 
 940	INIT_LIST_HEAD(&rbio->plug_list);
 941	spin_lock_init(&rbio->bio_list_lock);
 942	INIT_LIST_HEAD(&rbio->stripe_cache);
 943	INIT_LIST_HEAD(&rbio->hash_list);
 944	rbio->bbio = bbio;
 945	rbio->raid_map = raid_map;
 946	rbio->fs_info = root->fs_info;
 947	rbio->stripe_len = stripe_len;
 948	rbio->nr_pages = num_pages;
 949	rbio->faila = -1;
 950	rbio->failb = -1;
 951	atomic_set(&rbio->refs, 1);
 952
 953	/*
 954	 * the stripe_pages and bio_pages array point to the extra
 955	 * memory we allocated past the end of the rbio
 956	 */
 957	p = rbio + 1;
 958	rbio->stripe_pages = p;
 959	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
 960
 961	if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
 962		nr_data = bbio->num_stripes - 2;
 963	else
 964		nr_data = bbio->num_stripes - 1;
 965
 966	rbio->nr_data = nr_data;
 967	return rbio;
 968}
 969
 970/* allocate pages for all the stripes in the bio, including parity */
 971static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 972{
 973	int i;
 974	struct page *page;
 975
 976	for (i = 0; i < rbio->nr_pages; i++) {
 977		if (rbio->stripe_pages[i])
 978			continue;
 979		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
 980		if (!page)
 981			return -ENOMEM;
 982		rbio->stripe_pages[i] = page;
 983		ClearPageUptodate(page);
 984	}
 985	return 0;
 986}
 987
 988/* allocate pages for just the p/q stripes */
 989static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 990{
 991	int i;
 992	struct page *page;
 
 
 
 
 
 
 
 
 
 993
 994	i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 995
 996	for (; i < rbio->nr_pages; i++) {
 997		if (rbio->stripe_pages[i])
 998			continue;
 999		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1000		if (!page)
1001			return -ENOMEM;
1002		rbio->stripe_pages[i] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003	}
1004	return 0;
1005}
1006
1007/*
1008 * add a single page from a specific stripe into our list of bios for IO
1009 * this will try to merge into existing bios if possible, and returns
1010 * zero if all went well.
1011 */
1012static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1013			    struct bio_list *bio_list,
1014			    struct page *page,
1015			    int stripe_nr,
1016			    unsigned long page_index,
1017			    unsigned long bio_max_len)
 
1018{
 
1019	struct bio *last = bio_list->tail;
1020	u64 last_end = 0;
1021	int ret;
1022	struct bio *bio;
1023	struct btrfs_bio_stripe *stripe;
1024	u64 disk_start;
1025
1026	stripe = &rbio->bbio->stripes[stripe_nr];
1027	disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
1028
1029	/* if the device is missing, just fail this stripe */
1030	if (!stripe->dev->bdev)
1031		return fail_rbio_index(rbio, stripe_nr);
 
 
 
 
 
 
 
 
 
 
 
1032
1033	/* see if we can add this page onto our existing bio */
1034	if (last) {
1035		last_end = (u64)last->bi_iter.bi_sector << 9;
1036		last_end += last->bi_iter.bi_size;
1037
1038		/*
1039		 * we can't merge these if they are from different
1040		 * devices or if they are not contiguous
1041		 */
1042		if (last_end == disk_start && stripe->dev->bdev &&
1043		    test_bit(BIO_UPTODATE, &last->bi_flags) &&
1044		    last->bi_bdev == stripe->dev->bdev) {
1045			ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1046			if (ret == PAGE_CACHE_SIZE)
 
1047				return 0;
1048		}
1049	}
1050
1051	/* put a new bio on the list */
1052	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1053	if (!bio)
1054		return -ENOMEM;
1055
1056	bio->bi_iter.bi_size = 0;
1057	bio->bi_bdev = stripe->dev->bdev;
1058	bio->bi_iter.bi_sector = disk_start >> 9;
1059	set_bit(BIO_UPTODATE, &bio->bi_flags);
1060
1061	bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1062	bio_list_add(bio_list, bio);
1063	return 0;
1064}
1065
1066/*
1067 * while we're doing the read/modify/write cycle, we could
1068 * have errors in reading pages off the disk.  This checks
1069 * for errors and if we're not able to read the page it'll
1070 * trigger parity reconstruction.  The rmw will be finished
1071 * after we've reconstructed the failed stripes
1072 */
1073static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1074{
1075	if (rbio->faila >= 0 || rbio->failb >= 0) {
1076		BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1);
1077		__raid56_parity_recover(rbio);
1078	} else {
1079		finish_rmw(rbio);
 
 
 
 
 
 
1080	}
1081}
1082
1083/*
1084 * these are just the pages from the rbio array, not from anything
1085 * the FS sent down to us
1086 */
1087static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1088{
1089	int index;
1090	index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1091	index += page;
1092	return rbio->stripe_pages[index];
1093}
1094
1095/*
1096 * helper function to walk our bio list and populate the bio_pages array with
1097 * the result.  This seems expensive, but it is faster than constantly
1098 * searching through the bio list as we setup the IO in finish_rmw or stripe
1099 * reconstruction.
1100 *
1101 * This must be called before you trust the answers from page_in_rbio
1102 */
1103static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1104{
1105	struct bio *bio;
1106	u64 start;
1107	unsigned long stripe_offset;
1108	unsigned long page_index;
1109	struct page *p;
 
 
 
 
 
 
 
 
1110	int i;
1111
1112	spin_lock_irq(&rbio->bio_list_lock);
1113	bio_list_for_each(bio, &rbio->bio_list) {
1114		start = (u64)bio->bi_iter.bi_sector << 9;
1115		stripe_offset = start - rbio->raid_map[0];
1116		page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1117
1118		for (i = 0; i < bio->bi_vcnt; i++) {
1119			p = bio->bi_io_vec[i].bv_page;
1120			rbio->bio_pages[page_index + i] = p;
1121		}
 
 
 
 
 
 
 
 
1122	}
1123	spin_unlock_irq(&rbio->bio_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
1124}
1125
1126/*
1127 * this is called from one of two situations.  We either
1128 * have a full stripe from the higher layers, or we've read all
1129 * the missing bits off disk.
1130 *
1131 * This will calculate the parity and then send down any
1132 * changed blocks.
1133 */
1134static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1135{
1136	struct btrfs_bio *bbio = rbio->bbio;
1137	void *pointers[bbio->num_stripes];
1138	int stripe_len = rbio->stripe_len;
1139	int nr_data = rbio->nr_data;
1140	int stripe;
1141	int pagenr;
1142	int p_stripe = -1;
1143	int q_stripe = -1;
1144	struct bio_list bio_list;
1145	struct bio *bio;
1146	int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1147	int ret;
 
 
 
 
 
 
1148
1149	bio_list_init(&bio_list);
 
 
 
 
 
 
 
 
1150
1151	if (bbio->num_stripes - rbio->nr_data == 1) {
1152		p_stripe = bbio->num_stripes - 1;
1153	} else if (bbio->num_stripes - rbio->nr_data == 2) {
1154		p_stripe = bbio->num_stripes - 2;
1155		q_stripe = bbio->num_stripes - 1;
1156	} else {
1157		BUG();
 
 
1158	}
 
 
 
 
 
 
 
 
 
 
 
 
1159
1160	/* at this point we either have a full stripe,
1161	 * or we've read the full stripe from the drive.
1162	 * recalculate the parity and write the new results.
1163	 *
1164	 * We're not allowed to add any new bios to the
1165	 * bio list here, anyone else that wants to
1166	 * change this stripe needs to do their own rmw.
1167	 */
1168	spin_lock_irq(&rbio->bio_list_lock);
1169	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1170	spin_unlock_irq(&rbio->bio_list_lock);
1171
1172	atomic_set(&rbio->bbio->error, 0);
 
1173
1174	/*
1175	 * now that we've set rmw_locked, run through the
1176	 * bio list one last time and map the page pointers
1177	 *
1178	 * We don't cache full rbios because we're assuming
1179	 * the higher layers are unlikely to use this area of
1180	 * the disk again soon.  If they do use it again,
1181	 * hopefully they will send another full bio.
1182	 */
1183	index_rbio_pages(rbio);
1184	if (!rbio_is_full(rbio))
1185		cache_rbio_pages(rbio);
1186	else
1187		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1188
1189	for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1190		struct page *p;
1191		/* first collect one page from each data stripe */
1192		for (stripe = 0; stripe < nr_data; stripe++) {
1193			p = page_in_rbio(rbio, stripe, pagenr, 0);
1194			pointers[stripe] = kmap(p);
1195		}
1196
1197		/* then add the parity stripe */
1198		p = rbio_pstripe_page(rbio, pagenr);
1199		SetPageUptodate(p);
1200		pointers[stripe++] = kmap(p);
1201
1202		if (q_stripe != -1) {
 
 
1203
1204			/*
1205			 * raid6, add the qstripe and call the
1206			 * library function to fill in our p/q
1207			 */
1208			p = rbio_qstripe_page(rbio, pagenr);
1209			SetPageUptodate(p);
1210			pointers[stripe++] = kmap(p);
1211
1212			raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE,
1213						pointers);
1214		} else {
1215			/* raid5 */
1216			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1217			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1218		}
1219
 
 
 
 
 
1220
1221		for (stripe = 0; stripe < bbio->num_stripes; stripe++)
1222			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1223	}
1224
1225	/*
1226	 * time to start writing.  Make bios for everything from the
1227	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1228	 * everything else.
1229	 */
1230	for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1231		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1232			struct page *page;
1233			if (stripe < rbio->nr_data) {
1234				page = page_in_rbio(rbio, stripe, pagenr, 1);
1235				if (!page)
1236					continue;
1237			} else {
1238			       page = rbio_stripe_page(rbio, stripe, pagenr);
1239			}
1240
1241			ret = rbio_add_io_page(rbio, &bio_list,
1242				       page, stripe, pagenr, rbio->stripe_len);
1243			if (ret)
1244				goto cleanup;
 
 
 
 
 
 
 
 
 
1245		}
1246	}
1247
1248	atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list));
1249	BUG_ON(atomic_read(&bbio->stripes_pending) == 0);
 
1250
1251	while (1) {
1252		bio = bio_list_pop(&bio_list);
1253		if (!bio)
1254			break;
 
 
 
1255
1256		bio->bi_private = rbio;
1257		bio->bi_end_io = raid_write_end_io;
1258		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1259		submit_bio(WRITE, bio);
 
1260	}
1261	return;
1262
1263cleanup:
1264	rbio_orig_end_io(rbio, -EIO, 0);
 
 
1265}
1266
1267/*
1268 * helper to find the stripe number for a given bio.  Used to figure out which
1269 * stripe has failed.  This expects the bio to correspond to a physical disk,
1270 * so it looks up based on physical sector numbers.
1271 */
1272static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1273			   struct bio *bio)
1274{
1275	u64 physical = bio->bi_iter.bi_sector;
1276	u64 stripe_start;
1277	int i;
1278	struct btrfs_bio_stripe *stripe;
1279
1280	physical <<= 9;
1281
1282	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1283		stripe = &rbio->bbio->stripes[i];
1284		stripe_start = stripe->physical;
1285		if (physical >= stripe_start &&
1286		    physical < stripe_start + rbio->stripe_len) {
1287			return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288		}
 
1289	}
1290	return -1;
1291}
1292
1293/*
1294 * helper to find the stripe number for a given
1295 * bio (before mapping).  Used to figure out which stripe has
1296 * failed.  This looks up based on logical block numbers.
1297 */
1298static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1299				   struct bio *bio)
 
1300{
1301	u64 logical = bio->bi_iter.bi_sector;
1302	u64 stripe_start;
1303	int i;
1304
1305	logical <<= 9;
 
1306
1307	for (i = 0; i < rbio->nr_data; i++) {
1308		stripe_start = rbio->raid_map[i];
1309		if (logical >= stripe_start &&
1310		    logical < stripe_start + rbio->stripe_len) {
1311			return i;
1312		}
1313	}
1314	return -1;
1315}
1316
1317/*
1318 * returns -EIO if we had too many failures
 
1319 */
1320static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1321{
1322	unsigned long flags;
1323	int ret = 0;
 
1324
1325	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1326
1327	/* we already know this stripe is bad, move on */
1328	if (rbio->faila == failed || rbio->failb == failed)
1329		goto out;
1330
1331	if (rbio->faila == -1) {
1332		/* first failure on this rbio */
1333		rbio->faila = failed;
1334		atomic_inc(&rbio->bbio->error);
1335	} else if (rbio->failb == -1) {
1336		/* second failure on this rbio */
1337		rbio->failb = failed;
1338		atomic_inc(&rbio->bbio->error);
1339	} else {
1340		ret = -EIO;
1341	}
1342out:
1343	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1344
1345	return ret;
1346}
1347
1348/*
1349 * helper to fail a stripe based on a physical disk
1350 * bio.
1351 */
1352static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1353			   struct bio *bio)
1354{
1355	int failed = find_bio_stripe(rbio, bio);
 
1356
1357	if (failed < 0)
1358		return -EIO;
1359
1360	return fail_rbio_index(rbio, failed);
 
 
 
 
 
 
 
 
1361}
1362
1363/*
1364 * this sets each page in the bio uptodate.  It should only be used on private
1365 * rbio pages, nothing that comes in from the higher layers
1366 */
1367static void set_bio_pages_uptodate(struct bio *bio)
1368{
 
 
 
1369	int i;
1370	struct page *p;
1371
1372	for (i = 0; i < bio->bi_vcnt; i++) {
1373		p = bio->bi_io_vec[i].bv_page;
1374		SetPageUptodate(p);
1375	}
 
 
 
 
 
 
 
 
1376}
1377
1378/*
1379 * end io for the read phase of the rmw cycle.  All the bios here are physical
1380 * stripe bios we've read from the disk so we can recalculate the parity of the
1381 * stripe.
1382 *
1383 * This will usually kick off finish_rmw once all the bios are read in, but it
1384 * may trigger parity reconstruction if we had any errors along the way
1385 */
1386static void raid_rmw_end_io(struct bio *bio, int err)
1387{
1388	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
1389
1390	if (err)
1391		fail_bio_stripe(rbio, bio);
1392	else
1393		set_bio_pages_uptodate(bio);
1394
1395	bio_put(bio);
1396
1397	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
 
1398		return;
1399
1400	err = 0;
1401	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1402		goto cleanup;
1403
1404	/*
1405	 * this will normally call finish_rmw to start our write
1406	 * but if there are any failed stripes we'll reconstruct
1407	 * from parity first
1408	 */
1409	validate_rbio_for_rmw(rbio);
1410	return;
1411
1412cleanup:
 
 
1413
1414	rbio_orig_end_io(rbio, -EIO, 0);
 
 
 
 
 
1415}
1416
1417static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1418{
1419	btrfs_init_work(&rbio->work, rmw_work, NULL, NULL);
1420
1421	btrfs_queue_work(rbio->fs_info->rmw_workers,
1422			 &rbio->work);
1423}
 
 
 
1424
1425static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1426{
1427	btrfs_init_work(&rbio->work, read_rebuild_work, NULL, NULL);
1428
1429	btrfs_queue_work(rbio->fs_info->rmw_workers,
1430			 &rbio->work);
1431}
1432
1433/*
1434 * the stripe must be locked by the caller.  It will
1435 * unlock after all the writes are done
1436 */
1437static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1438{
1439	int bios_to_read = 0;
1440	struct btrfs_bio *bbio = rbio->bbio;
1441	struct bio_list bio_list;
1442	int ret;
1443	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1444	int pagenr;
1445	int stripe;
1446	struct bio *bio;
1447
1448	bio_list_init(&bio_list);
 
 
1449
1450	ret = alloc_rbio_pages(rbio);
1451	if (ret)
1452		goto cleanup;
1453
1454	index_rbio_pages(rbio);
1455
1456	atomic_set(&rbio->bbio->error, 0);
1457	/*
1458	 * build a list of bios to read all the missing parts of this
1459	 * stripe
1460	 */
1461	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1462		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1463			struct page *page;
1464			/*
1465			 * we want to find all the pages missing from
1466			 * the rbio and read them from the disk.  If
1467			 * page_in_rbio finds a page in the bio list
1468			 * we don't need to read it off the stripe.
1469			 */
1470			page = page_in_rbio(rbio, stripe, pagenr, 1);
1471			if (page)
1472				continue;
1473
1474			page = rbio_stripe_page(rbio, stripe, pagenr);
1475			/*
1476			 * the bio cache may have handed us an uptodate
1477			 * page.  If so, be happy and use it
1478			 */
1479			if (PageUptodate(page))
1480				continue;
1481
1482			ret = rbio_add_io_page(rbio, &bio_list, page,
1483				       stripe, pagenr, rbio->stripe_len);
1484			if (ret)
1485				goto cleanup;
1486		}
 
1487	}
1488
1489	bios_to_read = bio_list_size(&bio_list);
1490	if (!bios_to_read) {
1491		/*
1492		 * this can happen if others have merged with
1493		 * us, it means there is nothing left to read.
1494		 * But if there are missing devices it may not be
1495		 * safe to do the full stripe write yet.
1496		 */
1497		goto finish;
1498	}
1499
1500	/*
1501	 * the bbio may be freed once we submit the last bio.  Make sure
1502	 * not to touch it after that
1503	 */
1504	atomic_set(&bbio->stripes_pending, bios_to_read);
1505	while (1) {
1506		bio = bio_list_pop(&bio_list);
1507		if (!bio)
1508			break;
1509
1510		bio->bi_private = rbio;
1511		bio->bi_end_io = raid_rmw_end_io;
1512
1513		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1514				    BTRFS_WQ_ENDIO_RAID56);
1515
1516		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1517		submit_bio(READ, bio);
1518	}
1519	/* the actual write will happen once the reads are done */
1520	return 0;
1521
1522cleanup:
1523	rbio_orig_end_io(rbio, -EIO, 0);
1524	return -EIO;
1525
1526finish:
1527	validate_rbio_for_rmw(rbio);
1528	return 0;
1529}
1530
1531/*
1532 * if the upper layers pass in a full stripe, we thank them by only allocating
1533 * enough pages to hold the parity, and sending it all down quickly.
1534 */
1535static int full_stripe_write(struct btrfs_raid_bio *rbio)
1536{
 
1537	int ret;
1538
1539	ret = alloc_rbio_parity_pages(rbio);
1540	if (ret) {
1541		__free_raid_bio(rbio);
1542		return ret;
1543	}
1544
1545	ret = lock_stripe_add(rbio);
1546	if (ret == 0)
1547		finish_rmw(rbio);
1548	return 0;
1549}
1550
1551/*
1552 * partial stripe writes get handed over to async helpers.
1553 * We're really hoping to merge a few more writes into this
1554 * rbio before calculating new parity
1555 */
1556static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1557{
1558	int ret;
1559
1560	ret = lock_stripe_add(rbio);
1561	if (ret == 0)
1562		async_rmw_stripe(rbio);
1563	return 0;
1564}
1565
1566/*
1567 * sometimes while we were reading from the drive to
1568 * recalculate parity, enough new bios come into create
1569 * a full stripe.  So we do a check here to see if we can
1570 * go directly to finish_rmw
1571 */
1572static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1573{
1574	/* head off into rmw land if we don't have a full stripe */
1575	if (!rbio_is_full(rbio))
1576		return partial_stripe_write(rbio);
1577	return full_stripe_write(rbio);
1578}
1579
1580/*
1581 * We use plugging call backs to collect full stripes.
1582 * Any time we get a partial stripe write while plugged
1583 * we collect it into a list.  When the unplug comes down,
1584 * we sort the list by logical block number and merge
1585 * everything we can into the same rbios
1586 */
1587struct btrfs_plug_cb {
1588	struct blk_plug_cb cb;
1589	struct btrfs_fs_info *info;
1590	struct list_head rbio_list;
1591	struct btrfs_work work;
1592};
1593
1594/*
1595 * rbios on the plug list are sorted for easier merging.
1596 */
1597static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
 
1598{
1599	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1600						 plug_list);
1601	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1602						 plug_list);
1603	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1604	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1605
1606	if (a_sector < b_sector)
1607		return -1;
1608	if (a_sector > b_sector)
1609		return 1;
1610	return 0;
1611}
1612
1613static void run_plug(struct btrfs_plug_cb *plug)
1614{
 
1615	struct btrfs_raid_bio *cur;
1616	struct btrfs_raid_bio *last = NULL;
1617
1618	/*
1619	 * sort our plug list then try to merge
1620	 * everything we can in hopes of creating full
1621	 * stripes.
1622	 */
1623	list_sort(NULL, &plug->rbio_list, plug_cmp);
 
1624	while (!list_empty(&plug->rbio_list)) {
1625		cur = list_entry(plug->rbio_list.next,
1626				 struct btrfs_raid_bio, plug_list);
1627		list_del_init(&cur->plug_list);
1628
1629		if (rbio_is_full(cur)) {
1630			/* we have a full stripe, send it down */
1631			full_stripe_write(cur);
1632			continue;
1633		}
1634		if (last) {
1635			if (rbio_can_merge(last, cur)) {
1636				merge_rbio(last, cur);
1637				__free_raid_bio(cur);
1638				continue;
1639
1640			}
1641			__raid56_parity_write(last);
1642		}
1643		last = cur;
1644	}
1645	if (last) {
1646		__raid56_parity_write(last);
1647	}
1648	kfree(plug);
1649}
1650
1651/*
1652 * if the unplug comes from schedule, we have to push the
1653 * work off to a helper thread
1654 */
1655static void unplug_work(struct btrfs_work *work)
1656{
1657	struct btrfs_plug_cb *plug;
1658	plug = container_of(work, struct btrfs_plug_cb, work);
1659	run_plug(plug);
1660}
1661
1662static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1663{
1664	struct btrfs_plug_cb *plug;
1665	plug = container_of(cb, struct btrfs_plug_cb, cb);
 
 
 
 
 
 
 
 
 
 
1666
1667	if (from_schedule) {
1668		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1669		btrfs_queue_work(plug->info->rmw_workers,
1670				 &plug->work);
1671		return;
1672	}
1673	run_plug(plug);
1674}
1675
1676/*
1677 * our main entry point for writes from the rest of the FS.
1678 */
1679int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1680			struct btrfs_bio *bbio, u64 *raid_map,
1681			u64 stripe_len)
1682{
 
1683	struct btrfs_raid_bio *rbio;
1684	struct btrfs_plug_cb *plug = NULL;
1685	struct blk_plug_cb *cb;
1686
1687	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
1688	if (IS_ERR(rbio))
1689		return PTR_ERR(rbio);
1690	bio_list_add(&rbio->bio_list, bio);
1691	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 
 
 
1692
1693	/*
1694	 * don't plug on full rbios, just get them out the door
1695	 * as quickly as we can
1696	 */
1697	if (rbio_is_full(rbio))
1698		return full_stripe_write(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699
1700	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1701			       sizeof(*plug));
1702	if (cb) {
1703		plug = container_of(cb, struct btrfs_plug_cb, cb);
1704		if (!plug->info) {
1705			plug->info = root->fs_info;
1706			INIT_LIST_HEAD(&plug->rbio_list);
1707		}
1708		list_add_tail(&rbio->plug_list, &plug->rbio_list);
 
 
 
 
 
 
 
 
 
 
 
 
1709	} else {
1710		return __raid56_parity_write(rbio);
1711	}
1712	return 0;
 
 
 
 
 
 
 
 
1713}
1714
1715/*
1716 * all parity reconstruction happens here.  We've read in everything
1717 * we can find from the drives and this does the heavy lifting of
1718 * sorting the good from the bad.
1719 */
1720static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1721{
1722	int pagenr, stripe;
1723	void **pointers;
1724	int faila = -1, failb = -1;
1725	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1726	struct page *page;
1727	int err;
1728	int i;
 
 
 
 
 
 
 
 
 
 
1729
1730	pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *),
1731			   GFP_NOFS);
1732	if (!pointers) {
1733		err = -ENOMEM;
1734		goto cleanup_io;
1735	}
 
 
1736
1737	faila = rbio->faila;
1738	failb = rbio->failb;
1739
1740	if (rbio->read_rebuild) {
1741		spin_lock_irq(&rbio->bio_list_lock);
1742		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1743		spin_unlock_irq(&rbio->bio_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744	}
1745
1746	index_rbio_pages(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747
1748	for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1749		/* setup our array of pointers with pages
1750		 * from each stripe
 
 
 
1751		 */
1752		for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
 
 
 
 
 
 
 
1753			/*
1754			 * if we're rebuilding a read, we have to use
1755			 * pages from the bio list
1756			 */
1757			if (rbio->read_rebuild &&
1758			    (stripe == faila || stripe == failb)) {
1759				page = page_in_rbio(rbio, stripe, pagenr, 0);
1760			} else {
1761				page = rbio_stripe_page(rbio, stripe, pagenr);
1762			}
1763			pointers[stripe] = kmap(page);
 
 
1764		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765
1766		/* all raid6 handling here */
1767		if (rbio->raid_map[rbio->bbio->num_stripes - 1] ==
1768		    RAID6_Q_STRIPE) {
1769
1770			/*
1771			 * single failure, rebuild from parity raid5
1772			 * style
1773			 */
1774			if (failb < 0) {
1775				if (faila == rbio->nr_data) {
1776					/*
1777					 * Just the P stripe has failed, without
1778					 * a bad data or Q stripe.
1779					 * TODO, we should redo the xor here.
1780					 */
1781					err = -EIO;
1782					goto cleanup;
1783				}
1784				/*
1785				 * a single failure in raid6 is rebuilt
1786				 * in the pstripe code below
1787				 */
1788				goto pstripe;
1789			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790
1791			/* make sure our ps and qs are in order */
1792			if (faila > failb) {
1793				int tmp = failb;
1794				failb = faila;
1795				faila = tmp;
1796			}
1797
1798			/* if the q stripe is failed, do a pstripe reconstruction
1799			 * from the xors.
1800			 * If both the q stripe and the P stripe are failed, we're
1801			 * here due to a crc mismatch and we can't give them the
1802			 * data they want
1803			 */
1804			if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
1805				if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
1806					err = -EIO;
1807					goto cleanup;
1808				}
1809				/*
1810				 * otherwise we have one bad data stripe and
1811				 * a good P stripe.  raid5!
1812				 */
1813				goto pstripe;
1814			}
1815
1816			if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
1817				raid6_datap_recov(rbio->bbio->num_stripes,
1818						  PAGE_SIZE, faila, pointers);
1819			} else {
1820				raid6_2data_recov(rbio->bbio->num_stripes,
1821						  PAGE_SIZE, faila, failb,
1822						  pointers);
1823			}
1824		} else {
1825			void *p;
 
 
 
1826
1827			/* rebuild from P stripe here (raid5 or raid6) */
1828			BUG_ON(failb != -1);
1829pstripe:
1830			/* Copy parity block into failed block to start with */
1831			memcpy(pointers[faila],
1832			       pointers[rbio->nr_data],
1833			       PAGE_CACHE_SIZE);
1834
1835			/* rearrange the pointer array */
1836			p = pointers[faila];
1837			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1838				pointers[stripe] = pointers[stripe + 1];
1839			pointers[rbio->nr_data - 1] = p;
1840
1841			/* xor in the rest */
1842			run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1843		}
1844		/* if we're doing this rebuild as part of an rmw, go through
1845		 * and set all of our private rbio pages in the
1846		 * failed stripes as uptodate.  This way finish_rmw will
1847		 * know they can be trusted.  If this was a read reconstruction,
1848		 * other endio functions will fiddle the uptodate bits
1849		 */
1850		if (!rbio->read_rebuild) {
1851			for (i = 0;  i < nr_pages; i++) {
1852				if (faila != -1) {
1853					page = rbio_stripe_page(rbio, faila, i);
1854					SetPageUptodate(page);
1855				}
1856				if (failb != -1) {
1857					page = rbio_stripe_page(rbio, failb, i);
1858					SetPageUptodate(page);
1859				}
1860			}
1861		}
1862		for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1863			/*
1864			 * if we're rebuilding a read, we have to use
1865			 * pages from the bio list
1866			 */
1867			if (rbio->read_rebuild &&
1868			    (stripe == faila || stripe == failb)) {
1869				page = page_in_rbio(rbio, stripe, pagenr, 0);
1870			} else {
1871				page = rbio_stripe_page(rbio, stripe, pagenr);
1872			}
1873			kunmap(page);
 
 
 
1874		}
1875	}
1876
1877	err = 0;
1878cleanup:
1879	kfree(pointers);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880
1881cleanup_io:
 
 
 
 
1882
1883	if (rbio->read_rebuild) {
1884		if (err == 0)
1885			cache_rbio_pages(rbio);
1886		else
1887			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 
1888
1889		rbio_orig_end_io(rbio, err, err == 0);
1890	} else if (err == 0) {
1891		rbio->faila = -1;
1892		rbio->failb = -1;
1893		finish_rmw(rbio);
1894	} else {
1895		rbio_orig_end_io(rbio, err, 0);
 
 
1896	}
 
 
 
1897}
1898
1899/*
1900 * This is called only for stripes we've read from disk to
1901 * reconstruct the parity.
 
 
1902 */
1903static void raid_recover_end_io(struct bio *bio, int err)
 
1904{
1905	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
1906
1907	/*
1908	 * we only read stripe pages off the disk, set them
1909	 * up to date if there were no errors
 
1910	 */
1911	if (err)
1912		fail_bio_stripe(rbio, bio);
1913	else
1914		set_bio_pages_uptodate(bio);
1915	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
1916
1917	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
 
 
 
 
 
 
 
 
 
 
 
 
1918		return;
1919
1920	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1921		rbio_orig_end_io(rbio, -EIO, 0);
1922	else
1923		__raid_recover_end_io(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924}
1925
1926/*
1927 * reads everything we need off the disk to reconstruct
1928 * the parity. endio handlers trigger final reconstruction
1929 * when the IO is done.
1930 *
1931 * This is used both for reads from the higher layers and for
1932 * parity construction required to finish a rmw cycle.
1933 */
1934static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
1935{
1936	int bios_to_read = 0;
1937	struct btrfs_bio *bbio = rbio->bbio;
1938	struct bio_list bio_list;
1939	int ret;
1940	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1941	int pagenr;
1942	int stripe;
1943	struct bio *bio;
1944
1945	bio_list_init(&bio_list);
 
 
 
 
 
1946
1947	ret = alloc_rbio_pages(rbio);
1948	if (ret)
1949		goto cleanup;
 
 
 
 
 
 
 
1950
1951	atomic_set(&rbio->bbio->error, 0);
 
 
 
 
 
 
 
1952
1953	/*
1954	 * read everything that hasn't failed.  Thanks to the
1955	 * stripe cache, it is possible that some or all of these
1956	 * pages are going to be uptodate.
1957	 */
1958	for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1959		if (rbio->faila == stripe ||
1960		    rbio->failb == stripe)
1961			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962
1963		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1964			struct page *p;
 
1965
1966			/*
1967			 * the rmw code may have already read this
1968			 * page in
1969			 */
1970			p = rbio_stripe_page(rbio, stripe, pagenr);
1971			if (PageUptodate(p))
1972				continue;
1973
1974			ret = rbio_add_io_page(rbio, &bio_list,
1975				       rbio_stripe_page(rbio, stripe, pagenr),
1976				       stripe, pagenr, rbio->stripe_len);
1977			if (ret < 0)
1978				goto cleanup;
1979		}
 
1980	}
 
 
 
 
 
 
 
 
 
 
 
 
1981
1982	bios_to_read = bio_list_size(&bio_list);
1983	if (!bios_to_read) {
1984		/*
1985		 * we might have no bios to read just because the pages
1986		 * were up to date, or we might have no bios to read because
1987		 * the devices were gone.
1988		 */
1989		if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) {
1990			__raid_recover_end_io(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991			goto out;
1992		} else {
1993			goto cleanup;
1994		}
1995	}
1996
1997	/*
1998	 * the bbio may be freed once we submit the last bio.  Make sure
1999	 * not to touch it after that
 
2000	 */
2001	atomic_set(&bbio->stripes_pending, bios_to_read);
2002	while (1) {
2003		bio = bio_list_pop(&bio_list);
2004		if (!bio)
2005			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2006
2007		bio->bi_private = rbio;
2008		bio->bi_end_io = raid_recover_end_io;
2009
2010		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2011				    BTRFS_WQ_ENDIO_RAID56);
 
 
2012
2013		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2014		submit_bio(READ, bio);
 
 
 
 
 
 
 
 
 
 
 
 
2015	}
2016out:
2017	return 0;
 
 
 
 
 
 
 
 
 
 
2018
2019cleanup:
2020	if (rbio->read_rebuild)
2021		rbio_orig_end_io(rbio, -EIO, 0);
2022	return -EIO;
2023}
2024
2025/*
2026 * the main entry point for reads from the higher layers.  This
2027 * is really only called when the normal read path had a failure,
2028 * so we assume the bio they send down corresponds to a failed part
2029 * of the drive.
 
 
 
2030 */
2031int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2032			  struct btrfs_bio *bbio, u64 *raid_map,
2033			  u64 stripe_len, int mirror_num)
 
 
2034{
 
2035	struct btrfs_raid_bio *rbio;
2036	int ret;
2037
2038	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2039	if (IS_ERR(rbio))
2040		return PTR_ERR(rbio);
 
 
 
 
 
 
 
2041
2042	rbio->read_rebuild = 1;
2043	bio_list_add(&rbio->bio_list, bio);
2044	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046	rbio->faila = find_logical_bio_stripe(rbio, bio);
2047	if (rbio->faila == -1) {
 
 
 
2048		BUG();
2049		kfree(raid_map);
2050		kfree(bbio);
2051		kfree(rbio);
2052		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053	}
2054
2055	/*
2056	 * reconstruct from the q stripe if they are
2057	 * asking for mirror 3
 
2058	 */
2059	if (mirror_num == 3)
2060		rbio->failb = bbio->num_stripes - 2;
2061
2062	ret = lock_stripe_add(rbio);
 
 
 
 
 
 
 
 
2063
2064	/*
2065	 * __raid56_parity_recover will end the bio with
2066	 * any errors it hits.  We don't want to return
2067	 * its error value up the stack because our caller
2068	 * will end up calling bio_endio with any nonzero
2069	 * return
2070	 */
2071	if (ret == 0)
2072		__raid56_parity_recover(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073	/*
2074	 * our rbio has been added to the list of
2075	 * rbios that will be handled after the
2076	 * currently lock owner is done
 
2077	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2078	return 0;
 
 
 
 
 
 
2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080}
2081
2082static void rmw_work(struct btrfs_work *work)
2083{
2084	struct btrfs_raid_bio *rbio;
 
2085
2086	rbio = container_of(work, struct btrfs_raid_bio, work);
2087	raid56_rmw_stripe(rbio);
 
 
2088}
2089
2090static void read_rebuild_work(struct btrfs_work *work)
 
 
 
 
 
 
 
 
2091{
2092	struct btrfs_raid_bio *rbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093
2094	rbio = container_of(work, struct btrfs_raid_bio, work);
2095	__raid56_parity_recover(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
2096}